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Abstract 

Although Global Positioning System (GPS) has been widely used to land vehicle 

navigation systems, GPS is unable to provide continuous and reliable navigation 

solutions in the presence of signal fading and/or blockage such as in urban areas. With 

the advent of the Micro-Electro-Mechanical System (MEMS) Inertial Navigation System 

(INS), a low-cost MEMS INS/GPS integration system becomes available to provide 

improved navigation performance by integrating the long-term GPS accuracy with the 

short-term INS accuracy. The challenges to low-cost MEMS INS/GPS integration arise 

from dealing with the corrupted GPS data in signal-degraded environments, the large 

instrument errors experienced with low-grade MEMS sensors and the distorted magnetic 

measurements from an embedded electronic compass. This dissertation develops 

intelligent data fusion and processing techniques for such a low-cost integration system 

by incorporating the Artificial Intelligence (AI) with the Kalman filtering. 

 

Two cascaded Kalman filters implemented upon a loosely coupled integration scheme are 

applied to perform data fusion in the velocity/attitude and position domain, respectively. 

Three AI-based methods are developed for GPS data assessment, INS error control and 

compass error modelling to enhance the Kalman-filter-based integration. Specifically, a 

fuzzy GPS data classification system is developed to optimize INS/GPS data fusion 

through adjusting the measurement covariances of the Kalman filters according to GPS 

signal degradation conditions. A dynamics knowledge aided inertial navigation algorithm 

along with a fuzzy expert vehicle dynamics identification system is created to reduce and 

control INS error drift through simplifying system models and extending measurement 

update schemes of the Kalman filters. A neural-networks-based compass calibration 

algorithm is developed to provide the correct compass heading updates to the Kalman 

filters in the presence of disturbance. 

 

The developed algorithms have been tested and evaluated in various GPS conditions, 

which include open areas, complete GPS outages and urban areas, using a low-cost Xsens 
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MT9 MEMS IMU and SiRF Star II conventional/high sensitivity GPS receivers. The 

obtained results have confirmed the effectiveness of the AI-based methods and the 

significant performance improvement by the intelligent integration algorithm. For GPS 

outages around 3 minutes, the intelligent integration system is able to maintain 

satisfactory position accuracy with the maximum error less than 30 m. In the typical 

North American urban canyons, the intelligent integration system can provide continuous 

and reliable navigation solutions with the horizontal position accuracy of around 15 m. 

Overall results confirm the benefits and advantages of applying the developed AI 

methods to assist the low-cost MEMS INS/GPS integration for land vehicle navigation. 
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Chapter 1  

Introduction 

 

Land vehicle navigation is the fastest growing section of the in-vehicle electronics market. 

According to the CSM Worldwide, the global in-vehicle navigation systems market will 

grow to $5.4 billion by 2010 which represents 66% growth over today’s market, 

estimated at $3.2 billion on May 20, 2005 (Telematics Update, 2005). Currently, overall 

navigation system installation in Japan is at about 16% of vehicle production while 

Europe and North America lag the Japanese market with overall installation rates of 8% 

and 3%, respectively (Telematics Update, 2005). As the price for navigation systems 

drops, navigation systems will go from optional luxury equipment to standard amenities 

on generic cars, which helps continue the growth of navigation systems in the global 

market. Towards this goal, however, an important issue is to maintain reasonable 

navigation performance along with the cost demand. This dissertation investigates a low-

cost integrated approach to provide continuous and reliable land vehicle navigation in all 

operational environments. 

 

1.1 Background 

The most fundamental task of a vehicular navigation system is to continuously maintain 

accurate track of the vehicle’s position (French, 1987). Basically, two types of navigation 

technologies, dead-reckoning (DR) and position fixing, are available for position 

determination. The principle of the dead-reckoning technology is to determine the current 

position of the vehicle based on the knowledge of the previous position and the 

measurement of the motion. The typical DR sensors used for land vehicle navigation are 

odometer, magnetic compass and Inertial Navigation System (INS). DR sensors are self-

contained and autonomous navigators independent on operational environments but the 

sensor errors will lead to unbounded position error growing with time. In contrast, 
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position fixing technology which determines the vehicle position by measuring the 

distance between the vehicle and the reference points based on radio signals can provide 

absolute position and velocity information with bounded accuracy. The most commonly 

used position fixing technology is the Global Navigation Satellite System (GNSS) such 

as Global Positioning System (GPS). GPS has been adopted widely in vehicular 

navigation systems due to its cost-effect performance. However, the major drawback of 

GPS is that at least four satellites must be visible to the GPS receiver. In real operational 

environments such as urban canyons, GPS positioning accuracy and availability will 

degrade due to the poor satellite geometry, multipath and satellite signal outages.  

 

There are four main parameters that can be used to measure the performance of a 

navigation system: accuracy, integrity, continuity and availability (Ashkenazi et al., 1995; 

Ochieng et al., 1999). Theses quantities are referred to as the Required Navigation 

Performance (RNP) parameters and their definition are given in Table 1.1. The RNP 

parameters are originally applied in aviation and have been extend to marine and land 

vehicle navigation. According to Hofmann-Wellenhof et al. (2003), autonomous 

navigation in urban areas requires continuous positioning information with accuracy of 

2~5 metres (2D-95%). For location based service (LBS), the accuracy requirement varies 

with applications, e.g. positioning accuracy of 10~20 metres (2D-95%) is required for 

fleet management. Unfortunately, neither DR nor GPS can fulfill these requirements in 

stand-alone mode. Although DR sensors can provide continuous navigation solutions in 

all environments, they suffer from navigation error growth over time and eventually 

cannot sustain the accuracy requirement. In contrast, GPS is able to provide sufficiently 

accurate position solutions but it cannot fulfill the continuity and availability 

requirements in some land vehicle environments such as urban canyons. Although 

currently developed high sensitivity technologies have improved the GPS availability in 

signal-degraded environments, the position solutions provided by the high sensitivity 

GPS in such environments could be unreliable and suffer from the hundred-metre level 

error. Thus, to fulfill these requirements, integration of DR and GPS is required and has 

become a common approach worldwide for land vehicle navigation (French, 1995). 

INS/GPS integration is typically the most popular approach since it can provide three-
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dimension attitude, velocity and position information and is also applicable to portable 

systems. Given complementary nature of INS and GPS, the integration system can 

provide superior system performance in terms of accuracy, integrity and availability than 

each system in stand-alone mode (Greenspan, 1996). 

 

Table 1.1: Required Navigation Performance (RNP) parameters (after Ochieng et 
al., 1999) 

Accuracy defined as the degree of conformance of an estimated or 
measured position at a given time, to the truth. 

Integrity defined as the ability of the navigation system to provide 
timely warnings to users when the system must not be 
used for navigation. 

Continuity defined as the ability of the total system to perform its 
function without interruption during an intended period 
of operation. 

Availability defined as the percentage of time during which the 
service is available for use taking into account all the 
outages whatever their origins. The service is available if 
accuracy, integrity and continuity requirements are 
satisfied. 

 

Advances in microelectronics, computer, and sensor technologies permit the development 

of commercial low-cost Inertial Measurement Units (IMUs) and GPS receivers for 

vehicular navigation markets. Recently, a single-frequency GPS chipset receiver with the 

cost of less than 200 USD is available in the markets. The continuous development of the 

Micro-Electro-Mechanical System (MEMS) technology has made low-cost inertial 

sensors available to land vehicle navigation. A single point positioning (SPP) 

GPS/MEMS INS integration system has become one of the most attractive low-cost 

solutions to land vehicle navigation. However, the challenges when working with MEMS 

INS/SPP GPS are to develop a robust integration algorithm that can deal with the large 

instrument errors experienced with low-grade MEMS INS and the corrupted GPS data in 

signal-degraded environments. This dissertation focuses on the development of a new 

integration algorithm that enables the low-cost MEMS INS/SPP GPS integration system 

to provide reliable and accurate navigation solutions for land vehicle applications. 
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1.2 Literature Review 

For decades, integration of INS with GPS has been investigated in many literatures. The 

Kalman filtering methodology has been successfully applied for INS/GPS integration 

using either loosely or tightly coupled integration strategies (Wei and Schwarz, 1990; 

Cannon, 1991; Salychev, 1998; El-Sheimy and Schwarz, 1999; Jekeli, 2000; Scherzinger, 

2000 and Petovello, 2003). The Kalman filter offers a powerful method for linear data 

fusion and estimation that are optimal in the statistical sense if the system and 

measurement models and their stochastic properties are known (Gelb, 1974). For low-

cost MEMS INS/GPS integration, however, these requirements are difficult to meet due 

to the poor quality of the instrument measurements. The traditional integration algorithm 

finds new challenges dealing with rapid INS error drift during GPS outages and INS/GPS 

data fusion in GPS signal-degraded environments. In the following sections, we will first 

discuss the current research regarding MEMS INS/GPS integration using the Kalman 

filter. Then, the available methods to reduce INS error drift during GPS outages are 

reviewed, followed by the discussion of fusion optimization techniques for MEMS 

INS/GPS. 

  

1.2.1 Integration of MEMS INS with GPS Using Kalman Filter 

In the last few years, several researchers have investigated the MEMS INS/GPS 

integration using the Kalman filter. Salychev et al (2000) and Nayak (2000) applied a 

loosely coupled integration strategy to integrate the MotionPakTM MEMS IMU with 

pseudorange differential GPS (DGPS). Brown and Lu (2004) and Jaffe et al. (2004) 

developed Kalman filter-based MEMS INS/SPP GPS integrated navigation systems using 

tightly coupled integration strategy. Shin (2005) applied the unscented Kalman filter and 

extended Kalman filter for low-cost MEMS INS/DGPS integration. The above researches 

focused on evaluating the system performance under benign operational conditions such 

as open-sky environments and assessing the INS prediction accuracy during simulated 

GPS outages. The test results have demonstrated that the navigation performance 

degrades rapidly following loss of the GPS aiding data due to the large INS bias variation 

and noise. 



 

5 

Currently, Hide and Moore (2005) and Godha (2006) investigated the performance of the 

MEMS INS/DGPS integrated vehicular navigation systems in real life suburban/urban 

environments. Hide and Moore (2005) demonstrated that the horizontal position error 

within around 20 m using the tightly coupled integration of Crossbow AHRS400 MEMS 

IMU and DGPS is attainable when the system was tested in the city of Nottingham, UK 

where the surrounding buildings are generally only 3 to 4 stories tall. Godha (2006) 

demonstrated the similar performance obtained in downtown Calgary, Canada using the 

tightly coupled integration of Crista MEMS IMU and DGPS and 27-state INS filter with 

height and velocity constraints. However, the use of DGPS and tightly coupled 

integration scheme suggested by these two researches will increase the cost of system 

implementation and operation in real applications since it requires base stations, 

additional communication links and more powerful processors.  

 

1.2.2 Control of Stand-Alone INS Error Drift 

As stated previously, for a low-cost MEMS INS/GPS integration system, navigation 

performance degrades rapidly following loss of the GPS aiding data if prediction of 

navigation error only relies on the Kalman filter. A number of approaches have been 

proposed to reduce the stand-alone INS error drift and they are grouped into: special error 

prediction techniques, aiding from vehicle dynamics knowledge and the use of auxiliary 

sensors. 

 

Neural networks, neuro-fuzzy models and fuzzy inference systems have been proposed to 

predict INS drift errors and have shown their effectiveness on navigation error reduction 

(Ibrahim et al., 2000; Chiang, 2004; El-Sheimy et al., 2004; Wang, 2004a). The basic 

idea behind the neuro-fuzzy modelling or fuzzy reasoning approaches is to predict 

navigation errors based on an input/output pattern memorized during a training or 

learning process. To maintain good performance of the neuro-fuzzy prediction, the 

training data should cover all the input and output data ranges and the neuro-fuzzy model 

should be retrained in real-time to deal with minor changes in the operating 

environmental conditions (Haykin, 1999). For a low-cost MEMS INS with a relatively 
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high instrument bias, noise and random error, sensor errors are highly sensitive to 

operational environments and the input/output patterns change dynamically. Thus, it is 

more difficult to accurately predict navigation errors using the neuro-fuzzy model or the 

fuzzy inference system when low-cost MEMS inertial sensors are used. For a MEMS 

INS/SPP GPS integration system, the stand-alone INS error after neural networks 

correction could reach the hundred-metre level during 30-second GPS outages (Chiang, 

2004). 

 

Another approach available in literatures to reduce INS error drift is based on the 

constraints of land vehicle motion. Zero velocity updates (ZUPTs) are the most 

commonly used techniques to provide effective INS error control when the stationary of a 

vehicle is available (Salychev, 1998; El-Sheimy, 2003). In addition, Brandt and Gardner 

(1998), Dissanayake et al. (2001) and Shin (2001) applied the nonholonomic constraints 

that govern the motion of a vehicle on a surface to bound the mechanization errors in a 

tactical grade IMU. Collin et al. (2001), Ojeda and Borenstein (2002) and Wang and Gao 

(2004c) used complementary motion detection characteristics of accelerometers and 

gyroscopes to keep the tilt estimation bounded. The basic idea is to use the 

accelerometer-derived tilt angle for the attitude update while vehicle is static or moving 

linearly at a constant speed. Among these methods, however, only ZUPTs can provide 

direct error control of the forward velocity of the vehicle but they are not frequently 

available sometimes. For low-cost MEMS IMU with large instrument errors, the control 

of INS error using these methods is insufficient for longer periods of GPS outage. 

 

Auxiliary DR sensors such as odometers and magnetic compasses have also been used to 

reduce INS error drift. Odometers can provide absolute velocity information but they are 

vehicle dependent and much difficult to interface with other sensors (Stephen, 2000). As 

the advances in electronic and manufacture techniques, small-size and low-cost electronic 

compasses are available to aid INS by providing absolute heading information (Ladetto et 

al., 2001; Langley, 2003; Wang and Gao 2003b). In practical applications there usually 

exist unwanted local magnetic fields that will distort compass measurements; hence a 

calibration procedure is essential. For land vehicle navigation under strong magnetic 
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disturbance environments, however, the traditional calibration method (Bowditch, 1995; 

Caruso, 1997; Gebre-Egziabher et al., 2001) may diverge or fail and in turn the accuracy 

of compass calibration is degraded. 

 

1.2.3 Optimization of INS and GPS Data Fusion 

Another challenge to MEMS INS/GPS integration is to perform optimal and adaptive 

data fusion especially in signal-degraded environments so that the corrupted GPS data 

will not deteriorate the integration performance to a large extent. Several adaptive 

methods to optimize INS/GPS data fusion have been proposed in literatures. Karatsinides 

(1994) identified and rejected the unreasonable GPS data by formulating the 

measurement noise statistics dynamically based on the residuals between INS and GPS. 

Mohamed and Schwarz (1999) and Hide et al. (2003) applied adaptive Kalman filtering 

techniques for INS/GPS integration in benign environments. Swanson (1998), Sasiadek et 

al. (2000) and Loebis et al. (2003) used fuzzy-rule-based adaptation scheme to tune the 

data fusion gain (Kalman gain) based on the residuals between INS and GPS. Rahbari et 

al. (2005) developed an expert system to adaptively tune the measurement noise 

covariance of the Kalman filter for an INS/DGPS integration system according to the 

manoeuvring condition of the aircraft. These adaptive data fusion algorithms, however, 

are not designed for and tested by land vehicle navigation in signal-degraded 

environments. Currently, Salycheva (2004) applied innovation-based adaptive filtering 

techniques to integrate a tactical-grade IMU with high sensitivity GPS (HSGPS) for 

vehicular navigation in urban areas. The work on adaptive fusion of low-cost MEMS INS 

and GPS or HSGPS data in signal-degraded environments still needs to explore. 

 

1.3 Research Objectives and Contributions 

Given the lack of research and the challenges to the integration of low-grade MEMS INS 

with SPP GPS for land vehicle navigation in all operational environments, this 

dissertation is devoted to develop effective error control and integration algorithms for 

this kind of low-cost system so that it can provide reliable and accurate vehicular 
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navigation solutions. Improving the stand-alone INS navigation performance and 

optimizing the INS/GPS data fusion in signal-degraded environments are the major 

focuses. As the low-cost electronic compasses are increasingly embedded in today’s 

MEMS IMU to provide heading aids, a robust calibration algorithm feasible for land 

vehicle environments is required and also explored in this dissertation. 

 

To accomplish these objectives, this dissertation has investigated and incorporated 

artificial intelligence (AI) techniques including fuzzy logic, expert system and neural 

networks with the Kalman filter to develop an intelligent integration algorithm. AI 

technologies can be seen as the advanced versions of the estimation, the classification, 

and the inference methods and have found successful applications in a wide variety of 

fields, such as nonlinear mapping, data classification, and decision analysis (Kandel, 

1992; Jang et al., 1997; Haykin, 1999; Luo et al., 2002). With the advantages of 

processing ambiguous or imprecise data and the capabilities of formulating human 

intelligence, AI methods can provide a powerful way for low-cost MEMS INS/SPP GPS 

data processing and fusion. 

 

The major contributions of this dissertation to the field of low-cost MEMS INS/SPP GPS 

integration for land vehicle navigation can be summarized as follows: 

 

1. Development of a fuzzy logic rule-based GPS data classification system. This 

system is able to classify GPS data according to the signal degradation conditions so 

that GPS data can be properly weighted in data fusion. A fuzzy logic rule-based 

system has been applied to classify signal degradation conditions based on the 

combination of signal quality and geometry information. (Wang and Gao, 2004d; 

Wang and Gao, 2006) 

 

2. Development of a dynamics knowledge aided inertial navigation algorithm. This 

algorithm is capable of improving inertial navigation performance through the 

aiding from vehicle dynamics knowledge. Besides the commonly used ZUPTs and 

nonholonomic constraints, this algorithm develops additional dynamics-aid 
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observations including stationary attitude, straight-line roll and cornering velocity 

updates to control the INS error drift more effectively. A fuzzy expert system has 

also been developed to identify the status of vehicle dynamics so that these 

dynamics-aid observations can be properly applied to update the Kalman filter. 

(Wang and Gao, 2004c; Wang et al., 2005; Wang and Gao, 2005b) 

 

3. Development of a neural networks compass calibration algorithm. This algorithm is 

able to provide robust compass calibration even in the magnetic disturbance-rich 

environments such as land vehicle environments so that compass heading can 

benefit the integration system. Artificial neural networks are applied to model the 

nonlinear relationship between the compass heading and the true heading when 

external heading reference is available and subsequently applied to convert the 

compass heading into correct heading. (Wang et al., 2005; Wang and Gao, 2005c) 

 

4. Modification and incorporation of the conventional/adaptive Kalman filter with the 

developed AI-based methods in a loosely coupled integration approach to enhance 

the low-cost MEMS INS/SPP GPS integration. With the AI enhancement, the 

Kalman filter is allowed to use simplified dynamics models as well as extended and 

adaptive measurement update schemes to generate the improved navigation 

solutions. (Wang and Gao, 2005a; Wang and Gao, 2006b; Wang and Gao, 2006c) 

 

5. Development and testing of a software program implementing the proposed AI-

based methods and the intelligent integration algorithm. The navigation performance 

has been verified through field tests under different environments from open areas to 

urban areas with signal degradation.  

 

1.4 Dissertation Outline 

Chapter 1 presents the motivation, objectives and major contributions of this dissertation 

to the integration of low-cost MEMS INS with SPP GPS for land vehicle navigation. 
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Chapter 2 provides an overview of the navigation sensors used in this dissertation 

including GPS, INS and magnetic compass. The principle, the error source and the 

characteristics of each sensor are addressed with attentions given those relevant to the 

low-cost applications. Discussions on the increasingly used HSGPS and MEMS INS are 

also given.  

 

In Chapter 3, two different data fusion and processing methods that have been used 

throughout the dissertation are described. They are the model-based Kalman filter 

algorithm and the model-free AI methodologies including fuzzy logic and neural 

networks.  

 

Chapter 4 gives a comprehensive analysis of the limitation of the Kalman filter to low-

cost MEMS INS/SPP GPS integration and the design of AI-based enhancement methods 

including a fuzzy logic rule-based GPS data classification system, a dynamics knowledge 

aided inertial navigation algorithm, and a neural networks compass calibration algorithm. 

 

Chapter 5 describes the development of the intelligent integration algorithm which 

integrates the AI-based methods developed in Chapter 4 with the conventional/adaptive 

Kalman filter using a cascaded loosely coupled integration scheme. The design of the 

modified Kalman filter and the architecture and operation of the intelligent integration 

algorithm are described in details. 

 

Chapter 6 presents the test and performance analysis results of the proposed intelligent 

integration algorithm in open area applications. The evaluation of the integration 

performance without GPS outages and the evaluation of the stand-alone inertial 

navigation performance with simulated GPS outages are given in this chapter. 

 

In Chapter 7, the test and performance analysis results of the intelligent integration 

system under urban environments are presented. The GPS data classification performance 

and the attainable position accuracy of the intelligent integrated solutions are discussed. 
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Chapter 8 concludes the major results and findings obtained in this research and gives 

recommendations for future work. 
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Chapter 2  

Land Vehicle Navigation Sensor Overview 

 

Multisensor systems can provide more reliable and accurate navigation solutions by 

integrating redundant or complementary information. The most commonly used 

navigation sensors in land vehicle applications include GPS, INS and magnetic compass. 

GPS can provide good long-term navigation accuracy but is limited by the requirement of 

at least four visible GPS satellites. INS can provide good short-term navigation accuracy 

but the navigation error will grow over time unboundedly. Magnetic compass can offer 

direct and drift-free heading information but is subject to nearby ferrous effects and 

magnetic disturbances. Prior to designing multisensor data fusion algorithms, it is very 

important to understand and analyze each sensor’s features. An overview of GPS, INS 

and magnetic compass in terms of their principles and error characteristics is presented in 

this chapter. 

 

2.1 Overview of Global Positioning System 

GPS is a satellite-based radio navigation system developed by the United States 

Department of Defense (DoD) to provide accurate position, velocity and time (PVT) 

estimates worldwide under all weather conditions. A complete description of GPS can be 

found in Leick (1995), Kaplan (1996), Parkinson and Spilker (1996), Hofmann-

Wellenhof et al. (2001) and Misra and Enge (2001). In the following, we will place our 

focus on an overview of C/A-code based SPP GPS positioning widely used for low-cost 

land vehicle applications. The GPS principles and the error sources of code-based GPS 

positioning are presented first, followed by an introduction of high sensitivity GPS 

technology that has been increasingly applied to GPS applications in challenging 

environments. 
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2.1.1 GPS Principles 

GPS positioning is based on the range from known positions of satellites in space to 

unknown positions on land, at sea, in air and space (Hofmann-Wellenhof et al., 2001). It 

consists of three segments: the Space Segment, the Control Segment, and the User 

Segment. The Space Segment consists of a baseline constellation of 24 satellites 

distributed in six orbital planes inclined at 55 degrees relative to the equatorial plane. The 

Control Segment steers satellite operations and maintains system functionalities. The 

User Segment consists of the GPS receivers and user communities. 

 

Each satellite sends radio signals embracing time-of-arrival (TOA) ranging and satellite 

PVT information for determining user’s PVT information. Each GPS signal comprises 

three components: a radio frequency (RF) carrier, a unique binary pseudo-random noise 

(PRN) code and a binary navigation message. Currently, two L-band frequencies: the 

primary L1 (1575.42 MHz) and secondary L2 (1227.60 MHz) are used to carry GPS 

signals. Two types of PRN code, namely the Coarse/Acquisition code (C/A-code) on L1 

and the Precise code (P-code) on L1 and L2, are used to allow the receiver to determine 

the signal transit time instantaneously. The P-code is encrypted by the Y code for U.S. 

military use only while the C/A-code is available to any user. These PRN codes are 

designed specially to allow all satellites to transmit at the same frequency without 

interfering with each other. Using modulo-2 addition, each code is combined with the 50 

Hz navigation message consisting of data on the satellite health status, ephemeris and 

almanacs. 

 

The GPS receiver receives and converts satellite signals into position, velocity, and time 

information. As previously stated, GPS determines the receiver position based on the 

TOA ranging principle that lies in measuring the propagation time of a radio frequency 

signal broadcast from a GPS satellite with a known position to a receiver. By decoding 

the navigation message, a GPS receiver can obtain the data of the satellite’s position, 

velocity, time and health. By measuring the travel time of the coded signal and 

multiplying it by its velocity, a GPS receiver can derive the user-to-satellite range. By 

measuring the phase of the incoming carrier, the precise range to a satellite can be 
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measured with an ambiguous number of cycles. In both case, since the clocks of the 

receiver and satellite are employed and they are not perfectly synchronized, the 

synchronization error (receiver clock bias) will bias the user-to-satellite range 

measurements, resulting in so called pseudorange measurements. To estimate the three 

coordinates of the user position and the receiver clock bias, pseudorange measurements 

from at least four satellites are needed and the resulting equation to be solved is written as 

follows (Misra and Enge, 2001; Lachapelle, 2002): 

( ) ( )( ) ( )( ) ( )( ) K,...,,kbzzyyxxP kkkk 21
222

=+−+−+−=  (2-1) 

where K  is the total number of satellite used; 

 ( )kP  is the pseudorange measurement of satellite k ; 

 ( ) ( ) ( )( )kkk z,y,x   are the known coordinates of satellite k ; 

 ( )z,y,x   are the user coordinates to be determined; and 

 b  is the receiver clock bias. 

 

The common approach to solve Eq. (2-1) is to linearize it about an approximate user 

position and to solve iteratively using least squares or Kalman filtering algorithms. For 

the determination of the user velocity, the Doppler shift measured routinely in the carrier 

tracking loop of a GPS receiver is used.  The Doppler shift is the frequency difference 

between the received and transmitted signals. By multiplying it by the wavelength of the 

transmitted signal, the range rate as a projection of the relative velocity vector on the 

user-to-satellite vector can be obtained. Given the satellite velocity, the user velocity can 

be estimated based on the measured range rate using the same principle as the position 

estimation from pseudoranges. 

 

The quality of the position or velocity estimates depends basically upon two factors 

(Misra and Enge, 2001): 
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1. The number of satellites being tracked and their spatial distribution characterized by 

the satellite geometry strength. 

2. The quality of the pseudorange or pseudorange rate measurements. 

 

The satellite geometry strength determines how large the position or velocity errors will 

be induced by the user-to-satellite pseudorange or pseudorange rate measurement errors. 

Roughly speaking, if the satellites are clustered in one side of the user due to the 

blockage of a significant part of the sky, the geometry will be bad and as a result the 

pseudorange errors will be significantly magnified in the position domain. The 

relationship between the position accuracy and the range measurement accuracy is given 

as (Seeber, 1993): 

rP σσ ×= DOP   (2-2)  

where Pσ  is the standard deviation of the user position and rσ  is the standard deviation 

of the range measurement. DOP is the Dilution of Precision and several widely used 

DOPs are defined from the satellite geometry matrix G~ . For example, the Geometry 

Dilution of Precision (GDOP) can be defined as follows (Misra and Enge, 2001): 
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~
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where K  is the total number of the observed satellites, and E  and Az  are satellite 

elevation and azimuth angles, respectively. 

 

The quality of the pseudorange and pseudorange rate measurements are affected by a 

variety of biases and errors. The error sources can be grouped into three categories: 
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satellite-related errors, signal propagation errors and receiver-related errors. The satellite- 

related errors include satellite clock and ephemeris errors. The signal propagation errors 

are introduced by interference and the atmospheric propagation effect due to the 

ionosphere, the troposphere and multipath. The receiver-related errors include the noises 

introduced by the antenna, amplifiers, cables and the receiver affecting the precision of a 

measurement. 

 

The code pseudorange measurement to a satellite can be modeled as follows (Misra and 

Enge, 2001; Lachapelle, 2002): 

( ) ptropion dddTdtcdP ερρ +++−++=  (2-5) 

where P  is the pseudorange measurement (m); 

 ρ  is the geometric range between the GPS satellite and receiver antenna (m); 

 ρd  is the satellite orbital error (m); 

 dt  is the satellite clock error (s); 

 dT  is the receiver clock error (s); 

 iond  is the ionospheric delay (m); 

 tropd  is the tropospheric delay (m); 

 pε  is the measurement noise including multipath residual (m); and  

 c  is the speed of electromagnetic wave in vacuum (m/s). 

 

Similar to the pseudorange measurement, the pseudorange rate measurement to a satellite 

can be modeled as follows (Misra and Enge, 2001; Lachapelle, 2002): 

( ) ptropion ddTdtdcdP ερρ &&&&&&&& +++−++=  (2-6) 

where P&  is the phase rate Doppler measurement (m/s); 

 ρ&  is the geometric range rate (m/s); 

 ρ&d  is the satellite orbital drift (m/s); 
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 td&  is the satellite clock drift; 

 Td &  is the receiver clock drift; 

 iond&  is the ionospheric drift (m/s); 

 tropd&  is the tropospheric drift (m/s); and 

 pε&  is the pseudorange rate error induced by receiver noise and multipath (m/s). 

 

Detail of these errors and their characteristics are addressed in the following section. 

 

2.1.2 GPS Errors 

2.1.2.1 Satellite Orbit Errors 

The satellite orbit error occurs due to the fact that the true satellite position is unknown. 

The satellite position is described by the ephemeris parameters estimated by the control 

segment based on the previous motion of the satellite and the knowledge of the Earth’s 

gravity field. There exist errors from both the estimation of the current parameters and 

the prediction of their values for the future. The prediction error grows with the time 

since the last parameters upload. With typical data uploads once a day by the control 

segment, a current estimate of the root-mean-square (RMS) range error due to the 

ephemeris parameters is about 1.5 m (Misra and Enge, 2001). 

 

2.1.2.2 Satellite Clock Errors 

The satellite clock error is due to the instabilities in GPS satellite oscillators. The clock 

bias, drift and drift-rate are monitored with respect to the GPS reference clock maintained 

by the GPS Master Control Station. A prediction model is used to generate the clock 

parameters to be uploaded to the satellites. These parameters are then broadcast to the 

receivers via the navigation message for error correction of the satellite clock. Similar to 

the ephemeris, with typical data uploads once a day by the control segment, a current 

estimate of the RMS range error due to the clock error parameters is about 1.5 m (Misra 

and Enge, 2001). 
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2.1.2.3 Receiver Clock Errors 

This error is the offset between the receiver clock and the GPS reference clock. The clock 

offset changes over time due to the clock drift which is related to the quality of the 

oscillator used in the receiver. As mentioned previously, the receiver clock error is 

usually estimated along with receiver coordinates using at least four pseudorange 

measurements. 

 

2.1.2.4 Ionospheric Errors 

The ionospheric error is due to the presence of free electrons in the atmosphere extending 

from about 50 to 1000 kilometres above the Earth's surface. These free electrons 

influence the propagation of microwave signals as they pass through the layer. The 

presence of free electrons is resulted from the Sun’s radiation and thus ionospheric 

effects change widely between day and night and seasonally according to the solar 

activity. There are also irregular short-term ionospheric scintillation effects due to high 

levels of solar and geomagnetic activities. The ionospheric scintillation will cause a rapid 

variation in the amplitude and/or phase of a GPS signal. The frequency of occurrence of 

such event is low and varies with location and levels of solar activity (Klobuchar, 1996). 

 

The code phase is delayed and the carrier phase is advanced by the same amount while a 

GPS signal propagates through the ionosphere. The magnitude of the ionospheric error is 

a function of the total electron content (TEC) and the signal frequency. Dual-frequency 

GPS users can estimate the ionospheric error and eliminate it from the measurements. For 

single frequency SPP users, the ionospheric error can be compensated by using an 

empirical model (e.g. the Klobuchar model) whose parameter values are broadcast by the 

satellites (Klobuchar, 1996). The broadcast model is estimated to reduce the RMS range 

measurement error due to uncompensated ionospheric error by about 50% and the 

remaining error is about 1~5 m. 
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2.1.2.5 Tropospheric Errors 

The tropospheric error is the result of the refraction of GPS signals by the lower part of 

the Earth’s atmosphere composed of dry gases and water vapor at altitudes up to about 50 

kilometres above the Earth’s surface. Most of the tropospheric delay (about 80-90%) is 

due to the dry atmosphere. The composition of the dry atmosphere varies with latitude, 

altitude and season, and is relatively stable. The water vapor content depends on the local 

weather and can change quickly. 

 

The tropospheric delay due to the dry and wet effects is typically 2.3 m and 1-80 cm at 

the zenith, respectively (Spilker, 1996). As the delay will increase with the tropospheric 

path length, lower elevation satellite signals have a much larger delay by up to a factor of 

ten. In general, the tropospheric delay ranges from 2 to 25 m for any satellite signal. 

Fortunately, the tropospheric delay can be corrected by about 80-90% in a single point 

GPS receiver by using the tropospheric model such as the Hopfield or Saastamoinen 

model (Spilker, 1996). 

 

2.1.2.6 Multipath Errors 

Multipath is the occurrence of a signal reaching an antenna via two or more paths (Misra 

and Enge, 2001). Mostly it occurs due to the reflection and diffraction of satellite signals 

off nearby objects, such as buildings, tree foliage or the ground surface. These reflected 

or diffracted signals will distort the direct signal and result in errors in code range and 

carrier phase measurements. The composite multipath signal can be expressed as 

(Braasch, 1994): 

( ) ( ) ( ) ( ) ( )∑ ++−−=
m

mmm tsintAptsintApts θωδαω 00  (2-7) 

where ( )ts  is the composite signal; 

 A  is the amplitude of the direct signal; 

 ( )tp  is the PRN sequence of the C/A code; 

 0ω  is the frequency of the direct signal; 
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 mα  is the relative power of the multipath signal; 

 mδ  is the delay of the multipath signal with respect to the direct signal; and 

 mθ  is the phase of the multipath signal relative to the direct signal. 

 

In general, the impact of multipath depends on the amplitude, delay and phase of the 

multipath signal with respect to the direct signal. Multipath signals are always delayed 

and usually weaker compared to the direct signals. Depending on the phase of the 

multipath signal, multipath signals can introduce both negative and positive error on the 

pseudorange measurement. The code range and carrier phase measurements are affected 

by multipath in different way. The multipath error on the phase measurement is equal to 

the difference between the composite signal carrier phase and the direct signal carrier 

phase with zero mean in all multipath environment and 754.±  cm at maximum (Ray, 

2000). For the code measurement, multipath affects the code correlation property and in 

turn induces range errors. The multipath signal will delay or advance the correlation peak 

depending on its phase. The magnitude of the multipath error on the code range depends 

on the reflector distance and its strength, the correlator spacing and the receiver 

bandwidth. The maximum multipath error in the C/A-code range using a wide correlator 

is 150± m, which corresponds to 0.5 chip length (Ray, 2000). The code multipath errors 

are usually in the order of 10 m to 100 m depending on environmental conditions. 

 

Modern GPS receivers use multipath mitigation techniques to reduce multipath errors 

based on special receiver and antenna design. One of the most popular technique based 

on receiver design is the Narrow Correlator technique which narrows the spacing of the 

early and late correlators in a noncoherent delay lock loop to lessen the effect of 

multipath (Van Dierendonck et al., 1992). For example, if 0.1 chip correlator spacing is 

used, multipath with relative delays of approximately 1 chip or greater is rejected entirely 

and maximum multipath error is reduced by a factor of 10. As multipath must pass 

through the antenna, multipath errors can be reduced by using an antenna with elevation-

dependent gain pattern which can lower the contributions of reflective signals. For land 

vehicle applications in urban areas, however, the performance of multipath mitigation 

may be limited due to the tracking of echo-only signals especially for high sensitivity 
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GPS receivers. Echo-only signals will induce unbounded pseudorange errors and in turn 

result in large blunders in GPS positions. 

 

2.1.2.7 Receiver Noise 

The receiver noise is typically due to the high frequency thermal noise along with the 

effects of dynamic stresses on the tracking loops (Ward, 1996). It can be considered as a 

white noise as it is uncorrelated and has zero mean over time. The noise level is a 

function of the code correlation method, receiver dynamics and signal strength which 

varies with the satellite elevation angle. The C/A-code receiver noise is generally in the 

order of a few decimetres while the phase noise is in the order of a few millimetres in 

most modern receivers (Misra and Enge, 2001). 

 

2.1.2.8 Error Budget 

GPS errors can be classified as either random error or systematic error according to their 

error characteristics. The satellite orbit and clock errors grow slowly with time since the 

last clock and ephemeris parameters upload; The ionospheric and tropospheric errors, 

corrected with models or not, may persist for tens of minutes or longer (Olynik, 2002). 

These errors are classified as systematic error. As to the multipath error and receiver 

noise, they are random in nature and vary with time and environments and would be 

classified as random error. The error budget of these error sources on pseudorange 

measurements for single-frequency single point positioning in a moderate environment 

after model-based correction of ionospheric and tropospheric errors is presented in Table 

2.1. The combined error, known as the user equivalent range error (UERE), can be 

defined as the root-sum-square of all errors and in this case is about 6 metres. For land 

vehicle applications in various GPS environments, the multipath error may vary from 1 m 

to 100 m. As the satellite-based and atmospheric propagation errors are changing slowly 

and less than 5 m, the multipath error becomes the major error source that determine the 

accuracy of the pseudorange measurement. 
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For the accuracy of the phase rate (Doppler) measurement, the error sources include the 

satellite orbit and clock drifts as well as the changes in the ionospheric and tropospheric 

delays and in multipath. As the satellite-based and atmospheric propagation error drifts 

are small and can be reduced by models based on parameters included in the broadcast 

navigation message, their effects on the Doppler measurement are generally small. As the 

multipath effect on the phase is small, the multipath error in the Doppler shift measured 

routinely in the carrier tracking loop of a GPS receiver is not significant, especially 

compared to the pseudorange multipath error. An estimate of the attainable accuracy of 

the Doppler shift is 0.001 Hz, which corresponds to the phase rate accuracy of 0.3 m/s if 

the Doppler shift is measured in the C/A-code tracking loop (Hofmann-Wellenhof et al., 

2001). In weak GPS signal environments, Doppler accuracy of better than 2 m/s are 

possible but the Doppler measurement may be biased (Petovello et al., 2003). 

 

Table 2.1: Typical pseudorange measurement errors for single-frequency single 
point positioning (Misra and Enge, 2001) 

Error Source RMS Range Error 

Satellite clock and ephemeris parameters m3  

Atmospheric propagation modeling m5  

Receiver noise and multipath m1  

 

2.1.3 High Sensitivity GPS 

The high sensitivity GPS receiver (HSGPS) is the improved version of the conventional 

GPS receiver in terms of the capability of acquiring and tracking weak GPS signals. The 

power of GPS signals degrades during its propagation from the satellite to the Earth. The 

satellite transmitting power is about 13.4 dB-W but the power collected by a typical 

receiver in open-sky conditions is only about –164 dB-W to –156 dB-W. The signal 

power budget is listed in Table 2.2. In signal-degraded conditions, the signal attenuation 

due to propagation through various materials and signal reflection can significantly 

degrade signal power. HSGPS receivers are designed to be able to track weak signals 

with a power level in the range of -188 dB-W to -182 dB-W (Ray, 2002). 
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Table 2.2: Signal power budget (Lachapelle, 2002) 

SV antenna power (dB-W) 13.4  

SV antenna gain 13.4 

Effective isotropic radiated power 26.8 

User antenna gain (hemispherical) 3.0 

Free space loss (L1) -184.4 

Atmospheric attenuation loss -2.0 

Depolarization loss -3.4 

User minimum receiver power (dB-W) -160.0 
 

The ability to acquire and track weak GPS signals depends on the capability of the 

receiver to maximize the coherent integration interval and to minimize residual frequency 

errors during the coherent integration period (MacGougan, 2003). In general, the 

coherent integration interval is limited to 20 ms due to the timing of the navigation 

message signal modulation. Residual frequency error sources include oscillator instability, 

user motion induced Doppler effects and thermal noise. Thermal noise often dominates 

the carrier tracking error and thermal noise jitter can be reduced by increasing the 

coherent integration. Thus, by using long coherent integration periods and further non-

coherent accumulation, weak signal tracking in degraded GPS environments becomes 

possible. In order to use long coherent integration periods, the a priori knowledge of time, 

approximate position and satellite ephemeris is required to enable high sensitivity 

tracking capability. In general, high sensitivity methods are implemented in either aided 

or unaided modes. The aided GPS receiver acquires the a priori information about time, 

approximate position and satellite ephemeris through wireless communication networks. 

The unaided receiver acquires the same assistance data by tracking four or more GPS 

satellites with strong signals during initialization periods. As long as the timing, 

approximate position, and satellite ephemeris are accurate enough, the unaided receiver 

can have the same functional capability as the aided GPS receiver.  

 

With the capability of tracking weak GPS signals, HSGPS is highly beneficial in terms of 

solution availability, but simultaneously is limited by large measurement errors due to the 
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use of the degraded signals such as the attenuated, reflected or echo-only signals. The 

attenuated line-of–sight signals due to propagation through a material will degrade the 

signal strength and in turn increase the associated measurement noise. The long-delayed 

multipath will further cause large errors in pseudorange measurements. When a direct 

GPS signal is blocked and a reflected signal reaches the antenna, the HSGPS receiver 

could still track the echo-only signal. This situation can cause measurement errors greater 

than the maximum multipath error of ± 150 m for wide correlator receivers. In addition, 

as HSGPS receivers are able to function with both low power and nominal power GPS 

signals, it increases the probability of acquiring a false correlation peak due to cross-

correlation signals which subsequently leads to large measurement errors. Thus, in harsh 

GPS environments such as downtown canyons and forests, HSGPS solutions are subject 

to low reliability due to the large measurement errors caused by the increased 

measurement noise, severe multipath, echo-only signal tracking and cross-correlation. 

 

2.2 Overview of Inertial Navigation System 

INS is a dead-reckoning navigation system which determines the attitude, velocity and 

position of a moving body from the knowledge of the previous states and the 

measurements of the motion. Inertial navigation has been widely used for the guidance of 

aircraft, missiles, ships and land vehicles. Since detailed introduction to INS can be found 

in Titterton and Weston (1997), Salychev (1998), Jekeli (2000) and Schwarz and Wei 

(2001), this section will focus on an overview of the INS principles and INS error sources. 

The derivation of navigation states from INS measurements is presented first, followed 

by the analysis of INS error characteristics. Finally, an introduction of MEMS INS that 

has been increasingly applied to personal and vehicular navigation is given. 

 

2.2.1 INS Principles 

INS is a self-contained navigation system which calculates the change in attitude, 

velocity and position of a moving body by performing successive mathematical 

integrations of the measured acceleration and angular velocity with respect to time 
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(Titterton and Weston, 1997). With the knowledge of the initial attitude, velocity and 

position, the trajectory of a moving body with respect to a reference frame can be 

determined. A modern INS (strapdown INS) consisting of three-axis accelerometers and 

three-axis gyroscopes is usually mounted to be coincident with the axis of the moving 

body, referred to as the body frame. The body frame (b-frame) is an orthogonal axis set 

that is aligned with the roll, pitch and yaw axes of the vehicle, i.e., the forward ( x ), 

transverse ( y ) and down ( z ) direction of the vehicle. Accelerometers provide 

measurements of the specific force along its axes. Gyroscopes provide measurements of 

rotation motion of the body with respect to the inertial reference frame and can be used to 

determine the orientation of the accelerometers. Given this information, it is possible to 

resolve the accelerometer measurements into the inertial reference frame and in turn to 

determine the translational motion of the moving body within that frame after the 

integration process takes place. In order to navigate around the Earth, navigation 

information is commonly required in the local level frame (navigation frame). The 

navigation frame is a local geographic frame which has its origin at the location of the 

navigation system and axes aligned with the directions of north ( n ), east ( e ) and down 

( d ) (Titterton and Weston, 1997). Thus, the transformation from the output of INS into 

the attitude, velocity and position information is usually described by the inertial 

navigation and mechanization equations in the navigation frame. The navigation 

equations describe the dynamics of body motion while the mechanization equations are 

used to derive the position, velocity and attitude increments by solving the equations of 

motion. Combined with the initial conditions of the system obtained from INS alignment 

and external sensors, these computed increments can then provide the attitude, velocity 

and position information needed for navigation. 

 

2.2.1.1 Navigation Equations 

The navigation equations in the navigation frame expressed by Cartesian coordinate 

system can be described as follows (Titterton and Weston, 1997; Schwarz and Wei, 

2001): 
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where a dot represents a time derivative and ×  represents a cross product and 

 NP  is the position vector in the navigation frame; 

 NV  is the velocity vector in the navigation frame; 

 N
BR  is the transformation matrix from body frame to navigation frame; 

 BA  is the accelerometer measurement vector in the body frame; 

 N
IEω  is the Earth rotation rate vector expressed in the navigation frame; 

 N
ENω  is the orientation change rate vector of the navigation frame expressed in 

the navigation frame; 

 B
IBΩ  is the skew-symmetric form of the body rotation rate (gyro measurement) 

vector, B
IBω , expressed in the body frame; 

 B
INΩ  is the skew-symmetric form of the rotation rate vector B

INω , which describe 

the combined rate of the Earth rotation and the orientation change of the 

navigation frame expressed in the body frame; and 

 NG  is the gravity vector expressed in the navigation frame. 

 

In the above equations, BA  and B
IBΩ  represents the measured motion of the body; N

IEω , 

N
ENω , B

INΩ  and NG  are the given Earth’s effects which can be computed based on the 

Earth rotation rate and geographic location information; and NP , NV  and N
BR  are the 

navigation information to be solved. The transformation matrix from body frame to 

navigation frame, N
BR , can be expressed by three successive rotations about different 

axes taken in turn as follows (Titterton and Weston, 1997): 
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where the subscripts s  and c  refer to sine and cosine and 

 φ , θ  , ψ  are the roll, pitch and yaw angles which represent the attitude of the 

 moving body; 

 ( )ψzR  is the matrix of rotation through the yaw angle ψ  about the z  axis; 

 ( )φxR   is the matrix of rotation through the roll angle φ  about the x  axis; and 

 ( )θyR   is the matrix of rotation through the pitch angle θ  about the y  axis. 

  

2.2.1.2 Mechanization Equations 

As the navigation equations model the relationship between INS raw measurements and 

the changes of navigation states, in the mechanization process these equations are solved 

to derive the navigation states. The mechanization equations consist of three steps: sensor 

error compensation, attitude computation and velocity and position computation. 

 

1. Sensor error compensation: The INS raw measurements, B
IBω  and BA , are 

corrupted by sensor errors such as bias, noise, and scale factor error. The 

deterministic parts of error can be obtained from laboratory calibrations or estimated 

during the navigation process and in turn removed from the measurements based on 

the error equations presented in Eq. (2-25) and Eq. (2-26). The corrected gyro and 

accelerometer measurement vectors are denoted by B
IBω  and BA , respectively. 

 

2. Attitude computation: Based on the last row of Eq. (2-8), the total angular rate 

vector of the body frame relative to the navigation frame, B
NBω , can be obtained by:  
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The updated transformation matrix can then be obtained by a first order 

approximation as: 

 ( ) ( )( )ttt B
NBk

N
Bk

N
B ∆1 ΩIRR +=+  (2-11) 

where B
NBΩ  is the skew-symmetric form of the angular rate vector B

NBω  and 

kk ttt −= +1∆  is the time increment for the time interval ( )1+kk t,t . 

 

Finally, the attitude information can be derived directly from the transformation 

matrix in the following manner (Titterton and Weston, 1997). 
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where ( ) c,r
N
BR  is the element of the thr  row and the thc  column of the N

BR  matrix. 

 

Practically, the propagation of the transformation matrix is usually computed with 

the quaternion attitude representation to avoid singularity problems (Schwarz and 

Wei, 2001; El-Sheimy, 2003). For land vehicle applications, the singularity is not an 

issue since the pitch and roll angles of a land vehicle of 90 degrees are impossible. 
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3. Velocity and position computation: Based on the updated attitude information, the 

corrected accelerometer measurement vector in the body frame can be rotated to the 

navigation frame through Eq. (2-15) or Eq. (2-16).  

 ( ) B
B
NBk

N
BN tt

f
AΩIRA 





 += ∆

2
1  (2-15) 
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B
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BN tt
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 −= + ∆

2
1
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where 
fNA  denotes the acceleration vector in the navigation frame obtained from 

the accelerometer measurements. 

 

Considering the Earth’s rotation and gravity effects, the total acceleration vector in 

the navigation frame, NA , can then be computed through: 

 ( ) NN
N
EN

N
IENN f

γVωωAA +×+−= 2                                          (2-17) 

where Nγ  is the normal gravity vector which varies with the geodetic latitude and 

ellipsoidal height. It can be computed using a nonlinear model given in such as 

Schwarz and Wei (2001). 

 

The updated velocity can then be computed by directly adding the total acceleration 

as follows: 

 ( ) ( ) ( ) tttt kNkNkN ∆11 ++ += AVV                                          (2-18) 

 

Finally, the updated position vector can be computed by using trapezoidal 

integration as follows: 
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 ( ) ( ) ( ) ( )( )
2
∆

11
ttttt kNkNkNkN ++ ++= VVPP                                          (2-19) 

 

2.2.1.3 Initial Alignment 

As the computation of attitude, velocity and position using mechanization equations is a 

dead-reckoning process, the initial conditions of the vehicle need to be known. Typically, 

the initial velocity and position are given by external sensors such as GPS while the 

initial attitude are obtained through initial alignment procedures including accelerometer 

levelling and gyro compassing. The accelerometer levelling procedure is first performed 

to calculate the initial pitch and roll, followed by the gyro compassing procedure used to 

compute the initial heading (yaw) as described below. 

 

1. Accelerometer levelling: Under static conditions, the accelerometer measurements 

containing gravity field only can be combined with the known gravity information 

to derive the pitch and roll as follows (El-Sheimy, 2003): 

 







= −

g
Asin Bx1θ                                                      (2-20) 

 







−= −

g
A

sin By1φ                                                  (2-21) 

where BxA  and ByA  are the measured acceleration on the x  and y  axes, respectively. 

g  is the down-channel component of the gravity vector in the navigation frame, 

referred to the gravitational constant. 

 

To reduce the accelerometer noise effects, averaging the pitch and roll estimates 

over an interval is usually taken. The accuracy of these estimates is dependent on the 

accelerometer biases. 
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2. Gyro compassing: The principle of gyro compassing is based on the fact that the 

measurements of two orthogonal components of the Earth’s rotation rate in a 

horizontal plane can establish a coarse heading determination mechanization. Under 

static conditions, the gyro measurements are due only to the Earth’s rotation and the 

true values of the x-axis and y-axis angular rates projected on the horizontal plane, 

xBω(  and 
yBω( , can be expressed as follows: 

 ψωω cosLcoseBx
=(                                                  (2-22) 

 ψωω sinLcoseBy
=(                                                  (2-23) 

where eω  is the Earth’s rotation rate and L  is the latitude. 

 

By taking the ratio of the Eq. (2-23) over Eq. (2-22), the heading information can be 

computed as follows: 
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Practically, 
xBω(  and 

yBω(  in Eq. (2-24) are computed by projecting the measured 

angular velocities in the body frame onto the horizontal plane using the pitch and 

roll estimates obtained from the accelerometer levelling. 

 

To reduce the gyro noise effects, averaging the heading estimates over an interval is 

usually taken. The accuracy of heading estimates is proportional to the quality of the 

gyro measurements and the square root of the alignment time (El-Sheimy, 2003). 

For low-cost MEMS INS, however, the Earth’s rotation rate is unobservable from 

the gyro measurement and thus the heading alignment is infeasible. An alternative 

approach to resolve the initial heading information is to use an external heading 
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sensor, such as a magnetic compass or using GPS velocities under dynamic 

conditions for in-flight heading alignment. The performance of the compass heading 

and the GPS-derived heading are discussed in Chapter 5. 

 

2.2.2 INS Errors 

As a dead-reckoning system which determines the current navigation states from the 

knowledge of the previous states and the measurements of the motion, INS is affected by 

three types of errors: initial alignment error, inertial sensor error and computational error. 

These errors are passed from one estimate to the next and result in the overall navigation 

errors drifting with time. Thus, understanding the characteristics of these errors and 

developing methods to compensate them in the navigation computation is essential for 

INS implementation. 

 

2.2.2.1 Initial Alignment Errors 

As previously stated, initial alignment is the process whereby the initial attitude, velocity 

and position of an inertial navigation system are determined based on measurements from 

the inertial sensors and external sensors. Thus, the alignment accuracy is mainly limited 

by the effects of sensor errors. Initial alignment errors cannot be estimated and calibrated 

because they are unobservable. Initial position errors cause constant position biases while 

the initial velocity and attitude errors result in position error drifting with time and the 

square of time, respectively. 

 

2.2.2.2 Inertial Sensor Errors 

Inertial sensors are subject to errors which limit the accuracy of the inertial measurements. 

In general, the accelerometer and gyro measurements about an input axis ( x  axis), BxA  

and Bxω , can be modelled as (Titterton and Weston, 1997):  

BxBzByBxBx ABzAByABxAABxBx wA~MA~MA~SbA~A +++++=                  (2-25) 
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BxBzByBxBx
w~M~M~Sb~

BzByBxBxBx ωωωωω ωωωωω +++++=                  (2-26) 

where ‘~’ denotes the true value of the measurement and 

 
BxAb , 

Bx
bω  are the x-axis accelerometer and gyro biases; 

 
BxAS , 

Bx
Sω  are the x-axis accelerometer and gyro scale factor errors; 

 
ByAM , 

BzAM  are the cross-coupling coefficients for the x-axis accelerometer; 

 
By

Mω , 
Bz

Mω  are the cross-coupling coefficients for the x-axis gyro; and 

 
BxAw , 

Bx
wω  are the x-axis accelerometer and gyro random noises. 

 

The bias and scale factor error are the major error sources for inertial sensors. According 

to IEEE standards (IEEE Std 528-2001), the inertial sensor bias is defined as the average 

over a specified time of the sensor output measured at specified operating conditions that 

are independent of input acceleration or rotation. A scale factor is the ratio of a change in 

output to a change in the input to be measured. Both errors include some or all of the 

following components: fixed terms, temperature induced variations, turn-on to turn-on 

variations and in-run variations (Titterton and Weston, 1997). The fixed component of 

the error is present each time when the sensor is turned on and is predictable. A large 

extent of the temperature induced variations can be corrected with suitable calibration. 

The turn-on errors vary from sensor turn-on to turn-on but remain constant without 

power-off. Therefore, they can be obtained from laboratory calibrations or estimated 

during the navigation process. Sensitive to dynamics changes and vibrations, the in-run 

random errors are unpredictable and vary throughout the periods when the sensor is 

powered on (Farrell, 2005). The in-run random errors therefore cannot be removed from 

measurements using deterministic models and should be modeled by a stochastic process 

such as random walk process or Gaussian Markov process.  

 

The cross-coupling error is the error due to sensor sensitivity to inputs about axes normal 

to an input reference axis (IEEE Std 528-2001). Such error arises through non-

orthogonality of the sensor triad and is usually expressed as parts per million (PPM). For 
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low-cost MEMS INS, the cross-coupling error is relatively small and negligible 

compared to other error sources. 

 

The random noise is an additional signal resulting from the sensor itself or other 

electronic equipments that interfere with the output signals being measured (El-Sheimy 

2003). It is often considered time-uncorrelated with zero mean and modeled by a 

stochastic process. INS noise level can be characterized by the average of the standard 

deviation of static measurements over few seconds (Petovello, 2003).  

 

Of above error sources, the bias has the largest impact on INS navigation performance 

after the mechanization process. The accelerometer bias will result in position error 

drifting with the square of time while the gyro bias will lead to position error drifting 

with the cube of time. 

 

2.2.2.3 Computational Errors 

In attitude computation, the update of the transformation matrix is approximated by using 

the truncated version of the propagation equation in order to produce an algorithm which 

can be implemented in real time. The truncation of the high order term therefore results in 

attitude computation errors. Reducing the update interval can substantially decrease the 

computational errors. This approach is feasible for most applications since high turn rates 

of a vehicle are not normally sustained for long periods. 

 

2.2.3 MEMS INS 

“Micro-Electro-Mechanical System (MEMS) is the integration of mechanical elements, 

sensors, actuators, and electronics on a common silicon substrate through the utilization 

of microfabrication technology.” (Huff, 1999) MEMS technology enables the realization 

of complete systems-on-a-chip and therefore allows the development of low-cost 

microsensors and microactuators. Inertial MEMS development is being driven by the 

high-volume, commercial market for modest performance applications below $10 US 

dollars per axis (Connelly et al., 2000). The largest near-term use of MEMS gyros and 
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accelerometers is in automotive applications such as for seat belt tensioners, air bags, 

anti-skid braking systems and vehicle navigation systems. 

 

A typical MEMS accelerometer uses a silicon mass suspended by a silicon beam to form 

a spring mass damper mechanism whereby capacitive sensing is used to measure the 

motion of the mass. The displacement of the proof mass is proportional to the change of 

capacitance and then capacitance change is being sensed and used to measure the 

amplitude of the force that led to this displacement (Kraft, 1997). The majority of MEMS 

gyros currently under development operates in a vibratory mode and measures the 

angular rate based on the coupling of mechanical energy between a vibrating motor 

element and a sensor element through Coriolis acceleration (Tung, 2000). The vibrating 

motor controls the sensing element to oscillate in plane with constant amplitude. When an 

angular rate is applied about the input axis, the sensing element will experience a Coriolis 

acceleration that forces the masses to translate in and out of the plane of oscillation. This 

resultant out-of-plane motion is measured via the capacitive pick-off, thus providing a 

signal proportional to the rate input. 

 

Both MEMS accelerometers and gyros can be fabricated by using either surface or bulk 

micromachining. Surface micromachined sensors using a thinner and smaller mass of the 

sensing element have smaller size and lower cost than the bulk micromachined sensors. 

But the bulk micromachined sensors can provide higher accuracy due to the use of large 

proof mass. Larger sensors can provide higher performance by increased sensitivity, 

reduced distortion, and improved relative control of device geometry (Connelly et al., 

2000). As fabricated with small size and low cost, MEMS inertial sensors have relatively 

large measurement errors and instabilities compared to the tactical-grade INS. Due to the 

high level of the MEMS INS instrument error and noise, some input signals such as the 

Earth’s rotation rate and INS error terms such as the initial alignment error and 

computational error are relatively small and negligible. Given the low measurement 

quality in MEMS inertial sensors, completely estimating the deterministic errors and 

accurately modelling the random errors are difficult and often infeasible. As a result, 

MEMS INS has poor stand-alone accuracy and is not applicable as a sole navigation 
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system. Integration of MEMS INS with GPS demands the development of non-traditional 

approaches and algorithms (Salychev et al., 2000). 

 

2.3 Overview of Magnetic Compass 

Thanks to the Earth’s magnetic field, the magnetic compass has been used to determine 

heading direction for centuries. Advances in technology have enabled the development of 

the electronic compasses which offer many advantages over conventional needle type 

compasses in terms of vibration resistance, error compensation and direct interface to 

other navigation systems. Today, the electronic compasses have been widely integrated 

with modern navigation systems such as GPS and INS to provide direct heading 

information (Ladetto et al., 2001; Langley, 2003; Wang and Gao 2003b). This section 

will describe the operational principle of an electronic compass, how the measured 

magnetic fields are converted into useful heading information. The error sources and their 

characteristics are also presented. 

 

2.3.1 Compass Principles 

The principle of magnetic compassing is based on the measurement of the Earth’s 

magnetic field. Generated by the core of the Earth, the Earth’s magnetic field flows out of 

the magnetic South Pole and back in through the magnetic North Pole. The Earth’s 

magnetic field therefore has a component parallel to the Earth surface that always points 

toward the magnetic North. By resolving this component, the direction of the magnetic 

sensor with respect to the magnetic North can be determined. An electronic compass 

typically uses the magnetoresistive (MR) magnetometer to measure magnetic fields. This 

sensor is composed of thin strips of permalloy whose electrical resistance varies with 

applied magnetic field changes (Caruso, 1997). Recent MR magnetometers offer 

sensitivities less than 0.1 milligauss and have a response time below 1 microsecond. 

 

In practical application, the moving vehicle or platform to which the electronic compass 

is attached are most often not confined to the Earth’s surface. It is essential to use three-
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axis magnetometers mounted orthogonally in an electronic compass so that the Earth’s 

magnetic field can be fully rotated back to a horizontal orientation. Figure 2.1 describes 

this configuration and the coordinate systems. The magnetic compass is aligned with the 

body frame consisting of three orthogonal axes where x  is in the direction of forward 

motion of the vehicle, z  is in the down direction to the road surface, and y  is in the 

direction of transverse motion of the vehicle, perpendicular to the plane formed by x  and 

z  axes. The attitude of the vehicle is represented by three Euler angles, roll (φ ), pitch 

(θ ) and yaw (heading) (ψ ), which are the rotation angles about x , y  and z  axes, 

respectively. With the knowledge of tilt (pitch and roll) angles, the measured magnetic 

field vector can be projected on a horizontal plane parallel to the Earth’s surface in the 

following manner (Caruso, 1997). 
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where xM , yM  and zM are the magnetometer measurements of the body frame, 
HxM  

and 
HyM  are the magnetometer measurements of the body frame projected on the 

horizontal plane formed by Hx  and Hy  axes. 

 

The angle α  between the forward axis of the vehicle and the magnetic North can be 

calculated by resolving the horizontal component of the magnetometer measurements as 

follows (Caruso, 1997): 
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Finally, by adding or subtracting a proper declination angle δ  to correct for true North, 

the vehicle heading ψ  can be determined. The declination angle can differ by 25±  

degrees or more and can be determined from a lookup table based on the geographic 

location. It should be noticed that the declination angle will change secularly according to 

the variations of the Earth’s geomagnetic field (Whitcomb 1989). 
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Figure 2.1: Heading determination using a triad of magnetometers 

 

2.3.2 Compass Errors 

As the compass heading determination involves the transformation of magnetic 

measurements from the sensor triad to the horizontal plane, the error sources of the 

compass heading include transformation errors, magnetic measurement errors and 

misalignment errors which are described in the following.  

 

2.3.2.1 Transformation Errors 

The transformation error is due to the use of inaccurate tilt information while projecting 

the three-axis magnetometer measurements on the horizontal plane. This error is 

dependent on the performance of the tilt sensor such as inclinometers or INS and is 

usually unpredictable. Thus, this error cannot be accounted for and removed from the 

compass heading and is considered as non-Gaussian random error. 
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2.3.2.2 Magnetic Measurement Errors 

The magnetic measurement error is resulted from the distortion of the Earth’s magnetic 

field by nearby ferrous effects, sensor noise and magnetic interferences. In practical 

application, compasses are mounted in vehicles and platforms that most likely have 

ferrous materials nearby. These nearby ferrous materials will generate permanent 

magnetic fields (hard irons) or varying magnetic fields (soft irons) to distort the Earth’s 

magnetic field. Hard irons add a constant magnitude field component (bias) along each 

axis of the sensor output and result in a shift in the origin of the 2-D magnetic field locus 

(Caruso, 2000). Soft irons affect the magnetometer output with a varying amount 

depending on the compass orientation. The varying bias effects will distort the shape of 

the 2-D magnetic field locus from a circle into an ellipse. Hard and soft iron distortions 

are the major error sources for magnetic compassing and compensating for these effects 

is essential to application. They can be modeled as bias and scale factor error in 

magnetometer measurements (Caruso, 1997; Langley, 2003). 

 

On the other hand, sensor noise and magnetic interferences are random in nature and 

cannot be modeled systematically. Noise is typically assumed to be a zero-mean 

Gaussian process and can be eliminated with a low pass filter.  Magnetic interferences 

generated by such as electronic devices, however, are unpredictable and could bias the 

magnetometer output significantly. Errors introduced by magnetic interferences usually 

change with time and environments according to the activities of the interference sources. 

Such errors are generally considered as blunders which will corrupt the measurement 

statistics and therefore compensating for hard and iron effects in interference-rich 

environments such as land vehicle environments becomes a challenge. 

  

2.3.2.3 Misalignment Errors 

These errors are introduced by two types of misalignments: non-orthogonality of the 

sensor triad and imperfect alignment between the sensor triad and the body axis of the 

vehicle or platform. Both misalignments will cause cross coupling of the magnetometer 

measurements leading to compass heading error. Misalignment errors can be minimized 
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by calibration of the sensor triad in manufacture and careful installation of the sensor in 

application. Compared to other errors, misalignment errors are relatively small and 

usually ignored. 
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Chapter 3  

Data Fusion and Processing Methodologies 

 

Sensors’ measurements or data need to be properly interpreted, processed and fused in 

order to generate refined navigation information. The model-based Kalman filter and the 

model-free artificial intelligence (AI) methods are two different data processing and data 

fusion techniques. The Kalman filter offers a powerful method for linear data fusion and 

estimation that are optimal in the statistical sense if the system models are known. AI 

methods including fuzzy logic and neural networks provide a nonlinear mechanism for 

high-level inference, data classification, and functional mapping. This dissertation applies 

the Kalman filter for MEMS INS/GPS integration and the AI techniques for data quality 

assessment, navigation error compensation, sensor error modelling, and fusion scheme 

optimization to enhance the performance of the Kalman filter-based data fusion. This 

chapter will present the fundamentals of these algorithms. 

 

3.1 Kalman Filter 

The Kalman filter is a linear recursive data processing algorithm that processes all 

available measurements, regardless of their precision, to estimate the current value of the 

variables of interest, with use of (1) knowledge of the system and measurement device 

dynamics, (2) the statistical description of the system noises, measurement errors, and 

uncertainty in the dynamics models, and (3) available information about initial conditions 

of the variables of interest (Maybeck, 1979). If the input data fits the predefined linear 

dynamics and statistical models and prior knowledge is known, the Kalman filter can 

provide an optimal, in a minimum variance sense, estimate of the state vector (Gelb, 

1974). Accordingly, the Kalman filter has become the most common technique for 

estimating the state of a linear system particularly in navigation systems. Since the 

estimation process is implemented on a computer, the discrete form of the Kalman filter 
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is generally used. The following sections will describe the algorithm of the conventional 

and adaptive Kalman filter as well as the implementation strategies of INS/GPS 

integration using the Kalman filter. 

 

3.1.1 Discrete Kalman Filter 

Consider the random process to be estimated can be modeled by the following linear 

dynamics model with a series of differential equations.  

GuFxx +=&  (3-1) 

where x  is the vector of state variables; 

 F  is a dynamics matrix; 

 G  is a type of shaping filter; and 

u  is a vector forcing function whose elements are white noise. 

 

The discrete time form of Eq. (3-1) can be obtained from the state-space solution of the 

above differential equation which can be written as (Brown and Hwang, 1992): 

( ) ( ) ( ) ( ) ( ) ( )∫ +
+++ += 1

11
k

k

t
t kkkk1k d,ttt,tt ττττ uGΦxΦx  (3-2) 

or in the form of  

kkk1k wxΦx +=+  (3-3) 

where 1k+x , kx  are the process state vectors at time 1kt +  and kt , respectively; 

 kw  is the driven response at 1kt +  due to the white noise input of the 

forcing function during the ( )1kk t,t +  interval; and 

 kΦ  is a transition matrix relating kx  to 1k+x .  

 



 

43 

Based on the assumption that the input noise in the continuous model is white, kw  will 

be a white sequence in the discrete model with zero mean and time-uncorrelated property 

as follows: 

[ ] 0=kE w      (3-4) 
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where [ ]•E  is the mathematical expectation. 

 

The process noise covariance matrix kQ  associated with kw  can be written as (Brown 

and Hwang, 1992): 
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Since the noise sequence u  is white, the covariance calculation can be reduced to the 

form of (Gelb, 1974) 

( ) ( ) ( ) ( ) ( )∫ +
++= 1

11
k

k

t
t kkk d,t,t ττττττ ΦGQGΦQ                                (3-7) 

where ( ) ( ) ( )[ ]ttEt TuuQ =  is the spectral density matrix for the forcing function input. 
 

The transition matrix is calculated using the inverse Laplace transform as follows 

(Gelb,1974): 

( )[ ]1-1 −= F-IΦ sk L  (3-8) 
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where -1L  represents the inverse Laplace transform and s  is the Laplace transform 

parameter. If F  can be assumed constant over the t∆  interval of interest, the transition 

matrix is simply the matrix exponential of t∆F , that is,  

( )
⋅⋅⋅+++==

2!
∆∆

2
∆ tte t

k
FFIΦ F  (3-9) 

 

Consider the observation (measurement) of the process that has a linear relationship with 

the system state vector 

kkkk vxHz +=   (3-10) 

where kz  is a measurement vector at time kt ; 

kH  is a design matrix giving the noiseless connection between the measurement 

and the state vector at time kt ; and 

 kv  is a measurement noise vector. 

 

The measurement noise is assumed to be a white sequence with zero mean and time-

uncorrelated property and uncorrelated with process noise. 

[ ] 0=kE v      (3-11) 
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[ ] iandk,E T
ik allfor0=vw   (3-13) 

where [ ]T
kkk E vvR =  is the measurement noise covariance matrix. 
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To derive an optimal estimate of the process state, the Kalman filter uses a linear 

blending of the measurement and the prior estimate in accordance with the equation: 

( )−− −+= kkkkkk ˆˆˆ xHzKxx  (3-14) 

where kx̂  is the update estimate, −
kx̂  is the prior estimate, and kK  is the optimal Kalman 

gain matrix that is determined by minimizing the mean-square estimation error. 

( )( )[ ]( ) minˆˆtrace T
kkkk ≡−− xxxxE  (3-15) 

 

Details of the derivation of kK  are available in Kalman (1960), Gelb (1974), or Brown 

and Hwang (1992). The summary of the discrete Kalman filter algorithm is shown in 

Figure 3.1. 
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Figure 3.1: Discrete Kalman filter algorithm 
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3.1.2 Innovation-Based Adaptive Kalman Filter 

As stated previously, the Kalman filter relies on complete a priori knowledge of the 

process and measurement noise statistics. In most practical situations, these statistics 

have time varying characteristics and are not exactly known. The use of wrong a priori 

statistics in the designed Kalman filter can lead to large estimation errors or even 

divergence of the filter. Several adaptive Kalman filter algorithms have been proposed in 

literatures to reduce these errors by adapting the stochastic properties of the filter online 

to the real data (Magill, 1965; Mehra, 1970; Mehra, 1972). The innovation-based 

adaptive estimation approach has been found more suitable for INS/GPS integration 

systems (Salychev, 1998; Mohamed and Schwarz, 1999). 

 

The principle of the innovation-based adaptive Kalman filter is to make the filter 

residuals (innovation sequences) consistent with their theoretical covariances (Mehra, 

1972). The innovation sequence kν  at epoch k  is defined as the difference between the 

actual measurement kz  and the predicted measurement −
kk x̂H , namely:  

−−= kkkk x̂Hzν               (3-16) 

 

Under the assumed conditions specified in Eq. (3-5), (3-12), and (3-13), the innovation 

sequence is a Gaussian white noise sequence with known covariance matrix, namely: 

[ ] 0=kE ν      (3-17) 
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where kC  is the theoretical covariance matrix of the innovation sequence. 

 

When both of the process and measurement noise covariances are unknown, −
kP  and 1−kP  

do not necessarily represent the actual error covariances and thus the estimation process 
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may not converge (Mehra, 1972). The case in which the process noise covariance is 

assumed known and the measurement noise covariance is estimated by the above method 

can be handled more successfully (Mehra, 1972). For INS/GPS integration under signal 

degradation conditions, a priori knowledge of the measurement errors from GPS is much 

difficult to obtain and should be online estimated. In processing the real observations, the 

actual covariance matrix of the innovation sequence kĈ  can be estimated by its sample 

covariance, namely: 

∑
+−=

=
k

Nki

T
iik N

ˆ
1

1 ννC      (3-19) 

where N  is an empirically chosen window size for the purpose of statistical smoothing. 

 

An adaptive measurement noise covariance kR̂  can be estimated by substituting the 

actual covariance matrix of the innovation sequence into Eq. (3-18) as follows: 

T
kkk
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Nki
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1

1   (3-20) 

 

The innovation-based adaptive Kalman filter based on Eq. (3-19) and Eq. (3-20) is more 

suitable for INS/GPS integration in land vehicle applications. It should be noted that a 

negative definite kR̂  could be obtained at the beginning of estimation due to small 

sample data available in the estimation of kĈ ; therefore, the following normalization 

procedure should be considered (Salychev, 1998): 

 

( ) 0=k
ˆdiag R , if ( ) 0<k

ˆdiag R . 
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3.1.3 INS/GPS Integration Using Kalman Filter 

The Kalman filtering methodology has been extensively applied for optimal fusion of 

data from GPS and INS and the bridging of GPS outages. The most commonly used 

integration scheme in literatures is loosely and tightly coupled integration strategy (Wei 

and Schwarz, 1990; Salychev, 1998; Scherzinger, 2000 and Petovello, 2003). The loosely 

coupled integration algorithm usually applies two decentralized Kalman filter in a 

cascaded scheme. As shown in Figure 3.2, the INS and the GPS receiver operate as 

independent systems and process data parallelly. INS raw measurements (acceleration 

and angular velocity) are processed in the INS mechanization to derive INS attitude, 

velocity and position. GPS raw observations (code, Doppler and phase) are processed in 

the GPS Kalman filter to derive GPS velocity and position. The INS Kalman filter 

utilizes the differences between the INS and GPS velocities and positions as the 

measurements and the INS error equations as the system model. When GPS is available, 

the INS Kalman filter estimates all observable INS sensor and navigation errors to 

compensate system outputs. When GPS is unavailable, INS sensor and navigation errors 

will be predicted based on the system model. (Salychev, 1998) 
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Corrected Attitude
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Figure 3.2: Loosely coupled INS/GPS integration algorithm 

 

In the tightly coupled integration scheme a centralized Kalman filter is applied to process 

INS data and GPS raw measurements together as shown in Figure 3.3. Similarly to the 

loosely coupled integration algorithm, the INS navigation states are first derived from the 

INS raw measurements based on the INS mechanization. Then, in the INS/GPS Kalman 
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filter the INS sensor and navigation errors as well as GPS range and range rate errors are 

estimated using the pseudoranges and delta ranges calculated by the INS and measured 

by a GPS receiver as the system measurements. The estimated INS errors will be applied 

to correct the INS navigation states.  

 

According to whether the estimated sensor errors are fed back to correct the 

measurements, both loosely and tightly coupled integration algorithm can be 

implemented with an open loop or closed loop. The closed-loop implementation, which 

generally enhances the navigation performance because the previous estimation results 

are used to minimize the approximation error due to system model linearization, are 

mostly applied in INS/GPS integration systems (Skaloud, 1999 and El-Sheimy, 2003). 
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Figure 3.3: Tightly coupled INS/GPS integration algorithm 

 

The loosely coupled integration system has both advantages and disadvantages compared 

to the tightly coupled one. In the aspect of system implementation, the loosely coupled 

integration system has higher flexibility and modularity as well as less computation and 

complexity due to the independent operation and the smaller dimensions of the individual 

Kalman filter. In the aspect of system accuracy, the tightly coupled integration system 

provides globally optimal estimation accuracy because all the states for the entire system 

are defined in one global state vector with a corresponding global description of the 

process noise. However, the accuracy does not deteriorate much when a sub-optimal 

cascaded loosely coupled integration system with a proper assessment of GPS filter 

outputs is used (Wei and Schwarz, 1990). In terms of system availability, the loosely 
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coupled integration system requires at least four GPS satellites to provide GPS updates 

for INS corrections while the tightly coupled method can still work with as few as one 

GPS satellite. For system robustness, the loosely coupled integration system has higher 

fault detection performance than the tightly coupled one because the independent filter 

solutions are available from two separate filters (Gao et al., 1993). 

For land vehicle applications, GPS is frequently operating in signal-degraded 

environments (e.g. urban canyons, forests) in which GPS measurements deteriorate 

significantly due to multipath and echo-only signals and become erroneous and unreliable. 

The integration system, therefore, should have better fault-tolerance and blunder isolation 

capability. Due to the cost and operation concerns, the integration system should be 

easily implemented with low complexity and high flexibility so that different types of 

INS and GPS can be used. In addition, with the increasing use of HSGPS, the availability 

of GPS solutions in challenging environments can be significantly improved. Thus, the 

loosely coupled closed-loop integration scheme is considered as a more suitable approach 

for low-cost INS/GPS integration in land vehicle applications and has been applied in this 

dissertation.  

 

3.2 Fuzzy Logic 

The concept of fuzzy logic was first conceived by Zadeh (1965). As the complexity of a 

system increases, it becomes more difficult to make a precise statement about its behavior 

and fuzzy logic provides a framework to deal with such problems naturally (Zadeh, 1965). 

Resembling human decision making by using if-then rules and handling ambiguous and 

imprecise information by using fuzzy set theory, fuzzy logic provides a successful way of 

dealing with complex systems. Fuzzy logic has found successful applications in decision 

making, data classification, pattern recognition, automatic control and etc. (Tanaka, 

Okuda, and Asai, 1976; Bezdek, Ehrlich and Full, 1984; Pal and King, 1981). In this 

dissertation, the fuzzy logic has been applied for GPS data classification and vehicle 

dynamics identification where human reasoning and ambiguous data are inextricably 

involved. This section describes the fundamentals of fuzzy logic and fuzzy inference 

system while its applications to INS/GPS integration are to be described in Chapter 4. 
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3.2.1 Fundamentals of Fuzzy Logic 

3.2.1.1 Fuzzy Sets and Membership Functions 

A fuzzy set is a set without a crisp boundary but a gradual transition form characterized 

by membership functions. Such a set provides a natural way to deal with problems in 

which the source of imprecision is the absence of sharply defined criteria of class 

membership rather than the presence of random variables (Zadeh, 1965). A fuzzy set A  

in X  is defined as follows: 

( )( ){ }Xx|x,xA A ∈= µ  (3-21) 

where ( )xAµ  is called the membership function for the fuzzy set A . The membership 

function maps the each element of X  to a membership degree between 0 and 1. It is 

usually expressed by a linguistic term such as “the velocity is high” to embody the 

fuzziness for a particular fuzzy set.  

 

A membership function can be featured by the terms of core, support and boundaries as 

shown in Figure 3.4. The core of a membership function for a fuzzy set A  is defined as 

the region of the universe with full membership in the set. The support of a membership 

function for a fuzzy set A  is defined as the region of the universe with nonzero 

membership in the set. The boundaries comprise the elements of universe such that 

( ) 10 << xAµ . These elements define the shape of membership function and the fuzziness 

of the set. Many strategies such as intuitive, algorithmic and logical approaches can be 

used to assign membership functions for fuzzy variables. The design of membership 

functions can be simply derived from human knowledge or common sense reasoning or 

more sophisticated techniques, e.g., neural networks (Jang, 1993) or genetic algorithms 

(Karr and Gentry, 1993). 

 

It should be noted that the fuzziness dealt with by fuzzy set theory are totally different 

from the randomness dealt with by probability theory. The fuzziness represents the 
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ambiguity of an event, whereas randomness represents the uncertainty in the occurrence 

of the event (Ross, 1995). 
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Figure 3.4: Features of the membership function 

 

3.2.1.2 Logical Operations and If-Then Rules 

After handling the ambiguous input data using fuzzy set theory, a fuzzy process performs 

logical operations on a formulation of if-then rules to derive fuzzy outputs.  The standard 

Boolean logic, AND, OR and NOT, are the most basic operations used on classical sets. 

The input and output of these operations are crisp values, either 0 or 1. In fuzzy logic, 

however, the input values representing the degree of membership could be a real number 

between 0 and 1. Thus, the standard Boolean logic operations should be modified to 

equivalent functions for fuzzy set operations. One of the most popular ways is to use the 

min-max operation. The AND operation of two fuzzy sets A  and B  is a fuzzy set 

BAC ∩= , whose membership function is defined as ( ) ( ) ( )( )x,xminx BAC µµµ = . The OR 

operation of two fuzzy sets A  and B  is a fuzzy set BAD ∪= , whose membership 

function is defined as ( ) ( ) ( )( )x,xmaxx BAD µµµ = . The NOT operation of a fuzzy set A  is 

denoted by A , whose membership function is defined as ( ) ( )xx AA µµ −=1 . Many other 

fuzzy set operations such as max-product, max-max or min-min have been mentioned in 

literatures. Each of them has its own significance and applications. The min-max 
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operation is the one initially defined by Zadeh in his original paper and has found 

effective expression of the approximate reasoning using natural language if-then rules. 

Thus, this research uses the min-max approach for fuzzy logic operations. 

 

The if-then rule is a type of nature language expressions to represent human knowledge. 

The if-then rule formulates human knowledge into a conditional statement that comprises 

fuzzy logic as follows: 

( ) ( )conclusionisthenpremiseisIf ByAx  (3-22) 

where A  and B  are linguistic values defined by fuzzy sets on the ranges (universes of 

discourse) X  and Y , respectively. 

 

The if-then rule typically expresses an inference such that if we know the premise, then 

we can derive another fact called a conclusion. The premise of a rule can have multiple 

parts connected using logical operators such as AND, OR and NOT. All parts of the 

premise are calculated simultaneously and resolved to a single number using the 

corresponding fuzzy logic operations. The conclusion of a rule can also have multiple 

parts in which all conclusions are affected equally by the result of the premise. 

 

In most applications, fuzzy reasoning involves more than one rule. To obtain the overall 

conclusion from the individual consequents contributed by each rule, the process of 

aggregation of rules is required. In general, two simple aggregation strategies, 

conjunction of rules and disjunction of rules, are used in literatures (Vadiee, 1993). For 

the case where the rules must be jointly satisfied, the rules are connected by “and” 

connectives and the aggregated output is formed by the fuzzy intersection of all 

individual rule conclusions. In this case the membership function of the aggregated 

output, ( )yyµ , is defined as: 

( ) ( ) ( ) ( )( ) Yyy,...,y,yminy ryyyy ∈= for21 µµµµ  (3-23) 



 

54 

where  ( ) ( ) ( )y,...,y,y ryyy µµµ 21  are the membership functions of the individual rule 

conclusions. 

 

For the case where the satisfaction of at least one rule is required, the rules are connected 

by “or” connectives and the aggregated output is formed by the fuzzy union of all 

individual rule conclusions. In this case the membership function of the aggregated 

output, ( )yyµ , is defined as: 

( ) ( ) ( ) ( )( ) Yyy,...,y,ymaxy ryyyy ∈= for21 µµµµ  (3-24) 

 

3.2.1.3 Defuzzification 

After the approximate reasoning using if-then rules, a fuzzy process outputs a fuzzy set 

defined on the universe of discourse of the output variable. In many applications where 

the output of a fuzzy process needs to be a single scalar quantity, the defuzzification is 

required to convert a fuzzy quantity into a precise quantity. Hellendoorn and Thomas 

(1993) have investigated several popular methods for defuzzification such as max-

membership principle, centroid method, weighted average method, centre of sums and etc. 

This research applies the centroid method for the defuzzification process, as it is the most 

prevalent and widely adopted defuzzification method. The centroid method is given by 

the following algebraic expression. 

( )
( )∫

∫=
dyy

ydyy
y

y

y*

µ

µ
 (3-25) 

where *y  is the defuzzified scalar quantity; and ( )yyµ  is the membership function of the 

aggregated output. 
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3.2.2 Fuzzy Inference System 

The fuzzy inference system is a computing framework for formulating the mapping from 

a given input to an output based on the concept described in the previous section: fuzzy 

set theory, fuzzy logic operators, if-then rules, and defuzzification. A block diagram of a 

fuzzy inference system is shown in Figure 3.5. In a typical fuzzy inference system the 

crisp inputs are first converted to the input fuzzy sets using the membership functions. 

Then the input fuzzy sets are mapped into a consequent fuzzy set based on the adopted 

fuzzy logic operators, if-then rules and aggregation strategy. Finally, the consequent 

fuzzy set is converted into a scalar quantity as the system output using a defuzzification 

method. 

…

Fuzzification

If-Then Rule If-Then Rule

Defuzzification

Aggregation

…
…

crisp input

crisp output

fuzzy input

fuzzy output

 
Figure 3.5: Block diagram of the fuzzy inference system 

 

According to the implemented fuzzy implication operations, rules and their aggregation 

and defuzzification procedures, different types of fuzzy inference systems, such as  

Mamdani, Sugeno and Tsukamoto, have been employed in various applications (Jang, 

Sun and Mizutani, 1997). Mamdani’s fuzzy inference method that is the most commonly 

seen fuzzy methodology has been applied in this research. The Mamdani’s fuzzy 

inference basically uses the max-min fuzzy logic operator to obtain the consequent 
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membership functions for each rule. Figure 3.6 illustrates the graphical analysis of the 

Mamdani’s fuzzy inference with the conjunctive aggregation strategy for the two if-then 

rules shown in Table 3.1. In Figure 3.6 and Table 3.1, the symbols 11A  and 12A  refer to 

the first and second fuzzy antecedents of the first rule, respectively, and the symbol 1B  

refers to the fuzzy consequent of the first rule; the symbols 21A  and 22A  refer to the first 

and second fuzzy antecedents of the second rule, respectively, and the symbol 2B  refers 

to the fuzzy consequent of the second rule. The minimum function illustrated in Figure 

3.6 arises because the antecedent pairs of the given if-then rules shown in Table 3.1 are 

connected by a logical AND connective. The minimum membership value for the 

antecedent propagates through to the consequent and the truncated membership function 

for the consequent of each rule is obtained. Based on the disjunctive aggregation strategy 

the maximum operation of the truncated membership functions for each rule is performed 

to generate an aggregated membership function. In summary, the aggregated output *
Bµ  

can be given by the following equation. 

( ) ( )( ) ( ) ( )( )( )*
A

*
A

*
A

*
A

*
B x,xmin,x,xminmax 2121 22211211

µµµµµ =  (3-26) 

where *x1  and *x2  are the input values for input variables 1x  and 2x , respectively. 

 

Finally, a crisp value *y  for the aggregated output can be calculated using an appropriate 

defuzzification method.  
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Figure 3.6: Graphical Mamdani (max-min) inference method 
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Table 3.1: Two if-then rules 

Rule #1: If 1x  is 11A  and 2x  is 12A  then y  is 1B  

Rule #2: If 1x  is 21A  and 2x  is 22A  then y  is 2B  

 

3.3 Neural Networks 

A neural network is a machine designed to mimic human brain mechanisms to simulate 

intelligent behavior. It resembles the brain in two respects: knowledge is acquired by the 

network from its environment through a learning process; interneuron connection 

strengths, known as synaptic weights, are used to store the acquired knowledge 

(Aleksander and Morton, 1990). With massively parallel distributed structures and 

learning and generalization abilities, a neural network is a powerful information 

processor for solving complex problems that are difficult for conventional model-based 

approaches. Neural networks have been successfully applied in various fields of 

application including pattern recognition, nonlinear functional mapping, classification, 

speech, vision and control systems (Mendel and McLaren, 1970; Barto et al., 1983). In 

this dissertation neural networks have been applied for a nonlinear input-output mapping 

between the compass heading and the true heading and sequentially used for compass 

calibration. This section describes the fundamentals of neural networks and the multilayer 

feedforward neural networks that are used for the input-output mapping. 

 

3.3.1 Fundamentals of Neural Networks 

3.3.1.1 Models of A Neuron 

A neuron is an information-processing unit for basic operations of a neural network. 

Shown in Figure 3.7 is the model of a neuron which contains three basic elements 

(Haykin, 1999): 

 

1. Synapses: Each of synapses characterized by a weight of its own is used for 

weighting the input signal. A signal ix  at the input of synapse i  connected to neuron 
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j  is multiplied by the synaptic weight jiw . The synaptic weight could be a positive 

or negative value. 

 

2. An adder: It is used for summing the weighted input signals as a linear combiner. As 

shown in Figure 3.7, the neuronal model also includes an externally applied bias, 

denoted by jb . The bias is used to increase or lower the input of the activation 

function. Accounting for the bias effect by adding a new synapse with input as 

10 =x  and weight as jj bw =0 , we can formulate the adder operation as the following 

equation. 

 i

m

i
jij xwv ∑

=
=

0
 (3-27) 

where m  indicates the total number of input signal and jv  is the aggregation of the 

weighted inputs for neuron j , also called the local field.  

 

3. An activation function: The activation function performs a transformation to limit 

the permissible amplitude range of the output signal to some finite value. Typically, 

the normalized amplitude of the output of a neuron is in the range of [ ]10,  (binary) or 

[ ]11,−  (bipolar). The transformation is expressed by the following equation. 

 ( )jj vy ϕ=  (3-28) 

where jy  is the output of the neuron j . 

 

The activation function can be linear or nonlinear. Different types of activation 

functions, such as threshold function, piecewise-linear function and sigmoid 

function, can be used according to applications. In general, nonlinear activation 

function is recommended to enhance the network capability of function 

approximation and noise-immunity (Ham and Kostanic, 2001). 
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1x 1jw
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2x

mx

∑
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jv

( )⋅ϕ( )⋅ϕ……

bias
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weight

output

activation 
function

adder

input signals
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Figure 3.7: Nonlinear model of a neuron 
 

In summary, the input-output relationship of a neuron can be described as follows: 









= ∑

=
i

m

i
jij xwy

0
ϕ  (3-29) 

 

3.3.1.2 Network Architecture 

To comprise neural networks, neurons are organized in the form of layers with inter-layer 

or/and intra-layer connections. According to the manner in which the neurons of a neural 

network are structured, three fundamentally different network architectures can be 

classified (Haykin, 1999): 

 

1. Single-Layer Feedforward Networks (SFNs): SFNs have an input layer and an 

output layer without intra-layer connection as shown in Figure 3.8. The nodes in the 

input layer accept the input signals and distribute them to the neurons in the output 

layer where the information processing shown in Figure 3.7 is performed. 
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input layer output layer

source node

neuron

 
Figure 3.8: Single-layer feedforward networks 

 

2. Multi-Layer Feedforward Networks (MFNs): In contrast to SFNs, MFNs have one 

or more hidden layers besides an input layer and an output layer. The function of 

neurons in the hidden layers is to intervene between the external input and the 

network output to enable the network to extract higher-order statistics. Shown in 

Figure 3.9 are the fully connected feedforward MFNs as every node in each layer of 

the network is connected to every other node in the adjacent forward layer. The 

network is called partially connected if some of the links are missing from the 

network. 

 

input layer hidden layer output layer

source node

neuron

 
Figure 3.9: Multi-layer feedforward networks 

 

3. Recurrent Networks (RNs): RNs differ from a feedforward neural network in that it 

has at least one feedback loop. The presence of feedback loops affects the learning 

capability of the network and its performance. RNs may be implemented differently 
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according to the number of layers and the type of feedback loops such as self-

feedback, inter-layer feedback or intra-layer feedback loop.  

 

3.3.1.3 Learning Processes 

After the network is structured, a learning process is applied to adapt the neural network 

to the environments through adjusting the free parameters of the network such as synaptic 

weight and bias. The type of learning is determined by the manner in which the parameter 

changes take place (Mendel and McLaren, 1970). The common learning algorithms are 

categorize into two learning paradigms as follows (Haykin 1999): 

 

1. Learning with a teacher: In this learning paradigm, a neural network is trained or 

adjusted by a teacher having knowledge of the environment, with that knowledge 

being represented by a set of input-output examples. When the teacher and the 

neural network are both exposed to a training example draw from the environment, 

the teacher is able to provide the neural network with a desired response that 

represents the optimum action to be performed by the neural network for that 

training example. Then the network parameters are adjusted according to the 

combined influence of the training example and the difference between the desired 

response and the actual response of the network, also called error signal. This 

adjustment is carried out iteratively until the neural network optimally emulates the 

teacher in some statistical sense. This kind of learning paradigm is also referred to as 

supervised learning. 

 

2. Learning without a teacher: In this learning paradigm, there is no teacher to oversee 

the learning process. The learning process is basically performed through continued 

interaction with the environment. Two types of learning structures can be 

implemented. 

 

(a). Reinforcement learning: Instead of under the tutelage of a teacher, the 

reinforcement learning system is built around a critic that converts a primary 

reinforcement signal received from the environment into a high quality 
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reinforcement signal called the heuristic reinforcement signal (Barto et al., 1983). 

The network parameters are adjusted under observing this heuristic 

reinforcement signal. The goal of learning is to minimize a cost-to-go function, 

which is the expectation of the cumulative cost of actions taken over a sequence 

of steps (Haykin, 1999). 

 

(b). Self-organized learning: Without an external teacher or critic to oversee the 

learning process, the self-organized learning process is performed through 

observing a task-independent measure of the quality of representation that the 

network is required to learn. Once the network has become tuned to the 

statistical regularities of the input patterns, it is capable of forming internal 

representations to encode features of the input in a more explicit or simple form 

(Becker, 1991). The self-organized learning is also referred to as unsupervised 

learning. 

 

3.3.1.4 Benefits of Neural Networks 

A neural network is a massively parallel distributed processor that has ability to learn 

about its environment. It can be used for solving complex problems that are intractable to 

model-based approaches. The use of neural networks provides many useful properties 

and capabilities. Some of the neural network benefits are described as follows (Haykin 

1999): 

 

1. Nonparametric statistical inference: Neural networks can provide a model-free 

input-output nonlinear mapping that doesn’t require prior statistical model for the 

input data. 

 

2. Generalization: Neural networks can produce reasonable outputs for inputs not 

encountered during training (learning). 
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3. Nonstationary environment operation: Neural networks that have been trained to 

operate in a specific environment can be retrained to deal with minor changes in the 

operating environmental conditions. 

 

3.3.2 Multilayer Feedforward Neural Networks 

As mentioned previously, a multilayer feedforward neural network (MFNN) contains one 

or more hidden layer and the neuron in the network has the nonlinear activation function 

inside and high degree of connectivity. The combination of these characteristics together 

with the ability to learn from experience through supervised training makes the MFNN 

capable of performing a nonlinear mapping between many inputs and outputs. The most 

popular learning algorithm for MFNNs is the error back-propagation algorithm developed 

by Rumelhart et al. (1986). The back-propagation is a gradient decent algorithm in which 

the network parameters are moved along the negative of the gradient of the performance 

function. This algorithm consists of two passes through different layers of the network: a 

forward pass and a backward pass. In the forward pass, the synaptic weights of the 

network are all fixed and a set of outputs is produced forward through the network as the 

actual response of the network. During the backward pass, the synaptic weights of the 

network are all adjusted backward through the network in accordance with an error–

correction rule seeking a direction for weight change that reduces the value of the cost 

function.  

 

The training of the network is repeated for many examples in a training set until the 

networks reach a steady state so that a proper input-output mapping is constructed. For a 

given training set, the back-propagation learning may proceed in one of two basic ways: 

sequential training or batch training. In the sequential mode, weight updating is 

performed immediately after the presentation of each training example and continued 

until the last training example. In the batch mode, the weights of the network are updated 

only after the entire training set has been applied to the network. The advantages of the 

sequential training over the batch training are the better efficiency for on-line operation 

and resistance to convergence of learning to a local minimum. In contrast, the batch 
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training provides an accurate estimate of the gradient vector for better convergence of the 

learning algorithm. The relative effectiveness of the two training modes depends in the 

problem at hand. In general, the sequential mode of the back-propagation learning is 

highly popular because of its simplicity for implementation and effectiveness for solving 

large and difficult problem. 

 

The signal flow of back-propagation learning applied to a multilayer feedforward neural 

network is shown in Figure 3.10. The forward and backward computations of sequential 

training processes are summarized in the following. 

 

1. Forward computation: In the forward computation the synaptic weights remain 

unchanged and the signals are processed forward through the network, layer by layer, 

to consequently compute the actual response of the network. In the presence of a 

training sample in the epoch denoted by ( ) ( )( )n,n dx  ( ( )nx  is the input vector and 

( )nd  is the desired response vector), the forward-proceeded local field ( )( )nv l
j  for 

neuron j  in layer l  is computed as follows: 

 ( )( ) ( )( ) ( )( )∑
−

=

−=
1

0

1lm

i

l
i

l
ji

l
j nynwnv  (3-30) 

where ( )( )ny l
i

1−  is the output of neuron i  in the previous layer 1−l  at iteration n  and 

( )( )nw l
ji  is the synaptic weight of neuron j  on layer l  that is fed from neuron i  in 

layer 1−l . 1−lm  is the total number of neuron in the previous layer 1−l . 

 

The output of neuron j  in layer l  is obtained from the transformation of the local 

field using the activation function ( )⋅jϕ  as follows: 

 ( )( ) ( )( )( )nvny l
jj

l
j ϕ=  (3-31) 

 



 

65 

For the input layer (i.e., 0=l ), ( )( )ny j
0  is equal to ( )nx j , which is the thj  element of 

the input vector ( )nx . For the neuron in the output layer (i.e., Ll = , where L  is the 

depth of the network), ( )( )ny L
j  is equal to ( )no j , which is the thj  element of the 

actual response vector ( )no  of the network. 

 

The error signal at the output of neuron j  at iteration n  is defined by: 

 ( ) ( ) ( )nondne jjj −=  (3-32) 

where ( )nd j  is the thj  element of the desired response vector ( )nd . 

 

The cost function ( )nE  as a measure of learning performance is defined as the sum 

of the squares of the error signals for all the output neurons. 

 ( ) ( )∑
∈

=
Cj

j nenE 2

2
1  (3-33) 

where the set C  includes all the neurons in the output layer of the network. 

 

For the batch training in which the weights are updated on a pattern-by-pattern basis 

until one epoch, the cost function is obtained by summing ( )nE  over all n  and then 

normalizing with respect to the set size N , as shown by: 

 ( )∑
=

=
N

n
av nE

N
E

1

1  (3-34) 

where avE  is also called the average squared error energy. 

 

2. Backward computation: In the backward computation the synaptic weights of the 

network are all adjusted backward through the network. The adjustment of the 

synaptic weights is performed in the following linear form. 
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 ( ) ( ) ( ) ( ) ( ) ( )nwnwnw l
ji

l
ji

l
ji ∆1 +=+  (3-35) 

where ( ) ( )nw l
ji∆  is the correction of the weight that connects neuron i  and j  on layer 

l  at iteration n . ( )( )1+nw l
ji  and ( )( )nw l

ji  denote the corrected and uncorrected weights, 

each connects neuron i  and j  on layer l  at iteration n . 

 

The correction of the synaptic weight is determined by minimizing the cost function 

with respect to the synaptic weight using the gradient decent algorithm. Thus the 

correction of the synaptic weight is proportional to the partial derivative 

( ) ( )( )nw/nE l
ji∂∂  and is defined as follows: 

 ( ) ( ) ( )
( ) ( )nw

nEnw l
ji

l
ji

∂

∂
−= η∆  (3-36) 

where the minus sign indicates the direction for weight change that reduces the 

value of ( )nE  and η  is the learning-rate parameter of the back-propagation 

algorithm. 

 

The smaller the learning-rate parameter, the smaller the changes to the synaptic 

weights between each training iteration. Increasing the value of the learning-rate 

parameter can speed up the rate of learning but may result in an unstable network 

with large changes in the synaptic weights. 

 

Since ( )nE  is the sum of the squares of the error signals for all the output neurons, 

the correction of the synaptic weight is a function of all synaptic weights and 

activation functions. Applying the chain rule of calculus to ( ) ( )( )nw/nE l
ji∂∂  and 

including a momentum term, a general form of the correction of the synaptic weight 

called the generalized delta rule is obtained as follows: 

 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )nynnwnw l
i

l
j

l
ji

l
ji

11∆∆ −+−= ηδα  (3-37) 
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where α  is usually a positive number called the momentum constant which is  used 

for increasing the rate of learning yet avoiding the danger of instability. ( )( )ny l
i

1−  is 

the output of neuron i  in the previous layer 1−l  at iteration n  and ( )( )nl
jδ  is the 

local gradient defined by ( )( ) ( ) ( )( )nv/nEn l
ji

l
j ∂−∂=δ .  

 

The local gradient is computed backward through the network and thus the 

correction of the synaptic weight is also proceeded backward through the network, 

layer by layer. The back-propagation formula of the local gradient in the output and 

hidden layer is described in Eq. (3-38). Details of the derivation of Eq. (3-38) are 

available in Rumelhart et al. (1986) or Haykin (1999). 

 ( )( )

( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( )











′

′

=

∑
+

=

++ ljnwnnv

Ljnvne

n
lm

k

l
kj

l
k

l
jj

L
jj

L
j

l
j

layerhiddeninneuronfor

layeroutputinneuronfor

1

0

11δϕ

ϕ

δ  (3-38) 

where the prime in ( )⋅′jϕ  denotes differentiation with respect to the argument and 

1+lm  is the total number of neuron in the next layer 1+l . 

 

In summary, the back-propagation training algorithm starts with the forward pass in 

which the neuron outputs are computed forward through the network based on Eq. (3-30) 

and Eq. (3-31) and finally the error signals of the neurons in the output layer are obtained 

by Eq.(3-32). Then the backward pass starts at the output layer by passing the error 

signals backward through the network and recursively computing the local gradient for 

each neuron based on Eq. (3-38). Moving along the negative of the local gradient, the 

synaptic weights are corrected backward through the network, layer by layer, based on 

Eq. (3-35) and Eq. (3-37). The forward and backward computations are iterated with the 

presentation of new epochs of training examples to the network until the stopping 

criterion is met. The stopping criterion could be: The Euclidean norm of the gradient 

vector reaches a sufficiently small gradient threshold; the absolute rate of change in the 
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average squared error per epoch is sufficiently small; the weight updates are sufficiently 

small; or simply the number of iterations reaches to a predetermined value. 

 

It should be noted that the MFNN should be well designed to ensure that reasonable 

outputs can be obtained even when inputs are not encountered during training. The 

factors affecting the performance of the input-output mapping include the number of the 

hidden neurons and the size of the training set. Basically, they are designed according to 

the physical complexity of the problem at hand and mostly decided empirically. More 

details about the design of the MFNN are available in Hush and Horne (1993). 
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Figure 3.10: Signal flow of the back-propagation learning applied to a multilayer 

feedforward neural network 
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Chapter 4  

Development of AI-Based Methods for Integration 

Enhancement 

 

Chapter 3 has described the fundamentals of the model-based Kalman filter and the 

model-free AI methodologies. For low-cost MEMS INS/GPS integration, the Kalman 

filter will suffer significant performance degradation from the use of poor quality 

measurements because of its model dependency. In contrast, capable of handling 

imprecise and ambiguous information, AI methods are considered particularly suitable 

for dealing with low quality data since they are model-free. Using human-like reasoning 

and intelligence, AI methods can provide knowledge-based information to improve the 

adaptability and robustness of the low-cost integration system. This chapter first gives a 

comprehensive analysis of the limitation of the Kalman filter applied to the processing 

and fusion of low quality data, followed by the motivation of applying AI methods for 

integration enhancement. Finally, the design and development of AI-based methods, 

including a fuzzy logic rule-based GPS data classification system, a dynamics knowledge 

aided inertial navigation algorithm, and a neural networks compass calibration algorithm, 

are presented. 

 

4.1 Limitation of MEMS INS/GPS Integration Using Kalman Filter 

As described in Chapter 3, the Kalman filter in a loosely coupled INS/GPS integration 

system is applied to estimate INS navigation and sensor errors using GPS velocities and 

positions. It will rely on the last estimates and error dynamics models to predict 

navigation errors during GPS outages. Therefore, the system performance is mainly 

determined by the Kalman filter estimation and prediction accuracy. The Kalman filter 

estimation accuracy depends on the fidelity of the system and measurement models as 
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well as the noise statistics (Gelb, 1974). In a low-cost MEMS INS/GPS integration 

system, however, the quality of inertial data are poor which have large bias variation, 

high noise level, and large random error due to flicker noise, random walk etc. In this 

case, sensor errors are very difficult to realistically model using stochastic processes, thus 

the imperfect modelling resulted from mis-modelling, non-modelling and non-white 

properties of input data is obvious. In addition, when navigation systems operate in GPS 

challenging environments such as urban canyons, GPS solutions are characterized by 

large noises and multipath errors and GPS accuracy is more difficult to assess properly. 

As a result of using inaccurate dynamics and statistical models, the Kalman filter will 

suffer degraded estimation accuracy and even divergence problems for low-cost MEMS 

INS/GPS integration. 

 

Similarly, the Kalman filter prediction performance is strongly associated with the quality 

of inertial sensors. The Kalman filter prediction accuracy is mainly defined by the 

accuracy of the system model (input noise) and the accuracy of the last estimate in 

filtering mode (Salychev, 1998). As stated previously, for low-cost MEMS INS/GPS 

integration the Kalman filter has degraded estimation performance in filtering mode. 

Moreover, in the presence of high input noise and large non-modelling sensor errors due 

to bias variations and random errors, it is difficult to accurately predict INS sensor errors 

using the Kalman filter. After time integration of the IMU measurements, the unidentified 

sensor errors will result in a rapid error growth in velocity and position during GPS 

outages. This is the major challenge to the integration of low-cost MEMS inertial sensors 

with GPS using the Kalman filter. 

 

Since the traditional Kalman filter methodology was found insufficient for low-cost 

MEMS INS/GPS integration, the enhanced data fusion and data processing methods are 

needed in order to obtain satisfactory integration performance. In reasoning about a 

system, the precision inherent in our models of the system depends on the degree of 

complexity (uncertainty) of the system and the understanding about the problem 

(precision of measurement) (Ross, 1995). For the complex systems with only ambiguous 

or imprecise information available, the AI-based methods provide a nonlinear, adaptive, 
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and knowledge-based approach to understand the system’s behaviour by using human 

reasoning and intelligence. AI technologies including expert systems, fuzzy logic and 

neural networks have found successful applications in a wide variety of fields, such as 

nonlinear mapping, data classification, and decision analysis (Kandel, 1992; Jang et al., 

1997; Haykin, 1999). AI methods can be seen as the advanced versions of the estimation, 

classification and inference methods (Luo et al., 2002). As mentioned previously, the 

major limitation of using the model-based Kalman filter for low-cost MEMS INS/GPS 

integration is its significant performance degradation in the presence of low quality INS 

data and corrupted GPS data. If a magnetic compass, commonly embodied in a low-cost 

MEMS IMU, is used to provide external heading information, the compass data, likely to 

be disturbed and biased in vehicular environments, are also difficult to calibrate using 

model-based estimation methods such as the Kalman filter.  

 

Thus, with the advantages of processing ambiguous or imprecise data and the capabilities 

of formulating human intelligence, AI methods have been applied in this dissertation to 

enhance the Kalman filter-based data fusion performance by adding functionalities of 

data quality assessment, navigation error compensation, sensor error modelling, and 

fusion scheme optimization. Linked to human reasoning and concept formation, fuzzy 

logic and expert systems have been implemented for GPS data classification and vehicle 

dynamics identification so that GPS solutions can be more properly weighted in various 

GPS environments and INS errors can be more effectively controlled with the aiding 

from dynamics knowledge. In addition, neural networks with learning and adaptation 

capabilities have been applied for compass error modeling and calibration so that 

compass biases and scale factor errors can be correctly removed even in strong 

disturbance environments. The rest of this chapter will present the design and 

development of these AI-based methods for integration enhancement. 

 

4.2 Fuzzy Logic Rule-Based GPS Data Classification 

As mentioned in Chapter 2, GPS is a satellite-based radio navigation system, which uses 

line-of-sight ranges between the navigation satellites and receivers to derive positioning 
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solutions. GPS signals therefore are subject to severe degradation in the presence of 

multipath, diffraction, attenuation or blockage. GPS positioning solutions in this case 

would have degraded accuracy and should be identified before they are used for 

navigation or integrated with other sensors such as INS. Traditionally, the receiver 

autonomous integrity monitoring (RAIM) method, which is based on self-consistency 

check among the available measurements, has been applied for fault detection and 

exclusion (FDE) in GPS data (Lee, 1986; Parkinson and Axelrad, 1988; Parkinson and 

Spilker, 1996). In GPS unfavourable environments, however, RAIM methods were found 

limited due to the violation of normally distributed zero-mean measurement errors, 

multiple blunders and the lack of redundancy (Collin et al., 2003; Kuusniemi, 2004). 

 

For land vehicle applications low-cost GPS or HSGPS receivers are typically used with 

the code or pseudorange measurement as the principal observable for position 

determination. Code-based GPS position errors are determined by satellite geometry and 

pseudorange measurement errors. The user-to-satellite pseudorange measurement errors 

are transferred into position errors in local navigation frame according to the satellite 

geometry strength. The pseudorange measurements contain errors of satellite orbit and 

clock, atmosphere, multipath, receiver clock offset and measurement noise (Parkinson 

and Spilker, 1996 and Misra and Enge, 2001). In signal-degraded environments, the 

major pseudorange errors are due to multipath and other signal deteriorations such as 

diffraction and attenuation especially for HSGPS receivers. In various signal-degraded 

environments such as urban and suburban areas, therefore, it is possible to assess GPS 

performance by monitoring GPS signal quality and satellite geometry strength.  

 

Previous researches have applied fuzzy logic or neuro-fuzzy soft computing to derive a 

quality indicator for GPS code based positioning solutions using the carrier-to-noise 

density ratio (C/N0) and the Dilution of Precision (DOP) number (Lin et al., 1996; 

Ghalehnoe et al., 2002 and Wang and Gao, 2003a). But the resultant performance was 

still limited because the simple use of C/N0 is not sufficient to reliably assess the 

pseudorange errors. Wang and Gao (2004d) have applied a fuzzy inference system to 

classify GPS position solutions using the DOP number and the fading C/N0 value which 
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is the difference between the measured and expected C/N0. When a HSGPS receiver is 

used, however, the DOP number becomes less sensitive to the degree of signal 

degradation since weak and low-power signals can be acquired and tracked with higher 

satellite availability. Wang and Gao (2006) have further applied the receiver-satellite 

geometry matrix, namely in Eq. (2-4), to assess the effects of an individual satellite’s 

measurement errors on the position solutions instead of using a single DOP number 

which is a geometric strength measure for all observed satellites. This modified system 

has shown improved classification performance and is suitable for both non-high 

sensitivity (conventional) and high sensitivity GPS data classification. The design and 

development of this system is described in the following sections. 

 

4.2.1 GPS Signal Quality Measures 

Carrier-to-noise density ratio (C/N0) is the most commonly used measure of the GPS 

signal quality. C/N0 is an instantaneous measure of the ratio of carrier present to noise 

per Hertz of bandwidth (dB-W/Hz) and can be computed as follows (Lachapelle, 2002): 

( ) NFTKGS BaR −−+= 010logC/N0  (4-1) 

where RS  is the received signal power; 

 aG   is the antenna gain; 

 ( )010log TK B  is the ambient noise density; and 

 NF  is the receiver noise figure 

 

C/N0 value depends upon the received signal strength, receiver antenna gain and the 

correlation process used by the receiver. Thus, for a given combination of a GPS antenna 

and receiver, C/N0 represents the received signal strength, i.e., the signal quality present 

at the input to a GPS receiver. The GPS signal power broadcast at the satellite is 

attenuated due mostly to the loss of propagation from the satellites to the receivers. The 

propagation loss is mainly dependent on the length of the path and the attenuation effects 

on the path, such as atmospheric attenuation, depolarization, shadowing by an object or 
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constructive and destructive interference by multipath. In an open-sky environment, the 

received signal strength is mainly dependent on the atmospheric attenuation and 

depolarization loss which are normally proportional to the length of the propagation path. 

Thus, in this case the received signal from the lower-elevation satellite usually has lower 

power than the signal from the higher-elevation satellite. In a signal-degraded 

environment, the received signal strength is relative to not only satellite elevation but also 

environmental attenuation conditions. Thus, the C/N0 measured in open-sky 

environments can be used to represent the strength of the clear signal, called expected 

C/N0. The difference between the measured and the expected C/N0, called fading C/N0, 

therefore has a certain correlation to the strength of signal degradation (Brunner et al., 

1999; Wieser and Brunner, 2000). 

 

As mentioned previously, the strength of the received signal is changing with satellite 

elevation, thus the expected C/N0 is a function of satellite elevation. To establish the 

C/N0 scatter describing how the expected C/N0 changes with satellite elevation and to 

study the signal degradation effects on C/N0, several static tests using a SiRF Star II 

Xtrac high sensitivity GPS receiver and a conventional SiRF Star II GPS receiver were 

performed in open-sky and various signal-degraded environments. The specifications of 

the SiRF Star II GPS receiver can be found in Table 6.1 of Chapter 6. Figure 4.1 through 

Figure 4.3 show the test environments to represent typical low, medium, and high signal-

degraded conditions, respectively. In each environment test we logged the satellite 

elevation angle and the corresponding C/N0 data of all observed satellites for a period of 

about 24 hours at 1 Hz sampling rate. All of the data collected from the high sensitivity 

GPS receiver under open-sky (clear signal) and different signal-degraded environments 

(deteriorated signal) are shown in Figure 4.4 through Figure 4.6, respectively. The results 

of the conventional GPS receiver are shown in Figure 4.7 through Figure 4.9. 
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Figure 4.1: Test set-up in a low signal-degraded environment 

 

 

 
Figure 4.2: Test set-up in a medium signal-degraded environment 
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Figure 4.3: Test set-up in a high signal-degraded environment 
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Figure 4.4: C/N0 scatter diagram under open-sky and low signal-degraded 

environments (SiRF Star II Xtrac HSGPS) 
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Figure 4.5: C/N0 scatter diagram under open-sky and medium signal-degraded 

environments (SiRF Star II Xtrac HSGPS) 
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Figure 4.7: C/N0 scatter diagram under open-sky and low signal-degraded 

environments (SiRF Star II conventional GPS) 
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Figure 4.9: C/N0 scatter diagram under open-sky and high signal-degraded 

environments (SiRF Star II conventional GPS) 
 

The results indicate that the data collected in signal-degraded environments generally 

have lower C/N0 than the data collected in the open-sky environment. However, it is 

possible to have similar C/N0 values in open-sky and signal-degraded environments, i.e., 

obtaining very small fading C/N0 under signal-degraded environments. There are two 

reasons for this occurrence. First, there is a low probability of having signal deterioration 

when the satellite is at high elevation and the receiver is under low and medium signal-

degraded environments. In this case, the fading C/N0 correctly reflects the strength of 

signal degradation. Second, when the signal deteriorations are contributed by multipath, 

the measured C/N0 would be strengthened when the reflected signal arrives in-phase or 

weakened when it arrives out-of–phase (Misra and Enge, 2001). This case can be 

particularly found in the high signal-degraded environment tests as shown in Figure 4.6 

and Figure 4.9. This is a dilemma for using fading C/N0 to indicate the magnitude of 

multipath errors (Wieser and Brunner, 2000). In general, signal deteriorations are the 

combination of multipath, diffraction, and attenuation. As indicated in Wieser and 

Brunner (2000), fading C/N0 is highly correlated with the degree of signal diffraction and 
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attenuation. Thus, fading C/N0 can still represent a certain degree of signal degradation 

for an individual satellite but not a one-on-one functional mapping to the pseudorange 

errors. 

 

To compute the fading C/N0, the expected C/N0 scatter over satellite elevation for the 

selected GPS receiver and antenna should be determined first. Based on the 24-hour 

open-sky static test results, in this dissertation we form the expected C/N0 scatter by 

using the mean C/N0 at each satellite elevation angle as shown in Figure 4.4 through 

Figure 4.9. For the selected HSGPS receiver and antenna, we observed that the expected 

C/N0 scatter can be modeled using three linear reference functions shown in Figure 4.10: 

two constant functions and one linear ascending function. The corresponding parameters 

for the reference functions are listed in Table 4.1. For the conventional GPS receiver and 

antenna, the expected C/N0 scatter can be modeled using three linear reference functions 

shown in Figure 4.11: one linear ascending function, one constant functions and one 

linear descending function. The corresponding parameters for the reference functions are 

listed in Table 4.2. As expected, the profile of the expected C/N0 scatter is receivers and 

antennas dependent. 
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Figure 4.10: Profile of reference functions of the expected C/N0 (SiRF Star II Xtrac 

HSGPS) 
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Figure 4.11: Profile of reference functions of the expected C/N0 (SiRF Star II 

conventional GPS) 
 

Table 4.1: Parameters of reference functions of the expected C/N0 (SiRF Star II 
Xtrac HSGPS) 

a (dB-Hz) b (dB-Hz) X1 (deg.) X2 (deg.) X3 (deg.) X4 (deg.) 
38 45 5 10 25 90 

 

Table 4.2: Parameters of reference functions of the expected C/N0 (SiRF Star II 
conventional GPS) 

a (dB-Hz) b (dB-Hz) c (dB-Hz) X1 (deg.) X2 (deg.) X3 (deg.) X4 (deg.)
36 44 43 5 42 65 90 

 

4.2.2 Geo-Signal Degradation Measures 

In the previous section, we have demonstrated the correlation between the fading C/N0 

and the degree of signal degradation. To study the effects of signal degradation on GPS 

positioning solutions, the satellite geometry strength should be introduced. In this 

dissertation we incorporate the fading C/N0 of all observed satellites with the receiver-

satellite geometry matrix to assess the effects of signal degradation in position domain, 

i.e., we project all user-to-satellite fading C/N0s on the local east-north-up (ENU) 

coordinate frame. We expected that an improved performance could be obtained 
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compared to using a single geometric strength measure, namely the DOP number, for all 

observed satellites (Wang and Gao, 2004d). Following the same model for position 

estimation using least-squares method (Misra and Enge, 2001), we project the user-to-

satellite fading C/N0 of the observed satellites on the local ENU coordinate frame and 

calculate their average fading C/N0, ENUF , in the following manner. 
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where k  is the number of observed satellites; Ef , Nf , Vf , and Tf  represent the average 

fading C/N0 projected to the east position, north position, vertical position, and time 

domain, respectively; 
)(S

Rf
1

, …, 
)k(S

Rf  represent the user-to-satellite fading C/N0 of all 

observed satellites; G~  is the user-to-satellite geometry matrix in the local ENU 

coordinate frame as defined in Eq. (2-4): 

 

Representing the fading C/N0 effects on the horizontal position, the average fading C/N0 

in the horizontal, Hf , is chosen as the first geo-signal degradation measure and it can be 

obtained from the following equation: 

22
NEH fff +=  (4-3) 

 

Considering the overall signal quality of the tracked satellites, we take the number of 

fading satellites into account. A fading satellite is identified when the satellite’s fading 

C/N0 is larger than a threshold value. The threshold value is determined by the quantity 

between the lower limit and the mean of the expected C/N0 obtained from the field tests 

as shown in Figure 4.4 for the high sensitivity GPS and Figure 4.7 for the conventional 

GPS. Then we calculate the fading satellite ratio, FR , as the second geo-signal 

degradation measure for the assessment of signal degradation conditions as follows: 



 

83 

U

F
N
NFR =  (4-4) 

where FN  is the number of fading satellites; and UN  is the number of satellites used for 

navigation. 

 

To test how the geo-signal degradation measures, Hf  and FR , can be used to classify 

signal degradation conditions, the data acquired under various environment tests that 

already shown in the previous section were used. Figure 4.12 and Figure 4.13 show the 

distribution of the geo-signal degradation measures ( Hf  and FR ) for different signal-

degraded environment tests when the high sensitivity GPS and the conventional GPS are 

used, respectively. The black marks indicate the centre of each data set, representing the 

mean of the geo-signal degradation measures for the corresponding 24-hour signal-

degraded environment test. As shown, for each test the geo-signal degradation measures 

cluster together. As expected, for both HSGPS and GPS tests, the data collected in a 

harsher signal-degraded condition have a larger average fading C/N0 in the horizontal 

and a higher fading satellite ratio. We also observed that there is an overlap of the geo-

signal degradation measures between different environment tests. This is because the 

signal degradation condition is changing with time according to the user-to-satellite 

geometry relative to the around-receiver obstacles. Thus, during the 24-hour test it is 

possible to have similar geo-signal degradation measures under the near signal-degraded 

environments. Comparing the distribution of the geo-signal degradation measures 

between HSGPS and GPS under the same testing environment, we observed that 

relatively larger Hf  and FR  were obtained from HSGPS than GPS. This can be 

explained by the fact that more weak and degraded signals can be tracked by the high 

sensitivity GPS but not the conventional GPS. In general, the correlation between the 

geo-signal degradation measures and the signal-degraded conditions has been 

demonstrated and confirmed. 
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Figure 4.12: Distribution of the geo-signal degradation measures in various signal-

degraded environments (SiRF Star II Xtrac HSGPS) 
 

 
Figure 4.13: Distribution of the geo-signal degradation measures in various signal-

degraded environments (SiRF Star II conventional GPS) 
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4.2.3 Design of Fuzzy Logic Rule-Based Data Classification System 

Based on the results of various environment tests shown in Figure 4.12 and Figure 4.13, 

the geo-signal degradation measures can be used to classify GPS signal degradation 

conditions which highly affect the accuracy of GPS position. Thus, the geo-signal 

degradation measures can be used for GPS data classification. The common data 

classification method uses the similarity or distance measures between pairs of feature 

vectors in the feature space to partition the data into classes. In our application there is an 

overlap of the input feature vectors between different classes. In addition, as mentioned 

previously, there is a dilemma of using fading C/N0 to indicate the magnitude of 

multipath errors. Thus, the input data contain ambiguous and imprecise terms that have 

limited the applicability of the crisp or hard data classification method. As proposed by 

Zadeh in 1965, a fuzzy set that is a class of object with a continuum of grades of a 

membership provides a way to deal with imprecisely defined classes. Thus, the theory of 

fuzzy sets is used in our data classification system to deal with imprecise input data and 

to overcome the intrinsic limitations of crisp partitions. 

 

As shown in Figure 4.12 and Figure 4.13, it is quite obvious that the larger the geo-signal 

degradation measures, the severer the signal degradation conditions. Thus, data 

classification can be accomplished by common sense reasoning. To perform the 

reasoning process of fuzzy or soft data classification, a fuzzy inference system that 

incorporates fuzzy sets theory, fuzzy if-then rules with fuzzy reasoning is employed in 

this study. The fuzzy inference system is a popular computing framework linked to 

human reasoning and concept formation dealing with ambiguous and imprecise 

information. Shown in Figure 4.14 is the architecture of the proposed fuzzy inference 

system for GPS data classification. The output of the fuzzy inference system is a numeric 

quality rating (QR) between 0 and 1. The QR value, which describes the degree of signal 

plus geometry degradation, is further applied to classify GPS data. A higher rating value 

indicates a higher likelihood of having a poor GPS solution. Because most GPS receivers 

use an internal filter to smooth position solutions, GPS position performance is less 

sensitive to the short-term or transient changing of signal degradation. To consider this 

filtering effect, we use the moving average of the geo-signal degradation measures as the 
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system input variables so that the QR value can reflect the performance of GPS position 

more appropriately. The size of moving average window was chosen as eight seconds 

based on the smoothing feature of the GPS position obtained from the field tests. 

 

Fuzzy
Inference

System
QR

HfMoving Average of 

FRMoving Average of 

Fuzzy
Inference

System
QR

HfMoving Average of HfMoving Average of 

FRMoving Average of  
Figure 4.14: Architecture of the fuzzy logic GPS data classification system 

 

Once the system input and output variables are defined, the next step is to design the 

membership functions which characterize the fuzziness in a fuzzy set. The assignment of 

membership values or functions to fuzzy variables can be intuitive or based on some 

algorithm or logical operations (Ross, 1995). For the purpose of computational simplicity, 

the triangle membership functions are used. The parameters of input membership 

functions are determined based on the results of the various environment tests shown in 

Figure 4.12 and Figure 4.13. Three membership functions for each input variable are used 

and the mean of the geo-signal degradation measures under each signal degradation 

condition is assigned to the core value of the corresponding membership functions. These 

mean values are well representative of data clustering centres since they were calculated 

from large amount of sampling data. For the output membership functions, three triangles 

with even overlaps between sets and even segmentation from zero to one are used 

because in this study GPS data are intentionally classified into three classes. The applied 

membership functions of the fuzzy input and output variables for the high sensitivity GPS 

and the conventional GPS are illustrated in Figure 4.15 and Figure 4.16, respectively. 
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(c) the output variable 

Figure 4.15: Membership functions used in the fuzzy inference system for HSGPS 
data classification 



 

88 

M
em

be
rs

hi
p 

D
eg

re
e

HfMoving Average of 

M
em

be
rs

hi
p 

D
eg

re
e

HfMoving Average of HfMoving Average of  
(a) the first input variable 

M
em

be
rs

hi
p 

D
eg

re
e

FRMoving Average of 

M
em

be
rs

hi
p 

D
eg

re
e

FRMoving Average of FRMoving Average of  
(b) the second input variable 

 

Quality Rating

M
em

be
rs

hi
p 

D
eg

re
e

Quality Rating

M
em

be
rs

hi
p 

D
eg

re
e

 
(c) the output variable 

Figure 4.16: Membership functions used in the fuzzy inference system for GPS data 
classification 
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To describe the relationship between the input and the output, a set of rules is applied as 

shown in Table 4.3. Designed based on common sense reasoning and the field test results 

shown in Figure 4.12 and Figure 4.13, the rules are quite straightforward and identical for 

HSGPS and GPS data classification systems. For example, the GPS positioning solution 

would be poor (QR is large) if both the fading satellite ratio and the average fading C/N0 

in the horizontal are high. After the membership functions and fuzzy if-then rules are 

defined, an inference procedure is applied to derive the output fuzzy set. In this 

dissertation, the Mamdani type fuzzy inference system with max-min composition, which 

is considered as the most commonly used fuzzy methodology, is used (Mamdani and 

Assilian, 1975). Then the centroid of area defuzzification is applied to extract a crisp 

value from the output fuzzy set as a representative value of the final fuzzy output. This 

crisp value in a range between 0.25 and 0.75 is further used for data classification. More 

specifically, if the value of quality rating is smaller than 3.75 (the medium between the 

core value of the ‘Small’ and ‘Medium’ membership functions), data are classified as low 

signal-degraded data. If the value of quality rating is larger than 6.25 (the medium 

between the core value of the ‘Medium’ and ‘Large’ membership functions), data are 

classified as high signal-degraded data. 

 

Table 4.3: If-then rules used in the fuzzy inference system for GPS/HSGPS data 
classification 

R1: If Moving Average of Hf  is LOW and Moving Average of FR  is LOW then QR is SMALL 

R2: If Moving Average of Hf  is LOW and Moving Average of FR  is MED then QR is SMALL 

R3: If Moving Average of Hf  is MED and Moving Average of FR  is LOW then QR is SMALL 

R4: If Moving Average of Hf  is MED and Moving Average of FR  is MED then QR is MED 

R5: If Moving Average of Hf  is LOW and Moving Average of FR  is HIGH then QR is LARGE 

R6: If Moving Average of Hf  is HIGH and Moving Average of FR  is LOW then QR is LARGE 

R7: If Moving Average of Hf  is MED and Moving Average of FR  is HIGH then QR is LARGE 

R8: If Moving Average of Hf  is HIGH and Moving Average of FR  is MED then QR is LARGE 

R9: If Moving Average of Hf  is HIGH and Moving Average of FR  is HIGH then QR is LARGE 
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4.3 Dynamics Knowledge Aided Inertial Navigation Algorithm 

As stated previously, the major challenge to use low-cost MEMS inertial sensors for 

bridging GPS outages is the rapid error accumulation with the course of time. 

Traditionally, the Kalman filter is used to predict INS navigation errors based on the 

previously estimated sensor errors and the error dynamics models. When processing low 

quality data with high input noise and large random error, however, the conventional 

Kalman filter has found insufficient to provide accurate and acceptable prediction 

performance (Brown and Lu, 2004; Jaffe et al., 2004). Some neuro-fuzzy models and 

fuzzy inference systems have been proposed to predict INS drift errors and have shown 

their effectiveness on navigation error reduction (Chiang, 2004; El-Sheimy et al., 2004; 

Wang, 2004a). Their prediction performance, however, is proportional to the quality of 

instrument measurements and is difficult to be satisfactory when low-cost MEMS inertial 

sensors are used (Chiang, 2004). 

 

Instead of predicting INS error, knowledge of vehicle dynamics could provide extra 

virtual measurements to correct INS navigation and sensor errors. ZUPTs have been used 

to provide effective INS error control when the stationary of a vehicle is available 

(Salychev, 1998; El-Sheimy, 2003). For automotive-grade and consumer-grade IMUs, 

the stationary outputs of gyroscopes themselves can be used for direct estimation of gyro 

biases (Sukkarieh, 2000). In addition, the nonholonomic constraints that govern the 

motion of a vehicle on a surface can provide velocity measurements in the transverse and 

vertical directions (Brandt and Gardner, 1998; Dissanayake et al., 2001; Shin, 2001). The 

complementary motion detection characteristics of accelerometers and gyroscopes can be 

applied to provide bounded tilt estimation (Collin et al., 2001; Ojeda and Borenstein, 

2002; Wang and Gao, 2004c). That is, the accelerometer-derived tilt angle can be used as 

attitude measurements while vehicle is static or moving linearly at a constant speed. 

Moreover, Wang et al. (2005) have proposed to use certain vehicle dynamics such as 

stationary, straight-line motion, and cornering motion with its specific dynamics model to 

provide extra dynamics-based or dynamics-derived observations for INS error control. 

The following sections will describe the design and development of the overall dynamics 
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knowledge aided inertial navigation algorithm which includes a land vehicle motion 

model, vehicle dynamics-derived observations, and a fuzzy expert system for vehicle 

dynamics identification. 

 

4.3.1 Land Vehicle Motion Model 

Using the same idea proposed by Brandt and Gardner (1998), the first strategy of 

applying vehicle dynamics knowledge into inertial navigation algorithm is to incorporate 

the nonholonomic constraints with the INS navigation equations to derive the simplified 

state equations called land vehicle motion model. The derivation of the land vehicle 

motion model from the traditional INS navigation equations is described as below: 

 

First, following the INS navigation equations for general three-dimensional motion 

described in Eq. (2-8), we further modify them by: 

 

1. Assuming the Earth rotation is negligible and the gravity vector g is constant since 

the magnitude of their effects is at the senor noise level for automotive-grade 

MEMS IMUs (Dissanayake et al., 2001). 
 

2. Using the north-east-down (NED) coordinate system to express the navigation frame. 

 

3. Using Euler angles to express the coordinate transformation and attitude propagation. 

 

The INS navigation equations can now be written as: 
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where the subscript N  indicates the navigation frame represented by three orthogonal 

axes in local north ( n ), east ( e ) and down ( d ) directions; The subscript B  indicates the 

body frame represented by three orthogonal axes in the forward ( x ), transverse ( y ) and 
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down ( z ) directions of the vehicle; [ ]TNdNeNnN P,P,P=P  is the position of the vehicle in 

the navigation frame; [ ]TNdNeNnN V,V,V=V  is the velocity of the vehicle in the navigation 

frame; [ ]TN ,, ψθφ=Λ  is the attitude of the vehicle expressed by three Euler angles, roll 

(φ ), pitch (θ ), and yaw (ψ ), which are the rotation angles about the x , y  and z  axes, 

respectively; [ ]TBzByBxB A,A,A=A  is the measured acceleration in the body frame; 

[ ]TBzByBx
B
IB ω,ω,ω=ω  is the measured angular velocity in the body frame; [ ]TN g,, −= 00G  is 

the gravity vector in which g  is the gravitational constant; N
BR  is the transformation 

matrix from the body frame to the navigation frame expressed by Euler angles as shown 

in Eq. (2-9); and N
BC  is the transformation matrix describing the relationship between 

Euler rates and gyro measurements and is expressed as follows: 
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The derivation of this transformation matrix can be found in Titterton and Weston (1997). 

 

For land vehicle navigation, the nature of the vehicle’s dynamics, if known, can provide 

extra information as constraints to reduce the navigation errors. In normal driving 

condition, the vehicle doesn’t slide on and jump off the ground, i.e., there is no motion 

along the transverse direction and the direction normal to the road surface. The 

constraints on the motion of the land vehicles can be defined as follows: 

0=ByV                                                            (4-7) 

0=BzV                                                         (4-8) 
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In reality, because of the presence of sideslip due to turning or vibrations, these 

constraints are kind of transgressed. For the low-cost MEMS IMUs which cannot 

measure such movements, the constraint violation is negligible. 

 

Based on these motion constraints, we can assume that the vehicle velocity vector in the 

navigation frame is coincided with the forward direction of the vehicle in the body frame, 

called velocity frame, i.e., xfF V BV
v

=  where fV  is the speed of the vehicle and 

( )zyx ,, BBB
vvv

 represents the body frame unit vectors. Then, by taking the first derivative 

of the velocity vector, we can calculate the motion acceleration of the vehicle in the 

velocity frame as follows: 
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Rewriting the second equation in Eq. (4-5) by taking a transformation from the 

navigation frame to the body frame, we obtain: 

N
B
NBN

B
N GRAVR −=&                                        (4-10) 

 

The above equation implies that the vehicle motion accelerations are given by subtracting 

the gravity accelerations from the accelerometer outputs in the body frame. Replacing the 

vehicle motion acceleration term at the left-hand side of Eq. (4-10) by Eq. (4-9), we 

obtain: 
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where the subscripts s  and c  refer to sine and cosine. 
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Rearranging the above equations, the relationship between vehicle motion accelerations, 

vehicle velocity and IMU measurements can be obtained as follows: 

θsingAV Bxf −=&                                        (4-12) 

θφω cossingAV ByBzf +=                          (4-13) 

θφω coscosgAV BzByf −−=                        (4-14) 

 

The above equations indicate that: 

 

1. One x-axis accelerometer is enough to determine the forward velocity of the vehicle. 

 

2. When a triad of accelerometers is used, the forward velocity of the vehicle can be 

directly computed if one of the angular velocities, Byω  or Bzω , is significant. 

 

3. When the vehicle is stationary, the roll and pitch can be directly computed from the 

accelerometer measurements. 

 

For the attitude dynamics, by rewriting and expanding the last equation in Eq. (4-5), we 

obtain the following equations describing the relationship between Euler rates and gyro 

measurements. 

BzByBx tancostansin θωφθωφωφ ++=&                (4-15) 

BzBy sincos φωφωθ −=&                                        (4-16) 
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BzBy cos
cos

cos
sin ω

θ
φω

θ
φψ +=&                                  (4-17) 

 

Using the above three equations together with the initial attitude information, the current 

vehicle attitude represented by three Euler angles can be computed by direct integration. 

Although this approach may become indeterminate for roll and yaw when pitch equals to 

±90 degree, it will not occur in the case for land vehicle applications. 

 

Finally, the vehicle’s trajectory in the navigation frame can be computed by the forward 

velocity and attitude of the vehicle in the following manner. 

ψcosθcosVP fNn =&                                          (4-18) 

ψsinθcosVP fNe =&                                          (4-19) 

θsinVP fNd =&                                                (4-20) 

 

The land vehicle motion models comprise Eq. (4-12) through Eq. (4-20) which relate the 

IMU measurements to position, velocity and attitude information for a land vehicle. 

Allowing for the direct online estimation of the roll, pitch and the forward velocity of the 

vehicle from the accelerometer and gyroscope measurements, this model can be used to 

significantly reduce the error growth rate in position estimates especially for low-cost 

IMUs (Dissanayake et al., 2001; Wang et al., 2005). 

 

4.3.2 Vehicle Dynamics-Derived Observations 

Based on the land vehicle motion model and the specific physical characteristics of 

inertial sensors, under some specific vehicle dynamics it is possible to directly estimate 

some navigation states such as tilt angles and velocity of a land vehicle without using 
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external sensors. These dynamics-derived estimates can be used as the virtual 

measurement updates to the INS Kalman filter for navigation error control. The specific 

vehicle dynamics and the corresponding dynamics-based or dynamics-derived estimates 

are summarized into three categories: stationary, straight-line motion, and cornering 

motion. 

 

4.3.2.1 Stationary Mode 

When a vehicle is static, accelerometer measurements can be used to directly derive 

vehicle pitch and roll angles. Measuring only the local gravity field under this condition, 

the accelerometer outputs can be used to determine vehicle pitch and roll angles as 

follows (El-Sheimy, 2003): 









= −

g
Asin Bx1θ                                                      (4-21) 









−= −

g
A

sin By1φ                                                  (4-22) 

 

According to Eq. (4-21) and Eq. (4-22), no integration step in time is required and the 

accuracy of tilt estimation is mainly governed by accelerometer measurement error such 

as bias and noise. Using perturbation technique, we can derive the following equations to 

describe the relationship between accelerometer measurement error and tilt error. 

g
Asec Bxδθδθ =                                                      (4-23) 

g
A

sec Byδ
φδφ −=                                                  (4-24) 
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where δθ  and δφ  are pitch and roll errors; and BxAδ  and ByAδ  are the x-axis and y-axis 

accelerometer measurement errors, respectively. 

 

In this dissertation, accelerometer biases are estimated by the INS Kalman filter and a 

statistical approach that will be described in Chapter 5. The performance of the bias 

estimation will be presented in Chapter 6. Theoretically, for land vehicle applications 

where the tilt angle is small, a 1 mg unidentified accelerometer bias will lead to tilt error 

of about 0.057 degree. For accelerometer noise effects, they can be reduced by averaging 

the tilt estimates over the stationary periods. Compared to the gyro-derived tilt with large 

drift errors, the accelerometer-derived tilt is accurate enough to provide direct correction 

and control of the tilt error. Another observation available during the stationary periods is 

the constant heading constraint. Since the vehicle is not moving, the heading of the 

vehicle can be considered unchanged and can be modeled by the following equation. 

( ) ( )1−= ss tt ψψ                                                  (4-25) 

where st  denotes the sampling time during the stationary periods. 

 

The forth direct measurement during the stationary periods is the well-known ZUPT. 

ZUPT provides a very accurate velocity observation, as the vehicle is static. The last 

benefit from the stationary mode is the availability of gyro bias estimation. For 

automotive-grade and consumer-grade IMUs, the stationary outputs of gyroscopes 

themselves can be considered as measurement biases (Sukkarieh, 2000). This is because 

the Earth rotation is at the senor noise level for automotive-grade MEMS IMUs and thus 

the true angular rate of the body frame during the stationary periods can be assumed as 

zero. By averaging all gyro measurements during the stationary periods, we can remove 

the noise effects and use this average value as the gyro bias estimate. 

 

4.3.2.2 Straight-Line Motion Mode 

When a vehicle is moving straight, no significant motion acceleration along the 

transverse direction exists. Thus, mostly the y-axis accelerometer measurement, 



 

98 

containing the local gravity field, can be used to determine the approximate roll angle 

based on Eq. (4-22). Although the approximation errors induced by sideslip or vibration 

may exist, they can be mostly reduced by moving average. Therefore, when the vehicle is 

moving straight, the accelerometer-derived roll still can be used as a direct roll update to 

reduce the drift error of the gyro-derived tilt. Similarly, to improve the accuracy of the 

accelerometer-derived roll, the y-axis accelerometer bias is estimated using the same 

method applied in the stationary mode and the noise effect is reduced by moving average. 

 

4.3.2.3 Cornering Motion Mode 

In addition to ZUPTs, the cornering motion with strong dynamics in transverse 

acceleration and yawing provides another occurrence for direct estimation of the vehicle 

velocity. Rearranging Eq. (4-13), the forward velocity of the vehicle can be directly 

estimated as follows:  

( )θφ cossingA
ω

V By
Bz

f +=
1                                        (4-26) 

 

According to the above equation, the forward velocity is inversely proportional to the z-

axis gyro measurement. Thus, the estimation of the forward velocity is not applicable if 

the signal-to-noise ratio of the z-axis gyro measurement is low. Only when the z-axis 

angular dynamics is significant, e.g. during the cornering motion, the estimation of the 

forward velocity becomes feasible. Using perturbation technique, we can derive the 

following equation to describe the error budget of the forward velocity estimate. 
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where fVδ  and Bzδω  are the errors of the forward velocity and the z-axis gyro 

measurement, respectively. 
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According to the above equation, the accuracy of the forward velocity estimate depends 

on the accuracy of the y-axis accelerometer measurement, the z-axis gyro measurement 

and the tilt estimate. The effect of the pitch error on the forward velocity estimate is 

negligible since tilt angles are generally small during the cornering motion of a land 

vehicle and thus the term θφ sinsin  in Eq. (4-27) becomes very small. In addition, 

because the accelerometer-derived roll is always used to update the roll estimate when 

the vehicle is stationary or moving straight, the accuracy of the roll estimate during 

cornering is mainly governed by the accelerometer bias. Therefore, we can replace δφ  in 

Eq. (4-27) with Eq. (4-24) and rewrite Eq. (4-27) as follows: 
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Based on Eq. (4-28), the accuracy of the forward velocity estimate is mainly determined 

by IMU measurement errors such as bias and noise of the y-axis accelerometer and the z-

axis gyro. In general, Bzω  is large and the tilt angles are small during cornering motion of 

a land vehicle, thus the impact of ByAδ  and Bzδω  on the velocity estimation error is 

diminished. For example, in a typical cornering motion where ByA  is 1.5 m/s2, Bzω  is 15 

deg/sec, φ  is 2 degree, and θ  is 2 degree, 1 m/s2 ByAδ  will lead to 0.0023 m/s error in the 

velocity estimate and 1 deg/sec Bzδω  will lead to –0.294 m/s error in the velocity 

estimate. To further improve the estimation accuracy, the y-axis accelerometer bias and 

the z-axis gyro bias are estimated using the same approach applied in the stationary mode. 

For the measurement noise effects, it is mainly caused by sensor noise, vibration and road 

ruggedness during the cornering motion. Similar to the stationary mode, moving average 

of the velocity estimates over a time window is used for noise reduction. 
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4.3.2.4 Summary 

The vehicle dynamics-derived observations under different dynamics are summarized in 

Table 4.4. We find that the stationary dynamics provides the most dynamics-derived 

observations for INS error estimation and correction including attitude error, velocity 

error and gyro bias. During the straight-line motion direct estimation of the roll angle is 

possible and roll error can be well bounded and controlled by accelerometer 

measurements. When the vehicle makes a turn, a direct estimation of the forward velocity 

is available and the velocity error drift can be reduced. The accuracy of the dynamics-

derived observations is mainly governed by the unidentified accelerometer and gyro 

biases. In general, the drift-free dynamics-derived observations are more accurate than 

the stand-alone INS navigation states and can provide effective INS error correction and 

reduction without the aiding from external sensors. 

 

Table 4.4: Vehicle dynamics aided observations 

Direct Estimation of INS Navigation States and Sensor Errors Vehicle 
Dynamics Pitch Roll Yaw Forward Velocity Gyro Bias

Stationary 

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
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
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g
A

sin By1φ N/A N/A N/A 

Cornering 
Motion N/A N/A N/A 

Bz

By
f ω

cossingA
V

θφ+
=  N/A 

 

4.3.3 Design of Fuzzy Expert Vehicle Dynamics Identification System 

In order to implement the aforementioned dynamics-dependent estimation for INS error 

control, the vehicle dynamics such as stationary, straight-line motion, and cornering 

motion must be correctly identified. Inertial measurements such as acceleration and 

angular velocity strongly relative to vehicle dynamics can be used for vehicle dynamics 

identification. In real-life applications, however, these raw measurements are corrupted 

with noise and vibration effects especially for low-cost MEMS IMUs. Therefore, the 

identification system must be capable of dealing with imprecision of inertial 
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measurements. As mentioned in Chapter 3, the fuzzy set theory provides a natural 

method for dealing with linguistic term that is a very effective knowledge representation 

format for imprecise and ambiguous information (Kandel, 1992). Thus, a fuzzy inference 

system that incorporates fuzzy sets and fuzzy logic into its reasoning process and 

knowledge representation scheme is applied to convert the INS raw measurements into a 

more appropriate measure for vehicle dynamics identification. 

 

To consider both linear and angular dynamics, we define the input variables of the fuzzy 

inference system, ( )ktJ  and ( )ktW , as follows: 

( ) ( ) ( )∑
−=

−−=
k

ki

t

ntt
inorminormk tAtAtJ 1                (4-29) 

( ) ( )∑
−=

=
k

ki

t

ntt
inormk ttW ω                                    (4.30) 

where 222
BzByBxnorm AAAA ++=  is the norm of the three-axis accelerations; 

22
ByBxnorm ωωω +=  is the norm of the x-axis and y-axis angular velocities; kt  denotes 

the current discrete time; and n  is the size of time window for statistical smoothing. 

 

The first input variable ( )ktJ  indicates the overall linear jerk dynamics over a fixed time 

interval ( ntk −  to kt ). The second input variable ( )ktW  indicates the pitching and rolling 

dynamics over a fixed time interval ( ntk −  to kt ). The output of the fuzzy inference 

system, namely the dynamics indicator ( )ktDI , is the combination of these two input 

dynamics measures through a fuzzy inference. As mentioned in Chapter 3, a fuzzy 

inference system is accomplished by fuzzy set membership functions, a set of if-then 

rules and a defuzzification process. The membership functions mapping input data into 

the fuzzy set degrees are used to handle the ambiguity of input data. In the considered 

problem, two membership functions, ‘Low’ and ‘High’, representing the low and high 
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linear/angular dynamics are used for each input variable. For the purpose of 

computational simplicity, the triangle membership functions are used. The parameters of 

input membership functions are empirically determined based on the field test data. 

Specifically, we use the values of ( )ktJ  and ( )ktW  under the stationary and non-

stationary dynamics to define the scope of the input membership functions. For the output 

membership functions, three triangles with full overlaps between each set and even 

segmentation from zero to one are used. The linguistic term ‘Large’ in the output 

membership functions means the higher likelihood for the vehicle being moving and so 

on. A set of if-then rules mapping the input fuzzy sets into the output fuzzy set is 

established by common sense reasoning and expert knowledge to the problems, e.g., the 

larger ( )ktJ  and ( )ktW , the higher likelihood for the vehicle being moving. The designed 

membership functions and fuzzy rules are shown in Figure 4.17 and Table 4.5, 

respectively. 

 

To complete the inference procedure and to generate the output fuzzy set, the Mamdani 

type fuzzy inference method with max-min composition, which is considered as the most 

commonly seen fuzzy methodology, is used (Mamdani and Assilian, 1975). The output 

fuzzy set is defuzzified into a crisp value using the centre of the area method. According 

to the designed output membership functions, the final crisp output, i.e., the dynamics 

indicator ( )ktDI , is in a range between 1/6 and 5/6 and it is straightforward to distinguish 

between stationary and non-stationary dynamics using a cut-off value of 0.5. 

 

Table 4.5: If-then rules used in the fuzzy inference system for vehicle dynamics 
identification 

R1: If ( )ktJ  is LOW and ( )ktW  is LOW then ( )ktDI  is SMALL 

R2: If ( )ktJ  is HIGH and ( )ktW  is LOW then ( )ktDI  is MEDIUM 

R3: If ( )ktJ  is LOW and ( )ktW  is HIGH then ( )ktDI  is MEDIUM 

R4: If ( )ktJ  is HIGH and ( )ktW  is HIGH then ( )ktDI  is LARGE 
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Figure 4.17: Membership functions used in the fuzzy inference system for vehicle 
dynamics identification 
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When the dynamics indicator ( )ktDI  is used for stationary and non-stationary 

identification, there however exists the detection delay because the fuzzy input variables, 

( )ktJ  and ( )ktW , are formed by a set of data from the previous epoch to current epoch. To 

overcome this problem, we define another linear dynamics parameter, ( )kx tDA , to 

measure the instant forward dynamics as follows: 

( ) ( ) ( )∑
−=

−−=
k

ki

t

ptt
kBxiBxkx ptAtAtDA                              (4-31) 

where p  is the time lag for the computation of acceleration difference. 

 

When the vehicle begins to move from a stationary status, a dramatic dynamics change 

occurs in the forward direction. In this case, ( )kx tDA  becomes significant and can be used 

to instantly indicate the dynamics transition from stationary to move. Based on the 

conditions of ( )ktDI  and ( )kx tDA , a set of if-then rules shown in Table 4.6 are 

constructed to distinguish the status of vehicle dynamics, stationary or non-stationary. 

 

When the vehicle dynamics is identified as non-stationary, the next task is to distinguish 

the vehicle dynamics between straight-line motion and cornering motion. Since pitch and 

roll angles are generally small during the cornering motion of a land vehicle, the z-axis 

gyro measurement, Bzω , can be directly used to represent the yawing dynamics. By 

simply averaging Bzω  over a fixed time interval to reduce noise effects, a cornering 

dynamics measure is computed as follows: 

( ) ( )∑
=

=
k

ki

t

-mtt
iBzkz tω

m
tMω 1                        (4-32) 

where m  is the size of time window for moving average. 

 

Based on the conditions of ( )kz tMω , a set of if-then rules shown in Table 4.7 are 

constructed to classify the non-stationary dynamics as straight-line motion or cornering 
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motion. In Table 4.6 and Table 4.7, the if-then rules used for identifying stationary, 

straight-line motion and cornering motion are easily formulated by common sense 

reasoning and expert knowledge to the problems. The criterion value used in each rule is 

heuristically determined based on the real data and is vehicle dependent and sensitive to 

the installation locations of the sensors. The decision flow of the designed vehicle 

dynamics identification system is shown in Figure 4.18. 

 

Table 4.6: Expert rules for stationary/non-stationary identification 

R1: 
When the vehicle was in stationary at the last epoch: 
If ( )kx tDA  is larger than a criterion value then the vehicle is in non-stationary 

R2: 
When the vehicle was in non-stationary at the last epoch: 
If ( )kx tDA  is smaller than a criterion value and ( )ktDI  is smaller than 0.5 then 
the vehicle is in stationary 

 

Table 4.7: Expert rules for straight-line/cornering motion identification 

R1: 
When the vehicle was in straight-line motion at the last epoch: 
If ( )kz tMω  is larger than a criterion value then the vehicle is in cornering motion. 

R2: 
When the vehicle was in cornering motion at the last epoch: 
If ( )kz tMω  is smaller than a criterion value then the vehicle is in straight-line 
motion. 

 

Fuzzy Inference System

Straight-line/Cornering
Decision Rules

Stationary/Non-stationary
Decision Rules

STATONARY STRAIGHT-LINE MOTION CORNERING MOTION

( )kx tDA

( )kz tMω

NON-STATONARY

( )ktJ ( )ktW

( )ktDI

 
Figure 4.18: Decision flow of the vehicle dynamics identification system 
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4.4 Neural Networks Compass Calibration 

As stated in Chapter 2, a magnetic compass can provide heading direction by measuring 

the Earth’s magnetic field. In practical applications there usually exist unwanted local 

magnetic fields that will distort magnetometer measurements, hence a calibration 

procedure is essential. Two types of methods, one requiring true (reference) headings 

while another not, have been successfully used for compass calibration. When true 

headings are unavailable, a simple calibration method is to level and rotate the compass 

on a horizontal surface and to find the maximum and minimum values of the x-axis and 

y-axis magnetic readings. Then these four values can be used to compute the 

magnetometer scale factors and biases based on the fact that the locus of error-free 

measurements on x and y axes is a circle (Caruso 1997). Another similar method 

developed by Gebre-Egziabher et al (2001) is to use a non-linear two-step estimator to 

resolve an ellipse locus equation and then to estimate the scale factors and biases. In 

addition, Crassidis et al (2005) developed a real-time approach for compass calibration 

using the extended Kalman filter and Unscented filter. This approach relies on a 

conversion of the magnetometer-body and geomagnetic-reference vectors into an attitude 

independent observation by using scalar checking (Crassidis et al 2005). On the other 

hand, if true headings are known during the calibration process, a traditional “swinging” 

procedure involving levelling and rotating the compass through a series of known 

headings can be used (Bowditch 1995). At each known heading, the heading error is 

computed and these known headings and heading errors will be used to estimate the 

unknown parameters in the heading error equation using a batch least squares estimation. 

Once the parameters are solved correctly, the heading error can be predicted based on the 

heading error equation as a nonlinear input-output mapping. However, the common 

drawback of the forementioned calibration methods is that the algorithm will diverge or 

fail when the magnetic measurements are deteriorated by large amounts of noise and/or 

blunders which are frequently present in land vehicle environments. 

 

To overcome the above problem, we have proposed a new compass calibration algorithm 

by applying a neural networks nonlinear mapping between the compass heading and the 
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true heading based on the fact that the uncalibrated compass heading corrupted by the 

magnetometer biases, scale factors and declination angles has a nonlinear relationship 

with the true heading (Wang and Gao, 2005c). When external true headings are available, 

the neural networks are trained to model this nonlinear relationship. After that, the trained 

neural networks can be used to convert the compass heading into the correct heading. By 

properly selecting the architecture of the networks and the size of the training data set, the 

neural networks can neglect the spurious disturbances and will produce a correct input-

output mapping (Haykin 1999), making the proposed calibration algorithm more robust 

in practical applications. In the following sections, the nonlinear relationship between the 

compass heading and the true heading will be analyzed first. The design of the neural 

networks for compass heading calibration will then be presented and verified by 

simulation tests. 

 

4.4.1 Magnetic Compass Error Model 

In land vehicle applications the magnetic compass is usually mounted inside a vehicle. In 

this case, the Earth’s magnetic fields are inevitably coupled with unwanted local 

magnetic fields caused by nearby ferrous effects such as steel materials and external 

interference such as electrical currents. As a result, the magnetic compass will output 

incorrect headings by measuring the distorted and/or bended Earth’s magnetic fields. If 

the compass is securely mounted inside the vehicle, the nearby ferrous effects on 

magnetometer measurements will remain stable and can be modeled as measurement 

biases and scale factor errors. In contrast, the magnetic noise and disturbance are 

unpredictable and changing randomly, thus they cannot be modeled systematically and 

instead they are usually dealt with by filtering techniques. In addition to these 

environmental magnetic effects, there exists misalignment which represents the imperfect 

alignment between the magnetometer triad and the body frame and will lead to cross 

coupling of the magnetic measurements. Comparing to nearby ferrous effects, in general, 

the heading error due to misalignment is much smaller and can be neglected. As a result, 

only biases and scale factor errors are dealt with by compass calibration in most 
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applications. The magnetometer measurements in a horizontal plane can be modeled as 

follows (Caruso, 1997): 

HHHH xxxx bMSM~ +=                                               (4-33) 

HHHH yyyy bMSM~ +=                                               (4-34) 

where 
HxM~  and 

HyM~  are the Earth’s magnetic fields projected on the Hx  and Hy  axes 

of the horizontal plane, respectively; 
HxM  and 

HyM  are the measured magnetic fields 

projected on the Hx  and Hy  axes of the horizontal plane, respectively; and 
HxS , 

HyS , 

Hxb  and 
Hyb  are the measurement scale factors and biases on the Hx  and Hy  axes of the 

horizontal plane, respectively. 

 

As stated in Chapter 2, the magnetic fields are converted into magnetic headings based on 

the nonlinear heading computation equations given in Eq. (2-28). Based on this nonlinear 

mapping and the above magnetometer error model, the magnetometer measurement 

biases and scale factor errors will result in incorrect compass headings that have a 

nonlinear relationship with true headings. The curves shown in Figure 4.19 are some 

examples of such nonlinear relationship. The added bias on each axis is from –0.4 to 0.4 

times of the magnitude of the reference magnetic field. The added scale factor on each 

axis is from 1 to 1.5. The declination angle, which can be considered as a heading bias, is 

chosen as from –20 to 20 degrees. 
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Figure 4.19: Nonlinear relationship between compass headings and true headings 

 

4.4.2 Design of Neural Networks Compass Calibration System 

As shown in Figure 4.19, we have demonstrated that there exists a nonlinear relationship 

between the compass heading and the true heading which describes the effects of biases, 

scale factors and declination angles in the heading domain. If we can properly model this 

nonlinear relationship or nonlinear functional mapping, we can convert the compass 

heading to the true heading based on it. In real applications, however, the sensor and 

environment noise, the blunder due to magnetic disturbances and the projection error of 

magnetic field vector due to tilt errors will corrupt and distort this nonlinear relationship. 

Therefore, the nonlinear functional mapping method should be capable of handling the 

corrupted data and modelling this nonlinear relationship effectively even in the presence 

of a large amount of noises, blunders and unknown errors. As described in Chapter 3, the 

neural networks can provide a model-free input-output nonlinear mapping that doesn’t 

require prior statistical model for the input data. With the use of proper time constants of 

the mapping system, the neural networks can ignore spurious disturbances and respond to 

meaningful changes in the environment (Haykin 1999). In this dissertation the multilayer 

feedforward neural networks with a back-propagation learning algorithm which are 
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considered as the most commonly used networks for the nonlinear mapping are applied 

for modelling the nonlinear relationship between the compass heading and the true 

heading. 

 

The architecture of the applied neural networks is shown in Figure 4.20. The input and 

output of the neural networks are compass heading and true heading. The compass 

heading is derived from magnetometer measurements based on the computation 

procedure described in Chapter 2. The true heading and tilt angles used for projecting 

magnetometer measurements on the horizontal plane are provided by the INS/GPS 

integration system which will be described in Chapter 5. When true headings are 

available, the neural networks are trained to model the input-output pattern. The training 

of the networks is repeated for many examples in the set until the networks reach a steady 

state so that a proper input-output mapping can be constructed. After the training process 

is completed, the trained neural networks are used to correct the compass heading. If the 

magnetometer errors or the operational environments change from the training data, the 

neural networks should be retrained to adapt to the up-to-date input-output relationship. It 

should be noted that the number of the neurons and the layers used will affect the 

performance of the input-output mapping. In general, the network architecture depends 

on the physical complexity of the problem at hand. In our application, by using a 

heuristic approach three-layer neural networks with twelve neurons in hidden layer are 

chosen for the nonlinear mapping between the compass heading and the true heading. 

More details about the neural networks algorithm are provided in Chapter 3. 
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Figure 4.20: Architecture of the neural networks compass calibration system 
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4.4.3 Simulation Verification 

In this section the performance of using neural networks for the nonlinear mapping 

between compass headings and true headings is examined by simulation data. Two-

dimensional magnetic fields covering 360-degree directions on a horizontal plane are 

generated as reference data. Some biases, scale factors, noises, and disturbances are 

added into the reference data to produce distorted magnetometer measurements. The 

compass heading is then computed using the distorted magnetometer measurements and 

biased by a selected declination angle. Figure 4.21 shows an example of the true and 

distorted magnetic field measurement loci in 2-D. In this simulation data set, the added 

biases on x and y axes are randomly selected as 0.009 and 0.5 times of the magnitude of 

the reference magnetic field while the scale factors on x and y axes as 1.196 and 1.978, 

respectively. The Gaussian white sequences with a standard deviation of 3.5% of the 

magnitude of the reference magnetic field are also added as noise effects. The magnetic 

disturbances are simulated to bias the magnetic fields with a randomly selected 

magnitude of less than 60% of the reference magnetic field’s magnitude. Twelve 

randomly selected data sets, evenly spreading over the entire reference data and 

accounting for 12.5% of the total reference data, are deteriorated by the simulated 

disturbances. Figure 4.22 shows the performance of using the neural networks for the 

nonlinear mapping between the true heading and the distorted compass heading that has 

been biased by a randomly selected declination angle of –9.59 degrees. The blue crosses 

represent the training data set and the green circles are the neural networks outputs from 

the processing of the disturbance-free testing data that have the same biases, scalar 

factors and declination angles as the training data. It can be seen that the neural networks 

have modeled the nonlinear relationship between the compass heading and the true 

heading properly although the training data are deteriorated by noise and disturbance. 
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Figure 4.21: Magnetic field measurement locus in 2-D 

 

 
Figure 4.22: Performance of the neural networks nonlinear mapping 

 

To assess the performance of the neural networks nonlinear mapping statistically, more 

simulation tests have been performed. The simulation results are summarized in Table 4.8. 

In each simulation test, the biases, scalar factors and declination angles are randomly 

selected. Noises and disturbances are then added in the same manner as described before 

to form the training data. After the training process, the neural networks first process the 
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disturbance-free testing data that have the same biases, scalar factors and declination 

angles as the training data and then output the calibrated headings. The calibration error 

is computed by taking the difference between the neural networks output and the true 

heading. As shown in Table 4.8, the average mean and RMS of the calibrated heading 

errors over these 10 simulation tests are –0.176 and 2.35 degrees, respectively. This 

shows the capability of the neural networks technique for the nonlinear input-output 

mapping in the presence of magnetic disturbances. 

 

Table 4.8: Calibrated compass heading accuracy (12.5% data deteriorated by 
disturbances) 

Sensor Error Calibrated Heading Error
Test No. 

Bias-x Bias-y SF-x SF-y Declination 
(degrees)

Mean 
(degrees) 

RMS 
(degrees) 

1 0.223 0.162 1.393 1.592 7.998 -0.621 2.059 
2 0.13 -0.153 1.699 1.397 -7.777 -0.264 1.456 
3 -0.478 -0.305 1.791 1.815 19.333 0.245 2.196 
4 0.203 -0.005 1.565 1.767 5.964 0.672 2.827 
5 -0.139 0.596 1.982 1.9 -4.725 -0.909 2.149 
6 -0.331 -0.136 1.162 1.031 15.189 -0.94 3.503 
7 0.009 0.5 1.196 1.978 -9.594 -0.252 2.777 
8 0.297 0.175 1.743 1.651 5.419 -0.45 1.458 
9 0.155 -0.248 1.168 1.814 9.688 0.904 2.466 

10 -0.019 0.492 1.735 1.005 -20.873 -0.148 2.615 
 

To further study the effects of magnetic disturbances on calibration performance, we 

have performed additional simulation tests with data deteriorated by different levels of 

disturbances. Table 4.9 and Table 4.10 summarized the simulation results with 6.25% and 

25% of training data deteriorated by disturbances, respectively. The average mean and 

RMS of the calibrated heading errors are -0.236 and 1.907 degrees for the case with the 

less disturbances and -0.855 and 4.373 degrees for the case with the more disturbances. It 

can be seen that the calibration performance will degrade with the increment of the data 

deteriorated by disturbances. The results also demonstrate that the proposed calibration 

algorithm is still able to work under disturbance-rich environments, e.g. 25% data 

deteriorated by disturbances. This confirms the robustness of applying the neural 
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networks for compass calibration over other calibration algorithms that have failed to 

estimate biases and scalar factors under high disturbance environments. 

 

Table 4.9: Calibrated compass heading accuracy (6.25% data deteriorated by 
disturbances) 

Sensor Error Calibrated Heading Error 
Test No. 

Bias-x Bias-y SF-x SF-y Declination 
(degrees)

Mean 
(degrees) 

RMS 
(degrees) 

1 -0.476 0.352 1.874 1.237 -20.44 1.059 2.673 
2 0.193 -0.223 1.217 1.231 -5.706 0.713 1.156 
3 -0.574 -0.189 1.727 1.489 -20.244 0.176 2.962 
4 -0.038 -0.445 1.584 1.603 -6.591 0.211 1.9 
5 0.109 -0.491 1.401 1.191 2.438 -0.501 1.162 
6 0.276 -0.522 1.221 1.19 3.755 0.371 1.289 
7 0.189 0.098 1.119 1.519 0.676 -0.027 2.986 
8 -0.571 -0.022 1.543 1.379 3.928 -0.48 2.487 
9 0.191 0.22 1.364 1.616 4.956 0.324 1.18 

10 0.198 0.08 1.099 1.681 22.912 0.512 1.279 
 

Table 4.10: Calibrated compass heading accuracy (25% data deteriorated by 
disturbances) 

Sensor Error Calibrated Heading Error 
Test No. 

Bias-x Bias-y SF-x SF-y Declination 
(degrees)

Mean 
(degrees) 

RMS 
(degrees) 

1 0.213 -0.281 1.411 1.4 -19.832 0.336 4.137 
2 0.035 0.421 1.136 1.532 3.132 -2.476 4.437 
3 -0.244 -0.099 1.509 1.074 2.09 2.327 4.574 
4 -0.016 -0.091 1.287 1.893 -6.269 0.001 4.105 
5 -0.463 -0.555 1.77 1.368 -19.414 -2.51 6.216 
6 -0.163 -0.517 1.461 1.513 -11.922 -2.538 3.553 
7 -0.19 0.598 1.982 1.412 3.95 -0.569 2.94 
8 -0.544 -0.257 1.647 1.447 23.494 -0.911 4.62 
9 -0.078 -0.268 1.24 1.49 -11.57 -1.471 5.241 

10 -0.153 -0.037 1.989 1.303 -13.005 -0.737 3.909 
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Chapter 5  

Development of An Intelligent Integration 

Algorithm 

 

In Chapter 4 the limitations of the low-cost MEMS INS/GPS integration using a 

traditional Kalman filter have been addressed. The methods to enhance the integration 

performance using AI techniques, including a fuzzy logic rule-based GPS data 

classification system, a dynamics knowledge aided inertial navigation algorithm, and a 

neural networks compass calibration algorithm, have also been developed. This chapter 

describes how these AI-based methods can be integrated with the Kalman filter to 

develop an intelligent integration algorithm for land vehicle applications. A cascaded 

loosely coupled integration scheme in which the intelligent integration methodology is 

implemented is described first. The design of the Kalman filters enhanced by the AI-

based methods is then presented. Finally, the construction and operation procedure of the 

intelligent integration algorithm are illustrated. 

 

5.1 Cascaded Integration Scheme 

As stated in Chapter 3, a loosely coupled closed-loop integration scheme is considered as 

a more suitable approach for low-cost INS/GPS integration in land vehicle applications 

and has been applied in this dissertation. In general, one INS Kalman filter is used to 

model and estimate all navigation states including velocity, attitude and position to 

provide optimal estimation performance. For land vehicle applications in GPS 

challenging environments, the Doppler-derived velocity is more reliable than the code-

derived position because multipath and signal degradation have much more impact on the 

pseudorange measurements than the Doppler measurements. Given this, the Doppler-
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derived velocity is considered more useful for updating the inertial system and the code-

derived position would even deteriorate the velocity and attitude estimation. Since the 

accurate modelling of the error-corrupted GPS position in signal-degraded conditions is 

difficult, the use of incorrect measurement covariance is likely to cause huge estimation 

error in velocity and attitude solutions. To maintain system stability, two cascaded 

Kalman filters, namely the velocity and attitude filter and the position filter, have been 

employed in this dissertation and implemented separately in a loosely coupled closed-

loop integration scheme as shown in Figure 5.1. The INS velocity and attitude filter is 

designed to estimate INS sensor errors as well as velocity and attitude errors. The INS 

position filter is designed to integrate the corrected INS velocity and attitude with the 

GPS position to output an optimal position estimate. 
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Figure 5.1: Cascaded INS/GPS integration scheme 

 

5.2 Design of AI-Enhanced Velocity/Attitude and Position Filters 

Traditionally, the design of the INS velocity and attitude filter and INS position filter is 

based on INS error dynamics models and measurement statistics. For low-cost INS/GPS 

integration in land vehicle applications, however, it is difficult to know accurate 

dynamics and statistical models and the Kalman filter will suffer degraded estimation 

accuracy and even divergence problems. This dissertation has applied the AI-based 

methods developed in Chapter 4 to improve the filter performance through simplifying 

the system models as well as extending and adapting the measurement updates. 
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Described in the following sections is the design of the AI-enhanced velocity and attitude 

filter and position filter in terms of the system and measurement models. 

 

5.2.1 Velocity and Attitude Filter 

5.2.1.1 Dynamics Model 

The INS velocity and attitude filter is designed to estimate INS sensor errors and velocity 

and attitude errors based on the system error model and external measurement updates. 

The system error model can be derived based on perturbation analysis of the system 

dynamics. In this dissertation, the land vehicle dynamics model aided by nonholonomic 

constraints is utilized to describe the dynamics of a land vehicle as shown in Eq. (4-12) 

through Eq. (4-20). Using perturbation technique, we can derive the following error 

dynamics equations for vehicle velocity and attitude estimation from Eq. (4-12), Eq. (4-

15), Eq. (4-16) and Eq. (4-17). 

θδθδδ cosgAV Bxf −=&                                         (5-1) 
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ByByByBx
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++−
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where fVδ  is forward velocity error; 

 δφ , δθ , δψ   are roll, pitch, and yaw errors; 

 BxAδ  is the x-axis accelerometer measurement error; and 

 Bxδω , Byδω , Bzδω  are the gyro measurement errors on each axis. 
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For the integration of automotive-grade MEMS INS with single point code-based GPS, 

only sensor biases and noises are modelled in the Kalman filter because other sensor 

errors such as misalignment and scale factor errors are weakly observable under 

operational conditions. On the other hand, the modelling of poor observable sensor errors 

will not only increase system complexity but also make the filter unstable. In addition, 

with the aiding from available vehicle dynamics knowledge, gyro biases can be estimated 

and removed from measurements directly if the vehicle is stationary. Thus, we model the 

sensor errors as follows: 

BxBx AABx wbA +=δ                    (5-5) 

Bx
wBx ωδω =                    (5-6) 

By
wBy ωδω =                    (5-7) 

Bx
wBz ωδω =                    (5-8) 

where 
BxAb  is the x-axis accelerometer bias; 

 
BxAw  is the x-axis accelerometer noise; and 

 
Bx

wω , 
By

wω , 
Bz

wω   are the gyro noises on each axis.  

 

For the low-cost MEMS inertial sensor with large bias variations, the accurate modelling 

of the sensor bias is very difficult. We thus focus on the estimation of the constant part of 

the bias and model the accelerometer bias as a random walk process. Augmented with the 

above sensor error models, the final system error models can be constructed from Eq. (5-

1) through Eq. (5-4) as follows: 
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where  BzBy tansintancosf θωφθωφφφ −= ; 

 BzBy seccossecsinf θωφθωφφθ
22 += ; 

 BzBy cossinf φωφωθφ −−= ; 

 BzBy secsinseccosf θωφθωφψφ −= ; 

 BzBy tanseccostansecsinf θωθφθωθφψθ += ; and 

 bw  is the driving noise for the accelerometer bias. 

 

The spectral density matrix of the input white noise u  is given by 

( ) ( )bA qqqqqdiagt
BzByBxBx ωωω=Q                                               (5-10) 

where 
BxAq  is the spectral density of the x-axis accelerometer noise; 

  
Bx

qω , 
By

qω , 
Bz

qω  are the spectral densities of the gyro noises on each axis; 

  bq  is the spectral density of the x-axis accelerometer bias. 

 

The spectral density of the accelerometer and gyro noises can be estimated based on the 

standard deviation of short periods of static measurements or obtained from the 

manufacturer provided specifications. The variation of the accelerometer bias can be 

calculated by using Allan variance analysis of long periods of static data or obtained from 
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the manufacturer specifications (IEEE, std. 952-1997). In real applications under 

dynamic manoeuvres, however, sensor noises and bias variations are strongly coupled 

with vibration, dithering, dynamics, and environment effects especially for low-cost 

MEMS IMUs. To take these effects into account, a larger spectral density of the input 

noise should be used and in this dissertation they are determined empirically based on 

field test data. 

 

After the system error dynamics and the spectral density of the input noise are determined, 

the discrete error model, i.e., the transition matrix and the process noise covariance 

matrix, can be calculated using Eq. (3-7) and Eq. (3-9).  

 

5.2.1.2 Measurement Model 

5.2.1.2.1 GPS Observations 

For land vehicle applications, GPS velocities can be used to derive the forward velocity 

and heading information of the vehicle in the following manner. 

( ) ( ) ( )222 GPS
Nd

GPS
Ne

GPS
Nn

GPS
f VVVV ++=                                               (5-11) 











= GPS

Nn

GPS
NeGPS

V
V

arctanψ                                               (5-12) 

where GPS
fV  is the GPS-derived forward velocity of the vehicle; 

 GPSψ  is the GPS-derived heading of the vehicle; and 

 GPS
NnV , GPS

NeV , GPS
NdV  are GPS velocities in the North, East and down directions. 

 

The difference between the INS and GPS forward velocity and heading can be used as 

the Kalman filter measurement updates and the measurement model can be formed as 

follows: 
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where GPS
fvv  and GPSvψ  represent the measurement noises in the GPS-derived forward 

velocity and heading, respectively. 

 

The covariance matrix of the measurement noise is given by 






= 22

GPSGPS
fVdiag δψδ σσR                                               (5-14) 

where GPS
fVδσ  is the standard deviation of the GPS-derived forward velocity error; and 

GPSδψσ  is the standard deviation of the GPS-derived heading error. 

 

The standard deviation of the GPS-derived forward velocity error is basically determined 

based on GPS performance. For example, a typical value of GPS
fVδσ  in open-sky 

environments is about 0.1~0.2 m/s. For land vehicle applications under different GPS 

environments, the accuracy of GPS velocity is changing with signal degradation 

conditions and should be adjusted accordingly. Therefore, the fuzzy logic rule-based GPS 

data classification system developed in Chapter 4 is applied here to adapt the covariance 

of GPS velocity error based on the identified signal degradation conditions. Table 5.1 

lists the standard deviation of the GPS velocity errors under different signal degradation 

conditions based on the field test data. 

 

Since the GPS heading is derived from GPS velocities based on Eq. (5-12), its accuracy 

is highly correlated with the accuracy of GPS velocities. The standard deviation of the 

GPS heading error can be computed based on the following equation. 
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GPS
f

V

V

GPS
f

GPS
δ

δψ

σ
σ =                                               (5-15) 

 

Under low speed dynamics and severe signal degradation conditions, however, the GPS 

heading is too noisy to be useful. Instead, it will deteriorate the Kalman filter heading 

estimation. In this dissertation, we have used a threshold to the GPS velocity and the 

difference between the GPS heading and the filter heading to eliminate this kind of 

measurements. More specifically, we will assign an extremely large value to GPSδψσ  

when the GPS velocity is smaller than 1 m/s or the difference between the GPS heading 

and the filter heading is larger than 15 degrees. 

 

Table 5.1: Adaptive GPS
fVδσ  values under different signal degradation conditions 

Identified signal 
degradation condition Low Medium High 

GPS
fVδσ  (m/s) 0.1 0.5 2 

 

5.2.1.2.2 Dynamics-Derived Observations 

Besides the GPS updates, we can have additional dynamics-derived observations to 

correct the INS velocity and attitude by applying the dynamics knowledge aided inertial 

navigation algorithm developed in Chapter 4. These additional measurements are 

available to update the Kalman filter under certain vehicle dynamics such as stationary, 

straight-line motion, and cornering motion as follows: 

 

1. Stationary mode: As summarized in Table 4.4, when the vehicle is stationary, a 

direct estimation of vehicle velocity and attitude information becomes feasible. In 

this mode, the measurement model can be formed as follows: 
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where Pψ is the yaw angle estimated by the Kalman filter at the previous epoch; Aφ  

and Aθ  are the roll and pitch angles computed using accelerometer measurements 

after bias and noise removal; and ZUPT
fvv , Avφ , Avθ , and Pvψ  represent the 

measurement noises for ZUPT, the accelerometer-derived roll and pitch, and the 

filter-derived yaw at the previous epoch, respectively. 

 

The covariance matrix of the measurement noise is given by 

 




= 2222

PAAZUPT
fVdiag δψδθδφδ σσσσR                                               (5-17) 

where ZUPT
fVδσ  is the standard deviation of the ZUPT error; Aδφσ  and Aδθσ  are the 

standard deviation of the accelerometer-derived roll and pitch error; and Pδψσ  is the 

standard deviation of the filter-derived yaw error at the previous epoch. 

 

Since the vehicle has zero velocity and constant heading during stationary periods, 

we can assign a very small value to ZUPT
fVδσ . In order to constrain the heading 

estimate to the previously derived heading during stationary periods, we also assign 

a very small value to Pδψσ . For the determination of Aδφσ  and Aδθσ , they are 

assigned small values of 0.2 degrees because the accelerometer-derived roll and 

pitch after bias compensation are much accurate compared to the gyro-derived roll 

and pitch which have large drift errors. 
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2. Straight-line motion mode: When the vehicle is moving straight, the accelerometer-

derived roll is the only dynamics-derived measurement available to update the 

velocity and attitude filter. The measurement model is formed as follows: 
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The covariance matrix of the measurement noise is given by 

 2
Aδφσ=R                                         (5-19) 

 

Similarly, we assign a small value of 0.2 degrees to Aδφσ  because the 

accelerometer-derived roll after bias compensation is accurate enough to correct the 

drift errors of the gyro-derived roll. 

 

3. Cornering motion mode: When the vehicle is making a turn, the forward velocity is 

the only dynamics-derived measurement available to update the velocity and attitude 

filter. The measurement model is formed as follows:  
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where C
fV  is the dynamics-derived forward velocity after the bias and noise removal; 

and C
fvv  represents the measurement noise of C

fV . 

 

The covariance matrix of the measurement noise is given by 

 2
C
fVδσ=R                                   (5-21) 

where C
fVδσ  is the standard deviation of the dynamics-derived forward velocity error. 

 

As stated in Chapter 4, the accuracy of the dynamics-derived forward velocity is 

mainly dependent on the quality of the y-axis accelerometer and the z-axis gyro 

measurements as well as the vibration and road ruggedness effects during the 

cornering motion. Therefore, C
fVδσ  is defined empirically according to the field test 

data. 

 

It should be noted that the x-axis and y-axis accelerometer biases must be determined 

first in order to correctly derive the above dynamics-based observations. As shown in Eq. 

(5-9), the x-axis accelerometer bias is already modeled in the filter and can be estimated 

when GPS velocity updates are available. For the y-axis accelerometer bias estimation, in 

this dissertation we have developed a statistical approach based on the forward velocity 

computation model described in Eq. (4-26). Arranging the y-axis acceleration term to the 

left-hand side of the equation, we rewrite Eq. (4-26) as follows: 

θφ cossingVωA fBzBy −=                                              (5-22) 

 

As mentioned previously, the bias term in the z-axis gyro measurement ( Bzω ) can be 

removed directly if the vehicle is stationary. The corrected fV , φ , and θ  can be 

estimated by the velocity and attitude Kalman filter when GPS updates are available. 
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After the Kalman filter reaches a steady-state condition, more accurate estimates can be 

obtained as well. Therefore, applying these corrected terms into Eq. (5-22), we can 

calculate the unbiased y-axis body acceleration. Furthermore, taking the difference 

between this unbiased acceleration and the y-axis accelerometer measurement, we can 

compute the acceleration error that is mainly contributed by the accelerometer bias and 

noise as well as the noises from Bzω , fV , φ , and θ . A simple approach to resolve the 

accelerometer bias is to remove the noise effects by averaging a set of data and use this 

mean value as the constant part of the y-axis accelerometer bias. The estimate of the y-

axis accelerometer bias, 
ByAb̂ , using the statistical approach is given by the following 

equation. 

( ) ( ) ( ) ( ) ( )∑
=

+−=
M

t
kkkfkBzkByA

k
By

tˆcostˆsingtV̂tωtA
M

b̂
1

1 θφ        (5-23) 

where ByA  is the y-axis accelerometer measurement; Bzω  is the z-axis bias-removed gyro 

measurement; fV̂ , φ̂ , and θ̂  are the estimates of the velocity, roll and pitch given by the 

Kalman filter; and M  is number of data used for averaging process. 

 

In order to estimate the y-axis accelerometer bias more accurately, only the data obtained 

during the cornering motion and after the convergence of the Kalman filter are used for 

bias computation. This is because ByA  and Bzω  have higher signal-to-noise ratio during 

the cornering motion and fV̂ , φ̂  and θ̂  have better accuracy after the convergence of the 

Kalman filter. The obtainable accuracy of the accelerometer bias estimates and the 

dynamics-derived observations for a low-cost MEMS IMU are to be presented in Chapter 

6. 

 

It should be noted that the accuracy of some dynamics-derived observations, including 

stationary tilt, straight-line roll and cornering velocity, are correlated with inertial sensor 

biases and the estimated pitch and roll as shown in Eq. (4-23), Eq. (4-24) and Eq. (4-27). 

This will violate the assumption of the uncorrelated property between measurement noise 
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and process noise in the Kalman filter if using these dynamics-derived observations to 

estimate the inertial sensor biases and tilt. In this dissertation the x-axis and y-axis 

accelerometer biases are estimated by the Kalman filter and a statistical approach using 

only GPS data in open-sky environments while the gyro biases are estimated during the 

previous stationary period. In GPS challenging environments the accelerometer bias 

estimation is disabled and the previously estimated inertial sensor biases are applied to 

correct the dynamics-derived observations which are used to update the Kalman filter. 

This strategy not only ensures the stability of bias estimation but also avoids the 

dynamics-derived measurements to be correlated with the Kalman filter system state, i.e. 

the x-axis accelerometer bias. As the pitch and roll angles are generally small in land 

vehicle environments, the correlation between the dynamics-derived measurements and 

the tilt errors is not significant. Compared to the unaided INS navigation which has large 

error drift, it is worthy to use these dynamics-derived measurements to bound the INS 

velocity and tilt errors even they are slightly correlated. 

 

5.2.1.2.3 Compass Observation 

During GPS outages, although the dynamics-derived observations can control and correct 

the INS velocity and tilt errors, the heading error is still un-removed and will drift with 

time due to the lack of a direct heading measurement. If a magnetic compass is available, 

this problem can be solved by adding the calibrated compass heading into the 

measurement model. For example, in the straight-line motion mode the modified 

measurement model with both dynamics-derived and compass observations can be 

written as follows: 
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where Nψ is the compass heading after the neural networks calibration; and Nvψ  

represents the measurement noise of the calibrated compass heading. 

 

The covariance matrix of the measurement noise is given by 

( )22
NAdiag δψδφ σσ=R  (5-25) 

where Aδφσ  and Nδψσ  are the standard deviations of the accelerometer-derived roll error 

and the calibrated compass heading error, respectively. 

 

With the aiding from the neural networks compass calibration developed in Chapter 4, 

the bias and scale factor error can be removed from the compass heading and the 

remained errors include only noise, disturbance and the projection error due to tilt 

compensation error. For land vehicle applications, these remained errors are related to 

vehicle dynamics. For example, when the vehicle is stationary, the projection error is 

much small because the tilt is corrected by the accurate accelerometer-derived tilt angles. 

Therefore, the dynamics knowledge is applied to adapt the standard deviation of the 

calibrated compass heading error as shown in Table 5.2. To avoid using the erroneous or 

disturbed compass heading to update the filter, a check on the difference between the 

compass heading and the filter heading is performed. When the difference is larger than 5 

degrees, we assign an extremely large value to Nδψσ  to skip the compass heading update. 

 

Table 5.2: Adaptive Nδψσ  values under different dynamics 

Vehicle 
Dynamics Stationary Straight–line 

Motion 
Cornering 

Motion 
Nδψσ  (deg.) 0.3 3 5 
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5.2.2 Position Filter 

5.2.2.1 Dynamics Model 

The INS position filter is designed to integrate GPS position with INS velocity to output 

an optimal position solution that combines the INS short-term accuracy with the GPS 

long-term accuracy. Because only the horizontal position is interested in land vehicle 

applications, the position and velocity in the North and East directions are modeled as the 

system states in the position filter. Obviously, the state of position is the integration of 

velocity and the state of velocity is the integration of acceleration. For simplicity, we 

model the vehicle velocity as a constant with an input noise driven by the vehicle 

acceleration. Therefore, the system model for the INS position filter is defined as follows: 
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where NnP  and NeP  are the North and East position states; NnV  and NeV  are the North and 

East velocity states; and 
NnVw  and 

NeVw  are the driving noise for the North and East 

velocity states. 

 

The spectral density matrix of the input white noise u  is given by 

( )
NeNn VV qqdiag=Q   (5-27) 

where 
NnVq  and 

NeVq  are the spectral densities of the North and East velocities, 

respectively, which indicate the change of the vehicle velocity, i.e., the vehicle 

acceleration. Thus, they are determined based on the land vehicle dynamics. 
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After the system dynamics and the spectral density of the input noise are determined, the 

discrete error model in terms of transition matrix and process noise covariance matrix can 

be calculated using Eq. (3-7) and (3-9).  

 

5.2.2.2 Measurement Model 

5.2.2.2.1  Model with GPS 

When GPS is available, the measurement updates for the position filter include the GPS 

position and the corrected INS velocity both in the North and East directions. The 

measurement model is defined as follows: 
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where GPS
NnP  and GPS

NeP  are the North and East GPS positions; INS
NnV  and INS

NeV  are the 

corrected North and East INS velocities which are computed using the velocity and 

attitude filter outputs based on Eq. (4-18) and (4-19); GPS
NnPv  and GPS

NePv  represent the 

measurement noises of the North and East GPS positions; and INS
NnVv  and INS

NeVv  represent 

the measurement noises of the corrected North and East INS velocities. 

 

The covariance matrix of the measurement noise is given by: 









=

××

××
INS

GPS

2222

2222

R0
0RR  (5-29) 

where GPS
22×R  and INS

22×R  are the covariance matrices of GPS position errors and corrected 

INS velocity errors, respectively. 
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Based on the above dynamics and measurement models, the position filter is actually 

performing a linear weighted combination of the GPS position and the corrected INS 

velocity using the Kalman gain. To compute the correct Kalman gain, the GPS position 

error and the corrected INS velocity error must be modeled properly. Since the corrected 

North and East INS velocities are computed using the outputs from the velocity and 

attitude Kalman filter based on Eq. (4-18) and (4-19), the accuracy of the corrected INS 

velocities is mainly determined by the filter performance. INS
22×R  can be determined by the 

propagation of error covariances of the forward velocity and heading obtained from the 

velocity and attitude Kalman filter. In terms of the GPS position error modelling, it is 

difficult to be accurate for land vehicle applications under various signal degradation 

conditions. This is because the GPS measurement is likely corrupted by multipath, echo-

only signal and high code noise. Therefore, the GPS position errors vary with very short 

correlation time and the accurate estimation of a priori knowledge about the position 

errors and noise statistics becomes a challenge. To model the GPS position error more 

appropriately, the innovation-based adaptive filtering algorithm with unknown 

measurement noise covariance described in Chapter 3 and the fuzzy logic rule-based GPS 

data classification system developed in Chapter 4 have been integrated to adapt the 

covariance of the GPS position error. 

 

The innovation-based adaptive measurement noise covariance kR̂  is calculated based on 

Eq. (3-20). It should be noted that the window size in Eq. (3-20) needs to be properly 

determined so that the statistic of the innovation sequence is correctly estimated and in 

turn the computed kR̂  is able to represent the actual measurement noise covariance. The 

choice of window size is usually application dependent. For land vehicle applications in 

urban areas the GPS position accuracy is changing rapidly as the vehicle is moving 

through various GPS environments. Therefore, a small window size should be used to 

enable the adaptive Kalman filter to correctly trace high-frequency changes of the GPS 

position accuracy. In this dissertation a window size of 5 epochs was chosen based on the 

GPS test performance in a typical North American urban area. 

 



 

132 

Ideally, the adaptive Kalman filter is expected to adapt the measurement noise covariance 

to environments to improve the estimation performance based on the residuals between 

the actual measurement from GPS and the predicted measurement from the integration 

filter. In GPS challenging environments, however, the adaptive filter might not work 

optimally due to the difficulty of separating the filter position error from GPS position 

error. This would happen in two cases. The first case is when the filter works without 

GPS position updates or with erroneous GPS position updates for certain periods of time. 

During GPS outages the filter position is basically the integration of the INS velocity 

which leads to a position drift. When erroneous GPS measurements last over several 

consecutive epochs, the innovation sequence is large and the Kalman gain becomes small, 

which leads to the filter working similarly to the GPS outage case. As a result, the filter 

position has a drift error and will bias the innovation sequence. The second case is when 

the GPS position is drifting and changing slowly over time. In this situation, this kind of 

GPS position errors is undetectable by the adaptive Kalman filter since the innovation 

sequence will remain relatively small. As a result, a large Kalman gain on measurements 

will cause the filter position to drift with the biased GPS position. When good GPS 

updates are available, for both cases, the innovation sequence becomes incorrect and 

unreliable because the predicted measurement from the integration filter is biased. 

Therefore, the adaptive Kalman filter cannot work appropriately because of using the 

exaggerated measurement noise covariance. 

 

To remedy this problem and to improve the adaptive filtering performance, the GPS data 

classification system developed in Chapter 4 is used to modify the measurement noise 

covariance computed by the innovation-based adaptive estimation from Eq. (3-20). The 

basic idea behind this modification is to use the knowledge of the GPS signal degradation 

condition which is correlated to GPS statistical performance to weight the innovation-

based adaptive measurement noise covariance. More specifically, for each channel (North 

and East), we decrease the innovation-based adaptive measurement noise covariance to 

the power of 0.5 and 0.75 when a GPS position is obtained under the low and medium 

signal-degraded conditions. Therefore, when a good GPS position is available, the 

adaptive measurement noise covariance is reduced to better characterize real GPS 
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performance and in turn to speed the convergence of the filter position to the GPS 

position. For example, if the filter position is biased by 45 m and a low signal-degraded 

GPS position with accuracy of 5 m is available to update the filter, according to Eq. (3-20) 

the traditional innovation-based adaptive measurement noise covariance will be around 

1600~2500 m2 which is incorrect and unreliable. With the proposed AI-enhanced method, 

the modified measurement noise covariance becomes around 40~50 m2 which means the 

estimated GPS position accuracy is around 6~7 m close to the actual GPS position 

accuracy. 

 

In addition to the information about GPS signal degradation conditions, the knowledge of 

vehicle dynamics can be used to modify the adaptive measurement noise covariance as 

well. When a vehicle is stationary, the vehicle position should be unchanged but the GPS 

position solution may drift and change slowly over time due to the smoothing feature 

provided by the in-receiver filter. As mentioned previously, this kind of GPS position 

errors are undetectable by the innovation-based adaptive Kalman filter and will 

subsequently lead to erroneous solutions. To resist the drift of the filter position, we 

assign an extremely large measurement noise covariance for the GPS position when the 

vehicle is stationary. Table 5.3 lists the AI-based modification of the adaptive 

measurement noise covariance for GPS positions based on the signal degradation 

condition and vehicle dynamics.  

 

Table 5.3: AI-enhanced adaptive measurement noise covariance for GPS position 

Vehicle dynamics Non-stationary Stationary
Signal degradation condition Low Medium High All 

Modified measurement noise covariance 50.
kR̂  750.

kR̂  kR̂  610  

kR̂ : the innovation-based adaptive measurement noise covariance 
 

5.2.2.2.2 Model without GPS 

When GPS updates are unavailable due to signal blockages, only the corrected INS 

velocities are available to update the position filter. In this case the measurement model is 

reduced to 
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The corresponding covariance matrix of the measurement noise is determined by the 

propagation of error covariances of the forward velocity and heading obtained from the 

velocity and attitude Kalman filter. In this case, the position filter will reply on the 

corrected INS velocity and the constant velocity model with the acceleration driven input 

noise to estimate the vehicle position.  

 

5.3 Construction of An Intelligent Integration Algorithm 

The previous two sections have described the cascaded integration scheme and the design 

of the AI-enhanced Kalman filters. This section presents the construction of the 

intelligent integration algorithm and explains the data processing flow. The intelligent 

integration algorithm employs two cascaded Kalman filters aided by three AI-based 

enhancement modules on a loosely coupled closed-loop integration scheme. The 

architecture of the intelligent integration algorithm is presented in Figure 5.2. Basically, 

the integration procedure is accomplished by two-step data processing: sensor-level data 

processing and filter-level data fusion. In the sensor-level data processing, the raw data 

from each sensor are processed independently to generate navigation states (attitude, 

velocity and position) and knowledge-based information (status of vehicle dynamics and 

GPS signal degradation condition). More specifically, the raw data from MEMS IMU are 

processed by the fuzzy expert vehicle dynamics identification system to provide the 

information of vehicle dynamics including stationary, straight-line motion and cornering 

motion. Such information is further applied to trigger the estimation of gyro biases and 

dynamics-derived observations and to adapt the velocity and attitude filter, as indicated 

by the dash line. Every time when the vehicle is stationary, the three-axis gyro biases can 

be estimated using raw gyro data. Thus, the gyro biases can be removed from the raw 
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measurements and the INS attitude and velocity are computed using the raw 

accelerometer data and the bias-removed gyro data based on the land vehicle motion 

model. In the meantime, the dynamics-based observations can also be computed by using 

IMU measurements and the outputs of the velocity and attitude filter under specific 

vehicle dynamics. 

 

For compass data, the three-axis magnetic measurements are integrated with the tilt 

estimates provided by the velocity and attitude filter to generate the compass heading 

based on heading computation equations. Then, the computed compass heading is 

calibrated by the trained neural networks before they are used to the filter-level data 

fusion. For GPS data, GPS receiver velocity and position solutions are directly used. The 

signal strength measure and satellite geometry information are processed by the fuzzy 

logic rule-based GPS data classification system to provide the information of signal 

degradation condition. This information is further used for adapting the filter-level data 

fusion, as indicated by the dash line.  

 

For the filter-level data fusion, the INS velocity and attitude filter will integrate the INS 

attitude and velocity with the GPS velocity and heading, the dynamics-derived 

observation and the calibrated compass heading to generate the corrected attitude and 

velocity. Dependent on GPS environments, the velocity and attitude filter works in two 

modes: GPS-only update mode and full update mode. The filter operates in the GPS-only 

update mode under open-sky environments and in the full update mode under signal-

degraded and/or signal-blocked environments. Under open-sky environments, GPS can 

provide reliable and accurate measurement updates for the velocity and attitude filter. 

After reaching a steady-state condition, the Kalman filter can provide good estimation of 

the x-axis accelerometer bias and the vehicle attitude and velocity. Meanwhile, the y-axis 

accelerometer bias can also be estimated using the corrected velocity and tilt as well as 

the raw data from IMU. In addition, the corrected heading can be used as the reference 

heading to train the neural networks for the compass heading error modelling. 
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Under GPS challenging environments, GPS measurements are corrupted by multipath, 

signal degradation and signal cross-correlation. Accurate estimation of the accelerometer 

biases and the navigation errors using the Kalman filter is usually infeasible due to the 

lack of continuously accurate GPS velocity solutions. In this condition, the integration 

algorithm will stop the estimation of the accelerometer biases and the training of the 

neural networks. The last estimated accelerometer biases and the trained neural networks 

during open-sky navigation are used to correct dynamics-derived observations and to 

calibrate compass headings, respectively. Thus, the velocity and attitude filter can use the 

corrected dynamics-derived observations and the calibrated compass heading as the 

additional measurement updates to correct INS velocity and attitude. GPS velocity and 

heading solutions if available will still be used to update the velocity and attitude filter 

with adaptive measurement covariance. 

 

In the position domain, the INS position filter is used to integrate the corrected attitude 

and velocity with the GPS position. As mentioned previously, the innovation-based 

adaptive filtering algorithm aided by the information of GPS signal degradation 

conditions and the knowledge of vehicle dynamics can be used to adapt the covariance of 

GPS position error, thus this filter can adaptively operate under various GPS 

environments. When GPS is unavailable, the position filter will reply on the corrected 

INS attitude and velocity to derive the dead-reckoning position solution. 
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Figure 5.2: Architecture of the intelligent integration algorithm 
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Chapter 6  

Test Results in Open Areas 

 

This chapter describes the test and analysis results of the proposed intelligent integration 

algorithm under open area environments. The performance evaluation is carried out in a 

post-mission processing mode. A developed MATLAB-based program which 

implements the proposed integration algorithm with real-time processing routines has 

been used to process the data collected from the low-cost MEMS IMU and GPS in field 

tests and to generate the integrated navigation solutions. Details of test set-up as well as 

data collection and processing procedures are presented first, followed by two types of 

performance analysis: evaluation of the navigation performance with and without GPS 

updates. 

 

6.1 Test Description 

The test system set-up is shown in Figure 6.1. The low-cost sensors used in the test 

included an Xsens MT9 MEMS IMU and a SiRF Star II Xtrac high sensitivity GPS 

receiver. The MT9 is a miniature inertial measurement unit providing serial digital output 

of 3D acceleration, 3D rate of turn and 3D Earth-magnetic field data. The SiRF HSGPS 

receiver is a low-cost single-frequency 12-channel evaluation receiver which provides 

code-based single point positioning solutions. The specifications of the SiRF HSGPS and 

MT9 are shown in Table 6.1 and Table 6.2, respectively. A laptop running a C++ data 

acquisition program developed by the author was used to collect the data from the IMU 

and GPS through two serial ports. The data output rate was set as 20 Hz for the MT9 and 

1 Hz for the HSGPS. The data acquisition software will tag IMU and GPS data with 

computer time when they were received at the serial ports, respectively. The tagged time 

is used for the time synchronization of IMU and GPS data. The time synchronization 

accuracy is at about the 10 ms level. For land vehicle applications, since general vehicle 
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dynamics is not too high, the estimation error due to the time synchronization error is 

negligible compared to the performance of the low-cost MEMS IMU. A high precise 

INS/GPS integration system consisting of a tactical-grade Honeywell HG1700 IMU and 

a high performance NovAtel OEM4 dual frequency GPS receiver was used to provide 

geo-reference solutions. A GIPSI data acquisition system (GIPSI DA) developed by the 

Terramatics Inc. was used to collect the 100 Hz IMU data from the HG1700 and 1 Hz 

GPS data from the OEM4. The GIPSI DA will time-tag IMU data with GPS 1PPS time to 

perform the time synchronization between the IMU and GPS data. 

 

SiRF HSGPS MT9 OEM4 HG1700

GIPSI Data
Acquisition SystemLaptop

 
Figure 6.1: System set-up for open area tests 

 

 

Table 6.1: SiRF HSGPS specifications (www.sirf.com) 

Characteristic Value 
Position accuracy* < 5m 

Tracking L1, C/A code 
Channels 12 

Tracking sensitivity** 16 dB-Hz 
Hot start sensitivity** 23 dB-Hz 

Warm start sensitivity** 28 dB-Hz 
Cold start sensitivity** 32 dB-Hz 

* A typical value based on 24-hour open sky static test. 
** The sensitivity value is specified at the correlator. On a 
SiRFstarIIe/LP Evaluation Receiver with the supplied 
antenna, 32 dB-Hz is equivalent to –142 dBm or -172 dBW. 
Other board and antenna characteristics will vary. 
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Table 6.2: MT9 specifications (www.xsens.com) 

Sensor Gyro Accelerometer Magnetometer 
Measurement unit deg./s m/s2 MGauss 
Operating range +/- 900 +/- 20 +/- 750 

Scale factor linearity 
(% of operating range) 

0.1 0.2 1 

Bias stability (1σ) 5 0.02 0.5 
Noise (RMS) 0.7 0.01 4.5 

Alignment error (deg.) 0.1 0.1 0.1 
 

The test system was installed on the University of Calgary’s test van. The MT9 and 

HG1700 were mounted tightly on the floor of the test van. There are about half metre 

installation distance between each other to avoid interference between the MT9’s 

magnetic sensors and the HG1700. The SiRF HSGPS antenna and OEM4 antenna were 

mounted on the roof of the van vertically above the MT9 and HG1700, respectively. 

Comparing to the obtainable position accuracy given by the low-cost MT9 and GPS, the 

position error due to this installation distance between the tested system and the geo-

reference system is negligible. Pictures of the test van and the equipment set-up are 

shown in Figure 6.2. 

 

The test was conducted at the University of Calgary Parking Lot #10 with an open-sky 

environment, on April 25, 2005. The purpose of the open area test is not only to assess 

the integration performance using clean GPS updates but also to examine how much the 

specific dynamics in urban driving conditions such as stationary, straight-line motion and 

cornering motion can improve the stand-alone inertial navigation performance. Thus, a 

test trajectory with eight cornering shapes and four virtual stop signs was chosen to 

mimic urban driving conditions as shown in Figure 6.3. Before tests on the selected 

trajectory, we performed an about 15-minute static initialization and then drove the 

vehicle on a S-turn trajectory couple times to make the geo-reference system reach a 

steady-state condition. After that, ten data collection runs on the selected trajectory were 

performed, each starting with about one minute static followed by about three minutes 

driving and ten seconds stop at each virtual stop sign.  
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Figure 6.2: Equipment set-up on the test vehicle 

 

Stop PointStart/End Point Stop PointStart/End Point

 
Figure 6.3: Open area test trajectory 
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The data collected from the HG1700 and OEM4 were processed by the P3-INS software 

package developed by the Positioning and Mobile Information System (PMIS) group in 

the Department of Geomatics Engineering at the University of Calgary to provide 

reference attitude, velocity and position information. The P3-INS integrates precise point 

positioning (PPP) with inertial technologies to generate geo-reference solutions without 

requiring the data from GPS reference stations. It determines position, velocity and 

attitude based on the integration of inertial data and un-differenced observations from a 

single GPS receiver. It can provide globally attainable accuracy for position at the 

centimetre to decimetre level and for attitude at the several arc min level (Zhang and Gao 

2005). The data collected from the low-cost MT9 and SiRF HSGPS were processed by 

the MATLAB-based program which implements the proposed integration algorithm with 

real-time processing routines to generate the low-cost integrated navigation solutions. 

The geo-reference solutions were down sampled to 20 Hz and synchronized with the low-

cost integrated navigation solutions based on GPS time using linear interpolation. By 

comparing the synchronized low-cost integrated solutions with the geo-reference 

solutions, we can assess the performance of the proposed integration algorithm in terms 

of attitude, velocity and position accuracy. 

 

6.2 Results with GPS Updates 

The first performance analysis is to assess the performance of the integration system 

when GPS is available. In this case, GPS data are used to update the INS Kalman filters 

to estimate accelerometer bias and to correct INS attitude, velocity and position. In the 

meantime, the corrected heading is used as the reference heading to train the neural 

networks for modelling the compass heading error. In the following sections, the 

performance analysis of the accelerometer bias estimation and the integrated navigation 

solutions are presented first, followed by the training performance of the neural networks 

for the compass heading error modelling. 
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6.2.1 Performance Analysis of Integrated Navigation 

6.2.1.1 Accelerometer Bias Estimation Accuracy 

The results of the x-axis accelerometer bias estimation from the sample run #4 are given 

in Figure 6.4. As shown, the estimates of the x-axis accelerometer bias converge to a 

constant value after the Kalman filter reaches a steady-state condition. The time for bias 

estimation convergence is mainly dependent on the degree of observability which is 

correlated to the vehicle dynamics change, usually the higher the dynamics change the 

shorter the convergence time. In our tests, the filter took about 1.5 minutes to reach a 

steady-state condition since the vehicle had frequent acceleration, deceleration and 

cornering motion on the selected test route. For the y-axis accelerometer bias estimation, 

as mentioned in Chapter 5, it has been assumed as a constant and is determined by 

averaging the estimates obtained during the cornering motion and after the convergence 

of the Kalman filter. Figure 6.5 shows the y-axis accelerometer bias estimation results 

from the same sample run. We notice that although the variation of the epoch-by-epoch 

bias estimates is large due to the high noise level presented in the MEMS measurements, 

the average value of all estimates over certain periods of time still can provide a 

reasonably good estimate of the y-axis accelerometer bias. 

 

 
Figure 6.4: Estimation results of accelerometer bias (x-axis) 
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Figure 6.5: Estimation results of accelerometer bias (y-axis) 

 

To assess the accuracy of the estimated accelerometer bias, the true bias should be 

determined first. Since it is very difficult to perform a lab calibration in the field test, we 

have developed an experimental approach to calculate the true bias by comparing the 

MT9 accelerometer measurements with the reference tilt provided by the HG1700/OEM4 

geo-reference system when the vehicle is static. The equations for computing the true 

biases on the x-axis and y-axis accelerometers are given as follows: 
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where 
BxAb~  and 

ByAb~  are the computed true biases of the x-axis and y-axis accelerometers; 

s
Bx

A  and s
By

A  are the stationary measurements from the x-axis and y-axis accelerometers; 
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s~θ  and s~φ  are the stationary pitch and roll provided by the HG1700/OEM4 geo-

reference system; and g  is the gravitational constant. 

 

To remove the noise effects and to estimate the constant part of the bias, we calculate the 

mean value of all epoch-by-epoch bias estimates during the stationary periods and use it 

as the final estimate of the true bias. Shown in Figure 6.6 and Figure 6.7 are the 

estimation results of the true biases of the same sample run for the x-axis and y-axis 

accelerometers, respectively. We observed that the variation of the epoch-by-epoch 

estimates of the true bias is identical to the noise level of the MT9 accelerometers’ 

stationary measurements and is affected by vehicle vibrations. After data averaging, the 

accuracy of the computed true bias mainly depends on the tilt accuracy obtained from the 

HG1700/OEM4 geo-reference system which is at several arc min level. Converted from 

this tilt accuracy, the accuracy of the computed true bias is at about 0.01 m/s2 which is 

high enough for the reference. 

 

 
Figure 6.6: Estimation results of true accelerometer bias (x-axis) 
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Figure 6.7: Estimation results of true accelerometer bias (y-axis) 

 

Table 6.3 lists the estimated and true biases for each run of the test. The x-axis and y-axis 

accelerometer biases have been found properly estimated. The RMS error of the x-axis 

and y-axis estimated biases are about 0.032 m/s2 and 0.038 m/s2, respectively. The x-axis 

bias estimation accuracy is better and more stable than the y-axis one. This could be 

explained by the fact that the y-axis bias is determined based on the average of a batch of 

accelerometer and gyro measurements as well as the Kalman filter velocity and tilt 

outputs. Thus, the accuracy of the y-axis bias estimation depends on not only the INS 

measurement quality but also the Kalman filter performance. On the other hand, the x-

axis bias is estimated using the Kalman filter which is a recursive optimal estimator. If 

designed properly, the Kalman filter will converge and provide a steady-state estimate 

which is optimal in a statistical sense. In summary, the results demonstrate that the 

designed Kalman filter and the proposed systematic approach based on the land vehicle 

motion equation are able to provide good bias estimation for the low-cost MEMS inertial 

sensors.  
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Table 6.3: Accelerometer bias estimation accuracy 

X-axis Accelerometer Bias Y-axis Accelerometer Bias 
Test No. 

Reference (m/s2) Estimate (m/s2) Reference (m/s2) Estimate (m/s2)
1 0.228 0.260 -0.124 -0.133 
2 0.215 0.234 -0.136 -0.117 
3 0.207 0.180 -0.144 -0.075 
4* 0.211 0.192 -0.145 -0.137 
5 0.206 0.204 -0.141 -0.215 
6 0.201 0.216 -0.141 -0.157 
7 0.202 0.228 -0.149 -0.174 
8 0.198 0.253 -0.139 -0.117 
9 0.199 0.241 -0.149 -0.122 

10 0.203 0.186 -0.126 -0.120 
* This is the sample run of test whose results are shown in Figure 6.4 and Figure 6.5. 

 

6.2.1.2 Attitude Accuracy 

Figure 6.8 through Figure 6.10 show the estimated and the reference pitch, roll and 

azimuth (heading) angles obtained from the same sample run #4. As shown in Figure 6.8 

and Figure 6.9, the pitch and roll estimates converge to the reference pitch and roll 

respectively after the Kalman filter reaches a steady-state condition. As expected, the 

accuracy of the pitch and roll estimates degrade when the vehicle is stationary. This is 

because the estimation performance is proportional to the vehicle dynamics, i.e., the 

higher the vehicle dynamics the better the estimation performance. For the heading 

estimation, since it is directly observable from the measurements in the Kalman filter, the 

heading error can be instantly corrected when GPS heading updates are available. The 

heading accuracy of the integration system is therefore mainly dependent on the GPS 

heading accuracy. 

 

Table 6.4 presents the statistical analysis of the attitude estimation accuracy based on the 

data from ten runs. It should be noted that only the data obtained after the convergence of 

the Kalman filter are used in the data analysis. As shown, the average RMS error is about 

0.5 degrees for the pitch estimate and about 0.9 degrees for the roll estimate. The pitch 

accuracy is better than the roll accuracy because the roll state is less observable than the 
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pitch state in the applied Kalman filter. The heading accuracy is less than 1 degree which 

agrees with the theoretically obtainable performance provided by GPS. For example, 

considering the speed of the vehicle at 7 m/s and the typical GPS velocity accuracy at 0.1 

m/s, we can calculate the corresponding GPS heading accuracy is equal to 0.81 degrees 

according to Eq. (5-15). 

 

 
Figure 6.8: Estimation results of pitch (INS/GPS integration) 

 

 
Figure 6.9: Estimation results of roll (INS/GPS integration) 
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Figure 6.10: Estimation results of heading (INS/GPS integration) 

 

Table 6.4: Attitude estimation accuracy (INS/GPS integration) 

Pitch Error 
(degrees) 

Roll Error 
(degrees) 

Heading Error 
(degrees) Test No. 

Mean RMS Mean RMS Mean RMS 
1 -0.50 0.64 -0.30 0.81 0.39 0.95 
2 -0.41 0.54 0.09 0.96 0.53 0.93 
3 -0.03 0.38 0.16 0.73 0.26 0.83 
4* -0.23 0.42 -0.06 0.67 0.14 0.67 
5 -0.25 0.46 -0.35 1.51 0.29 0.63 
6 -0.35 0.48 -0.19 0.87 0.20 0.47 
7 -0.27 0.46 -0.24 0.69 -0.03 0.54 
8 -0.58 0.65 -0.01 0.98 0.38 0.64 
9 -0.54 0.65 -0.05 0.92 0.28 0.53 

10 -0.22 0.44 0.06 0.73 0.32 0.76 
Average 0.34** 0.51 0.15** 0.89 0.28** 0.70 

* This is the sample run of test whose results are shown in Figure 6.8 
through Figure 6.10. 
** This value is calculated by averaging the absolute value of each run of 
test. 

 
6.2.1.3 Velocity and Position Accuracy 

The velocity and position accuracy of the integration system is mainly dependent on the 

GPS velocity and position accuracy since the velocity and position states in the INS 

Kalman filter are directly observable from the measurements. Figure 6.11 and Figure 
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6.12 show the estimated and the reference velocity and position given by the same 

sample run #4. Due to the continuous and direct corrections of INS velocity and position 

errors from GPS, the integrated velocity and position performance is almost identical to 

the GPS velocity and position performance. The statistical analysis of the integrated 

velocity and position errors based on the ten-run data is presented in Table 6.5. In 

summary, the average RMS error is 0.13 m/s for the velocity estimate and about 3 m for 

the horizontal position estimate, which agrees with the code-based GPS performance in 

open areas. 

 

 
Figure 6.11: Estimation results of velocity (INS/GPS integration) 

 

 
Figure 6.12: Estimation results of position (INS/GPS integration) 
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Table 6.5: Velocity and position estimation accuracy (INS/GPS integration) 

Velocity Error 
(m/s) 

North Position 
Error (m) 

East Position 
Error (m) 

Horizontal 
Position Error (m)Test No. 

Mean RMS |Max| RMS |Max| RMS |Max| RMS 
1 0.01 0.17 4.35 1.50 3.73 1.36 5.73 2.03 

2 0.02 0.14 6.24 2.08 4.09 1.43 6.25 2.53 

3 0.01 0.14 5.46 2.04 3.58 1.50 5.47 2.53 
4* 0.01 0.13 4.11 1.72 4.42 1.83 5.42 2.51 

5 0.02 0.14 4.63 2.28 4.74 2.16 5.51 3.14 

6 0.03 0.13 6.17 2.21 4.98 2.40 6.18 3.26 
7 0.02 0.12 6.49 2.23 4.98 2.51 6.49 3.36 

8 0.04 0.12 6.40 2.17 5.15 2.44 6.42 3.26 

9 0.02 0.12 6.10 2.76 4.17 2.01 6.10 3.41 

10 0.02 0.13 6.63 2.81 4.57 2.08 6.65 3.50 

Average 0.02** 0.13 5.66 2.18 4.44 1.97 6.02 2.95 
* This is the sample run of test whose results are shown in Figure 6.11 and Figure 6.12. 
** This value is calculated by averaging the absolute value of each run of test. 

 

6.2.2 Performance Analysis of Compass Heading Error Modelling 

As mentioned previously, the integrated heading solution is used as the reference heading 

to train the neural networks for modelling the compass heading error so that the trained 

neural networks can be used to correct the compass heading when GPS is unavailable. In 

this test, we trained the neural networks using the first run data with GPS updates and 

tested the calibration performance using the other nine-run data without GPS updates. 

Thus, the training data set is constructed by the compass heading and the true heading 

obtained from the first run test. The raw magnetometer measurements collected in the 

first run are shown in Figure 6.13. It can be seen that the Earth’s magnetic fields have 

been biased, distorted and interfered by the local magnetic fields inside a land vehicle. 

These deteriorated magnetic measurements were first projected on a horizontal 

orientation based on the tilt angles outputted by the Kalman filter and then used to 

calculate the compass headings. The true headings were provided by the integrated 

heading solutions in the same run which have the mean error of 0.39 degrees and RMS 

error of 0.95 degrees as shown in Table 6.4. 
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Figure 6.14 shows the training data and the outputs of the trained neural networks while 

processing the same training data. It can be seen that although the training data have been 

deteriorated by noises, magnetic disturbances and projection errors, the neural networks 

still can properly model the nonlinear input-output relationship that describes the bias, 

scale factor and declination effects on the compass heading. However, because the 

perfect training data (without noise, magnetic disturbances and tilt compensation errors) 

are unavailable in real applications, the error modelling performance cannot be assessed 

specifically here. The compass calibration performance using the trained neural networks 

will be presented in the next section. 

 
Figure 6.13: Measured magnetic fields for neural networks training 

 

 
Figure 6.14: Results of neural networks training 
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6.3 Results without GPS Updates 

The second performance analysis is to assess the performance of the integration system 

when GPS is unavailable, namely to assess the stand-alone inertial navigation 

performance during complete GPS outages. For the analysis purpose, GPS data are 

artificially disused and only the dynamics-derived observations with/without the 

calibrated compass headings are used to update the Kalman filters. To obtain the accurate 

dynamics-derived observations and the calibrated compass headings, as described in 

Chapter 4 and Chapter 5, the accelerometer biases should be known and the neural 

networks must be trained. In the following performance analysis, the biases estimated 

using full GPS updates in the previous run are applied in the current test and the filter is 

working without GPS updates. In addition, the neural networks trained by the first run 

data are applied to calibrate the compass heading in other nine-run tests. Thus, the total 

nine runs of stand-alone navigation results are assessed. The accuracy of the dynamics-

derived observations is presented first, followed by the performance assessment of the 

compass heading calibration using the neural networks. Finally, the performance analysis 

of the stand-alone inertial navigation with/without compass aids is given. 

 

6.3.1 Performance Analysis of Dynamics-Derived Observations 

The dynamics-derived observations are directly computed using INS raw measurements 

and the Kalman filter outputs based on the status of vehicle dynamics. The incorrect 

dynamics identification will result in erroneous observations. Based on the designed 

fuzzy expert system described in Chapter 4, the results of vehicle dynamics identification 

for a sample run #7 are shown in Figure 6.15. By comparing the identified motion type 

with the reference velocity and yaw rate, we verify that the vehicle motion types 

including stationary, straight-line motion and cornering motion have been correctly 

identified. It should be noted that there exists a straight-line motion between the sixth and 

seventh cornering motions that was not identified by the designed fuzzy expert system. 

This is an expected and acceptable condition since the periods of the straight-line motion 

between two continuous cornering motions are too short to be recognizable by the 
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designed fuzzy expert system. Similar identification results for other runs have been also 

obtained but not shown here. 

 

 
Figure 6.15: Results of vehicle dynamics identification 

 

Figure 6.16 through Figure 6.18 show the dynamics-derived and reference pitch, roll and 

velocity using the data collected in the same sample run. As mentioned in Chapter 4, the 

dynamics-derived pitch and roll errors are mainly due to the unidentified accelerometer 

biases as the noise effects can be reduced by moving average. In this test, the x-axis and 

y-axis accelerometer biases estimated using full GPS updates in the previous run and 

used to correct the dynamics-derived observations are 0.202 m/s2 and -0.149 m/s2 while 

the reference biases are 0.216 m/s2 and -0.157 m/s2 for the x-axis and y-axis 

accelerometer, respectively. This shows the good bias estimation accuracy and therefore 

the dynamics-derived pitch and roll are considerably accurate, almost identical to the 

reference as shown in Figure 6.16 and Figure 6.17. Due to the approximation errors 

induced by sideslip or vibration, the dynamics-derived roll in the straight-line motion 

mode has relatively larger errors than the dynamics-derived roll in the stationary mode. 

For the cornering motion mode, as shown in Figure 6.18, the dynamics-derived velocities 

are close to the reference velocities so that they can be used to correct the stand-alone 

INS velocities and reduce the error drift. The errors of all dynamics-derived observations 

are shown in Figure 6.19 which demonstrates the error characteristics we have described 



 

155 

above. It should be noted that there exist some oscillatory errors in the stationary pitch 

and roll at the beginning of the stationary period. This is because the stationary pitch and 

roll are not smoothed at the beginning of the stationary period due to the lack of samples 

for moving average. As the samples for moving average increase, this type of error will 

be filtered and the stationary pitch and roll remain steady. 

 

 
Figure 6.16: Dynamics-derived pitch observations 

 

 
Figure 6.17: Dynamics-derived roll observations 
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Figure 6.18: Dynamics-derived velocity observations 

 

 
Figure 6.19: Errors of dynamics-derived observations 

 

Table 6.6 demonstrates the accuracy of the dynamics-derived observations given by the 

nine-run data. As expected, the average mean of the dynamic-derived pitch and roll errors 

(about 0.16 degrees) is equivalent to the unidentified accelerometer bias (about 0.025 

m/s2) as shown in Table 6.3. We observed that in each test the RMS error of the dynamic-

derived stationary pitch and roll is almost identical to the absolute value of the mean error. 
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This is because the stationary pitch and roll error is mainly due to the unidentified 

accelerometer bias after the noise effects have been removed by moving average. Due to 

the approximation errors induced by sideslip or vibration, the RMS error of the 

dynamics-derived roll in the straight-line motion mode is larger than the RMS error of the 

stationary roll. For the cornering motion mode, the accuracy of the dynamics-derived 

velocity is about 0.45 m/s and considerably stable for each test. Compared with the stand-

alone INS navigation solutions, the dynamics-derived observations are accurate enough 

to provide pitch, roll and velocity corrections. 

 

Table 6.6: Dynamics-derived observation accuracy 

Stationary Pitch 
Error (degrees) 

Stationary Roll 
Error (degrees) 

Straight-Line Roll 
Error (degrees) 

Cornering Velocity 
Error (m/s) Test No. 

Mean RMS Mean RMS Mean RMS Mean RMS 
2 -0.26 0.27 0.05 0.10 -0.01 0.46 -0.20 0.50 

3 -0.13 0.14 0.16 0.17 0.15 0.44 -0.27 0.51 

4 0.16 0.16 0.38 0.38 0.31 0.54 -0.18 0.42 

5 0.04 0.06 0.01 0.06 0.01 0.45 -0.20 0.46 
6 -0.03 0.04 -0.42 0.42 -0.45 0.68 -0.12 0.48 

7* -0.10 0.11 -0.05 0.06 -0.11 0.46 -0.13 0.38 

8 -0.18 0.18 -0.20 0.20 -0.23 0.52 -0.25 0.42 
9 -0.35 0.35 0.18 0.18 0.16 0.44 -0.19 0.42 

10 -0.25 0.25 0.03 0.05 -0.05 0.42 -0.26 0.43 

Average 0.17** 0.17 0.16** 0.18 0.16** 0.49 0.20** 0.45 
* This is the sample run of test whose results are shown in Figure 6.16 through Figure 6.19. 
** This value is calculated by averaging the absolute value of each run of test. 

 

6.3.2 Performance Analysis of Compass Heading Calibration 

Based on the test results from the sample run #7, the compass headings with and without 

the neural networks calibration compared to the reference headings are shown in Figure 

6.20. As shown, the compass heading has been calibrated correctly, consistent with the 

reference heading. However, there exist some jump errors due to the magnetic 

disturbance and tilt compensation error. This type of error cannot be removed by compass 

calibration but can be filtered out by integration with gyro measurements. The accuracy 

of the calibrated heading for all runs is shown in Table 6.7. The average RMS error and 

mean error of the calibrated heading are 4.82 degrees and 0.26 degrees, respectively. The 
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large RMS value is due to the existence of jump errors as described above. Thus, the 

mean value is more suitable to represent the calibration performance. As shown in Table 

6.7, the obtainable calibration accuracy using the neural networks in a typical land 

vehicle environment is about 0.2 degrees, which is accurate enough to provide 

corrections of the MEMS gyro-derived heading. 

 

 
Figure 6.20: Calibrated and un-calibrated compass headings 

 

Table 6.7: Calibrated compass heading accuracy 

Heading Error (degrees) 
Test No.

Mean RMS 
2 0.30 5.19 
3 0.28 5.32 
4 0.42 5.00 
5 0.49 4.86 
6 0.09 4.85 
7* 0.17 4.70 
8 0.20 4.61 
9 0.26 4.16 

10 0.16 4.71 
Average 0.26** 4.82 

* This is the sample run of test whose results are 
shown in Figure 6.20. 
** This value is calculated by averaging the 
absolute value of each run of test. 
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6.3.3 Performance Analysis of Stand-Alone Inertial Navigation 

Previous sections have demonstrated the obtainable accuracy of the dynamics-derived 

observations and the calibrated compass headings. In this section, the performance 

analysis of the stand-alone inertial navigation aided by these dynamics-derived 

observations with/without the calibrated compass headings is presented. The performance 

of the stand-alone inertial navigation aided by the dynamics-derived observations only is 

assessed first, followed by a discussion on the benefit of the compass aids.  

 

6.3.3.1 Aiding from Dynamics-Derived Observations Only 

6.3.3.1.1 Attitude Accuracy 

The pitch, roll and heading estimates of the stand-alone inertial navigation aided by 

vehicle dynamics knowledge for the sample run #7 are shown in Figure 6.21 through 

Figure 6.23. To demonstrate the benefits of the dynamics aids, the unaided stand-alone 

inertial navigation solution is also displayed. In the unaided mode, no dynamics-derived 

observations are used to update the Kalman filter and thus it works in a full prediction 

mode. As shown in Figure 6.21 and Figure 6.22, the error of the dynamics-aided pitch 

and roll has been bounded and well controlled while the unaided pitch and roll have large 

error drifts. The dynamics-aided pitch estimates during the stationary periods as well as 

the roll estimates during the stationary and the straight-line motion periods are almost 

identical to the dynamics-derived pitch and roll shown in Figure 6.16 and Figure 6.17, 

respectively. This is because the pitch and roll states in the INS Kalman filter are directly 

observable from the dynamics-derived measurements and their covariances are very 

small. For the periods when the dynamics-derived pitch and roll updates are unavailable, 

the performance of the dynamics-aided tilt estimates degrades with time. The 

performance degradation is mainly dependent on the quality of inertial sensors and 

vehicle dynamics. Comparing Figure 6.21 with Figure 6.22, we observed that the 

dynamics-aided roll estimates are more accurate than the pitch due to the availability of 

roll measurement updates during the straight-line motion periods. For the heading 

performance, while zooming in the heading estimates at the end of the test, we found the 

error drifts of the dynamics-aided and unaided solutions are about one and two degrees, 
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respectively. The improvement in heading is not as significant as the improvement in tilt. 

This is because for the dynamics-aided system only the constant heading constraint 

during the stationary periods is available to control the heading error drift while the 

absolute tilt measurement updates are more frequently available to reduce the tilt error 

drift. In summary, the aiding from the vehicle dynamics knowledge enables the stand-

alone MEMS INS to provide bounded tilt and heading solutions with reduced error drift 

rates. 

 

 
Figure 6.21: Estimation results of pitch (stand-alone INS with dynamics aid) 

 

 
Figure 6.22: Estimation results of roll (stand-alone INS with dynamics aid) 
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Figure 6.23: Estimation results of heading (stand-alone INS with dynamics aid) 

 

Table 6.8 presents the accuracy of the stand-alone dynamics-aided attitude obtained from 

the nine-run tests. As shown, the average RMS error is about 0.8 for the pitch estimate 

degrees, about 0.5 degrees for the roll estimate and about 1.5 degrees for the heading 

estimate. From the performance comparisons of the integrated attitude (Table 6.4) and the 

stand-alone dynamics-aided attitude (Table 6.8), we found that the latter provides better 

roll accuracy while the former provides better pitch and heading accuracy. This could be 

explained by the following factors: the correction for the roll error from the direct 

dynamics-derived roll observations is more effective than the correction from the GPS 

velocity and heading updates based on the error dynamics model; on the other hand, the 

GPS velocity and heading updates provide the continuous correction for the pitch and 

heading errors with good observability while the dynamics-derived pitch observations 

and heading constraints are only available during the stationary periods. In summary, the 

accuracy of the stand-alone dynamics-aided attitude is dependent on the availability and 

the quality of the dynamics-derived attitude updates, i.e., the periods of the stationary and 

straight-line motion as well as the accuracy of the pre-estimated accelerometer biases. 
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Table 6.8: Attitude estimation accuracy (stand-alone INS with dynamics aid) 

Pitch Error 
(degrees) 

Roll Error 
(degrees) 

Heading Error 
(degrees) Test No. 

Mean RMS Mean RMS Mean RMS 
2 0.18 0.71 0.10 0.54 1.17 1.70 
3 0.41 1.11 0.29 0.58 -0.09 1.06 
4 0.48 0.85 0.36 0.59 0.07 1.23 
5 0.39 1.00 -0.01 0.58 -0.68 1.48 
6 0.06 0.53 -0.38 0.60 0.95 1.10 
7* 0.19 0.67 -0.01 0.45 0.62 1.36 
8 -0.28 0.82 -0.14 0.48 2.30 2.47 
9 -0.09 0.51 0.30 0.56 1.91 2.10 

10 0.18 0.63 0.06 0.46 -0.62 1.19 
Average 0.25** 0.76 0.18** 0.54 0.93** 1.52 

* This is the sample run of test whose results are shown in Figure 6.21 
through Figure 6.23. 
** This value is calculated by averaging the absolute value of each run of 
test. 

 

6.3.3.1.2 Velocity and Position Accuracy 

Figure 6.24 and Figure 6.25 show the velocity and position solutions obtained from the 

stand-alone dynamics-aided and unaided MEMS INS and the geo-reference system from 

the sample run #7, respectively. As shown in Figure 6.24, the unaided velocity has large 

drifted errors and cannot be used for navigation while the dynamics-aided velocity error 

is well bounded by the ZUPTs and cornering velocity updates. During the straight-line 

motion, the dynamics-aided velocity error increases with time and the error growth rate is 

mainly dependent on the pitch accuracy. For the position performance, due to the lack of 

external position corrections in the stand-alone mode, the position error will accumulate 

with the course of time. In this test, with the aiding from the dynamics knowledge the 

stand-alone INS position solutions still keep on the track while the unaided solutions 

have drifted away from the track at the several hundred-metre level. The horizontal 

position error during about 3-minute GPS outages has been controlled to be within 27 m 

for the dynamics-aided system. 
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Figure 6.24: Estimation results of velocity (stand-alone INS with dynamics aid) 

 

 
Figure 6.25: Estimation results of position (stand-alone INS with dynamics aid) 

 

Table 6.9 further summaries the dynamics-aided velocity and position accuracy obtained 

from the nine-run data. We found that the East position accuracy is better than the North 

because of the frequent stops available during the eastward/westward driving. In 

summary, during about 3 minutes stand-alone navigation the average RMS error of 0.66 
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m/s for velocity and of 16.25 m for horizontal position are obtainable while the average 

maximum horizontal position error has been maintained within 30 m. The achieved 

performance is much better than the performance supplied by the manufacturer 

specifications which demonstrates the effectiveness of the dynamics knowledge aids for 

low-cost MEMS INS navigation in the stand-alone mode. 

 

Table 6.9: Velocity and position estimation accuracy (stand-alone INS with 
dynamics aid) 

Velocity Error 
(m/s) 

North Position 
Error (m) 

East Position 
Error (m) 

Horizontal 
Position Error (m)Test No. 

Mean RMS |Max| RMS |Max| RMS |Max| RMS 
2 -0.37 0.62 18.72 7.41 16.83 7.62 20.18 10.63
3 -0.38 0.75 18.37 8.51 25.36 13.14 29.19 15.65
4 -0.29 0.56 19.90 10.80 12.49 6.23 20.65 12.46
5 -0.30 0.82 33.15 19.22 32.05 16.78 43.93 25.51
6 -0.14 0.47 20.73 9.84 19.04 9.81 23.32 13.89
7* -0.21 0.52 26.75 15.00 11.15 5.19 26.75 15.87
8 0.05 0.92 40.82 15.00 21.92 12.55 46.33 19.56
9 -0.22 0.56 22.39 11.53 19.95 9.78 26.55 15.12

10 -0.44 0.70 28.16 15.29 18.84 8.64 30.37 17.57
Average 0.27** 0.66 25.44 12.51 19.74 9.97 29.70 16.25

* This is the sample run of test whose results are shown in Figure 6.24 and Figure 6.25. 
** This value is calculated by averaging the absolute value of each run of test. 

 

6.3.3.2 Aiding from Dynamics-Derived and Calibrated Compass Observations 

6.3.3.2.1 Attitude Accuracy 

Table 6.10 lists the attitude estimation performance for all nine runs when both 

dynamics-derived observations and calibrated compass headings are used to correct the 

stand-alone INS attitude. Comparing these results with Table 6.8 where only the aiding 

from the dynamics knowledge is applied, we noticed that only the heading accuracy is 

improved while the pitch and roll accuracy remains the same. This is because the heading 

state in the Kalman filter is directly observable from the heading measurement; 

meanwhile, the pitch and roll states in the Kalman filter are very weakly observable from 

the heading measurement especially for land vehicle applications where the pitch and roll 
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of the vehicle are generally small. Thus, the calibrated compass heading can directly 

correct the INS heading error but only slightly improve the INS pitch and roll estimation. 

 

Table 6.10: Attitude estimation accuracy (stand-alone INS with dynamics aid and 
compass aid) 

Pitch Error 
(degrees) 

Roll Error 
(degrees) 

Heading Error 
(degrees) Test No. 

Mean RMS Mean RMS Mean RMS 
2 0.18 0.71 0.10 0.54 0.54 1.76 
3 0.41 1.11 0.29 0.58 0.34 1.45 
4 0.48 0.85 0.36 0.59 0.51 1.56 
5 0.39 1.00 -0.01 0.58 0.41 1.24 
6 0.06 0.53 -0.38 0.60 0.01 1.32 
7 0.19 0.67 -0.01 0.45 0.19 1.53 
8 -0.28 0.81 -0.14 0.48 0.50 1.40 
9 -0.09 0.51 0.30 0.55 0.35 1.35 

10 0.18 0.63 0.06 0.46 0.37 1.28 
Average 0.25* 0.76 0.18* 0.54 0.36* 1.43 

* This value is calculated by averaging the absolute value of each run of 
test. 

 

Focusing on the assessment of the heading estimation accuracy, we found that with the 

aiding from the calibrated compass headings the average mean of the heading error has 

been reduced from 0.93 degrees to 0.36 degrees while the improvement in the average 

RMS error is slight, from 1.52 degrees to 1.42 degrees. The reason becomes clear when 

we examined the performance of the calibrated compass headings shown in Table 6.7. As 

mentioned previously, the compass calibration can remove bias and scale factor error but 

noise, magnetic disturbance and projection error. Thus, the mean error of the calibrated 

compass heading is usually smaller than the RMS error. As shown in Table 6.7, the 

average mean and RMS errors of the calibrated heading are 0.26 degrees and 4.82 

degrees, respectively. With the small mean error, the calibrated compass headings can 

reduce the error drift of the gyro-derived heading. However, the noise, disturbance and 

projection error inherited in the compass heading may deteriorate the gyro-derived 

heading. The impact of these errors can be reduced by properly adjusting the 

measurement covariances of the compass heading using the adaptive method developed 

in Chapter 5. 
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To demonstrate this, shown in Figure 6.26 is a zoom-in version of the heading estimation 

results obtained from the run #8 test. This figure compares the performance between the 

calibrated compass heading, the stand-alone dynamics-aided INS heading and the 

dynamics-aided plus compass-aided heading. As shown, the dynamics-aided plus 

compass-aided approach provides smooth and drift-free heading estimation while the 

stand-alone dynamics-aided INS heading has a significant bias and the calibrated 

compass heading has significant jump errors. 

 

 
Figure 6.26: Comparison of heading estimation using different approaches (zoom-in) 
 

6.3.3.2.2 Velocity and Position Accuracy 

The estimation accuracy of the dynamics-aided plus compass-aided velocity and position 

solutions for all nine runs is summarized in Table 6.11. As expected, the aiding from the 

compass heading didn’t show significant improvement in the velocity and position 

accuracy compared with no compass-aided solutions as shown in Table 6.9. This is 

because the accuracy of the forward velocity is mainly dependent on the pitch accuracy. 

As demonstrated previously, the aiding from the compass heading has only very slight 

improvement in the pitch estimation so that the velocity accuracy cannot be improved 

much. As the velocity improvement is very small and the heading improvement is not 

obvious during the short-time test, the performance improvement is also limited in the 
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position domain. It is expected to have greater performance improvement in the position 

domain with the aiding from the compass heading over longer period of time. 

 

Table 6.11: Velocity and position estimation accuracy (stand-alone INS with 
dynamics aid and compass aid) 

Velocity Error 
(m/s) 

North Position 
Error (m) 

East Position 
Error (m) 

Horizontal 
Position Error (m)Test No. 

Mean RMS |Max| RMS |Max| RMS |Max| RMS 
2 -0.37 0.62 21.55 8.82 18.75 8.51 23.29 12.26
3 -0.38 0.74 20.20 8.49 25.80 12.94 29.63 15.47
4 -0.29 0.56 22.10 10.93 15.83 7.08 23.49 13.02
5 -0.30 0.82 36.15 19.34 32.87 16.87 45.52 25.66
6 -0.14 0.48 19.22 8.69 20.49 11.01 23.66 14.03
7 -0.21 0.52 27.91 14.75 11.38 5.34 28.03 15.69
8 0.05 0.92 44.83 15.87 24.99 15.10 48.86 21.91
9 -0.22 0.56 22.68 11.35 14.78 7.44 24.45 13.57

10 -0.44 0.70 28.95 14.17 20.13 9.15 30.59 16.87
Average 0.27* 0.66 27.07 12.49 20.56 10.38 30.84 16.50

* This value is calculated by averaging the absolute value of each run of test. 
 

6.4 Summary of Test Results 

In this chapter, the proposed intelligent integration algorithm has been tested and 

analyzed with open area data. Two types of performance analysis, namely integration 

performance and stand-alone inertial navigation performance, have been presented. The 

first analysis, with the use of GPS updates, demonstrated the obtainable accuracy of the 

accelerometer bias estimation and integrated navigation solutions as well as the 

performance of the compass heading error modelling using neural networks. The results 

showed that the bias estimation accuracy of about 0.03 m/s2 is obtainable. In addition, the 

integrated solutions have provided attainable accuracy for attitude less than 1 degree and 

for velocity and position at about 0.1 m/s and 3 m level, respectively. 

 

The second analysis, without the use of GPS updates, demonstrated the accuracy of the 

dynamics-derived observations and the calibrated compass headings as well as the stand-

alone dynamics-aided INS navigation performance with/without compass aids. The 
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results showed that the mean error of the dynamics-derived tilt is less than 0.2 degrees 

equivalent to the bias estimation accuracy and the dynamics-derived velocity accuracy is 

less than 0.5 m/s, both accurate enough to provide corrections for the stand-alone INS 

pitch, roll and velocity. Meanwhile, the obtainable compass calibration accuracy using 

the neural networks in a typical land vehicle environment is about 0.2 degrees, also good 

enough to provide corrections for the stand-alone INS heading. For the stand-alone 

inertial navigation performance, with the aiding from the dynamics knowledge, the 

bounded tilt and heading with reduced error drift rates are attainable. The average 

horizontal position error is controlled within 30 m during about 3 minutes GPS outages. 

On the other hand, with the aiding from the calibrated compass headings, a smooth and 

drift-free heading estimation is also obtainable. 
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Chapter 7  

Test Results in Urban Areas 

 

Chapter 6 has demonstrated the performance of the proposed AI-enhanced integration 

algorithm applied under two operational conditions: with full GPS updates and complete 

GPS outages. This chapter presents the test results and performance analysis under 

realistic urban environments. The test set-up and test environments are described first. 

Then, the GPS-only position accuracy and the GPS data classification performance using 

the designed fuzzy inference system are evaluated. Finally, the attainable position 

accuracy of the AI-enhanced integrated solutions is presented. 

 

7.1 Test Description 

The test system set-up is similar to the one used in the open area test as described in 

Chapter 6, except a SiRF Star II conventional GPS receiver that has standard signal 

tracking sensitivity was added into the test system. The MT9 MEMS IMU, SiRF HSGPS 

and SiRF GPS were connected to a laptop through three serial ports to conduct data 

logging and time tagging as same as the process applied in the open area test. The test 

system was installed on the same test van used in the open area test. The MT9 was 

mounted tightly on the floor of the test van while the SiRF HSGPS and SiRF GPS 

antennas were mounted on the roof of the van vertically above the MT9. A digital map of 

the downtown Calgary provided by the City of Calgary was used as the reference for 

position accuracy analysis. The map provides the coordinates of a road centre-line with 

the several metre level accuracy. 

 

A series of tests were conducted in the downtown Calgary, on April 23 and 26, 2005. 

Two test routes, both having a variety of spatial urban characteristics, were chosen as 

shown in Figure 7.1 and Figure 7.2. As shown, a variety of medium (60 – 100 m) to tall 
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(150 – 200 m) buildings and several underpasses (on 3rd Street and 5th Avenue) are 

located on each test route. Figure 7.3 and Figure 7.4 show the number of satellites tracked 

by the SiRF high sensitivity and conventional GPS receivers in a sample run of the route-

A and route-B tests, respectively. Both tests started in a nearly open-sky area where the 

number of satellites tracked by either the HSGPS or GPS receiver was larger than eight. 

When the vehicle moved into the core downtown areas, the number of tracked satellites 

dropped and the conventional GPS may suffer from frequent signal outages. In general, 

the route-B test experienced severer signal degradation conditions than the route-A test. 

Eight data collection runs on each route were performed, each starting in a nearly open-

sky area for one-minute static initialization to obtain good position fix. The test vehicle 

took about 10 minutes to finish the route-A loop of about 2 km in length and about 15 

minutes to finish the route-B loop of about 3 km in length. In both routes, the vehicle 

frequently stopped on the traffic lights and had the speed varied from 0-40 km/h. 

 

 
Figure 7.1: Urban area test trajectory (route-A) 
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Figure 7.2: Urban area test trajectory (route-B) 

 

 
Figure 7.3: Satellites tracked in a route-A test 
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Figure 7.4: Satellites tracked in a route-B test 

 

7.2 GPS Data Classification Performance 

In urban area applications, GPS position is subject to performance degradation due to 

multipath, large noise and other signal deterioration. It is therefore crucial to check the 

quality of GPS data before they are used for navigation or integration with other sensors. 

This section examines the accuracy and availability of the single point code-based 

position solutions from the SiRF conventional and high sensitivity GPS receivers as well 

as their data classification performance using the designed fuzzy inference system. The 

results of the HSGPS are presented first, followed by the results of the conventional GPS. 

 

7.2.1 Results of HSGPS 

Figure 7.5 and Figure 7.6 illustrate the HSGPS positions obtained from the route-A tests 

on April 23 and 26, 2005 respectively. For the route-B tests, the HSGPS positions 

obtained on April 23 and 26, 2005 are illustrated in Figure 7.7 and Figure 7.8 respectively. 

In all figures, the HSGPS positions are marked with different colours and symbols 

according to the data classification results. As shown, the HSGPS can provide high 

availability of position solutions in urban areas, but the position performance is 
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inconsistent and unstable, i.e., some on the track and some off the track by the hundred-

metre level especially for the route-B tests with severer signal degradation conditions. 

Using the fuzzy data classification, we have identified the erroneous GPS positions as 

high signal-degraded data. Other more accurate and stable position solutions have been 

identified as low or medium signal-degraded data as shown in Figure 7.5 through Figure 

7.8. However, the high signal-degraded data may have good position accuracy. This is 

due to the heavy filtering of GPS position performed inside the receiver and this filtering 

effect is difficult to assess by using signal and geometry degradation information only. 
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Figure 7.5: HSGPS positions and classification results, route-A tests, April 23, 2005 
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Figure 7.6: HSGPS positions and classification results, route-A tests, April 26, 2005 

 

Comparing data classification results with the test environments in both route-A and 

route-B tests, we found that most of the identified low or medium signal-degraded data in 

the core downtown areas are located at or close to the intersections. This demonstrates 

the consistency between the data classification results with the actual signal and geometry 

conditions. Comparing data classification results between different runs, we observed that 

the data classification results are not identical from run to run. This is expected because 

the signal degradation condition is changing with time according to the user-to-satellite 

geometry relative to obstacles around the receiver. For example, in Figure 7.8 the HSGPS 

positions between 5th and 6th Street on 8th Avenue have been identified as low signal-

degraded data in the run #1 test but as high signal-degraded data in the run #3 test. As 

shown, the identified low signal-degraded data overlapping the reference trajectory 
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indicates good position accuracy while the identified high signal-degraded data are off 

the track by the hundred-metre level. This demonstrates the correlation between the 

position performance and the signal degradation condition and the effectiveness of the 

designed fuzzy data classification system. 
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Figure 7.7: HSGPS positions and classification results, route-B tests, April 23, 2005 
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Figure 7.8: HSGPS positions and classification results, route-B tests, April 26, 2005 

 

Table 7.1 and Table 7.2 list the accuracy and availability of the HSGPS position as well 

as the data classification performance obtained from the route-A and route-B tests, 

respectively. Because in our test the digital map is the only available reference, the 

across-track errors are computed for position accuracy analysis. As shown, although the 

availability of the HSGPS position in a typical North American urban area is 

considerably high (above 95% for both route-A and route-B tests), the position 

performance is unsatisfactory for land vehicle applications (with maximum across-track 

errors at the hundred-metre level). For data classification performance, we see that most 

of the data classification results agree with the conclusion that the high signal-degraded 

data have larger mean, RMS, and maximum across-track errors than the medium signal-

degraded data and so on. However, because of the in-receiver filter effects, there exist 
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few exceptions that the position accuracy between different signal-degraded data set is 

similar. Statistically, based on the results of the eight run tests, the good HSGPS data 

classification for both route-A and route-B tests is still achievable. For the route-A tests, 

the average maximum across-track error is at around the 15 metre level for the low 

signal-degraded data, around the 30 metre level for the medium signal-degraded data, and 

around the 100 metre level for the high signal-degraded data. For the route-B tests with 

severer signal degradation conditions, the average across-track maximum error is at 

around the 35 metre level for the low signal-degraded data, around the 60 metre level for 

the medium signal-degraded data, and around the 150 metre level for the high signal-

degraded data.  

 

 

Table 7.1: HSGPS position accuracy after data classification (route-A) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Classified HSGPS Data 
1 2 3 4 1 2 3 4 

Average

MAX (m) 10.70  7.62 10.14 19.99 21.58 12.30 8.47  36.76 15.95 
Mean (m) 3.02  3.01 4.78 4.23 3.34 2.76 2.00  2.96 3.26 
RMS (m) 4.04  3.52 5.37 5.45 4.98 3.55 2.48  6.77 4.52 

Low 
Signal-

Degraded 
Av. (%) 47.75  37.55 30.87 36.49 29.79 22.39 15.65  14.42 29.36 

MAX (m) 29.20  42.33 20.56 18.71 26.32 31.18 42.06  40.89 31.41 
Mean (m) 8.15  9.02 6.64 5.82 9.38 6.17 4.79  11.47 7.68 
RMS (m) 10.32  15.07 7.94 7.51 12.49 8.26 7.54  16.91 10.76 

Medium 
Signal-

Degraded 
Av. (%) 17.98  14.38 21.70 11.71 21.25 15.37 24.73  22.57 18.71 

MAX (m) 65.04  43.61 40.64 279.81 73.93 94.58 199.89  126.60 115.51 
Mean (m) 15.12  10.86 14.22 26.84 14.80 29.97 20.29  22.95 19.38 
RMS (m) 20.11  14.97 17.36 53.68 21.58 41.38 31.17  35.24 29.43 

High 
Signal-

Degraded 
Av. (%) 33.33  47.00 46.09 50.00 47.91 61.64 56.18  49.84 49.00 

MAX (m) 65.04  43.61 40.64 279.81 73.93 94.58 199.89  126.60 115.51 
Mean (m) 8.02  7.61 9.60 15.93 10.19 20.16 13.35  16.65 12.69 
RMS (m) 12.78  12.00 12.79 38.53 16.32 32.79 24.10  28.19 22.19 

Total 

Av. (%) 99.06  98.93 98.66 98.20 98.95 99.40 96.56  86.83 97.07 
Av. denotes Availability. 
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Table 7.2: HSGPS position accuracy after data classification (route-B) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Classified HSGPS Data 
1 2 3 4 1 2 3 4 

Average

MAX (m) 11.22 5.98 33.05 14.56 67.41 59.94 31.57 64.80 36.06 
Mean (m) 2.82 1.63 3.74 3.31 3.74 4.55 3.24 5.17 3.53 
RMS (m) 3.73 2.11 5.10 3.90 10.34 11.03 6.77 11.03 6.75 

Low 
Signal-

Degraded 
Av. (%) 31.38 23.34 31.94 37.04 26.46 26.09 28.68 28.33 29.16 

MAX (m) 174.42 9.27 38.81 20.04 71.37 67.42 42.64 70.10 61.76 
Mean (m) 21.22 3.36 8.14 7.50 15.88 19.65 17.02 12.97 13.22 
RMS (m) 38.93 4.09 13.18 8.75 23.29 29.49 22.12 16.62 19.56 

Medium 
Signal-

Degraded 
Av. (%) 19.01 14.41 11.32 11.13 12.99 11.61 12.75 14.85 13.51 

MAX (m) 175.04 397.57 131.97 207.04 70.45 62.19 120.78 115.75 160.10 
Mean (m) 36.35 38.73 27.48 27.25 23.17 19.32 33.40 25.94 28.95 
RMS (m) 47.14 83.23 39.01 42.73 28.46 24.99 45.92 36.26 43.47 

High 
Signal-

Degraded 
Av. (%) 47.30 48.85 52.25 50.00 58.64 60.11 55.54 53.79 53.31 

MAX (m) 175.04 397.57 131.97 207.04 71.37 67.42 120.78 115.75 160.87 
Mean (m) 22.63 22.84 17.25 15.98 16.96 15.42 22.32 17.89 18.91 
RMS (m) 37.09 62.54 29.35 30.73 24.18 22.79 35.86 28.41 33.87 

Total 

Av. (%) 97.68 86.60 95.50 98.17 98.09 97.81 96.97 96.97 95.97 
Av. denotes Availability. 

 

7.2.2 Results of GPS  

For the SiRF conventional GPS that has standard signal tracking sensitivity, the position 

solutions obtained from the route-A tests on April 23 and 26, 2005 are illustrated in 

Figure 7.9 and Figure 7.10 and the position solutions from the route-B tests are shown in 

Figure 7.11 and Figure 7.12, respectively. Similar to the results from the HSGPS data 

classification, more accurate and stable position solutions have been identified as low or 

medium signal-degraded data while the erroneous and biased position solutions have 

been identified as high signal-degraded data. In addition, most of the identified low or 

medium signal-degraded data in the core downtown areas are located at or close to the 

intersections, demonstrating the consistency between the data classification results and 

the actual signal and geometry conditions. However, similar to the limitation presented in 

the HSGPS data classification, some solutions with good position accuracy were 

identified as high signal-degraded data and vice versa. This is because the single point 

code-based position solution from the GPS receiver is affected by not only the quality of 

the GPS signal and geometry but also the performance of the in-receiver filter. An 

unexpected example shown in the run #4 test in Figure 7.12 demonstrates that under low 
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and medium signal degradation conditions (at the corner of 5th Avenue and 6th Street) 

the GPS receiver could provide poor position solutions with error at the hundred-metre 

level. Looking at the HSGPS solution at the same location of the same run test shown in 

Figure 7.8, we found that the HSGPS solutions at the same corner were identified as low 

and medium signal-degraded data with good position accuracy. The HSGPS case is an 

expected result showing that the position performance is inversely proportional to the 

degree of signal degradation. Thus, by comparing the GPS with HSGPS position 

performance under the same location at the same time, it is clear that the performance 

difference is due to in-receiver filter effects. The unexpected GPS position solutions are 

obtained from the overweighting of the previous filtered positions and the 

underweighting of the current GPS measurements performed by the in-receiver filter. 
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Figure 7.9: GPS positions and classification results, route-A tests, April 23, 2005 
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Figure 7.10: GPS positions and classification results, route-A tests, April 26, 2005 

 

Table 7.3 and Table 7.4 list the across-track errors and the data availability of the 

conventional GPS solutions for each classified signal-degraded data in the route-A and 

route-B tests, respectively. As shown, the availability of GPS positions in urban areas is 

degraded, averagely about 87% for the route-A tests and about 76% for the route-B tests. 

The position performance is also unsatisfactory for land vehicle applications, averagely 

with the maximum across-track error at the hundred-metre level. For the data 

classification performance, the statistical results are similar to the HSGPS case. In 

general, the position accuracy is inversely proportional to the degree of signal 

degradation condition, i.e., the severer the signal degradation condition, the poorer the 

position accuracy. For the route-A tests, the average maximum across-track error is at 

around the 10 metre level for the low signal-degraded data, around the 35 metre level for 
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the medium signal-degraded data, and around the 95 metre level for the high signal-

degraded data. For the route-B tests that have severer signal degradation conditions, the 

average maximum across-track error is at around the 20 metre level for the low signal-

degraded data, around the 60 metre level for the medium signal-degraded data, and 

around the 150 metre level for the high signal-degraded data.  
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Figure 7.11: GPS positions and classification results, route-B tests, April 23, 2005 
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Figure 7.12: GPS positions and classification results, route-B tests, April 26, 2005 

 

Comparing the overall performance of the conventional GPS position with the high 

sensitivity GPS position, we found that the high sensitivity GPS provides higher 

availability but lower reliability than the conventional GPS. For the route-A tests, the 

availability of the conventional and high sensitivity GPS solutions is about 87% and 97% 

while the average RMS across-track error is about 19 m and 22 m, respectively. For the 

route-B tests, the availability of the conventional and high sensitivity GPS solutions is 

about 76% and 96% while the average RMS across-track error is about 27 m and 34 m, 

respectively. The obtained performance difference is considered reasonable as the high 

sensitivity GPS receiver is specially designed to track low-power signals which are 

generally noisy and have large outliers due to multipath and echo-only signals. 
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Table 7.3: GPS position accuracy after data classification (route-A) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Classified GPS Data 
1 2 3 4 1 2 3 4 

Average

MAX (m) 23.59 7.30 10.99 14.70 7.14 9.98 8.60 5.98 11.04 
Mean (m) 4.94 2.75 5.25 3.14 2.49 3.13 2.09 2.13 3.24 
RMS (m) 7.10 3.45 5.98 4.41 2.92 4.26 2.66 2.58 4.17 

Low 
Signal-

Degraded 
Av. (%) 43.07 35.62 23.27 34.23 27.00 8.06 21.91 9.40 25.32 

MAX (m) 22.58 26.68 13.48 16.88 28.56 133.06 14.88 20.43 34.57 
Mean (m) 7.25 10.37 5.30 6.48 7.29 10.96 2.56 3.59 6.73 
RMS (m) 9.74 14.43 6.86 8.32 8.98 29.22 3.74 6.16 10.93 

Medium 
Signal-

Degraded 
Av. (%) 9.93 6.44 14.99 14.41 15.51 12.99 14.55 16.77 13.20 

MAX (m) 56.53 30.57 184.39 36.10 48.62 216.80 105.55 80.18 94.84 
Mean (m) 14.26 9.15 9.60 12.98 9.46 24.90 18.64 16.36 14.42 
RMS (m) 19.86 12.41 18.89 16.51 12.88 50.28 28.09 26.70 23.20 

High 
Signal-

Degraded 
Av. (%) 43.45 46.57 45.41 41.67 47.74 68.36 38.81 54.70 48.34 

MAX (m) 56.53 30.57 184.39 36.10 48.62 216.80 105.55 80.18 94.84 
Mean (m) 9.37 6.67 7.62 8.22 7.00 20.91 10.72 12.06 10.32 
RMS (m) 14.49 10.04 14.57 12.00 10.21 45.37 20.29 22.16 18.64 

Total 

Av. (%) 96.44 88.63 83.67 90.32 90.24 89.40 75.27 80.88 86.86 
Av. denotes Availability. 

 

 

Table 7.4: GPS position accuracy after data classification (route-B) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Classified GPS Data 
1 2 3 4 1 2 3 4 

Average

MAX (m) 15.65 23.77 33.96 6.36 30.08 7.68 23.35 20.10 20.12 
Mean (m) 5.78 2.10 5.27 1.90 3.12 2.02 4.67 2.59 3.43 
RMS (m) 7.56 4.71 9.97 2.37 5.41 2.64 7.65 3.74 5.51 

Low 
Signal-

Degraded 
Av. (%) 14.53 16.43 20.31 32.77 21.22 11.48 18.97 23.03 19.84 

MAX (m) 20.07 29.74 33.05 107.85 58.94 30.89 84.21 112.91 59.71 
Mean (m) 3.01 4.33 5.57 11.18 11.95 2.43 14.88 11.38 8.09 
RMS (m) 5.55 7.95 8.86 22.69 19.51 4.28 28.50 29.57 15.86 

Medium 
Signal-

Degraded 
Av. (%) 11.59 13.69 16.28 10.06 13.11 11.20 18.51 10.61 13.13 

MAX (m) 102.22 77.03 157.99 112.15 277.12 64.04 287.89 105.25 147.96 
Mean (m) 14.83 11.09 31.69 22.03 29.25 20.58 26.69 20.61 22.10 
RMS (m) 20.98 16.73 58.46 35.45 40.69 27.08 46.73 31.74 34.73 

High 
Signal-

Degraded 
Av. (%) 48.69 39.05 38.29 34.45 45.89 51.23 40.36 44.24 42.78 

MAX (m) 102.22 77.03 157.99 112.15 277.12 64.04 287.89 112.91 148.92 
Mean (m) 11.24 7.62 18.85 12.08 19.51 14.95 18.51 14.03 14.60 
RMS (m) 17.39 13.26 42.33 25.09 31.89 22.63 36.60 26.37 26.94 

Total 

Av. (%) 74.81 69.16 74.88 77.29 80.21 73.91 77.85 77.88 75.75 
Av. denotes Availability. 
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7.3 Integration System Performance 

The previous section has demonstrated the performance of the fuzzy data classification 

for both the SiRF high sensitivity and conventional GPS in the urban environment. This 

section presents the performance of the AI-enhanced MEMS INS/GPS integration system 

in the same environment. To assess the impact of AI enhancements on the position filter 

performance, the integrated positions derived from the conventional adaptive Kalman 

filter are also presented. It should be noted that for both cases the velocity filters work 

exactly the same, both aided by land vehicle dynamics knowledge. In the following 

sections, the results of the MT9/HSGPS integrated positions are presented first, followed 

by the results of the MT9/GPS integrated positions.  

 

7.3.1 Results of MT9/HSGPS  

Figure 7.13 and Figure 7.14 illustrate the MT9/HSGPS trajectories derived from the 

conventional adaptive Kalman filter (AKF) and the AI-enhanced adaptive Kalman filter 

(AI+AKF) for the route-A tests on April 23 and 26, 2005, respectively. For the route-B 

tests, the MT9/HSGPS trajectories are illustrated in Figure 7.15 and Figure 7.16 for April 

23 and 26 tests, respectively. In all figures, the trajectories obtained from the AKF and 

AI+AKF are marked with cyan squares and pink diamonds respectively while the 

reference trajectory is marked with a yellow line. As shown, in the beginning and the end 

of each test with better GPS signal conditions, the obtained trajectories from both the 

AKF and AI+AKF overlap the reference trajectory, indicating good position accuracy. In 

the core downtown areas with severer signal degradation conditions, the accuracy of the 

integrated positions degrades due to the use of the deteriorated GPS positions and the 

drifted INS positions in the absence of GPS. 

 

Comparing the integrated positions shown in Figure 7.13 through Figure 7.16 with the 

HSGPS positions shown in Figure 7.5 through Figure 7.8, we found that the erroneous 

HSGPS positions have been filtered and smoothed by the adaptive Kalman filter. In 

addition, as shown in Figure 7.5 through Figure 7.8, in most cases the HSGPS data have 

been correctly classified, thus the innovation-based adaptive measurement noise 
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covariance can be properly modified according to the identified signal degradation 

condition. Consequently, the more accurate GPS data are characterized by smaller 

measurement noise covariances so that the filter positions can fast converge to the 

accurate GPS positions. A typical example can be found in the run #2 of route-B tests on 

April 23, 2005. As shown in the run #2 test in Figure 7.7, some GPS positions with good 

accuracy at the corner of 8th Avenue and 3rd Street have been classified as medium 

signal-degraded data. Thus, the AI-enhanced adaptive Kalman filter will trust these 

medium signal-degraded data more by using the decreased adaptive measurement noise 

covariances. As shown in the run #2 test in Figure 7.15, the AI-enhanced integrated 

positions at the same corner have been corrected back to the track while the positions 

derived from the conventional adaptive Kalman filter not. 
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Figure 7.13: MT9/HSGPS integrated positions, route-A tests, April 23, 2005 
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Figure 7.14: MT9/HSGPS integrated positions, route-A tests, April 26, 2005 

 

Some test results have demonstrated the advantage of the AI-enhanced adaptive Kalman 

filter in terms of reducing position drifts induced by the slowly changing GPS position 

errors when the vehicle is stationary. A typical example can be found at the corner of 5th 

Avenue and 5th Street in the run #1 test in Figure 7.14. The trajectory provided by the 

AI+AKF remains on the track but the trajectory provided by the AKF drifts with 

erroneous GPS positions. As mentioned in Chapter 5, this performance improvement is 

contributed by the aiding from the vehicle dynamics knowledge. In summary, for both 

route-A and route-B tests, the results have demonstrated that the AI-enhanced adaptive 

Kalman filter can improve integration performance especially in GPS challenging 

environments. Table 7.5 and Table 7.6 list the integrated position accuracy versus the 

HSGPS-only position accuracy in terms of the across-track error for the route-A and 
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route-B tests, respectively. It can be seen that in each run the AI-enhanced AKF provides 

better position accuracy than the convectional one in terms of the mean, RMS and 

maximum across-track errors, which confirms the effectiveness of the designed AI-based 

enhancement. The average mean, RMS and maximum across-track errors of the AI+AKF 

solutions are 7.93 m, 10.97 m and 34.63 m for the route-A tests and 10.09 m, 14.38 m 

and 44.5 m for the route-B tests, respectively which shows significant improvement over 

the HSGPS solutions with the maximum across-track error at the hundred-metre level. As 

expected, better performance has been obtained from the route-A test, since there exist 

harsher GPS environments in the route-B test. 
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Figure 7.15: MT9/HSGPS integrated positions, route-B tests, April 23, 2005 
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Figure 7.16: MT9/HSGPS integrated positions, route-B tests, April 26, 2005 

 

 

Table 7.5: Integrated MT9/HSGPS vs. HSGPS position accuracy (route-A) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Across-Track Errors 
1 2 3 4 1 2 3 4 

Average

MAX (m) 65.04 43.61 40.64 279.81 73.93 94.58 199.89 126.60 115.51 
Mean (m) 8.02 7.61 9.60 15.93 10.19 20.16 13.35 16.65 12.69 HSGPS 
RMS (m) 12.78 12.00 12.79 38.53 16.32 32.79 24.10 28.19 22.19 
MAX (m) 32.99 31.72 33.70 40.65 47.64 77.05 52.72 36.33 44.10 
Mean (m) 6.48 5.97 8.74 11.63 9.37 18.62 11.17 9.28 10.16 AKF 
RMS (m) 9.74 8.70 11.51 15.84 14.20 26.68 16.86 13.24 14.59 
MAX (m) 31.78 28.99 22.39 32.61 26.89 52.02 50.58 31.82 34.63 
Mean (m) 5.25 5.82 7.03 10.17 5.33 12.75 9.23 7.86 7.93 AI+AKF 
RMS (m) 8.46 8.08 8.45 13.10 7.39 17.83 12.91 11.59 10.97 
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Table 7.6: Integrated MT9/HSGPS vs. HSGPS position accuracy (route-B) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Across-Track Errors 
1 2 3 4 1 2 3 4 

Average

MAX (m) 175.04 397.57 131.97 207.04 71.37 67.42 120.78 115.75 160.87 
Mean (m) 22.63 22.84 17.25 15.98 16.96 15.42 22.32 17.89 18.91 HSGPS 
RMS (m) 37.09 62.54 29.35 30.73 24.18 22.79 35.86 28.41 33.87 
MAX (m) 129.34 76.65 36.39 50.17 58.44 51.98 58.12 48.98 63.76 
Mean (m) 23.29 14.22 8.66 11.17 15.21 13.04 15.62 12.65 14.23 AKF 
RMS (m) 38.88 21.16 11.67 15.92 20.72 18.79 22.63 17.68 20.93 
MAX (m) 48.12 73.76 31.96 36.45 42.32 34.89 52.59 35.90 44.50 
Mean (m) 12.17 13.20 5.89 8.08 12.31 7.15 13.11 8.81 10.09 AI+AKF 
RMS (m) 17.39 20.05 8.50 11.53 16.37 9.28 19.19 12.71 14.38 

 

7.3.2 Results of MT9/GPS  

For the MT9/GPS integrated solutions, the trajectories obtained from the route-A tests on 

April 23 and 26, 2005 are illustrated in Figure 7.17 and Figure 7.18 and from the route-B 

tests in Figure 7.19 and Figure 7.20, respectively. Similar to the results of the 

MT9/HSGPS system, for both route-A and route-B tests the integrated positions are good 

in the nearly open areas and degraded in the core downtown areas. In addition, the AI-

enhanced adaptive Kalman filter has provided better position performance than the 

conventional one in general. However, an undesirable result was found in the run #4 of 

the route-B test on April 26, 2005. As shown in the run #4 test in Figure 7.20, the AI-

enhanced adaptive Kalman filter solutions are poorer than the conventional ones. This is 

because in this case the AI+AKF approach has used the incorrect data classification result 

to modify the adaptive measurement noise covariance. From the GPS data classification 

results in the same run test as shown in Figure 7.12, we found that the GPS receiver 

provided poor position solutions under the low and medium signal degradation conditions 

(at the corner of 5th Avenue and 6th Street) due to in-receiver filter effects. As a result, 

the poor GPS solutions were overweighted in the AI-enhanced adaptive Kalman filter 

which subsequently degraded the integration performance. 

 

The accuracy of the integrated position and the GPS-only position for route-A and route-

B tests is shown in Table 7.7 and Table 7.8, respectively. Similar to the MT9/HSGPS 

results, the AI-enhanced adaptive Kalman filter provides better position accuracy than the 
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conventional one for the MT9/GPS integration system. The average mean, RMS and 

maximum across-track errors for the AI-enhanced integration solutions are 7.1 m, 10.5 m 

and 40.1 m for the route-A tests and 11.11 m, 16.85 m and 52.43 m for the route-B tests. 

Obviously, a better performance has been obtained from the route-A tests since there 

exist harsher GPS environments in the route-B tests.  
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Figure 7.17: MT9/GPS integrated positions, route-A tests, April 23, 2005 
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Figure 7.18: MT9/GPS integrated positions, route-A tests, April 26, 2005 

 

Comparing the results of the MT9/HSGPS with that of the MT9/GPS, we observed that 

the MT9/HSGPS AI+AKF approach provides better position accuracy than the MT9/GPS 

AI+AKF approach. However, when the AKF-only is applied, the MT9/HSGPS system 

provides poorer position accuracy than the MT9/GPS system. This could be explained by 

the error behavior difference between the HSGPS and GPS positions. Based on the 

results of the HSGPS positioning shown in Figure 7.5 through Figure 7.8, we found that 

the HSGPS provides more available data but the obtained positions may gradually drift 

away from the track under severe signal degradation conditions. As mentioned in Chapter 

5, the gradually drifted HSGPS position errors are undetectable by the innovation-based 

AKF, which will lead to biased position estimation. In contrast, the conventional GPS 

provides less available but more reliable positions as shown in Figure 7.9 through Figure 
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7.12. Although there exist some GPS position outliers, they have been easily detected by 

the innovation-based AKF. Thus, the conventional AKF works more properly in the 

MT9/GPS integration than in the MT9/HSGPS integration. Accordingly the MT9/GPS 

AKF positions are more accurate. When the AI-enhanced AKF is applied for data fusion, 

the measurement noise covariance is modified to better characterize the real GPS 

performance and thus the integrated position accuracy can be improved. As shown in 

Table 7.5 through Table 7.8, the improvement for the MT9/HSGPS integration is more 

significant than the MT9/GPS integration. This is because more drifted position errors 

from the HSGPS have been successfully removed by the AI enhancement and more low 

and medium geo-signal-degraded HSGPS data are available to modify the measurement 

noise covariance. As a result, the MT9/HSGPS AI+AKF solution is better than the 

MT9/GPS AI+AKF solution. 
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Figure 7.19: MT9/GPS integrated positions, route-B tests, April 23, 2005 
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Figure 7.20: MT9/GPS integrated positions, route-B tests, April 26, 2005 

 

 

 Table 7.7: Integrated MT9/GPS vs. GPS position accuracy (route-A) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Across-Track Errors 
1 2 3 4 1 2 3 4 

Average

MAX (m) 56.53 30.57 184.39 36.10 48.62 216.80 105.55 80.18 94.84 
Mean (m) 9.37 6.67 7.62 8.22 7.00 20.91 10.72 12.06 10.32 GPS 
RMS (m) 14.49 10.04 14.57 12.00 10.21 45.37 20.29 22.16 18.64 
MAX (m) 55.72 30.65 89.28 35.68 35.54 50.23 51.53 31.37 47.50 
Mean (m) 9.28 6.84 11.68 7.37 6.32 10.63 9.37 7.34 8.60 AKF 
RMS (m) 14.18 10.29 20.90 11.11 9.08 15.62 15.10 10.51 13.35 
MAX (m) 29.64 28.62 86.67 25.76 34.72 33.02 42.58 39.75 40.10 
Mean (m) 6.99 5.86 11.27 5.96 4.05 7.49 8.36 6.79 7.10 AI+AKF 
RMS (m) 9.80 8.85 19.78 8.31 5.73 9.64 12.14 9.73 10.50 

 



 

194 

Table 7.8: Integrated MT9/GPS vs. GPS position accuracy (route-B) 
Test Run # (April 23, 2005) Test Run # (April 26, 2005) 

Across-Track Errors 
1 2 3 4 1 2 3 4 

Average

MAX (m) 102.22 77.03 157.99 112.15 277.12 64.04 287.89 112.91 148.92 
Mean (m) 11.24 7.62 18.85 12.08 19.51 14.95 18.51 14.03 14.60 GPS 
RMS (m) 17.39 13.26 42.33 25.09 31.89 22.63 36.60 26.37 26.94 
MAX (m) 56.46 56.29 32.02 54.65 56.42 56.77 66.12 58.27 54.62 
Mean (m) 10.36 8.58 8.17 12.17 15.37 14.54 14.47 10.05 11.71 AKF 
RMS (m) 13.56 13.54 11.37 18.81 21.02 20.10 21.37 15.81 16.95 
MAX (m) 60.61 52.84 24.85 57.48 39.68 37.64 49.70 96.64 52.43 
Mean (m) 10.70 9.46 6.33 13.26 10.59 7.91 12.75 17.89 11.11 AI+AKF 
RMS (m) 14.91 14.84 8.57 20.77 15.04 10.38 17.47 32.85 16.85 

 

7.4 Summary of Test Results 

In this chapter, the performance of the stand-alone GPS and the AI-enhanced integration 

system in the urban environment has been evaluated. Two types of GPS receivers, the 

conventional and high sensitivity GPS, and two types of low-cost integration systems, the 

MEMS INS/GPS and MEMS INS/HSGPS have been tested on two downtown routes. 

The HSGPS provided higher availability but lower reliability of position solutions than 

the conventional GPS. In severe signal degradation conditions, both GPS solutions were 

subject to large position errors at the hundred-metre level. Using the proposed fuzzy data 

classification system, more accurate position solutions have been identified successfully. 

For the route-A test, the average maximum across-track errors for the identified low 

signal-degraded HSGPS and GPS data were around 15 m and 10 m, respectively. For the 

route-B test which has severer signal degradation conditions, the average maximum 

across-track errors for the identified low signal-degraded HSGPS and GPS data increased 

to around 35 m and 20 m, respectively. However, there still existed few disagreements 

between the obtained position performance and the signal degradation condition because 

of the smoothing feature of the position solution from the GPS receivers. 

 

Compared to the stand-alone GPS, the AI-enhanced integration system can improve the 

position performance significantly. Based on the average result of the route-A and route-

B tests, the MT9/HSGPS integration provided about 71% improvement in the average 

maximum across-track error over the HSGPS and the MT9/GPS integration provided 
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about 61% improvement in the average maximum across-track error over the GPS. With 

the capabilities of better characterizing the real GPS performance and identifying the 

slowly changing GPS position error, the AI-enhanced adaptive position filter provided 

better position performance than the conventional adaptive position filter. About 26% 

improvement in the average maximum across-track error for the MT9/HSGPS integration 

and 10% for the MT9/GPS integration were obtained. Overall, the AI-enhanced MEMS 

INS/HSGPS integration system provided the best position performance because of the 

use of more available and properly weighted GPS data. 
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Chapter 8  

Conclusions and Recommendations 

 

The contribution of this research work is in the development of AI-based algorithms and 

their incorporation with the conventional/adaptive Kalman filter for the integration of 

low-cost MEMS INS with SPP GPS for land vehicle applications. Three AI-based 

methods have been developed to deal with the corrupted GPS data in signal-degraded 

environments, the large instrument errors experienced with a low-grade MEMS IMU and 

the distorted magnetic measurements from an electronic compass, respectively. 

Specifically, a fuzzy logic rule-based system has been developed to identify GPS signal 

degradation conditions based on the combination of signal quality and geometry 

information so that GPS solutions can be classified in terms of their quality and 

subsequently can be more properly weighted in data fusion under various GPS 

environments. A dynamics knowledge aided inertial navigation algorithm along with a 

fuzzy expert vehicle dynamics identification system has been created to simplify system 

models and to extend measurement update schemes of the Kalman filter so that INS 

errors can be more effectively controlled especially during GPS outages. A neural-

networks-based compass calibration algorithm has been developed to correctly remove 

the systematic measurement errors even in disturbance-rich environments so that the 

compass heading can benefit the integration system in land vehicle environments. Finally, 

these AI-based methods have been incorporated with the conventional/adaptive Kalman 

filter in a loosely coupled integration scheme to build up an intelligent data fusion and 

processing algorithm for low-cost MEMS INS/SPP GPS integration. The developed 

algorithms have been tested and evaluated in various GPS conditions (open areas, 

complete GPS outages and urban areas) using a low-cost Xsens MT9 MEMS IMU with 

SiRF Star II conventional/high sensitivity GPS receivers. The following sections outline 

the major conclusions drawn from this research and the recommendations for future 

improvements.  
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8.1 Conclusions 

This dissertation has demonstrated the advantages and effectiveness of the developed AI-

based methods applied to the enhancement of low-grade MEMS INS/SPP GPS data 

fusion and processing. Such AI-enhanced integration system can provide continuous and 

satisfactory navigation solutions for land vehicle applications in all operational 

environments. In the following, major conclusions are summarized in terms of various 

GPS conditions. 

 

Navigation in open areas 

 

1. With continuous and reliable GPS updates in open areas, the dynamics-aided 

Kalman filter can estimate the constant part of the accelerometer bias with 

estimation accuracy of about 0.03 m/s2. This enables the accurate estimation of the 

dynamics-derived observations to provide INS error control during GPS outages. In 

general, the x-axis bias estimation accuracy is better and more stable than the y-axis 

one because the x-axis bias is estimated directly using the Kalman filter while the y-

axis bias estimation involves a statistical approach affected by more error sources. 

Under signal-degraded conditions, however, GPS accuracy will be degraded and in 

turn the Kalman filter cannot provide stable and reasonable bias estimation. In this 

case, the bias estimation process should be suspended and the last estimated bias is 

used for error compensation. 

 

2. The low-cost MEMS INS/SPP GPS integration system can provide accuracy for 

attitude less than 1 degree and for horizontal velocity and position at accuracy about 

0.1 m/s and 3 m in open-sky environments, respectively. The pitch and roll accuracy 

is affected by the filter observability which varies with vehicle dynamics changes 

while the heading accuracy is mainly determined by the accuracy of the GPS 

heading update which is proportional to the vehicle velocity. The integrated velocity 

and position performance is almost identical to the GPS velocity and position 

performance. 
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3. The heading information provided by the integration system in open areas has been 

successfully used for compass error modelling. With sufficient training data, the 

neural networks can properly model the nonlinear input-output relationship that 

describes the bias, scale factor and declination effects on the compass heading even 

in the presence of significant noise and disturbance. The neural networks should be 

retrained once the bias, scale factor and declination effects change. 

 

Navigation with complete GPS outages 

 

1. The dynamics-aided inertial navigation algorithm can provide sufficiently accurate 

attitude and velocity observations to control the stand-alone INS error drift. The bias 

of the dynamics-derived tilt is about 0.16 degrees and the attainable accuracy of the 

dynamics-derived velocity is about 0.45 m/s. The performance of the dynamics-

derived observations is mainly determined by the accuracy of the accelerometer bias 

estimate and thus will degrade when the constant part of the accelerometer bias 

changes. 

 

2. The neural networks trained in open areas have been successfully used to calibrate 

compass heading during the sequential GPS outages. The calibration accuracy using 

the neural networks in a typical land vehicle environment is about 0.26 degrees 

which is good enough to correct the MEMS gyro-derived heading. This calibration 

method doesn’t require declination information and magnetometer bias and scale 

factor estimation. In addition, it can provide robust calibration performance in the 

presence of large noise and disturbance while other traditional approaches may fail 

or diverge. 

 

3. During complete GPS outages, the dynamics-aided MEMS INS can provide 

bounded attitude and improved velocity and position information while the unaided 

solutions will drift over time rapidly and cannot be used for navigation. During 

about 3-minute stand-alone inertial navigation on the test trajectory with eight 

cornering shapes and four virtual stop signs, the attainable accuracy of the 
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dynamics-aided roll, pitch and heading is about 0.8, 0.5 and 1.5 degrees, on average, 

respectively. The performance difference between each axis is due to the variations 

in frequency and availability of the dynamics-derived information with respect to 

pitch, roll and heading channels. The accuracy of the dynamics-aided horizontal 

velocity and position solutions is about 0.66 m/s and 16.25 m, respectively and the 

maximum horizontal position error has been maintained within 30 m, on average. 

The achieved performance is therefore much better than the performance supplied 

by the manufacturer specifications which demonstrates the capability of using the 

dynamics-aided MEMS INS to bridge longer GPS outages. The limitation of the 

proposed method is the requirements of frequent stationary and/or cornering 

dynamics of the vehicle. In urban area applications, however, these requirements can 

be easily fulfilled by the dense traffic lights, traffic jam and the grid road layout. 

 

4. When the calibrated compass heading is added to enhance the stand-alone 

dynamics-aided INS navigation, no significant improvement in tilt, velocity and 

position but heading accuracy only has been found. This is because the heading state 

in the Kalman filter is direct observable from the compass heading measurement 

while others are not. The improvement of the heading solution in terms of biasness 

is more significant than preciseness because the calibrated compass heading is 

nearly unbiased but is still corrupted with random errors due to noise, magnetic 

disturbance and projection error. In summary, the dynamics-aided plus compass-

aided approach is able to provide smooth and drift-free heading estimation with 

mean error of 0.36 degrees and RMS error of 1.42 degrees, on average, during the 

GPS outage of about 3 minutes. 

 

Navigation in urban areas 

 

1. In urban areas, the stand-alone GPS position is subject to degraded availability and 

accuracy with occasional outliers of the hundred-metre level. The in-receiver filter 

smoothes the position but at the same time may introduce large biases when GPS 

measurements are corrupted by large noise and multipath. The HSGPS provides 
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higher availability but lower reliability in position solutions than the conventional 

GPS. 

 

2. The developed fuzzy data classification system can properly classify GPS data 

quality in the statistical sense based on the identified signal degradation conditions 

for both conventional and high sensitivity GPS. However, the proposed method 

cannot provide a systematic assessment of epoch-by-epoch positional accuracy 

because of the unknown proprietary of the in-receiver filter and the dilemma of 

using the fading C/N0 to indicate the magnitude of multipath error. The proposed 

method could be applied to notify users the quality of GPS data under various GPS 

environments and to improve the performance of GPS/INS integration system by 

properly adapting the GPS data in data fusion as implemented in this research. 

 

3. The intelligent MEMS INS/SPP HSGPS integration system can provide continuous 

and satisfactory position solutions for land vehicle navigation in the typical North 

American urban canyons. The average RMS and maximum across-track errors are 

around 10.97 m and 34.63 m for the route-A tests and 14.38 m and 44.5 m for the 

route-B tests where there exist harsher GPS environments. The intelligent MEMS 

INS/SPP GPS integration system provides similar position performance, with the 

average RMS and maximum across-track errors of around 10.5 m and 40.1 m for the 

route-A test and 16.85 m and 52.43 m for the route-B test, respectively. In harsher 

GPS environments such as in the core downtown area, HSGPS is recommended for 

the integration system in order to provide better navigation performance. 

 

4. The AI-enhanced adaptive Kalman filter has shown better performance than the 

conventional adaptive Kalman filter because of its capability to reject the slowly 

changing GPS position error and to fast recover from the biased estimation once 

good GPS data are available. This improvement is found more significant in the 

MEMS INS/HSGPS integration than the MEMS INS/GPS integration because the 

HSGPS solution has more gradually drifted type of position error that can be 

detected by the AI-enhanced adaptive Kalman filter but not by the conventional one. 
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However, the degraded position performance could be introduced by the AI-

enhanced adaptive Kalman filter when the performance of the GPS filter output 

doesn’t correspond to the signal degradation condition such as poor GPS outputs in 

a low signal-degraded condition. Based on the experimental results, this rarely 

happens and is difficult to detect due to the latency of the in-receiver filter. 

 

In summary, the proposed AI-based methods suggest a powerful approach to process the 

imprecise and ambiguous data obtained from low quality instruments and in unfavourable 

environments that are difficult to deal with by traditional model-based algorithms. The 

intelligent integration algorithm increases the potential of using a low-cost MEMS 

INS/SPP GPS system to provide continuous and satisfactory navigation solution for land 

vehicle applications. 

 

8.2 Recommendations 

Based on the results and conclusions of this dissertation, the following recommendations 

for further research are proposed: 

 

1. The velocity and attitude filter is designed to operate in GPS-only update mode 

under open-sky environments and in full update (updates from GPS, dynamics-

derived observation and calibrated compass heading) mode under signal-degraded 

and/or signal-blocked environments. In this research, the integration system was 

tested in open-sky and urban areas respectively but not in a more realistic situation 

such as from open-sky/suburban to urban areas or vice versa. In practical 

applications, it is required to develop an expert system to automatically switch the 

operation mode of the velocity and attitude filter according to GPS data quality and 

filter performance. 

 

2. The parameters of the neural networks used for compass calibration such as the 

number of hidden neuron are decided empirically in this research. For optimization 

purpose, an intelligent mechanism to adjust the structure and parameters of the 
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neural networks according to the complexity of the problem is recommended and 

should be investigated in the future. 

 

3. For testing purpose, the neural networks used for compass calibration are trained 

and tested using the data collected by different runs on the same route during a 

couple-hour experiment. In practical applications, as the compass is installed in a 

moving vehicle, the nonlinear relationship between compass heading and true 

heading may change with environments such as geographic location. Thus, it is 

required to retrain the neural networks occasionally to adapt the environmental 

changes. An intelligent mechanism to determine the size of the training data and the 

frequency of the training in accordance with the actual field environments should be 

investigated. 

 

4. Under signal-degraded and/or signal-blocked environments, the proposed 

integration algorithm stops the estimation of accelerometer biases and uses the last 

estimated biases to correct dynamics-derived observations to provide additional 

measurement updates for INS error control. However, the estimated bias may differ 

from the true bias with time according to operational environments and in turn the 

dynamics-derived observations could be biased. The impact of the biased dynamics-

derived updates on INS error control should be investigated. 

 

5. The parameters used in the fuzzy expert vehicle dynamics identification system are 

vehicle dependent and sensitive to the installation locations of the sensors. In his 

research they were empirically determined based on the real data. To reduce the cost 

of the design process and to optimize the identification system, a self-learning fuzzy 

system is recommended. 

 

6. When the vehicle is moving in a straight line during long periods of GPS outage, 

only the accelerometer-derived roll is available to update the Kalman filter and it 

provides very small corrections for the pitch and forward velocity error. In this case, 

the pitch and forward velocity error will drift to a large extent and thus additional 
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error control or prediction techniques are required to maintain the stand-alone 

MEMS INS with reasonable performance. 

 

7. The fuzzy data classification system can properly classify GPS data quality in the 

statistical sense based on the identified signal degradation conditions. However, few 

exceptions such as poor GPS outputs in a low signal-degraded condition could 

happen due to the latency of the in-receiver filter. Investigating a fault detection 

method to monitor these exceptions is beneficial to improve the robustness of the 

data classification system. 

 

8. The position accuracy of the proposed integration system can be further improved 

by using map-matching techniques which provide addition map-derived 

observations to constrain position errors. 

 

9. Incorporating the dynamics knowledge aided inertial navigation algorithm and fuzzy 

GPS data classification system with the Kalman filter in a tightly coupled integrated 

scheme should be investigated for possible performance improvement when the 

computational loading is not a major concern. 
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