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Abstract 

 

Identifying traffic accident concentration area is important for road safety 

improvements. Previous spatial concentration detection methods did not consider the 

severity levels of accidents, and the final traffic accident risk map for the whole study 

area ignores the different users‟ requirements. 

This thesis proposes an ontology-based traffic accident risk mapping framework. 

In the framework, the ontology represents the domain knowledge related to the traffic 

accidents and supports the data retrieval based on users' requirements. A new spatial 

clustering method, called DBCTAR (Density-based Clustering for Traffic Accident 

Risk), takes into account the numbers and severity levels of accidents is proposed for risk 

mapping. To demonstrate the framework and the new algorithm, the Ontology-based 

Traffic Accident Risk Mapping (ONTO_TARM) system and a web-based clustering 

service GeoClustering have been developed. Four case studies in the city of Calgary with 

final risk maps are presented and discussed. 
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Chapter One: Introduction 

 

1.1 Background Information 

Road traffic accidents are a social and public health challenge, as they almost 

always result in injuries and/or fatalities (Anderson 2009). The World Health 

Organization estimates over 1 million people are killed each year in road collisions. This 

is equal to 2.1% of the annual global mortality and an estimated social cost of $518 

billion (Peden et al. 2004). In Canada, about 3,000 people are killed every year on the 

roads (RememberRoadCrashVictims.ca 2009). In Alberta, the average time between 

collisions is 5 minutes (Tay 2006). Within only the City of Calgary, the total reportable 

collisions number was 39,542 in 2008 (Calgary Police Service 2009). 

To significantly reduce traffic fatalities and serious injuries on public roads, we 

need to review the characteristics of traffic accidents and identify the hidden patterns 

behind the accidents‟ records, referring mainly to the actual knowledge contained in the 

collision data rather than the raw data records themselves. For example, road safety 

managers or residents may be interested in the accident patterns near their communities 

and not the data records.  

Previous traffic safety studies show that, in most cases, the occurrences of traffic 

accidents are seldom random in space and time, but form clusters that indicate accident 

concentration areas in geographic space (Anderson 2009). A concentration area is defined 

as an area or location where there is a higher likelihood for an accident to occur based on 

historical data and spatial dependency. Thus, if we can identify the locations with the 

http://www.rememberroadcrashvictims.ca/
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high risk on the roads, road safety managers can analyze the reasons behind the fact; and, 

the public can be aware of the danger, so that they can drive more carefully on the 

dangerous road or avoid it altogether.  

The "risk" could be the result of number of accidents, severity level, and the 

measure of exposure. However, the measure of exposure (usually measured by exposure 

population or traffic volume) data is hard to get. So, in this thesis, the measure of 

exposure is considered as a constant in the same research area. The "risk area" in this 

thesis is more similar as "hotspot" or "black spot", which represents a road segment 

where road traffic accidents have historically been concentrated and accident severity 

level is also high.  

This kind of strong need for actual knowledge - the risk area on the road, rather 

than for just the raw accident data from which the knowledge was derived, belongs to the 

emerging and developing research area called geographic knowledge discovery (GKD). 

GKD is the process of extracting information and knowledge from massive amounts of 

geo-referenced data. Among major GKD techniques, geospatial cluster analysis is an 

important and very useful method. Geospatial cluster analysis, also named geospatial 

clustering, is an approach to applying spatial clustering techniques on geographically 

based data. Spatial clustering is the process of grouping similar objects based on their 

distance, connectivity or relative density in space (Han et al. 2001). Clusters create an 

abstract representation of the original data, where similar points within the same groups 

are merged, based on location as well as on other non-spatial attributes. In addition, 

clustering methods can discern interesting spatial patterns and features, capture intrinsic 
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relationships between spatial and non-spatial data, and present data regularity concisely 

and at higher conceptual levels (Ng & Han 2002).  

Accident data can be represented as geospatial points. A cluster of accidents 

indicates patterns with high density accidents in that area. Therefore, geospatial 

clustering method may be able to determine the concentrated areas of accidents. 

 

1.2  Problem Statement  

Over the years, various spatial concentration detection methods and tools have 

been proposed and applied to discover traffic accident concentration patterns. However, 

previous traffic accidents concentration detection researches have several limitations.  

First, these methods do not consider the discrepancy of conditions and only generate one 

single map as a result. Traffic analysts and the general public are actually interested in 

accident concentration areas in terms of specific conditions, such as different time 

intervals, and weather or road surface conditions. These different conditions reflect 

different requirements from users. Therefore, risk maps that meet users‟ manifold 

requirements are necessary.  

Nevertheless, integration of users‟ requirements into generating different 

concentration maps is not an easy task. The first subtask is the selection of the proper 

datasets based on different users‟ requirements. Selection at the data level necessitates 

good experience or understanding of the datasets in order to define the queries, which can 

sometimes be quite challenging for users who have no or only limited knowledge of the 

study area and dataset. 
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Second, existing concentration detection methods are limited by their lack of 

consideration of the attributes of the accidents, treating each accident as a point and 

applying traditional point pattern analysis methods to the extracted points. When defining 

the concentration area, they consider only the number of accidents, ignoring the severity 

levels associated with the accidents. However, accidents have different severity levels, 

including fatality, injury, and property damage only (PDO) (Doherty et al. 1998); and, 

each level should be treated differently.  

Third, although various spatial clustering tools and applications have been 

proposed and developed over the years, to the best of my knowledge, most related 

clustering tools are not designed for geospatial clustering tasks. Most tools or 

applications involved in previous researches only utilize spatial analysis methods to 

identify traffic accident concentration areas. In addition, these tools are desktop-based 

sealed packages or closed systems; their openness and interoperability could be 

improved. Some companies do provide client libraries of APIs (application programming 

interfaces) for online geospatial clustering functions; however, most of these applications 

are used to simplify the map instead of for discovery of underlying cluster patterns. 

Moreover, users need to do extra programming to be able to use them. 

 

1.3 Objective 

The objective of this thesis is to design and implement a framework which can 

help users generate different concentration maps based on their requirements in terms of 

specific conditions, such as different time intervals, weather or road surface conditions, 

showing the “risk areas” on a road network based on the historical accident dataset.  
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The sub objectives can be summarized as follows: 

 Proposes an Ontology-based Traffic Accident Risk Mapping (ONTO_TARM) 

Framework, so as to improve the limitations existing in previous research 

investigations. This framework generalizes the formalized methods and logical 

operations. It also supports the development work.  

 Builds traffic accident domain ontology to organize data. Ontology is the explicit 

specification of a conceptualization (Gruber 1993). It provides domain knowledge 

relevant to the conceptualization and axioms for reasoning with it. For the 

accident domain ontology, it provides the knowledge pool for the reasoning, so 

that the framework can handle users‟ requirements at the knowledge level. 

 Propose a density-based clustering algorithm for traffic accident risk (DBCTAR) 

to find accident concentrations with severity levels in geographical space. This 

method can separate objects into groups (called clusters) based on both spatial and 

non-spatial attributes. Clusters are regarded as network regions where the 

accidents are dense enough and above a certain severity level. These regions may 

have arbitrary shapes, and the accidents inside a region may be arbitrarily 

distributed. 

 Builds a clustering service called GeoClustering to perform the geospatial 

clustering tasks. This web-based clustering service is aimed at the discovery of 

interesting patterns in geographical space. This easy-to-use service is designed 

around the concepts of “loose coupling” and “reuse” to improve openness and 

interoperability. 
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 Implements a system for the proposed ONTO_TARM framework. This system 

uses client and server architecture including a desktop interface and a web-based 

publishing platform. 

 Conducts four case studies to demonstrate the system. Two cases generate maps 

in the same area under different temporal conditions and environmental 

conditions. One case demonstrates a risk map for a specific road only. Last case 

demonstrates the potential integration with other systems. 

 

1.4 Organization of the Thesis 

This thesis is organized as follows: Chapter 2 provides a literature review on the 

existing spatial clustering tools, the methods of identifying accident concentrations and 

the ontology in traffic accidents. Chapter 3 presents the ONTO_TARM framework with 

the proposed DBCTAR spatial clustering method. Chapter 4 describes the 

implementation of the risk mapping system and GeoClustering service. Chapter 5 gives 

four case studies and discusses the clustering results. Chapter 6 concludes the thesis and 

discusses future research directions. 
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Chapter Two: Literature Review 

 

2.1 Introduction  

This chapter presents an overview of related previous researches. Section 2.2 

introduces traditional approaches to the road traffic accident concentration detection, 

mainly from the geographic perspective. Section 2.3 discusses the limitations of the 

current accident concentration detection approaches. Section 2.4 presents a 

comprehensive overview of spatial clustering methods. Section 2.5 presents an overview 

of the current geospatial clustering tools, mainly focusing on the online clustering tools. 

Section 2.6 briefly discusses the research works using ontology for traffic accidents. 

 

2.2 Accident Concentration Detection 

Identification of an accident concentration area in a road network is usually 

simplified into a task that detects concentrations of point events in a network. Various 

methods have been proposed and applied, mainly including spatial autocorrelation 

methods and kernel density methods.  

2.2.1 Spatial autocorrelation methods 

The autocorrelation methods detect whether a given point distribution differs from 

a random distribution throughout the study area (Boot & Getis 1988), such as Ripley‟s K-

function(Ripley 1981), Getis‟s G-statistic(Getis & Ord 1992) and Moran‟s I (Moran 

1950). These methods can be classified as global methods (Yamada et al. 2004) and local 
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methods (Black & Thomas 1998), based on whether the methods apply the spatial 

autocorrelation significance test globally or locally within the study area.  

The global methods examine whether a given point distribution differs from a 

random distribution. Positive spatial autocorrelation indicates that accident distribution is 

clustered, which means the concentration may happen in the study area. K-function is one 

of the evaluation methods. It is defined as the expected number of points within a 

distance d of an arbitrarily chosen point, divided by the density of points per unit area. 

The standard K-function method is based on the assumption of infinitely continuous 

planar space where distances are measured as a straight-line (Euclidean) distance. 

Yamada and Thill (2004) found a significant chance of over-detecting clustered patterns 

in planar K-function analysis of traffic accidents. They proposed a network K-function, 

which consider both the locational constraint by network and the distance measurement 

constraint, to resolve this problem. Shiode (2008) proposed a method for constructing a 

set of network-based quadrats as a basic statistic unit instead of conventional planar 

quadrats used for data aggregation. The limitation of these global methods is that they 

cannot reveal the location of clusters. 

The Local Spatial-autocorrelation Methods are derived from Global Spatial-

autocorrelation Methods and boomed since the 1990s (Getis 2008). Local methods need 

to aggregate point-based accidents into basic spatial units (BSUs). There is no unique 

solution for the division. For example, Flahaut et al. (2003) considered 100m long non-

overlapping road section as basic spatial units and then apply local Moran‟s I method to 

determine significant clusters. However, if we conduct the research at a large scale using 

200m long road section as BSUs on the same dataset, the results could be different. Thus 
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different division methods of the BSUs may lead to different results at different scales. If 

the scale is too large or too small, it might mislead to false or inaccurate accident 

concentration result.  

2.2.2 Kernel density methods 

Kernel density methods aim at calculating and producing a density surface from 

point features. Here, the density is the total number of accidents per unit area. Usually, 

the methods divide the whole area into grid cells, and calculate the density of point 

features around each output raster cell. To do the calculation, a hump or kernel with a 

mathematical equation, called a kernel function, is applied to each accident point. A 

kernel function is a weighting function that is used to estimate variables' density ranging 

from 1 to 0 with a given radius, depending on its distance to the accident point. All the 

values from different points at a given cell are then totalled as the density estimation 

value.  

The formula to calculate the kernel density values at location (x,y) is defined as:  






n

i

i
yx

r

d
K

nr
D

1
2),( )(
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where the D(x,y) is the density estimation value at location (x,y); n is the number of 

observations; r is the smoothing  parameter called bandwidth (is the search radius, only 

points within r are used to estimate ); K is the kernel function; di is the distance between 

the location (x,y) and location of the ith observation.  

The traditional kernel method is a two-dimensional planar method, which 

generates a continuous raster surface with equal-sized cells covering the whole area in 

which the network located. The raster cells with high values indicate the accident 
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concentration areas. The planar method has inherent limitations: First, all of the accidents 

are only located on streets. The cells that are located outside of the road have risk values 

that do not match the reality. Second, the density of the road network is ignored 

(Steenberghen 2010). Even if some grid cells have the same density values, they may 

include different lengths of road sections. The real density values of road network are, 

therefore, biased. Third, the choice of bandwidth affects the outcome surface. 

To overcome these limitations, many studies have attempted to extend the 

conventional planar method to network spaces. Flahaut et al. (2003) developed a kernel 

density estimation method based on a simple network. Borruso (2005) considered the 

kernel as a density function based on network distances. Xie and Yan (2008) pointed out 

that point events in the network are better measured with density values per linear unit, 

but they did not consider the bias of their estimator explicitly. Okabe et al. (2009) 

discussed three types of the network kernel density estimation. The equal split kernel 

function and the equal split continuous kernel function have improved the kernel 

estimation methods. However, no kernel function exists that satisfies a combination of 

precisely estimating the density of events on a network without bias (Steenberghen 

2010). 

 

2.3 Limitations of Current Accident Concentration Detection Methods 

Almost all the methods have their own weaknesses in addition to the limitations 

illustrated. First, all of the above methods handle accident analysis at the data level. They 

fail to take into consideration users' requirements. As discussed previously, accident 

distributions are totally different due to many factors, such as time, weather or road 
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surface state. For example, Figure 2.1 provides a histogram showing the accident 

statistics on the 16th Avenue N, Calgary, Alberta, with the same time interval of the day 

for 4 years (1999-2002). From this chart, it can be seen that the accident numbers vary at 

different time intervals. This means in a specific time range of the day, the distribution of 

accidents should be different. Thus, two maps showing the concentration of accidents 

around 5:00AM and 8:00AM should be different. By a logical extension of this point, 

given other factors (such as the weather conditions), the risks of the road network should 

be different. However, current methods do not consider different factors. Although 

datasets can be generated from database query, the processing remains at the data level, 

not at the knowledge level. Therefore, current methods cannot satisfy users' needs. 

 

 

Figure 2.1 Accident statistics in the same time intervals on 16th Ave N in Calgary 

Second, all of the above methods ignore the severity level of accidents. When 

users consider the accident risk of the road network, the assumption is that, if an area on 
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the map is marked as high risk, that area should be more vulnerable to accidents. 

However, the nature of the accidents may be different from one another. One of the 

obvious distinctions is the severity level. For example, a rear-end accident should not be 

considered the same as an accident with a fatality. In the Figure 2.2 assume during the 

same time interval, both intersection A and B have 4 accidents. Around intersection A, 

there are two accidents with injury, and two accidents with property damage only. 

Around the intersection B, all the accidents are “accident with property damage only”. If 

we only count the total accident numbers at each intersection, A and B have the same 

risk. But if we consider the severity level, A should be considered as higher risk than B. 

Thus, the risk not only depends on the number of accidents, but also on the severity level 

of accidents. Unfortunately, most of the previous studies take the accident records as a 

point without considering the severity levels, and most of the statistical analyses are only 

based on the number of the accidents. 

 

Figure 2.2 Accident numbers and severity levels 
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2.4 Geospatial Clustering 

Geospatial clustering is the process of grouping a set of objects into groups 

(called clusters) based on their geographical locations and other attributes. Geospatial 

clustering can use general spatial clustering algorithms but emphasizes applying spatial 

clustering algorithms in geographical space. The rules which describe a step-by-step 

procedure for grouping the spatial objects based on pre-defined criteria among the spatial 

objects are called spatial clustering algorithms or methods. The “pre-defined criteria”, 

most time is based on the similarity. The function how to define the similarity among the 

spatial objects is called “distance function”. 

2.4.1 Spatial clustering methods 

Spatial clustering algorithms exploit spatial relationships among data objects to 

discern groupings inherent within the input data. The spatial clustering methods can be 

classified into five categories, based on the underlying clustering technique used (Han et 

al. 2001, Han & Kamber 2006).  

1) Partitional methods: Partitional clustering methods partition points into 

clusters, such that the points in a cluster are more similar to each other than to points in 

different clusters. They start with some arbitrary initial clusters and iteratively reallocate 

points to clusters until a stopping criterion is met. These methods tend to find clusters 

with hyperspherical shapes. Examples of partitional clustering algorithms include k-

means, PAM(Partitioning Around Medoids), etc (Kaufman & Rousseeuw 1990, Ng & 

Han 2002). 

2) Hierarchical methods: Hierarchical clustering methods can be either 

agglomerative or divisive. An agglomerative method starts with each point as a separate 
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cluster, and successively performs merging until a stopping criterion is met. A divisive 

method begins with all points in a single cluster and performs splitting until a stopping 

criterion is met. Examples of hierarchical clustering methods are CURE(Clustering Using 

REpresentatives), BIRCH(Balanced Iterative Reducing and Clustering using 

Hierarchies), etc (Guha et al. 1998, Zhang et al. 1996, Karypis et al. 1999). 

3) Density-based methods: Density-Based clustering methods try to find clusters 

based on the density of points in regions. Dense regions that are reachable from each 

other are merged to form clusters. Density-based clustering methods excel at finding 

clusters of arbitrary shapes. Examples of density-based clustering methods include 

DBSCAN(Density-based Spatial Clustering of Applications with Noise), 

OPTICS(Ordering Points To Identify the Clustering Structure), DBRS(Density-Based 

clustering with Random Sampling), etc (Ester et al. 1996, Ankerst et al. 1999, Wang & 

Hamilton 2003). 4) Grid-based methods: Grid-based clustering methods quantize the 

clustering space into a finite number of cells and then perform the required operations on 

the quantized space. Cells containing more than a certain number of points are considered 

to be dense. Contiguous dense cells are connected to form clusters. Examples of grid-

based clustering methods include STING(STatistical INformation Grid), 

CLIQUE(CLustering In QUEst), etc (Wang et al. 1997, Agrawl et al. 1998, 

Sheikholeslami et al. 1998). 

5) Model-based methods: Model-based methods hypothesize a model for each of 

the clusters and attempt to optimize the fit between the data and some mathematical 

models such as Autoclass and COBWEB (Cheeseman et al. 1993, Fisher 1987). 
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Among these different types of methods, a density-based clustering method is the 

most suitable method for traffic accident risk analysis, because it can discover arbitrarily 

shaped clusters based on density. The section 2.4.3 will discuss the classic density-based 

clustering method on which this research is based. 

 

2.4.2 Distance functions 

The “distance function” is the key component of any spatial clustering method in 

that it measures the similarity among spatial objects. Distance is a numerical description 

of how similar two objects are in space. According to Tobler‟s First Law (Tobler 1970), 

geometric distance is usually used as the scale of similarity in the “ideal model”. 

However, sometimes the non-spatial attributes (alphanumeric attributes) of objects is also 

incorporated into the distance function.  

The character of geometric distance is that it is defined by exact mathematical 

formulas that reflect the physical length between two objects in defined coordinate 

systems, such as Euclidean Distance, Manhattan Distance, Great Circle Distance, etc. 

Spatial clustering methods do not always use geometric distance; for example, if the 

distance can be defined as the shortest traveling time between two different addresses in a 

city. In this case, the distance function should take into account road networks, speed 

limitations, volume of traffic, number of traffic lights, and stop signs. In fact, the distance 

function is always tailored to different clustering purposes. 

Spatial objects may have significantly different non-spatial attributes that 

distinguish them from each other and influence the clustering result. Consequently 

geometric distance will sometimes be extended to include not only coordinates but also 
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non-spatial attributes. Non-spatial attributes can be classified into two categories: 

numerical and non-numerical. For numerical non-spatial attributes, the numerical values 

can usually be transformed into some standardized values, and calculated by using 

geometric distance functions as additional dimensions. For the non-numerical attributes, 

new functions are defined to transform non-numerical values to numerical, such as 

“weight” in GDBSCAN (Sander et al. 1998) or “purity” in DBRS (Wang & Hamilton 

2003). 

2.4.3 DBSCAN algorithm 

DBSCAN (Density Based Spatial Clustering of Applications with Noise) (Ester et 

al. 1996) was the first density-based spatial clustering method proposed. The key concept 

is the definition of a new cluster or extension of an existing cluster based on a 

neighborhood. The neighborhood around a point of a given radius (Eps) must contain at 

least a minimum number of points (MinPts). Given a dataset D, a distance function dist, 

and parameters Eps and MinPts, the following definitions are used to define DBSCAN.   

An arbitrary point p(p  D), the neighborhood of p is defined as NEps(p) = {q   D 

| dist(p,q) ≤ Eps }. If | NEps(p) | ≥ MinPts, then p is a core point of a cluster. If p is a core 

point and q is p‟s neighbor, q belongs to this cluster, and each of q‟s neighbors is 

examined to see if it can be added to the cluster. Otherwise, point q is labelled as noise.  

The expansion process is repeated for every point in the neighborhood. If a cluster 

cannot be expanded further, DBSCAN chooses another arbitrary unlabelled point and 

repeats the process. This procedure is iterated until all points in the dataset have been 

placed in clusters or labelled as noise. The pseudocode of DBSCAN is showing below. 
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DBSCAN (SetOfPoints, Eps, MinPts)//SetOfPoints is UNCLASSIFIED 

ClusterId := nextId(NOISE); 

FOR i FROM 1 TO SetOfPoints.size DO 

Point := SetOfPoints.get(i); 

IF Point.ClId = UNCLASSIFIED THEN 

IF ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts) 

THEN 

ClusterId := nextId(ClusterId) 

END IF 

END IF 

END FOR 

END; // DBSCAN 

 

ExpandCluster(SetOfPoints, Point, ClId, Eps, MinPts) : Boolean; 

seeds := SetOfPoints.regionQuery(Point,Eps); 

IF seeds.size < MinPts THEN // no core point 

SetOfPoint.changeClId(Point,NOISE); 

RETURN False; 

ELSE // all points in seeds are density reachable from Point 

SetOfPoints.changeClIds(seeds,ClId); 

seeds.delete(Point); 

WHILE seeds <> Empty DO 

currentP := seeds.first(); 

result := SetOfPoints.regionQuery(currentP, Eps); 

IF result.size >= MinPts THEN 

FOR i FROM 1 TO result.size DO 

resultP := result.get(i); 

IF resultP.ClId IN {UNCLASSIFIED, NOISE} THEN 

IF resultP.ClId = UNCLASSIFIED THEN 

seeds.append(resultP); 

END IF; 

SetOfPoints.changeClId(resultP,ClId); 

END IF; //UNCLASSIFIED or NOISE 

END FOR; 

END IF; //result.size >= MinPts 

seeds.delete(currentP); 

END WHILE; //seeds <> Empty 

RETURN True; 

END IF 

END; //ExpandCluster   
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Net-DBSCAN (Stefanakis 2007) is an example of a spatial clustering method 

used in GIS to extend DBSCAN to a network environment. However, this method can 

only deal with the nodes of a dynamic linear network. Yiu and Mamoulis (2004) 

proposed a modified DBSCAN method used for clustering objects on a spatial network. 

This method well defined the distance and initial clusters under the network environment.  

Compared with traditional concentration detection methods, a density-based 

spatial clustering method can inherently discover the concentrations; dataset 

segmentation is not needed at the beginning of the process. It can also find arbitrary 

concentration shapes from the dataset. However, most density-based clustering methods 

inherited the limitation of original DBSCAN, which does not take into account any non-

spatial attributes of the data point and cannot be directly applied to accident datasets on a 

spatial network.  

 

2.5 Current spatial clustering applications 

It is hard to find applications specifically designed for geospatial clustering tasks. 

However, general spatial clustering applications have been developed and used in both 

local and online environment for a long time. Most existing spatial clustering tools are 

included in desktop-based software or packages. Recently, some online geospatial 

clustering tools have been proposed and developed. This section will generally 

summarize the local general spatial clustering applications and discuss online geospatial 

clustering tools in details. 



19 

 

2.5.1 Local clustering applications 

The related local desktop-based software or packages are widely used, such as 

SaTScan (Kulldorff 2009) or ClusterSeer (ClusterSeer 2009). These applications are 

effective for dealing with data available at local machines only, but cannot handle online 

data sources. For example, if users need to find spatial clusters of accidents records 

published by an RSS feed, the traditional software cannot handle the request directly. 

Rather, users need to download and transform the data before performing the clustering.  

Besides, these applications are not designed with the interoperability. 

Interoperability is the ability of a system, or components of a system, to provide 

information portability and inter-application cooperative process control (Bishr 1998). 

Current clustering functions are usually packaged as part of a specific and proprietary 

system. It is difficult to be utilized by other applications without knowing the system API 

(Application Programming Interface) specifications. The input and output files are 

usually proprietary and defined by the system. Users cannot choose to use common 

spatial data standards or to use them as third-party clustering service components. 

Consequently, exchanging data between different systems or reusing the service is 

difficult, if not impossible. 

In addition, these applications lack geo-visualization capability. The clustering 

results provided by these tools are mainly in text form or simple graphics. Users cannot 

visualize the clustering results on the map. 

2.5.2 Online clustering applications 

The online geospatial clustering tools are usually used for map feature 

simplification. Map scale reduction inevitably leads to conflict and congestion of map 
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symbols. To make the maps legible, appropriate operations (e.g., selection, 

simplification, aggregation, etc.) must be employed to simplify map features (Yan & 

Weibel 2008). The most common example is cartographic generalization for online map 

symbols. For example, as shown in Figure 2.3, when a large number of photos are given 

for a geographic region such as the downtown San Francisco area, users may want to find 

a set of “representatives” to improve the display.  

 

Figure 2.3 An online spatial clustering example - Tag Map (Jaffe et al., 2006) 

Client-Server architecture is very popular among online clustering tools. It is a 

distributed application architecture that partitions tasks or workloads between service 

requesters (clients) and service providers (servers). The client is responsible for 

interacting with users. A server is usually a high-performance host that offers functions 

and/or resources. When users submit a request to the client, the client requests the 

server's content or service function. The server will respond to the user‟s request. In 

terms of implementation, the underlying techniques can be divided into client-side and 

server-side methods. 

2.5.2.1 Clustering on the client side 
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Client-side clustering methods are usually attached to specific online map services 

APIs. The following discussion will use Microsoft Bing Maps and Google Maps, the 

most popular mapping platforms, as examples to introduce client-side methods. 

Microsoft Bing Maps AJAX Control API (former Virtual Earth Map Control API) 

offers a built-in method,  VEShapeLayer.SetClusteringConfiguration(type, 

options), which can set the method to determine which symbols are clustered, as well 

as how the clustering result is displayed (Microsoft 2009). The first parameter type has 

two values: None and Grid. In case of None, this method will return the original 

symbols. In case of Grid, a simple grid-based clustering algorithm will be used. In 

addition, users can override this method with the name of other clustering method 

functions in the form of VEShapeLayer.SetClusteringConfiguration 

(algorithm, options), where algorithm is the name of the clustering method 

functions developed by users. options is specifying how the cluster result is displayed. 

Google Maps API does not offer out-of-box functions. However, several Google 

Maps supporters lunched several projects to help users manage the symbols on the map, 

such as Google Maps Clustering API Project (Pearman 2009) and ACME cluster 

JavaScript library (ACME Labs 2009). Similar to the clustering function offered by the 

Bing Maps API, users can use these JavaScript APIs at the client side to group symbols 

on the map. 

The clustering techniques at the client side are relatively simple. Grid-based 

clustering algorithms are the most common method. Most of these are implemented in 

JavaScript and the clustering work is usually performed by the browser. Subsequently the 

browser and online map services APIs display the clustering result as a layer 
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superimposed on the map. This mechanism restricts the size of clustering data to be 

relatively small, usually under few thousand points. 

2.5.2.2 Clustering on server side 

Server-side clustering methods are relatively independent from online map 

services. The implementation technique can be divided into either real-time methods or 

pre-processing methods. For real-time methods, the server responds to the user‟s query 

and performs clustering on the fly. This method cannot be used for applications with 

huge data since the response time is much too long. To improve the clustering response 

time for huge datasets, pre-processing methods are applied in which pre-processing 

methods pre-cluster the dataset at different zoom levels. Usually the server first converts 

each symbol‟s position to a pair of pixel coordinates on the screen at each zooming level. 

It then calculates the pixel distance between symbols and combines the symbols closest 

to one another into one cluster symbol. Finally, these cluster symbols are saved on the 

server and displayed at their pre-determined optimal zoom levels, depending on users‟ 

queries. Generally, there are two ways to save the pre-processing result: static raster 

images and vector point files. 

ClustrMap (ClustrMap 2009), shown in Figure 2.4, illustrates the use of a static 

raster image. It is an archived clustering map based on the visitors to the website 

clustrmap.com from May 1
st
 to Jun 1

st
 2009. This clustering map has two zooming levels: 

global and continental. Different images are returned according to the user‟s request. 

Figure 2.4(a) is the clustering map at the global scale while Figure 2.4(b) is the clustering 

map at the continental scale. The static images are usually updated after a fixed time 

period, for example every 24 hours. 
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(a) 

http://www2.clustrmaps.com/counter/maps.php?url=http://clustrmaps.com&cluste

rs=yes&hist=2009-05-01_to_2009-06-01&type=small&category=plus&map=world 

(b) 

http://www2.clustrmaps.com/counter/maps.php?url=http://clustrmaps.com&cluste

rs=yes&hist=2009-05-01_to_2009-06-01&type=small&category=plus&map=North 

%20America 

 

Figure Copyright (C) ClustrMaps Ltd, 2012, www.clustrmaps.com, reproduced 

with permission. 

 

Figure 2.4 Clustering results, in the form of static raster images, for two zooming 

levels:  (a) Global, (b) Continental (ClustrMap 2009) 
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Figure 2.5 shows an example of using vector point files to display zoom-scale-

dependent point-location information (Maiom 2009). This sequence of maps shows the 

location of real estate for sale or rent in Italy. Each real estate can be considered as a 

point. To avoid overlap and to make the map more legible, the system only shows the 

clustering result of points instead of the real locations at the small zoom level. During 

pre-processing, the system saves the clustering result at different zooming levels as 

“markers” into different xml files. Each “marker” has a new coordinate to represent the 

points in this cluster. When users view the map at different zooming levels, the server 

returns the corresponding xml files. Figure 2.5 shows “markers” for the city “Firenze” at 

different zoom levels. 

 

Figure 2.5 Clustering results in the form of vector “markers” for four zooming 

levels (Maiom 2009)  
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2.5.2.3 Limitations of current online clustering tools 

Current online clustering tools utilize clustering technique to simplify map 

symbols for online map applications. These tools have some limitations:  

First, existing online clustering APIs are not designed for general users, i.e., they 

are not easy to use. Some clustering function APIs are available on the Internet. For 

example, Microsoft Bing Maps Control AJAX API offers built-in clustering functions. 

Google Maps Clustering API Project and ACME cluster JavaScript library add clustering 

functions to Google Maps. However, these are designed for developers, not for general 

users. Thus, in order to implement their own clustering assignment, general users need to 

learn specific programming languages and API usages. 

Second, in terms of clustering functions, most web-based map applications such 

as ClustrMap provide embedded clustering functions only for cartographic generalization 

and do not focus on clustering patterns. Grid-based clustering is widely used to combine 

neighbor points into one single cluster to reduce the total number of symbols being 

displayed in the current map view. Here clustering is used as a technique with which 

several points of interest can be represented by a single icon when they are close to one 

another. These tools are not concerned with patterns or with showing patterns on the map. 

 

2.6 Ontology in Traffic Accidents Research 

Ontology is an explicit representation of knowledge. It is a formal, explicit 

specification of shared conceptualizations, representing the concepts and their relations 

that are relevant for a given domain of discourse (Gruber 1993). Generally, ontology 
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contains basic modeling primitives such as classes or concepts, relations, functions, 

axioms and instances (Gómez-Pérez et al. 2004).  

The last few years have seen a growing interest (Peuquet 2002) in approaches that 

have domain ontology add a conceptual level over the data, which is used as a middle 

layer between the user and the dataset, especially with spatial data. Several ontological 

approaches are proposed for road accidents. Hwang (2003, 2004) built a high-level 

conceptual framework that includes traffic accident domain ontology. However, this 

research focused on the task ontology and did not consider the disparity of accidents. Yue 

et al. (2009) presented an ontology-based prototype framework for traffic accident 

management from a hierarchical structured point of view. However, the ontology was 

designed only for the traffic management system. It rarely considered the spatial 

knowledge associated with the accidents. 

The Web Ontology Language (OWL), as one of the most widely used ontology 

languages, is designed for use by applications that need to process the content of 

information instead of just presenting information to humans (Smith 2004). It is endorsed 

by the World Wide Web Consortium (W3C). OWL provides additional vocabulary along 

with a formal semantics and facilitates greater machine interpretability on top of 

RDF/XML-based serializations, such as XML, RDF, and RDF Schema (RDFS). 

 

2.7 Traffic Accidents Road Safety Research 

The traffic accident is usually affected by three factors: the road environment, the 

condition of vehicles and the skill, concentration and physical state of road users (Geurts 
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2003). As the absolute number of accidents cannot well reflect the road safety, the 

concept of risk indicator is proposed. 

Currently the main form of numerically risk assessment in road transport area is 

usually defined by recorded numbers of fatalities (or casualties) and some measures of 

exposure (Shen et al. 2012). European Road Safety Observatory defined the risk as a ratio 

of road safety outcomes and some measures of exposure (ERSO 2007). Different 

researchers may use different indicator (e.g. size of population, time in traffic, traffic 

density) of exposure to describe risk from different points of view. International Traffic 

Safety Data and Analysis Group (IRTAD, 2012) pointed out that the three most 

frequently used measures of exposure to risk are: population size, the number of 

registered vehicles, and the distance travelled. 
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Chapter Three: An Ontology-Based Traffic Accident Risk Mapping Framework  

 

3.1 Overview 

This chapter presents the ontology-based traffic accident risk mapping 

(ONTO_TARM) framework. As stated in Chapter 1, accidents are not random in 

geographic space, but form clusters on road networks. If we can generate maps showing 

the high-risk road segments, it will help people reduce the road accidents. Previous 

studies have proposed various spatial concentration detection methods; however, they 

only generate one single map without consideration of the discrepancy of conditions. 

Users with individual objectives may have different requirements. For example, a 

traffic analyst may be interested in an accident concentration area for the downtown area 

during workdays at rush hours, so that the most vulnerable locations with accidents can 

be located and the reasons behind these accidents can be analyze to improve road safety. 

A new driver may be interested in a map of the northwest part of the city during winter 

weekends, in order to avoid dangerous areas when practising driving in this area during 

the winter time.  

The integration of users‟ requirements into map generation process is necessary. 

The first subtask is the selection of the proper datasets based on different users‟ 

requirements. One naive option is the translation of users‟ requirements into traditional 

database queries. For example, in the former example of downtown workday rush hours, 

“downtown area” and/or “rush hours” must be defined, so users can handle the traffic 

accident data at the data level, which can sometimes be quite challenging as the user may 

have no or only limited knowledge of the study area and dataset. However, if knowledge 
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of the study area and datasets are well defined and represented, users‟ requirements can 

be handled at the knowledge level.  

After selecting the proper datasets, the second task in the generation of a 

concentration map is the application of proper traffic accident concentration detection 

methods. Existing traffic accident concentration detection methods do not consider the 

distinctions of each accident, only the number of accidents. Accidents with fatalities and 

injuries put more strain on the network than property damage only (PDO) accidents. An 

intersection with frequent fatal accidents may be more dangerous than an intersection 

with PDO accidents, in cases where both intersections have the same number of 

accidents.   

To address users‟ requirements at the knowledge level, the traffic accident domain 

ontology (TADO) is constructed, and an ontology-based reasoning process is involved. 

TADO is built at a high generic level with a conceptual and taxonomical representation 

of accident data. It provides domain knowledge, including non-spatial and spatial 

concepts, as well as definitions relating to the traffic accidents. This enables users to pose 

semantic queries with a semantic representation of traffic accident concepts. Therefore, 

TADO can provide a knowledge source that supplements domain experts and integrates 

users‟ goals into the selection procedure.  

To consider the severity level of each accident, the density-based clustering 

algorithm for traffic accident risk (DBCTAR) with a risk model is proposed. The 

DBCTAR, which is extended from DBSCAN, inherits the advantages of discovering 

arbitrary shapes and, in particular, identifying the regions in the data space where the 

objects are dense. In addition, the DBCTAR is designed under a network environment 



30 

 

with the ability to consider the severity level through a newly added parameter, “Risk 

Index”.  

 

3.2 ONTO_TARM Framework 

This thesis structures and organizes the core components of domain ontology and 

the newly proposed clustering algorithm to establish the ontology-based traffic accident 

risk mapping (ONTO_TARM) framework. This framework illustrates the proposed work, 

broadens the concept of generic risk mapping solution in such a way that readers can 

have a better understanding of the whole mapping procedure, and better supports future 

implementation and development work. Figure 3.1 shows the proposed ONTO_TARM 

framework.    

 

Figure 3.1 Entire Ontology-based traffic accident risk mapping (ONTO_TARM) 

framework  
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The ONTO_TARM framework includes an interactive input module, an accident 

domain ontology, an ontology reasoner, datasets, a clustering algorithm with a risk model 

and a map publishing module.  

With this framework, the users‟ goals provide the input, which can be represented 

with some predefined words. For example, users can input the time range or select 

predefined time sections, such as morning or rush hours. The traffic accident domain 

ontology represents the knowledge of accidents. Spatial concepts are well defined; and, 

each accident record is described by several characteristics, such as crash time, location 

and environmental factors. The ontology reasoner is used to reason the knowledge 

represented in the ontology. It contains the classification and decomposition rules. The 

users‟ requirements are translated into a set of subtasks by performing reasoning on the 

ontology. The traffic accident datasets contain all the accident records. In this research, it 

is assumed the datasets include all the traffic accident data that meet different users‟ 

requirements. Appropriate datasets can be chosen by a selection procedure guided by the 

ontology with respect to the user‟s goals. The clustering algorithm is used to find the 

traffic concentration areas based on users‟ goals. After identifying the proper datasets, the 

proposed density-based spatial clustering method with a user selected traffic accident risk 

model, offered by the web-based geospatial clustering service, are applied to the dataset 

to identify the traffic accident risk area. The publishing module is the output part of this 

framework for the final map generation and publication. The different traffic accident 

risk maps that meet users‟ requirements can be finally generated and published.   

The whole framework works as follows: The interface handles users‟ goals as 

inputs, sending them to the reasoner. The reasoner parses the users‟ goals into tasks based 
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on the domain ontology, conducts queries for each task and returns with the proper 

dataset. Finally, the clustering algorithm is run on the proper dataset, and a risk map is 

generated and published. In the following subsections, each component is introduced and 

discussed. This chapter is presented from a design point of view. Detailed 

implementations of the framework are discussed in Chapter 4. 

 

3.3 Traffic Accident Domain Ontology 

Traffic accident domain ontology (TADO) provides formal descriptions of the 

classes of concepts and the relationships among those concepts that describe road traffic 

accidents. With TADO, users can retrieve the proper datasets without knowing the details 

of the area. The structure of TADO is based on Wang et al.(2010).  

Definition 1 (Domain ontology structure) An ontology structure of a domain is a 

7-tuple O:= {D, C, R, A, H
C
, prop, att}, where D is the domain context identifier, C is a 

set called concept, R is the relation identifiers (C and R are disjoint and provide necessary 

conditions for membership), and A is a set of attributes to describe C and R. H
C
, which is 

a concept hierarchy classification, is a set of hierarchical trees that define the concept 

taxonomy in the domain. The prop function relates concepts non-taxonomically: R  C 

× C. Each attribute in A can be treated as a specific kind of relation, where the function 

att relates literal values to concepts: A  C. Elements C and R can be regarded as the 

high-level encapsulation of the analysis and design model for the ontology.  

Definition 2 (Classification)  H
C
 is a set directed, transitive relations: H

C
 = { h

C
 

  C × C }, where h
C
(C1, C2) means that C1 is a sub-concept of C2 in the relation h

C
. 

Usually, H
C
 includes a set of classification instances. Depending on the application, the 
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classification constraints may be different. Even the same concept can be categorized into 

several categories. 

Each component of the top-level ontology is discussed in detail.  

Domain Context Identifier 

In TADO, the domain context identifier D is TrafficAccidentRecordDomain. 

Concepts 

Accident records include spatial and non-spatial information. For example, each 

accident record has the attributes of location and accident time. Therefore, the concept set 

C of TADO includes three main classes: GeospatialThing, AccidentRecord and 

AccidentCondition to represent this information. 

For the spatial information, the ontology conceptual tree is extended from the Cyc 

knowledge base (Cyc 2009) by altering the GeographicalThing to GeospatialThing with 

customized spatial classes. The Cyc knowledge base was selected because it is the most 

commonly used ontology and it contains a great quantity of common sense knowledge 

encoded in formal logic. GeospatialThing is defined as an abstract class to provide the 

basic classes of geospatially related concepts or entities that can be used to describe the 

locations of accidents. It includes subclasses GeometricThing, FixedStructure and 

GeographicalRegion. FixedStructure presents the facilities related to the accidents, such 

as the road. GeographicalRegion describes the geographical area with a specific 

boundary. Any geographical region used in TADO is an instance of GeographicalRegion. 

Various geographical regions, such as Province, City, County, Community and 

CitySection, are defined. Province, City and County are defined as regions with political 

boundaries. Community is derived from the census subdivisions and can be classified into 



34 

 

city sections. CitySection is the region in the city that has formed over a long historical 

period. For example, Calgary is an instance of the class City. Within the boundaries of 

Calgary, there are around 100 communities, with each community belonging to at least 

one of the five Calgary CitySections, which are the NW, SW, SE, NE and downtown 

areas. 

The non-spatial information describes the non-spatial properties of the accidents. 

It includes two main subclasses, AccidentRecord and AccidentCondition. AccidentRecord 

represents the class of the available accident record data. Any record used in TADO is an 

instance of AccidentRecord. Non-spatial properties of this class are defined in 

AccidentCondition, such as TemporalConditions and EnvironmentalConditions. The 

TemporalConditions class includes different abstract classes based on different time 

scales, from hourly to yearly. The temporal concepts, such as rush hours and slow hours, 

are also defined. The EnvironmentalConditions define various accident related 

environmental factors. Examples of these classes are WeatherConditions and 

RoadConditions. 

Relations 

Relations consist of the relationships among GeospatialThing, AccidentRecord 

and AccidentCondition. Geospatial Relation and AccidentCondition Relation are the two 

major types of relations. Geospatial Relation includes the spatial relationships among 

GeospatialThing. There are three kinds of geospatial relations: direction, distance and 

topological relations. A direction relation describes the orientation in space of some 

objects, such as north, south, up, down, behind and front. A distance relation specifies the 

distance from an object to a reference object. Some examples of distance relations are far 



35 

 

and close-to (near). A topological relation describes the location of an object relative to a 

reference object (Egenhofer 1991). Topological relations include disjoint, 

contains/insideof, overlap, cover/covered and meet. AccidentCondition Relation defines 

relations between AccidentRecord and AccidentCondition. The relationships also include 

temporal and non-temporal relationships. Examples of temporal relationships are at time 

point of, around time, in the range of, early than, later than. An example of a non-

temporal relationship is with the condition of.  

Attributes 

Attributes define the attributes and properties of the above classes and their 

subclasses. One example of spatial attributes is location. Some examples of non-spatial 

attribute include hasName, hasValue, hasTime, hasDate. 

 

Figure 3.2 Top-level conceptual three in TADO 

Classification 

Classification includes the hierarchical classification used for TADO. Figure 3.2 

shows the top-level ontology defined in TADO and the hierarchical classification of 

GeospatialThing and AccidentCondition. As shown in Figure 3.3, GeospatialThing is the 

top class of all spatial things in TADO. In the three subclasses, the GeometricThing class 

includes abstract geometric shapes. FixedStructure presents the facilities related to the 
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accidents and includes classes such as Building, Station, Roadway. The Roadway class 

includes subclasses Expressway, Highways, Majorroad, and Localroad. Under the class 

GeographicalRegion, we have EcologicalRegion, GeoculturealRegion, 

GeopoliticalRegion. Subclasses Country, Province, City, County and Community belong 

to the GeopoliticalRegion. 

 

 

Figure 3.3 Classification of TADO 
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AccidentCondition can be classified into TemporalConditions and 

EnvironmentalConditions. The TemporalConditions include Instant, Interval and 

DateTimeDescription class. The EnvironmentalConditions include the 

WeatherCondition, the road RoadSurfaceCondition, the RoadCondition, LightCondition. 

Each has detailed subclasses. For example, the WeatherCondition includes 

SevereWeather and FairWeather. The high_wind, fog_smog_smoke_dust, hail_sleet, 

raining and snow are all in the severe weather condition class. 

Function prop 

The function prop relates concepts non-taxonomically among the concepts. It can 

be an instance of geospatial relation or non-geospatial relation, such as 

underconditionof() and insideof(). Here, using insideof as an example. In Figure 3.3, City 

and Community are two classes (concepts) in the ontology, and class City is not a super-

class of the class Community; therefore, insideof(City, Community) represents whether a 

community is inside a city. Thus, insideof defines one type of relationship between 

instances of the two classes.  

Function att 

The function att is used to describe the properties or attributes of a class. For 

example, hasName is used to define the names of instances of each class. 

Reasoner 

In the framework, the ontology reasoner is used to reason the knowledge 

represented in the ontology. The input of the reasoner is the user's goals, and the output is 

a set of proper accident records selected from the raw dataset. After generating a general 

task from a user's goals, the spatial task identifies the target geographical area. The non-
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spatial task identifies the proper temporal and environmental factors. For example, if a 

user's goal is the generation of a risk map for accidents that happened in rush hours on 

workdays in downtown Calgary, the reasoner first finds "downtown Calgary". A spatial 

query task is generated as shown in Figure 3.4. 

The non-spatial task is materialized by the task "accidents that happened in rush 

hours on workdays with severe weather". This task includes two main components: a 

temporal condition task and an environmental condition task, as shown in Figure 3.5. The 

non-spatial attributes are both complex tasks that need further decomposition. The 

temporal condition task is composed of two subtasks: finding "rush hours" and finding 

"working days". The weather condition task is finding "severe weather" and will return 

conditions including high_wind, fog_smog_smoke_dust, hail_sleet, raining, and snow.  

sub-task: findDowntownAreaTask 

defgoal find Calgary Downtown Area 

Input:  

(object (is-a City) (object?ci) (hasName "Calgary")) 

(object (is-a CityfSection) (object?cs) 

  (hasName "Downtown Area") (insideOf?ci)) 

(object (is-a community) (object?co) (insideOf?ci) 

   (belong-section?cs)) 

Output:  

     (object (is-a $?community) (object? co)) 

 

Figure 3.4 Pseudocode of spatial query task findDowntownAreaTask 
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sub-task: findAccidentConditionTask 

defgoal find Accident Conditions 

Input:  

(object EnvironmentalCondition?ec 

 (RoadSurface-condition "dry"), 

(RoadCondition"straight" || "curve"), (WeatherCondition 

findSevereWeatherTask()) (LightCondition 

"artificial"||"nature")) 

(object TemporalCondition?tc 

 (DateTimeDescription? findWorkingdaysTask()) 

 (Interval? findRushHoursTask())) 

(object (is-a AccidentCondition) (object?ac) (include?ec & 

tc)) 

Output:  

(object (is-a $?AccidentCondition) (object?ac)) 

 

sub-task: findSevereWeatherTask  

defgoal find severe weather conditions    

Input:  

(object (is-a WeatherCondition) (object?we) include? 

"high_wind"||"fog_smog_smoke_dust"|| 

"hail_sleet"||"raining"||"snow") 

Output: (object (is-a WeatherCondition) (object?we)) 

 

sub-task: findWorkingdaysTask  

defgoal find working days    

Input: (object (is-a calendarDay) (object?cd) is-a?weekday 

is-not-a?holiday ) 

Output: (object (is-a calendarDay) (object?cd)) 

 

sub-task: findRushHoursTask  

defgoal find rush hours    

Input: (object (is-a timerange) (object?tr) 

equal?TimeofRushHour ) 

Output: (object (is-a timerange) (object?tr)) 

 

Figure 3.5 Pseudocode of non-spatial query task findAccidentConditionTask 
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3.4 Density-based Clustering Algorithm for Traffic Accident Risk (DBCTAR)  

The traffic accident risk in this thesis is derived from the accident concentration 

area. The accumulated accident number is the most common way to reflect the risk level. 

However, as fatality and injury accidents put more strain on the road network and 

increase the economic burden on society, these accidents need to be considered 

differently from PDO accidents, in order to account for their larger effects (Rifaat et al. 

2010). Therefore, the risk area should be defined by both the frequency and degree of the 

severity.  

Since the risk areas are arbitrary shapes on the road network, the proposed 

clustering method is a density-based clustering method for traffic accident risk 

(DBCTAR). This clustering method is extended from DBSCAN, which is described in 

Section 2.4 of Chapter 2.  

To consider the severity level of each accident, it is proposed to assign different 

weights to accidents with different severity levels. Within a given accident dataset D, a 

variable RiskIndex is defined as follows: 

  ESCount* WRiskIndex
n

i

ii /
1




  
(

1) 

where Si is the ith severity level, Count() is a function to get the total number of 

accidents at that level, and Wi is the weight assigned to the ith severity level. E is the 

exposure coefficient, which should depend on the measure of traffic density. The 

Riskindex not only considers the number of accidents, but also takes into account the 

severity level. A new parameter MinRisk, which is the threshold of RiskIndex, is also 

defined.  
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Gien a dataset D, a symmetric distance function network_dist(), parameters Eps 

and Minpts, and a threshold MinRisk, the following definitions are used to define 

DBCTAR.   

Definition 1 For p є D, The neighbourhood of a point p, denoted by NEps(p), is defined by 

NEps(p) = {q є D | network_dist(p,q) ≤ Eps }. 

Definition 2 A point p is densidty-reachable from a point q with respect to Eps, MinPts 

and MinRisk if | NEps(p) | ≥ MinPts AND RiskIndex(p) > MinRisk. 

Definition 3 A point p is density-reachable from a point q with respect to Eps and  

MinPts if there is a chain of points p1,…,pn, p1=q, pn=p such that pi+1 is directly density-

reachable from pi. 

Definition 4 Let D be a set of accident points. A concentration-based cluster C is a non-

empty subset of D satisfying the following condition:  

1) ∀p, q: if p є C and q is density-reachable from p with respect to Eps, MinPts 

and MinRisk, then q є C; 

2) ∀p, q є C: p is density-connected to q with respect to Eps, MinPts and 

MinRisk. 

With DBCTAR, when the cluster extends an existing cluster from a 

neighborhood, the neighborhood around a point of a given radius (Eps) must contain at 

least a minimum number of points (MinPts) and has a RiskIndex larger than MinRisk. 

This algorithm is used in a network environment; therefore, it uses road network distance 

network_dist  rather than the Euclidian distance. The core point is an accident that has at 

least MinPts accidents within the search distance Eps; and, the RiskIndex of the accidents 
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within the search distance is larger than MinRisk. This core point criteria can be stated as 

follows: For p є D, the neighborhood of p is defined as NEps(p) = {q є D | 

network_dist(p,q) ≤ Eps }. If | NEps(p) | ≥ MinPts AND RiskIndex(p) > MinRisk, then p is 

a core point of a cluster.  

If p is a core point and q is p's neighbor, then q belongs to this cluster; and, each 

of q's neighbors is examined. Otherwise, if p is not a core point, point q is labeled as 

noise. The algorithm ends when every point is classified as in a cluster or labeled as 

noise. 

Ideally, no two accidents have the same severity level. However, for the practical 

cases, assigning unique weights to each accident is not feasible. In road safety research, 

accident records are usually classified into 3 classes: fatality, injury and PDO. Accident 

with fatalities and/or injuries can be converted into equivalent property damage only 

(EPDO) accidents (Rifaat et al. 2010).  

EPDO = W1* Count(Fatal) + W2* Count(Injury) + W3* Count(PDO) 

(

2) 

EPDO is calculated by assigning different weighting schemes, as shown in Table 

3.1. One of the most commonly used conversion weight settings is recommended by 

PIARC (Permanent International Association of Road Congresses) with W1=9.5; W2=3.5; 

and W3=1 (Rifaat et al. 2010). 

In the previous definition of Riskindex, the exposure coefficient E is not easy to 

get. In this research, we assume that all the accidents in the given dataset have the same 

traffic density. Thus, for the practical cases, E is considered as a constant. So, EPDO can 
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be considered as a simplified format of Riskindex. When implement the DBCTAR 

algorithm in the prototype, the Riskindex is simplified as follows:  

RiskIndex = W1*Count(Fatal) + W2*Count(Injury) + W3* Count(PDO)  

(

3) 

where W1, W2 and W3 depend on the risk index model that the user selects from 

Table 3.1. These models use different weighting schemes that reflect different 

perspectives of the significance of each kind of accident. For example, Transport Canada 

uses the weight of 13.88 for accidents with injury, which suggests the injury accident is 

more important than the weight of 3.5 recommended by the PIARC. 

Table 3.1 Different weight models for accident severity level  

Model Ratio  Source 

1 1:1:1  Simple Total Crash Count 

2 9.5:3.5:1  PIARC 

3 76.8:8.4:1  North Carolina DOT 

4 136.13:4.94:1  Ohio DOT 

5 779.9:13.88:1  Transport Canada 

6 1300:90:1  Federal Highway Administration 

 (DOT: Department of Transportation) (Rifaat et al. 2010) 

 

Following is the pseudo code of DBCTAR algorithm:  

DBCTAR_V1 (SetOfPoints, Eps, MinPts, MinRi)//SetOfPoints is 

UNCLASSIFIED 

 ClusterId := nextId(NOISE); 

 FOR i FROM 1 TO SetOfPoints.size DO 

  Point := SetOfPoints.get(i); 

  IF Point.ClId = UNCLASSIFIED THEN 

   IF ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts, 

MinRi) THEN 

 ClusterId := nextId(ClusterId) 
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   END IF 

  END IF 

 END FOR 

END; // DBCTAR 

ExpandCluster(SetOfPoints, Point, ClId, Eps, MinPts, MinRi) : 

Boolean; 

 seeds := SetOfPoints.regionQuery(Point,Eps); 

//returns the Eps-neighborhood of Point in SetOfPoints 

 IF seeds.size < MinPts OR getRiskIndex(seeds) < MinRi THEN // no 

core point 

  SetOfPoint.changeClId(Point,NOISE); 

  RETURN False; 

 ELSE // all points in seeds are density reachable from Point 

  SetOfPoints.changeClIds(seeds,ClId); 

  seeds.delete(Point); 

  WHILE seeds <> Empty DO 

   currentP := seeds.first(); 

   result := SetOfPoints.regionQuery(currentP, Eps); 

   IF result.size >= MinPts AND getRiskIndex(result) >= MinRi THEN 

  FOR i FROM 1 TO result.size DO 

  resultP := result.get(i); 

     //SetOfPoints.get(i) returns the i-th element of  SetOfPoints. 

  IF resultP.ClId IN {UNCLASSIFIED, NOISE} THEN 

   IF resultP.ClId = UNCLASSIFIED THEN 

    seeds.append(resultP); 

   END IF; 

 SetOfPoints.changeClId(resultP,ClId); 

   END IF; //UNCLASSIFIED or NOISE 

   END FOR; 

   END IF; //result.size >= MinPts 

   seeds.delete(currentP); 

  END WHILE; //seeds <> Empty 

  RETURN True; 

 END IF; 

END; //ExpandCluster  

 

getRiskIndex (SetofPoints) : Double 

 VAR  

  c1,c2,c3: INTEGER; 

  ri: DOUBLE; 

  c1=0;c2=0;c3=0; 

  FOR i FROM 1 TO SetofPoints.size DO 

 CASE SetofPoints.SeverityLeveal of 

  "fatal" : c1++ 

  "injury" : c2++; 

  "property only" : c3++; 

 END; 

  END; 

  ri := getRiskIndexModel(c1,c2,c3); 

 //getRiskIndexModel depends on the risk model chosing. 

 RETURN ri; 

END;// getRiskIndex  
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To determine the parameter MinRisk, a method similar to the k-dist function 

(Ester 1996) is adopted. First, the most significant k-dist graph is built to identify the 

most suitable k value. Based on our experiment, with the accident dataset, this value 

could be larger than the normal value. Then calculate the k-nearest neighbor's Riskindex 

and sort these values by distance. The threshold MinRisk point is located near the first 

"valley" of the sorted k-nearest Riskindex graph. The total risk of eps distance graph and 

the real results are also used as the reference. 

  

(a) k-dist (k=30) graph (b) k-nearest Riskindex graph (k=30) 

Figure 3.6 Parameter settings graph for DBCTAR 

Figure 3.6 shows the parameter setting graph based on a 10154 accidents dataset. 

Figure (a) is the k-dist graph when k=30. From this figure, when the MinPts set to 30, the 

Eps is around 100. Figure (b) is the k-nearest Riskindex graph when k=30. The MinRisk 

value is near the first "sharp drop" of the curve, around 90. 
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Chapter Four: Implementation 

4.1 Overview 

To demonstrate the ONTO_TARM framework, a system has been developed to 

generate traffic risk maps based on users‟ requirements and publish maps on the web. 

Figure 4.1 shows the structure of the system, which consists of three components, pre-

processing, server and client. 

 

Figure 4.1 Structure of the ONTO_TARM system 

The pre-processing component helps the user clean the raw data. It also includes a 

geocoding tool, which is used to add spatial coordinates for the original traffic accident 

text records.  

The system uses client and server architecture. The client side offers a graphic 

user interface to help users input different requirements and demands and view traffic 

accident risk maps in two- or three-dimensional views. Two versions of the interface 

have been developed: a desktop version and a web-based publishing platform.  
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The server side of the system handles the dataset selection and generates maps 

based on users‟ requirements. It includes five main parts: the database, domain ontology, 

ontology interpreter, clustering engine and map generator. The database stores and 

manages the processed traffic accident data with coordinate information. The accident 

domain ontology is represented by Protégé-OWL (an ontology editor and knowledge-

base framework with OWL). To enable ontology reasoning for the dataset, the ontology 

interpreter utilizes the Protégé-OWL reasoner to communicate with database.  

The clustering engine has been designed as a new web-based clustering platform 

to improve the limitations of current online clustering tools, as discussed in Chapter 2. In 

the current version, it implements a simplified version of the density-based clustering 

algorithm for traffic accident risk (DBCTAR) and is used to find the traffic concentration 

areas based on users‟ goals with consideration of both the density and severity levels of 

accidents. The map generator transfers the clustering result from point sets into risk 

maps.  

Details of each system component and implementations are discussed in the 

following sections. 

 

4.2 Geocoding Tool 

Geocoding is a process that finds associated geographic coordinates for the 

accident locations from the accident addresses. In general, the locations of the traffic 

accident records are described by the intersection of the streets or a street address, instead 

of by coordinates. For example, “1st St. & 5th Ave SE” represents the location of an 

accident in the intersection of 1st Street and 5th Avenue in the southeast of the city; and, 
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“333 2
nd

 Ave SW” describes an accident location as a street address.  Since the clustering 

engine cannot directly handle street addresses in the algorithm, geocoding is needed to 

determine the latitude and longitude coordinates of the accident records.  

In the ONTO_TARM system, the geocoding tool, called geocoding service, is 

offered by Google Maps JavaScript API V3 Services. A comparison of the geocoding 

services among Bing Maps Geocode Service, Bing Spatial Data Services - Geocode 

Dataflow API and ESRI Geocoding Engine led to the conclusion that Google Maps V3 

Service has better accuracy than other services for our sample dataset. This tool uses 

JavaScript to run the batch process for the comma-separated values (CSV) text files. Each 

accident record has a unique identification and formatted text location description, which 

are stored in a line of the CSV file. The tool adds the latitude and longitude coordinates 

for each accident record of CSV files.  

In this thesis, the maximum accuracy of the geocoding result is at the street level 

as the location description is based on the street level address. This research assumes the 

geocoding result at the street level represents the real accident distribution. Sometimes 

the locations of the accidents may not reflect the true accident location due to inaccuracy 

or input errors of the street address records. In these cases, the accuracy of geocoding is 

at the city level, and the locations of accidents may be geocoded as the centre of the city. 

These records are excluded from the research dataset.  
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4.3 Server-side Components and Implementation 

4.3.1 Database, Ontology and Ontology Interpreter 

The accident database, domain ontology and ontology interpreter work jointly to 

host the geocoded accident dataset and enable the ontology reasoning for the dataset. The 

database stores and manages the accident data and is the data source for the ontology 

interpreter, which works as middleware between the clustering engine and the database to 

perform the ontology query. The main component of the ontology interpreter is derived 

from the ontology reasoner, which uses the accident domain ontology as the knowledge 

source for the reasoning. .  

For the database, the ONTO_TARM system uses ESRI‟s File Geodatabase (ESRI 

2009) to host the accident dataset. For the reasoning part, the accident domain ontology is 

represented with Protégé-OWL 4.0 software (Protégé 2009) and saved in one OWL file. 

OWL is one of the most widely used ontology languages. It is characterized by formal 

semantics and RDF (Resource Description Framework) / XML (Extendible Markup 

Language) based serializations for the semantic web. The traffic accident domain 

ontology (TADO) with Protégé-OWL is shown in Figure 4.2.  

The Ontology Interpreter is implemented by a customized Jena reasoner with the 

Jena API (Jena 2010). Jena API is a Java API for RDF. In the current version, Jena works 

on the level of RDFS (Resource Description Framework Schemas). The ontology query 

works on top of the abstract class to returns an XML file, which contains the query 

parameters to perform a manually selection on the file goedatabase via ArcCatalog (ESRI 

2009) and can be saved into simple FeatureClasses. The clustering engine actually works 

on the saved simple FeatureClasses via a client application.  
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Figure 4.2 TADO in Protégé-OWL 

4.3.2 Clustering Engine 

The clustering engine is the core component of the ONTO_TARM system. It is 

designed as an independent and generic Web-based clustering service called 

GeoClustering following the concept of Web Service. Web Service represents a 

convergence of the service oriented architecture (SOA) and the Web (W3C 2004).  The 

web server is responsible for communications with client applications and response for 

the clustering tasks from the client. The goal of GeoClustering is not only to build a 

component of the ONTO_TARM system, but also a generic clustering tool to improve 

the limitations of current geospatial clustering tools. 
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The current beta version is available at http://www.geoclustering.net. A user 

guide is provided at http://www.geoclustering.net/help.php. Current version only 

considers the clustering objects as points. It can perform density-based clustering and 

visualize the results. The proposed spatial clustering algorithm DBCTAR and classical 

spatial clustering algorithm DBSCAN have been implemented. The distance function 

between two objects is defined as the shortest geometric distance on the spherical Earth 

surface in current version. The architecture of GeoClustering is shown in Figure 4.3. It 

adopts the client and server architecture. Details of the data format, server side and client 

side are illustrated as below. 

To achieve better interoperability, GeoClustering uses XML as the data transfer 

format. The server can fetch the XML files directly from other websites and return the 

clustering results in the same format. Further discussion concerning the data format of 

user input and system output is discussed in 4.3.2.1. The clustering engine offers a 

friendly web page interface for general users. Users could submit clustering requests via 

browser or other applications. The APIs are in the form of an endpoint URL address. It 

will be the lowest level of the interface for using the clustering service and it is developed 

around the „reuse‟ design paradigm. With this API, other web applications or services can 

call the geospatial clustering service directly. The client component will be discussed in 

detail in Section 4.3.2.2. The server will perform the clustering procedure after receiving 

the GeoClustering API request and parameters and then give a returned result. This will 

be discussed in 4.3.2.3. 
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Figure 4.3 GeoClustering architecture 

 

4.3.2.1 Data formats 

In order to enable interoperability between heterogeneous data sources on the 

Internet, international organizations such as the World Wide Web Consortium (W3C), 

the International Organization for Standardization (ISO) and Open Geospatial 

Consortium (OGC), have been making significant efforts to define data exchange 

standards and protocols. With the proliferation and implementation of various ISO and 

OGC standards, spatial data in the form of standard XML (extensible markup language) 

format has become more and more popular.  

To meet the requirement for interoperability, the standard XML file format is 

used in the data transaction in the GeoClustering platform. The system accepts two kinds 

of standard XML files from users: KML (Keyhole Markup Language) and GeoRSS. The 

clustering results are returned in the form of KML.  
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KML is a tag-based structure with nested elements and attributes and is based on 

the XML standard. It is used for expressing geographic annotation and visualization on 

existing or future Web-based, two-dimensional maps and three-dimensional Earth 

browsers (OGC 2008). KML v2.2 was adopted as an official OGC implementation 

standard on April 14, 2008.  

Below is part of an example of KML input accident data file for GeoClustering. 

Each accident is represented as a point which under the <Placemark> node. This sample 

file contains an accident record with the name of „Accident0001‟. The time property of 

the accident is under the <TimeStamp> node. The geometry property of the accident is 

described in the <coordinates> element under the <Point> node. The geographic 

location is defined by longitude, latitude, and latitude. Usually each point must contain 

longitude and latitude value, while latitude is optional. 

<?xml version="1.0" encoding="UTF-8"?> 

<kml xmlns="http://earth.google.com/kml/2.2"> 

  <Document> 

    <name>Accident record clustering input example</name> 

<Placemark> 

<name> Accident0001</name> 

<description>Attribute1:3</description> 

<TimeStamp> 

<when>2008-09-22T09:00:01-07:00</when> 

</TimeStamp> 

<Point> 

<coordinates>-114.132446,51.079529,0</coordinates> 

</Point> 

   </Placemark> 

… 

</Document> 
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</kml> 

GeoRSS means geographically encoded objects for RSS (really simple 

syndication) feeds. It is based on RSS 2.0 and adds location information to data items 

(OGC 2006). An example of a GeoRSS input file, which includes the same point in the 

example KML file, is shown below. The name of that point is contained by <title>. 

Time property is described in <description>. The geographic location is defined by 

<geo:lat> and <geo:long> element. 

<?xml version="1.0"?> 

<rss version="2.0" 

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" 

xmlns:dc="http://purl.org/dc/elements/1.1"> 

<channel> 

 <item> 

  <title>Accident0001</title> 

  <description>2008-09-22T09:00:01-07:00,3</description> 

  <geo:lat>51.079529</geo:lat> 

  <geo:long>-114.132446</geo:long> 

 </item> 

</channel> 

</rss> 

 

4.3.2.2 GeoClustering client 

In the GeoClustering, GeoClustering API is offered in the form of an endpoint 

URL address.  Users can access the clustering service with the assigned clustering 

parameter values through the URL. HTTP GET or POST actions are the only supported 

request formats. The API endpoint URL is as follows:  

http://localhost/cluster.php?<Data URL>&[File Type]&<Algorithm 

Name>&<Clustering Parameters> 
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To request the clustering service, invoke as follows: 

http://localhost/cluster.php?url=http://earthquake.usgs.gov/eqcenter

/catalogs/shakerss.xml&filetype=georss&algorithm=DBCTAR&param1=9&par

am2=0.3&param3=12 

Data URL :: = “url =” <the url of remote point data file> 

File Type :: = “filetype =” <kml | georss> 

Algorithm Name :: = “algorithm =” <algorithm name: DBCTAR | DBSCAN | 

| …>  

Clustering Parameters :: = {“param”<number>“=” <the value of 

parameter for the chosen algorithm>}  

 

The algorithm name could be any implemented algorithms in GeoClustering. The 

following “param” is the corresponding parameters for the algorithm. In the example 

above, when algorithm=DBCTAR, then param1 is the minimum number of points 

(MinPts), param2 is the radius (Eps) in km, and param3 is the minimum risk index 

(MinRisk).   

To respond to the API requests, an XML response is returned. When unusual 

situations occur during the clustering procedure, two types of error message are sent 

back.  

<b>Parameters missing</b> or 

<b>Data cannot be found at URL or data syntax error</b> 

When the correct clustering result is achieved through the clustering procedure, 

the response is presented in KML format. 
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<?xml version="1.0" encoding="UTF-8"?> 

<kml xmlns="http://earth.google.com/kml/2.2"> 

  <Document> 

    <name>GeoClustering Result</name> 

 <Snippet> </Snippet> 

 <description> 

  Total Clusters:4 <br />   <!-- Cluster numbers --> 

 Time:<b>0.191354036331</b> Seconds<br /> <!-- Run time --> 

 </description> 

<!-- Style begin --> 

… 

<StyleMap id="clustericon1"> 

… 

</StyleMap> 

… 

<!-- Style end --> 

<!-- Accidents info begin --> 

<Folder> 

 <Placemark> 

<name>Cluster 1</name> 

<TimeStamp><when></when></TimeStamp> 

<styleUrl>#clustericon1</styleUrl> 

<description>Accident0001 2008-09-22T09:00:01-07:00 

</description> 

<point> 

<coordinates>-114.132446,51.079529,0</coordinates> 

</Point> 

</Placemark> 

<Placemark> 

<name>Cluster 1</name> 

…  

</Placemark> 

<Placemark> 

<name>Cluster 2</name> 

… 
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</Folder>   

<!-- Accidents info end --> 

</Document> 

</kml> 

 

In the returned KML file, general clustering result information is included in 

element <description> under <Document>. Number of clusters established and 

running time are recorded here. The following part is the style information, which defines 

the icon style for the point in each cluster. When one point needs to use this style, it cites 

the id of <StyleMap>. All the points in the same cluster have the same cluster id and the 

same value under <name> and <styleUrl> tags. The original value under <name> and 

<TimeStamp> of each accident will be added into that point‟s <description> element. 

In the returned example file, the original point with name “Accident0001” becomes the 

point with the name “Cluster 1” and in the <description> part of this point the 

original information “Accident0001 2008-09-22T09:00:01-07:00” is added. 

When there is no cluster found in the dataset following the clustering procedure, 

an alert response message is returned.  

<b>Internal error or no Cluster found in the dataset</b> 

Besides the API, GeoClustering also offers a web page as GUI. The whole web 

page is implemented by HTML, CSS and JavaScript. To have a better user experience, 

AJAX (Asynchronous JavaScript and XML) have been used. The third party Web Map 

APIs are included in the web page. Microsoft Bing Maps and Google Maps are the two 

major players in the area of Web Maps. Comparing Google Maps API with Bing Maps 
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API, we choose Google Maps as it has a better 3D extension with the Google Earth Plug-

in. Figure 4.4 shows the web page interface of GeoClustering. 

  
Figure 4.4 GeoClustering web interface 

 

4.3.2.3 GeoClustering server  

The web server takes the role of communicating with the client and responding to 

the clustering task requested from the client. Among various web servers and 

corresponding server script languages available, Apache and PHP is selected as the 

implementation option because they are open source software, easy to deploy, platform 

independent, reliable and secure.  

Figure 4.5 shows the work flow at the server side. When the server receives a 

request, it first verifies whether the request is complete or not. A complete request 

contains at least three essential parts: Data URL, Algorithm Name and Clustering 
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Parameters. File Type is optional. Failure to include any of the three essential parts 

leads to failure of the verification. 

 

 
Figure 4.5 Server-side work flow 

 

After the verification, the server calls for the function that detects whether there is 

a target xml results file in the “Cache”. Since clustering sometimes is time-consuming, a 

buffer system is implemented to save the clustering result for a short period of time. If the 

same clustering requests are sent the second time, the result can be quickly returned to 
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client. The buffer can speed up the GeoClustering performance, especially when users 

want to compare the result with previous requests. 

If there is no clustering result in the “Cache”, the server will fetch the remote 

XML file (the user data) through the Data URL submitted. If the remote file is 

unreachable, an error message will be returned. If the server receives the remote data 

successfully, then the server will verify the completion of the XML files. Any incomplete 

or incorrect syntax will cause abnormal termination and an error message will be 

returned. Then, the server extracts all of the points‟ information from the XML files 

fetched in the last step and pass the points to the clustering algorithm module in the form 

of an array. Next, the algorithm module uses the algorithm specified by the request, 

together with clustering parameters, to conduct the clustering. A new array with the 

cluster information is then returned to the next module. Finally, in the next module, the 

server generates KML files from the returned array. 

 

4.3.3 Map Generator 

 

Figure 4.6 Workflow of the map generator 
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The map generator transforms the clusters into traffic accident concentration areas 

with different colors for better visualization. Figure 4.6 shows the process of changing 

the clusters into maps. 

The clustering result consists of a few sets of points. Each set represents one 

cluster. The next step is the transfer of these point sets into an area. One of the traditional 

methods is the generation of the convex hull of the cluster. However, the spatial 

information of most accidents is based on geocoding results. Therefore, multiple points 

may overlap. In this case, the convex hull becomes a point. In this system, the map 

generator uses buffering and intersection operations to solve the problem. A dissolved 

buffer is generated for all the points in one cluster. The buffer result is then intersected 

and clipped by the road network polygons. The newly generated polygons have the same 

risk index value forms as the original clustering result. All the polygons are represented 

by gradient colours based on their values. 

 

4.4 Client-Side Components and Implementation 

The desktop version of the client-side of the system also has a graphical user 

interface implemented using C# with ArcGIS Engine 9.3 (ESRI 2009), as shown in 

Figure 4.7. The menus and toolbar are located at the top of the interface. Each toolbar 

button corresponds to a function, such as open project document, save, add layer, pan, 

zoom, etc. The menus offer more options, such as the global setting, which leads the user 

to an advanced settings form, as shown in Figure 4.8.  

Under the toolbar, there are three components, which from the left side to the 

right side are layer control, map area, quick setting panel. Layer control allows the user to 
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control the visibility of various layers on the map. Map area enables the user to interact 

with the map and reach the final result. The quick setting panel lets the user set the 

clustering parameters. The status bar, which shows the coordinates of the cursor and the 

current system message, is located at the bottom of the interface. 

In the “Advanced Setting Window” shown in Figure 4.8, all the environmental 

settings such as the location of the configuration file, default folder to save the temp file, 

etc., can be changed by the user.  

The traffic concentration map can be exported as a KML file. An online platform 

based on Google Maps with a three-dimensional (3D) viewer is also implemented with 

Apache 4 to publish the KML file. The screenshot of the publishing platform is shown in 

Figure 4.9(a). Users can also manually export the KML file and load it to the 3D map 

viewer, as shown in Figure 4.9(b). 

Case studies in the City of Calgary are conducted to test this ONTO_TARM 

system with real datasets. Details of the case studies are discussed in Chapter Five. 
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Figure 4.7 Main interface of system 

 

Figure 4.8 Advanced settings of the system 
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(a) Risk map in 2D view 

 

(b) Risk map in 3D view 

Figure 4.9 Road accident risk mapping web publishing platform 



65 

 

Chapter Five: Case Studies 

In this chapter, four case studies with risk maps generated by the density-based 

clustering algorithm for traffic accident risk (DBCTAR) method are presented to 

illustrate the application of the proposed ONTO_TARM framework and the function of 

the developed ONTO_TARM system.  

 The first case study demonstrates the ontology reasoning and a comparison 

between the risk map result and one generated by using kernel density method, one of the 

widely used geography spatial analysis methods. In addition, this case also demonstrates 

how to use the clustering engine, GeoClustering Web service, as an independent 

platform. The second case study compares risk maps in the same area under different 

conditions, thereby proving that, even within the same area, different environmental 

factors may lead to diversified results. The third case study demonstrates a risk map for a 

specific road only, instead of a whole area, with a comparison between the result from the 

DBCTAR and that from a simple count number method. The fourth case study illustrates 

potential integration with other systems.   

 

5.1 Study Area and Data Description 

The main study area is in the city of Calgary, located in the southern part of 

Alberta, Canada. As of 2011, the City of Calgary is the third-largest municipality area in 

Canada. Based on the tested dataset, around 35,000 valid traffic accidents are recorded 

within the city boundary each year.  

The data used for the case studies includes traffic accident data, road network data 

and basic geographic data. The traffic accident testing data was extracted from the 
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Alberta Collision Database, which is owned by the Government of Alberta‟s Ministry of 

Transportation. It includes all the reported collisions on the roads within the province of 

Alberta from 1999 to 2005. The total number of records is more than 770,000. Each 

record has 56 properties in the case table and 33 properties in the object table. The case 

table has the general description of the collision, including case number, date, time, 

location, severity level, road class, road alignment, weather conditions, and total vehicles. 

The object table has all the vehicle related information, such as driver‟s age, sex, vehicle 

condition. We assume that this dataset may not include some non-reported accidents but 

can represent the real accident situation and the injuries or fatalities are not caused by 

their own health issue. 

The traffic accident testing data are cleaned and geocoded before being used in 

the case studies. We assume that the geocoding result can represent the location of real 

accidents; all the accidents are happened on the road - not include the accidents happened 

in the parking lot. The data from 1999 to 2003 is used to generate traffic accident risk 

maps, and the data from 2004 and 2005 is used for validation. We assume that during this 

time period the traffic facilities in the research area have not been improved.  

The road network data are extracted from the data media offered by ESRI – North 

American Street Map. The basic geographic data, including administrative boundaries, 

land cover and hydro network, are downloaded from GeoBase (GeoBase 2009). The 

community boundary dataset is derived from the Canada Census Dataset of 2006. 

 

5.2 Case One 
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In the first case study, the user‟s goal is to generate a risk map of the downtown 

area of Calgary during morning rush hours. This task refers to the downtown area of 

Calgary. Without geographic knowledge of Calgary or a definition of rush hours, the 

traditional method cannot proceed, due to the lack of domain ontology. However, 

ONTO_TARM can generate the task based on the user‟s goal and perform the spatial 

reasoning. The spatial query task is shown in Figure 3.4.  In the ontology, Calgary is an 

instance of the City class; and, all census units – communities in Calgary – are 

represented as instances of the Community class. The downtown area is an instance of 

CitySection. This task finds the communities inside Calgary that belong to the downtown 

area, returning with five communities: Eau Claire, Chinatown, Downtown west end, 

Downtown east village and Downtown commercial core.  

As the second step, non-spatial reasoning is generated to filter the dataset. The 

non-spatial task is similar to the task shown in Figure 3.5 and is represented in Figure 5.1. 

sub-task: findAccidentConditionTask 

defgoal find Accident Conditions 

Input:  

(object EnvironmentalCondition?ec 

  (RoadSurface-condition "dry"), (RoadCondition "straight" 

|| "curve"),  

  (WeatherCondition 

"clear"||"high_wind"||"fog_smog_smoke_dust"||"hail_sleet"||

"raining"||"snow"||"other_weather_con") 

  (LightCondition "artificial"||"nature")) 

(object TemporalCondition?tc(Interval? 

findRushHoursTask()), Interval? findMorningTask()) 

(object (is-a AccidentCondition) (object?ac) (include?ec & 

tc)) 

Output:  

(object (is-a $?AccidentCondition) (object?ac)) 

 

sub-task: findRushHoursTask  

defgoal find rush hours    
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Input: (object (is-a timerange) (object?tr) 

equal?TimeofRushHour) 

Output: (object (is-a timerange) (object?tr)) 

 

sub-task: findMorningTask  

defgoal find rush hours    

Input: (object (is-a timerange) (object?tr) 

equal?TimeofMorning) 

Output: (object (is-a timerange) (object?tr)) 

Figure 5.1 Pseudocode of non-spatial query task findAccidentConditionTask 

 

The temporal condition tasks include two subtasks: finding the rush hours and the 

morning duration. The final dataset based on the ontology-based query includes 869 

records. The DBCTAR then identifies clusters of this dataset. Maps derived from the 

clustering results are generated by the map generator. 

 

Figure 5.2 Result from the map generator – risk map of morning rush hour (7:30-

9:00AM) of Calgary downtown area 

Figure 5.2 shows one of the traffic accident risk maps. This map was generated 

with the risk model parameters recommended by PIARC. The parameter MinRisk was set 

to 10, Eps was set to 45 metres, and MinPts was set to 5. There are 43 intersections 
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marked as risk areas on the map. The risk indexes for each area range from 10 to 43. The 

area with highest risk index is located at 4 Ave SE crossing 
1St

 St. SE. The validation with 

the 2004 dataset shows that 54.8% of the accidents were located in the risk area; 2005 

dataset shows that 56.0% of accidents were located in the risk area.  

A comparison was conducted between the risk maps of the same downtown area 

generated by the DBCTAR method and the traditional kernel density method. Both 

methods use the same dataset satisfying the user specified spatial and temporal 

conditions.  shows the density estimation result when the radius was set to 45 metres and 

the cell size was 4.08 square metres. The kernel function was based on the quadratic 

kernel function described in Silverman (1986). The final map was derived from the 

normalized kernel density result ranging from 0 to 1. Since the risk index value in the 

DBCTAR map ranges from 10 to 43, it can be projected to the range from 0.232 to 1. 

Therefore, for the kernel density map, only the raster cells with a value larger than the 

corresponding minimum risk value of 0.232 have been extracted.   

On the kernel density result map, 46 road intersections or segments are identified 

that had enough density to be marked as risk areas. The highest density area was also 

located at Macleod Trail SE crossing 5
th

 Ave SE. When compared with the risk areas 

identified by the DBCTAR, the two maps are consistent; and, most of the risk areas are 

the same. The two maps have 41 intersections in common. The number of intersections or 

segments that were only identified by the kernel method was 5, which are marked by the 

blue circles in . There are 2 risk areas that only appear on the map generated by the 

DBCTAR, marked by the red squares. 
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Both maps have some imperfections since we only have two year data for the evaluation. 

At certain intersections, marked by the triangle symbols, where both methods indicated 

intersections with high density or risk, there were no accidents in these areas in 2004 and 

2005. 

 

Figure 5.3 Comparison between the kernel density method and DBCTAR methods 

 

  

(a)Kernel density result (b) DBCTAR result 

Figure 5.4 Comparison of two intersections with the kernel density method (a) and 

the DBCTAR method (b) in the downtown area, as indicated by the arrows  
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If we take a closer look at some common intersections identified by both maps, 

the DBCTAR method is more suitable for determining the accident risk at certain 

intersections. Figure 5.4 (a) and (b) are zoomed-in maps of the same downtown area 

produced by the kernel density and DBCTAR methods, respectively. One intersection 

(shown by the up arrow) is the intersection of 4
th

 Ave SE and 1
th

 St SE; and, the second 

intersection (shown by the down arrow) is the intersection of 6
th

 Ave SE and 1
th

 St SE. 

According to the 1999-2003 dataset, there were 23 accidents (16 accidents were PDO, 7 

were injury) that happened around the first intersection; and, there were 26 accidents (23 

accidents were PDO, 3 were injury) happened around the second intersection. 

Table 5.1 Comparison at intersections 

 Intersection 1 Intersection 2 

Location 4
th

 Ave SE 

and 1
th

 St SE  

6
th

 Ave SE and 

1
th

 St SE  

Total number of accidents in 1999-2003 23 26 

Number of PDO accidents 16 23 

Number of accidents with injury 7 3 

Risk index with DBCTAR (PIARC model) 43.0 33.5 

Average density estimation (per 100m2) 65.6 73.8 

Accidents located in the risk area in 2004 6 0 

Accidents located in the risk area in 2005 2 1 

 

The kernel density method only considers the total number of accidents; therefore, 

Intersection 1 in Table 5.1 has an average density potential of 65.6/100m
2
, which is less 

than Intersection 2, with an average density value of 73.8/100m
2
. However, according to 

the DBCTAR method with the PIARC model, Intersection 1 has a higher index (43.0) 
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than Intersection 2 (33.5), as this method also takes into account the severity level of the 

accidents. During 2004 and 2005, there were 6 and 2 accidents near the first intersection, 

and only 1 accident in 2005 was located in the second intersection.  

In general, with the kernel density method, high density means high risk; 

therefore, the first intersection should be less dangerous than the second one. The 

opposite result occurs for 2004 and 2005. The DBCTAR method can identify similar 

patterns as the kernel density method. However, since the DBCTAR method also 

considers the severity level of each accident, we have a better matching result than that of 

the kernel density method. Due to the limited data source (only 7 years of data), no 

further comparisons are conducted to verify that the DBCTAR can surpass the kernel 

density method at all times. However, this case is good enough to demonstrate that the 

DBCTAR method is more suitable for determining the accident risk under particular 

situations.  

In order to demonstrate the generic web-based clustering service, GeoClustering, 

platform, a practical application simulation was conducted. We assumed the previous 

dataset for the “downtown area at rush hours in the morning” was saved in GeoRSS 

format, which contains 869 points with geographical coordinate information and short 

descriptions. This GeoRSS file is saved on a web server, which can be accessed from the 

Internet.  

If a user wants to use a traditional density method, DBSCAN algorithm, to 

identify those areas in downtown Calgary with high density using this dataset, the user 

can go to the GeoClustering web page interface at http://www.geoclustering.com. To load 

the dataset, simply input the URL of the saved GeoRSS file. The result is shown in 
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Figure 5.5(a). When the radius (Eps) is set to 0.1 km, and the minimum number of points 

is set to 10, seven clusters are generated for the area as shown in Figure 5.5(b).  

  

(a)Dataset loading result  (b)Dataset clustering result 

Figure 5.5 GeoClustering with the Calgary downtown area at rush hours in the 

morning dataset (1999-2003) 

 

5.3 Case Two 

In the second case study, the user‟s goal is to generate a risk map “between 8:00-

10:00pm” and “under severe weather conditions” in the downtown area of Calgary. The 

spatial query task is the same as Case One. However, this time, for the first map, the non-

spatial task only includes one temporal condition task that finds the 8:00-10:00pm 

interval shown in Figure 5.6. For the second map, the find severe weather task is shown 

in Figure 3.5. 

sub-task: findTimeIntervalTask  

defgoal find rush hours    

Input: (object (is-a timerange) (object?tr) startat?(is-a 

TimeOfDay-PM 8) endat?(is-a TimeOfDay-PM 10)) 

Output: (object (is-a timerange) (object?tr)) 

Figure 5.6 Pseudocode of non-spatial query task findTimeIntervalTask 
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After reasoning is performed to filter the dataset, 848 records were returned as the 

final dataset for the first map; and, 497 records were returned as the final dataset for the 

second risk map. Figure 5.7 shows one of the final traffic accident risk maps between 

8:00-10:00pm in the downtown area. The map has been generated with the risk model 

parameters recommended by PIARC. The parameter MinRisk was set to 9, Eps was set to 

45 metres, and MinPts was set to 5.   

 

Figure 5.7 Risk map of 8:00-10:00 pm of the Calgary downtown area 

 

When compared the result of Case One, we noticed the risk values of several 

intersections were quite different. For example, the intersection at 9
th

 Ave SW crossing 

11
th

 St SW, had a high risk of 35.5 in the risk map of Case One. However, in the risk map 

of this case, it has a relatively lower risk index value of 9.5. Contrary to the previous 

example, the intersection of 6
th

 Ave SW and 4
th

 St SW was even not marked as a risk area 

in the Case One map; however, it has a high risk index value of 27.5 in Case Two.  

Another comparison was conducted between two different weather conditions in 

the downtown area.  Figure 5.8 shows a risk map in the downtown area under the 
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snowing condition, and Figure 5.9 presents a risk map in the same area under raining 

condition. For the snowing condition, the highest risk intersection is at Macleod Trail SE 

crossing 6
th

 Ave SE. The highest risk intersection under the raining condition is at the 5
th

 

Ave SE crossing 3
rd

 St SE.  

This case study demonstrates that, even in the same area, the risk map can be 

different with different factors (such as temporal and weather conditions). 

 

Figure 5.8 Risk map under snowing condition of the Calgary downtown area 

(MinRisk =8, Eps=45, and MinPts=5, 372 records) 

 

Figure 5.9 Risk map under raining condition of Calgary downtown area  

(MinRisk =8, Eps=45, and MinPts=5, 279 records) 
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5.4 Case Three 

In the third case study, the user's goal is to generate a risk map “on the Deerfoot 

Trail in Calgary”. In this case, the Google Geocoding service cannot return a valid result 

for most records. Lots of accident geocoding results are manually adjusted based on a 

road network with linear address information from the City of Calgary. In this case, there 

is no non-spatial reasoning required, and the spatial query task filtered the 1999-2003 

dataset to limit accidents on the “Deerfoot Trail” only. The 2004 and 2005 dataset in the 

same area was used as the validation dataset.  

Figure 5.10 shows one of the final risk maps. This map was generated with the 

risk model parameters recommended by Transport Canada. The parameter MinRisk was 

set to 80, Eps was set to 65 metres, and MinPts was set to 60.  

       

Figure 5.10 Risk map for the Deerfoot Trail in Calgary (extract) 
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Figure 5.11 Comparison of two road segments on Deerfoot Trail 

Table 5.2 Comparison of road segments on Deerfoot Trail 

 Site 1 Site 2 

Location  Mcknight Blvd NE  Country Hills Blvd NE 

1999-2003 Fatality 1 1 

Injury 58 52 

PDO 271 284 

Total Count 330 337 

Risk Index 1855.94 1785.66 

2004 Fatality 0 0 

Injury 18 9 

PDO 77 27 

2005 Fatality 0 0 

Injury 17 8 

PDO 71 36 
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This risk map generated by the DBCTAR was also compared with the simple 

count method that is currently in use by the Calgary Police (Calgary Police Service 

2009). Figure 5.11 shows locations of two selected road segments and Table 5.2 shows 

the detailed result at each location. 

According to the 1999-2004 dataset, 330 accidents (271 accidents with PDO, 58 

with injuries, 1 with fatalities) occurred around the Mcknight Blvd NE intersection; and, 

337 accidents (284 accidents with PDO, 52 with injuries, 1 with fatalities) happened 

around the Country Hills Blvd NE intersection, respectively. Site 1 had a smaller number 

of accidents than did site 2; however, according to our DBCTAR method with the 

Transport Canada model, site 1 had a higher index (1855.94) than site 2 (1785.66), as this 

method also takes into account the severity level of the accidents. During 2004, there 

were 18 accidents with injuries and 77 accidents with PDO in site 1, and only 9 accidents 

with injury and 27 accidents with PDO were located in site 2. During 2005, there were 17 

accidents with injuries and 71 accidents with PDO in site 1, and only 8 accidents with 

injuries and 36 accidents with PDO were located in site 2. This is another example that 

shows the DBCTAR method has a better performance in assessing accident risk. 

 

5.5 Case Four 

The fourth case study presents ideas about potential usage of the risk map for 

providing personal navigation assistance to the user. If a user wants to go to Bowness 

Park from the University of Calgary, the user has two route options, as shown in Figure 

5.12. These two routes have almost the same distance and travelling time. In this case, 

user may refer to the “risk” to determine which route should be taken.  
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Figure 5.12 Two routes from the University of Calgary to Bowness Park 

The ONTO_TARM system can generate a risk map around these communities to 

help the user to determine which route is better. As mentioned before, all census units, 

i.e. communities in Calgary, are represented as instances of the Community class, which 

are also geometric polygons. The route from the University of Calgary to Bowness Park 

can be extracted as instances of geometric line. With the extracted communities‟ 

geometric polygons, the reasoner uses the geometric lines as the input. The spatial 

relationship "meet" between the route and each community is then checked. The spatial 

query result returns 12 communities on the given routes. 
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In this case, the users do not give detailed requirements on the non-spatial reasoning; 

therefore, the full dataset is returned. The final dataset based on the ontology-based query 

includes 11,198 records. The risk map is generated and is shown in Figure 5.13. If we 

overlap the two different routes on the risk map and compare the accumulated total risk 

value, the user can have an intuitive view for determination. As the risk value for 

northern route is 3241.3, and the southern route is 1880.56, the better choice is to take the 

southern route.  
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Chapter Six: Conclusions and Future Works 

 

6.1 Conclusions 

This thesis proposes an ontology-based traffic accident risk-mapping 

(ONTO_TARM) framework. In ONTO_TARM, the ontology represents the domain 

knowledge, including the non-spatial and spatial concepts and definitions related to the 

traffic accidents, and helps to retrieve the most suitable dataset from the raw historical 

datasets based on users‟ goals for the generation of their own risk maps. 

In addition, a geospatial clustering method – the density-based clustering 

algorithm for traffic accident risk (DBCTAR) – is proposed. This new clustering method 

has been extended from DBSCAN with consideration of both the total accident numbers 

and the severity levels of the accidents. In a simplified version, the value of equivalent 

property damage only is calculated for each cluster and used as the risk index value. The 

proposed method is adapted for a road network environment. The clustering result shows 

the boundary of each cluster subject to the boundary of the network.  

A new web-based geospatial clustering service for discovering hidden patterns – 

GeoClustering – is also proposed and implemented. It is used as the clustering engine of 

the ONTO_TARM framework. It is an open, easy-to-use generic geospatial clustering 

web service, which can be used independently. This web service can be used to identify 

clusters from distributed data sources, with free access at anytime from anywhere. By 

using open and interoperable service interfaces, users are able to cluster their data online 

and visualize the clustering patterns on the map easily and conveniently.  
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Finally, case studies based on real traffic accident data have been implemented 

within a prototype of the proposed ONTO_TARM framework. The preliminary results 

achieved from the case studies are promising. 

 

6.2 Future Works 

This research can be extended in the future in the following ways: First, a system 

prototype would benefit from an improved ontology reasoner and a more powerful map 

generator. The current prototype is still a proof-of-concept type, using the Jena reasoner 

actually only works on the level of RDFS (Resource Description Framework Schemas) 

and, it could be upgraded to handle more complex ontology queries. The efficiency of the 

map generator needs to be improved. In our experiments, the execution time for more 

than 10,000 selected records with a complicated road network could take over 10 

minutes. The most time-consuming work (>80% of the total running time) is generating 

maps from the clustering result. 

Second, the current system cannot provide automatic recommendations for the 

weight model selection and clustering parameter settings. For the given case studies, the 

k-dist graph (Ester et al. 1996) and k-nearest riskindex graph are used to help users set 

parameters. How to set parameters automatically is remaining a question.  

Third, the risk index can be better defined. For example, the affect of traffic 

volume or other exposure measurement should be used. In addition to the severity level, 

other properties of the accidents can be adopted in the risk index model. Also, the 

DBCTAR algorithm may need new rules to merge clusters at intersections. 

Fourth, the GeoClustering could be improved in the following aspects:  
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1)  More algorithms and advanced techniques could be developed and integrated 

into the platform. To reduce the execution time, clustering, spatial indexing, and data 

compression techniques may be used to improve network data transmission.  

2) More data types need to be supported by the platform. The current version of 

GeoClustering only supports static datasets. Dynamic and continuous datasets, such as 

real time sensor data, have also been collected and need to be analyzed as well. 

Therefore, some new clustering methods and mechanisms dealing with real-time datasets 

can be added.  

3) It is better to harness collective intelligence from users. In the web 2.0 era, web 

users should be treated as participants and contributors rather than simple data 

consumers. With implementation of online communication functions in the near future, 

users are encouraged to share and discuss the patterns of clustering results interactively. 

In return, such collective intelligence will provide users with a better understanding of 

spatial data and more ways to help them select suitable clustering parameters. 
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