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ABSTRACT 

 

This dissertation presents a novel way of using measurements made by satellite-

based ranging systems, such as GPS,  for the purposes of precise positioning. Traditional 

methodologies and assumptions are discarded, resulting in a view of code and carrier phase 

measurements as simple spatial distances in a three-dimensional trilateration network of 

extremely large extent. Although the example navigation system used is GPS, the findings 

have general applicability to all Global Navigation Satellite Systems, such as GLONASS and 

GALILEO. 

Traditional dependence on the single, fixed base station for GPS processing is 

eliminated by investigation of the underlying datum problem and an improved method 

based on the constraint of the network centre of mass is presented. This strategy has 

advantages in terms of minimally-biased ambiguity solution and positioning accuracy 

homogeneity across the network. 

A novel approach to variance-covariance modelling for GPS error sources is 

developed, which separates the total error in terms of noise, multipath and tropospheric and 

ionospheric errors and models each individually. The models are developed using 

theoretical considerations coupled with empirical determination of key model parameters. 

Temporal and inter-frequency correlations are discussed as well. 

The results of the research were used to create a GPS processing system named 

PADRES-GPS. It was shown that this system is capable of effectively detecting deformations 

of 10 mm at the 95% level on small-extent networks when data spans of only 10 minutes 

were used. The availability of the position solutions was shown to be much higher than 

that achievable by a commercial processing package due to the application of a novel 

“partial- fix” approach to ambiguity resolution documented herein. The PADRES-GPS system 

was also shown to improve positioning on larger networks extents via modelling of spatial 

correlations. Finally, a method of compressing dual- frequency data into a single optimal 

linear combination is described and its performance in kinematic network positioning is 

demonstrated. 
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1.0 - INTRODUCTION 

 

The Global Positioning System (GPS) was designed by the United States Department of 

Defence for the dual purposes of “creating a system to navigate cheaply” and “dropping 

five bombs into the same hole” (Parkinson, 1996). 

 

Since then, GPS has been thoroughly exploited by the civilian sector for uses of far greater 

variety and finesse than intended by the military planners at the Joint Program Office. As a 

navigation system, GPS is in use world-wide, from aiding the navigation of oil tankers and 

aeroplanes, to informing hikers of where they are. Indeed, much current research revolves 

around the refinement of GPS for navigation purposes, in particular in terms of its 

integration with other navigation sensors. Furthermore, the success of Global Navigation 

Satellite Systems (GNSS) has led to the development of parallel systems, such as the 

operating Russian GLONASS system, and the planned European GALILEO project. 

 

Early on, the potential of applying these satellite-based navigation systems to surveying 

applications was recognized. For example, in the 1960’s, the TRANSIT satellite system was 

successfully applied to static surveying by using several days worth of data and post-

mission precise orbital information to achieve accuracies of less than one metre (Hofmann-

Wellenhoff et al, 1994). Despite the design of the GPS system as a military navigation tool, 

sub-decimetre surveying accuracies quickly became achievable primarily through the 

development of differential techniques (Counselman et al, 1972), the use of carrier phase 

measurements (Collins, 1982), and the development of robust techniques to obtain dual-

frequency measurements for ionospheric modelling (Ashjaee and Lorenz, 1992). Dropping 

receiver costs in the last two decades have made high-quality GPS receivers reasonable 

available to the geodetic community and hence encouraged their use in many areas. 
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The appeal of applying satellite-based navigation systems to static applications largely 

stems from the autonomous operation of the system and the lack of a requirement for 

surveyed sites to be intervisible. Both of these issues have been serious limitations to 

traditional surveying techniques applied to precise positioning and deformation 

monitoring. For example, the interval between position updates in networks of even 

modest size is often limited to months, if not years, due to the costs associated with the 

requirements for skilled personnel to make angular measurements in a theodolite-based 

network. Recent advances in terms of using robotic tacheometers have improved the rate at 

which observations can be made, but the requirements for the stations to be intervisible 

still constrains network design and extent. On the other hand, a network of GPS receivers 

can collect unlimited data at a very high data rate, in all weather. The network design is 

considerably loosened by eliminating the need for lines-of-sight, and as a result the design 

can focus on other considerations, such as ensuring that geo-technically significant points 

are observed. This also implies that inter-station distances can be considerable extended. 

Finally, once the initial costs of the receivers are absorbed, further operating costs are 

minimal, compared to the costs of trained survey personnel. 

1.1 - Traditional Application of GPS to Geodesy 

Given the benefits of satellite-based systems described above, it is perhaps not surprising 

that GPS has been applied to a wide variety of geodetic and geo-technical problems, from 

national scale crustal deformation monitoring in Japan (Tsuji et al, 1996), to the study of 

building sway under wind loading (Guo and Ge, 1997). Indeed, every major geodetic 

conference is certain to exhibit a large number of papers dedicated to the application of 

GPS. 

 

However, the author believes that the current state of understanding regarding the geodetic 

applications of satellite-based navigation systems retains artefacts of the early research 

done on these systems, and their navigation heritage. This is particularly true in areas of 

variance-covariance modelling and network adjustment, where many simplifications 

necessary in early research are still retained in typical processing methodologies. Of 
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course, these areas are critical for the rigorous application of GPS (and indeed any 

observation system) to deformation monitoring and precise positioning. 

 

During the early period of GPS, the high cost of receivers limited most institutions to a pair 

of receivers, which forced research to be performed using a baseline methodology, where 

one receiver was considered the base station and the other a remote. A network of points 

could then be surveyed by moving the remote receiver to various stations in the network 

and thus generating a set of radiating vectors. This paralleled developments in navigation-

based research, which relied on the use of a base station with known coordinates to provide 

differential corrections to a remote station. 

 

Interestingly, although it was obviously realized that the GPS errors are spatially correlated 

(and hence the returns provided by differencing observations), these spatial correlations 

were neglected in the diagonal variance-covariance matrix typically used in the processing 

of the observations. This can be explained by the fact that early knowledge of the actual 

spatial correlations were poor. Also, limitations of early computing power implied that use 

of a diagonal variance-covariance matrix had significant advantages in terms of formation 

and solution of the normal equations. Furthermore, since the GPS observation results were 

significantly better than results achievable using terrestrial methods, errors stemming from 

non-rigorous variance modelling were undetectable.  Recently, studies have begun to apply 

more realistic covariance models and these are discussed in Chapter 6. However, most 

commercial processors have yet to implement their results. 

 

The pioneering baseline processing methods also left their mark on the prevailing network 

adjustment procedures of today. In most network adjustments involving GPS, the baselines 

of the network are calculated separately, along with the variance-covariance matrices of 

the individual baselines (which themselves do not take into account a rigorous statistical 

model of the component error sources). These vectors are then treated as pseudo-

observations in a subsequent adjustment for the network, usually constraining the central 

base station at its apriori coordinates. Obviously this is somewhat of a boot strapping 

procedure for determining the final coordinates of the network receivers and the statistics 
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of the adjustment are expected to become seriously distorted (and usually very over-

optimistic). In practice, this effect is masked by long observation times (several hours for 

most geodetic applications) and the higher precision of GPS observations when compared 

to their terrestrial counterparts, as well as a lack of suitable “comparison” systems. 

1.2 - Research Objectives 

The goal of this thesis was to determine how to treat GPS observations in the same manner 

as any conventional geodetic measurement, without reliance on the assumptions inherent 

in today’s conventional processing. This required the re-evaluation of the following areas : 

 

• Adjustment of Observations under Constraints and the GPS  Mathematical Model 

• Datum Definition 

• Ambiguity Resolution 

• Variance-covariance Modelling 

 

The result of this research is a GPS processor that is capable of using data observed by a 

network of receivers, and performing a truly rigorous least-squares adjustment of the data 

at the observation level. In this way, the GPS observations become nothing more than 

spatial distances, much like those measured in conventional trilateration networks, albeit 

over much larger distances. The same principles can then be simply applied to other GNSS, 

such as GLONASS and GALILEO. 

 

The appeal of such research is that, by studying GPS observations as regular geodetic 

observations, existing geodetic theories on network adjustment and deformation 

monitoring can be simply applied. For example, proper variance-covariance modelling, 

studied in Chapter 6, allows a greater confidence in the parameter statistics reported, a 

significant departure from the traditional “multiply the standard deviations by 10” rule of 

thumb commonly used in industry. This in turn is crucial for the identification of 

significant deformations, a topic studied in Chapter 7. Similarly, datum definition is an 

area long studied as applied to terrestrial networks, but has been largely ignored in satellite 
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based networks due to the reliance on the known base station. Although some studies have 

used the concept of inner constraints for processing a network of individually processed 

GPS baselines, this thesis treats proper datum definition as the starting point of the 

subsequent observation adjustment, as discussed in Chapter 4. Even the basic process of 

adjusting GPS observations is investigated, and a rigorous method of applying integer 

ambiguity constraints and correctly propagating the statistics of the estimated parameters is 

demonstrated in Chapters 3 and 5.  

 

In total, the result of this work is a system of adjusting GPS observations for network 

positioning and deformation analysis where the traditional assumptions made during the 

transformation of the original observations to the final reported positions have been 

minimized. Not only does this create a system that is more transparent, where the effects of 

individual adjustment steps can be directly analyzed, but the resulting estimates are 

improved, both in terms of their actual and reported accuracies. As shall be seen, the 

lessons learned from this dissertation can be applied to a wide variety of applications, 

ranging from short-range deformation monitoring, to kinematic network positioning. 

1.3 - Outline of this Work 

This dissertation begins with a basic investigation into the operation of the satellite-based 

navigation systems and the nature of the observations they provide. From this starting 

point, aspects of the rigorous adjustment of said observations are individually studied, 

resulting in a complete processing methodology. Finally, the success of applying this 

processing methodology to various real-world applications is demonstrated. 

 

Specifically, this dissertation is divided up into the following chapters : 

 

Chapter 2 provides an introduction into satellite-based navigation systems and their 

operation, using GPS as an operational example. The peculiarities of satellite-based time-of-

flight measurement are discussed, in particular in terms of the concept of moving reference 

points. 
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Chapter 3 reviews the principles of least-squares adjus tment, but reviews the theories 

pertinent to adjustment with additional constraints, which plays a pivotal role in ambiguity 

resolution. The rigorous propagation of parameter statistics is emphasised at all stages. 

Finally, the details of the linearization of the satellite-based positioning problem are 

shown, and proper iteration termination is discussed 

 

Chapter 4 delves into the problems of datum definition for satellite-based ranging 

networks. It is shown that the space-based trilateration problem is identical to that of a 

terrestrial one, with the moving satellites acting as control points. However, it is also 

shown that the datum defined by these satellites is poorly visible, requiring regularization 

of the positioning problem.  

 

Chapter 5 continues the discussion of datum regularization, but focuses on its effects on 

ambiguity resolution. Also, details of the ambiguity resolution process are discussed, from 

the proper treatment of base satellite changeovers to integer ambiguity resolution using the 

LAMBDA method. The integer ambiguity problem is shown to be a problem of least-squares 

with constraints and a novel partial-fix method is presented that allows more stable 

positioning performance over time. 

 

Chapter 6 introduces new concepts in variance-covariance modelling for observations 

made by GNSS. Individual error sources are studied, including noise, multipath, 

tropospheric and ionospheric effects. In particular, this section features theoretical models 

developed to describe the variance properties of these errors and their propagation into the 

double-differences formed during processing. Methods of establishing these models using 

collected data are also discussed, as are the inter- frequency and temporal correlations of 

GNSS errors. 

 

Chapter 7 applies the theories developed in the preceding chapters to three distinct 

application areas. Firstly, a robust deformation monitoring system applicable to short 

ranges is developed, and its performance using real data is assessed. Secondly, the limits of 
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precise positioning on networks with extents of 10 to 150 kilometres is studied. Finally, the 

variance-covariance studies described are used to develop a unique method of optimal 

linear combination determination for efficient kinematic network based positioning. 

 

Chapter 8 contains a summary of the discoveries made on a chapter by chapter basis, 

discusses their possible applications in various fields and presents recommendations for 

future work. 
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2.0 - BASICS OF SPACE-BASED RADIO RANGING 

 

All spaced-based navigation systems used today rely on the transmission of ranging signals 

from space-based platforms (satellites) to receivers on or above the Earth. This results in a 

trilateration problem where the satellites play the role of control points and the receivers 

are unknown stations – a problem analogous to a terrestrial network consisting solely of 

electromagnetic distance measurement observations. 

 

However, the majority of space-based systems in use are one-way systems, whereby the 

receiver does not transmit back to the satellite. While this allows an unlimited number of 

users to access the navigation system, the resulting problem of relating satellite and 

receiver time systems must be dealt with. As well, the motion of the satellites and the Earth 

itself results in issues not encountered in terrestrial trilateration networks.  

 

This section investigates the mathematical formulation of the three-dimensional space-

based trilateration problem. The results are generally applicable to all space-based ranging 

systems, such as GLONASS and GALILEO, but the discussion focuses on the GPS as an 

example. 

2.1 -Distance By Radio Ranging 

Assume a situation whereby satellites in orbit send signals to a ground-based receiver. If a 

given satellite emits a signal at time ts and it is received by the receiver at time tr, the 

distance, d, the signal has traveled is given by 

 

            (2.1) 

 

where c is the speed of light in vacuo. 

 

)( sr ttcd −⋅=
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Eq. (2.1) neglects the effects of the atmosphere on the signal and assumes that the 

transmission and reception time refer to an absolute time frame, see Section 2.2. In 

practice, the signal transmit time is implicitly transmitted in the coding of the signal and 

refers to the satellite’s unique time frame. Similarly, the receive time is based on the 

receiver’s local oscillator. Let the offset of the receiver and satellite time frames from some 

absolute frame be denoted as ∆tr and ∆ts. Note that the clock offsets are not themselves 

constant over time in general. The electromagnetic distance, de, between the satellite at 

transmission time and the receiver at receive time can then be written as :  

 

       (2.2) 

 

The bracketed term farthest to the right acts as a correction to the actual measurement, 

which is simply the measured travel time multiplied by the speed of light. It is important to 

realize that tr and ts represent the measured transmit and receive times.  

 

The geometric distance can be derived by taking into account the effects of the signal’s 

passage through the electrically-charged ionosphere and the neutral atmosphere, which not 

only affects the velocity of the wave, but also causes it to follow a curved path due to ray-

bending (Saastamoinen, 1973). These effects will be more closely studied in Chapter 6. At  

the moment these quantities will be simply denoted as I and T for ionospheric and 

tropospheric effects, respectively. Incorporating these effects results in the following 

expression :  

 

      (2.3) 

 

The sign of T and I imply that they are delays, making the electromagnetic distance longer 

than the true geometric distance, as expected. 

 

 

 

ITttcttcd rssrg −−∆−∆⋅+−⋅= )()(

)()( rssre ttcttcd ∆−∆⋅+−⋅=
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Finally, since measurements cannot be made with perfectly, the time of arrival of the 

signal has a certain error associated with it. This can be incorporated into Eq. (2.3) to yield: 

 

                        (2.4) 

 

where p is termed the measured pseudorange. No assumptions regarding the error statistics 

of the ε term have been made, although these will be thoroughly addressed in Chapter 6.  

2.2 -Satellite Time Frames 

As discussed above, the transmission time of a ranging signal is usually embedded in the 

transmitted signal itself. However, this time refers only to the satellite’s onboard clock 

since it is the clock which drives the frequency synthesizer and code generator required to 

generate the signal itself (ICD-GPS-200C, 1993). This means that signals simultaneously 

received from several satellites not only have different transmission times, but that the 

transmission times reported actually belong to different time frames. In addition, since 

clocks slowly drift over time, the difference between two satellites’ individual time frames 

is not constant over time. This effect must be taken into account when deriving geometric 

distances via Eq. (2.4). 

 

In the case of GPS, an “absolute” time frame is derived by averaging the master atomic 

clocks at five monitoring ground stations (Francisco,1996). The deviations of individual 

satellite clocks from this “ensemble clock” are continually monitored by the monitor 

stations. Finally, these deviations are used to create a prediction model for each satellite’s 

clock error using the following two degree polynomial (ICD-GPS-200C, 1993): 

 

       (2.5) 

 

where ∆ts is the satellite clock offset, ao,a1, and a2 are broadcast polynomial coefficients, t 

is the time in the ensemble frame and toc is the epoch to which the coefficients refer to. 

ε+++∆−∆⋅−==−⋅ ITttcdpttc rsgsr )()(
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Rigorously, the true time is required to properly determine the correction. Fortunately, 

since the a1 and a2 terms are small, the apparent satellite time can be substituted into Eq. 

(2.5) with negligible effects. 

 

The satellite transmit time must also be corrected for relativistic effects due to the high 

altitude of the satellites and their velocity, this results in a corrected transmission time of 

(ICD-GPS-200C, 1993) : 

 

           (2.6) 

 

where ts’ is the corrected satellite time, µ is the gravitational constant, c is speed of light in 

vacuo, and A, e, Ek are the semi-major axis, eccentricity and mean anomaly of satellite 

orbit. 

 

In the sequel, the last two terms of Eq. (2.6) will be lumped together into a single clock 

correction term. The relativistic correction alone can cause delays of up to 70 ns. 

 

Using Eq. (2.6) one can determine the transmission time of a signal in the ensemble frame. 

Figure 2.1 shows the magnitude and variation of the correction term for three satellites 

over a six hour period. For clarity, the plots have been shifted by the following amounts : 

SV 4 – 650 µs, SV 16 – 62 µs, SV 30 – (-)3 µs. An almost linear trend is apparent, 

although the direction and magnitude of the drift is satellite dependent. By differencing 

subsequent epochs, one determines that the size of the drift is typically below 10 ps / s. The 

data in Figure 2.1 was derived from observations collected by monitoring stations in the 

International GPS Service (IGS), and is not available in real-time. For real-time positioning, 

the user must use the transmitted correction model, which is of lower accuracy since it 

predicts the clock correction. Figure 2.2 shows the difference between the predicted and 

actual corrections for the same time period. The 10 ns bias in the plot is likely due to a bias 

in the reference clock used to generate the precise ephemerides. Furthermore, the jump in 

the error plot for SV 30 is due to a difference in the clock correction model uploaded to the  

ksss EAe
c

ttt sin
2 2/1

2

2/1
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Figure 2.1. Satellite Clock Offset. Offsets have been shifted for clarity by :                                                    

SV 4 – 650 µs, SV 16 – 62 µs, SV 30 – (-)3 µs . 
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Figure 2.2. Broadcast Satellite Clock Offset Error (compared to precise ephemerides). 
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satellite. These changes typically occur every two hours as the ephemerides are refreshed. 

Note that the data examined is free of the effects of Selective Availability (SA), a satellite 

clock error source historically injected into the timing signal by the U.S. Department of 

Defence. SA was turned “off” on May 1, 2000 (U.S.A. Office of Science and Technology 

Policy,  May 2000). 

 

Using the clock corrections, one can modify Eq. (2.4) to read : 

 

        (2.7) 

 

where δts indicates the error in calculating the satellite clock offset. If one neglects the 

biases evident in Figure 2.2, the standard deviations of the predicted clock offset errors are 

at the 5 ns level, or 150 centimetres. 

2.3 -Receiver Time Frames 

Just as the transmitted signal transmission time refers to the satellite’s unique time frame, 

the measured receive time refers to the unique time frame of the receiver. However, 

whereas the clocks of the satellites are high-quality atomic timepieces, receivers typically 

employ low cost quartz oscillators. As a result, receiver clock offsets can be large and have 

higher drift rates than those of the satellites.  

 

Figure 2.3 shows the receiver clock offsets (in distance units) for two models of receivers 

over a two hour time frame. The difference in the offsets is quite obvious, with the 

NovAtel OEM3 offsets remaining close to zero and the Trimble 4000 SSI offsets drifting to 

1 ms before suddenly shifting back to zero. The reason for these differing offset behaviours 

lies in the receiver implementation. In the case of the NovAtel, the receiver calculates its 

clock offset internally and attempts to “steer” the clock to minimize its clock offset. Thus,  

 

 

 

εδ +++∆−⋅−=∆+=∆+−⋅ ITttcdtptttc rsgsssr )()(
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Figure 2.3. Receiver Clock Offsets for Two GPS Receivers.  
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Figure 2.4. Receiver Clock Drift for Two GPS Receivers. 
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the offsets remain close to zero. However, the Trimble receiver allows the drift to grow to 

1 ms before resetting the clock. The drift properties of the receiver clocks are also well 

illustrated by Figure 2.4, which show the clock drifts for the two receivers. The drift of the 

NovAtel receiver remains very close to zero, with an average value of 3mm/s. The Trimble 

receiver, on the other hand, has a significant drift, and the drift rate itself varies over time.  

 

In modern GPS receivers, the receiver makes observations to all satellites simultaneously. 

As a result, the clock offset affecting each pseudorange is identical. This allows the 

receiver clock offset to solved for as an unknown parameter along with the receiver’s 

position. As the clock offset and its drift changes from epoch to epoch a new offset must 

be solved for each epoch. Alternatively, the observations collected at a receiver can be 

differenced, a concept discussed in detail in Chapter 3. Note that since the clock offsets are 

either eliminated or estimated, the size of the clock offsets are not significant in static, 

post-processed applications. However, in real-time applications, large clock offsets are 

undesirable due to the need for measurements to be made synchronously at different sites. 

2.4 -Satellite Orbits 

The coordinate system of GPS (WGS-84) is defined by the combined coordinates of 5 

monitor stations located at Hawaii, Colorado, Ascension Island, Diego Garcia and 

Kwajalein (Hofmann-Wellenhof et al, 1994). However, as the user can only make 

observations to orbiting satellites, the coordinates of these satellites must be provided to 

allow access to the WGS-84 frame. The direct analogy in terrestrial networks is that of 

using second-order control to define the datum for an engineering network, where the 

coordinates of the second-order control have been previously derived from a survey 

campaign linking them to a spare first-order control set. Datum definition is more 

thoroughly discussed in Chapter 4.  

 

The difference between GPS and terrestrial networks lies in the fact that the “observable” 

control points are continuously moving. This results in several peculiarities. For example, 

to allow for real-time operation, the satellite positions must be predicted. This prediction is 
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carried out in two steps (Russell and Schaibly, 1980). Initially, data collected at the five 

monitor stations is processed via a Kalman filter to calculate actual satellite positions, 

velocities, solar pressure constants and other satellite states every 15 minutes for a one 

week period. This week’s worth of data is then used to predict a satellite orbit (or 

ephemeris) for a one day span. However, due to bandwidth limitations, neither the full 

orbital model nor the coordinates of the satellites themselves are transmitted to the user, 

but rather the parameters of a simplified 15 element perturbed-Keplerian orbital model, 

derived using 4 hours of the 24 hr predicted base ephemeris. The user must then calculate 

the satellite position for their particular epoch using the best available broadcast ephemeris, 

which are typically updated every two hours (Beutler et al, 1998). 

 

Just as in the case of the satellite clock model, actual observed orbits are provided by 

several agencies, including the IGS. These are known as precise ephemerides. Figure 2.5 

shows the difference between the precise ephemerides and the broadcast orbit for several 

satellites over a 10 hour period. The along track agreement  is the worst, as might be 

expected since this is along the direction of the satellite’s motion. The accuracy of the IGS 

orbits used are at the 5 centimetre level, although a variety of  IGS orbit products are 

available with accuracies dependant on their latencies (Roulston et al, 2000). As a result, 

the data shown in Figure 2.5 implies a broadcast accuracy of 1.2 m radial, 2.4 m across 

track and 4.5 m along track. These are in close agreement to those obtained by Zumberge 

and Bertiger (1994). 

 

In general, the GPS satellites follow an almost circular orbit with a radius  of roughly 26560 

km. As well, the orbital period is one half of a sidereal day, which implies a repeating 

satellite geometry every 23hr 56min (due to the rotating Earth). Figure 2.6 shows the 

velocities of observed satellites over a 10 hour period. The ve locities shown are with 

respect to the WGS-84 frame and, since the frame rotates with the Earth, the shown 

velocities are lower than the “true” satellite velocities. In an inertial frame, the average 

satellite velocity is 3860 m/s. Due to the great velocities of the GPS satellites, the true 

transmission time of the ranging signals must be accurately known in order to properly 

calculate the position of the satellite at transmission, as discussed in Section 2.5.1. 
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Figure 2.5. Comparison of Precise and Broadcast Epheme rides. 
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Figure 2.6. Satellite Velocities Relative to WGS-84. 
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2.5 -Geometrical Model of Earth-Space Ranging 

The purpose of space-borne trilateration systems is to determine the three-dimensional 

coordinates of one or more receivers in a given reference plane. For our purposes, the 

reference frame used will be an Earth-centred, Earth-fixed (ECEF) frame, such as WGS-84. 

Once coordinates of receivers have been determined in this frame, they can be converted 

into any other frame through a suitable transformation.  

 

A three-dimensional distance between a satellite and receiver is simply described as,  

 

( ) ( ) ( )222 )'()'()'()'()'()'()'()'( rrssrrssrrssrrssg tztztytytxtxtrtrd −+−+−=−=   
                    (2.8) 

where rs,rr are the position vectors of the satellite and receiver at transmission and 

reception time, respectively in a fixed (non-rotating) reference frame and ts’,tr’ are the 

actual transmission and reception times. 

2.5.1 - Modification for Transmission Time and Satellite Motion 

Eq. (2.8) requires the coordinates of the receiver and satellites to be known at the actual 

transmission and reception times. Since only the reception time is explicitly known, one 

must derive the transmission time. If a measurement to a satellite is logged by a receiver at 

time tr (apparent receiver time), then the true time of measurement is tr-∆tr, with ∆tr being 

the receiver clock offset. Furthermore, if the electromagnetic distance to the satellite is de, 

then the true transmission time must be  

 

errs dttt −∆−='               (2.9) 

 

By inserting Eq. (2.2) into the above and using the definition of a pseudorange, one can 

derive the true transmission time in terms of the measured pseudorange, p : 
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             (2.10) 

 

where ∆ts is the estimated satellite clock offset and known (from the broadcast ephemeris) 

to approximately 5 ns. The pseudorange measurement noise is at the several metre level, 

corresponding to a timing error of about 33 ns. Note that the tropospheric and ionospheric 

delays are implicitly incorporated in the measured pseudorange, as is the receiver clock 

offset. Combined, the resulting error in transmit time calculation contributes less than one 

centimetre to the satellite position error. However, given that GPS satellites have an orbital 

radius of roughly 26 560 km, it can be shown that transit times vary from approximately 67 

ms to 90 ms (Remondi, 1984). As a result, if the correction for transmission time was not 

applied, a satellite position error of up to 350 m could result, based on the satellite 

velocities presented in Section 2.4. 

2.5.2 -Modification for a Rotating Earth 

Eq. (2.8) holds true only if the coordinates of the receiver and satellite (which refer to 

different epochs) relate to the same reference frame. Thus, if one wishes to work with 

positions in an ECEF frame, a correction must be made since the coordinate system to 

which the satellite coordinates refer to is rotated with respect to the coordinate system of 

the receiver. This phenomenon is illustrated in Figure 2.7. The amount of rotation is solely 

dependant on the transmission time and as a result different for each satellite observed. 

This “frame rotation” can induce up to 175 m of error into the satellite coordinates if not 

taken into account. 

 

One can modify Eq. (2.8) to explicitly take into account the transit time by adding a 

rotation about the z-axis, resulting in the following expression for the geometric distance 

between the satellite and receiver at transmission and reception times, respectively, in a 

frame referring to the true reception time :  
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Figure 2.7. Rotating Reference Frame Problem. 
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                         (2.11a) 

where 

        

                  (2.11b) 

 

 

and ts’ and tr’ refer to the true transmission and reception time of the signal, τ is the transit 

time of the signal and ω is the rotation rate of the Earth. The transit time is equal to the 

electromagnetic distance and thus can be derived from Eq. (2.2) using the measured 

pseudorange and the estimated receiver and satellite clock offsets. Assuming no 

knowledge of the receiver clock offset (and thus a maximum 0.5 ms effect), the worst-case 

resulting error in satellite orbit due to frame rotation is 1 m, and so within the accuracy of 

the broadcast orbits themselves.  
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2.5.3 -Modification for Carrier Phase Measurement 

GPS provides two measurement types – code and carrier phase. The code measurement is 

simply a time-of-flight measurement of the signal transit time made by correlating the 

satellite generated ranging code to an identical copy generated inside of the receiver (but 

shifted due to the transit time delay and the satellite and receiver clock offsets). Details of 

the implementation of this measurement mode can be found in Ward (1996) and in Spilker 

(1980). Carrier phase measurement, on the other hand, is a more precise measurement 

mode created by comparing the carrier frequencies of the transmitted signal and the 

internally generated replica. The Doppler shift between the two frequencies is accumulated 

over time, resulting in a range - see Remondi (1984) and Ward (1996) for implementation 

details. The principal advantage of using the carrier phase method is that observations of 

this accumulated Doppler are precise to within roughly 1% of the wavelength of the carrier 

(Hofmann-Wellenhof et al, 1994). Thus in the case of GPS, where the L1 carrier wavelength 

is 19 cm, this translates into a measurement noise of several mm. Conversely, the 

pseudorange measurement noise is currently at the several decimetre level (Langley, 

1997).  

 

However, using the carrier phase measurement introduces several modifications to the 

ranging model. Since the carrier phase is actually an accumulated Doppler from some 

initial epoch, the starting range from the receiver to the satellite is unknown. More 

specifically, while the receiver can measure the fractional phase offset of the transmitted 

and generated carrier phases at the initial epoch, the number of full cycles between the 

receiver and satellite is not known. This is termed the integer ambiguity. As a result, Eq. 

(2.4) describing the pseudorange measurement can be modified to yield : 

 

N
ITttcd rsg ++
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= φε
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φ
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         (2.12) 

 

where φ is the carrier phase measurement (in cycles), λ is the carrier wavelength, N is the 

integer ambiguity and εφ is the carrier phase noise. 
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As shall be seen, a crucial step in making the carrier phase measurement useful for 

positioning is the solution of the integer ambiguity, which is different for each satellite 

observed. In addition, while the ambiguity is constant while the satellite is continuously 

observed, if for some reason signal lock to the satellite is lost (i.e. due to poor signal-to-

noise ratio, high dynamics, or signal blockage), a new ambiguity for the satellite must be 

estimated. Detection of such cycle-slips is not a trivial problem, as the difference in the old 

and new ambiguities can range from millions of cycles to only a few. This is particularly 

true if the receiver is moving, or if measurement errors are at high levels. Often, Kalman 

filtering of the raw carrier observa tions is performed as a pre-processing step to flag and 

correct these slips, but many other techniques exist; see Han (1995); Binath (2000); Kim 

and Langley (2002) for the development of the current state-of-the-art. 
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3.0 - GENERAL SOLUTION TO THE SPACED-BASED TRILATERATION 
PROBLEM 

 

In general, the final goal of a space-based navigation system is to provide the user with the 

positions of one or several receivers, at a particular epoch and in a specified reference 

frame. As discussed in the previous chapter, modern space-based navigation systems, such 

as GPS, are based on measuring ranges from orbiting satellites to receivers on the Earth. As 

a result, they are defined as trilateration networks, and, when comprised of sufficient and 

appropriate observations, these networks can be solved via the methods of least-squares. 

 

This section presents a general solution to the spaced-based trilateration problem. A review 

of least-squares theory is presented, with special focus on the case of added parameter 

constraints. The measurements and unknowns encountered in the GPS positioning problem 

are discussed, as are the mathematical model and the linearized quantities involved in the 

adjustment problem. The concept of differential techniques is introduced and the 

mathematical properties of the differencing procedure are illustrated. Finally, the problem 

of iteration and convergance is investigated, as well as some implications of the curvature 

of the GPS mathematical model.   

3.1 - Unknowns and Measurements in a Space-Based Trilateration Network 

Assume the situation of a number of receivers in an engineering network simultaneously 

observing a constellation of GPS satellites. In most applications, the sole purpose of the 

measurement campaign is to establish the three-dimensional coordinates of the receivers at 

a particular epoch or over a particular time-span.  

 

For this purpose, each receiver makes a number of measurements to each of the visible 

satellites. In the GPS system, these measurements can take two basic forms – the 

pseudorange and the carrier phase. Currently, GPS satellites broadcast information on two 

frequencies – 1575 MHz (L1) and 1227 MHz (L2). As will be discussed in Chapter 6, this 
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allows for the extraction of the first-order ionospheric effect, which is frequency 

dependant. By 2005, an extra frequency is expected to be available at 1176.45 MHz 

(Fontana et al, 2001). Finally, for each frequency observed, the Doppler shift due to the 

satellite motion relative to the receiver is measured. While this measurement was an 

important aspect of measurement with early satellite-based systems such as TRANSIT, it is 

rarely used in static applications due to its noisiness and therefore will not be considered. 

 

Ideally, one would use the available measurements and by linearizing Eq. (2.8), which 

describes the geometric distance between the receivers and the satellites, arrive at a least-

squares solution for the position unknowns. However, several factors complicate the 

solution. Firstly, as discussed in Section 2.2 and 2.3, the receiver and satellite time frames 

are not synchronized. Furthermore, the individual receiver time frames are not 

synchronized to one another and are also not stable over time. In addition, as presented in 

Section 2.5.3, each carrier phase measurement carries with it an unknown integer offset 

which is stable over time, so long as lock to the satellite is maintained. Finally, since the 

measured ranges refer to electromagnetic distances, Eq. (2.4) indicates that they are 

corrupted by tropospheric and ionospheric delays, as well as noise. 

 

Several methods exist to deal with these complications. Firstly, one can attempt to solve 

for these added factors as nuisance parameters. A second possibility is to treat their effects 

as noise, coupled with an appropriate stochastic model. Finally, if their effects are identical 

(or very similar) between pairs of observations, then the factor can be effectively removed 

from the problem by differencing the observations. In general, the decision as to which of 

these approaches is most appropriate depends on the nature of the effect. For example, the 

ambiguity terms, since they are large, of unpredictable magnitude, and are constant over 

time, are treated as additional unknowns. Satellite clock offsets, on the other hand, are 

usually treated by differencing if multiple receivers are available since they change from 

epoch to epoch, but are identical for a given satellite. The same applies for receiver clock 

offsets, with the modification that the offset is identical for all observations at a given 

receiver. Finally, tropospheric and ionospheric errors are often treated with a hybrid 

approach of differencing, estimation, and stochastic modeling. 
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3.2 - Formulation of the Least-Squares Solution 

In any static GPS campaign, the vector of unknowns, x, can be described as follows 

 

[ ]TTTTTT xxxxxx ambmodsatrxpos=       (3.1) 

 

where xpos is the vector of unknown receiver positions, xrx is the vector of receiver clock 

offsets at each epoch, xsat is the vector of satellite clock offsets at each epoch, xmod is the 

vector of additional model parameters (i.e. tropospheric parameters) and xamb is the vector 

of unknown ambiguities (if carrier phases have been measured). The observations made 

over all epochs at all receivers can be collected into a vector, l, including pseudorange  and 

carrier phase observations made at all frequencies.  

 

The observa tions are linked to the unknown parameters through the mathematical model 

used. For example, a carrier phase measurement can be described in terms of the unknown 

receiver coordinates and ambiguity term and the known satellite coordinates, as in Eq. 

(2.13). If the mathematical models for all the individual observations are collected, and 

linearized with respect to the observations and the unknowns, the linear math model can be 

expressed as 

 

0wrBdA =+⋅+⋅          (3.2) 

 

where δ  is the vector of corrections to the initial estimates of the unknown parameters, r is 

a vector of corrections to the observations and w is known as the misclosure vector. A and 

B are the Jacobian matrices of the mathematical model with respect to the unknowns and 

observations, respectively. The Jacobian matrices are evaluated about the initial estimates 

of the unknowns, xo and the observations, l. The notation presented follows that of Vanicek 

and Krakiswsky (1986). 
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The mathematical model described above can be augmented if additional information 

regarding the relationships between the unknowns is available. These are termed 

parameter constraints, and can in general be expressed as  

 

0=+⋅ c
T wdG                (3.3) 

 

where G is the linearized constraint matrix and wc is the constraint misclosure. For a 

solution to exist, G must have linearly independent columns – i.e. any constraint can not be 

expressed as a function of two other constraints. Consequently, this implies that the rank of 

G must equal the number of columns in G. 

 

The objective of the least-squares problem is then to find a solution to x that minimizes 

(Mikhail, 1972) : 

 

( ) ( )c
TT

2
T

x
T

l
T wdGkwrBdAkdCdrCr +⋅⋅⋅++⋅+⋅⋅⋅+⋅⋅+⋅⋅= −− 22 1

11θ        (3.4) 

 

where Cl is the variance-covariance matrix relating the stochastic properties of the 

observations, Cx is the variance-covariance matrix containing the stochastic properties of 

the initial estimates of the unknowns and k1, k2 are Lagrange multipliers required to ensure 

that the solution not only minimizes the quadratic terms, but also satisfies Eq. (3.2) and Eq. 

(3.3). 

 

Leick (1990) presents a very useful, stepwise solution to the minimization problem. First, a 

least-squares solution for the problem without cons traints is calculated as : 

 

( )( ) ( )
( ) *

1
**

11
x

T
l

T
x

T
l

T

uNuCN

wBCBACABCBAd

⋅−=⋅+−=

⋅⋅⋅⋅⋅+⋅⋅⋅⋅−=
−−−

−−−− 1111
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( ) ( )wdABCBBCr *
T

l
T

l* +⋅⋅⋅⋅⋅⋅−=
−1

          (3.5b) 
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where δ* is the solution of the least-squares problem without constraints, and r* is the 

resulting residual vector. 

 

Given a suitable constraint matrix, G, the solution for the problem incorporating the 

constraints is then given as : 

   

( ) ( )c*
TT

*c wdGGNGGNdd +⋅⋅⋅⋅⋅⋅−=
−−− 11

*
1

*      (3.6a) 

( ) ( )*c
T

l
T

lc ddABCBBCrr −⋅⋅⋅⋅⋅⋅−=
−1

*      (3.6b) 

 

where δ c and rc refer to the solutions after the constraints have been applied. 

 

Two additional quantities of note are the weighted sum-of-squares of residuals for the two 

cases. In the case of no constraints, the quadratic form can be solved as 

 

( ) wBCBwuNurCr T
l

T
**

T
*l

T ⋅⋅⋅⋅+⋅⋅−=⋅⋅
−−− 11

*
1

*          (3.7a) 

            

whereas in the constrained case this changes to 

 

( ) ( ) ( )c*
T

*
TT

c*
T

l
T

*cl
T
c wdGGNGwdGrCrrCr +⋅⋅⋅⋅⋅+⋅+⋅⋅=⋅⋅

−−−− 11
*

11      (3.7b) 

 

Note that the sum-of-squares in the constrained case is always greater, since the constraints 

effectively move the solution away from the local minimum. 

 

Lastly, the variance-covariance matrices of the estimated parameters in the two situations 

are given by 

 
1−= **x NC           (3.8a) 

( ) 1
*

T11
*

T1
**xc NGGNGGNNC −−−− ⋅⋅⋅⋅⋅⋅−=      (3.8b) 
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Note that in this case the estimated accuracy of the unknowns always increases, since we 

are adding information to the solution in the form of constraints.  

 

An advantage of using the above approach in solving the constrained least-squares 

adjustment problem lies in the fact that it is easy to update the solution if additional 

constraints are to be applied at a later point. So long as the new constraints, G2, are 

independent of the initial constraints G1 (implying that the rank of the total constraint 

matrix is still equal to the number of constraints), the updated quantities of interest are 

calculated as 

 

( ) ( )c2c22xc
T
22xccc2 wGGCGGCdd +⋅⋅⋅⋅⋅⋅−=

−
δ

1
    (3.9a)  

( ) ( )*c2
T

l
T

lc2 ddABCBBCrr −⋅⋅⋅⋅⋅⋅−=
−1

*      (3.9b) 

( ) ( ) ( )c2c
T
22xc

T
2

T
c2c

T
2cl

T
cc2l

T
c2 wdGGCGwdGrCrrCr +⋅⋅⋅⋅⋅+⋅+⋅⋅=⋅⋅

−−− 111  (3.9c) 

( ) xc
T
22xc

T
22xcxcxc2 CGGCGGCCC ⋅⋅⋅⋅⋅⋅−=

−1
     (3.9d) 

 

This will become a key development in Chapter 5, when the concept of ambiguity 

resolution is discussed. 

3.2.1 -Modification for Incorrect Apriori Stochastic Assumptions 

The preceding developments only hold if the Cx matrix used actually corresponds to the 

actual variance-covariance matrix of the initial estimates, or is neglected entirely. In the 

case that an arbitrary matrix P is used in the place of Cx, the least-squares estimate of the 

parameters is still given by Eq. (3.5), but the associated variance-covariance matrix of the 

estimated parameters becomes 

 

( ) ( ) 11T1
x

1
x NNNNNICNNIC −−−− ⋅⋅+⋅−⋅⋅⋅−= *****      (3.10a) 

 

where 
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( ) 111 PNN
−−− +=*          (3.10b) 

 

Krakiwsky (1975) shows that Eq. (3.10a) reduces to (3.8a) if P-1 = Cx. Otherwise, the error 

variance of the parameters is composed of a bias component dependant on the accuracy of 

the initial estimates and a noise component incorporating the accuracy of the observations 

and the geometry of the network. This relationship is revisited in Chapter 4. 

 

If the solution is updated by the introduction of a constraints matrix, G, the resulting 

solution is still given by Eq. (3.6a). However, the variance-covariance matrix of this 

solution is not simply calculated via Eq. (3.8b). Rather, while the Cxc is calculated using 

Eq. (3.8b), the actual error variance is calculated by adding the propagated corresponding 

noise and bias components, which themselves are determined via : 

 

xcxcnoise CNCC ⋅⋅=          (3.11a) 

( )( )
( )( )T

T11
*

T1
*xc

x
T11

*
T1

*xcbias

GGNGGNNCI

CGGNGGNNCIC

⋅⋅⋅⋅⋅−⋅−

⋅⋅⋅⋅⋅⋅⋅−⋅−=
−−−

−−−

    (3.11b) 

 

If additional constraints are added, the solution proceeds as presented in the previous 

section, but the variance-covariance matrices are propagated using the above equations, 

substituting Cxc2 for Cxc and Cxc for N*
-1 where appropriate. 

3.3 -Form of the Linearized Quantities 

The classical method of solving an overdetermined problem via least-squares as discussed 

above requires the mathematical model to be linearized. Essentially, the actual 

mathematical model sur face f(x,l) = 0 is approximated by a plane normal to the surface at 

initial estimates xo, l. The derivatives of the mathematical model with respect to all of the 

unknowns and observations are then calculated, thereby forming the Jacobian matrices A 

and B, respectively. This section briefly presents the form of the derivatives, as they will 

be useful to understand some particular aspects of the GPS positioning problem. 
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Eqs. (2.8), (2.4) and (2.12) form the basis of our mathematical model. For completeness 

they will be repeated here : 

 

( ) ( ) ( )222 )'()'()'()'()'()'()'()'( rrssrrssrrssrrssg tztztytytxtxtrtrd −+−+−=−=  
               (2.8) 

ε+++∆−∆⋅−= ITttcdp rsg )(            (2.4) 

N
ITttcd rsg ++

++∆−∆⋅−
= φε

λ
φ

)(
          (2.12) 

 

where Eq. (2.8) represents the geometrical model, Eq. (2.4) represents the pseudorange 

measurement model and Eq. (2.12) is the carrier phase measurement model. One such 

model can be established for every observation between a receiver and satellite. These 

models can then be collected into a vector f. 

 

The partial derivative of f with respect to the unknowns and observations results in the 

necessary matrices A and B. According to the partitioning of the vector of unknowns used 

in Eq. (3.1), the A and B matrices can be similarly written as 
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Note that since there is one observation for each element in f, the B matrix will be identity. 
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3.3.1 -Derivative with Respect to the Unknown Positions 

The derivatives of Eq. (2.4) with respect to the unknown receiver positions are 
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where it is assumed that frame synchronization and transmission time effects have been 

taken into account, and <xsj ysj zsj> is the vector of coordinates for the jth satellite and      

<xri yri zri> is the vector of coordinates for the ith receiver. By collecting the derivatives in 

Eq. (3.13) into a single vector, it can be seen that this vector represents the normal vector 

from the satellite to the receiver. If carrier phases are used, then the above derivatives must 

be divided by the wavelength of the carrier, in accordance with Eq. (2.12). Obviously, if a 

particular receiver does not appear in an observation, then the derivatives of the 

observation with respect to that receiver’s coordinates are zero. Finally, as the satellite 

coordinates are continuously changing, the above derivatives must be recalculated for 

every epoch. 

3.3.2 -Derivatives with Respect to the Unknown Clock Offsets 

The derivative of an observation made at a particular epoch involving the ith receiver and 

the jth satellite with respect to the clock offsets of the receiver and satellite are expressed as 
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Since the numerical value of the speed of light is very great in comparison to the other 

derivatives, the clock offsets are typically parameterized in distance units and the c 

replaced by 1 in the above equations. This prevents numerical round off errors in the 

subsequent processing. Also, note that since the clock offsets vary with time, new 

unknowns are required at every epoch. Given the case of a three-receiver network 

observing two satellites over two epochs, the resulting A matrix for the clock offset terms 

is shown in Figure 3.1. 

 

 
 

Figure 3.1. Form of the Jacobian of Satellite and Receiver Clock Offsets. 

 

As the data span used for positioning increases, it becomes evident that the number of 

clock terms to be estimated increases linearly, resulting in unwieldy matrices to 

manipulate. Fortunately the process of differencing allows us to remove these unknowns 

from the solution. 
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3.3.3 -Derivatives with Respect to the Unknown Ambiguities 

In the case that carrier phase measurements are used, the additional unknown ambiguity 

terms must be estimated. The resulting derivative of a carrier phase observation with 

respect to the ambiguity term is simply 

 

1=
∂

∂

ij

ij

N

φ
          (3.15) 

 

As the ambiguity remains constant for a particular satellite-receiver observation so long as 

lock to the satellite is maintained by the receiver, the number of unknown ambiguities and 

the resulting size of the A matrix of the ambiguities remains at a manageable size, for 

normally encountered time spans. However, a peculiarity of solving for the ambiguities 

lies in that the mathematical model as specified does not contain information regarding the 

integer nature of the ambiguities. As a result, the least-squares solution will yield real-

valued ambiguities. This is known as the float solution. Incorporating the integer nature of 

the ambiguities is known as ambiguity-resolution and is treated in Chapter 5. 

3.3.4 -Derivative with Respect to Other Model Parameters 

In Eq. (3.1), the vector of unknowns is partitioned into a vector of position unknowns, 

unknown clock offsets, ambiguity unknowns, and a vector of additional model parameters. 

These model parameters are any models that augment the basic mathematical model 

contained in Eq. (2.4).  

 

For example, the residual tropospheric effect is often modelled as (Mendes, 1999) 

 

( )ijij mzT ε⋅∆=          (3.16) 

 

where ∆z is the unknown zenith tropospheric delay, and m(.) is the known tropospheric 

mapping function which itself is a function of the elevation angle of the satellite as seen by 

the receiver, ε ij. The desire is to improve the positioning accuracy by modelling the 
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tropospheric error though estimation of the zenith tropospheric delay. Depending on the 

parameterization, ∆z may be considered to be constant, or vary according to a random walk 

process. Schüler (2001) provides an excellent review of techniques to model the 

tropospheric error.  

 

Incorporating Eq. (3.16) into the mathematical model for the pseudoranges, the derivative 

of Eq. (2.4) with respect to the unknown zenith tropospheric delay is  
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         (3.17) 

 

However, a problem arises since the tropospheric error, which requires the elevation angle 

of the satellite, will as a result depend on the coordinates of the receiver, vis. 
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Depending on the tropospheric mapping function used, the above derivatives may not be 

trivial to compute. Fortunately, due to the great distance between the receivers and 

satellites, the elevation angle is fairly insensitive to slight changes in the receiver 

coordinates – 100m difference will result in an angle change of 1”. This further implies 

that the derivative of the tropospheric error with respect to the receiver coordinates is very 

close to zero and so can be neglected. 

 

Many other models can be added to the basic positioning model. For example, the 

ionospheric error can be parameterized in numerous ways, as can receiver and satellite 

clock offsets. However, it is important when implementing these models to account for 

interdependencies in all the unknowns considered. 
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3.4 -Differential GPS 

When a set of observations is made at a given receiver, the receiver clock offset affecting 

the set is identical. Thus, selecting one range in the set as a “base” and subtracting all the 

others from this base observation will result in a set of pseudo-observations which are not 

affected by the receiver clock offset. A similar cancelling of a satellite clock offset is seen 

in the differencing of a set of observations to a single satellite. This is the basis of the 

concept of differencing in GPS. In this work, this procedure will also be known as 

processing in “differential GPS” or DGPS mode. Aside from removing unknowns from the 

solution, differencing also removes errors correlated between observations, as will be 

shown in Chapter 6. 

 

A practical description of differencing can be given as such: given a set of receivers 

observing to a constellation of commonly-visible satellites, one satellite and one receiver 

are chosen as the “bases.” Then the observations made at each receiver are subtracted from 

observation at that receiver to the base satellite. These single-differenced pseudo-

observations are then subtracted from their corresponding single-differences calculated at 

the base receiver, to create double-differences. For a set of observations collected at three 

receivers observing four satellites, the corresponding differencing matrix, ∇∆ ,  is given by 
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    (3.19a) 

 

where the original observations have been ordered as 

 

[ ]CCCCBBBBAAAA pppppppppppp 432143214321=Tl   (3.19b) 
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and the subscripted letters refer to the three receivers and the numerals refer to the 

satellites. The resulting vector of pseudo-observations (or double-differences), lDD,  is: 

 

llDD ⋅∆∇=           (3.20) 

 

In general, the rank of the differencing matrix must be equal to the number of pseudo-

observations produced. This implies all of the pseudo-observations must be linearly 

independent. A simple way to ensure this and generate the maximum number of possible 

pseudo-observations is to ensure that the differencing matrix always has a form similar to 

that of Eq. (3.19a); namely, selecting one base receiver and one base satellite for the entire 

set of observations. In this way, for a set of observations made at n receivers to m satellites, 

the maximum number of resulting double-differences in (n-1).(m-1). 

 

Due to the use of the differencing operator to map the observations into a subspace, the 

corresponding Jacobian matrices, A and B, must be modified accordingly, and the resulting 

expressions are simply 

 

AADD ⋅∆∇=           (3.21a) 

BBDD ⋅∆∇=           (3.21b) 

 

The least-squares solution then proceeds according to Eq. (3.5), with the appropriate 

substitutions.  

 

Double-differencing has significant implications on the efficiency of solving the GPS 

positioning problem. Section 3.3.2 revealed that the number of clock offset terms to 

estimate grows linearly with the number of epochs observed. While the number of 

parameters to estimate grows linearly, the number of computations required to solve them 

grows cubically (Press et al, 1992), due to the inversion of the normal matrix required. 

Thus for a three receiver epoch observing an average of 4 satellites for 20 minutes at a rate 

of 1 observation per 5 seconds, the number of clock terms to estimate is 1680, requiring 
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significant storage space and processing time to solve. On the other hand, applying the 

differencing operator to the Jacobian of the clock offsets shown in Figure 3.1, coupled with 

an appropriate reordering of the unknowns to satisfy the form of Eq. (3.19a), shows that 

the Jacobian is reduced to a null matrix. Thus the clock offsets become inestimable due to 

the differencing operator, and as a result are removed from the problem entirely. This 

significantly improves the situation, as the problem now becomes to invert a 9 x 9 matrix 

of unknown positions, in this three receiver problem. 

 

A second effect of the differencing operator becomes evident when carrier phases are used, 

and their associated ambiguities must be solved for. In the case of the three receiver 

network observing 4 satellites without loss of lock, there are 12 ambiguities to be resolved 

(assuming single frequency observations), and so the Jacobian matrix of the unknown 

ambiguities is a 12 x 12 identity matrix. However, once the differencing operator is 

applied, the Jacobian of the ambiguities becomes identical to Eq. (3.19a), which is rank 

deficient. This means that the original ambiguities can not be solved for, but that instead 

(n-1).(m-1), or 6, double-differenced ambiguities can be solved for. So long as the main 

quantities of interest are the positions of the receivers, rather than the ambiguities of the 

observations, this is of little concern. Also, note that the differencing operator, since it is 

composed of integer elements, does not affect the integer nature of the ambiguities, a fact 

that will be taken advantage of in Chapter 5. Finally, whereas the original ambiguities were 

functionally independent, the double-differenced ambiguities are mathematically 

correlated. This has important implications in the ambiguity resolution process and will 

also be further discussed in chapter 5. 

3.5 - Convergence and Linearization Issues 

Once a solution for the corrections to the unknowns and observations, δ  and r, have been 

obtained, the new estimates of these quantities are calculated as 

 

ii1i dxx +=+           (3.22a) 

i0i rll +=           (3.22b) 
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where the subscripts denote the current iteration. Note that the observations are updated 

differently from the unknowns; this is due to the definition of the residual vector and is 

discussed thoroughly (along with many other convergence issues) in Pope (1972).   

 

A problem is considered non-linear if any of the terms in the Jacobian matrices A and B 

depend on the estimates of the unknowns or observations. In this case, the normal vector to 

the solution surface f(x,l) = 0 will change between the estimate i and the updated estimate 

i+1. As a result, the problem is solved by iteration, with iteration continuing until the δ 

vector reaches some arbitrarily small size, and the Jacobian matrices remain practically 

constant between estimate and update. 

 

GPS positioning is a particularly interesting problem in that the solution is typically non-

linear only due to the position unknowns – the model derivatives with respect to the clock 

offsets, ambiguities and observations are all constants. In addition, as shown in Section 

3.3.1, the derivatives of the mathematical model with respect to the unknown positions 

produce the direction vector from the satellite to the receiver. Due to the large separation 

of the satellites from the receivers, it can be inferred that the normal vector is insensitive to 

updates in the initial estimates, given modestly accurate initial positions. As a result, very 

few iterations are required to converge to a solution, and no initial estimates at all are 

required regarding the clock offset and ambiguity unknowns. 

 

Of particular interest is exactly when convergence can be terminated. To determine the 

effect of convergence thresholds on positioning accuracy, the following test was 

constructed. Given a typical five satellite geometry and a known receiver position, a set of 

simulated range measurements was generated. The initial estimate of the receiver position 

was then chosen with a particular error level corresponding to the convergence threshold 

tested. For example, to test the effect of terminating the iteration when the corrections are 

at the metre level, the initial estimates were chosen to be one metre in error from the true 

position. 
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The δ  vector was calculated using this initial estimate and the updated solution compared 

to the known receiver position. The resulting error in positioning is the error that could be 

expected by using that convergence threshold. Figure 3.2 shows the adjustment error that 

can be expected by terminating the iteration when the δ  vector (for positions) is of a given 

magnitude. During the test, two types of unknowns were solved for – the position of the 

receiver and the receiver clock offset. Importantly, both the linear and the non- linear 

unknowns are affected by early termination. Note that the slightly worse accuracy of the 

receiver clock offset is simply a result of the positioning geometry. It is also crucial to note 

that the errors shown in Figure 3.2 are only errors due to early termination – the ultimate 

positioning accuracy depends on the quality of the observations themselves. 
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Figure 3.2. Effect of Convergence Threshold on Adjustment Accuracy and Iteration Pathway. 

 

Figure 3.1 also reveals an important aspect of the practical adjustment of GPS observations, 

namely, that the mathematical model is relatively flat, even with respect to the position 

unknowns. For example, assume that the initial estimate of a receiver position is known 

only to 100 km, a very reasonable assumption in most static applications. From Figure 3.1, 

one can expect that after one iteration, the positioning accuracy will be at the 100m level, 

neglecting any measurement errors. A second iteration brings the positioning accuracy to 
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the micron level. Thus, if millimetre- level accuracy is reasonably expected from the 

measurements and only one iteration is to be used, initial position estimates at the 300 m 

level are required.  

 

An often overlooked issue is that all the statistical measures provided by least-squares are 

at their root based on the law of propagation of errors and thus a flatness of the 

mathematical surface is implicitly assumed by the use of the matrix forms. Of course, this 

flatness is only true in fact in the immediate neighbourhood of the solution. Furthermore, 

the solution under constraints shown in Eq. (3.6) is also based on the assumption that the 

mathematical surface is flat. Fortunately, the results contained in Figure 3.1 indicate that as 

long as the perturbations in the position estimates are within several hundred metres, these 

assumptions are valid. For practically all applications this is indeed the case. 

 

A final point to consider is the effect of iteration termination on the linear parameters. It 

was shown that premature iteration termination of the non-linear terms will cause errors in 

the linear terms. However, repeating the test described above with the modification that the 

initial estimates of the linear terms are in error shows that only one iteration is required to 

achieve perfect accuracy of both the linear and non- linear terms, regardless of the size of 

the initial estimate error. Thus the adjustment of a problem involving linear and non- linear 

unknowns is insensitive to the accuracy of the initial estimates of the linear terms, which 

implies that the update of the linear terms is not necessary until the final iteration. This is 

particularly significant when carrier phase ambiguities are involved, as their magnitude can 

range from several to millions of cycles and no initial estimate of their value is typically 

available.  
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4.0 - DATUM ISSUES IN SATELLITE-BASED NAVIGATION SYSTEMS 

 

A common problem in all positioning problems, regardless of application or accuracy, is 

that of datum definition. In this work, the problem is more precisely referred to as 

reference-frame definition. Simply put, the reference frame is the spatial framework to 

which the reported positions refer. As such, a reference frame must have an origin, an 

orientation, and a scale. In the case of GPS, the default reference frame used is WGS-84. As 

discussed in Chapter 2, this reference frame is defined by the coordinates of five reference 

stations located around the world. Note that the actual datum is completely defined by 

further setting the parameters of the WGS-84 ellipsoid and specified value for the gravity 

potential (Hoffmann-Wellenhof et al, 1994). 

 

User access to this reference frame is provided via the transmission of the satellite 

coordinates in the ephemeris. Again, this is the same as in the case of terrestrial networks, 

where the datum is provided to the user typically via the publication of the coordinates of 

second-order stations in the vicinity of a project. Also, in direct analogy to the terrestrial 

case, the observations made by receivers in a network are typically of higher accuracy than 

the coordinates of the observed control points. This section investigates the effects and 

methods of datum constraint as applied to satellite-based navigation systems and their 

effects on positioning accuracies and deformation detection.  

4.1 - Overview of Traditional Datum Definition Solutions 

In terrestrial engineering networks, the problem of the datum definition has been solved 

largely through the use of minimal and inner constraints (Blaha, 1971). Consider the 

situation of a terrestrial trilateration network consisting of a set of stations which observe 

distances to a separate set of targets with published coordinates. The set of observations 

alone creates a rigid geometric figure that defines the spatial relationships between the 

targets and the stations. The rigidity of the figure is defined solely by the geometry and the 
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accuracy of the distance measurements (Falkenberg and Schnadelbach, 1987). 

Furthermore, if the published coordinates of the targets are neglected, this figure is free to 

translate and rotate is space, the scale being defined by the scale of the distance 

measurements themselves. If the internal deformation of the figure as a whole is the only 

quantity to be studied,  a comparison of the internal geometries can still be undertaken 

from epoch to epoch from the available data.  

 

However, in general it is desirable to refer the coordinates to some tangible reference 

frame. The problem arises when the figure created by the high-accuracy observations is 

mated to the constraints imposed by the lower-accuracy published coordinates. If the 

coordinates of the target points are simply considered known and held fixed, inaccuracy of 

the published coordinates will be forced into the residuals for the observations. This will 

cause masking of the high observational accuracy and  large residuals may be flagged 

where none actually exist. In addition, any assessments of the network accuracy will 

become unreliable.  

 

Several solutions exist to this problem. Firstly, the most accurate point can be chosen to 

establish the location of the network in space, with two pieces of rotation information used 

to define its orientation. This is known as the implementation of a minimal constraint. 

Obviously, one short coming of this method is that it does not use the published values of 

the other points as anything more than a check and it may be difficult to gauge exactly 

which target point is the most accurate. In addition, the accuracy of the network points can 

be expected to degrade with distance from the fixed point due to the accumulation of errors 

(Vanicek and Krakiswsky, 1986).  

 

A second possibility is to use all of the coordinate information and constrain the network 

such that its centre of mass does not move and that the overall rotation of the network is 

zero. This is known as applying inner constraints and is discussed thoroughly by Biacs 

(1989), Koch, (1988), and Blaha (1971), among others. Advantages of this method include 

that the accuracy of the network becomes more homogenous and that the solution 

guarantees that the sum-of-squares of the position displacements (from the published 
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coordinates) is a minimum. For this reason it is known as a minimum-trace solution. Note 

that in both these cases the target point coordinates are now treated as unknowns to be 

solved. 

 

Finally, if apriori information regarding the coordinate accuracies is available, then the 

solution can be augmented by using the published coordinates as observations. If the 

accuracies of the published coordinates are available, this method is the most desirable 

since it uses the maximum information available. However, if this information is incorrect, 

biases in the estimates may result due to improper weighting of the “observed” initial 

positions (Biacs, 1989).  

4.1.1 - Problems  with Moving Control Points 

In the terrestrial trilateration network just considered, the total number of unknown stations 

to be solved for equalled the number of observing stations added to the number of  target 

stations. The problem with satellite-based systems lies in the fact that the available control 

points are continuously moving. As a result, to rigorously implement any of the datum 

definition systems previously described, the coordinates of the satellites at each epoch 

would have to be added as unknowns with apriori estimates. Obviously this would cause 

serious computational burden even if short time spans were considered. For example, if ten 

satellites were observed for 20 minutes at a sample rate of one sample per 30 seconds, the 

resulting number of position unknowns would equal 6000, not including the position of the 

receivers, or any additional parameters to be solved. 

 

A possible solution would be to model each satellite’s motion over time as a Keplerian arc 

and solve for a reduced set of observations describing key parameters of the arc (Parrot, 

1989). This is a concept known as orbit fixing and essentially equivalent to deriving a new 

ephemeris applicable to the particular data set collected. However, introduction of a 

dynamic model significantly complicates the resulting mathematical models and, due to 

the short time spans typically encountered, solution instabilities may arise. As a result, this 

method is not typically used in engineering networks but does find applicability in global 

scale networks. 



44 

Unfortunately, the most convenient method of dealing with the datum problem in satellite-

based ranging systems is to assume the coordinates of the satellites as absolute and thus 

overconstrain the network. As a result, it becomes imperative to study the effects of fixing 

the satellite coordinates on the resulting solution for the receiver positions. 

4.2 -Effects of Datum Overconstraint on Positioning Accuracies 

In cases where the datum cannot be properly defined, but rather over constrained, it is 

possible to assess the effects of the network overconstraint via simulation. For the case of a 

GPS network, given the approximate locations of the receivers and a suitable ephemeris, the 

network geometry can be simulated by calculating the theoretic ranges from the receivers 

to the satellites. Furthermore, the Jacobian with respect to the unknown receiver positions 

can be generated for all the simulated observations using Eq. (3.11). In Section 3.3 it was 

noted that the Jacobian with respect to the observed ranges was the identity matrix, as the 

only observations are the ranges themselves. However, in the current case, not only will 

the ranges be considered observed, but the coordinates of the observed satellites will also 

be considered as observations, with an associated accuracy. Thus, the resulting B matrix 

for a particular range from a satellite to a receiver takes the form : 
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where xs, ys and zs refer to the coordinates of the satellite, xr, yr, zr  refer to the coordinates 

to the receiver, drs is the range from the satellite to the receiver. The standard deviation of 

the range itself is constrained to one millimetre, whereas the standard deviation of the 

satellite coordinates is assumed to be 6m, based on the values presented in Section 2.4 and 

an isotropic assumption. 

 

Once the A and B matrices for the entire set of simulated observations is generated, the 

resulting estimated accuracy of the receiver positions is given by Eq. (3.8), which is 

rewritten below including Eq. (3.5) :  
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Since the standard deviations of the observed ranges are significantly lower than those of 

the observed satellite positions, the resulting receiver position accuracies are due to the 

overconstraint of the network. 

 

Such a simulation was conducted on a four receiver network observing a single epoch. The 

baseline lengths were varied from 2 to 2000 kilometres and the number of satellites 

observed from 4 to 7. Figure 4.1 shows the resulting average three dimensional position 

accuracies for the receiver positions. Perhaps counter to intuition, the accuracy of the 

position estimates improves as the baseline lengths increase. However, it must be realized 

that the accuracies shown are due solely to the effects of the inaccuracies of the satellite 

coordinates and that no differencing of the observations has been performed. 
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Figure 4.1. Effect of Satellite Coordinate Error on Receiver Position Accuracy. 
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When the extent of the network is small, all lines of sights from the receivers to the 

satellites are nearly identical in orientation – i.e. within 2’ for baseline separations of 10 

km. This implies a very poor intersection geometry at the satellite and so any error in the 

satellite’s position becomes undetectable as it results in a nearly common bias among the 

affected ranges. Conversely, if the baseline lengths are extended, the angle of intersection 

between observations to a satellite grows, and so the external precision improves as well. 

This improvement in the positioning geometry is reflected in the higher positioning 

accuracy. When additional satellites are added to the solution, the receiver positioning 

accuracy improves as well due to the averaging out of the datum constraint errors. 

 

The rational provided for the results of Figure 4.1 implies that the errors resulting from the 

satellite coordinate errors should be highly correlated between stations when their 

separation is small. Essentially, the satellite coordinate errors cause a common shift in all 

the receiver positions. Figure 4.2 shows the average correlation coefficient between the 

position estimates for the receivers in the network described above. As expected, the 

correlation between the position solutions decreases as the network extent grows, primarily 

because a given satellite coordinate error causes different ranging errors depending on the 

orientation of the receiver-satellite line-of-sight vector. Regardless, for all baseline lengths 

tested, the correlation coefficient does not deviate from 1.00 by more than 1%. 

 

This result is very significant, as it implies that, while the external accuracy of the network 

is poor due to the relatively low accuracy of the satellite orbits, the precision of the 

position estimates with respect to one another may be much better. To test this hypothesis, 

the simulated receiver networks were reprocessed, with the added constraint that the centre 

of mass of the receiver network was assumed known and fixed. The new position standard 

deviations of the network points were calculated using Eq. (3.9d), rewritten here for 

clarity: 
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Figure 4.2. Correlation Coefficient of Network Position Solutions. 
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The resulting position accuracy estimates are shown in Figure 4.3. The results clearly now 

show the expected degradation in relative positioning accuracy with baseline separation, as 

the orbital errors effects decorrelate with distance. Examination of the resulting correlation 

coefficients shows that the correlation between position estimates is at the 10% level with 

no appreciable dependence on baseline length. As more satellites are added to the solution, 

the relative position accuracy improves since the errors in the satellite orbits tend to 

average out. The same effect occurs when longer time spans are used, as the orbital errors  
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Figure 4.3. Effect of Satellite Coordinate Error on Relative Positioning Accuracy  

 

change over time. Finally, improving the satellite coordinate accuracy directly improves 

the positioning accuracy, since this is equivalent to scaling the variance-covariance matrix  

of the observed satellite coordinates.  

4.3 -Datum Problem In Differential GPS 

In Section 3.4, the concept of differential GPS (DGPS) was introduced and its utility in 

reducing the number of nuisance parameters to be solved was demonstrated. Furthermore, 

the previous section revealed that overconstraining the datum via fixing of the satellite 

coordinates, while not optimal, preserves the internal accuracy of the network to levels 

much lower than the accuracy of the orbits themselves, and even the absolute accuracy of 

the network remains better than the orbital accuracy. As a result, a reasonable conclusion is 

that the process of differencing should not affect the datum problem, as the datum is 

sufficiently defined prior to the differencing operation. However, this section shows that in 

practice this is not the case. 
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4.3.1 -Ill-condition of the DGPS Problem 

The partial derivatives of a measured range with respect to the unknown parameters were 

presented in Section 3.3.1 and is was shown that the triad of derivatives formed constituted 

the normal vector from the satellite to the receiver involved. By reparameterizing the 

position quantities to refer to the local- level frame and making appropriate substitutions, 

the Jacobian of the measured range can be rewritten as 
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where n,e,h refer to the northing, easting and height of the receiver coordinates in a local 

level frame centred at the receiver. α and ε refer to the azimuth and elevation angle of the 

receiver-satellite line of sight, where the azimuth is measured clockwise from geodetic 

north and the elevation angle is measured from the horizon. v is the normal vector from the 

satellite to the receiver. 

 

In the case of three receivers observing two satellites, the resulting Jacobian is given by : 
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where vi
j indicates the normal vector between satellite i and receiver j. Upon applying the 

double differencing operator, ∇∆ , using satellite 1 and receiver A as the bases, the double-

differenced Jacobian, ADD,  becomes : 
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Since the value of the normal vector is relatively insensitive to the position of the receiver 

position due to the great separation between the receivers and satellites, the values of the 

non-zero elements in columns will be very similar. For example, if the three receivers are 

separated by 100 kilometres, a typical example of the ADD matrix is 
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This result indicates that the columns of the ADD matrix are nearly linearly dependent. This 

has serious consequences for the numerical stability of the least-squares solution, since the 

resulting N matrix will be nearly rank-deficient. As the baseline separation decreases, the 

columns of A become more linearly dependant until the N matrix becomes singular to the 

working precision of the computer. This is known as an ill-conditioned system. 

 

Calculation of the condition number is a useful tool in studying how ill-conditioned a 

system is. The condition number is the ratio of the largest to the smallest singular values of 

a matrix. The singular values, in turn, are the result of the decomposition of a matrix Q 

into the orthogonal matrices U and V, and the diagona l matrix W such that 

 
TVWUQ ⋅⋅=          (4.7a) 

 

where 

 

IVVUU TT =⋅=⋅          (4.7b) 

 

with I as the identity matrix. The singular values are the elements of the diagonal matrix 

W. The determination of the matrices U,V and W is beyond the scope of this thesis, but 
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many routines are documented in the literature (Press et al, 1992). The inverse of Q (if it 

exists) can be calculated via 

 
T11 UWVQ ⋅⋅= −−          (4.8) 

 

If any of the values in the diagonal matrix W are very close to zero,  then the inverse of the 

matrix Q will be dominated by error in the calculating the reciprocal of the very small 

number. In the limit, if any of the singular values is zero, then the matrix Q is singular in 

fact. Thus the condition number gives a good estimate of how noisy the inverse of the 

matrix can be expected to be. 

 

The end result of ill-conditioning in a system is that the solution to the system become 

unstable. For example, in the overdetermined system A.x = b, it is expected that small 

changes in b result in small changes in x. However, if the system is ill-conditioned, then 

the matrix inverse (AT . A), will contain very large, imprecise values. Consequently, a 

small perturbation in the b vector will be amplified and cause large, incorrect variation in 

the x vector. Obviously, this is an undesirable feature, as the errors in x are not due to 

errors in b, but rather due to the limited precision in calculating the large values of the 

required inverse. 

 

Figure 4.4 illustrates results for a network of receivers of varying numbers and separation. 

The condition number of the normal matrix for each tested network configuration was 

calculated and plotted against its average extent. As the receiver separation increases, the 

condition number improves. This is expected, as increased receiver separations cause 

larger differences in the line-of-sight vectors between a particular satellite and the various 

receivers. Thus the columns are less linearly dependant and the condition numbers 

improve. A similar situation occurs as the number of receivers used improves since adding 

receivers implies that it becomes more difficult to exactly express one column as the sums 

of the others. Note that the ill-conditioning is a numerical problem, and not a datum 

problem, since the problem lies with the limited precision of the computer used.  
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Figure 4.4. Effect of Network Size on Condition Number 

4.3.2 - Datum Visibility in DGPS 

A different effect that also causes problems when double-differencing is applied concerns 

the visibility of the datum constraints. In the undifferenced case, it was shown that the 

effects of satellite coordinate inaccuracy increased as the baseline separation decreased due 

to the inability of a smaller network to detect errors in the satellite coordinates. This 

behaviour is amplified when double-differencing is applied, since as the receiver 

separations decrease, the lines-of-sight between the receivers and satellites become more 

coincident and any satellite coordinate errors increasingly cancel. Thus the translation 

constraints implied by the fixing of the satellite coordinates become progressively weaker 

and absolute positioning accuracy degrades.  

 

To gauge the effects of the satellite orbit error on positioning accuracy in a double-

differenced mode, the simulation performed in Section 4.2 was repeated, but the A and B 

Jacobian matrices were modified to account for the double differencing. Figure 4.5 shows 

the resulting absolute positioning accuracies assuming a 6 metre orbit standard deviation 

for a range of receiver network extents all containing 5 receivers and 6 satellites. The 

accuracies resulting from processing in an undifferenced mode are shown for comparison.  
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Figure 4.5. Effect of Satellite Coordinate Error on Receiver Position Accuracy. 

 

Whereas the absolute positioning accuracy of the undifferenced mode converges to a limit 

as the network extent is reduced, the position variances in the differenced mode continue to 

grow unbounded as the effective datum defined by the fixed satellite coordinates becomes 

increasingly deficient. Note that the orientation of the network and the internal precision 

are still maintained at the levels shown in Figure 4.3. 

4.3.3 -Regularization of the DGPS Problem 

Regularization refers to methods traditionally used to alleviate problems with ill-

conditioning. It also implicitly resolves the problem of poorly visibly datum constraints. 

The root of all regularization methods is to essentially add constraints on the possible 

parameter solutions that limit the amplification of noise, while still maintaining sensitivity 

to the data contained within the observations (i.e. reducing biases due to apriori 

assumptions). The desired effect can be expressed as a minimization of the function : 

 

rCrdPd l
TT ⋅⋅+⋅⋅= −1γ         (4.9) 
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subject to the conformity of δ  and r to the mathematical models used, where δ  is the vector 

of corrections to the initial estimates, r is the vector of corrections to the observations 

(residuals), Cl  is the variance-covariance matrix of the observations and P is known as the 

regularization matrix.  

 

Note that if the matrix P-1 is chosen to be Cx, the problem reduces to that of the least-

squares problem with apriori information on the parameters, the solution to which was 

presented in Section 3.1. However, the problem remains as to what approach is appropriate 

when no apriori information is available, as in the case of an initial epoch of a deformation 

monitoring network.  

 

It is possible to describe the true positions of a set of receivers by a vector xT. As a result, 

the true ranges between these receivers and observed satellites can be denoted by the 

vector lT given by 

 

TT xAl ⋅=           (4.10) 

 

The actual observations, lo,  are contaminated by a noise vector e, which will be assumed 

to have zero mean and known stochastic properties as contained within the variance-

covariance matrix Cl. Furthermore, denote a vector xo, as the vector of initial estimates of 

the positions of the receivers, sufficiently close to xT that linearity considerations can be 

ignored. As a result, the misclosure vector, w,  can be calculated as 

 

( ) exxAlxAw Tooo −−⋅=−⋅=        (4.11) 

 

The least-squares solution for the receiver positions is then calculated via Eq. (3.5), 

resulting in a correction vector which is added to the vector of initial approximates. 

Assuming the B matrix as identity and substituting Eq. (4.11), this results in the expression 
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where xLS is the least-squares solution, with an expected value of xT and a variance of N-1. 

Note that the solution is independent of xo, as expected due to the assumption of linearity.  

 

Due to the ill-conditioning of the N matrix in the double-differenced positioning mode, 

direct application of Eq. (4.12) is impossible since the inaccuracies in calculating N-1 result 

in amplification of errors in e. One solution to this problem is to add a small diagonal 

matrix  to N to produce a matrix Nreg which has stable inversion properties. This is known 

as the process of Tikhonov regularization (Hansen, 1998). The regularized solution is then 

calculated as 
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    (4.13a) 

 

with 

 

INN reg ⋅+= 2α          (4.13b) 

 

where a is a selected regularization weight and I is the identity matrix. 

 

The error in the regularized solution, ∆xreg, is thus given by 
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which can be separated into a bias component dependant on the initial estimates and a 

noise component. The variance of the regularization error due to the bias and noise is a 
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function of the regularization parameter, the observationa l noise level, and the accuracy of 

the initial estimates related together thorough the following equation : 
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where C∆x is the variance-covariance matrix of the regularization error and Cx expresses 

the accuracy of the initial estimates. Note the similarity in form to Eq. (3.10a). As the 

regularization parameter grows, Nreg becomes increasingly different from N, and to the 

bias term begins to dominate. However, if the regularization error is small, then the noise 

term grows due to the large elements in N-1. This behaviour is illustrated in Figure 4.6, 

which shows the resulting regularization error for various values of 1/α in the case of a 20 

kilometre, five receiver network. Only orbital errors are considered and the accuracy of the 

initial estimates is assumed to be 50 metres. In general, the optimal value for 1/α is near 

the accuracy of the initial estimates. Disappointingly, in this case the accuracy of the 

regularized solution is limited to roughly the accuracy of the initial estimates averaged 

over the network, and not the accuracy of the undifferenced solution, which is at the 4 

metre level.  

 

Figure 4.7 shows the minimum error variance for a range of network extents under initial 

estimate accuracies of 1,  50 and 100 metres. In addition, the accuracies of the 

undifferenced and unregularized solutions are shown for comparison.  The horizontal 

dashed lines indicate the standard deviation of the initial estimates averaged over the entire 

network. An interesting behaviour is evident in the regularized solutions. As the network 

separation decreases, the unregularized solution accuracy degrades, for reasons discussed 

above. However, the regularized solution accuracy converges to the accuracy of the initial 

estimates. When the network expands, the differenced solution becomes more stable, and 

the solution accuracies converge to the accuracy of the undifferenced solution. 
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Figure 4.6. Contributions to the Regularization Error due to Noise and Bias for Various 1/α. 
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Figure 4.7. Minimum Variances Achievable Under Various Assumptions for Initial Estimate Accuracies. 
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The reason for this behaviour lies in the fact that for small network extents, the noise of the 

unregularized solution is very great, and so the solution must rely on the initial estimates as 

an indication of the absolute location of the network. Thus the solutions are expected to be 

highly biased. Conversely, when the network extent is greater, the datum as defined by the 

satellites becomes more visible, and so the reliance on the initial estimates is lessened and 

the bias shrinks. This behaviour is confirmed by Figure 4.8, which shows the relative 

contributions to the total error from bias and noise sources for various baseline lengths, 

under the assumption of initial accuracies accurate to 50 metres. At the smallest receiver 

separations, the orbital errors largely cancel out, and as a result the noise contribution is 

very small. As the network expands, the decorrelation of the orbital error causes 

instabilities in the solution which are regulated by the bias in the initial estimate. Finally, 

as the geometry improves further, the oscillations due to the orbital noise are damped as 

well, resulting in error variance behaviour similar to the undifferenced case. Of course, 

when the accuracy of the initial estimates better than the accuracy of the satellites, the 

solution essentially fixes the datum deficiency by using the initial estimates, ignoring the 

satellite overconstraint altogether.  Again, it must be stressed that the accuracies discussed 

are absolute, and that the relative accuracies are limited by the values shown in Figure 4.3. 
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Figure 4.8. Contributions to the Regularization Error due to Noise and Bias at Various Network Extents. 
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4.3.4 -Deformation Monitoring with DGPS 

The results of the previous section indicate that the absolute (global) accuracy of DGPS 

positioning remains at the several metre level, due to the inaccuracy of the satellite orbits 

acting as control points and the poor visibility of the translation component definition to 

receivers on the ground. However, it was also shown that the relative precision of DGPS is 

quite good. In deformation monitoring, the quantities of interest are the changes in the 

position of points in the network. Furthermore, in most applications, the points of interest 

do not move large distances, usually on the order of several centimetres or decimetres.  

 

As an example, the true positions of a station at two epochs will be defined as xT1 an xT2. 

In processing the two epochs, it is assumed that the same initial estimate, xo, for the 

receiver positions have been used. In addition, to simplify the discussion, the observation 

geometry is assumed to be identical for the two sessions, which is true for observation 

spans of identical length separated by one sidereal day. In the case that the observation 

spans are not separated by 23hr 56min, the above assumptions hold if the positioning 

accuracies and observation error levels are similar, which will be assumed true in the 

sequel. Using the expression for the regularized position estimates, the resulting 

regularized estimates for the deformation vector, dreg21, is then given by ; 

 

( ) ( ) ( ) ( )12
1

l
T1

regT1T2
1

regoo
1

reg

reg1reg2reg21

eeCANxxNNxxNNI

xxd

−⋅⋅+−⋅⋅+−⋅⋅−=

−=
−−−−

 (4.16) 

 

Since the true deformation vector is xT2-xT1, the error in the deformation estimate is 

 

( ) ( ) ( )12
1

l
T1

regT1T2
1

regreg21 eeCANxxNNId −⋅⋅−−⋅⋅−=∆ −−−     (4.17) 

 

which does not depend on the biases of the regularized solutions, but is biased now by the 

magnitude of the deformation to be measured. The error variance-covariance of the 

regularized deformation vector is  
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( ) ( ) ( ) 1
reg

1
reg

T1
regd

1
regd NNNNNICNNIC −−−−

∆ ⋅⋅⋅−⋅+⋅−⋅⋅⋅−= c12    (4.18) 

 

where Cd is the variance-covariance matrix of the expected deformations and c is a 

constant between 0 and 1 expressing the percentage of correlation between the 

observational errors between the two epochs. 

 

For deformation monitoring to be effective, the error variance of the regularized 

deformation vector must be smaller than the variance of the deformation itself. For 

example, if the solution is not regularized at all, the deformation estimate becomes 

unbiased, but excessively noisy, making it a useless measure. However, if the solution is 

over-regularized, then the error of the deformation estimate is at the same level as the 

magnitude of the deformation itself. Figure 4.9 shows the error standard deviation of the 

regularized deformation estimate averaged over a five receiver network with a 20 km 

extent under various values of 1/α. A deformation level of 1 cm was assumed as well as a 

6 m satellite orbit error with no correlation between observation spans. The behaviour is 

very similar to that of the absolute case shown in Figure 4.6. 
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Figure 4.9. Contributions to the Detection Regularization Error due to Noise and Bias for Various 1/α. 
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However, unlike the case of absolute positioning, where the value of 1/α is typically 

around the value of the initial estimate accuracy due to its very large variance, in the 

deformation monitoring mode, the value of 1/α depends closely on the ratio of the 

observational variance and the expected deformation magnitude. For example, Figure 4.9 

also shows the regularization error when a white noise with a standard deviation of 1 cm is 

added to the system. Fortunately, given proper stochastic modelling of the observations, it 

is possible to determine the optimal value of 1/α via application of Eq. (4.18).  

 

Figure 4.10 shows the maximum deformation monitoring accuracy achievable under 

various baseline lengths. The results assume a deformation levels of 5 mm, 1 cm and 2 cm 

and considers the effects of the satellite coordinate error and a 1 cm noise level. When 

compared to the absolute accuracies achievable as shown in Figure 4.7, the accuracy of the 

deformation detection is striking. As expected, the detection sensitivity decreases as the 

network separation increases, due to the increased decorrelation of the orbital errors. Also, 

the sensitivity of the deformation detection decreases as the deformation magnitudes 

increase, due to biasing of the solution. However, at all distances analysed, the sensitivity 

is still below the magnitude of the deformations expected. 
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Figure 4.10. Deformation Detection Accuracy. 
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Under actual conditions, the error levels would depend on the actual errors present and 

network extents, as discussed in Chapter 6, and the length of time the network has been 

observed. Thus the preceding discussion is only intended to study the principles of datum 

definition in satellite-based networks. An investigation of the actual accuracies, both 

absolute and relative, is presented in Chapter 7. Also, the study so far has limited itself to 

the case where only position unknowns are considered. In reality, to achieve the highest 

levels of positioning accuracy, it is necessary to use the carrier phase measurement. The 

complications involved due to the added ambiguity unknowns are discussed further in 

Chapter 5, including their effects on the datum resolution problem. 
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5.0 - AMBIGUITY RESOLUTION FOR PRECISE POSITIONING 

 

Two types of measurements are typically used in satellite-based navigation systems – code 

(or pseudorange) and carrier phase. As discussed in Chapter 2, the code measurement is 

simply a time-of-flight measurement made using a ranging code superimposed on a carrier 

signal. The carrier phase is essentially a measurement of the integrated Doppler shift of the 

carrier signal itself. As a result, it is corrupted by an unknown integer ambiguity due to the 

inability to sense the number of cycles between the receiver and satellite at the moment of 

signal acquisition. This ambiguity remains constant as long as lock is maintained to the 

satellite. 

 

Despite the added unknowns incorporated by utilising the carrier phase, this measurement 

is crucial for precise positioning applications. This is because the process of measuring the 

carrier phase is inherently more accurate than the code measurement process. In fact, the 

carrier phase is often two orders of magnitude more accurate, as will be discussed in 

Chapter 6. As a result, for high precision applications, use of the carrier phases is required 

and a methodology for dealing with the added ambiguity unknowns must be established. 

This chapter investigates these issues, including the effects of datum constraint on the 

ambiguity resolution process and changing satellite geometry, and reviews the LAMBDA 

method of resolving the integer nature of these ambiguities. 

5.1 - Float Ambiguity Resolution 

In Chapter 3, the observations were shown to be linear with respect to the unknown 

ambiguity terms. Given a set of m satellites observed at n receivers, the total number of 

observations is m.n, which is also equal to the number of unknown ambiguities. If positions 

are to be solved for as well, it becomes evident that the problem is underdetermined unless 

additional information is included (i.e. aprori information regarding the receiver positions) 

or more than one epoch is observed without loss of lock. 
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A further complication is introduced due to the presence of the unknown satellite and 

receiver clock offsets. For example, the receiver clock offset affects all ranges measured at 

the receiver equally, lengthening or shortening them by a quantity c.∆T. However, the 

unknown ambiguities also directly shorten or lengthen the ranges by a quantity N. Thus, 

given measurements made over several epochs, it is impossible to separate the effects of 

the clock offsets and the ambiguities, since the average clock offset can be absorbed by 

adding this value to all the ambiguities measured at the receiver. A similar argument can 

be made when considering the satellite clock offsets. Hence, the system of equations 

becomes effectively singular and no solution is possible unless modelling of the clock 

offsets is preformed, which is not possible in typical applications. 

 

Double-differencing provides the solution to this problem. Discussed in Chapter 3, double 

differencing removes all the clock offsets from the solution. However, an added effect is 

that the process of double differencing also causes the entire set of individual ambiguities 

to become inestimable. For example, assume that n.m ambiguities are to be solved. The 

original Jacobian with respect to these ambiguities is an n.m by n.m identity matrix. 

Denoting the double differencing matrix as ∇∆ , the resulting normal matrix for the 

ambiguities becomes : 

 

( ) ICIN
1T

l
T

amb ⋅∆∇⋅∆∇⋅⋅∆∇⋅∆∇⋅=
−

      (5.1) 

 

where I is an identity matrix and Cl is the variance-covariance matrix of the observations. 

Namb is singular since the dimensions of ∇∆ are (n-1).(m-1) by n.m as per Section 3.4. 

Fortunately, the ambiguities are only nuisance parameters, and thus only the double-

differenced ambiguities are solved for. 

5.1.1 -Regularization and Ambiguity Resolution 

The results of Chapter 4 indicated that the datum of the a receiver network was actually 

over constrained by the fixing of the satellite coordinates, but that additional regularization 

had to be performed due to the poor visibility of the datum. It was also shown that if 
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absolute accuracy was desired, that the value of the regularization parameter, 1/α, should 

be chosen near to the accuracy of the initial estimates. In small-extent networks, the 

absolute accuracy is limited to the accuracy of the initial estimates, whereas on larger 

extents, accuracy limit converges to the accuracy of the satellite orbits. However, if 

deformation monitoring is the end result, the 1/α parameter should be chosen near the 

magnitude of the expected deformations. This will result in very biased results, but 

sensitive deformation detection. 

 

In the case when carrier phases have been measured, it is important to consider the effect 

of the additional unknowns on the regularization scheme. A similar development to that 

used in Chapter 4 will be followed. Firstly, the vector of parameters will be extended such 

that 

 









=

amb

pos

x
x

x           (5.2) 

 

where xpos refers to the unknown position quantities and xamb refers to the unknown 

ambiguities. Assume that the accuracy of the initial estimates of the position quantities can 

be expressed by the variance-covariance matrix Cx and that the accuracy of the initial 

estimates of the ambiguities is undefined. In addition, we assume that the regularization 

matrix P is only applied to the position estimates. The normal matrix for the unknowns can 

be partitioned into components referring to the positions and ambiguities respectively, 

namely: 

 


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
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
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NN
NN

N         (5.3) 

 

and the regularized normal matrix is therefore given by 
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
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ambpos/amb
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N
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       (5.4) 

 

where the matrix P is an arbitrary regularization matrix, chosen to be the identity matrix in 

the case of Tikhonov regularization and Namb is always invertible. 

 

The total regularization error is finally given by Eq. (4.14) 
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modified to take into account the fact that the ambiguities are of unknown accuracy. 

 

An experiment was conducted using a 10 receiver network with an average separation of 

40 kilometres. A twenty minute segment of data was used to generate the normal matrix 

corresponding to the 10 unknown receiver positions and the 72 unknown ambiguity terms. 

The accuracies of the initial estimates of the unknowns were chosen to be 1m, 60m and 

200m respectively, and the observational stochastic models followed those presented in 

Chapter 6, using standard values. The resulting average position accuracies for various 

values of 1/α are shown in Figure 5.1, along with the noise contribution to the total error. 

For very small values of 1/α, the noise contribution is slight, but the bias component grows 

with the degradation in the initial estimate accuracy. If the 1/α value is high, the bias error 

is small, but noise is amplified, a result already encountered in Chapter 4. Figure 5.2 shows 

the average ambiguity accuracy for the tested 1/α values as well as the noise contribution 

to the overall accuracy. Large biases become apparent as the 1/α values decrease and the 

initial estimate variances increase. The reason for this is due to the fact that the double-

differenced ambiguities are an internal quantity of the network.  
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Figure 5.1. Average Position Accuracy for Various Values of 1/α and Initial Estimate Accuracies. 
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Figure 5.2. Average Ambiguity Accuracy for Various Values of 1/ α and Initial Estimate Accuracies. 
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Due to the geometry of the double differences, the entire network can be translated in 

space without changing the values of the double differences significantly. However, the 

double-differences are very sensitive to the relative position of the receivers within the 

network. Thus, if good initial estimates are available, the accuracy of the ambiguity 

resolution improves, as evidenced by the decreased noise contribution for small values of 

1/α when the initial estimates are weighted heavily. In addition, if the initial estimates are 

very poor and the regularization light, then the ambiguities are not affected by the large 

biases in the position estimates, since they are resolved using the actual data available – 

resulting in poor accuracy, but low bias. The worst situation occurs when the initial 

estimates are poor, and the regularization is heavy. Basically, this corresponds to distorting 

the internal geometry of the network, and the ambiguity solution suffers as a consequence. 

 

In Chapter 4, it was shown that a heavy regularization is desirable for deformation 

monitoring since, although the absolute position estimates are heavily biased, the resulting 

deformation detection vector is very sensitive. Unfortunately, a review of Eq. (4.17) shows 

that the deformation vector is sensitive to the bias in the difference between the unknowns 

between the two epochs. When the position unknowns only are considered, this is not a 

problem, since the order of the deformations is at the centimetre- level. However, when 

carrier phases are used, the differences between the ambiguities for the two sessions can be 

millions of cycles and this propagates into the deformation sensitivity for the positions. As 

a result, it is important to ensure that the ambiguities are as unbiased as possible. This is 

particularly important if the ambiguities are to be resolved as integers, discussed in Section 

5.2.  

 

A consideration of the reason for the ambiguity bias suggests the solution to this problem. 

The ambiguities become biased when the internal network geometry is deformed due the 

overweighting of inaccurate apriori position estimates. Furthermore, the need for 

regularization stems from the poor visibility of the translation component of the datum 

definition, previously discussed in Chapter 4. Thus the goal is to determine a regularization 

method that solves the translation problem (i.e. the centre of mass of the network) while 
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allowing the internal geometry of the network to be solely determined from the observed 

data. One method of accomplishing this is through an appropriate change in the 

regularization matrix used. 

 

An identity regularization matrix is equivalent to a weighted observation of each point as 

its initial estimate. If instead, the centre of mass of the network is considered the 

“observed” quantity, it can be derived by averaging all the initial estimates for the various 

points in the network. This can be expressed via the following matrix 
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
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100100
010010

001001
TG        (5.6) 

 

The variance of each centre of mass “observation” is equal to the variance of the initial 

estimates divided by the number of points in the network. Using the above matrix as a 

regularization matrix results in the following expression 
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      (5.7) 

 

where n is the number of points in the network. Note that this is very similar to the method 

of inner constraints, with the exception that the constraints are weighted, rather than 

absolute and the Npos matrix is merely ill-conditioned, rather than mathematically singular.  

 

Figure 5.3 shows the resulting position accuracies when the regularization scheme shown 

above is implemented. Figure 5.4 illustrates the resulting accuracies of the ambiguities. 

Interestingly, the position regularization error becomes less dependent on the degree of 

regularization when the centre of mass regularization technique is used. In addition, further 

inspection of the resulting errors shows that the predominant error is a translation of the 

entire network, with very little distortion even at extremely high regularization levels. This  
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Figure 5.3. Average Position Accuracy for Various Values of 1/α and Initial Estimate Accuracies using 

Centre of Mass Regularization.  
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Figure 5.4. Average Ambiguity Accuracy for Various Values of 1/ α and Initial Estimate Accuracies using 

Centre of Mass Regularization.  
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is because a high regularization level only implies is that the centre of mass of the network 

is rigidly fixed, and that the points are still allowed to move in relation to one another. The 

higher noise contribution component is thus explained, since the regularization does not 

attenuate the noise of the observations themselves. 

 

The greatest effect of the centre of mass regularization is in the ambiguity domain. As 

shown in Figure 5.4, the ambiguity regularization error becomes very insensitive to 

changes in 1/α (note the change in axis scale) and that the bias is relatively small, even for 

very poor initial estimates. This is extremely important for deformation monitoring 

applications, as it implies that the 1/α parameter can be very small, resulting in high 

deformation detection accuracy, without significantly biasing the ambiguities. However,  

even if the initial estimates are very good, only constraining the centre of mass does not 

improve the ambiguity resolution since no information of the internal geometry is added, 

which is what the double-differenced ambiguities depend on.  

 

Another unfortunate consequence of only constraining the centre of mass of the network is 

that translations of the entire network from epoch to epoch become impossible to detect. 

Regardless, the improvement in the relative deformation detection outweighs this 

shortcoming. In general, if the initial estimates of the receiver positions are ve ry good (i.e. 

at the centimetre-level), then the first regularization technique should be used as it 

improves the internal geometry of the network, allowing for improved ambiguity solution.  

However, if the initial estimates are poor (i.e. at the first epoch of a monitoring campaign) 

then the second technique should be used to minimize the biases in the ambiguities. 

Subsequent epochs can then be processed using the apostori variance-covariance matrix of 

the position estimates. This will result in a series of translated solutions, with increasingly 

precise internal geometry, which can be easily analysed for relative deformations. 

5.1.2 -Base Satellite Changeovers 

One issue in satellite-based positioning is that the constellation of observed satellites is 

continually changing. In addition, the basis of double-differencing relies on constant 

visibility to a single base satellite, since that the ambiguity of that observation is implicitly 
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contained in all the double-differenced ambiguities formed. Unfortunately, even for short 

time spans, it may be possible that the base satellite descends out of view, or below a 

certain threshold elevation. As a result, a new base satellite is chosen and consequently all 

the ambiguities must be re-evaluated. Since the accuracies of the ambiguities are 

dependant on the length of time that they have been observed for (Teunissen, 1996), this 

implies that two observation spans of equal duration may have significant differences in 

accuracy if a base satellite changeover occurs during one of them. 

 

Fortunately, under certain conditions, it may be possible to prevent the loss in accuracy 

associated with base satellite changeovers. Given a set of three satellites, the double 

differenced ambiguities formed can be written as 

 

BCCB

BAAB

NNN
NNN

∆−∆=∆∇
∆−∆=∆∇

        (5.8) 

 

where ∆  refers to the single-differences between receivers formed by satellites A,B and C 

and B is the base satellite. Further assume that at some epoch the base satellite B falls 

below some threshold elevation and that satellite C becomes the new base satellite and that 

no cycle slips occur during the base satellite changeover. The new double-differenced 

ambiguities are then given by 

 

12

112

CBCBBC

CBABCAAC

NNNN

NNNNN

∆−∇=∆−∆=∆∇

∆∇−∆∇=∆−∆=∆∇
      (5.9) 

 

where the superscripts refer to a particular observation span before and after the base 

satellite changeover. Note that if a cycle slip occurs on satellite C, neither relation holds, 

and that if a cycle slip occurs on satellite A or B only one of the above relations is 

invalidated – i.e. if satellite B is not observed after the changeover, it does not affect the 

relationship written for the NAC ambiguity.  
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The implication of the above relations is that for each base satellite changeover, equations 

of the form of Eq. (5.9) can be written for the entire set of satellite pairs observed after the 

changeover that did not suffer from cycle slips. These can then be gathered into a set of 

constraint equations and used to improve the float solution using Eq. (3.6), repeated here 

for convenience: 

 

( ) ( )c*
T11

*x
T1

*x*c wdGGCGGCdd +⋅⋅⋅⋅⋅⋅−=
−−−      (3.6) 

 

where δ * is the initial float solution and δc is the solution after applying constraints. G is 

the matrix of constraint equations of the linearized form of Eq. (5.9) consisting of ones and 

zeros and wc is a null vector. Cx* is equal to the variance-covariance matrix of the initial 

estimated parameters. Note that both the position and ambiguity unknowns will be 

modified due to the application of the constraint and that the accuracy of both positions 

and ambiguities will improve, in accordance with Eq. (3.8b). A final effect of the 

application of the constraints is that the number of independent ambiguities will be come 

reduced by the number of constraints applied, since each constraint defines one ambiguity 

as the difference of two others.  

 

For example, for a data segment that contains a single base satellite changeover, the 

average ambiguity variance can be expected to be twice as large as that for a similar 

segment that contains no changeovers but similar geometries. This is simply due to the fact 

that twice as many unknowns to be solved. The application of the constraints significantly 

improves the result, since essentially the number of independent ambiguities to be solved 

are reduced in half. The effects of applying the base satellite changeover diminish as length 

of the data segment increases but even in this case the reduction in the number of 

independent ambiguities is significant for integer ambiguity resolution.  

5.2 -Integer Ambiguity Resolution 

The ambiguities affecting the observed carrier phases are integer, and the process of 

double-differencing maintains this integer nature. Unfortunately, the classic least-squares 
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solution is incapable of incorporating this information, and as a result the solved 

ambiguities are real-valued numbers. Not only does this imply that the ambiguities absorb 

some of the observation residuals into the real-valued component of their solution, but 

positioning accuracy suffers since valuable information is not added to the solution.  

 

The process of ambiguity resolution seeks to determine the most likely integer values for 

the ambiguities and then use this information to improve the solution for the position, by 

constraining ambiguities to their integer values. The methodology implemented herein 

follows the LAMBDA method pioneered by Teunissen (1993) and only a cursory overview 

of this non-trivial topic is provided here, with focus limited to peculiarities of ambiguity 

resolution for high precision applications. For further details of the LAMBDA method the 

excellent and practical review by De Jonge and Tiberius (1996) is suggested.  

5.2.1 -Principle of Integer Ambiguity Resolution 

The process of integer ambiguity resolution begins with an initial solution for the position 

of receivers in a network and the float ambiguity solution, along with their associated 

variance-covariance matrix. Assume that the true integer values of the ambiguities was 

known, and denoted by the vector wamb. These known ambiguities can be used to form a 

constraint equation of the form  

 

AA wN =           (5.10) 

 

where NA an unknown (but estimated) ambiguity, and wA is the known integer value for the 

ambiguity. In general, the ambiguities do not have to be double differenced, but are 

assumed to be so in the sequel. An updated solution for the positions and ambiguities can 

then be calculated as a step-wise addition of contraints, set out in Eq. (3.6). In the case that 

not all the ambiguities have known integer values, the unknown ambiguity estimates will 

be improved by the knowledge of the other ambiguities. All the known ambiguities will be 

fixed to their integer values. The resulting sum-of-squares of errors for the updated 

solution will be given by Eq. (3.7b), repeated here:  
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where rc and r* are the residuals after and before the application of the constraints, G is the 

constraint matrix formed by the left side of Eq. (5.10), δ * is the solution for the positions 

and the ambiguities prior to the application of the ambiguity constraints, wc is the 

constraint vector formed by the right side of Eq. (5.10), and Cx* is the variance-covariance 

matrix of the position and ambiguity unknowns prior to ambiguity fixing.  

 

The constrained sum-of-squares of residuals is always larger than the non-constrained 

case. In addition, selection of a different wc vector (i.e. changing what the integer 

ambiguities are assumed to be) will change the constrained sum-of-squares. Since the goal 

of least-squares is to minimize the overall sum-of-squares of residuals, the goal of the 

integer ambiguity process it to determine the integer vector wc that minimizes the value of 

Eq. (3.7b), or minimizes the change in the original sum-of-squares of residuals. Inspection 

of the right side of Eq. (3.7c) shows that the rightmost term is minimized when the 

distance from the vector wc to the float ambiguity solution is smallest, calculated in the 

norm defined by GT.Cx*
.G.  Once this integer vector is determined, it can be used as a 

constraint on the ambiguity values to update the estimates of both the positions and all the 

ambiguities using Eq. (3.6). 

 

In general, the optimal integer ambiguity vector is determined by establishing a search-

region around the float ambiguity vector, selecting integer ambiguity vectors inside of this 

search-region and calculating the distances between the float and integer solutions. The 

size of the search-region must be carefully selected, since an inappropriate selection may 

exclude the actual minimizing integer vector, whereas too little restriction will result in too 

many candidates being examined for the process to be efficient. Typically, the error 

ellipsoid surrounding the float ambiguity estimate is used to define the shape of the search 

region, and this region is scaled sufficiently to include at least one integer vector. A further 

difficulty lies in actually selecting integer elements inside of the error ellipsoid. In practice, 

the semi-major axis of the ellipsoid is used to establish the range of possible integers for 
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the ambiguities to be determined, which in the case of a highly elongated ellipsoid results 

in an overly large volume of space to be investigated. 

 

A key assumption in the application of Eq. (3.6) lies in the fact that the integer ambiguity 

vector wc is known. Obviously, since this vector is the quantity to be determined, it is not 

known. However, as shown by Teunissen (2002) , given that the float ambiguities are of 

sufficient accuracy, the integer vector, once properly selected, can be assumed known with 

little adverse effect on the resulting statistics. A more serious problem lies in the fact that 

the minimizing integer vector will be the vector that lies “closest” to the initial float 

ambiguity vector. As a result, the presence of any biases in the float vector may cause the 

integer vector to become biased as well. However, since the integer vector is assumed 

correct, the resulting statistical estimates after applying the integer constraint will be 

grossly optimistic despite the fact that the resulting position estimates will be also biased. 

For this reason, it is crucial that the float ambiguity vector remain as unbiased as possible, 

which required appropriate modelling of observational errors and careful selection of the 

regularization technique, as discussed previously.  

 

Lastly, if any base satellite changeover constraints have been applied in the determination 

of the float solution, the integer ambiguity search must be restricted to the independent 

ambiguities if the constraints are to apply after the resolution process. This creates a 

situation where some ambiguities are actually partially fixed, since one of the parent 

ambiguities is fixed and the other is not.  

5.2.2 -Ambiguity Success Rate 

According to Joosten and Tiberius (2000), the lower-bound probability that a set of n 

unbiased ambiguities can be resolved as their true integer values is given by 
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with  
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        (5.11b) 

 

where ASR is the lower-bound probability that the ambiguity set can be resolved as integer, 

Φ is the standard normal cumulative probability distribution and σi|I is the standard 

deviation of the ith ambiguity conditioned on the solution of all the previous ambiguities. 

The values of σi|I are obtained from the diagonal elements of the D matrix resulting from 

the triangular decomposition of the variance-covariance matrix of the ambiguities, Camb, 

written as 

 

LDLC T
amb ⋅⋅=          (5.12) 

 

For the assumptions inherent in Eq. (3.7b) to hold, this probability must be sufficiently 

high such that the integer ambiguities can be considered exact. A different view is to 

consider that any ambiguity can be resolved as some integer, regardless of its accuracy. 

However, a high success rate ensures that the ambiguities are being resolved to their 

correct values, neglecting the effects of biases in the float ambiguity solution. Ambiguity 

success rates of 99% are usually used for this purpose since an incorrectly resolved 

ambiguity will cause undetectable biases in the position estimates.  

 

In a typical observation campaign, some ambiguities will be determined to a high 

accuracy, whereas others, perhaps due to low elevation of the satellite, or great separation 

of the receivers, will be estimated with a lower accuracy. As a result, it is usually very 

difficult for the entire set of ambiguities to be resolved as integer to a sufficiently high 

probability. Traditionally, this would result in no ambiguities being resolved as integers, 

resulting in a float solution. However, a more effective procedure is to order the 

ambiguities in order of decreasing conditional accuracy (i.e. by inspection of the D matrix 

of the LTDL decomposition), and to only select the set of ambiguities that result in an 
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ambiguity success rate of 99%. These ambiguities are then determined as integer, and their 

constraint improves both the position solution and the remaining float ambiguities. The 

main advantage of using this strategy for deformation monitoring is that the accuracy of 

subsequent epochs is made more consistent, since a single bad satellite or receiver does not 

cause the entire network to revert to a float mode solution.  

5.2.3 -Ambiguity Decorrelation 

The main problem with a naïve search for an integer vector wc based from the float 

ambiguity solution is that the float ambiguities are typically highly correlated. For this 

reason, the error ellipsoid surrounding the float ambiguity estimate is highly elongated and 

as a result, the search for the integer ambiguities is very inefficient (Teunissen et al, 1994). 

In general, the most efficient searching occurs when the ambiguities are uncorrelated, and 

if the ambiguities are completely decorrelated, the solution for the most likely integer 

ambiguities simplifies to a rounding of the float estimates to their nearest integer.  

 

Teunissen (1993) shows that it is possible to develop a transformation that transforms the 

correlated ambiguities into an almost uncorrelated equivalent set, while maintaining the 

integer nature of these ambiguities. Determination of the integer matrix Z that 

accomplishes this partial decorrelation is the heart of the LAMBDA method, and details on 

the procedure for determining the Z matrix is given by De Jonge and Tiberius (1996).  

 

Application of the Z matrix to the original ambiguities results in a transformed set, with an 

associated variance covariance matrix that has the same volume as the original set. Thus 

the accuracy of the ambiguities is not changed, but merely their correlation. The integer 

vector that minimizes the weighted distance to the transformed float ambiguity is then 

chosen as the most likely integer. Due to the reduced correlation of the transformed 

ambiguities, the efficiency of this process is greatly improved, often reducing the number 

of candidates to be tested by several orders of magnitude. The resulting most- likely integer 

vector in the original system is then solved using the inverse of Z, which is always square 

and invertible. Finally, this integer vector is used as a constraint and the solution for the 

positions and ambiguities is updated. 
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Note that in the case that constraints on the ambiguities have been applied, such as those 

due to base satellite changeovers, only the independent ambiguities are considered.  As 

well, from the subset of independent ambiguities, only the ambiguity set that allows for a 

sufficiently high ambiguity success rate is estimated.  

 

Advantages of decorrelating the ambiguities goes beyond increasing the efficiency of the 

integer vector determination. Eq. (5.11a) provides a lower bound on the ambiguity success 

rate. Teunissen (2000) shows that this lower bound becomes increasingly sharp as the 

ambiguities become increasingly decorrelated. Although the decorrelating transformation 

does not improve the overall accuracy of the ambiguities to be solved, the decorrelation of 

the ambiguities raises ambiguity success rate estimate for a given set of ambiguities, which 

in turn allows more ambiguities to be added to maintain the success rate estimate at a 

particular level. 

5.3 - Summary of the Ambiguity Resolution Process and Precise Position Determination 

This section provides a step-by-step summary of the solution for the positions of receivers 

in a static network and the ambiguities associated with a particular observation session.  

 

Step 1. Establish the regularization method to be used. 

If no prior information on the receiver positions is available, use the single point 

solutions of the receivers to establish the centre-of-mass of the network and utilize 

a high 1/α value (i.e. 0.001 m). Otherwise, use the variance-covariance matrix of 

the estimated parameters from the prior epoch and their estimates. This results in 

the regularized normal equations 
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Step 2. Determine the regularized float solution of the ambiguities and the receiver 

positions.  

This results in the quantities δ reg and Cxreg, calculated using the methods of  

Chapter 3, with the forms 
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where δ pos and δamb are the corrections to the initial estimates of the position and 

ambiguity unknowns and Cpos, Camb are the variance covariance matrices of the 

estimated positions and ambiguities and Cpos/amb is the cross-covariance matrix of 

the position and ambiguity unknowns. 

 

Step 3. Apply any base satellite changeover constraints to improve the receiver position 

and ambiguity estimates. 

 The updated quantities are calculated via : 

 

( ) ( )regbase

1

basexreg
T
basebasexregregbase dGGCGGCdd ⋅⋅⋅⋅⋅⋅−=

−
  (3.9a) 

( ) xreg
T
base

1

basexreg
T
basebasexregxregbase CGGCGGCCC ⋅⋅⋅⋅⋅⋅−=

−
  (3.9d) 

 

where Gbase is the matrix consisting of the base satellite changeover constraints. 

Note that both the position and ambiguity estimates are affected due to their cross-

correlation at the float estimation stage. 

 

The constraint matrix, Gbase can be used to establish a matrix Zind which collects 

the remaining independent ambiguities.  These will be the ambiguities that have not 

yet been expressed as the sum of any other ambiguities. Thus the independent 

ambiguities are collected via : 
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totindind aZa ⋅=         (5.14a) 

 

where aind are the independent ambiguities and atot are the total ambiguities.  

 

Application of Eq. (5.14) also results in the modified variance-covariance matrix of 

the ambiguities given by 

 
T
indambindind ZCZC ⋅⋅=        (5.14b) 

 

Step 4. Form the LT.D.L decomposition of the variance-covariance matrix of the 

independent float ambiguities. 

This decomposition is necessary for the subsequent decorrelation step and 

inversion of the variance-covariance matrix of the ambiguities. Algorithms for the 

decomposition are widely available, for example in Press et al (1992). 

 

Step 5. Decorrelate the independent ambiguities.  

The decorrelation process relies on the determination of the integer decorrelating 

matrix Z, as per de Jonge and Tiberius (1996). The development of the Z matrix 

therein operates on the LT.D.L decomposition and also reorders the elements such 

that the transformed ambiguities are arranged from lowest to highest accuracy. The 

decorrelation matrix Z creates a transformed ambiguity vector, adecor, and its 

associated variance covariance matrix, given by 

 

inddecordecor aZa ⋅=         (5.15a) 

decordecor
T
decordecor

T
decorinddecordecor LDLCZCZC ⋅⋅=→⋅⋅=    (5.15b) 

  

Step 6. Select the ambiguities that allow for an ambiguity success rate of at least 99%. 

This is accomplished by going through the Ddecor matrix from the most precise to 

the least precise ambiguity and calculating successive ambiguity success rates until 
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the rate drops below 99%. A matrix Zsel  then selects the ambiguities to be solved as 

integer. 

 

decorselsel aZa ⋅=         (5.16a) 

T
seldecorselsel

T
seldecorselsel

T
seldecorselsel ZDZD,ZLZLZCZC ⋅⋅=⋅⋅=→⋅⋅=   

(5.16b) 

 

Step 7. Calculate the inverse of the variance-covariance matrix of the selected ambiguities. 

This is necessary to calculate the distance between the various integer vectors to be 

tested and the transformed float solution. Since Lsel is lower triangular and Dsel  is 

diagonal, the inverse is efficiently calculated via 

 
T1

sel
1

sel
1

sel
1

sel LDLC −−−− ⋅⋅=        (5.17) 

 

Step 8. Select the most likely integer for the selected ambiguities.  

This process relies on calculating the distances from a set of integer vectors to the 

transformed selected ambiguities and selecting the one that minimises the distance 

under the transformed variance-covariance matrix for the subset. This results in the 

integer vector wc. 

 

Step 9. Solve for the updated positions and ambiguities. 

Setting the solved transformed ambiguities as constraints, the effective constraint 

matrix as applied to the entire, untransformed set can be written as : 

 

tottottotinddecorselc aZaZZZw ⋅=⋅⋅⋅=      (5.18) 

 

The updated position and ambiguities can then be solved using this constraint and 

Eq. (3.9), along with the float solution after the application of the base satellite 

changeover constraint : 
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( ) ( )cbasetot
1T

totbasetot
T
totbasebaseint wdZZCZZCdd −⋅⋅⋅⋅⋅⋅−=

−
  (5.19a) 

( ) basetot
1T

totbasetot
T
totintbaseint CZZCZZCCC ⋅⋅⋅⋅⋅⋅−=

−
   (5.19b) 

 

where the term in parenthesis has already been calculated via Eq. (5.17). Note that 

if the regularization matrix used is not equal to the apriori variance-covariance 

matrix of the initial estimates, the final variance-covariance matrix for the 

unknowns and ambiguities must be calculated using the modified method of 

Section (3.11a). However, the actual solution procedure does not change. 

 

Note that as a result of this process, not all the ambiguities will be fixed, since only a 

transformed subset are fixed as integer, thus the procedure is termed a partial-fix mode. 

However, due to the correlation of other ambiguities to the fixed subset, the overall 

accuracy of the solution improves significantly. Also, since not all the integers are required 

to be fixed as integer, it can be expected that a few bad satellites will not significantly 

corrupt the solution, since these will not be selected to be fixed, and as a result, their high 

variance will be weakly weighted in the overall position solution. This is a desirable 

property in any scenario where accuracies are desired to be similar from epoch to epoch, 

such as deformation monitoring. 

 

The application of the base satellite changeover in particular improves the ambiguity 

resolution procedure by reducing the number of independent ambiguities to be solved and 

essentially lengthening the observation period of these ambiguities. For example, in a 

typical 24 hr observation span of a 10 receiver network, 1251 ambiguities were to be 

solved. However, after the application of the changeover constraints, only 182 remained. 

Of these 182, none would have been identified as fixable prior to decorrelation. After 

decorrelation, 132 could be solved at the 99% level. This illustrates the necessity of both 

tracking the base satellite changeovers and ambiguity decorrelation for successful 

application of carrier phase measurements to the precise positioning problem. 



84 

 

6.0 - ANALYSIS OF ERROR SOURCES IN GLOBAL NAVIGATION 

SATELLITE SYSTEMS AND STOCHASTIC MODELLING 

 

At the centre of every least-squares adjustment lies the need to relate the stochastic 

properties of the observations via the variance-covariance matrix. In the simplest sense, the 

variance covariance matrix describes the proper weighting of the observations to be used 

and allows the accuracies of the resulting parameters to be properly estimated. Early 

studies in satellite-based network positioning recognized the importance of modelling the 

covariances between double-differences (Beutler et al, 1986; Remondi, 1984), but focused 

on the mathematical correlations due to the differencing. Interestingly, these studies 

recognized the existence of physical correlations between the original phases, but were 

forced to ignore them due to a lack of suitable correlation models and difficulties in 

handling the large matrices required, especially when multiple baselines were involved. 

 

Much research has been dedicated to assessing the possible accuracy achievable with 

satellite-based ranging systems and GPS in particular. For example, the literature abounds 

with studies of the noise properties of various receivers (Tiberius et al, 1999; Langley, 

1997; Gerdan, 1995; Kujawa, 1998, among others) and of multipath effects in various 

environments (Ray, 2000; Braasch, 1998; Georgiadou and Kleusberg, 1988). As a result, a 

good deal of information exists regarding the magnitude of these errors. Similarly, 

tropospheric and ionospheric modelling has been ongoing for several decades, starting 

with studies by Hopfield (1963) and Klobuchar (1986), and more modern studies by 

Mendes (1999)  and Schaer (1999) provide thorough studies of the accuracies of the 

models popularly used. 

 

Unfortunately, the majority of this work has been done in an ad-hoc fashion and usually 

focuses on a single error source, to the neglect of others. This has led to a system of “rule-

of-thumb” in estimating the achievable accuracy of GPS as a function of receiver 
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separation. In particular, knowledge of the spatial correlations of tropospheric and 

ionospheric errors is scant, as is understanding of the time variations of these errors and 

their statistical properties. Similarly, while work has been dedicated to minimizing noise 

and multipath, modelling the statistical properties of the remaining errors needs to be 

investigated. Overall, a systematic procedure for establishing and testing stochastic models 

of various error sources is needed.  

 

This chapter seeks to analyse the main error sources affecting GPS and to model their 

stochastic properties. The ultimate goal of this work is to develop a method of using these 

models to properly create a variance-covariance matrix describing the relationship between 

observations, for use in a rigorous least-squares adjustment.    

6.1 - Covariance of GNSS Error Sources 

The basic model of a range measurement made between a receiver and a satellite was 

given in Chapter 2 as :  

 

( ) ε+++∆−∆⋅−= ITttcdp rsg        (2.4) 

 

where p is the measured pseudorange, dg is the actual geometric distance between the 

satellite and receiver, ∆ts and ∆tr are the satellite and receiver clock offsets, T and I are the 

tropospheric and ionospheric delays and ε is the noise. In the case of a carrier phase 

measurement, an ambiguity term is added. In general, a tropospheric and ionospheric 

model is used, and thus the T and I terms become δΤ and δI. In addition, the noise term can 

be separated into two components – namely noise and multipath. Furthermore, assuming 

that all the errors have zero mean expectation, the resulting error in the pseudorange 

measurement is denoted 

 

( ) mnITttpEperr rs ++++∆+∆−=−= δδ      (6.1) 
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where the clock offset terms have been parameterized as distances, and m denotes the 

multipath component of the observational noise and n denotes the remaining noise 

component. In the case of a carrier phase measurement, the sign of the ionospheric term is 

reversed and the values are divided by the wavelength of the carrier to express the error in 

cycles. This is further discussed in Section 6.5. 

 

Each error term in Eq. (6.1) is due to a different physical process. Thus, for a given carrier 

phase, the individual error components are uncorrelated with one another. For example, 

there is no logical reason why the value of the satellite clock offset should at all affect the 

residual tropospheric delay contained within a measured carrier phase.  

 

In addition it is important to note that we assume that the individual error components are 

stationary, or that their statistics can be meaningfully described by moments that are 

independent of time or space. In particular, we assume that all the errors have zero-mean. 

However, the ergodicity of the error processes is not guaranteed. For example, the receiver 

clock offset of a receiver at start up is random and has an expected value of zero since the 

clock can be ahead or behind GPS time with equal probabilities. However, for a given 

sample set (or realisation), the receiver clock offset can be constant with time at some 

value. Thus, simply taking the average of the receiver clock for a given realisation does not 

correctly imply the actual mean value of the process. On the other hand, the noise and 

multipath processes are ergodic.  

 

Consider the situation of three receivers making simultaneous measurements to three 

satellites. The covariance of any two carrier phase measurements between receivers A and 

B and satellites i and j is expressed as  
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since the expected value of φA
i is equal to the range and ambiguity of the carrier phases and 

the error sources have zero mean. Note that the satellite clock error is wholly dependent on 

the satellite, the receiver clock error is dependent on the receiver and all other errors are 

dependent on both the particular receiver/satellite combination.  

 

Eq. (6.2) can be further simplified by taking into account that the error sources are 

physically uncorrelated among themselves. This results in the following expression : 
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where the covariances of the individual error sources have been introduced. 

 

For the nine observations implied by the three receiver, three satellite scenario, the 

variance-covariance matrix for the set can be written as : 
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Note the expected symmetry of the above matrix and the fact that only four basic forms of 

variances exist, namely σΑ
i, σAB

i, σA
ij, σΑΒ

ij. Furthermore, elements of the form σA
ij are 

equal to their corresponding elements of the form σA
ji. As well, elements of the form σAB

i 

are equal to elements of the form σBA
i. This also holds for pairs of elements with the form 

σAB
ij and σBA

ji, respectively. However, elements σAB
ij are not in general equal to elements 

σAB
ji or σBA

ij. Applying these equalities, it can be shown that the above matrix is 

symmetric, as expected. 

6.1.1 -Effect of Double-Differencing on the Variance-Covariance Matrix 

As indicated in the above section, errors between satellites are often correlated, as are 

errors between receivers. In Chapter 3, the satellite and receiver clock errors were treated 

as unknowns to be solved, which is contrary to the treatment given here, where they are 

considered as errors. However, the method of double-differencing, which was previously 

used to remove the unknown clock offsets as unknowns, can also be shown to remove the 

clock offsets if they are considered as errors. In addition, double differencing reduces other 

errors correlated between receivers, such as tropospheric and ionospheric errors. One 

consequence, however, is that error sources previously uncorrelated between observations, 

such as multipath and noise, become correlated when the double-differenced observations 

are formed.   
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 For the set of observations made by three receivers to three satellites, the resulting 

variance-covariance matrix of the double-differenced observations can be calculated via 

propagation of variances, using a suitable B matrix. 
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where Cl  is given by Eq. (6.4). The resultant terms in the CDD matrix are the variances and 

covariances of the double-differenced observations formed. 

 

The variance-covariance matrix shown is fully-populated and symmetric. The explicit form 

of each element can be derived by completing the multiplication indicated in Eq. (6.5), 

given the Cl matrix shown in Eq. (6.4). The results are as follows : 
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where  

• σ(∇∆AB
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13) 
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12,∇∆AC

13) and σ2(∇∆AB
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12) 

• σ2(∇∆AB
13,∇∆AC

13) and σ2(∇∆AB
12,∇∆AC

12) 

 

have similar forms, respectively. 

 

The covariances of the double-differences do not only contain terms relating to the 

variances of the component observations, but also terms describing the correlation between 

different observations. Using the property of independence between physical processes, the 

variances described in Eq. (6.6) can be described as the sum of variances and covariances 

of each double-differenced error source. For example,  

 

)()(

)()()()()(

12
2

12
2

12
2

12
2

12
2

12
2

12
2

mI

Tntt
ABAB

ABAB
rec

AB
sat

ABAB

∆∇+∆∇+

∆∇+∆∇+∆∆∇+∆∆∇=∆∇

σδσ

δσσσσσ
  (6.7) 

 

This is a crucial fact, as it implies that the total double-differenced variance-covariance 

matrix can be formed using the summation of individual double-differenced variance-

covariance matrices for each error source. This also will influence the methods used to 
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study each error source individually, as any one error variance can be calculated if the total 

variance, and the variances of the other errors sources are provided. 

 

Finally, it is also important to note that traditionally, a diagonal Cl matrix has been 

assumed, often with equal weights assumed for each observation. In such a case, the 

variance-covariance matrix of the double differences becomes 
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where σ2
o represents the variance of the observed phase multipath and noise. If Eq. (6.8) is 

compared to the expressions in Eq. (6.5) and (6.6), it is evident that they are equivalent 

only if one assumes that all covariances are zero, or if all covariances are equal.  

6.1.2 -Developing Variance-Covariance Models for GNSS  

One of the fundamental goals of this work is to establish a methodology for determining 

the appropriate variance-covariance matrix for use during a particular observational 

campaign. This is a non-trivial task, as it is well known that the error sources in GPS are not 

ergodic (for example, the ionospheric error magnitude varies with the time of day) and can 

sometimes be site specific. As a result, the variance-covariance matrix for the observations 

is expected to change between observation sessions. Thus a flexible model that adequately 

models the observational variance under a variety of conditions is required. 

 

Traditional methods of variance-component estimation have fallen into two categories – 

apriori and simultaneous. Apriori modelling seeks to determine appropriate models for 

observations expected to be made in a given network, usually relying on laboratory 
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experimentation and calibration. For example, in traditional terrestrial networks, distance 

measurement variances are often modelled by the following model 

 

dbad ⋅+=σ            (6.9) 

 

where d is the measured distance and a and b are experimentally determined constants. The 

study by  Nickerson (1978) is an excellent example of this form of variance modelling, and 

contains many model parameter values for a wide variety of equipment types and 

situations encountered in terrestrial networks. The advantage of apriori models lies in that 

they are simple to implement once all the model parameters have been established. 

Unfortunately, in the case of GPS, there is simply little knowledge of the stochastic 

properties of error sources, so no widely accepted apriori models exist. In addition, since it 

is known that GPS errors, such as the ionosphere, vary over time and space, it is unlikely 

that a useful stochastic model can be purely based on theoretical considerations 

 

Simultaneous variance-covariance modelling seeks to simultaneously determine the value 

of unknown parameters of interest and the variance-covariance matrix linking the 

observations. The MINQUE (Minimum Norm Quadratic Unbiased Estimator) method of Rao 

(1971) is a classic example of this class and attempts to solve the standard least-squares 

problem with additional unknowns in the variance-covariance matrix itself, such that  

 

∑
=

⋅=
k

1i
kl TC k?          (6.10) 

 

where θi is an unknown variance factor and Ti is a known matrix. Many alternative, but 

often numerically equivalent, methods exist in this class, and are extensively reviewed by 

Grodecki (1997). The appeal of simultaneous methods lies in the fact that the variance-

models are derived from the data themselves, so they are very useful if the variances are 

expected to change or are unknown. For example, Wang et al (1998) used the MINQUE 
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method to derive the covariance matrix of a very short GPS baseline with some success and 

discovered that the double-differences were indeed correlated.  

 

The major shortcoming in simultaneous methods lies in their computational complexity 

and numerical instability, which can sometime result in non-sensical results such as 

negative variances (Grodecki, 1997). These problems are amplified when one considers the 

sheer number of observations that must be considered in a typical GPS observation session 

and the fact that the variances are expected to vary from epoch to epoch. Furthermore, a 

more subtle limitation in the simultaneous techniques is that for stable solutions to occur, 

the Ti matrices must be well estimated, and describe the covariance between observations. 

Again, this is information that is not precisely known in GPS.  Of course, a large number of 

Ti matrices, representing every conceivable pattern of correlations could be included, but 

then the number of unknowns becomes impractical and solution stability suffers. 

 

Instead, the approach used in this thesis is a hybrid between the two methods. Firstly, due 

to the principle of physical independence of error sources, noise, multipath, tropospheric 

and ionospheric errors are all considered separately. Traditionally, orbital error has been 

considered as a ranging error, but in this work its effect has been studied instead as a 

datum error and its effects documented in Chapters 4 and 5. 

 

For a given error source, the first step in developing the variance model lies in 

investigating the theoretical underpinnings of the error source and from these 

considerations, developing an appropriate error model. Empirical data is then used to 

gauge the validity of the theoretical model. Also, this empirical data can be used to 

determine key parameters of the theoretical model, which may be time-varying. This 

affords insight into how the stochastic properties of the error source behave over space and 

time. The advantage of this method is that the preliminary theoretical study essentially 

serves the process of determining the Ti matrices required by the MINQUE method, while 

the empirical study allows the model to be flexible to changes in the observation 

environments. Work by Raquet (1998) follows a similar tact, but with less emphasis on the 

initial model development.  
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6.2 -Noise Errors 

Noise error is an effect that is unavoidable in any measurement process. In the case of GPS, 

it is the error in phase and code measurements due to imperfect tracking of the GPS signal 

by the phase and delay lock loops. As a result, it is internal to the receiver and is usually 

independent between satellites since separate loops are dedicated to each signal tracked 

(Ward, 1996a). Furthermore, measurement noise is typically considered uncorrelated in 

time beyond the predetection integration period  (typically 20 ms). Thus it can be treated as 

a white noise process, assuming the output phases and ranges are not smoothed internally 

by the receiver.  

 

In static applications, the predominant error component in carrier phase noise is jitter of the 

phase lock loop caused by thermal noise. This can be expressed as (Ward, 1996a) : 
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where  Bn is the carrier loop noise bandwidth in Hz, c/no is the carrier to noise power 

expressed as 10C/No/10 with C/No in dB-Hz, T is the predetection integration time in seconds 

and λ is the carrier wavelength. The code measurement noise is dependent on the 

correlation processes internal to the receiver, and is generally at the decimetre level 

(Langley, 1998), compared to the millimetre level for carrier phase measurements. Since 

the code measurements are so noisy that the final result essentially depends on the 

accuracy of the carrier phases, the code measurements will not be considered here.  

 

Since the noise is uncorrelated between satellites, the double difference covariances 

expressed in Eq. (6.6) can be written, for the noise component, as : 
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     (6.12) 

 

where the noise variances of each observation are calculated using Eq. (6.11). All the 

parameters involved in Eq. (6.11) are either calculable or available from calibration, thus 

forming the theoretical variance-covariance model.  

6.2.1 -Signal Power and Theoretical Noise Variance Modelling 

Eq. (6.11) indicates that receiver noise is dependent on the carrier to noise ratio (CNR) of 

the incoming signal. This is the CNR at the receiver front end, and as a results depends on 

the transmitted power of the signal, the transmitting beam pattern, atmospheric attenuation, 

free space loss, the antenna gain pattern, and the effects of the antenna preamplifier and 

line losses. In total, this can be expressed as (Ward, 1996b): 

 

LGGLLkTPNoC LNAANTATMFT −++−−−= )log(10/ 0  (dB-Hz)  (6.13) 

 

with   C/No   … carrier to noise ratio at receiver front end (dB) 

 PT  … power radiated by antenna in direction of user (including 

     transmitting antenna gain effects)  (dB) 

 10log(kT0)  … thermal noise density (-204 dB-Hz)  

 Lf, LATM … free space / atmospheric loss (dB) 

 GANT, GLNA … receiver antenna gain and low noise amplifier gain (dB) 

 L  … other system losses, including line and connector losses (dB) 
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The free space loss depends on the frequency of the carrier wave, λ, and the radiation 

distance, R, and can be calculated by : 
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Typical values of Lf  are 184.4 dB for L1 frequencies and 182.2 dB for L2 signals. 

 

In addition, the atmospheric attenuation can be broken down into two parts – that of the 

troposphere and the ionosphere. Ionospheric scintillation is due to irregularities in the 

ionospheric electron content which can cause diffraction and refraction of the GPS signal. 

This results is fading of the signal up to 20dB, depending on solar activity and the latitude 

and longitude of the observer. (Klobuchar, 1996). In general,  the severity of ionospheric 

scintillation is much worse around 21:00 local time and varies with the 11-year solar cycle 

(large sunspot numbers are highly correlated to active ionospheres). Typically, however, 

ionospheric scintillation causes losses of a few dB and is very difficult to predict. Thus we 

ignore it in the following analysis. 

 

Tropospheric attenuation at GPS frequencies is mainly due to absorption by oxygen and 

can be expressed as (Spilker, 1996) : 
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where E is the elevation angle of satellite, hm  is the equivalent height of the troposphere, 

usually set as 6 km, and Re is the radius of the Earth, approximately 6378 km. 
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Figure 6.1 shows the variation in tropospheric attenuation with elevation angle. The 

attenuation can increase by a factor of 10 when elevation angles become low. This effect is 

partially offset by the gain pattern of the transmitting antenna, as discussed below.  
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Figure 6.1. Atmospheric Attenuation Versus Elevation Angle. 

 

Unfortunately, it is difficult to predict the transmitted antenna power directly. Figure 6.2 

shows the minimum signal power on the L1 carrier guaranteed by the GPS Standard 

Positioning Service Signal Specification (GPS-SPS, 1995) to be received by a user on the 

Earth. The power estimates assume i) a 3 dB antenna gain ii) a 2 dB atmospheric 

attenuation and iii) a minimum SV elevation of 5 degrees above the horizon and iv) that 

the SV attitude error is 0.5 degrees (toward reducing levels). Note that Figure 6.2 shows 

the minimum power received, and that in reality the signal strengths have been observed to 

be higher by up to 6 dB. Also, the maximum power received occurs when the satellite is at 

about 40o elevation. This is due to the shaping of the transmitting antenna. Also, the L2 

power is guaranteed to be no more than 5 dB less than the L1 power.  
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Figure 6.2.Minimum Received L1 Signal Power (from GPS-SPS, 1995) 

 

To predict the actual power at the receiver front end, the elevation of the observed satellite 

is first calculated and then the appropriate minimum power taken from Figure 6.2. 3 dB is 

then subtracted from the minimum power to strip the effect of the estimated antenna gain 

and 2 dB are added to remove the estimated atmospheric attenuation. The actual 

atmospheric attenuation is then subtracted using values calculated using Eq. (6.15) and the 

true antenna gain added using manufacturer specifications. The antenna gain is the most 

elevation dependant quantity, varying by as much as 20dB over the entire range of 

elevations and is shown for three varieties of NovAtel antennas in Figure 6.3. Finally, 

corrections for the line losses and preamplifier gain are made using manufacturer 

specifications. Since Figure 6.2 shows conservative power levels, the resulting predicted 

power should be a conservative estimate as well. Given the values of the carrier loop noise 

bandwidth and the preintegration time, all the double differenced noise variance required 

can be calculated. 
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Figure 6.3. L1 Antenna Gain Patterns for Three Varieties of Antennas. 

6.2.2 -Empirical Assessment of the Noise Variance Behaviour  

A very useful way to analyse receiver noise is to perform a zero-baseline test. The test 

consists of two receivers processing a signal collected at a single antenna and split to each 

receiver. Upon double differencing the results, the effects of all error sources occurring 

prior to the signal passing the splitter are completely differenced out, leaving only receiver 

noise and the integer ambiguities. These ambiguities are easily solved for due to the small 

value of the carrier phase noise relative to the wavelength of the carrier (several 

millimetres versus 19 cm or 24 cm). 

 

A zero-baseline test was conducted using three different GPS receivers with standard (not 

chokeringed) antennas. Two hour data spans were used with a zero degree elevation mask 

and 1Hz sampling interval. In all cases, the base satellite was above 40o elevation. Each 

double-difference sample was then binned according to satellite elevation in 3o bins and 

the standard deviation of samples in each bin computed. The results are shown in Figure 

6.4 for all receivers using L1 data while Figure 6.5 shows the case of L2 data. The standard  
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Figure 6.4. Comparison of double difference standard deviations for L1 signals. 
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Figure 6.5. Comparison of double difference standard deviations for L2 signals. 
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deviations of the L2 data sets are higher due to tacking of the P codes in semi-codeless 

mode (resulting in a signal loss of 14 dB) and the longer wavelength of the L2 carrier. 

 

As expected, the double differenced noise drops as the elevation of the lower satellite 

increases. This is mainly due to the effect of the antenna gain pattern, which is usually 

lower at low elevations to more effectively attenuate multipath signals. Above 40o 

elevation, the standard deviations become relatively constant for all three receivers. 

 

If we assume that the double-difference standard deviation is constant when the low 

satellite elevation angle is above 40o, and that the performance of both receivers is equal, 

the variance of a double differenced observation above 40o can be calculated using Eq. 

(6.12) :  

 

)(4)()()()()( 222222
HnL

B
nH

B
nL

A
nH

A
n

AB
HLn εσεσεσεσεσσ =+++=∆∇   (6.16)  

 

where the notation implies that the noise standard deviations are dependant on the 

elevation angles of the low and high satellites, εL and εH and the receivers, A and B. 

 

Once the variance of the high elevation observations has been calculated, the variance of 

any single observation can be calculated from its double differenced variance using : 
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since both receivers are assumed to have identical noise profiles.  
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Another test was performed on a 2 hour data set collected using one receiver (NovAtel 

OEM 3) equipped with three types of antennas. Manufacturer’s specifications for the 

receiver and the antennas gain patterns in Figure 6.3 were then used to predict the noise 

profile for each test using Eq. (6.9). The signal power was predicted as per Section 6.2.1, 

but an added 3dB loss was taken into consideration due to the splitting of the signal into 

two receivers and thus halving the available power. Finally, the true noise profile was then 

determined from the zero-baseline data and Eq. (6.15). Figure 6.6 shows the results for 

each antenna. 

 

As seen in Figure 6.6, the theoretic noise levels closely match the noise measured in the 

zero-baseline test. Not only does this confirm the manufacturers’ specifications and the 

validity of Eq. (6.11), it also illustrates the impact that antenna selection has on results. The 

NovAtel Antenna 503 is a chokeringed antenna designed to provide high multipath 

mitigation at low elevations. As a result, it has low gain at low elevation angles. Although 

this does mitigate multipath (discussed in the next section), it also means that the noise on 

low elevation satellites is increased.  

 

A further impact of these results is that they imply that the noise variances at a given 

receiver may be modelled by a zenith term, corresponding to the noise encountered by high 

elevation satellites, multiplied by a mapping function, which allows the calculation of the 

actual noise variances at lower elevations. Thus the noise of any particular observation is 

calculated as 

 

( ) ( ) ( )1
22

1 εσσ nA
A mnn ⋅=          (6.18) 

 

where σA
2(n) is the zenith noise variance at receiver A and ε1 is the elevation angle of 

satellite 1 and mn() is the noise mapping function. Collins and Langley (1999) suggest a 

1/sin(ε) model for the mapping function, but this does not always sufficiently simulate the  
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Figure 6.6. Observed versus Theoretic L1 Carrier Noise Standard Deviations for                                     

NovAtel  Antennas 501, 502 and 503 and OEM 3 receivers. 
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shape of the theoretic noise profile at low elevations. Instead, an examination of Eq. (6.11) 

shows that the noise variance can be approximated, to the first order, by the expression :   
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P
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n
1

2
1 =σ           (6.19a) 

 

where cA is a site-dependant constant and P1
A, is the power of the observation from 

receiver A to satellite 1, given by Eq. (6.13) and equivalent to 
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where bA is another antenna dependant constant representing the average power received 

and fA() is the power that varies with elevation angle. This is dominated by the variation in 

antenna gain. The gain patterns plotted in Figure 6.3 indicate that a quadratic relation 

adequately models the gain. This implies that the power can then be modelled by two 

additional parameters, since the offset is absorbed by the bA term. 

 

Putting these relations together and collecting constant terms results in an improved model 

for the receiver noise, namely 
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where cA and  dA describes the variation of the antenna gain pattern with the elevation 

angle. Figure 6.7 shows a comparison of the theoretic noise profile with various popular 

weighting schemes and that of Eq. (6.19c) for two of the tested antennas. The latter gives 

the best fit over all elevation angles, especially for the chokeringed antenna and is simply 
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calculated from empirical data available. From a practical standpoint, use of Eq. (6.19c) to 

describe the variance of noise is preferred over that of Eq. (6.11) since manufacturer’s data 

is often not available. Conversely, the three parameters required by Eq. (6.19c) can be 

easily determined by fitting the curve through data available from a zero-baseline test. 
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Figure 6.7. Comparison of Various Noise Mapping Functions for Two Antennas. 
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6.3 -Multipath Error 

Multipath error is the error caused when a receiver receives a transmitted signal via 

multiple paths. Graphically, the effect is illustrated in Figure 6.8(a). The measured signal is 

a superposition of all the received signals and as such can be described as  

 

∑ ∑ ∆+⋅⋅+⋅=+=
i i

idiidD
m
idc GAGAsss )cos(cos φφβφ    (6.20) 

 

where sc is the measured signal,  sd is the direct signal with amplitude A and phase ∆φi ,  si
m 

is the ith multipath signal with amplitude damped by the factor β i and phase delay ∆φi. GD 

and Gi  refer to the antenna gain patterns of the direct and reflected signals, and are 

amplitude factors between 0 and 1, rather than power levels as in the previous section.  

  

 
Figure 6.8. Multipath Effect (a) and Resulting Multipath Error (b).  

 

The effect of multipath on carrier phase signals can be best seen in the form of a phasor 

diagram as in Figure 6.8(b). Each signal component is expressed as a complex number s = 

A.ejθ, where s is a complex number, A is the amplitude of the signal and θ is the phase of 

the signal. From Figure 6.8, it is apparent that the multipath phase error is the difference in 



107 

phase between the direct  signal and the composite signal. The resulting multipath  error, 

δφ, is given by (Ray, 2000): 
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For the receiver to be able to lock onto the direct signal, the sum of the reflective 

coefficients must be less than the antenna gain attenuating the direct signa l, otherwise the 

reflections would overpower the direct signal. This implies that β i << 1. Using this 

assumption, Eq. (6.21) can be approximated by 
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using the expansion for 1/(x+1) and the small angle approximation for the arctangent. The 

maximum value of the carrier phase multipath error using these assumptions is ¼ of a 

wavelength. Again, the code multipath is not considered as it is too noisy for precise 

positioning. 

6.3.1 -  Theoretical Multipath Variance Modelling 

The variance of multipath can be derived by expanding Eq. (6.22), and calculating the 

variance of each term, taking into account the orthogonality of the sinusoids involved. The 

resulting expression, neglecting higher order terms, is given in metres by : 
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where βmean is the mean reflectance of reflectors in the environment incorporating the 

effects of the antenna gain pattern, βvar is the variance of the reflectivites of these 

reflectors, and n is the number of reflectors in the environment. Note that the terms in the 

brackets can be considered “site-specific” and constant over the observing period, while 

the antenna gain varies with the elevation of the direct signal. Thus the multipath variance 

can be expressed as the product of a zenith multipath variance multiplied by an elevation 

dependent mapping function, much like in the case of noise.  

 

Furthermore, Eq. (6.23) essentially relates the total power of the reflected signals to the 

power of the direct signal, since the power of a signal is related to the square of its 

amplitude (Lathi, 1992). Thus, Eq. (6.23) can be re-written as 
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where Pref  is the reflected power and PD is the direct power in watts. According to Eq. 

(6.13), the power in decibels is equal to the sum of individual gains and losses along the 

transmission path. Since the reflect and direct differences are small with respect to the total 

transmission path, the only differences to be considered are the attenuation of the reflectors 

and the antenna gain pattern affecting the direct signal. As a result, Eq. (6.24) is equivalent 

to 

 

( ) ( )[ ]GTransTrans PPPPm 10101010
2

)(
2

2 ⋅⋅= βλ
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where PTrans is the maximum received power, Pβ is the power loss due to the  reflections, 

PG is the power loss on the direct signal due to the antenna gain pattern, in decibels. The 

form of the antenna gain term is equal to that encountered in Eq. (6.19b) when determining 

the noise mapping function. The conclusion is that the multipath variance for a single 

observation can be modelled via : 

 

( ) ( ) ( ) ( )1
2

1 909022
1 10 εεσσ −+−⋅⋅=

AA dc
A

A mm        (6.26) 

 

where the cA and dA factors are identical to that for the noise model and σA
2(m) term is the 

site-dependant zenith multipath variance. 

 

To complete the theoretical model, it can be shown that multipath is uncorrelated between 

satellites and receivers by taking the cross-variance of Eq. (6.22) for two different 

observations. Thus the double-differenced multipath variance-covariance model follows 

the same form as that of the noise, namely :   
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     (6.27) 

6.3.2 -Empirical Assessment of the Multipath Variance Behaviour 

If a local-area network of receivers with known coordinates is observed over time, and the 

noise profiles of the receivers are known, it is possible to determine the double-differenced 

multipath variances for each baseline by removing the predicted noise variance from the 

observed variance, based on the principle of independence of error sources.  

 

Such a test was performed using a short-baseline network consisting of two NovAtel OEM3 

receivers and two Trimble 4000SSI receivers, located on the roof of the Engineering 

Building at the University of Calgary. Baseline lengths were less than 10 metres, ensuring 
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that tropospheric, orbital and ionospheric errors essentially differenced out completely and 

that the multipath environment would be the same for all receivers. Two hours of L1 carrier 

phase data was collected, resulting in 6000 observed double-differenced residuals. These 

residuals were binned according to elevation angle and the variance of each bin calculated, 

as in the noise variance study.  

 

The predicted noise variances were then removed from these observed double-differenced 

variances using the noise model previously derived from a zero-baseline test. The 

remaining double differenced residuals for the NovAtel and Trimble baselines were then 

processed in the same manner as the double-differenced noise variances to produce 

undifferenced multipath variances for the Trimble and NovAtel receivers, using Eq. (6.17). 

Note that a key assumption in this procedure is that the zenith variance of both receivers in 

pair are equal, which was why the receiver pair were kept close together, ensuring identical 

multipath environments. The resulting multipath standard deviations for both receiver 

types are plotted in Figure 6.9. In addition, the theoretical multipath variance was 

calculated using the observed zenith multipath variance and the previously determined 

noise mapping function, which according to Eq. (6.26) is identical to the mapping function 

for multipath. The predicted multipath standard deviations are shown in Figure 6.9 as 

smooth curves 

 

 Two important observations can be made from Figure 6.9. Firstly, the shape and offset of 

the observed multipath variances is different for the two receiver types, despite being 

exposed to identical multipath environments. This is explained by the dependence of the 

multipath error on the antenna gain, which is different for the two receiver types. Also, the 

predicted and actual curves show good fit, which validates the model implied by Eq. 

(6.26). Residual scatter is due to changes in the particular reflectors affecting the signal at 

different elevation angles, which is not taken into account by the single zenith variance 

model. Modelling of the particular reflectors in an environment a difficult task, and 

requires specialized techniques and equipment (Ray, 2000). For the purposes of variance 

modelling, the single zenith model is sufficient. 
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Figure 6.9. Comparison of Observed and Theoretical L1 Multipath Variance for Two Receivers. 

 

6.4 -Tropospheric Error 

The tropospheric error was introduced in Chapter 2 as the delay a radio wave encounters 

due to its passage through the Earth’s neutral atmosphere, or the troposphere. This region 

extends to an altitude of approximately 10 kilometres above the Earth’s surface and is 

composed mainly of nitrogen, oxygen and argon. Water vapour is also found in this region. 

The presence of these gasses causes the index of refraction to become greater than one, 

which results in a retardation of the radio wave. At the frequencies of the GPS signals, the 

atmosphere is non-dispersive, implying the delay is equal for L1 and L2 frequencies 

(Hofmann-Wellenhof et al, 1994). 

 

Mendes (1999) provides a very thorough overview of the physics behind the tropospheric  

delay. Essentially, tropospheric modelling consists of developing a model of the pressure, 
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temperature and water vapour variation throughout the atmosphere. A refractivity model is 

then developed around this atmospheric model. Early pioneers in this field include 

Hopfield (1963) and Saastamoinen (1973), who developed models still in use today. 

 

Essentially all modern models separate the tropospheric delay problem into two parts – a 

wet and dry delay (Hopfield, 1969). More precisely, the dry delay is the component 

attributable to hydrostatic equilibrium, which includes the contribution of water vapour. 

The wet component is attributable to the water vapour not in equilibrium with the 

atmosphere. At zenith, the hydrostatic component causes approximately 2.3 metres, while 

the wet delay can account for up to 30 centimetres (Spilker, 1996). 

 

A further common feature of models in use today is modelling of each component in the 

form 

 

( )εz
Z

ii mTT ⋅=          (6.28) 

 

where Ti
Z is the zenith tropospheric delay for the wet or dry component and mz() is a 

tropospheric mapping function relating the zenith delay to delays at lower elevation angles. 

Ifadis and Savvaidis (1999) provides a study of the performance of various wet and dry 

tropospheric mapping functions, as does Mendes (1999). Individual zenith delay models 

and mapping functions vary in terms of their accuracies and the input parameters required. 

For example, the NMF model (Niell, 1996) requires the latitude and height of the observing 

station, as well as the day of year. Others, such as the CfA-2.2 (Davis et al, 1985) require 

surface measurements of pressure, temperature and humidity. In general, it has been found 

that models depending on surface measurements have resulted in poorer performance, 

since surface measurements do not necessarily correlate with conditions even a few 

hundred metres above the surface (Brunner and Welsch, 1993). This is the justification for 
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use of the UNB2 model (Collins, 1999) which is parameterized solely in terms of the user’s 

latitude and height.  

6.4.1 -Theoretical Tropospheric Variance Modelling 

The basis of all tropospheric models is that the atmosphere can be completely described by 

a certain refractivity profile with regard to altitude, and that the atmosphere is homogenous 

from point-to-point. The real atmosphere, of course, is much more complex and as a result, 

a residual tropospheric delay error remains. This error is basically an integration of the 

point-to-point refractivity errors along the line-of-sight to the satellite. Assuming that the 

variations of refractivity are constant throughout the atmosphere, the delay error variance 

is then proportional to the path length of the observation ray. The path length is in turn 

proportional to the mapping function (Marini, 1971) for the observation and so the delay 

variance can be written as : 

 

( ) ( ) ( ) ( )TmTmTmETTET ZT
A

ZT
A

ZT
AAA 22

11111
2

1 )()()( σεδεδεδδσ =⋅=⋅=   (6.29) 

 

where the δT terms represents the residual tropospheric errors along the line of sight and in 

the zenith direction at site A, respectively. σZ
2(T) represents the zenith tropospheric 

variance and mT() is the tropospheric mapping function used. E() is the expectation 

operator and it is assumed that the residual tropospheric delays are zero-meaned, as they 

are due to variations about the average refractivity of the atmosphere. Also, note that the 

mapping function is assumed to be errorless, which is acceptable for the purposes of 

variance modelling, as the majority of the errors are due to the variation of water vapour in 

the atmosphere. In the same vein, although the hydrostatic component contributes 90% of 

the total tropospheric effect, it is the uncertainty in modelling the wet component that 

results in the majority of the error (Mendes, 1999). As a result, only the wet component is 

considered for variance-modelling. 
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In the case of observations made from a station to two satellites, the residual tropospheric 

errors are expected to be correlated if the line-of-sights to the two satellites pass through 

the same region of atmosphere, since the refractivity variations are assumed to be smoothly 

varying in space. From spherical trigonometry, the angle of separation between two 

observation line-of-sights, θ, can be written as : 

 

)cos(coscossinsincos 212121 AA −+= εεεεθ      (6.30) 

 

where A1 and A2 are the azimuths of line-of-sights to satellites 1 and 2 and ε1,ε2 are the 

corresponding elevation angles. 

 

For satellites in the same region of the sky (θ near zero), the line-of-sight vectors pass 

through similar portions of the troposphere and as a result the respective delay errors are 

the sum of the integration of similar point-to-point refractivity errors. Thus the covariance 

of the two delay errors should be nearly equal to the variance of a single observation (or 

the covariance of an error with itself). For satellites in very different parts of the sky (θ 

near 180o), the point-to-point refractivity errors will be very uncorrelated and the 

covariance of the delays nearly equal to zero. Consequently, the covariance of the delay 

errors will be modeled in similar fashion as the variance of a single delay, with an 

exponential factor added to take into account decorrelation with increasing angular 

separation. This results in a model of the form : 

 

( ) ( ) )()/exp()()()()()( 2
21212112 TmmTmTmETTET Z

A
Z

A
Z

AAA σθεεδεδεδδσ ⋅Ω−=⋅=⋅=  

(6.31) 

where Ω is a constant representing the angular decorrelation of the tropospheric errors. 
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A similar model is used for the correlation between observations made to the same satellite 

from different receivers. In this case, the tropospheric delay errors should cancel exactly if 

the receivers are collocated, and become completely uncorrelated if the receivers are 

separated by a great distance. Using an exponential decay model, the covariance is 

expressed as : 

 

( ) ( ) )()/exp()()()()( 22
111111 TDdmTmTmETTET Z

B
Z

BA
Z

ABAAB σεδεδεδδσ ⋅−=⋅=⋅=   

(6.32) 

where d is the distance between receivers and D is a constant representing the correlation 

distance for the zenith tropospheric errors. In addition, the mapping function to the satellite 

is assumed to be identical at both receivers, which is admissible considering that a 100 

kilometre separation results in only a 0.3o change in elevation angles. 

 

Note that Eq. (6.32) assumes that the zenith tropospheric variance is equal at both 

receivers, which is compatible with the assumption that the accuracy of the base 

refractivity model is the same everywhere. However, it is known that changing weather 

affects the performance of the tropospheric models through their unpredictable effects on 

temperature, pressure and humidity (Gregorius and Blewit, 1998). This in turn implies that 

for receivers separated at distances similar to the scale of weather systems (i.e. hundreds of 

kilometres) this assumption may not exactly hold. However, weighing the increase in 

variance modelling accuracy against the complexity of modelling such an effect, a constant 

tropospheric variance must be assumed. 

 

The final covariance to be considered is that of two observations made between different 

satellites and receivers. A composite of Eq. (6.31) and (6.32) provides the necessary 

model, namely: 
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Taking Eqs. (6.31), (6.32) and (6.33) and substituting them into the double-differenced 

variance equations contained in Eq. (6.6) yields the theoretical tropospheric model which, 

after collecting terms, is : 
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           (6.34) 

where the only three unknowns required to completely describe the double-differenced 

tropospheric variance are Ω, D and σΖ
2(T).  

 

Inspection of Eq. (6.34) shows that the variances all decrease towards zero as receiver 

separation goes to zero and the satellite line-of-sights become coincident. This is expected 

since the tropospheric errors become increasingly correlated and thus cancel out. At the 

other extreme, the double differenced variance simply becomes twice the accuracy of the 

tropospheric model itself, as no cancellation occurs. This is theoretically appealing, as the 

ultimate lower accuracy limit of the doub le-differenced observations must be that of the 

undifferenced observations themselves. 
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6.4.2 -Empirical Assessment of the Tropospheric Variance Behaviour 

To determine the feasibility of modeling the residual tropospheric covariance as described 

above, a network of ten reference stations forming part of the Southern California 

Integrated GPS Network (SCIGN) was used. The network configuration is shown in Figure 

6.10. Station elevations ranged from –103 to 933 meters above the WGS84 ellipsoid and 

receiver separations varied from 30 to 464 kilometres. Data was collected at 30 second 

intervals using ASHTECH Z-XII3 receivers. Reference coordinates were generated by 

processing a 24hr session of data in a simultaneous adjustment of all observations available 

and a solution regularized by the centre of mass constraint discussed in Chapter 5. 

Processing resulted in 1203 L1 and L2 ambiguities, of which 143 were independent. 83 of 

these ambiguities could be successfully resolved, yielding a total of ~170 000 fixed L1/L2 

data points for analysis since only observations with fixed L1 and L2 ambiguities were 

considered.  

 
Figure 6.10. Network Configuration for Tropospheric Study. 

 

To extract the tropospheric error, the ionospheric- free combination (Hofmann-Wellenhof 

et al, 1994) is created via : 

 

2
1

2
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L
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f
φφφ ⋅−=     (cycles)    (6.35) 
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where φL1 and φL2 are the carrier phase measurements in cycles on the L1 and L2 

frequencies, fL1 and fL2. As will be shown in Chapter 7, this combination removes the effect 

of the ionosphere. The tropospheric error in metres is the same as on the L1 and L2 

frequencies, but a propagation of errors analysis shows that the multipath and noise 

variance in metres is increased by a factor of 3.2. The wavelength of this observable is 

0.4844 metres. The fixed ambiguities were removed from the L1 and L2 observations prior 

to the application of Eq. (6.35) as well as the theoretic ranges, resulting in a direct estimate 

of the tropospheric error for each observation pair. 

 

As in the case of the multipath and noise stud ies, the resulting double-differenced 

ionospheric-free residuals were binned into elevation ranges according to the low satellite 

of the double difference and the variance of each bin calculated. The result for a sample of 

baseline lengths is presented in Figure 6.11. A previous study of Radovanovic et al (2001) 

found that a similar model (UNB3) contained significant, receiver-height based biases, but 

no such biases were found in the UNB2 model. This is a finding consistent with that of 

Collins (1999). The elevation dependence of the tropospheric variance is clearly evident, in 

accordance with Eq. (6.34). In addition, the variance curve is scaled upwards as the 

baseline length increases, which also follows the behaviour predicted by Eq. 6.34. 

 

The remaining problem is to determine a value of the three tropospheric model 

coefficients, Ω, D and σΖ
2(T). The process of calculating the variances shown above for the 

entire network resulted in 810 variance “observations”, as the data from each of the 45 

baselines was binned into 18 5o elevation bins. For a given set of initial approximates fo r 

the model parameters, the theoretical variance of each bin/baseline pair could be calculated 

using the first expression in Eq. (6.34). A least-squares adjustment then determined the 

values of the tropospheric model parameters that resulted in values of Ω, D and σΖ
2(T) 

which minimised the overall error of the observed binned variances compared to the 

theoretical variance. An average multipath variance was also incorporated into the 

problem, as individual multipath variances for each station were unknown. The resulting 

parameter estimates are shown in Table 6.1.  
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Figure 6.11. Double-Differenced Residual Error Standard Deviations for Various Baseline Lengths 

 

Table 6.1. Estimated Tropospheric Model Parameters. 

Epoch 
Correlation 

Angle 
(degrees) 

Correlation 
Distance 

(km) 

Zenith 
Tropospheric 
Std. Dev. (cm) 

Average Zenith 
Multipath Std. 

Dev. (mm) 

November 11, 2001 14.3 253 1.51 4.2 

June 1, 2002 12.2 232 1.52 3.8 

June 22, 2002 12.0 240 1.48 3.9 
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The experiment described above was repeated for two other epochs spaced 6 and 7 months 

later. The results from these sessions are also contained in Table 6.1. Several conclusions 

can be drawn from these results. Firstly, there is little difference between the epochs 

separated by one month, indicating that the tropospheric variance parameters are stable 

over short time periods and as such do not need to be revaluated frequently in practical 

applications. Surprisingly, these parameters are stable even over different seasons. Also, 

note that the multipath standard deviations listed are for the ionospheric- free observable 

and should be divided by a factor of 6.6 to arrive at the multipath standard deviation on the 

L1 signal. Comparison to the results in Section 6.3 indicate that these values are not 

unusual.  

 

The zenith tropospheric standard deviation is significantly lower than the value of 5 

centimetres reported by Collins and Langley (1998). However, this value was determined 

solely using radiosonde data and the resulting accuracy is reported to be at the centimetre 

level. Regardless, the above adjustment for the tropospheric variance models was repeated, 

holding the value of the zenith tropospheric standard deviation at 5 centimetres. This 

yielded the same correlation angle and multipath variance, but the corresponding 

correlation distance was extended to approximately 3000 kilometres. Figure 6.12 shows 

the observed mean zenith tropospheric variances for each baseline. The error bars 

correspond to the range of observed zenith tropospheric variances for each baseline. The 

two smooth lines correspond to the theoretical zenith variances calculated using zenith 

variance / correlation length combination of ( 1.5 cm / 250 km ) and ( 5 cm / 3000 km ), 

respectively.  

 

The results immediately show that the two models do not significantly differ over the 

range of baseline lengths considered. On one hand, this is unfortunate since it implies that 

it is not possible to effectively separate the actual tropospheric variance and correlation 

distances using the experiment conducted. Rather, only the ratio of the two quantities is 

determinable. Conversely, the results also suggest that if  receiver separations are limited  
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Figure 6.12. Comparison of Observed and Theoretical Zenith Tropospheric Variances for                    

Various Separations. 

 

to several hundred kilometres, it is not necessary to separate these quantities for accurate 

variance modelling and a solution can be made by constraining one of the parameters 

based on external knowledge. 

6.5 -Ionospheric Error 

There exists above the Earth a region of positively and negatively charged ions, created by 

the interaction of the upper atmosphere with incoming ultraviolet light produced by the 

Sun. This region is known as the ionosphere, and its interaction with electromagnetic 

waves in the radio frequency is of great importance to satellite-based navigation systems. 

 

The physics behind the effects of the ionosphere on radio waves is well documented by 

Komjathy (1997) and the detail provided here is only meant to be cursory. Essentially, 

unlike the troposphere, the refractive index of the ionosphere is disperive at radio 
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frequencies, and as a result the index of refraction is not equal for different frequencies. 

Also, a further effect is that the velocity of the energy of a given radio wave (or group 

velocity) is not the same as the apparent velocity of its phase (or phase velocity). Thus the 

code information and carrier of a ranging signal are retarded by different amounts. 

Denoting the indices of refraction for the group and phase as ngr and nph, the following 

relation holds (Hofmann-Wellenhof et al, 1994): 

 

df

dn
fnn ph

phgr ⋅+=          (6.36) 

 

where f is the frequency of the wave and the derivative is zero for non-dispersive media; 

hence the group and phase delays are identical for the troposphere. 

 

A first-order approximation phase index of refraction is given by (Seeber, 1993) as 

 

2
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f
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n e
ph

⋅
−=          (6.37) 

 

where Ne is the electron density, and it always positive. Taking the derivative of Eq. (6.37) 

and substituting the result into Eq. (6.36), it can be shown that the group index of 

refraction is as much greater than one as the phase index of refraction is below one. Thus 

the existence of the ionosphere retards the group as much as it advances the phase. Note 

that this implies that the phase velocity is greater than the speed of light in vacuo, but that 

this limit only applies to the transfer of energy and that the phase velocity is only an 

apparent velocity.  

 

Overall, the group range effect of the ionosphere is given by (Klobuchar, 1996) 

 

2

3.40
f

TEC
I

⋅
=    (metres)     (6.38) 
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where TEC is the total electron content along the line of sight in units of 1016 electrons per 

m2. The corresponding phase ranges are shortened by this amount. 

6.5.1 - Klobuchar Ionospheric Model 

The usual way to model the ionospheric effect is to assume that the entire ionosphere, 

which ranges in altitude from 50 to 1500 kilometres, is concentrated in a thin shell at some 

height Hshell above the Earth’s surface. The height used often varies from 300 to 500 

kilometres (Schaer, 1999) but is typically selected at 350 kilometres. Referring to Figure 

6.13, the resulting TEC affecting a given observation is  

 

'cos z
VTEC

TEC =           (6.39) 

 

where VTEC is the vertical total electron content at the ionospheric pierce-point 

compressed to the shell, and z’ is the zenith angle at the ionospheric point. 

 

 
Figure 6.13. Relationship between TEC and VTEC. 

 

The value of z’ is related to the height of the shell and the zenith angle, z, at the station via 

the equation (Hofmann-Wellenhof el al, 1994) :  
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where RE is the nominal radius of the Earth. 

 

Putting Eq. (6.39) into Eq. (6.38) shows that the ionosphere can be modelled by the 

familiar form of a zenith delay, multiplied by a corresponding, elevation dependant 

mapping function. The remaining problem is to determine the VTEC corresponding to a 

particular observation. The standard model used in GPS positioning is that of Klobuchar 

(1986), which parameterizes the VTEC with a half-cosine model, dependant on the local 

solar time, the latitude of the ionospheric point and several empirical constants. These 

constants are broadcast with the GPS navigation message and are usually updated every  

10 days (Newby, 1992). Figure 6.14 shows the resulting vertical ionospheric delay 

estimates given by the Klobuchar model broadcast in June of 2002, and clearly shows that 

the ionospheric effect is greatest during the daytime at 14:00 hr local time, and near the 

equator.  
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Figure 6.14. Vertical Zenith Delay Estimates from Klobuchar Ionospheric Model (June, 2002) 
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The actual VTEC is strongly correlated to the number of sunspots, and as a result, varies 

according to an approximately 11-year cycle (Klobuchar, 1996). At the time of writing, the 

ionospheric effect was near the maximum of the cycle. In addition, the average VTEC 

changes over the year, peaking in the Northern Hemisphere in the winter months 

(Kleusberg, 1998). Furthermore, sudden ionospheric irregularities, such as those caused by 

solar storms, can drastically and suddenly change the VTEC over a particular region, an 

effect that sometimes manifests itself as the aurora borealis in the auroral zones (Skone, 

1998). 

6.5.2 -Theoretical Modelling of the Ionospheric Error 

Since the distribution of VTEC is highly variable in space and time, it is difficult to make 

general statements regarding the accuracy of a particular ionospheric model (Schaer, 

1999). As a result, the goal of this work in modelling the variance-covariance properties of 

the ionosphere is to provide a general specification on the stochastic proprieties of the 

ionospheric error on a large scale. Small scale disturbances caused by solar storms and 

scintillation are not considered.  

 

The starting point of the model development will be the assumption that the majority of the 

ionospheric error results from a mis-modelling of the vertical total electron content. 

Therefore, the error in estimating the ionospheric delay (or advance), δI1
A,  is given by 
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This implies that the variance of the observation can be calculated as 
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where σA
2(VTEC) is the variance of the VTEC estimation error at the ionospheric point for 

the observation.  

 

Aside from localized disturbances, the physical distribution of the VTEC is smoothly 

varying (Schaer, 1999). Consequently, the errors in the VTEC estimation are smoothly 

varying in space as well and so the spatial correlation of the VTEC is modelled in the same 

way as the troposphere, using an exponential decay shaped by a correlation distance D. 

Thus, for two observations, the correlation between the VTEC errors affecting them is 

determined by calculating the distance between their ionospheric pierce-points. The 

covariance between any two observations is given by 
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where ABd12  is the distance between the two pierce points, and zA
1’ and zB

2’ are their 

respective zenith angles. Eq. (6.43) can be modified to express the VTEC variance as a 

zenith ionospheric delay, σZ
2(I), by multiplying the terms in brackets by the VTEC 

variance to arrive at a variance in m2. 

 

Incorporating Eq. (6.43) into Eq. (6.6) produces the resulting expressions for the double-

differenced ionospheric error, after simplification and collecting like terms :  
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           (6.44) 

where m(e) and D now refer to the ionospheric mapping functions and correlation 

distances, respectively. Two distance quantities must be calculated, of the form dAB and 

d12. The first refers to the distance separation between the receivers and the second is the 

average separation of the pierce points corresponding to satellites 1 and 2. Note that 

although the ionospheric model is similar in form to the tropospheric model, it contains 

one less term, as the D parameter controls both the inter-station and inter-satellite 

correlations and all pierce-points are referred to the ionospheric shell. Using different 

considerations, Yang and Goad (1997) also arrive at an exponential decorrelation model 

for the double-differenced ionospheric variance, but do not include the correlations 

between different double-differences, nor the mapping function dependant portion of the 

variance model.  

6.5.3 -Empirical Assessment of Ionospheric Variance Behaviour 

The same data set used in the previous section on tropospheric variance behaviour was 

used to investigate the feasibility of the ionospheric model presented. To extract the 

ionospheric error, the following linear combination was formed for all the fixed-ambiguity 

data available : 
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where the known ambiguities have been removed from the phase measurements fL1 and fL2. 

The remaining quantities are a scaled value of the residual ionospheric error and an 

amplified noise and multipath term, whose variance in metres is approximately 3.8 times 

greater than the multipath and noise on the L1 carrier alone.  

 

Figure 6.15 shows the residual undifferenced ionospheric errors calculated from code data 

collected by the network receivers during the June, 2002 campaign, plotted as a function of 

local time and scaled to the zenith using Eq. (6.39). Results before the Klobuchar model 

was applied and after are shown. As can be seen, the Klobuchar model does not 

significantly improve the scatter (and hence the variance) of the data, but it does remove 

the mean diurnal trend. Assuming an average zenith code noise and multipath standard 

deviation of 25 cm (Langley, 1998; Tiberius et al, 1999) the resulting ionospheric standard 

deviation was estimated to be 90 cm, independent of the time of day. These are results 

comparable to those obtained by Newby (1992), who performed a study during the 

previous solar cycle and found no significant difference in the residual accuracy between 

night time and day time conditions and estimated a model accuracy of 1 metre. In addition, 

the results for the November, 2001, data set are plotted for comparison. Interestingly, while 

the actual ionospheric effect is markedly different for the two sessions, the residual 

ionospheric error after applying the Klobuchar model has approximately the same variance 

in both seasons. However, this accuracy consistency is not expected to hold in periods of 

unsettled ionospheric activity, such as in the auroral region or during ionospheric storms. 

 

Having established an estimate of the ionospheric variance, the remaining task is to 

evaluate the correlation length of the residual ionospheric error. A similar approach to that 

demonstrated in the tropospheric study was used. The available fixed ambiguity data was 

binned according to elevation angle and receiver separation, and the observed variance for 

each bin was calculated, along with the theoretical multipath variance, according to the 

values determined in the tropospheric study. Using the observed minus multipath variances 

as observations, a correlation length and zenith variance was found that minimized the 

error in the observed and predicted bin variances. A comparison between the observed and 
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Figure 6.15. Total and Residual Ionospheric Error as a Function of Local Time (from code data). 
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Figure 6.16. Comparison of Observed and Theoretical Zenith Ionospheric Variances for                      

Various Separations in Winter and Summer. 
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theoretical zenith ionospheric variances is provided in Figure 6.16 for the November, 2001 

and June, 2002 data sets. The error bars shown correspond to the spread of the observed 

variances at each separation. There exists a definite difference between the trends in the 

zenith variances for the two sessions, with the summer ionospheric errors being worse but 

more highly correlated with pierce-point separation. An analysis of a July, 2002 data set 

indicated an identical zenith ionospheric variance as the June, 2002 set, but with a 

decorrelation distance of 6000 km rather than 7000 km. This may imply that the zenith 

variance varies slowly over the course of the year, whereas the correlation distance is 

sensitive to the current state of the ionosphere. It should be noted that no ionospheric storm 

events were recorded for any of the sessions processed. 

6.6 -Treatment of Temporal Correlations 

One consequence of the high data rate capabilities of satellite-based navigation systems is 

the fact that the observations are temporally correlated. Essentially, the temporal 

correlation describes the correlation between two observations (typically from the same 

data stream) separated by some period of time. Given a data stream of zero-centred 

residuals of length L, the temporal correlation f(τ), of the series can be calculated as : 
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where τ is the time separation between the observations in the data stream and σ2 is the 

variance of the data stream (assumed to be constant over time). In the limit, as τ becomes 

zero the correlation function becomes equal to one, which is the maximum allowable 

correlation for any value of τ. A high value of f(τ) indicates that samples separated in time 

by τ are highly correlated. In general, the temporal correlation between two different data 

streams, r(t) and g(t),  can be calculated by replacing one r(t) in Eq. (6.46) by g(t) and an 

appropriate value of the covariance between the data streams. 
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In the case of traditional terrestrial observations, observations taken at different epochs 

were either considered independent or contaminated by a constant bias. Unfortunately, this 

is not so in the case of GPS errors, which are often slowly varying over time. El-Rabbany 

(1994) was the first to study this property in depth, and proposed an exponential decay to 

model the temporal correlation of GPS errors : 

 

Te /)(f ττ −=           (6.47) 

 

where T is the temporal correlation length of the GPS errors, set at approximately 300s. 

This correlation length has been used in subsequent studies, including Han and Rizos 

(1995) and Howind et al (1999). 

 

Given two GPS observations of equal variance separated by a time t, the covariance 

between the two observations is given by : 

 

2)(f)( σττσ ⋅=AB          (6.48a) 

 

where σ2 is the variance of the data stream. The above can be expanded to the case of the 

covariance matrix for two sets of observations to yield 
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where C1, C2 are the variance-covariance matrix of the observations at epochs 1 and 2 and 

C12 is the cross-covariance matrix for the observations. Note that since the double-
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difference operator is linear, the full double differenced variance-covariance matrix can be 

expressed as 
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where B is the Jacobian with respect to the observations. The significance of the above 

expression is that the temporal correlation of a stream of double-differences is identical to 

the temporal correlation of the component observations.  

 

El-Rabbanny (1994) shows that use of the exponential model has several advantages in the 

formation and inversion of the full variance-covariance matrix. For example, if the satellite 

geometry is constant over time and the variances vary smoothly with time, the inverse of 

the variance-covariance matrix becomes band- limited. This property was exploited by Han 

and Rizos (1995), who show that the temporal correlation of errors causes a scaling of the 

normal equations, with the factor 
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+

+−
= nk          (6.50) 

 

where f is equal to f(τ), with τ equal to the sampling rate, and n is the number of samples 

used. The corrected normal equations N and u are simply multiplied by the above factor. 

Thus, the actual parameter estimates are not significantly affected by neglection of the 

temporal correlations, but the resulting variance-covariance matrix is scaled. Since k is 

usually less than one, the reported variances will be greater after correction for the 

temporal correlation. As most commercial processors neglect the temporal correlations, it 
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has become the norm for the statistical results from these packages to be considered 

grossly optimistic. 

 

Eq. (6.50) further introduces the futility of dense data sampling in GPS. Assume that a 10 

minutes segment of data has been collected and that the satellite visibility is constant. 

Since the satellite geometry varies slowly with time, it can be shown that the normal 

matrix formed via the standard summation of normal equations at every epoch is 

equivalent to a normal matrix formed by averaging the normal matrices formed by the first 

and last epochs and multiplying the resulting matrix by the number of observations. This 

can be expressed as 
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where NTot is the total normal matrix, neglecting temporal correlations, Ni is the normal 

matrix formed from each epoch and Nav is the average single-epoch normal equation. 

Using Eq. (6.51) and (6.50), the normal matrix corrected for temporal correlations, Ncor, 

will be : 
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The expected accuracy of the parameters is dependant on the inverse of the above matrix. 

Given two identical observing sessions, distinguished only by their sampling rates, the 

ratio of their expected overall standard deviations will be 
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with  
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i

ie τ−=f            (6.53b) 

 

where n1, n2 are the number of samples collected in each session, τ1, τ2 are the sample 

spacings for the two sessions. The poor return on collecting higher data rates is quite 

shocking. For example, based on a 20 minute data span and a correlation period of 300 s, 

the improvement in collecting one sample every 5 seconds instead of 30 is only 2%! Truly, 

the most effective way to improve positioning accuracy is through lengthening the 

observation period, which not only allows errors to decorrelate, but also adds more 

variation in the satellite geometry observed. 

6.7 -A Note on Inter-Frequency Correlation 

One aspect of correlation modelling that does not often receive direct treatment is the 

correlation of GPS errors between frequencies. For example, since the tropospheric error is 

due to the neutral atmosphere and not dependant on carrier frequency, it expected that the 

tropospheric error on two carrier phases made from the same receiver to the same satellite 

but on two different frequencies are identical. Conversely, errors such as noise are often 

considered to be independent between frequencies. This is not necessarily the case 

however, if L1 code is used to aid tracking of the L2 frequency, as in many receivers. Still, 

such effects are very difficult to quantify and as a result, the noise and multipath is 

considered uncorrelated between frequencies.  
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Perhaps the most significant inter- frequency correlation is due to the ionosphere. With 

reference to Eq. (6.41), the covariance between the ionospheric error on the L1 and L2 

frequencies for a given observation can be written as : 
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where σ2
TEC  is the variance of the TEC along the line of sight. 

 

Given a set of dual frequency observations, the variance-covariance matrix for the set can 

be expressed by : 
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where σ2
T is the tropospheric variance in metres2, σ2

n and σ2
m are the noise and multipath 

variances in cycles2 and σ2
i is the ionospheric variance in units of TEC2. The double-

difference variance covariance matrix can be made via the appropriate substitution of the 

double-differenced variances into Eq. (6.55). Furthermore, to create the variance-

covariance matrix for a set of dual- frequency observations, the inter-frequency and inter-

spatial correlations between all lines-of-sights observed must be generated. Fortunately, 

these can be simply generated by first calculating the inter-spatial correlations of the lines-

of-sights, and then dealing with all the inter- frequency correlations using Eq. (6.55).  
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The importance of treating inter-frequency correlations is two-fold. Firstly, proper 

treatment of the ionospheric correlation is necessary for proper dual- frequency ambiguity 

resolution. Traditional techniques of ambiguity resolution have relied on the formation of 

widelane and ionospheric free linear combinations (Raquet, 1998) to allow for ambiguity 

resolution on longer baselines due to the effects of the ionosphere. However, such 

techniques result in ad-hoc methods of resolving the ambiguities. Rather, by properly 

incorporating the ionospheric inter- frequency covariance into the variance-covariance 

matrix of the double-differences, the LAMBDA method is able to implicitly estimate the 

ionospheric effect affecting each observation and resolve the L1 and L2 ambiguities as 

integers. As a result, one finds that the ambiguity success rate calculated via Eq. (5.11) is 

drastically higher when the ionospheric inter- frequency correlations are included than if 

the ionospheric error is considered uncorrelated between frequencies.  

 

The second application of inter- frequency correlations lies in the field of determining 

optimal linear combinations of carrier phases which allow the compression of two or more 

observations into one single pseudo-observation. This is discussed in Section 7.3. 

6.8 -Practical Determination of Variance-Covariance Models 

The preceding sections have established stochastic models for the major errors sources 

present in differential GPS and validated these models using empirical data collected. 

However, the key element of the modelling methodology presented is the solution for 

defining parameters (i.e. zenith variance, correlation distance, etc.) from the data collected. 

Some parameters, such as those of the tropospheric model, have been shown to be stable 

over time, whereas other, such as the ionospheric parameters, vary over the course of 

months. Also, it is expected that the defining parameters may change with location, the 

types of receivers used, and the environment surrounding the receivers. Thus a practical 

method of establishing the appropriate variance-covariance model for a network under 

consideration must be developed. 
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In engineering networks of extent less than a few kilometres, the dominant error effects 

will be noise and multipath. The noise variance model is simply determined via a zero-

baseline test of the receivers to be used in the network. Since most engineering projects 

will use identical receivers at each station, only one pair of receivers need to be tested. 

However, since in practice it is difficult to accurately calculate the actual power received at 

each receiver, this test is not useful for calculating the zenith noise variance. Rather, its 

utility lies in establishing the shape of the noise mapping function. 

 

Section 6.3 established that noise and multipath are both affected by the same mapping 

function – thus both effects may be grouped together into a single zenith variance value. 

Since the multipath effect depends on the reflective environment surrounding a receiver,  

multipath/noise zenith variances must be calculated for each receiver in the network. A 

practical method of doing this is to take one roving receiver to each site and place it a few 

metres away from the station to be analysed. Collecting thirty minutes of data creates a 

short-baseline on which the multipath variances at both receivers are expected to be 

identical, despite the fact the actual multipath quickly decorrelates spatially (Ray, 2000). 

Following the analysis of Section 6.3, combined with the now known noise mapping 

function allows the zenith multipath at the site to be established. This test can be repeated 

whenever it is felt that the reflective environment has significantly changed, such as when 

earthwork has been completed nearby. Otherwise, it is assumed that the multipath variance 

will remain quite stable, although a summer and winter value might be worth determining 

to account for the effects of snow cover, if appropriate. 

 

If the network is of larger extent, the tropospheric and ionospheric stochastic models must 

be derived as well. The best method for accomplishing this is to use data collected at a 

larger reference receiver network that encompasses the site to be studied. For example, 

data from IGS stations may be used for this purpose, as well as data from a variety of 

scientific reference networks. The Scripps Orbit and Permanent Array Center 

(http://sopac.ucsd.edu) is an excellent source of data from more than 1000 sites located 

worldwide. The methods of Sections 6.4 and 6.5 can then be applied to establish the 

defining tropospheric and ionospheric parameters for the epoch under consideration. In 
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general, the tropospheric parameters are expected to be stable over time, whereas the 

ionospheric model should be updated once a week to take into account the variability of 

the ionosphere. Of course, if the engineering network is of small extent, then the actual 

values of the tropospheric and ionospheric models are not significant, and the results 

presented in this thesis may be used without loss of positioning accuracy.  
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7.0 - APPLICATION OF GLOBAL NAVIGATION SATELLITE SYSTEMS 

TO NETWORK POSITIONING 

 

Traditional methods of applying data collected with satellite-based navigation systems 

have been heavily biased by the heritage of these systems as navigation instruments and 

the high cost of available equipment. For example, most early GPS surveys and research 

were completed using pairs of receivers, resulting in baseline processing techniques that 

yielded the vector between two occupied stations. Networks were built up by moving the 

receivers to all points of interest and accumulating individual interstation vectors. A 

network “adjustment” of these vectors was then completed to calculate the positions of all 

stations in the network. Furthermore, due to limitations in computing power and a lack of 

knowledge of the stochastic properties of the errors affecting GPS, variance-covariance 

matrices used in the adjustment of these individual baselines were often simply diagonal, 

and at best only modelled the mathematical correlations of the formed double differences 

were considered. Finally, datum definition was typically only implicitly accomplished by 

assuming a “base station” as fixed, with known coordinates.  

 

With a few exceptions, these processing methodologies remain today, primarily because 

despite improper treatment, the high accuracy GPS observations often yield results 

significantly better than those achievable by terrestrial methods, especially when long 

observation sessions are used and baseline lengths exceed a few kilometres. This chapter 

seeks to incorporate the datum definition and variance-modelling concepts developed in 

the previous chapters into a robust GPS processing methodology suitable for precise 

positioning. The capabilities of satellite-based systems for precise positioning on short and 

medium range static networks are analysed, and a novel application of variance-modelling 

for efficient network-based kinematic positioning is presented. 
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7.1 - Application to Short Range Deformation Monitoring 

Short range deformation monitoring includes applications where the total network extent is 

less than a few kilometres. Such applications include dam and bridge deformation 

monitoring, the modelling of slope movements and building sway, among many others. 

The main appeal of applying GPS to these applications is the autonomous operation of the 

system, as the number of points to be monitored and the position update frequency can be 

quite high. For example, one application involving monitoring of the Diamond Valley 

Reservoir involves 250 points to be monitored every 12 hours (Duffy et al, 2001). 

Collecting such a great amount of data manually would be impossible.  

7.1.1 - Principles of a GPS Based Deformation Monitoring System 

A hypothetical deformation monitoring system involving GPS would consist of a series of 

receivers, permanently mounted at monitoring points. Due to the temporal correlations of 

GPS observations, continuous data collection at a high data rate would be wasteful in terms 

of both memory and power, as closely spaced epochs do not provide independent 

information. Rather, an acceptable position update interval must be set by the project 

designer, possibly based on apriori assumptions of deformation rates. Within the constraint 

of the interval separation, the network designer can then chose an appropriate data 

sampling interval and data span to achieve a particular accuracy. The relationship between 

these concepts are shown in Figure 7.1. Note that increasing the sampling rate yields 

reducing returns as discussed in Section 6.6, due to the temporal correlation of the GPS 

errors, whereas increasing the data span can cause slow deformation trends to be absorbed 

into the individual static solutions, thus reducing the dynamic response of the system. For a 

typical application with an update interval of 1 hour, a suggested data span would be 

twenty minutes, with a sampling interval of 10 seconds.  
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Figure 7.1. Relationship Between Update Interval, Observation Span and Sampling Rate. 

 

Data is then collected at the sites and transmitted to a central processing centre, possibly 

using radio, telephone or internet communication strategies. The data is then processed 

using a newly developed GPS processing package based on the results of this research, 

called PADRES- GPS (Position And DefoRmation Estimation System via GPS). At the central 

site, the data is first pre-processed to identify cycle-slips and obtain initial estimates for the 

receiver locations. At this stage, the station locations are compared to their locations in the 

previous epoch and any gross receiver movements are flagged (i.e. due to deliberate or 

inadvertent movement of the receivers to different locations by personnel). The 

observations are then processed first processed in float-mode using a full variance-

covariance model and a suitable regularization scheme. The ambiguities are then resolved 

using the partial- fix method outlined in Chapter 5.  

 

An important distinction at this point must be made between the differencing base, defined 

as the station used as the basis of all the double-differences formed and the concept of a 

base station, used in traditional processing modes as a datum definition. In the PADRES- 

GPS system, the differencing base is used to facilitate the ordering and formation of the 

normal equations by ensuring that all double-differences produced use one station in 

common. However, this station plays no special role in the regularization and it s 

coordinates are treated as unknown in the same manner as all the other stations. Thus, the 

differencing base can be a station that is actively deforming, but should be located near the 

centre of the network to minimize the residual double-differenced errors, as discussed in 
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Section 7.2. It should also be a location where cycle-slips are a minimum and the multipath 

effect is low, thus providing a clean data stream to form the other double differences upon. 

 

Several appropriate regularization strategies may be employed, depending on apriori 

knowledge of the network deformations. For example, if certain points are known to be 

stable with known coordinates, then the initial estimates of these points may be given very 

high weights. This will aid in ambiguity resolution by providing information regarding the 

relative geometry of the network. On the other hand, if no points may be considered stable 

or if their initial estimates are unknown, then the centre-of-mass regularization discussed in 

Chapter 5 should be used. Although no internal geometry information is provided by this 

method, the ambiguities will remain minimally biased. This is the default mode for 

processing, as it allows the greatest flexibility in the subsequent deformation monitoring 

stage.  

 

Since the normal equations for the small-extent case are essentially rank deficient due to a 

poor control of translations, the results of a centre-of-mass regularization based on all the 

network points can be effectively transformed to those produced by a centre-of-mass 

regularization involving a subset of points via an S-transformation (Baarda, 1973). The S-

transformation matrix can be defined as : 

 

( ) T1T
GD DGDGIS ⋅⋅⋅−=

−

        (7.1) 

 

where G and D are the datum constraint matrices corresponding to different centre-of-mass 

regularization schemes and I is an identity matrix. The results using the G scheme can be 

transformed into the D scheme using  

 

GGDD dSd ⋅=           (7.2a) 
T
GDxGGDxD SCSC ⋅⋅=          (7.2b) 
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where δ G and CxG are the correction vector and variance-covariance matrix calculated 

using the G scheme. Note that it is assumed that both schemes use the same initial 

estimates for the parameters. 

 

Eqs. (7.1) and (7.2) are particularly important if the position estimates of two epochs are to 

be compared. Obviously, the position results and the associated statistics are dependant on 

the regularization scheme used. As a result, for comparisons to be meaningful, two epochs 

must be compared using the same regularization scheme. This can be simply accomplished 

by using the S-transform to convert the results of each epoch to the same regularization 

scheme. Again, it must be assumed that both epochs use the same initial estimates for 

station positions. The two epochs can then be compared for “significant” deformation 

using many different techniques – Yong-Qi (1983) gives an excellent review of prevailing 

theories. 

 

In this thesis, a method outlined by Biacs (1989) for use in conventional networks is used, 

with modifications for the peculiarities involved in satellite-based systems. Given the 

position results of a two epochs, the displacement vector, d, and associated variance-

covariance matrix, Cd,  will be given by 

 

12 ddd −=           (7.3a) 

d1d2d2d1d1d2d CCCCC −−+=        (7.3b) 

 

where Cδ2, Cδ1 are the variances of the vector of corrections, δ2 and δ1,  for the two epochs 

and Cδ2δ1 and Cδ1δ2 are their cross-covariances. Note that the displacement variance-

covariance matrix will contain the same near rank-deficiency in translation as the variance-

covariance matrices of the original problem. Also, since both epochs have the same centre-

of-mass, translations of the entire network are undetectable, although an overall rotation is 

detectable since the orientation is well defined by the satellite coordinates. 

 



144 

In general, two separate goals must be distinguished – the detection of a deformation, and 

its appropriate modelling. Deformation detection simply seeks to detect that a point or 

points in a network have been disturbed from their positions in a previous epoch. 

Deformation modelling, on the other hand, seeks to test the hypothesis that a particular 

deformation trend can be suitably described by a particular model. The latter is obviously 

the more difficult task, and is discussed by sources such as Teskey (1987) and Kuang 

(1996). In this thesis, the scope is limited to the detection of deformation of individual 

points, or conversely, the identification of stable points between epochs. 

 

A method implemented by Grundig et al (1985), and Biacs (1989), determines stable 

points in a network via the following method. Given a set of network points, each point in 

the network is individually investigated for stability by partitioning the displacement 

vector as follows : 

 









=

i

r

d
d

d
          (7.4a) 

 

with an associated weight matrix of 

 









== −

iiir

rirr
dd PP

PP
CP

         (7.4b) 

 

where the i and r subscripts refer to the point under investigation and the remaining points 

points, respectively, and the inverse of the displacement variance-covariance matrix is 

calculated as a reflexive generalized inverse (see Biacs, 1989 for implementation details). 

To effectively gauge whether the point under investigation has deformed or not, its 

solution must first be disengaged from its inclusion in the computational base. Thus an S-

transform is used to convert the solution of the points from one where all points are used in 

the regularization to one where the point under investigation is excluded. This can be 

succinctly expressed as: 
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         (7.5) 

 

The test quantity used is then  

 

2
om

T
σ

'
iii

T'
i dPd ⋅⋅

=          (7.6) 

 

where m is the dimension of the coordinate system (typically 3) and σo
2 is the apostori-

variance factor, usually taken as one if appropriate variance-covariance modelling has been 

performed using the techniques of Chapter 6. The above test statistic follows the Fisher 

distribution with (m, ∞) degrees of freedom. If the test quantity exceeds the allowable 

value of the Fisher distribution for the level-of-significance chosen, then the point cannot 

be assumed to be stable and so is flagged for possible removal from the regularization set. 

This procedure is repeated for the remaining points and the point with the largest 

significant test statistic removed from the list of stable points. The entire analysis is then 

repeated until no points can be considered displaced. Although computationally tedious, 

this procedure has been shown to be more sensitive than an inspection of individual error 

ellipsoids. Of course, the sensitivity of the test relies on the confidence level selected. 

However, appropriate selection of the confidence level and the associated problems of 

errors in hypothesis testing is beyond the scope of this thesis – interested readers are 

referred to Yong-Qi (1983). 

 

An interesting peculiarity of GPS networks is that once displaced points have been 

identified, it is relatively simple to test the direction of the deformation. It is well known 

that the least accurate dimension observable in GPS networks is the zenith direction, due to 

the fact that all the satellites are above the horizon and so result in poor geometry. 

However, due to the configuration of the satellite orbits, there exists a polar “cap” that 

manifests itself as a lack of satellites visible in the north direction for stations in the 

northern hemisphere – the opposite effect occurs in the Southern. Figure 7.2 shows a 
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typical plot of the satellite orbits overhead of the network in question for a 24 hour period. 

As a result of this effect, when the variance-covariance matrix of a given position estimate 

is rotated into a local level frame, its was found that the principal axes of the error ellipsoid 

lies very nearly along the axes of the coordinate system – and thus the errors are largely 

decorrelated in these directions. The implication of this peculiarity is that if a station has 

been flagged as displaced, the components of the displacement vector in the north, east and 

zenith direction can be individually tested by dividing the movement in a particular 

direction by the standard deviation of the position estimate in that direction and comparing 

the resulting test statistic to the F-distribution with (1, ∞)  degrees of freedom.  

 

 
Figure 7.2. Typical Overhead Skyplot Showing Effect of Polar Caps. 

7.1.2 - Test of the PADRES-GPS Software 

To field-test the capabilities of the PADRES-GPS software, a five receiver network was 

established in August, 2002, at the Province of Alberta Calibration Baseline, located east 

of the City of Edmonton. The network consis ted of five concrete pillars with forced-

centring plates, equipped with Trimble 4600LS GPS receivers. L1-only receivers were used 

since the additional cost associated with dual- frequency receivers precludes their use in 

large numbers. In addition, two stations were equipped with translation stages, which 

allowed deformations to be induced with an accuracy of 1/10th of a millimetre. The 

maximum station separation was 3 kilometres, and the average station spacing was 500 

metres. 
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The first stage of this test was to establish an appropriate variance-covariance model for 

use in the subsequent processing. Due to the small extent of the network, the ionospheric 

and tropospheric variance model was identical to that presented in Chapter 6 for the     

July, 2002 SCIGN data set. The multipath variances for the stations were calculated by 

occupying each station for twenty minutes, with an additional (and identical model) 

receiver located 3 metres away. In this way, double-differenced observations were 

collected at various elevation angles, which could then be reduced to a single zenith 

multipath/noise variance for each station in the manner presented in Section 6.3. The 

resulting zenith multipath/noise variances for each station are shown in Table 7.1. A 

1/sin(ε) mapping function was found to suitably model the elevation variation in the 

variance.  The results of Table 7.1 fall within the expected range of carrier phase multipath 

variance, based on prior experiences presented in Chapter 6, and indeed, the variations in 

the variances can be largely explained by the environment of the stations. Stations B, C 

and D, for example, lay inside fields, whereas stations A and E were located near paved 

roadways.  

 

Table 7.1. Zenith Multipath/Noise Standard Deviations for Stations Involved in the Short Range Test. 

 

 

 

 

 

 

 

 

With the variance models established, the next stage was to collect data to test the 

deformation monitoring capabilities of the proposed system. For this purpose, three hours 

of data were collected on two different days. One the first day, the stations remained static, 

whereas on the second day known deformations were induced in stations B and C. These 

deformations were such that the station remained deformed at particular value for fifteen 

minutes. The data sampling rate was 5 seconds.  

Station 
Multipath/Noise Zenith 

Standard Deviation (mm) 

A 1.9 

B 1.3 

C 1.5 

D 1.3 

E 2.3 
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Reference coordinates were generated by processing the whole of the ninety minute static 

data for both days and averaging the results. Subsequently, the data was partitioned such 

that the position update rate was fifteen minutes with a ten minute data span. The spans 

were located such that they would encompass only one single deformation state. An 

adjustment of each epoch using PADRES-GPS was then compared to that of a commercial 

GPS processing package which processes data in a baseline-by-baseline fashion and relies 

on a float/fixed ambiguity resolution scheme. To allow meaningful comparison, the results 

of the PADRES-GPS software (which are not based on a fixed base station) were converted 

via S-transformation to a minimally constrained solution with station D considered fixed. 

The commercial processor used station D as a fixed base for all baselines processed.  

 

Although there exist many varieties of GPS processors on the market, and the particular 

algorithms they apply vary widely, the author believes that the commercial processor 

chosen as a benchmark accurately reflects the state-of-the-art in general-purpose GPS 

processing. The processor used allows sophisticated adjustment of many processing 

parameters and has, in the author’s experience, consistently provided superior position and 

accuracy estimates, in particular when considering problematic or short data sets. Of 

course, various processors can be optimized for particular applications, but the commercial 

processor used is representative of a high-quality general-purpose processor commonly 

used in industry.  

7.1.3 -Deformation Detection Performance 

Figures 7.3-7.6 show the position estimates for each station over the epochs observed. The 

results are those stemming from a minimally constrained adjustment using the station D as 

a known station. The PADRES-GPS results are shown as solid symbols along with their 

associated one-sigma standard deviation error bars. The results from the commercial 

processor results (when available) are shown as open symbols. Finally, the theoretical 

position of the station at each epoch is shown by the lighter solid line. The overall RMS 

positioning error using the PADRES-GPS software are shown in Table 7.2, along with the 

average positioning accuracy predicted by the system, without any apostori scaling of the 

estimates. 
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Figure 7.3. Position Estimates of Station A in Short Range Network Test. 
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Figure 7.4. Position Estimates of Station B in Short Range Network Test. 
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Figure 7.5. Position Estimates of Station C in Short Range Network Test. 
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Figure 7.6. Position Estimates of Station E in Short Range Network Test. 
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Table 7.2. Observed and Predicted Positioning 1-σ Accuracies of Stations                                                 

During Short-Range Monitoring Test. 

 

Observed Accuracy (mm) Predicted Accuracy (mm) 
Station 

N E H N E H 

A 5.2 3.7 11.4 5.5 3.5 11.0 

B 3.7 2.4 9.3 4.2 2.4 8.6 

C 3.2 1.7 7.6 3.4 2.5 6.6 

E 6.5 4.7 10.2 6.2 4.1 13.4 

           Note : Station D held fixed.  

 

Several important findings are worth discussing. Firstly, in terms of position availability, 

the PADRES-GPS software was able to provide position estimates accurate to the centimetre 

level in 78 of 80 trials, whereas the commercial processor was able  to provide centimetre 

level results in only 22 cases. Station E was particularly affected, possibly due to the 

severity of cycle-slipping due to the proximity of tree cover to the north of this station. 

This problem is aggravated by the relatively short time periods used. In the PADRES-GPS 

software, the partial- fix ambiguity strategy implies that the presence of unresolvable cycle-

slips does not seriously impair the accuracy of the solution, since the fixed, high-accuracy 

carrier phase observation are weighted more heavily than their floating, low-accuracy 

counterparts. In the conventional processor, unresolvable cycle-slips can result in the 

processor reverting to float-only mode which provides position estimates accurate to the 

decimetre- level. The stability of the solution accuracy is of particular importance in 

deformation monitoring, as no reasonable assessment of the deformation can be made if 

two epochs are of grossly differing accuracies. In turn, this can pose a truly dangerous 

situation if continuity of monitoring is paramount, as in dam deformation monitoring. Note 

however, that when the conventional processor is capable of returning a valid solution, the 

position estimate is usually equivalent to that returned by PADRES-GPS within the accuracy 

reported by the processor developed. 

 



152 

A second key issue in deformation monitoring is the validity of the estimated accuracy of 

the position solutions. Position estimates are of little use in deformation monitoring if the 

analyst does not have accurate knowledge of their accuracy. A common shortcoming of 

most commercial processors is that the estimates of positioning accuracy returned are 

notoriously optimistic. This is largely due to neglecting temporal correlations (Section 6.6) 

and of the physical correlations between the observations. For example, in the test under 

study, the commercial processor steadfastly reported an accuracy of roughly 1mm laterally 

and 3 mm vertically for all stations. Inspection of the reported movements using this 

accuracy estimate would result in a plethora of false-deformations reported. On the other 

hand, as shown in Table 7.2, the actual and estimated accuracies are identical at any 

reasonable significance level.  

 

However, this accurate assessment of the achievable positioning accuracy may come as a 

disappointment to those who believe that GPS is capable of achieving millimetre level 

precision in a semi-kinematic mode. This is quite simply not the case, mainly due to the 

effects of multipath and its temporal correlation. Even if an hour of data is used, the 

estimated one-sigma height accuracy remains limited to the 5 millimetre level – to achieve 

one millimetre accuracy in height at a 95% confidence level would require 10 such hour-

long sessions combined together over the course of one day. Thus, if long-term 

deformation trends are to be studied, a permanent GPS array can provide excellent position 

estimates. However, if intra-day movements are to be studied, an accuracy of several 

millimetres laterally is expected to be the ultimate achievable accuracy. 

 

Finally, an investigation of the results of Figure 7.3-7.6 brings to the fore the problem of 

robust deformation detection. Given that the error bars shows are at the one-sigma level, 

their length must be multiplied by 1.95 to form a 95% confidence interval. The simplest 

deformation monitoring system would be to take the observed displacements in the North, 

East and Zenith directions and divide them by their corresponding estimated accuracies. If 

this ratio exceeds 1.95 (the square root of F0.05(1,∞)), a deformation is flagged as occurring 

at the 95% level. Several problems exist with this method. Firstly, the constraint of Station 
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D as a fixed-station implies that any deformations in D become mapped as deformations in 

the other stations, thus creating a false map of the actual deformation trends in the network. 

Also, while the position traces of stations B and C do follow the theoretic positions overall, 

it can be seen that upon scaling of the error bars, many of the smaller deformations will not 

be trapped at the required level of significance. A naive solution is to reduce the level of 

significance, and hence the size of the error bars, but this will result in greater false-

deformations being reported during the static periods. 

 

As a result, the more involved deformation detection approach outlined previously was 

implemented to identify deformed stations before using the simpler test to identify the 

most probable directions of the movements. An added benefit of this method is that it does 

not rely on the fixing of one station in particular, which not only improves the positioning 

accuracy of all the stations in general, but also frees the system from the requirement of a 

stable base station. At each epoch, the reported positions of the stations were compared to 

their reference positions and each station tested for stability at the 95% level using the 

rigorous test for localized deformation. Unstable stations were removed from the 

regularization base and the results correspondingly adjusted via appropriate S-transforms. 

The significant direction of movements for the unstable stations were then tested using the 

95% error ellipsoid corresponding to the station. Unstable stations for which no significant 

direction can be established are termed “marginally stable.” 

 

The resulting deformation report is shown in Table 7.3. Only significant epochs are shown, 

included if an actual deformation occurred during the epoch, or a deformation was 

reported. A summary of the performance is presented in Table 7.4. As can be seen, the 

PADRES-GPS software was very effective in detecting deformations of one-centimetre, even 

when the deformations were in several directions and at multiple stations. However, its 

performance was notably poorer when deformations at the 5 millimetre level were induced. 

Interestingly, at three epochs, Station D was reported to be either deformed or marginally 

stable. Reference to Figure 7.2 shows that the positions of all four other stations show 

apparent, but identical, movements in the height direction at these epochs, highlighting the 

problems encountered when fixing a base station.  
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Table 7.3. Deformation Report Produced During Short-Range Test and Actual Movements. 

 

Reported Actual 

Overall Overall Epoch Station 

Direction Direction 

Movement No Movement 
5 D 

Z : 14.7 mm  

Movement Movement 
11 B 

E : 18.5 mm E : 10 mm 

Movement Movement 
B 

E : 11.6 mm N : 10 mm  E : 10 mm 

C Marginally Stable  No Movement 
12 

D Marginally Stable  No Movement 

Movement Movement 
B 

N : 9.2 mm  E : 13.2 mm N : 10 mm  E : 10 mm 

Movement Movement 
C 

E : 14.2 mm E : 10 mm 

13 

D Marginally Stable  No Movement 

Movement Movement 
B 

N : 8.3 mm  E : 8.1 mm N : 10 mm  E : 10 mm 

Movement Movement 
14 

C 
N : -9.5 mm  E : -13.2 mm N : -10 mm  E : -10 mm 

Movement Movement 
16 B 

E : -6.5 mm E : -5 mm 

No Movement Movement 
17 B 

 N : 5 mm  E : -5 mm 
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Table 7.3  (continued). Deformation Report Produced During Short-Range Test and Actual Movements. 

 

Movement Movement 
B 

N : 6.2 mm  E : -7.6 mm N : 5 mm  E : -5 mm 

No Movement Movement 
18 

C 
 N : 5 mm 

Movement 
B Marginally Stable  

N : 5 mm  E : -5 mm 

Movement Movement 
19 

C 
E : 5.5 mm N : 5 mm  E : 5 mm 

Movement Movement 
20 C 

E : 4.8 mm E : 5 mm 

 

   

Table 7.4. Summary of Deformation Monitoring Performance for Stable and Deformed Stations. 

 

 Total 

Instances 

Incorrect 

Deformation 

Reported 

Marginal 

Stability 

Reported 

Missed 

Deformation 

 
Correct 

Analysis  

Stable 87 1 3 n/a 83 

Deformed 13 0 1 2 10 

 

 

Finally, note that false deformation rate was roughly 1% – an attractive feature in an 

automated deformation monitoring system. The number of true deformations missed can 

be reduced by lowering the level of significance of the stability test, but a corresponding 

increase in the number of false alarms is an unfortunate consequence. To simultaneously 

improve both the false-alarm rate and the detection sensitivity, the actual positioning 

accuracy must be improved. 
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Improved accuracy of the deformation monitoring system can result from several changes. 

The author feels that the best method of improving the system accuracy is to incorporate 

dual- frequency receivers even on network extents of one kilometre. The reason for this is 

two-fold. Firstly, according to the results of Chapter 6, the ionospheric error quickly grows 

with receiver distance, and is responsible for approximately 5mm of error even on these 

short separations. Dual frequency processing removes this effect by modelling the 

correlation of L1 and L2 ionospheric errors, as discussed in depth in Section 7.3. Also, 

since multipath and noise are generally uncorrelated between the two frequencies, the L2 

observations afford a truly independent observation. Increasing the data sampling does not 

add useful information, as the temporal correlations reduce the value of the added 

observations. However, due to the high cost of dual frequency receivers, it is anticipated 

that this is not a practical approach to increasing the deformation sensitivity. Instead, 

common approaches such as equipping stations with chokerings to mitigate multipath, and 

simply extending the data spans used are possibilities. 

7.2 - Application to Medium Range Static Positioning and Results 

Perhaps the most important advantage of satellite-based measurement systems is that direct 

measurements between stations are never required. As a result, there is no theoretic limit 

on the separation between stations. In addition, traditional terrestrial networks are 

developed through the propagation of “chains” of distance or angular measurements. 

Consequently, the positioning accuracies can vary significantly depending on the network 

geometries and the location of stations with known coordinates (Vanicek and Krakiswsky, 

1986). Satellite-based networks, on the other hand, can be solved via a simultaneous 

adjustment of observations directly to common satellites and so show greater homogeneity 

in their positioning accuracies throughout the network. 

 

Medium range positioning refers to applications where the network extents range from tens 

to several hundreds of kilometres. The justification for this extent-based classification lies 

in the fact that the dominant error source affecting networks of this size is the ionosphere, 

with the troposphere playing a secondary role. As a result, the use of dual frequency 
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measurements is required for practical ambiguity resolution. In addition, the network 

extent is small enough to ensure that a suitable large set of common satellites is nominally 

visible from all receivers in the networks, allowing the establishment of a differencing base 

station at the centre of the network. As discussed previously, the differencing base is 

simply the station which forms part of all each double-difference and does not play any 

special role in the regularization scheme. At larger scales, orbital errors necessitate the use 

of precise ephemerides and specialized techniques to deal with the lack of common 

satellite visibility; topics which are beyond the scope of this thesis. 

 

A key distinction between medium and short range positioning lies in the spatial 

correlation of errors. On short receiver separations, the ionosphere and troposphere are 

effectively cancelled out by the double-differencing operation, leaving only the multipath 

and noise effects. As a result, the double-differences are mainly only mathematically 

correlated, with little spatial correlation. However, as the receiver separations increase, the 

variances of the double-differenced observations grow as well, and the true variance-

covariance matrix of the double-differences diverges from that created from only 

mathematical considerations. However, it was not well known what the effects of these 

spatial correlations were on both the positioning accuracy and on the estimates of the 

positioning accuracy.  

 

Fortunately, the PADRES-GPS software allows processing of network GPS data using 

whatever variance-covariance model the analyst wishes to specify. As such, it affords a 

useful tool for the study of the effects of variance-covariance modelling on positioning 

accuracy and accuracy estimation. In particular, the effects of neglecting the spatial 

correlations between baselines entirely were studied, as well as the accuracies achievable 

in a typical medium range GPS network. 

 

To test the capabilities of the PADRES-GPS software in a medium-range positioning mode, 

the July, 2002 data set collected from the SCIGN network for the purpose of tropospheric 

and ionospheric variance-modelling discussed in Chapter 6 was used. Fifteen forty minute 

data segments evenly spaced throughout the day were isolated and processed using the 
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PADRES-GPS software. Dual frequency measurements were used, as was the centre-of-mass 

regularization scheme; incorporating the published site coordinates as initial estimates. 

Errors from the published coordinates for each station over the fifteen epochs were 

calculated and treated as formal errors. The resulting positioning accuracies for each 

station are plotted in Figure 7.7 as a function of station distance from the BRAN station, 

which was used as the differencing base. The average predicted accuracies are plotted as 

well, showing good agreement with the results actually observed. 
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Figure 7.7. Observed and Predicted  Position Accuracies for Medium Extent Network using Centre-of-Mass 

Regularization. Estimated accuracies are shown as solid lines, observed accuracies as solid symbols. 

 

Figure 7.8 shows the results achieved when the BRAN station is held fixed with known 

coordinates in a minimally constrained adjustment. The degradation in positioning 

accuracy is immediately apparent, mainly due to the propagation of errors at the BRAN 

station into the position results of the other stations. Whereas the positioning accuracy 

slowly degrades with receiver separation when the centre-of-mass regularization is used, 
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the error profile in the minimally constrained case follows a  1-e-d/D curve. The reason for 

this behaviour is most likely due to the increase in the tropospheric error with receiver 

separation, which follows a similar curve, as discussed in Section 6.4. In the centre-of-

mass regularized case, these errors are averaged throughout the network to create a more 

homogenous accuracy behaviour. The residual degradation of positioning accuracy with 

receiver distance from the differencing base is mainly then due to the gradual increase in 

the proportion of ambiguities that cannot be resolved for that receiver. 

 

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

Distance from Differencing Base (BRAN) (km)

P
o

si
ti

o
n

 S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 (c
m

)

North
East
Zenith

 
Figure 7.8. Observed and Predicted  Position Accuracies for Medium Extent Network using Fixing of 

Station BRAN. Estimated accuracies are shown as solid lines, observed accuracies as solid symbols. 

 

To further homogenize the positioning accuracies across the network and possibly improve 

the overall positioning accuracy, the notion of a single differencing base must be 

discarded. Figure 7.9(a)  shows the relationship between receivers involved in producing 

double-differences stemming from a single differencing base. Essentially, the data is 

processed as individual baselines radiating from a central site, with the spatial correlation 
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between the baselines rigorously modelled. As the baseline lengths increase, the 

differencing becomes less effective and as a result, ambiguities become less likely to be 

resolved as integers. This causes a corresponding degradation in positioning accuracy for 

the receivers located further away from the centre, although the modelling of the spatial 

correlations tempers this effect. A more effective scheme would be to form the double-

differences by selecting pairs of receivers that would create the shortest baseline lengths, 

and hence minimize the effects of the undifferenced atmosphere. Of course, care must be 

taken to ensure that the number of baselines formed is equal to the total number of stations 

minus one, in order to ensure that the double-differences formed are all independent. As 

well, the algorithm must ensure that the topology of the baselines in the network is logical, 

such that there are no “hanging subnets” unconnected to the main network. Figure 7.9(b) 

shows the resulting optimized baseline selection.  

 

 
Figure 7.9. Possible Baseline Configurations. (a) Differencing-base Scheme  (b) Shortest Baseline Scheme 

 

In theory, a system based on this method could maintain a consistent accuracy over a much 

larger extent, especially if the requirement for satellites to be visible at all stations is 

discarded. Unfortunately, the implementation of such a system is beyond the scope of this 

thesis, especially due to the logistics involved in properly generating the variance-

covariance matrix for the double-differences formed in a network with such flexibility in 

its configuration. In addition, as the PADRES-GPS software was primarily designed for use 

on small-extent networks, the gains stemming from such flexibility are slight. 
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Aside from dependence on a fixed base station, the second most common feature of 

commercial GPS processors is a reliance on a baseline processing methodology where all 

baselines are formed separately and later combined, neglecting the correlations between 

baselines. To study the effects this has on positioning, the network under study was re-

processed with PADRES-GPS, but the variance-model was changed to neglect the spatial 

correlations of the atmosphere. The centre-of-mass regularization was retained. The 

resulting accuracies are shown in Figure 7.10. Again, a significant degradation in 

positioning accuracy is apparent, especially for receivers located further away from the 

station BRAN. Overall, the effects of not considering the spatial correlation reduces the 

accuracy of positioning by an average of 22%. In addition, the agreement between the 

estimated and observed positioning accuracies is worse.  
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Figure 7.10. Observed and Estimated  Position Accuracies for Medium Extent Network Neglecting Spatial 

Correlations. Estimated accuracies are shown as solid lines, observed accuracies as solid symbols. 
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When the correlations between the baselines are neglected, the network solution problem 

degenerates into a series of n independent and isolated least-squares problems, where n is 

the number of baselines formed. If the spatial correlations are properly accounted for, on 

the other hand, then the solutions for each baseline are strengthened by information 

provided by observations made at neighbouring stations. This behaviour is perhaps best 

explained through analogy with a two stage collocation process, where, in the first stage, 

the observed errors in the double-differences and the spatial correlation model are used to 

determine the “spatially varying error” (i.e. tropospheric and ionospheric error) across the 

network. The predicted error (equivalent to the signal in classical collocation) is then used 

to improve the observations in the subsequent position and ambiguity solution phase. Of 

course, in the actual adjustment under consideration, these two steps are implicitly and 

simultaneously completed via the inversion of the variance-covariance matrix of the 

double-differences, which are created using the spatial model, and the solution of the 

whole set of normal questions. However, the two-stage approach does find direct 

application when reference networks are used for kinematic positioning; a concept studied 

by Raquet (1998). Regardless of the implementation details of the network adjustment 

system, results show that proper accounting of the spatial correlations is critical in large 

network processing to ensure maximum accuracy.  

7.3 -Application to Kinematic Network Positioning and Optimal Linear Combination 

Determination 

A fast-developing area of application for GPS lies in the field of kinematic positioning 

using reference networks. Essentially, the goal is to improve the robustness and precision 

of positioning a moving platform by combining the data collected at the platform with 

observations made at a number of reference receivers with known coordinates in the 

project area. The current approaches to implementing such network positioning all rely on 

some level on the concept of the spatial correlation of GPS errors. For example, the method 

of Raquet (1998) uses empirical variance-covariance modelling and collocation, coupled 

with appropriate trend fitting (Fotopoulos, 1999) to generate corrections subsequently 

transmitted to the remote user.  
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At the same time, proposed improvements to GPS include the provision of extra frequencies 

available for civilian use (Loverro, 2002). Given the addition of these extra observations, 

and the large number of reference receivers that may be available, it becomes evident that 

bandwidth limitations become a concern if data must be transmitted from one site to 

another. As a result, a method of compressing multi- frequency data has the potential to 

improve the efficiency of network based positioning. This section investigates how this can 

be done using variance-covariance analysis. 

7.3.1 -Linear Phase Combinations 

A linear carrier phase combination is simply a pseudo-observation formed from the scaled 

addition of two or more observed carrier phases. For the purposes of this thesis, a linear 

combination will be restricted to a combination of a particular carrier phase on the L1 and 

L2 GPS frequencies, although it is realized that there is no theoretical reason why 

combinations between multiple frequencies (when they become available) or even multiple 

systems (i.e. GLONASS or GALILEO) might not be possible. 

 

The resulting linear phase combination, φ*, can be expressed in cycles as 

 

[ ] 







⋅=

2

1
*

L

Lba
φ
φ

φ          (7.7) 

 

where φ1 and φ2 are the parent carrier phase observations and a and b are the coefficients of 

the combination. Eq. (7.7) shows that the linear phase combination is actually the 

projection of a two dimensional observation space onto a single line. The effective 

wavelength, λ*,  of the new pseudo-observation is given by : 
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where λL1 and λL2 are the wavelengths of the L1 and L2 carrier. 

 

In Section 6.7 it was shown that some of the errors affecting the two GPS frequencies are 

correlated between frequencies. Specifically, the tropospheric error, in metres, is identical 

between frequencies, whereas the multipath and noise was considered uncorrela ted. Using 

these assumptions, and the expression for the ionospheric inter-frequency covariance from 

Eq. (6.55), the variance of the linear combination is calculated in cycles as : 
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where σn
2 is the noise and multipath variance in cycles2, σT

2 is the tropospheric variance in 

metres2 and σI
2 is the ionospheric variance in units of TEC2.  

 

Both the process of double-differencing and linear-combination are linear processes, and 

as a result they are communitative. As a result, the above expressions hold for the double-

differences formed at both frequencies, with the ∇∆ symbol, appropriately substituted into 

Eqs. (7.7) and (7.9). In addition, although the original and double-differenced  ambiguities 

on both frequencies are integer quantities, the integer nature is not necessarily preserved in 

the linear combination if either coefficient is real valued. For the integer ambiguity 

resolution techniques of Chapter 6 to hold, the values of a and b must be held to integers as 

well. 
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7.3.2 - “Optimal” Linear Phase Combinations 

In Chapter 2 it was shown that the variance-covariance matrix of the estimated parameters, 

Cx*, depends on the variance-covariance matrix of the observations used and their 

linearised mathematical model. The relationship is summarized again here, simplified as 

 

( ) 11
* )(

−−= ABBCAC T
l

T
x         (7.10) 

 

where again A is the Jacobian matrix with respect to the unknown parameters, B is the 

Jacobian matrix with respect to the observations and Cl is the variance-covariance matrix 

of the observations. If a linear combination of two carrier phases is used, the number of 

effective observations is reduced by half, and thus the number of rows in the A and B 

matrices. The Cl matrix is also transformed in accordance with the principle of the 

propagation of errors. 

 

Inspection of Eq. (7.10) shows that the matrices A and B are invariant under various 

choices for the linear combination coefficients, a and b, assuming that the observation 

equations are expressed in meters. However, the Cl  matrix is directly affected by the choice 

of these coefficients, as it contains the variances of the new pseudo-observations, which 

are given by Eq. (7.9). Thus, by minimizing the variances of the pseudo-observations 

through an appropriate choice of a and b, the accuracy of the resulting position estimates 

will improve. The Optimal Linear Phase Combination (OLPC) is the combination that 

optimizes some aspect of the positioning problem through an appropriate choice of a and 

b. 

 

Furthermore, due to the physical independence of error sources, one can derive OLPC's that 

minimize the variance of a particular error source. For example, inspection of Eq. (7.9) 

shows that an OLPC that eliminates the ionospheric error is given by (a,b) = (1, -fL2 / fL1), 

which is the well known ionospheric free combination with fL1 and fL2 as the frequencies of 

the L1 and L2 carriers. Unfortunately, this is not an admissible OLPC since the b term is not 

integer. In addition, it can be shown that regardless of the OLPC chosen, the tropospheric 
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variance will remain the same in units of distance, although the wavelength of the OLPC 

will change. The only exception is the linear combination (a,b) = (1, -fL1 / fL2), which 

eliminates the tropospheric error in cycles, but yields an observable with infinite 

wavelength, as well as not containing integer coefficients. Finally, as expected by the 

principle of the propagation of random errors, the noise variance in cycles goes up as a and 

b increase, but the variance in metres depends on the wavelength of the particular OLPC. 

 

This illustrates one of the key difficulties in defining “optimality” for linear combinations. 

While it may be possible to minimize the cyclic error variance of a combination, it is not 

guaranteed that this combination will minimize the error in units of meters. Similarly, 

while short wavelengths generally reduce the error variance in metres2 (which is desirable 

for positioning accuracy) it is more difficult to resolve ambiguities reliably under such 

circumstances. Thus, the definition of optimality is somewhat arbitrary.  

 

In this work, an optimal combination is defined as a combination that minimizes the total 

error variance in metres2, while maintaining an error variance in cycles2 that is at least 

equal to that of the L1 observable. In this way, the positioning accuracy is maximized, but 

ambiguity resolution does not become more difficult than in the L1-only case. This is an 

effective strategy when baseline lengths are less than 50 kilometres, as the ionospheric 

error remains limited to less than ½ of the L1 wavelength. Hence the float ambiguities, 

although biased by the undifferenced ionosphere, are still likely to converge to their true 

integers. Once the ambiguities are resolved as integer, the key factor is a reduction in error 

variance in metres to achieve high positioning accuracy. On larger network extents, this 

optimality criteria may not be appropriate. Regardless, once the definition of optimality is 

set, the techniques presented herein can be used to find an OLPC to satisfy the definition. 

 

Figure 7.11 shows the relationship between the  error components considered for various 

values of a and b. In cycles, the noise error variance function forms a paraboloid with 

global minimum at (a,b) = (0,0). Thus the variance contour lines form concentric circles 

about the origin. The tropospheric and ionospheric error variance functions, however, form 

parabolic cylinders, whose global minima are described by lines passing through the 
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origin. These relationships are shown graphically in Figure 7.11. The total error variance 

function is simply the sum of these surfaces and thus forms a saddle-shaped surface, whose 

ridge lies is described by the line passing through the origin satisfying the relation :  
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where the variances are all considered in cycles. This line is simply the weighted average 

of the tropospheric and ionospheric variance minimization lines. 
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Figure 7.11. Selection of an Optimal Linear Comb ination.  

 

To determine an optimal integer combination, integer pairs lying on either side of the line 

described by Eq. (7.11) are chosen, and the combinations with total error variances less 

than that of the L1 double-differenced observations are retained. The remaining 

combination that minimizes the total error variance in metres2 is then chosen as the optimal 

candidate. Thus, the errors are initially analysed in terms of cycles to derive a subset of 

potential candidates, and then in terms of metres to chose the optimal candidate. 

 



168 

In an operational sense, it is desirable to choose a single OLPC to apply to all the dual-

frequency observations observed in a reference network, rather than calculating an OLPC 

for each observation pair. To do this, one simply has to calculate the average values of the 

double differenced noise, tropospheric and ionospheric variances observed in a given 

reference network. Fortunately, since the stochastic models describing the noise, 

tropospheric and ionospheric errors are fairly stable over time, the determination of the 

OLPC can be done in advance by using an almanac to predict the satellite orbits and an 

appropriate stochastic model to derive the predicted error variances 

7.3.3 -Determination of Optimal Linear Phase Combinations From Reference Network 

Data 

To illustrate the procedure of determining an OLPC from data available from a reference 

network a test was conducted using the July 2002 data set analysed in the medium-extent 

network of the previous section.  

 

Using the ephemerides available for the 24 hour period of data collected, the theoretical 

observations made during the observation period was generated. The variance-covariance 

models for the tropospheric, ionospheric and multipath effects developed in Chapter 6 

were then used to generate average values of the variances of these error sources. Model 

values were those calculated for the July 2002 data set from the reference network. Based 

on these average double-differenced variances for both frequencies, the average variance 

for a linear combination based on a particular (a,b) selection can be calculated using Eq. 

(7.9). The resulting ionospheric/tropospheric error variance minimization line is given by 

the relation a/b = -1.232, which is very close to the pure ionospheric minimization line of 

a/b = -λL2/λL1 =  -1.283. This is due to the dominance of the ionospheric error over that of 

the troposphere, as discovered in Chapter 6. 

 

Figure 7.12(a) shows the error in cycles2 for a subset of potential integer combination 

candidates selected. The x-axis shows values of the a parameter, and the different lines 

represent different choices of the b parameter - namely selecting integer values on either 

side of the line defined by a/b = -1.232. The heavy black line indicates the error in cycles2 
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of the L1 observation. From Figure 7.12 it can be seen that the error of the combination in 

cycles increases as the values for a and b increase. This is primarily due to the 

amplification of noise.  

 

Figure 7.12.Candidate combination variances in (a) cycles2 and (b) m2. 

 

According to the “optimality” criterion defined,  the final step for determining the optimal 

combination is to choose the remaining integer candidate that minimizes the total variance 

in metres2. The results for each combination candidate are also shown in Figure 7.12. Once 

again, the heavy black line indicates the variance of the L1 observation. Interestingly, as 

the coefficient value a increases, the total variance converges to the tropospheric variance 

in metres2. After performing the above mentioned steps, the overall ‘optimal’ integer 

combination (a,b) is given by the pair  (4, -3). This resulting combination has an associated 

wavelength of 13.4 cm and an error variance (in m2) of ~ 5 times smaller than the L1 

observable (or roughly twice as small in units of cycles2). 

7.3.4 -Positioning with an Optimal Linear Phase Combination 

To gauge the utility of OLPC's in kinematic network position, the following test was 

employed. A five-station subset of the SCIGN network was selected, along with a station 

approximately 1500m above the other five reference receivers. This station simulated the 
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conditions encountered by an aircraft in flight during a medium-scale photogrammetric 

survey. Any variation in the epoch-to-epoch position estimates of this static point can then 

be interpreted as an indication of positioning accuracy. Resulting baseline lengths from the 

reference receivers to the high platform ranged from 20 to 60 kilometres. Coordinates for 

the reference receivers and the test station were generated using a full 24 hours of dual 

frequency data processed using the PADRES-GPS software.  

 

The first processing mode used was a rigorous adjustment using both L1 and L2 data 

simultaneously. The observations were processed using a full variance-covariance matrix 

based on the stochastic model described above. As this mode utilized the most information 

available, it was assumed that this would result in the best (most consistent) results. On the 

other hand, this mode requires the most data handling. Secondly, the data was processed 

using the (4, -3) OLPC. The data was then also processed using only L1 and using the 

widelane observable which corresponds to a (1,-1) linear combination. In all cases, the full 

variance-covariance between observa tions made at different receivers and satellites was 

propagated.  

 

Table 7.5 shows the position variation standard deviation for each of the processing modes 

along with the average bias from the known coordinates. Figure 7.13 graphically shows the 

variation in the height coordinates the four processing modes. As expected, the L1/L2 mode 

performs the most consistently. Note that the centimetre- level epoch-to-epoch positioning 

accuracy has been achieved despite the relatively long baseline lengths, due to the rigorous 

incorporation of dual frequency data. However, the OLPC performs equally well and in fact, 

returns almost identical results every epoch. The L1 mode returns the worst variation, and 

the results are heavily affected by the variations in the ionosphere. 

 

An explanation for the results lies in the domain of principal component analysis. As 

previously mentioned, for any dual- frequency measurement, the variance-covariance 

matrix takes the form of Eq. (6.55). Thus one can visualize an error ellipse around the two 

dimensional dual- frequency measurement pair. When the errors are contaminated only by  
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Table 7.5. Position Standard Deviations of Various Processing Modes. 

 

 
L1 L1/L2 WL Optimal 

N 14.5  (1.7) 1.8  (0.2) 3.5  (0.4) 2.0  (0.3) 

E 12.4  (0.3) 0.9  (0.0) 2.2  (0.2) 1.0  (0.0) 

H 32.6  (6.0) 3.3  (0.7) 7.8  (1.0) 3.5  (0.6) 

Average bias shown in parenthesis. All values in cm. 
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Figure 7.13. Height Variation for Various Processing Modes 
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uncorrelated noise, the error ellipse has its principal axes aligned along the L1 and L2 

"directions." However, if tropospheric or ionospheric effects exist, the variance-covariance 

matrix contains off-diagonal elements, and the error ellipse rotates accordingly.  

 

A linear phase combination is simply a projection of the 2 dimensional dual- frequency set 

onto a single observation in the direction <a, b>. As a result, the variance-covariance 

matrix is reduced to a single variance. The process of choosing an OLPC is essentially 

rotating the <a,b> vector until the projected variance is a minimum. Thus when the dual-

frequency data is pre-processed by applying the OLPC, the data is effectively filtered of the 

major correlated errors.  

 

Since the ionospheric error significantly dominates the error budget in most medium to 

long range networks, the corresponding dual- frequency variance-covariance matrix is 

highly elongated. Therefore, the variance of the OLPC will be very small in relation to the 

semi-major axis of the error ellipse and the positioning accuracy will be high. In the 

widelane case, the corresponding <1,-1> vector is rather arbitrary and thus cannot be 

expected to minimize the error variance in any fashion. Similarly, the L1 only mode is a 

projection in the <1,0> direction and so bears the brunt of the full ionospheric error.  

 

The above test relied on the use of an accurate stochastic model to achieve correct relative 

weighting of the available observations. However, it is often difficult to estimate the 

parameters of the stochastic model, in particular in terms of the tropospheric and 

ionospheric correlation lengths. As a result, as second test was conducted in which the data 

was reprocessed under the assumption that there were no tropospheric or ionospheric error 

-  i.e. only an elevation dependent weighting was applied and no physical cross-

correlations exist. Table 7.6 contains the results of this test and Figure 7.14 shows the 

corresponding variation in the height coordinates.  
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Table 7.6. Position Standard Deviations of Various Processing Modes with an Improper                   

Stochastic Model Assumed. 

 

 
L1 L1/L2 WL Optimal 

N 12.5  (3.4) 4.0  (0.2) 4.9  (0.8) 2.1  (0.3) 

E 9.1  (1.0) 2.7  (0.0) 2.7  (0.2) 1.0  (0.0) 

H 27.6  (11.0) 8.2  (2.2) 10.1  (1.0) 3.6  (0.6) 

Average bias shown in parenthesis. All values in cm. 
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Figure 7.14. Height Variation for Various Processing Modes using an Incorrect Stochastic Model 
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As expected, the L1/L2 processing mode yielded better results than the L1 and widelane 

modes, mainly because twice as many observations were used and thus the ionospheric 

errors were able to cancel out somewhat, despite neglecting the correlation between the 

errors on both frequencies. Interestingly, the overall standard deviations of the L1 solutions 

improved, but the biases became significantly worse, as the effects of the uncorrected 

ionosphere propagated undetected into the solution. However, it is very surprising to note 

that the OLPC mode performed better than the L1/L2 mode. In fact, the OLPC mode 

performed almost as well as in the case of using a full-stochastic model. 

 

The reason for the convenient behaviour of the OLPC lies again in the concept of the error 

ellipse. In the L1/L2 case, using the full stochastic model gave information to the least-

squares adjustment regarding the correlation between the L1 and L2 frequencies. Implicitly, 

the adjustment was able to use this information to calculate the ionospheric error affecting 

each observation and remove this error effect. However, once the stochastic information 

was dropped, the adjustment could only treat the ionospheric effect as noise and the 

subsequent positioning accuracy was degraded. In the L1 case, this shows up as the large 

bias in the position estimates – the adjustment simply cannot “see” the ionospheric error, 

and consequently the ionospheric error causes a scaling of all the satellite-receiver ranges. 

This is also why the height component is the most affected. 

 

In the case of the OLPC, a pseudo-observation that was relatively free of ionospheric effects 

was generated. Consequently, it is to be expected that the spatial correlations of the 

pseudo-observations would be significantly reduced and that the variance-covariance 

matrix for the set of observations becomes more diagonal as a consequence. In addition, 

the variance-covariance matrix of a set of uncorrelated observations (i.e. only affected by 

noise) is diagonal as well, and so the variance-covariance matrix of the OLPC observations 

becomes more like a scaled version of the  noise only assumption (i.e. no stochastic 

information regarding spatially correlated errors). This is key, since it is well known from 

adjustment theory (Mikhail, 1971) that the results of a least-squares adjustment are 

invariant upon scaling of the variance-covariance matrix.  An added benefit of the noise-

like variance-covariance matrix lies in the fact that the inversion of such a matrix is much 
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more efficient than the inversion of a matrix where spatial-correlations cause significant 

off-diagonal terms. 

 

In this work, the generation of an OLPC has been limited to the compression of two carrier 

phases into a single pseudo-observation. In the future it is anticipated that observations at 

multiple frequencies will be available. Fortunately, the concept of the single OLPC is still 

useful in such a scenario, and in fact, is even more attractive due to the restriction of 

transmission and processing loads to a single pseudo-observation, rather than a set of 

multiple frequency observations. In the case of observations at several frequencies, the 

variance-covariance information relating the observations can be visualized as a hyper-

ellipsoid. The OLPC is then defined as the projection of the data collected at different 

frequencies into a single pseudo-observation, the “direction” of which is defined as the 

direction of the semi-minor axis of the error ellipsoid. Thus observations at additional 

frequencies are expected to allow for better extraction of the ionospheric error (as it is 

frequency dependent) and allow for the averaging out of multipath and noise.  
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8.0 - CONCLUSIONS AND FUTURE WORK 

 

The objectives of this research were satisfied. By eliminating traditional shortcuts and 

assumptions regarding GPS, an improved method of adjusting observations made with 

satellite-based navigation systems was developed. The key developments of this 

dissertation included : 

 

• Study of the least-squares adjustment problem as applied to satellite-based 

positioning, in particular in terms of adjustment under constraints, proper 

propagation of parameter statistics and linearization of the positioning 

mathematical model. 

• Investigation of the datum definition problem and the development of a 

regularization scheme to solve the problem of poor datum visibility. 

• Development of a partial- fix ambiguity resolution scheme which depends on 

appropriate apriori variance models and minimally biased float ambiguity 

estimates, achievable through a centre-of-mass regularization scheme. 

• Establishment of variance-covariance models for GPS error sources and the 

development of practical techniques to determine estimates of model parameters. 

 

The above findings were then combined to form the basis of a very robust and flexible GPS 

processing package. The performance of this package was tested under small and medium 

network extents. 

 

This chapter summarizes the key findings of each chapter individually, discusses other 

possible application areas, and makes recommendations for future research. 
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8.1 -Key Findings by Chapter 

Chapter 2. Basics of Space-Based Radio Ranging. 

Determination of satellite coordinates requires accounting of the frame rotation and 

satellite motion during transmission time to ensure accuracy of satellite orbits remains at 

the several metre level (as determined from the broadcast ephemeris). Otherwise orbital 

errors of up to 500 metres can result. 

Chapter 3. General Solution to the Space-Based Positioning Problem. 

The GPS solution space is relatively flat with respect to the position unknowns, and 

completely linear with respect to unknown clock offsets and ambiguities. Position initial 

estimates accurate to the 300 metre level are required to preclude the need for iteration; 

initial estimates are not required for clock and ambiguity unknowns. 

 

Double-differencing serves to eliminate both satellite and receiver clock offset unknowns 

from the positioning problem, significantly improving the efficiency of the solution for the 

receiver positions. Double-differencing maintains the integer nature of the ambiguities, but 

causes the full set of (originally independent) ambiguities inestimable, necessitating the 

solution for a reduced set of mathematically correlated double-differenced ambiguities. 

The least-squares solution is complicated by the addition of constraints, in particular in 

terms of error propagation. Furthermore, modifications to the standard equations for 

variance propagation must be made if the regularization for the parameters used does not 

correspond to the apriori variance-covariance of the initial estimates. 

Chapter 4. Datum Issues in Satellite-Based Navigation Systems. 

The GPS datum is overconstrained by the assumption of satellite coordinates as known 

quantities. However, assuming them as unknowns or as observations causes unacceptable 

inefficiencies in the solution for the receiver positions due to the size of the matrices 

involved as the satellites move over time. 
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Without differencing, the network solution is limited in accuracy to the accuracy of the 

satellite orbits. The resulting error imparted into the solution for the receiver positions is 

highly correlated between receivers. The overall accuracy of the network improves as the 

network extent increases, due to decorrelation of the orbital errors, but at the same time, 

the relative accuracy degrades for the same reason.  

 

Under differencing, the satellite-based datum becomes poorly visible, resulting in 

instabilities in the normal matrices required to be inverted. This problem can be alleviated 

by Tikhonov regularization. As the regularization is increased, the solution becomes more 

stable, but increasingly biased. As the network extent increases, the visibility of the datum 

improves, and the amount of regularization required is reduced.  

 

For deformation monitoring, high regularization is desirable. Despite the highly biased 

results, the bias is correlated between epochs, and thus largely cancels out upon creation of 

the displacement vector. 

Chapter 5. Ambiguity Resolution for Precise Positioning. 

Regular least-squares return real-valued estimates for the integer ambiguities. The process 

of ambiguity resolution determines the most- likely integer values for the ambiguities based 

on their float solutions, and by applying these integer values as constraints, the solution for 

the receiver positions can be considerably improved.  

 

Double-differenced ambiguities depend on the relative geometry of the receiver network 

and thus are largely insensitive to overall translations of the network. Heavy Tikhonov 

regularization results in highly biased ambiguities due to distortion of the relative 

geometry of the network. Instead, regularization using a constraint of the network centre-

of-mass is preferred, although loss of relative geometrical information results in poorer 

accuracy of the float ambiguities. Nonetheless, this is preferable to a biased estimate if the 

integer values of the ambiguities are to be determined. Heavy regularization based on the 

centre-of-mass constraint can be applied without adversely affecting the ambiguity 

solutions, which is desirable from a deformation monitoring standpoint. 
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Integer values of the ambiguities can be efficient ly determined via the LAMBDA method. A 

modification of this method was developed where the total number of ambiguities that can 

be resolved at the 99% level are chosen as a subset of the total ambiguities. This leads  to a 

partial- fix methodology, where only some of the ambiguities are resolved as integer, and 

the remaining ambiguities are improved due to their correlation to the resolved 

ambiguities. The end result is more stable positioning accuracy between observation 

sessions. 

Chapter 6. Analysis of Error Sources in Global Navigation Satellite Systems and 

Stochastic Modelling. 

Proper stochastic modelling of the GPS observations is crucial for both positioning 

accuracy and the accuracy of the statistical estimates returned by the least-squares 

adjustment. 

  

The stochastic modelling method employed herein combined a theoretical an empirical 

approach, relying on mathematical models developed from a theoretical considerations of 

the error processes coupled to an empirical determination of the models’ parameters. Once 

these models for the undifferenced errors are developed, they can be mathematically 

propagated depending on the differencing and network configuration scheme used. 

 

All error sources were modelled using a zenith variance term multiplied by a mapping 

function. For noise and multipath, this mapping function is dependant on the antenna gain 

pattern, whereas for tropospheric and ionospheric errors this mapping function is 

dependant on the mapping functions used in the original error models. 

 

The noise and multipath zenith variance are determinable using a zero-baseline and a 

short-baseline test, respectively. It was shown that the noise and multipath variances can be 

combined in practice, since their variance mapping functions are identical. Typical zenith 

variances of carrier phase noise and multipath are at the few millimetre level, and are site 

dependant. 
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The tropospheric and ionospheric variances were shown to be spatially correlated. This 

correlation was shown to decrease exponentially with increasing receiver distance and 

increasing angular separation of the receiver-satellite line-of-sight. The parameters of the 

resulting double-differenced variance models can be determined from a reference network. 

Although the parameters of the tropospheric model were fairly stable, it was shown that it 

is difficult to separate the zenith variance from the correlation length if the network extent 

is not larger than 500 kilometres. However, on networks of smaller extent, this also implies 

that only the ratio of the two quantities is of importance, and values of 1.5 cm / 250 km are 

suggested for the zenith standard deviation and correlation length respectively, assuming 

use of the UNB2 model. Typical model values for the ionosphere, using the Klobuchar 

model, are 0.9 m / 7000 km, but vary slightly over the course of the year and should be re-

evaluated at 4 month intervals. 

 

A simple method of adjusting the normal equations for the temporal correlations of the GPS 

errors was presented, based on the correlation period of the errors (assumed as 

approximately 300s), the sampling rate and the length of the observation session. It was 

shown that increasing the sampling rate has very limited gains in terms of improving the 

solution accuracy. 

Chapter 7. Application of Global Navigation Satellite Systems to Network Positioning. 

A processor adjusting GPS observations was developed for the primary purpose of high-

precision short-range deformation monitoring. The PADRES-GPS software combines robust 

variance modelling, variable regularization schemes and rigorous least-squares processing 

into a package capable of returning stable, precise results with reliable statistical estimates. 

 

The success of the system in short-range deformation was shown using a real-data set with 

known induced deformations. The PADRES-GPS software consistently provided more 

reliable results than a commercial GPS processing package used for comparison, mainly 

due to the short time spans used. This success was attributed to the partial- fix processing 

mode with regards to the ambiguities. Also, it was shown that the possibility for centre-of-
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mass regularization allows more sophisticated deformation detection techniques to be used 

instead of a simple comparison of observed movements to their standard deviations. 

Application of the method was very successfully in identifying lateral deformations on the 

level of 10 millimetres, and marginally successfully in identifying deformations on the 5 

millimetre level. Observation session lengths were limited to 10 minutes, and it is believed 

that better positioning accuracy is possible if observation sessions are significantly 

extended (i.e. to the hour level), or if dual- frequency data is available. 

 

PADRES-GPS was also shown to provide decimetre- level results when network extents of 

several hundred kilometres are involved and dual- frequency data is available, based on a 

forty minute observation span. The significant positive effects of centre-of-mass 

regularization and spatial correlation modelling were demonstrated. 

 

Based on the variance-covariance modelling developed through this research, a novel 

method of combining dual- frequency data into a single optimal- linear phase combination 

(OLPC) was developed. Processing using this combination was shown to have advantages 

in terms of processing and data transmission efficiencies in kinematic network positioning. 

In addition, use of the OLPC yields results almost equivalent to that obtained when dual-

frequency data is processed together with a proper stochastic model. When no such model 

is available, results using the OLPC remain largely unaffected, due to the implicit 

encapsulation of the stochastic model into the OLPC during its determination. 

8.2 -Thesis Contributions 

The author believes that the  major contribution of this dissertation is the re-evaluation of 

the traditional dogma surrounding the processing of measurements collected using 

satellite-based navigation systems. Traditionally, satellite-based ranges have been treated 

as “special” observations, completely removed from traditional geodetic observations such 

as distances, angles and astronomic azimuths. In this thesis, every attempt has been made 

to treat GNSS measurements purely as very long range spatial distances and their 

similarities with those collected using terrestrial methods have been emphasised.  
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This change in perception directly led to the investigation of variance-covariance 

properties of the satellite-based measurements, and on datum definition and observation 

adjustment. At each stage, investigations were led by theoretical considerations and then 

supported by empirical data, rather than vice versa. The development of the multipath 

variance mapping function is an excellent example of this process. Although this thesis 

provided several contributions in terms of new variance-covariance models, ambiguity 

resolution techniques and datum regularization methods, the author feels the greatest 

contribution of this thesis is as an example of how a rigorous application of the 

hypothesis/testing/validation/refinement sequence can uncover previously unseen issues in 

an otherwise established problem. 

8.3 -Recommendations for Future Work 

Although these considerations led to an improved processing strategy, they also unveiled 

many new areas of research. Included below are some of the more pertinent topics : 

 

• Proper variance-covariance modelling of the GPS observations should allow 

improved integration of these observations with terrestrial measurements. To date, 

integration of GPS and terrestrial measurements is done after processing of the GPS 

data to provide interstation vectors – these vectors are then used in a combined 

adjustment with the terrestrial data. Large problems exist in integrating the two sets 

of data due to improper weighting of the GPS interstation vectors. However, 

combining the normal equations corresponding to the terrestrial measurements and 

the GPS measurements directly, with a correct relative weighting,  will allow the 

terrestrial data to directly improve ambiguity resolution by affording unambiguous 

information regarding the relative station positions – this in turn should result in 

overall improved accuracies. Similar research could involve the integration of 

photogrammetric flight data with GPS observations at the normal equations level. 
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• Further investigation of the covariance models developed should be performed. 

Specifically, the following areas are of interest 

o More comprehensive evaluation of the time varying nature of the variance 

model parameters for the multipath, tropospheric and ionospheric errors. In 

particular, it would be interesting to obtain better information regarding the 

variation in the ionospheric variance model under storm conditions and 

during different phases of the 11-year sunspot cycle. Similarly, it would be 

instructive to analyse the variation in the tropospheric model in different 

climate zones and under changing weather situations. 

o Further study of the temporal correlations is required. This dissertation 

limited itself to accounting for the temporal correlations based on the 

method of El-Rabbany (1994). However, initial research indicates that the 

correlation lengths for multipath and atmospheric effects may be different. 

Methods to determine and account for these differences are required, as 

well as an assessment on their effects on the adjustment of observations. 

 

• The PADRES-GPS software was designed for use on small-extent networks. To 

simplify the formation of double-differences and the creation of their 

corresponding variance-covariance matrix, the concept of the differencing base was 

relied upon, although it played no part in datum definition. On larger network 

extents, ambiguities become more difficult to resolve for stations further away from 

the differencing base due to the decorrelation of errors and thus positioning 

accuracy suffers. Work should be undertaken to modify the PADRES-GPS to 

eliminate this formation constraint, thus forming double-differences between pairs 

of closest receivers.  

 

• As observations on more frequencies become available, the applicability of forming 

Optimal Linear Phase Combinations using multiple frequencies should be 

investigated. Also, the applicability of a particular Optimal Linear Phase 
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Combination over time should be studied, as it may be discovered that one 

particular combination is optimal over a range of ionospheric conditions. 

 

The author feels that the above recommended areas of study are only some of the 

topics that may arise from the work presented herein. Overall, the methods and 

concepts developed of dealing with spatial distances and the correlations of their errors 

will be widely applicable as various Global Navigation Satellite Systems are developed 

and put to use for precise positioning.  
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