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Abstract

Although Global Positioning System (GPS) has been widely used to land vehicle
navigation systems, GPS is unable to provide continuous and reliable navigation
solutions in the presence of signal fading and/or blockage such as in urban areas. With
the advent of the Micro-Electro-Mechanical System (MEMS) Inertial Navigation System
(INS), a low-cost MEMS INS/GPS integration system becomes available to provide
improved navigation performance by integrating the long-term GPS accuracy with the
short-term INS accuracy. The challenges to low-cost MEMS INS/GPS integration arise
from dealing with the corrupted GPS data in signal-degraded environments, the large
instrument errors experienced with low-grade MEMS sensors and the distorted magnetic
measurements from an embedded electronic compass. This dissertation develops
intelligent data fusion and processing techniques for such a low-cost integration system

by incorporating the Artificial Intelligence (AI) with the Kalman filtering.

Two cascaded Kalman filters implemented upon a loosely coupled integration scheme are
applied to perform data fusion in the velocity/attitude and position domain, respectively.
Three Al-based methods are developed for GPS data assessment, INS error control and
compass error modelling to enhance the Kalman-filter-based integration. Specifically, a
fuzzy GPS data classification system is developed to optimize INS/GPS data fusion
through adjusting the measurement covariances of the Kalman filters according to GPS
signal degradation conditions. A dynamics knowledge aided inertial navigation algorithm
along with a fuzzy expert vehicle dynamics identification system is created to reduce and
control INS error drift through simplifying system models and extending measurement
update schemes of the Kalman filters. A neural-networks-based compass calibration
algorithm is developed to provide the correct compass heading updates to the Kalman

filters in the presence of disturbance.

The developed algorithms have been tested and evaluated in various GPS conditions,

which include open areas, complete GPS outages and urban areas, using a low-cost Xsens
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MT9 MEMS IMU and SiRF Star II conventional/high sensitivity GPS receivers. The
obtained results have confirmed the effectiveness of the Al-based methods and the
significant performance improvement by the intelligent integration algorithm. For GPS
outages around 3 minutes, the intelligent integration system is able to maintain
satisfactory position accuracy with the maximum error less than 30 m. In the typical
North American urban canyons, the intelligent integration system can provide continuous
and reliable navigation solutions with the horizontal position accuracy of around 15 m.
Overall results confirm the benefits and advantages of applying the developed Al
methods to assist the low-cost MEMS INS/GPS integration for land vehicle navigation.
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Chapter 1

Introduction

Land vehicle navigation is the fastest growing section of the in-vehicle electronics market.
According to the CSM Worldwide, the global in-vehicle navigation systems market will
grow to $5.4 billion by 2010 which represents 66% growth over today’s market,
estimated at $3.2 billion on May 20, 2005 (Telematics Update, 2005). Currently, overall
navigation system installation in Japan is at about 16% of vehicle production while
Europe and North America lag the Japanese market with overall installation rates of 8%
and 3%, respectively (Telematics Update, 2005). As the price for navigation systems
drops, navigation systems will go from optional luxury equipment to standard amenities
on generic cars, which helps continue the growth of navigation systems in the global
market. Towards this goal, however, an important issue is to maintain reasonable
navigation performance along with the cost demand. This dissertation investigates a low-
cost integrated approach to provide continuous and reliable land vehicle navigation in all

operational environments.

1.1 Background

The most fundamental task of a vehicular navigation system is to continuously maintain
accurate track of the vehicle’s position (French, 1987). Basically, two types of navigation
technologies, dead-reckoning (DR) and position fixing, are available for position
determination. The principle of the dead-reckoning technology is to determine the current
position of the vehicle based on the knowledge of the previous position and the
measurement of the motion. The typical DR sensors used for land vehicle navigation are
odometer, magnetic compass and Inertial Navigation System (INS). DR sensors are self-
contained and autonomous navigators independent on operational environments but the

sensor errors will lead to unbounded position error growing with time. In contrast,



position fixing technology which determines the vehicle position by measuring the
distance between the vehicle and the reference points based on radio signals can provide
absolute position and velocity information with bounded accuracy. The most commonly
used position fixing technology is the Global Navigation Satellite System (GNSS) such
as Global Positioning System (GPS). GPS has been adopted widely in vehicular
navigation systems due to its cost-effect performance. However, the major drawback of
GPS is that at least four satellites must be visible to the GPS receiver. In real operational
environments such as urban canyons, GPS positioning accuracy and availability will

degrade due to the poor satellite geometry, multipath and satellite signal outages.

There are four main parameters that can be used to measure the performance of a
navigation system: accuracy, integrity, continuity and availability (Ashkenazi et al., 1995;
Ochieng et al., 1999). Theses quantities are referred to as the Required Navigation
Performance (RNP) parameters and their definition are given in Table 1.1. The RNP
parameters are originally applied in aviation and have been extend to marine and land
vehicle navigation. According to Hofmann-Wellenhof et al. (2003), autonomous
navigation in urban areas requires continuous positioning information with accuracy of
2~5 metres (2D-95%). For location based service (LBS), the accuracy requirement varies
with applications, e.g. positioning accuracy of 10~20 metres (2D-95%) is required for
fleet management. Unfortunately, neither DR nor GPS can fulfill these requirements in
stand-alone mode. Although DR sensors can provide continuous navigation solutions in
all environments, they suffer from navigation error growth over time and eventually
cannot sustain the accuracy requirement. In contrast, GPS is able to provide sufficiently
accurate position solutions but it cannot fulfill the continuity and availability
requirements in some land vehicle environments such as urban canyons. Although
currently developed high sensitivity technologies have improved the GPS availability in
signal-degraded environments, the position solutions provided by the high sensitivity
GPS in such environments could be unreliable and suffer from the hundred-metre level
error. Thus, to fulfill these requirements, integration of DR and GPS is required and has
become a common approach worldwide for land vehicle navigation (French, 1995).

INS/GPS integration is typically the most popular approach since it can provide three-



dimension attitude, velocity and position information and is also applicable to portable
systems. Given complementary nature of INS and GPS, the integration system can
provide superior system performance in terms of accuracy, integrity and availability than

each system in stand-alone mode (Greenspan, 1996).

Table 1.1: Required Navigation Performance (RNP) parameters (after Ochieng et
al., 1999)

Accuracy defined as the degree of conformance of an estimated or
measured position at a given time, to the truth.

Integrity defined as the ability of the navigation system to provide
timely warnings to users when the system must not be
used for navigation.

Continuity  defined as the ability of the total system to perform its
function without interruption during an intended period
of operation.

Availability defined as the percentage of time during which the
service is available for use taking into account all the
outages whatever their origins. The service is available if
accuracy, integrity and continuity requirements are
satisfied.

Advances in microelectronics, computer, and sensor technologies permit the development
of commercial low-cost Inertial Measurement Units (IMUs) and GPS receivers for
vehicular navigation markets. Recently, a single-frequency GPS chipset receiver with the
cost of less than 200 USD is available in the markets. The continuous development of the
Micro-Electro-Mechanical System (MEMS) technology has made low-cost inertial
sensors available to land vehicle navigation. A single point positioning (SPP)
GPS/MEMS INS integration system has become one of the most attractive low-cost
solutions to land vehicle navigation. However, the challenges when working with MEMS
INS/SPP GPS are to develop a robust integration algorithm that can deal with the large
instrument errors experienced with low-grade MEMS INS and the corrupted GPS data in
signal-degraded environments. This dissertation focuses on the development of a new
integration algorithm that enables the low-cost MEMS INS/SPP GPS integration system

to provide reliable and accurate navigation solutions for land vehicle applications.



1.2 Literature Review

For decades, integration of INS with GPS has been investigated in many literatures. The
Kalman filtering methodology has been successfully applied for INS/GPS integration
using either loosely or tightly coupled integration strategies (Wei and Schwarz, 1990;
Cannon, 1991; Salychev, 1998; El-Sheimy and Schwarz, 1999; Jekeli, 2000; Scherzinger,
2000 and Petovello, 2003). The Kalman filter offers a powerful method for linear data
fusion and estimation that are optimal in the statistical sense if the system and
measurement models and their stochastic properties are known (Gelb, 1974). For low-
cost MEMS INS/GPS integration, however, these requirements are difficult to meet due
to the poor quality of the instrument measurements. The traditional integration algorithm
finds new challenges dealing with rapid INS error drift during GPS outages and INS/GPS
data fusion in GPS signal-degraded environments. In the following sections, we will first
discuss the current research regarding MEMS INS/GPS integration using the Kalman
filter. Then, the available methods to reduce INS error drift during GPS outages are
reviewed, followed by the discussion of fusion optimization techniques for MEMS

INS/GPS.

1.2.1 Integration of MEMS INS with GPS Using Kalman Filter

In the last few years, several researchers have investigated the MEMS INS/GPS
integration using the Kalman filter. Salychev et al (2000) and Nayak (2000) applied a
loosely coupled integration strategy to integrate the MotionPak™ MEMS IMU with
pseudorange differential GPS (DGPS). Brown and Lu (2004) and Jaffe et al. (2004)
developed Kalman filter-based MEMS INS/SPP GPS integrated navigation systems using
tightly coupled integration strategy. Shin (2005) applied the unscented Kalman filter and
extended Kalman filter for low-cost MEMS INS/DGPS integration. The above researches
focused on evaluating the system performance under benign operational conditions such
as open-sky environments and assessing the INS prediction accuracy during simulated
GPS outages. The test results have demonstrated that the navigation performance
degrades rapidly following loss of the GPS aiding data due to the large INS bias variation

and noise.



Currently, Hide and Moore (2005) and Godha (2006) investigated the performance of the
MEMS INS/DGPS integrated vehicular navigation systems in real life suburban/urban
environments. Hide and Moore (2005) demonstrated that the horizontal position error
within around 20 m using the tightly coupled integration of Crossbow AHRS400 MEMS
IMU and DGPS is attainable when the system was tested in the city of Nottingham, UK
where the surrounding buildings are generally only 3 to 4 stories tall. Godha (2006)
demonstrated the similar performance obtained in downtown Calgary, Canada using the
tightly coupled integration of Crista MEMS IMU and DGPS and 27-state INS filter with
height and velocity constraints. However, the use of DGPS and tightly coupled
integration scheme suggested by these two researches will increase the cost of system
implementation and operation in real applications since it requires base stations,

additional communication links and more powerful processors.

1.2.2 Control of Stand-Alone INS Error Drift

As stated previously, for a low-cost MEMS INS/GPS integration system, navigation
performance degrades rapidly following loss of the GPS aiding data if prediction of
navigation error only relies on the Kalman filter. A number of approaches have been
proposed to reduce the stand-alone INS error drift and they are grouped into: special error
prediction techniques, aiding from vehicle dynamics knowledge and the use of auxiliary

SENSors.

Neural networks, neuro-fuzzy models and fuzzy inference systems have been proposed to
predict INS drift errors and have shown their effectiveness on navigation error reduction
(Ibrahim et al., 2000; Chiang, 2004; El-Sheimy et al., 2004; Wang, 2004a). The basic
idea behind the neuro-fuzzy modelling or fuzzy reasoning approaches is to predict
navigation errors based on an input/output pattern memorized during a training or
learning process. To maintain good performance of the neuro-fuzzy prediction, the
training data should cover all the input and output data ranges and the neuro-fuzzy model
should be retrained in real-time to deal with minor changes in the operating

environmental conditions (Haykin, 1999). For a low-cost MEMS INS with a relatively



high instrument bias, noise and random error, sensor errors are highly sensitive to
operational environments and the input/output patterns change dynamically. Thus, it is
more difficult to accurately predict navigation errors using the neuro-fuzzy model or the
fuzzy inference system when low-cost MEMS inertial sensors are used. For a MEMS
INS/SPP GPS integration system, the stand-alone INS error after neural networks
correction could reach the hundred-metre level during 30-second GPS outages (Chiang,

2004).

Another approach available in literatures to reduce INS error drift is based on the
constraints of land vehicle motion. Zero velocity updates (ZUPTs) are the most
commonly used techniques to provide effective INS error control when the stationary of a
vehicle is available (Salychev, 1998; El-Sheimy, 2003). In addition, Brandt and Gardner
(1998), Dissanayake et al. (2001) and Shin (2001) applied the nonholonomic constraints
that govern the motion of a vehicle on a surface to bound the mechanization errors in a
tactical grade IMU. Collin et al. (2001), Ojeda and Borenstein (2002) and Wang and Gao
(2004c) used complementary motion detection characteristics of accelerometers and
gyroscopes to keep the tilt estimation bounded. The basic idea is to use the
accelerometer-derived tilt angle for the attitude update while vehicle is static or moving
linearly at a constant speed. Among these methods, however, only ZUPTs can provide
direct error control of the forward velocity of the vehicle but they are not frequently
available sometimes. For low-cost MEMS IMU with large instrument errors, the control

of INS error using these methods is insufficient for longer periods of GPS outage.

Auxiliary DR sensors such as odometers and magnetic compasses have also been used to
reduce INS error drift. Odometers can provide absolute velocity information but they are
vehicle dependent and much difficult to interface with other sensors (Stephen, 2000). As
the advances in electronic and manufacture techniques, small-size and low-cost electronic
compasses are available to aid INS by providing absolute heading information (Ladetto et
al., 2001; Langley, 2003; Wang and Gao 2003b). In practical applications there usually
exist unwanted local magnetic fields that will distort compass measurements; hence a

calibration procedure is essential. For land vehicle navigation under strong magnetic



disturbance environments, however, the traditional calibration method (Bowditch, 1995;
Caruso, 1997; Gebre-Egziabher et al., 2001) may diverge or fail and in turn the accuracy

of compass calibration is degraded.

1.2.3 Optimization of INS and GPS Data Fusion

Another challenge to MEMS INS/GPS integration is to perform optimal and adaptive
data fusion especially in signal-degraded environments so that the corrupted GPS data
will not deteriorate the integration performance to a large extent. Several adaptive
methods to optimize INS/GPS data fusion have been proposed in literatures. Karatsinides
(1994) 1identified and rejected the unreasonable GPS data by formulating the
measurement noise statistics dynamically based on the residuals between INS and GPS.
Mohamed and Schwarz (1999) and Hide et al. (2003) applied adaptive Kalman filtering
techniques for INS/GPS integration in benign environments. Swanson (1998), Sasiadek et
al. (2000) and Loebis et al. (2003) used fuzzy-rule-based adaptation scheme to tune the
data fusion gain (Kalman gain) based on the residuals between INS and GPS. Rahbari et
al. (2005) developed an expert system to adaptively tune the measurement noise
covariance of the Kalman filter for an INS/DGPS integration system according to the
manoeuvring condition of the aircraft. These adaptive data fusion algorithms, however,
are not designed for and tested by land wvehicle navigation in signal-degraded
environments. Currently, Salycheva (2004) applied innovation-based adaptive filtering
techniques to integrate a tactical-grade IMU with high sensitivity GPS (HSGPS) for
vehicular navigation in urban areas. The work on adaptive fusion of low-cost MEMS INS

and GPS or HSGPS data in signal-degraded environments still needs to explore.

1.3 Research Objectives and Contributions

Given the lack of research and the challenges to the integration of low-grade MEMS INS
with SPP GPS for land vehicle navigation in all operational environments, this
dissertation is devoted to develop effective error control and integration algorithms for

this kind of low-cost system so that it can provide reliable and accurate vehicular



navigation solutions. Improving the stand-alone INS navigation performance and
optimizing the INS/GPS data fusion in signal-degraded environments are the major
focuses. As the low-cost electronic compasses are increasingly embedded in today’s
MEMS IMU to provide heading aids, a robust calibration algorithm feasible for land

vehicle environments is required and also explored in this dissertation.

To accomplish these objectives, this dissertation has investigated and incorporated
artificial intelligence (Al) techniques including fuzzy logic, expert system and neural
networks with the Kalman filter to develop an intelligent integration algorithm. Al
technologies can be seen as the advanced versions of the estimation, the classification,
and the inference methods and have found successful applications in a wide variety of
fields, such as nonlinear mapping, data classification, and decision analysis (Kandel,
1992; Jang et al., 1997; Haykin, 1999; Luo et al.,, 2002). With the advantages of
processing ambiguous or imprecise data and the capabilities of formulating human
intelligence, Al methods can provide a powerful way for low-cost MEMS INS/SPP GPS

data processing and fusion.

The major contributions of this dissertation to the field of low-cost MEMS INS/SPP GPS

integration for land vehicle navigation can be summarized as follows:

1. Development of a fuzzy logic rule-based GPS data classification system. This
system is able to classify GPS data according to the signal degradation conditions so
that GPS data can be properly weighted in data fusion. A fuzzy logic rule-based
system has been applied to classify signal degradation conditions based on the
combination of signal quality and geometry information. (Wang and Gao, 2004d;

Wang and Gao, 2006)

2. Development of a dynamics knowledge aided inertial navigation algorithm. This
algorithm is capable of improving inertial navigation performance through the
aiding from vehicle dynamics knowledge. Besides the commonly used ZUPTs and

nonholonomic constraints, this algorithm develops additional dynamics-aid



observations including stationary attitude, straight-line roll and cornering velocity
updates to control the INS error drift more effectively. A fuzzy expert system has
also been developed to identify the status of vehicle dynamics so that these
dynamics-aid observations can be properly applied to update the Kalman filter.

(Wang and Gao, 2004c; Wang et al., 2005; Wang and Gao, 2005b)

3. Development of a neural networks compass calibration algorithm. This algorithm is
able to provide robust compass calibration even in the magnetic disturbance-rich
environments such as land vehicle environments so that compass heading can
benefit the integration system. Artificial neural networks are applied to model the
nonlinear relationship between the compass heading and the true heading when
external heading reference is available and subsequently applied to convert the

compass heading into correct heading. (Wang et al., 2005; Wang and Gao, 2005c¢)

4. Modification and incorporation of the conventional/adaptive Kalman filter with the
developed Al-based methods in a loosely coupled integration approach to enhance
the low-cost MEMS INS/SPP GPS integration. With the AI enhancement, the
Kalman filter is allowed to use simplified dynamics models as well as extended and
adaptive measurement update schemes to generate the improved navigation

solutions. (Wang and Gao, 2005a; Wang and Gao, 2006b; Wang and Gao, 2006¢)

5. Development and testing of a software program implementing the proposed Al-
based methods and the intelligent integration algorithm. The navigation performance
has been verified through field tests under different environments from open areas to

urban areas with signal degradation.

1.4 Dissertation Outline

Chapter 1 presents the motivation, objectives and major contributions of this dissertation

to the integration of low-cost MEMS INS with SPP GPS for land vehicle navigation.



Chapter 2 provides an overview of the navigation sensors used in this dissertation
including GPS, INS and magnetic compass. The principle, the error source and the
characteristics of each sensor are addressed with attentions given those relevant to the
low-cost applications. Discussions on the increasingly used HSGPS and MEMS INS are

also given.

In Chapter 3, two different data fusion and processing methods that have been used
throughout the dissertation are described. They are the model-based Kalman filter
algorithm and the model-free Al methodologies including fuzzy logic and neural

networks.

Chapter 4 gives a comprehensive analysis of the limitation of the Kalman filter to low-
cost MEMS INS/SPP GPS integration and the design of Al-based enhancement methods
including a fuzzy logic rule-based GPS data classification system, a dynamics knowledge

aided inertial navigation algorithm, and a neural networks compass calibration algorithm.

Chapter 5 describes the development of the intelligent integration algorithm which
integrates the Al-based methods developed in Chapter 4 with the conventional/adaptive
Kalman filter using a cascaded loosely coupled integration scheme. The design of the
modified Kalman filter and the architecture and operation of the intelligent integration

algorithm are described in details.

Chapter 6 presents the test and performance analysis results of the proposed intelligent
integration algorithm in open area applications. The evaluation of the integration
performance without GPS outages and the evaluation of the stand-alone inertial

navigation performance with simulated GPS outages are given in this chapter.
In Chapter 7, the test and performance analysis results of the intelligent integration

system under urban environments are presented. The GPS data classification performance

and the attainable position accuracy of the intelligent integrated solutions are discussed.

10



Chapter 8 concludes the major results and findings obtained in this research and gives

recommendations for future work.
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Chapter 2

Land Vehicle Navigation Sensor Overview

Multisensor systems can provide more reliable and accurate navigation solutions by
integrating redundant or complementary information. The most commonly used
navigation sensors in land vehicle applications include GPS, INS and magnetic compass.
GPS can provide good long-term navigation accuracy but is limited by the requirement of
at least four visible GPS satellites. INS can provide good short-term navigation accuracy
but the navigation error will grow over time unboundedly. Magnetic compass can offer
direct and drift-free heading information but is subject to nearby ferrous effects and
magnetic disturbances. Prior to designing multisensor data fusion algorithms, it is very
important to understand and analyze each sensor’s features. An overview of GPS, INS
and magnetic compass in terms of their principles and error characteristics is presented in

this chapter.

2.1 Overview of Global Positioning System

GPS is a satellite-based radio navigation system developed by the United States
Department of Defense (DoD) to provide accurate position, velocity and time (PVT)
estimates worldwide under all weather conditions. A complete description of GPS can be
found in Leick (1995), Kaplan (1996), Parkinson and Spilker (1996), Hofmann-
Wellenhof et al. (2001) and Misra and Enge (2001). In the following, we will place our
focus on an overview of C/A-code based SPP GPS positioning widely used for low-cost
land vehicle applications. The GPS principles and the error sources of code-based GPS
positioning are presented first, followed by an introduction of high sensitivity GPS
technology that has been increasingly applied to GPS applications in challenging

environments.

12



2.1.1 GPS Principles

GPS positioning is based on the range from known positions of satellites in space to
unknown positions on land, at sea, in air and space (Hofmann-Wellenhof et al., 2001). It
consists of three segments: the Space Segment, the Control Segment, and the User
Segment. The Space Segment consists of a baseline constellation of 24 satellites
distributed in six orbital planes inclined at 55 degrees relative to the equatorial plane. The
Control Segment steers satellite operations and maintains system functionalities. The

User Segment consists of the GPS receivers and user communities.

Each satellite sends radio signals embracing time-of-arrival (TOA) ranging and satellite
PVT information for determining user’s PVT information. Each GPS signal comprises
three components: a radio frequency (RF) carrier, a unique binary pseudo-random noise
(PRN) code and a binary navigation message. Currently, two L-band frequencies: the
primary L1 (1575.42 MHz) and secondary L2 (1227.60 MHz) are used to carry GPS
signals. Two types of PRN code, namely the Coarse/Acquisition code (C/A-code) on L1
and the Precise code (P-code) on L1 and L2, are used to allow the receiver to determine
the signal transit time instantaneously. The P-code is encrypted by the Y code for U.S.
military use only while the C/A-code is available to any user. These PRN codes are
designed specially to allow all satellites to transmit at the same frequency without
interfering with each other. Using modulo-2 addition, each code is combined with the 50
Hz navigation message consisting of data on the satellite health status, ephemeris and

almanacs.

The GPS receiver receives and converts satellite signals into position, velocity, and time
information. As previously stated, GPS determines the receiver position based on the
TOA ranging principle that lies in measuring the propagation time of a radio frequency
signal broadcast from a GPS satellite with a known position to a receiver. By decoding
the navigation message, a GPS receiver can obtain the data of the satellite’s position,
velocity, time and health. By measuring the travel time of the coded signal and
multiplying it by its velocity, a GPS receiver can derive the user-to-satellite range. By

measuring the phase of the incoming carrier, the precise range to a satellite can be

13



measured with an ambiguous number of cycles. In both case, since the clocks of the
receiver and satellite are employed and they are not perfectly synchronized, the
synchronization error (receiver clock bias) will bias the user-to-satellite range
measurements, resulting in so called pseudorange measurements. To estimate the three
coordinates of the user position and the receiver clock bias, pseudorange measurements
from at least four satellites are needed and the resulting equation to be solved is written as

follows (Misra and Enge, 2001; Lachapelle, 2002):

p® =\/(x(k)—x)2 +(y(k)—y)2 +(z(k)—z)2 +b k=12,..K (2-1)
where K is the total number of satellite used;
p) is the pseudorange measurement of satellite £ ;

(x(k), y(k ), z(k)) are the known coordinates of satellite % ;
(x,y,2) are the user coordinates to be determined; and

b 1s the receiver clock bias.

The common approach to solve Eq. (2-1) is to linearize it about an approximate user
position and to solve iteratively using least squares or Kalman filtering algorithms. For
the determination of the user velocity, the Doppler shift measured routinely in the carrier
tracking loop of a GPS receiver is used. The Doppler shift is the frequency difference
between the received and transmitted signals. By multiplying it by the wavelength of the
transmitted signal, the range rate as a projection of the relative velocity vector on the
user-to-satellite vector can be obtained. Given the satellite velocity, the user velocity can
be estimated based on the measured range rate using the same principle as the position

estimation from pseudoranges.

The quality of the position or velocity estimates depends basically upon two factors

(Misra and Enge, 2001):
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1. The number of satellites being tracked and their spatial distribution characterized by
the satellite geometry strength.

2. The quality of the pseudorange or pseudorange rate measurements.

The satellite geometry strength determines how large the position or velocity errors will
be induced by the user-to-satellite pseudorange or pseudorange rate measurement errors.
Roughly speaking, if the satellites are clustered in one side of the user due to the
blockage of a significant part of the sky, the geometry will be bad and as a result the
pseudorange errors will be significantly magnified in the position domain. The
relationship between the position accuracy and the range measurement accuracy is given

as (Seeber, 1993):

op =DOPxo, (2-2)

where op is the standard deviation of the user position and o, is the standard deviation
of the range measurement. DOP is the Dilution of Precision and several widely used

DOPs are defined from the satellite geometry matrix G . For example, the Geometry

Dilution of Precision (GDOP) can be defined as follows (Misra and Enge, 2001):

1

GDOP = {lrace{(& Té)_l }}2 (2-3)

—cos E™V sin A2V —cos E'V cos A2V —sinE™ 1
G= : : : : (2-4)

—cos E®) sin 425 —cos E'X) cos 42X —sinEX) 1

where K is the total number of the observed satellites, and E and A4z are satellite

elevation and azimuth angles, respectively.

The quality of the pseudorange and pseudorange rate measurements are affected by a

variety of biases and errors. The error sources can be grouped into three categories:
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satellite-related errors, signal propagation errors and receiver-related errors. The satellite-
related errors include satellite clock and ephemeris errors. The signal propagation errors
are introduced by interference and the atmospheric propagation effect due to the
ionosphere, the troposphere and multipath. The receiver-related errors include the noises
introduced by the antenna, amplifiers, cables and the receiver affecting the precision of a

measurement.

The code pseudorange measurement to a satellite can be modeled as follows (Misra and

Enge, 2001; Lachapelle, 2002):

P=p+dp+cldt—dT)+d,, +d,,, +&, (2-5)
where P is the pseudorange measurement (m);
yo, is the geometric range between the GPS satellite and receiver antenna (m);

dp is the satellite orbital error (m);
dt is the satellite clock error (s);
dT  is the receiver clock error (s);

is the ionospheric delay (m);

dyop 18 the tropospheric delay (m);
£y is the measurement noise including multipath residual (m); and
c is the speed of electromagnetic wave in vacuum (m/s).

Similar to the pseudorange measurement, the pseudorange rate measurement to a satellite

can be modeled as follows (Misra and Enge, 2001; Lachapelle, 2002):

P=p+dp+cldi—dT )+ dyy, +dy, + & (2-6)

)4

where P is the phase rate Doppler measurement (m/s);

Yo, is the geometric range rate (m/s);

dp  1is the satellite orbital drift (m/s);
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dt is the satellite clock drift;

dT  is the receiver clock drift;

d,, isthe ionospheric drift (m/s);
dm,p is the tropospheric drift (m/s); and
£, is the pseudorange rate error induced by receiver noise and multipath (m/s).

Detail of these errors and their characteristics are addressed in the following section.

2.1.2 GPS Errors
2.1.2.1 Satellite Orbit Errors

The satellite orbit error occurs due to the fact that the true satellite position is unknown.
The satellite position is described by the ephemeris parameters estimated by the control
segment based on the previous motion of the satellite and the knowledge of the Earth’s
gravity field. There exist errors from both the estimation of the current parameters and
the prediction of their values for the future. The prediction error grows with the time
since the last parameters upload. With typical data uploads once a day by the control
segment, a current estimate of the root-mean-square (RMS) range error due to the

ephemeris parameters is about 1.5 m (Misra and Enge, 2001).

2.1.2.2 Satellite Clock Errors

The satellite clock error is due to the instabilities in GPS satellite oscillators. The clock
bias, drift and drift-rate are monitored with respect to the GPS reference clock maintained
by the GPS Master Control Station. A prediction model is used to generate the clock
parameters to be uploaded to the satellites. These parameters are then broadcast to the
receivers via the navigation message for error correction of the satellite clock. Similar to
the ephemeris, with typical data uploads once a day by the control segment, a current

estimate of the RMS range error due to the clock error parameters is about 1.5 m (Misra

and Enge, 2001).

17



2.1.2.3 Receiver Clock Errors

This error is the offset between the receiver clock and the GPS reference clock. The clock
offset changes over time due to the clock drift which is related to the quality of the
oscillator used in the receiver. As mentioned previously, the receiver clock error is
usually estimated along with receiver coordinates using at least four pseudorange

measurements.

2.1.2.4 lonospheric Errors

The ionospheric error is due to the presence of free electrons in the atmosphere extending
from about 50 to 1000 kilometres above the Earth's surface. These free electrons
influence the propagation of microwave signals as they pass through the layer. The
presence of free electrons is resulted from the Sun’s radiation and thus ionospheric
effects change widely between day and night and seasonally according to the solar
activity. There are also irregular short-term ionospheric scintillation effects due to high
levels of solar and geomagnetic activities. The ionospheric scintillation will cause a rapid
variation in the amplitude and/or phase of a GPS signal. The frequency of occurrence of

such event is low and varies with location and levels of solar activity (Klobuchar, 1996).

The code phase is delayed and the carrier phase is advanced by the same amount while a
GPS signal propagates through the ionosphere. The magnitude of the ionospheric error is
a function of the total electron content (TEC) and the signal frequency. Dual-frequency
GPS users can estimate the ionospheric error and eliminate it from the measurements. For
single frequency SPP users, the ionospheric error can be compensated by using an
empirical model (e.g. the Klobuchar model) whose parameter values are broadcast by the
satellites (Klobuchar, 1996). The broadcast model is estimated to reduce the RMS range
measurement error due to uncompensated ionospheric error by about 50% and the

remaining error is about 1~5 m.
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2.1.2.5 Tropospheric Errors

The tropospheric error is the result of the refraction of GPS signals by the lower part of
the Earth’s atmosphere composed of dry gases and water vapor at altitudes up to about 50
kilometres above the Earth’s surface. Most of the tropospheric delay (about 80-90%) is
due to the dry atmosphere. The composition of the dry atmosphere varies with latitude,
altitude and season, and is relatively stable. The water vapor content depends on the local

weather and can change quickly.

The tropospheric delay due to the dry and wet effects is typically 2.3 m and 1-80 cm at
the zenith, respectively (Spilker, 1996). As the delay will increase with the tropospheric
path length, lower elevation satellite signals have a much larger delay by up to a factor of
ten. In general, the tropospheric delay ranges from 2 to 25 m for any satellite signal.
Fortunately, the tropospheric delay can be corrected by about 80-90% in a single point
GPS receiver by using the tropospheric model such as the Hopfield or Saastamoinen

model (Spilker, 1996).

2.1.2.6 Multipath Errors

Multipath is the occurrence of a signal reaching an antenna via two or more paths (Misra
and Enge, 2001). Mostly it occurs due to the reflection and diffraction of satellite signals
off nearby objects, such as buildings, tree foliage or the ground surface. These reflected
or diffracted signals will distort the direct signal and result in errors in code range and
carrier phase measurements. The composite multipath signal can be expressed as

(Braasch, 1994):

s(t)=—Ap(¢)sin(oyt)- > @, Ap(t + 5, )sin(wt +6,,) (2-7)

m

where s(r) s the composite signal;

A is the amplitude of the direct signal;
p(z)  is the PRN sequence of the C/A code;

@, is the frequency of the direct signal;
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a, I1s the relative power of the multipath signal;
O is the delay of the multipath signal with respect to the direct signal; and
6, is the phase of the multipath signal relative to the direct signal.

In general, the impact of multipath depends on the amplitude, delay and phase of the
multipath signal with respect to the direct signal. Multipath signals are always delayed
and usually weaker compared to the direct signals. Depending on the phase of the
multipath signal, multipath signals can introduce both negative and positive error on the
pseudorange measurement. The code range and carrier phase measurements are affected
by multipath in different way. The multipath error on the phase measurement is equal to
the difference between the composite signal carrier phase and the direct signal carrier
phase with zero mean in all multipath environment and +4.75 cm at maximum (Ray,
2000). For the code measurement, multipath affects the code correlation property and in
turn induces range errors. The multipath signal will delay or advance the correlation peak
depending on its phase. The magnitude of the multipath error on the code range depends
on the reflector distance and its strength, the correlator spacing and the receiver
bandwidth. The maximum multipath error in the C/A-code range using a wide correlator
is £150 m, which corresponds to 0.5 chip length (Ray, 2000). The code multipath errors

are usually in the order of 10 m to 100 m depending on environmental conditions.

Modern GPS receivers use multipath mitigation techniques to reduce multipath errors
based on special receiver and antenna design. One of the most popular technique based
on receiver design is the Narrow Correlator technique which narrows the spacing of the
early and late correlators in a noncoherent delay lock loop to lessen the effect of
multipath (Van Dierendonck et al., 1992). For example, if 0.1 chip correlator spacing is
used, multipath with relative delays of approximately 1 chip or greater is rejected entirely
and maximum multipath error is reduced by a factor of 10. As multipath must pass
through the antenna, multipath errors can be reduced by using an antenna with elevation-
dependent gain pattern which can lower the contributions of reflective signals. For land
vehicle applications in urban areas, however, the performance of multipath mitigation

may be limited due to the tracking of echo-only signals especially for high sensitivity
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GPS receivers. Echo-only signals will induce unbounded pseudorange errors and in turn

result in large blunders in GPS positions.

2.1.2.7 Receiver Noise

The receiver noise is typically due to the high frequency thermal noise along with the
effects of dynamic stresses on the tracking loops (Ward, 1996). It can be considered as a
white noise as it is uncorrelated and has zero mean over time. The noise level is a
function of the code correlation method, receiver dynamics and signal strength which
varies with the satellite elevation angle. The C/A-code receiver noise is generally in the
order of a few decimetres while the phase noise is in the order of a few millimetres in

most modern receivers (Misra and Enge, 2001).

2.1.2.8 Error Budget

GPS errors can be classified as either random error or systematic error according to their
error characteristics. The satellite orbit and clock errors grow slowly with time since the
last clock and ephemeris parameters upload; The ionospheric and tropospheric errors,
corrected with models or not, may persist for tens of minutes or longer (Olynik, 2002).
These errors are classified as systematic error. As to the multipath error and receiver
noise, they are random in nature and vary with time and environments and would be
classified as random error. The error budget of these error sources on pseudorange
measurements for single-frequency single point positioning in a moderate environment
after model-based correction of ionospheric and tropospheric errors is presented in Table
2.1. The combined error, known as the user equivalent range error (UERE), can be
defined as the root-sum-square of all errors and in this case is about 6 metres. For land
vehicle applications in various GPS environments, the multipath error may vary from 1 m
to 100 m. As the satellite-based and atmospheric propagation errors are changing slowly
and less than 5 m, the multipath error becomes the major error source that determine the

accuracy of the pseudorange measurement.
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For the accuracy of the phase rate (Doppler) measurement, the error sources include the
satellite orbit and clock drifts as well as the changes in the ionospheric and tropospheric
delays and in multipath. As the satellite-based and atmospheric propagation error drifts
are small and can be reduced by models based on parameters included in the broadcast
navigation message, their effects on the Doppler measurement are generally small. As the
multipath effect on the phase is small, the multipath error in the Doppler shift measured
routinely in the carrier tracking loop of a GPS receiver is not significant, especially
compared to the pseudorange multipath error. An estimate of the attainable accuracy of
the Doppler shift is 0.001 Hz, which corresponds to the phase rate accuracy of 0.3 m/s if
the Doppler shift is measured in the C/A-code tracking loop (Hofmann-Wellenhof et al.,
2001). In weak GPS signal environments, Doppler accuracy of better than 2 m/s are
possible but the Doppler measurement may be biased (Petovello et al., 2003).

Table 2.1: Typical pseudorange measurement errors for single-frequency single
point positioning (Misra and Enge, 2001)

Error Source RMS Range Error
Satellite clock and ephemeris parameters 3m
Atmospheric propagation modeling S5m
Receiver noise and multipath Im

2.1.3 High Sensitivity GPS

The high sensitivity GPS receiver (HSGPS) is the improved version of the conventional
GPS receiver in terms of the capability of acquiring and tracking weak GPS signals. The
power of GPS signals degrades during its propagation from the satellite to the Earth. The
satellite transmitting power is about 13.4 dB-W but the power collected by a typical
receiver in open-sky conditions is only about —164 dB-W to —156 dB-W. The signal
power budget is listed in Table 2.2. In signal-degraded conditions, the signal attenuation
due to propagation through various materials and signal reflection can significantly
degrade signal power. HSGPS receivers are designed to be able to track weak signals

with a power level in the range of -188 dB-W to -182 dB-W (Ray, 2002).
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Table 2.2: Signal power budget (Lachapelle, 2002)

SV antenna power (dB-W) 13.4

SV antenna gain 13.4

Effective isotropic radiated power 26.8
User antenna gain (hemispherical) 3.0
Free space loss (L1) -184.4
Atmospheric attenuation loss -2.0
Depolarization loss 34

User minimum receiver power (dB-W) -160.0

The ability to acquire and track weak GPS signals depends on the capability of the
receiver to maximize the coherent integration interval and to minimize residual frequency
errors during the coherent integration period (MacGougan, 2003). In general, the
coherent integration interval is limited to 20 ms due to the timing of the navigation
message signal modulation. Residual frequency error sources include oscillator instability,
user motion induced Doppler effects and thermal noise. Thermal noise often dominates
the carrier tracking error and thermal noise jitter can be reduced by increasing the
coherent integration. Thus, by using long coherent integration periods and further non-
coherent accumulation, weak signal tracking in degraded GPS environments becomes
possible. In order to use long coherent integration periods, the a priori knowledge of time,
approximate position and satellite ephemeris is required to enable high sensitivity
tracking capability. In general, high sensitivity methods are implemented in either aided
or unaided modes. The aided GPS receiver acquires the a priori information about time,
approximate position and satellite ephemeris through wireless communication networks.
The unaided receiver acquires the same assistance data by tracking four or more GPS
satellites with strong signals during initialization periods. As long as the timing,
approximate position, and satellite ephemeris are accurate enough, the unaided receiver

can have the same functional capability as the aided GPS receiver.

With the capability of tracking weak GPS signals, HSGPS is highly beneficial in terms of

solution availability, but simultaneously is limited by large measurement errors due to the
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use of the degraded signals such as the attenuated, reflected or echo-only signals. The
attenuated line-of—sight signals due to propagation through a material will degrade the
signal strength and in turn increase the associated measurement noise. The long-delayed
multipath will further cause large errors in pseudorange measurements. When a direct
GPS signal is blocked and a reflected signal reaches the antenna, the HSGPS receiver
could still track the echo-only signal. This situation can cause measurement errors greater
than the maximum multipath error of £ 150 m for wide correlator receivers. In addition,
as HSGPS receivers are able to function with both low power and nominal power GPS
signals, it increases the probability of acquiring a false correlation peak due to cross-
correlation signals which subsequently leads to large measurement errors. Thus, in harsh
GPS environments such as downtown canyons and forests, HSGPS solutions are subject
to low reliability due to the large measurement errors caused by the increased

measurement noise, severe multipath, echo-only signal tracking and cross-correlation.

2.2 Overview of Inertial Navigation System

INS is a dead-reckoning navigation system which determines the attitude, velocity and
position of a moving body from the knowledge of the previous states and the
measurements of the motion. Inertial navigation has been widely used for the guidance of
aircraft, missiles, ships and land vehicles. Since detailed introduction to INS can be found
in Titterton and Weston (1997), Salychev (1998), Jekeli (2000) and Schwarz and Wei
(2001), this section will focus on an overview of the INS principles and INS error sources.
The derivation of navigation states from INS measurements is presented first, followed
by the analysis of INS error characteristics. Finally, an introduction of MEMS INS that

has been increasingly applied to personal and vehicular navigation is given.

2.2.1 INS Principles

INS is a self-contained navigation system which calculates the change in attitude,
velocity and position of a moving body by performing successive mathematical

integrations of the measured acceleration and angular velocity with respect to time
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(Titterton and Weston, 1997). With the knowledge of the initial attitude, velocity and
position, the trajectory of a moving body with respect to a reference frame can be
determined. A modern INS (strapdown INS) consisting of three-axis accelerometers and
three-axis gyroscopes is usually mounted to be coincident with the axis of the moving
body, referred to as the body frame. The body frame (b-frame) is an orthogonal axis set
that is aligned with the roll, pitch and yaw axes of the vehicle, i.e., the forward (x),

transverse ( y ) and down ( z ) direction of the vehicle. Accelerometers provide

measurements of the specific force along its axes. Gyroscopes provide measurements of
rotation motion of the body with respect to the inertial reference frame and can be used to
determine the orientation of the accelerometers. Given this information, it is possible to
resolve the accelerometer measurements into the inertial reference frame and in turn to
determine the translational motion of the moving body within that frame after the
integration process takes place. In order to navigate around the Earth, navigation
information is commonly required in the local level frame (navigation frame). The
navigation frame is a local geographic frame which has its origin at the location of the
navigation system and axes aligned with the directions of north (), east (e ) and down
(d ) (Titterton and Weston, 1997). Thus, the transformation from the output of INS into
the attitude, velocity and position information is usually described by the inertial
navigation and mechanization equations in the navigation frame. The navigation
equations describe the dynamics of body motion while the mechanization equations are
used to derive the position, velocity and attitude increments by solving the equations of
motion. Combined with the initial conditions of the system obtained from INS alignment
and external sensors, these computed increments can then provide the attitude, velocity

and position information needed for navigation.

2.2.1.1 Navigation Equations

The navigation equations in the navigation frame expressed by Cartesian coordinate
system can be described as follows (Titterton and Weston, 1997; Schwarz and Wei,

2001):
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where a dot represents a time derivative and x represents a cross product and

Py is the position vector in the navigation frame;

Vy is the velocity vector in the navigation frame;

RY is the transformation matrix from body frame to navigation frame;

A, is the accelerometer measurement vector in the body frame;

@y, 1s the Earth rotation rate vector expressed in the navigation frame;

ozy 1s the orientation change rate vector of the navigation frame expressed in
the navigation frame;

QF s the skew-symmetric form of the body rotation rate (gyro measurement)
vector, wa , expressed in the body frame;

QP is the skew-symmetric form of the rotation rate vector @}, which describe

the combined rate of the Earth rotation and the orientation change of the
navigation frame expressed in the body frame; and

G, is the gravity vector expressed in the navigation frame.

In the above equations, A, and Q% represents the measured motion of the body; @b,
oy, Q5 and G, are the given Earth’s effects which can be computed based on the

Earth rotation rate and geographic location information; and Py, V), and R} are the
navigation information to be solved. The transformation matrix from body frame to
navigation frame, R}, can be expressed by three successive rotations about different

axes taken in turn as follows (Titterton and Weston, 1997):

26



=\ Vs Ve 0 0 1

v, -y, 06 06,11 0 0

010 ¢c _¢s
0 0 1]-6, 0 6.]0 ¢ 4

(2-9)

_ec Ve — ¢c % ¢s es Ve ¢s e ¢c es Ve
= ec Vs ¢c Ve + ¢s gs Vs - ¢s Ve + ¢c es Vs
L~ es ¢s ‘90 ¢c 00

where the subscripts s and ¢ refer to sine and cosine and

¢, 0 ,w are the roll, pitch and yaw angles which represent the attitude of the

moving body;
R, (v) is the matrix of rotation through the yaw angle y about the z axis;
R, (9) is the matrix of rotation through the roll angle ¢ about the x axis; and

R, (0) is the matrix of rotation through the pitch angle  about the y axis.

2.2.1.2 Mechanization Equations

As the navigation equations model the relationship between INS raw measurements and
the changes of navigation states, in the mechanization process these equations are solved
to derive the navigation states. The mechanization equations consist of three steps: sensor
error compensation, attitude computation and velocity and position computation.

1. Sensor error compensation: The INS raw measurements, s and A, , are
corrupted by sensor errors such as bias, noise, and scale factor error. The
deterministic parts of error can be obtained from laboratory calibrations or estimated
during the navigation process and in turn removed from the measurements based on

the error equations presented in Eq. (2-25) and Eq. (2-26). The corrected gyro and

accelerometer measurement vectors are denoted by @2, and A j, respectively.

2. Attitude computation: Based on the last row of Eq. (2-8), the total angular rate

vector of the body frame relative to the navigation frame, o, can be obtained by:
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0y =55 -RE (o) + 0l ) (2-10)

The updated transformation matrix can then be obtained by a first order

approximation as:

RY (61)=RY (o 1+ Q5 ,0) 2-11)

where Q%; is the skew-symmetric form of the angular rate vector %, and

At =t,,, 1, is the time increment for the time interval (7, ,z,;).

Finally, the attitude information can be derived directly from the transformation

matrix in the following manner (Titterton and Weston, 1997).

L[ RS )
o= tan ( - j (2-12)
o—sir'[-()),,) (2-13)

N
V= tan™ [g(%)f} (2-14)

1

where (Rg ) _ is the element of the " row and the ¢” column of the R} matrix.

r,C

Practically, the propagation of the transformation matrix is usually computed with
the quaternion attitude representation to avoid singularity problems (Schwarz and
Wei, 2001; EI-Sheimy, 2003). For land vehicle applications, the singularity is not an

issue since the pitch and roll angles of a land vehicle of 90 degrees are impossible.
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3. Velocity and position computation: Based on the updated attitude information, the
corrected accelerometer measurement vector in the body frame can be rotated to the

navigation frame through Eq. (2-15) or Eq. (2-16).

where A N, denotes the acceleration vector in the navigation frame obtained from

the accelerometer measurements.

Considering the Earth’s rotation and gravity effects, the total acceleration vector in

the navigation frame, A, , can then be computed through:

where y, is the normal gravity vector which varies with the geodetic latitude and

ellipsoidal height. It can be computed using a nonlinear model given in such as

Schwarz and Wei (2001).

The updated velocity can then be computed by directly adding the total acceleration

as follows:

Vi (61 ) =V (6 )+ Ay (44 )A (2-18)

Finally, the updated position vector can be computed by using trapezoidal

integration as follows:
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PN(tk+1)=PN(tk)+(VN(tk)+VN(tk+1))% (2-19)

2.2.1.3 Initial Alignment

As the computation of attitude, velocity and position using mechanization equations is a
dead-reckoning process, the initial conditions of the vehicle need to be known. Typically,
the initial velocity and position are given by external sensors such as GPS while the
initial attitude are obtained through initial alignment procedures including accelerometer
levelling and gyro compassing. The accelerometer levelling procedure is first performed
to calculate the initial pitch and roll, followed by the gyro compassing procedure used to

compute the initial heading (yaw) as described below.

1. Accelerometer levelling: Under static conditions, the accelerometer measurements
containing gravity field only can be combined with the known gravity information

to derive the pitch and roll as follows (El-Sheimy, 2003):

o= sm—l[ﬁj (2-20)
g
4= _Sin—l(@j 2-21)
g

where 4p, and A4, are the measured acceleration on the x and y axes, respectively.

g is the down-channel component of the gravity vector in the navigation frame,

referred to the gravitational constant.
To reduce the accelerometer noise effects, averaging the pitch and roll estimates

over an interval is usually taken. The accuracy of these estimates is dependent on the

accelerometer biases.
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2. Gyro compassing: The principle of gyro compassing is based on the fact that the
measurements of two orthogonal components of the Earth’s rotation rate in a
horizontal plane can establish a coarse heading determination mechanization. Under
static conditions, the gyro measurements are due only to the Earth’s rotation and the
true values of the x-axis and y-axis angular rates projected on the horizontal plane,

@y and @z , can be expressed as follows:
X y

wg = w,cosLcosy (2-22)

@p = w,cosLsiny (2-23)

where w, is the Earth’s rotation rate and L is the latitude.

By taking the ratio of the Eq. (2-23) over Eq. (2-22), the heading information can be

computed as follows:

@
v = tan{ VB” J (2-24)

Practically, @, and op, in Eq. (2-24) are computed by projecting the measured

angular velocities in the body frame onto the horizontal plane using the pitch and

roll estimates obtained from the accelerometer levelling.

To reduce the gyro noise effects, averaging the heading estimates over an interval is
usually taken. The accuracy of heading estimates is proportional to the quality of the
gyro measurements and the square root of the alignment time (EI-Sheimy, 2003).
For low-cost MEMS INS, however, the Earth’s rotation rate is unobservable from
the gyro measurement and thus the heading alignment is infeasible. An alternative

approach to resolve the initial heading information is to use an external heading
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sensor, such as a magnetic compass or using GPS velocities under dynamic
conditions for in-flight heading alignment. The performance of the compass heading

and the GPS-derived heading are discussed in Chapter 5.

2.2.2 INS Errors

As a dead-reckoning system which determines the current navigation states from the
knowledge of the previous states and the measurements of the motion, INS is affected by
three types of errors: initial alignment error, inertial sensor error and computational error.
These errors are passed from one estimate to the next and result in the overall navigation
errors drifting with time. Thus, understanding the characteristics of these errors and
developing methods to compensate them in the navigation computation is essential for

INS implementation.

2.2.2.1 Initial Alignment Errors

As previously stated, initial alignment is the process whereby the initial attitude, velocity
and position of an inertial navigation system are determined based on measurements from
the inertial sensors and external sensors. Thus, the alignment accuracy is mainly limited
by the effects of sensor errors. Initial alignment errors cannot be estimated and calibrated
because they are unobservable. Initial position errors cause constant position biases while
the initial velocity and attitude errors result in position error drifting with time and the

square of time, respectively.

2.2.2.2 Inertial Sensor Errors

Inertial sensors are subject to errors which limit the accuracy of the inertial measurements.

In general, the accelerometer and gyro measurements about an input axis (x axis), Az,

and wg, , can be modelled as (Titterton and Weston, 1997):

Ap

X

= AB)C +bABX + SABXABX +MABy ABy +MABZ ABZ + WABX (2—25)
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Wp, = Wpg, +wax +Swaa)Bx +MwBya)By +MszaJBz + Wa)Bx (2-26)

where ‘~’ denotes the true value of the measurement and

b, ,b are the x-axis accelerometer and gyro biases;

ABx @ py
S S are the x-axis accelerometer and gyro scale factor errors;

ABx ? @py ’
My , M, are the cross-coupling coefficients for the x-axis accelerometer;

3y z
M, s M,,  are the cross-coupling coefficients for the x-axis gyro; and
Wy W, are the x-axis accelerometer and gyro random noises.
Bx Bx

The bias and scale factor error are the major error sources for inertial sensors. According
to IEEE standards (IEEE Std 528-2001), the inertial sensor bias is defined as the average
over a specified time of the sensor output measured at specified operating conditions that
are independent of input acceleration or rotation. A scale factor is the ratio of a change in
output to a change in the input to be measured. Both errors include some or all of the
following components: fixed terms, temperature induced variations, turn-on to turn-on
variations and in-run variations (Titterton and Weston, 1997). The fixed component of
the error is present each time when the sensor is turned on and is predictable. A large
extent of the temperature induced variations can be corrected with suitable calibration.
The turn-on errors vary from sensor turn-on to turn-on but remain constant without
power-off. Therefore, they can be obtained from laboratory calibrations or estimated
during the navigation process. Sensitive to dynamics changes and vibrations, the in-run
random errors are unpredictable and vary throughout the periods when the sensor is
powered on (Farrell, 2005). The in-run random errors therefore cannot be removed from
measurements using deterministic models and should be modeled by a stochastic process

such as random walk process or Gaussian Markov process.
The cross-coupling error is the error due to sensor sensitivity to inputs about axes normal

to an input reference axis (IEEE Std 528-2001). Such error arises through non-

orthogonality of the sensor triad and is usually expressed as parts per million (PPM). For
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low-cost MEMS INS, the cross-coupling error is relatively small and negligible

compared to other error sources.

The random noise is an additional signal resulting from the sensor itself or other
electronic equipments that interfere with the output signals being measured (El-Sheimy
2003). It is often considered time-uncorrelated with zero mean and modeled by a
stochastic process. INS noise level can be characterized by the average of the standard

deviation of static measurements over few seconds (Petovello, 2003).

Of above error sources, the bias has the largest impact on INS navigation performance
after the mechanization process. The accelerometer bias will result in position error
drifting with the square of time while the gyro bias will lead to position error drifting

with the cube of time.

2.2.2.3 Computational Errors

In attitude computation, the update of the transformation matrix is approximated by using
the truncated version of the propagation equation in order to produce an algorithm which
can be implemented in real time. The truncation of the high order term therefore results in
attitude computation errors. Reducing the update interval can substantially decrease the
computational errors. This approach is feasible for most applications since high turn rates

of a vehicle are not normally sustained for long periods.

2.2.3 MEMS INS

“Micro-Electro-Mechanical System (MEMS) is the integration of mechanical elements,
sensors, actuators, and electronics on a common silicon substrate through the utilization
of microfabrication technology.” (Huff, 1999) MEMS technology enables the realization
of complete systems-on-a-chip and therefore allows the development of low-cost
microsensors and microactuators. Inertial MEMS development is being driven by the
high-volume, commercial market for modest performance applications below $10 US

dollars per axis (Connelly et al., 2000). The largest near-term use of MEMS gyros and
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accelerometers is in automotive applications such as for seat belt tensioners, air bags,

anti-skid braking systems and vehicle navigation systems.

A typical MEMS accelerometer uses a silicon mass suspended by a silicon beam to form
a spring mass damper mechanism whereby capacitive sensing is used to measure the
motion of the mass. The displacement of the proof mass is proportional to the change of
capacitance and then capacitance change is being sensed and used to measure the
amplitude of the force that led to this displacement (Kraft, 1997). The majority of MEMS
gyros currently under development operates in a vibratory mode and measures the
angular rate based on the coupling of mechanical energy between a vibrating motor
element and a sensor element through Coriolis acceleration (Tung, 2000). The vibrating
motor controls the sensing element to oscillate in plane with constant amplitude. When an
angular rate is applied about the input axis, the sensing element will experience a Coriolis
acceleration that forces the masses to translate in and out of the plane of oscillation. This
resultant out-of-plane motion is measured via the capacitive pick-off, thus providing a

signal proportional to the rate input.

Both MEMS accelerometers and gyros can be fabricated by using either surface or bulk
micromachining. Surface micromachined sensors using a thinner and smaller mass of the
sensing element have smaller size and lower cost than the bulk micromachined sensors.
But the bulk micromachined sensors can provide higher accuracy due to the use of large
proof mass. Larger sensors can provide higher performance by increased sensitivity,
reduced distortion, and improved relative control of device geometry (Connelly et al.,
2000). As fabricated with small size and low cost, MEMS inertial sensors have relatively
large measurement errors and instabilities compared to the tactical-grade INS. Due to the
high level of the MEMS INS instrument error and noise, some input signals such as the
Earth’s rotation rate and INS error terms such as the initial alignment error and
computational error are relatively small and negligible. Given the low measurement
quality in MEMS inertial sensors, completely estimating the deterministic errors and
accurately modelling the random errors are difficult and often infeasible. As a result,

MEMS INS has poor stand-alone accuracy and is not applicable as a sole navigation
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system. Integration of MEMS INS with GPS demands the development of non-traditional
approaches and algorithms (Salychev et al., 2000).

2.3 Overview of Magnetic Compass

Thanks to the Earth’s magnetic field, the magnetic compass has been used to determine
heading direction for centuries. Advances in technology have enabled the development of
the electronic compasses which offer many advantages over conventional needle type
compasses in terms of vibration resistance, error compensation and direct interface to
other navigation systems. Today, the electronic compasses have been widely integrated
with modern navigation systems such as GPS and INS to provide direct heading
information (Ladetto et al., 2001; Langley, 2003; Wang and Gao 2003b). This section
will describe the operational principle of an electronic compass, how the measured
magnetic fields are converted into useful heading information. The error sources and their

characteristics are also presented.

2.3.1 Compass Principles

The principle of magnetic compassing is based on the measurement of the Earth’s
magnetic field. Generated by the core of the Earth, the Earth’s magnetic field flows out of
the magnetic South Pole and back in through the magnetic North Pole. The Earth’s
magnetic field therefore has a component parallel to the Earth surface that always points
toward the magnetic North. By resolving this component, the direction of the magnetic
sensor with respect to the magnetic North can be determined. An electronic compass
typically uses the magnetoresistive (MR) magnetometer to measure magnetic fields. This
sensor is composed of thin strips of permalloy whose electrical resistance varies with
applied magnetic field changes (Caruso, 1997). Recent MR magnetometers offer

sensitivities less than 0.1 milligauss and have a response time below 1 microsecond.

In practical application, the moving vehicle or platform to which the electronic compass

1s attached are most often not confined to the Earth’s surface. It is essential to use three-
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axis magnetometers mounted orthogonally in an electronic compass so that the Earth’s
magnetic field can be fully rotated back to a horizontal orientation. Figure 2.1 describes
this configuration and the coordinate systems. The magnetic compass is aligned with the
body frame consisting of three orthogonal axes where x is in the direction of forward
motion of the vehicle, z is in the down direction to the road surface, and y is in the
direction of transverse motion of the vehicle, perpendicular to the plane formed by x and

z axes. The attitude of the vehicle is represented by three Euler angles, roll (¢ ), pitch
(6) and yaw (heading) (y ), which are the rotation angles about x, y and z axes,

respectively. With the knowledge of tilt (pitch and roll) angles, the measured magnetic
field vector can be projected on a horizontal plane parallel to the Earth’s surface in the

following manner (Caruso, 1997).

. . . MX
{MXH } 2{0089 sin@ sin ¢ —cos¢sm6’} M, (2-27)
M

M, 0 cos ¢ sing

z

where M, , M, and M are the magnetometer measurements of the body frame, M,
and M, are the magnetometer measurements of the body frame projected on the

horizontal plane formed by x, and y, axes.

The angle o between the forward axis of the vehicle and the magnetic North can be

calculated by resolving the horizontal component of the magnetometer measurements as

follows (Caruso, 1997):
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Finally, by adding or subtracting a proper declination angle § to correct for true North,

the vehicle heading  can be determined. The declination angle can differ by +25

degrees or more and can be determined from a lookup table based on the geographic
location. It should be noticed that the declination angle will change secularly according to

the variations of the Earth’s geomagnetic field (Whitcomb 1989).

magnetic north

Body Frame:
X — Forward
X y—Transverse
z — Vertical to the ground

true north > v. =< 0 (pitch)» ¥ X;;— Forward on the horizontal
N H

~

Horizontal ~

Yy — Transverse on the horizontal

~ Navigation Frame:
_________ . N — North (True)

E — East

yH D — Vertical to the horizontal
M — North (Magnetic)

Figure 2.1: Heading determination using a triad of magnetometers

2.3.2 Compass Errors

As the compass heading determination involves the transformation of magnetic
measurements from the sensor triad to the horizontal plane, the error sources of the
compass heading include transformation errors, magnetic measurement errors and

misalignment errors which are described in the following.

2.3.2.1 Transformation Errors

The transformation error is due to the use of inaccurate tilt information while projecting
the three-axis magnetometer measurements on the horizontal plane. This error is
dependent on the performance of the tilt sensor such as inclinometers or INS and is
usually unpredictable. Thus, this error cannot be accounted for and removed from the

compass heading and is considered as non-Gaussian random error.

38



2.3.2.2 Magnetic Measurement Errors

The magnetic measurement error is resulted from the distortion of the Earth’s magnetic
field by nearby ferrous effects, sensor noise and magnetic interferences. In practical
application, compasses are mounted in vehicles and platforms that most likely have
ferrous materials nearby. These nearby ferrous materials will generate permanent
magnetic fields (hard irons) or varying magnetic fields (soft irons) to distort the Earth’s
magnetic field. Hard irons add a constant magnitude field component (bias) along each
axis of the sensor output and result in a shift in the origin of the 2-D magnetic field locus
(Caruso, 2000). Soft irons affect the magnetometer output with a varying amount
depending on the compass orientation. The varying bias effects will distort the shape of
the 2-D magnetic field locus from a circle into an ellipse. Hard and soft iron distortions
are the major error sources for magnetic compassing and compensating for these effects
is essential to application. They can be modeled as bias and scale factor error in

magnetometer measurements (Caruso, 1997; Langley, 2003).

On the other hand, sensor noise and magnetic interferences are random in nature and
cannot be modeled systematically. Noise is typically assumed to be a zero-mean
Gaussian process and can be eliminated with a low pass filter. Magnetic interferences
generated by such as electronic devices, however, are unpredictable and could bias the
magnetometer output significantly. Errors introduced by magnetic interferences usually
change with time and environments according to the activities of the interference sources.
Such errors are generally considered as blunders which will corrupt the measurement
statistics and therefore compensating for hard and iron effects in interference-rich

environments such as land vehicle environments becomes a challenge.

2.3.2.3 Misalignment Errors

These errors are introduced by two types of misalignments: non-orthogonality of the
sensor triad and imperfect alignment between the sensor triad and the body axis of the
vehicle or platform. Both misalignments will cause cross coupling of the magnetometer

measurements leading to compass heading error. Misalignment errors can be minimized
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by calibration of the sensor triad in manufacture and careful installation of the sensor in
application. Compared to other errors, misalignment errors are relatively small and

usually ignored.
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Chapter 3

Data Fusion and Processing Methodologies

Sensors’ measurements or data need to be properly interpreted, processed and fused in
order to generate refined navigation information. The model-based Kalman filter and the
model-free artificial intelligence (Al) methods are two different data processing and data
fusion techniques. The Kalman filter offers a powerful method for linear data fusion and
estimation that are optimal in the statistical sense if the system models are known. Al
methods including fuzzy logic and neural networks provide a nonlinear mechanism for
high-level inference, data classification, and functional mapping. This dissertation applies
the Kalman filter for MEMS INS/GPS integration and the Al techniques for data quality
assessment, navigation error compensation, sensor error modelling, and fusion scheme
optimization to enhance the performance of the Kalman filter-based data fusion. This

chapter will present the fundamentals of these algorithms.

3.1 Kalman Filter

The Kalman filter is a linear recursive data processing algorithm that processes all
available measurements, regardless of their precision, to estimate the current value of the
variables of interest, with use of (1) knowledge of the system and measurement device
dynamics, (2) the statistical description of the system noises, measurement errors, and
uncertainty in the dynamics models, and (3) available information about initial conditions
of the variables of interest (Maybeck, 1979). If the input data fits the predefined linear
dynamics and statistical models and prior knowledge is known, the Kalman filter can
provide an optimal, in a minimum variance sense, estimate of the state vector (Gelb,
1974). Accordingly, the Kalman filter has become the most common technique for
estimating the state of a linear system particularly in navigation systems. Since the

estimation process is implemented on a computer, the discrete form of the Kalman filter
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is generally used. The following sections will describe the algorithm of the conventional
and adaptive Kalman filter as well as the implementation strategies of INS/GPS

integration using the Kalman filter.

3.1.1 Discrete Kalman Filter

Consider the random process to be estimated can be modeled by the following linear

dynamics model with a series of differential equations.

x =Fx+Gu (3-1)

where x is the vector of state variables;
F is a dynamics matrix;
G is a type of shaping filter; and

u is a vector forcing function whose elements are white noise.

The discrete time form of Eq. (3-1) can be obtained from the state-space solution of the

above differential equation which can be written as (Brown and Hwang, 1992):

Xty 1) = @t i1 (1 )+ J.;:H ®(t;,1,7)G(c)u(r)dz (3-2)
or in the form of

Xpi1 = QpXp + Wy (3-3)

where x,.;, x, are the process state vectors at time ¢, ; and ¢, , respectively;
W) is the driven response at f#,,; due to the white noise input of the
forcing function during the (7,7, ,) interval; and

D, is a transition matrix relating x; to x;,;.
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Based on the assumption that the input noise in the continuous model is white, w, will

be a white sequence in the discrete model with zero mean and time-uncorrelated property

as follows:

Ew,]=0 (3-4)
T|_ Qk’ lzk ~

E[Wle- ]—{ 0 vk (3-5)

where E[s] is the mathematical expectation.

The process noise covariance matrix Q, associated with w, can be written as (Brown

and Hwang, 1992):

Qi =E[WkW1{]
_E{[[M D(t1,1,6)G(Su(S) df][[k” (2141, 7)G(17)u( d’]]/} (3-6)

lies ””1 (I)(tk+1 &G E[ ﬂ)k;(ﬂ)q)(tk+lr77)d§d77

_[k

Since the noise sequence u is white, the covariance calculation can be reduced to the

form of (Gelb, 1974)

Qe = [ (1. 7)G(QE)G ()11, 77 (3-7)

where Q(¢)=E [u(t)uT (t)] is the spectral density matrix for the forcing function input.

The transition matrix is calculated using the inverse Laplace transform as follows

(Gelb,1974):
o, =" [s1-F)"] (3-8)
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where Z' represents the inverse Laplace transform and s is the Laplace transform
parameter. If F can be assumed constant over the A¢ interval of interest, the transition

matrix is simply the matrix exponential of FAz, that is,

2
O, = =1+FA¢+(FAf) o (3-9)

Consider the observation (measurement) of the process that has a linear relationship with

the system state vector

Zk =Hka +Vk (3‘10)

where z, isa measurement vector at time 7, ;
H, is a design matrix giving the noiseless connection between the measurement
and the state vector at time, ; and

v, 1s a measurement noise vector.

The measurement noise is assumed to be a white sequence with zero mean and time-

uncorrelated property and uncorrelated with process noise.

E[v.]=0 (3-11)
R, i=k

E Tl )Rk 3-12

ViVi ] {0, ik ( )

Elwev,"]=0, forallkand i (3-13)

where R, =E|v,v,” ] is the measurement noise covariance matrix.
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To derive an optimal estimate of the process state, the Kalman filter uses a linear

blending of the measurement and the prior estimate in accordance with the equation:

% =% + K, [z, —H,57) (3-14)

where x, is the update estimate, x; is the prior estimate, and K, is the optimal Kalman

gain matrix that is determined by minimizing the mean-square estimation error.

trace(E[(xk —X; (x4 —ik)T])E min (3-15)

Details of the derivation of K, are available in Kalman (1960), Gelb (1974), or Brown

and Hwang (1992). The summary of the discrete Kalman filter algorithm is shown in

Figure 3.1.
l X0 . Py
Kalman Gain Computation
> T T -1
K, =P H!(H,PH] +R,)
Zy
Propagation Estimates Update Estimates
X1 = QX fck:ﬁ;+Kk(zk—Hki,;)
- T
P =@ P@p +Q; P, =(1-K,H, )P,

Figure 3.1: Discrete Kalman filter algorithm
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3.1.2 Innovation-Based Adaptive Kalman Filter

As stated previously, the Kalman filter relies on complete a priori knowledge of the
process and measurement noise statistics. In most practical situations, these statistics
have time varying characteristics and are not exactly known. The use of wrong a priori
statistics in the designed Kalman filter can lead to large estimation errors or even
divergence of the filter. Several adaptive Kalman filter algorithms have been proposed in
literatures to reduce these errors by adapting the stochastic properties of the filter online
to the real data (Magill, 1965; Mehra, 1970; Mehra, 1972). The innovation-based
adaptive estimation approach has been found more suitable for INS/GPS integration

systems (Salychev, 1998; Mohamed and Schwarz, 1999).

The principle of the innovation-based adaptive Kalman filter is to make the filter
residuals (innovation sequences) consistent with their theoretical covariances (Mehra,

1972). The innovation sequence v, at epoch & is defined as the difference between the

actual measurement z; and the predicted measurement H,x; , namely:

Vk :Zk_Hk)A(; (3—16)
Under the assumed conditions specified in Eq. (3-5), (3-12), and (3-13), the innovation
sequence is a Gaussian white noise sequence with known covariance matrix, namely:

E[v,]=0 (3-17)

T —yx 7 T T
EVivy ]=Ck =H, P, H; +R; sz((I)k—lPk—l(I)k—l +Qk—1)ﬂk +Ry (3-18)

where C, is the theoretical covariance matrix of the innovation sequence.

When both of the process and measurement noise covariances are unknown, P, and P;_,

do not necessarily represent the actual error covariances and thus the estimation process

46



may not converge (Mehra, 1972). The case in which the process noise covariance is
assumed known and the measurement noise covariance is estimated by the above method
can be handled more successfully (Mehra, 1972). For INS/GPS integration under signal
degradation conditions, a priori knowledge of the measurement errors from GPS is much

difficult to obtain and should be online estimated. In processing the real observations, the
actual covariance matrix of the innovation sequence C, can be estimated by its sample

covariance, namely:

k
RAH (3-19)

Ni=k—N+l

where N is an empirically chosen window size for the purpose of statistical smoothing.

An adaptive measurement noise covariance R, can be estimated by substituting the

actual covariance matrix of the innovation sequence into Eq. (3-18) as follows:

A

k
R, -+ z T _H,p H! (3-20)
N —N+

The innovation-based adaptive Kalman filter based on Eq. (3-19) and Eq. (3-20) is more
suitable for INS/GPS integration in land vehicle applications. It should be noted that a

negative definite R, could be obtained at the beginning of estimation due to small

sample data available in the estimation of ék; therefore, the following normalization

procedure should be considered (Salychev, 1998):

diag(lik)z 0,if diag(lik)< 0.
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3.1.3 INS/GPS Integration Using Kalman Filter

The Kalman filtering methodology has been extensively applied for optimal fusion of
data from GPS and INS and the bridging of GPS outages. The most commonly used
integration scheme in literatures is loosely and tightly coupled integration strategy (Wei
and Schwarz, 1990; Salychev, 1998; Scherzinger, 2000 and Petovello, 2003). The loosely
coupled integration algorithm usually applies two decentralized Kalman filter in a
cascaded scheme. As shown in Figure 3.2, the INS and the GPS receiver operate as
independent systems and process data parallelly. INS raw measurements (acceleration
and angular velocity) are processed in the INS mechanization to derive INS attitude,
velocity and position. GPS raw observations (code, Doppler and phase) are processed in
the GPS Kalman filter to derive GPS velocity and position. The INS Kalman filter
utilizes the differences between the INS and GPS velocities and positions as the
measurements and the INS error equations as the system model. When GPS is available,
the INS Kalman filter estimates all observable INS sensor and navigation errors to
compensate system outputs. When GPS is unavailable, INS sensor and navigation errors

will be predicted based on the system model. (Salychev, 1998)

o Attitude, Velocity, Position
IMU » Mechanization
A
v
o INS
Kalman Filter Feedback Kalman Filter
Corrected Attitude
Velocity, Position
GPS
GPS " Kalman Filt
atman Fiter Velocity, Position

Figure 3.2: Loosely coupled INS/GPS integration algorithm

In the tightly coupled integration scheme a centralized Kalman filter is applied to process
INS data and GPS raw measurements together as shown in Figure 3.3. Similarly to the
loosely coupled integration algorithm, the INS navigation states are first derived from the

INS raw measurements based on the INS mechanization. Then, in the INS/GPS Kalman

48



filter the INS sensor and navigation errors as well as GPS range and range rate errors are
estimated using the pseudoranges and delta ranges calculated by the INS and measured
by a GPS receiver as the system measurements. The estimated INS errors will be applied

to correct the INS navigation states.

According to whether the estimated sensor errors are fed back to correct the
measurements, both loosely and tightly coupled integration algorithm can be
implemented with an open loop or closed loop. The closed-loop implementation, which
generally enhances the navigation performance because the previous estimation results
are used to minimize the approximation error due to system model linearization, are

mostly applied in INS/GPS integration systems (Skaloud, 1999 and El-Sheimy, 2003).

Attitude, Velocity, Position
IMU » Mechanization
*
: v
o INS/ GP.S I
Kalman Filter Feedback Kalman Filter .
Corrected Attitude
1 Velocity, Position
GPS
Code, Doppler, Phase

Figure 3.3: Tightly coupled INS/GPS integration algorithm

The loosely coupled integration system has both advantages and disadvantages compared
to the tightly coupled one. In the aspect of system implementation, the loosely coupled
integration system has higher flexibility and modularity as well as less computation and
complexity due to the independent operation and the smaller dimensions of the individual
Kalman filter. In the aspect of system accuracy, the tightly coupled integration system
provides globally optimal estimation accuracy because all the states for the entire system
are defined in one global state vector with a corresponding global description of the
process noise. However, the accuracy does not deteriorate much when a sub-optimal
cascaded loosely coupled integration system with a proper assessment of GPS filter

outputs is used (Wei and Schwarz, 1990). In terms of system availability, the loosely
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coupled integration system requires at least four GPS satellites to provide GPS updates
for INS corrections while the tightly coupled method can still work with as few as one
GPS satellite. For system robustness, the loosely coupled integration system has higher
fault detection performance than the tightly coupled one because the independent filter
solutions are available from two separate filters (Gao et al., 1993).

For land wvehicle applications, GPS is frequently operating in signal-degraded
environments (e.g. urban canyons, forests) in which GPS measurements deteriorate
significantly due to multipath and echo-only signals and become erroneous and unreliable.
The integration system, therefore, should have better fault-tolerance and blunder isolation
capability. Due to the cost and operation concerns, the integration system should be
easily implemented with low complexity and high flexibility so that different types of
INS and GPS can be used. In addition, with the increasing use of HSGPS, the availability
of GPS solutions in challenging environments can be significantly improved. Thus, the
loosely coupled closed-loop integration scheme is considered as a more suitable approach
for low-cost INS/GPS integration in land vehicle applications and has been applied in this

dissertation.

3.2 Fuzzy Logic

The concept of fuzzy logic was first conceived by Zadeh (1965). As the complexity of a
system increases, it becomes more difficult to make a precise statement about its behavior
and fuzzy logic provides a framework to deal with such problems naturally (Zadeh, 1965).
Resembling human decision making by using if-then rules and handling ambiguous and
imprecise information by using fuzzy set theory, fuzzy logic provides a successful way of
dealing with complex systems. Fuzzy logic has found successful applications in decision
making, data classification, pattern recognition, automatic control and etc. (Tanaka,
Okuda, and Asai, 1976; Bezdek, Ehrlich and Full, 1984; Pal and King, 1981). In this
dissertation, the fuzzy logic has been applied for GPS data classification and vehicle
dynamics identification where human reasoning and ambiguous data are inextricably
involved. This section describes the fundamentals of fuzzy logic and fuzzy inference

system while its applications to INS/GPS integration are to be described in Chapter 4.
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3.2.1 Fundamentals of Fuzzy Logic
3.2.1.1 Fuzzy Sets and Membership Functions

A fuzzy set is a set without a crisp boundary but a gradual transition form characterized
by membership functions. Such a set provides a natural way to deal with problems in
which the source of imprecision is the absence of sharply defined criteria of class
membership rather than the presence of random variables (Zadeh, 1965). A fuzzy set 4

in X is defined as follows:

A={{x,p4(x)) x € X} (3-21)

where u,(x) is called the membership function for the fuzzy set 4. The membership

function maps the each element of X to a membership degree between 0 and 1. It is
usually expressed by a linguistic term such as “the velocity is high” to embody the

fuzziness for a particular fuzzy set.

A membership function can be featured by the terms of core, support and boundaries as
shown in Figure 3.4. The core of a membership function for a fuzzy set 4 is defined as
the region of the universe with full membership in the set. The support of a membership
function for a fuzzy set 4 is defined as the region of the universe with nonzero
membership in the set. The boundaries comprise the elements of universe such that

0<u4(x)<1. These elements define the shape of membership function and the fuzziness

of the set. Many strategies such as intuitive, algorithmic and logical approaches can be
used to assign membership functions for fuzzy variables. The design of membership
functions can be simply derived from human knowledge or common sense reasoning or
more sophisticated techniques, e.g., neural networks (Jang, 1993) or genetic algorithms

(Karr and Gentry, 1993).

It should be noted that the fuzziness dealt with by fuzzy set theory are totally different

from the randomness dealt with by probability theory. The fuzziness represents the
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ambiguity of an event, whereas randomness represents the uncertainty in the occurrence

of the event (Ross, 1995).

Hy (x)
A
Core
1 —
0 > X
Support

Boundary Boundary

Figure 3.4: Features of the membership function

3.2.1.2 Logical Operations and If-Then Rules

After handling the ambiguous input data using fuzzy set theory, a fuzzy process performs
logical operations on a formulation of if-then rules to derive fuzzy outputs. The standard
Boolean logic, AND, OR and NOT, are the most basic operations used on classical sets.
The input and output of these operations are crisp values, either 0 or 1. In fuzzy logic,
however, the input values representing the degree of membership could be a real number
between 0 and 1. Thus, the standard Boolean logic operations should be modified to
equivalent functions for fuzzy set operations. One of the most popular ways is to use the
min-max operation. The AND operation of two fuzzy sets 4 and B is a fuzzy set

C=A4nB, whose membership function is defined as u(x)=min(u,(x), u5(x)). The OR

operation of two fuzzy sets 4 and B is a fuzzy set D=A4uU B, whose membership

function is defined as zp(x)=max(u,(x), u5(x)). The NOT operation of a fuzzy set 4 is
denoted by 4, whose membership function is defined as p(x)=1-,(x). Many other

fuzzy set operations such as max-product, max-max or min-min have been mentioned in

literatures. Each of them has its own significance and applications. The min-max
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operation is the one initially defined by Zadeh in his original paper and has found
effective expression of the approximate reasoning using natural language if-then rules.

Thus, this research uses the min-max approach for fuzzy logic operations.

The if-then rule is a type of nature language expressions to represent human knowledge.
The if-then rule formulates human knowledge into a conditional statement that comprises

fuzzy logic as follows:

If x is 4 (premise) then y is B (conclusion) (3-22)

where 4 and B are linguistic values defined by fuzzy sets on the ranges (universes of

discourse) X and Y, respectively.

The if-then rule typically expresses an inference such that if we know the premise, then
we can derive another fact called a conclusion. The premise of a rule can have multiple
parts connected using logical operators such as AND, OR and NOT. All parts of the
premise are calculated simultaneously and resolved to a single number using the
corresponding fuzzy logic operations. The conclusion of a rule can also have multiple

parts in which all conclusions are affected equally by the result of the premise.

In most applications, fuzzy reasoning involves more than one rule. To obtain the overall
conclusion from the individual consequents contributed by each rule, the process of
aggregation of rules is required. In general, two simple aggregation strategies,
conjunction of rules and disjunction of rules, are used in literatures (Vadiee, 1993). For
the case where the rules must be jointly satisfied, the rules are connected by ‘“and”
connectives and the aggregated output is formed by the fuzzy intersection of all
individual rule conclusions. In this case the membership function of the aggregated

output, 4, (v), is defined as:

py ()= minle s W)pt o (9)oops () for yey (3-23)
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where H) (). 2 (7)o Hr (v) are the membership functions of the individual rule

conclusions.

For the case where the satisfaction of at least one rule is required, the rules are connected
by “or” connectives and the aggregated output is formed by the fuzzy union of all
individual rule conclusions. In this case the membership function of the aggregated

output, u, (v), is defined as:

py ()= maxle (V) a2 (0)ops () for yey (3-24)

3.2.1.3 Defuzzification

After the approximate reasoning using if-then rules, a fuzzy process outputs a fuzzy set
defined on the universe of discourse of the output variable. In many applications where
the output of a fuzzy process needs to be a single scalar quantity, the defuzzification is
required to convert a fuzzy quantity into a precise quantity. Hellendoorn and Thomas
(1993) have investigated several popular methods for defuzzification such as max-
membership principle, centroid method, weighted average method, centre of sums and etc.
This research applies the centroid method for the defuzzification process, as it is the most
prevalent and widely adopted defuzzification method. The centroid method is given by

the following algebraic expression.

o Ju,()yay

_ 3-25
g [ 22, (v)dy (-2

where y” is the defuzzified scalar quantity; and Uy (v) is the membership function of the

aggregated output.
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3.2.2 Fuzzy Inference System

The fuzzy inference system is a computing framework for formulating the mapping from
a given input to an output based on the concept described in the previous section: fuzzy
set theory, fuzzy logic operators, if-then rules, and defuzzification. A block diagram of a
fuzzy inference system is shown in Figure 3.5. In a typical fuzzy inference system the
crisp inputs are first converted to the input fuzzy sets using the membership functions.
Then the input fuzzy sets are mapped into a consequent fuzzy set based on the adopted
fuzzy logic operators, if-then rules and aggregation strategy. Finally, the consequent

fuzzy set is converted into a scalar quantity as the system output using a defuzzification

method.
crisp input
\ 4
Fuzzification
fuzzy input
o000
v y
If-Then Rule oo If-Then Rule
o000
A4
Aggregation
fuzzy output
A
Defuzzification

v crisp output

Figure 3.5: Block diagram of the fuzzy inference system

According to the implemented fuzzy implication operations, rules and their aggregation
and defuzzification procedures, different types of fuzzy inference systems, such as
Mamdani, Sugeno and Tsukamoto, have been employed in various applications (Jang,
Sun and Mizutani, 1997). Mamdani’s fuzzy inference method that is the most commonly
seen fuzzy methodology has been applied in this research. The Mamdani’s fuzzy

inference basically uses the max-min fuzzy logic operator to obtain the consequent
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membership functions for each rule. Figure 3.6 illustrates the graphical analysis of the
Mamdani’s fuzzy inference with the conjunctive aggregation strategy for the two if-then

rules shown in Table 3.1. In Figure 3.6 and Table 3.1, the symbols 4, and 4,, refer to
the first and second fuzzy antecedents of the first rule, respectively, and the symbol B,
refers to the fuzzy consequent of the first rule; the symbols 4,, and 4,, refer to the first
and second fuzzy antecedents of the second rule, respectively, and the symbol B, refers

to the fuzzy consequent of the second rule. The minimum function illustrated in Figure
3.6 arises because the antecedent pairs of the given if-then rules shown in Table 3.1 are
connected by a logical AND connective. The minimum membership value for the
antecedent propagates through to the consequent and the truncated membership function
for the consequent of each rule is obtained. Based on the disjunctive aggregation strategy

the maximum operation of the truncated membership functions for each rule is performed
to generate an aggregated membership function. In summary, the aggregated output 1

can be given by the following equation.

iy i )., ). i )., () 326

sk * . . . .
where x; and x, are the input values for input variables x; and x, , respectively.

Finally, a crisp value y* for the aggregated output can be calculated using an appropriate

defuzzification method.
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Figure 3.6: Graphical Mamdani (max-min) inference method
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Table 3.1: Two if-then rules

Rule #1: If x; is 4;; and x, is 4}, then y is B,

Rule #2: If x; is 4y; and x, is A4,, then y is B,

3.3 Neural Networks

A neural network is a machine designed to mimic human brain mechanisms to simulate
intelligent behavior. It resembles the brain in two respects: knowledge is acquired by the
network from its environment through a learning process; interneuron connection
strengths, known as synaptic weights, are used to store the acquired knowledge
(Aleksander and Morton, 1990). With massively parallel distributed structures and
learning and generalization abilities, a neural network is a powerful information
processor for solving complex problems that are difficult for conventional model-based
approaches. Neural networks have been successfully applied in various fields of
application including pattern recognition, nonlinear functional mapping, classification,
speech, vision and control systems (Mendel and McLaren, 1970; Barto et al., 1983). In
this dissertation neural networks have been applied for a nonlinear input-output mapping
between the compass heading and the true heading and sequentially used for compass
calibration. This section describes the fundamentals of neural networks and the multilayer

feedforward neural networks that are used for the input-output mapping.

3.3.1 Fundamentals of Neural Networks
3.3.1.1 Models of A Neuron

A neuron is an information-processing unit for basic operations of a neural network.
Shown in Figure 3.7 is the model of a neuron which contains three basic elements

(Haykin, 1999):

1. Synapses: Each of synapses characterized by a weight of its own is used for

weighting the input signal. A signal x; at the input of synapse i/ connected to neuron
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J 1s multiplied by the synaptic weight w;. The synaptic weight could be a positive

or negative value.

. An adder: It is used for summing the weighted input signals as a linear combiner. As
shown in Figure 3.7, the neuronal model also includes an externally applied bias,

denoted by b;. The bias is used to increase or lower the input of the activation

function. Accounting for the bias effect by adding a new synapse with input as

xo =1 and weight as w;, =b;, we can formulate the adder operation as the following

equation.

v, = Zwﬁxi (3-27)

where m indicates the total number of input signal and v; is the aggregation of the

weighted inputs for neuron j, also called the local field.

. An activation function: The activation function performs a transformation to limit
the permissible amplitude range of the output signal to some finite value. Typically,

the normalized amplitude of the output of a neuron is in the range of [O,l] (binary) or

[~ 11] (bipolar). The transformation is expressed by the following equation.

vi=olv;) (3-28)

where y; is the output of the neuron ;.

The activation function can be linear or nonlinear. Different types of activation
functions, such as threshold function, piecewise-linear function and sigmoid
function, can be used according to applications. In general, nonlinear activation
function is recommended to enhance the network capability of function

approximation and noise-immunity (Ham and Kostanic, 2001).
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Figure 3.7: Nonlinear model of a neuron

In summary, the input-output relationship of a neuron can be described as follows:

= cz{zwj (3-29)

3.3.1.2 Network Architecture

To comprise neural networks, neurons are organized in the form of layers with inter-layer
or/and intra-layer connections. According to the manner in which the neurons of a neural
network are structured, three fundamentally different network architectures can be

classified (Haykin, 1999):

1. Single-Layer Feedforward Networks (SFNs): SFNs have an input layer and an
output layer without intra-layer connection as shown in Figure 3.8. The nodes in the
input layer accept the input signals and distribute them to the neurons in the output

layer where the information processing shown in Figure 3.7 is performed.
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O source node

O neuron
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Figure 3.8: Single-layer feedforward networks

2. Multi-Layer Feedforward Networks (MFNs): In contrast to SFNs, MFNs have one
or more hidden layers besides an input layer and an output layer. The function of
neurons in the hidden layers is to intervene between the external input and the
network output to enable the network to extract higher-order statistics. Shown in
Figure 3.9 are the fully connected feedforward MFNs as every node in each layer of
the network is connected to every other node in the adjacent forward layer. The
network is called partially connected if some of the links are missing from the

network.

O source node

Q neuron

input layer hidden layer  output layer

Figure 3.9: Multi-layer feedforward networks

3. Recurrent Networks (RNs): RNs differ from a feedforward neural network in that it
has at least one feedback loop. The presence of feedback loops affects the learning

capability of the network and its performance. RNs may be implemented differently
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according to the number of layers and the type of feedback loops such as self-

feedback, inter-layer feedback or intra-layer feedback loop.

3.3.1.3 Learning Processes

After the network is structured, a learning process is applied to adapt the neural network
to the environments through adjusting the free parameters of the network such as synaptic
weight and bias. The type of learning is determined by the manner in which the parameter
changes take place (Mendel and McLaren, 1970). The common learning algorithms are

categorize into two learning paradigms as follows (Haykin 1999):

1. Learning with a teacher: In this learning paradigm, a neural network is trained or
adjusted by a teacher having knowledge of the environment, with that knowledge
being represented by a set of input-output examples. When the teacher and the
neural network are both exposed to a training example draw from the environment,
the teacher is able to provide the neural network with a desired response that
represents the optimum action to be performed by the neural network for that
training example. Then the network parameters are adjusted according to the
combined influence of the training example and the difference between the desired
response and the actual response of the network, also called error signal. This
adjustment is carried out iteratively until the neural network optimally emulates the
teacher in some statistical sense. This kind of learning paradigm is also referred to as

supervised learning.

2. Learning without a teacher: In this learning paradigm, there is no teacher to oversee
the learning process. The learning process is basically performed through continued
interaction with the environment. Two types of learning structures can be

implemented.

(a). Reinforcement learning: Instead of under the tutelage of a teacher, the
reinforcement learning system is built around a critic that converts a primary

reinforcement signal received from the environment into a high quality
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reinforcement signal called the heuristic reinforcement signal (Barto et al., 1983).
The network parameters are adjusted under observing this heuristic
reinforcement signal. The goal of learning is to minimize a cost-to-go function,
which is the expectation of the cumulative cost of actions taken over a sequence

of steps (Haykin, 1999).

(b). Self-organized learning: Without an external teacher or critic to oversee the
learning process, the self-organized learning process is performed through
observing a task-independent measure of the quality of representation that the
network is required to learn. Once the network has become tuned to the
statistical regularities of the input patterns, it is capable of forming internal
representations to encode features of the input in a more explicit or simple form
(Becker, 1991). The self-organized learning is also referred to as unsupervised

learning.

3.3.1.4 Benefits of Neural Networks

A neural network is a massively parallel distributed processor that has ability to learn
about its environment. It can be used for solving complex problems that are intractable to
model-based approaches. The use of neural networks provides many useful properties
and capabilities. Some of the neural network benefits are described as follows (Haykin

1999):
1. Nonparametric statistical inference: Neural networks can provide a model-free
input-output nonlinear mapping that doesn’t require prior statistical model for the

input data.

2. Generalization: Neural networks can produce reasonable outputs for inputs not

encountered during training (learning).
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3. Nonstationary environment operation: Neural networks that have been trained to
operate in a specific environment can be retrained to deal with minor changes in the

operating environmental conditions.

3.3.2 Multilayer Feedforward Neural Networks

As mentioned previously, a multilayer feedforward neural network (MFNN) contains one
or more hidden layer and the neuron in the network has the nonlinear activation function
inside and high degree of connectivity. The combination of these characteristics together
with the ability to learn from experience through supervised training makes the MFNN
capable of performing a nonlinear mapping between many inputs and outputs. The most
popular learning algorithm for MFNNS is the error back-propagation algorithm developed
by Rumelhart et al. (1986). The back-propagation is a gradient decent algorithm in which
the network parameters are moved along the negative of the gradient of the performance
function. This algorithm consists of two passes through different layers of the network: a
forward pass and a backward pass. In the forward pass, the synaptic weights of the
network are all fixed and a set of outputs is produced forward through the network as the
actual response of the network. During the backward pass, the synaptic weights of the
network are all adjusted backward through the network in accordance with an error—
correction rule seeking a direction for weight change that reduces the value of the cost

function.

The training of the network is repeated for many examples in a training set until the
networks reach a steady state so that a proper input-output mapping is constructed. For a
given training set, the back-propagation learning may proceed in one of two basic ways:
sequential training or batch training. In the sequential mode, weight updating is
performed immediately after the presentation of each training example and continued
until the last training example. In the batch mode, the weights of the network are updated
only after the entire training set has been applied to the network. The advantages of the
sequential training over the batch training are the better efficiency for on-line operation

and resistance to convergence of learning to a local minimum. In contrast, the batch

63



training provides an accurate estimate of the gradient vector for better convergence of the
learning algorithm. The relative effectiveness of the two training modes depends in the
problem at hand. In general, the sequential mode of the back-propagation learning is
highly popular because of its simplicity for implementation and effectiveness for solving

large and difficult problem.

The signal flow of back-propagation learning applied to a multilayer feedforward neural
network is shown in Figure 3.10. The forward and backward computations of sequential

training processes are summarized in the following.

1. Forward computation: In the forward computation the synaptic weights remain
unchanged and the signals are processed forward through the network, layer by layer,
to consequently compute the actual response of the network. In the presence of a

training sample in the epoch denoted by (x(r)d(rn)) (x(r) is the input vector and
d(n) is the desired response vector), the forward-proceeded local field VS;)(n) for
neuron ; in layer / is computed as follows:

ny_y

)= L) (3-30)

where y("l)(n) is the output of neuron i in the previous layer /-1 at iteration » and

i

wyl)(n) is the synaptic weight of neuron ; on layer / that is fed from neuron i in

layer /—1. m,;_, is the total number of neuron in the previous layer /1.

The output of neuron ; in layer / is obtained from the transformation of the local

field using the activation function ¢,(-) as follows:

Win)=0,((n) (3-31)
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For the input layer (i.e., /=0), ygo) (n) is equal to x;(n), which is the jth element of
the input vector x(r). For the neuron in the output layer (i.e., /= L, where L is the

depth of the network), y_g.L)(n) is equal to oj(n), which is the jth element of the

actual response vector o(n) of the network.

The error signal at the output of neuron ; at iteration » is defined by:

ej(n)zdj(n)—oj(n) (3-32)

where d (n) is the jth element of the desired response vector d(n).

The cost function E(n) as a measure of learning performance is defined as the sum

of the squares of the error signals for all the output neurons.

E(n)z% Y e2(n) (3-33)

jeC

where the set C includes all the neurons in the output layer of the network.

For the batch training in which the weights are updated on a pattern-by-pattern basis

until one epoch, the cost function is obtained by summing E(r) over all » and then

normalizing with respect to the set size N, as shown by:

Eav :_ZE(H) (3_34)
where E,, is also called the average squared error energy.

. Backward computation: In the backward computation the synaptic weights of the
network are all adjusted backward through the network. The adjustment of the

synaptic weights is performed in the following linear form.
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WS-ZI-) (n + 1)= W(!-)(I’l)-i- Aw_g.li)(n) (3-35)

Jt

where Aw%) (n) is the correction of the weight that connects neuron i and j on layer

[ at iteration 7. wS-l,-)(n +1) and wgl,)(n) denote the corrected and uncorrected weights,

each connects neuron i and ;j on layer / at iteration ».

The correction of the synaptic weight is determined by minimizing the cost function
with respect to the synaptic weight using the gradient decent algorithm. Thus the

correction of the synaptic weight is proportional to the partial derivative

OE(n)/ 6w§-1,-) () and is defined as follows:

Al (n)=—n aff,()()) (3-36)

Jt

where the minus sign indicates the direction for weight change that reduces the

value of E(n) and 5 is the learning-rate parameter of the back-propagation

algorithm.

The smaller the learning-rate parameter, the smaller the changes to the synaptic
weights between each training iteration. Increasing the value of the learning-rate
parameter can speed up the rate of learning but may result in an unstable network

with large changes in the synaptic weights.

Since E(n) is the sum of the squares of the error signals for all the output neurons,
the correction of the synaptic weight is a function of all synaptic weights and

activation functions. Applying the chain rule of calculus to 8E(n)/ awﬁ.’,.)(n) and

including a momentum term, a general form of the correction of the synaptic weight

called the generalized delta rule is obtained as follows:

AWS-I,-) (n)= a[Aw%) (n- 1)]+ n5j(-l)(n)y,(l_l)(n) (3-37)
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where « is usually a positive number called the momentum constant which is used

for increasing the rate of learning yet avoiding the danger of instability. y(l_l)(n) is

i
the output of neuron i in the previous layer /-1 at iteration » and 5](-1)(11) is the

local gradient defined by 51(.’ )n) = -0E(n)/ 8v%)(n).

The local gradient is computed backward through the network and thus the
correction of the synaptic weight is also proceeded backward through the network,
layer by layer. The back-propagation formula of the local gradient in the output and
hidden layer is described in Eq. (3-38). Details of the derivation of Eq. (3-38) are
available in Rumelhart et al. (1986) or Haykin (1999).

eS-L)(n )(p'. (v(.L)(n )) for neuron j in output layer L

5W(n)= (3-38)

@’ (v‘(/l)(n)) ffé‘ ,EM)(n)wg.”)(n) for neuron j in hidden layer/
k=0

where the prime in ¢ (-) denotes differentiation with respect to the argument and

my., 1s the total number of neuron in the next layer / +1.

In summary, the back-propagation training algorithm starts with the forward pass in
which the neuron outputs are computed forward through the network based on Eq. (3-30)
and Eq. (3-31) and finally the error signals of the neurons in the output layer are obtained
by Eq.(3-32). Then the backward pass starts at the output layer by passing the error
signals backward through the network and recursively computing the local gradient for
each neuron based on Eq. (3-38). Moving along the negative of the local gradient, the
synaptic weights are corrected backward through the network, layer by layer, based on
Eq. (3-35) and Eq. (3-37). The forward and backward computations are iterated with the
presentation of new epochs of training examples to the network until the stopping
criterion is met. The stopping criterion could be: The Euclidean norm of the gradient

vector reaches a sufficiently small gradient threshold; the absolute rate of change in the
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average squared error per epoch is sufficiently small; the weight updates are sufficiently

small; or simply the number of iterations reaches to a predetermined value.

It should be noted that the MFNN should be well designed to ensure that reasonable
outputs can be obtained even when inputs are not encountered during training. The
factors affecting the performance of the input-output mapping include the number of the
hidden neurons and the size of the training set. Basically, they are designed according to
the physical complexity of the problem at hand and mostly decided empirically. More
details about the design of the MFNN are available in Hush and Horne (1993).
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Figure 3.10: Signal flow of the back-propagation learning applied to a multilayer
feedforward neural network
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Chapter 4
Development of AI-Based Methods for Integration

Enhancement

Chapter 3 has described the fundamentals of the model-based Kalman filter and the
model-free Al methodologies. For low-cost MEMS INS/GPS integration, the Kalman
filter will suffer significant performance degradation from the use of poor quality
measurements because of its model dependency. In contrast, capable of handling
imprecise and ambiguous information, Al methods are considered particularly suitable
for dealing with low quality data since they are model-free. Using human-like reasoning
and intelligence, Al methods can provide knowledge-based information to improve the
adaptability and robustness of the low-cost integration system. This chapter first gives a
comprehensive analysis of the limitation of the Kalman filter applied to the processing
and fusion of low quality data, followed by the motivation of applying Al methods for
integration enhancement. Finally, the design and development of Al-based methods,
including a fuzzy logic rule-based GPS data classification system, a dynamics knowledge
aided inertial navigation algorithm, and a neural networks compass calibration algorithm,

are presented.

4.1 Limitation of MEMS INS/GPS Integration Using Kalman Filter

As described in Chapter 3, the Kalman filter in a loosely coupled INS/GPS integration
system is applied to estimate INS navigation and sensor errors using GPS velocities and
positions. It will rely on the last estimates and error dynamics models to predict
navigation errors during GPS outages. Therefore, the system performance is mainly
determined by the Kalman filter estimation and prediction accuracy. The Kalman filter

estimation accuracy depends on the fidelity of the system and measurement models as
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well as the noise statistics (Gelb, 1974). In a low-cost MEMS INS/GPS integration
system, however, the quality of inertial data are poor which have large bias variation,
high noise level, and large random error due to flicker noise, random walk etc. In this
case, sensor errors are very difficult to realistically model using stochastic processes, thus
the imperfect modelling resulted from mis-modelling, non-modelling and non-white
properties of input data is obvious. In addition, when navigation systems operate in GPS
challenging environments such as urban canyons, GPS solutions are characterized by
large noises and multipath errors and GPS accuracy is more difficult to assess properly.
As a result of using inaccurate dynamics and statistical models, the Kalman filter will
suffer degraded estimation accuracy and even divergence problems for low-cost MEMS

INS/GPS integration.

Similarly, the Kalman filter prediction performance is strongly associated with the quality
of inertial sensors. The Kalman filter prediction accuracy is mainly defined by the
accuracy of the system model (input noise) and the accuracy of the last estimate in
filtering mode (Salychev, 1998). As stated previously, for low-cost MEMS INS/GPS
integration the Kalman filter has degraded estimation performance in filtering mode.
Moreover, in the presence of high input noise and large non-modelling sensor errors due
to bias variations and random errors, it is difficult to accurately predict INS sensor errors
using the Kalman filter. After time integration of the IMU measurements, the unidentified
sensor errors will result in a rapid error growth in velocity and position during GPS
outages. This is the major challenge to the integration of low-cost MEMS inertial sensors

with GPS using the Kalman filter.

Since the traditional Kalman filter methodology was found insufficient for low-cost
MEMS INS/GPS integration, the enhanced data fusion and data processing methods are
needed in order to obtain satisfactory integration performance. In reasoning about a
system, the precision inherent in our models of the system depends on the degree of
complexity (uncertainty) of the system and the understanding about the problem
(precision of measurement) (Ross, 1995). For the complex systems with only ambiguous

or imprecise information available, the Al-based methods provide a nonlinear, adaptive,
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and knowledge-based approach to understand the system’s behaviour by using human
reasoning and intelligence. Al technologies including expert systems, fuzzy logic and
neural networks have found successful applications in a wide variety of fields, such as
nonlinear mapping, data classification, and decision analysis (Kandel, 1992; Jang et al.,
1997; Haykin, 1999). Al methods can be seen as the advanced versions of the estimation,
classification and inference methods (Luo et al., 2002). As mentioned previously, the
major limitation of using the model-based Kalman filter for low-cost MEMS INS/GPS
integration is its significant performance degradation in the presence of low quality INS
data and corrupted GPS data. If a magnetic compass, commonly embodied in a low-cost
MEMS IMU, is used to provide external heading information, the compass data, likely to
be disturbed and biased in vehicular environments, are also difficult to calibrate using

model-based estimation methods such as the Kalman filter.

Thus, with the advantages of processing ambiguous or imprecise data and the capabilities
of formulating human intelligence, AI methods have been applied in this dissertation to
enhance the Kalman filter-based data fusion performance by adding functionalities of
data quality assessment, navigation error compensation, sensor error modelling, and
fusion scheme optimization. Linked to human reasoning and concept formation, fuzzy
logic and expert systems have been implemented for GPS data classification and vehicle
dynamics identification so that GPS solutions can be more properly weighted in various
GPS environments and INS errors can be more effectively controlled with the aiding
from dynamics knowledge. In addition, neural networks with learning and adaptation
capabilities have been applied for compass error modeling and calibration so that
compass biases and scale factor errors can be correctly removed even in strong
disturbance environments. The rest of this chapter will present the design and

development of these Al-based methods for integration enhancement.

4.2 Fuzzy Logic Rule-Based GPS Data Classification

As mentioned in Chapter 2, GPS is a satellite-based radio navigation system, which uses

line-of-sight ranges between the navigation satellites and receivers to derive positioning
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solutions. GPS signals therefore are subject to severe degradation in the presence of
multipath, diffraction, attenuation or blockage. GPS positioning solutions in this case
would have degraded accuracy and should be identified before they are used for
navigation or integrated with other sensors such as INS. Traditionally, the receiver
autonomous integrity monitoring (RAIM) method, which is based on self-consistency
check among the available measurements, has been applied for fault detection and
exclusion (FDE) in GPS data (Lee, 1986; Parkinson and Axelrad, 1988; Parkinson and
Spilker, 1996). In GPS unfavourable environments, however, RAIM methods were found
limited due to the violation of normally distributed zero-mean measurement errors,

multiple blunders and the lack of redundancy (Collin et al., 2003; Kuusniemi, 2004).

For land vehicle applications low-cost GPS or HSGPS receivers are typically used with
the code or pseudorange measurement as the principal observable for position
determination. Code-based GPS position errors are determined by satellite geometry and
pseudorange measurement errors. The user-to-satellite pseudorange measurement errors
are transferred into position errors in local navigation frame according to the satellite
geometry strength. The pseudorange measurements contain errors of satellite orbit and
clock, atmosphere, multipath, receiver clock offset and measurement noise (Parkinson
and Spilker, 1996 and Misra and Enge, 2001). In signal-degraded environments, the
major pseudorange errors are due to multipath and other signal deteriorations such as
diffraction and attenuation especially for HSGPS receivers. In various signal-degraded
environments such as urban and suburban areas, therefore, it is possible to assess GPS

performance by monitoring GPS signal quality and satellite geometry strength.

Previous researches have applied fuzzy logic or neuro-fuzzy soft computing to derive a
quality indicator for GPS code based positioning solutions using the carrier-to-noise
density ratio (C/NO) and the Dilution of Precision (DOP) number (Lin et al., 1996;
Ghalehnoe et al., 2002 and Wang and Gao, 2003a). But the resultant performance was
still limited because the simple use of C/NO is not sufficient to reliably assess the
pseudorange errors. Wang and Gao (2004d) have applied a fuzzy inference system to

classify GPS position solutions using the DOP number and the fading C/NO value which
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is the difference between the measured and expected C/NO. When a HSGPS receiver is
used, however, the DOP number becomes less sensitive to the degree of signal
degradation since weak and low-power signals can be acquired and tracked with higher
satellite availability. Wang and Gao (2006) have further applied the receiver-satellite
geometry matrix, namely in Eq. (2-4), to assess the effects of an individual satellite’s
measurement errors on the position solutions instead of using a single DOP number
which is a geometric strength measure for all observed satellites. This modified system
has shown improved classification performance and is suitable for both non-high
sensitivity (conventional) and high sensitivity GPS data classification. The design and

development of this system is described in the following sections.

4.2.1 GPS Signal Quality Measures

Carrier-to-noise density ratio (C/NO) is the most commonly used measure of the GPS
signal quality. C/NO is an instantaneous measure of the ratio of carrier present to noise

per Hertz of bandwidth (dB-W/Hz) and can be computed as follows (Lachapelle, 2002):

C/NO = Sy + G, —10log(K 3T, )— NF (4-1)
where Sp is the received signal power;
G, is the antenna gain;

10log(K 5T,) is the ambient noise density; and

NF is the receiver noise figure

C/NO value depends upon the received signal strength, receiver antenna gain and the
correlation process used by the receiver. Thus, for a given combination of a GPS antenna
and receiver, C/NO represents the received signal strength, i.e., the signal quality present
at the input to a GPS receiver. The GPS signal power broadcast at the satellite is
attenuated due mostly to the loss of propagation from the satellites to the receivers. The
propagation loss is mainly dependent on the length of the path and the attenuation effects

on the path, such as atmospheric attenuation, depolarization, shadowing by an object or
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constructive and destructive interference by multipath. In an open-sky environment, the
received signal strength is mainly dependent on the atmospheric attenuation and
depolarization loss which are normally proportional to the length of the propagation path.
Thus, in this case the received signal from the lower-elevation satellite usually has lower
power than the signal from the higher-elevation satellite. In a signal-degraded
environment, the received signal strength is relative to not only satellite elevation but also
environmental attenuation conditions. Thus, the C/NO measured in open-sky
environments can be used to represent the strength of the clear signal, called expected
C/NO. The difference between the measured and the expected C/NO, called fading C/NO,
therefore has a certain correlation to the strength of signal degradation (Brunner et al.,

1999; Wieser and Brunner, 2000).

As mentioned previously, the strength of the received signal is changing with satellite
elevation, thus the expected C/NO is a function of satellite elevation. To establish the
C/NO scatter describing how the expected C/NO changes with satellite elevation and to
study the signal degradation effects on C/NO, several static tests using a SiRF Star II
Xtrac high sensitivity GPS receiver and a conventional SiRF Star IT GPS receiver were
performed in open-sky and various signal-degraded environments. The specifications of
the SiRF Star II GPS receiver can be found in Table 6.1 of Chapter 6. Figure 4.1 through
Figure 4.3 show the test environments to represent typical low, medium, and high signal-
degraded conditions, respectively. In each environment test we logged the satellite
elevation angle and the corresponding C/NO data of all observed satellites for a period of
about 24 hours at 1 Hz sampling rate. All of the data collected from the high sensitivity
GPS receiver under open-sky (clear signal) and different signal-degraded environments
(deteriorated signal) are shown in Figure 4.4 through Figure 4.6, respectively. The results

of the conventional GPS receiver are shown in Figure 4.7 through Figure 4.9.
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Figure 4.2: Test set-up in a medium signal-degraded environment
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Figure 4.3: Test set-up in a high signal-degraded environment
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Figure 4.4: C/NO scatter diagram under open-sky and low signal-degraded
environments (SiRF Star II Xtrac HSGPS)
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Figure 4.5: C/NO scatter diagram under open-sky and medium signal-degraded
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Figure 4.6: C/NO scatter diagram under open-sky and high signal-degraded
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Figure 4.7: C/N0 scatter diagram under open-sky and low signal-degraded
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Figure 4.8: C/NO scatter diagram under open-sky and medium signal-degraded
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Figure 4.9: C/NO scatter diagram under open-sky and high signal-degraded
environments (SiRF Star II conventional GPS)

The results indicate that the data collected in signal-degraded environments generally
have lower C/NO than the data collected in the open-sky environment. However, it is
possible to have similar C/NO values in open-sky and signal-degraded environments, i.e.,
obtaining very small fading C/NO under signal-degraded environments. There are two
reasons for this occurrence. First, there is a low probability of having signal deterioration
when the satellite is at high elevation and the receiver is under low and medium signal-
degraded environments. In this case, the fading C/NO correctly reflects the strength of
signal degradation. Second, when the signal deteriorations are contributed by multipath,
the measured C/NO would be strengthened when the reflected signal arrives in-phase or
weakened when it arrives out-of—phase (Misra and Enge, 2001). This case can be
particularly found in the high signal-degraded environment tests as shown in Figure 4.6
and Figure 4.9. This is a dilemma for using fading C/NO to indicate the magnitude of
multipath errors (Wieser and Brunner, 2000). In general, signal deteriorations are the
combination of multipath, diffraction, and attenuation. As indicated in Wieser and

Brunner (2000), fading C/NO is highly correlated with the degree of signal diffraction and
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attenuation. Thus, fading C/NO can still represent a certain degree of signal degradation
for an individual satellite but not a one-on-one functional mapping to the pseudorange

CITOIS.

To compute the fading C/NO, the expected C/NO scatter over satellite elevation for the
selected GPS receiver and antenna should be determined first. Based on the 24-hour
open-sky static test results, in this dissertation we form the expected C/NO scatter by
using the mean C/NO at each satellite elevation angle as shown in Figure 4.4 through
Figure 4.9. For the selected HSGPS receiver and antenna, we observed that the expected
C/NO scatter can be modeled using three linear reference functions shown in Figure 4.10:
two constant functions and one linear ascending function. The corresponding parameters
for the reference functions are listed in Table 4.1. For the conventional GPS receiver and
antenna, the expected C/NO scatter can be modeled using three linear reference functions
shown in Figure 4.11: one linear ascending function, one constant functions and one
linear descending function. The corresponding parameters for the reference functions are
listed in Table 4.2. As expected, the profile of the expected C/NO scatter is receivers and

antennas dependent.
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Figure 4.10: Profile of reference functions of the expected C/NO (SiRF Star II Xtrac
HSGPS)
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Figure 4.11: Profile of reference functions of the expected C/NO (SiRF Star 11
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Table 4.1: Parameters of reference functions of the expected C/NO (SiRF Star IT

Xtrac HSGPS)
a(dB-Hz) b(dB-Hz) X;(deg.) X,(deg.) Xs(deg.) X,(deg.)
38 45 5 10 25 90

Table 4.2: Parameters of reference functions of the expected C/NO (SiRF Star 11
conventional GPS)
a(dB-Hz) b (dB-Hz) c¢(dB-Hz) X1 (deg.) X2 (deg.) X3 (deg.) X4 (deg.)
36 44 43 5 42 65 90

4.2.2 Geo-Signal Degradation Measures

In the previous section, we have demonstrated the correlation between the fading C/NO
and the degree of signal degradation. To study the effects of signal degradation on GPS
positioning solutions, the satellite geometry strength should be introduced. In this
dissertation we incorporate the fading C/NO of all observed satellites with the receiver-
satellite geometry matrix to assess the effects of signal degradation in position domain,
i.e., we project all user-to-satellite fading C/NOs on the local east-north-up (ENU)

coordinate frame. We expected that an improved performance could be obtained
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compared to using a single geometric strength measure, namely the DOP number, for all
observed satellites (Wang and Gao, 2004d). Following the same model for position
estimation using least-squares method (Misra and Enge, 2001), we project the user-to-
satellite fading C/NO of the observed satellites on the local ENU coordinate frame and

calculate their average fading C/NO, Fgny, in the following manner.

JE Ifm

Fono =| 7V |2 L&76 )67 (4-2)
fr| k g(k)
fr :

where k is the number of observed satellites; fz, fv, fy,and f; represent the average

fading C/NO projected to the east position, north position, vertical position, and time

: . 1 k : .
domain, respectively; f5 ( ), e fR " represent the user-to-satellite fading C/NO of all

observed satellites; G is the user-to-satellite geometry matrix in the local ENU

coordinate frame as defined in Eq. (2-4):

Representing the fading C/NO effects on the horizontal position, the average fading C/NO

in the horizontal, f};, is chosen as the first geo-signal degradation measure and it can be

obtained from the following equation:

fH:\/fE2+fN2 (4-3)

Considering the overall signal quality of the tracked satellites, we take the number of
fading satellites into account. A fading satellite is identified when the satellite’s fading
C/NO is larger than a threshold value. The threshold value is determined by the quantity
between the lower limit and the mean of the expected C/NO obtained from the field tests
as shown in Figure 4.4 for the high sensitivity GPS and Figure 4.7 for the conventional
GPS. Then we calculate the fading satellite ratio, FR , as the second geo-signal

degradation measure for the assessment of signal degradation conditions as follows:
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_Nr
NU

FR (4-4)

where N is the number of fading satellites; and N, is the number of satellites used for

navigation.

To test how the geo-signal degradation measures, f;; and FR, can be used to classify

signal degradation conditions, the data acquired under various environment tests that
already shown in the previous section were used. Figure 4.12 and Figure 4.13 show the

distribution of the geo-signal degradation measures ( f; and FR) for different signal-

degraded environment tests when the high sensitivity GPS and the conventional GPS are
used, respectively. The black marks indicate the centre of each data set, representing the
mean of the geo-signal degradation measures for the corresponding 24-hour signal-
degraded environment test. As shown, for each test the geo-signal degradation measures
cluster together. As expected, for both HSGPS and GPS tests, the data collected in a
harsher signal-degraded condition have a larger average fading C/NO in the horizontal
and a higher fading satellite ratio. We also observed that there is an overlap of the geo-
signal degradation measures between different environment tests. This is because the
signal degradation condition is changing with time according to the user-to-satellite
geometry relative to the around-receiver obstacles. Thus, during the 24-hour test it is
possible to have similar geo-signal degradation measures under the near signal-degraded
environments. Comparing the distribution of the geo-signal degradation measures
between HSGPS and GPS under the same testing environment, we observed that
relatively larger f,; and FR were obtained from HSGPS than GPS. This can be
explained by the fact that more weak and degraded signals can be tracked by the high
sensitivity GPS but not the conventional GPS. In general, the correlation between the
geo-signal degradation measures and the signal-degraded conditions has been

demonstrated and confirmed.
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4.2.3 Design of Fuzzy Logic Rule-Based Data Classification System

Based on the results of various environment tests shown in Figure 4.12 and Figure 4.13,
the geo-signal degradation measures can be used to classify GPS signal degradation
conditions which highly affect the accuracy of GPS position. Thus, the geo-signal
degradation measures can be used for GPS data classification. The common data
classification method uses the similarity or distance measures between pairs of feature
vectors in the feature space to partition the data into classes. In our application there is an
overlap of the input feature vectors between different classes. In addition, as mentioned
previously, there is a dilemma of using fading C/NO to indicate the magnitude of
multipath errors. Thus, the input data contain ambiguous and imprecise terms that have
limited the applicability of the crisp or hard data classification method. As proposed by
Zadeh in 1965, a fuzzy set that is a class of object with a continuum of grades of a
membership provides a way to deal with imprecisely defined classes. Thus, the theory of
fuzzy sets is used in our data classification system to deal with imprecise input data and

to overcome the intrinsic limitations of crisp partitions.

As shown in Figure 4.12 and Figure 4.13, it is quite obvious that the larger the geo-signal
degradation measures, the severer the signal degradation conditions. Thus, data
classification can be accomplished by common sense reasoning. To perform the
reasoning process of fuzzy or soft data classification, a fuzzy inference system that
incorporates fuzzy sets theory, fuzzy if-then rules with fuzzy reasoning is employed in
this study. The fuzzy inference system is a popular computing framework linked to
human reasoning and concept formation dealing with ambiguous and imprecise
information. Shown in Figure 4.14 is the architecture of the proposed fuzzy inference
system for GPS data classification. The output of the fuzzy inference system is a numeric
quality rating (QR) between 0 and 1. The QR value, which describes the degree of signal
plus geometry degradation, is further applied to classify GPS data. A higher rating value
indicates a higher likelihood of having a poor GPS solution. Because most GPS receivers
use an internal filter to smooth position solutions, GPS position performance is less
sensitive to the short-term or transient changing of signal degradation. To consider this

filtering effect, we use the moving average of the geo-signal degradation measures as the
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system input variables so that the QR value can reflect the performance of GPS position
more appropriately. The size of moving average window was chosen as eight seconds

based on the smoothing feature of the GPS position obtained from the field tests.

: Fu
Moving Average of fy Inferzezl)lice
/' System
QR
Moving Average of FR

Figure 4.14: Architecture of the fuzzy logic GPS data classification system

Once the system input and output variables are defined, the next step is to design the
membership functions which characterize the fuzziness in a fuzzy set. The assignment of
membership values or functions to fuzzy variables can be intuitive or based on some
algorithm or logical operations (Ross, 1995). For the purpose of computational simplicity,
the triangle membership functions are used. The parameters of input membership
functions are determined based on the results of the various environment tests shown in
Figure 4.12 and Figure 4.13. Three membership functions for each input variable are used
and the mean of the geo-signal degradation measures under each signal degradation
condition is assigned to the core value of the corresponding membership functions. These
mean values are well representative of data clustering centres since they were calculated
from large amount of sampling data. For the output membership functions, three triangles
with even overlaps between sets and even segmentation from zero to one are used
because in this study GPS data are intentionally classified into three classes. The applied
membership functions of the fuzzy input and output variables for the high sensitivity GPS

and the conventional GPS are illustrated in Figure 4.15 and Figure 4.16, respectively.
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To describe the relationship between the input and the output, a set of rules is applied as
shown in Table 4.3. Designed based on common sense reasoning and the field test results
shown in Figure 4.12 and Figure 4.13, the rules are quite straightforward and identical for
HSGPS and GPS data classification systems. For example, the GPS positioning solution
would be poor (QR is large) if both the fading satellite ratio and the average fading C/NO
in the horizontal are high. After the membership functions and fuzzy if-then rules are
defined, an inference procedure is applied to derive the output fuzzy set. In this
dissertation, the Mamdani type fuzzy inference system with max-min composition, which
is considered as the most commonly used fuzzy methodology, is used (Mamdani and
Assilian, 1975). Then the centroid of area defuzzification is applied to extract a crisp
value from the output fuzzy set as a representative value of the final fuzzy output. This
crisp value in a range between 0.25 and 0.75 is further used for data classification. More
specifically, if the value of quality rating is smaller than 3.75 (the medium between the
core value of the ‘Small’ and ‘Medium’ membership functions), data are classified as low
signal-degraded data. If the value of quality rating is larger than 6.25 (the medium
between the core value of the ‘Medium’ and ‘Large’ membership functions), data are

classified as high signal-degraded data.

Table 4.3: If-then rules used in the fuzzy inference system for GPS/HSGPS data
classification

R;: If Moving Average of f; is LOW and Moving Average of FR is LOW then QR is SMALL

Ry  If Moving Average of f;; is LOW and Moving Average of FR is MED then QR is SMALL

R;:  If Moving Average of f; is MED and Moving Average of FR is LOW then QR is SMALL

Ry If Moving Average of fy; is MED and Moving Average of FR is MED then QR is MED

Rs:  If Moving Average of f;; is LOW and Moving Average of FR is HIGH then QR is LARGE

Re:  If Moving Average of f;; is HIGH and Moving Average of FR is LOW then QR is LARGE

Ry If Moving Average of fy; is MED and Moving Average of FR is HIGH then QR is LARGE

Rg:  If Moving Average of fy is HIGH and Moving Average of FR is MED then QR is LARGE

Ry:  If Moving Average of f;; is HIGH and Moving Average of FR is HIGH then QR is LARGE
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4.3 Dynamics Knowledge Aided Inertial Navigation Algorithm

As stated previously, the major challenge to use low-cost MEMS inertial sensors for
bridging GPS outages is the rapid error accumulation with the course of time.
Traditionally, the Kalman filter is used to predict INS navigation errors based on the
previously estimated sensor errors and the error dynamics models. When processing low
quality data with high input noise and large random error, however, the conventional
Kalman filter has found insufficient to provide accurate and acceptable prediction
performance (Brown and Lu, 2004; Jaffe et al., 2004). Some neuro-fuzzy models and
fuzzy inference systems have been proposed to predict INS drift errors and have shown
their effectiveness on navigation error reduction (Chiang, 2004; El-Sheimy et al., 2004;
Wang, 2004a). Their prediction performance, however, is proportional to the quality of
instrument measurements and is difficult to be satisfactory when low-cost MEMS inertial

sensors are used (Chiang, 2004).

Instead of predicting INS error, knowledge of vehicle dynamics could provide extra
virtual measurements to correct INS navigation and sensor errors. ZUPTs have been used
to provide effective INS error control when the stationary of a vehicle is available
(Salychev, 1998; El-Sheimy, 2003). For automotive-grade and consumer-grade IMUs,
the stationary outputs of gyroscopes themselves can be used for direct estimation of gyro
biases (Sukkarieh, 2000). In addition, the nonholonomic constraints that govern the
motion of a vehicle on a surface can provide velocity measurements in the transverse and
vertical directions (Brandt and Gardner, 1998; Dissanayake et al., 2001; Shin, 2001). The
complementary motion detection characteristics of accelerometers and gyroscopes can be
applied to provide bounded tilt estimation (Collin et al., 2001; Ojeda and Borenstein,
2002; Wang and Gao, 2004c). That is, the accelerometer-derived tilt angle can be used as
attitude measurements while vehicle is static or moving linearly at a constant speed.
Moreover, Wang et al. (2005) have proposed to use certain vehicle dynamics such as
stationary, straight-line motion, and cornering motion with its specific dynamics model to
provide extra dynamics-based or dynamics-derived observations for INS error control.

The following sections will describe the design and development of the overall dynamics
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knowledge aided inertial navigation algorithm which includes a land vehicle motion
model, vehicle dynamics-derived observations, and a fuzzy expert system for vehicle

dynamics identification.

4.3.1 Land Vehicle Motion Model

Using the same idea proposed by Brandt and Gardner (1998), the first strategy of
applying vehicle dynamics knowledge into inertial navigation algorithm is to incorporate
the nonholonomic constraints with the INS navigation equations to derive the simplified
state equations called land vehicle motion model. The derivation of the land vehicle

motion model from the traditional INS navigation equations is described as below:

First, following the INS navigation equations for general three-dimensional motion

described in Eq. (2-8), we further modify them by:
1. Assuming the Earth rotation is negligible and the gravity vector g is constant since

the magnitude of their effects is at the senor noise level for automotive-grade

MEMS IMUs (Dissanayake et al., 2001).

2. Using the north-east-down (NED) coordinate system to express the navigation frame.

3. Using Euler angles to express the coordinate transformation and attitude propagation.

The INS navigation equations can now be written as:

PN Vy
VN = RgAB_GN (4'5)
AN Cgm%

where the subscript N indicates the navigation frame represented by three orthogonal
axes in local north (»), east (e ) and down (d ) directions; The subscript B indicates the

body frame represented by three orthogonal axes in the forward (x), transverse ( y ) and

91



down ( z) directions of the vehicle; Py =[Py, , Py,. Pys ]| is the position of the vehicle in
the navigation frame; Vy =[Vx,. Vo, Vaul' is the velocity of the vehicle in the navigation

frame; Ay =[g, 6, y]" is the attitude of the vehicle expressed by three Euler angles, roll

(#), pitch (8), and yaw (w ), which are the rotation angles about the x, y and z axes,
respectively; Ap = [ABX, Ag,,, ABZ]T is the measured acceleration in the body frame;
b= [wa» wp,, a)BZ][ is the measured angular velocity in the body frame; G, =[0,0,-g|" is

the gravity vector in which g is the gravitational constant; R} is the transformation
matrix from the body frame to the navigation frame expressed by Euler angles as shown
in Eq. (2-9); and C} is the transformation matrix describing the relationship between

Euler rates and gyro measurements and is expressed as follows:

1 singtan@ cosptanO

cy=lo cos ¢ —sing (4-6)
0 sing cos ¢
cos 6 cos 6

The derivation of this transformation matrix can be found in Titterton and Weston (1997).

For land vehicle navigation, the nature of the vehicle’s dynamics, if known, can provide
extra information as constraints to reduce the navigation errors. In normal driving
condition, the vehicle doesn’t slide on and jump off the ground, i.e., there is no motion
along the transverse direction and the direction normal to the road surface. The

constraints on the motion of the land vehicles can be defined as follows:

Vg, =0 (4-7)
VBZ =0 (4-8)
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In reality, because of the presence of sideslip due to turning or vibrations, these
constraints are kind of transgressed. For the low-cost MEMS IMUs which cannot

measure such movements, the constraint violation is negligible.

Based on these motion constraints, we can assume that the vehicle velocity vector in the
navigation frame is coincided with the forward direction of the vehicle in the body frame,

called velocity frame, ie., V= Vfﬁx where V', is the speed of the vehicle and
(B,.B y,ﬁz) represents the body frame unit vectors. Then, by taking the first derivative

of the velocity vector, we can calculate the motion acceleration of the vehicle in the

velocity frame as follows:

Ap=V,B, +V/B,
= Vfﬁx +VfQB Xﬁx (4-9)
= Vfo + Vfa)BZﬁ - Vfa)ByB

Rewriting the second equation in Eq. (4-5) by taking a transformation from the

navigation frame to the body frame, we obtain:

The above equation implies that the vehicle motion accelerations are given by subtracting
the gravity accelerations from the accelerometer outputs in the body frame. Replacing the

vehicle motion acceleration term at the left-hand side of Eq. (4-10) by Eq. (4-9), we

obtain:
Vf ABx Hc Ve ‘9(: Vs - Hs
Vfsz = ABy T ¢cl//s + ¢SQ§W¢' ¢cl//c + ¢sHsl//s ¢ch 0 (4-1 1)

- Vfa)By ABz ¢sl//s + ¢c‘9sl//c - ¢sl//c + ¢CHSV/S ¢cec -8
where the subscripts s and ¢ refer to sine and cosine.

93



Rearranging the above equations, the relationship between vehicle motion accelerations,

vehicle velocity and IMU measurements can be obtained as follows:

Vf =Ap, —gsinb (4-12)
Viwp, = Ag, + gsingcos6 (4-13)
Viwp, =—Ap, —gcospcosl (4-14)

The above equations indicate that:
1. One x-axis accelerometer is enough to determine the forward velocity of the vehicle.

2. When a triad of accelerometers is used, the forward velocity of the vehicle can be

directly computed if one of the angular velocities, wp, or @g, , is significant.

3. When the vehicle is stationary, the roll and pitch can be directly computed from the

accelerometer measurements.

For the attitude dynamics, by rewriting and expanding the last equation in Eq. (4-5), we

obtain the following equations describing the relationship between Euler rates and gyro

measurements.
é=w;, +singtanOwg, + cos ptanOwpg, (4-15)
0 = cos P, — sin pop, (4-16)
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y=Sind, o8, (4-17)

B
cos@ 7 cos@

Using the above three equations together with the initial attitude information, the current
vehicle attitude represented by three Euler angles can be computed by direct integration.
Although this approach may become indeterminate for roll and yaw when pitch equals to

+90 degree, it will not occur in the case for land vehicle applications.

Finally, the vehicle’s trajectory in the navigation frame can be computed by the forward

velocity and attitude of the vehicle in the following manner.

Py, =VycosOcosy (4-18)
Py, = VycosOsiny (4-19)
PNd = Vf sin 0 (4'20)

The land vehicle motion models comprise Eq. (4-12) through Eq. (4-20) which relate the
IMU measurements to position, velocity and attitude information for a land vehicle.
Allowing for the direct online estimation of the roll, pitch and the forward velocity of the
vehicle from the accelerometer and gyroscope measurements, this model can be used to
significantly reduce the error growth rate in position estimates especially for low-cost

IMUs (Dissanayake et al., 2001; Wang et al., 2005).

4.3.2 Vehicle Dynamics-Derived Observations

Based on the land vehicle motion model and the specific physical characteristics of
inertial sensors, under some specific vehicle dynamics it is possible to directly estimate

some navigation states such as tilt angles and velocity of a land vehicle without using
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external sensors. These dynamics-derived estimates can be used as the wvirtual
measurement updates to the INS Kalman filter for navigation error control. The specific
vehicle dynamics and the corresponding dynamics-based or dynamics-derived estimates
are summarized into three categories: stationary, straight-line motion, and cornering

motion.

4.3.2.1 Stationary Mode

When a vehicle is static, accelerometer measurements can be used to directly derive
vehicle pitch and roll angles. Measuring only the local gravity field under this condition,
the accelerometer outputs can be used to determine vehicle pitch and roll angles as

follows (EI-Sheimy, 2003):

e:sm—l(@j (@-21)

g

¢=—sm—1[Aﬁ} (4-22)
g

According to Eq. (4-21) and Eq. (4-22), no integration step in time is required and the
accuracy of tilt estimation is mainly governed by accelerometer measurement error such
as bias and noise. Using perturbation technique, we can derive the following equations to

describe the relationship between accelerometer measurement error and tilt error.

00 = secO Apy (4-23)
g
B
8¢ = —sec—" (4-24)
g
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where 60 and &¢ are pitch and roll errors; and &4, and 4, are the x-axis and y-axis

accelerometer measurement errors, respectively.

In this dissertation, accelerometer biases are estimated by the INS Kalman filter and a
statistical approach that will be described in Chapter 5. The performance of the bias
estimation will be presented in Chapter 6. Theoretically, for land vehicle applications
where the tilt angle is small, a 1 mg unidentified accelerometer bias will lead to tilt error
of about 0.057 degree. For accelerometer noise effects, they can be reduced by averaging
the tilt estimates over the stationary periods. Compared to the gyro-derived tilt with large
drift errors, the accelerometer-derived tilt is accurate enough to provide direct correction
and control of the tilt error. Another observation available during the stationary periods is
the constant heading constraint. Since the vehicle is not moving, the heading of the

vehicle can be considered unchanged and can be modeled by the following equation.

l//(ts): l//(ts _1) (4'25)

where ¢, denotes the sampling time during the stationary periods.

The forth direct measurement during the stationary periods is the well-known ZUPT.
ZUPT provides a very accurate velocity observation, as the vehicle is static. The last
benefit from the stationary mode is the availability of gyro bias estimation. For
automotive-grade and consumer-grade IMUs, the stationary outputs of gyroscopes
themselves can be considered as measurement biases (Sukkarieh, 2000). This is because
the Earth rotation is at the senor noise level for automotive-grade MEMS IMUs and thus
the true angular rate of the body frame during the stationary periods can be assumed as
zero. By averaging all gyro measurements during the stationary periods, we can remove

the noise effects and use this average value as the gyro bias estimate.

4.3.2.2 Straight-Line Motion Mode

When a vehicle is moving straight, no significant motion acceleration along the

transverse direction exists. Thus, mostly the y-axis accelerometer measurement,
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containing the local gravity field, can be used to determine the approximate roll angle
based on Eq. (4-22). Although the approximation errors induced by sideslip or vibration
may exist, they can be mostly reduced by moving average. Therefore, when the vehicle is
moving straight, the accelerometer-derived roll still can be used as a direct roll update to
reduce the drift error of the gyro-derived tilt. Similarly, to improve the accuracy of the
accelerometer-derived roll, the y-axis accelerometer bias is estimated using the same

method applied in the stationary mode and the noise effect is reduced by moving average.

4.3.2.3 Cornering Motion Mode

In addition to ZUPTs, the cornering motion with strong dynamics in transverse
acceleration and yawing provides another occurrence for direct estimation of the vehicle
velocity. Rearranging Eq. (4-13), the forward velocity of the vehicle can be directly

estimated as follows:

1 .
Ve= E(Agy + g singcos 49) (4-26)

According to the above equation, the forward velocity is inversely proportional to the z-
axis gyro measurement. Thus, the estimation of the forward velocity is not applicable if
the signal-to-noise ratio of the z-axis gyro measurement is low. Only when the z-axis
angular dynamics is significant, e.g. during the cornering motion, the estimation of the
forward velocity becomes feasible. Using perturbation technique, we can derive the

following equation to describe the error budget of the forward velocity estimate.

oy = QL(&ABy + g cos ¢ cos B5¢ — g sin @ sin 059)
Bz (4-27)

1
——Z(ABy + g singcos 0)5a)Bz
Wp;

where oV, and dwg, are the errors of the forward velocity and the z-axis gyro

measurement, respectively.
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According to the above equation, the accuracy of the forward velocity estimate depends
on the accuracy of the y-axis accelerometer measurement, the z-axis gyro measurement
and the tilt estimate. The effect of the pitch error on the forward velocity estimate is
negligible since tilt angles are generally small during the cornering motion of a land
vehicle and thus the term singsin@ in Eq. (4-27) becomes very small. In addition,
because the accelerometer-derived roll is always used to update the roll estimate when
the vehicle is stationary or moving straight, the accuracy of the roll estimate during

cornering is mainly governed by the accelerometer bias. Therefore, we can replace ¢ in

Eq. (4-27) with Eq. (4-24) and rewrite Eq. (4-27) as follows:

1 6ABy .
OVy =——| 04, — gcospcosbsecy — g sin g sin 0660
Wp, g

_ﬁ(ABy + gsin¢cos€)5a)BZ (4-28)
Bz

= L(1 - c059)5ABy - %(Agy +gsingcos ‘9)50)&

Wp; Wp,

Based on Eq. (4-28), the accuracy of the forward velocity estimate is mainly determined
by IMU measurement errors such as bias and noise of the y-axis accelerometer and the z-

axis gyro. In general, wp, is large and the tilt angles are small during cornering motion of

a land vehicle, thus the impact of o4y, and dwp, on the velocity estimation error is
diminished. For example, in a typical cornering motion where 4, is 1.5 m/s’, w,, is 15
deg/sec, ¢ is 2 degree, and @ is 2 degree, 1 m/s” o4, will lead to 0.0023 m/s error in the

velocity estimate and 1 deg/sec dwgz, will lead to —0.294 m/s error in the velocity

estimate. To further improve the estimation accuracy, the y-axis accelerometer bias and
the z-axis gyro bias are estimated using the same approach applied in the stationary mode.
For the measurement noise effects, it is mainly caused by sensor noise, vibration and road
ruggedness during the cornering motion. Similar to the stationary mode, moving average

of the velocity estimates over a time window is used for noise reduction.
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4.3.2.4 Summary

The vehicle dynamics-derived observations under different dynamics are summarized in
Table 4.4. We find that the stationary dynamics provides the most dynamics-derived
observations for INS error estimation and correction including attitude error, velocity
error and gyro bias. During the straight-line motion direct estimation of the roll angle is
possible and roll error can be well bounded and controlled by accelerometer
measurements. When the vehicle makes a turn, a direct estimation of the forward velocity
is available and the velocity error drift can be reduced. The accuracy of the dynamics-
derived observations is mainly governed by the unidentified accelerometer and gyro
biases. In general, the drift-free dynamics-derived observations are more accurate than
the stand-alone INS navigation states and can provide effective INS error correction and

reduction without the aiding from external sensors.

Table 4.4: Vehicle dynamics aided observations

Vehicle Direct Estimation of INS Navigation States and Sensor Errors
Dynamics Pitch Roll Yaw Forward Velocity Gyro Bias
wa = Wpy
. -1 AB -1 ABy .
Stationary 6 = sin (?‘j ¢ =—sin [gj l//(tj) = W(tx -1) V ;= 0 way =g,
b wp. = @p:
Y 4,
Straight-line /) 4 __e [] N/A N/A N/A
Motion g
. Ag, + gsingcos 0
Cornering N/A N/A NA =t N/A
Motion Wp;

4.3.3 Design of Fuzzy Expert Vehicle Dynamics Identification System

In order to implement the aforementioned dynamics-dependent estimation for INS error
control, the vehicle dynamics such as stationary, straight-line motion, and cornering
motion must be correctly identified. Inertial measurements such as acceleration and
angular velocity strongly relative to vehicle dynamics can be used for vehicle dynamics
identification. In real-life applications, however, these raw measurements are corrupted
with noise and vibration effects especially for low-cost MEMS IMUs. Therefore, the

identification system must be capable of dealing with imprecision of inertial
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measurements. As mentioned in Chapter 3, the fuzzy set theory provides a natural
method for dealing with linguistic term that is a very effective knowledge representation
format for imprecise and ambiguous information (Kandel, 1992). Thus, a fuzzy inference
system that incorporates fuzzy sets and fuzzy logic into its reasoning process and
knowledge representation scheme is applied to convert the INS raw measurements into a

more appropriate measure for vehicle dynamics identification.

To consider both linear and angular dynamics, we define the input variables of the fuzzy

inference system, J(z, ) and W(z, ), as follows:

J(tk) = _Zk: |Anorm (ti ) - Anorm (ti - 1) (4'29)
W)= S fonmlt) (4.30)

ti =l/( —n

where 4,,,, Z\/Asz +ABy2 +4y° is the norm of the three-axis accelerations;

2 2 . . . e
Oporm =4/ @p;_ +®p,” 1s the norm of the x-axis and y-axis angular velocities; #; denotes

the current discrete time; and » is the size of time window for statistical smoothing.

The first input variable J(z, ) indicates the overall linear jerk dynamics over a fixed time
interval (7, —n to ;). The second input variable W(z, ) indicates the pitching and rolling
dynamics over a fixed time interval (¢, —n to ¢, ). The output of the fuzzy inference
system, namely the dynamics indicator DI(z,), is the combination of these two input

dynamics measures through a fuzzy inference. As mentioned in Chapter 3, a fuzzy
inference system is accomplished by fuzzy set membership functions, a set of if-then
rules and a defuzzification process. The membership functions mapping input data into
the fuzzy set degrees are used to handle the ambiguity of input data. In the considered

problem, two membership functions, ‘Low’ and ‘High’, representing the low and high
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linear/angular dynamics are used for each input variable. For the purpose of
computational simplicity, the triangle membership functions are used. The parameters of
input membership functions are empirically determined based on the field test data.

Specifically, we use the values of J(z,) and W(s,) under the stationary and non-

stationary dynamics to define the scope of the input membership functions. For the output
membership functions, three triangles with full overlaps between each set and even
segmentation from zero to one are used. The linguistic term ‘Large’ in the output
membership functions means the higher likelihood for the vehicle being moving and so
on. A set of if-then rules mapping the input fuzzy sets into the output fuzzy set is
established by common sense reasoning and expert knowledge to the problems, e.g., the

larger J(z, ) and W(z, ), the higher likelihood for the vehicle being moving. The designed

membership functions and fuzzy rules are shown in Figure 4.17 and Table 4.5,

respectively.

To complete the inference procedure and to generate the output fuzzy set, the Mamdani
type fuzzy inference method with max-min composition, which is considered as the most
commonly seen fuzzy methodology, is used (Mamdani and Assilian, 1975). The output
fuzzy set is defuzzified into a crisp value using the centre of the area method. According
to the designed output membership functions, the final crisp output, i.e., the dynamics

indicator DI(t; ), is in a range between 1/6 and 5/6 and it is straightforward to distinguish

between stationary and non-stationary dynamics using a cut-off value of 0.5.

Table 4.5: If-then rules used in the fuzzy inference system for vehicle dynamics
identification

is LOW and W(z, ) is LOW then DI(t, ) is SMALL
is HIGH and (z, ) is LOW then DI(z; ) is MEDIUM
is LOW and W (z, ) is HIGH then DI(t, ) is MEDIUM
is HIGH and W(z, ) is HIGH then DI(z, ) is LARGE

Rl: If.]tk

R3: If.]tk

(
Ry If J(z,

(

(

~~— | ~— | ~— | ~—

R4: If‘]tk
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When the dynamics indicator DI(f,) is used for stationary and non-stationary

identification, there however exists the detection delay because the fuzzy input variables,

J(z,) and W(z, ), are formed by a set of data from the previous epoch to current epoch. To
overcome this problem, we define another linear dynamics parameter, DA (t;), to

measure the instant forward dynamics as follows:

DA = Sl Ag(e) - At — ) (4-31)

L=ty —p

where p is the time lag for the computation of acceleration difference.

When the vehicle begins to move from a stationary status, a dramatic dynamics change

occurs in the forward direction. In this case, D4 (¢, ) becomes significant and can be used

to instantly indicate the dynamics transition from stationary to move. Based on the

conditions of DI(t,) and DA.(z,), a set of if-then rules shown in Table 4.6 are

constructed to distinguish the status of vehicle dynamics, stationary or non-stationary.

When the vehicle dynamics is identified as non-stationary, the next task is to distinguish
the vehicle dynamics between straight-line motion and cornering motion. Since pitch and
roll angles are generally small during the cornering motion of a land vehicle, the z-axis

gyro measurement, @p, , can be directly used to represent the yawing dynamics. By
simply averaging wp, over a fixed time interval to reduce noise effects, a cornering

dynamics measure is computed as follows:

Moo, (t)=— Y g () (4-32)

ti =l/(-m

where m 1is the size of time window for moving average.

Based on the conditions of Mw.(t,), a set of if-then rules shown in Table 4.7 are

constructed to classify the non-stationary dynamics as straight-line motion or cornering

104



motion. In Table 4.6 and Table 4.7, the if-then rules used for identifying stationary,
straight-line motion and cornering motion are easily formulated by common sense
reasoning and expert knowledge to the problems. The criterion value used in each rule is
heuristically determined based on the real data and is vehicle dependent and sensitive to
the installation locations of the sensors. The decision flow of the designed vehicle

dynamics identification system is shown in Figure 4.18.

Table 4.6: Expert rules for stationary/non-stationary identification

R When the vehicle was in stationary at the last epoch:
" If DA,(t; ) is larger than a criterion value then the vehicle is in non-stationary

When the vehicle was in non-stationary at the last epoch:

Ry: If DA, (t, ) is smaller than a criterion value and DI(z, ) is smaller than 0.5 then
the vehicle is in stationary

Table 4.7: Expert rules for straight-line/cornering motion identification

R When the vehicle was in straight-line motion at the last epoch:
" If Mw,(t;) is larger than a criterion value then the vehicle is in cornering motion.

When the vehicle was in cornering motion at the last epoch:

Ry: If Mw, (tk) is smaller than a criterion value then the vehicle is in straight-line
motion.

Sl W) |

Fuzzy Inference System

DAxak)J Di(e,) |
'

Stationary/Non-stationary Mao_(t,)
Decision Rules

Straight-line/Cornering
Decision Rules

' '

STATONARY STRAIGHT-LINE MOTION CORNERING MOTION

NON-STATONARY

Figure 4.18: Decision flow of the vehicle dynamics identification system

105



4.4 Neural Networks Compass Calibration

As stated in Chapter 2, a magnetic compass can provide heading direction by measuring
the Earth’s magnetic field. In practical applications there usually exist unwanted local
magnetic fields that will distort magnetometer measurements, hence a calibration
procedure is essential. Two types of methods, one requiring true (reference) headings
while another not, have been successfully used for compass calibration. When true
headings are unavailable, a simple calibration method is to level and rotate the compass
on a horizontal surface and to find the maximum and minimum values of the x-axis and
y-axis magnetic readings. Then these four values can be used to compute the
magnetometer scale factors and biases based on the fact that the locus of error-free
measurements on x and y axes is a circle (Caruso 1997). Another similar method
developed by Gebre-Egziabher et al (2001) is to use a non-linear two-step estimator to
resolve an ellipse locus equation and then to estimate the scale factors and biases. In
addition, Crassidis et al (2005) developed a real-time approach for compass calibration
using the extended Kalman filter and Unscented filter. This approach relies on a
conversion of the magnetometer-body and geomagnetic-reference vectors into an attitude
independent observation by using scalar checking (Crassidis et al 2005). On the other
hand, if true headings are known during the calibration process, a traditional “swinging”
procedure involving levelling and rotating the compass through a series of known
headings can be used (Bowditch 1995). At each known heading, the heading error is
computed and these known headings and heading errors will be used to estimate the
unknown parameters in the heading error equation using a batch least squares estimation.
Once the parameters are solved correctly, the heading error can be predicted based on the
heading error equation as a nonlinear input-output mapping. However, the common
drawback of the forementioned calibration methods is that the algorithm will diverge or
fail when the magnetic measurements are deteriorated by large amounts of noise and/or

blunders which are frequently present in land vehicle environments.

To overcome the above problem, we have proposed a new compass calibration algorithm

by applying a neural networks nonlinear mapping between the compass heading and the

106



true heading based on the fact that the uncalibrated compass heading corrupted by the
magnetometer biases, scale factors and declination angles has a nonlinear relationship
with the true heading (Wang and Gao, 2005c). When external true headings are available,
the neural networks are trained to model this nonlinear relationship. After that, the trained
neural networks can be used to convert the compass heading into the correct heading. By
properly selecting the architecture of the networks and the size of the training data set, the
neural networks can neglect the spurious disturbances and will produce a correct input-
output mapping (Haykin 1999), making the proposed calibration algorithm more robust
in practical applications. In the following sections, the nonlinear relationship between the
compass heading and the true heading will be analyzed first. The design of the neural
networks for compass heading calibration will then be presented and verified by

simulation tests.

4.4.1 Magnetic Compass Error Model

In land vehicle applications the magnetic compass is usually mounted inside a vehicle. In
this case, the Earth’s magnetic fields are inevitably coupled with unwanted local
magnetic fields caused by nearby ferrous effects such as steel materials and external
interference such as electrical currents. As a result, the magnetic compass will output
incorrect headings by measuring the distorted and/or bended Earth’s magnetic fields. If
the compass is securely mounted inside the vehicle, the nearby ferrous effects on
magnetometer measurements will remain stable and can be modeled as measurement
biases and scale factor errors. In contrast, the magnetic noise and disturbance are
unpredictable and changing randomly, thus they cannot be modeled systematically and
instead they are usually dealt with by filtering techniques. In addition to these
environmental magnetic effects, there exists misalignment which represents the imperfect
alignment between the magnetometer triad and the body frame and will lead to cross
coupling of the magnetic measurements. Comparing to nearby ferrous effects, in general,
the heading error due to misalignment is much smaller and can be neglected. As a result,

only biases and scale factor errors are dealt with by compass calibration in most
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applications. The magnetometer measurements in a horizontal plane can be modeled as

follows (Caruso, 1997):

M, =S. M. +b (4-33)

YH Xpg~ " Xy XH

~

=S, M, +b (4-34)

YH Y= VH Yo

where MXH and M », are the Earth’s magnetic fields projected on the x; and yj, axes

of the horizontal plane, respectively; M, and M, are the measured magnetic fields

X

projected on the x;; and yj axes of the horizontal plane, respectively; and S, , S, ,

b

. and b, are the measurement scale factors and biases on the x; and y; axes of the
H YH

horizontal plane, respectively.

As stated in Chapter 2, the magnetic fields are converted into magnetic headings based on
the nonlinear heading computation equations given in Eq. (2-28). Based on this nonlinear
mapping and the above magnetometer error model, the magnetometer measurement
biases and scale factor errors will result in incorrect compass headings that have a
nonlinear relationship with true headings. The curves shown in Figure 4.19 are some
examples of such nonlinear relationship. The added bias on each axis is from —0.4 to 0.4
times of the magnitude of the reference magnetic field. The added scale factor on each
axis is from 1 to 1.5. The declination angle, which can be considered as a heading bias, is

chosen as from —20 to 20 degrees.
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Figure 4.19: Nonlinear relationship between compass headings and true headings

4.4.2 Design of Neural Networks Compass Calibration System

As shown in Figure 4.19, we have demonstrated that there exists a nonlinear relationship
between the compass heading and the true heading which describes the effects of biases,
scale factors and declination angles in the heading domain. If we can properly model this
nonlinear relationship or nonlinear functional mapping, we can convert the compass
heading to the true heading based on it. In real applications, however, the sensor and
environment noise, the blunder due to magnetic disturbances and the projection error of
magnetic field vector due to tilt errors will corrupt and distort this nonlinear relationship.
Therefore, the nonlinear functional mapping method should be capable of handling the
corrupted data and modelling this nonlinear relationship effectively even in the presence
of a large amount of noises, blunders and unknown errors. As described in Chapter 3, the
neural networks can provide a model-free input-output nonlinear mapping that doesn’t
require prior statistical model for the input data. With the use of proper time constants of
the mapping system, the neural networks can ignore spurious disturbances and respond to
meaningful changes in the environment (Haykin 1999). In this dissertation the multilayer

feedforward neural networks with a back-propagation learning algorithm which are
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considered as the most commonly used networks for the nonlinear mapping are applied
for modelling the nonlinear relationship between the compass heading and the true

heading.

The architecture of the applied neural networks is shown in Figure 4.20. The input and
output of the neural networks are compass heading and true heading. The compass
heading is derived from magnetometer measurements based on the computation
procedure described in Chapter 2. The true heading and tilt angles used for projecting
magnetometer measurements on the horizontal plane are provided by the INS/GPS
integration system which will be described in Chapter 5. When true headings are
available, the neural networks are trained to model the input-output pattern. The training
of the networks is repeated for many examples in the set until the networks reach a steady
state so that a proper input-output mapping can be constructed. After the training process
is completed, the trained neural networks are used to correct the compass heading. If the
magnetometer errors or the operational environments change from the training data, the
neural networks should be retrained to adapt to the up-to-date input-output relationship. It
should be noted that the number of the neurons and the layers used will affect the
performance of the input-output mapping. In general, the network architecture depends
on the physical complexity of the problem at hand. In our application, by using a
heuristic approach three-layer neural networks with twelve neurons in hidden layer are
chosen for the nonlinear mapping between the compass heading and the true heading.

More details about the neural networks algorithm are provided in Chapter 3.

compass true
heading : : : heading
Input Layer Hidden Layer Output Layer

Figure 4.20: Architecture of the neural networks compass calibration system
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4.4.3 Simulation Verification

In this section the performance of using neural networks for the nonlinear mapping
between compass headings and true headings is examined by simulation data. Two-
dimensional magnetic fields covering 360-degree directions on a horizontal plane are
generated as reference data. Some biases, scale factors, noises, and disturbances are
added into the reference data to produce distorted magnetometer measurements. The
compass heading is then computed using the distorted magnetometer measurements and
biased by a selected declination angle. Figure 4.21 shows an example of the true and
distorted magnetic field measurement loci in 2-D. In this simulation data set, the added
biases on x and y axes are randomly selected as 0.009 and 0.5 times of the magnitude of
the reference magnetic field while the scale factors on x and y axes as 1.196 and 1.978,
respectively. The Gaussian white sequences with a standard deviation of 3.5% of the
magnitude of the reference magnetic field are also added as noise effects. The magnetic
disturbances are simulated to bias the magnetic fields with a randomly selected
magnitude of less than 60% of the reference magnetic field’s magnitude. Twelve
randomly selected data sets, evenly spreading over the entire reference data and
accounting for 12.5% of the total reference data, are deteriorated by the simulated
disturbances. Figure 4.22 shows the performance of using the neural networks for the
nonlinear mapping between the true heading and the distorted compass heading that has
been biased by a randomly selected declination angle of —9.59 degrees. The blue crosses
represent the training data set and the green circles are the neural networks outputs from
the processing of the disturbance-free testing data that have the same biases, scalar
factors and declination angles as the training data. It can be seen that the neural networks
have modeled the nonlinear relationship between the compass heading and the true

heading properly although the training data are deteriorated by noise and disturbance.
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Figure 4.22: Performance of the neural networks nonlinear mapping

To assess the performance of the neural networks nonlinear mapping statistically, more
simulation tests have been performed. The simulation results are summarized in Table 4.8.
In each simulation test, the biases, scalar factors and declination angles are randomly
selected. Noises and disturbances are then added in the same manner as described before

to form the training data. After the training process, the neural networks first process the
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disturbance-free testing data that have the same biases, scalar factors and declination
angles as the training data and then output the calibrated headings. The calibration error
is computed by taking the difference between the neural networks output and the true
heading. As shown in Table 4.8, the average mean and RMS of the calibrated heading
errors over these 10 simulation tests are —0.176 and 2.35 degrees, respectively. This
shows the capability of the neural networks technique for the nonlinear input-output

mapping in the presence of magnetic disturbances.

Table 4.8: Calibrated compass heading accuracy (12.5% data deteriorated by

disturbances)
Sensor Error Calibrated Heading Error
T B iy SEa SPy TN ey deaens
1 0.223 0.162 1.393 1.592 7.998 -0.621 2.059
2 0.13 -0.153 1.699 1.397 -7.777 -0.264 1.456
3 -0.478 -0.305 1.791 1.815 19.333 0.245 2.196
4 0.203 -0.005 1.565 1.767 5.964 0.672 2.827
5 -0.139 0.596 1982 1.9 -4.725 -0.909 2.149
6 -0.331 -0.136 1.162 1.031 15.189 -0.94 3.503
7 0.009 05 1.196 1978 -9.594 -0.252 2.777
8 0.297 0.175 1.743 1.651 5.419 -0.45 1.458
9 0.155 -0.248 1.168 1.814 9.688 0.904 2.466
10  -0.019 0.492 1.735 1.005 -20.873 -0.148 2.615

To further study the effects of magnetic disturbances on calibration performance, we
have performed additional simulation tests with data deteriorated by different levels of
disturbances. Table 4.9 and Table 4.10 summarized the simulation results with 6.25% and
25% of training data deteriorated by disturbances, respectively. The average mean and
RMS of the calibrated heading errors are -0.236 and 1.907 degrees for the case with the
less disturbances and -0.855 and 4.373 degrees for the case with the more disturbances. It
can be seen that the calibration performance will degrade with the increment of the data
deteriorated by disturbances. The results also demonstrate that the proposed calibration
algorithm is still able to work under disturbance-rich environments, e.g. 25% data

deteriorated by disturbances. This confirms the robustness of applying the neural
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networks for compass calibration over other calibration algorithms that have failed to

estimate biases and scalar factors under high disturbance environments.

Table 4.9: Calibrated compass heading accuracy (6.25% data deteriorated by

disturbances)
Sensor Error Calibrated Heading Error
Test No. inati
Biasx Biasy SPx SEy NI (iorers)  (degrees)
1 -0.476 0.352 1.874 1.237 -20.44 1.059 2.673
2 0.193 -0.223 1.217 1231  -5.706 0.713 1.156
3 -0.574 -0.189 1.727 1.489 -20.244 0.176 2.962
4 -0.038 -0.445 1.584 1.603  -6.591 0.211 1.9
5 0.109 -0.491 1.401 1.191 2.438 -0.501 1.162
6 0.276 -0.522 1.221 1.19 3.755 0.371 1.289
7 0.189 0.098 1.119 1.519 0.676 -0.027 2.986
8 -0.571 -0.022 1.543 1.379 3.928 -0.48 2.487
9 0.191 022 1364 1.616 4.956 0.324 1.18
10 0.198 0.08 1.099 1.681 22912 0.512 1.279

Table 4.10: Calibrated compass heading accuracy (25% data deteriorated by

disturbances)

Sensor Error Calibrated Heading Error

N Biax Biasy P spy Declimtion Mean o RMS
1 0.213 -0.281 1411 1.4 -19.832 0.336 4.137
2 0.035 0421 1.136 1.532 3.132 -2.476 4.437
3 -0.244 -0.099 1.509 1.074 2.09 2.327 4.574
4 -0.016 -0.091 1.287 1.893 -6.269 0.001 4.105
5 -0.463 -0.555 1.77 1368 -19.414 -2.51 6.216
6 -0.163 -0.517 1.461 1.513 -11.922 -2.538 3.553
7 -0.19 0.598 1982 1.412 3.95 -0.569 2.94
8 -0.544 -0.257 1.647 1.447 23494 -0.911 4.62
9 -0.078 -0.268 1.24 1.49 -11.57 -1.471 5.241
10 -0.153 -0.037 1.989 1.303 -13.005 -0.737 3.909
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Chapter 5
Development of An Intelligent Integration

Algorithm

In Chapter 4 the limitations of the low-cost MEMS INS/GPS integration using a
traditional Kalman filter have been addressed. The methods to enhance the integration
performance using Al techniques, including a fuzzy logic rule-based GPS data
classification system, a dynamics knowledge aided inertial navigation algorithm, and a
neural networks compass calibration algorithm, have also been developed. This chapter
describes how these Al-based methods can be integrated with the Kalman filter to
develop an intelligent integration algorithm for land vehicle applications. A cascaded
loosely coupled integration scheme in which the intelligent integration methodology is
implemented is described first. The design of the Kalman filters enhanced by the Al-
based methods is then presented. Finally, the construction and operation procedure of the

intelligent integration algorithm are illustrated.

5.1 Cascaded Integration Scheme

As stated in Chapter 3, a loosely coupled closed-loop integration scheme is considered as
a more suitable approach for low-cost INS/GPS integration in land vehicle applications
and has been applied in this dissertation. In general, one INS Kalman filter is used to
model and estimate all navigation states including velocity, attitude and position to
provide optimal estimation performance. For land vehicle applications in GPS
challenging environments, the Doppler-derived velocity is more reliable than the code-
derived position because multipath and signal degradation have much more impact on the

pseudorange measurements than the Doppler measurements. Given this, the Doppler-
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derived velocity is considered more useful for updating the inertial system and the code-
derived position would even deteriorate the velocity and attitude estimation. Since the
accurate modelling of the error-corrupted GPS position in signal-degraded conditions is
difficult, the use of incorrect measurement covariance is likely to cause huge estimation
error in velocity and attitude solutions. To maintain system stability, two cascaded
Kalman filters, namely the velocity and attitude filter and the position filter, have been
employed in this dissertation and implemented separately in a loosely coupled closed-
loop integration scheme as shown in Figure 5.1. The INS velocity and attitude filter is
designed to estimate INS sensor errors as well as velocity and attitude errors. The INS
position filter is designed to integrate the corrected INS velocity and attitude with the

GPS position to output an optimal position estimate.

IMU » Mechanization
- INS Attitude,
: Velocity
1‘ X Corrected
t - ..
: INS Ve .oc1 y and | INS Position Position
ilter Feedback | Attitude Kalman Filter '
Kalman Filter Feedback Kalman Filter
! Corrected Attitude,
GPS GPS Velocity Velocity
GPS Kalman Filter
GPS Position

Figure 5.1: Cascaded INS/GPS integration scheme

5.2 Design of AI-Enhanced Velocity/Attitude and Position Filters

Traditionally, the design of the INS velocity and attitude filter and INS position filter is
based on INS error dynamics models and measurement statistics. For low-cost INS/GPS
integration in land vehicle applications, however, it is difficult to know accurate
dynamics and statistical models and the Kalman filter will suffer degraded estimation
accuracy and even divergence problems. This dissertation has applied the Al-based
methods developed in Chapter 4 to improve the filter performance through simplifying

the system models as well as extending and adapting the measurement updates.
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Described in the following sections is the design of the Al-enhanced velocity and attitude

filter and position filter in terms of the system and measurement models.

5.2.1 Velocity and Attitude Filter
5.2.1.1 Dynamics Model

The INS velocity and attitude filter is designed to estimate INS sensor errors and velocity
and attitude errors based on the system error model and external measurement updates.
The system error model can be derived based on perturbation analysis of the system
dynamics. In this dissertation, the land vehicle dynamics model aided by nonholonomic
constraints is utilized to describe the dynamics of a land vehicle as shown in Eq. (4-12)
through Eq. (4-20). Using perturbation technique, we can derive the following error
dynamics equations for vehicle velocity and attitude estimation from Eq. (4-12), Eq. (4-

15), Eq. (4-16) and Eq. (4-17).

éVf = 0Ap, — g cos 0560 (5-1)

8¢ = Swp, + costan 0w p,O¢ + sin ésec’ 0w p, 60 + singtanOdwp,

(5-2)

— singtanOwy, 8¢ + cos psec” Owy 56 + cos ptanOdwy,
50 = —sin ¢ 5,0 + cos JOw g, — cos pw . 5¢ — sin PO p, (5-3)
Oy = cos ¢ sec 0w , 8¢ + sin ¢ sec 0 tan Ow 5,60 + sin ¢ sec Oow p, (5-4)

— sin ¢ sec Ow 5. 5¢ + cos ¢ sec O tan Ow 5,00 + cos ¢ sec Odw g,

where oV, is forward velocity error;
op, 60, Sy are roll, pitch, and yaw errors;
Ap, is the x-axis accelerometer measurement error; and

dwp, , dwg,, dwy,  are the gyro measurement errors on each axis.
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For the integration of automotive-grade MEMS INS with single point code-based GPS,
only sensor biases and noises are modelled in the Kalman filter because other sensor
errors such as misalignment and scale factor errors are weakly observable under
operational conditions. On the other hand, the modelling of poor observable sensor errors
will not only increase system complexity but also make the filter unstable. In addition,
with the aiding from available vehicle dynamics knowledge, gyro biases can be estimated
and removed from measurements directly if the vehicle is stationary. Thus, we model the

sensor errors as follows:

5ABX - bABx + WABX (5-5)
S0, =Wy, (5-6)
é‘wBy = W{UBy (5‘7)
6wp. =W, (5-8)
where b, is the x-axis accelerometer bias;

Wy, is the x-axis accelerometer noise; and

Wa > Way, » Wa,, are the gyro noises on each axis.

For the low-cost MEMS inertial sensor with large bias variations, the accurate modelling
of the sensor bias is very difficult. We thus focus on the estimation of the constant part of
the bias and model the accelerometer bias as a random walk process. Augmented with the
above sensor error models, the final system error models can be constructed from Eq. (5-

1) through Eq. (5-4) as follows:
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_é'Vf_ [0 0 —gcosf 0 1__5Vf_
Sp | |0 Sy See O Of P
00 =10 fo 0 0 0| o0
.&/) 0 fiy Syo 0 0} oy
by, | [0 O 0 0 0]by,
| L 4px |
X ~ F X o _ (5_9)
1 0 0 0 0wy,
0 1 singtand cosgtantd 0| w,
+/0 0 cos ¢ —sing 0 Wy,
0 0 singsec6 cosgsec6 0w,
10 0 0 0 | wy |
G u

where f, = cosdtanOwg, —singtanbwp, ;
Sgo = sin ¢ sec’ O p, + cos ¢ sec? Owp. ;
fop = sindwg, —cos g, ;
Jyg =cosPsecOwp, —singsecOwp, ;
Jyo =singsecOtanOwp, + cos g secOtanOwp. ; and

w,, 1s the driving noise for the accelerometer bias.

The spectral density matrix of the input white noise u is given by

Q1) =diaglg 4, du,, 9oy, o, 9b) (5-10)
where ¢, is the spectral density of the x-axis accelerometer noise;

Do, > Qay, > Do, are the spectral densities of the gyro noises on each axis;

qs is the spectral density of the x-axis accelerometer bias.

The spectral density of the accelerometer and gyro noises can be estimated based on the
standard deviation of short periods of static measurements or obtained from the
manufacturer provided specifications. The variation of the accelerometer bias can be

calculated by using Allan variance analysis of long periods of static data or obtained from
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the manufacturer specifications (IEEE, std. 952-1997). In real applications under
dynamic manoeuvres, however, sensor noises and bias variations are strongly coupled
with vibration, dithering, dynamics, and environment effects especially for low-cost
MEMS IMUs. To take these effects into account, a larger spectral density of the input
noise should be used and in this dissertation they are determined empirically based on

field test data.

After the system error dynamics and the spectral density of the input noise are determined,
the discrete error model, i.e., the transition matrix and the process noise covariance

matrix, can be calculated using Eq. (3-7) and Eq. (3-9).

5.2.1.2 Measurement Model
5.2.1.2.1 GPS Observations

For land vehicle applications, GPS velocities can be used to derive the forward velocity

and heading information of the vehicle in the following manner.

2 2
vers =\/(Vlgf5) +(V]§e”5)Z +(V1g,PS) (5-11)
GPS _ VZ\?ePS 5 12
w0 = arctan| — 2 (5-12)
Nn
where V7™ is the GPS-derived forward velocity of the vehicle;
Vol is the GPS-derived heading of the vehicle; and

GPS GPS GPS
VNn s VN

L Vg are GPS velocities in the North, East and down directions.

The difference between the INS and GPS forward velocity and heading can be used as
the Kalman filter measurement updates and the measurement model can be formed as

follows:
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_| 0@
9T 1 0 0 0 0 v ars
Vi=Vr |2 50 |+| v (5-13)
(//_(//GPS 0 0 01 O VV/GPS
- 7 \ M = 51// IR
’ _bABx_ '
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where v ¢»s and v, oes Tepresent the measurement noises in the GPS-derived forward
i

velocity and heading, respectively.

The covariance matrix of the measurement noise is given by

R = dlag(a;l/fgps U§WGPS ) (5-14)

where o is the standard deviation of the GPS-derived forward velocity error; and

GPS
vy

T 5,57 is the standard deviation of the GPS-derived heading error.

The standard deviation of the GPS-derived forward velocity error is basically determined

based on GPS performance. For example, a typical value of O gycrs in open-sky

environments is about 0.1~0.2 m/s. For land vehicle applications under different GPS
environments, the accuracy of GPS velocity is changing with signal degradation
conditions and should be adjusted accordingly. Therefore, the fuzzy logic rule-based GPS
data classification system developed in Chapter 4 is applied here to adapt the covariance
of GPS velocity error based on the identified signal degradation conditions. Table 5.1
lists the standard deviation of the GPS velocity errors under different signal degradation

conditions based on the field test data.
Since the GPS heading is derived from GPS velocities based on Eq. (5-12), its accuracy

is highly correlated with the accuracy of GPS velocities. The standard deviation of the

GPS heading error can be computed based on the following equation.
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(o} 5V‘fGPS

O o Gps :W (5-15)

Under low speed dynamics and severe signal degradation conditions, however, the GPS
heading is too noisy to be useful. Instead, it will deteriorate the Kalman filter heading
estimation. In this dissertation, we have used a threshold to the GPS velocity and the
difference between the GPS heading and the filter heading to eliminate this kind of

measurements. More specifically, we will assign an extremely large value to o 58

when the GPS velocity is smaller than 1 m/s or the difference between the GPS heading
and the filter heading is larger than 15 degrees.

Table 5.1: Adaptive o values under different signal degradation conditions

GPS
oy

Identified signal

degradation condition Low Medium High

O sygrs (V) 0.1 0.5 2

5.2.1.2.2 Dynamics-Derived Observations

Besides the GPS updates, we can have additional dynamics-derived observations to
correct the INS velocity and attitude by applying the dynamics knowledge aided inertial
navigation algorithm developed in Chapter 4. These additional measurements are
available to update the Kalman filter under certain vehicle dynamics such as stationary,

straight-line motion, and cornering motion as follows:
1. Stationary mode: As summarized in Table 4.4, when the vehicle is stationary, a

direct estimation of vehicle velocity and attitude information becomes feasible. In

this mode, the measurement model can be formed as follows:
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6-6*1 [0 0 1 00 Sy Vi
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z H — v

where y” is the yaw angle estimated by the Kalman filter at the previous epoch; ¢

and 0 are the roll and pitch angles computed using accelerometer measurements

after bias and noise removal; and Vourr s Via s Vga s and v,r represent the
S/

measurement noises for ZUPT, the accelerometer-derived roll and pitch, and the

filter-derived yaw at the previous epoch, respectively.

The covariance matrix of the measurement noise is given by

R:diag(a;szupT O-§,¢A 0;9,4 (7;ij (5—17)

where o s ZUPT is the standard deviation of the ZUPT error; o4 and o 504 are the
7

o

standard deviation of the accelerometer-derived roll and pitch error; and o sy is the

standard deviation of the filter-derived yaw error at the previous epoch.

Since the vehicle has zero velocity and constant heading during stationary periods,

we can assign a very small value to o, zer . In order to constrain the heading
S

estimate to the previously derived heading during stationary periods, we also assign

a very small value to o, ». For the determination of o, and o

sw 5 504 » they are

assigned small values of 0.2 degrees because the accelerometer-derived roll and
pitch after bias compensation are much accurate compared to the gyro-derived roll

and pitch which have large drift errors.
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2. Straight-line motion mode: When the vehicle is moving straight, the accelerometer-
derived roll is the only dynamics-derived measurement available to update the

velocity and attitude filter. The measurement model is formed as follows:

o,
op
6—¢|=[0 1 0 0 0] 50 +[V¢A] (5-18)
2 H ow |
_bABx_

X

The covariance matrix of the measurement noise is given by

R=G§¢A (5-19)

Similarly, we assign a small value of 0.2 degrees to O st because the

accelerometer-derived roll after bias compensation is accurate enough to correct the

drift errors of the gyro-derived roll.

3. Cornering motion mode: When the vehicle is making a turn, the forward velocity is
the only dynamics-derived measurement available to update the velocity and attitude

filter. The measurement model is formed as follows:

"
o
y,-v<l=f 0 0 o o] o0 +[vv$} (5-20)
M H oy ——
D, |
S
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where Vfc is the dynamics-derived forward velocity after the bias and noise removal;

and v ¢ represents the measurement noise of VfC .
7

The covariance matrix of the measurement noise is given by

R =o?

e (5-21)

where o, is the standard deviation of the dynamics-derived forward velocity error.
7

As stated in Chapter 4, the accuracy of the dynamics-derived forward velocity is
mainly dependent on the quality of the y-axis accelerometer and the z-axis gyro
measurements as well as the vibration and road ruggedness effects during the

cornering motion. Therefore, o

sy¢ 1s defined empirically according to the field test
«

data.

It should be noted that the x-axis and y-axis accelerometer biases must be determined
first in order to correctly derive the above dynamics-based observations. As shown in Eq.
(5-9), the x-axis accelerometer bias is already modeled in the filter and can be estimated
when GPS velocity updates are available. For the y-axis accelerometer bias estimation, in
this dissertation we have developed a statistical approach based on the forward velocity
computation model described in Eq. (4-26). Arranging the y-axis acceleration term to the
left-hand side of the equation, we rewrite Eq. (4-26) as follows:

Ap

=wg,V, —gsingcos 5-22
y Bz" f

As mentioned previously, the bias term in the z-axis gyro measurement (@, ) can be

removed directly if the vehicle is stationary. The corrected V,, ¢, and & can be

estimated by the velocity and attitude Kalman filter when GPS updates are available.
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After the Kalman filter reaches a steady-state condition, more accurate estimates can be
obtained as well. Therefore, applying these corrected terms into Eq. (5-22), we can
calculate the unbiased y-axis body acceleration. Furthermore, taking the difference
between this unbiased acceleration and the y-axis accelerometer measurement, we can
compute the acceleration error that is mainly contributed by the accelerometer bias and

noise as well as the noises from wg,, V,, ¢, and 6. A simple approach to resolve the

accelerometer bias is to remove the noise effects by averaging a set of data and use this

mean value as the constant part of the y-axis accelerometer bias. The estimate of the y-

axis accelerometer bias, b Ay > using the statistical approach is given by the following

equation.

; M “ ’ A
by, = % > Ag (1 )@, (1, V1 (1 )+ g sin ey )cos 6(t; ) (5-23)

te=1

where 45, is the y-axis accelerometer measurement; @g, is the z-axis bias-removed gyro

measurement; I}f , ¢, and @ are the estimates of the velocity, roll and pitch given by the

Kalman filter; and M is number of data used for averaging process.

In order to estimate the y-axis accelerometer bias more accurately, only the data obtained
during the cornering motion and after the convergence of the Kalman filter are used for

bias computation. This is because 4z, and @, have higher signal-to-noise ratio during

the cornering motion and I}f, ¢ and 6 have better accuracy after the convergence of the

Kalman filter. The obtainable accuracy of the accelerometer bias estimates and the
dynamics-derived observations for a low-cost MEMS IMU are to be presented in Chapter

6.

It should be noted that the accuracy of some dynamics-derived observations, including
stationary tilt, straight-line roll and cornering velocity, are correlated with inertial sensor
biases and the estimated pitch and roll as shown in Eq. (4-23), Eq. (4-24) and Eq. (4-27).

This will violate the assumption of the uncorrelated property between measurement noise
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and process noise in the Kalman filter if using these dynamics-derived observations to
estimate the inertial sensor biases and tilt. In this dissertation the x-axis and y-axis
accelerometer biases are estimated by the Kalman filter and a statistical approach using
only GPS data in open-sky environments while the gyro biases are estimated during the
previous stationary period. In GPS challenging environments the accelerometer bias
estimation is disabled and the previously estimated inertial sensor biases are applied to
correct the dynamics-derived observations which are used to update the Kalman filter.
This strategy not only ensures the stability of bias estimation but also avoids the
dynamics-derived measurements to be correlated with the Kalman filter system state, i.e.
the x-axis accelerometer bias. As the pitch and roll angles are generally small in land
vehicle environments, the correlation between the dynamics-derived measurements and
the tilt errors is not significant. Compared to the unaided INS navigation which has large
error drift, it is worthy to use these dynamics-derived measurements to bound the INS

velocity and tilt errors even they are slightly correlated.

5.2.1.2.3 Compass Observation

During GPS outages, although the dynamics-derived observations can control and correct
the INS velocity and tilt errors, the heading error is still un-removed and will drift with
time due to the lack of a direct heading measurement. If a magnetic compass is available,
this problem can be solved by adding the calibrated compass heading into the
measurement model. For example, in the straight-line motion mode the modified
measurement model with both dynamics-derived and compass observations can be

written as follows:

S
10100 0] 2| v
$-9" |_ 50 |+| ¢ (5-24)
w-y™ | [00 01 0 v N
z bAB v
L X _

127



where " is the compass heading after the neural networks calibration; and v,

represents the measurement noise of the calibrated compass heading.
The covariance matrix of the measurement noise is given by
: 2 2
R=dlag(0'6¢A O'(WN) (5-25)
where o, and o 5, are the standard deviations of the accelerometer-derived roll error

o4

and the calibrated compass heading error, respectively.

With the aiding from the neural networks compass calibration developed in Chapter 4,
the bias and scale factor error can be removed from the compass heading and the
remained errors include only noise, disturbance and the projection error due to tilt
compensation error. For land vehicle applications, these remained errors are related to
vehicle dynamics. For example, when the vehicle is stationary, the projection error is
much small because the tilt is corrected by the accurate accelerometer-derived tilt angles.
Therefore, the dynamics knowledge is applied to adapt the standard deviation of the
calibrated compass heading error as shown in Table 5.2. To avoid using the erroneous or
disturbed compass heading to update the filter, a check on the difference between the
compass heading and the filter heading is performed. When the difference is larger than 5

degrees, we assign an extremely large value to o sy 10 skip the compass heading update.

Table 5.2: Adaptive o s values under different dynamics

Vehicle Stationa Straight-line Cornering
Dynamics Y Motion Motion
os,n (deg.) 0.3 3 5
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5.2.2 Position Filter
5.2.2.1 Dynamics Model

The INS position filter is designed to integrate GPS position with INS velocity to output
an optimal position solution that combines the INS short-term accuracy with the GPS
long-term accuracy. Because only the horizontal position is interested in land vehicle
applications, the position and velocity in the North and East directions are modeled as the
system states in the position filter. Obviously, the state of position is the integration of
velocity and the state of velocity is the integration of acceleration. For simplicity, we
model the vehicle velocity as a constant with an input noise driven by the vehicle

acceleration. Therefore, the system model for the INS position filter is defined as follows:

Py | [0 0 1 ofPy,] [0 0

P 0 0 0 1P 0 Ofw

Ne | _ Ne |y Vi (5-26)
Vaul 100 .0 0¥y | |1 Ofwy,

Vel 10 0 0 07y | [0 1| w

X F

X X

where Py, and Py, are the North and East position states; ¥y, and ¥y, are the North and

East velocity states; and w, ~—and w, are the driving noise for the North and East

velocity states.

The spectral density matrix of the input white noise u is given by

Q=diaglqy, qr,,) (5-27)

where ¢, ~and ¢, ~are the spectral densities of the North and East velocities,

respectively, which indicate the change of the vehicle velocity, i.e., the vehicle

acceleration. Thus, they are determined based on the land vehicle dynamics.
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After the system dynamics and the spectral density of the input noise are determined, the
discrete error model in terms of transition matrix and process noise covariance matrix can

be calculated using Eq. (3-7) and (3-9).

5.2.2.2 Measurement Model
5.2.2.2.1 Model with GPS

When GPS is available, the measurement updates for the position filter include the GPS
position and the corrected INS velocity both in the North and East directions. The

measurement model is defined as follows:

PSS T1 0 0 O] Py, | |Vpers

pars |01 0 0] Py N Vs (5-28)
VNS |10 0 1 0|V, | | Vs

yiNs 1 1o 0 0 1 ved | Vg

z H X

v

where PS™ and PGPS are the North and East GPS positions; V> and VY are the
corrected North and East INS velocities which are computed using the velocity and

attitude filter outputs based on Eq. (4-18) and (4-19); v s and v,cs represent the
Nn Ne

measurement noises of the North and East GPS positions; and v, s and v, s represent
Nn Ne

the measurement noises of the corrected North and East INS velocities.

The covariance matrix of the measurement noise is given by:

GPS
R= {szz 02><2 :| (5_29)

INS
02><2 R2><2

where R$’S and R are the covariance matrices of GPS position errors and corrected

INS velocity errors, respectively.
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Based on the above dynamics and measurement models, the position filter is actually
performing a linear weighted combination of the GPS position and the corrected INS
velocity using the Kalman gain. To compute the correct Kalman gain, the GPS position
error and the corrected INS velocity error must be modeled properly. Since the corrected
North and East INS velocities are computed using the outputs from the velocity and

attitude Kalman filter based on Eq. (4-18) and (4-19), the accuracy of the corrected INS

velocities is mainly determined by the filter performance. R2YS can be determined by the

propagation of error covariances of the forward velocity and heading obtained from the
velocity and attitude Kalman filter. In terms of the GPS position error modelling, it is
difficult to be accurate for land vehicle applications under various signal degradation
conditions. This is because the GPS measurement is likely corrupted by multipath, echo-
only signal and high code noise. Therefore, the GPS position errors vary with very short
correlation time and the accurate estimation of a priori knowledge about the position
errors and noise statistics becomes a challenge. To model the GPS position error more
appropriately, the innovation-based adaptive filtering algorithm with unknown
measurement noise covariance described in Chapter 3 and the fuzzy logic rule-based GPS
data classification system developed in Chapter 4 have been integrated to adapt the

covariance of the GPS position error.

The innovation-based adaptive measurement noise covariance R, is calculated based on
Eq. (3-20). It should be noted that the window size in Eq. (3-20) needs to be properly
determined so that the statistic of the innovation sequence is correctly estimated and in
turn the computed R, is able to represent the actual measurement noise covariance. The
choice of window size is usually application dependent. For land vehicle applications in
urban areas the GPS position accuracy is changing rapidly as the vehicle is moving
through various GPS environments. Therefore, a small window size should be used to
enable the adaptive Kalman filter to correctly trace high-frequency changes of the GPS
position accuracy. In this dissertation a window size of 5 epochs was chosen based on the

GPS test performance in a typical North American urban area.
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Ideally, the adaptive Kalman filter is expected to adapt the measurement noise covariance
to environments to improve the estimation performance based on the residuals between
the actual measurement from GPS and the predicted measurement from the integration
filter. In GPS challenging environments, however, the adaptive filter might not work
optimally due to the difficulty of separating the filter position error from GPS position
error. This would happen in two cases. The first case is when the filter works without
GPS position updates or with erroneous GPS position updates for certain periods of time.
During GPS outages the filter position is basically the integration of the INS velocity
which leads to a position drift. When erroneous GPS measurements last over several
consecutive epochs, the innovation sequence is large and the Kalman gain becomes small,
which leads to the filter working similarly to the GPS outage case. As a result, the filter
position has a drift error and will bias the innovation sequence. The second case is when
the GPS position is drifting and changing slowly over time. In this situation, this kind of
GPS position errors is undetectable by the adaptive Kalman filter since the innovation
sequence will remain relatively small. As a result, a large Kalman gain on measurements
will cause the filter position to drift with the biased GPS position. When good GPS
updates are available, for both cases, the innovation sequence becomes incorrect and
unreliable because the predicted measurement from the integration filter is biased.
Therefore, the adaptive Kalman filter cannot work appropriately because of using the

exaggerated measurement noise covariance.

To remedy this problem and to improve the adaptive filtering performance, the GPS data
classification system developed in Chapter 4 is used to modify the measurement noise
covariance computed by the innovation-based adaptive estimation from Eq. (3-20). The
basic idea behind this modification is to use the knowledge of the GPS signal degradation
condition which is correlated to GPS statistical performance to weight the innovation-
based adaptive measurement noise covariance. More specifically, for each channel (North
and East), we decrease the innovation-based adaptive measurement noise covariance to
the power of 0.5 and 0.75 when a GPS position is obtained under the low and medium
signal-degraded conditions. Therefore, when a good GPS position is available, the

adaptive measurement noise covariance is reduced to better characterize real GPS
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performance and in turn to speed the convergence of the filter position to the GPS
position. For example, if the filter position is biased by 45 m and a low signal-degraded
GPS position with accuracy of 5 m is available to update the filter, according to Eq. (3-20)
the traditional innovation-based adaptive measurement noise covariance will be around
1600~2500 m* which is incorrect and unreliable. With the proposed Al-enhanced method,
the modified measurement noise covariance becomes around 40~50 m” which means the
estimated GPS position accuracy is around 6~7 m close to the actual GPS position

accuracy.

In addition to the information about GPS signal degradation conditions, the knowledge of
vehicle dynamics can be used to modify the adaptive measurement noise covariance as
well. When a vehicle is stationary, the vehicle position should be unchanged but the GPS
position solution may drift and change slowly over time due to the smoothing feature
provided by the in-receiver filter. As mentioned previously, this kind of GPS position
errors are undetectable by the innovation-based adaptive Kalman filter and will
subsequently lead to erroneous solutions. To resist the drift of the filter position, we
assign an extremely large measurement noise covariance for the GPS position when the
vehicle is stationary. Table 5.3 lists the Al-based modification of the adaptive
measurement noise covariance for GPS positions based on the signal degradation

condition and vehicle dynamics.

Table 5.3: Al-enhanced adaptive measurement noise covariance for GPS position

Vehicle dynamics Non-stationary Stationary
Signal degradation condition Low Medium High All
Modified measurement noise covariance R k 05 R k 075 R k 106

R, : the innovation-based adaptive measurement noise covariance

5.2.2.2.2 Model without GPS

When GPS updates are unavailable due to signal blockages, only the corrected INS
velocities are available to update the position filter. In this case the measurement model is

reduced to
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The corresponding covariance matrix of the measurement noise is determined by the
propagation of error covariances of the forward velocity and heading obtained from the
velocity and attitude Kalman filter. In this case, the position filter will reply on the
corrected INS velocity and the constant velocity model with the acceleration driven input

noise to estimate the vehicle position.

5.3 Construction of An Intelligent Integration Algorithm

The previous two sections have described the cascaded integration scheme and the design
of the Al-enhanced Kalman filters. This section presents the construction of the
intelligent integration algorithm and explains the data processing flow. The intelligent
integration algorithm employs two cascaded Kalman filters aided by three Al-based
enhancement modules on a loosely coupled closed-loop integration scheme. The
architecture of the intelligent integration algorithm is presented in Figure 5.2. Basically,
the integration procedure is accomplished by two-step data processing: sensor-level data
processing and filter-level data fusion. In the sensor-level data processing, the raw data
from each sensor are processed independently to generate navigation states (attitude,
velocity and position) and knowledge-based information (status of vehicle dynamics and
GPS signal degradation condition). More specifically, the raw data from MEMS IMU are
processed by the fuzzy expert vehicle dynamics identification system to provide the
information of vehicle dynamics including stationary, straight-line motion and cornering
motion. Such information is further applied to trigger the estimation of gyro biases and
dynamics-derived observations and to adapt the velocity and attitude filter, as indicated
by the dash line. Every time when the vehicle is stationary, the three-axis gyro biases can

be estimated using raw gyro data. Thus, the gyro biases can be removed from the raw

134



measurements and the INS attitude and velocity are computed using the raw
accelerometer data and the bias-removed gyro data based on the land vehicle motion
model. In the meantime, the dynamics-based observations can also be computed by using
IMU measurements and the outputs of the velocity and attitude filter under specific

vehicle dynamics.

For compass data, the three-axis magnetic measurements are integrated with the tilt
estimates provided by the velocity and attitude filter to generate the compass heading
based on heading computation equations. Then, the computed compass heading is
calibrated by the trained neural networks before they are used to the filter-level data
fusion. For GPS data, GPS receiver velocity and position solutions are directly used. The
signal strength measure and satellite geometry information are processed by the fuzzy
logic rule-based GPS data classification system to provide the information of signal
degradation condition. This information is further used for adapting the filter-level data

fusion, as indicated by the dash line.

For the filter-level data fusion, the INS velocity and attitude filter will integrate the INS
attitude and velocity with the GPS velocity and heading, the dynamics-derived
observation and the calibrated compass heading to generate the corrected attitude and
velocity. Dependent on GPS environments, the velocity and attitude filter works in two
modes: GPS-only update mode and full update mode. The filter operates in the GPS-only
update mode under open-sky environments and in the full update mode under signal-
degraded and/or signal-blocked environments. Under open-sky environments, GPS can
provide reliable and accurate measurement updates for the velocity and attitude filter.
After reaching a steady-state condition, the Kalman filter can provide good estimation of
the x-axis accelerometer bias and the vehicle attitude and velocity. Meanwhile, the y-axis
accelerometer bias can also be estimated using the corrected velocity and tilt as well as
the raw data from IMU. In addition, the corrected heading can be used as the reference

heading to train the neural networks for the compass heading error modelling.
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Under GPS challenging environments, GPS measurements are corrupted by multipath,
signal degradation and signal cross-correlation. Accurate estimation of the accelerometer
biases and the navigation errors using the Kalman filter is usually infeasible due to the
lack of continuously accurate GPS velocity solutions. In this condition, the integration
algorithm will stop the estimation of the accelerometer biases and the training of the
neural networks. The last estimated accelerometer biases and the trained neural networks
during open-sky navigation are used to correct dynamics-derived observations and to
calibrate compass headings, respectively. Thus, the velocity and attitude filter can use the
corrected dynamics-derived observations and the calibrated compass heading as the
additional measurement updates to correct INS velocity and attitude. GPS velocity and
heading solutions if available will still be used to update the velocity and attitude filter

with adaptive measurement covariance.

In the position domain, the INS position filter is used to integrate the corrected attitude
and velocity with the GPS position. As mentioned previously, the innovation-based
adaptive filtering algorithm aided by the information of GPS signal degradation
conditions and the knowledge of vehicle dynamics can be used to adapt the covariance of
GPS position error, thus this filter can adaptively operate under various GPS
environments. When GPS is unavailable, the position filter will reply on the corrected

INS attitude and velocity to derive the dead-reckoning position solution.
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Figure 5.2: Architecture of the intelligent integration algorithm
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Chapter 6

Test Results in Open Areas

This chapter describes the test and analysis results of the proposed intelligent integration
algorithm under open area environments. The performance evaluation is carried out in a
post-mission processing mode. A developed MATLAB-based program which
implements the proposed integration algorithm with real-time processing routines has
been used to process the data collected from the low-cost MEMS IMU and GPS in field
tests and to generate the integrated navigation solutions. Details of test set-up as well as
data collection and processing procedures are presented first, followed by two types of
performance analysis: evaluation of the navigation performance with and without GPS

updates.

6.1 Test Description

The test system set-up is shown in Figure 6.1. The low-cost sensors used in the test
included an Xsens MT9 MEMS IMU and a SiRF Star II Xtrac high sensitivity GPS
receiver. The MT9 is a miniature inertial measurement unit providing serial digital output
of 3D acceleration, 3D rate of turn and 3D Earth-magnetic field data. The SiRF HSGPS
receiver is a low-cost single-frequency 12-channel evaluation receiver which provides
code-based single point positioning solutions. The specifications of the SIRF HSGPS and
MT9 are shown in Table 6.1 and Table 6.2, respectively. A laptop running a C++ data
acquisition program developed by the author was used to collect the data from the IMU
and GPS through two serial ports. The data output rate was set as 20 Hz for the MT9 and
1 Hz for the HSGPS. The data acquisition software will tag IMU and GPS data with
computer time when they were received at the serial ports, respectively. The tagged time
is used for the time synchronization of IMU and GPS data. The time synchronization

accuracy is at about the 10 ms level. For land vehicle applications, since general vehicle
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dynamics is not too high, the estimation error due to the time synchronization error is
negligible compared to the performance of the low-cost MEMS IMU. A high precise
INS/GPS integration system consisting of a tactical-grade Honeywell HG1700 IMU and
a high performance NovAtel OEM4 dual frequency GPS receiver was used to provide
geo-reference solutions. A GIPSI data acquisition system (GIPSI DA) developed by the
Terramatics Inc. was used to collect the 100 Hz IMU data from the HG1700 and 1 Hz
GPS data from the OEM4. The GIPSI DA will time-tag IMU data with GPS 1PPS time to
perform the time synchronization between the IMU and GPS data.

SiRF HSGPS MT9 OEM4 HG1700
A\ 4 A A\ 4 A 4
Lanto GIPSI Data
ptop Acquisition System

Figure 6.1: System set-up for open area tests

Table 6.1: SiRF HSGPS specifications (www.sirf.com)

Characteristic Value
Position accuracy” <5m
Tracking L1, C/A code
Channels 12
Tracking sensitivity 16 dB-Hz
Hot start sensitivity 23 dB-Hz
Warm start sensitivity 28 dB-Hz
Cold start sensitivity 32 dB-Hz

" A typical value based on 24-hour open sky static test.

™ The sensitivity value is specified at the correlator. On a
SiRFstarlle/LP Evaluation Receiver with the supplied
antenna, 32 dB-Hz is equivalent to —142 dBm or -172 dBW.
Other board and antenna characteristics will vary.
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Table 6.2: MT9 specifications (www.xsens.com)

Sensor Gyro  Accelerometer Magnetometer
Measurement unit deg./s m/s” MGauss
Operating range +/- 900 +/- 20 +/- 750
Scale factor linearit
(% of operating rang};) 01 0.2 !

Bias stability (1o) 5 0.02 0.5
Noise (RMS) 0.7 0.01 4.5
Alignment error (deg.) 0.1 0.1 0.1

The test system was installed on the University of Calgary’s test van. The MT9 and
HG1700 were mounted tightly on the floor of the test van. There are about half metre
installation distance between each other to avoid interference between the MT9’s
magnetic sensors and the HG1700. The SiRF HSGPS antenna and OEM4 antenna were
mounted on the roof of the van vertically above the MT9 and HG1700, respectively.
Comparing to the obtainable position accuracy given by the low-cost MT9 and GPS, the
position error due to this installation distance between the tested system and the geo-
reference system is negligible. Pictures of the test van and the equipment set-up are

shown in Figure 6.2.

The test was conducted at the University of Calgary Parking Lot #10 with an open-sky
environment, on April 25, 2005. The purpose of the open area test is not only to assess
the integration performance using clean GPS updates but also to examine how much the
specific dynamics in urban driving conditions such as stationary, straight-line motion and
cornering motion can improve the stand-alone inertial navigation performance. Thus, a
test trajectory with eight cornering shapes and four virtual stop signs was chosen to
mimic urban driving conditions as shown in Figure 6.3. Before tests on the selected
trajectory, we performed an about 15-minute static initialization and then drove the
vehicle on a S-turn trajectory couple times to make the geo-reference system reach a
steady-state condition. After that, ten data collection runs on the selected trajectory were
performed, each starting with about one minute static followed by about three minutes

driving and ten seconds stop at each virtual stop sign.
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Figure 6.3: Open area test trajectory
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The data collected from the HG1700 and OEM4 were processed by the P3-INS software
package developed by the Positioning and Mobile Information System (PMIS) group in
the Department of Geomatics Engineering at the University of Calgary to provide
reference attitude, velocity and position information. The P3-INS integrates precise point
positioning (PPP) with inertial technologies to generate geo-reference solutions without
requiring the data from GPS reference stations. It determines position, velocity and
attitude based on the integration of inertial data and un-differenced observations from a
single GPS receiver. It can provide globally attainable accuracy for position at the
centimetre to decimetre level and for attitude at the several arc min level (Zhang and Gao
2005). The data collected from the low-cost MT9 and SiRF HSGPS were processed by
the MATLAB-based program which implements the proposed integration algorithm with
real-time processing routines to generate the low-cost integrated navigation solutions.
The geo-reference solutions were down sampled to 20 Hz and synchronized with the low-
cost integrated navigation solutions based on GPS time using linear interpolation. By
comparing the synchronized low-cost integrated solutions with the geo-reference
solutions, we can assess the performance of the proposed integration algorithm in terms

of attitude, velocity and position accuracy.

6.2 Results with GPS Updates

The first performance analysis is to assess the performance of the integration system
when GPS is available. In this case, GPS data are used to update the INS Kalman filters
to estimate accelerometer bias and to correct INS attitude, velocity and position. In the
meantime, the corrected heading is used as the reference heading to train the neural
networks for modelling the compass heading error. In the following sections, the
performance analysis of the accelerometer bias estimation and the integrated navigation
solutions are presented first, followed by the training performance of the neural networks

for the compass heading error modelling.
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6.2.1 Performance Analysis of Integrated Navigation
6.2.1.1 Accelerometer Bias Estimation Accuracy

The results of the x-axis accelerometer bias estimation from the sample run #4 are given
in Figure 6.4. As shown, the estimates of the x-axis accelerometer bias converge to a
constant value after the Kalman filter reaches a steady-state condition. The time for bias
estimation convergence is mainly dependent on the degree of observability which is
correlated to the vehicle dynamics change, usually the higher the dynamics change the
shorter the convergence time. In our tests, the filter took about 1.5 minutes to reach a
steady-state condition since the vehicle had frequent acceleration, deceleration and
cornering motion on the selected test route. For the y-axis accelerometer bias estimation,
as mentioned in Chapter 5, it has been assumed as a constant and is determined by
averaging the estimates obtained during the cornering motion and after the convergence
of the Kalman filter. Figure 6.5 shows the y-axis accelerometer bias estimation results
from the same sample run. We notice that although the variation of the epoch-by-epoch
bias estimates is large due to the high noise level presented in the MEMS measurements,
the average value of all estimates over certain periods of time still can provide a

reasonably good estimate of the y-axis accelerometer bias.
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Figure 6.4: Estimation results of accelerometer bias (x-axis)
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Figure 6.5: Estimation results of accelerometer bias (y-axis)

To assess the accuracy of the estimated accelerometer bias, the true bias should be
determined first. Since it is very difficult to perform a lab calibration in the field test, we
have developed an experimental approach to calculate the true bias by comparing the
MT?9 accelerometer measurements with the reference tilt provided by the HG1700/OEM4
geo-reference system when the vehicle is static. The equations for computing the true

biases on the x-axis and y-axis accelerometers are given as follows:

~ A; ~

by, = gsin™! sin_l( ;"J—Hs (6-1)
- g |

by, =—gsin | —sin| —= |- ¢° (6-2)

g

where b, and b, are the computed true biases of the x-axis and y-axis accelerometers;
x 3y

Ay and Ay are the stationary measurements from the x-axis and y-axis accelerometers;
x y
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6° and ¢° are the stationary pitch and roll provided by the HG1700/OEM4 geo-

reference system; and g is the gravitational constant.

To remove the noise effects and to estimate the constant part of the bias, we calculate the
mean value of all epoch-by-epoch bias estimates during the stationary periods and use it
as the final estimate of the true bias. Shown in Figure 6.6 and Figure 6.7 are the
estimation results of the true biases of the same sample run for the x-axis and y-axis
accelerometers, respectively. We observed that the variation of the epoch-by-epoch
estimates of the true bias is identical to the noise level of the MT9 accelerometers’
stationary measurements and is affected by vehicle vibrations. After data averaging, the
accuracy of the computed true bias mainly depends on the tilt accuracy obtained from the
HG1700/0EM4 geo-reference system which is at several arc min level. Converted from
this tilt accuracy, the accuracy of the computed true bias is at about 0.01 m/s* which is

high enough for the reference.
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Figure 6.6: Estimation results of true accelerometer bias (x-axis)
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Figure 6.7: Estimation results of true accelerometer bias (y-axis)

Table 6.3 lists the estimated and true biases for each run of the test. The x-axis and y-axis
accelerometer biases have been found properly estimated. The RMS error of the x-axis
and y-axis estimated biases are about 0.032 m/s* and 0.038 m/s%, respectively. The x-axis
bias estimation accuracy is better and more stable than the y-axis one. This could be
explained by the fact that the y-axis bias is determined based on the average of a batch of
accelerometer and gyro measurements as well as the Kalman filter velocity and tilt
outputs. Thus, the accuracy of the y-axis bias estimation depends on not only the INS
measurement quality but also the Kalman filter performance. On the other hand, the x-
axis bias is estimated using the Kalman filter which is a recursive optimal estimator. If
designed properly, the Kalman filter will converge and provide a steady-state estimate
which is optimal in a statistical sense. In summary, the results demonstrate that the
designed Kalman filter and the proposed systematic approach based on the land vehicle
motion equation are able to provide good bias estimation for the low-cost MEMS inertial

SENSOrs.

146



Table 6.3: Accelerometer bias estimation accuracy

Test No. X-axis Accelerometer Bias Y-axis Accelerometer Bias
Reference (m/s”) Estimate (m/s?) Reference (m/s*) Estimate (m/s”)

1 0.228 0.260 -0.124 -0.133
2 0.215 0.234 -0.136 -0.117
3 0.207 0.180 -0.144 -0.075
4 0.211 0.192 -0.145 -0.137
5 0.206 0.204 -0.141 -0.215
6 0.201 0.216 -0.141 -0.157
7 0.202 0.228 -0.149 -0.174
8 0.198 0.253 -0.139 -0.117
9 0.199 0.241 -0.149 -0.122
10 0.203 0.186 -0.126 -0.120

" This is the sample run of test whose results are shown in Figure 6.4 and Figure 6.5.

6.2.1.2 Attitude Accuracy

Figure 6.8 through Figure 6.10 show the estimated and the reference pitch, roll and
azimuth (heading) angles obtained from the same sample run #4. As shown in Figure 6.8
and Figure 6.9, the pitch and roll estimates converge to the reference pitch and roll
respectively after the Kalman filter reaches a steady-state condition. As expected, the
accuracy of the pitch and roll estimates degrade when the vehicle is stationary. This is
because the estimation performance is proportional to the vehicle dynamics, i.e., the
higher the vehicle dynamics the better the estimation performance. For the heading
estimation, since it is directly observable from the measurements in the Kalman filter, the
heading error can be instantly corrected when GPS heading updates are available. The
heading accuracy of the integration system is therefore mainly dependent on the GPS

heading accuracy.

Table 6.4 presents the statistical analysis of the attitude estimation accuracy based on the
data from ten runs. It should be noted that only the data obtained after the convergence of
the Kalman filter are used in the data analysis. As shown, the average RMS error is about
0.5 degrees for the pitch estimate and about 0.9 degrees for the roll estimate. The pitch

accuracy is better than the roll accuracy because the roll state is less observable than the
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pitch state in the applied Kalman filter. The heading accuracy is less than 1 degree which
agrees with the theoretically obtainable performance provided by GPS. For example,
considering the speed of the vehicle at 7 m/s and the typical GPS velocity accuracy at 0.1

m/s, we can calculate the corresponding GPS heading accuracy is equal to 0.81 degrees

according to Eq. (5-15).

—— HG1700/0EM4
— MT9/SIRF

Pitch (degrees)

1

182840 182904 182968 183033
19:47:07 19:48:11 19:49:15 19:50:20

GPS Time of Week (s), Local Time (hours:minutes:seconds)

Figure 6.8: Estimation results of pitch (INS/GPS integration)
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Figure 6.9: Estimation results of roll (INS/GPS integration)
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Figure 6.10: Estimation results of heading (INS/GPS integration)

Table 6.4: Attitude estimation accuracy (INS/GPS integration)

Pitch Error Roll Error Heading Error
Test No. (degrees) (degrees) (degrees)
Mean  RMS Mean  RMS Mean  RMS

1 -0.50 0.64 -0.30 0.81 0.39 0.95
2 -0.41 0.54 0.09 0.96 0.53 0.93
3 -0.03 0.38 0.16 0.73 0.26 0.83
4 -0.23 0.42 -0.06 0.67 0.14 0.67
5 -0.25 0.46 -0.35 1.51 0.29 0.63
6 -0.35 0.48 -0.19 0.87 0.20 0.47
7 -0.27 0.46 -0.24 0.69 -0.03 0.54
8 -0.58 0.65 -0.01 0.98 0.38 0.64
9 -0.54 0.65 -0.05 0.92 0.28 0.53

10 -0.22 0.44 0.06 0.73 0.32 0.76

Average 0347 051 0157 089 0287  0.70

" This is the sample run of test whose results are shown in Figure 6.8
through Figure 6.10.

This value is calculated by averaging the absolute value of each run of
test.

6.2.1.3 Velocity and Position Accuracy

The velocity and position accuracy of the integration system is mainly dependent on the
GPS velocity and position accuracy since the velocity and position states in the INS

Kalman filter are directly observable from the measurements. Figure 6.11 and Figure
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6.12 show the estimated and the reference velocity and position given by the same
sample run #4. Due to the continuous and direct corrections of INS velocity and position
errors from GPS, the integrated velocity and position performance is almost identical to
the GPS velocity and position performance. The statistical analysis of the integrated
velocity and position errors based on the ten-run data is presented in Table 6.5. In
summary, the average RMS error is 0.13 m/s for the velocity estimate and about 3 m for
the horizontal position estimate, which agrees with the code-based GPS performance in

open arcas.
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Figure 6.11: Estimation results of velocity (INS/GPS integration)
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Figure 6.12: Estimation results of position (INS/GPS integration)
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Table 6.5: Velocity and position estimation accuracy (INS/GPS integration)

Velocity Error North Position East Position Horizontal
Test No. (m/s) Error (m) Error (m) Position Error (m)

Mean  RMS [Max| RMS [Max| RMS |[Max| RMS

1 0.01 0.17 4.35 1.50 3.73 1.36 5.73 2.03
2 0.02 0.14 6.24 2.08 4.09 1.43 6.25 2.53
3 0.01 0.14 5.46 2.04 3.58 1.50 5.47 2.53
4 0.01 0.13 4.11 1.72 4.42 1.83 5.42 2.51
5 0.02 0.14 4.63 2.28 4.74 2.16 5.51 3.14
6 0.03 0.13 6.17 2.21 4.98 2.40 6.18 3.26
7 0.02 0.12 6.49 2.23 4.98 2.51 6.49 3.36
8 0.04 0.12 6.40 2.17 5.15 2.44 6.42 3.26
9 0.02 0.12 6.10 2.76 4.17 2.01 6.10 3.41

10 0.02 0.13 6.63 2.81 4.57 2.08 6.65 3.50
Average 0.02”  0.13 5.66 2.18 4.44 1.97 6.02 2.95

" This is the sample run of test whose results are shown in Figure 6.11 and Figure 6.12.
This value is calculated by averaging the absolute value of each run of test.

6.2.2 Performance Analysis of Compass Heading Error Modelling

As mentioned previously, the integrated heading solution is used as the reference heading
to train the neural networks for modelling the compass heading error so that the trained
neural networks can be used to correct the compass heading when GPS is unavailable. In
this test, we trained the neural networks using the first run data with GPS updates and
tested the calibration performance using the other nine-run data without GPS updates.
Thus, the training data set is constructed by the compass heading and the true heading
obtained from the first run test. The raw magnetometer measurements collected in the
first run are shown in Figure 6.13. It can be seen that the Earth’s magnetic fields have
been biased, distorted and interfered by the local magnetic fields inside a land vehicle.
These deteriorated magnetic measurements were first projected on a horizontal
orientation based on the tilt angles outputted by the Kalman filter and then used to
calculate the compass headings. The true headings were provided by the integrated
heading solutions in the same run which have the mean error of 0.39 degrees and RMS

error of 0.95 degrees as shown in Table 6.4.
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Figure 6.14 shows the training data and the outputs of the trained neural networks while
processing the same training data. It can be seen that although the training data have been
deteriorated by noises, magnetic disturbances and projection errors, the neural networks
still can properly model the nonlinear input-output relationship that describes the bias,
scale factor and declination effects on the compass heading. However, because the
perfect training data (without noise, magnetic disturbances and tilt compensation errors)
are unavailable in real applications, the error modelling performance cannot be assessed
specifically here. The compass calibration performance using the trained neural networks

will be presented in the next section.
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Figure 6.13: Measured magnetic fields for neural networks training
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Figure 6.14: Results of neural networks training
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6.3 Results without GPS Updates

The second performance analysis is to assess the performance of the integration system
when GPS is unavailable, namely to assess the stand-alone inertial navigation
performance during complete GPS outages. For the analysis purpose, GPS data are
artificially disused and only the dynamics-derived observations with/without the
calibrated compass headings are used to update the Kalman filters. To obtain the accurate
dynamics-derived observations and the calibrated compass headings, as described in
Chapter 4 and Chapter 5, the accelerometer biases should be known and the neural
networks must be trained. In the following performance analysis, the biases estimated
using full GPS updates in the previous run are applied in the current test and the filter is
working without GPS updates. In addition, the neural networks trained by the first run
data are applied to calibrate the compass heading in other nine-run tests. Thus, the total
nine runs of stand-alone navigation results are assessed. The accuracy of the dynamics-
derived observations is presented first, followed by the performance assessment of the
compass heading calibration using the neural networks. Finally, the performance analysis

of the stand-alone inertial navigation with/without compass aids is given.

6.3.1 Performance Analysis of Dynamics-Derived Observations

The dynamics-derived observations are directly computed using INS raw measurements
and the Kalman filter outputs based on the status of vehicle dynamics. The incorrect
dynamics identification will result in erroneous observations. Based on the designed
fuzzy expert system described in Chapter 4, the results of vehicle dynamics identification
for a sample run #7 are shown in Figure 6.15. By comparing the identified motion type
with the reference velocity and yaw rate, we verify that the vehicle motion types
including stationary, straight-line motion and cornering motion have been correctly
identified. It should be noted that there exists a straight-line motion between the sixth and
seventh cornering motions that was not identified by the designed fuzzy expert system.
This is an expected and acceptable condition since the periods of the straight-line motion

between two continuous cornering motions are too short to be recognizable by the
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designed fuzzy expert system. Similar identification results for other runs have been also

obtained but not shown here.
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Figure 6.15: Results of vehicle dynamics identification

Figure 6.16 through Figure 6.18 show the dynamics-derived and reference pitch, roll and
velocity using the data collected in the same sample run. As mentioned in Chapter 4, the
dynamics-derived pitch and roll errors are mainly due to the unidentified accelerometer
biases as the noise effects can be reduced by moving average. In this test, the x-axis and
y-axis accelerometer biases estimated using full GPS updates in the previous run and
used to correct the dynamics-derived observations are 0.202 m/s”* and -0.149 m/s* while
the reference biases are 0.216 m/s* and -0.157 m/s® for the x-axis and y-axis
accelerometer, respectively. This shows the good bias estimation accuracy and therefore
the dynamics-derived pitch and roll are considerably accurate, almost identical to the
reference as shown in Figure 6.16 and Figure 6.17. Due to the approximation errors
induced by sideslip or vibration, the dynamics-derived roll in the straight-line motion
mode has relatively larger errors than the dynamics-derived roll in the stationary mode.
For the cornering motion mode, as shown in Figure 6.18, the dynamics-derived velocities
are close to the reference velocities so that they can be used to correct the stand-alone
INS velocities and reduce the error drift. The errors of all dynamics-derived observations

are shown in Figure 6.19 which demonstrates the error characteristics we have described
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above. It should be noted that there exist some oscillatory errors in the stationary pitch
and roll at the beginning of the stationary period. This is because the stationary pitch and
roll are not smoothed at the beginning of the stationary period due to the lack of samples

for moving average. As the samples for moving average increase, this type of error will

be filtered and the stationary pitch and roll remain steady.
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Figure 6.16: Dynamics-derived pitch observations
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Figure 6.17: Dynamics-derived roll observations
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Figure 6.18: Dynamics-derived velocity observations
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Figure 6.19: Errors of dynamics-derived observations

Table 6.6 demonstrates the accuracy of the dynamics-derived observations given by the
nine-run data. As expected, the average mean of the dynamic-derived pitch and roll errors
(about 0.16 degrees) is equivalent to the unidentified accelerometer bias (about 0.025
m/s”) as shown in Table 6.3. We observed that in each test the RMS error of the dynamic-

derived stationary pitch and roll is almost identical to the absolute value of the mean error.
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This is because the stationary pitch and roll error is mainly due to the unidentified
accelerometer bias after the noise effects have been removed by moving average. Due to
the approximation errors induced by sideslip or vibration, the RMS error of the
dynamics-derived roll in the straight-line motion mode is larger than the RMS error of the
stationary roll. For the cornering motion mode, the accuracy of the dynamics-derived
velocity is about 0.45 m/s and considerably stable for each test. Compared with the stand-
alone INS navigation solutions, the dynamics-derived observations are accurate enough

to provide pitch, roll and velocity corrections.

Table 6.6: Dynamics-derived observation accuracy

Stationary Pitch Stationary Roll  Straight-Line Roll Cornering Velocity
Test No. Error (degrees) Error (degrees) Error (degrees) Error (m/s)

Mean RMS Mean RMS Mean RMS Mean RMS

2 -0.26 0.27 0.05 0.10 -0.01 0.46 -0.20 0.50
3 -0.13 0.14 0.16 0.17 0.15 0.44 -0.27 0.51
4 0.16 0.16 0.38 0.38 0.31 0.54 -0.18 0.42
5 0.04 0.06 0.01 0.06 0.01 0.45 -0.20 0.46
6 -0.03 0.04 -0.42 0.42 -0.45 0.68 -0.12 0.48
7 -0.10 0.11 -0.05 0.06 -0.11 0.46 -0.13 0.38
8 -0.18 0.18 -0.20 0.20 -0.23 0.52 -0.25 0.42
9 -0.35 0.35 0.18 0.18 0.16 0.44 -0.19 0.42

10 025 025 0.03 0.05  -0.05 042  -026 043
Average 0.17°  0.17 016 018 016 049 0207 045

" This is the sample run of test whose results are shown in Figure 6.16 through Figure 6.19.
This value is calculated by averaging the absolute value of each run of test.

6.3.2 Performance Analysis of Compass Heading Calibration

Based on the test results from the sample run #7, the compass headings with and without
the neural networks calibration compared to the reference headings are shown in Figure
6.20. As shown, the compass heading has been calibrated correctly, consistent with the
reference heading. However, there exist some jump errors due to the magnetic
disturbance and tilt compensation error. This type of error cannot be removed by compass
calibration but can be filtered out by integration with gyro measurements. The accuracy
of the calibrated heading for all runs is shown in Table 6.7. The average RMS error and

mean error of the calibrated heading are 4.82 degrees and 0.26 degrees, respectively. The
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large RMS value is due to the existence of jump errors as described above. Thus, the
mean value is more suitable to represent the calibration performance. As shown in Table
6.7, the obtainable calibration accuracy using the neural networks in a typical land
vehicle environment is about 0.2 degrees, which is accurate enough to provide

corrections of the MEMS gyro-derived heading.
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Figure 6.20: Calibrated and un-calibrated compass headings

Table 6.7: Calibrated compass heading accuracy

Test No. Heading Error (degrees)
Mean RMS

2 0.30 5.19

3 0.28 5.32

4 0.42 5.00

5 0.49 4.86

6 0.09 4.85

7 0.17 4.70

8 0.20 4.61

9 0.26 4.16

10 0.16 4.71
Average 0.26" 4.82

" This is the sample run of test whose results are
shown in Figure 6.20.

" This value is calculated by averaging the
absolute value of each run of test.
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6.3.3 Performance Analysis of Stand-Alone Inertial Navigation

Previous sections have demonstrated the obtainable accuracy of the dynamics-derived
observations and the calibrated compass headings. In this section, the performance
analysis of the stand-alone inertial navigation aided by these dynamics-derived
observations with/without the calibrated compass headings is presented. The performance
of the stand-alone inertial navigation aided by the dynamics-derived observations only is

assessed first, followed by a discussion on the benefit of the compass aids.

6.3.3.1 Aiding from Dynamics-Derived Observations Only
6.3.3.1.1 Attitude Accuracy

The pitch, roll and heading estimates of the stand-alone inertial navigation aided by
vehicle dynamics knowledge for the sample run #7 are shown in Figure 6.21 through
Figure 6.23. To demonstrate the benefits of the dynamics aids, the unaided stand-alone
inertial navigation solution is also displayed. In the unaided mode, no dynamics-derived
observations are used to update the Kalman filter and thus it works in a full prediction
mode. As shown in Figure 6.21 and Figure 6.22, the error of the dynamics-aided pitch
and roll has been bounded and well controlled while the unaided pitch and roll have large
error drifts. The dynamics-aided pitch estimates during the stationary periods as well as
the roll estimates during the stationary and the straight-line motion periods are almost
identical to the dynamics-derived pitch and roll shown in Figure 6.16 and Figure 6.17,
respectively. This is because the pitch and roll states in the INS Kalman filter are directly
observable from the dynamics-derived measurements and their covariances are very
small. For the periods when the dynamics-derived pitch and roll updates are unavailable,
the performance of the dynamics-aided tilt estimates degrades with time. The
performance degradation is mainly dependent on the quality of inertial sensors and
vehicle dynamics. Comparing Figure 6.21 with Figure 6.22, we observed that the
dynamics-aided roll estimates are more accurate than the pitch due to the availability of
roll measurement updates during the straight-line motion periods. For the heading
performance, while zooming in the heading estimates at the end of the test, we found the

error drifts of the dynamics-aided and unaided solutions are about one and two degrees,
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respectively. The improvement in heading is not as significant as the improvement in tilt.
This is because for the dynamics-aided system only the constant heading constraint
during the stationary periods is available to control the heading error drift while the
absolute tilt measurement updates are more frequently available to reduce the tilt error
drift. In summary, the aiding from the vehicle dynamics knowledge enables the stand-

alone MEMS INS to provide bounded tilt and heading solutions with reduced error drift

rates.
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Figure 6.21: Estimation results of pitch (stand-alone INS with dynamics aid)
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Figure 6.22: Estimation results of roll (stand-alone INS with dynamics aid)
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Figure 6.23: Estimation results of heading (stand-alone INS with dynamics aid)

Table 6.8 presents the accuracy of the stand-alone dynamics-aided attitude obtained from
the nine-run tests. As shown, the average RMS error is about 0.8 for the pitch estimate
degrees, about 0.5 degrees for the roll estimate and about 1.5 degrees for the heading
estimate. From the performance comparisons of the integrated attitude (Table 6.4) and the
stand-alone dynamics-aided attitude (Table 6.8), we found that the latter provides better
roll accuracy while the former provides better pitch and heading accuracy. This could be
explained by the following factors: the correction for the roll error from the direct
dynamics-derived roll observations is more effective than the correction from the GPS
velocity and heading updates based on the error dynamics model; on the other hand, the
GPS velocity and heading updates provide the continuous correction for the pitch and
heading errors with good observability while the dynamics-derived pitch observations
and heading constraints are only available during the stationary periods. In summary, the
accuracy of the stand-alone dynamics-aided attitude is dependent on the availability and
the quality of the dynamics-derived attitude updates, i.e., the periods of the stationary and

straight-line motion as well as the accuracy of the pre-estimated accelerometer biases.
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Table 6.8: Attitude estimation accuracy (stand-alone INS with dynamics aid)

Pitch Error Roll Error Heading Error
Test No. (degrees) (degrees) (degrees)
Mean RMS Mean RMS Mean RMS

2 0.18 0.71 0.10 0.54 1.17 1.70
3 0.41 1.11 0.29 0.58 -0.09 1.06
4 0.48 0.85 0.36 0.59 0.07 1.23
5 0.39 1.00 -0.01 0.58 -0.68 1.48
6 0.06 0.53 -0.38 0.60 0.95 1.10
7" 0.19 0.67 -0.01 0.45 0.62 1.36
8 -0.28 0.82 -0.14 0.48 2.30 2.47
9 -0.09 0.51 0.30 0.56 1.91 2.10

10 0.18 063 006 046  -062  1.19
Average 0257  0.76  0.18" 054 093" 1.52

" This is the sample run of test whose results are shown in Figure 6.21
through Figure 6.23.

This value is calculated by averaging the absolute value of each run of
test.

6.3.3.1.2 Velocity and Position Accuracy

Figure 6.24 and Figure 6.25 show the velocity and position solutions obtained from the
stand-alone dynamics-aided and unaided MEMS INS and the geo-reference system from
the sample run #7, respectively. As shown in Figure 6.24, the unaided velocity has large
drifted errors and cannot be used for navigation while the dynamics-aided velocity error
is well bounded by the ZUPTs and cornering velocity updates. During the straight-line
motion, the dynamics-aided velocity error increases with time and the error growth rate is
mainly dependent on the pitch accuracy. For the position performance, due to the lack of
external position corrections in the stand-alone mode, the position error will accumulate
with the course of time. In this test, with the aiding from the dynamics knowledge the
stand-alone INS position solutions still keep on the track while the unaided solutions
have drifted away from the track at the several hundred-metre level. The horizontal
position error during about 3-minute GPS outages has been controlled to be within 27 m

for the dynamics-aided system.
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Figure 6.24: Estimation results of velocity (stand-alone INS with dynamics aid)
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Figure 6.25: Estimation results of position (stand-alone INS with dynamics aid)

Table 6.9 further summaries the dynamics-aided velocity and position accuracy obtained
from the nine-run data. We found that the East position accuracy is better than the North
because of the frequent stops available during the eastward/westward driving. In

summary, during about 3 minutes stand-alone navigation the average RMS error of 0.66
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m/s for velocity and of 16.25 m for horizontal position are obtainable while the average
maximum horizontal position error has been maintained within 30 m. The achieved
performance is much better than the performance supplied by the manufacturer
specifications which demonstrates the effectiveness of the dynamics knowledge aids for

low-cost MEMS INS navigation in the stand-alone mode.

Table 6.9: Velocity and position estimation accuracy (stand-alone INS with
dynamics aid)

Velocity Error North Position East Position Horizontal
Test No. (m/s) Error (m) Error (m) Position Error (m)

Mean  RMS [Max| RMS [Max| RMS [Max| RMS

2 -0.37 0.62 18.72 7.41 16.83 7.62 20.18  10.63
3 -0.38 0.75 18.37 8.51 2536  13.14  29.19  15.65
4 -0.29 0.56 1990 10.80 12.49 6.23 20.65 12.46
5 -0.30 0.82 33.15 1922 32.05 16,78 4393 2551
6 -0.14 0.47 20.73 9.84 19.04 9.81 2332 13.89
7 -0.21 0.52 26.75 15.00 11.15 5.19 26.75 15.87
8 0.05 0.92 40.82 1500 2192 1255 4633 19.56
9 -0.22 0.56 2239  11.53 19.95 9.78 26.55 15.12

10 -0.44 0.70 28.16 1529 18.84 8.64 30.37  17.57

Average 0.27" 0.66 25.44  12.51 19.74 9.97 29.70  16.25

" This is the sample run of test whose results are shown in Figure 6.24 and Figure 6.25.
This value is calculated by averaging the absolute value of each run of test.

6.3.3.2 Aiding from Dynamics-Derived and Calibrated Compass Observations
6.3.3.2.1 Attitude Accuracy

Table 6.10 lists the attitude estimation performance for all nine runs when both
dynamics-derived observations and calibrated compass headings are used to correct the
stand-alone INS attitude. Comparing these results with Table 6.8 where only the aiding
from the dynamics knowledge is applied, we noticed that only the heading accuracy is
improved while the pitch and roll accuracy remains the same. This is because the heading
state in the Kalman filter is directly observable from the heading measurement;
meanwhile, the pitch and roll states in the Kalman filter are very weakly observable from

the heading measurement especially for land vehicle applications where the pitch and roll
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of the vehicle are generally small. Thus, the calibrated compass heading can directly

correct the INS heading error but only slightly improve the INS pitch and roll estimation.

Table 6.10: Attitude estimation accuracy (stand-alone INS with dynamics aid and
compass aid)

Pitch Error Roll Error Heading Error
Test No. (degrees) (degrees) (degrees)
Mean RMS Mean RMS Mean RMS

2 0.18 0.71 0.10 0.54 0.54 1.76
3 0.41 1.11 0.29 0.58 0.34 1.45
4 0.48 0.85 0.36 0.59 0.51 1.56
5 0.39 1.00 -0.01 0.58 0.41 1.24
6 0.06 0.53 -0.38 0.60 0.01 1.32
7 0.19 0.67 -0.01 0.45 0.19 1.53
8 -0.28 0.81 -0.14 0.48 0.50 1.40
9 -0.09 0.51 0.30 0.55 0.35 1.35
10 0.18 0.63 0.06 0.46 0.37 1.28

Average 025 076  0.18° 054 036 143

" This value is calculated by averaging the absolute value of each run of
test.

Focusing on the assessment of the heading estimation accuracy, we found that with the
aiding from the calibrated compass headings the average mean of the heading error has
been reduced from 0.93 degrees to 0.36 degrees while the improvement in the average
RMS error is slight, from 1.52 degrees to 1.42 degrees. The reason becomes clear when
we examined the performance of the calibrated compass headings shown in Table 6.7. As
mentioned previously, the compass calibration can remove bias and scale factor error but
noise, magnetic disturbance and projection error. Thus, the mean error of the calibrated
compass heading is usually smaller than the RMS error. As shown in Table 6.7, the
average mean and RMS errors of the calibrated heading are 0.26 degrees and 4.82
degrees, respectively. With the small mean error, the calibrated compass headings can
reduce the error drift of the gyro-derived heading. However, the noise, disturbance and
projection error inherited in the compass heading may deteriorate the gyro-derived
heading. The impact of these errors can be reduced by properly adjusting the
measurement covariances of the compass heading using the adaptive method developed

in Chapter 5.
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To demonstrate this, shown in Figure 6.26 is a zoom-in version of the heading estimation
results obtained from the run #8 test. This figure compares the performance between the
calibrated compass heading, the stand-alone dynamics-aided INS heading and the
dynamics-aided plus compass-aided heading. As shown, the dynamics-aided plus
compass-aided approach provides smooth and drift-free heading estimation while the
stand-alone dynamics-aided INS heading has a significant bias and the calibrated

compass heading has significant jump errors.
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Figure 6.26: Comparison of heading estimation using different approaches (zoom-in)

6.3.3.2.2 Velocity and Position Accuracy

The estimation accuracy of the dynamics-aided plus compass-aided velocity and position
solutions for all nine runs is summarized in Table 6.11. As expected, the aiding from the
compass heading didn’t show significant improvement in the velocity and position
accuracy compared with no compass-aided solutions as shown in Table 6.9. This is
because the accuracy of the forward velocity is mainly dependent on the pitch accuracy.
As demonstrated previously, the aiding from the compass heading has only very slight
improvement in the pitch estimation so that the velocity accuracy cannot be improved
much. As the velocity improvement is very small and the heading improvement is not

obvious during the short-time test, the performance improvement is also limited in the
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position domain. It is expected to have greater performance improvement in the position

domain with the aiding from the compass heading over longer period of time.

Table 6.11: Velocity and position estimation accuracy (stand-alone INS with
dynamics aid and compass aid)

Velocity Error North Position East Position Horizontal
Test No. (m/s) Error (m) Error (m) Position Error (m)

Mean  RMS [Max| RMS [Max| RMS |[Max| RMS

2 -0.37 0.62 21.55 8.82 18.75 8.51 2329  12.26
3 -0.38 0.74 20.20 8.49 2580 1294 29.63 1547
4 -0.29 0.56 22.10 1093  15.83 7.08 23.49  13.02
5 -0.30 0.82 36.15 1934 3287 1687 4552  25.66
6 -0.14 0.48 19.22 8.69 2049 11.01 23.66 14.03
7 -0.21 0.52 2791 14.75 11.38 5.34 28.03  15.69
8 0.05 0.92 44.83 15.87 2499 15.10 4886 21.91
9 -0.22 0.56 22.68 1135  14.78 7.44 2445  13.57
10 -0.44 0.70 2895 14.17  20.13 9.15 30.59  16.87

Average 027 0.66 27.07 1249 2056 1038  30.84  16.50

" This value is calculated by averaging the absolute value of each run of test.

6.4 Summary of Test Results

In this chapter, the proposed intelligent integration algorithm has been tested and
analyzed with open area data. Two types of performance analysis, namely integration
performance and stand-alone inertial navigation performance, have been presented. The
first analysis, with the use of GPS updates, demonstrated the obtainable accuracy of the
accelerometer bias estimation and integrated navigation solutions as well as the
performance of the compass heading error modelling using neural networks. The results
showed that the bias estimation accuracy of about 0.03 m/s” is obtainable. In addition, the
integrated solutions have provided attainable accuracy for attitude less than 1 degree and

for velocity and position at about 0.1 m/s and 3 m level, respectively.
The second analysis, without the use of GPS updates, demonstrated the accuracy of the

dynamics-derived observations and the calibrated compass headings as well as the stand-

alone dynamics-aided INS navigation performance with/without compass aids. The
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results showed that the mean error of the dynamics-derived tilt is less than 0.2 degrees
equivalent to the bias estimation accuracy and the dynamics-derived velocity accuracy is
less than 0.5 m/s, both accurate enough to provide corrections for the stand-alone INS
pitch, roll and velocity. Meanwhile, the obtainable compass calibration accuracy using
the neural networks in a typical land vehicle environment is about 0.2 degrees, also good
enough to provide corrections for the stand-alone INS heading. For the stand-alone
inertial navigation performance, with the aiding from the dynamics knowledge, the
bounded tilt and heading with reduced error drift rates are attainable. The average
horizontal position error is controlled within 30 m during about 3 minutes GPS outages.
On the other hand, with the aiding from the calibrated compass headings, a smooth and

drift-free heading estimation is also obtainable.
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Chapter 7

Test Results in Urban Areas

Chapter 6 has demonstrated the performance of the proposed Al-enhanced integration
algorithm applied under two operational conditions: with full GPS updates and complete
GPS outages. This chapter presents the test results and performance analysis under
realistic urban environments. The test set-up and test environments are described first.
Then, the GPS-only position accuracy and the GPS data classification performance using
the designed fuzzy inference system are evaluated. Finally, the attainable position

accuracy of the Al-enhanced integrated solutions is presented.

7.1 Test Description

The test system set-up is similar to the one used in the open area test as described in
Chapter 6, except a SiRF Star II conventional GPS receiver that has standard signal
tracking sensitivity was added into the test system. The MT9 MEMS IMU, SiRF HSGPS
and SiRF GPS were connected to a laptop through three serial ports to conduct data
logging and time tagging as same as the process applied in the open area test. The test
system was installed on the same test van used in the open area test. The MT9 was
mounted tightly on the floor of the test van while the SiRF HSGPS and SiRF GPS
antennas were mounted on the roof of the van vertically above the MT9. A digital map of
the downtown Calgary provided by the City of Calgary was used as the reference for
position accuracy analysis. The map provides the coordinates of a road centre-line with

the several metre level accuracy.

A series of tests were conducted in the downtown Calgary, on April 23 and 26, 2005.
Two test routes, both having a variety of spatial urban characteristics, were chosen as

shown in Figure 7.1 and Figure 7.2. As shown, a variety of medium (60 — 100 m) to tall
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(150 — 200 m) buildings and several underpasses (on 3rd Street and 5th Avenue) are
located on each test route. Figure 7.3 and Figure 7.4 show the number of satellites tracked
by the SiRF high sensitivity and conventional GPS receivers in a sample run of the route-
A and route-B tests, respectively. Both tests started in a nearly open-sky area where the
number of satellites tracked by either the HSGPS or GPS receiver was larger than eight.
When the vehicle moved into the core downtown areas, the number of tracked satellites
dropped and the conventional GPS may suffer from frequent signal outages. In general,
the route-B test experienced severer signal degradation conditions than the route-A test.
Eight data collection runs on each route were performed, each starting in a nearly open-
sky area for one-minute static initialization to obtain good position fix. The test vehicle
took about 10 minutes to finish the route-A loop of about 2 km in length and about 15
minutes to finish the route-B loop of about 3 km in length. In both routes, the vehicle

frequently stopped on the traffic lights and had the speed varied from 0-40 km/h.
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Figure 7.1: Urban area test trajectory (route-A)
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Figure 7.2: Urban area test trajectory (route-B)
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Figure 7.3: Satellites tracked in a route-A test
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Figure 7.4: Satellites tracked in a route-B test

7.2 GPS Data Classification Performance

In urban area applications, GPS position is subject to performance degradation due to
multipath, large noise and other signal deterioration. It is therefore crucial to check the
quality of GPS data before they are used for navigation or integration with other sensors.
This section examines the accuracy and availability of the single point code-based
position solutions from the SiRF conventional and high sensitivity GPS receivers as well
as their data classification performance using the designed fuzzy inference system. The

results of the HSGPS are presented first, followed by the results of the conventional GPS.

7.2.1 Results of HSGPS

Figure 7.5 and Figure 7.6 illustrate the HSGPS positions obtained from the route-A tests
on April 23 and 26, 2005 respectively. For the route-B tests, the HSGPS positions
obtained on April 23 and 26, 2005 are illustrated in Figure 7.7 and Figure 7.8 respectively.
In all figures, the HSGPS positions are marked with different colours and symbols
according to the data classification results. As shown, the HSGPS can provide high

availability of position solutions in urban areas, but the position performance is
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inconsistent and unstable, i.e., some on the track and some off the track by the hundred-
metre level especially for the route-B tests with severer signal degradation conditions.
Using the fuzzy data classification, we have identified the erroneous GPS positions as
high signal-degraded data. Other more accurate and stable position solutions have been
identified as low or medium signal-degraded data as shown in Figure 7.5 through Figure
7.8. However, the high signal-degraded data may have good position accuracy. This is
due to the heavy filtering of GPS position performed inside the receiver and this filtering

effect is difficult to assess by using signal and geometry degradation information only.
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Figure 7.5: HSGPS positions and classification results, route-A tests, April 23, 2005
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Figure 7.6: HSGPS positions and classification results, route-A tests, April 26, 2005

Comparing data classification results with the test environments in both route-A and
route-B tests, we found that most of the identified low or medium signal-degraded data in
the core downtown areas are located at or close to the intersections. This demonstrates
the consistency between the data classification results with the actual signal and geometry
conditions. Comparing data classification results between different runs, we observed that
the data classification results are not identical from run to run. This is expected because
the signal degradation condition is changing with time according to the user-to-satellite
geometry relative to obstacles around the receiver. For example, in Figure 7.8 the HSGPS
positions between 5th and 6th Street on 8th Avenue have been identified as low signal-
degraded data in the run #1 test but as high signal-degraded data in the run #3 test. As

shown, the identified low signal-degraded data overlapping the reference trajectory
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indicates good position accuracy while the identified high signal-degraded data are off
the track by the hundred-metre level. This demonstrates the correlation between the

position performance and the signal degradation condition and the effectiveness of the

designed fuzzy data classification system.
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Figure 7.7: HSGPS positions and classification results, route-B tests, April 23, 2005
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Figure 7.8: HSGPS positions and classification results, route-B tests, April 26, 2005

Table 7.1 and Table 7.2 list the accuracy and availability of the HSGPS position as well
as the data classification performance obtained from the route-A and route-B tests,
respectively. Because in our test the digital map is the only available reference, the
across-track errors are computed for position accuracy analysis. As shown, although the
availability of the HSGPS position in a typical North American urban area is
considerably high (above 95% for both route-A and route-B tests), the position
performance is unsatisfactory for land vehicle applications (with maximum across-track
errors at the hundred-metre level). For data classification performance, we see that most
of the data classification results agree with the conclusion that the high signal-degraded
data have larger mean, RMS, and maximum across-track errors than the medium signal-

degraded data and so on. However, because of the in-receiver filter effects, there exist
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few exceptions that the position accuracy between different signal-degraded data set is

similar. Statistically, based on the results of the eight run tests, the good HSGPS data

classification for both route-A and route-B tests is still achievable. For the route-A tests,

the average maximum across-track error is at around the 15 metre level for the low

signal-degraded data, around the 30 metre level for the medium signal-degraded data, and

around the 100 metre level for the high signal-degraded data. For the route-B tests with

severer signal degradation conditions, the average across-track maximum error is at

around the 35 metre level for the low signal-degraded data, around the 60 metre level for

the medium signal-degraded data, and around the 150 metre level for the high signal-

degraded data.

Table 7.1: HSGPS position accuracy after data classification (route-A)

Test Run # (April 23, 2005)

Test Run # (April 26, 2005)

Classified HSGPS Data Average
1 2 3 4 1 2 3 4
MAX (m) 1070  7.62  10.14 1999 2158 1230 847 3676 1595
SiL;V:L Mean (m) 3.02  3.01 478 423 334 276 200 296 3.26
Degraded RMS(m) 404 352 537 545 498 355 248 677 4.52
Av. (%) 4775 3755  30.87 3649 2979 2239 1565 1442  29.36
, MAX (m) 2920 4233 20.56 1871 2632 31.18 42.06 40.89  31.41
l\é[ieg‘ﬁzlf_n Mean (m) 815  9.02  6.64 582 938 617 479 1147 7.68
Degraded RMS(m) 1032 1507 794 751 1249 826  7.54 1691 10.76
Av. (%)  17.98 1438 2170 1171 2125 1537 2473 2257 1871
. MAX (m) 65.04 43.61 40.64 279.81 7393 9458 199.89 12660 11551
silf:l- Mean (m) 1512 10.86 1422 2684 1480 2997 2029 2295 1938
Degraded RMS(m) 2011 1497 1736  53.68 2158 4138 3117 3524  29.43
Av. (%) 3333  47.00 4609 50.00 4791 61.64 56.18 49.84  49.00
MAX (m) 65.04 43.61 40.64 279.81 7393 9458 199.89 126.60 115.51
Total Mean (m) 802  7.61  9.60 1593 10.19 20.16 1335 16.65  12.69
RMS (m) 1278 12.00 1279 3853 1632 3279 2410 2819  22.19
Av. (%)  99.06 9893 98.66 9820 9895 9940 96.56 86.83  97.07

Av. denotes Availability.
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Table 7.2: HSGPS position accuracy after data classification (route-B)

Test Run # (April 23, 2005) Test Run # (April 26, 2005)
2 3 4 1 2 3 4

Classified HSGPS Data Average

MAX (m) 1122 598 3305 1456 6741 5994 3157 6480  36.06
Si;:l Mean(m) 282 163 374 331 374 455 324 517 353
Degraded RMS(m) 373 211 510 390 1034 1103 677 1103 675

Av. (%) 3138 2334 3194 37.04 2646 2609 28.68 28.33 29.16

. MAX (m) 17442 927 3881 2004 7137 6742 4264 70.10  61.76
l\é[ieg‘;‘;‘lrfl Mean (m) 2122 336 814 750 1588 19.65 17.02 12.97 1322
Degraded RMS(m) 3893 409 1318 875 2329 2949 2212 1662 1956

Av.(%) 1901 1441 1132 1113 1299 11.61 1275 1485  13.51

. MAX (m) 17504 397.57 13197 207.04 7045 6219 12078 11575  160.10
Silf;_ Mean (m) 3635 3873 2748 2725 2317 1932 3340 2594 2895
Degraded RMS(m) 47.14 8323 3001 4273 2846 2499 4592 3626 4347
Av.(%) 4730 4885 5225 50.00 58.64 60.11 5554 5379 5331

MAX (m) 175.04 397.57 131.97 207.04 7137 6742 120.78 115.75 160.87
Mean (m) 22.63 2284 17.25 1598 1696 1542 2232 17.89 18.91
RMS (m) 37.09 6254 2935 30.73 24.18 2279 3586  28.4l 33.87

Av. (%) 97.68 86.60 9550 98.17 98.09 97.81 9697 96.97 95.97

Total

Av. denotes Availability.

7.2.2 Results of GPS

For the SiRF conventional GPS that has standard signal tracking sensitivity, the position
solutions obtained from the route-A tests on April 23 and 26, 2005 are illustrated in
Figure 7.9 and Figure 7.10 and the position solutions from the route-B tests are shown in
Figure 7.11 and Figure 7.12, respectively. Similar to the results from the HSGPS data
classification, more accurate and stable position solutions have been identified as low or
medium signal-degraded data while the erroneous and biased position solutions have
been identified as high signal-degraded data. In addition, most of the identified low or
medium signal-degraded data in the core downtown areas are located at or close to the
intersections, demonstrating the consistency between the data classification results and
the actual signal and geometry conditions. However, similar to the limitation presented in
the HSGPS data classification, some solutions with good position accuracy were
identified as high signal-degraded data and vice versa. This is because the single point
code-based position solution from the GPS receiver is affected by not only the quality of
the GPS signal and geometry but also the performance of the in-receiver filter. An

unexpected example shown in the run #4 test in Figure 7.12 demonstrates that under low
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and medium signal degradation conditions (at the corner of 5th Avenue and 6th Street)
the GPS receiver could provide poor position solutions with error at the hundred-metre
level. Looking at the HSGPS solution at the same location of the same run test shown in
Figure 7.8, we found that the HSGPS solutions at the same corner were identified as low
and medium signal-degraded data with good position accuracy. The HSGPS case is an
expected result showing that the position performance is inversely proportional to the
degree of signal degradation. Thus, by comparing the GPS with HSGPS position
performance under the same location at the same time, it is clear that the performance
difference is due to in-receiver filter effects. The unexpected GPS position solutions are
obtained from the overweighting of the previous filtered positions and the

underweighting of the current GPS measurements performed by the in-receiver filter.
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Figure 7.9: GPS positions and classification results, route-A tests, April 23, 2005
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Figure 7.10: GPS positions and classification results, route-A tests, April 26, 2005

Table 7.3 and Table 7.4 list the across-track errors and the data availability of the
conventional GPS solutions for each classified signal-degraded data in the route-A and
route-B tests, respectively. As shown, the availability of GPS positions in urban areas is
degraded, averagely about 87% for the route-A tests and about 76% for the route-B tests.
The position performance is also unsatisfactory for land vehicle applications, averagely
with the maximum across-track error at the hundred-metre level. For the data
classification performance, the statistical results are similar to the HSGPS case. In
general, the position accuracy is inversely proportional to the degree of signal
degradation condition, i.e., the severer the signal degradation condition, the poorer the
position accuracy. For the route-A tests, the average maximum across-track error is at

around the 10 metre level for the low signal-degraded data, around the 35 metre level for
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the medium signal-degraded data, and around the 95 metre level for the high signal-
degraded data. For the route-B tests that have severer signal degradation conditions, the
average maximum across-track error is at around the 20 metre level for the low signal-

degraded data, around the 60 metre level for the medium signal-degraded data, and

around the 150 metre level for the high signal-degraded data.
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Figure 7.11: GPS positions and classification results, route-B tests, April 23, 2005
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Figure 7.12: GPS positions and classification results, route-B tests, April 26, 2005

Comparing the overall performance of the conventional GPS position with the high

sensitivity GPS position, we found that the high sensitivity GPS provides higher

availability but lower reliability than the conventional GPS. For the route-A tests, the

availability of the conventional and high sensitivity GPS solutions is about 87% and 97%

while the average RMS across-track error is about 19 m and 22 m, respectively. For the

route-B tests, the availability of the conventional and high sensitivity GPS solutions is

about 76% and 96% while the average RMS across-track error is about 27 m and 34 m,

respectively. The obtained performance difference is considered reasonable as the high

sensitivity GPS receiver is specially designed to track low-power signals which are

generally noisy and have large outliers due to multipath and echo-only signals.

182



Table 7.3: GPS position accuracy after data classification (route-A)

Test Run # (April 23, 2005) Test Run # (April 26, 2005)
2 3 4 1 2 3 4

Classified GPS Data Average

MAX (m) 23.59 730 1099 1470 714 998 860 598  11.04
Si;:l Mean(m) 494 275 525 3.4 249 313 209 213 324
Degraded RMS(m)  7.10 345 598 441 292 426 266 258 417

Av. (%) 43.07 35.62 2327 3423 27.00 8.06 21.91 9.40 25.32

. MAX (m) 22.58 26.68 13.48 16.88 28.56 133.06 14.88 2043  34.57
l\é[ieg‘;‘;‘lm Mean (m) 725 1037 530 648 729 1096 256  3.59 6.73
Degraded RMS(m) ~ 9.74 1443 686 832 898 2922 374  6l6 10.93

Av. (%) 993 644 1499 1441 1551 1299 1455 1677  13.20

) MAX (m) 56.53 30.57 18439 36.10 48.62 216.80 105.55 80.18 94.84
SIi_Iglri}lll- Mean (m) 14.26 9.15 9.60 12.98 9.46 2490 18.64 16.36 14.42
Degraded RMS(m) 1986 1241 18.89 1651 12.88 50.28 28.09 26.70 23.20
Av. (%) 43.45 46.57 4541 41.67 47774 6836 3881 54.70 48.34

MAX (m) 56.53  30.57 184.39 36.10 48.62 216.80 105.55 80.18 94.84
Mean (m)  9.37 6.67 7.62 8.22 7.00 2091 10.72  12.06 10.32
RMS (m) 1449 10.04 14,57 12.00 10.21 4537 2029 22.16 18.64

Av. (%) 96.44 88.63 83.67 9032 90.24 89.40 7527  80.88 86.86

Total

Av. denotes Availability.

Table 7.4: GPS position accuracy after data classification (route-B)

Test Run # (April 23, 2005) Test Run # (April 26, 2005)
1 2 3 4 1 2 3 4

Classified GPS Data Average

MAX (m) 15.65 2377 3396 636 30.08 7.68 2335 20.10  20.12
sig?::l Mean (m)  5.78 2.10 5.27 1.90 3.12 2.02 4.67 2.59 3.43
Degraded RMS(m)  7.56 4.71 9.97 2.37 5.41 2.64 7.65 3.74 5.51

Av. (%) 1453 1643 2031 3277 2122 1148 1897  23.03 19.84

. MAX (m) 20.07 29.74 33.05 107.85 58.94 30.89 8421 11291  59.71
l\é[ieg‘;‘:lm Mean (m) 3.0 433 557 1118 1195 243 1488 1138  8.09
Degraded RMS(m) 555 795 886 2260 1951 428 2850 2957 1586

Av.(%) 1159 13.69 1628 10.06 13.11 1120 1851 10.61  13.13

) MAX (m) 10222 77.03 15799 112.15 277.12 64.04 287.89 10525 147.96
S?glf:l— Mean (m) 14.83 11.09 31.69 22.03 2925 20.58 26.69  20.61 22.10
Degraded RMS (m) 2098 1673 5846 3545 40.69 27.08 46.73 31.74 34.73
Av. (%) 48.69 39.05 3829 3445 4589 5123 4036 44.24 42.78

MAX (m) 10222 77.03 15799 112.15 277.12 64.04 287.89 11291 148.92
Mean (m) 11.24 7.62 18.85  12.08 19.51 1495  18.51 14.03 14.60
RMS (m) 17.39 1326 4233 2509 31.89 22,63 36.60 2637 26.94
Av. (%) 7481 69.16 7488 7729 80.21 7391 7785 77.88 75.75

Total

Av. denotes Availability.
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7.3 Integration System Performance

The previous section has demonstrated the performance of the fuzzy data classification
for both the SiRF high sensitivity and conventional GPS in the urban environment. This
section presents the performance of the Al-enhanced MEMS INS/GPS integration system
in the same environment. To assess the impact of Al enhancements on the position filter
performance, the integrated positions derived from the conventional adaptive Kalman
filter are also presented. It should be noted that for both cases the velocity filters work
exactly the same, both aided by land vehicle dynamics knowledge. In the following
sections, the results of the MT9/HSGPS integrated positions are presented first, followed
by the results of the MT9/GPS integrated positions.

7.3.1 Results of MT9/HSGPS

Figure 7.13 and Figure 7.14 illustrate the MT9/HSGPS trajectories derived from the
conventional adaptive Kalman filter (AKF) and the Al-enhanced adaptive Kalman filter
(AI+AKF) for the route-A tests on April 23 and 26, 2005, respectively. For the route-B
tests, the MT9/HSGPS trajectories are illustrated in Figure 7.15 and Figure 7.16 for April
23 and 26 tests, respectively. In all figures, the trajectories obtained from the AKF and
AI+AKF are marked with cyan squares and pink diamonds respectively while the
reference trajectory is marked with a yellow line. As shown, in the beginning and the end
of each test with better GPS signal conditions, the obtained trajectories from both the
AKF and AI+AKEF overlap the reference trajectory, indicating good position accuracy. In
the core downtown areas with severer signal degradation conditions, the accuracy of the
integrated positions degrades due to the use of the deteriorated GPS positions and the

drifted INS positions in the absence of GPS.

Comparing the integrated positions shown in Figure 7.13 through Figure 7.16 with the
HSGPS positions shown in Figure 7.5 through Figure 7.8, we found that the erroneous
HSGPS positions have been filtered and smoothed by the adaptive Kalman filter. In
addition, as shown in Figure 7.5 through Figure 7.8, in most cases the HSGPS data have

been correctly classified, thus the innovation-based adaptive measurement noise
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covariance can be properly modified according to the identified signal degradation
condition. Consequently, the more accurate GPS data are characterized by smaller
measurement noise covariances so that the filter positions can fast converge to the
accurate GPS positions. A typical example can be found in the run #2 of route-B tests on
April 23, 2005. As shown in the run #2 test in Figure 7.7, some GPS positions with good
accuracy at the corner of 8th Avenue and 3rd Street have been classified as medium
signal-degraded data. Thus, the Al-enhanced adaptive Kalman filter will trust these
medium signal-degraded data more by using the decreased adaptive measurement noise
covariances. As shown in the run #2 test in Figure 7.15, the Al-enhanced integrated
positions at the same corner have been corrected back to the track while the positions

derived from the conventional adaptive Kalman filter not.
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Figure 7.13: MT9/HSGPS integrated positions, route-A tests, April 23, 2005
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Figure 7.14: MT9/HSGPS integrated positions, route-A tests, April 26, 2005

Some test results have demonstrated the advantage of the Al-enhanced adaptive Kalman
filter in terms of reducing position drifts induced by the slowly changing GPS position
errors when the vehicle is stationary. A typical example can be found at the corner of 5th
Avenue and 5th Street in the run #1 test in Figure 7.14. The trajectory provided by the
AI+AKF remains on the track but the trajectory provided by the AKF drifts with
erroneous GPS positions. As mentioned in Chapter 5, this performance improvement is
contributed by the aiding from the vehicle dynamics knowledge. In summary, for both
route-A and route-B tests, the results have demonstrated that the Al-enhanced adaptive
Kalman filter can improve integration performance especially in GPS challenging
environments. Table 7.5 and Table 7.6 list the integrated position accuracy versus the

HSGPS-only position accuracy in terms of the across-track error for the route-A and
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route-B tests, respectively. It can be seen that in each run the Al-enhanced AKF provides
better position accuracy than the convectional one in terms of the mean, RMS and
maximum across-track errors, which confirms the effectiveness of the designed Al-based
enhancement. The average mean, RMS and maximum across-track errors of the AI+AKF
solutions are 7.93 m, 10.97 m and 34.63 m for the route-A tests and 10.09 m, 14.38 m
and 44.5 m for the route-B tests, respectively which shows significant improvement over
the HSGPS solutions with the maximum across-track error at the hundred-metre level. As
expected, better performance has been obtained from the route-A test, since there exist

harsher GPS environments in the route-B test.
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Figure 7.15: MT9/HSGPS integrated positions, route-B tests, April 23, 2005
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Figure 7.16: MT9/HSGPS integrated positions, route-B tests, April 26, 2005
Table 7.5: Integrated MT9/HSGPS vs. HSGPS position accuracy (route-A)
Across.Track Errors 1Test Runz# (April 33, 2005)4 1Test Runz# (April 36, 2005)4 Average

MAX (m) 65.04 43.61 40.64 27981 7393 9458 199.89 126.60 115.51
HSGPS Mean (m)  8.02 7.61 9.60 1593 10.19 20.16 1335 16.65 12.69
RMS (m) 12.78 12.00 12.79 3853 1632 3279 2410 28.19 22.19

MAX (m) 3299 31.72 33770 40.65 47.64 77.05 5272 3633 44.10
AKF Mean (m)  6.48 597 8.74 11.63 9.37 18.62  11.17 9.28 10.16
RMS (m) 9.74 8.70 11.51 1584 1420 26.68 16.86 13.24 14.59

MAX (m) 31.78 2899 2239 3261 2689 52.02 5058 31.82 34.63
AI+AKF  Mean (m)  5.25 5.82 7.03 10.17 5.33 12.75 9.23 7.86 7.93
RMS (m) 8.46 8.08 8.45 13.10 7.39 17.83 1291 11.59 10.97
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Table 7.6: Integrated MT9/HSGPS vs. HSGPS position accuracy (route-B)

Test Run # (April 23, 2005) Test Run # (April 26, 2005)
1 2 3 4 1 2 3 4

Across-Track Errors Average

MAX (m) 175.04 397.57 13197 207.04 7137 6742 120.78 11575 160.87
HSGPS Mean (m) 22.63 22.84 1725 1598 1696 1542 2232 17.89 18.91
RMS (m) 37.09 6254 2935 30.73 24.18 2279 3586 28.4l 33.87

MAX (m) 129.34 76.65 3639 50.17 5844 5198 58.12 4898 63.76
AKF Mean (m) 2329 14.22 8.66 11.17  15.21 13.04 15.62 12.65 14.23
RMS (m) 38.88 21.16 11.67 1592 20.72 1879 22.63 17.68 20.93

MAX (m) 48.12 7376 3196 36.45 4232 3489 5259 3590 44.50
AI+AKF  Mean (m) 12.17 13.20 5.89 8.08 12.31 7.15 13.11 8.81 10.09
RMS (m) 1739  20.05 8.50 11.53  16.37 9.28 19.19 1271 14.38

7.3.2 Results of MT9/GPS

For the MT9/GPS integrated solutions, the trajectories obtained from the route-A tests on
April 23 and 26, 2005 are illustrated in Figure 7.17 and Figure 7.18 and from the route-B
tests in Figure 7.19 and Figure 7.20, respectively. Similar to the results of the
MT9/HSGPS system, for both route-A and route-B tests the integrated positions are good
in the nearly open areas and degraded in the core downtown areas. In addition, the Al-
enhanced adaptive Kalman filter has provided better position performance than the
conventional one in general. However, an undesirable result was found in the run #4 of
the route-B test on April 26, 2005. As shown in the run #4 test in Figure 7.20, the Al-
enhanced adaptive Kalman filter solutions are poorer than the conventional ones. This is
because in this case the AI+AKF approach has used the incorrect data classification result
to modify the adaptive measurement noise covariance. From the GPS data classification
results in the same run test as shown in Figure 7.12, we found that the GPS receiver
provided poor position solutions under the low and medium signal degradation conditions
(at the corner of 5th Avenue and 6th Street) due to in-receiver filter effects. As a result,
the poor GPS solutions were overweighted in the Al-enhanced adaptive Kalman filter

which subsequently degraded the integration performance.

The accuracy of the integrated position and the GPS-only position for route-A and route-
B tests is shown in Table 7.7 and Table 7.8, respectively. Similar to the MT9/HSGPS

results, the Al-enhanced adaptive Kalman filter provides better position accuracy than the
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conventional one for the MT9/GPS integration system. The average mean, RMS and
maximum across-track errors for the Al-enhanced integration solutions are 7.1 m, 10.5 m
and 40.1 m for the route-A tests and 11.11 m, 16.85 m and 52.43 m for the route-B tests.
Obviously, a better performance has been obtained from the route-A tests since there

exist harsher GPS environments in the route-B tests.
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Figure 7.17: MT9/GPS integrated positions, route-A tests, April 23, 2005
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Figure 7.18: MT9/GPS integrated positions, route-A tests, April 26, 2005

Comparing the results of the MT9/HSGPS with that of the MT9/GPS, we observed that
the MT9/HSGPS AI+AKF approach provides better position accuracy than the MT9/GPS
AI+AKF approach. However, when the AKF-only is applied, the MT9/HSGPS system
provides poorer position accuracy than the MT9/GPS system. This could be explained by
the error behavior difference between the HSGPS and GPS positions. Based on the
results of the HSGPS positioning shown in Figure 7.5 through Figure 7.8, we found that
the HSGPS provides more available data but the obtained positions may gradually drift
away from the track under severe signal degradation conditions. As mentioned in Chapter
5, the gradually drifted HSGPS position errors are undetectable by the innovation-based
AKF, which will lead to biased position estimation. In contrast, the conventional GPS

provides less available but more reliable positions as shown in Figure 7.9 through Figure
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7.12. Although there exist some GPS position outliers, they have been easily detected by
the innovation-based AKF. Thus, the conventional AKF works more properly in the
MT9/GPS integration than in the MT9/HSGPS integration. Accordingly the MT9/GPS
AKEF positions are more accurate. When the Al-enhanced AKF is applied for data fusion,
the measurement noise covariance is modified to better characterize the real GPS
performance and thus the integrated position accuracy can be improved. As shown in
Table 7.5 through Table 7.8, the improvement for the MT9/HSGPS integration is more
significant than the MT9/GPS integration. This is because more drifted position errors
from the HSGPS have been successfully removed by the Al enhancement and more low
and medium geo-signal-degraded HSGPS data are available to modify the measurement
noise covariance. As a result, the MT9/HSGPS AI+AKF solution is better than the
MT9/GPS AI+AKEF solution.
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Figure 7.19: MT9/GPS integrated positions, route-B tests, April 23, 2005
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Figure 7.20: MT9/GPS integrated positions, route-B tests, April 26, 2005
Table 7.7: Integrated MT9/GPS vs. GPS position accuracy (route-A)
Across.Track Errors Test Run # (April 23, 2005) Test Run # (April 26, 2005) Average
1 2 3 4 1 2 3 4
MAX (m) 56.53 30.57 18439 36.10 48.62 216.80 105.55 80.18 94.84
GPS Mean (m) 9.37 6.67 7.62 8.22 7.00 20.91 10.72 12.06 10.32
RMS (m) 14.49 10.04 14.57 12.00 10.21 4537 2029 22.16 18.64
MAX (m) 55.72  30.65 89.28 35.68 35.54 50.23 51.53 31.37 47.50
AKF Mean (m) 9.28 6.84 11.68 7.37 6.32 10.63 9.37 7.34 8.60
RMS (m) 14.18 10.29  20.90 11.11 9.08 15.62 15.10 10.51 13.35
MAX (m) 29.64  28.62 86.67 25.76 3472  33.02 42.58 39.75 40.10
AI+AKF  Mean (m) 6.99 5.86 11.27 5.96 4.05 7.49 8.36 6.79 7.10
RMS (m) 9.80 8.85 19.78 8.31 5.73 9.64 12.14 9.73 10.50
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Table 7.8: Integrated MT9/GPS vs. GPS position accuracy (route-B)

Test Run # (April 23, 2005) Test Run # (April 26, 2005)

Across-Track Errors
1 2 3 4 1 2 3 4

Average

MAX (m) 10222 77.03 15799 112.15 277.12 64.04 287.89 11291 14892
GPS Mean (m) 11.24 7.62 18.85 12.08  19.51 1495 18.51 14.03 14.60
RMS (m) 17.39 1326 4233 2509 31.89 2263 36.60 2637 26.94

MAX (m) 56.46 5629 32.02 5465 5642 56.77 66.12  58.27 54.62
AKF Mean (m) 10.36 8.58 8.17 12.17 1537 1454 1447  10.05 11.71
RMS (m) 13.56 13.54 11.37 1881 21.02 20.10 21.37 15.81 16.95

MAX (m) 60.61 52.84 2485 5748 39.68 37.64 49.70 96.64 52.43
AI+AKF  Mean (m) 10.70 9.46 6.33 1326  10.59 7.91 1275 17.89 11.11
RMS (m) 14.91 14.84 8.57 20.77 15.04 1038 1747 3285 16.85

7.4 Summary of Test Results

In this chapter, the performance of the stand-alone GPS and the Al-enhanced integration
system in the urban environment has been evaluated. Two types of GPS receivers, the
conventional and high sensitivity GPS, and two types of low-cost integration systems, the
MEMS INS/GPS and MEMS INS/HSGPS have been tested on two downtown routes.
The HSGPS provided higher availability but lower reliability of position solutions than
the conventional GPS. In severe signal degradation conditions, both GPS solutions were
subject to large position errors at the hundred-metre level. Using the proposed fuzzy data
classification system, more accurate position solutions have been identified successfully.
For the route-A test, the average maximum across-track errors for the identified low
signal-degraded HSGPS and GPS data were around 15 m and 10 m, respectively. For the
route-B test which has severer signal degradation conditions, the average maximum
across-track errors for the identified low signal-degraded HSGPS and GPS data increased
to around 35 m and 20 m, respectively. However, there still existed few disagreements
between the obtained position performance and the signal degradation condition because

of the smoothing feature of the position solution from the GPS receivers.

Compared to the stand-alone GPS, the Al-enhanced integration system can improve the
position performance significantly. Based on the average result of the route-A and route-
B tests, the MT9/HSGPS integration provided about 71% improvement in the average

maximum across-track error over the HSGPS and the MT9/GPS integration provided
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about 61% improvement in the average maximum across-track error over the GPS. With
the capabilities of better characterizing the real GPS performance and identifying the
slowly changing GPS position error, the Al-enhanced adaptive position filter provided
better position performance than the conventional adaptive position filter. About 26%
improvement in the average maximum across-track error for the MT9/HSGPS integration
and 10% for the MT9/GPS integration were obtained. Overall, the Al-enhanced MEMS
INS/HSGPS integration system provided the best position performance because of the
use of more available and properly weighted GPS data.
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Chapter 8

Conclusions and Recommendations

The contribution of this research work is in the development of Al-based algorithms and
their incorporation with the conventional/adaptive Kalman filter for the integration of
low-cost MEMS INS with SPP GPS for land vehicle applications. Three Al-based
methods have been developed to deal with the corrupted GPS data in signal-degraded
environments, the large instrument errors experienced with a low-grade MEMS IMU and
the distorted magnetic measurements from an electronic compass, respectively.
Specifically, a fuzzy logic rule-based system has been developed to identify GPS signal
degradation conditions based on the combination of signal quality and geometry
information so that GPS solutions can be classified in terms of their quality and
subsequently can be more properly weighted in data fusion under various GPS
environments. A dynamics knowledge aided inertial navigation algorithm along with a
fuzzy expert vehicle dynamics identification system has been created to simplify system
models and to extend measurement update schemes of the Kalman filter so that INS
errors can be more effectively controlled especially during GPS outages. A neural-
networks-based compass calibration algorithm has been developed to correctly remove
the systematic measurement errors even in disturbance-rich environments so that the
compass heading can benefit the integration system in land vehicle environments. Finally,
these Al-based methods have been incorporated with the conventional/adaptive Kalman
filter in a loosely coupled integration scheme to build up an intelligent data fusion and
processing algorithm for low-cost MEMS INS/SPP GPS integration. The developed
algorithms have been tested and evaluated in various GPS conditions (open areas,
complete GPS outages and urban areas) using a low-cost Xsens MT9 MEMS IMU with
SiRF Star II conventional/high sensitivity GPS receivers. The following sections outline
the major conclusions drawn from this research and the recommendations for future

improvements.
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8.1 Conclusions

This dissertation has demonstrated the advantages and effectiveness of the developed Al-
based methods applied to the enhancement of low-grade MEMS INS/SPP GPS data
fusion and processing. Such Al-enhanced integration system can provide continuous and
satisfactory navigation solutions for land vehicle applications in all operational
environments. In the following, major conclusions are summarized in terms of various

GPS conditions.

Navigation in open areas

1. With continuous and reliable GPS updates in open areas, the dynamics-aided
Kalman filter can estimate the constant part of the accelerometer bias with
estimation accuracy of about 0.03 m/s”. This enables the accurate estimation of the
dynamics-derived observations to provide INS error control during GPS outages. In
general, the x-axis bias estimation accuracy is better and more stable than the y-axis
one because the x-axis bias is estimated directly using the Kalman filter while the y-
axis bias estimation involves a statistical approach affected by more error sources.
Under signal-degraded conditions, however, GPS accuracy will be degraded and in
turn the Kalman filter cannot provide stable and reasonable bias estimation. In this
case, the bias estimation process should be suspended and the last estimated bias is

used for error compensation.

2. The low-cost MEMS INS/SPP GPS integration system can provide accuracy for
attitude less than 1 degree and for horizontal velocity and position at accuracy about
0.1 m/s and 3 m in open-sky environments, respectively. The pitch and roll accuracy
is affected by the filter observability which varies with vehicle dynamics changes
while the heading accuracy is mainly determined by the accuracy of the GPS
heading update which is proportional to the vehicle velocity. The integrated velocity
and position performance is almost identical to the GPS velocity and position

performance.
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3. The heading information provided by the integration system in open areas has been
successfully used for compass error modelling. With sufficient training data, the
neural networks can properly model the nonlinear input-output relationship that
describes the bias, scale factor and declination effects on the compass heading even
in the presence of significant noise and disturbance. The neural networks should be

retrained once the bias, scale factor and declination effects change.

Navigation with complete GPS outages

1. The dynamics-aided inertial navigation algorithm can provide sufficiently accurate
attitude and velocity observations to control the stand-alone INS error drift. The bias
of the dynamics-derived tilt is about 0.16 degrees and the attainable accuracy of the
dynamics-derived velocity is about 0.45 m/s. The performance of the dynamics-
derived observations is mainly determined by the accuracy of the accelerometer bias
estimate and thus will degrade when the constant part of the accelerometer bias

changes.

2. The neural networks trained in open areas have been successfully used to calibrate
compass heading during the sequential GPS outages. The calibration accuracy using
the neural networks in a typical land vehicle environment is about 0.26 degrees
which is good enough to correct the MEMS gyro-derived heading. This calibration
method doesn’t require declination information and magnetometer bias and scale
factor estimation. In addition, it can provide robust calibration performance in the
presence of large noise and disturbance while other traditional approaches may fail

or diverge.

3. During complete GPS outages, the dynamics-aided MEMS INS can provide
bounded attitude and improved velocity and position information while the unaided
solutions will drift over time rapidly and cannot be used for navigation. During
about 3-minute stand-alone inertial navigation on the test trajectory with eight

cornering shapes and four virtual stop signs, the attainable accuracy of the
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dynamics-aided roll, pitch and heading is about 0.8, 0.5 and 1.5 degrees, on average,
respectively. The performance difference between each axis is due to the variations
in frequency and availability of the dynamics-derived information with respect to
pitch, roll and heading channels. The accuracy of the dynamics-aided horizontal
velocity and position solutions is about 0.66 m/s and 16.25 m, respectively and the
maximum horizontal position error has been maintained within 30 m, on average.
The achieved performance is therefore much better than the performance supplied
by the manufacturer specifications which demonstrates the capability of using the
dynamics-aided MEMS INS to bridge longer GPS outages. The limitation of the
proposed method is the requirements of frequent stationary and/or cornering
dynamics of the vehicle. In urban area applications, however, these requirements can

be easily fulfilled by the dense traffic lights, traffic jam and the grid road layout.

4. When the calibrated compass heading is added to enhance the stand-alone
dynamics-aided INS navigation, no significant improvement in tilt, velocity and
position but heading accuracy only has been found. This is because the heading state
in the Kalman filter is direct observable from the compass heading measurement
while others are not. The improvement of the heading solution in terms of biasness
1s more significant than preciseness because the calibrated compass heading is
nearly unbiased but is still corrupted with random errors due to noise, magnetic
disturbance and projection error. In summary, the dynamics-aided plus compass-
aided approach is able to provide smooth and drift-free heading estimation with
mean error of 0.36 degrees and RMS error of 1.42 degrees, on average, during the

GPS outage of about 3 minutes.

Navigation in urban areas

1. In urban areas, the stand-alone GPS position is subject to degraded availability and
accuracy with occasional outliers of the hundred-metre level. The in-receiver filter
smoothes the position but at the same time may introduce large biases when GPS

measurements are corrupted by large noise and multipath. The HSGPS provides
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higher availability but lower reliability in position solutions than the conventional

GPS.

. The developed fuzzy data classification system can properly classify GPS data
quality in the statistical sense based on the identified signal degradation conditions
for both conventional and high sensitivity GPS. However, the proposed method
cannot provide a systematic assessment of epoch-by-epoch positional accuracy
because of the unknown proprietary of the in-receiver filter and the dilemma of
using the fading C/NO to indicate the magnitude of multipath error. The proposed
method could be applied to notify users the quality of GPS data under various GPS
environments and to improve the performance of GPS/INS integration system by

properly adapting the GPS data in data fusion as implemented in this research.

. The intelligent MEMS INS/SPP HSGPS integration system can provide continuous
and satisfactory position solutions for land vehicle navigation in the typical North
American urban canyons. The average RMS and maximum across-track errors are
around 10.97 m and 34.63 m for the route-A tests and 14.38 m and 44.5 m for the
route-B tests where there exist harsher GPS environments. The intelligent MEMS
INS/SPP GPS integration system provides similar position performance, with the
average RMS and maximum across-track errors of around 10.5 m and 40.1 m for the
route-A test and 16.85 m and 52.43 m for the route-B test, respectively. In harsher
GPS environments such as in the core downtown area, HSGPS is recommended for

the integration system in order to provide better navigation performance.

. The Al-enhanced adaptive Kalman filter has shown better performance than the
conventional adaptive Kalman filter because of its capability to reject the slowly
changing GPS position error and to fast recover from the biased estimation once
good GPS data are available. This improvement is found more significant in the
MEMS INS/HSGPS integration than the MEMS INS/GPS integration because the
HSGPS solution has more gradually drifted type of position error that can be

detected by the Al-enhanced adaptive Kalman filter but not by the conventional one.
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However, the degraded position performance could be introduced by the Al-
enhanced adaptive Kalman filter when the performance of the GPS filter output
doesn’t correspond to the signal degradation condition such as poor GPS outputs in
a low signal-degraded condition. Based on the experimental results, this rarely

happens and is difficult to detect due to the latency of the in-receiver filter.

In summary, the proposed Al-based methods suggest a powerful approach to process the
imprecise and ambiguous data obtained from low quality instruments and in unfavourable
environments that are difficult to deal with by traditional model-based algorithms. The
intelligent integration algorithm increases the potential of using a low-cost MEMS
INS/SPP GPS system to provide continuous and satisfactory navigation solution for land

vehicle applications.

8.2 Recommendations

Based on the results and conclusions of this dissertation, the following recommendations

for further research are proposed:

1. The velocity and attitude filter is designed to operate in GPS-only update mode
under open-sky environments and in full update (updates from GPS, dynamics-
derived observation and calibrated compass heading) mode under signal-degraded
and/or signal-blocked environments. In this research, the integration system was
tested in open-sky and urban areas respectively but not in a more realistic situation
such as from open-sky/suburban to urban areas or vice versa. In practical
applications, it is required to develop an expert system to automatically switch the
operation mode of the velocity and attitude filter according to GPS data quality and

filter performance.

2. The parameters of the neural networks used for compass calibration such as the
number of hidden neuron are decided empirically in this research. For optimization

purpose, an intelligent mechanism to adjust the structure and parameters of the
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neural networks according to the complexity of the problem is recommended and

should be investigated in the future.

. For testing purpose, the neural networks used for compass calibration are trained
and tested using the data collected by different runs on the same route during a
couple-hour experiment. In practical applications, as the compass is installed in a
moving vehicle, the nonlinear relationship between compass heading and true
heading may change with environments such as geographic location. Thus, it is
required to retrain the neural networks occasionally to adapt the environmental
changes. An intelligent mechanism to determine the size of the training data and the
frequency of the training in accordance with the actual field environments should be

investigated.

. Under signal-degraded and/or signal-blocked environments, the proposed
integration algorithm stops the estimation of accelerometer biases and uses the last
estimated biases to correct dynamics-derived observations to provide additional
measurement updates for INS error control. However, the estimated bias may differ
from the true bias with time according to operational environments and in turn the
dynamics-derived observations could be biased. The impact of the biased dynamics-

derived updates on INS error control should be investigated.

. The parameters used in the fuzzy expert vehicle dynamics identification system are
vehicle dependent and sensitive to the installation locations of the sensors. In his
research they were empirically determined based on the real data. To reduce the cost
of the design process and to optimize the identification system, a self-learning fuzzy

system is recommended.

. When the vehicle is moving in a straight line during long periods of GPS outage,
only the accelerometer-derived roll is available to update the Kalman filter and it
provides very small corrections for the pitch and forward velocity error. In this case,

the pitch and forward velocity error will drift to a large extent and thus additional
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error control or prediction techniques are required to maintain the stand-alone

MEMS INS with reasonable performance.

. The fuzzy data classification system can properly classify GPS data quality in the
statistical sense based on the identified signal degradation conditions. However, few
exceptions such as poor GPS outputs in a low signal-degraded condition could
happen due to the latency of the in-receiver filter. Investigating a fault detection
method to monitor these exceptions is beneficial to improve the robustness of the

data classification system.

. The position accuracy of the proposed integration system can be further improved
by using map-matching techniques which provide addition map-derived

observations to constrain position errors.

. Incorporating the dynamics knowledge aided inertial navigation algorithm and fuzzy
GPS data classification system with the Kalman filter in a tightly coupled integrated
scheme should be investigated for possible performance improvement when the

computational loading is not a major concern.
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