
 

  

 

 

 

UCGE Reports 
Number 20355 

 

 

 
Department of Geomatics Engineering 

 

 

 

Reservoir Characterization and Horizontal Well 

Placement Guidance Acquisition by Using GIS and 

Data Mining Methods 

 

 
(URL: http://www.geomatics.ucalgary.ca/graduatetheses) 

 

 

 

by 
 

 

Baijie Wang 
 

 

June, 2012 

 

 

 

 

 

 
  



UNIVERSITY OF CALGARY 

 

 

Reservoir Characterization and Horizontal Well Placement Guidance 

Acquisition by Using GIS and Data Mining Methods 

 

by 

 

Baijie Wang 

 

 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

 

 

DEPARTMENT OF GEOMATICS ENGINEERING 

CALGARY, ALBERTA 

June 2012 

 

© Baijie Wang 2012 



ii 

 

Abstract 

This thesis investigates to develop and apply geographic information system (GIS) and 

data mining methods for reservoir characterization and horizontal well placement 

guidance acquisition. Reservoir characterization is a process of quantitatively assigning 

reservoir and fluid properties while recognizing geologic uncertainties in spatial 

variability. To identify reservoir properties with spatial correlation, a new density-based 

spatial clustering method, SEClu, is presented to group core analysis data. Further, a 

novel fuzzy ranking artificial neural network (FR-Neural) framework is introduced for 

accurately characterizing reservoir properties from well log data. SEClu and the FR-

Neural framework are evaluated with synthetic and real datasets. 

Horizontal well placement guidance acquisition (HWPGA) analyzes the real field 

data and collects guidelines for placing horizontal wells into a reservoir. In this thesis, a 

group of horizontal well placement attributes are defined to capture the location of 

horizontal wells in a heterogeneous reservoir. A customized association rule mining 

method, named SE-Apriori, is introduced to analyze the influences of the horizontal well 

placement attributes on the oil production. The SE-Apriori considers two predefined 

constraints from the HWPGA problem and, thus, can generate fewer association rules 

with less execution time. A GIS prototype containing the SE-Apriori tool was developed 

to help in efficiently managing petroleum field data and visualizing the association rule 

mining results on a map. Finally, the proposed SE-Apriori method is evaluated using a 

real dataset from a steam assisted gravity drainage (SAGD) project in Alberta, Canada. 
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Chapter One: Introduction  

1.1 Background 

Professionals in the petroleum industry are facing the dilemma of making complex high-

stake decisions while lacking efficient methods to manage and marshal overloaded field 

data (Mohaghegh, 2005). With advanced sensors installed into thousands of wells, very 

large amounts of field data that carry important information have been accumulated in the 

petroleum industry. The challenge is often how to efficiently interpret the data and 

benefit the decision makers by providing valuable information. However, interpretation 

of large volume of data through traditional analytical methods is often unsuccessful, 

incomplete and inadequate (Zangl and Hannerer, 2003). Hence methods for extracting 

important information concealed in extensive datasets are required. 

Data mining is the process of discovering interesting, implicit and previously 

unknown knowledge from large databases (Frawley et al., 1992). It is an interdisciplinary 

field at the intersection of artificial intelligence, machine learning, statistics and database 

systems (Chakrabarti et al., 2006). Data mining has been successfully utilized in various 

petroleum applications, including reservoir characterization (Mohaghegh et al. 1996; 

Aminian and Ameri, 2005), fracture detection (El Ouahed et al., 2005), seismic analysis 

(Strecker and Uden, 2010; Marroquin et al., 2009) and reservoir modeling (Aulia et al., 

2010; Zangl and Hannerer, 2003). At present, with the large amount of collected field 

data in the petroleum industry, data mining has great potential to provide better solutions 
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to explain the complexity of different phenomena affecting oil production and 

exploration. 

Geographic Information System (GIS) has also shown great potential in managing 

the field data in the petroleum industry. GIS is a computer system for capturing, storing, 

querying, analyzing and displaying geospatial data (Chang, 2012). It helps with the 

storage of field data in a geodatabase and the visualization and management of the data 

geographically as part of a map. The large volume of field data in the petroleum industry 

has been geographically referenced to spatial locations, integrating data mining and GIS 

and offering a great opportunity for the provision of valuable information for decision 

makers. 

1.2 Research Gap and Problem Statement 

This thesis focuses on the development of GIS and data mining methods for two 

petroleum applications, i.e. reservoir characterization and horizontal well placement 

guidance acquisition. 

1.2.1 Reservoir Characterization 

Reservoir characterization (RC) is a process for quantitatively assigning reservoir and 

fluid properties while recognizing geologic uncertainties in spatial variability 

(Mohaghegh et al. 1996).  The most direct field data used in reservoir characterization is 

from core analysis, where rock core samples taken from a reservoir are analyzed in a 

laboratory. Core analysis data are accurate and are, thus, widely used as benchmark or 

validation data in reservoir characterization. 
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Acquisition of rock core samples from a reservoir is, however, costly; and, core 

analysis data can only provide reservoir properties for several discrete points. For areas 

without core samples, the reservoir properties are calculated by building correlations 

from nearby core analysis data. The assumptions of this process are that spatial 

correlation exists in reservoir properties and that reservoir properties in an area are 

similar to nearby core analysis data. Therefore, clustering core analysis data considering 

the spatial correlation is helpful in selecting representative core analysis data for areas 

where core samples are not available. However, most existing spatial clustering methods 

in data mining consider spatial and nonspatial attributes independently and none of them 

can be applied to clustering core analysis data. 

In order to acquire large-scale reservoir properties, artificial neural networks 

(ANNs) have recently been introduced into reservoir characterization by using core 

analysis and well log data (Al-Bulushi et al., 2009; Aminian and Ameri, 2005; 

Mohaghegh et al., 1996; Mohaghegh et al., 2000; Wong et al., 1995). Well log data 

record high resolution but indirect reservoir information via subterraneous sensors (Lim, 

2005). In this method, well log and core analysis data with the same depth interval are 

paired together to train the ANN. 

After proper training, the ANN can be used to predict reservoir properties based 

only on well log data for depth intervals where core analysis data are not available. The 

assumption of applying ANN to reservoir characterization is that relationships between 

well logs and reservoir properties can be correctly represented by training data; hence, 

representative training data selection is critical for the ANN‟s performance. However, the 

research on selecting representative well log data for ANN-based reservoir 
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characterization is limited; therefore, the modeling ability of ANN in reservoir 

characterization can be jeopardized. 

1.2.2 Horizontal Well Placement Guidance Acquisition 

Enhanced oil recovery technologies, such as steam assisted gravity drainage (SAGD), 

require superior horizontal well placement to achieve good oil production performance 

(Chen et al., 1997). Several horizontal well planning methods, with the assistance of 

numerical simulation, have been introduced (Chen et al., 1997; Shin and Polikar, 2007). 

However, these methods derived the horizontal well placement plans based only on 

simulated or predicted data. Without investigating real field data, the generated well 

placement plans have high uncertainty.   

Large amounts of real SAGD field data, including geological, horizontal drilling 

and production data, have been consistently collected in the past decade. The data 

contains implicit information conveying the correlations between horizontal well 

placement and oil production performance. Retrieving this information will significantly 

help horizontal well placement planning. However, no work has investigated real SAGD 

field data and the retrieval of the horizontal well placement guidance. 

1.2.3 GIS with Data Mining in Field Data Management 

Field data from thousands of wells in the petroleum industry have accumulated for 

decades. A growing number of oil and gas companies have implemented GIS to 

efficiently manage the data (Coburn and Yarus, 2000). Data mining methods have also 

been introduced to marshal the overload of data (Zangl and Hannerer, 2003).  
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Most of the field data and data mining results are, however, in a numerical or text 

format. Without proper visualization, it is very difficult for engineers to work with the 

data and understand the data mining results. With a large volume of field data being 

recently geographically referenced to spatial locations, integrating data mining methods 

into GIS shows great potential in the petroleum industry and is becoming a new research 

topic. The problem is often the provision of a user-friendly system for efficiently 

managing the large volume data and visualizing the data mining results. 

1.3 Research Objectives 

The literature review and discussions in Section 1.2 lead to the following objectives: 

1. Develop a spatial clustering algorithm that accounts for spatial correlation,  

2. Incorporate an automatic well log data selection step into reservoir 

characterization and develop a new ANN-based reservoir characterization 

framework, 

3. Develop an efficient data mining method to identify horizontal well placement 

guidance from real SAGD field data, and 

4. Integrate data mining tools into GIS and develop a system prototype that can 

manage, analyze and visualize the petroleum field data. 

1.4 Research Contribution 

The main contributions of this thesis can be summarized as: 

1. This thesis proposes a new density-based spatial clustering method (SEClu), 

which clusters the core analysis data considering the local non-spatial similarity 
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and spatial correlation. The new method is evaluated using both synthetic and real 

datasets. 

2. A novel fuzzy ranking-artificial neural network (FR-Neural) framework is 

introduced for reservoir characterization from well logs. In the new framework, 

fuzzy ranking selects the representative well log variables for neural inputs with 

the objective of specific reservoir property characterization, which implicitly 

increases the modeling ability of the ANN in reservoir characterization. The new 

method is evaluated using real data from three wells in Alberta, Canada. 

3. This thesis formalizes the horizontal well placement guidance acquisition 

(HWPGA) problem and presents a customized association rule mining method to 

solve it. In order to characterize the location of horizontal wells in a 

heterogeneous reservoir, 40 horizontal well placement attributes are defined. A 

customized association rule mining method, named SE-Apriori, is introduced for 

analysis of the interesting horizontal well placement patterns from real SAGD 

field data. The proposed method is evaluated using a real dataset from a SAGD 

project in Alberta, Canada. 

4. A system prototype, named PetroData-GIS, which incorporates the SE-Apriori 

tool into a GIS, is developed to efficiently manage the large volume of field data 

in the petroleum industry and visualize the association rule mining results.  

1.5 Thesis Outline 

Chapter Two gives a literature review of density-based spatial clustering methods, using 

ANN in reservoir characterization, horizontal well planning and association rule mining 
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methods. Chapter Three starts by introducing the SEClu spatial clustering algorithm. The 

FR-Neural framework is proposed for reservoir characterization from well logs. Finally, 

the SEClu method and FR-Neural reservoir characterization framework are evaluated 

through synthetic and real datasets. Chapter Four formalizes the HWPGA problem and 

introduces a customized association rule mining method to solve it. A group of  

horizontal well placement attributes are defined and the SE-Apriori association rule 

mining method is introduced. The development of PetroData-GIS system containing the 

SE-Apriori tool is described. Finally, the SE-Apriori method is evaluated through a real 

SAGD dataset. Chapter Five draws conclusions and states future works of this thesis. 

  



 

 

8 

Chapter Two: Related Work 

This chapter presents the literature study in the following areas: First, previous works on 

density-based spatial clustering are reviewed. Second, research works that use an 

artificial neural network in reservoir characterization are presented. Third, reviews of 

horizontal well placement planning and association rule mining are given. 

2.1 Density-Based Spatial Clustering 

In order to discover arbitrarily shaped clusters in core analysis data, density-based spatial 

clustering methods are used. Several density-based spatial clustering methods have been 

proposed that consider the spatial and non-spatial attributes in the data.  

2.1.1 DBSCAN 

Density-based spatial clustering of applications with noise (DBSCAN) was the first 

proposed density-based spatial clustering method. In order to form a new cluster or 

extend an existing cluster in DBSCAN, the density around a point p must surpass the 

predefined values for which a neighbourhood around p with radius Eps must contain at 

least a minimum number of points (MinPts). The greatest advantages of DBSCAN are 

that it can find arbitrarily shaped clusters and it requires only a distance function and two 

input parameters (Wang and Hamilton, 2003). 

Given a dataset D, a distance function dist and parameters Eps and MinPts, the 

following definitions are used to define DBSCAN (Ester et al, 1996).  

 Definition 2.1 (Eps-neighbourhood): The Eps-neighbourhood of point p, 

denoted by NEps(p), is defined by NEps(p)={qD | dist(p,q) ≤ Eps}. 
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 Definition 2.2 (directly density-reachable): A point p is directly density-

reachable from a point q w.r.t Eps and MinPts if (1) qNEps(p) and (2) NEps(p) ≥ 

MinPts. 

 Definition 2.3 (density-reachable): Point p is density-reachable from a point q 

w.r.t Eps and MinPts if there is a chain of points p1,…,pn, p1=q, pn=p such that 

pi+1 is directly density-reachable from pi. 

 Definition 2.4 (density-connected): A spatial point p is density-connected to a 

point q w.r.t Eps and MinPts if there is a point o such that p and q are density-

reachable from o. 

 Definition 2.5 (density-based cluster): A density-based cluster C w.r.t Eps and 

MinPts is a non-empty subset of D satisfying the following conditions: (1)  p, q 

D, if pC and q is density-reachable from p; (2)  p, q C, p is density-

connected to q. 

Once Eps and MinPts are defined, DBSCAN starts to group the data from an 

arbitrary point, q. It begins by performing a neighbourhood query, which finds the 

neighbourhood of point q. If the neighbourhood is sparsely populated, i.e. contains fewer 

than MinPts points, q is labeled as noise; otherwise, a cluster is created, and all points in 

q‟s neighbourhood are placed in this cluster. The neighbourhood of each of q‟s 

neighbours is then examined to see if it can be added to the cluster. If so, the process is 

repeated for every point in this neighbourhood, and so on. If a cluster cannot be expanded 

further, DBSCAN chooses another arbitrary unlabeled point and repeats the process until 

all the points in D have been assigned into a cluster or identified as noise.  
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Although DBSCAN gives extremely good results and is efficient in many datasets, 

it is not suitable for cases where the non-spatial attributes play a role in the determination 

of the desired clusters, since it does not take into consideration the non-spatial attributes 

in the dataset (Ester et al., 1996; Wang and Hamilton, 2003). 

2.1.2 Spatial Clustering Considering Non-spatial Attributes 

Very few spatial clustering algorithms have been proposed for dealing with both spatial 

and non-spatial attributes. An option is the handling of non-spatial and spatial attributes 

in two separate steps, as described in CLARANS (Ng and Han, 2002). The other option is 

to deal with the non-spatial attributes and spatial attributes together in the clustering 

process. The similarity functions for non-spatial attributes and the distance functions for 

spatial attributes are handled simultaneously, in order to define the overall similarity 

between objects. Algorithms that have taken this approach include generalized DBSCAN 

(GDBSCAN) (Sander et al., 1998) DBRS (Wang and Hamilton, 2003) and clustering of 

multi-represented objects (Kailing et al., 2004). 

GDBSCAN (Sander et al., 1998) takes into account the non-spatial attributes of 

an object as a weight attribute, which is defined by the weighted cardinality of the 

singleton containing the object. The weight can be the size of the area of the clustering 

object or a calculated value from several non-spatial attributes. 

DBRS (Wang and Hamilton, 2003) introduces the concept of purity to determine 

the categorical attributes of objects in the neighbourhood. Purity is defined as the 

percentage of objects in the neighbourhood, with the same characteristic for a particular 

non-spatial attribute as the centre object. For non-spatial attributes, this can avoid the 
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creation of clusters of points with different values, even though these points may be close 

to each other. However, purity is only defined for categorical non-spatial attributes. 

Clustering of multi-represented objects (Kailing et al., 2004) extends DBSCAN 

by retrieving information from one attribute to multiple attributes. Within a set of 

attributes, either spatial or non-spatial, density reachability is defined as the union or 

intersection of the selected attributes. For example, the union form requires that the 

summation of the neighbourhood in every attribute space be larger than a particular 

threshold. 

Limited studies have been conducted on applying spatial clustering methods on 

geological studies. Tutmez and Tercan (2007) utilized spatial clustering methods to 

identify reservoir heterogeneity and geological uncertainty. In their experiments, 27 wells 

are grouped into 4 clusters based on their porosity values. As a post processing step, for 

each identified cluster the spatial correlation was evaluated by using the semivariogram 

plot. The authors concluded that there was a close relationship between uncertainty and 

spatial variability. However, in (Tutmez and Tercan, 2007) the spatial and nonspatial 

attributes in the geological data were treated independently in the spatial clustering 

process. In geological data where strong spatial correlation exists, the clustering result 

may lose credibility.  

2.2 Reservoir Characterization 

For acquiring large-scale reservoir properties, previous methods have used regression 

analysis to build linear or nonlinear correlations between well log data and various 

reservoir properties. For less heterogeneous reservoir, where the reservoir properties vary 
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not very much across reservoir space, these correlations work fairly well. However, as the 

degree of heterogeneity of the reservoir increases, these correlations lose accuracy 

(Aminian and Ameri, 2005; Helle et al., 2001; Lim, 2005; Mohaghegh et al., 1996).  

2.2.1 ANN in Reservoir Characterization 

Attempts to use artificial neural networks (ANNs) in reservoir characterization began in 

the mid 1990s, when multilayer perceptron (MLP) neural networks with back 

propagation (BP) algorithms were gradually accepted as new intelligent reservoir 

characterization tools (Aminian and Ameri, 2005; Helle, et al., 2001; Wong et al., 1995). 

Mohaghegh et al. (1996) built a three-layer MLP neural network for porosity and 

permeability characterization. The same neural inputs, including three well log variables 

(gamma ray, bulk density and depth induction), were used for both porosity and 

permeability characterizations. Results showed that ANNs had great potential, since they 

exceeded traditional statistical methods for accurately predicating reservoir properties for 

heterogeneous reservoirs. However, their work did not discuss how the three well log 

variables were selected as the neural inputs. 

Independently, Helle et al. (Helle H.B. et al. 2001) concluded that using ANN in 

reservoir characterization has a number of advantages over conventional methods, despite 

requiring efforts to select good representative training data. In this work, Helle et al. built 

two MLP neural networks to predict porosity and permeability using two different sets of 

well log variables as inputs. Well log variables from sonic, density and resistivity 

categories were used for neural inputs for porosity characterization; well log variables 

from density, gamma ray, neutron and sonic categories were used for permeability 

characterization. All the neural inputs were manually and carefully selected. As stated by 
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the authors, although the final predicted porosity and permeability values via MLP were 

accurate enough to meet most practical needs, the main drawback of using ANN in 

reservoir characterization was that it is difficult to select a representative collection of 

training samples. 

2.2.2 Data Selection for ANN in Reservoir Characterization 

As a data driven approach, the modeling ability of an ANN relies heavily on the quality 

of its neural inputs, and any inappropriate well log data selection decreases ANN‟s 

performance in reservoir characterization. 

Several studies have shown that fuzzy analysis can help identify the optimal set of 

independent variables for an ANN by addressing the uncertainties of neural inputs 

(Mohaghegh, 2005, 2000). Lim (2005) used a fuzzy curve analysis to select neural inputs 

from well logs for use in ANN-based reservoir characterization. In this work, 5 and 6 out 

of 8 candidate well log variables were selected via the fuzzy curve for permeability and 

porosity characterizations, respectively. Based on the selected neural inputs, MLP neural 

networks were built, and their modeling ability was compared with that of multiple 

regression analysis. Results showed that the modeling ability via the combination of 

fuzzy curve and MLP significantly exceeded that of multiple regression analysis. 

However, the well log data redundancy problem was not discussed. Additionally, Lim 

(2005) did not give a comprehensive evaluation on the proposed method, because the 

proposed ANN model was trained and tested using the same dataset. 
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2.3 Horizontal Well Placement Planning 

Given the importance of horizontal well placement, both static and dynamic methods 

have been proposed for well placement planning. 

2.3.1 Static and Dynamic Horizontal Well Placement Planning 

Static horizontal well placement methods determine the horizontal well placement plan 

with only a geological model while they do not account for the dynamics of fluid flow in 

the reservoir (Norrena and Deutsch, 2002). The static methods deliver the well placement 

plan by maximizing a predefined objective function. 

McLennan et al. (2006) applied an exhaustive calculation scheme to determine the 

optimal elevation of a pair of SAGD wells, where the oil recovery factor was maximized. 

In this work, a SAGD well pair was placed in between two geological surfaces, top and 

bottom continuous bitumen surfaces. After scanning all possible plans, the optimal well 

placement plan was determined by maximizing the oil recovery factor. Although this 

method is straightforward, the assumption that the oil recovery is only related to the well 

elevation without consideration of other geological complexities is unrealistic. Moreover, 

the computational cost of the exhaustive calculation is very high, which is not suitable for 

solving multiple horizontal well placement problems. 

Norrena and Deutsch (2002) introduced a simulated annealing method to optimize 

the well placement subject to a predefined objective function. They argued that simulated 

annealing was computationally efficient and capable of delivering the globally optimized 

result. Four different objective functions related to geological and economical constraints 

in well placement were discussed. This method was tested on the optimization of the 
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elevation of a SAGD well pair, where the connected pore volume fraction above the 

producer was maximized. However, as stated by the authors, the optimization result 

cannot be directly applied to the field, since the uncertainty of the results is still high. 

Dynamic horizontal well placement planning refers to the application of a 

numerical simulator in assisting the determination of well plans by considering both the 

geological model and fluid flow (Norrena and Deutsch, 2002). 

Chen et al. (1997) examined different SAGD well placement plans in a reservoir 

with a overlying gas cap and an underlying aquifer. The producer was fixed at the bottom 

of the reservoir, and the injector was systematically moved from the top gas zone toward 

the producer in a homogeneous model. Simulation results suggested that the SAGD oil 

recovery was drastically reduced for situations when the injector was placed lower than 

the approximate midpoint of the oil pay section. The simulation model used in the 

research assumed a homogeneous reservoir; thus, its results lose credibility when the 

reservoir heterogeneity increases. In addition, although a homogeneous model was used, 

each simulation took 12 hours, leading to a very high computation cost. 

From a two-dimensional (2D) simulation, Shin and Polikar (2007) found that 

increasing the distance between the producer and the injector within a SAGD pair 

increased the thermal recovery efficiency. However, Albanhlani and Babadagli (2008) 

argued that Shin and Polikar‟s work did not provide a fair evaluation, since the time-

varied thermal efficiency with different producer/injector spacing was not compared. 

Moreover, a 2D simulation model was used to represent a real three-dimensional (3D) 

reservoir to cut down on the simulation computation; however, this jeopardizes the 

results reliability due to over simplification. 
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Both static and dynamic horizontal well placement planning methods rely on 

accurate geological data. Static methods do not consider the fluid flow, and the reliability 

of the results is dependent on the objective function definitions. As for the dynamic 

methods, the application of numerical simulation to determine the optimal well placement 

plan is impractical due to the computational requirement (Norrena and Deutsch, 2002). In 

practice, these methods can be used to deliver the best possible horizontal well placement 

plans, and the final well placement plan is subject to the engineers‟ experience. 

2.4 Association Rule Mining and The Apriori Algorithm 

Association rule mining is one of the well-developed data mining methods for 

discovering interesting correlations between variables in large datasets. For the first time, 

it is introduced in this thesis to analyze the correlations between horizontal well 

placement attributes and oil production performance from real historical field data.  

2.4.1 Association Rule Mining 

Association rule mining (ARM) was first introduced by Agrawal and Srikant (1993) to 

analyze the transactional database and derive association rules (Han and Kamber, 2006; 

Wu X., 2007). A typical example is the market basket analysis. This process analyzes 

customer consumption patterns by finding associations between different items which 

customers purchase. For instance, if the customer buys milk, how likely does he/she buy 

bread at the same time? Such information can be helpful in improving marketing 

activities, such as shelf space placement. Further, ARM is applied to many applications 

including marketing (Sohn and Kim, 2008; Jiao and Zhang, 2005), bioinformatics 

(Creighton and Hanash, 2003) and reservoir analysis (Aulia et al., 2010).  
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With the definition of the association rule in Agrawal et al. (1993), let D be the set 

of all items, and X and Y be two subsets of D such that ,X Y D  . An association rule 

with respect to X and Y could be in the form of: 

 ,  such that , ,  ,  and X Y X Y D X Y X Y   I  (2.1) 

where X is called the antecedent and Y is the consequence. 

Two concepts are essential in defining the interestingness of an association rule 

(Han J. and Kamber M. 2006), support and confidence. The support of rule X Y  is 

defined to be the percentage of transactions that consist of X YU  to the total number of 

transactions, as shown in Eq. (2.2).  

  ( ) ( )support X Y P X Y  U  (2.2) 

The confidence of rule X Y  is the percentage of transactions that consist of X 

and Y to the number of transactions that only contain X (Han J. and Kamber M. 2006). 

The definition is in the form of conditional probability shown in Eq. (2.3). 

 
( )

 ( ) ( | )
( )

P X Y
confidence X Y P Y X

P X
  

U
 (2.3) 

Rules that are satisfied with large support and confidence values are considered to 

be interesting. The objective of ARM is the generalization of all interesting rules from 

the transaction database satisfying both a minimum support threshold (minsup) and a 

minimum confidence threshold (minconf). 

In general, the process of ARM can be divided into two steps:  

1. Find all the frequent itemsets. Frequent itemsets are those itemsets that 

satisfy the minsup threshold.  
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2. Generate the desired association rules. This step generates all strong rules 

from the frequent itemsets that satisfy the minconf threshold. 

In the next section, a widely used association rule mining algorithm is introduced. 

2.4.2 The Apriori Algorithm 

Apriori is a classic ARM algorithm. It was proposed by Agralwal and Srikant (1994) for 

mining frequent itemsets and associations for a transactional dataset. Apriori is a seminal 

algorithm, and it applies a level-wise search mechanism to find all the frequent itemsets. 

It starts by identifying the frequent 1-itemset by scanning the dataset and counting the 

support of each item. Next, the frequent 1-itemsets are used to find the frequent 2-

itemsets, which are used to find frequent 3-itemsets. This process continues until no 

frequent itemsets can be found. The search for the itemsets of each frequent level requires 

a full scan of the dataset. To improve the efficiency of the level-wise frequent itemset 

search, an important property is introduced to reduce the searching space: 

 Definition 2.6 (Apriori property): All nonempty subsets of a frequent itemset 

must also be frequent. 

The Apriori property is based on the observation that a super itemset of a non-

frequent itemset is still non-frequent. For example, assume itemset X is not frequent, 

sup(X) < minsup. If item Y is added to itemset X, then the resulting itemset, X YU , 

cannot occur more frequently than X; thus, X YU  is not frequent, either.  

Based on the Apriori property, the Apriori algorithm is presented in Figure 2–1. 

Let k-itemset denote an itemset containing k items and Fk and Ck be the collections of 

frequent k-itemsets and candidate k-itemsets, respectively. The Apriori algorithm first 
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passes the dataset to count the occurrence of each item and determine 1-frequent itemsets, 

F1. The subsequent passes contain two steps. In the first step, the frequent k-itemsets, Fk, 

found in the k-th pass are used to generate the candidate (k+1)-itemsets, Ck+1, using the 

Apriori-gen function, as shown in Figure 2–2. Ck+1 is a superset of Fk and all the subsets 

of 1kc C   are frequent. In the following step, the Apriori algorithm scans the data again 

to count the support of each candidate in Ck+1; and, the ones with support of less than 

minsup are deleted. This process continues until Fk is empty. 

 

Figure 2–1 Pseudo code of Apriori algorithm (Wu et al., 2007) 

The Apriori-gen function takes an argument of the frequent k-itemset Fk and 

returns a superset of the set of all candidate (k+1)-itemsets, Ck+1. To generate Ck+1, Fk is 

Algorithm: Apriori (D, minsup) 

Input: (1) The dataset D containing all the transaction records    (2) minsup 

Output: k kFU  

01:    Let F1={frequent 1-itemsets}; 

02:    for (k=2; 1kF   ; k++) 

03:           Ck=Apriori-gen(Fk-1); 

04:           Scan D to determine the support to each candidate kc C  

05:            Fk={ kc C  | c.support   minsup} ; 

06:    end 

07:    return k kFU ; 
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joined with Fk itself. It is assumed that all items in an itemset are sorted in the 

lexicographic order. For two frequent k-itemsets f1 and f2 belonging to Fk, a candidate 

(k+1)-itemset is generated by merging them only if the first (k-1) items in f1 and f2 are the 

same and the last items are different, which is shown in line 03 in Figure 2–2. 

1 2. .k kf item f item denotes that 2. kf item  is placed in a later position in a lexicographic 

order than 1. kf item , which ensures that no duplication is made. The resulting candidate 

(k+1)-itemsets by joining f1 and f2 is < 1 1.f item , 1 2.f item , …, 1. kf item , 2. kf item >. 

 

Figure 2–2 Pseudo code of Apriori generation function (Wu et al., 2007) 

Function: Apriori-gen (Fk)  

Input: Frequent k-itemsets: Fk 

Output: Candidate k-itemsets: Ck+1 

01:    foreach itemset 1 kf F  

02:         foreach itemset 2 kf F  

03:              if ( 1 1 2 1. .f item f item and 1 2 2 2. .f item f item  and           

                      1 1 2 1. .k kf item f item  and 1 2. .k kf item f item  ) then 

04:                 { c= 1 2( , )merge f f    and    Add c into Ck+1;   } 

05:             end  //end if 

06:        end  //end foreach 

07:     end  // end foreach 

08     return Ck+1; 
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After finding all frequent itemsets, the remaining task is the generation of the 

desired association rules. To generate interesting rules, all nonempty subsets of every 

frequent itemset, f, are enumerated. For each subset of f, a=subset(f), a rule is generated 

with the form of a=>f-a, if its confidence is larger than minconf (Han and Kamber, 2006). 
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Chapter Three: Using Spatial Clustering and Artificial Neural Network for Reservoir 

Characterization 

This chapter starts by presenting a new density-based spatial clustering method for 

grouping core analysis data considering the spatial correlation. Second, a new FR-Neural 

framework is proposed to characterize reservoir properties from well log data. Finally, 

the proposed methods are tested on synthetic and real datasets. 

3.1 Introduction 

In the petroleum industry, reservoir properties, such as porosity, permeability and 

saturation, have significant impacts on reservoir simulation, enhanced oil recovery design, 

field operations and geological studies (Aminian and Ameri, 2005). For example, 

porosity describes the volume fraction of the pore space and is related to the hydrocarbon 

reserves contained in a reservoir. Reservoir characterization is a process of quantitatively 

assigning reservoir and fluid properties, such as porosity, permeability and fluid 

saturation, while recognizing geologic uncertainties in spatial variability (Mohaghegh et 

al., 1996). This thesis focuses on characterizing reservoir properties. In practice, reservoir 

characterization is a very complex geological problem and being able to obtain reliable 

and accurate reservoir properties is crucial (Al-Bulushi et al., 2009; Lim, 2005; 

Mohaghegh, 2000). 

Core analysis data provides accurate reservoir properties by analyzing core 

samples taken from a reservoir and, thus, is widely used as benchmark or validation data 

in reservoir characterization. Each record in core analysis contains the spatial attributes, 

i.e., longitude, latitude and elevation, where the sample was taken from, and the 
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nonspatial attributes, i.e., the reservoir properties. Due to the high cost, core analysis data 

is limited and can only provide reservoir properties for certain discrete points. For the 

areas without core samples, the reservoir properties are calculated by building 

correlations to the core analysis data in the surrounding areas. The essential assumption 

of this process is that a strong spatial correlation of reservoir properties exists so that the 

reservoir properties in an area can be correlated to the core samples nearby. Therefore, 

clustering core analysis data considering the spatial correlation is helpful in selecting the 

representative core analysis data. However, most existing spatial clustering methods 

consider spatial and nonspatial attributes independently. These methods are not suitable 

in clustering core analysis data where the spatial correlation plays important roles. 

Spatial entropy is the extension of Shannon Entropy with the spatial configuration. 

It measures the distribution of a nonspatial attribute in the spatial domain (Claramunt, 

2005; Leibovici, 2009). This thesis proposes to apply the spatial entropy to measure the 

nonspatial similarity and spatial correlation. A new spatial entropy-based clustering 

method, called SEClu, is introduced, which discovers clusters in core analysis data that 

are not only dense spatially but that also have a high spatial correlation across the space.  

In addition, ANN has been introduced into reservoir characterization for building 

the correlations from well logs and core analysis data (Al-Bulushi et al. 2009; Aminian 

and Ameri, 2005; Mohagheg, 2000). Well log and core analysis data with the same depth 

interval are paired together to train the ANN. After proper training, a well trained ANN is 

capable of predicting reservoir properties based only on well log data for depth intervals 

where core analysis data is not available. As a data-driven method, ANN learns the 



 

 

24 

complex relationships between well log data and reservoir properties from the training 

data and, thus, training data selection is critical for the ANN‟s performance. 

How to select a proper set of well log variables for ANN is not a trivial problem. 

A random selection or empirical selection based on limited experience for reservoir 

characterization may eliminate useful information, which will decrease the accuracy of 

the ANN. A complete well log contains approximately 20 well log variables, recording 

geological information from resistivity, spontaneous potential, sonic, or thermal sensors 

(Brock, 1986; Ellis, and Singer, 2007; Wong et al., 1995). Different well log variables 

have various levels of correlations to a target reservoir property. For example, Resistivity 

Logs are believed to have a closer relation with saturation. Additionally, well log 

variables generated from similar well logging sensors are highly correlated (Aminian and 

Ameri, 2005). When the number of dependent or irrelevant neural inputs rises, ANN 

tends especially to converge to local minima, which decreases the predication accuracy of 

ANN in reservoir characterization (Lin Y.H. et al. 1996). However, limited work has 

been conducted for selecting representative well log data for ANN-based reservoir 

characterization. 

Fuzzy ranking (FR) is a global prioritizing technique that can automatically and 

quickly identify a subset of independent significant inputs for use in nonlinear systems 

(Lin Y.H. et al. 1996). It can identify the representative data for neural inputs 

mechanically without prior knowledge. By identifying a subset of representative 

variables from the well log, FR has the potential to improve the modeling and predication 

performance of ANN-based reservoir characterization. This chapter presents a novel 

fuzzy ranking-artificial neural network (FR-Neural) framework for reservoir 
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characterization from well logs. By removing irrelevant and highly correlated well log 

data, this framework reduces the risk of local minima and over-fitting, and implicitly 

increases the predication accuracy of the ANN. 

The remainder of this chapter is organized as follows: Section 3.2 introduces a 

new density-based spatial clustering method for grouping core analysis data by 

considering spatial correlation. Section 3.3 presents the FR-Neural reservoir 

characterization framework. Section 3.4 evaluates the proposed methods using synthetic 

and real datasets. 

3.2 Spatial Clustering of Core Analysis Data 

In order to identify meaningful clusters from core analysis data, spatial clustering 

methods need to consider spatial attributes, nonspatial attributes and inherent spatial 

correlations during the clustering process. Especially, this chapter focuses on identifying 

arbitrary shaped clusters with spatial correlation. Identifying arbitrary shaped clusters 

does not require clusters forming specific geometrical shapes, which generalizes the 

method to more spatial clustering problems. Furthermore, spatial correlation always 

indicates the dependency between spatial and nonspatial attributes, with the chance that 

some cause and effect lead to it. Therefore, identifying clusters with spatial correlation 

would be interesting. In practice, spatial correlation can be in a large scale in which the 

nonspatial attributes may change gradually for a large extent. Under such condition, the 

values of nonspatial attributes might be similar in a small local area but differ 

significantly for the whole spatial correlated area. Identifying such areas as clusters is 
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implicitly interesting to reveal the effect leading to the spatial correlation. Therefore, in 

this research, nonspatial similarity is required in a small area but not in the whole cluster.  

In the following, the spatial entropy is introduced and a discussion is given to 

justify that it is an unbiased measure in spatial clustering with respect to local nonspatial 

similarity and spatial correlation. 

3.2.1 Spatial Entropy 

Spatial entropy is an information measure of nonspatial attributes that also takes into 

account the influence of spatial spaces. Various forms of spatial entropy have been 

developed for how to quantify the extent of the role played by space (Li and Claramunt, 

2006; Leibovici, 2009; Claramunt, 2005). The one from (Claramunt, 2005) is adopted 

here because it is simple and can handle both discrete and continuous nonspatial 

attributes. 

Given a dataset D with a nonspatial attribute prop in spatial spaces {S1,…,Sm}, 

{D1,...,Di,…,Dn} is a partition of D based on prop, i.e., iD D , 
i

D DU and 

,jiD D i j  . pi is the fraction of the number of objects in category Di over the 

whole dataset D; i.e. pi=|Di|/|D| and 1ip  . The intra-distance of Di, denoted by 
int
id  is 

the average distance between objects in Di (as shown in Eq.(3.1)). The extra-distance of 

Di, denoted by
ext
id is the average distance of objects in Di to other partition classes of D 

(as shown in Eq.(3.2)). 
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In Eq.(3.1), when Di is empty or contains only one object, it is assumed that the 

intra-distance is very small and a small constant λ is assigned to 
int

id to avoid the 

influence of null values on the computation. In Eq.(3.2), when Di includes all of the 

objects in D, i.e. all objects have similar values of prop, it is assumed that the extra-

distance 
ext
id is very large, and a large constant β is assigned. dist(j,k) is the distance 

between objects j and k in the spatial space. 

 Definition 3.1 (spatial entropy) (Li and Claramunt, 2006; Claramunt. 2005): 

The spatial entropy of dataset D based on its partition {D1,…,Di,…,Dn} is defined 

as: 

 1 21
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d
H p p


   (3.3) 

In this definition, a spatial configuration 
int ext
i id d  is added as a weight factor in the 

Shannon Entropy. The weight factor decreases when either the intra-distance decreases or 

the extra-distance increases, which enables spatial entropy to measure the spatial 

distribution. In addition, given D and its partition, the spatial entropy is similar to 

Shannon Entropy in that it reaches the maximum value when p1=…pi…=pn. 

3.2.2 Using Spatial Entropy in Spatial Clustering 

This section will demonstrate that spatial entropy is a monotonic decreasing function for 

local nonspatial attribute similarity and spatial correlation. 
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3.2.2.1 Spatial Entropy vs. Local Nonspatial Similarity 

The nonspatial attribute prop of the spatial dataset D can be viewed as a random variable 

with its probability density function approximated using a histogram. If the nonspatial 

attribute prop is random, it follows an even distribution. As the local nonspatial similarity 

increases, prop tends to be more concentrated. 

It has been shown that the Shannon entropy of an even distribution reaches the 

maximum value and tends to decrease as the concentration of the distribution increases. 

Spatial Entropy Hs is a special form of Shannon entropy and has a spatial configuration 

weight factor 
int ext
i id d . Even though each object‟s nonspatial attribute is correlated 

within the spatial spaces, the probability distribution of prop is independent from

int ext
i id d . Hence the weight factor 

int ext
i id d  does not influence the property of spatial 

entropy Hs, which is a measure of randomness. Therefore, when prop follows an even 

distribution, its spatial entropy value reaches the maximum; otherwise, the spatial entropy 

Hs decreases as the concentration of the probability distribution increases. 

    
(a)                                                                        (b) 

Figure 3–1 (a) Scatter plots and histograms for three grey value point datasets (b) 

Spatial entropy for the three datasets shown in (a). 
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In Figure 3–1 (a), datasets 1 and 2 have the same spatial attributes, but the points 

in dataset 2 have more similar nonspatial attributes than those in dataset 1. From the 

histograms it is evident that more than 60% of points in dataset 2 have grey values 

between [150,200] while values in dataset 1 are random. Figure 3–1 (b) shows that the 

spatial entropy value decreases from dataset 1 to dataset 2. 

3.2.2.2 Spatial Entropy vs. Spatial Correlation 

Spatial entropy measures spatial correlation by quantifying spatial diversity. As in 

(Tobler, 1970), the First Law of Geography states that spatial correlation generally exists. 

Furthermore, two supporting rules can be derived from it (Claramunt, 2005): 

Rule 1: When different objects are close, diversity increases. 

Rule 2: When similar objects are close, diversity decreases. 

These two rules imply that spatial diversity increases when either the distance 

between different objects decreases or the distance between similar entities increases. In 

Eq.(3.1), the intra-distance 
int
id  is defined as the average distance between similar 

objects and the extra-distance 
ext
id is defined as the average distance between diverse 

objects. They are integrated together with the form of 
int ext
i id d , which keeps the spatial 

entropy decreasing when similar objects are close and diverse objects are far from each 

other. For spatial objects where similar nonspatial attribute values are close and where 

spatial objects where different nonspatial attributes are far from each other,
int ext
i id d

decreases. Therefore, spatial entropy decreases when spatial correlation increases. 

In Figure 3–1 (a), datasets 2 and 3 have the same spatial and nonspatial attributes, 

but different distributions for the nonspatial attribute. Here the spatial correlation 
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increases from 2 to 3 (high value points centered and low value in the periphery), and the 

spatial entropy value decreases accordingly, as shown in Figure 3–1 (b). 

3.2.3 A Spatial Entropy-based Spatial Clustering Algorithm 

In this section, a novel spatial clustering method, Spatial Entropy-based Clustering 

(SEClu), is introduced. Given a spatial dataset SD with a nonspatial attribute prop, a 

symmetric function dist measuring the distance in the spatial space, and parameters Eps, 

MinNum and MaxSp, the following definitions are introduced: 

 Definition 3.2 (neighbourhood): The neighbourhood of spatial object p, denoted 

by NEps(p), is defined as NEps(p)={qSD | dist(p,q) ≤ Eps}. 

The neighbourhood definition is taken from (Ester et al., 1996). dist can be any 

form of a symmetric function, Eps is the threshold based on the dist function, and NEps(p) 

returns all of the objects in SD whose distance from p is smaller than Eps. 

SEClu extends DBSCAN by applying spatial entropy to control the local 

nonspatial similarity and spatial correlation of NEps(p). The previous discussion 

demonstrates that the spatial entropy value decreases for the local nonspatial attribute 

similarity and that spatial correlation increases. Therefore, SEClu introduces the 

maximum threshold of spatial entropy, denoted by MaxSp. 

In SEClu, a core object is an object whose neighbourhood is (1) dense, i.e., it has 

at least MinNum neighbours in spatial spaces and (2) has similar nonspatial attributes and 

high spatial correlation in its neighbourhood satisfying Hs(NEps(p)) ≤ MaxSp. A border 

object is a neighbour object of a core object which is not a core object itself. Objects 

other than core objects or border objects are noise. 
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 Definition 3.3 (directly density-spEntropy-reachable): A spatial object p is 

directly density-spEntropy-reachable to an object q w.r.t Eps, MinNum, MaxSp if 

(1) qNEps(p); (2) NEps(p) ≥ MinNum; and (3) Hs(NEps(p)) ≤ MaxSp. 

In the above definition, the second condition examines the density of the 

neighbourhood of p. The third condition examines nonspatial attribute of the 

neighbourhood of p. A smaller value of spatial entropy Hs implies that objects in NEps(p) 

have higher nonspatial similarity and spatial correlation. Directly density-spEntropy-

reachable is symmetric for core objects as well as one core object and one border object. 

But it is asymmetric for two border objects. 

 Definition 3.4 (density-spEntropy reachable): Spatial objects p and q are 

density-spEntropy reachable (DSR-reachable) w.r.t Eps, MinNum, MaxSp, 

denoted by DSR(p,q), if there is a chain of objects p1,…,pn, p1=q, pn=p such that 

pi+1 is directly density-spEntropy reachable from pi. 

 Definition 3.5 (density-spEntropy-based cluster) A density-spEntropy based 

cluster C is a non-empty subset of SD satisfying:  p, q  SD, if p C and 

DSR(p,q) holds, then qC. 

It is obvious that for each pair of objects (p,q) C, when C is a density-spEntropy 

based cluster, DSR(p,q) holds. Therefore, SEClu finds a cluster by identifying all objects 

that are density-spEntropy reachable. 

The SEClu algorithm is shown in Figure 3–2. It starts by querying the 

neighbourhood of an arbitrary object o in the spatial space to see if it is dense enough 

NEps(p) ≥ MinNum. If not, p is labeled as noise; otherwise, SEClu continues to check the 

nonspatial attribute. If the nonspatial attribute of p‟s neighbourhood has a random pattern, 
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i.e., it cannot satisfy Hs(NEps(p)) ≤ MaxSp, then p is labelled as noise. Otherwise, a new 

cluster C is created and all objects xNEps(p) are placed in C. The neighbourhood of each 

of p‟s neighbours is examined in the same way to see if it can be added to C. This process 

is repeated until all objects that are density-spEntropy reachable to p have been added to 

cluster C. If cluster C cannot be expanded further, SEClu chooses another unlabelled 

object and repeats this process until all objects have been assigned to a cluster or labeled 

as noise. The average complexity of SEClu is O (n(logn+k
2
)), where n is the number of 

the objects in SD and k is the average number of objects in NEps(pi). 

3.2.3.1 Calculating Spatial Entropy Efficiently 

In SEClu, the spatial entropy Hs is computed on the nonspatial attribute of NEps(p). To be 

able to use Hs to measure the spatial correlation, a partition process of NEps(p) is generated 

in the first step. Given a spatial dataset D=NEps(p) with the nonspatial attribute prop, if 

prop is discrete it is binned into n slots with different values. If prop is continuous, it is 

binned into n contiguous slots (χ1,…,χi,…χn) with the interval of  . Then each object in 

D is assigned to a unique slot based on its prop value, and a partition of D, denoted by 

{D1,...,Di,…,Dn}, is generated. 

The number of subsets n should be selected carefully. If n is too large, each subset 

may contain a very small number of data and also result in a high computational cost. 

Sturges‟ rule (Sturges, 1926) is widely recommended for choosing a histogram interval 

since it provides a good approximation of the best n in capturing the distribution pattern. 

The Sturges‟ rule is adopted, and the subset number n is given by Eq. (3.4). Since SEClu 

is a density-based method, an effective way is to assign MinNum to N. 

 21 log ,  is the number of objects in n N N D   (3.4) 
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Figure 3–2 Pseudo code of the SEClu algorithm 

Algorithm: SEClu (SD, Eps, MinNum, MaxSp) 

Input:(1) A spatial dataset SD    (2) Searching distance Eps 

(3) Minimum number of objects in a cluster MinNum 

(4) Maximum spatial entropy threshold MaxSp 

Output: Clustering results for each pSD 

01  for each unclassified pSD do 

02    if |NEps(p)|<MinNum or Hs(NEps(p))>MaxSp 

03      mark p as noise; 

04    else 

05      create a new cluster C and add xNEps(p) in C; 

06      add xNEps(p) into a queue Q; 

07      while Q is not empty do 

08         q = first object in Q and remove q from Q; 

09        if |NEps(q)|>=MinNum and Hs(NEps(q))<=MaxSp 

10           for each object tNEps(q) do 

11              if t is unclassified,     

12                 add t to Q and add t into C; 

13              if t is noise 

14                 add t into C; 
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In practice, spatial entropy Hs is computed numerically. Since prior knowledge of 

the distribution of prop is always unknown, pi is estimated from the frequency 

pi=|Di|/|D|. 
int
id and 

ext
id can be computed from Eqs. (3.1) and (3.2), respectively. Also, 

spatial entropy Hs needs to be normalized in order to make a fair comparison. It has been 

demonstrated that 2int ext
i id d (Li and Claramunt, 2006). Also, for a discrete random 

variable its Shannon entropy value satisfies 
1 2 20 log ( ) log

n

i i ip p n


   . Then 

2 2 21 1
20 log ( ) log ( ) 2log

int

i ext i i i i
i

n n

s i i
d

d
H p p p p n

 
       

In the following, all spatial entropy values are normalized by
2

[0,1]2logsH n . Figure 

3–3 shows the pseudocode for the spatial entropy calculation.  

 

Figure 3–3 Pseudo code of the spatial entropy computational function 

Function: Spatial Entropy Hs( D ) 

Input: A spatial dataset D (can be a subset of SD in Figure 3–2) 

Output: Spatial entropy value of D 

01  Bin D into {D1,…,Di,…,Dn}based on D.prop; 

02  for each Di do 

03    Compute pi,
int
id  and 

ext
id  (from Eqs. (3.1) and (3.2)); 

04  compute Hs (from Eq.(3.3)); 

05  return Hs; 
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3.2.3.2 Spatial Entropy Parameter Maxsp 

In SEClu, the parameters Eps and MinNum can be determined using the heuristic method 

in (Ester et al., 1996). Besides, given Eps and MinNum, MaxSp can be determined by the 

following rationale. Meeting the requirement of NEps(p) ≥ MinNum, p should form a core 

object if it satisfies Hs(NEps(p)) ≤ MaxSp. Thus MaxSp can be determined by seeking a 

threshold that makes the cluster the “thinnest”, i.e. the least density-spEntropy reachable 

cluster in the spatial dataset. In order to serve as a good spatial correlation measurement 

parameters, the candidate MaxSp specifies the highest spatial entropy value which does 

not identify spatial correlated clusters as noise. As an example, Figure 3–4 suggests an 

way to determine MaxSp. When Eps and MinNum are fixed, the core object number is 

changing with respect to the MaxSp value. The MaxSp threshold is determined with the 

highest gradient, which appears as the first jump point in Figure 3–4. Here all objects 

with the spatial entropy value higher than the threshold (above the line) are noise and the 

others are core objects. 

 

Figure 3–4 Core objects number vs. MaxSp 
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3.3 FR-Neural Reservoir Characterization 

Although core analysis data are accurate, they can only provide reservoir properties for 

certain discrete points. In order to acquire reservoir properties in a large scale, ANN has 

been introduced to build correlations from other field data to core analysis data. In this 

section, a new fuzzy ranking-artificial neural network (FR-Neural) framework is 

introduced to characterize reservoir properties by building correlations between well log 

and core analysis data. As shown in Figure 3–5, the FR-Neural framework includes two 

steps: the fuzzy ranking and the pattern recognition. 

The fuzzy ranking step is to select proper well log variables for the neural 

network. By selecting the representative neural inputs, fuzzy ranking helps implicitly 

improve the pattern recognition performance of the ANN in the following step. In the 

pattern recognition step, a MLP neural network is trained to learn the desired complex 

relations between selected well log variables and core analysis data. After verification, it 

further predicts the reservoir property values for intervals where core analysis data is 

non-existent. 

 

Figure 3–5 The proposed FR-Neural reservoir characterization framework 
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3.3.1 Fuzzy Ranking Step 

The fuzzy ranking step includes Fuzzy Curve (FC) and Fuzzy Surface (FS). FC ranks all 

potential well log variables according to their relevance to the target reservoir properties 

and eliminates irrelevant variables. FS identifies the dependency among well log 

variables selected by FC and eliminates the redundant highly correlated variables. 

3.3.1.1 Fuzzy Curve (FC) 

FC is based on the assumption that the most important input variable plays the most 

important role in approximating the output (Lin et al., 1998). It simulates the relationship 

between each potential input and the output by building a fuzzy curve function, and 

meaningful inputs are selected based on the closeness between the simulated and real 

relationship. 

In the reservoir characterization case, all well log variables serving as the 

candidate inputs and the target reservoir property as the output. The well log variables are 

denoted by X={xi | i=1,2,…,n} and the target reservoir property is denoted by y. Each 

well log variable has m data points, (xik, k=1,2,…,m) and the corresponding reservoir 

property values (yk, k=1,2,…,m). With no prior knowledge about the relationship between 

xi and y, the objective of FC is to select a subset of variables from X, SX={xs | s=1,2,…l, 

and l≤n} so that a nonlinear relation exists between SX and y: 

( ),  { | 1,2,..., , }sy f SX SX x s l l n    and  

The unselected variables tend to have a random correlation with y. 

Since different well log variables have different value ranges, the first step of FC 

is to normalize all the candidate well log variables, as shown in Eq.(3.5). 
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 (3.5) 

Then FC builds fuzzy membership functions for every data point in the xi-y space. 

In this study, the fuzzy membership functions are in Gaussian form, as shown in Eq.(3.6), 

where b is a constant that controls the span of the Gaussian function. 

 2( ) exp( ( ) )ik i
ik i

x x
x

b



   (3.6) 

 

Figure 3–6 Gaussian fuzzy membership functions in the DPSS-Porosity space 

The Gaussian fuzzy membership function gives a prediction of the target reservoir 

property y when the well log variable xi changes slightly in a neighbourhood close to xik. 

For example, Figure 3–6 shows the scatter plot of data points between the normalized 

DPSS (Density Porosity Sandstone Scale), a well log variable from sonic sensor, and 

reservoir porosity, denoted by „+‟. The Gaussian fuzzy membership functions ( )ik ix are 

built for each data sample xik in normalized DPSS. Figure 3–7 shows the fuzzy 
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membership function curves ( )k ik iy x  for three points, where yk is the reservoir porosity 

value at the same depth interval as xik. 

Next, FC integrates all the fuzzy membership functions forming a fuzzy curve 

ci(xi). Specifically, ci(xi) defuzzifies all the Gaussian fuzzy membership functions ( )ik ix

by normalized summation, as Eq.(3.7), which is an approximation of the relationship 

between xi and y. 

 1

1

( )
( )

( )

m

k ik ik
i i m

ik ik

c x
y x

x













 (3.7) 

Continuing the previous example in Figure 3–6, all Gaussian functions  are 

weighted-averaged using Eq.(3.7), where the weight is the target yk corresponding to xik. 

The solid line in Figure 3–7 shows the fuzzy curve of DPSS to the reservoir porosity. 

 

Figure 3–7 Fuzzy curve of DPSS to porosity 
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FC is a weighted local average of yk  along each xi axis, where the size of a local 

neighbourhood is controlled by b in Eq.(3.6). When b is large, ( )ik ix is equal to 

approximately 1 for all xik so that 
1

( )
m

i i kk
c x y m


 equals the average of yk at every xik. 

When b is small, ( )ik ix ≈1 only for xi=xik, while 0 elsewhere, so ci(xi)≈yk only for xi=xik 

and ci(xi)≈0 elsewhere. Hence ci(xi) is an approximation of y based on xi. Here, b 

controlling the size of the local neighbourhood is critical to the approximation of y. When 

b is too large, ci(xi) is not sensitive to a local change. When b is too small, ci(xi) will lose 

the average information. b is chosen to be 0.08 in this reservoir characterization study. 

 

2

,1
( ( ) )

var( )

m

i i k kk

i

c x y
MSEc

m y








 (3.8) 

The more information xi contains, the closer the approximation ci is to output y. 

MSEci is the normalized mean square error to measure the distance from fuzzy curve ci to 

y, as shown in Eq.(3.8) where var(y) is the variance of y used to scale the mean square 

error. 

Thus the last step of FC is to sort the well log variables in ascending order in 

terms of MSEci. The most important well log variable is the one with the smallest value 

of MSEci. Specifically, if xi is a random noise and has no relation with the output, then the 

fuzzy curve ci to xi tends to be flat which also results in a high mean square error. 

However, well log variables are highly correlated, which not only increases the 

risk of a local minimum but also brings additional computational cost to neural networks. 

Hence elimination of highly correlated variables is essential for the pattern recognition 

step. To remove the correlated well log variables, the fuzzy surface is to be used. 
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3.3.1.2 Fuzzy Surface (FS) 

FS identifies and eliminates the highly correlated variables from the results selected from 

the FC step. FS is based on the assumption that two independent variables do a better job 

of approximating the output than two correlated variables (Lin et al., 1998). 

For two selected variables xi and xj from the previous FC step, FS is defined in 

Eq.(3.9), where i and j are the Gaussian fuzzy membership functions of xi and xj 

defined by Eq.(3.6). sij computes the weighted average of output yk based on the 

information from the combination of xi and xj. 

 
1

1

( , )
( ) ( )

( ) ( )
ij i j

m

k ik i jk jk

m

ik i jk jk

s x x
y x x

x x

 

 






 






 (3.9) 

The more information contained between xi 
and xj, the better the approximation 

sij(xi,xj) will be to the output y. The normalized mean square error function, Eq.(3.10), is 

used to compute the distance from sij(xi,xj) to y , where var(y) is the variance of y. MSEsij 

from two independent variables xi and xk will be smaller than that from two correlated 

variables xi and xj. 

 

2

1
( ( , ) )

var( )

m

ij ik jk kk

ijMSEs
s x x y

m y









 (3.10) 

Below, the process of applying fuzzy ranking in the neural inputs selection for 

reservoir characterization is summarized. Assume that the original well log contains n 

candidate variables, X={xi | i=1,2,…n}, and the target reservoir property is y. fuzzy 

ranking works as follows: 
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Figure 3–8 shows the pseudo code of fuzzy ranking in the FR-Neural reservoir 

characterization framework. It takes three input arguments: X={xi | i=1,2,…n} containing 

n well log variables, y the target reservoir property, and α% the elimination threshold in 

the FC process. Fuzzy ranking starts by FC ranking n candidate well log variables in the 

candidate list (CL). In line 5, the variable with the smallest MSEci is selected as the most 

important variable, denoted by x  and added to the selected list SX. Meanwhile, α% 

variables in CL with highest MSEci are eliminated. After FC, x is paired with each of the 

remaining (1-α%)n-1 candidate variables remaining in the CL and FS is applied to rank 

them. In line 11, the variable with the highest MSEsij is eliminated from CL as dependent 

redundancy while the one with the smallest MSEsij is selected, added to SX and assigned 

to x . Using x , the FS process is repeated until the number of variables in the CL is 

smaller than 2. In the end, the variables in SX form the final selected results, and are 

returned back and used as neural inputs in the subsequent pattern recognition step. 
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Figure 3–8 Pseudo code of fuzzy ranking for well log variable selection 

Fuzzy Ranking (X, y, α%) 

Input: (1) Candidate well log variables X={xi | i=1,2,…n} 

            (2) Target reservoir property y  

            (3) Elimination threshold α% in the Fuzzy Curve step 

Output: Selected well log variables SX={xs | s=1,2,…l, and l≤n} 

01:  Initialize candidate list CL=X and selected list SX=null; 

02:  for each variable xiCL                            /*  Fuzzy Curve Step   */ 

03:        Compute the fuzzy curve ci(xi) by Eq. (3.7); 

04:        Compute MSEci by Eq. (3.8); 

05:  x =the variable in CL with the smallest MSEci, and add x  into SX; 

06:  Remove x and α% variables with highest MSEci from CL; 

07:  while (SizeOf (CL) > 1) do                       /*  Fuzzy Surface Step   */ 

08:       for each variable xiCL 

09:              Compute the fuzzy surface sij(xi, x ) by Eq. (3.9); 

10:              Compute MSEsij by Eq. (3.10); 

11:             x =the variable in CL with the smallest MSEsij, and add x into SX; 

12:              Remove x  and the variable with the highest MSEsij from CL;  

13:  if (CL null) 

14:        Add CL into SX; 

15:  return SX; 
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3.3.2 Pattern Recognition Step 

The pattern recognition step implements the MLP neural network to simulate the 

complex relationship between the selected well log variables and the target reservoir 

property. After the fuzzy ranking step, representative training data for reservoir 

characterization are selected as neural inputs, which implicitly help in improving the 

pattern recognition performance of MLP. 

 

Figure 3–9 The Multilayer Perceptron (MLP) model in the pattern recognition step 

for reservoir characterization 

MLP in this work, as shown in Figure 3–9, is designed with one input layer, one 

hidden layer and one output layer. Neurons in the input layer are automatically initialized 

by the selected well log variables from the fuzzy ranking step, and the output layer has 

only one neuron in terms of the target reservoir property. Previous studies have indicated 

that a network with one hidden layer can approximate any continuous function given 
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sufficient hidden neurons (Haykin, 1999). Neurons in each layer are fully connected with 

the ones in the adjacent layers with weighted links. Each neuron applies an activation 

function that processes the weighted sum results and transforms to the others. In this way, 

input signals transfer through the whole network and generate the output in the end. As a 

supervising learning mechanism, for each pair of neural inputs there is a desired target 

value. For example, the neural input can be the values of the selected well log variables at 

a certain depth interval, and the target value can be the core analysis data at the same 

depth interval. As shown in Figure 3–9, the difference between the network output and 

the desired target will generate an error signal, which transfers back to the network 

modifying the link weights via back-propagation (BP) algorithms. After being trained by 

a number of training data, MLP can not only generate the reservoir property very closely 

to the desired value for training samples but can predict the desired target for unseen 

neural inputs.  

3.4 Experiments 

In this section, the proposed SEClu spatial clustering algorithm and FR-Neural reservoir 

characterization framework are evaluated using synthetic and real datasets. All 

experiments are performed on a 2.8GHz PC with 3G memory. 

3.4.1 SEClu on Synthetic Data 

This experiment demonstrates SEClu in identifying clusters with spatial correlation. 

Figure 3–10 shows two sample datasets. Each dataset includes x, y coordinates as the 

spatial attribute and a grey value as the nonspatial attribute. The datasets in Figure 3–10 

have different shapes and follow different spatial correlation functions. Figure 3–10 (a) 
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includes three round shaped groups. The grey values of points in group 1 decrease as an 

exponential function with distance from the center. The grey values in group 3 increase 

linearly with distance to the center. The grey values of group 2 are random. Since both 

groups 1 and 3 have strong spatial correlation they should be identified as clusters. Group 

2 does not form a cluster with spatial correlations and should be labelled as noise. Figure 

3–10 (b) shows three irregularly shaped groups. The S-shaped and new moon shaped 

groups have clusters with spatial correlation while the objects in the V-shaped group have 

random nonspatial attributes and should be identified as noise.  

 

Figure 3–10 Two synthetic spatial datasets 

For SEClu, the parameters are set (Eps=0.017, MinNum=18, MaxSp=0.29) for two 

datasets in Figure 3–10. Figure 3–11 shows the clustering results, where the black points 

are noise and the color points are clusters. From the figure, it is evident that: first, SEClu 

discovers clusters with spatial correlations successfully. In (a), data groups with either a 

high value center correlation or a low value center correlation are identified as clusters, 

while the random one is labelled as noise. Second, since SEClu is a density-based 
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clustering method, it can discover clusters with irregular shapes. For example, SEClu 

identifies the S-shaped and the new moon shaped spatial correlated clusters. 

 

Figure 3–11 SEClu clustering results 

 

Figure 3–12 GDBSCAN clustering results 

SEClu is compared with GDBSCAN (Sander et al., 1998). The parameters to 

GDBSCAN are set as (Eps=0.017, MinPts=18), which is similar to the SEClu 

configuration. Figure 3–12 shows the clustering result of GDBSCAN. Considering the 

nonspatial attribute as independent from spatial attributes, GDBSCAN incorrectly labels 

data with random distributed grey values as clusters. Compared with the results of 

GDBSCAN, SEClu finds more meaningful clusters. A detailed accuracy comparison 
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between SEClu and GDBSCAN is shown in Table 3–1. From the table, the accuracy of 

SEClu to the three datasets is 100% while GDBSCAN is 67%, which demonstrates 

SEClu performs better than GDBSCAN in identifying clusters with spatial correlations. 

Table 3–1 Accuracy comparison between SEClu and GDBSCAN 

Dataset  

(No. of data objects) 

SEClu GDBSCAN 

Correct Error Accuracy Correct Error Accuracy 

Dataset(a)  (900 pts) 900 0 100% 600 300 66.7% 

Dataset(b)  (1500 pts) 1500 0 100% 1000 500 66.7% 

 

3.4.2 SEClu on Real Data 

The second experiment is performed on the real core porosity data taken from south 

Alberta, Canada. Porosity is one of the most important reservoir properties, which 

measures the fraction of the void volume over the total volume of rocks. As shown in 

Figure 3–13, within the area from 28-R1-W5 to 26-R27-W4 using DLS (Dominion Land 

Survey, 2012), there are 120 cored wells containing information about reservoir porosity.  

Each cored well is represented as a point on the map with the spatial and nonspatial 

attributes. The spatial attributes refer to the locations of the well, i.e., longitude and 

latitude. The nonspatial attribute refers to the average porosity value from core analysis 

data. The clustering result from SEClu is compared with that from GDBSCAN. For 

SEClu, the parameters are set to be (Eps=4000, MinNum=5, MaxSp=0.32). For a fair 

comparison, the parameters to GDBSCAN are set to be (Eps=4000, MinNum=5), and the 
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clustering results from GDBSCAN and SEClu are listed in Figure 3–14 and Figure 3–15, 

respectively. 

 

Figure 3–13 Cored wells within the area from 28-R1-W5 to 26-R27-W4 

In Figure 3–14, GDBSCAN finds 3 density-reachable clusters in which within a 

radius of 4000 meters at least 5 core points exist (Eps=4000, MinNum=5). In comparison, 

as shown in Figure 3–15, SEClu identifies 8 density-spEntropy-reachable clusters. 

Clusters identified from SEClu satisfy not only the density requirement, as GDBSCAN, 

but also the nonspatial constraint that the spatial entropy of nonspatial attributes in the 

same cluster is smaller than a given threshold. Hence SEClu further separate the clusters 

discovered in GDBSCAN into small clusters. For example, clusters 1, 2, 3 and 4 from 
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SEClu in Figure 3–15 are subclasses of cluster 2 from GDBSCAN in Figure 3–14. Since 

SEClu considers the nonspatial attributes and spatial correlation during the clustering, the 

porosity values of data points in the same cluster tend to be similar. For example, the 

clusters 2 and cluster 4 have distinct core porosity values. The cluster 2 has core porosity 

values from 0.060 to 0.095, while the cluster 4 has a smaller core porosity value from 

0.027 to 0.042. Even though they are adjacent to each other, SEClu identified them as 

two separate clusters while GDBSCAN groups them into one cluster.  

 

Figure 3–14 Clustering results from GDBSCAN over core analysis data 
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Figure 3–15 Clustering results from SEClu over core analysis data 

3.4.3 FR-Neural on Real Data 

The proposed FR-Neural framework for reservoir characterization is demonstrated using 

real industrial data. From the core analysis data clustering, three wells located in the same 

cluster and symbolized as pentagrams in Figure 3–15 are selected for the case study. The 

three wells are denoted as W-1, W-2 and W-3, respectively, and the corresponding digital 

well log data and core analysis data are reviewed in Table 3–2. Each well has 20~23 well 

log variables serving as candidate neural inputs to the MLP and porosity values from core 

analysis data serve as target data. For instance, W-1 has 21 well log variables with each 

of them rangeing from 278.4 meters to 2329.8 meters below surface. In addition, W-1 has 



 

 

52 

79 data samples of porosity data ranging from 2,240.0~2,265.4 meters below surface. 

Below W-1 is used as an example to demonstrate the proposed FR-Neural framework. 

W-1 has 21 well log variables organized into seven categories, including Resistivity, 

Sonic, Thermal, Neutron, Density, Caliper and Spontaneous Potential logs, based on the 

well logging sensors used. Note that not all candidate well log variables have the same 

degree of relation to the target reservoir porosity; therefore, a subset of well log variables 

correlated to the porosity needs to be selected. 

Table 3–2 Overall data description 

Well ID  

Candidate Inputs: All Well Log Variables  Target Data: Porosity (Core Data)  

NO. of  

Variables  

Depth  

(Unit: meter)  

NO. of Data 

Samples  

Depth  

(Unit: meter)  

W-1  21 278.4~2329.8  79  2240.0~2265.4  

W-2 23 291.8~2199.2  76  2109.0~2135.6  

W-3 20 2126.0~2333.2  76  2232.0~2254.3  

 

3.4.3.1 Well Log Variables Selection 

To identify the representative data from a well log, 21 well log variables and core 

porosity records for W-1, with the same depth intervals, are paired together. This forms a 

data space (xi, y), i=1,2,…,21, where xi denotes the 21 well log variables and y denotes 

the target reservoir porosity. 

The first step is to identify a subset of well log variables containing direct 

information for characterizing porosity using FC. FC ranks all 21 candidate inputs along 

with ascending MSEci and the result is listed in Table 3–3. In Table 3–3, CAL2 has the 



 

 

53 

smallest MSEci of 0.78725 and thus ranks as the most direct well log variable for the 

target reservoir porosity. In contrast, HCAL has the largest MSEci and thus ranks as the 

least important well log variable. Visual observations from fuzzy curves can also be 

indicative of the different levels of connection of the candidate inputs to the target 

reservoir porosity. From the previous discussion, a flatter curve means that the 

corresponding variable contains less or more random information for the target output. 

Figure 3–16 shows fuzzy curves for partial well log variables. Among them, HCAL, in 

Figure 3–16 (b), has the flattest fuzzy curve, which demonstrates in another way that it 

contains the least information compared to other variables. If the elimination threshold 

for FC is set to 30%, the last seven variables including HCAL, AF20, AF30, HDRA, 

AT9C, PEFZ and GDEV are removed from the candidate inputs. 

Table 3–3 Fuzzy Curve ranking result 

Candidate 

Well Log 

MSEci Rank 

Candidate 

Well Log 

MSEci Rank 

Candidate 

Well Log 

MSEci Rank 

CAL2 0.787250 1 GR 0.842015 8 GDEV 0.875072 15 

DPSS 0.796621 2 CNTC 0.842649 9 PEFZ 0.882191 16 

DPDL 0.796866 3 SP 0.848234 10 AT9C 0.886251 17 

RHOZ 0.796887 4 CFTC 0.858982 11 HDRA 0.904673 18 

DPLS 0.796922 5 NPSS 0.870224 12 AF30 0.908325 19 

AF90 0.804379 6 NPDL 0.871355 13 AF20 0.941702 20 

AT90 0.841790 7 NPLS 0.872583 14 HCAL 0.951503 21 
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Figure 3–16 Fuzzy curves for partial well log variables: (a)AF30, CAL2, HCAL, 

NPLS (b)CFTC, DPLS, DPSS, SP. 

FC selects the candidate well log variables by analyzing their information content 

relative to the reservoir porosity. In the next step, FS is implemented to remove the 

highly dependent variables from the candidate well log variables. 

In the FC step, CAL2 is selected as the most direct well log variable for the 

property of reservoir porosity. Hence in the FS analysis, CAL2 is used as the reference 

variable in which MSEsij is calculated between CAL2 and each of the remaining 13 

candidate inputs. Table 3–4 shows the first iteration result with an ascending MSEsij from 

FS. From Table 4, (CAL2, GR) has the minimum MSEsij so that GR is identified as the 

second important variable. GR records the signal via the Gamma Ray well logging tool 

and has minimum dependence with CAL2 from the Caliper Log; therefore, the paired 

well log variables (CAL2, GR) are selected. In comparison, AF90 is discarded because 

the pair (CAL2, AF90) shows the highest value of MSE. After the first iteration, 11 

candidate inputs are left. In the second iteration, GR takes the place of CAL2 and is used 

as the reference variable to evaluate the remaining 11 inputs. 
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Table 3–4. The first iteration FS ranking result 

Candidate Well Log 

Variables 

MSEsij Rank 

Candidate Well Log 

Variables 

MSEsij Rank 

(CAL2, GR) 0.455055 1 (CAL2, CNTC) 0.497867 8 

(CAL2, CFTC) 0.466716 2 (CAL2, NPSS) 0.521086 9 

(CAL2, SP) 0.467368 3 (CAL2, NPDL) 0.523705 10 

(CAL2, DPSS) 0.481365 4 (CAL2, NPLS) 0.525688 11 

(CAL2, DPDL) 0.481389 5 (CAL2, AT90) 0.533946 12 

(CAL2, RHOZ) 0.481453 6 (CAL2, AF90) 0.560741 13 

(CAL2, DPLS) 0.481508 7    

 

Table 3–5. Fuzzy Surface (FS) ranking results and final selection result 

Iter 

# 

Ref 

Variable 

Ranked Sequence by ascending 

MSEsij 

Selected Variables  Eliminated Variables  

2 GR 

AT90,DPSS,DPDL,DPLS,RHOZ, 

CNTC,SP,CFTC, NPSS,NPDL,NPLS 

CAL2,GR,AT90 AF90,NPLS 

3 AT90 

CFTC,CNTC,RHOZ, 

DPSS,DPDL,DPLS, NPSS,SP,NPDL 

CAL2,GR,AT90, CFTC AF90,NPLS,NPDL 

4 CFTC 

SP,DPDL,DPSS,DPLS, 

RHOZ,NPSS,CNTC 

CAL2,GR,AT90, CFTC,SP 

AF90,NPLS,NPDL, 

CNTC 

5 SP RHOZ,DPSS (SS),DPLS, DPDL,NPSS 

CAL2,GR,AT90, 

CFTC,SP,RHOZ 

AF90,NPLS,NPDL, 

CNTC,NPSS 

6 RHOZ DPDL,DPSS,DPLS 

CAL2,GR,AT90, 

CFTC,SP,RHOZ, DPDL 

AF90,NPLS,NPDL, 

CNTC,NPSS,DPLS 

7 DPDL DPSS 

CAL2,GR,AT90,CFTC, 

SP,RHOZ, DPDL,DPSS 

AF90,NPLS,NPDL, 

CNTC,NPSS,DPLS 
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Table 3–5 shows the results for the rest of the FS ranking iterations as well as the 

final selection result. FS stops after 7 iterations when only one variable is left in the 

candidate list. Finally, eight variables are selected, comprising 35% of the 21 the original 

well log variables. These form the final selection result. 

 

Figure 3–17 Well log variables versus depth. 

FS achieves the removal of the highly correlated well log variables. Figure 3–17 

shows well log variables versus depth from 1,400 to 1,600 meters below the surface for 

W-1, and the well log variables from the same category are paired together. Visual 

observation shows that the well log variables from the same category are highly 

correlated. For example, high correlation can be found for the pairs of DPLS / DPSS and 

CFTC / CNTC. After FS, DPLS has been removed from DPLS / DPSS and CNTC has 
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been removed from CFTC / CNTC. In addition, the eight selected well log variables 

cover all seven categories in Figure 3–17, which indicates that the seven categories all 

play roles in characterizing reservoir porosity. Also, the variables in Caliper Log, Gamma 

Ray and Sonic Log are always empirically selected when using statistical correlations for 

porosity characterization, and these variables are also ranked in the final result, which 

shows the success of fuzzy ranking in feature well log variable selection.  

3.4.3.2 Reservoir Porosity Characterization 

Eight well log variables from the previous fuzzy ranking step serve as neural inputs to 

MLP in the pattern recognition step, and porosity values in the core analysis data serve as 

the target data for MLP‟s supervised learning process. Data are randomly separated into 

60%, 20% and 20% as training data, validation data and test data, respectively. The input 

layer is automatically initialized by the eight feature well log variables. Ten hidden 

neurons construct the hidden layer to MLP and the output layer includes only one neuron 

in terms of the target reservoir porosity. Transfer functions for the input, hidden and 

output layers are „tan-sigmoid‟, „tan-sigmoid‟ and „log-sigmoid‟, respectively. The 

designed MLP is trained repeatedly for 10 times using the Levenberg-Marquart algorithm 

(Chen et al., 2003; Marquardt, 1964), and the final neural network is the one with the 

highest value of the correlation coefficient R
2
 on the test data.  



 

 

58 

 

Figure 3–18 Estimated and core porosity values from MLP with depth 

Figure 3–18 shows the final results for the porosity characterization from MLP 

using the well log variables selected by fuzzy ranking, where the round points denote the 

training and validation samples and the square points denote the test samples. In Figure 

3–18, the curve is the estimated reservoir porosity from MLP. Almost all training, 

validation and test data match well with the estimated porosity curve. Figure 3–19 

evaluates the results by the linear regression analysis, which shows that the Correlation 

Coefficient R
2
 for the test data is 0.9504, which demonstrates that the proposed FR-

Neural framework is capable of predicting accurate porosity values given unseen well log 

data. 
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Figure 3–19 Cross plot of estimated and core porosity values 

3.4.3.3 Performance Comparison 

To evaluate the efficiency of representative well log data selection using fuzzy ranking, 

the reservoir characterization results from MLP using the fuzzy ranking results are 

compared with results using three other control neural inputs, namely: random selection, 

empirical selection and without selection. The first control group contains eight randomly 

selected well log variables, and the MLP network structure is 8-10-1, the same as for the 

one using fuzzy ranking. The second group uses the empirical selection result from (Helle 

et al., 2001) where three well log variables selected, respectively, from sonic, density and 

resistivity categories. Additionally, the MLP network structure is 3-7-1, which is 

consistent with the work in (Helle et al., 2001). For the third one, without selection all 21 

well log variables from W-1 are imported as neural inputs, and the network structure is 

21-14-1, which includes four extra hidden neurons due to the augmentation of the input 
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data. In order to make a consistent comparison, this experiment keeps the other 

configurations for MLP neural networks, including the training algorithm, transfer 

function and training parameters, the same. Four MLP neural networks with different 

inputs are repeatedly trained for 10 times and the results are shown in Figure 3–20. 

 

Figure 3–20 Comparison of R
2
 on test samples from MLPs using different neural inputs 

Figure 3–20 compares the predication accuracy of four MLPs. Table 3–6 

summarizes the comparison result. Several observations can be made: First, the overall 

predication accuracy of MLP using the fuzzy ranking results surpasses the other three 

groups. As shown in Table 3–6, the average R
2
 on the test samples for MLPs, using: 

fuzzy ranking, all well log variables, Helle et al‟s selection, and random selection, are 

0.8746, 0.7639, 0.7344 and 0.7058, respectively.  Second, the predication results of MLP 

using the fuzzy ranking are more stable since it has a lower chance to generate a very 
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poor predication result, e.g., the worst R
2
 for the MLP using fuzzy ranking is 0.8037. 

Therefore, the elimination of well log variables in the fuzzy ranking step helps MLP in 

increasing the system stability and predication accuracy. 

Table 3–6. Results comparison among MLPs using neural inputs from four different 

methods 

Neural Input Selection 

Method 

Fuzzy Ranking 

Random 

Selection 

Helle et al‟s 

Selection 

All Well Log 

Variables 

Best R
2
 0.9504 0.8762 0.9437 0.9108 

Avg R
2
 0.8746 0.7058 0.7344 0.7639 

Worst R
2
 0.8037 0.4350 0.5451 0.5188 

 

Table 3–7. Summarized results for three study wells 

UWI 

Selected/Original Well 

Log Variables 

MLP Structure 

Avg Train 

Time (sec) 

Best R
2
 for Test 

Samples 

W-1 8/21 8-10-1 4.1462 0.9504 

W-2 9/23 9-11-1 5.1892 0.9190 

W-3 7/20 7-9-1 4.3908 0.9216 

 

Table 3–7 summarizes the porosity characterization results for three case study 

wells using the proposed FR-Neural framework. The number of the selected well log 

variables by the fuzzy ranking step counts for approximately only 40% of the original 

well log variables, which also decreases the computation of MLP significantly. The MLP 

repeats the training processes 10 times for each well and R
2
 for the test samples is 

calculated for each group. The overall R
2
 on these test samples is above 0.9, which shows 

the prediction accuracy of the proposed FR-Neural reservoir characterization framework. 
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3.5 Summary 

This chapter discusses reservoir characterization problems with focuses on core analysis 

and well log data. Section 3.1 introduces the background of reservoir characterization and 

reviews core analysis and well log data. Section 3.2 indicates that spatial entropy is a 

decreasing function with nonspatial similarity and spatial correlation. Further, a new 

spatial entropy-based spatial clustering algorithm, named SEClu, is proposed to group 

core analysis data. In Section 3.3, a new FR-Neural framework is presented to 

characterize reservoir properties using core analysis and well log data. This framework 

includes two steps: fuzzy ranking and pattern recognition. The Fuzzy ranking step selects 

the representative well log data with the objective to characterize a specific reservoir 

property. In the pattern recognition step, a MLP neural network learns the correlations 

between the selected well log and core analysis data, and predicts reservoir properties 

based only on well logs for depth intervals where core analysis data is absent. In Section 

3.4, the proposed SEClu algorithm and the FR-Neural framework are evaluated. 

Experiments on both synthetic and real datasets show SEClu identifies meaningful 

clutters with spatial correlation patterns compared to GDBSCAN. In addition, the 

proposed FR-Neural framework is tested on a porosity characterization problem using 

datasets taken from three wells in Alberta, Canada. Results show that the FR-Neural 

framework predicts more accurate reservoir properties comparing to previous ANN-

based reservoir characterization methods. Especially, the prediction accuracy of FR-

Neural framework in reservoir characterization on three study wells reach to overall 85%.  
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Chapter Four: Horizontal Well Placement Guideline Acquisition 

The following chapter first defines a variety of horizontal well placement attributes and 

formalizes the horizontal well placement guidance acquisition problem. Second, a new 

association rule mining algorithm, called SE-Apriori, is presented to efficiently solve the 

HWPGA problem. Third, a GIS system, named PetroData-GIS, containing the SE-

Apriori tool is developed. Finally, the proposed method is evaluated using a real dataset 

taken from a SAGD project in Alberta. 

4.1 Introduction 

Horizontal well placement has a significant impact on enhanced oil recovery (EOR) 

recovery processes, such as the SAGD. Poor horizontal well placement negatively 

impacts the oil production rate, thermal efficiency and ultimate recovery rate (Chen et al., 

1997). As discussed in Section 2.3, previous horizontal well placement planning methods 

relied only on simulated or predicted data, which have difficulty in providing satisfactory 

results, especially when the reservoir geological and geomechanical complexity increases. 

To our best knowledge, limited work has been conducted to investigate horizontal well 

placement plans using real field data. 

The SAGD technology has been commercialized for over ten years, and a large 

amount of field data, including geological, drilling and production data, has been 

collected. These data contain implicit but interesting horizontal well placement patterns, 

such as under what placement conditions the oil production performance is satisfactory. 

By analyzing and presenting these patterns, it is very helpful for geologists and reservoir 
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engineers to understand the actual response of a reservoir to different well placement 

plans. The problem lies in how to efficiently sort through the related field data, identify 

the interesting horizontal well placement patterns and present them in a comprehensible 

way. 

This chapter formalizes the HWPGA as a problem which sorts through related 

SAGD field data and identifies interesting associations between horizontal well 

placement attributes and oil production performance. Unlike previous methods providing 

horizontal well placement plans based on simulated data, HWPGA presents interesting 

well placement associations by analyzing real SAGD field data. The associations 

discovered in HWPGA are interesting since they reveal an implicit but strong influence 

from horizontal well placement attributes on oil production performance. In order to 

characterize the geological heterogeneity along the horizontal wells, a group of well 

placement attributes are defined. Meanwhile, the Steam-Oil-Ratio (SOR) is chosen to be 

the oil production performance indicator. SOR defines the ratio of the amount of steam 

required to produce a unit of oil. The smaller the SOR value, the better the oil production 

performance. Meanwhile, the discovered associations are presented in a rule format, 

which provides a straightforward way for users to understand. 

Association Rule Mining (ARM) is introduced to solve a HWPGA problem by 

efficiently analyzing and presenting strong associations between horizontal well 

placement attributes and SOR. ARM requires the dataset to be in a transactional format in 

which each record contained is composed only of binary attributes. Therefore, 

quantitative and categorical attributes in the HWPGA dataset must be first transformed 

into binary attributes. Second, the computational cost of ARM is quite high since it is 
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required passing the entire database multiple times to prune a huge amount of candidate 

itemsets. In this work, two constraints are defined from the HWPGA problem, which 

narrow down the candidate itemsets search space. Based on the new constraints, a new 

ARM algorithm, named SE-Apriori, is introduced. Third, a Geographic Information 

System (GIS) containing the SE-Apriori tool is developed, which helps efficiently 

manage the field data from the petroleum industry and visualize the association rule 

mining results. 

Subsequently, Section 4.2 defines 40 new horizontal well placement attributes. 

Next, Section 4.3 presents a new association rule mining algorithm by considering two 

constraints in the HWPGA problem. Section 4.4 then introduces the PetroData-GIS 

system. Finally, Section 4.5 evaluates the SE-Apriori using a real industrial dataset.  

4.2 Horizontal Well Placement Characterization 

In SAGD projects, horizontal well pairs are drilled with the “pad pattern”, in which 

multiple well pairs are drilled parallel into the reservoir with a pair space of 100 meters 

and a horizontal well length of 1,000 meters. Within each well pair, the distance between 

the upper and bottom wells is 5 meters on average. Such a pattern allows a large volume 

of steam to be delivered into the reservoir evenly. Even though the pad pattern is fixed, 

the vertical location of each horizontal well is not, which can influence the oil production 

performance. Thus, this work focuses on the vertical location of horizontal wells. 

The vertical location of a horizontal well inside a heterogeneous reservoir can best 

be described as the relative distance between the horizontal well and different geological 

surfaces. Horizontal wells are drilled into a reservoir between different geological 
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surfaces. A geological surface is a summary of geological heterogeneity from rock 

properties like porosity, permeability and fluid saturation. For example, the Oil-Water-

Contact (OWC) is defined as a geological surface with 80% water saturation; So50 is 

defined as a geological surface with 50% water saturation. Since the oil production 

performance of each well pair is significantly related to the reservoir‟s geology, 

incorporating geological surfaces in the well placement study is necessary. The distance 

between a horizontal well and a geological surface is retrieved by calculating the 

difference in elevation between them. 

 

Figure 4–1 Five Well placement attributes from a horizontal producer and the Oil-

Water-Contact (OWC) geological surface 

In practice, both the horizontal wells and geological surfaces are not flat, as 

shown in Figure 4–1. In order to characterize the vertical movement between horizontal 

Toe
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wells and geological surfaces, it is necessary to sample some points when quantifying the 

relative distance between them. For each horizontal well, five attributes are retrieved to 

represent its relative distance to a geological surface, including: 1) minimum distance, 2) 

maximum distance, 3) average distance, 4) distance at the ICP point (ICP refers to the 

intermedium casing point which is the starting point of the horizontal well section), and 5) 

distance at the Toe point (Toe point refers the end point of a horizontal well). Taking the 

OWC as an example, Figure 4–1 shows the five attributes including Prod_ICP_OWC, 

Prod_Min_OWC, Prod_Avg_OWC, Prod_Max_OWC and Prod_Toe_OWC. Given that 

each SAGD well pair has two horizontal wells, i.e. injector and producer, there are 10 

attributes defined to characterize the horizontal well placement in reference to a 

geological surface. For n geological surfaces of interest, the number of well placement 

attributes will be 10 n . 

4.3 Association Rule Mining in HWPGA with Constraints 

The objective of association rule mining (ARM) in HWPGA is to analyze the SAGD 

field data and present interesting associations between horizontal well placement 

attributes and the oil production performance. ARM requires that the dataset to be in the 

transactional format in which each contained record contained is composed of binary 

attributes. Therefore, it is necessary to transfer the quantitative attributes in the HWPGA 

dataset to binary attributes. In the following, the partition and transformation processes 

are first presented. Second, two constraints in HWPGA and a formal problem description 

are given. Finally, a new ARM algorithm, named SE-Apriori algorithm, is introduced to 

efficiently mine the HWPGA dataset. 
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4.3.1 Data Transformation 

There are essential differences between the transactional dataset and the dataset used in 

HWPGA (referred to as the HWPGA dataset). In the transactional dataset, each record is 

composed of binary attributes. For example, in the “market basket” transactional dataset, 

each item, like milk, bread or butter, can be modeled as a binary attribute. In each record, 

if the value of the attribute is “1,” it means that the corresponding item is in the basket, 

and if it equals “0,” it denotes that the corresponding item is not in the basket. Thus 

association rule mining in the “market basket” dataset can be viewed as finding frequent 

itemsets in the dataset where all the attributes are binary. However, attributes in a 

HWPGA dataset are either quantitative or categorical. As an illustration, Table 4–1 

shows an example with two well placement attributes, Prod_Avg_OWC and 

Prod_Avg_So50, and the oil production performance indicator, SOR. Prod_Avg_OWC 

and Prod_Avg_So50 are quantitative attributes, where Prod_Avg_OWC is ranged 

between 5 meters and 9 meters. SOR is a categorical attribute, i.e. Poor or Good.  

Table 4–1 Example of quantitative and categorical attributes in HWPGA dataset 

Well Pair ID Prod_Avg_OWC Prod_Avg_So50 SOR 

Well Pair 1 8.7 meters 3.8 meters Poor 

Well Pair 2 6.4 meters 3.2 meters Poor 

Well Pair 3 9.0 meters 3.2 meters Poor 

Well Pair 4 9.2 meters 2.1 meters Good 

Well Pair 5 8.1 meters 3.8 meters Poor 

 

In order to identify association rules from the HWPGA dataset, the quantitative 

and categorical attributes in HWPGA need to be transferred to binary attributes. A 

partition approach is used to solve this problem. For a categorical attribute, each 
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categorical value is transferred to a binary attribute. For each quantitative attribute, it is 

partitioned into consecutive intervals and each interval is further transferred to a binary 

attribute. For example, Table 4–1 shows the binary attributes transferred from the sample 

HWPGA dataset in Table 4–1. The quantitative attribute Prod_Avg_OWC is partitioned 

into {Prod_Avg_OWC: 5 m~8 m} and {Prod_Avg_OWC: 8 m~10 m}. A variety of 

discretization methods can be applied to partition the quantitative attributes (Han and 

Kamber, 2006; Zhang et al., 2003). The categorical attribute SOR is partitioned into 

{SOR: Poor} and {SOR: Good}. After the data transformation, the HWPGA dataset is 

ready to be solved with the ARM algorithms.  

Table 4–2 The quantitative and categorical attributes in Table 4–1 are partitioned 

and transferred into binary attributes. 

Well Pair ID  
Prod_Avg_OWC  (meters) Prod_Avg_So50  (meters) SOR : 

 (6~8) (8~10)  (2~3) (3~4) Poor Good 

Well Pair 1 1 0 0 1 1 0 

Well Pair 2 1 0 0 1 1 0 

Well Pair 3 0 1 0 1 1 0 

Well Pair 4 0 1 1 0 0 1 

Well Pair 5 0 1 0 1 1 0 

 

4.3.2 Constraints in Association Rule Mining of HWPGA Dataset 

An association rule discovered in the HWPGA problem should represent the influence of 

horizontal well placement attributes on the oil production performance. This suggests that 

the well placement attributes should be the antecedents of a rule, while the oil production 

performance indicator is the consequence, as defined in Eq. (4.1). However, association 
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rules from classic ARM methods, such as Apriori, do not have the antecedent and 

consequence constraints. For example, with a frequent 2-itemset {Prod_Avg_OWC, 

SOR}, the generated rules could be {Prod_Avg_OWC}=>{SOR} or 

{SOR}=>{Prod_Avg_OWC}. Based on Eq. (4.1), the second rule is invalid.  

    Well Placement Attributes   Oil Production Performance  (4.1) 

Even though the association rules resulting from Apriori can be filtered by a post-

processing step, it is much more efficient to incorporate the constraints into the 

association rule mining process. This work considers the HWPGA constraints in the 

association rule mining process, and proposes a new Apriori algorithm, named SE-

Apriori. Next, a formal problem description and the SE-Apriori algorithm are introduced. 

A HWPGA dataset D contains N well pair records. Each record R contains s well 

placement attributes {w1,…,wi,…,ws} and one oil production performance indicator P. 

Denote W={w1,…,wi,…,ws}, and each record R is in the form of <W,P>. After the data 

transformation, each quantitative attribute wi is transformed into m binary attributes 

{wi1,…,wij,…,wim}, and P is transformed into n binary attributes {p1,…,pk,…pn}. Here, 

each wij is called a child of wi, and pk is a child of P. Meanwhile, wi and P are called 

parent attributes. Denote all binary children attributes from P by P  and all children 

attributes from W by W , 1{ , , , }k nP p p p   and

11 1 1 1 1{ , , , , ; ; , , , , ;...; , , , , }j m i ij im s sj smW w w w w w w w w w        . Thus, after the data 

transformation each record is in the form of ,W P  . 
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An association rule discovered in a HWPGA dataset is with the form w p , 

where w W  and p P . The rule w p holds in dataset D with the support equal to 

the percentage of records that consist of w p  to the total number of records. The rule 

w p has the confidence equalling the percentage of records consisting of w p  to the 

number of records that consist of w . Given a HWPGA dataset D, the objective of ARM 

is to find all association rules that have support and confidence not smaller than the 

predefined minimum support (minsup) and minimum confidence (minconf), respectively. 

The ARM includes two steps: (1) finding all frequent itemsets and (2) generating 

association rules from frequent itemsets. The first step consumes a very high 

computational cost since it requires passing through the whole dataset multiple times to 

prune candidate itemsets. In addition, the second step may generate a huge amount of 

association rules and many of them may not be meaningful. In order to solve these two 

problems, two constraints, namely selective constraint and exclusive constraint, are 

defined to improve the efficiency of the association rule mining process in HWPGA. 

 Definition 4.1 (selective constraint): Each frequent k-itemset discovered in a 

HWPGA dataset, k≥2, must contain both w and p , where w W and p P . 

Each frequent k-itemset, k≥2, must contain wij and pk at the same time. In order to 

generate association rules with the form w p , the antecedent w and consequence p

must exist in the frequent itemset at the same time. For the frequent itemsets containing 

only a subset of wij, such as {Prod_Avg_OWC: 6~8 m, Prod_Avg_So50: 3~4 m}, it is 

impossible to generate valid association rules with the SOR appearing in the rule 
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consequence. Similarly, it is also impossible to generate valid association rules from 

frequent itemsets containing only a subset of pk. Thus, to avoid unnecessary computation, 

it is necessary to remove the candidate itemsets containing only a subset of wij or pk. 

 

Figure 4–2 An example of frequent itemsets generation with the selective and 

exclusive constraints. 

Well Pair ID Prod_Avg_OWC Prod_Avg_So50 Sor 

Well Pair 1 6~8 m 3~4 m Poor

Well Pair 2 6~8 m 3~4 m Poor

Well Pair 3 8~10 m 3~4 m Poor

Well Pair 4 8~10 m 2~3 m Good

Well Pair 5 8~10m 3~4 m Poor

Frequent 1-Itemsets (minsup=40%) Support

{Prod_Avg_OWC: 6~8 m} 40%

{Prod_Avg_OWC:8~10 m} 60%

{Prod_Avg_So50: 3~4 m} 80%

{Sor: Poor} 80%

Candidate 2-Itemsets

{Prod_Avg_OWC: 6~8 m},{Prod_Avg_OWC: 8~10 m} Invalid

{Prod_Avg_OWC: 6~8 m}, {Prod_Avg_So50: 3~4 m} Invalid

{Prod_Avg_OWC:8~10 m}, {Prod_Avg_So50: 3~4 m} Invalid

{Sor: Poor}, {Prod_Avg_OWC: 6~8 m} Valid

{Sor: Poor}, {Prod_Avg_OWC:8~10 m} Valid

{Sor: Poor}, {Prod_Avg_So50: 3~4 m} Valid

Frequent 2-Itemsets (minsup=40%) Support

{Sor: Poor}, {Prod_Avg_OWC: 6~8 m} 40%

{Sor: Poor}, {Prod_Avg_OWC:8~10 m} 40%

{Sor: Poor}, {Prod_Avg_So50: 3~4 m} 80%

Frequent 3-Itemsets (minsup=40%) Support

{Sor: Poor}, {Prod_Avg_OWC: 6~8 m}, {Prod_Avg_So50: 3~4 m} 40%

{Sor: Poor}, {Prod_Avg_OWC:8~10 m},{Prod_Avg_So50: 3~4 m} 40%

(a) Dataset After Transformation

(b) Frequent 1-Itemsets

(c) Candidate2-Itemsets by ARMHC

(d) Frequent 2-Itemsets

(f) Frequent 3-Itemsets

Candidate 3-Itemsets

{Sor: Poor}, {Prod_Avg_OWC: 6~8 m},{Prod_Avg_OWC:8~10 m}  Invalid

{Sor: Poor}, {Prod_Avg_OWC: 6~8 m}, {Prod_Avg_So50: 3~4 m} Valid

{Sor: Poor}, {Prod_Avg_OWC:8~10 m}, Prod_Avg_So50: 3~4 m} Valid

(e) Candidate 3-Itemsets
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Figure 4–2 shows an example of the frequent itemset generation process using the 

sample HWPGA dataset in Table 4–1. Here, Prod_Avg_OWC and Prod_Avg_So50 are 

two well placement attributes from W. SOR is the oil production performance indicator 

from P. After data transformation, the dataset is shown in Figure 4–2 (a). By scanning the 

dataset, it is easy to determine the frequent 1-itemsets shown in Figure 4–2 (b). Figure 4–

2 (c) shows all candidate 2-itemsets obtained using the Apriori-generation function in 

Figure 2–2. However, given the selective constraint, the former three candidate itemsets 

are invalid due to the nonexistence of pk. Thus 3 out of 6 candidate 2-itemsets are 

removed, which narrows the candidate itemsets searching space by 50%. 

 Definition 4.2 (exclusive constraint): In each frequent k-itemset discovered in a 

HWPGA dataset, k≥2, children attributes derived from the same parent are 

exclusive to each other and only one can appear. 

The exclusive constraint is applicable to both <wi1,…, wij, …,wim> derived from 

wi and <p1,…, pk ,…pn> derived from P. The definition of the exclusive constraint is 

based on the observation that each quantitative attribute value or categorical value can 

only be transformed into one binary attribute. Therefore, after data transformation, for 

each record R in D, there is no chance that more than one child binary attribute derived 

from the same parent will be equal to “1” at the same time. Therefore, for the candidate 

itemsets, such as <p2, wi2, wi3 >, their support will always be zero. Removing such 

candidate itemsets can narrow the search space and accelerate the frequent itemset 

generation process. Note that, from the exclusive constraint, it is easy to conclude that the 

highest order of the frequent itemises is s+1. 
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Continuing the previous example in Figure 4–2, three frequent 3-itemsets 

generated by the Apriori-generation function are shown in Figure 4–2 (e). Based on the 

exclusive constraint, the first itemset is invalid due to the cooccurrence of two child 

attributes derived from the same parent, {Prod_Agv_OWC:6~8} and 

{Prod_Agv_OWC:8~10}, and should be removed. Next, when the frequent 3-itemsets 

are found, the frequent itemsets generation process stops since the highest frequent 

itemsets have been reached. Hence, the introduction of the exclusive constraint decreases 

the candidate 3-itemsets searching space by 1/3 and ends the frequent itemsets generation 

process with an early stop. 

In addition, Eq. (4.1) constrains the number of generated rules. After finding all 

the valid frequent itemsets, each frequent k-itemset f contains k-1 well placement 

attributes and one oil production performance indicator. To generate association rules 

satisfying Eq.(4.1), the oil production performance indicator pk is selected out from f and 

an association rule is generated as (f - pk ) => pk. This process automatically prunes the 

invalid association rules and leads to a small number of association rules. 

 

Figure 4–3 Example of the association rules generation 

Frequent 3-Itemset

{Sor: Poor}, {Prod_Avg_OWC: 6~8 m}, {Prod_Avg_So50: 3~4 m} 

Generated Rules  (minconf=60%) Support Confidence

{Sor: Poor} AND {Prod_Avg_OWC: 6~8 m} => {Prod_Avg_So50: 3~4 m} 40% 100% Invalid

{Sor: Poor} AND {Prod_Avg_So50: 3~4 m} => {Prod_Avg_OWC: 6~8 m} 40% 100% Invalid

{Prod_Avg_OWC:8~10 m} AND {Prod_Avg_So50: 3~4 m} => {Sor: Poor} 40% 100% Valid
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4.3.3 SE-Apriori Algorithm 

Given a HWPGA dataset, the association rule mining finds all valid association rules 

defined in Eq. (4.1) by satisfying the minsup and minconf thresholds. In practice, the the 

minsup and minconf parameters are determined by the users. In the following, a new 

Apriori-based association rule mining algorithm considering the selective and exclusive 

constraints, named SE-Apriori, is introduced.  

The SE-Apriori includes two parts, SE-AprioriGen and SE-AprioriRule. 

Considering the selective and exclusive constraints, SE-AprioriGen finds all valid 

frequent itemsets from a HWPGA dataset with the support no less than the minsup. 

Furthermore, SE-AprioriRule generates association rules from the frequent itemsets with 

the confidence no less than the minconf threshold. 

Figure 4–4 shows the pseudo code of the SE-AprioriGen algorithm. The 

algorithm requires passing the dataset D for at most s times to determine all the frequent 

itemsets. The first pass simply counts the cooccurrences of <pk, wij>, where 1 k n  , 

1 i s   and 1 j m   to determine the frequent 2-itemsets F2. The subsequent pass 

consists of two steps. First, the frequent itemsets Fk are used to generate the candidate 

itemsets Ck+1 using a new SE-Candidate function shown in Figure 4–5. Second, the SE-

AprioriGen algorithm passes the datasets to calculate the support to each candidate 

itemset in Ck+1 and the ones with support not less than minsup are inserted into Fk+1. Note 

that the Apriori Property is conserved in the SE-AprioriGen Algorithm since each step 

Ck+1 is generated from a lower level itemset Fk. The SE-AprioriGen stops until Fk is 

empty or the s+1 level of the frequent itemsets has been reached. 
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Figure 4–4 Pseudo code of SE-AprioriGen algorithm 

The SE-Candidate function, shown in Figure 4–5, takes an argument of the 

frequent k-itemsets Fk and returns all candidate (k+1)-itemsets satisfying the selective and 

exclusive constraints. It assumes that each frequent k-itemset is ordered in the form <p, 

w
1
, w

2
,…, w

k-1
>, where 

1 2 k 1{ , , , }w w w  are ordered lexicographically and the sequence 

is conserved by the superscript. To find Ck+1, Fk is joined with itself. For each pair k-

itemsets f1 and f2 belong to Fk, they can be merged into a candidate (k+1)-itemsets only if 

Algorithm: SE-AprioriGen (D, minsup) 

Input: (1) A HWPGA dataset D      (2) minimum support minsup 

Output: Frequent itemsets k kFU  

01:    Let F2={frequent 2-itemsets}; 

02:    Let k=2  and  maxlevel=s+1;   // the maximum level can‟t exceed s+1 

03:    while ( kF   and k≤maxlevel ) 

/* a new candidate generation function considering constrains in HWPGA */ 

04:           Ck+1=SE-Candidate (Fk);  

05:           Scan D to determine the support to each candidate 1kc C   

07:            Fk+1={ 1kc C   | c.support   minsup} ; 

08:            k++; 

09:    end  // end while 

10:    return k kFU ; 
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their first k-1 items are the same and the last item is derived from different parent 

attributes. In line 3 of Figure 4–5, 1 1

1 2. .k kf w f w   denotes 
1

1.
kf w 

 stands in a former 

place of 
1

2.
kf w 

 lexicographically. 1 1

1 2. . . .k kf w parent f w parent  ensures that the 

exclusive constraint is satisfied. The resulting candidate (k+1)-itemsets by joining f1 and 

f2 is <
1.f p , 1

1.f w , …, 2

1.
kf w  , 1

1.
kf w  , 1

2.
kf w  >. 

 

Figure 4–5 Pseudo code of the SE-Candidate generation function 

Function: SE-Candidate (Fk)  

Input: Frequent k-itemsets: Fk, k≥2 

Output: Candidate k-itemsets Ck+1 

01:       foreach itemset 
1 kf F  

02:           foreach itemset 
2 kf F  

/*  generate candidate itemsets considering selective and exclusive constraints  */ 

03:                   if (
1 2. .f p f p and 1 1

1 2. .f w f w and …and 2 2

1 2. .k kf w f w   and  

                             1 1

1 2. .k kf w f w   and 1 1

1 2. . . .k kf w parent f w parent  )  

04:                        { c=
1 2( , )merge f f ;     and    Add c into Ck+1;   } 

05:                     end  // end if 

06:               end  // end foreach 

07:        end   // end foreach 

08:        return Ck+1; 
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After finding all valid frequent itemsets, the generation of association rules is 

straightforward. Figure 4–6 shows the pseudo code of the SE-AprioriRule algorithm. To 

generate rules complying with Eq. (4.1), each frequent itemset f is enumerated and a rule 

is built as (f-f.p) => f.p. This rule is inserted into the results only if its confidence satisfies 

the predefined minconf threshold. 

 

Figure 4–6 Pseudo code of the SE-AprioriRule algorithm 

4.3.4 Complexity Analysis 

The computational cost of SE-Apriori is analyzed and compared with Apriori. Using the 

problem definition in Section 4.3, the computational cost of SE-Apriori is deduced in the 

Algorithm: SE-AprioriRule (F, minconf) 

Input: (1) All frequent k-itemsets F, k≥2  (2) minimum confidence minconf 

Output: Generated association rules 

01:       foreach frequent itemset f F  

/*  The rule antecedence can only be .f w  and the consequence can only be .f p   */ 

02:             Let A={ 1.f w , 2.f w ,…, 1. kf w  }  and B= .f p ; 

03:             conf=support( f ) / support ( A ); 

04:             if (conf ≥ minconf ) 

05:                    Add to R:  A=> B, sup=support( f ) and conf=conf; 

06:             end  // end if 

07:       end  // end foreach 

08:       return R; 
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following. Each record in a HWPGA dataset contains s quantitative well placement 

attributes {w1,…,wi,…,ws} and one categorical oil production performance indicator P. 

After data transformation, each wi has m children binary attributes and P has n children 

binary attributes. Thus the total possible combination for each record is nm
s
, and for all N 

records, this number is Nnm
s
. The SE-Apriori needs to pass the dataset for at most s+1 to 

find all frequent itemsets. Thus the computational cost of SE-Apriori is given in Eq. (4.2). 

   s 1 sO N nm  (4.2) 

As for Apriori, the computational cost, as suggested by (Agrawal et al., 1993), is 

given in Eq. (4.3).  

  2MO NM  (4.3) 

where N is the number of records in D, M is the number of the total binary attributes, and 

m is the number of intervals in the partition process. Considering sm+n=M, m>1, n>1, the 

following deduction can be made from Eq.(4.2): 

        )2 2( log log2log
s 1 2 2 2

m Ms n
snmsO N nm O NM O NM O NM


     

Thus the computational cost of SE-Apriori is much lower than that of Apriori in 

solving a HWPGA problem. 

Meanwhile, SE-Apriori generates results with a smaller number of rules in 

HWPGA compared to Apriori. With the Apriori algorithm, the number of possible rules 

suggested by (Agrawal et al., 1993) is 12MM  . In SE-Apriori, the highest order of 

frequent itemset in HWPGA problem is s+1 due to the exclusive constraints. For each 

partition pk of P, the maximum number of frequent itemsets containing it is m
s
, thus the 
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total number of potential frequent itemsets is nm
s. 

Since each frequent itemset can only 

generate one association rule, the total possible number of rules is given in Eq. (4.4). 

 snm  (4.4) 

Considering sm+n=M, m>1, n>1, the following deduction can be made from Eq.(4.4):  

)2 2( log log2log
2 2 2 2

m sm n Ms n
snmsnm 

     

Therefore, SE-Apriori generates results with a smaller number of rules in 

HWPGA compared to Apriori. 

4.4 PetroData-GIS System Prototype 

At present, various researches have been conducted on applying data mining to pick up 

meaningful patterns from the field data in order to increase oil production or decrease 

operational costs. In the meantime, a growing number of oil and gas companies have 

implemented Geographic Information Systems (GIS) to manage the large volume of field 

data. With the growing number of field data that have been geographically referenced, 

combining data mining and GIS shows high potential in efficient data management and 

visualizing the data mining results. 

Integrating data mining into GIS, this thesis develops a system prototype, called 

PetroData-GIS. First, PetroData-GIS manages large amounts of field data from petroleum 

wells in a spatial database and visualizes the geospatial information on a 2D map. 

Second, the data mining methods are designed as the analysis tools in PetroData-GIS. By 

connecting to the database, they help in generating interesting patterns by sorting through 

large quantities of field data. Finally, the data mining results can be called back by 

PetroData-GIS and visualized on the map, which provides a user friendly interface. As an 
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example, the PetroData-GIS prototype is demonstrated in the a HWPGA problem by 

visualizing the association rules generated from the SE-Apriori. 

In the following, the architecture of PetroData-GIS prototype and different 

components in the architecture are introduced. 

4.4.1 PetroData-GIS Prototype Architecture 

Figure 4–7 shows the architecture of the PetroData-GIS prototype. It has three main 

components: a spatial database, GIS functions and the graphical user interface (GUI). The 

GUI and the GIS functions are developed using C# programming language with 

integration of the ESRI ArcObjects. The PetroData-GIS prototype supports diverse data 

formats (*.mxd map file, *.lyr layer file, *.shp shape file, *.mdb geodatabase file) and 

visualizes them on a map. The following section describes the main components of the 

prototype in detail. 

PetroData-GIS GUI GIS Functions

Data Mining Functions

SE-Apriori

Traditional 

GIS Functions

Map Visualization

Spatial Query

Navigation

Others

Spatial Database

Nonspatial Data:
Well UWI

Production

Well Log

Others

Spatial Data:
Well Location

Well Trajectory 

Others

 

Figure 4–7 Architecture of the PetroData-GIS prototype 

Spatial Database: The spatial database in PetroData-GIS prototype is 

implemented with Microsoft SQL Server 2005 and the ArcObject‟s GeoDatabase 

Library. The spatial database contains both the spatial and nonspatial data. The spatial 
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data stores the well locations and spatial objects of wells, i.e., points or polylines. 

Vertical wells are stored as spatial points while deviated wells are saved as polylines. The 

nonspatial data records the field data including the unique well identification (UWI), well 

ticket information, core analysis data, well logs and production data. The UWI is unique 

to each well and is used as the primary key in the database. The well ticket information 

records general information such as the well type, drilling and recovery dates. The 

nonspatial data is connected with the spatial data using the primary key of UWI.  

GIS Functions: The GIS functions in the PetroData-GIS Prototype can be 

classified into two groups: the traditional GIS functions and data mining functions. The 

traditional GIS functions include map visualization, spatial query and simple spatial 

analysis tools. For example, the spatial query allows users to select wells on the map, 

which automatically retrieves the related field data from the database. All of these 

functions are implemented by calling the APIs from ESRI ArcObjects. 

Apart from the traditional GIS functions, the current version of PetroData-GIS 

provides the SE-Apriori tool as the data mining function. The user can assign a group of 

attributes from selected wells to the SE-Apriori analysis. After transforming the data into 

the predefined format, SE-Apriori analyzes and presents the discovered association rules 

among the assigned attributes. In addition, the discovered association rules can be 

visualized on the map. For each discovered association rule X=>Y, the system will query 

the database to find the records satisfying both the antecedent X and the consequence Y, 

and the ones satisfying only the antecedent X. For example, given minsup=40% and 

minconf=60%, a sample rule generated from the HWPGA dataset in Table 4–1 is listed in 

Figure 4–8. By scanning the dataset, 2 records satisfying this rule and one record 
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satisfying only the antecedent can be identified. Figure 4–8 shows the two types of 

records related to this rule. With the GIS functions, the PetroData-GIS can highlight 

wells belonging to these two types separately on the map, which helps users in 

understanding the rule by linking the association with related wells.  

Sample Rule Sup Conf 

{Prod_Avg_OWC:8~10 m} And {Prod_Avg_So50: 3~4 m} => {SOR: Poor} 40% 66.6% 

 

Two Types of Records Related to A Rule Records 

Type A: Satisfy both the antecedent X and the consequence Y Well Pair 1 

Well Pair 2 

Type B: Satisfy only the antecedent X but not the consequence Y Well Pair 5 

Figure 4–8 Two types of records related to the sample rule 

PetroData-GIS GUI: Figure 4–9 shows the main graphical user interface (GUI) 

of the PetroData-GIS system prototype. In the middle of the interface is the map display 

area in which the visualized petroleum well map is shown with the designated map scale 

and coordinates. On the left of the interface there is a layer table showing the map layers 

and an eagle eye window showing a global view of the current map. The top of the 

interface contains the menu and the tool bar from which the user can access different GIS 

functions.  
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Map Display AreaEagle Eye View

Menu Bar Table of Layers Contents Tool Bar

Map Scale Coordinates

SE-Apriori

Tool Selection
 

Figure 4–9 The main graphical user interface of PetroData-GIS prototype 

In addition, through the interface the user can perform the association rule mining 

via the SE-Apriori tool. After assigning a group of interest attributes, the user can run the 

association rule mining by clicking the “SE” button in the tool bar. Figure 4–10 shows 

the GUI of the SE-Apriori tool. From top to bottom, there are the Menu Bar, Data & 

Result Viewer, Control Panel and Message Box. The user can constrain the antecedent 

and the consequence of a rule and specify the minsup and minconf parameters. SE-

Apriori returns all the association rules from the predefined antecedent attributes to the 

consequence by satisfying the minsup and minconf thresholds. All of the resulting 

association rules will be listed in the Data & Result Viewer. By clicking each individual 
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rule, the wells related to this rule can be highlighted on the map. In the following section, 

a case study is discussed using the SE-Apriori. 

Menu Bar Data & Result  Viewer

Run SE-AprioriControl Panel Message Box

 

Figure 4–10 The graphical user interface of the SE-Apriori tool 

4.5 A Case Study 

This section demonstrates the SE-Apriori in a HWPGA problem using the real SAGD 

field data. It starts by describing the data collection and preprocessing. Also, the 

efficiency of the SE-Apriori algorithm is compared with Apriori. Furthermore, example 

association rules discovered using SE-Apriori are given. 
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4.5.1 Data Collection and Preprocessing 

The proposed SE-Apriori algorithm is demonstrated using the real SAGD field data taken 

from a SAGD project located in northern Alberta, Canada. The study dataset contains 43 

SAGD well pairs. Each well pair was drilled into four geological surfaces, i.e., RT, So50, 

BITW8 and OWC, as shown in Table 4–3. The horizontal well placement 

characterization is made by retrieving the relative distance between horizontal wells and 

four geological surfaces. For each well pair, 40 well placement attributes, as described in 

Table 4–4, are retrieved. In addition, the oil production performance for each well pair is 

labelled as „Good‟, „Fair‟ and „Poor‟ based on their SOR value by the reservoir engineers. 

Hence each record in the study dataset contains 40 well placement attributes and 1 oil 

production performance indicator. In the data transformation process, each well 

placement attribute is evenly partitioned into eight intervals with each interval being 

transformed into a binary attribute. The SOR is transformed into three binary attributes, 

SOR: Good, SOR: Fair and SOR: Poor, based on its category. Meanwhile, due to data 

confidentiality, a labelling method is introduced to conceal the real data. For example, the 

label “Prod_Avg_OWC=2/8” denotes that the value of Prod_Avg_OWC has been 

partitioned into 8 intervals and it belongs to 2/8 of the intervals.  

Table 4–3 Geological surfaces used in the thesis 

Abbreviations Description 

RT Reservoir Top 

So50 50% Oil Saturation Surface. 

BITW8 8% Bitumen Weight Surface. 

OWC 80% Water Saturation Surface.  
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Table 4–4 Description of the 40 horizontal well placement attributes 

Abbreviation 
Group 

(count) 
Description 

Prod_ICP_RT 

RT 

 

10 

distance between the producer ICP and RT 

Prod_Min_RT minimum distance between the producer and RT 

Prod_Avg_RT average distance between the producer and RT 

Prod_Max_RT maximum distance between the producer and RT 

Prod_Toe_RT distance between the producer Toe and RT 

Inj_ICP_RT distance between the injector ICP and RT 

Inj_Min_RT minimum distance between the injector and RT 

Inj_Avg_RT average distance between the injector and RT 

Inj_Max_RT maximum distance between the injector and RT 

Inj_Toe_RT distance between the injector Toe and RT 

Prod_ICP_BITW8 

BITW8 

 

10 

distance between the producer ICP and BITW8 

Prod_Min_BITW8 minimum distance between the producer and BITW8 

Prod_Avg_BITW8 average distance between the producer and BITW8 

Prod_Max_BITW8 maximum distance between the producer and BITW8 

Prod_Toe_BITW8 distance between the producer Toe and BITW8 

Inj_ICP_BITW8 distance between the injector ICP and BITW8 

Inj_Min_BITW8 minimum distance between the injector and BITW8 

Inj_Avg_BITW8 average distance between the injector and BITW8 

Inj_Max_BITW8 maximum distance between the injector and BITW8 

Inj_Toe_BITW8 distance between the injector Toe and BITW8 

Prod_ICP_So50 

So50 

 

10 

distance between the producer ICP and SO50 

Prod_Min_So50 minimum distance between the producer and SO50 

Prod_Avg_So50 average distance between the producer and SO50 

Prod_Max_So50 maximum distance between the producer and SO50 

Prod_Toe_So50 distance between the producer Toe and SO50 

Inj_ICP_So50 distance between the injector ICP and SO50 

Inj_Min_So50 minimum distance between the injector and SO50 

Inj_Avg_So50 average distance between the injector and SO50 

Inj_Max_So50 maximum distance between the injector and SO50 

Inj_Toe_So50 distance between the injector Toe and SO50 

Prod_ICP_OWC 

OWC 

 

10 

distance between the producer ICP and OWC 

Prod_Min_OWC minimum distance between the producer and OWC 

Prod_Avg_OWC average distance between the producer and OWC 

Prod_Max_OWC maximum distance between the producer and OWC 

Prod_Toe_OWC distance between the producer Toe and OWC 

Inj_ICP_OWC distance between the injector ICP and OWC 

Inj_Min_OWC minimum distance between the injector and OWC 

Inj_Avg_OWC average distance between the injector and OWC 

Inj_Max_OWC maximum distance between the injector and OWC 

Inj_Toe_OWC distance between the injector Toe and OWC 
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4.5.2 Association Rule Mining with SE-Apriori 

After preprocessing, the study dataset is ready for the ARM. In the following, the 

efficiency of the SE-Apriori in HWPGA is compared with Apriori using the study dataset. 

The SE-Apriori is programmed with Microsoft C# based on .net framework 3.5. The 

Apriori is implemented in Weka (Weka, 2012), a third-party data mining software. All 

experiments are performed on a 2.8 GHz PC with 3 GB memory. 

4.5.2.1 Computational Time 

This experiment compares the computational cost between SE-Apriori and Apriori with 

varying minsup values. Most of the computational cost of association rule mining comes 

from finding the frequent itemsets.  

Figure 4–11 shows the comparison of computational time between SE-Apriori 

and Apriori with varying minsup values from 0.1 to 0.18. From Figure 4–11, two 

observations can be made: First, SE-Apriori requires less computational time compared 

to Apriori. Table 3 lists the computational times of SE-Apriori and Apriori with different 

minsup values. For example, when minsup was set to 10%, SE-Apriori executed 3 

seconds while Apriori run for 23 seconds. Second, when minsup was decreased, the 

computational time from SE-Apriori increased slower than Apriori. For example, when 

the minsup decreased from 12% to 10%, the computational time of Apriori increased by 

20 sec, while that of the SE-Apriori increased only by 3 sec. The reason for this is when 

the minsup has a smaller value, a larger amount of candidate itemsets generate during the 

ARM process. Before checking the support of candidate itemsets against the whole 

dataset, SE-Apriori prunes them with the selective and exclusive constraints, which 

narrows the searching space of frequent itemsets, thus accelerating the execution. 
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Figure 4–11 Comparison of computational time between SE-Apriori and Apriori 

with varying minsup values 

4.5.2.2 Number of Generated Rules 

The second experiment is to demonstrate that SE-Apriori generates a smaller number of 

association rules than Apriori. One shortcoming of association rule mining is that it 

generates a large number of rules, even though many of them do not indicate interesting 

associations. A concise result containing less association rules will save the effort to 

interpret them. Typically, the minconf threshold controls the number of rules by limiting 

the rules only to the ones with a high confidence value. With the minconf ranging from 

50% to 90% and the minsup set to 12%, the number of generated rules from SE-Apriori 

and Apriori is compared.  
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Figure 4–12 Comparison of the number of generated rules between SE-Apriori and 

Apriori with varying minconf value (minsup=12%) 

Figure 4–12 shows the comparison of the number of association rules generated 

from SE-Apriori and Apriori when the minsup is set to 12%. From Figure 4–12, it is 

obvious that the number of generated rules from SE-Apriori is considerably less than 

Apriori. For example, with minconf=70% and minsup=12%, Apriori generates 31,861 

rules while SE-Apriori only generates 187. There are two reasons why SE-Apriori 

generates a fewer number of rules. First, with selective and exclusive constrains, SE-

Apriori prunes invalid frequent itemsets. Table 4–5 compares the number of frequent 

itemsets from Apriori and SE-Apriori with minconf=70%, minsup=12%. It is noted that 

Apriori finds 2,444 frequent itemsets and only 261 satisfying selective and exclusive 

constraints are kept by SE-Apriori. Second, each frequent itemset in Apriori may 
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generate many association rules while SE-Apriori generates at most one rule from a 

frequent itemset. In Apriori, for a frequent itemset X, each subset of X can generate the 

rule: subset (X)=>X-subset(X) as long as the confidence is larger than minconf. Thus, for 

a frequent 6-itemset, the number of possible rules is 
1 2 3 4 5

6 6 6 6 6C C C C C    . In contrast, 

SE-Apriori can generate at most one rule from a frequent itemset by satisfying Eq. (4.1). 

Table 4–5 shows that 2,444 frequent itemsets from Apriori generate 31,861 rules while 

261 frequent itemsets from SE-Apriori only generate 187 rules.  

Table 4–5 Numbers of frequent itemsets from Apriori and SE-Apriori with 

minconf=70%, minsup=12% 

 Apriori 

(Count) 

SE-Apriori 

(Count) 

Frequent 1-Itemset 157 N/A 

Frequent 2-Itemset 537 84 

Frequent 3-Itemset 659 87 

Frequent 4-Itemset 539 57 

Frequent 5-Itemset 327 25 

Frequent 6-Itemset 159 7 

Frequent 7-Itemset 54 1 

Frequent 8-Itemset 11 N/A 

Frequent 9-Itemset 1 N/A 

Total Frequent Itemsets 2,444 261 

Total Generated Rules 31,861 187 

 

4.5.3 Association Rule Results in HWPGA 

The main objective of applying ARM in a HWPGA problem is to obtain interesting 

relationships between well placement attributes and SOR. Using the study dataset, two 

types of SE-Apriori analysis in HWPGA problems are presented. First, the sensitivity of 
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each well placement attribute influencing the SOR is analyzed. Second, sample high 

order association rules indicating the synergistic impact of multi-well placement 

attributes on SOR are presented. 

The sensitivity analysis of each well placement attribute to SOR is based on the 

observation that the most sensitive well placement attribute generates the most widely 

applicable association rules. An association rule is widely applicable if there are a large 

number of records in the dataset satisfying this rule. A well placement attribute is 

sensitive to SOR only if it generates a group of rules which are applicable to a large 

portion of the records in the dataset. Specifically, if a well placement attribute is random 

to SOR, it either generates limited association rules or the value of the support to the 

generated rules tends to be zero. Thus, as in Eq. (4.5), a sensitivity index for a group of 

association rules is introduced, which is defined the summation of the support to each 

rule in the group. 

 
1

( )
t

Rule

SensitivityIndex N Support Rule


   (4.5) 

where N is the total number of records and t is the number of association rules. 

Table 4–6 Values of minsup and minconf in the sensitivity analysis experiment 

 Parameter Values Count 

minsup 8%, 10%, 12% 3 

minconf 60%, 70%, 80%, 90% 4 

 

To evaluate the sensitivity of each well placement attribute to SOR, 12 SE-

Apriori tests with 3 minsup values and 4 minconf values, as listed in Table 4–6, are 

conducted. Association rule results from different SE-Apriori test are collected, and the 
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sensitivity index of each well placement attribute to the SOR is calculated, which is listed 

in Figure 4–13. 

 

Figure 4–13 Sensitivity index to 40 well placement attributes grouped by geological 

surfaces 

Figure 4–13 shows that the top 5 sensitive well placement attributes are 

Prod_Avg_OWC, Inj_Avg_OWC, Prod_Avg_BITW8, Prod_Max_BITW8 and 

Prod_Avg_So50. The five least sensitive well placement attributes are Prod_Toe_BITW8, 

Prod_ICP_BITW8, Inj_Toe_So50, Inj_Toe_BITW8 and Prod_Avg_RT. Meanwhile, the 
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well placement attributes in Figure 4–13 are grouped by geological surfaces. The 

summarized sensitivity indexes of well placement attributes belonging to the same 

geological surfaces are calculated. The summarized sensitivity indices to (OWC, So50, 

BITW8, RT) are 942, 638, 492 and 388, respectively. The geological surface OWC has 

the highest sensitivity index, which suggests that the distance between the horizontal 

wells and OWC acts as the most important rule influencing the SOR in the study dataset. 

Table 4–7 Sample rules between multi-well placement attributes and SOR 

Sample Rules Sup Conf 

{Prod_Avg_OWC=2/8} AND {Prod_Max_OWC=2/8} AND  

{Prod_Min_OWC=2/8}AND {Prod_Toe_OWC=2/8 } => {SOR: Fair} 

14% 71% 

{Prod_Avg_OWC=1/8} AND {Prod_Max_OWC=1/8} AND  

{Prod_Min_OWC=1/8} AND {Prod_Toe_OWC=1/8 } => {SOR: Poor} 

12% 83% 

 

The second part of this analysis covers the synergistic impact of multi-well 

placement attributes  on the SOR. One advantage of ARM is to present the associations 

among high dimensional attributes. In the study dataset, there are 40 well placement 

attributes and 1 SOR attribute. By analyzing the high order association rules, it may 

reveal the synergistic impact of different geological factors on the SOR. For example, 

with minsup=10% and minconf=70% SE-Apriori generates 33 rules with the order higher 

than 3 (equivalent to the antecedent of the rule which has more than 3 well placement 

attributes), and the highest order reaches 6. Two sample high order rules are shown in 

Table 4–7. These two rules have the same antecedent attributes but different values. In 

the first rule, Prod_Avg_OWC=2/8 means that Prod_Avg_OWC is partitioned into 8 

intervals and it belongs to 2/8 level of the partition. The first rule reveals that there is a 71% 
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chance that the SAGD well pair has a fair SOR when the producer is placed 2/8 distance 

level to OWC. The second rule suggests that placing the wells closer to OWC, like from 

2/8 to 1/8, there is a higher chance that the SOR tends to be „Poor‟. Hence these two rules 

implicitly indicate that placing the SAGD well pair closer to OWC has a negative 

influence on oil production. 

4.6 Summary 

In this chapter, a customized method to analyze the horizontal well placement 

performance from real SAGD field data is given. It starts by formalizing the Horizontal 

well placement Guidance Acquisition (HWPGA) problem in Section 4.1. HWPGA is 

used to sort through related SAGD field data and identify interesting associations 

between horizontal well placement attributes and oil production performance. In addition, 

to capture the characteristics of horizontal well placement within a heterogeneous 

reservoir, a group of well placement attributes are defined in Section 4.2. In Section 4.3, 

association rule mining is introduced to solve the HWPGA problem. To improve 

efficiency, a new algorithm, named SE-Apriori, is modified from Apriori by considering 

two constraints in HWPGA problems. In Section 4.4, a GIS system containing the 

proposed SE-Apriori tool, named PetroData-GIS, is developed. Finally, in Section 4.5, 

the real dataset taken from a SAGD project in northern Alberta is used to demonstrate the 

SE-Apriori algorithm in solving the HWPGA problem. The experiments show that the 

SE-Apriori algorithm executes faster while generating a smaller number of association 

rules compared to Apriori. In the end, the SE-Apriori results from the study dataset are 
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evaluated by presenting the sensitivity analysis and high order association rule 

interpretation.  
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Chapter Five: Conclusions and Future Work 

This chapter draws conclusions from this thesis and provides suggestions for future work.  

5.1 Conclusions 

In this thesis, the author applies data mining and GIS methods for two petroleum 

applications: reservoir characterization and horizontal well placement guidance 

acquisition.  

The reservoir characterization problem focuses on two types of field data, i.e., 

core analysis and well log data. As a preprocessing step in reservoir characterization, a 

spatial clustering process is applied to group core analysis data with the spatial 

correlation. A new spatial clustering algorithm, named SEClu, is proposed to consider the 

nonspatial similarity and spatial correlation during the spatial clustering process. SEClu 

finds clusters whose members are density-spEntropy-reachable to each other. This 

requires data points in the same clusters not only to be in a dense neighbourhood but also 

to satisfy a small spatial entropy threshold. SEClu is able to identify clusters with 

arbitrary shapes. Meanwhile, it has been demonstrated in this thesis that spatial entropy is 

a deceasing function as nonspatial similarity and spatial correlation increase. A small 

threshold of spatial entropy restricts the nonspatial attributes of data points in the same 

cluster to be similar and spatially correlated. In the experiment, SEClu is evaluated with 

synthetic datasets and a real core analysis data clustering application. Experimental 

results show that compared to the traditional density-based spatial clustering algorithms 

SEClu performs better in finding meaningful clusters with spatial correlation.  
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In addition, in order to acquire accurate reservoir properties on a large scale, a 

new FR-Neural framework is proposed in reservoir characterization using core analysis 

and well log data. The proposed FR-Neural reservoir characterization framework 

includes two steps: fuzzy ranking and pattern recognition. The fuzzy ranking step selects 

the representative well log data for the target reservoir property characterization. In the 

pattern recognition step, a MLP neural network simulates the complex correlation from 

selected well log data to the target reservoir property. After proper training, the MLP 

predicts the target reservoir property based on new well log data. The FR-Neural 

framework is evaluated on a porosity characterization problem using data from three 

wells in southwestern Alberta, Canada. The reservoir characterization results from MLP 

using the fuzzy ranking selection is compared with results using other neural inputs. The 

comparison suggests that the proposed FR-Neural framework generates the best reservoir 

characterization results. Specifically, the correlation coefficient between the predicted 

porosity values from FR-Neural framework and the recorded values reaches up to 90%, 

which demonstrates the prediction accuracy of the proposed method.  

The second problem discussed in this thesis surrounds horizontal well placement. 

Horizontal well placement is critical to the SAGD oil recovery process, and poor well 

placement negatively influences the oil production. This thesis formalizes a HWPGA 

problem which examines the horizontal well placement guidance by investigating real 

SAGD field data. It begins by defining a group of horizontal well placement attributes 

which characterize the locations of horizontal wells in a heterogeneous reservoir. 

Furthermore, a customized association rule mining algorithm, named SE-Apriori, is 

proposed, which solves the HWPGA problem by analyzing the interesting correlations 
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between horizontal well placement attributes and oil production performance. Two 

constraints, i.e., selective and exclusive constraints, are considered in the SE-Apriori 

algorithm, which narrows the frequent itemsets searching space and accelerate the 

process of association rule mining in a HWPGA problem. Given the minimum support 

and minimum confidence thresholds, SE-Apriori efficiently finds all satisfied association 

rules between the well placement attributes and oil production performance indicators. 

The proposed SE-Apriori algorithm is evaluated using a real dataset taken from a SAGD 

project in northern Alberta, Canada. Experimental results show that SE-Apriori can 

dramatically reduce the execution time while generating concise results regarding 

association rules. The generated association rules suggest that the oil production 

performance from the study dataset is very sensitive to the distance between horizontal 

wells and the OWC geological layer. 

Furthermore, a GIS system prototype, named PetroData-GIS, is designed to 

efficiently manage the field data in the petroleum industry and visualize the data mining 

results. The PetroData-GIS prototype integrates the SE-Apriori tool into a GIS system. It 

helps manage a large volume of petroleum field data in a spatial database and visualizing 

the data with geographical information on a 2D map. The engineers can easily access the 

field data by clicking the symbols, such as wells, on the map. In the meantime, 

PetroData-GIS contains the SE-Apriori algorithm as a GIS function and helps to visualize 

the association rules from SE-Apriori. From PetroData-GIS, users can apply the SE-

Apriori tool to analyze the association rules on selected attributes from the spatial 

database. Association rules from SE-Apriori can be visualized back in the PetroData-GIS 

prototype. Wells satisfying or not satisfying a specific rule are represented using different 
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symbols on the map, which helps the engineers in visually interpreting the association 

rule acquired from the system. 

5.2 Future Work 

Several extensions to this thesis are suggested and listed as follows: 

1. The SEClu algorithm is developed to cluster spatial datasets by considering spatial 

attributes, nonspatial attributes and spatial correlation. Even though SEClu helps in 

identifying meaningful clusters with spatial correlation, it sacrifices computational 

efficiency. When the spatial dataset is large, the execution time of SEClu becomes 

unacceptable. Incorporating a spatial data index or a preprocessing method in the 

algorithm to reduce the execution time is suggested. 

2. The current SEClu algorithm is only capable of clustering spatial points. In many 

cases, considering spatial correlation could also be very interesting. For example, 

clustering other spatial objects, such as polygons in land management systems. 

Hence extending SEClu to cluster other spatial objects would prove to be valuable 

research. 

3.  The proposed FR-Neural framework is suitable for characterizing most reservoir 

properties for different reservoir types. In this work, it is evaluated only for the 

porosity characterization problems for a gas reservoir. It would be interesting to 

examine this method for other reservoir properties, such as permeability, saturation 

and lithology, and for more complicated reservoirs, such as those with a bottom 

aquifer, top gas, dual porosity reservoir or natural fracture reservoirs. 
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4. The FR-Neural framework proposed in this thesis is designed to characterize 

reservoir properties from well log data. The derived reservoir properties are only 

available along with the well bore where the well logs are taken. For the reservoir 

regions further away from the well bores, reservoir properties are calculated via 

interpolation, which can be inaccurate. Several works have suggested that 

interpreting reservoir properties from seismic data is feasible. Therefore, it would be 

interesting to incorporate seismic data into the ANN-based reservoir characterization 

method in order to acquire accurate reservoir properties on a large scale. 

5. For the HWPGA problem, horizontal well pairs in a SAGD project are treated 

independently in this work. In practice, due to pressure gradients in the reservoir, 

neighbour well pairs may communicate with each other after a period of production. 

Horizontal well placement may influence oil production by enhancing or weakening 

the communication effect. Therefore, incorporating spatial dependence into the well 

placement study may potentially help in delivering better horizontal well placement 

plans. 

6. HWPGA is extendable to investigating the well placement performance for deviated 

or vertical wells. Despite the rapid development of horizontal wells in recent years, 

most traditional oil recovery technologies apply deviated or vertical wells and field 

data that have been accumulated over decades. Analyzing the reservoir response for 

different well placement plans may benefit traditional oil recovery by improving well 

planning and eventually increasing oil production.  

7. Integrating data mining methods into GIS and providing solutions for the petroleum 

industry are new research topics. The PetroData-GIS prototype developed in this 
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thesis strives to integrate association rule mining tools into GIS and provide solutions 

to the HWPGA problems. In the meantime, there is high potential for combining 

other data mining methods with GIS to provide useful tools. This combination would 

assist engineers in exploring and identifying reservoirs with commercial value. It 

would also be helpful in the optimization of oil production, and in considering well 

dependency. Finally, it would allow for the visualization of data mining results 

combined with geographical information.  
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APPENDIX: PUBLICATION DURING THE PROGRAME 

Journal Papers: 

Wang B.J., Wang X. and Chen Z.X. Spatial Entropy-based Mutual Information in 

Hyperspectral Band Selection for Supervised Classification, International Journal of 

Numerical Analysis and Modeling (Accepted) 

Wang B.J., Wang X. and Chen Z.X. Using Two-step Fuzzy Ranking and an Artificial 

Neural Network for Reservoir Characterization. Computers & Geosciences (Submitted) 

Conference Papers: 

Wang B.J. and Wang, X. (2011) “Spatial Entropy-based Clustering for Mining Data with 

Spatial Correlation.” Proceedings of the 15th Pacific-Asia Conference on Knowledge 

Discovery and Data Mining, ShenZhen, China, Springer LNCS, 6634, 196-208 

Gu W., Wang, B.J. and Wang X. (2011) “An Integrated Approach to Multi-Criteria-

based Health Care Facility Location Planning.” Proceedings of the 2
nd

 Workshop on Data 

Mining for Healthcare Management, ShenZhen, China, Springer LNCS, 420-430 

Workshop Presentations: 

Wang B.J. (2011) “Association Rule Mining of SAGD Database.” 2011 Reservoir 

Simulation Technical Symposium Student Presentation, Calgary 
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Wang B.J. (2010) “Using Two-step Fuzzy Ranking and Artificial Neural Network for 

Reservoir Characterization.” 2010 Reservoir Simulation Technical Symposium Student 

Presentation, Calgary 
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