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Abstract 
 
 

This research integrates GA-based multiobjective optimization with VR-based visualization 

to select a Pareto-optimal plan for a landuse problem with multiple objectives and given 

constraints. Even though, seemingly, all the solutions resulting from the process of 

multiobjective optimization are equally non-dominated, only one single solution can be 

implemented and from the perspective of the problem on hand, each solution has its own 

pros and cons. This study proposes the use of visualization a tool o evaluate the Pareto 

plans. This way the decision makers can select a subset from the Pareto set and evaluate the 

plans in this subset visually to select the plan that most suits their requirements. 

 

Urban planning problems, especially landuse problems, are inherently multifaceted and 

involve stakeholders at various levels, thus necessitating multiple objectives that need to be 

satisfied. Typically, landuse problems involve finding an optimal allocation of zones for 

given objectives within a given area that satisfies specific constraints. Due to the continual 

increase in urban population and the associated human activities to meet the heavy demands 

imposed by the escalating populace, the urban area undergoes continual change. While trying 

to evolve sustainable landuse patterns, the problem involves objectives that are inherently 

conflicting in nature.  Multiobjective optimization is one tool that can come handy in such 

urban landuse planning problems. One particular multiobjective optimization (MOO) 

technique, Genetic Algorithms (GA), is used in this study to arrive at a solution set for the 

multiobjective optimization problem. GAs are capable of efficiently searching the large 

solution spaces by performing the alterations in a time saving and computationally efficient 

manner. Genetic algorithms can generate a set of ‘Pareto plans’ for a given landuse problem. 

However, ultimately only a single plan can be implemented. Decision makers still are 

confronting a set of plans from which they have to choose one plan. Automating this 

process of selecting one plan from the Pareto set without using a biased approach based on 

the relative significance of the various objectives is an important research issue. In order to 

be able to identify the most suitable solution that can be implemented, visualization is used 

to evaluate the plans.  

 

The results of the study corroborate that visualization is indeed an effective tool for studying 

the Pareto-optimal plans and assessing the pros and cons of the plans in order to select one 

final landuse plan for implementation. 
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Chapter 1: Introduction 

1.1 Research Background 

Landuse planning throughout the world is becoming increasingly complex these days. Cities 

worldwide are struggling to meet the heavy demands imposed on them by the continually 

growing populace. Canada is one such nation whose cities are presently undergoing rapid 

urbanization. On one hand, the cities are becoming flooded with incoming populations on a 

continual basis, whilst on the other hand, farmlands and other important non-urban landuse 

types are being lost on a recurrent basis to sporadic urban expansion. At this rate, Canadian 

cities and the overall landscape might soon be confronting serious problems, if the urban 

landscape changes are not properly monitored and counteractive measures initiated.  

 

The continually increasing urban sprawl of Canadian cities entails efficient growth 

management strategies and futuristic measures aimed at sustainable urban landscape 

development. Albeit these cities act as the engines driving Canada’s economy and overall 

development, the existing policies and the governmental framework are grossly inadequate 

to manage the tremendous expansion occurring at a geometric rate. Such an alarming 

situation calls for the judicious integration of the advances in GIS, multiobjective 

optimization techniques, and visualization to develop a decision support system to serve 

urban planners and policy-makers in identifying the desirable and undesirable factors among 

those that influence urban expansion and perform ‘proactive interference’, where necessary.  

 

Proper planning is inevitable for the sustainable development of urban landuse. Sustainable 

development implies that there is a proper balance between supply and demand. In other 



 2

words, the resources available should be properly and evenly distributed for the needs of the 

society. This means that the various activities such as commercial, industrial, recreational etc. 

occur at appropriate locations so that neither over utilization nor under utilization occurs. 

This implies that resources should not be exploited unreasonably at one place so that 

sustainable development in that area is hampered. A city can not afford to have only 

commercial activity or only recreational activity. The residents of a city not only need to earn 

money but also need to relax themselves. Hence, there should be a proper balance among 

the various landuse zones and these should be distributed appropriately.  

 

From the above discussion, we can see that urban planning problems are inherently 

multifaceted and involve stakeholders at various levels, thus necessitating multiple objectives 

that need to be satisfied. The advancements in the geospatial data acquisition and analysis 

would surely come in handy at such a situation. Advanced spatial data acquisition techniques 

have resulted in colossal data volumes; however, effectively utilizing such voluminous data 

to derive useful information still continues to be a daunting task.. Mere data is not sufficient 

to solve large-scale landuse problems. This data must be transformed into useful 

information. Multiobjective optimization is one such tool that can come handy in this urban 

landuse planning problem. One particular technique, Genetic Algorithms, is used in this 

study to arrive at a solution set for the multiobjective optimization problem. Even though, 

seemingly, all the solutions from multiobjective optimization are equally good, only one 

single solution can be implemented and from the perspective of the problem on hand, each 

solution has its own pros and cons. In order to be able to identify the most suitable solution 
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that can be implemented, a tool such as visualization is used herein to facilitate decision-

makers in evaluating the plans.  

 

Decision makers in the domain of land use planning and management are confronting 

complicated problems wherein multiple objectives have to be satisfied under specific 

constraints. Hence, we see that an efficient decision support system can aid the process of 

‘informed decision-making’ immensely. Efficient policy making can channelize the process 

of urban growth and thus prevent urban land eating away into other vital land use types.  

Besides, unhealthy trends in urban expansion must be inevitably checked in order to achieve 

sustainable development within urban environments, failing which life in such urban centers 

will become extremely chaotic in the decades to come. Such efforts to check and channelize 

urban growth necessarily involve proper policies and resourceful practices that can aid in 

wholesome development in the long run.  

 

From the above discussion it is evident that there is a pressing need for advanced decision 

support systems that aid policy makers and planners in the process of informed decision-

making. This study focuses on one of the rapidly expanding Canadian cities, Calgary and 

integrates multiobjective optimization with visualization to arrive at efficient solutions for 

the aforementioned problems. In particular, the study presents the results in a visual form so 

that decision makers can compare and contrast the various optimal solutions. 
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1.2 Problem Statement 

 

A vast majority of today’s real-world problems entail synchronized optimization of multiple 

objectives. The key to the problem lies in an efficient trade off among the different 

objectives thus making a judicious compromise. Evolutionary methods are a group of time-

tested techniques in solving problems entailing efficient optimization among various 

objectives. Evolutionary problem solving techniques are based on the natural evolutionary 

process wherein the fittest survive. Similarly evolutionary mechanisms contain procedures 

that execute iteratively with an aim of increasing the overall fitness or suitability of solutions 

and hence yielding optimal solutions finally. Genetic algorithms are evolutionary algorithms 

that are extremely efficient tools in performing multiobjective optimization. However, the 

limitation therein is that GA (Genetic Algorithm) methodology can be used to find ‘a set’ of 

non-dominated solutions, namely the Pareto set. Despite excellent multiobjective 

optimization procedures, it is possible that a comparatively poorer choice from the Pareto-

set is made. In other words, in the absence of objective evaluation, decision-makers might 

choose and implement a solution, which may not exactly be the best fit out of all the Pareto 

plans available. 

 

Hitherto, spatial optimization models provided a Pareto set, which is not a unique solution, 

but is a ‘solution-set’. Thus, on their own, GAs are quite efficient in providing ‘good-enough’ 

solutions, but can not be relied upon to provide the optimum solution, which is the ultimate 

goal of any optimization process. In other words, even though GAs provide a pool of ‘good-

enough’ solutions, they just stop short of providing a unique solution that can be chosen for 



 5

implementation. In many applications, for instance landscape planning, planning authorities 

can not implement all the several hundred solutions in the Pareto set. Just one optimal 

solution (conceivably ‘the best’) can be carried out. It is important to scrutinize the variations 

among the range of candidate solutions and comparing and contrasting them to obtain a 

superior understanding of the fundamental processes and locations. As no single solution in 

the non-dominated or Pareto set is totally better than any other solution, any single solution 

from the Pareto set should be considered an equally acceptable solution. The process of 

choosing one single solution over others involves in-depth problem knowledge and various 

other problem related factors. The choice of the solution is usually based on some ‘higher 

level information’. Tools that can help compare and contrast the various solutions in the 

Pareto set and thus evaluate them before making a decision would make the whole exercise 

of multiobjective optimization extremely fruitful. Terms such as ‘higher level information’ 

and ‘various factors’ are abstract in nature and refer to vague elements that do not really help 

in evaluating the solutions in the Pareto set in an objective manner. This might indeed result 

in under-utilization of the process of optimization using genetic algorithms. Hence, this 

research integrates multiobjective optimization using GAs with a visual evaluation tool that 

can help decision makers in comparing the various solutions and perform informed 

decision-making with consideration of concrete visual representations, rather than relying on 

abstract factors. 
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1.3 Objectives  

This study aims to present a multiobjective optimization approach to generating 

futuristic landscapes and to integrate it with a visual evaluation tool for assessing the 

solutions from the Pareto set.  

 

Summarily, the objectives of the study are as follows: 

 

a. Investigate the various factors influencing land use planning whilst considering 

sustainable development and choose the important objectives to be considered 

for multiobjective optimization subject to data availability. 

b. Formulating the process of modeling futuristic landscapes as an optimization 

problem wherein spatial configurations are created through the use of 

evolutionary algorithms in the form of a Pareto set.  

c. Designing the evolutionary algorithm for multiple objectives, e.g. maximization 

of per capita green space, maximization of per capita space for public service, 

and maximization of number of housing units.  

d. Generate a visualization tool that can interface the results of the genetic 

algorithm based optimization  

e. Evolve procedures to generate multiple landscapes from the pareto set using the 

visualization tool so as to aid in their evaluation and hence in the decision 

making process 
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1.4 Approach 

 
As multiple objectives are addressed in this study, a multiobjective optimization approach 

using GA is employed. For GAs, each and every single genotype within the population must 

include the complete design or specification for a solution. Obviously, in a multiobjective 

optimization problem, as the name suggests, the solution is made of multiple components. 

Each individual component is represented by a gene. All together these make up the whole 

genotype. Manipulations to these are done via what are known as genetic operators or 

simply, operators. Typically, only genotypes that are not inferior to any other solution within 

the search space are considered non-dominated (as these are not dominated by any other 

solution) and these form the constituents of the Pareto-optimal set. Some genotypes may 

have excellent performance, however, with respect to only one objective, and these 

obviously are not the best solutions for a multiple objective problem. Hence, there should be 

no bias towards genotypes that perform well only with respect to one objective. This is 

achieved by means of the Pareto-ranking method. Once the genetic algorithms provide a 

Pareto set, the alternate solutions can be visualized using the tool proposed in this study, 

thereby providing a yardstick that the decision-makers can use for evaluating alternate 

solutions or scenarios.  

 

This study puts forward the approach of GA-based optimization to handle optimal 

landscape scenario generation whilst taking into account multiple objective functions and 

subsequent visualization of the candidate solutions within the Pareto set as a tool for 

evaluation and informed decision-making. In particular, the proposed GA accommodates 
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three objectives functions – maximization of per capita green space, maximization of urban 

housing density, and minimization of energy consumption.  

 

1.5 Thesis Outline 

 

The outline of the five chapters, including this introductory chapter, is as follows. The 

introductory chapter contains the research background, problem statement, objectives and 

brief overview of the methodology employed in this study.  

 

Chapter Two reviews the various urban land use issues and the problems involved in 

attaining long-term sustainable development. This chapter also covers multiobjective 

optimization techniques as applied in the field of land use planning and the use of genetic 

algorithms as a tool for multiobjective optimization. The literature section briefly describes 

the two fundamental aspects of genetic algorithms, namely ‘selection and variation’. Finally, 

chapter 2 presents a review of visualization tools in the context of this research and their use 

in the evaluation and hence in the decision-making process. 

 

Chapter 3 covers the methodology for optimal land use planning and presents the overview 

of the multiobjective optimization and visual evaluation framework as employed in this 

study. The GA architecture is explained and the various components of the multiobjective 

GA for land use planning are elucidated. Next, the visualization framework for generating 

3D scenarios is explained. The use of virtual reality environments for generating visualization 

scenarios for the Pareto plans is explained. The sections therein explain the fundamental 
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entities involved in generating virtual reality based 3D visualizations and the process of 

putting together various scene components to generate the complete virtual environment.  

 

Chapter 4 The case study particularly focuses on the study area, a region of the city of 

Calgary and covers the implementation of the MOGA for three objectives. It explains the 

testing parameters for the GA and the fitness function. Subsequently, the design and 

implementation of the individual components of the visualization framework are covered. 

Finally, the results are presented and the discussion section covers the comparison among 

the alternatives and use of an evaluation tool  

 

The fifth and final chapter presents the conclusions, discussing the limitations, and provides 

the recommendations for improving the existing framework. Future studies along this 

direction can use these for expanding the results into other domains of interest and further 

enhancing results in this discipline. 
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Chapter 2: Literature Review 

 

2.1 Introduction 

 

Typically, landuse problems involve finding an optimal allocation of zones for given 

objectives within a given area that satisfies given constraints. Due to the continual increase in 

urban population and the associated human activities to meet the heavy demands imposed 

by the escalating populace, land uses undergo continual change. Whether or not these 

changes are in the right direction is of crucial importance. Today, in several urban 

environments, landuse configurations are being changed without any rational planning and 

such processes can not lead to the attainment of sustainable long term development. It is 

imminent to manage land uses systematically to preserve healthy surroundings and aid 

sustainable development. Landuse planning is a multifaceted problem and due to the 

intricacy involved in the planning process, appropriate tools and techniques are inevitable for 

improving the overall quality of the design process. The landuse plan generated as a result of 

the spatial optimization must meet the objectives and constraints set out at the beginning.  

 

Methods including Linear Programming (LP) and heuristic search methods such as 

simulated annealing and Tabu-search have been conventionally used in single-objective land 

use problems. Quite frequently, LP has been combined with heuristic methods to handle 

specific spatial optimization problems. For multiobjective optimization problems, multi-

criteria decision making has been employed, however with serious constraints and 

limitations. In this chapter, we will discuss multiobjective problems and the various tools 
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used by other researchers in the field to solve such problems. Subsequently, the chapter will 

elaborate one powerful tool for solving multiobjective problems, namely ‘Genetic 

Algorithms’. This chapter comprehensively reviews the various landuse planning 

methodologies whilst substantiating the use of Genetic Algorithms (GA) for this study.  

 

The key objective of the work is the design and implementation of a GA-based Decision 

Support System (DSS) that can aid the process of informed decision making and help in the 

landuse planning of considerably large urban locales. The system will facilitate 

administrators, landuse planners, stakeholders, and other decision makers in the process of 

designing and developing sustainable urban environments.  

 

2.2 Multiobjective Optimization: A Brief Overview 

 

The following passages discuss the gist of multiobjective problems. Numerous real-world 

problems serve as examples for multiobjective optimization problems. ‘Design problems’ are 

a particular class of such problems. A design is nothing but a plan. Examples include 

locomotive design, car design, hardware design, landuse design etc. The reason that a vast 

majority of the problems are multiobjective is obvious as researchers and designers are 

aiming for solutions that can satisfy a wide range of demands. For instance, a simple example 

is that of an automobile design that aims to increase mileage whilst reducing fuel 

consumption. Similarly, landuse problems aim to increase the housing capacity of an area 

whilst reducing energy consumption and reducing traffic congestion. It is apparent that the 

objectives are inherently conflicting in nature. This is because, an increase in housing 
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capacity implies the number or residents of the area will increase, hence the energy 

consumption and traffic volume will also increase correspondingly. However, a sustainable 

design will aim to reduce energy consumption and also must reduce urban problems such as 

traffic congestion, whilst trying to increase the housing capacity of the city to accommodate 

the continual flow of populace.  

 

Based on the nature of the application, various objectives need to be formulated for a MOP 

(Multiobjective optimization) problem. Besides, there may also be other objectives that may 

be of importance, which can be devised as constraints. Thus, a typical MOP consists of a 

specific number of decision variables and particular number; Say n number of objective 

functions, which need to be attained under a given set of constraints.  

 

The aim of the optimization process can be expressed as follows: 

 

Maximize (or) minimize   f(x) = y = (f1(x), f2(x)... fn(x)) 

Conditional on C(x) = (C1(x), C2(x), …, Cm(x)) 

Wherein n is the number of objective functions and m is the number of constraints. 

 

In the above expression the decision vector x is equal to (x1,x2,…xn) and the objective vector 

y is equal to (y1,y2,…,yn). The set of values (x1,x2,…xn) є X signifies the decision space and 

the set of values (y1,y2,…yn) є Y represents the objective space. The feasible set of solutions 

is determined by the set of constraints i.e. C(x) ≤  0. 
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In the context of multiobjective optimization, a term that is frequently heard of is ‘Pareto’ 

set of ‘Pareto-optimal’ plans. In order for a plan to be considered part of the Pareto set no 

other plan should be found, which is superior in all objectives. In other words, a plan may 

outdo the Pareto plan in one objective and a different plan may be better in another 

objective; however, a ‘single plan’ does not outperform a Pareto plan in all the objectives. 

Balling et al. (1999) correctly point out that the ‘Pareto set is independent of the relative importance of 

the objectives’. From the above discussion it can be seen that plans that do not belong to the 

Pareto set (non-Pareto plans) are ‘non-dominated’, because a Pareto plan that is better (or 

that which dominates) already exists. 

 

2.3 Approaches for Multiobjective Optimization 

 

One very well-known method that has been employed in landuse planning is linear 

programming (LP) (Arthur 1997). Based on a given set of resources LP optimizes an 

objective function, conditional on a series of constraints. Conventionally, various MOP 

approaches involved cumulatively combining all the objectives of multiobjective 

optimization into a single objective function. The optimization routines are executed 

numerous times with varied settings of the optimization parameters till a required set of 

Pareto optimal solutions is obtained. Cohon (1978) employed two techniques namely the 

Weighting method and the Constraint method, which are discussed here in a succinct 

manner. Other noteworthy methods include the Goal programming approach by Steuer 

(1986) and the Minimax approach by Koski (1984). 
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In the weighting method, the original multiobjective optimization problem is translated into 

a single objective problem by assigning weights to the various objectives and expressing 

them as a linear combination. By executing the optimization algorithm for a particular 

number of times or iterations a solution set is obtained. One major drawback of this method 

is that it is not capable of generating all the Pareto optimal solutions. In other words, the 

Pareto set so obtained is incomplete (Stewart et al., 2004). The Constraint method attempts 

to overcome this shortcoming by transforming all but one of the objectives into constraints. 

The one objective, that remains, is considered as the objective function of the single 

objective optimization. To obtain the Pareto-optimal solutions the lower bounds of the 

constraint set are fluctuated during the optimization procedure. However, in the case of the 

constraint method, inappropriate choice of the lower bounds results in an empty feasible set. 

Thus, it is evident that the above methods have limitations when applied to problems that 

are multiobjective in nature. 

 

By and large, landuse (LU) management problems largely employed linear programming (LP) 

approaches. LP approaches lack abilities to properly and efficiently handle integer variables 

and are also not competent in handling spatial coordinates. Also, of late, the complex urban 

milieu, greater number of stakeholders, and the demand for informed decision-making have 

necessitated the use of more advanced tools that can better handle multiobjective problems. 

In addition to the aforementioned reasons, the advancement in spatial data procurement and 

processing techniques and the use of Geographical Information Systems (GIS) have 

imposed greater demands on the accuracy and reliability of the results. Consequently, 
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researchers like Stewart et al. (2004) started modifications by converting LU problems in the 

form of integer programming (IP) problem. This marked the entry of IP approaches in this 

domain. Still, linear as well as integer programming techniques were inevitably suited for 

single objective optimization process and this necessitated combining those objectives into a 

single objective.  

 

Efforts to find alternate methods that can handle large combinatorial problems rapidly led to 

non-traditional heuristic approaches such as Tabu search and Simulated Annealing. Such 

methods were robust, fast and were indeed able to solve large combinatorial problems; 

however, these methods do not necessarily provide the optimal solution. This is a major 

drawback, as despite being robust, the inability of the method to assure optimal solution 

greatly reduces the reliability (Beasley et al. ,1996).  

 

It follows from the above discussion that optimization approaches that were truly 

multiobjective in nature were not available initially and the lack of such methods especially 

for large-scale problems is pointed out by Horn (1994). One important aspect is the problem 

knowledge which may not necessarily be available and even if present, may not be easy to 

incorporate. Another significant aspect with respect to the execution of the optimization 

procedures is that the runs are performed independently in the traditional methods. This is 

not only computationally intensive but the utilization of the positive aspects (traits in the 

individuals) of each procedure is rendered impossible (Deb 2001). From the above 

discussion, the need for efficient alternatives to traditional approaches is evident.  
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Of late, Genetic Algorithms (GAs), a heuristic method, has been found suitable enough to 

tackle the aforementioned problems (Aerts et al. 2005). In sharp contrast to the other 

heuristic approaches including those discussed earlier, GAs are wide-ranging search 

procedures with universal applicability, meaning that they are not restricted to a particular 

discipline. Genetic algorithms (GA) are a form of evolutionary computation developed by 

Holland (1975). They were found to be robust tools that can produce exceptional results for 

MOO problems (Goldberg 1989). GA is rooted in the principles of natural selection and 

evolution. Landuse problems typically involve large solution spaces and are computationally 

complex as a large number of iterations are required. GAs are capable of generating optimal 

solutions in a computationally efficient manner. Most importantly, the evolutionary 

mechanism surpasses the shortcomings of the single objective optimization approaches. By 

80s and 90s, a vast majority of the MOO problems in which the relative importance of the 

objectives was hard to ascertain started employing GA.  

 

Multiobjective genetic algorithm (MOGA) approaches have from the very rudimentary 

stages focused on the generation of a set of Pareto-optimal solutions (Pareto, 1896). Beasley 

et al. (1996) summarize the major elements involved in the GA process as: survival of the 

fittest, recombination, and mutation. The ‘survival of the fittest’ step ensures that solutions 

which are better than the other solutions in a generation are selected for the new generation. 

Recombination occurs by either random or methodical swapping of values among solutions 

and mutation by changing the values within a solution. A more detailed discussion of these 

steps is presented in the subsequent sections.  
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2.4 Genetic Algorithms 

 

Genetic Algorithms are a type of evolutionary computational techniques, a category of 

stochastic optimization methods imitating the natural evolutionary process. Evolutionary 

computational techniques can be dated back to the 1970s. Evolutionary algorithms (EAs) 

start with an initial set of solutions, each member of which is a complete solution in itself to 

the problem on hand. At the core, two fundamental evolutionary tenets namely ‘selection 

and variation’ are employed to generate the subsequent generations. The first principle 

namely selection is along the Darwinian theory (Darwin, 1859) of ‘survival of the fittest’. The 

other principle, variation, imitates the natural capability of creating living beings with new 

traits by means of recombination and mutation. The value of the plans in a current 

generation is gauged by appraising the individual members and allotting scalar values that 

indicate their fitness. Mutation, typically, is applied to a randomly chosen gene, the value 

associated with which is randomly modified to a different value from a permissible range of 

values. For the next iteration, the offspring population thus created substitutes the parent 

population, and the process is repeated for many generations with the aim of increasing the 

average fitness of the generations and hence that of the individuals.  

 

During the process of iteration, those individuals which have lower fitness (in other words, 

which are less suitable) are left behind. Thus with each generation or with each iteration, 

more fit solutions get selected and the less fit solutions get eliminated or get left behind.  

Genetic algorithms are particularly suited to the problem of multiobjective optimization 

owing to their capability of generating a set of Pareto-optimal solutions in a single iteration 
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process. Besides, the variations introduced by recombination and selection make sure that 

additional traits that are superior have a chance to enter the generations, while selection 

ensures that the unfit solutions are not carried over to the subsequent generations.  

 

Valenzuela et al. (1997) advocate that genetic algorithms outperform other search techniques 

while solving multiobjective optimization problems. More and more number of 

multiobjective optimization problems continue to employ genetic algorithms. Other than the 

landmark works by pioneers like Goldberg (1989) and Holland (1975), numerous other 

researchers conducted several successful studies on genetic algorithms and evolutionary 

computation. Some prominent researchers in the 80s and 90s include Schaffer (1984, 1985), 

Fonseca et al. (1993, 1995a, 1995b, 1996), Fourman (1985), Hajela (1992); Horn et al. (1994), 

Kursawe (1991), and Srinivas et al. (1994). All the aforementioned researchers proposed and 

designed various implementations of GAs. Later, these evolutionary techniques and their 

variations became highly functional for various multiobjective optimization problems 

(Cunha et al. 1997; Valenzuela et al. 1997, Fonseca et al.1996, 1998). 

 

Matthews et al. (1999a, 1999b, 2000a) carried out significant studies in the use of GAs in 

spatial applications, particularly landuse problems. Matthews et al. (2000b) constructed a 

GA- decision support system (DSS) for a multiobjective problem that identifies the nature of 

trade-offs among conflicting objectives in landuse and landscape analysis. Matthews et al. 

(1999b) designed another GA-based DSS that facilitated the exploration of the various land 

use choices and the possible potential influences of landuse changes. Other people who 

carried out significant studies include Arika et al. (2000), Stewart et al. (2004), and Seixas et al 
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(2005). Stewart et al. (2004) designed a GA using a goal programming approach, to a spatial 

problem consisting of two objectives namely minimization of cost and compactness of each 

land use. Seixas et al. (2005) implemented a GA to investigate future landuse compositions. 

The works discussed above and several other significant works clearly demonstrate the 

capabilities of GAs in solving multiobjective optimization problems (Jaszkiewicz (1998), 

Zhang et al. (2000), Fonseca and Fleming (1995)). Quite recently, researchers have also 

started investigating specific areas within multiobjective optimization and search process 

using GAs, for instance, elitism (Obayashi, Takahashi et al., 1998), Pareto-optimal front 

convergence (Rudolph 1998), niching (Obayashi, Takahashi et al., 1998). On the other hand, 

Works by Rudolph et al. (1998), Lis et al (1997) and several others have focused on 

designing and implementing innovative evolutionary methodologies. 

 

It is lucid that GAs differ significantly from conventional methods in ways more than one. 

First and foremost, GAs start with a population of solutions and not with a single solution. 

GAs are very flexible in the sense that they can easily be used for a wide range of problems 

ranging from air-craft design to medical research. Numerous examples of the various 

applications of GA can be found in literature (Fogel, 1998), (Rudolph, 1998), and (Pham, 

2000). 

 

On the whole, the GA process can be summarized as follows. Figure 2.1 shows the general 

structure of a typical genetic algorithm. Solutions to the problem are coded as a series of 

values in a structure referred to as the chromosome. At the start of the genetic algorithm 

process, a number of random solutions are created and stored in the chromosomes. All the 
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chromosomes are evaluated and given a fitness value based on how good the encoded 

solution is. These values are then used to populate the next generation of chromosomes so 

that fitter chromosomes represent a larger proportion of the copied chromosomes than the 

less fit solutions. These are then subjected to recombination and mutation to create new 

combinations of values that can then be re-evaluated. This process is repeated for a large 

number of generations with the goal being that the solutions get better with each successive 

generation but with the ability to escape local fitness maxima in order to find the best overall 

solution. 

 

 

 

 

 

 

 

 

 

 

 

After a discussion of genetic algorithms and their application to MOO problems, especially 

landuse and spatial problems, let us proceed to look at the GA itself in detail. The basic 

building blocks of GAs are ‘genotypes’. A genotype represents a complete specification for 

the solution to the problem on hand. A genotype is made of genes. Considering a landuse 

problem, if a master landuse plan for a particular area is to be generated, then one genotype 

 
Figure 2.1 The general structure of a Genetic Algorithm 
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represents a possible solution, i.e.  a plan. This plan is in turn made of genes. For instance, if 

the landuse map is represented as polygons and if it contains n number of polygons, then the 

genotype consists of n number of genes. If the landuse is represented in the form of a raster 

grid of size ‘n x n’ (for e.g. 400 cells), then the genotype consists of 400 genes.  

 

Srinivas et al. (1994) mention that the encoding mechanism is a very fundamental and 

significant aspect of the GA construction, as this is the means by which the GA represents 

the variables of the optimization problem. In this study, we use an integer based genetic 

representation. The core of the GA involves manipulating these genes of a genotype using 

various operators that perform the required manipulation operations. The very initial forms 

of GA implementations used a ‘fixed-length binary string’ representation. In other words, 

the genotyped was represented in the form of a binary string with a fixed length. Even today, 

a lot of GA implementations still employ this representation.  

 

While binary representation remained the most common standard for GA representation, 

Antonisse (1989) disputed this version. Following that, various other representations that 

can better suit tailor-made applications began to evolve. One of the pioneers, Goldberg 

(1989) used order-based representations and Michalewicz (1992) used real-coded genes for 

numerical optimization. Goldberg et al. (1989) proposed a messy representation for solving 

problems that proved complicated for normal GA optimization. In a further improvement 

of this, Goldberg (1989) and Deb et al. (1993) used a messy representation, wherein the 

genes could be amalgamated in any order since the gene itself was tagged thus facilitating its 

decoding, irrespective of its position on the genotype.  
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Messy representations offered excellent flexibility as they facilitated both over and under 

specification of the problem being investigated.  In over specification, the representation 

consisted of more number of genes and in under specification, the representation consisted 

of too little or less number of genes.  These days integer representation is also employed in 

many studies, as in this study, owing to its simplicity and ease of computation. In the natural 

genetic process, the genetic constitution is referred to as the genotype and the physical 

manifestation as the phenotype.  

 

The study by Matthews et al. (1999) on the use of GA for a spatial allocation problem 

proposed innovative genotype representations for the landuse planning problem. A land 

allocation problem entails a genotype to code the information for allotting land uses the 

polygons or cells. Their work examined three alternative representations namely spatially 

explicit grid representation, land block representation, and percentage and priority 

representation.  

 

Once the GA representation has been decided, an initial population is generated with a 

genotype population of a specific number. For instance, 100 genotypes, each representing a 

possible solution can be generated randomly and this serves as the starting generation. The 

candidate solutions are called individuals and complete set of candidate solutions is called 

the population.  
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Once the initial generation has been crated, GAs typically consist of the following steps: 

 

o Selection process wherein the individuals for the next generation are chosen 

o Manipulation, wherein recombination and mutation are performed using genetic 

operators 

 

In this study, integer based representation has been implemented. The genetic framework 

for the region is represented by a gene each for every changeable zone. We use integers 

because, integers are simple and straightforward, and hence easy to handle; Also, integers are 

probably more efficient in GAs, from the computational perspective. Each gene is an integer 

that can assume any value from among the various land uses considered in the study. At 

first, each variable is plotted or mapped to an integer within the range of values and this 

integer value is encoded using binary bits. However, as there are multiple variables involved 

optimization problem, the binary codes of all such variables are linked together finally 

resulting in a binary string. In the beginning (first generation), a random value is assigned by 

the GA to each gene. Here, the generation size is chosen as 100, as a result of which 100 

landscape plans result at the end of the execution of the first generation. The integer 

representation is also a common method (Srinivas et al. 1994) of encoding used in GAs.  

 

An initial generation is created by a process of random generation in the presence of 

constraints and the iterations are repeated until a feasible set is obtained. Here, ‘feasible set’ 

refers to plans that satisfy the constraints imposed. This process of generation of feasible set 
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is illustrated later in Chapter 3. During iteration, the plans in a generation are checked 

individually for satisfaction of the minimum requirements for greenspaces, public service 

space, and housing density. Those that satisfy these requirements are added to the feasible 

set and the others are discarded. The procedure is repeated till the initial generation with 100 

chromosomes is obtained. After the initial generation is obtained, the selection, 

recombination, and mutation processes are performed to create the subsequent generation.  

 

2.4.1 Selection and Variation 

 

As stated earlier, the GA process consists of two very fundamental operations, namely 

selection and variation. The selection process is the step whereby the individuals that are ‘fit 

enough’ to be passed on to the next generations are chosen. Typically, this process is biased 

by the fitness of the individuals in such a way that individuals with higher fitness have a great 

probability to make it to the subsequent generation. The selection process can be stochastic 

or deterministic; the basic objective is to eliminate the poor quality individuals from the 

population set. The value of an individual member of the population with respect to the 

optimization process is represented by a scalar quantity known as ‘fitness’. The fitness value 

is calculated based on the objective functions and constraints. After calculating the fitness 

values of each and every individual in the generation, those members with higher fitness 

values are selected for the subsequent generation. However, as is obvious, not all the 

members from the present population can be selected for the next generation. This 

proportion is called the rate of selection or selection rate. For instance, if the selection rate is 

.2, then out of a population of 100, 20 individuals will be selected for the next generation.  
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Assuming that the total number of individuals in a population is ‘n’, if the selected rate is x, 

then the total number of individuals that are selected from the current generation for being 

passed to the next generation is (n * x). The next generation now only has (n * x) number of 

individuals. Hence, the remaining individuals (n – (n * x)) must be generated using 

recombination and mutation. For instance, if n = 100, and x = 0.4, then 40 individuals are 

obtained by selection and the remaining 60 are generated by recombination and mutation.  

One vital consideration during this step is the choice of the number of chromosomes to 

retain. If there is a considerable number of poor quality chromosomes in the present 

population, retaining a large number of chromosomes for the next generation from this 

generation will facilitate such poor quality chromosomes to contribute immensely to the next 

generation thus affecting the overall fitness of the generation. On the other hand, if only 

very less number of chromosomes are retained from the present generation to the next 

generation restricts the number of genes available in the offspring. This step mimics the 

natural selection process. Thresholding is a process that is frequently employed in several 

studies. In this process, chromosomes with a fitness value below the threshold limit are not 

considered for the next generation. 

 

As seen in the earlier passages, recombination and mutation are the steps following the 

process of selection, to generate the remaining individuals for the next generation. The new 

solutions in the search space are generated by altering the existing ones. Simply stated, 

recombination is the process of merging the genetic information from two parent 

chromosomes by means of crossover. In the recombination step, a predetermined number 
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of parents are selected and these are recombined using crossover operations to create 

children. In order that the process remains stochastic, a probability rate known as crossover 

probability is used along with the crossover operator. Originally single-point crossover was 

used in earlier GA studies. This was succeeded by multi-point crossover and subsequently 

uniform crossover came into being, wherein individual genes and not genotype portions are 

interchanged. Eshelman et al. (1989) found that use of uniform crossover enhanced the 

search capability of the GA. Also, if the crossover proportion of the offspring from the 

parent was maintained at 50% the overall efficiency of the GA was enhanced.  

  

For recombining parents, at first the parent chromosomes that form the mating pair must be 

selected. Two chromosomes must be chosen, which can be combined to generate the 

offspring. As seen earlier, the process is repeated until the required number of chromosomes 

are selected to fill the remaining chromosomes in the next generation. Considering the above 

parameters ( n=100, x =.5), the iterations must cumulatively result in 50 remaining 

chromosomes for the subsequent generation. A wide range of methods for selecting the 

mating pair are available. These include random pairing, weighted random pairing, 

tournament selection etc.  

 

In random pairing, a random number is generated in a uniform manner to select the 

chromosomes. In this method, the fitness of the individual chromosomes is not taken into 

account. A more fitness-biased method of pairing is the weighted random pairing. In 

weighted random pairing, the probability of selection of chromosomes for mating is biased 

by their fitness. In other words, chromosomes with higher fitness values have a greater 
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chance of getting selected for mating. This way, the chromosomes with good qualities have a 

greater probability to pass their traits to the next generation. Another widely used method is 

the tournament selection wherein a small compartment of chromosomes is elected from the 

original mating pool, and the two chromosomes with the top two highest fitness values are 

selected as the mating pair. This method is a blend of random as well as fitness-biased 

methods. This is because, the selection of the subset is random, while within the subset the 

mating pair is selected based on the fitness values.  

 

Once the pair for mating is selected using one of the aforementioned methods, the 

chromosomes must be ‘mated’ to produce 2 offspring. The present members of the 

chromosome population largely influence the genetic composition of the subsequent 

generation.  The crossover point is where the swapping occurs. This point is chosen 

randomly and it lies between the first and last genes of the chromosomes. At first, one of the 

two members of the mating pair, called Parent1 provides the genes to the left of the 

crossover point to the Offspring1 and the second member of the mating pair, Parent2 

provides the genes to the right of the crossover point to the Offspring1. Thus, the Offspring1 

now contains material from both the parents. Similarly, the second offspring is generated by 

combing material from Parent1 and Parent2. The genes to the right of the crossover point 

from Parent1 and that to the left of the crossover point from Parent2 are combined to 

produce Offspring2. Other alternative forms of crossover are also available.  

 

Eshelman et al. (1989) delineate a two-point crossover for a binary GA, wherein the 

crossover operation is performed at two random crossover points. The parents subsequently 
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exchange the genes between the two crossover points chosen randomly. Instead, after 

selecting two crossover points, one of the three parts of the chromosome is randomly 

selected by means of which the genes that are to be exchanged can be determined. The use 

of two-point crossover greatly enhances the range of offspring that can be created by 

recombination. Eiben (1994a) described a crossover operation involving three parent 

chromosomes and two crossover points. Uniform crossover considers each gene in the 

parents and on a random basis assigns each gene to one of the children chromosomes.  

 

Once the recombination step is over and the crossover operations are complete the 

generation is full with its complete population of chromosomes. At this stage, random 

mutations are introduced in the population. Random mutations of the chromosomes change 

a particular proportion of the genes in the chromosomes. Mutation helps the GA process in 

two ways: 

1. Mutation helps prevent premature convergence 

2. Mutation aids establishing new traits not present in the original population 

By avoiding premature convergence it is meant that if an exceptional solution is attained 

during the iteration process, mutation makes sure that algorithm does not just converge on 

that particular solution, but the iterations continue to yield better solutions.  In integer-based 

representation, mutation is exercises by introducing random changes in the gene-wise 

structure of the chromosomes, based on the mutation probability. This is explained in details 

in chapter 3. 
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2.4.2 Subsequent Generations and Convergence 

 

After the mutation step is completed, the next generation is completely ready for the 

iterative process. The steps starting from fitness calculation are started once again for the 

individual chromosomes of the new generation and this generation undergoes the steps such 

as selection, recombination, and mutation as before until the subsequent generation is 

obtained.  

 

 

The iterative process of the subsequent generations depends on  

• Whether specific search criteria have been satisfied or 

• Whether a specific number of iterations have been surpassed 

 

As mentioned already, if the mutation step did not exist, after a particular number of 

iterations the average fitness of the generations would continue to remain the same.  The 

overall success of a GA is to a large extent influenced by its ability to sustain a diverse 

population so as to preclude untimely or premature convergence. Also this is important to 

attain an evenly distributed and well spread Pareto-optimal set 

 

After having discussed the GA part in detail, now let us move on to the visualization part. 

Hitherto, to the authors’ knowledge, spatial optimization models provided a Pareto set 

which is not a unique solution, but is a ‘solution-set’.  
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Dias et al. (2002) clearly point out that as no single solution in the non-dominated or Pareto 

set is better than any other solution, any single solution from the Pareto set should be 

considered an equally acceptable solution. Osyczka (1985) mentions that the process of 

choosing one single solution over others involves in-depth problem knowledge and various 

other problem related factors. Seixas et al. (2005) opine that choice of the solution is based 

on some ‘higher level information’. In this study, the authors strongly believe that a tool that 

can help compare and contrast the various solutions in the Pareto set and thus evaluate them 

before making a decision would make the whole exercise of multiobjective optimization 

extremely fruitful. Terms such as ‘higher level information’ and ‘various factors’ are abstract 

in nature and do not really help in objectively evaluating the Pareto solutions. This might 

indeed result in under-utilization of the process of optimization using genetic algorithms.  

 

Hence, the authors propose that multiobjective optimization using GAs is integrated with a 

visual evaluation tool that can help decision makers in comparing the various solutions and 

perform informed decision-making based on concrete visual representations, rather than 

relying on abstract factors or placing weights subjectively. This study puts forward the 

approach of GA-based optimization to handle optimal landscape scenario generation whilst 

taking into account multiple objective functions and subsequent visualization of the 

candidate solutions within the Pareto set as a tool for evaluation and informed decision-

making. 
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Now, let us discuss visualization, its applications, and its usefulness as a tool for evaluating 

the results of GA-based MOO problems.  

2.5 Visualization 

 

The need for visualization and its effectiveness in solving practical problems has been 

emphasized in numerous works by authors from diverse fields. In their works on 

visualization, several authors (Berry et al. 1998, Tufte 1990, 1992) emphasize the importance 

and usefulness of visualized data. Recently, 3D visualization of information has turned out to 

be an essential tool in geological, landuse, infrastructure, geophysical, meteorological, 

hydrological, and several other environmental applications. Modern sophisticated data 

acquirement technologies have made it possible to acquire complex data which were 

primarily much more difficult to procure; nevertheless, to extract useful information from 

this sea of data volumes is an overwhelming chore. With increasing data accessibility, and the 

development of a plethora of tools for visualization, there is a mounting need to sensibly and 

efficiently model geospatial data and phenomena eventually.   

 

Visualization practices not only enable the user to obtain an insight into the data being 

analyzed, but also facilitate effective presentation of the results of the analytical process 

(Church et al. 1994, Koppers 1998, McGaughey, R.J. 1998).  Visualization enables 

combining diverse datasets to present an integrated view of the data. Notwithstanding the 

remarkable research efforts in this direction, photo-realistic modeling of real world objects 

continues to remain a challenge. Virtual Reality and Web GIS have significantly influenced 
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the process of development of tools (Fairbairn and Parsley, 1997) that facilitate interactive 

visualization of geospatial data.  

 

Over the past several decades, the evolution of varied image generation techniques and the 

parallel developments in GIS, image processing software, remote sensing, and CADs 

(Computer Aided Design) have resulted in colossal volumes of digital spatial data. For issues 

involving design and decision-making within the realm of urban landscapes and 

environmental applications, 3D visualization serves as an immensely valuable means for 

exploring geospatial data (Bonham-Carter, 1994). Shiode N. (2001), in the work on urban 

modeling, elucidates the function of spatial information database and remote sensing 

technologies in the development of 3D models. Visual representations are comparatively 

easier to comprehend and employ, than their analogous tabular or written versions. 

Contemporary visualization standards such as VRML 2.0 have made gigantic strides from 

the earlier two dimensional maps and other graphic representations. Doyle et al. (1998) 

elaborate the prospects of utilizing VRML for rendering complex 3D visualizations. 

Integrating VRML with Java and CGI (Common Gateway Interface), Huang and Lin (2002) 

developed a geographic VR toolkit.  

 

Much of the research involving spatial analysis demands that the data be in the 3D form and 

common sense dictates that spatial data be visualized in the 3D form. Geospatial data is 

inherently three dimensional in nature since every spatial element has its own position or 

location in space. In the context of modern research, there is a need to visualize geospatial 

data in its 3D form in multifarious fields such as geography, civil engineering, hydrology, 
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disaster management, demography, and so on. Chen and Murai (1999) mention a gamut of 

application domains including oil exploration, mining, and geology, which need three-

dimensional visualization. These authors emphasize that in addition to visualization of 3D 

geospatial data, data manipulation is also important. The choice of application for data 

visualization depends on the need for data visualization and it might vary among each of the 

aforementioned fields. The scope of this study does not permit dwelling into the diverse 

nature of the different 3D geospatial data.  

 

The discussion in this study particularly revolves around landuse and urban planning 

applications. When considering landuse applications, conventionally, town or country 

planning operations relied heavily on drawings and of late, CAD drawings seem to play a 

major role. However, one major handicap with these forms of data is that they try to 

represent 3D entities in 2D. Even though these may provide an idea of the place being 

studied or designed, these cannot substitute a 3D view of the terrain under analysis. Present 

landscape architecture applications and urban modeling are extremely complex processes. 

Hence, it is imminent that 3D geospatial data be viewed in their 3D forms in order to gain a 

better insight.  

 

Visualization facilitates not only presenting information, but also enables seeing and 

understanding hidden information among datasets. As mentioned in the previous section, 

huge volumes of data are available today and it is practically impossible to manually sift 

through these huge amounts of data. Using visualization techniques, data can be presented in 

a much more organized manner that facilitates understanding the information that may not 
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otherwise be apparent. The advantage of modern visualization is that such visualizations are 

not mere depictions of scenes, but also interactive environments capable of animating the 

scenes, and simulating phenomena.  

Urban planning authorities and town planners face several problems such as managing water 

shortages, transportation problems, urban housing and land use problems, natural and man-

made disasters, etc. Several of these problems are mutually dependant and trying to solve 

them in isolation will never lead to a permanent or long-lasting solution. One of the 

foremost steps in solving these problems is to get a bird’s eye view of the problem scenario 

as a whole, while simultaneously concentrating on the minutiae. This kind of visualization is 

of immense value to town and country planners and urban infrastructure management in 

understanding the link among the various components. Also, the influences on the ambient 

environment as a result of the aforementioned project can be studied by means of the virtual 

settings. The visual impact of new buildings and surroundings on each other can be vividly 

seen on the screen. 

 

2.6 Visualization in MOO problems 

 

The aim of this study is to employ genetic algorithms (GAs) as a tool to solve a LU MOO 

(Land Use Multiobjective Optimization Problem) and subsequently use a visual evaluation 

tool to aid land-managers in selecting appropriate plans. This thesis focuses on the 

application of GAs to search and identify the landuse plan that is optimal in view of the 

objective(s) of the decision makers and authorities involved. For this purpose, MOO is 
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integrated with Visualization. Visualization facilitates not only presenting information, but 

also enables seeing and understanding hidden information among datasets. 

 

By proper use of visualization tools, the same area can be viewed at different scales i.e. a 

small area in detail or a bird’s eye view of a larger area. In order to see the overall landscape 

of a whole country we need to view the entire country at a glance. However, the advantage 

with modern visualization is that such visualizations are not mere depictions of scenes, but 

also enable interacting with the scene and are capable of animating the scenes, and 

simulating phenomena. Another kind of information that needs to be discussed in this 

context is associated information. In every society there is an association among the various 

components. For instance, consumption is related to population, import/export is related to 

consumption, economy is related to commerce and so on. In order to understand these links 

among the various components of a system, tools that can reveal the various concurrent 

processes that occur among the various sub-systems are very essential. Solutions to many 

complex problems can be found by understanding the link or relationship among the 

components of a system. Let us consider a sample situation in town or country planning or 

urban landscape development etc. Places that were once considered unfit for human 

habitation have been transformed into hubs of economic activity. Several factors influence 

this transformation of a once desolated place into active urban centers. 

 

Urban planning authorities and town planners face several problems such as managing water 

shortage, transportation problems, urban housing and land use problems, natural and man-

made disasters, infrastructure challenges, etc. Several of these problems are mutually inter-
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related and trying to solve them in isolation will never lead to a permanent or long-lasting 

solution. One of the foremost steps in solving these problems is to get a bird’s eye view of 

the problem scenario as a whole, while simultaneously concentrating on the minutiae of the 

constituent elements. This is a mammoth task, considering the innumerable components and 

factors that constitute each one of the aforementioned problems. Tools and techniques that 

can provide a better perspective or a panoramic view of the scenario in its entirety are 

inevitable. Visualization is a tool of immense value that helps to tackle such problems and to 

find a feasible, optimal solution, which is both time-saving and economical. In the `figure 

above, we can see that visualization enables viewing the constituent elements of an urban or 

rural infrastructure in whole as well as in parts (Figure 2.2)(Chandramouli and Huang, 2006). 

This kind of visualization is of immense value to town and country planners and urban 

infrastructure management in understanding the link among the various and evolving a 

holistic solution to problems. Also, the influences on the ambient environment as a result of 

the abovementioned project can be studied by means of the virtual settings. The visual 

impact of new buildings and surroundings on each other can be vividly seen on the screen. 

 

 

 

 

 

 

 

 
Figure 2.2Visualizing interlinked constituent elements of landuse planning 
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In this study, landuse design is formulated as a multi-objective optimization problem, which 

is solved using genetic algorithms. The results, instead of being merely being presented as a 

Pareto set with a pool of candidate solutions, are evaluated using a visualization tool. This 

helps in the process of informed decision-making, thereby facilitating the selection of the 

optimum plan by planners, decision-makers, and administrators. 

 

Even though the Pareto-optimal solutions are available after the multiobjective optimization, 

urban planning authorities and town planners face problems due to the lack of a proper 

objective evaluation tool for assessing the plans. One of the foremost steps in solving these 

problems is to get a bird’s eye view of the plans as well as to see the plans in details at 

varying scales.  This way even subjective aspects such as aesthetic scene quality can be 

ascertained and the plans can be compared visually.  

 

2.7 Conclusion 

 

Chapter 3 started with a review of the various urban land use issues and the problems 

involved in attaining sustainable long-term development. This chapter provided a detailed 

review of the various multiobjective optimization techniques and discussed works by several 

researchers in this field. MOO problems as applicable to the field of landuse planning were 

discussed and the use of genetic algorithms as a tool for Multiobjective optimization was 

delineated. Finally, the chapter provided a review on the use of visualization and the use of 

such visualization tools in the context of this research and their use in the evaluation of 

Pareto-optimal plans.  
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Chapter 3: Methodology 

 
3.1 Introduction 

 

Chapters 1 and 2 have adequately emphasized the need for sustainable development of a 

city. Several studies indicate that the most important characteristic of a sustainable city is its 

ability to sustain its population without causing permanent or irreparable damage to its 

resources. Among the resources, land resource is of paramount significance as it is extremely 

limited in today’s urban milieu. Typically, the population of cities is always on the rise due to 

the various reasons such as job opportunities, life style, amenities and so on. Hence, in order 

for the city to be able to cope with the increasing population and the demands imposed on 

its resources, proper planning is inevitable. The GA is designed in this research with due 

consideration to these aspects.  

 

The research methodology in this study consists of two major elements: 

1. GA-based multiobjective optimization 

2. VR-based visualization 

 

GA is used for solving the multiobjective landuse optimization problem by producing a set 

of Pareto-optimal plans that are equally optimal from the point of view of all the objectives 

considered and visualization is used to select one among these plans for implementation.  
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3.2 Software 

 

ESRI’s (Environmental System Research Institute) ArcGIS software is used for geospatial 

data editing and processing. MATLAB is used to program genetic algorithms for 

multiobjective optimization and VRML is used to create visualization scenarios.  

 

ArcGIS is the collective name of a collection of GIS software created by ESRI. ArcInfo, the 

advanced version of ArcGIS including added capabilities for data manipulation, editing, and 

analysis, is used for geospatial data editing and processing in this study. This study uses 

ArcGIS version 9.1 that consists of an advanced geoprocessing environment for performing 

spatial manipulations.  

 

The genetic algorithm is programmed using MATLAB version 7.1. The choice of this 

software for genetic programming was greatly influenced by the simplicity and flexibility of 

the MATLAB programming and its capability to handle large number of iterations. Matlab is 

an interpreted language designed for handling voluminous numerical computations. Using 

Matlab numerical calculations can be performed and the results can be visualized without 

tedious programming efforts.  

 

Several techniques have been tried and implemented for visualizing 3D geospatial data. This 

study centers on VRML, one such visualization technique, which has proved to be quite 

efficient in building 3D scenes (Boyd 1996, Lee et al. 1996) and hosting them on the 

internet. The origins of the concept of spatial immersion can be dated back to 1965 when 
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Ivan Sutherland (1965) put forth the ideas of immersion in virtual space in his influential 

work, “The Ultimate Display”. The VRML Repository defines the Virtual Reality Modeling 

Language (VRML) as a ‘standard language for generating interactive 3D environments and 

sharing those worlds across the Internet'. An in-depth description of VRML from the point 

of view of this study is provided later in this chapter.  

 

3.3 GA Formulation 

 

The GA explained here is a tool for generating land use plans for a region represented by 

polygons, each of which can take one value from among a given range of integer values. 

Hence, each LU zone is assigned a unique integer value corresponding to the landuse zone it 

represents (Table 3.1). This value is governed by some constraints, which will be discussed 

subsequently. The algorithm explores various plans with respect to the set of objectives 

whilst considering the restrictions/constraints. The goal is to produce a land-use map that 

will ensure maximum values of per capita green space, urban housing density, and per capita 

space for public service.   

 

Without loss of generality a maximization problem is considered for this study. .Three 

objectives and three constraints were specified for this problem. The objectives were 

maximization of per capita green space, per capita space for pubic service, and housing 

density. The constraints necessitate that the optimal plans generated have enough housing 

capacity, sufficient per capita green space, and per capita public service space. The following 

sections will discuss in detail about objectives and constraints 
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Each of the 100 plans is made up of genes represented by integers. Each gene corresponds 

to a land use zone representing the study area.  

 

 

 

 

 

 

 

Table  3.1 Landuse Zones and Corresponding Integer Values 

Figure 3.1 A chromosome structure with integer representation 
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Figure 3.1 illustrates a typical chromosome with n genes, where n is the number of zones or 

polygons in the study area. ). The 10 landuse zone types are assigned one integer value each 

from 0 to 9.  For instance, integer 9 corresponds to ‘Urban Reserve’. The first gene has a 

value ‘1’. This means that the corresponding land use zone has a LU_CODE of COMM 

(commercial). The last gene represents a landuse zone, which is an Urban Reserve (UR, gene 

value = 9). 

 

The city is divided into zones (with restrictions) and these zones are allowed to assume 

values from a given set of integers. As the landuse variables can assume one among 10 

values, the total set of possible plans is as big as 10n, where n is the number of landuse 

polygons. This signifies an enormously big search space. Only a tool like GA that is robust 

and efficient can perform multiobjective optimization in such a large search space. The 

feasible set from this set of solutions can be considered as the collection of the decision 

vectors that meet the constraint requirements. The objective functions and the constraints 

are explained as follows: 

 

3.3.1 Objective functions 

 

Genetic algorithms typically consist of functions or objectives that they try to maximize or 

minimize during the process of optimization. ‘Sustainability’ is the keyword that influenced 

the selection of objectives for this study.  
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Three objectives are considered in this study. The objectives ensure that  

� The urban dwellers get more green spaces,  

� The city is capable of accommodating more residents  

� More space for public amenities is available for the residents  

 

The first objective is the maximization of per capita green space (PCGS). Green spaces are 

inevitable to reduce environmental pollution and to ensure healthy surroundings for the 

people. Many authors and land use planners consider green spaces as inevitable for attaining 

sustainable urban environments. 

 

 Green spaces such as parks are truly multi-functional in nature, as: 

1. Green spaces satisfy the recreational needs of people 

2. Green spaces are also used by people practicing exercises and other fitness activities 

3. Green spaces / parks are used as water-catchment areas harvesting rain water 

potential 

4. Green spaces serve as places for social mixing  

5. Green spaces provide wide open spaces for accommodating public performances 

6.   Parks also support educational and several other life-long learning events 

 

Gordon (1990), in this work on green spaces, warned that one of the alarming consequences 

of urbanization is the widening of the rift between human and natural environments. 

Urbanization world-over, has invariably had a negative impact on the green spaces. Calgary 

presently has sufficient green spaces for its residents. However, the city’s population is 
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growing at a rapid rate and the economic boom continues to trigger the establishment of 

buildings and infrastructure that eat into open spaces.  

 

The above discussion justifies the first objective for our study namely, maximization of per 

capita green space. The PCGS (Per Capita Green Space) of a landuse plan is calculated by 

dividing the total available green space within the study area by the number of residents in 

the study area.  

 

The PCGS for the hundred plans in a generation is calculated as follows: 

for i = 1:100 

                        PCGS(i,1) = ( AreaGS(i,1) ) / Pop ; 

end 

Where, 

PCGS(i,1) is per capita green space of plan i, 

AreaGS(i,1) is the total green space area of a plan, and Pop is the population of study area, 

PCGS is a row matrix with i rows and 1 column (each row corresponds to one plan).  

 

The second objective is the maximization of per capita space for public service (PCPS). 

Public service includes all amenities that are needed for the daily life of the residents in a city.  

Most of the cities include transportation facilities such as roads, transit stations, rail road 

network, and various other public amenities under the category of public service. Just as 

green spaces are inevitable for recreation sufficient allocation of space for public service 

facilities ensures that the daily activities of people such as commuting, shopping etc are 
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unhindered. More importantly, if the space available for various public service activities is 

below the required amount, then even the fundamental daily activities of people become 

complicated and this greatly affects the overall quality of urban life.  

 

Consequently, the second objective of this study is chosen as maximization of per capita 

space for public service. The PCPS (Per Capita Green Space) of a landuse plan is calculated 

by dividing the total available space for public service within the study area by the number of 

residents in the study area.  

 

The PCPS for the hundred plans in a generation is calculated as follows: 

for i = 1:100 

                        PCPS(i,1) = ( AreaPS(i,1) ) / Pop ; 

end 

Where, 

 PCPS(i,1) refers to the per capita public service space of plan i. 

AreaPS(i,1) is the total area available for public service of a plan,  

Pop is the population of the study area., and 

PCPS is a row matrix with i rows and 1 column (each row corresponds to one plan). 

 

The third and final objective aims to increase the housing capacity by way of increasing the 

number of housing units in the urban milieu. Housing problems seriously deter the progress 

of a city. This was particularly so in the city of Calgary where serious housing problems were 

experienced during the year 2006-2007 and the problem is expected to continue unless 
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drastic measures for housing are taken. Based on the Housing density, the landuse is 

classified into one of the following three categories:  

    1. Low Density Residential zone 

2. Medium Density Residential zone 

3. High Density Residential zone 

In this study the following standards are used to determine the number of housing units.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 Categorization of residential zones - low, medium, and high density 

 

Src: Reproduced from www.burlington.ca/Planning/Official%20Plan/Part_III 
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Based on the above statistics, the number of housing units in a plan is determined as follows 

for the 100 plans in a generation.  

 

 

 

 

Where, 

NumHU (i, 1) refers to the total number of housing units of plan i.  

NumHU (i,1) is the total area available for public service of a plan,  

Pop is the population of the study area., and 

NumHU is a row matrix with i rows and 1 column.  

 

Thus, we see that there are three objectives of the multiobjective optimization problem, all 

of which are to be maximized 

1. PCGS – Per Capita Green Space 

2. PCPS  – Per Capita space for Public Service 

3. NumHU – Number of Housing Units 

 

Now, let us see the constraints of the multiobjective optimization. Constraints are limitations 

on the performance of the GA to yield results in such a way that some basic requirements 

are satisfied.  
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3.3.2 GA Constraints 

 

Among the 10 landuse types seen in this study, two LU types need special consideration. 

These are,  

1. UR (Urban reserve) and  

2. DC (Direct Control) 

 

Different set of uses and regulations govern DC landuse types in the urban environment. 

Simply stated, DC refers to ‘tailor-made’ areas that have been designed and/or designated 

for a specific project or purpose. Changes, if any, to such areas involve a whole lot public 

participation and high-level administrative brainstorming and such changes are rare as the 

DC areas have been created for specific purposes.  

Similar is the case with Urban Reserve landuse designations. The boundary of city includes 

hundreds or thousands of hectares of area designated as Urban Reserve (UR). Such landuse 

types are not and will not be considered for landuse planning until a particular time frame is 

reached. The landuse types categorized as UR areas will continue to be undeveloped till the 

development of such lands becomes absolutely necessary and sufficient infrastructure 

facilities such as road network and other utilities are available.  

Consequently, in this study, UR and DC are not changed and remain the same. These are 

imposed as constraints on the GA which will be discussed during the GA implementation. 

The final plan derived from this study must indicate the optimal combination of landuse 
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values for these zones i.e. for each zone (or polygon) one value from among the integer 

values from 0 -9 should be specified.  

 

Similar to the constraints imposed for not changing DC and UR landuse types, there are also 

other constraints with respect to some other LU types. Balling et al. (2004) argue that it is 

not appropriate to allow the zones to assume any values from this range. There may already 

be some hospital or public service utility or some educational institution located in several 

zones. Changing those to any values would mean that an existing hospital must be torn 

down and that landuse zone should be changed into a commercial or industrial zone. This is 

obviously unfeasible as much money and effort has already gone into such infrastructures 

and replacing them with a new landuse will amount to a gross waste of time and resources. 

Hence, some constraints can be imposed such as some zones can not be allowed to change 

and some zones can assume only a permitted value or values. For instance, zones designated 

as direct control (DC) or urban reserve (UR) fall under the purview of the city 

administration that have been reserved for specific activity. These can not be and must not 

be changed or designated as another landuse zone. By doing so, the search space is 

minimized and the plans so generated are practicable.  

 

 

We discussed about two types of constraints in the earlier passages. In addition, two 

constraints are imposed which are in line with the objectives; but, are incorporated to make 

sure that no plan has a green space area or public service area below a minimum threshold.  
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It would be impracticable to tear down an existing university or hospital or any other such 

large facility to convert the same into green space or into another landuse. Hence, 

constraints are imposed within the GA framework to include this. Just as landuse zones that 

have designations as DC and UR are not allowed to change, those zones with large 

infrastructure elements such as hospitals and libraries are not allowed to change. These are 

imposed as constraints.  

 

Also, regarding the green spaces and spaces for public service, in order to ensure that they 

do not fall below a particular minimum value, constraints are imposed to select only plans 

that have green space and public service spaces above minimum PCGS and PCPS values set 

in the constraints. Calgary already has a very high value of per capita green space. It has 

more than 37,620 hectares of green space for a population of about 1 million people. This 

amounts to 376 Sq.m. of green space which is much higher than other Canadian cities and 

other cities of the world as well. Hence, in order that this value does not go down in the 

process of increasing the housing capacity, this is also imposed as a constraint.  

 

On the whole, the constraints are as follows: 

1. Zones designated as DC are not to be changed 

2. Zones designated as UR are not to be changed 

3. Specific zones with large scale infrastructure developments are not be changed 

4. For each plan, PCGS ≥100 Sq.m. and PCPS ≥ 50 Sq.m. 
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A zone that has a DC designation in the original landuse plan will continue to have the same 

value (integer value ‘2’) throughout the GA process and hence, in the final plan resulting 

from the GA, the corresponding zone will have a DC representation only. Similarly, a zone 

that has a UR designation in the original landuse plan will continue to have the same value 

(integer value ‘9’) throughout the GA process and hence, in the final plan resulting from the 

GA, the corresponding zone will have a UR representation only. All plans will be checked 

for satisfying the constraints of PCGS and PCPS. Only plans that exceed the minimum 

values (PCGS ≥ 375 Sq.m. & PCPS ≥ 100 Sq.m.) are considered as feasible plans and these 

are added to the starting generation.  

 

3.3.3 Fitness Evaluation 

 

Multiobjective problems can be optimized by iterative procedures. The objectives can be 

normalized using a simple and straightforward procedure that involves scaling. 

Normalization involves finding the maximum as well as the minimum values for each 

objective for a set of plans in a generation and then re-scaling using the following formula.  

The number of objectives is 3 in this study. The normalized objectives scores are given by  

 

 

 

 

The above is a simple and straightforward technique of linear interpolation.  
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For each objective in the study, considering all the plans in a generation, 

Val is the current value of the corresponding objective 

Valmin  is the least value of all Val values of the plans in the current generation  

Valmax is the highest value of all Val values of the plans in the current generation 

 

Thus, considering the three objectives concerning PCGS, PCPS, and NumHU, the 

normalized scores can be obtained as follows.  

Obj1 is maximization of Per Capita Green Space (PCGS) 

Obj2 is maximization of Per Capita Space for Public Service (PCPS) 

Obj3  is maximization of housing capacity by maximizing number of housing units 

(NumHU) 

 

The plans need to be compared with other plans in the generation to find the fit ones in the 

generation.  

 

Hence when a plan i is compared with a plan j, plan j is better than plan i if the difference 

between j and i is positive, as follows: 
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If there are three objectives, let Range1 denote the difference in values between the 

maximum and minimum values of objective1, Range2 denote the difference in values 

between the maximum and minimum values of objective2, and Range3 denote the difference 

in values between the maximum and minimum values of objective3. 

Hence,  

Range1 = PCGSmax – PCGSmin 

Range2 =PCPSmax – PCPSmin 

Range3 = NumHUmax – NumHUmin 

 

The above comparison can now be rewritten as follows:  

 

 

 

 

 

 

 

For measuring the fitness of the plans, the Maximin fitness function employed by Balling et 

al. (1999) is used. The fitness of each plan in a generation is calculated relative to that of the 

other plans in the same generation. The higher the values of PCGS, PCPS, and NumHU of a 

plan, the higher the fitness of the plan in comparison with the other plans of the generation.  
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Considering two plans Planj and Plani, Planj is superior to Plani if PCGSj, PCPSj, and 

NumHUj are all greater than the corresponding objective values, namely PCGSi, PCPSi, and 

NumHUi.  

PCGSj > PCGSi,  PCPSj > PCPSi,  and  NumHUj>NumHUi 

i.e. Planj is superior to Plani if it exceeds it in all the three objectives.  

 

This can be restated as follows:  

min (PCGSj - PCGSi,  PCPSj - PCPSi, NumHUj-NumHUi ) > 0 

i.e. if the minimum of the above three differences is greater than 0, then Planj is 

superior to Plani.. 

Each plan in a generation must be compared with all the other plans in the generation. If it is 

to be found whether a Plani is dominated or not it is compared with all other plans using the 

aforementioned principle.  

 

 

 

 

The fitness of the ith plan is obtained as follows:  
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Where,  

Range1 = PCGSmax – PCGSmin 

Range2 =PCPSmax – PCPSmin 

Range3 = NumHUmax – NumHUmin 

 

Range1, Range2, and Range3 represent the scaling factors for the three objectives PCGS, 

PCPS, and NumHU respectively, for all the plans in the generation. However, it should be 

noted that this value has to be computed for each iteration for every single generation. This 

is so because, the maximum and minimum values of each objective varies during each 

generation. Based on the fitness formula described above, it is possible to identify the 

Pareto-optimal plans from the fitness values obtained. While dominated plans have a fitness 

value between 0 and 1, Pareto-optimal plans have fitness values greater than 1. 

 

In this study, a p value of 21 is employed. This is done in order to pursue Pareto-optimality 

more vigorously. This way, the fitness of those plans with fi more than 1 gets further higher, 

and the fitness of those plans with fi values less than 1 gets further lower (Balling et al., 

1999). 

 

3.4 GA Implementation 

 

The GA is implemented with the objective of searching and finding a set of landuse plans, 

which meet the constraints imposed on the GA and maximize the objectives pertaining to 

green space, public service space, and housing capacity.  The constraints are in place to make 
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sure that a plan meets the minimum requirements for sustainable development as discussed 

in this study. Plans that satisfy the constraints are called ‘feasible plans’. The final plans 

obtained from the GA must be Pareto-optimal with respect to the multiple objectives. 

Pareto-optimal plans are both ‘feasible’ and non-dominated. The word non-dominated 

implies that no other feasible plan in the generation is better than this plan in all objectives.  

 

3.4.1 Starting Generation and Feasible set 

 

The population of the initial generation is chosen as 100 in this study. This means that the 

initial generation will contain 100 plans each of which is a possible solution to the given 

problem. However, it is to be noted that this solution may not be optimal. The plans in the 

starting generation are generated by a random process wherein integer values are assigned to 

each of the 100 chromosomes containing 135 genes. In other words, 100 x 135 integer 

values within the range of 0 – 9 are generated at random and assigned to the chromosomes.  

 

It should be recalled that among the set of constraints there are constraints that require the 

values of some land use zones to remain constant. For instance, an Urban Reserve in the 

original landuse zone will always have the value of 9 in the corresponding gene throughout 

the genetic algorithm process. Similarly, Direct Control zones will continue to remain the 

same throughout the iterations and in the final plan also the LU_CODE of the 

corresponding zone will be equal to DC. There are other constraints that require the per 

capita green space and per capita public service space to be above a minimum threshold. 
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Hence, the randomly generated plans will have to be checked to see if they satisfy the 

constraints.   

 

 

 

 

Figure 3.2 shows the framework for generating 100 feasible plans for the starting generation. 

During each iteration, the plans in the current generation are checked for feasibility based on 

the constraints. Plans that do not satisfy the constraints are discarded and those that satisfy 

Randomly generate 100plans 

Is the plan 
feasible? 

No 

Yes 

DISCARD 

Is the no. of plans 
in the staring 
Generation = 100? 

Yes 

STOP 

Include in the 
starting 
generation 

No 

Figure 3.2 Generation of 100 ‘feasible plans’ for starting generation 
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the constraints are included in the starting generation. This iterative procedure is carried on 

till the starting generation has a total of 100 ‘feasible’ plans. 

The feasible plans for the initial generation were generated as mentioned above and a total of  

1,213,400 plans were generated and tested in order to obtain these 100 feasible plans.  

 

From this starting generation, the second generation is constructed using the GA 

methodology. The third is generated from the second, the fourth from the third and so on 

for a total of 100 iterations at the end of which a generation with 100 final, feasible plans 

results.  

 

3.4.2 Subsequent generations 

 

The process of generation of subsequent generations is explained here. While a portion of 

the total 100 plans is directly copied from the previous generation, the remaining plans are 

generated using the processes of selection, crossover, and mutation. 

 

3.4.2.1 Natural Selection 

 

Evolutionary computation is inspired by the natural evolutionary processes. Hence, in line 

with the Darwinian theory of ‘survival of the fittest’, the fit ones from the previous 

generation are selected for the subsequent generation. The fraction of the total population of 

plans that is selected to the next generation is determined by the ‘rate of selection’. In other 

words, the rate of selection refers to the percentage of the parent population that is retained 
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for the subsequent generation. The number of chromosomes to be selected is an important 

decision. Retaining a lot of chromosomes from the parent population is not advisable as the 

bad traits from the parent population will continue to be passed to the inheritance. On the 

other hand, keeping only a very small proportion of the parent population will limit the total 

available genes in the subsequent generations.  

 

 In this study 20% of the parent population is kept for the subsequent generation. 

 

   NumRet = SelRate * NumChrPop 

 

Where,  

 NumRet= No. of chromosomes retained, 

SelRate = Rate of Selection, and 

NumChrPop=  No. of chromosomes in a generation 

 

Thus we see that not all the plans, but only 20% (for a population of 100, 20% is 20) makes 

it to the next generation. Also, these 20 plans are the fittest plans from the generation. In 

order to the select the top 20 plans, the plans in the generation are sorted based on their 

fitness values. After sorting the plans according to their fitness, the best 20 plans are selected 

for the next generation. Now, of the 100 plans in the next generation, only 20 are available. 

The remaining 80 plans must be generated using the processes of selection, mating, and 

mutation.  
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3.4.2.2 Selection for Pairing 

 

This step involves choosing chromosomes from the parent population in order to generate 

offspring. In other words, this is the process of pairing or combining two parent 

chromosomes to produce two offspring or children. This section does not actually discuss 

the pairing or mating process, but is about the process of selecting parents for mating.  

Different kinds of selection methods namely random pairing, top to bottom pairing, 

weighted random pairing exist. In this study, tournament selection is used. Tournament 

selection strongly imitates the natural process of mating. This method of selection of parents 

for mating involves randomly selecting a small subset of chromosomes (5 in this study) and 

from this selection, the chromosome with the highest fitness is selected as one parent. The 

same procedure is repeated to select the other parent. One prominent advantage of 

tournament selection is that the population need not be sorted. This is particularly useful in 

the case of large populations as in this study. The Matlab code to accomplish the process of 

selection of parents for the mating process to generate offspring for subsequent generation 

is illustrated subsequently (Figure 3.3). 
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Figure 3.3  Matlab code for selecting two parents for mating 
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3.4.2.3 Mating  

 

Using the parents selected in the selection process, two offspring are created via the process 

of mating. Mating, in its simplest and most common form, involves two parents that mate to 

produce two offspring. Let us now look at this simplest form of crossover known as single-

point crossover. In this type of crossover, as the name implies, the crossover occurs at a 

single point known as the crossover point. The crossover point is where the swapping 

occurs. This point is chosen randomly and it lies between the first and last genes of the 

chromosomes. At first, one of the two members of the mating pair, called Parent1 provides 

the genes to the left of the crossover point to the first Offspring and the second member of 

the mating pair, Parent2 provides the genes to the right of the crossover point to the 

Offspring1. Thus, the Offspring1 is now contains material from both the parents. Similarly, 

the second offspring is generated by combing material from Parent1 and Parent2. The genes 

to the right of the crossover point from Parent1 and that to the left of the crossover point 

from Parent2 are combined to produce Offspring2. Other alternative forms of crossover are 

also available.  

 

3.4.2.4 Mutation 

 

After mating, mutation is performed to introduce qualities that are not originally present in 

the parent population. Mutation involves randomly changing a selected number of genes in 

specific chromosomes obtained from the earlier process. In this study, the mutation 

probability is chosen as .05 (5). Mutation is typically applied to the offspring generated from 
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the earlier step, subject to the mutation probability. Now a random number between 0 and 1 

is generated for each gene in the two offspring. If the random number is less than the above 

probability of mutation (.05), then the integer value of the gene is changed to another 

random value between 0 and 9. 

 

The above processes cumulatively represent the complete process of creating a new 

generation from an earlier generation. This constitutes one sequence of iteration. The whole 

GA process involves 100 iterations at the end of which the Pareto set containing the Pareto-

optimal plans is obtained. 

 

The fitness values of the individual plans in the generation are calculated using the fitness 

formula described earlier. Plans with higher fitness values have higher Pareto-optimality an d 

hence are more ‘fit’ than the rest of the plans in the generation. The plans altogether 

constitute the Pareto set.  

 

3.4.3 Pareto plans 

 

Plans belonging to the Pareto set are called non-dominated plans. This is because no other 

plan exceeds the Pareto plan in all the objectives. A plan may outdo the Pareto plan in one 

objective and yet another plan may outperform the Pareto plan in another objective; 

however, no single plan surpasses the Pareto plan in all the objectives. The Pareto set is 

devoid of the influence of the relative significance of the various objectives. Hence, plans 

not belonging to the Pareto set are called dominated plans since Pareto plans that surpass 

these plans have been found. Pareto plans significantly aid the process of decision-making as 
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planners and administrators need not sift through hundreds of thousands plans; but, they 

can merely search the Pareto set to find an optimal plan. 

 

However, there is still one shortcoming. Decision makers still are confronting a set of plans 

from which they have to choose one plan. This process can not be automated as now the 

relative significance of the various objectives based on the ultimate development goals 

should be considered. This study proposes the use of an objective evaluation tool, 

visualization, to evaluate the Pareto plans. This way the decision makers can select a subset 

from the Pareto set and evaluate the plans in this subset visually to select the plan that most 

suits their requirements.  

 

3.5 Visualization  

 

This study uses an innovative approach combining a genetic algorithm with a visual 

evaluation tool to generate sustainable future landscape scenarios.  The proposed method 

will aid decision-makers and planners in the process of informed decision-making as a 

visualization tool is used to evaluate the solutions provided by the Pareto set.  

 

This chapter will now discuss about virtual reality, object oriented programming (OOP) for 

visualization, hierarchical framework of landuse scene representation, component diagram, 

and building the visualization scenario for Pareto optimal plans.  
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3.5.1 VR-Based Visualization  

 

When talking about 3D visualization another term that needs to be discussed is ‘Virtual 

Reality’. There exist numerous definitions for ‘Virtual Reality’. Plainly stated, Virtual Reality 

is a tool for 3D data visualization that helps visualizing and interacting with data.  Much of 

the 3D visualization in today’s applications is done in a virtual space that is often described 

as ‘virtual worlds’. The reason they are called virtual worlds is that they are not actually 3D 

worlds in real space, but they are digital or cyber worlds that have their own coordinate 

systems and define a 3D virtual coordinate space within which applications can be built. The 

users can navigate within these virtual worlds, move the objects in the worlds, rotate or scale 

them, and transform them in multiple ways. These virtual worlds facilitate user interaction 

with the 3D objects and provide a sense of immersion.  

 

In this study visualization is used as a tool to evaluate the Pareto plans objectively. Many 

GAs generate optimal solutions via iterative optimization procedures. However, the work 

stops there and then subjective measures are employed to select one plan for 

implementation. The justification is provided clearly by Balling et al. for the need of an 

additional tool. Balling et al. (2004) state that ‘A plan is a member of the Pareto set if no other single 

plan has been found that is better in all objectives. The Pareto set’s beauty is that it is independent of the 

relative importance of the objectives’. Nevertheless, for a certain combination of weights on the 

objectives, the optimum plan will be a particular constituent of the Pareto set. For yet 

another arrangement of weighting factors, the optimum plan will be another Pareto plan 

belonging to the Pareto set.  
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As on date, numerous tools are available for visualization. One among them is VRML, a 

standard specification that has been adopted world-wide by numerous visualization 

programmers to create virtual worlds. VRML is the acronym for Virtual Reality Modeling 

Language, the latest standard to display 3D models on the web. There are several standards 

and specifications to describe 3D scenes and objects contained in these scenes. VRML is 

regarded by many as the origin for several basic notions of three dimensional modeling and 

the latest standards like X3D  are believed to be extensions of the ideas. X3D is regarded as 

the XML based revised version of VRML. Other 3D formats that are quite popular include 

Java3D and OpenGL which contain libraries of 3D classes. VRML is a file system for 

creating 3D virtual objects and environments. Just as Microsoft word files have a .doc 

extension, VRML files have a .wrl extension. The origins of concept of spatial immersion 

can be dated back to 1965 when Ivan Sutherland (1965) put forth the ideas of immersion in 

virtual space in his influential work, “The Ultimate Display”. The VRML Repository defines 

the Virtual Reality Modeling Language (VRML) as a ‘standard language for generating 

interactive 3D environments and sharing those worlds across the Intern 

 

Virtual Reality Modeling Language (VRML) is a file format for creating interactive 3D 

worlds and is presently also considered as a universally accepted format for multimedia 

applications and 3D graphics utilities. Many of the present notions for modeling 3D worlds 

are derived from VRML, these schemes are currently being expanded in X3D, XMT, 

MPEG4/BIFS etc. The fundamental arrangement of the language is based on object 

oriented programming concepts. A VRML scene is defined by a group of objects. The scene 
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is defined by "nodes". These nodes are analogous to what are called objects in OOP 

terminology.  

 

3.5.2 Object Oriented Programming for Visualization  

 

Just like there is a classification of programming languages as high and low level 

programming languages, there are also classifications that categorize programming languages 

as procedural and object oriented programming (OOP) languages. In procedural 

programming, lines in a program, called statements, are grouped together to form pieces of 

code called ‘procedures’. These procedures, (also identified as functions sometimes) perform 

specific tasks. For instance, performing a simple calculation as addition, or doing advanced 

computational tasks.  

 

On the other hand, object oriented programming languages are composed of ‘components’, 

which are software ‘Objects’ that can be used again or called again later when needed.  This 

‘reusability of objects’ is of tremendous advantage and saves a whole lot of coding efforts 

and of course, precious time. Just like the built-in or user-defined functions in programming 

languages which the user can use as and when required in programs, these objects once 

created can be used multiple times.  

 

Object oriented programming revolves around objects and their properties. In a way, this is 

very much similar to visualizing a scenario. A visualization scene can be considered to be 

composed of objects with properties. In the preceding sentence, the phrase ‘objects with 
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properties’ is highlighted or emphasized, since these properties determine how an objects 

looks and/or behaves. Let us consider a sample scene. Say a bus-stop near a building in an 

urban locality. If we further break this down into smaller fragments, we will find that there 

must be a bus-stop, a building, roads, lamp-posts etc. Further the bus-stop must contain 

signboards, passenger seating facilities etc. The furniture may be of a particular material, 

color, and dimensions. All these are the attributes of the furniture. Similarly, each element 

has its own characteristic features or attributes. Thus a scene is composed of elements or 

objects, each of which has its own properties or attributes. A parent object can include any 

number of children, which can be grouped or assembled to function as one single entity. 

Figure 3.4 illustrates the representation of the above scene hierarchy. It can be seen that one 

parent object contains several children. As the user may desire or as may be required, any 

number of children nodes can be included within the parent node. 

 

 

 

 

 

 

 

 

 

Employing object-oriented features makes things easier in the course of devising virtual 

worlds. The elements in a scene can be grouped in the form of a hierarchical structure in the 

 

Figure 3.4 Hierarchical structure of scene representation 
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form of parent child relationships. For instance, ‘the wall’ object can be grouped as a child of 

‘the house’ object. This sort of hierarchical approach is particularly useful in animation of a 

scene when it is required to animate different objects differently. The word hierarchy refers 

to a categorization or order. In the simplest form, members of a hierarchy are shown one 

below the other in their order. This sort of hierarchical arrangement helps in the step-by-step 

design of the object and also understanding the framework at any later stage.  

Subsequently, the very fundamental entities used to build 3D objects in virtual reality are 

discussed. These include points, lines, and faces.  

 

3.5.3 Basic Entities for VR-Based Visualization: Points, Lines, and Faces 

 

A point represents a specific location in 3D space. Every point occupies a well defined 

location in space. For instance, the coordinates (4, 5, 6) represent a point that is 4 units from 

the origin along the positive x-axis, 5 units from the origin along the positive y axis and 6 

units from the origin along the positive z-axis (Figure 3.5a). In virtual world conventions, an 

increasing value of z moves the point towards the viewer and a decreasing value of z takes 

the point away from the viewer. The equidistant yellow dots on the axes show the increasing 

distance in meters. The point is 4m from YZ–plane; 5m from XZ; 6m from XY.  
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Having discussed about the ‘point’, the next entity in that order is the line. Mathematically, a 

straight line is the shortest distance between two points. The line in the above figure 

connects two points, (1,1,1,) and (5,5,5,) (Figure 3.5b).  

 

The next item of discussion is a face or polygon.  Simply stated, a face means a flat surface. 

For instance, XY, YZ, XZ are all planes. The plane XY is perpendicular to Z-axis, the plane 

YZ is perpendicular to X-axis, and the plane XZ is perpendicular to Y-axis. Lines or points 

lying on the same plane are called co-planar. A face can also be considered as a plane or as 

being in a plane. Figures 3.6a and 3.6b illustrate the vertices and the generation of a face 

using the vertices.  

 
 Figure  3.5a A point in 3D space  

Figure  3.5b A line between points 
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The words plane and face are used synonymously on several occasions. In simple terms a 

plane is a flat surface. Many other words that are used synonymously with side include 

surface, face, area, region etc. 

The fundamental elements of describing a 3D scene in VRML were discussed above. The 

subsequent sections discuss some of the specific elements of VRML for modeling 3D 

geospatial data such as landuse modeling and 3D landscape generation.  

 

 

Figure 3.6 a Vertices of a face in 3D coordinate space 
Figure 3.6b A face or polygon corresponding to the above vertices 
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3.6 Landuse Modeling in 3D VRML  

 

VRML 2.0 describes real world scenarios in the form of scene that consists of a hierarchical 

scene graph. VRML is based on a notion similar to the concept of OOP. Real world objects 

are described as shapes with geometry and appearance. All features such as buildings, roads, 

trees, and rivers can be modeled as shapes which can be grouped together and transformed 

(translated or rotated) within the coordinate system within which they are built.  

 

By and large, a vast number of objects, however complex they might be, are built using the 

fundamental shape node (Figure 3.7) with the principal fields namely geometry and 

appearance. The geometry field is used to describe the geometric properties of the object 

and the appearance field is used to describe how the object looks. Realistic environments can 

be built by judicious use of textures and scaling them to accurately match the faces. The 

appearance node in VRML includes a texture factor that refers to the URL containing the 

image to be superimposed or overlaid on a particular face of the VRML object.   

 

 

 

 

 

 

 

 

Figure 3.7 Shape Node with Geometry and Appearance Nodes 
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Invariably, geospatial data fall under either of the two broad categories namely vector and 

raster, which in a sense correspond to features that can be represented as either discrete or 

continuous. The former represents spatial features in the form of points, lines, and polygons, 

while the latter represents features in the form of continuously varying values in grid cells 

namely pixels. DLGs (Digital Line Graphs) and ArcInfo Coverages are examples of vector 

formats, while scanned maps and DEMs are examples of raster format. In VRML 

terminology, an Elevation Grid can be considered the equivalent of a DEM, while an 

IndexedFaceSets might be thought as the equivalent of a TIN, just as a face in VRML 

corresponds to a polygon in GIS terminology. The IndexedFaceSet node used to represent 

TINs consists of coord and color Exposedfields, and coordIndex and colorIndex fields. The 

website http://www.vrml.org/   can be referred for further details on the node syntax and 

other standard VRML 2.0 representations.  

 

 

 

 

 

 

 

 
Figure 3.8 Terrain Generation using VRML Elevation Grid  

  a. A considerably flat terrain - few undulations           b A Valley Setting 
(*Chandramouli and Huang 2006) 
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The ElevationGrid node used to represent the GRID model is composed of xSpacing, 

zSpacing, height fields and the color ExposedField. Thus, VRML supports 2 types of 

modeling appropriate for terrain elevation data: IndexedFaceSet and ElevationGrid, which in 

GIS terminology are referred TINs and gridded DEMs, respectively (Chandramouli et al. 

2004).   In case of ElevationGrids the height values are shown along the y axis with eastings 

being drawn in the positive x plane and northings sketched the negative z plane. However, 

huge arrays of grids adversely affect the system performance since the movements with the 

world become slow to as the node specification consists of an intricate geometric 

configuration. Terrains generated using the ElevationGrid nodes are illustrated in Figure 3.8.  

Nevertheless, several VRML world authors regard IndexedFaceSets as a primary means of 

geometric modeling of objects in VRML. IndexedFaceSets are a type of geometry node 

characterized by a list of x, y, z coordinate points. Next to the list of coordinates is an index 

containing the details of the order of connectivity of these coordinates to build a face. 

IndexedFaceSets are considered to be an efficient way to increase performance in VRML 

browsers while building realistic and efficient VR environments. Building realistic terrains 

continues to be a daunting task. In addition to efficiently scaling the texture images and 

manipulating the texture transform operations, creative employment of lighting function 

within the virtual world tremendously adds to the reality of the world. Another important 

feature geometry functionality in this context fall under the group of lattices, which are 

shown as IndexedFaceSets and are obtained from DEMs (Digital Elevation Models).  
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3.7 Component Diagram for visualizing Pareto-optimal plans 

 

Visualization scenarios corresponding to the Pareto solutions need to be generated to 

evaluate them. Several programming paradigms are available to render 3D scenes and 

objects. We already discussed the notion of Object Oriented Paradigm. Accordingly, the 

fundamental idea is to split any object into its component parts and to decide how to model 

these components. Among the component parts there may parts which are exactly similar 

but are at different locations or are oriented differently. A landuse scenario contains various 

elements such as terrain, trees, road network, buildings, and other infrastructure elements.  

 

As mentioned previously several programming paradigms are available to render 3D scenes 

and objects. We have already discussed the Object Oriented Paradigm in detail. Accordingly, 

the fundamental idea is to split any object into its component parts and to decide how to 

model these components (Figure 3.9). Among the component parts there may parts which 

are exactly similar but are at different locations or are oriented differently.  

 

 

 

 

 

 

 

 
 

Figure 3.9 Component Diagram for visualizing Pareto-optimal plans 
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For the sake of simplicity and in order to better elucidate the concept of scene hierarchy 

within VRML, let us consider a table and a chair and break down the constituents (Figure 

3.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Parent-child relationship for a sample 3D scene with table and chair 
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If we draw a hierarchical framework for the same, it will be as follows: 

 

 

 

 

 

 

 

The parent object or the scene consists of two children namely Table and Chair. The Table  

object in turn consists of two children and there are four constituents under the parent 

object ‘Legs’ (Figure 3.11). Actually, all the four legs have the same appearance or properties, 

except that their location is different. So, only one time it needs to be created and it can be 

used four times at different positions.   

 

In this study, real world scenarios are described in the form of a hierarchical scene tree 

structure as described in the previous paragraphs. VRML is based on a notion analogous to 

the OOP (Object Oriented Paradigm). The object-oriented approach models real world 

objects as shapes with geometry and appearance. All features such as buildings, roads, trees, 

and rivers can be designed and modeled as shapes which can be grouped together and 

transformed (translated or rotated). By and large, a vast number of objects, however 

complex they might be, are built using the fundamental shape node with the principal fields 

Figure 3.11 Hierarchical representation of the Table-Chair Scene 
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namely geometry and appearance. The geometry field is used to describe the geometric 

properties of the object and the appearance field is used to describe how the object looks. 

Realistic environments can be built by judicious use of textures and scaling them to 

accurately match the faces. The appearance node in VRML includes a texture factor that 

refers to the URL containing the image to be superimposed or overlaid on a particular face 

of the VRML object.  

 

A landuse scenario can be depicted using VRML as follows: 

 

 

 

 

 

 

 

 

 

 

 

From the code (Figure 3.12), it is evident that various elements are grouped under the whole 

scene or root object, and each of these element has further ramifications based on the 

complexity of the object. For instance, a building has components such as floor, walls, etc. 

which have further divided into appropriate elements.  

 
Figure 3.12 Scene Tree Structure  in VRML 
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Using the same principles described in this chapter, more complex objects are generated by 

grouping smaller objects.  The following figure (Figure 3.13) shows buildings modeled 

within VRML using indexed face sets. 

 

 

 

 

 

 

 

 

 

While an object itself might contain several parent-child relationships, the whole scene 

consists of numerous parent-child relationships among its various components.  

 

While visualizing VRML scenes, a plug-in is necessary to view the scenes in a standard 

browser such as IE or NN. In this study, Cortona Client VRML plug-in is employed, which 

can be downloaded for free from www.parallelgraphics.com. This study uses a combination 

of IE (Internet Explorer 6.0) with Cortona VRML client to visualize the 3D worlds.  

 

 

 

Figure 3.13 Building modeled for a Pareto-optimal plan using Indexed Face Sets 
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Once the 3D component of the model generation is done, any descriptive information or 

annotation can be associated with the corresponding object. This may include any type of 

information as the application demands. For instance, an application might demand the 

linking of GPS positional information and another application might require facilitating user-

input by means of visual basic forms. This is done by means of the ‘Anchor Node’ construct 

(Figure 3.14). Similar to the Anchor node functionality, another node that is used in the 

construction of databases or 3D worlds is an Inline node illustrated above. A VRML scene 

can be divided into a set of files. This not only simplifies the design of the VR world, but 

also facilitates reusing parts of the world already built in one scene in many other worlds. In 

the case of a building, a set of shapes that draw a room are grouped together and stored 

under a single node. This group node can be given a specific name, say ‘Room1’, and reused 

later in another world. The Inline node permits the specification of a URL from where a 

specific file or data can be retrieved and reused in another file.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Anchor node and Inline node functionalities 
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3.8 Conclusion 

 

This study uses visualization as a tool for evaluating the Pareto optimal plans generated using 

GA-based multiobjective optimization.  While GA is useful in the generation of a set of 

Pareto-optimal plans that meet multiple objectives stated in the study, visualization using 

virtual immersive models facilitates selecting one plan that is most appropriate for the 

problem on hand. Such immersive models are of immense value in the planning and 

decision-making processes involving terrain and building databases. Such models serve as 

valuable tools in areas such as landscape studies, land use change detection, and urban-rural 

conversions, and sewage and water supply schema. Several techniques have been tried and 

implemented for visualizing 3D geospatial data. This study centers on VRML, one such 

visualization technique, which has proved to be quite efficient in building 3D scenes. One 

important aspect is the problem knowledge and experts with problem knowledge may not 

necessarily able to interpret the results of optimization procedures easily. Using such 3D 

visualization landuse scenarios, experts may be able to better understand the results of the 

optimization process as now the results are shown in a visual form rather than tables and 

statistical data. Thus problem knowledge can be used for evaluation and visual tool facilitates 

this. Experts with domain specific knowledge and expertise can easily analyze the solutions 

by means of the visual Evaluation tool. 
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Chapter 4: Results and Discussion 

 

In Chapter 3, the basic methodology of using genetic algorithms for performing 

multiobjective optimization as applied to a landuse problem was discussed in detail. 

Subsequently, Chapter 3 discussed the use of virtual reality to generation 3D visualizations 

for visualizing Pareto-optimal plans.  In this chapter, the results of processes of 

multiobjective optimization and visualization will be discussed.  

 

The GA-based MOO integrated with VR-based visualization described in the previous 

chapter was tested on a study area. In this study, the study area selected was central Calgary 

region.  

 

4.1 Study area 

 

The cities of Canada are home to more than 70% of the nation’s total population. Hence, in 

this study, one such metropolitan city is chosen for the multiobjective optimization process. 

The city of Calgary was chosen as the city for the study. The city of Calgary in the province 

of Alberta is a rapidly growing city. Calgary is no exception to the universal trend of 

geometric population growth and especially, with the province of Alberta experiencing a 

massive boom in its economy, Canadians from elsewhere and other nationalities are 

continuing to immigrate to the City. The population of the city of Calgary as on April 2006 

was 991,759, which has now exceeded a million. With the province of Alberta experiencing a 

massive boom in economy in the recent years, the population growth rate is expected to 
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escalate in the next several years. Hence, this study has selected such a rapidly growing city. 

This study illustrates the generation of optimal futuristic landscape scenarios using the 

integration of GA with a visual evaluation tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The landuse maps (Figure 4.1) were obtained from MADGIC, a geospatial data repository in 

the library of the University of Calgary and from the City of Calgary website. Data were 

basically in ArcGIS formats (.shp, .shx, .sbn, .dbf, .prj).  

 

 

Figure 4.1 Study Area – Central Calgary Region 
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The study area was selected after consideration of the following facts: 

• The study area had a decent mix of all common landuse zones such as 

commercial, industrial, residential etc. 

• Within residential category, the study area consisted good proportions of low 

density, medium density, and high density residential zones 

• The study area still has considerable room for modifications and if necessary 

expansion 

 

To start with, the initial data consisted of the entire landuse map of the city of Calgary. In 

this study, polygon based (shape file) data is used. From this the central region of the city of 

Calgary is selected as the study area. Subsequently, this region is divided into 135 polygons 

representing 135 zones. The custom zoning map created as above has an associated attribute 

table that contains various details such as the land use, area, and population corresponding 

polygon. A polygon that contains high density residential buildings is categorized as Res- 

H zone. A polygon containing green spaces is categorized as GS and so on. Zoning 

determines the size and use of buildings, where they are located and, in large measure, the 

densities of the city’s diverse neighborhoods. Zoning is a key tool for carrying out planning 

policy. The zoning (land use designation) is the primary legal control on the use and intensity 

of development on a parcel of land (not on the design of a project). If a proposed use for a 

parcel of land is not allowed in the land use district, it is possible to apply to re-designate the 

parcel. 
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4.2 GA Parameters for Experiments 

 

Tournament selection was employed with a tournament size of 5. 5 plans were selected at 

random from the parent generation. Two feasible plans with high fitness values were 

selected as parents and mating was performed to generate two children chromosomes.     A 

random set of 5 numbers for the chromosomes are selected and the maximum number is 

chosen for the parent chromosome number 1 and similarly for number 2. The maximum 

number is chosen because as the plan in the previous generation has already been sorted 

according to fitness. 

 

In order that the same chromosome is not selected both the times, the algorithm performs a 

check. This makes sure that the same chromosome is not selected as Parent1 and Parent2 

for mating operation. If this was the case, then the resulting two children chromosomes will 

be identical and will be the same as the parent chromosomes, as the swapping is between the 

two segments of the same chromosome (as both parents are same). 

 

In this study, single-point crossover was employed. Single point crossover involves 

generating a random integer value between 1 and the total number of genes in the 

chromosome representing the landuse plan. In this case, the random number is between 

1and 135, as the chromosome has 135 genes.  By performing crossover two new offsprings 

are produced. The two parents are cut after the crossover point and the portions are 

exchanged to create the offsprings. The first offspring has values similar to the first parent             

till the crossover point and after that it has values similar to the second parent. The Second 
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Offspring has values similar to the second parent till the crossover point and after that it has 

values similar to the first parent. 

 

The crossover point is chosen as a random value as follows: 

  CrossOverPoint= (randint(1,1,135) )+1 ; 

 

The addition of 1 ensures that the crossover point is not zero. Once the crossover point is 

chosen, the pairing is done as mentioned above. For instance, let us assume that the random 

number generated is 75. Then, the first child chromosome will have genes identical to 

Parent1 till the 75th gene, and will take the gene values of Parent2 from 76 to 135. The 

second child chromosome will have genes identical to Parent2 from 1 to 75 and will take the 

gene values of Parent1 from 76 to 135.   

 

Subsequently, mutation is performed. Mutation involves introducing random changes in the 

gene structure of chromosomes. This is similar to the mutation that occurs in the natural 

processes of evolution.  After the pairing process, the resulting chromosome population 

must be mutated, subject to results of the comparison of the random value generated with 

the mutation probability. 

In this study, a mutation probability of 0.05 is employed. In real-world, mutations are a rare 

phenomenon and hence a low-value for the mutation probability. Subsequently, a random 

number between 0 and 1 is generated for each gene in the two offsprings. If the random 

number is less than the probability of mutation, then the integer value of the gene is changed 

to another random value between 0 and 9. 



 87

 

 

 

 

 

 

 

 

As gene-wise mutation (Figure 4.2) is employed here, a random probability value is 

generated for each gene in the chromosome obtained after pairing and if it is less than the 

mutation probability, then the corresponding gene is changed.   

 

4.3 Variation of GA parameters 

  

The efficiency of the genetic algorithm is influenced strongly by the parameters of the 

algorithm (Deb, 2001). These include. 

• Generation size 

• Tournament size 

• Crossover probability 

• Mutation probability 

Of these, the tournament size and the mutation probability are of paramount importance. 

Hence, the genetic algorithm was executed for varying values of tournament size and 

mutation probability. These values were classified in the range of low, medium, and high. 

            ColIndex=1; 

            for ColIndex=1:135 

                RandVal = rand; 

                NumIntValuesChanged1=0; 

                 if (RandVal <=  MutProb ) 

                     OffSpring1(1,ColIndex)=randint(1,1,10); 

                     NumIntValuesChanged1=NumIntValuesChanged1+1; 

                 end 

Figure 4.2 Gene-wise mutation:- Matlab Code 
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For low, high, and medium values of tournament size, the GA was executed for low, high, 

and medium values of mutation probability (Table 4.1). For instance, for a low tournament 

size, say 3, the mutation probability is varied as .05, .1, and .2 and the GA is executed and the 

results compared. One very important parameter for comparing the efficiency of the GA is 

the increase in the Pareto plans. This ratio is a significant indicator of the performance of the 

genetic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tournament 

size 

Mutation 

Probability 

Generation 

size 

Ratio of Pareto 

plans 

Starting :Final 

Low 

 

Low 

0.05 
100 1:3 

Medium 

0.1 
100 1:2.5 

High 

0.2 
100 1:2 

Medium 

Low 

0.05 
100 1:4.2 

Medium 

0.1 
100 1:3 

High 

0.2 
100 1:3 

High 

Low 

0.05 
100 1:3 

Medium 

0.1 
100 1:3.25 

High 

0.2 
100 1:3 

 

Table 4.1 Repeated algorithm executions for varying values of Parameters 
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The above experiments with the varied set of values for mutation probability and 

tournament size corroborate the fact that the values suggested by pioneers in the domain are 

indeed correct (Deb, 2001).  It can be seen from the above table that the number of pareto 

plans increase four-fold when a medium tournament size and low mutation value is 

employed. Hence, the results are discussed with a medium tournament size of 5 and a low 

mutation value of 0.05 as this is more similar to the natural evolutionary process.  

 

4.4 Results of Multiobjective Optimization 

 

The genetic algorithm was executed for 100 generations maximizing three objectives namely 

� Per capita Green space (PCGS) 

� Space for public service (PCPS) 

� Housing capacity  (NumHU) 

The execution of the GA for a single future plan for the study area required about 10 

seconds on a LG desktop computer with a Pentium 4 CPU (3.20 GHz). The execution of 

the GA for 100 generations required approximately 300 seconds on an average, which is a 

considerable improvement over previous genetic algorithms dealing with landuse problems. 

From a very high proportion of infeasible solutions in the first random generation, the 

algorithm seems to converge towards a feasible set towards the last generations. On the 

whole, the average time consumed for the experiments that were performed on a 3.2 GHz 

Pentium-IV machines with 512 MB RAM was 800 seconds for one execution of 100 

generations.  
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The above chart (Figure 4.3) shows the average fitness of the generations. It is evident that 

the GA has significantly improved the fitness of the plans. While the fitness of the initial 

generation was 1.23, the fitness of the final generation has improved to 173, which is more 

than 100 times the overall fitness of the initial generation. This implies that the final plans, 

whilst satisfying the constraints, have maximized the per capita green space, per capita space 

for public service, and the housing capacity.  

 

Figure 4.3 Improvement of the average fitness over the generations 
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4.5 Performance metrics of the GA 

 

From the following table that provides the generational minimum and average values for the 

three objectives the performance of the GA is obvious. When comparing these values for 

the starting and final generations (Table 4.2), it is obvious that the GA has undoubtedly 

improved all the three objectives.  

 

 

 

 

 

Also, another important point to be noted is that the Pareto set for the starting generation 

included a mere 10 of the 100 feasible plans, whereas the Pareto set for the final generation 

included 40 of the 100 feasible plans. This was determined after an average run of at least 10 

times of the 100 generations. A maximum of 64 was achieved i.e. 64 Pareto-optimal sets 

were obtained in one generation. 

 

Parameter PCGS 
(Sq.m./ resident)  

PCPS 
(Sq.m./ resident) 

Housing Capacity 
(Number of Housing Units) 

Average- Initial Gen.  376.56 115.59 2.569 * 107 

Minimum-Initial 
Gen. 

375.2 105.36 1.536 *106 

Average- Final Gen. 405.2 175.36 5.412 * 108 

Minimum-Final Gen. 400.12 169.36 2.356 * 107 

Table 4.2 Table showing the increase in objective values after GA iterations 
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Let us take an in-depth look at the Pareto-optimality criteria and investigate how the process 

of multi-objective optimization improved the Pareto-optimality on a generation-by-

generation basis. As the GA fitness function compares the fitness values of the plans within 

one generation, and it is not possible or sensible to compare fitness values between plans in 

different generations. Therefore, new ‘‘global The ‘‘global fitness’’ for each of the 10,000 

plans in the global generation according to the fitness equations described earlier in chapter 

3.  

 

As it follows from the previous discussion, the global generation also must have a ‘‘global 

Pareto set’’. From the total 10,000 plans in the global generation, there were 483 distinctive 

plans in the global Pareto set. The average value of the global fitness over the 100 plans in 

each generation is plotted and shown earlier and the following figure (Figure 4.4) shows their 

distribution.  
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The total number of plans in each generation that belong to the global Pareto set has also 

been plotted (Figure 4.4). This plot clearly shows that the genetic algorithm improved global 

Pareto optimality.  

 

This clearly shows that the Pareto-optimality has been improving continuously after a 

particular generation number has been reached and after that particular number the 

improvement has been continual as well as consistent. The millions of infeasible plans that 

did not provide enough housing to accommodate the projected growth were aborted as 

already mentioned during the algorithm description process.  

 
Figure 4.4 Distribution of Global Pareto Plans 
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4.6 Results of Visualization  

 

Two Pareto-plans with the highest fitness values were selected and visualization plans 

generated for these. In order to visualize landscapes, different kinds of information must 

exist and must be processed: Terrain data (e.g. digital elevation models) or land use data (eg. 

GIS data of the vegetation), or data about existing or planned changes in landscape (eg. 

CAD construction data, buildings, streets, bridges). Using texture mapping, surface attributes 

of three-dimensional objects, such as color and transparency can be manipulated in a variety 

of ways or customized according to specific applications. Highly customizable IDEs are 

available these days, using which it is possible to accomplish similar operations within a wide 

range of GIS applications.   

 

Overall, the visualization procedure can be divided into three fundamental steps (Lim et al. 

2002). In the first step, the 3D digital data of the terrain are obtained from the shape file 

from the ArcGIS. In the second step, a conversion program is used to convert the data on 

the terrain and vegetation in the landscape into VRML format. In the final step, 

modifications to alignments and other changes including transformation and orientation, if 

necessary, are made and the 3D VRML image of the landscape is generated on the 

computer. 
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A particular software belonging to the ArcGIS family of software, ArcScene is used to 

perform this conversion. The appropriate landuse shape file (.shp) is imported within the 

ArcScene environment (Figure 4.5) and it is exported using the ‘Export’ functionality into 

3D (.wrl format). This can be then used in the VRML worlds along with the buildings and 

other infrastructure components to generate the 3D landscape scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4.5 ArcScene Document: Conversion to VRML format 
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Using the object-oriented principles delineated in the previous chapter, the landscape 

scenarios are generated. Following shows a small code-snippet (Figure 4.6) showing the 

grouping of components under a group to create bigger objects. Similarly, various object 

parts are grouped to form objects, objects to form bigger objects, and all the objects together 

with the LU VRML file to form the complete 3D scene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  A sample VRML code showing scene components 
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The difference between a scene and object must be understood. A scene typically represents 

a larger picture such as a university campus or an urban landscape etc. Mathematically, a 

scene can be considered as the sum total of all the scene objects, where the scene itself is an 

object. Each object is a result of the function of its properties.  

 

 

 

 

 

 

 

The number of objects making up a scene may vary from scene to scene depending on the 

purpose of visualization and scene complexity. To create a ball, a single sphere object might 

be sufficient, while to generate a 3D building model, hundreds of objects with varying 

properties may be required. On the whole, when we are talking about a 3D scene, we are 

actually discussing about an object or a group of objects assembled together that function in 

unison to create a 3D representation of some real-world entity. Hence, it is important to 

understand some of the fundamental concepts of object oriented programming.  

 

 

An object is the critical feature in the object-oriented programming paradigm. An object 

contains data and it can be acted upon and it can act accordingly. A wide range of things that 

we deal in our day to day life can be considered as Objects. A computer, a cycle, a bus, a 
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washing machine, an electric stove, an iron box, a watch, a clock, a hair dryer, a television, 

can all be considered objects. This is because, they all contain something (data) and upon 

being initiated (or put to use) they perform specific tasks. In other words they have their 

own properties and they can ‘act’ or behave.  An object may be acted upon and it reacts in 

accordance with the action. An object may be made of several other objects and it can also 

be a part of another object.  If a PC (Personal Computer) is considered an object, then the 

monitor can be thought of as an object that is a component object of the PC object.  

 

Let us consider a piece of code which, albeit small, has the basic elements required to create 

a 3D object in the virtual world. This small piece of code (Figure 4.7) provides an insight 

into the fundamental concepts behind building a 3D object in the virtual coordinate space. 

This is a VRML code. 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.7  A piece of VRML Code used to    generate a Red 

colored sphere object  
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Using the above notions, the following objects (Figure 4.8) have been modeled within 

VRML 2.0 for generating the landuse scene for the Pareto plan.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are various elements of the scene that need to modeled if the scene is to be realistic 

and textures need to draped or mapped on to the objects thus modeled to incorporate 

photo-realism in the scene. The term photo-realism refers to the degree to which a rendered 

scene resembles the real-world. Some important elements that need to modeled are things 

that we come across in our daily life such as lamp-posts, plants, side-walks, telephone 

booths, roadside benches, sign boards, signals etc (Figure 4.9). 

 

Figure 4.8 Individual components of the virtual world scene 
Clockwise from top left – a. Residential – Low density housing b. Green space – park c. 
Commercial d.   Community space e. Residential – Medium density housing 
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All the elements of a scene are built and are grouped together hierarchically and added to the 

scene as shown below (Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 A screen-shot of the landscape scenario with components 
added 

 

 

Figure  4.9a. Different kinds of objects in 3D format 
 b. Wire Frame Model 
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Shown below are the visualizations of two Pareto-optimal plans selected for visualization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.11  Visualization for Pareto-optimal plan no.1 
  Green spaces distributed properly around housing areas 

Figure 4.12 Visualization for Pareto-optimal plan no.2 
       Green spaces not distributed properly  
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From the figures shown here (Figure 4.11 and Figure 4.12), the two plans can be compared 

in a very systematic manner. Evaluating them the point of view of the objectives considered 

in this study, in plan no.1 (Figure 4.11), it can be seen that the green spaces are properly 

distributed around the housing areas. The green spaces are evenly distributed so that the 

residents from the high-density residential area can access the green spaces without much 

commuting. On the other hand, in the second plan (Figure 4.12), it can be seen that there are 

three residential regions (two high-density and one low-density) competing for meager green 

space which is also not evenly distributed.  

 

It should be noted that both these are Pareto-optimal plans with very fitness values. They 

satisfy the constraints that the green spaces must be more than the threshold values. 

However, it is not necessary, that the green spaces must be distributed evenly all over the 

region. Hence, we can see that there are a lot of practical constraints, all of which may not be 

included in the GA, but can be observed using visualization plans.  

 

Consequently, plan no.1 can be selected for implementation. Thus, the usefulness of 

visualization in evaluating CPOPs (Competing Pareto-optimal plans) is evident. Similarly, 

when decision makers need to evaluate several Pareto plans to select the most appropriate 

one for implementation, they can use 3D visualizations corresponding to the Pareto-optimal 

plans to evaluate the plans from various perspectives and select the one that is most suitable 

for the problem on hand.  
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4.7 Discussion  

 

The use of visualization in this study is triggered by the increasing need for tools or 

indicators, which can efficiently depict landuse scenes as one comprehensive screenshot 

rather than a series of non-coherent data layers. It is essential to capture the links between 

the various dimensions of a landuse scenario. Whilst GIS provide the analytical tools and 

methodologies for spatial integration of the different scientific areas and sub-models, unless 

the data is transformed into the 3D format it is not of significant use to planners and 

decision makers as interpreting voluminous statistical data is a mammoth and cumbersome 

task. The Visualization aids to understand the overall composition of the landscape and 

understand its functioning holistically (Dramstad et al., 1996; Turner et al., 2001; Nagendra 

et al., 2004). One prominent advantage of using visualization models, is that even a bird’s eye 

view can provide enormous details to the observant eye. For instance, planners who are 

experts in the field of landuse can find out desirable or undesirable patterns using visual 

scene renderings. 

 

One very obvious advantage of using virtual worlds for visualizing the competing Pareto-

optimal plans (CPOP) is that patterns can be easily found. Using varying LODs and by 

studying the same scene from multiple viewpoints, numerous aspects that might not be 

otherwise be obvious can be found. Subjective features such as scene quality can be studied 

in a more reliable manner.  
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In the subsequent paragraphs, some specific uses of visualization from the perspective of 

landuse modeling and for evaluating the various plans are discussed. From the following 

figure (Figure 4.13), the use of visualization to study the same scenario from various levels of 

detail is obvious. The same scene can be built with varying levels of detail. For instance, 

when viewing from a distance, the finer details are not obvious. This notion can be used to 

efficiently model the scene. Based on the viewer’s position in a scene, the objects can be 

rendered accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a viewer is at quite a distance from buildings, the finer details can be hidden and only 

the coarser details that need to efficiently project the object can be shown. This will greatly 

 
Figure 4.13  Using 3D Visualization to study the same scene from varying LOD 
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reduce the number of faces that need to be rendered by the VRML browser and hence will 

significantly enhance performance. Another prominent advantage is that the same scenario 

can be seen from multiple viewpoints.  

 

 

 

 

 

 

 

 

 

 

For the scene shown above (Figure 4.14), two viewpoints (Figure 4.15) are shown below  

 

 

 

 

 

 

 

 

 

 Figure  4.14 Viewpoints within a Pareto-optimal plan visualization 

Figure  4.15 Viewpoints within a Pareto-optimal plan visualization 
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The various advantages are summarized as follows:  

• Desirable or undesirable patterns or developments, can be easily observed by 

the planner. The success of the visual display is in the fact that this is quite 

obvious to the planner which may not be that obvious if only the Pareto plan 

was evaluated after the MOO process only.  

• The per capita green space per population might be more than the required 

value, however, the distribution of the green spaces within the study area is 

an important factor. A resident might not be in a condition to travel several 

kilometers to reach a green space. In order to ensure that the purpose of 

green spaces is satisfied, they must not be in the required quantity, but must 

also be well distributed.  

• Similarly, the distribution of various other landuse types can be easily studied 

using varying levels of detail (LOD) within the virtual worlds 

• Access to public service facilities from various housing types can be studied 

and understood 

• Plans can be compared and contrasted in a more objective manner as a visual 

tool provides a more reliable benchmark for evaluation rather than relying on 

abstract measures 

• Aesthetic view quality or scene quality is another element of significant 

importance in urban design these days. Visualization can greatly facilitate 

studying the aesthetic quality of a plan.  

• The virtual worlds can be navigated and it can found as to whether the 

placement or location of various buildings and infrastructure elements is 
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appropriate. For instance, an office building blocking the view of a 

monumental structure of some other feature of prominence is undesirable 

and hence such a landuse cannot be allocated for high-density residential or 

high-rise buildings etc. 

 

 

4.8 Conclusion 

 

This chapter provided the results and also a detailed interpretation of the results from the 

perspective of this study. In this study, a system for optimizing multiple objectives of a 

landuse design and selecting one plan from among the various CPOPs is proposed.  Whist 

the multiobjective optimization part optimizes multiple competing objectives and provides a 

set of CPOPs, the visual evaluation tool, namely scene visualizations aid the process of 

selecting the appropriate plan from among the CPOPs. Landscape visualizations facilitate 

walk-through functionalities and simulate the future landscape photo-realistically. Thus, we 

see that when studying geospatial data that is inherently 3D in nature, combining GIS with 

visualization facilitates generating realistic 3D landscapes and understanding the 3D 

topologies. Also, with PPGIS (Public Participation GIS) becoming the norm of the day, such 

visualizations can be hosted online and the feedback of the general public, who are the 

ultimate consumers, can be obtained. Such visual representations are excellent tools to 

overcome the barriers of scale and those imposed by viewpoints. In other words, the same 

scene can be studied at various viewpoints which may not be accessible from the real-world 
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CHAPTER 5:  Conclusion and Recommendations for Future Study 

5.1 Conclusion 

The goal of this study was to design an innovative framework integrating visualization with 

MOO to generate sustainable landuse designs. This study used an area from central Calgary 

as the study-area and employed three objectives and four constraints. The study tested the 

GA-framework integrated with Visualization on this study area and found that the results 

were extremely satisfactory both from the perspective of the performance of the GA and the 

performance of the visualization tool.  

 

With urban environments becoming increasing complex by the day, the process of land use 

planning and future allocation is getting increasingly multifaceted. As landuse planning 

engages larger landscape scales more complex design/planning conditions need to be met. 

The effective resolution of such multifaceted problems will require the synchronization 

among various disciplines and exploiting the advances in various related disciplines.  

 

Over the past several decades, information presentation has inspired the development of 

several new tools and techniques. The information revolution has resulted in vast amounts 

of data volumes that are far too complex, both in quality and quantity, to be handled by 

conventional tools and techniques. Recent technological advances in the realm of remote 

sensing have dramatically increased the amount of geospatial data available.  

 

Producing 3D visualizations is no longer considered a cumbersome task. Using judicious 

methods and the latest developments, 3D scenes can be rendered in a time and cost efficient 
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manner. The overall costs involved in producing very high quality and photo-realistic 

visualizations have gone down considerably and visualization is increasingly becoming a 

geospatial domain. Various fields such as Global Positioning Systems (GPS), Location Based 

Services (LBS), Geodesy, etc. are beginning to embrace visualization. VRML possesses 

excellent capabilities for visualization and interaction when extended using a scripting 

language such as JavaScript or Java. While JavaScript can be included using the url field 

within a VRML file itself, a Java class file can be used to externally manipulate the animation 

within a virtual world.  

 

The experiments performed using genetic algorithms showed that the overall fitness of the 

plans from the point of view of the objectives has increased significantly. From the increase 

in overall fitness of the generations and from the four-fold increase in the quantity of 

Pareto-optimal sets, it can safely be concluded that genetic algorithms can indeed serve as 

useful tools in developing good solutions to an allocation problem with multiple and 

contradicting objective functions. 

 

However, for long, GAs has only provided a solution-set and not a unique solution. In order 

to overcome this impediment this study proposed the integration of optimization and 

geospatial visualization. The virtual worlds served as excellent tools for evaluating the 

competing Pareto-optimal solutions and in selecting the most appropriate one. Stakeholders 

and decision makers are no longer compelled to rely on subjective measures to evaluate the 

CPOPs. Instead, 3D scene rendering can be employed for the evaluation purpose. The 

CPOPs can be explicitly studied and the various aspects, both positive and negative, of the 
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plans can be clearly outlined. This way, the approach is transparent to all stakeholders since 

there can be no subjective assumptions and hence no false judgments. Thus, the possibility 

of a good or more appropriate CPOP being not selected or an inappropriate CPOP being 

selected is greatly reduced.  

 

The important results are summarized as follows: 

• A comprehensive GA-based multiobjective optimization framework 

was designed to maximize three objectives under four given 

constraints. From the experimental results it is evident that the GA is 

robust and functions effectively to optimize given objectives. The 

GA is efficient from the programming perspective and is time-saving 

as well.  

• The MOO method significantly enhances the fitness of the plans and 

results in enhanced Pareto-optimality.  

• A novel approach, integration of visualization with MOO was 

proposed in this research to evaluate the Pareto plans resulting from 

the GA optimization process. 

• The Visualization framework is based on virtual reality and 3D 

environments corresponding to Pareto plans with high fitness values 

were generated using Virtual Reality Modeling Language (VRML 2.0) 

• The results demonstrate that visualization serves as a valuable tool in 

evaluating the CPOP (Competing Pareto-optimal Plans) and selecting 

the plan that is most suitable for the problem on hand.  
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In particular, the advantage of the virtual environments can be summarized as follows: 

• Multiple scenarios can be evaluated 

• Infinite viewpoints can be generated 

• A guided tour of buildings can be generated by linking using scripts  

• Decision-makers can view the finished product before hand 

• The virtual models are extremely time-saving and economical 

• Visibility of various elements in the scene can be tested 

• Aesthetic view quality can be evaluated and modified if needed 

• All plans/modifications can be done at the convenience of desktop 

• Facilitates proactive interference as future scenarios can be built 

• Facilitates non-destructive testing as product is available beforehand 

 

5.2 Limitations  

This study involves two major components: designing the GA for MOO and designing a 

visualization tool to evaluate the results of the solutions from the Pareto set. This section 

discusses limitations with respect to both the components.  

 

 The overall design of the aforementioned is a technically complex and time-consuming 

process. This is a prototype study whose primary objective is to combine multiobjective 

optimization with visual evaluation techniques. Hence, the emphasis here is on the 

multiobjective optimization and the subsequent visualization and not on the various data-

related and other peripheral issues.  
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Hence, owing to the scope of this research and inherent time limitations, the following issues 

are not included in this research: 

• Not all the zones, but only the required number of zones from the city of 

Calgary are considered for this study 

• Only three objectives are considered for the multiobjective optimization 

process. Other objectives that are equally important to those considered 

here surely do exist. However, being a prototype study only three 

objectives have been considered with the view of sustainable 

development 

• Visualization models are generated only for a select subset from those 

among the pareto set 

One noteworthy issue is that is here in visualizing real-world scenarios, there is an inevitable 

trade-off that many browsers are forced to make amid performance and resolution. 

Considerable complexity is involved in the generation the VRML IndexedFaceSets from 

typical TIN models, necessitating transformation prior to placing in the VRML world. 

Talking of data quantity, several factors need to be considered during visualization such as 

the type and volume of data to be visualized, memory constraints, and system performance. 

Scenes with a greater number of polygons decelerate the system and adversely affect the 

system performance. Creating a photorealistic environment might make the interactivity 

poor, as the system performance goes down. A carefully structured VRML file can enhance 

the rendering performance of the browser for displaying a terrain model. However, a 

carefully structure VRML file does not necessarily mean controlling and manipulating the 

LOD nodes only. But, the VRML scene author must take into consideration the viewpoint 
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and navigation type into consideration so that unnecessary facets are not drawn. For 

instance, once a building has been generated and is viewed in the scene, the floor of the 

building is unnecessary.  

 
5.3 Recommendations for future study 

 

Further experimentation and studies investigating the integration of spatial visualization with 

multiobjective optimization can serve as an efficient tool to solve various other geospatial 

problems. Particularly, such tools are of immense potential when multiple objectives and 

multiple stakeholders are involved. The integration of visualization with optimization will 

greatly facilitate decision makers in developing sustainable solutions for land use allocation. 

There will be significant improvements in geospatial analysis and the overall knowledge of 

landuse can be greatly enhanced.   

 

Another important technical aspect that can be further studied is the automation of the 

process of generating landuse scenarios from the CPOPs. This can be achieved by a 

combination of the PROTO functionality in VRML with an object oriented language such as 

Java. Further research in this direction must be aimed at creating a standard VRML 

animation library using the PROTO and EXTERNPROTO functionalities. This will 

facilitate creating simple and real-looking animation on the fly and such a library can also be 

equipped with standard building types so that when generating huge scenes considerable 

time can be saved.  
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