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Abstract 

 

Although GPS measurements are the essential information for currently developed land 

vehicle navigation systems (LVNS), the situation when GPS signals are unavailable or 

unreliable due to signal blockages must be compensated to provide continuous navigation 

solutions. In order to overcome the unavailability or unreliability problem in satellite 

based navigation systems and also to be cost effective, Micro Electro Mechanical 

Systems (MEMS) based inertial sensor technology has pushed the development of low-

cost integrated navigation systems for land vehicle navigation and guidance applications. 

In spite of low inherent cost, small size, low power consumption, and solid reliability of 

MEMS based inertial sensors, the errors in the observations from the MEMS-based 

sensors must be appropriately treated in order to turn the observations into useful data for 

vehicle position determination. The error analysis would be conducted in the time domain 

specifying the stochastic variation as well as error sources of systematic nature.  

 

This thesis will address the above issues and present algorithms to identify and model the 

error sources in MEMS-based inertial sensors. A Kalman filter will be described and 

applied to analyze the performance of a minimum configured GPS/IMU system for 

vehicle navigation applications. The performance of the testing system has been assessed 

via a comparison to Precise Point Position (PPP) reference data. The testing results 

indicate the effectiveness of the discussed error analysis and modeling method. 
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Chapter 1 

 

 

Introduction 

 

 

1.1 Background and Objective 

 

The rapidly expanding use of the Global Positioning System (GPS) enables commercial 

navigation devices to be more popular and attainable for the civil users. GPS provides 

absolute positioning information covering any part of the world during days and nights. 

From the blackbox-sized military GPS receivers to the chipsets on cellular phones, GPS 

receiver technology has been significantly enhanced over the past ten years and it will 

enable more inexpensive and smaller GPS navigation devices to be possible in the near 

future. While GPS provides bounded errors for the position and the velocity, GPS users 
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shall experience signal blockage due to such as interference and jamming. As GPS signal 

is coming from about 20,200 km from the sky, it is relatively weak and is affected by the 

atmosphere, line of sight and etc. In spite of many successful research activities to handle 

identified error sources of GPS measurements such as ionosphere modeling, multipath 

mitigation and differential GPS, the visibility to adequate number of GPS satellites from 

the recipient is still critical in using GPS alone navigation devices. Under the tree, inside 

the building, in the tunnel, between the tall buildings, GPS positioning is difficult due to 

signal blockage and degradation.  

 

Because of their complementary characteristics, Dead Reckoning (DR) method is often 

considered to be integrated with GPS. Recently, a low cost integrated navigation system 

for commercial applications such as car/personal navigation, accident record, and human 

body detection is getting huge attention around the world. DR method is an approach that 

has been widely used in marine and airborne navigation for decades, which is a relative 

positioning method capable of deriving position based on three distinct inputs, namely, a 

set of starting coordinates, the direction of travel, and the velocity of travel. There are 

many different types of DR sensors available such as Compass, Gyroscope, Inclinometer, 

Odometer, Accelerometer, Altimeter, etc. Each system provides its own distinguished 

output and some sensors can be combined such as Inertial Measurement Unit (IMU), 

which consists of 3-axis accelerometer and 3-axis gyroscope. Attempting to overcome the 

cost and size constraints of traditional DR sensors, Micro Electro Mechanical Systems 

(MEMS) based DR sensors have accelerated the development of low cost integrated 

navigation systems on single board with latest GPS receiver technology. Considerable 
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applications and researches are now eagerly being carried out on satellite based 

navigation system aided by MEMS based DR sensors and have drawn great expectations. 

Among the applications of MEMS technology, MEMS based inertial sensors like MEMS 

based gyroscopes and MEMS based accelerometers have been adopted and tested as 

aiding sensors to improve the navigation information continuity in many applications. 

MEMS based accelerometers and gyroscopes are becoming more attractive to 

manufacturers of navigation systems because of their small size, low cost, light weight, 

low power consumption and ruggedness.  

 

For all that DR and GPS have excellent complementary synergy effect since DR sensors 

are self-contained and provide the high frequency and continuous information, DR 

sensors are subject to internal error behaviour and their errors tend to increase with time. 

Despite remarkable advances of MEMS technology in cost and size constraints, MEMS 

based inertial sensors have inherited the error behaviour of conventional inertial sensors 

and they are still considered as very poor devices in accuracy which are suffering from a 

variety of error sources that are slightly different upon the structure of sensor like 

mechanical sensors. Hence, in order to integrate MEMS based inertial sensors with GPS 

and provide a continuous and reliable navigation solution, the characteristics of different 

error sources and the understanding of the stochastic variation of MEMS based inertial 

sensors are of significant importance for the development of optimal estimation 

algorithms (Park and Gao, 2002). 
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Here, the main purposes of this study are the error characterization of MEMS based 

inertial sensors and the performance analysis of the prototype of a low cost GPS/MEMS 

based inertial sensor integrated system for land vehicle applications. The fundamental 

characteristics of MEMS based accelerometers and gyroscopes will be investigated and 

the stochastic variation of the sensors will be assessed in the time domain analysis. 

Furthermore, the different stochastic modeling methods will be studied and one of them 

will be adopted for the performance analysis of the testing system. When the performance 

of MEMS based inertial sensors is admissible for a certain application such as the land 

vehicle navigation systems, a continuous integrated navigation system will be available 

with cheaper and smaller inertial sensors complementing GPS signal interference and 

jamming in so-called urban canyons. 

 

 

1.2 Thesis Outline 

 

Chapter Two gives an overview of currently proposed multi-sensor navigation systems. 

More specifically, satellite based navigation system and dead reckoning navigation 

system will be described separately in terms of its characteristics and error behaviours 

related to multi-sensor navigation system performances. The fundamental ideas of 

MEMS technology will be introduced and some of currently used MEMS based inertial 

sensors will be discussed.  
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Chapter Three discusses how to analyze the stochastic variation of a sensor based on the 

knowledge of probabilistic and statistical aspects. It gives the mathematical background 

of time domain representation of stochastic processes and then, it discusses how to 

approximately identify stochastic variation of measurement data as one of the standard 

discrete stochastic models that will be used in the optimal estimation algorithm. 

 

Chapter Four gives the estimation of deterministic error sources of MEMS based inertial 

sensors and associated stochastic modeling. The major deterministic error sources (zero-

offset bias and 1st order scale factor) have been estimated and the random noises of 

MEMS based accelerometer/gyroscope have been modeled based on the discussion of 

different stochastic modeling methods in chapter Three. 

 

Chapter Five holds the performance analysis of stochastic modeling discussed in the 

previous chapters. After the experiment of static and 2-D kinematic land vehicle 

navigation, testing results will be analyzed to explain the influences of previous 

suggested stochastic modeling scheme in the position domain.  

 

Finally, Chapter Six will be the conclusions of the research as well as some 

recommendations for the future research.  
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Chapter 2 

 

 

Multi-Sensor Navigation Systems 

 

For last several decades, much effort has been applied to the development of sensing 

devices which measure the physical quantities of interest such as acceleration, velocity, 

position, pressure, weight, force, sound, and etc converting those quantities into electrical 

signals. Recently, two main technical advances (Digital Signal Processing (DSP) and 

Micro Mechanics) have accelerated the development of various applications with less 

cost and space constraints. From the blackbox-sized military navigation systems to the 

chipsets on cellular phones, recent advances in sensor technology have enormously been 

applied in the navigation field. This chapter will provide the basic understanding of 

multi-sensor navigation systems including specific navigation methods and MEMS 

technology with MEMS based inertial sensors.  
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2.1 Concepts of Multi-Sensor Navigation Systems 

 

For the determination of navigation states (e.g., position, velocity, attitude, acceleration), 

different types of sensors can be considered. The compass can determine the direction 

relative to the local magnetic north, and the odometer in the vehicle provides the change 

of distance relative to the initial point. From the coin-sized magnetic compass to GPS or 

Inertial Navigation System (INS), manifold sensors provide their own distinguished 

outputs for the use of navigation solution. In many applications, more than one sensor are 

involved so as to not only determine the navigation states at a certain time but also to 

provide the continuous navigation trajectory. The term, ‘multi-sensor navigation systems’, 

is therefore, often used. Such systems are typically operated with multiple sensors 

referenced to a common platform and synchronized to a common time base (Schwarz, 

2001, p. 2). Each sensor contributes its own stream of data and all the data is optimally 

processed. 

 

For most multi-sensor navigation systems, two main questions are commonly raised, 

namely  

 

� What kinds of sensors will be chosen? 

� How will the output of each sensor be combined to provide optimal solution? 
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Considering the cost, the space, the availability, and etc, the proper sensors should be 

chosen and the development of optimal processing algorithm is necessary for multi-

sensor navigation systems. Some sensors have complementary aspects to each other and 

sometimes, redundant sensors are needed to avoid the possible malfunction or unreliable 

operation of sensors. Also, different data fusion algorithms can be used for different 

environmental situations. Figure 2.1 shows one example of sophisticated multi-sensor 

navigation system data fusion algorithms.  

 

 

Figure 2.1  Federated Kalman Filter for Multi-Sensor Navigation System (Carlson, 2002) 

 

In the figure,  

  is reference error estimate Rx̂

  is measurement sequence iz
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  is measurement error covariance iR

 )  is local error estimate (ˆ +ix

 )  is local error covariance (+iP

 )  is optimal error estimate before  in master filter (ˆ −mx kt

 )  is covariance associated with (−mP )(ˆ −mx  

  is global error estimate )(ˆ +Fx

  is global error covariance )(+FP

  is sharing factor 1−
iβ

 

This example illustrates the federated Kalman filter to a distributed navigation system 

having 3 local sensors with the associated local filters. There is a reference sensor such as  

INS whose outputs are employed as a common reference solution by each of three local 

filters (Carlson, 2002). The federated Kalman filter combines local estimates in the 

master filter in order to yield the global optimal estimate and then, includes feeding back 

the information from the master filter to the local filters. This type of architecture 

requires the full order state vectors in each of local filters, which is a very difficult 

implementation requirement in applications. For the real implementation procedures, 

some modifications and changes are necessary in order to make it work properly. All the 

multi-sensor navigation systems do not have to be complicated like the previous example. 

Besides, individual sensor investigation should have been performed precisely before 

putting sensors together. It is a very critical procedure for the reliable and optimal 

navigation solution to the end. The subsequent sections will briefly describe the two 
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important navigation methods: Satellite based Navigation method and Dead Reckoning 

(DR) Navigation method.  

 

 

2.2 Satellite based Navigation Method 

 

Among the satellites which have been used, and still are used for their different goals, 

satellite based navigation systems are NNSS TRANSIT (Navy Navigation Satellite 

System TRANSIT) & NAVSTAR GPS (NAVigation System with Time and Ranging 

Global Positioning System) by United States, GLONASS (GLObal Navigation Satellite 

System) by Russia, and proposed GALILEO by European Union near future. In this 

section, NAVSTAR GPS will be mainly discussed to enhance the understanding of the 

main issues of the satellite based navigation method. The descriptions of GPS, the GPS 

observables and the error budgets, and limitations will be given subsequently. 

 

2.2.1 Descriptions of GPS 

 

The NAVSTAR GPS is a satellite-based radio navigation system designed and operated 

by the U.S. DoD (Department of Defense), providing three-dimensional position, 

navigation, and time information to the users with a suitable equipment. It became fully 

operational in 1994 with 21 satellites (plus 3 active spares) on 6 orbital planes in about 

20,200 km altitude above the earth’s surface with 12 hours orbiting period covering 
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worldwide. GPS has been designed that at least 4 satellites could be visibly available 

above the horizon anywhere on the earth, 24 hours a day.  

 

 
Figure 2.2  GPS Positioning 

 

GPS is primarily a navigation system. The fundamental navigation principle is based on 

the measurement of so-called pseudoranges between the user and at least the four 

satellites illustrated in Figure 2.2. Starting from the known satellite coordinates in a 

suitable reference frame (WGS 84), the coordinates of the user antenna can be 

determined. From the geometrical point of view, three range measurements are sufficient. 

A fourth observation is necessary because GPS uses the one-way ranging technique, and 

the receiver clock is not synchronized with the satellite clock. This synchronization error 

is the reason for the term “pseudorange” (Seeber, 1993, p. 209). 
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GPS signals are transmitted on two coherent carrier frequencies, L1 (1575.42 MHz) and 

L2 (1227.60 MHz), which are modulated by various spread spectrum signals. The major 

carrier, L1, is biphase-modulated by two types of pseudo-random noise codes: one at 

1.023 MHz, called the ‘C/A-code’, and the other at 10.23 MHz, called the ‘P-code’. The 

P-code is intended only for the authorized access because its one-chip wavelength of 30 

m provides the most accurate positioning possible. The C/A-code, with its 300 m one-

chip wavelength, is used in all cases for initial acquisition and code-signal alignment 

purposes. Most of civil users have the access to this less accurate C/A-code for 

positioning. The second carrier signal, L2, contains only P-code modulation, and is 

intended to give the authorized users the additional capability of actually measuring the 

ionospheric delays using the two frequencies, the delays being frequency-dependent. In 

official parlance, the P-code access is reserved for what is called the Precise Positioning 

Service (PPS) mode of operation, whereas everything else is classified as the Standard 

Positioning Service (SPS) (Brown and Hwang, 1997, p. 420). Table 2.1 summarizes 

some characteristic features of NAVSTAR GPS satellite signals. 

 
Table 2.1  GPS Satellite Signals (Seeber, 1993, p. 217) 

Atomic clock (Cs, Rb) Fundamental frequency 10.23 MHz 
L1 carrier signal 154 × 10.23 MHz 
L1 frequency 1575.42 MHz 
L1 wavelength 19.05 cm 
L2 carrier signal 120 × 10.23 MHz 
L2 frequency 1227.60 MHz 
L2 wavelength 24.45 cm 
P-code frequency (chipping rate) 10.23 MHz (Mbps) 
P-code wavelength 29.31 m 
P-code period 266 days; 7 days/satellite 
C/A-code frequency (chipping rate) 1.023 MHz (Mbps) 
C/A-code wavelength  293.1 m 
C/A-code period 1 millisecond 
Data signal frequency 50 bps 
Data signal cycle length 30 seconds 
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2.2.2 GPS Observables and Error Budgets 

 

As mentioned earlier, at least 4 satellite measurements are acquired to determine the 

recipient position slaved to the coordinate frame of reference such as WGS 84. Two 

important observables are generated from GPS raw measurements, which are usually 

called as pseudorandom code and the carrier signal. These two different observables 

(code, carrier) are derived or tracked in the separate tracking loops, Delay Lock Loop 

(DLL) for code tracking loop and Costas Phase Lock Loop (PLL) for carrier tracking 

loop. A pseudorange from code measurements equals the time shift that is necessary to 

correlate the incoming code sequence with a code sequence generated in the GPS 

receiver, multiplied by the velocity of light, and the carrier phase is derived from a phase 

comparison between the received Doppler shifted carrier signal and the (nominally 

constant) receiver-generated reference frequency (Seeber, 1993, p. 249). Pseudoranges 

from code/carrier phase measurements suffer from several error sources and their 

measurement equations are (Cannon, 2001, p. 106/111) 

 

Ptropion dddT)c(dtd P ερρ +++−++=  (2.1) 

Φ++−+−++= ελρρ tropion ddNdTdtcdΦ )(  (2.2) 

where 

P  is the pseudorange measurement 

Φ  is the carrier phase measurement 

ρ  is the geometric range from the satellite to the receiver 
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ρd  is the orbital errors 

dt  is the receiver clock offset to GPS time 

dT  is the satellite clock error 

iond  is the ionospheric delay 

tropd  is the tropospheric delay 

Pε  is the pseudorange measurement noise including multipath effect 

λ  is the GPS carrier wavelength 

N  is the integer ambiguity 

Φε  is the carrier phase measurement noise including multipath effect 

c  is the speed of light 

 

Three major differences between pseudorange measurement and carrier phase 

measurement are phase advance in ionospheric delay, integer ambiguity, and 

measurement noise. Contrary to the code measurement, carrier phase measurement has 

phase advance phenomena resulting in negative sign in equation (2.2). The L1 carrier 

wavelength is about 19 cm which intends to generate very precise measurements of the 

phase of the carrier to be made. However, resolving the integer ambiguity is a delicate 

task which requires quite a long integer convergence time of several tens of minutes or 

estimated as a float term sometimes. Both of pseudorange and carrier phase measurement 

noise consist of receiver noise and their own multipath effect. Multipath phenomenon 

refers to the distortion of a directly received GPS signal by its spurious replica that took 

an indirect path by the way of reflecting off one or more objects. Clearly, the indirect 

path taken by the replica or multipath signal will be longer than that taken by the direct 
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signal. This signifies ranging error that can be quite sizable. As long as the receiver is 

locked onto the direct signal by virtue of its stronger power, the multipath signal with its 

erroneous ranging information will only appear to distort the direct signal and perturb its 

phase to introduce a small ranging error. If the multipath signal is stronger than the direct 

signal, particularly when the latter is completely obstructed, the multipath error can well 

be far more significant (Brown and Hwang, 1997, p. 428).  

 

The most common method to minimize the errors of SPS GPS measurements is the 

Differential GPS (DGPS). With known coordinates of one receiver station, position of the 

second receiver station can be accurately determined by canceling the common error 

parts experienced by both stations shown in equation (2.1) and (2.2). Since DGPS method 

is requiring two receiver stations such as a reference and a rover receiver, the solution is 

dependent on the separation length of baseline between them. DGPS does not lessen 

multipath effect and increase the noise level by a factor of 2 . Table 2.2 summarizes 

SPS GPS error budgets.  

 

Table 2.2  SPS GPS Error Budgets (Cannon, 2001, p.131) 

Error Sources Typical Values 

Satellite error (1σ )  
          Orbit & clock error 2.3 m 

Propagation errors  
          Ionosphere 7 m 
          Troposphere 0.2 m 

Received errors  
          Code multipath 1.5 m 
          Code noise 0.6 m 
          Carrier multipath 1 ~ 50 mm 
          Carrier noise 0.2 ~ 2 mm 
Total ~ 11.6 m 
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2.2.3 Limitations of GPS  

 

While GPS provides bounded errors for position and velocity, GPS users experience 

signal blockage; interference or jamming. As GPS signal is coming from about 22,000 

km from the sky, it is relatively weak and affected by the atmosphere, line of sight and 

etc. In spite of many successful research activities to handle identified error sources such 

as ionosphere modeling, multipath mitigation and DGPS, the visibility to adequate 

number of GPS satellites from the recipient is still critical in using GPS alone navigation 

devices. Under the tree, inside the building, in the tunnel, and between the tall buildings, 

GPS positioning becomes difficult due to the signal blockage and degradation. 

Limitations of GPS enforce one to integrate GPS with other navigation sensors to provide 

the continuous navigation solution.  

 

 

2.3 Dead Reckoning (DR) Navigation Method 

 

Dead Reckoning (DR) navigation is one of the traditional navigation methods that has 

been widely used in marine and long range flight applications, which is a relative 

positioning method capable of deriving position based on three distinct inputs, namely, a 

set of starting coordinates, the direction of travel, and the velocity of travel. With the 

known initial coordinates in navigation frame, a set of sensors provides its own 

navigation outputs in body frame and sensor outputs are processed in the computation 
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algorithm to provide the new coordinates in navigation frame. DR navigation method is 

self-contained and it does not require the external signals or inputs. There are many 

different types of DR sensors available: Compass, Gyroscope, Inclinometer, Odometer, 

Accelerometer, Altimeter, etc. Each system has distinct output and some sensors can be 

combined. Two-dimensional DR navigation described in Farrell and Barth (1998, p.5) 

will be illustrated and explained to help understand DR navigation method. In Figure 2.3, 

only two coordinate frames are involved; body-frame and navigation-frame.  

 

 

Figure 2.3  Ideal two-dimensional DR Navigation (Farrell and Barth, 1998) 

 

In a modern approach to dead reckoning, body-frame velocity and heading are measured 

electronically. Instantaneous navigation-frame velocities are computed at a high rate 

based on the measured heading and the body-frame velocity. The navigation-frame 

velocities are then integrated to determine the navigation-frame positions. The 

differential equations describing the ideal mechanization of this approach are 
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where 

),( en   are the north and the east position in navigation-frame 

),( vu   are the components of vehicle velocity in body-frame 

ψ   is the angle between navigation north axis and body axis u
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It should be noted that the vehicle position accuracy is dependent on the accuracy of the 

initial position estimates even in the ideal case. Also, since involved sensors and actual 

computations are not perfectly accurate, equation (2.3) should be changed into the 

equations including various system errors as follows:  
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where 

δψψψ +=~ , 

vvv δ+=~ ,  

uusu δδ ++= )1(~  
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uv δδδψ ,,  are the bias terms and sδ  is the scale-factor error 

 

Assuming 0~ =v  and the lateral velocity is not measured, vv −=δ  and equation (2.4) is 

then reduced to 
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Figure 2.4 describes the actual case with some system errors. 

 

 

Figure 2.4  Actual two-dimensional DR Navigation (Farrell and Barth, 1998) 
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Linear analysis of the actual system about the ideal system is carried out by subtracting 

the actual system from the ideal system and linearizing it with the introduction of error 

variables. Using Taylor’s Theorem, linear error differential equations are obtained as  
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where nnn ˆ−=δ  and eee ˆ−=δ . 

 

Equation (2.6) is the simplified two-dimensional DR navigation error equation and is 

very useful for system analysis. In real situation, much more complicated navigation 

equations are used in three-dimensional rotating coordinate frame such as Earth-Fixed 

Earth-Centered (EFEC) reference frame. Also, if the velocity of vehicle is obtained by 

integration of measured accelerations, earth gravity forces should be properly modeled.  

 

There are some of important characteristics to be noticed in the above example. First, 

initial position errors ( ), en δδ  affect all the subsequent positions as a constant offset. That 

means, one is expected to start with good initial estimated coordinates for the good 

estimated coordinates in future times. Secondly, the heading bias and scale-factor error of 

forward velocity is a function of velocity u . Thirdly, the result of error equations 

depends on the system error modeling. If any of sensor’s error is not modeled properly or 

the unmodeled error affects the system performance, the system would be unreliable and 

the results would be inaccurate. The size and the nature of the sensor errors are not easy 
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to characterize, are time variable, and can be affected by events outside the sensor itself 

(Farrell and Barth, 1998, p. 7). DR navigation method is substantially subject to internal 

error behaviours and its errors tend to increase with time. The errors that normally arise 

in calculated navigation states are instrumental errors, computational errors, alignment 

errors and environment errors. Then, it is of significant importance to characterize error 

sources and develop precise stochastic modeling of the sensors.  

 

 

2.4 MEMS Technology 

 

Recent advances in Micro Electro Mechanical Systems (MEMS) based DR sensors are 

quite significant and are promising the smaller and cheaper systems. MEMS is the 

integration of mechanical elements, sensors, actuators, and electronics on a common 

silicon substrate through the utilization of microfabrication technology (Huff, 1999), and 

see Figure 2.5. MEMS technology is expected to revolutionize a variety of industrial field 

products by combining together silicon-based microelectronics with micromachining 

technology, hence, being so called as systems-on-a-chip (MEMS and Nanotechnology 

Clearinghouse, 2003).  

 

MEMS enables the development of smart product capabilities of microsensors and 

microactuators. This technology is extremely diversely designed and manufactured. 

Because MEMS devices are manufactured using batch fabrication, sophisticated small 

silicon chip, which can be placed at a relatively low cost (Huff, 1999).  
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Figure 2.5  Components of MEMS 
(http://www.gmu.edu/departments/seor/student_project/syst101_00b/team07/components

.html) 
 

Microelectronics performs the decision making processes like “brain” of systems and 

microsensors/microacuators are playing roles of “eyes” and “arms” to sense and control 

the environment. In its most basic form, the sensors gather information from the 

environment through measuring mechanical, thermal, biological, chemical, optical, and 

magnetic phenomena (MEMS and Nanotechnology Clearinghouse, 2003). The 

electronics process the information obtained from the sensors and direct the actuators 

through some decision making capability to respond by moving, positioning, regulating, 

pumping, and filtering, thereby, controlling the environment for some desired outcome or 

purpose. 

 

Since batch fabrication technique is used to manufacture MEMS products, a small silicon 

chip is possibly produced at a relatively inexpensive cost with the capabilities of 

functionality, reliability, and sophistication (MEMS and Nanotechnology Clearinghouse, 
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2003). In the industrial sector, Albany NanoTech (2003) has indicated that “MEMS 

devices are emerging as product performance differentiators in numerous markets with a 

projected market growth of over 50% per year. As a breakthrough technology, allowing 

unparalleled synergy between hitherto unrelated fields of endeavor such as biology and 

microelectronics, many new MEMS applications will emerge, expanding beyond that 

which is currently identified or known”. 

 

The Silicon has been widely used as engineering materials since it possesses excellent 

material properties making it an attractive choice for many high-performance mechanical 

applications. Compared to many other engineering materials, it has much higher strength-

to weight ration which is allowing very high bandwidth mechanical devices to be realized. 

However, MEMS technology is not only making things out of silicon. MEMS technology 

is a new manufacturing technique of making complex electromechanical elements along 

with electronics on or between silicon layers using batch fabrication techniques like 

Integrated Circuits (IC) (Albany NanoTech, 2003). 

 

 

2.5 MEMS based Inertial Sensors 

 

MEMS research on inertial sensors has been focused primarily on accelerometers and 

gyroscopes. Of the two, the accelerometers were developed first. Today, MEMS 

accelerometers enjoy a large commercial market and are considered to be one of the most 

successful micro sensors ever developed. MEMS gyroscopes, on the other hand, are a 

relatively new technology. Commercialization of low-grade devices has begun while 
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intensive research is still being carried out in the laboratories on high-grade devices. A 

couple of examples of MEMS based accelerometers and gyroscopes available in the 

market are shown in Figure 2.6. 

 

            

Figure 2.6  ADXL 202 Accelerometer and BEI QRS11 Gyrochip (Courtesy of Analog 
Device and BEI Inc., U.S.A.) 

 

 

2.5.1 MEMS based Accelerometers 

 

MEMS accelerometers are widely utilized in a variety of developments and their success 

is significant. MEMS accelerometers are getting more attractive to manufacturers of 

navigation systems because of their small size, low cost, light weight, low power 

consumption and ruggedness. Main considerations for MEMS inertial accelerometers are 

the mass size, sensing of mass movement, restoring forces, and packaging process. 

Normally, bigger mass is better and small currents require good electronics. Open/Closed 

loop system is determined by the usage of restoring forces and vacuuming, thermal 

sensitivity, and electronics integration are essential factors for packaging technology. 
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Figure 2.7 illustrates the design of a bulk-micromachined and capacitive signal pick-off 

accelerometer. The seismic mass and the top and bottom electrodes are made from the 

silicon. The seismic mass is located in the center of two electrodes and is allowed to 

move freely between top and bottom electrodes. The change of seismic mass location 

from the center location is proportional to the change of capacitance and then, 

capacitance change is being sensed and used to measure the amplitude of the force that 

led to the displacement of the seismic mass (Kraft, 1997, p. 20). 

 

 

Figure 2.7  Micromachined Accelerometer Design (Kraft, 1997) 

 

MEMS accelerometers can be classified by three categories, which are the position 

detection of the seismic mass, operation mode, and fabrication process of the sensing 

elements. The classification descriptions are summarized in the following based on Kraft 

(1997, p. 12 ~ p.19). 
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Classification by position detection of the seismic mass 

 

Piesoresistive Signal Pick-off sensors 

This method is based upon the piezoresistors that are placed on the supporting beams of 

the seismic mass. They change their resistance with the deflection of the seismic mass 

due to the stress induced in the beam. 

 

Capacitive Signal Pick-off sensors 

The sensing element typically comprises a seismic mass which can move freely between 

two fixed electrodes, each forming a capacitor with the seismic mass used as a common 

center electrode. The differential change in capacitance between the capacitors is 

proportional to the deflection of the seismic mass from the center position. 

 

Piesoelectric sensing element sensors 

This produces an electric charge when subjected to the force caused by the change of the 

seismic mass. 

 

Resonant element sensors 

This type does not detect the position of the seismic mass directly but its influence on an 

underdamped mechanical structure vibrating at its resonant frequency. 
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Classification by operation mode 

 

Open loop operation 

The deflection of the proof mass provides a measure for the acceleration which is simple 

design and low in cost. 

 

Closed loop operation 

This type uses some form of feedback where an external force is used to compensate the 

inertia force on the proof mass due to the acceleration, thus keeping the proof mass at 

zero deflection. 

 

Classification by fabrication process of the sensing elements 

 

Surface micromachining 

In surface micromachined sensing elements, the seismic mass is located on the surface of 

a die, typically it consists of several layers of polysilicon. It is compatible with a standard 

integrated circuit manufacturing process; it only requires very few additional procedures. 

Furthermore, with surface micromachining, much smaller sensing elements can be 

fabricated, thus the interface electronics can be integrated on the same chip. However, the 

drawback of very small sensing elements is that the seismic mass is very light and it is 

hard to obtain a good resolution. 
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Bulk micromachining 

In bulk micromachined sensing elements, the seismic mass is inside block, designed as a 

sandwich of several layers where the proof mass is usually made from single-crystal 

silicon and the top and the bottom covers either from silicon or Pyrex glass. Because the 

seismic mass lies within the die, it is well protected and it is possible to choose the 

damping by varying the ambient pressure of the air or filling the cavity with suitable oil. 

However, the drawback is that the manufacturing process is not readily compatible with 

standard integrated circuit (IC) fabrication processes and the size of a typical sensing 

element is about the size of a die making it difficult to integrate the sensing element with 

the required interface electronics on a same chip. 

 

LIGA (Lithography, Galvanic, Abformung) Process 

LIGA fabrication process is the only process using nickel based seismic mass instead of 

silicon (Kraft, 1997, p. 14). It has been used to produce the micromachined components 

allowing three-dimensional structuring capability with high aspect ratios and much 

greater structural heights which is superior to other micromachining processes. But it 

involves complicated technical procedures and cannot be used for standard IC 

manufacturing processes. 

 

2.5.2 MEMS based Gyroscopes 

 

Currently, most of the commercial gyroscopes can be categorized in three groups: rate 

grade, tactical grade, and navigation grade based on their performance. Different 
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principles of development of gyroscopes result in a variety of gyroscopes available in the 

market. MEMS based gyroscopes has been drawn recent attentions to overcome the size, 

the cost, and the power consumption constraints of the conventional gyroscopes because 

of their compact size, low-cost, and low power consumption. The majority of MEMS 

based gyroscopes currently under development operates in a vibratory mode and 

measures the angular rate instead of the absolute angle. Their operational principle is 

based on the coupling of mechanical energy between a vibrating motor element and a 

sensor element through Coriolis acceleration (Tung, 2000). The sensing element is 

vibrating with constant amplitude controlled by a vibrating motor that maintains the 

oscillation at constant amplitude. Under the vibration, the sensing element will 

experience Coriolis acceleration which is proportional to the applied rotation rate and it is 

measured to provide the information proportional to the angular rotation.  

 

Figure 2.8 illustrates one of MEMS based gyroscopes operating in vibratory mode. It 

uses a vibrating quartz tuning fork to sense rotation rate and a similar fork in opposite 

side as a pickup. The piezoelectric drive tines are driven by an oscillator circuit at precise 

amplitude, causing the tines to move toward and away from one another at a high 

frequency. This vibration causes the drive fork to become sensitive to angular rate about 

an axis parallel to its tines, defining the true input axis of the sensor. For vibrating tines, 

an applied rotation rate causes a sine wave of torque to be produced, resulting from 

Coriolis acceleration, in turn causing the tines of the pickup fork to move up and down 

(not toward and away from one another), out of the plane of the fork assembly. The 

pickup tines thus respond to the oscillating torque by moving in and out of plane, causing 
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electrical output signals to be produced by the pickup amplifier. Those signals are 

amplified and converted into a DC signal proportional to the rate by the use of a 

synchronous switch (demodulator) which responds only to the desired rate signals (BEI 

Systron Donner Inertial Division. 2003). 

 

 

ω
 

Figure 2.8  MEMS based Quartz Rate Sensor Diagram (Courtesy of BEI Inc., U.S.A.) 

 

Similar to MEMS based accelerometers, either surface or bulk micromachining 

fabrication can be used for MEMS based gyroscopes (Tung, 2000). In order to achieve a 

better accuracy for the high-end market, the low-mass problem should be overcome 

properly. The difficulty in overcoming the ‘mass’ factor in surface micromachining 

gyroscopes has led to the recent renewed interest in bulk micromachining. A tremendous 

progress for the important issues of bulk micromachining fabrication such as high aspect 

ratio etching, wafer bonding and vacuum packaging enables the bulk micromachining 

gyroscopes to gain more popularity in recent days. 
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Chapter 3 

 

 

Error Analysis of MEMS based Inertial 

Sensors 

 

This section consists of two main parts, namely, error characterization to identify 

deterministic error and non-deterministic (stochastic) error sources, and the application of 

stochastic modeling methods which should be used to characterize the random part of the 

sensor output. For MEMS based inertial sensors, their deterministic error sources are 

mainly focused on zero-offset bias and 1st order scale factor. Among special discrete 

parametric stochastic modeling methods, Autoregressive (AR) model will be described in 

details for stochastic variation of MEMS based inertial sensors. Modeling inertial sensor 

errors using AR processes was first introduced and implemented in the reference (Nassar 
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S. et al., 2003). Further implementation of AR processes for modeling navigation-grade 

and tactical-grade inertial sensor errors can be found in (Nassar S., 2003).  

 

 

3.1 Error Models of MEMS based Inertial Sensors 

 

3.1.1 Error Model of MEMS based Accelerometer 

 

The accelerometers that are currently used are mainly classified as either mechanical or 

solid-state. As mentioned before, all accelerometers are suffering from various error 

sources which are slightly different upon different types of the accelerometers. 

Conventional error equation will be first introduced and the error equation will then be 

simplified according to the tolerance of a specific application such as land vehicle 

navigation system and MEMS technology. 

 

Conventionally, the measurement in the X-axis provided by accelerometer ( xa~ ) can be 

expressed in terms of the applied acceleration acting along its sensitive axis ( a ) and the 

accelerations acting along the pendulum and hinge axes, a and  respectively, by the 

equation (Titterton and Weston, 1997, p.158): 

x

y za

 

xyxvfzzyyxxx naaBBaMaMaSa ++++++= )1(~  (3.1) 
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where 

   is the scale factor error, usually expressed in polynomial form to include 

non-linear effects 

xS

  are the cross-axis coupling factors zy MM ,

   is the measurement bias or zero offset fB

   is the vibro-pendulous error coefficient vB

    is the random noise xn

 

For such an accelerometer, which is dual axes and non-pendulous design, it is reasonable 

to expect that cross-axis coupling factors and vibro-pendulous error would be 

insignificant (Allen et al., 1998). Then, the conventional error model can be simplified as 

below, 

 

xfxxxx nBaSaa +++=~  (3.2) 

 

As indicated by Equation (3.2), the bias and the scale factor are the main concerns for the 

deterministic error sources. The last term is the stochastic variation of the sensor output. 

The measurement from Y-axis will be expressed in the same way. In the testing, only 1st 

order scale factor is considered and equation (3.2) will be modified for the 360° rotation 

testing which will be described in the Chapter Four. 
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3.1.2 Error Model of MEMS based Gyroscope 

 

As mentioned in Chapter Two, current commercial gyroscopes utilize different principles 

of development resulting in various types of gyroscopes with distinct characteristics of 

each one. Accordingly, assuming the acceleration sensitive errors are negligible, 

measured angular rate may be modeled for many applications as (Titterton and Weston, 

1997, p. 235): 

 

zfyyxxzzz nBMMS +++++= ωωωω )1(~  (3.3) 

 

where 

   is the scale factor error which may be expressed as a polynomial in zS zω  to  

   represent scale factor non-linearity 

  is the cross-axis coupling coefficients yx MM ,

   is the measurement bias or zero offset fB

    is the random noise zn

 

Using the same assumption in the previous section, equation (3.3) can be simplified 

mainly concerning zero offset bias and 1st order scale factor as significant contributing 

deterministic error sources.  
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zfzzzz nBS +++= ωωω~  (3.4) 

 

In equation (3.4), the deterministic and non-deterministic (stochastic) error sources for 

MEMS based gyroscope are appropriately described, and an estimation and a 

characterization of those main error sources will be subsequently dealt with in Chapter 

Four. 

 

 

3.2 Review of Stochastic Modeling 

 

3.2.1 Stationary Stochastic Processes 

 

Observed quantities in any fields of engineering contain the elements of uncertainty 

resulting in random characters that we cannot determine theoretically due to various 

factors. These random characters are usually considered as the random variables which 

describe the result of a random phenomena. Stochastic (or random) process can be 

defined to be a collection, or “family” of random variables, which cannot be described 

fully in terms of a deterministic equation, the value of random variable at any particular 

time is governed by chance. Thus, each time we perform the “experiment” the value of 

the quantity that we record at each point of time is determined (at least in part) by some 

random mechanism (Priestley, 2001, p. 100). 
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Stationary stochastic process means a certain stochastic process of which 

probabilistic/statistical properties do not change over time. If a process is stationary up to 

the 2nd order, the process indicates the same mean and variance at all of different time 

points and covariance between two different points only depends on the time interval 

between these two points. This 2nd order stationary stochastic process concept is widely 

used to deal with random time series in practice. The following mathematical expression 

and the derivation of the process presume that a process is stationary up to 2nd order.  

 

One way to specify a random process is to describe in detail the conceptual chance 

experiment giving rise to the process (Brown and Hwang, 1997, p. 75). When the value 

of the random process cannot be precisely determined, instead a range of possible values 

can be described with a relative likeliness of each value in probability sense. As it can be 

seen that many signals with same mean and variance values are quite different, it is very 

clear that it needs more information than just the mean and the variance to describe 

random process more precisely. The autocorrelation function (or autocovariance 

function) for a random process using the second-order probability density function is 

frequently used to describe random process in time domain. The autocorrelation function 

for a random discrete process  is defined as )(tX

 

)],)([()( µµτ τ −−= +ttX XXER       µ = mean value,      ,......,2,1,0 ±±=τ  (3.5) 

 

and the normalized autocorrelation function as, 
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),0(/)()( XXX RR ττρ =             ,......2,1,0 ±±=τ  (3.6) 

 

Clearly, it tells how well the process is correlated with itself at two different times. If the 

ergodic hypothesis applies, the autocorrelation function can also be written as 

 

∫ +∞→+ ⋅=⋅=
T

ttTttX dtXX
T

XXR
  

0  
    1 lim  of  avarage    timea  )( τττ  (3.7) 

 

which has the maximum value when the shift τ  = 0 and the value decreases as the shift 

τ increases.  is the mean-square value of the process  and it is an even function 

of 

)0(XR tX

τ . And also, it is just a mathematical way of saying that X  becomes completely 

uncorrelated with  for large 

τ+t

tX τ  if there are no hidden periodicities in the process.  

 

It has been seen that the autocorrelation function is an important descriptor of a random 

process and one that is relatively easy to obtain because it depends on only the second-

order probability density for the process (Brown and Hwang, 1997, p. 84). Thus, if we are 

given the form of )(τXR , or if we can estimate )(τXR  from observational data, then we 

can use this information to help us to “identify” which of the special models (if any) 

would fit the process under study (Priestley, 2001, p. 111). 

 

If the autocorrelation function decreases rapidly with τ , the process changes rapidly with 

time; conversely, a slowly changing process will have an autocorrelation function that 

decreases slowly with τ . Thus, we would suspect that this important descriptor contains 
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information about the frequency content of the process; and this is in fact the case 

(Brown and Hwang, 1997, p. 85). For stationary processes, there is an important relation 

known as the Wiener-Khinchine relation; 

 

∫
∞

∞−

−=ℑ= τττω ωτ deRRjS j
XXX )()]([)(  (3.8) 

 

where  indicates Fourier transform and ][ ⋅ℑ ω  has the usual meaning of (2π )(frequency 

in hertz). S  is called the power spectral density function or simply the spectral density 

function of the process. When we connect the usual spectrum concept like power and 

spectral, some care is required. In real data, the infinitum can be achieved and is not 

absolutely integrable. Thus, the integral for the Fourier transform does not converge. 

Then, truncated version of the original dataset would be used and the Fourier transform 

of a sample realization of the truncated process will then exist.  

X

 

The autocorrelation function in the time domain and spectral density function in the 

frequency domain are the Fourier transform pairs which contain the same basic 

information about the process, but in different forms, 

 

∫−

ΩΩ Ω=
π

ππ

  

  
 )( 

2
1][ deeXnx njj  (3.9) 

where 

∑
∞

−∞=

Ω−Ω =
n

njj enxeX  ][)(  (3.10) 
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Since we can easily transform back and forth between the time and frequency domains, 

the manner, in which the information is presented, is purely a matter of convenience for 

the problem at hand in a mathematical sense (Brown and Hwang, 1997, p. 91). 

 

3.2.2 Linear System Modeling 

 

The main purpose of mathematical model of a real physical system is to construct a 

proper, and tractable representation of system outputs. Since no model is perfect, one 

attempts to generate models that closely approximate the behaviour of observed 

quantities. The following linear state equation and sampled data output model are 

frequently used in navigation field and they give us an useful insight of stochastic 

modeling in practical application extracted and summarized based on the reference 

(Maybeck, 1994, p. 145~147). When the most general deterministic linear system model 

is extended to the stochastic linear system model of 

 

)()()()()()( 1 tntGtutBtxtFx ++=&  (3.11) 

)()()()( 2 tntxtHtz +=  (3.12) 

 

which is generated by adding a noise process n to the dynamics equation and n to 

the output equation. Using the insights from a probability theory, random parts of above 

equations, and can be characterized by the joint probability distribution 

function. That is to say, knowledge of such a joint distribution function or an associated 

joint density function completely describes the set of random variables. However, the 

)(1 t )(2 t

)(1 tn )(2 tn
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complete depiction of a joint distribution or density is still generally intractable. Then, try 

to express  and  as the outputs of linear state-described models, called “shaping 

filters”, driven only by deterministic inputs and white Gaussian noise which is 

completely characterized by first two corresponding moments, as shown in Figure 3.1.  

)(1 tn )(2 tn

 

 

Figure 3.1  Linear System Model (Mayback, 1994) 

 

A linear model of the physical system is driven by deterministic inputs, white Gaussian 

noises, and Gauss Markov processes. The white noises are chosen as adequate 

representations of wideband noises with essentially constant power density over the 

system bandpass. The other Markov processes are time-correlated processes for which a 

white model would be inadequate. However, these can be generated by passing white 

noise through linear shaping filters (Mayback, 1994, p. 146). Consequently, one can 

consider the original system model and the shaping filters as a single “augmented” linear 
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system, driven only by deterministic inputs and white Gaussian noises. Augmented linear 

system models are 

 

)()()()()()( twtGtutBtxtFx ++=&  (3.13) 

)()()()( tvtxtHtz +=  (3.14) 

 

where  is now augmented system state, and w  (dynamic driving noise) and 

(measurement corrupting noise) are white Gaussian noises, assumed independent of 

each other and of the initial condition 

)(tx )(t

)(tv

00 )( xtx = , where  is a Gaussian random variable. 

These noises are modeling not only the disturbances and noise corruption that affect the 

system, but also the uncertainty inherent in the mathematical models themselves. Now, 

the main question is how to generate the shaping filters associated with the certain noise. 

0x

 

3.2.3 Gauss-Markov Processes 

 

In many instances, the use of white Gaussian noise models to describe all noises in a real 

system may not be adequate. It would be desirable to be able to generate empirical 

autocorrelation or power spectral density data, and then to develop a mathematical model 

that would produce an output with duplicate characteristics. If observed data were in fact 

samples from stationary Gaussian process with a known rational power spectral density 

(or corresponding known autocorrelation or autocovariance function), then a linear time-

invariant system, or shaping filter, driven by stationary white Gaussian noise, provides 

such a model (Maybeck, 1994, p. 180).  
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If a stationary Gaussian process  is exponentially time-correlated process, it is called 

a Gauss-Markov process. The autocorrelation and spectral functions of this process are 

the forms,  

)(tX

 
τβστ −= eRX

2)(  (3.15) 
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and its shaping filter can be depicted by Figure 3.2, 

 

 

Figure 3.2  Shaping Filter of 1st order Gauss-Markov Process (Mayback, 1994) 

 

The mean-square value and time constant for the process are given by the  

parameters, respectively. The Gauss-Markov process is a very important process in 

applied work because (i) it seems to fit a large number of physical processes with a 

reasonable accuracy, and (ii) it has a relatively simple mathematical description (Brown 

and Hwang, 1997, p. 95). 1

βσ 1/  and 2

st order Gauss-Markov process is very frequently used to 

describe the signal error behaviours providing an adequate approximation to a wide 
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variety of empirically observed band-limited (wide or narrow band) noises and it has 

been reported that 2nd order Gauss-Markov process provides a good model of oscillatory 

random phenomena, such as vibration, bending, and fuel slosh in aerospace vehicles 

(Maybeck, 1994, p. 185). In positioning and navigation fields, 1st order Gauss-Markov 

process has been extensively adopted to describe the sensor noise behaviours due to its 

simple representation of time-correlated signals. In fact, the estimated autocorrelation 

sequences and its FFT transforms of the random behaviour of actual sensors have shown 

quite different features from 1st order Gauss-Markov process. Especially for the inertial 

sensor noises, it has been shown in Nassar S. et al. (2003) that the autocorrelation 

function of INS sensor noise is not well represented by a 1st order Gauss-Markov process. 

Moreover, in (Nassar S., 2003), it has been shown that the accuracy of modeling inertial 

sensor errors is improved by 15 ~ 35% when using higher order AR models instead of 1st 

order Gauss-Markov model. The reference by Nassar S. (2003) has given a detailed 

overview of different modeling methods of AR processes and also provided the static and 

kinematic testing analysis of navigation and tactical-grade IMUs comparing the proposed 

higher order AR model results with 1st order Gauss-Markov model results. Considering 

the very noisy measurements and poor performance of MEMS based inertial sensors in 

this study, a more precise and appropriate stochastic modeling is recommended agreeing 

with the above reference. In the following, some of special discrete parameter stochastic 

models in probability and mathematical statistics theory will be introduced and among 

them, AR model will be described in details. 
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3.3 Special Discrete Parametric Models of Stochastic Processes 

 

Considering the very noisy measurements and poor performance of MEMS based inertial 

sensors, a more precise and appropriate stochastic modeling is desirable. Hence, some of 

special discrete parameter stochastic models which provide us with a structure for fitting 

models to practical data will be discussed. These models are widely used in developing 

the theory of stationary stochastic (or random) processes in probability and mathematical 

statistics field. Some of important discrete parameter stochastic models are summarized 

in Table 3.1. 

 

Table 3.1.  Special Discrete Parametric Stochastic Models 

 
Definition Remarks 

White Noise 

 
Purely random process if it consists of a sequence of 
uncorrelated random variable 
 

µ=][ tXE ,  22 ])[( σµ =−tXE
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ρ
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- No memory with all past 
values up to time (t-1) 
- Flat power spectrum 
 
 

AR Model 

 
Autoregressive process of order k(denoted by AR(k)) if 
it satisfies the difference equation, 
 

tktktt XaXaX ε=+++ −− ...11  
 
where a , are constant coefficients, and {kaa ,...,, 21 }tε is a 
purely random process 
 
 

 
- depends on the 
combination of it own past and 
random disturbance 

tX

- Asymptotically stationary for 
large t 
- Also called Markov process 
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MA Model 

 
Moving average process of order (denoted by MA(l)) if 
it may be expressed in the form, 
 

ltlttt bbbX −− +++= εεε ...110  
where b , are constant coefficients, and {lbb ,...,, 10 }tε is a 
purely random process 
 
 

 
- linear combination of present 
and past values of { }tε process 
of finite extent 
- can be computed as 
weighted average of 

tX

, tt ),...,( 1 lt−− εεε  

ARMA 
Model 

 
Mixed autoregressive/moving average process of order 
(k,l) (denoted by ARMA(k,l)) if it satisfies an equation 
of the form, 
 

,...... 11011 ltlttktktt bbbXaXaX −−−− +++=+++ εεε  
where again, { }tε is a purely random process and 

are constant coefficients ),,...,,( 21 k baaa ,...,0 lb
 

 
- More general model of a 
large number of “real life” 
process 
- Fewer parameters are 
required compared to pure 
AR/MA process 
- ARMA process corresponds 
to the output obtained by 
passing white noise through  a 
filter with a rational transfer 
function 
 
 

Harmonic 
Model 

 
“Harmonic process” is defined by, 
 

∑
=

+=
K

i
iiit tAX

1
)cos( φω  

where ),...,1(},{},{, KiAK ii =ω , are constants, and the 
),...,1 K=(},{ iiφ are independent random variables, each 

having a rectangular distribution on the interval ),( ππ−  
 
 

 
- Related to the numerical 
technique of harmonic 
analysis 
- Describe observational 
records as sums of sine and 
cosine waves whose amplitude 
and frequencies are chosen so 
as to give the “best fit” to the 
data 
- Autocorrelation function 
consists of a sum of cosine 
terms, and hence never die out 
 
 

 

White noise is the purely random process which actually does not exist. However it is 

very important and useful mathematical concept to form the basic “building block” used 

in the construction of both the autoregressive and moving average models. Many of 

signals which are frequently occurring in practical applications, are described by AR 

model, MA model, and ARMA model (combination of AR and MA models). Among 

above discrete parameter stochastic models, AR model is the most widely adopted to 
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describe random noise output of practical application involving random behaving signals 

with some of advantages over others, and has been introduced to model the stochastic 

variation of inertial sensors such as accelerometer and gyroscope lately. The rest of the 

discussion in this chapter is mostly focused on AR models which will be actually used to 

characterize stochastic variation of MEMS based inertial sensor unit in Chapter Four.  

 

First, in the autoregressive case,  is expressed as a finite linear combination of its own 

past values and the current value of 

tX

tε , so that the value of tε  is “drawn into” the process 

 and thus influences all future values, , ,……. In the moving average case,  

is expressed directly as a linear combination of present and past values of the 

tX tX 1+tX tX

tε  process 

but of finite extent, so that tε  influences only (l) future values of X , namely 

,……, . This feature accounts for the fact that whereas the autocorrelation 

function of an AR process “dies out gradually”, the autocorrelation function of an MA(l) 

process, as we see, “cuts off” after the point l (Priestley, 2001, p. 136). The 

autocorrelation function of an AR process which dies out gradually is more suitable of 

many of the random signals in practical applications. Second, AR model parameters can 

be estimated in a simpler linear equation compared to MA model. ARMA model has the 

advantage of representing the same random process with fewer number of parameters 

than AR model, but it may lead to a set of non-linear equations for parameter 

determination resulting in much more computation loads.  

t

1+tX ltX +
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Considering the linear constant-coefficient difference equation of ARMA model, 

ltlttktktt bbbxaxax −−−− +++=+++ εεε ...... 11011  can be written as 
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where N/M is the order of AR/MA sequence. 

 

Applying the z-transform and using the time-shift and the linearity property of the z-

transform,  
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and then,  
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)(zH  is normally called as transfer function of the system which completely 

characterizes the system. Referring to Table 3.1, AR model can be considered as a special 

case of ARMA model with M = 0, its z-transform can be inferred from equation (3.19) as 
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Estimation of the AR model parameters b  and  is the main consideration, respectively. 

With the standard form of AR model in Table 3.1, 

0 ka

tε  is a purely random process and b  

will be the variance of 

0

2
εσ tε . The different estimation methods of parameters a  have 

been introduced in literatures and some of them will be described in the subsequent 

section. Also, if the process is both causal and stable, then all the poles of  must lie 

inside the unit circle of the z-plane because the Region of Convergence (ROC) is of the 

form | z | > r

k

)(zH

max , and since the unit circle is included in the ROC, one must have rmax < 1, 

where rmax equals the largest magnitude of any of the poles of . )(zH

 

More details of AR(1) and AR(2) models are discussed below and these mathematical 

descriptions will be applied to the analysis of experimental results in subsequent sections.  

 

First order Autoregressive Process (AR(1)) involves “one-step dependence” which is 

normally expressed in the form, 

 

ttt aXX ε=− −1  (3.21) 

 

where is a constant, and {a }tε is a (stationary) purely random process. It is also called 

Markov processes because the conditional distribution of depends only on , i.e. tX 1−tX
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)|(,...),,|( 1321 −−−− = tttttt XXpXXXXp  (3.22) 

 

In order to keep mathematical derivation of AR(1) model in stationary up to order 2, 

namely, variance and covariance of { converge to finite values as t , one 

assumes that 

}tX ∞→

0=εµ , | . Upon assumption, 1    | <a

 

,0][ =tXE   var( ,  cov(22 ][) εσεε == tt E 0][), == stst E εεεε ,      ts ≠  (3.23) 

 

For sufficiently large t, 

 

)1/(~ 222 aX −εσσ ,  cov(  (3.24) )1/(~), 22 aaXX tt −⋅+
τ

ετ σ

 

Therefore, autocorrelation function and its normalized autocorrelation functions can be 

written as 
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τ

εστ ,        ,......2,1,0 ±±=τ  (3.25) 

||)0(/)()( τττρ aRR == ,      ,......2,1,0 ±±=τ  (3.26) 

 

Second order Autoregressive Process (AR(2)) equation can be written as, 

 

tttt XaXaX ε=++ −− 2211  (3.27) 
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where are constants, and {21 , aa }tε is a (stationary) purely random process. Using the 

backward shift operator B, 

 

ttXBaBa ε=++ )1( 2
21 ,  or  ttXBB εµµ =−− )1)(1 21(  (3.28) 

 

where 21 ,µµ ,(assumed distinct) are the roots of the quadratic . 

Similar to AR(1) model derivation above, one requires that |

21
2)( azazzf ++=

1||,1| 21 << µµ  for 

asymptotically stationarity. Since { }tε  is an uncorrelated zero-mean sequence, one has, 

0] =t[ −tXE ετ ,   1≥τ ,  . With these conditions, one can reach to, 22 ]][ εσε ==ttXE [ε tE
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Autocorrelation function will behave variously according to the roots of such as real 

or complex of AR(2) model. Higher order than 2

)(zf

nd order AR model will follow the 

equation form indicated in Table 1, corresponding probability properties can be generated 

similarly to AR(1) or AR(2) models. Considering the problem of fitting these models to 

the observational data, two separate stages are involved, which are the estimation of the 

parameters of the model and the determination of the order of the model. These issues are 

subsequently discussed in the following sections. 
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3.4 Estimation of Parameters in Autoregressive (AR) Models 

 

The most considered AR model parameter estimation methods are Yule-Walker method, 

Burg method, and Unconstrained Least-Squares method. For a large amount of the 

dataset, the results of these three different methods are providing a fairly close estimation 

of the parameters. However, there are still some of different characteristics of each 

method to be noticed. Before discussing the estimation methods of AR model, it will be 

described first that the relationships between the AR model parameters and the 

autocorrelation sequences relating the AR model parameters to the coefficients in a linear 

predictor for the process . tX

 

3.4.1 Autocorrelation Sequence of AR Model and Levinson-Durbin Algorithm 

 

From the standard form of AR(p) model, the relationship between the parameters and the 

autocorrelation sequence are described as 

 

tptptt XaXaX ε=+++ −− ...11  (3.31) 
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Hence,  
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which can be expressed in the matrix form, 
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and the mean-square error can be determined in equation (3.33) with 2
εσ 0=τ , 
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Equations (3.35) and (3.36) are normally combined into a single matrix equation form as 
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The matrix  is the symmetric Toeplitz matrix and it can be efficiently inverted by use 

of Levinson-Durbin (LD) algorithm instead of inverting R directly to obtain the 

parameters . LD algorithm is a computationally efficient algorithm for solving the 

normal equations for the prediction coefficients. LD algorithm recursively processes the 

symmetric Toeplitz matrix with the first order predictor to the higher order parameters. 

The procedure is summarized below (Proakis, 1992, p. 224), 

XR

ka

X

 

Compact normal equations of AR(p) model from equation (3.37) is 
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and the minimum mean-square prediction error(MMSE) is simply 
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the augmented normal equations can be expressed as 
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beginning with the solution to the first-order predictor obtained by solving equation 

(3.40),  
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and the resulting MMSE is 
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let a  be the first reflection coefficient. Next, a set of equations from (3.37) is 

used to solve for the coefficients a  and a  of the 2

11 )1( K=

)1(2 )2(2
nd order predictor and express 

the solution in terms of 1st order predictor.  
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by using substituting  and the result of (3.41), )1(2a
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let , the second reflection coefficient. Now, the general expressions of LD 

algorithm for AR(p) model are summarized below, 

22 )2( Ka =
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The key step of LD algorithm is to estimate the reflection coefficient based on the 

previous coefficient/s. In the linear prediction estimation sense, the LD algorithm 

described above is based on minimizing the forward prediction error. Equations above 

are quite efficiently used to estimate AR model parameters for the different methods 

which will be subsequently described.  

 

3.4.2 Yule-Walker Method for AR Model Parameter Estimation 

 

The Yule-Walker method constructs the equation (3.35) by using the estimates of 

autocorrelation sequences from the windowed measured data and uses the LD algorithm 

described above to solve for AR model parameters. That is, Yule-Walker method uses the 

windowed input data and the minimization of the forward prediction error in the least-

squares sense. Since the autocorrelation matrix in equation (3.35) needs to be positive 

semidefinite, the biased form of the autocorrelation estimate is advisable, 
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in the practical situation. It always produces a stable AR model. However, Yule-Walker 

method is not suitable for a short period of data resulting in poor performance of 

parameter determination because it applies windowing to the data.  

 

3.4.3 Burg Method for AR Model Parameter Estimation 

 

Contrary to Yule-Walker method, the Burg method is not using the estimates of 

autocorrelation sequences from the input data but it estimates the reflection coefficients 

by minimizing both of the forward and the backward prediction errors in the least square 

sense with the constraint that the AR parameters satisfy the Levinson-Durbin recursion.  

 

The Burg method estimation derivation is summarized below (Proakis, 1992, p. 503). 

Suppose that we are given the data X , t = 0,1,2,……,N-1, and let us consider the 

forward and backward linear prediction estimates of order p, which are given as 

t
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and the corresponding forward and backward errors are defined as e  and 

, where a , 

tt
f
p XXt ˆ)( −=

ptpt
b
p XXte −− −= ˆ)( )(kp 10 −≤≤ pk  are the prediction coefficients. The 

least-squares error is 
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This error is to be minimized by selecting the prediction coefficients, subject to the 

constraint that they satisfy the Levinson-Durbin recursion given by (3.48). When the 

equation (3.48) is substituted into expressions for and , the result is the pair of 

order-recursive equations for the forward and backward prediction errors given below, 

)(te f
p )(teb

p

 

t
bf Xtete == )()( 00  (3.54) 

)1()()( 11 −+= −− teKtete b
kk

f
k

f
k ,          k p.......,2.1=  (3.55) 

)1()()( 11 −+= −−
∗ teteKte b

k
f

kk
b
k ,          pk .......,2.1=  (3.56) 

 

Now, if we substitute from (3.55) and (3.56) into (3.53) and perform the minimization of 

least-squares error ( ) with respect to the reflect coefficient ( ), we obtain the result, pE kK
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The term in the numerator of (3.57) is an estimate of the cross-correlation between the 

forward and backward prediction errors. With the normalization factors in the 

denominator of (3.57), it is apparent that | 1 |<kK , so that the all-pole model obtained 

from the data is stable.  
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The main advantage of Burg method is that it has high resolution for short data records. 

That is, Burg method is suitable not only for the large data records but also for the short 

data records. It still provides a stable and computationally efficient model. Burg method, 

however, is sensitive to the initial phase of a sinusoid for the sinusoidal signals in noise 

and exhibits spectral line-splitting for high-order models.  

 

3.4.4 Unconstrained Least-Squares Method for AR Model Parameter Estimation 

 

Similar to Burg method, the unconstrained least-squares method minimizes both the 

forward and backward linear prediction errors to determine AR model parameters but it is 

not constrained by Levinson-Durbin recursion algorithm. The forward and backward 

linear prediction errors described in (3,49) can be expressed with the corresponding 

forward and backward linear prediction estimates, 
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The minimizing procedure of unconstrained least-squares method is the same as Burg 

method. However, instead of using Levinson-Durbin recursion, minimization of E with 

respect to the prediction coefficients yields the set of linear equations and an associated 

correlation matrix is not Toeplitz. The form of the unconstrained least-squares method 

p
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described above has also been called the unwindowed data least-squares method. Its 

performance have been found to be superior to the Burg method, in the sense that the 

unconstrained least-squares method does not exhibit the same sensitivity to such 

problems as line-splitting, sinusoidal signal in noise. Computational efficiency is also 

comparable to the efficiency of the Levinson-Durbin algorithm but with this method, 

there is no guarantee that the estimated AR parameters yield a stable AR model (Proakis, 

1992, p. 508). 

 

 

3.5 Determination of Order of the Stochastic Models  

 

Even a priori information on the order of an AR Model was given, the optimal order of 

the AR model is still unknown which needs to be estimated. One of the common ways to 

determine the order of the AR model is to investigate the residual variance in accordance 

to different orders. Assuming the true model is of finite order, as the estimated order is 

getting close to the true model, the residual variance wouldn’t reduce significantly. It 

should be kept in mind that a higher order AR model would increase the state vector of 

the Kalman Filter error states. As a result, it would increase the computational loads even 

result in the unstable solutions.  

 

Some of model order selection methods have been reported such as Final Prediction Error 

(FPE) and Akaike’s Information Criterion(AIC) proposed by Akaike (1969,1974), 

Minimum Description Length(MDL) by Rissanen (1983) and etc. However, the methods 
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above have been indicated that they do not provide definitive and consistent results 

(Proakis, 1992, p. 510). Therefore, investigation of the residual variance considering state 

vector increase of Kalman Filter will be used to select the model order in the testing. This 

has been also suggested by Nassar S. (2003) for navigation and tactical-grade IMUs.  
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Chapter 4 

 

 

Estimation of Deterministic Error Sources 

and Stochastic Modeling 

 

4.1 Estimation Principles 

 

Based on the study in the previous chapters, the estimation of deterministic error sources 

and stochastic error characterization of a certain type of MEMS based inertial sensor will 

be described subsequently in this chapter. In this research, RGA300CA inertial sensor 

unit shown in Figure 4.1 from Crossbow Corp was used to facilitate the performance tests 

since the sensor is claimed as the ideal system for a land vehicle. RGA300CA sensor 
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consists of tri-axial bulk-micromachined capacitive accelerometer and single-axis 

vibratory rate gyroscope. 

 

 

Figure 4.1  RGA300CA (3-Axis Accel. & 1-Axis Gyro) 

 

First, deterministic error sources of RGA300CA are confined to zero-offset bias and 1st 

order scale factor from this point. The estimation of deterministic error sources of 

accelerometer and gyroscope will be dealt with separately due to their distinct raw 

measurements. The basic principle is to compare the actual measurements of 

accelerometer and gyroscope with a reference dataset and to obtain the desired error 

sources by one of conventional optimal estimation method (Least Squares). Details are 

followed in the subsequent subchapters including testing results and analysis. 

 

Once the deterministic error sources are estimated, the stochastic variation can be 

assessed by compensating the deterministic error sources from raw measurements in 
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static position for a certain period of time. The stochastic variation of each axis of 

accelerometer and gyroscope will be described in time domain and characterized by using 

Autoregressive (AR) model resulting in appropriate order and parameter/s of AR model 

for each of them. Most of the tests have been performed in the Multi-Sensor Lab at The 

University of Calgary with the room temperature (about 21°C) maintained. For the sensor 

unit, 20 Hz datalogging rate and approximate bandwidth of 10 Hz were used with data 

logging system (GyroView Version 2.4) from Crossbow Corp. and also, the model 

SM2330SQ version 4.11 motor was used with SMI 1.310 windows S/W from Animatics 

Corporation. Sensor unit and rotation panel were connected to separate computers with 

RS-232 port cables; the output of the accelerometer measurements was saved in text file 

format; both were turned on and off every time with about 30 minutes apart and were 

warmed up for about 20 minutes before each datalogging. In addition, the local gravity 

value (9.8080.m/s2) in the Multi-Sensor Lab at The University of Calgary has been used 

as the reference gravity value. 

 

 

4.2 Estimation of MEMS based Accelerometer Deterministic 

      Error Sources 

 

First, RGA300CA has been tested in the rotation panel connected to SmartMotor from 

Animatics Corp.. A testing table was carefully leveled relative to the local gravity vector. 

Once an accelerometer was attached to the testing table properly, the accelerometer 

output was collected at a constant speed of rotation depicted by Figure 4.2. The actual 
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measurements of X/Y/Z axes of the accelerometer were compared with the reference 

acceleration determined by the testing table orientation and local gravity value 

(9.8080.m/s2). 

 

 

Figure 4.2  Accelerometer Testing Setup 

 

For an accelerometer which is non-pendulous in design, it is reasonable to expect that 

cross-axis coupling factors and vibro-pendulous error would be insignificant (Allen, J.J. 

et al., 1998). Therefore, the simplified error model given in equation (3.2) can be used. 

As mentioned previously, the bias and the scale factor are the main concerns for the 

deterministic error sources of the sensor, and only 1st order of scale factor is considered in 

the testing. 
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Before testing, a small modification is necessary to equation (3.2) in order to fit the 360° 

rotation test setup as below: 

 

xfxxxx nBaSaa +++= )(cos)(cos~ θθ  (4.1) 

)/(360),( 121 tttt −°=−= ωωθ  (4.2) 

 

where 

 ω  is angular velocity  

  is instantaneous time t

  is time at first  +1g 1t

  is time at second  +1g 2t

 

 

Figure 4.3  RGA300CA Accelerometer Rotation Measurements 
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If the rotation panel can be controlled to provide precise angular velocity, the orientation 

of acceleration motion can be generated easily. Otherwise, the angular velocity can be 

estimated by obtaining the time ( ) at first +1g of an axis, and the time ( ) at second 

+1g of an axis using line regression method with the 2

1t 2t

nd order polynomial function 

( ). Namely, once the coefficients of the second order polynomial 

function are obtained, the time t and  are determined by 

cbxaxy ++= 2

1 2t a
b
2

−=t . Even though there 

still exist errors in the approximation, the line regression method can be considered much 

more accurate than any other human measurements of revolution time. Due to the 

instability of the rotating motor and the initial misalignments, the angular velocity should 

be calculated for every run (20 times). Similar to the angular velocity calculation, the bias 

or zero offset ( ) and the scale factor ( ) in equation (4.1) can be obtained by using 

Least Squares method with the rotational measurements and reference gravity value. The 

results of 20 tests with their mean & standard deviation for 3 axes are shown in Table 4.1, 

and the bias and the scale factor stability are illustrated in Figure 4.4 and 4.5.  

fB xS

 

Table 4.1  Bias and Scale Factor Results of Accelerometer 

  X-axis Y-axis Z-axis 
  Bias[mg] S.F.[%] Bias[mg] S.F.[%] Bias[mg] S.F.[%] 
1 1.1548 -0.0849 0.6447 -0.0807 1.9912 -0.1045 

2 2.8427 -0.0852 1.3094 -0.1033 3.2705 -0.1345 

3 2.2067 -0.0355 3.8652 -0.1902 1.9736 -0.1370 

4 1.7903 -0.0434 4.3118 -0.1551 1.5669 -0.1513 

5 1.5776 -0.0306 4.3459 -0.1509 1.4362 -0.1606 

6 1.6411 -0.1552 3.7548 -0.1318 1.1185 -0.1466 

7 1.3423 -0.1358 3.5154 -0.1504 2.2184 -0.1504 

8 1.5614 -0.1068 2.9473 -0.1144 0.5651 -0.0649 

9 2.5189 -0.1131 3.2060 -0.1205 0.8855 -0.0846 

10 3.8183 -0.1159 3.2152 -0.1254 1.2129 -0.0835 
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11 1.5750 -0.1400 1.1294 -0.1651 3.2332 -0.0602 

12 2.4533 -0.1262 1.1018 -0.1506 3.5628 -0.0751 

13 3.3925 -0.1293 1.5480 -0.1209 3.1330 -0.0814 

14 3.4469 -0.0925 1.9380 -0.1167 2.8823 -0.0851 

15 2.4924 -0.0779 2.1209 -0.1322 2.6424 -0.0719 

16 4.3743 -0.0651 2.2410 -0.1009 2.2395 -0.0692 

17 3.0543 -0.0474 1.9292 -0.1189 1.9984 -0.0648 

18 1.9111 -0.0833 1.8029 -0.1116 2.1606 -0.0706 

19 2.7809 -0.0978 1.6697 -0.1042 1.8483 -0.0648 

20 1.9869 -0.0937 1.8692 -0.1246 1.8634 -0.0629 

Mean 2.3961 -0.0930 2.4233 -0.1284 2.0901 -0.0962 

St.D. 0.8858 0.0359 1.1304 0.0256 0.8356 0.0357 
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Figure 4.4  Zero Offset Bias Stability of Accelerometer 

Scale Factor Stability
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Figure 4.5  Scale Factor Stability of Accelerometer 
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According to the results shown above, among three axes, y-axis has the largest 

fluctuation of zero-offset bias and the smallest of scale factor but the differences between 

axes are nominal. In terms of the magnitude, the mean values of zero-offset biases for 3 

axes are a few mili-g’s which are more typical values compared with the basic 

information (< ± 30mg) from the manufacturer’s specifications. Those results can be used 

as a reference value to compare with values when the sensor unit is horizontally or 

vertically leveled in the vehicle. In the unleveled case, the mean values of zero-offset 

biases can be considered as mean zero error and then, they can be compensated from the 

raw measurements of the accelerometer. Also, the mean values of 1st order scale factor 

for 3 axes are much more descriptive than the value (< 1%) from the manufacturer’s 

specifications. Those numbers will be referenced in performance analysis in chapter Five.  

 

 

4.3 Estimation of MEMS based Gyroscope Deterministic Error  

      Sources 

 

As discussed in the previous chapter, the deterministic error sources of RGA300CA Yaw 

rate gyroscope are zero-offset bias and 1st order scale factor. Analogous to the 

accelerometer case, the simplified form of error equation (3.4) without any modification 

will be in use to analyze actual gyroscope’s Yaw rate measurements. This time, the 

rotational table has been precisely leveled out horizontally shown in Figure 4.6 and 

provided the reference angular rate which is supposed to be correspondent to Yaw rate of 

gyroscope assuming that Earth rotation rate effect is nominal.  
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Figure 4.6  Gyroscope Testing Setup 

 

During a typical test schedule, the rotation rate of the rate table is stepped through a 

series of angular rates starting from zero deg/s recording data at each stage. The rotation 

speed is kept constant for a set period at each step and the sensor outputs allowed to 

stabilize, before recording the output signals. The applied angular rate is varied in 

incremental steps between the maximum and minimum desired rotation rates. At each 

step, the signals from gyroscope are recorded when the sensor is in equilibrium (Titterton 

and Weston, 1997, p.205). 

 

In this experiment, the applied rotation rate has been increased from zero deg/s to 80 

deg/s and then, decreased until negative 80 deg/s. After that, it resumed to increase from 

negative 80 deg/s to zero deg/s. For each rotation rate steps (10 deg/s), dwell time 

consists of stabilization time (about 10 seconds) and sample time (about 10 seconds). 33 
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subsets of data have been recorded based on the same scheme and combined together to 

compose a series of measurements. One of the testing results has been illustrated in 

Figure 4.7. 

 

Figure 4.7  Rate Table Step Sequence 

 

Those recorded data has been averaged out to provide a list of measurements resulting in 

measurement matrix in Least Squares estimation scheme. Accordingly, two parameters 

(zero-offset bias and 1st order scale factor) could be estimated by simple Least Squares 

process with 33 measurements. The same test has been performed ten times with 

approximately 30 minutes interval. The results of 10 tests with their mean & standard 

deviation for Yaw-rate are shown in Table 4.2 and the bias and the scale factor stability 

are illustrated in Figure 4.8. 
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Table 4.2  Bias and Scale Factor Results of Gyroscope 

 Yaw-Rate 
 Bias[d/s] S.F.[%]

1 0.2359 -0.3837
2 0.2284 -0.3977
3 0.2469 -0.3693
4 0.2206 -0.4164
5 0.2990 -0.4538
6 0.3164 -0.3154
7 0.3071 -0.4203
8 0.3180 -0.4367
9 0.3310 -0.3462

10 0.3095 -0.4445
Mean 0.2813 -0.3984
St.D. 0.0407 0.0449 
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Figure 4.8  Zero-Offset Bias/Scale Factor Stability of Gyro. 

 

The mean and the standard deviation shown in Table 4.2 are more specific values 

compared with manufacturer’s specifications provided with the sensor unit. Relatively, 

the results of gyroscope have less fluctuation than those of accelerometer in both of zero-

offset bias and scale factor. Shorter recording time of each step of rotation rate could be 
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beneficial to the gyroscope’s results compared with accelerometer results. As mentioned 

earlier in accelerometer case, the gyroscope’s results shown above can be used as the 

comparable value when the sensor unit is actually set up for real applications.  

 

 

4.4 Stochastic Modeling of MEMS based Accelerometer and  

      Gyroscope 

 

Based on the discussion in section 3.4, 3.5, and 3.6 of Chapter Three, the stochastic 

variation (random noise) of experimental output of accelerometer and gyroscope inside 

RGA300CA will be analyzed and modeled appropriately. Among the various special 

discrete parametric models of stochastic processes, Autoregressive (AR) model and 

purely random process (white noise) will be used. AR model parameters will be 

estimated by using Burg method. Then, corresponding order of AR model will be 

approximated by investigating the residual variance in accordance to different orders 

considering the increase of state vector in Kalman Filter error state.  

 

Before proceeding, one of the important issues in the analysis of characteristics of 

random process, which is the span of observation time of the experimental data should be 

considered. This is a fundamental limitation, irrespective of the means of processing the 

data. The following summarizes a thorough explanation and feasible example to get at 

least a rough estimate of the amount of experimental data needed for a given required 

accuracy provided by the reference (Brown and Hwang, 1997, p. 106 ~ p. 108). The time 
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of the data to be analyzed must, of course, be finite; and as a practical matter, it is 

preferred not to analyze any more data than is necessary to achieve reasonable results. 

Remember that since this is a matter of statistical inference, there will always remain 

some statistical uncertainty in the result. One way to specify the accuracy of the 

experimentally determined spectrum or autocorrelation function is to say that its variance 

must be less than a specified value. The variance of an experimentally determined 

autocorrelation satisfies the inequality 

 

∫
∞

≤
  

0  

2 )(4)( τττ dR
T

VVar XX  (4.3)  

 

where it is assumed that a single sample realization of the process is being analyzed, and  

 

T  is time length of the experimental record 

)(τXR  is autocorrelation function of the Gaussian process under consideration 

)(τXV  is time average of )()( τ+tXt TT

)(

X  where  is the finite-length 

sample of X  [i.e., 

)(tX T

)(t τXV  is the experimentally determined 

autocorrelation function based on a finite record length] 

 

)(τXV  = [time avg. of )()( τ+tXtX TT ] = ∫
−

+
−

τ

τ
τ

T

TT tXtX
T 0

)()(1 dt  (4.4) 
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Also, )(τXV  is admitted as an unbiased estimator of )(τXR  and it would appear to be a 

well-behaved estimator of )(τXR . When it is assumed that X  is the 1)(t st order Gauss-

Markov process with an autocorrelation function 

 

τβστ −= eRX
2)(  (4.5) 

 

Substituting the assumed Gauss-Markov autocorrelation function into Equation (4.3), 

then it yields 

 

T
VVar X β

στ
42)]([ ≤  (4.6) 

 

Furthermore, when the estimated time constant ( β/1 ) of 1 sec and the accuracy of 10 

percent are needed for its autocorrelation function,  

 

T
VVar X

βσ
τ 2)]([

4 ≤  

2002
)1.0(

1
2 =⋅=

β
T  sec (4.7) 

 

Note that 10 percent accuracy is really not an especially demanding requirement, but yet 

the data required is 200 times the time constant of the process.  
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Once the rough idea of the time span of experimental data was obtained, the 

accelerometer’s output was analyzed first. For the stochastic modeling, the static 

measurements of RGA300CA system for about 11 hours were collected 10 times with a 

minimum 2 hours interval and 20 minutes warm-up period.  

 

Figure 4.9 shows one sample dataset of accelerometer that have been repeated for about 

11 hours in well-leveled static mode. It is clear that the temperature variation of the 

sensor unit affects the sensor measurements significantly. It is well indicated in many 

literatures that the temperature is the main concern of sensor output stability. Therefore, 

relatively stable parts of the original accelerometer measurements were only used and the 

trends of them were removed as shown in Figure 4.10. 

 

Figure 4.9  RGA300CA Accelerometer Static Measurements  
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Figure 4.10  Trend-Removed Stable Part of Accelerometer Output 

 

Using the experimental data shown above, the autocorrelation sequences for 3 axes were 

generated and they have shown the significant different features compared with the 

conventional autocorrelation features of 1st order Gauss Markov process which has been 

widely used in navigation field. The following two Figures 4.11 and 4.12 indicate how 

different theoretical autocorrelation function of 1st order Gauss Markov process and 

empirically estimated autocorrelation functions are.  
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Figure 4.11  Autocorrelation and Its FFT Transform of 1st Order Gauss Markov Process 
 

 

Figure 4.12  Empirically Estimated Autocorrelation Functions of 3 Axes of 
Accelerometer 

 

It is the biggest motivation to model the stochastic variation in the different way rather 

than conventional 1st order Gauss Markov process. Figure 4.12 shows the results of one 

of the sample datasets. As 1st order Gauss Markov modeling is quite well known, only 
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AR modeling procedure will be described. As described earlier, there are two main steps 

involved in AR modeling, namely, parameter estimation and order determination. Once 

the three parameter estimation methods in the previous section were performed to 

estimate the parameters using the sample dataset (about 8 hours with a sampling rate of 

20Hz), they have provided very close results from one to the other. Therefore, in spite of 

some distinct characteristics, any methods could be used in this experiment. In the testing, 

the Burg method has been applied. To assess the proper determination of the order for 

AR model, the estimated residual variance  in accordance to different orders was 

chosen to be analyzed. In order to avoid abrupt increase in the error states of the Kalman 

filter due to the increase of the order of the AR model, an appropriate order ought to be 

determined when the variance plot starts to be leveled out in Figure 4.13.  

2
εσ

 

 

Figure 4.13  White Noise Variance Plot with Different Orders of AR model for 
Accelerometer 
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Based on the results shown in Figure 4.13, 4th order AR model has been chosen and its 

parameters were estimated by the Burg method. 

 

For the stochastic variation of the gyroscope (yaw angle rate only), the analogous routine 

has been performed. First step was to investigate the raw measurements of sensor output 

and to try to remove the trend to get close to zero mean of dataset. And then, the 

empirically estimated autocorrelation sequence was generated to view how correlated 

each measurement is to one another as the time gap increases. Same as the accelerometer 

case, 20Hz dataset were used and the time gap is increased by 0.05 second.  

 

Different from accelerometer output, the gyroscope output has shown that it was little 

affected by variation of sensor temperature in Figure 4.14. Accordingly, it was not 

necessary to window some part of raw measurements like accelerometer’s case. For 

stochastic analysis of the gyroscope, the whole data of about 11 hours datasets have been 

used. The empirically estimated autocorrelation function of gyroscope output has shown 

a strikingly result which is impulse amplitude when the time difference is zero and the 

rest of them are pretty close to zero in Figure 4.15. It indicates that the stochastic 

variation of gyroscope output would behave like a purely random process (white noise). 

10 sets of static dataset have presented very similar results. Also, its FFT transform pair 

(Spectral Density Function) has shown an empirical representation of white noise 

assumption for the spectral amplitude of white noise to be spread out for all frequencies 

sketched in Figure 4.16. 
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Figure 4.14  Raw and Trend-Removed Data of Gyroscope Output 

 
Figure 4.15  Empirically Estimated Autocorrelation Function of Gyroscope Output 
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Figure 4.16  Empirically Estimated Spectral Density Function of Gyroscope Output 

 

The empirically estimated autocorrelation function and its FFT transform (spectral 

density function) in Figure 4.15 and 4.16 have represented that the stochastic variation of 

the gyroscope could be modeled as purely random process (white noise) even though the 

white noise is only the mathematical abstraction, not the real process. In addition, as the 

estimated residual variance  in accordance to different orders for the determination of 

the proper AR model parameter estimation has been sketched in 4.17, the residual 

variance has not significantly decreased in any point and has provided very close values 

from zero order to 20

2
εσ

th order situation. It is another useful indication that gyroscope 

output could be modeled as purely random process (white noise) with the mean square 

value (  = 0.19293 deg/s). 2
εσ
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Figure 4.17  White Noise Variance Plot with Different Orders of AR model for 
Gyroscope Output 

 

In sum, the two main parts of error analysis of MEMS based Inertial Unit (RGA300CA) 

have been described. First, the main deterministic error sources (zero-offset bias and 1st 

order scale factor) for both accelerometer and gyroscope of GRA300CA have been 

estimated and the results in Table 4.1 and Table 4.2 will be referenced in the performance 

test in the next chapter. Secondly, the random parts of the original measurements of 

accelerometer and gyroscope of RGA300CA have been analyzed mainly in the time 

domain and modeled by 4th order AR model for the stochastic variations of X/Y/Z axes of 

accelerometer and purely random process for the stochastic variation of the gyroscope. 

Then, their results will be very essential input information in Kalman filter formulation in 

static testing and also kinematic testing which implements MEMS based inertial sensors 
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and a low-cost GPS receiver integrated system in the performance analysis in Chapter 

Five. 
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Chapter 5 

 

 

Performance Analysis 

 

This chapter presents the performance analysis of the static and kinematic testings for the 

MEMS based inertial sensor (RGA300CA) with the methods suggested in the previous 

chapters. For the static testing, one channel (X-axis) of 3-axis accelerometer will be 

demonstrated and analyzed to provide the comparable results between 1st order Gauss 

Markov and 4th order Autoregressive stochastic modeling methods. For the kinematic 

tests, the same schemes of stochastic modeling will be applied to Kalman filter 

implementation. On October 21, 2003, a kinematic test was conducted using a MEMS 

based inertial sensor (RGA300CA), a low-cost GPS receiver module (Leadtek GPS-

9543), a digital compass (Honeywell HMR-3300), and a high precision dual-frequency 

GPS receiver (Javad Legacy GPS receiver). The testing took place at one of the parking 
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lots in the University of Calgary. The reference trajectory was generated using Precise 

Point Positioning (PPP) S/W developed by Dr.Gao’ research group in Geomatics 

engineering department in the University of Calgary (Gao, 2003). 

 

 

5.1 Static Testing and Results 

 

The main purpose of the static testing is to test the implementation of Kalman filter in a 

static mode with position updates with different accuracy to see the influence of the 

stochastic modeling by 4th order AR model over the conventional 1st order Gauss Markov 

process modeling. Considering the fact that this type of MEMS inertial sensor can be 

used with GPS, the position information from GPS is assumed to be available to update.  

 

Accordingly, the corresponding Kalman filter state-space representation mathematics 

with 4th order AR model for one channel of accelerometer can be described as follows, 
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where [ α,,vp ] = [position,velocity,acceleration]. Then, the error state dynamic matrix 

(F) is formed as in equation (5.3) and the transition matrix (Φ ) can be approximated 

shown as below, 
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Now, the error state model including 6 states, 1 for position, 1 for velocity, 4 for 4th order 

AR model for X-axis accelerometer bias leads to the matrix equation (Brown and Hwang, 

1997, p. 207) as, 
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]ww[ TEQ =  (5.8) 

 

The parameter estimation results in the previous chapter have been used to construct the 

state transition matrix and the covariance matrix ( ) associated with w . A 20Hz 

sampling rate is also used. And the measurement equation in matrix form is, 
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]vv[ TER =  (5.11) 

 

As mentioned earlier, it is assumed that GPS positioning information is available to 

update at certain accuracy. In the testing, four different position-updating accuracies (R 

matrix) have been simulated to obtain the relative performance of stochastic modeling in 

the position domain corresponding to different updating accuracies. Also, updating 

intervals have been simulated in two ways. The first one is the sampling rate update 

which means that there is no predicted interval. The second one is the case with update 

period and prediction period simulating any possible GPS outages. For both cases, the 
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position estimation errors of 1st order Gauss Markov process and 4th order AR model are 

demonstrated using the same scale. 

 

In from Figure 5.1 to Figure 5.4, the sampling rate (20Hz) updating results are sketched 

approximately for 7 hours static data with different updating accuracies. As indicated in 

Table 5.1, 4th order AR model results have shown very similar improvement (about 30%) 

over 1st order GM process model in four different updating accuracies. The scale of Root 

Mean Square (RMS) value of the position estimation errors was dependent on the 

updating accuracies which have been simulated in the testing.  

 

 

Figure 5.1  Position Estimation Error (Sampling Rate Updates [20Hz], R=102) 
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Figure 5.2  Position Estimation Error (Sampling Rate Updates [20Hz], R=1) 

 

Figure 5.3  Position Estimation Error (Sampling Rate Updates [20Hz], R=10-2) 
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Figure 5.4  Position Estimation Error (Sampling Rate Updates [20Hz], R=10-4) 

 

Table 5.1  Statistics of Position Estimation Error (Sampling Rate Updates [20Hz]) 

  Mean[m] St.D[m] RMS[m]  % Improv. 
When R=102,    

1st G.M. model -0.0567 3.1563 3.15680924  
4th AR model -0.0293 2.1212 2.12140235 32.80 

      
When R=1,    

1st G.M. model -0.0014 0.3259 0.325903007  
4th AR model -0.00077835 0.2181 0.218101389 33.08 

      
When R=10-2,    

1st G.M. model -0.48108E-04 0.0332 0.033200035  
4th AR model -0.26045E-04 0.0222 0.022200015 33.13 

      
When R=10-4,    

1st G.M. model -1.4642E-06 0.0034 0.0034  
4th AR model -7.99E-07 0.0023 0.0023 32.35 
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The Kalman filter error states have been estimated with position update/prediction 

intervals. The position estimation errors using 30-second update/prediction period with 

different updating accuracies have been sketched in from Figure 5.5 to Figure 5.8 and 

their statistics are presented in Table 5.2. Being different from sampling rate update case, 

the improvement rate in the 30-second update/prediction case has been gradually 

decreased, as updating accuracies have gotten better. Furthermore, the improvement by 

precise stochastic modeling tends to be lessened for the magnitude of position estimation 

error itself when the prediction period is increased into 60 seconds or 120 seconds 

described in Figure 5.9, Figure 5.10 and Table 5.3. 

 

 

Figure 5.5  Position Estimation Error (30sec. Update/30sec. Prediction, R=102) 
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Figure 5.6  Position Estimation Error (30sec. Update/30sec. Prediction, R=1) 

 

Figure 5.7  Position Estimation Error (30sec. Update/30sec. Prediction, R=10-2) 
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Figure 5.8  Position Estimation Error (30sec. Update/30sec. Prediction, R=10-4) 

 

Table 5.2  Statistics of Position Estimation Error (30sec. Update/30sec. Prediction) 

 Mean[m] St.D[m] RMS[m] % Improv. 
When R=102,    

1st G.M. model -0.0987 4.4690 4.470089785  
4th AR model -0.0510 3.0227 3.023130214 32.37 

     
When R=1,    

1st G.M. model -0.0024 0.5071 0.507105679  
4th AR model -0.0012 0.3575 0.357502014 29.50 

     
When R=10-2,    

1st G.M. model 1.4060E-04 0.1018 0.101800097  
4th AR model 2.0972E-04 0.0820 0.0820 19.45 

     
When R=10-4,    

1st G.M. model 8.9102E-05 0.0440 0.0440  
4th AR model 4.9343E-05 0.0408 0.0408 7.27 
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Figure 5.9  Position Estimation Errors (R=10-2 [m], 60 sec Up/60 sec Pr) 

 

Figure 5.10  Position Estimation Errors (R=10-2 [m], 120 sec Up/120 sec Pr) 
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Table 5.3  Statistics of Position Estimation Error (R=10-2 [m]) 

 Mean[m] St.D[m] RMS[m] % Improv. 
When 10sec Up/10sec Pr    

1st G.M. model -7.7661E-05 0.0523 0.052300058  
4th AR model -3.9530E-05 0.0371 0.037100021 29.06 

     
When 30sec Up/30sec Pr    

1st G.M. model 1.4060E-04 0.1018 0.101800097  
4th AR model 2.0972E-04 0.0820 0.0820 19.45 

     
When 60sec Up/60sec Pr    

1st G.M. model 2.5760E-04 0.2199 0.219900151  
4th AR model 2.3117E-04 0.1961 0.196100136 10.82 

     
When 120sec Up/120sec Pr    

1st G.M. model -0.0046 0.6282 0.628216842  
4th AR model -0.0039 0.5913 0.591312861 5.87 

 

Consequently, the results of the Kalman filter implementation of X-axis of the 

accelerometer in static mode presents that 4th order AR model has performed better than 

1st order Gauss-Markov model in both of continuous update and update/prediction cases. 

In addition, the rate of the improvement by AR model over Gauss-Markov model tends to 

decrease as updating information accuracy increases and prediction period increases. It is 

because Kalman filter gain is more dependent on the measurement updating information 

accuracy and then, the precise stochastic modeling of the system has less contribution to 

the final position estimates when the prediction period gets longer due to GPS signal 

outrage.  
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5.2 Kinematic Testing and Results 

 

5.2.1 Kinematic Testing System Configuration 

 

The kinematic testing was conducted to qualify the performance of the integrated system 

of MEMS based inertial sensor (RGA300CA) and the low-cost GPS receiver module 

(Leadtek GPS-9543) utilizing different stochastic modeling schemes (4th order AR model 

and 1st order Gauss-Markov model). It is a simplified navigation testing with the 

assumptions that the testing area is 2-dimensional, flat (nominal roll/pitch) and 

nonaccelerating (short testing duration). Also, the initial misalignment is assumed to be 

negligible.  

 

For the initial position and heading information, a dual frequency GPS receiver (Javad 

Legacy GPS receiver) and a digital compass (Honeywell HMR-3300) have been used and 

the measurements from the high precision Javad Legacy GPS receiver were also 

processed to generate the reference trajectory. 

 

Two GPS antennas (Javad Legacy and Leadtek GPS 9531) were mounted on the roof of 

the testing van and the testing system was held tight inside the vehicle shown in Figure 

5.11 and Figure 5.12. Two laptop computers were needed to record the reference GPS 

measurements and integrated system with different acquisition S/W separately.  
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Figure 5.11  Kinematic Testing System 

 

 

Figure 5.12  Testing Van 
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Table 5.4 summarizes the basic specifications of each sensor in the testing system. Those 

specifications are referenced and also compared with the results of static multi-position 

testing, especially for RGA300CA. 

 

Table 5.4  System Specifications (Courtesy of Crossbow, Leaktek, Honeywell Inc.) 

Specifications 

 RGA300CA 

Angular Rate  
Range: Yaw (°/sec) ±100 
Bias: Yaw (°/sec) <±2.0 

Scale Factor Accuracy (%) <1 
Non-Linearity (%FS) <0.3 

Resolution (°/sec) <0.025 
Bandwidth (Hz) >25 

Random Walk (°/hr1/2) <2.25 
Acceleration  

Range: X/Y/Z (g) ±2 
Bias: X/Y/Z (mg) <±30 

Scale Factor Accuracy (%) <1 
Non-Linearity (%FS) <1 

Resolution (mg) <1.0 
Bandwidth (Hz) >50 

Random Walk (m/s/hr1/2) <0.15 

 GPS-9543 

Main Chip SiRF star II 
Tracking Channel 12 
L1 Frequency (MHz) 1575.42 C/A code 
Position Accuracy (m) 10, 2D 
Input Massage NMEA/SiRF Binary 
Output Massage SiRF Binary + NMEA-0183 
Time Mark Output 1pps 

 HMR3300 
Heading Accuracy 1° 
Resolution 0.1° 
Repeatability 0.5° 
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5.2.2 Mathematical Error Model 

 

Kalman filter mathematical derivation for 2-dimensional testing using X/Y accelerometer 

and yaw rate measurements along with GPS position updates is followed below based on 

the discussion in the reference (Farrell, J.A. and Barth, M., 1998, p.8~9).  
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where [ ], vu αα are the measured accelerations in the body frame, rω is the measured yaw 

rate in the body frame, and 
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When bias errors are modeled in each of the sensors, 

 

uuu δααα +=~  (5.14) 

vvv δααα +=~  (5.15) 

rrr δωωω +=~  (5.16) 
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the actual mechanization system is modeled as 
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Linearization about the trajectory results in the following set of equations, 
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including bias errors in error states, error state dynamic matrix (F) is formed as in 

equation (5.18) and the transition matrix (Φ ) can be approximated shown as below, 
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tFIINS ∆+=Φ  (5.20) 
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Now, the error state model including 14 states, 2 for position, 2 for velocity, 1 for 

misalignment, 8 for 4th order AR model of X/Y-axis of accelerometer biases and 1 for 

white noise for yaw rate bias lead to the matrix equation is 
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]vv[ TER =  (5.25) 

 

Again, the parameter estimation results in the previous chapter have been used to 

construct the state transition matrix and the covariance matrix ( ) associated with 

and R matrix has been constructed by using RMS values of GPS trajectory accuracy 

compared with PPP solutions. 

Q

kw

 

5.2.3 Testing Dataset and Data Processing 

 

The testing dataset is composed of 3 different system files and 1 reference GPS file. The 

system files are using the same computer time. Their logging formats are 
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Table 5.5  Testing System Dataset Logging Formats 

GPS                   
time_index (int)GPS_Time Lat Lon GPS_heading GPSVn GPSVe HDOP SN SNR_total 
Compass          
time_index Compass_heading Compass_pitch Compass_roll      
RGA300CA          
time_index RGA_Roll RGA_pitch RGA_Yaw RGA_Ax RGA_Ay RGA_Az RGA_Temp 
 

For the field testing, the system has included about 20 minutes warming-up period, 

compass calibration period, static motion period, and kinematic motion period. After 

warming period, a digital compass was calibrated using 360° rotation circle motion each 

time and then, at least 5 minutes static collection was made. It has been done this way 

because on/off zero-offset bias should have been examined before actual kinematic data 

processing. Total kinematic testing duration was limited to 10 minutes and the same 

testing routine was conducted 10 times.  

 

For the initial heading, the term, magnetic north, refers to the position of the earth’s 

magnetic pole and it differs from a geodetic north. The angle between magnetic north and 

the geodetic north direction is called magnetic declination. As the magnetic declination 

does not remain constant in time, it needs to be referred to a recent geographic lookup 

table or geodetic services available in order to add or subtract the proper declination 

angle to correct for the geodetic north. Fortunately, Natural Resources of Canada 

(NRCan) provides a recent estimation of the declination based on Canadian Geomagnetic 

Reference Field (CGRF) which is a model of the magnetic field over the Canadian region. 
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As a result, 17.183° E declination angle was obtained through the University of Calgary 

campus and then, it was added to the initial heading from HMR3300 magnetic compass.  

 

The initial position was provided through Precise Point Positioning (PPP) process of 

Javad Legacy GPS receiver measurements, which has sub-meter accuracy. PPP solution 

also generates the reference trajectory to qualify the performance of the integrated system. 

The data processing associated with kinematic testing is illustrated in Figure 5.13. 

 

 

Figure 5.13  Data Processing Flow 

 

The trajectory generated by the integrated system has been compared with reference 

trajectory using GPS time synchronization. The same data processing has been conducted 

for two different stochastic modeling schemes.  
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5.2.4 Testing Results and Analysis 

 

The kinematic testing has been conducted in one of the parking lots in University of 

Calgary which is relatively flat and an open area to fulfill the testing assumptions 

described previously. The vehicle was driven at the speed of 10 to 30 km/hr with 6 major 

turns. Around the corners, the speed was reduced and then, was accelerated along the 

straight path comparatively. The same driving testing was repeated 10 times with the 

same routine of data collection in the same area. One of the raw measurements of 

accelerometer and gyroscope is sketched in Figure 5.14. 

 

 

Figure 5.14  Kinematic Testing Raw Measurements 
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As illustrated and also described previously, the actual collection of dataset consists of 

two parts, namely, static mode and kinematic mode after warming up and compass 

calibration periods. About 5 minutes, the static mode dataset was referenced with zero-

offset bias estimation described in Chapter Four. With an initial position from PPP 

processing of GPS measurements and initial heading corrected by CGRF, Kalman filter 

error estimation has been processed composed of dynamic model using measurements of 

X/Y axes of accelerometer, Yaw rate gyroscope of RGA300CA and measurement model 

using measurements of GPS-9543 module. The trajectories of the integrated system using 

4th order AR model and 1st order GM model were generated with the 1-sec updates first 

and were compared with PPP solution trajectory and GPS-9543 solution trajectory. After 

that, the system trajectories were generated with 5-sec, 10-sec, 20-sec, 30-sec, 60-sec 

update intervals. Some of them are illustrated in from Figure 5.15 to Figure 5.18. 

 

 

Figure 5.15  Kinematic Testing Trajectory Plots (1-sec Updates) 
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Figure 5.16  Kinematic Testing Trajectory Plots (5-sec Updates) 

 

Figure 5.17  Kinematic Testing Trajectory Plots (10-sec Updates) 
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Figure 5.18  Kinematic Testing Trajectory Plots (20-sec Updates) 

 

In the 1-sec update case, the system trajectories by both 4th AR model and 1st order GM 

model processes have indicated slightly better performance than GPS-9543 solution. In 

the 5-sec, 10-sec, 20-sec update cases, the system solutions are showing that the position 

errors have increased between updates. The biggest position errors have often occurred in 

the corner sections. It is because the Yaw rate error plays a bigger role than the 

acceleration error in position generation. While previous four figures illustrate the 

horizontal position trajectory, the following two figures show northing and easting 

position errors of different updating cases compared with PPP solution. It is noticed that 

the solutions of 4th order AR model and 1st order GM model are varying as the updating 

intervals have increased.  
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Figure 5.19  Kinematic Testing Position Error Plots (1/5 sec Updates) 
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Figure 5.20  Kinematic Testing Position Error Plots (10/20 sec Updates) 
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It is clear that the position error in each channel tends to increase without GPS position 

updates and settle down with updates. Also, the kinematic mode position error is much 

bigger than the static mode position error in all update interval cases. In the 10-sec update 

case, the maximum position error has reached to about 60 meters and even worse, 100 

meter position error has been shown in the 20 sec update case. The numerical result of 

position errors of kinematic testing is summarized in Table 5.6. 

 

Table 5.6  Kinematic Position Errors 

Position Errors 
    X RMS Y RMS Hrioz. RMS 

1-sec Update    
4th AR Model 2.2643 4.5664 5.0970 
1st GM Model 2.3521 4.7023 5.2578 

     
5-sec Update    
4th AR Model 3.4984 6.5326 7.4104 
1st GM Model 4.5062 6.3012 7.7466 

     
10-sec Update    
4th AR Model 10.9184 9.5629 14.5142 
1st GM Model 13.6273 9.3777 16.5422 

     
20-sec Update    
4th AR Model 31.0981 25.9061 40.4749 
1st GM Model 22.6127 36.6627 43.0754 

     
30-sec Update    
4th AR Model 21.2120 76.1587 79.0575 
1st GM Model 60.9515 53.1926 80.8983 

     
60-sec Update    
4th AR Model 111.8538 165.9589 200.1340 
1st GM Model 276.4774 149.9599 314.5278 

                                                                                                           Unit : [meters] 
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Based on the position error plots and numerical values, the estimation with 4th order AR 

model has produced better results than the estimation with 1st order GM model in 

kinematic testing. However, the improvement is relatively smaller than the one in static 

testing. It can be explained that more unmodeled deterministic error sources are involved 

in the kinematic environments.  

 

The kinematic testing described here has made very important assumptions mentioned 

earlier. Therefore, the results with those assumptions and data processing method 

presented above, should be understood very carefully.  
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Chapter 6 

 

 

Conclusions and Recommendations 

 

 

6.1 Conclusions 

 

The main objectives of this research are to investigate the error behaviours of MEMS 

based inertial sensors and the performance analysis of the prototype of a low-cost 

GPS/MEMS based inertial sensor integrated system for land vehicle applications. The 

major motivation is that GPS signal is not always available to the users and GPS based 

solutions are degraded due to poor geometry, and multipath effect even though GPS 

based navigation system is becoming smaller and inexpensive to be more popular and 

attainable for civil users and have been immensely adopted for land vehicle applications. 
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Complementing the disadvantages of the GPS based navigation system, MEMS based 

inertial sensors have pushed the development of the inexpensive and smaller integrated 

system to provide the reliable and continuous navigation solutions for land vehicle 

applications. However, in spite of low inherent cost, small size, low power consumption, 

and solid reliability of MEMS based inertial sensors, MEMS based inertial sensors are 

still considered as very poor devices in accuracy. Consequently, this study has 

emphasized the error characterization and performance analysis of MEMS based inertial 

sensors trying to turn the raw measurements of the sensors into reliable and useful data in 

optimal data processing for vehicle position determination. 

 

The research led to the basic principle of multi-sensor navigation system, MEMS 

technology and MEMS based inertial sensors, error analysis of MEMS based inertial 

sensors, error estimation, and performance analysis. The major contributions of this 

research are: 

 

� Identification of different types of error sources of MEMS based inertial sensors 

� Estimation of major deterministic error sources (zero-offset bias and 1st order scale  

       factor) and stochastic modeling of random noise using special standard parametric 

       stochastic models 

� Performance analysis of MEMS based inertial sensors compared to Autoregressive 

      (AR) model and Gauss Markov (GM) model in static and kinematic environments 
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Through Kalman Filter implementation in static testing and kinematic testing, the results 

from the 1st order Gauss Markov process and the proposed 4th order AR model have been 

compared with different interval updates and with prediction. The 4th order AR model has 

resulted in a better performance in both cases in this experiment. In static testing, the 

position estimation errors of 1st order GM process and 4th order AR model were 

compared according to different updating intervals and different updating information 

accuracies. Overall, AR model results have shown a better performance over 1st order 

GM process agreeing with the results in the reference (Nassar S. et al., 2003). As 

indicated in Table 5.1, Table 5.2 and Table 5.3, the rate of improvement by AR model 

over GM model tend to decrease as updating accuracy increases and prediction period 

increases. The kinematic testing has been performed in the 2-dimentional, and relatively 

flat environment assuming nominal Earth rotation rate effect and negligible initial 

misalignment of the system. Also, it should be noticed that the initial heading from 

HMR3300 digital magnetic compass was corrected by the recent estimation of the 

magnetic declination based on CGRF. As illustrated in Table 5.6, the improvement in 

kinematic testing by AR model is relatively smaller than the one in static testing, which 

can be explained that the unmodeled error sources are involved in the kinematic 

environments with a series of assumptions.  

 

In order to adopt low-cost sensors in the integrated navigation system with satisfactory 

performance, the precise calibration of the deterministic error sources and the proper 

stochastic modeling of the noise behaviour of different sensors are recommended. Several 

stochastic models have been discussed in this research and they can be used to help 
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develop optimal algorithms for the integration of MEMS based inertial sensors with other 

enabling systems such as GPS.  

 

 

6.2 Recommendations 

 

As illustrated in the performance analysis, the quality performance of MEMS based 

inertial sensors is not quite acceptable to aid GPS system for land vehicle application for 

longer period of GPS signal outrage. As MEMS technology enhances fast and more 

MEMS based navigation sensors are available in the market, it is recommended to test 

and qualify more and better performance sensors to develop GPS/MEMS based inertial 

sensor integrated navigation system for continuous navigation solutions.  

 

Based on different structure principles of MEMS based inertial sensors, it is 

recommended to identify the various deterministic error sources of the sensors and 

quantify them for optimal data processing algorithm and performance analysis. 

 

Along with the identification and quantification of the deterministic error sources of 

sensors, stochastic error analysis should also be emphasized. Stochastic analysis of sensor 

random noise was mainly discussed in time domain in this research. For the better 

understanding of the sensor system and enhancement of optimal algorithm, the stochastic 

modeling is to be further investigated in the frequency domain. Depending on the nature 

of sensors, environments, and implementation procedures, different types of stochastic 
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modeling schemes could be considered and further investigated to identify the most 

suitable modeling method for a certain application.  

 

In the performance analysis, the limited and simplified Kalman filter was implemented 

using a low-cost GPS chipset and MEMS based inertial sensors of 3-axis accelerometer 

and 1-axis gyroscope in this research. Using different types of GPS receivers and various 

grade MEMS based IMU's consisting of 3-axis accelerometer and 3-axis gyroscope, 

Kalman filter estimation of 3-D kinematic motion will be implemented and the various 

issues of Kalman filter implementation will be also studied for further research. 
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