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ABSTRACT

This dissertation presents a novel way of using measurements made by satellite-
based ranging systems, such as Gps, for the purposes of precise positioning. Traditional
methodol ogies and assumptions are discarded, resulting in aview of code and carrier phase
measurements as simple spatial distances in a three-dimensional trilateration network of
extremely large extent. Although the example navigation system used is GPs, the findings
have genera applicability to all Global Navigation Satellite Systems, such as GLONASS and
GALILEO.

Traditional dependence on he single, fixed base station for GPS processing is
eliminated by investigation of the underlying datum problem and an improved method
based on the constraint of the network centre of mass is presented. This strategy has
advantages in terms of minimally-biased ambiguity solution and positioning accuracy
homogeneity across the network.

A novel approach to variance-covariance modelling for GPS error sources is
developed, which separatesthe total error in terms of noise, multipath and tropospheric and
ionospheric errors and models each individually. The models are developed using
theoretical considerations coupled with empirical determination of key model parameters.
Tempora and inter-frequency correlations are discussed as well.

The results of the research were used to create a GPS processing system named
PADRES-GPS. It was shown that this system is capable of effectively detecting deformations
of 10 mm at the 95% level on small-extent networks when data spans of only 10 minutes
were used. The availability of the position solutions was shown to be much higher than
that achievable by a commercial processing package due to the application of a novel
“partia-fix” approach to ambiguity resolution documented herein. The PADRES- GPS system
was also shown to improve positioning on larger networks extents via modelling of spatial
correlations. Finally, a method of compressing dual-frequency data into a single optimal
linear combination is described and its performance in kinematic network positioning is
demonstrated.
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1.0 - INTRODUCTION

The Global Positioning System (GPs) was designed by the United States Department of
Defence for the dual purposes of “creating a system to navigate cheaply” and “dropping
five bombs into the same hole” (Parkinson, 1996).

Since then, GPs has been thoroughly exploited by the civilian sector for uses of far greater
variety and finesse than intended by the military planners at the Joint Program Office. Asa
navigation system, GPs is in use world-wide, from aiding the navigation of oil tankers ard
aeroplanes, to informing hikers of where they are. Indeed, much current research revolves
around the refinement of GPs for navigation purposes, in particular in terms of its
integration with other navigation sensors. Furthermore, the success of Global Navigation
Satellite Systems (GNss) has led to the development of paralel systems, such as the

operating Russian GLONASS system, and the planned European GALILEO project.

Early on, the potential of applying these satellite-based navigation systems to surveying
applications was recognized. For example, in the 1960's, the TRANSIT satellite system was
successfully applied to static surveying by using several days worth of data and post-
mission precise orbital information to achieve accuracies of less than one metre (Hofmann-
Wellenhoff et al, 1994). Despite the design of the GPs system as a military navigation tool,
sub-decimetre surveying accuracies quickly became achievable primarily through the
development of differential techniques (Counselman et al, 1972), the use of carrier phase
measurements (Collins, 1982), and the development of robust techniques to obtain dual-
frequency measurements for ionospheric nodelling (Ashjaee and Lorenz, 1992). Dropping
receiver costs in the last two decades have made high-quality GPS receivers reasonable

available to the geodetic community and hence encouraged their use in many aress.



The appea of applying satellite-based navigation systems to static applications largely
stems from the autonomous operation of the system and the lack of a requirement for
surveyed sites to be intervisible. Both of these issues have been serious limitations to
traditional surveying techniques applied to precise positioning and deformation
monitoring. For example, the interval between position updates in networks of even
modest size is often limited to months, if not years, due to the costs associated with the
requirements for skilled personnel to make angular measurements in a theodolite-based
network. Recent advances in terms of using robotic tacheometers have improved the rate at
which observations can be made, but the requirements for the stations to be intervisible
still constrains network design and extent. On the other hand, a network of GPs receivers
can collect unlimited data at a very high data rate, in al weather. The network design is
considerably loosened by eliminating the need for lines-of-sight, and as a result the design
can focus on other considerations, such as ensuring that geo-technically significant points
are observed. This aso implies that inter-station distances can be considerable extended.
Finally, once the initial costs of the receivers are absorbed, further operating costs are

minimal, compared to the costs of trained survey personnel.
1.1 - Traditional Application of GPSto Geodesy

Given the benefits of satellite-based systems described above, it is perhaps not surprising
that GPS has been applied to a wide variety of geodetic and geo-technical problems, from
national scale crustal deformation monitoring in Japan (Tsuji et al, 1996), to the study of
building sway under wind loading (Guo and Ge, 1997). Indeed, every major geodetic
conference is certain to exhibit a large number of papers dedicated to the application of
GPS.

However, the author believes that the current state of understanding regarding the geodetic
applications of satellite-based navigation systems retains artefacts of the early research
done on these systems, and their navigation heritage. This is particularly true in areas of
variance-covariance modelling and network adjustment, where many simplifications

necessary in early research are ill retained in typical processing methodologies. Of



course, these areas are critical for the rigorous application of GpPs (and indeed any

observation system) to deformation monitoring and precise positioning.

During the early period of GPs, the high cost of receivers limited most institutions to a pair
of receivers, which forced research to be performed using a baseline methodology, where
one receiver was considered the base station and the other a remote. A network of points
could then be surveyed by moving the remote receiver to various stations in the network
and thus generating a set of radiating vectors. This paralleled developments in navigation
based research, which relied on the use of a base station with known coordinates to provide

differential corrections to a remote station.

Interestingly, although it was obviously realized that the GPs errors are spatially correlated
(and hence the returns provided by differencing doservations), these spatial correlations
were neglected in the diagonal variance-covariance matrix typically used in the processing
of the observations. This can be explained by the fact that early knowledge of the actual
gpatial correlations were poor. Also, limitations of early computing power implied that use
of a diagonal variance-covariance matrix had significant advantages in terms of formation
and solution of the normal equations. Furthermore, since the GPs observation results were
significantly better than results achievable using terrestrial methods, errors stemming from
nortrigorous variance modelling were undetectable. Recently, studies have begun to apply
more redlistic covariance models and these are discussed in Chapter 6. However, most

commercial processors have yet to implement their results.

The pioneering baseline processing methods aso left their mark on the prevailing network
adjustment procedures of today. In most network adjustments involving GPs, the baselines
of the network are calculated separately, along with the variance-covariance matrices of
the individual baselines (which themselves do not take into account a rigorous statistical
model of the component error sources). These vectors are then treated as pseudo-
observations in a subsequent adjustment for the network, usualy constraining the central
base station at its apriori coordinates. Obviously this is somewhat of a boot strapping
procedure for determining the final coordinates of the network receivers and the statistics



of the adjustment are expected to become serioudy distorted (and usually very over-
optimistic). In practice, this effect is masked by long observation times (several hours for
most geodetic applications) and the higher precision of GPs observations when compared

to their terrestrial counterparts, as well as alack of suitable “comparison” systems.
1.2 - Research Objectives

The goal of this thesis was to determine how to treat GPS observations in the same manner
as any conventional geodetic measurement, without reliance on the assumptions inherent

in today’ s conventional processing. This required the re-evaluation of the following areas :

Adjustment of Observations under Constraints and the GPs Mathematical M odel
Datum Definition
Ambiguity Resolution

Variance-covariance Modelling

The result of this research is a GPs processor that is capable of using data observed by a
network of receivers, and performing a truly rigorous least-squares adjustment of the data
at the observation level. In this way, the GPS observations become nothing more than
gpatial distances, much like those measured in conventional trilateration networks, albeit
over much larger distances. The same principles can then be smply applied to other GNSS,

such as GLONASS and GALILEO.

The appeal of such research is that, by studying GPs observations as regular geodetic
observations, existing geodetic theories on network adjustment and deformation
monitoring can be smply applied. For example, proper variance-covariance modelling,
studied in Chapter 6, allows a greater confidence in the parameter statistics reported, a
significant departure from the traditional “multiply the standard deviations by 10" rule of
thumb commonly used in industry. This in turn is crucia for the identification of
significant deformations, a topic studied in Chapter 7. Similarly, datum definition is an
arealong studied as applied to terrestrial networks, but has been largely ignored in satellite



based networks due to the reliance on the known base station. Although some studies have
used the concept of inner constraints for processing a network of individually processed
GPS baselines, this thesis treats proper datum definition as the starting point of the
subsequent observation adjustment, as discussed in Chapter 4. Even the basic process of
adjusting GPs observations is investigated, and a rigorous method of applying integer
ambiguity constraints and correctly propagating the statistics of the estimated parametersis
demonstrated in Chapters 3 and 5.

In total, the result of this work is a system of adjusting GPS observations for network
positioning and deformation analysis where the traditional assumptions made during the
transformation of the original observations to the final reported positions have been
minimized. Not only does this create a system that is more transparent, where the effects of
individual adjustment steps can be directly analyzed, but the resulting estimates are
improved, both in terms of their actual and reported accuracies. As shall be seen, the
lessons learred from this dissertation can be applied to a wide variety of applications,

ranging from short-range deformation monitoring, to kinematic network positioning.
1.3 - Outline of this Work

This dissertation begins with a basic investigation into the operation of the satellite-based
navigation systems and the nature of the observations they provide. From this starting
point, aspects of the rigorous adjustment of said observations are individually studied,
resulting in a complete processing methodology. Finally, the success of applying this

processing methodology to various real-world applications is demonstrated.

Specificaly, this dissertation is divided up into the following chapters :

Chapter 2 provides an introduction into satellite-based navigation systems and their
operation, using GPs as an operational example. The peculiarities of satellite-based time-of-
flight measurement are discussed, in particular in terms of the concept of moving reference
points



Chapter 3 reviews the principles of least-squares adjustment, but reviews the theories
pertinent to adjustment with additional constraints, which plays a pivotal role in ambiguity
resolution. The rigorous propagation of parameter statistics is emphasised at all stages.
Finally, the details of the linearization of the satellite-based positioning problem are
shown, and proper iteration termination is discussed

Chapter 4 delves into the problems of datum definition for satellite-based ranging
networks. It is shown that the space-based trilateration problem is identical to that of a
terrestrial one, with the moving satellites acting as control points. However, it is aso
shown that the datum defined by these satellites is poorly visible, requiring regularization

of the positioning problem.

Chapter 5 continues the discussion of datum regularization, but focuses on its effects on
ambiguity resolution. Also, details of the ambiguity resolution process are discussed, from
the proper treatment of base satellite changeovers to integer ambiguity resolution using the
LAMBDA method. The integer ambiguity problem is shown to be a problem of |east-squares
with constraints and a novel partial-fix method is presented that allows more stable

positioning performance over time.

Chapter 6 introduces new concepts in variance-covariance modelling for observations
made by GNss. Individua error sources are studied, including noise, multipath,
tropospheric and ionospheric effects. In particular, this section features theoretical models
developed to describe the variance properties of these errors and their propagation into the
double-differences formed during processing. Methods of establishing these models using
collected data are also discussed, as are the inter-frequency and temporal correlations of

GNSS errors.

Chapter 7 applies the theories developed in the preceding chapters to three distinct
application areas. Firstly, a robust deformation monitoring system applicable to short
ranges is developed, and its performance using real datais assessed. Secondly, the limits of



precise positioning on networks with extents of 10 to 150 kilometres is studied. Finally, the
variance-covariance studies described are used to develop a unique method of optimal

linear combination determination for efficient kinematic network based positioning.

Chapter 8 contains a summary of the discoveries made on a chapter by chapter basis,
discusses their possible applications in various fields and presents recommendations for

future work.



2.0 - BASICS OF SPACE-BASED RADIO RANGING

All spaced-based navigation systems used today rely on the transmission of ranging signals
from space-based platforms (satellites) to receivers on or above the Earth. This resultsin a
trilateration problem where the satellites play the role of control points and the receivers
are unknown stations — a problem analogous to a terrestrial network consisting solely of

el ectromagnetic distance measurement observations.

However, the magjority of space-based systems in use are one-way Systems, whereby the
receiver does not transmit back to the satellite. While this alows an unlimited number of
users to access the navigation system, the resulting problem of relating satellite and
receiver time systems must be dealt with. As well, the motion of the satellites and the Earth

itsalf results in issues not encountered in terrestrial trilateration networks.

This section investigates the mathematical formulation of the three-dimensiona space-
based trilateration problem. The results are generally applicable to all space-based ranging
systems, such as GLONASS and GALILEO, but the discussion focuses on the GPS as an

example.
2.1 -Distance By Radio Ranging

Assume a situation whereby satellites in orbit send signals to a ground-based receiver. If a
given satellite emits a signal at time ts and it is received by the receiver at time t,, the

distance, d, the signal has traveled is given by

d=cxt, - t,) (2.1)

where c is the speed of light in vacuo.



Eq. (2.1) neglects the effects of the atmosphere on the signal and assumes that the
transmission and reception time refer to an absolute time frame, see Section 2.2. In
practice, the signa transmit time is implicitly transmitted in the coding of the signal and
refers to the satellite’s unique time frame. Similarly, the receive time is based on the
receiver'slocal oscillator. Let the offset of the receiver and satellite time frames from some
absolute frame be denoted as Dt, and Dts. Note that the clock offsets are not themselves
constant over time in general. The electromagnetic distance, de, between the satellite at
transmission time and the receiver at receive time can then be written as:

de = C><tr - ts)+C><Dts - |:]:r) (22)

The bracketed term farthest to the right acts as a correction to the actual measurement,
which is simply the measured travel time multiplied by the speed of light. It isimportant to

realize that t, and ts represent the measured transmit and receive times.

The geometric distance can be derived by taking into account the effects of the signal’s
passage through the electrically-charged ionosphere and the neutral atmosphere, which not
only affects the velocity of the wave, but also causes it to follow a curved path due to ray-
bending (Saastamoinen, 1973). These effects will be more closely studied in Chapter 6. At
the moment these quantities will be simply denoted as | and T for ionospheric and

tropospheric effects, respectively. Incorporating these effects results in the following

expression :
d, =cxt, - t;)+cxDt - Dt,)-T- | (2.3)

Thesignof T and | imply that they are delays, making the el ectromagnetic distance longer

than the true geometric distance, as expected.
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Finally, since measurements cannot be made with perfectly, the time of arrival of the

signal has a certain error associated with it. This can be incorporated into Eqg. (2.3) to yield:
cxt, - t)=p=d,- cXDt - Dt,) +T +1 +e (24)

where p is termed the measured pseudorange. No assumptions regarding the error statistics
of the e term have been made, athough these will be thoroughly addressed in Chapter 6.

2.2 -Satellite Time Frames

As discussed above, the transmission time of a ranging signal is usually embedded in the
transmitted signal itself. However, this time refers only to the satellite’'s onboard clock
since it is the clock which drives the frequency synthesizer and code generator required to
generate the signal itself (ICD-GPS-200C, 1993). This means that signals simultaneously
received from several satellites not only have different transmission times, but that the
transmission times reported actually belong to different time frames. In addition, since
clocks slowly drift over time, the difference between two satellites individual time frames
is not constant over time. This effect must be taken into account when deriving geometric

distances via EqQ. (2.4).

In the case of GPs, an “absolute” time frame is derived by averaging the master atomic
clocks at five monitoring ground stations (Francisco,1996). The deviations of individual
satellite clocks from this “ensemble clock” are continually monitored by the monitor
stations. Finaly, these deviations are used to create a prediction model for each satellite's
clock error using the following two degree polynomial (ICD-GPS-200C, 1993):

Dts =a,+ al(t - toc) +a2(t - 1:oc)z (25)

where Dts is the satellite clock offset, a,a;, and a, are broadcast polynomial coefficients, t

isthe time in the ensemble frame and tq is the epoch to which the coefficients refer to.
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Rigoroudly, the true time is required to properly determine the correction Fortunately,
since the a; and a; terms are small, the apparent satellite time can be substituted into Eq.
(2.5) with negligible effects.

The satellite transmit time must also be corrected for relativistic effects due to the high
altitude of the satellites and their velocity, this results in a corrected transmission time of
(ICD-GPS-200C, 1993) :

2rril/2 L

t,=t - Dt + . exA

2>dn E, (2.6)

where ts isthe corrected satellite time, mis the gravitational constant, ¢ is speed of light in

vacuo, and A, e, Ex are the semi-major axis, eccentricity and mean anomaly of satellite
orbit.

In the sequel, the last two terms of Eq. (2.6) will be lumped together into a single clock

correction term. Therelativistic correction aone can cause delays of up to 70 ns.

Using Eqg. (2.6) one can determine the transmission time of asignal in the ensemble frame.
Figure 2.1 shows the magnitude and variation of the correction term for three satellites
over a six hour period. For clarity, the plots have been shifted by the following amounts :
SV 4 -650 ns, SV 16 —62 ns, SV 30 — (-)3 ns. An amost linear trend is apparent,
although the direction and magnitude of the drift is satellite dependent. By differencing
subsequent epochs, one determines that the size of the drift istypically below 10 ps/ s. The
datain Figure 2.1 was derived from observations collected by monitoring stations in the
International GPS Service (1GS), and is not available in rea-time. For real-time positioning,
the user must use the transmitted correction model, which is of lower acuracy since it
predicts the clock correction. Figure 22 shows the difference between the predicted and
actual corrections for the same time period. The 10 nshiasin the plot islikely due to a bias
in the reference clock used to generate the precise ephemerides. Furthermore, the jJump in
the error plot for SV 30 is due to a difference in the clock correction model uploaded to the
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satellite. These changes typically occur every two hours as the ephemerides are refreshed.
Note that the data examined is free of the effects of Selective Availability (sA), a satellite
clock error source historically injected into the timing signa by the U.S. Department of
Defence. sA was turned “off” on May 1, 2000 (U.S.A. Office of Science and Technology
Policy, May 2000).

Using the clock corrections, one can modify Eq. (2.4) to read :
cxt, - t,+Dt) = p+Dt,=d, - cXdt,- Dt,) +T+1 +e (2.7)

where dts indicates the error in calculating the satellite clock offset. If one neglects the

biases evident in Figure 2.2, the standard deviations of the predicted clock offset errors are

at the 5 nslevel, or 150 centimetres.
2.3 -Receiver Time Frames

Just as the transmitted signal transmission time refers to the satellite’s unique time frame,
the measured receive time refers to the unique time frame of the recelver. However,
whereas the clocks of the satellites are high-quality atomic timepieces, receiverstypically
employ low cost quartz oscillators. As aresult, receiver clock offsets can be large and have
higher drift rates than those of the satellites.

Figure 2.3 shows the receiver clock offsets (in distance units) for two models of receivers
over a two hour time frame. The difference in the offsets is quite obvious, with the
NovAtel OEM3 offsets remaining close to zero and the Trimble 4000 Ssi offsets drifting to
1 ms before suddenly shifting back to zero. The reason for these differing offset behaviours
lies in the receiver implementation. In the case of the NovAtel, the receiver calculates its
clock offset internally and attempts to “steer” the clock to minimize its clock offset. Thus,
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the offsets remain close to zero. However, the Trimble receiver allows the drift to grow to
1 ms before resetting the clock. The drift properties of the receiver clocks are also well
illustrated by Figure 2.4, which show the clock drifts for the two receivers. The drift of the
NovAtel receiver remains very close to zero, with an average value of 3mm/s. The Trimble

receiver, on the other hand, has a significant drift, and the drift rate itself varies over time.

In modern GPs receivers, the receiver makes observations to all satellites simultaneously.
As a result, the clock offset affecting each pseudorange is identical. This alows the
receiver clock offset to solved for as an unknown parameter along with the receiver’'s
position. As the clock offset and its drift changes from epoch to epoch a new offset must
be solved for each epoch. Alternatively, the observations collected at a receiver can be
differenced, a concept discussed in detail in Chapter 3. Note that since the clock offsets are
either eliminated or estimated, the size of the clock offsets are not significant in static,
post-processed applications. However, in real-time applications, large clock offsets are

undesirable due to the need for measurements to be made synchronously at different sites.
2.4 -Satellite Orbits

The coordinate system of GPs (WGS-84) is defined by the combined coordinates of 5
monitor stations located at Hawaii, Colorado, Ascension Isand, Diego Garcia and
Kwgalein (Hofmann-Wellenhof et al, 1994). However, as the user can only make
observations to orbiting satellites, the coordinates of these satellites must be provided to
allow access to the wGs-84 frame. The direct analogy in terrestria networks is that of
using second-order control to define the datum for an engineering network, where the
coordinates of the second-order control have been previously derived from a survey
campaign linking them to a spare first-order control set. Datum definition is more
thoroughly discussed in Chapter 4.

The difference between GPs and terrestrial networks lies in the fact that the “observable”
control points are continuously moving. This results in several peculiarities. For example,
to alow for real-time operation, the satellite positions must be predicted. This prediction is
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carried out in two steps (Russell and Schaibly, 1980). Initially, data collected at the five
monitor stations is processed via a Kaman filter to calculate actua satellite positions,
velocities, solar pressure constants and other satellite states every 15 minutes for a one
week period. This week’s worth of data is then used to predict a satellite orbit (or
ephemeris) for a one day span However, due to bandwidth limitations, neither the full
orbital model nor the coordinates of the satellites themselves ae transmitted to the user,
but rather the parameters of a simplified 15 element perturbed-Keplerian orbital model,
derived using 4 hours of the 24 hr predicted base ephemeris. The user must then calculate
the satellite position for their particular epoch using the best available broadcast ephemeris,
which are typically updated every two hours (Beutler et a, 1998).

Just as in the case of the satellite clock model, actual observed orbits are provided by
severd agencies, including the IGS. These ae known as precise ephemerides. Figure 2.5
shows the difference between the precise ephemerides and the broadcast orbit for several
satellites over a 10 hour period. The along track agreement is the worst, as might be
expected since this is along the direction of the satellite’s motion The accuracy of the 1Gs
orbits used are a the 5 centimetre level, although a variety of 1GS orbit products are
available with accuracies dependant on their latencies (Roulston et al, 2000). As a result,
the data shown in Figure 2.5 implies a broadcast accuracy of 1.2 m radial, 2.4 m across
track and 4.5 m along track. These are in close agreement to those obtained by Zumberge
and Bertiger (1994).

In general, the GPs satellites follow an aimost circular orbit with aradius of roughly 26560
km. As well, the orbital period is one half of a sidereal day, which implies a repeating
satellite geometry every 23hr 56min (due to the rotating Earth). Figure 2.6 shows the
velocities of observed satellites over a 10 hour period. The velocities shown are with
respect to the wGs-84 frame and, since the frame rotates with the Earth, the shown
velocities are lower than the “true” satellite velocities. In an inertial frame, the average
satellite velocity is 3860 m/s. Due to the great velocities of the Gps satellites, the true
transmission time of the ranging signals must be accurately known in order to properly
calculate the position of the satellite at transmission, as discussed in Section 2.5.1.
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2.5 -Geometrical Model of Earth-Space Ranging

The purpose of space-borne trilateration systems is to determine the three-dimensional
coordinates of one or more receivers in a given reference plane. For our purposes, the
reference frame used will be an Earth-centred, Earth-fixed (ECEF) frame, such as wWGs-84.
Once coordinates of receivers have been determined in this frame, they can be converted

into any other frame through a suitable transformation.

A three-dimensional distance between a satellite and receiver is simply described as,

dy = |- 1 @] =00 % @) + (v, - v 6 + (26 2.6))°

(2.8)
where r,r, are the position vectors of the satellite and receiver at transmission and
reception time, respectively in a fixed (non-rotating) reference frame and t¢'t;’ are the

actual transmission and reception times.

2.5.1 - Modification for Transmission Time and Satellite Motion

Eq. (2.8) requires the coordinates of the receiver and satellites to be known at the actual
transmission and reception times. Since only the reception time is explicitly known, one
must derive the transmission time. If a measurement to a satellite islogged by areceiver at
time t, (apparent receiver time), then the true time of measurement is t,-Dt;, with Dt, being
the receiver clock offset. Furthermore, if the electromagnetic distance to the satellite is de,

then the true transmission time must be

t.=t - Dt -d, (2.9

S r

By inserting EqQ. (2.2) into the above and using the definition of a pseudorange, one can

derive the true transmission time in terms of the measured pseudorange, p :
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C_ an 0_ p
t.=t, - Dt - ¢—+(Dt,- Dt,)==t, - —- Dt
s s ( )fzj o (2.10)

where Dt; is the estimated satellite clock offset and known (from the broadcast ephemeris)
to approximately 5 ns. The pseudorange measurement noise is at the severa metre level,
corresponding to atiming error of about 33 ns. Note that the tropospheric and ionospheric
delays are implicitly incorporated in the measured pseudorange, as is the receiver clock
offset. Combined, the resulting error in transmit time calculation contributes less than one
centimetre to the satellite position error. However, given that GPs satellites have anorbital
radius of roughly 26 560 km, it can be shown that transit times vary from approximately 67
ms to 90 ms (Remondi, 1984). As a result, if the correction for transmission time was not
applied, a satellite position error of up to 350 m could result, based on the satellite
velocities presented in Section 2.4.

2.5.2 -Modification for a Rotating Earth

Eq. (2.8) holds true only if the coordinates of the receiver and satellite (which refer to
different epochs) relate to the same reference frame. Thus, if one wishes to work with
positions in an ECEF frame, a correction must be made since the coordinate s/stem to
which the satellite coordinates refer to is rotated with respect to the coordinate system of
the receiver. This phenomenon isillustrated in Figure 2.7. The amount of rotation is solely
dependant on the transmission time and as a result different for each satellite observed.
This “frame rotation” can induce up to 175 m of error into the satellite coordinates if not

taken into account.

One can modify Eq. (2.8) to explicitly take into account the transit time by adding a
rotation about the zaxis, resulting in the following expression for the geometric distance
between the satellite and receiver at transmission and reception times, respectively, in a

frame referring to the true reception time :



20

o At Apparent S5at. Position if
Frame Rot MNeglected

~ o

M T~ Satellite transmits at time t;
(%, ¥.2.) in Ref. Frame at time t;

Reference Frame 3¢ t;,

{
v

|
Reference Frame at t;

(X ¥; ;) in Ref. Frame at time t} /

Figure 2.7. Rotating Reference Frame Problem.

Receiver receives at fime t;.

dy =[Rwot ) (t,') - r,(t,")]
_ J(xs(t;)coswt Fyy(t)snwt - x () +(vo(t, ) coswt - x(t,)snwt - y, (t,"))
+(Zs(ts')_ Zr(tr'))2

(2119)
where

é cosq sng O
R()=¢g snq cosq Oy (2.11b)

A

g 0 0 1§

and ts andt,’ refer to the true transmission and reception time of the signa, t isthe transit
time of the signal and w is the rotation rate of the Earth The trangit time is equal to the
electromagnetic distance and thus can be derived from Eg. (2.2) using the measured
pseudorange and the estimated receiver and satellite clock offsets. Assuming no
knowledge of the receiver clock offset (and thus a maximum 0.5 ms effect), the worst-case
resulting error in satellite orbit due to frame rotation is 1 m, and so within the accuracy of
the broadcast orbits themselves.



21

2.5.3 -Modification for Carrier Phase Measurement

GPS provides two measurement types — code and carrier phase. The code measurement is
simply a time-of-flight measurement of the signal transit time made by correlating the
satellite generated ranging code to an identical copy generated inside of the receiver (but
shifted due to the transit time delay and the satellite and receiver clock offsets). Details of
the implementation of this measurement mode can be found in Ward (1996) and in Spilker
(1980). Carrier phase measurement, on the other hand, is a more precise measurement
mode created by comparing the carrier frequencies of the transmitted signal and the
internally generated replica. The Doppler shift between the two frequencies is accumul ated
over time, resulting in a range - see Remondi (1984) and Ward (1996) for implementation
details. The principal advantage of using the carrier phase method is that observations of
this accumulated Doppler are precise to within roughly 1% of the wavelength of the carrier
(Hofmann-Wellenhof et al, 1994). Thusin the case of GPs, where the L1 carrier wavelength
is 19 cm, this trandates into a measurement noise of several mm. Conversdly, the
pseudorange measurement noise is currently at the several decimetre level (Langley,
1997).

However, using the carrier phase measurement introduces several modifications to the
ranging model. Since the carrier phase is actually an accumulated Doppler from some
initial epoch, the starting range from the receiver to the satellite is unknown. More
specifically, while the receiver can measure the fractiona phase offset of the transmitted
and generated carrier phases at the initial epoch, the number of full cycles between the
receiver and satellite is not known. This is termed the integer ambiguity. As a result, Eq.

(2.4) describing the pseudorange measurement can be modified to yield :

_ d,- c:(Dty- Dt) +T +1
I

f

+e +N (2.12)

where f is the carrier phase measurement (in cycles), | isthe carrier wavelength, N is the

integer ambiguity and er is the carrier phase noise.
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As shal be seen, a cruciad step in making the carrier phase measurement useful for
positioning is the solution of the integer ambiguity, which is different for each satellite
observed. In addition, while the ambiguity is constant while the satellite is continuously
observed, if for some reason signal lock to the satellite is lost (i.e. due to poor signal-to-
noise ratio, high dynamics, or signal blockage), a new ambiguity for the satellite must be
estimated. Detection of such cycle-dlipsis not atrivial problem, as the difference in the old
and new ambiguities can range from millions of cycles to only afew. This is particularly
true if the receiver is moving, or if measurement erors are at high levels. Often, Kalman
filtering of the raw carrier observations is performed as a pre-processing step to flag and
correct these slips, but many other techniques exist; see Han (1995); Binath (2000); Kim
and Langley (2002) for the development of the current state-of-the-art.
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3.0 - GENERAL SOLUTION TO THE SPACED-BASED TRILATERATION
PROBLEM

In general, the final goal of a space-based navigation system is to provide the user with the
positions of one or severa receivers, a a particular epoch and in a specified reference
frame. As discussed in the previous chapter, modern space-based navigation systems, such
as GPs, are based on measuring ranges from orbiting satellites to receivers on the Earth. As
a result, they are defined as trilateration networks, and, when comprised of sufficient and

appropriate observations, these networks can be solved via the methods of |east-squares.

This section presents a general solution to the spaced- based trilateration problem. A review
of least-squares theory is presented, with specia focus on the case of added parameter
constraints. The measurements and unknowns encountered in the GPS positioning problem
are discussed, as are the mathematical model and the linearized quantities involved in the
adjustment problem. The concept of differential techniques is introduced and the
mathematical properties of the differencing procedure are illustrated. Finally, the problem
of iteration and convergance is investigated, as well as some implications of the curvature
of the GPS mathematical model.

3.1 - Unknowns and Measurementsin a Space-Based Trilateration Network

Assume the situation of a number of receivers in an engineering network simultaneously
observing a constellation of GPs satellites. In most applications, the sole purpose of the
measurement campaign is to establish the three-dimensional coordinates of the receivers at

a particular epoch or over a particular time-span.

For this purpose, each receiver makes a number of measurements to each of the visible
satellites. In the GPs system, these measurements can take two basic forms — the
pseudorange and the carrier phase. Currently, GPs satellites broadcast information on two
frequencies — 1575 MHz (L1) and 1227 MHz (L2). As will be discussed in Chapter 6, this
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alows for the extraction of the firs-order ionospheric effect, which is frequency
dependant. By 2005, an extra frequency is expected to be available at 1176.45 MHz
(Fontana et a, 2001). Finaly, for each frequency observed, the Doppler shift due to the
satellite motion relative to the receiver is measured. While this measurement was an
important aspect of measurement with early satellite-based systems such as TRANSIT, it is
rarely used in static applications due to its noisiness and therefore will not be considered.

Ideally, one would use the available measurements and by Inearizing Eg. (2.8), which
describes the geometric distance between the receivers and the satellites, arrive at a least-
squares solution for the position unknowns. However, several factors complicate the
solution. Firstly, as discussed in Section 2.2 and 2.3, the receiver and satellite time frames
are not synchronized. Furthermore, the individual recelver time frames are not
synchronized to one another and are also not stable over time. In addition, as presented in
Section 2.5.3, each carrier phase measurement carries with it an unknown integer offset
which is stable over time, so long as lock to the satellite is maintained. Finally, since the
measured ranges refer to electromagnetic distances, Eq. (2.4) indicates that they are

corrupted by tropospheric and ionospheric delays, as well as noise.

Several methods exist to deal with these complications. Firstly, one can attempt to solve
for these added factors as nuisance parameters. A second possibility is to treat their effects
as noise, coupled with an appropriate stochastic model. Finaly, if their effects are identical
(or very similar) between pairs of observations, then the factor can be effectively removed
from the problem by differencing the observations. In general, the decision as to which of
these approaches is most appropriate depends on the nature of the effect. For example, the
ambiguity terms, since they are large, of unpredictable magnitude, and are constant over
time, are treated as additional unknowns. Satellite clock offsets, on the other hand, are
usualy treated by differencing if multiple receivers are available since they change from
epoch to epoch, but are identical for a given satellite. The same applies for receiver clock
offsets, with the modification that the offset is identical for al observations at a given
receiver. Finally, tropospheric and ionospheric errors are often treated with a hybrid
approach of differencing, estimation, and stochastic modeling.
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3.2 - Formulation of the Least-Squares Solution

In any static GPs campaign, the vector of unknowns, x, can be described as follows

T T T T T T
X _[X X X Xmod Xamb (31)

pos rx sat

where Xpos IS the vector of unknown receiver positions, X« is the vector of receiver clock
offsets at each epoch, x« is the vector of satellite clock offsets at each epoch, Xmoq IS the
vector of additional model parameters (i.e. tropospheric parameters) and Xamp iS the vector
of unknown ambiguities (if carrier phases have been measured). The observations made
over all epochs at all receivers can be collected into a vector, |, including pseudorange and

carrier phase observations made at all frequencies.

The observations are linked to the unknown parameters through the mathematical model
used. For example, a carrier phase measurement can be described in terms of the unknown
receiver coordinates and ambiguity term and the known satellite coordinates, as in Eq.
(2.13). If the mathematical models for al the individual observations are collected, and
linearized with respect to the observations and the unknowns, the linear math model can be
expressed as

A:d+B:r+w=0 (3.2

whered is the vector of correctionsto the initial estimates of the unknown parameters, r is
avector of corrections to the observations and w is known as the misclosure vector. A and
B are the Jacobian matrices of the mathematical model with respect to the unknowns and
observations, respectively. The Jacobian matrices are evaluated about the initial estimates
of the unknowns, X, and the observations, |. The notation presented follows that of Vanicek
and Krakiswsky (1986).
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The mathematical model described above can be augmented if additional information
regarding the relationships between the unknowns is available. These are termed

parameter constraints and can in genera be expressed as
G'>xd+w_=0 (3.3)

where G is the linearized constraint matrix and wc is the constraint misclosure. For a
solution to exist, G must have linearly independent columns —i.e. any constraint can not be
expressed as a function of two other constraints. Consequently, thisimplies that the rank of

G must equa the number of columnsin G.

The objective of the least-squares problem is then to find a solution to x that minimizes
(Mikhail, 1972) :

q=rT>Citxr +dT >xClxd+ 2% ] {Axd +Bor +w)+ 2% ] {GT xd+w,) (3.4)

where C; is the variance-covariance matrix relating the stochastic properties of the
observations, Cy is the variance-covariance matrix containing the stochastic properties of
theinitial estimates of the unknowns and k1, k> are Lagrange multipliers required to ensure

that the solution not only minimizes the quadratic terms, but also satisfies Eq. (3.2) and E.
(3.3).

Leick (1990) presents a very useful, stepwise solution to the minimization problem. First, a

least-squares solution for the problem without constraints is calculated as :

d. =- (AT {B>C, B7) ' A +cx'1)'l AT {B>C, BT w

(3.59)
= (N+Cc ) P =- N,

r.=-C 8" {B>C B A, +w) (3.5b)
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where d- is the solution of the least-squares problem without constraints, and r+ is the

resulting residual vector.

Given a suitable constraint matrix, G, the solution for the problem incorporating the

constraints is then given as :

d, =d. - N:HGH{GT N:HG) ' {67 . +w, ) (3.64)

ro=r.- C, BT {B>xC,xB7) A xd, - d.) (3.6b)
whered. and r refer to the solutions after the constraints have been applied.

Two additional quantities of note are the weighted sum-of-squares of residuals for the two

cases. In the case of no constraints, the quadratic form can be solved as

1TCir, =-ul Nu, +wT B e BT ) Hw (3.74)
whereas in the constrained case this changes to

(G, =G, +(GTod, +w, ) G NHG) G T, +w,) (3.7)

Note that the sum-of-sgquares in the constrained case is aways greater, since the constraints

effectively move the solution away from the local minimum.

Lastly, the variance-covariance matrices of the estimated parameters in the two Situations

are given by

C. =N (3.89)

Co=N. - NiHGHGT NG ) HGT ;! (3.8b)
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Note that in this case the estimated accuracy of the unknowns always increases, since we

are adding information to the solution in the form of constraints.

An advantage of using the above approach in solving the constrained |east-squares
adjustment problem lies in the fact that it is easy to update the solution if additional
constraints are to be applied at a later point. So long as the new constraints, G,, are
independent of the initial constraints Gi (implying that the rank of the total constraint
matrix is still equal to the number of constraints), the updated quantities of interest are
calculated as

dc2 = dc - Cxc >GZ ><G; ><:xc >GZ)-1 )<G2 >dc +W02) (398')
r,=r. - C, 8" {B>C, 8" ) xAxd, - d.) (3.90)
r; >(:Il >¢C2 = rcT )Cll >q’c +(Gg >dc +Wc2)T ><Gg >Cxc >GZ)_1 %Gg >dc +W02) (390)

Cxc2 = Cxc - Cxc >GZ ><G12— >(:xc >GZ)1>G12— ><'\’xc (39d)

This will become a key development in Chapter 5, when the concept of ambiguity

resolution is discussed.

3.2.1 -Modification for Incorrect Apriori Sochastic Assumptions
The preceding developments only hold if the Cx matrix used actualy corresponds to the
actual variance-covariance matrix of the initial estimates, or is neglected entirely. In the
case that an arbitrary matrix P is used in the place of Cy, the least-sgquares estimate of the
parameters is il given by EQ. (3.5), but the associated variance-covariance matrix of the

estimated parameters becomes
Cp =(1- NI, o1 - NN+ NG ;! (3.10a)

where
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Nt =(N+ Pt (3.10b)

Krakiwsky (1975) shows that Eq. (3.10a) reduces to (3.84) if P! = C,. Otherwise, the error
variance of the parameters is composed of a bias component dependant on the accuracy of
the initial estimates and a noise component incorporating the accuracy of the observations

and the geometry of the network. This relationship is revisited in Chapter 4.

If the solution is updated by the introduction of a constraints matrix, G, the resulting
solution is ill given by Eq. (3.6a). However, the variance-covariance matrix of this
solution is not simply calculated via Eg. (3.8b). Rather, while the Cy. is calculated using
Eg. (3.8b), the actual error variance is calculated by adding the propagated corresponding

noise and bias components, which themselves are determined via:

Cnoise = Cxc xN)Cxc (Slla)
Coe = - Co N - NG {GT NG ) HGT e,
T

[-Cp M- NG HG) G

bias

(3.11b)

If additional constraints are added, the solution proceeds as presented in the previous
section, but the variance-covariance matrices are propagated using the above equations,

substituting Cyez for Cye and Cyc for N« where appropriate.
3.3-Form of the Linearized Quantities

The classical method of solving an overdetermined problem via least-squares as discussed
above requires the mathematical model to be linearized. Essentiadly, the actual
mathematical model surface f(x,l) = O is approximated by a plane normal to the surface at
initial estimates X,, |. The derivatives of the mathematical model with respect to al of the
unknowns and observations are then calculated, thereby forming the Jacobian matrices A
and B, respectively. This section briefly presents the form of the derivatives, as they will

be useful to understand some particular aspects of the GPs positioning problem.
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Egs. (2.8), (2.4) and (2.12) form the basis of our mathematical model. For completeness
they will be repeated here :

dg =[rot) - 1 O] = 06D - % &) + (vt - v @) +(zt)- 2 )’

(2.8)

p=d,-cXDt,- Dt )+T+I+e (2.4)
d,- c:(Dty- Dt) +T +1

f = +e +N (2.12)

where Eq. (2.8) represents the geometrical model, Eq. (2.4) represents the pseudorange
measurement model and Eq. (2.12) is the carrier phase measurement model. One such
model can be established for every observation between a receiver and satellite. These

models can then be collected into a vector f.
The partia derivative of f with respect to the unknowns and observations results in the

necessary matrices A and B. According to the partitioning of the vector of unknowns used

in Eg. (3.1), the A and B matrices can be similarly written as

_eqf W o Tt U

A= (3.123)
gﬂxpos 1-[er 1-[Xsat 1-[Xmod 1-[Xamb 5
éff u
&1 H

Note that since there is one observation for each element in f, the B matrix will be identity.
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3.3.1 -Derivative with Respect to the Unknown Positions

The derivatives of Eq. (2.4) with respect to the unknown receiver positions are

ﬂpij - (ij B Xri)

_ (3.139)
ﬂXri \/( s - Xri )2 +(ysj - yri)2 +(Zsj - Zri )2
ﬂpij - (ysj - yri)

_ (3.13b)
TNri \/(ij - Xri)2 +(ys,- - yri)2 +(Zsj - Z )2
oy _ -2 - ) (3.13¢)

T2, \/(ij - X )2 +(ysj - yri)2 +(Zsj - Zri)2

where it is assumed that frame synchronization and transmission time effects have been
taken into account, and < Yy Zs> is the vector of coordinates for the [ satellite and
<Xi Vii Zi> is the vector of coordinates for the {" receiver. By collecting the derivatives in
Eg. (3.13) into a single vector, it can be seen that this vector represents the normal vector
from the satellite to the receiver. If carrier phases are used, then the above derivatives must
be divided by the wavelength of the carrier, in accordance with Eq. (2.12). Obvioudly, if a
particular receiver does not appear in an observation, then the derivatives of the
observation with respect to that receiver’s coordinates are zero. Findly, as the satellite
coordinates are continuously changing, the above derivatives must be recalculated for

every epoch.

3.3.2 -Derivatives with Respect to the Unknown Clock Offsets

The derivative of an observation made at a particular epoch involving the i" receiver and
the j™" satellite with respect to the clock offsets of the receiver and satellite are expressed as

ﬂ? =C (314a)

—1=.c (3.14b)
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Since the numerical value of the speed of ight is very great in comparison to the other

derivatives, the clock offsets are typically parameterized in distance units and the c

replaced by 1 in the above equations. This prevents numerical round off errors in the

subsequent processing. Also, note that since the clock offsets vary with time, new

unknowns are required at every epoch. Given the case of a three-receiver network

observing two satellites over two epochs, the resulting A matrix for the clock offset terms

isshown in Figure 3.1.

4 0000
g 0000
@ 1000
01000
@ 0100
A =g‘?_-9.__1__9__9__
Clckg)oo:l-o
0 0010
200001
@ 000 1
D 0000
0 0000
Rx Clock

Figure 3.1. Form of the Jacobian of Satellite and Receiver Clock Offsets.
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-1 0 O
0O -1 0
-1 0 O
0O -1 0
-1 0 O
0O -1 0
O 0 -1
O 0 O
O 0 -1
O 0 O
O 0 -1
O 0 O
Sat Clock

Epoch 1

As the data span used for positioning increases, it becomes evident that the number of

clock terms to be estimated increases linearly, resulting in unwieldy matrices to

manipulate. Fortunately the process of differencing alows us to remove these unknowns

from the solution.
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3.3.3 -Derivatives with Respect to the Unknown Ambiguities

In the case that carrier phase measurements are used, the additional unknown ambiguity
terms must be estimated. The resulting derivative of a carrier phase observation with
respect to the ambiguity term is smply

1= (3.15)

As the ambiguity remains constant for a particular satellite-receiver observation so long as
lock to the satellite is maintained by the receiver, the number of unknown ambiguities and
the resulting size of the A matrix of the ambiguities remains at a manageable size, for
normally encountered time spans. However, a peculiarity of solving for the ambiguities
liesin that the mathematical model as specified does not contain information regarding the
integer nature of the ambiguities. As a result, the least-squares solution will yield rea-
valued ambiguities. This is known as the float solution. Incorporating the integer nature of

the ambiguities is known as ambiguity-resolution and is treated in Chapter 5.

3.3.4 -Derivative with Respect to Other Model Parameters

In Eq. (3.1), the vector of unknowns is partitioned into a vector of position unknowns,
unknown clock offsets, ambiguity unknowns, and a vector of additional model parameters.
These model parameters are any models that augment the basic mathematical model
contained in Eq. (2.4).

For example, the residual tropospheric effect is often modelled as (Mendes, 1999)
Ty =Dz ><m(eij) (3.16)
where Dz is the unknown zenith tropospheric delay, and m(’) is the known tropospheric

mapping function which itself is a function of the elevation angle of the satellite as seen by

the receiver, e;. The desire is to improve the positioning accuracy by modelling the
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tropospheric error though estimation of the zenith tropospheric delay. Depending on the
parameterization, Dz may be considered to be constant, or vary according to a random walk
process. Schuler (2001) provides an excellent review of techniques to model the

tropospheric error.

Incorporating Eg. (3.16) into the mathematical model for the pseudoranges, the derivative
of Eq. (2.4) with respect to the unknown zenith tropospheric delay is

ﬂpij ﬂTij
T - e 3.1
Dz 9Dz m(e” ) (317)

However, a problem arises since the tropospheric error, which requires the elevation angle

of the satellite, will as aresult depend on the coordinates of the receiver, vis.

My _ ppdmies) by fe (3.19)
1-[Xri 1Txri ﬂe 1-[Xri

Depending on the tropospheric mapping function used, the above derivatives may not be
trivial to compute. Fortunately, due to the great distance between the receivers and
satellites, the elevation angle is fairly insensitive to dight changes in the receiver
coordinates — 100m difference will result in an angle change of 1'. This further implies
that the derivative of the tropospheric error with respect to the receiver coordinates is very

close to zero and so can be neglected.

Many other models can be added to the basic positioning model. For example, the
ionospheric error can be parameterized in numerous ways, as can receiver and satellite
clock offsets. However, it is important when implementing these models to account for

interdependencies in all the unknowns considered.
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3.4 -Differential Gps

When a set of observations is made at a given receiver, the receiver clock offset affecting
the set is identical. Thus, selecting one range in the set as a “base” and subtracting al the
others from this base observation will result in a set of pseudo-observations which are not
affected by the receiver clock offset. A similar cancelling of a satellite clock offset is seen
in the differencing of a set of observations to a single satellite. This is the basis of the
concept of differencing in GPs. In this work, this procedure will aso be known as
processing in “differential GPS” or DGPS mode. Aside from removing unknowns from the
solution, differencing also removes errors correlated between observations, as will be

shown in Chapter 6.

A practical description of differencing can be given as such: given a set of receivers
observing to a constellation of commonly-visible satellites, one satellite and one receiver
are chosen as the “bases.” Then the observations made at each receiver are subtracted from
observation at that receiver to the base satellite. These single-differenced pseudo-
observations are then subtracted from their corresponding single-differences calculated at
the base receiver, to create double-differences. For a set of observations collected at three

receivers observing four satellites, the corresponding differencing matrix, ND, is given by

d -1 0 0 -1100 0 0O Oy
& 0 -1 0 -1010 0 00 0y
. @4 0 0 -1-1001 0 00 0d
D = ¢ G (3.193)
& -1 0 0 0 000 -11 0 0f
& 0 -1 0 0 00O -1201 ou
8§ 0 0 -1 0 000 -10 0 1§

where the original observations have been ordered as

" :[plA Poa Psa Paa Pz Pz Pz Pas Pic P Pac p4c] (3.190)
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and the subscripted letters refer to the three receivers and the numeras refer to the

satellites. The resulting vector of pseudo-observations (or double-differences), Ipp, Is:

| o = NDX (3.20)

In general, the rank of the differencing matrix must be equal to the number of pseudo-
observations produced. This implies al of the pseudo-observations must be linearly
independent. A simple way to ensure this and generate the maximum number of possible
pseudo-observations is to ensure that the differencing matrix always has a form similar to
that of Eq. (3.19a); namely, selecting one base receiver and one base satellite for the entire
set of observations. In this way, for a set of observations made at n receivers to m satellites,
the maximum number of resulting double-differences in (n-1)/(m-1).

Due to the use of the differencing operator to map the observations into a subspace, the

corresponding Jacobian matrices, A and B, must be modified accordingly, and the resulting

expressions are smply
A, =ND>A (3.219)
B, =ND>8 (3.21b)

The least-squares solution then proceeds according to EQ. (3.5), with the appropriate

substitutions.

Double-differencing has significant implications on the efficiency of solving the GPs
positioning problem. Section 3.3.2 revealed that the number of clock offset terms to
estimate grows linearly with the number of epochs observed. While the number of
parameters to estimate grows linearly, the number of computations required to solve them
grows cubically (Press et a, 1992), due to the inversion of the normal matrix required.
Thus for a three receiver epoch observing an average of 4 satellites for 20 minutes at arate

of 1 observation per 5 seconds, the number of clock terms to estimate is 1680, requiring
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significant storage space and processing time to solve. On the other hand, applying the
differencing operator to the Jacobian of the clock offsets shown in Figure 3.1, coupled with
an appropriate reordering of the uinknowns to satisfy the form of H. (3.19a), shows that
the Jacobian is reduced to a null matrix. Thus the clock offsets become inestimable due to
the differencing operator, and as a result are removed from the problem entirely. This
significantly improves the situation, as the problem now becomes to invert a 9 x9 matrix

of unkrnown positions, in this three receiver problem.

A second effect of the differencing operator becomes evident when carrier phases are used,
and their associated ambiguities must be solved for. In the case of the three receiver
network observing 4 satellites without loss of lock, there are 12 ambiguities to be resolved
(assuming single frequency observations), and so the Jacobian matrix of the unknown
ambiguities is a 12 x 12 identity matrix. However, once the differencing operator is
applied, the Jacobian of the ambiguities becomes identical to Eq. (3.19a), which is rank
deficient. This means that the original ambiguities can not be solved for, but that instead
(n-1).(m-1), or 6, double-differenced ambiguities can be solved for. So long as the main
quantities of interest are the positions of the receivers, rather than the ambiguities of the
observations, this is of little concern. Also, note that the differencing operator, since it is
composed of integer elements, does not affect the integer nature of the ambiguities, a fact
that will be taken advantage of in Chapter 5. Finally, whereas the original ambiguities were
functionally independent, the double-differenced ambiguities are mathematically
correlated. This has important implications in the ambiguity resolution process and will
also be further discussed in chapter 5.

3.5 - Convergence and Linearization | ssues

Once a solution for the corrections to the unknowns and observations, d and r, have been

obtained, the new estimates of these quantities are calculated as

Xisg =X +d, (3.224)
I, =1, +r, (3.22b)
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where the subscripts denote the current iteration. Note that the observations are updated
differently from the unknowns; this is due to the definition of the residual vector and is

discussed thoroughly (along with many other convergence issues) in Pope (1972).

A problem is considered non-linear if any of the terms in the Jacobian matrices A and B
depend on the estimates of the unknowns or observations. In this case, the normal vector to
the solution surface f(x,l) = 0 will change between the estimate i and the updated estimate
i+1. As a result, the problem is solved by iteration, with iteration continuing until the d
vector reaches some arbitrarily small size, and the Jacobian matrices remain practically

constant between estimate and update.

GPS positioning is a particularly interesting problem in that the solution is typically non
linear only due to the position unknowns — the model derivatives with respect to the clock
offsets, ambiguities and observations are all constants. In addition, as shown in Section
3.3.1, the derivatives of the mathematical model with respect to the unknown positions
produce the direction vector from the satellite to the receiver. Due to the large separation
of the satellites from the receivers, it can be inferred that the normal vector is insensitive to
updates in the initia estimates, given modestly accurate initial positions. As a result, very
few iterations are required to converge to a solution, and no initial estimates at al are

required regarding the clock offset and ambiguity unknowns.

Of particular interest is exactly when convergence can be terminated. To determine the
effect of convergence thresholds on positioning accuracy, the following test was
constructed. Given atypical five satellite geometry and a known receiver position, a set of
simulated range measurements was generated. The initial estimate of the receiver position
was then chosen with a particular error level corresponding to the convergence threshold
tested. For example, to test the effect of terminating the iteration when the corrections are
at the metre level, the initial estimates were chosen to be one metre in error from the true

position.
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The d vector was calculated using this initial estimate and the updated solution compared
to the known receiver position. The resulting error in positioning is the error that could be
expected by using that convergence threshold. Figure 3.2 shows the adjustmert error that
can be expected by terminating the iteration when the d vector (for positions) is of a given
magnitude. During the test, two types of unknowns were solved for — the position of the
receiver and the receiver clock offset. Importantly, both the linear and the nonlinear
unknowns are affected by early termination. Note that the dightly worse accuracy of the
receiver clock offset is smply aresult of the positioning geometry. It is also crucial to note
that the errors shown in Figure 3.2 are only errors due to early termination — the ultimate
positioning accuracy depends on the quality of the observations themselves.
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Figure 3.2. Effect of Convergence Threshold on Adjustment Accuracy and Iteration Pathway.

Figure 3.1 also reveals an important aspect of the practical adjustment of GPS observations,
namely, that the mathematical model is relatively flat, even with respect to the position
unknowns. For example, assume that the initial estimate of a recelver position is known
only to 100 km, a very reasonable assumption in most static applications. From Figure 3.1,
one can expect that after one iteration, the positioning accuracy will be at the 100m level,

neglecting any measurement errors. A second iteration brings the positioning accuracy to
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the micron level. Thus, if millimetre-level accuracy is reasonably expected from the
measurements and only one iteration is to be used, initial position estimates at the 300 m

level are required.

An often overlooked issue is that all the statistical measures provided by |east-squares are
at their root based on the law of propagation of errors and thus a flatness of the
mathematical surface is implicitly assumed by the use of the matrix forms. Of course, this
flatness is only true in fact in the immediate neighbourhood of the solution. Furthermore,
the solution under constraints shown in Eq. (3.6) is aso based on the assumption that the
mathematical surface isflat. Fortunately, the results contained in Figure 3.1 indicate that as
long as the perturbations in the position estimates are within several hundred metres, these

assumptions are valid. For practically al applications this is indeed the case.

A final point to consider is the effect of iteration termination on the linear parameters. It
was shown that premature iteration termination of the non-linear terms will cause errorsin
the linear terms. However, repeating the test described above with the modification that the
initial estimates of the linear terms are in error shows that only one iteration is required to
achieve perfect accuracy of both the linear and nontlinear terms, regardiess of the size of
the initial estimate error. Thus the adjustment of a problem involving linear and non-linear
unknowns is insensitive to the accuracy of the initial estimates of the linear terms, which
implies that the update of the linear terms is not necessary until the fina iteration. This is
particularly significant when carrier phase ambiguities are involved, as their magnitude can
range from several to millions of cycles and no initial estimate of their value is typically

available.
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4.0 - DATUM ISSUES IN SATELLITE-BASED NAVIGATION SYSTEMS

A common problem in al positioning problems, regardless of application or accuracy, is
that of datum definition. In this work, the problem is more precisely referred to as
reference-frame definition. Simply put, the reference frame is the spatial framework to
which the reported positions refer. As such, a reference frame must have an origin, an
orientation, and a scale. In the case of GPs, the default reference frame used is WGS-84. As
discussed in Chapter 2, this reference frame is defined by the coordinates of five reference
stations located around the world. Note that the actual datum is completely defined by
further setting the parameters of the wGs-84 ellipsoid and specified value for the gravity
potential (Hoffmann-Wellenhof et al, 1994).

User access to this reference frame is provided via the transmission of the satellite
coordinates in the ephemeris. Again, this is the same as in the case of terrestrial networks,
where the datum is provided to the user typically via the publication of the coordinates of
second-order stations in the vicinity of a project. Also, in direct analogy to the terrestrial
case, the observations made by receivers in a network are typically of higher accuracy than
the coordinates of the observed control points. This section investigates the effects and
methods of datum constraint as applied to satellite-based navigation systems and their

effects on positioning accuracies and deformation detection.

4.1 - Overview of Traditional Datum Definition Solutions

In terrestrial engineering networks, the problem of the datum definition has been solved
largely through the use of minimal and inner constraints (Blaha, 1971). Consider the
situation of aterrestrial trilateration network consisting of a set of stations which observe
distances to a separate set of targets with published coordinates. The set of observations
alone creates a rigid geometric figure that defines the spatial relationships between the
targets and the stations. The rigidity of the figure is defined solely by the geometry and the
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accuracy of the distance measurements (Falkenberg and Schnadelbach, 1987).
Furthermore, if the published coordinates of the targets are reglected, this figure is free to
trandate and rotate is space, the scade being defined by the scade of the distance
measurements themselves. If the internal deformation of the figure as a whole is the only
quantity to be studied, a comparison of the internal geometries can still be undertaken

from epoch to epoch from the available data.

However, in general it is desirable to refer the coordinates to some tangible reference
frame. The problem arises when the figure created by the high-accuracy observationsis
mated to the constraints imposed by the lower-accuracy published coordinates. If the
coordinates of the target points are simply considered known and held fixed, inaccuracy of
the published coordinates will be forced into the residuals for the observations. This will
cause masking of the high observational accuracy and large residuals may be flagged
where none actually exist. In addition, any assessments of the network accuracy will

become unrdiable.

Severa solutions exist to this problem. Firstly, the most accurate point can be chosen to
establish the location of the network in space, with two pieces of rotation information used
to define its orientation. This is known as the implementation of a minimal constraint.
Obviously, one short coming of this method is that it does not use the published values of
the other points as anything more than a check and it may be difficult to gauge exactly
which target point is the most accurate. In addition, the accuracy of the network points can
be expected to degrade with distance from the fixed point due to the accumulation of errors
(Vanicek and Krakiswsky, 1986).

A second possibility is to use al of the coordinate information and constrain the network
such that its centre of mass does not move and that the overall rotation of the network is
zero. This is known as applying inner constraints and is discussed thoroughly by Biacs
(1989), Koch, (1988), and Blaha (1971), among others. Advantages of this method include
that the accuracy of the network becomes more homogenous and that the solution
guarantees that the sum-of-squares of the position displacements (from the published
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coordinates) is a minimum. For this reason it is known as a minimum-trace solution. Note
that in both these cases the target point coordinates are now treated as unknowns to be

solved.

Finally, if apriori information regarding the coordinate accuracies is available, then the
solution can be augmented by using the published coordinates as observations. If the
accuracies of the published coordinates are available, this method is the most desirable
since it uses the maximum information available. However, if this information is incorrect,
biases in the estimates may result due to improper weighting of the “observed” initia

positions (Biacs, 1989).

4.1.1 - Problems with Moving Control Points

In the terrestria trilateration network just considered, the total number of unknown stations
to be solved for equalled the number of observing stations added to the number of target
stations. The problem with satellite-based systems lies in the fact that the available control
points are continuously moving. As a result, to rigorously implement any of the datum
definition systems previousy described, the coordinates of the satellites at each epoch
would have to be added as unknowns with apriori estimates. Obviously this would cause
serious computational burden even if short time spans were considered. For example, if ten
satellites were observed for 20 minutes at a sample rate of one sample per 30 seconds, the
resulting number of position unknowns would equal 6000, not including the position of the
receivers, or any additional parameters to be solved.

A possible solution would be to model each satellite’'s motion over time as a Keplerian arc
and solve for a reduced set of observations describing key parameters of the arc (Parrot,
1989). Thisis a concept known as orbit fixing and essentially equivalent to deriving a new
ephemeris applicable to the particular data set collected. However, introduction of a
dynamic model significantly complicates the resulting mathematical models and, due to
the short time spans typically encountered, solution instabilities may arise. As aresult, this
method is not typically used in engineering networks but does find applicability in global
scale networks.
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Unfortunately, the most convenient method of dealing with the datum problem in satellite-
based ranging systems is to assume the coordinates of the satellites as absolute and thus
overconstrain the network. As aresult, it becomes imperative to study the effects of fixing

the satellite coordinates on the resulting solution for the receiver positions.
4.2 -Effects of Datum Overconstraint on Positioning Accuracies

In cases where the datum cannot be properly defined, but rather over constrained, it is
possible to assess the effects of the network overconstraint via simulation. For the case of a
GPS network, given the approximate locations of the receivers and a suitable ephemeris, the
network geometry can be simulated by calculating the theoretic ranges from the receivers
to the satellites. Furthermore, the Jacobian with respect to the unknown receiver positions
can be generated for all the smulated observations using Eq. (3.11). In Section 3.3 it was
noted that the Jacobian with respect to the observed ranges was the identity matrix, as the
only observations are the ranges themselves. However, in the current case, not only will
the ranges be considered observed, but the coordinates of the observed satellites will also
be considered as observations, with an associated accuracy. Thus, the resulting B matrix

for a particular range from a satellite to a receiver takes the form :

B =

(x-x) (-y) (z- zs)g (4.1)
d d ds 0

D, D~

rs rs rs

where Xs, Ysand z refer to the coordinates of the satellite, ., yr, z refer to the coordinates
to the receiver, ds is the range from the satellite to the receiver. The standard deviation of
the range itself is constrained to one millimetre, whereas the standard deviation of the
satellite coordinates is assumed to be 6m, based on the values presented in Section 2.4 and

an isotropic assumption.

Once the A and B matrices for the entire set of simulated observations is generated, the
resulting estimated accuracy of the receiver positions is given by Eq. (3.8), which is

rewritten belowincluding Eqg. (3.5) :



c, =(aT {Boc, B7) a )’

4.2)
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Since the standard deviations of the observed ranges are significantly lower than those of

the observed satellite positions, the resulting receiver position accuracies are due to the

overconstraint of the network.

Such a simulation was conducted on afour receiver network observing a single epoch. The

baseline lengths were varied from 2 to 2000 kilometres and the number of satellites

observed from 4 to 7. Figure 4.1 shows the resulting average three dimensional position

accuracies for the receiver positions. Perhaps counter to intuition, the accuracy of the

position estimates improves as the basealine lengths increase. However, it must be realized

that the accuracies shown are due solely to the effects of the inaccuracies of the satellite

coordinates and that no differencing of the observations has been performed.
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Figure4.1. Effect of Satellite Coordinate Error on Receiver Position Accuracy.
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When the extent of the network is small, al lines of sights from the receivers to the
satellites are nearly identical in orientation — i.e. within 2' for baseline separations of 10
km. This implies a very poor intersection geometry at the satellite and so any error in the
satellite’s position becomes undetectable as it results in a nearly common bias among the
affected ranges. Conversely, if the baseline lengths are extended, the angle of intersection
between observations to a satellite grows, and so the external precision improves as well.
This improvement in the positioning geometry is reflected in the higher positioning
accuracy. When additional satellites are added to the solution, the receiver positioning

accuracy improves as well due to the averaging out of the datum constraint errors.

The rationa provided for the results of Figure 4.1 implies that the errors resulting from the
satellite coordinate errors should be highly correlated between stations when their
separation is small. Essentially, the satellite coordinate errors cause a common shift in all
the receiver positions Figure 4.2 shows the average correlation coefficient between the
position estimates for the receivers in the network described above. As expected, the
correlation between the position solutions decreases as the network extent grows, primarily
because a given satellite coordinate error causes different ranging errors depending on the
orientation of the receiver-satelite line-of-sight vector. Regardless, for all baseline lengths
tested, the correlation coefficient does not deviate from 1.00 by more than 1%.

Thisresult is very significant, as it implies that, while the external accuracy of the network
is poor due to the relatively low accuracy of the satellite orbits, the precision of the
position estimates with respect to one another may be much better. To test this hypothesis,
the simulated receiver networks were reprocessed, with the added constraint that the centre
of mass of the receiver network was assumed known and fixed. The new position standard
deviations of the network points were calculated using Eq. (3.9d), rewritten here for
clarity:
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The resulting position accuracy estimates are shown in Figure 4.3. The results clearly now
show the expected degradation in relative positioning accuracy with baseline separation, as
the orbital errors effects decorrelate with distance. Examination of the resulting correlation
coefficients shows that the correlation between position estimates is at the 10% level with
no appreciable dependence on baseline length. As more satellites are added to the solution,
the relative position accuracy improves since the errors in the satellite orbits tend to

average out. The same effect occurs when longer time spans are used, as the orbital errors
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Figure 4.3. Effect of Satellite Coordinate Error on Relative Positioning Accuracy

change over time. Finally, improving the satellite coordinate accuracy directly improves
the positioning accuracy, since thisis equivaent to scaling the variance-covariance matrix
of the observed satellite coordinates.

4.3 -Datum Problem I n Differential Gps

In Section 3.4, the concept of differential GPS (DGPS) was introduced and its utility in
reducing the number of nuisance parameters to be solved was demonstrated. Furthermore,
the previous section revealed that overconstraining the datum via fixing of the satellite
coordinates, while not optimal, preserves the internal accuracy of the network to levels
much lower than the accuracy of the orbits themselves, and even the absolute accuracy of
the network remains better than the orbital accuracy. As a result, a reasonable conclusion is
that the process of differencing should not affect the datum problem, as the datum is
sufficiently defined prior to the differencing operation. However, this section shows that in

practice this is not the case.
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4.3.1 -lll-condition of the DGPS Problem

The partial derivatives of a measured range with respect to the unknown parameters were
presented in Section 3.3.1 and is was shown that the triad of derivatives formed constituted
the norma vector from the satellite to the receiver involved. By reparameterizing the
position quantities to refer to the loca-level frame and making appropriate substitutions,
the Jacobian of the measured range can be rewritten as

p Tp Tpu__ [cosa >cose sna xcose sne|=v (4.4)
&n fe fhH

where n,eh refer to the northing, easting and height of the receiver coordinates in a loca
level frame centred at the receiver. a and e refer to the azmuth and elevation angle of the
receiver-satellite line of sight, where the azimuth is measured clockwise from geodetic
north and the elevation angle is measured from the horizon v is the normal vector from the

satellite to the receiver.

In the case of three receivers observing two satellites, the resulting Jacobian is given by :

2 D
>N >

>
]
@ @ D > D> D> DD

0

0

vi ou
: a (4.5)
B

0

0

o O O O

where V/ j indicates the normal vector between satellite i and receiver j. Upon applying the

double differencing operator, ND, using satellite 1 and receiver A as the bases, the double-

differenced Jacobian, App, becomes :
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&Va - Va Ve - Vel

Since the value of the normal vector is relatively insensitive to the position of the receiver
position due to the great separation between the receivers and satellites, the values of the
nonzero elements in columns will be very similar. For example, if the three receivers are

separated by 100 kilometres, atypical example of the App matrix is

_ €& 16%0 0.87%5 0.3765 16959 - 0.8813 - 0.3767 0 0 0 u

Aoo = 8 16960 08795 03765 0 0 0 16972 - 08789 - 0.3768H

This result indicates that the columns of the App matrix are nearly linearly dependent. This
has serious consequences for the numerical stability of the least-squares solution, since the
resulting N matrix will be nearly rank-deficient. As the baseline separation decreases, the
columns of A become more linearly dependant until the N matrix becomes singular to the

working precision of the computer. Thisis known as an ill-conditioned system.

Calculation of the condition number is a useful tool in studying how ill-conditioned a
system is. The condition number is the ratio of the largest to the smallest singular values of
a matrix. The singular values, in turn, are the result of the decomposition of a matrix Q
into the orthogonal matrices U and V, and the diagonal matrix W such that

Q=UXWxV/T (4.73)
where
Ursu=vxv' =| (4.7b)

with | as the identity matrix. The singular values are the elements of the diagonal matrix

W. The determination of the matrices U,V and W is beyond the scope of this thesis, but
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many routines are documented in the literature (Press et al, 1992). The inverse of Q (if it

exists) can be calculated via

Ql=vxw U’ (4.8)

If any of the values in the diagonal matrix W are very close to zero, then the inverse of the
matrix Q will be dominated by error in the calculating the reciprocal of the very small
number. In the limit, if any of the singular values is zero, then the matrix Q is singular in
fact. Thus the condition number gives a good estimate of how noisy the inverse of the

matrix can be expected to be.

The end result of ill-conditioning in a system is that the solution to the system become
unstable. For example, in the overdetermined system Ax = by it is expected that small
changes in b result in small changes in x. However, if the system is ill-conditioned, then
the matrix inverse (AT - A), will contain very large, imprecise values. Consequently, a
small perturbation in the b vector will be amplified and cause large, incorrect variation in
the x vector. Obvioudly, this is an undesirable feature, as the errors in x are not due to
errors in b, but rather due to the limited precision in caculating the large values of the

required inverse.

Figure 4.4 illustrates results for a network of receivers of varying numbers and separation.
The condition number of the norma matrix for each tested network configuration was
calculated and plotted against its average extent. As the receiver separation increases, the
condition number improves. This is expected, as increased receiver separations cause
larger differences in the line-of-sight vectors between a particular satellite and the various
receivers. Thus the columns are less linearly dependant and the condition numbers
improve. A similar situation occurs as the number of receivers used improves since adding
recelvers implies that it becomes more difficult to exactly express one column as the sums
of the others. Note that the ill-conditioning is a numerical problem, and not a datum

problem, since the problem lies with the limited precision of the computer used.
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Figure4.4. Effect of Network Size on Condition Number

4.3.2 - Datum Visibility in DGPS

A different effect that also causes problems when double-differencing is applied concerns
the visibility of the datum congtraints. In the undifferenced case, it was shown that the
effects of satellite coordinate inaccuracy increased as the baseline separation decreased due
to the inability of a smaller network to detect errors in the satellite coordinates. This
behaviour is amplified when double-differencing is applied, since as the receiver
separations decrease, the lines-of-sight between the receivers and satellites become more
coincident and any satellite coordinate errors increasingly cancel. Thus the trandglation
constraints implied by the fixing of the satellite coordinates become progressively weaker

and absol ute positioning accuracy degrades.

To gauge the effects of the satellite orbit error on positioning accuracy in a double-
differenced mode, the ssimulation performed in Section 4.2 was repeated, but the A and B
Jacobian matrices were modified to account for the double differencing. Figure 4.5 shows
the resulting absolute positioning accuracies assuming a 6 metre orbit standard deviation
for a range of receiver network extents all containing 5 receivers and 6 satellites. The

accuracies resulting from processing in an undifferenced mode are shown for comparison.
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Figure 4.5. Effect of Satellite Coordinate Error on Receiver Position Accuracy.

Whereas the absolute positioning accuracy of the undifferenced mode converges to a limit
as the network extent is reduced, the position variances in the differenced mode continue to
grow unbounded as the effective datum defined by the fixed satellite coordinates becomes
increasingly deficient. Note that the orientation of the network and the internal precision

are still maintained at the levels shown in Figure 4.3.

4.3.3 -Regularization of the DGPS Problem
Regularization refers to methods traditionally used to aleviate problems with ill-
conditioning. It also implicitly resolves the problem of poorly visibly datum constraints.
The root of al regularization methods is to essentialy add constraints on the possible
parameter solutions that limit the amplification of noise, while still maintaining sensitivity
to the data contained within the observations (i.e. reducing biases due to apriori

assumptions). The desired effect can be expressed as a minimization of the function :

g=d xd+r"xC 'x (4.9)
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subject to the conformity of d and r to the mathematical models used, where d is the vector
of corrections to the initial estimates, r is the vector of corrections to the observations
(residuals), C; is the variance-covariance matrix of the observations and P is known as the

regul arization matrix.

Note that if the matrix P! is chosen to be C,, the problem reduces to that of the least-
squares problem with apriori information on the parameters, the solution to which was
presented in Section 3.1. However, the problem remains as to what approach is appropriate
when no apriori information is available, as in the case of an initial epoch of a deformation

monitoring network.

It is possible to describe the true positions of a set of receivers by a vector xrt. As aresult,
the true ranges between these receivers and observed satellites can be denoted by the

vector |1 given by
|T =A X1 (410)

The actual observations, |, are contaminated by a noise vector e, which will be assumed
to have zero mean and known stochastic properties as contained within the variance-
covariance matrix C;. Furthermore, denote a vector X,, as the vector of initial estimates of
the positions of the receivers, sufficiently close to xt that linearity considerations can be

ignored. As aresult, the misclosure vector, w, can be calculated as
w=Axx -1, =AXx, - X )-€ (4.12)
The least-squares solution for the receiver positions is then calculated via Eq. (3.5),

resulting in a correction vector which is added to the vector of initial approximates

Assuming the B matrix as identity and substituting Eq. (4.11), this results in the expression
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Xis =X, +d=x, - (AT>C; xA) P ATCl L w
=x, +N1xATC: e

(4.12)

where x_ s is the least-squares solution, with an expected value of xt and avariance of N2

Note that the solution is indegpendent of X,, as expected due to the assumption of linearity.

Due to the ill-conditioning of the N matrix in the double-differenced positioning mode,
direct application of Eq. (4.12) is impossible since the inaccuracies in calculating N result
in amplification of errors in e. One solution to this problem is to add a small diagonal
matrix to N to produce a matrix Nreg Which has stable inversion properties. This is known
as the process of Tikhonov regularization (Hansen, 1998). The regularized solution isthen
calculated as

Xreg =Xo = N3 XATCH A A, - X7 )- €]

= (1 NGO, +NCL SN, + NG XATC e (4139
reg o " Nreg reg

with

N,y =N+a®x (4.13b)

where a is a selected regularization weight and | is the identity matrix.

The error in the regularized solution, Dx;eg, is thus given by

DX,y =X, - Xo = (1= Ni2 N )H{x, - %) +N;L xATC e (4.14)

which can be separated into a bias component dependant on the initial estimates and a

noise component. The variance of the regularization error due to the bias and noise is a
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function of the regularization parameter, the observational noise level, and the accuracy of

the initial estimates related together thorough the following equation :
Co = (1= N;LN)C o - NN +NGL s NGE (4.15)

where Cpy is the variance-covariance matrix of the regularization error and Cy expresses
the accuracy of the initial estimates. Note the similarity in form to Eq. (3.10a). As the
regularization parameter grows, N;eg becomes increasingly different from N, and to the
bias term begins to dominate. However, if the regularization error is small, then the noise
term grows due to the large elements in N1, This behaviour is illustrated in Figure 4.6,
which shows the resulting regularization error for various values of 1/a in the case of a 20
kilometre, five recelver network. Only orbital errors are considered and the accuracy of the
initial estimates is assumed to be 50 metres. In general, the optimal value for 1/a is near
the accuracy of the initial estimates. Disappointingly, in this case the accuracy of the
regularized solution is limited to roughly the accuracy of the initial estimates averaged
over the network, and not the accuracy of the undifferenced solution, which is at the 4

metre levdl.

Figure 4.7 shows the minimum error variance for a range of network extents under initial
estimate accuracies of 1, 50 and 100 metres. In addition, the accuracies of the
undifferenced and unregularized solutions are shown for comparison. The horizontal
dashed lines indicate the standard deviation of the initial estimates averaged over the entire
network. An interesting behaviour is evident in the regularized solutions. As the network
separation decreases, the unregularized solution accuracy degrades, for reasons discussed
above. However, the regularized solution accuracy converges to the accuracy of the initial
estimates. When the network expands, the differenced solution becomes more stable, and

the solution accuracies converge to the accuracy of the undifferenced solution.
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The reason for this behaviour lies in the fact that for small network extents, the noise of the
unregularized solution is very great, and so the solution must rely on the initial estimates as
an indication of the absolute location of the network. Thus the solutions are expected to be
highly biased. Conversely, when the network extent is greater, the datum as defined by the
satellites becomes more visible, and so the reliance on the initial estimates is lessened and
the bias shrinks. This behaviour is confirmed by Figure 4.8, which shows the relative
contributions to the total error from bias and noise sources for various baseline lengths,
under the assumption of initial accuracies accurate to 50 metres. At the smallest receiver
separations, the orbital errors largely cancel out, and as a result the noise contribution is
very smal. As the network expands, the decorrelation of the orbital error causes
instabilities in the solution which are regulated by the bias in the initia estimate. Finaly,
as the geometry improves further, the oscillations due to the orbital noise are damped as
well, resulting in error variance behaviour similar to the undifferenced case. Of course,
when the accuracy of the initial estimates better than the accuracy of the satelites, the
solution essentially fixes the datum deficiency by using the initial estimates, ignoring the
satellite overconstraint altogether. Again, it must be stressed that the accuracies discussed

are absolute, and that the relative accuracies are limited by the values shown in Figure 4.3.
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4.3.4 -Deformation Monitoring with DGPS

The results of the previous section indicate that the absolute (global) accuracy of DGPS
positioning remains at the several metre level, due to the inaccuracy of the satellite orbits
acting as control points and the poor visibility of the trandation component definition to
receivers on the ground. However, it was also shown that the relative precision of DGPS is
quite good. In deformation monitoring, the quantities of interest are the changes in the
position of points in the network. Furthermore, in most applications, the points of interest

do not move large distances, usually on the order of several centimetres or decimetres.

As an example, the true positions of a station at two epochs will be defined as xt1 an X1o.
In processing the two epochs, it is assumed that the same initial estimate, Xo, for the
receiver positions have been used. In addition, to ssimplify the discussion, the observation
geometry is assumed to be identical for the two sessions, which is true for observation
spans of identical length separated by one sidereal day. In the case that the observation
spans are not separated by 23hr 56min, the above assumptions hold if the positioning
accuracies and observation error levels are similar, which will be assumed true in the
sequel. Using the expression for the regularized position estimates, the resulting

regularized estimates for the deformation vector, drego1, IS then given by ;

d = - X

reg2l — “‘reg2

reot (4.16)
= (l B Nr_e]é; ><N)"(Xo - Xo)+N;elg N >(XT2 - XT1)+N;elg XATC[l x(ez B el)

Since the true deformation vector is Xt2-XT11, the error in the deformation estimate is
Ddreng = (I - N;e]é >N)><XT2 - XTl)' N;:g XATC[1 ><e2 - el) (4-17)

which does not depend on the biases of the regularized solutions, but is biased now by the
magnitude of the deformation to be measured. The error variance-covariance of the

regularized deformation vector is
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Cor = (1= N2 W)y o - N2 N +25(1- )L N2 (4.18)
where Cy is the variance-covariance matrix of the expected deformations and c is a
constant between 0 and 1 expressing the percentage of correlation between the

observational errors between the two epochs.

For deformation monitoring to be effective, the error variance of the regularized
deformation vector must be smaler than the variance of the deformation itself. For
example, if the solution is not regularized at all, the deformation estimate becomes
unbiased, but excessively noisy, making it a useless measure. However, if the solution is
over-regularized, then the error of the deformation estimate is at the same level as the
magnitude of the deformation itself. Figure 4.9 shows the error standard deviation of the
regularized deformation estimate averaged over a five receiver network with a 20 km
extent under various values of 1/a. A deformation level of 1 cm was assumed as well as a
6 m satellite orbit error with no correlation between observation spans. The behaviour is
very similar to that of the absolute case shown in Figure 4.6.
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However, unlike the case of absolute positioning, where the value of l/a is typicaly
around the value of the initial estimate accuracy due to its very large variance, in the
deformation monitoring mode, the value of 1/a depends closely on the ratio of the
observational variance and the expected deformation magnitude. For example, Figure 4.9
also shows the regularization error when a white noise with a standard deviation of 1 cmis
added to the system. Fortunately, given proper stochastic modelling of the observations, it
is possible to determine the optimal value of 1/a via application of Eq. (4.18).

Figure 4.10 shows the maximum deformation monitoring accuracy achievable under
various baseline lengths. The results assume a deformation levels of 5 mm, 1 cm and 2 cm
and considers the effects of the satellite coordinate error and a 1 cm noise level. When
compared to the absolute accuracies achievable as shown in Figure 4.7, the accuracy of the
deformation detection is striking. As expected, the detection sensitivity decreases as the
network separation increases, due to the increased decorrelation of the orbital errors. Also,
the sengitivity of the deformation detection decreases as the deformation magnitudes
increase, due to biasing of the solution. However, at all distances anaysed, the sensitivity

is still below the magnitude of the deformations expected.
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Under actual conditions, the error levels would depend on the actual errors present and
network extents, as discussed in Chapter 6, and the length of time the network has been
observed. Thus the preceding discussion is only intended to study the principles of datum
definition in satellite-based networks. An investigation of the actual accuracies, both
absolute and relative, is presented in Chapter 7. Also, the study so far has limited itself to
the case where only position unknowns are considered. In reality, to achieve the highest
levels of positioning accuracy, it is necessary to use the carrier phase measurement. The
complications involved due to the added ambiguity unknowns are discussed further in

Chapter 5, including their effects on the datum resolution problem.
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5.0 - AMBIGUITY RESOLUTION FOR PRECISE POSITIONING

Two types of measurements are typically used in satellite-based navigation systems — code
(or pseudorange) and carrier phase. As discussed in Chapter 2, the code measurement is
simply atime-of-flight measurement made using a ranging code superimposed on a carrier
signal. The carrier phase is essentially a measurement of the integrated Doppler shift of the
carrier signal itself. As aresult, it is corrupted by an unknown integer ambiguity due to the
inability to sense the number of cycles between the receiver and satellite at the moment of
signal acquisition. This ambiguity remains constant as long as lock is maintained to the
satellite.

Despite the added unknowns incorporated by utilising the carrier phase, this measurement
iscrucial for precise positioning applications. This is because the process of measuring the
carrier phase is inherently more accurate than the code measurement process. In fact, the
carrier phase is often two orders of magnitude more accurate, as will be discussed in
Chapter 6. As aresult, for high precision applications, use of the carrier phases is required
and a methodology for dealing with the added ambiguity unknowns must be established.
This chapter investigates these issues, including the effects of datum constraint on the
ambiguity resolution process and changing satellite geometry, and reviews the LAMBDA

method of resolving the integer nature of these ambiguities.
5.1 - Float Ambiguity Resolution

In Chapter 3, the observations were shown to be linear with respect to the unknown
ambiguity terms. Given a set of m satellites observed a n receivers, the total number of
observations is mn, which is also equal to the number of unknown ambiguities. If positions
are to be solved for as well, it becomes evident that the problem is underdetermined unless
additional information is included (i.e. aprori information regarding the recelver positions)

or more than one epoch is observed without loss of lock.
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A further complication is introduced due to the presence of the unknown satellite and
receiver clock offsets. For example, the receiver clock offset affects all ranges measured at
the receiver equally, lengthening or shortening them by a quantity ¢DT. However, the
unknown ambiguities also directly shorten or lengthen the ranges by a quantity N. Thus,
given measurements made over severa epochs, it is impossible to separate the effects of
the dock offsets and the ambiguities, since the average clock offset can be absorbed by
adding this value to all the ambiguities measured at the receiver. A similar argument can
be made when considering the satellite clock offsets. Hence, the system of equations
becomes effectively singular and no solution is possible unless modelling of the clock

offsets is preformed, which is not possible in typical applications.

Double-differencing provides the solution to this problem. Discussed in Chapter 3, double
differencing removes all the clock offsets from the solution. However, an added effect is
that the process of double differencing also causes the entire set of individual ambiguities
to become inestimable. For example, assume that nm ambiguities are to be solved. The
original Jacobian with respect to these ambiguities is an nm by nm identity matrix.
Denoting the double differencing matrix as ND, the resulting norma matrix for the

ambiguities becomes :
N, =1 XD {{D>C, WD ) * xND A (5.1)

where | is an identity matrix and C; is the variance-covariance matrix of the observations.
Namp iS singular since the dimensions of ND are (-1)(m-1) by n'm as per Section 3.4.
Fortunately, the ambiguities are only nuisance parameters, and thus only the double-

differenced ambiguities are solved for.

5.1.1 -Regularization and Ambiguity Resolution

The results of Chapter 4 indicated that the datum of the a receiver network was actually
over constrained by the fixing of the satellite coordinates, but that additional regularization
had to be performed due to the poor vishility of the datum. It was aso shown that if



65

absolute accuracy was desired, that the value of the regularization parameter, 1/a, should
be chosen near to the accuracy of the initia estimates. In small-extent networks, the
absolute accuracy is limited to the accuracy of the initial estimates, whereas on larger
extents, accuracy limit converges to the accuracy of the satellite orbits. However, if
deformation monitoring is the end result, the 1/a parameter should be chosen near the
magnitude of the expected deformations. This will result in very biased results, but

sensitive deformation detection.

In the case when carrier phases have been measured, it is important to consider the effect
of the additional unknowns on the regularization scheme. A similar development to that
used in Chapter 4 will be followed. Firstly, the vector of parameters will be extended such
that

e u
X = g( g (5.2
amb U

where Xpos refers to the unknown position quantities and Xamp refers to the unknown
ambiguities. Assume that the accuracy of theinitial estimates of the position quantities can
be expressed by the variance-covariance matrix Cy and that the accuracy of the initial
estimates of the ambiguities is undefined. In addition, we assume that the regularization
matrix P is only applied to the position estimates. The normal matrix for the unknowns can
be partitioned into components referring to the positions and ambiguities respectively,

namely:

_ é Npos Namb/posl:,j
N = N N (5.3)
& N posiamb amb 0

and the regularized normal matrix is therefore given by
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&N . +a’P N u
N eg — e pos amb/posl;l (54)
@ N pos/amb N amb g

where the matrix P is an arbitrary regularization matrix, chosen to be the identity matrix in
the case of Tikhonov regularization and Namp is aways invertible.

The tota regularization error is finaly given by Eq. (4.14)

. éeC Ou ) T . .
Co =(- N2 ><N)><8 oX* 08>(| CNGE N NGL NN (55)

modified to take into account the fact that the ambiguities are of unknown accuracy.

An experiment was conducted using a 10 receiver network with an average separation of
40 kilometres. A twenty minute segment of data was used to generate the normal matrix
corresponding to the 10 unknown receiver positions and the 72 unknown ambiguity terms,
The accuracies of the initial estimates of the unknowns were chosen to be 1m, 60m and
200m respectively, and the observational stochastic models followed those presented in
Chapter 6, using standard values. The resulting average position accuracies for various
values of 1/a are shown in Figure 5.1, along with the noise contribution to the total error.
For very small values of 1/a, the noise contributionis slight, but the bias component grows
with the degradationin the initial estimate accuracy. If the 1/a value is high, the bias error
issmall, but noise is amplified, aresult already encountered in Chapter 4. Figure 5.2 shows
the average ambiguity accuracy for the tested 1/a values as well as the noise contribution
to the overall accuracy. Large biases become apparent as the 1/a values decrease and the

initial estimate variances increase. The reason for this is due to the fact that the double-

differenced ambiguities are an internal quantity of the network.
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Due to the geometry of the double differences, the entire network can be trandated in
space without changing the values of the double differences significantly. However, the
double-differences are very sensitive to the relative position of the receivers within the
network. Thus, if good initial estimates are available, the accuracy of the ambiguity
resolution improves, as evidenced by the decreased noise contribution for small values of
Va when the initial estimates are weighted heavily. In addition, if the initial estimates are
very poor and the regularization light, then the ambiguities are not affected by the large
biases in the position estimates, since they are resolved using the actual data available —
resulting in poor accuracy, but low bias. The worst situation occurs when the initia
estimates are poor, and the regularization is heavy. Basically, this corresponds to distorting

the internal geometry of the network, and the ambiguity solution suffers as a consequence.

In Chapter 4, it was shown that a heavy regularization is desirable for deformation
monitoring since, although the absolute position estimates are heavily biased, the resulting
deformation detection vector is very sensitive. Unfortunately, areview of Eq. (4.17) shows
that the deformation vector is sensitive to the bias in the difference between the unknowns
between the two epochs. When the position unknowns only are considered, this is not a
problem, since the order of the deformations is at the centimetre-level. However, when
carrier phases are used, the differences between the ambiguities for the two sessions can be
millions of cycles and this propagates into the deformation sensitivity for the positions. As
aresult, it is important to ensure that the ambiguities are as unbiased as possible. This is
particularly important if the ambiguities are to be resolved as integers, discussed in Section
5.2.

A consideration of the reason for the ambiguity bias suggests the solution to this problem.
The ambiguities become biased when the internal network geometry is deformed due the
overweighting of inaccurate apriori position estimates. Furthermore, the need for
regularization stems from the poor visibility of the trandation component of the datum
definition, previoudy discussed in Chapter 4. Thus the goal is to determine a regularization

method that solves the trandation problem (i.e. the centre of mass of the network) while
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allowing the internal geometry of the network to be solely determined from the observed
data. One method of accomplishing this is through an appropriate change in the

regularization matrix used.

An identity regularization matrix is equivalent to a weighted observation of each point as
its initial estimate. If instead, the centre of mass of the network is considered the
“observed” quantity, it can be derived by averaging all the initial estimates for the various

points in the network. This can be expressed via the following matrix

g 0010 0 -
G'=0 10010 - (5.6)
0 0100 1

The variance of each centre of mass “observation” is equal to the variance of the initial
estimates divided by the number of points in the network. Using the above matrix as a

regularization matrix results in the following expression

é a’® u
N +—>G>G"T N ]
N@=&m n ambiposU (5.7)
€ N N Y
e pos/amb amb U

where n is the number of pointsin the network. Note that this is very smilar to the method
of inner constraints, with the exception that the constraints are weighted, rather than
absolute and the Npos matrix is merely ill-conditioned, rather than mathematically singular.

Figure 5.3 shows the resulting position accuracies when the regularization scheme shown
above is implemented. Figure 5.4 illustrates the resulting accuracies of the ambiguities.
Interestingly, the position regularization error becomes less dependent on the degree of
regularization when the centre of mass regularization technique is used. In addition, further
ingpection of the resulting errors shows that the predominant error is a trandation of the

entire network, with very little distortion even at extremely high regularization levels. This
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is because a high regularization level only impliesis that the centre of massof the network
isrigidly fixed, and that the points are still allowed to move in relation to one another. The
higher noise contribution component is thus explained, since the regularization does not
attenuate the noise of the observations themselves.

The greatest effect of the centre of mass regularization is in the ambiguity domain. As
shown in Figure 5.4, the ambiguity regularization error becomes very insenstive to
changesin 1/a (note the change in axis scale) and that the bias is relatively small, even for
very poor initial estimates. This is extremely important for deformation monitoring
applications, as it implies that the 1/a parameter can be very small, resulting in high
deformation detection accuracy, without significantly biasing the ambiguities. However,
even if the initia estimates are very good, only constraining the centre of mass does not
improve the ambiguity resolution since no information of the internal geometry is added,

which is what the double-differenced ambiguities depend on.

Another unfortunate consequence of only constraining the centre of mass of the network is
that trandations of the entire network from epoch to epoch become impossible to detect.
Regardless, the improvement in the relative deformation detection outweighs this
shortcoming. In general, if the initial estimates of the receiver positions are very good (i.e.
a the centimetre-level), then the first regularization technique should be used as it
improves the internal geometry of the network, allowing for improved ambiguity solution.
However, if the initial estimates are poor (i.e. at the first epoch of a monitoring campaign)
then the second technique should be used to minimize the biases in te ambiguities.
Subsequent epochs can then be processed using the apostori variance-covariance matrix of
the position estimates. This will result in a series of trandated solutions, with increasingly

precise internal geometry, which can be easily analysed for relative deformations.

5.1.2 -Base Satellite Changeovers
One issue in satellite-based positioning is that the constellation of observed satellites is

continually changing. In addition, the basis of double-differencing relies on constant

visibility to a single base satellite, since that the ambiguity of that observation isimplicitly
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contained in al the double-differenced ambiguities formed. Unfortunately, even for short
time spans, it may be possible that the base satellite descends out of view, or below a
certain threshold elevation. As a result, a new base satellite is chosen and consequently all
the ambiguities must be re-evaluated. Since the accuracies of the ambiguities are
dependant on the length of time that they have been observed for (Teunissen, 1996), this
implies that two observation spans of equal duration may have significant differences in

accuracy if abase satellite changeover occurs during one of them.

Fortunately, under certain conditions, it may be possible to prevent the loss in accuracy
associated with base satellite changeovers. Given a set of three satellites, the double
differenced ambiguities formed can be written as

e

DN,
DN,

DN

- DN
A ® (5.8)
I:]\lc - D\ls

e

where D refers to the single-differences between receivers formed by satellites A,Band C
and B is the base satellite. Further assume that at some epoch the base satellite B falls
below some threshold elevation and that satellite C becomes the new base satellite and that
no cycle dips occur during the base satellite changeover. The new double-differenced

ambiguities are then given by

NDNZ. =DN, - DN. =NDN}, - NDN, 59)
NDNZ. =DNg - DN, =- NDNZ,

where the superscripts refer to a particular observation span before and after the base
satellite changeover. Note that if a cycle slip occurs on satellite C, neither relation holds,
and that if a cycle dip occurs on satellite A or B only one of the above relations is
invalidated — i.e. if satellite B is not observed after the changeover, it does not affect the
relationship written for the Nac ambiguity.
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The implication of the above relations is that for each base satellite changeover, equations
of the form of Eqg. (5.9) can be written for the entire set of satellite pairs observed after the
changeover that did not suffer from cycle dips. These can then be gathered into a set of
constraint equations and used to improve the float solution using Eq. (3.6), repeated here

for convenience:
d, =d. - GG H{GTxCHG)  {GT . +w,) (36)

where d+ is the initia float solution and d. is the solution after applying constraints. G is
the matrix of constraint equations of the linearized form of Eq. (5.9) consisting of ones and
zeros and W, is a null vector. Cy+ is equa to the variance-covariance matrix of the initia
estimated parameters. Note that both the position and ambiguity unknowns will be
modified due to the application of the constraint and that the accuracy of both positions
and ambiguities will improve, in accordance with Eq. (3.8b). A fina effect of the
application of the constraints is that the number of independent ambiguities will be come
reduced by the number of constraints applied, since each constraint defines one ambiguity

as the difference of two others.

For example, for a data segment that contains a single base satellite changeover, the
average ambiguity variance can be expected to be twice as large as that for a similar
segment that contains no changeovers but similar geometries. Thisis ssimply due to the fact
that twice as many unknowns to be solved. The application of the constraints significantly
improves the result, since essentially the number of independent ambiguities to be solved
are reduced in half. The effects of applying the base satellite changeover diminish as length
of the data segment increases but even in this case the reduction in the number of

independent ambiguities is significant for integer ambiguity resolution.
5.2 -Integer Ambiguity Resolution

The ambiguities affecting the observed carrier phases are integer, and the process of

double-differencing maintains this integer nature. Unfortunately, the classic least-squares
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solution is incapable of incorporating this information, and as a result the solved
ambiguities are real- valued numbers. Not only does this imply that the ambiguities absorb
some of the observation residuas into the real-valued component of their solution, but

positioning accuracy suffers since valuable information is not added to the solution.

The process of ambiguity resolution seeks to determine the most likely integer values for
the ambiguities and then use this information to improve the solution for the position, by
constraining ambiguities to their integer values. The methodology implemented herein
follows the LAMBDA method pioneered by Teunissen (1993) and only a cursory overview
of this nontrivia topic is provided here, with focus limited to peculiarities of ambiguity
resolution for high precision applications. For further details of the LAMBDA method the

excellent and practical review by De Jonge and Tiberius (1996) is suggested.

5.2.1 -Principle of Integer Ambiguity Resolution

The process of integer ambiguity resolution begins with an initial solution for the position
of receivers in a network and the float ambiguity solution, along with their associated
variance-covariance matrix. Assume that the true integer values of the ambiguities was
known, and denoted by the vector wamp. These known ambiguities can be used to form a

constraint equation of the form

N, =W, (5.10)

where Na an unknown (but estimated) ambiguity, and wa is the known integer value for the
ambiguity. In general, the ambiguities do not have to be double differenced, but are
assumed to be so in the sequel. An updated solution for the positions and ambiguities can
then be calculated as a step-wise addition of contraints, set out in Eg. (3.6). In the case that
not all the ambiguities have known integer values, the unknown ambiguity estimates will
be improved by the knowledge of the other ambiguities. All the known ambiguities will be
fixed to their integer values. The resulting sum-of-squares of errors for the updated
solution will be given by Eq. (3.7b), repeated here:
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(15C o, =G, +(GTod, +w, ) AGTCHG ) {GT M, +w,) (3.7b)
where rc and r+ are the residuals after and before the application of the constraints, G is the
constraint matrix formed by the left side of Eq. (5.10), d+ is the solution for the positions
and the ambiguities prior to the application of the ambiguity constraints, w. is the
constraint vector formed by the right side of Eq. (5.10), and Cy+ is the variance-covariance

matrix of the position and ambiguity unknowns prior to ambiguity fixing.

The constrained sum-of-squares of residuals is aways larger than the nonconstrained
case. In addition, selection of a different w. vector (i.e. changing what the integer
ambiguities are assumed to be) will change the constrained sum-of-squares. Since the goal
of least-squares is to minimize the overall sum-of-squares of residuas, the goa of the
integer ambiguity process it to determine the integer vector w; that minimizes the value of
Eqg. (3.7b), or minimizes the change in the original sum-of-squares of residuas. Inspection
of the right side of Eqg. (3.7¢c) shows that the rightmost term is minimized when the
distance from the vector w, to the float ambiguity solution is smallest, calculated in the
norm defined by G™-Cy+'G. Once this integer vector is determined, it can be used as a
constraint on the ambiguity values to update the estimates of both the positions and al the
ambiguities using Eq. (3.6).

In general, the optimal integer ambiguity vector is determined by establishing a search-
region around the float ambiguity vector, selecting integer ambiguity vectors insde of this
searchrregion and calculating the distances between the float and integer solutions. The
size of the searchrregion must be carefully selected, since an inappropriate selection may
exclude the actual minimizing integer vector, whereas too little restriction will result in too
many candidates being examined for the process to be efficient. Typically, the error
ellipsoid surrounding the float ambiguity estimate is used to define the shape of the search
region, and this region is scaled sufficiently to include at |east one integer vector. A further
difficulty liesin actually selecting integer elements inside of the error ellipsoid. In practice,
the semi-major axis of the elipsoid is used to establish the range of possible integers for
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the ambiguities to be determined, which in the case of a highly elongated ellipsoid results

in an overly large volume of space to be investigated.

A key assumption in the application of Eg. (3.6) lies in the fact that the integer ambiguity
vector W is known. Obvioudly, since this vector is the quantity to be determined, it is not
known. However, as shown by Teunissen (2002) , given that the float ambiguities are of
sufficient accuracy, the integer vector, once properly selected, can be assumed known with
little adverse effect on the resulting statistics. A more serious problem lies in the fact that
the minimizing integer vector will be the vector that lies “closest” to the initial float
ambiguity vector. As a result, the presence of any biases in the float vector may cause the
integer vector to become biased as well. However, since the integer vector is assumed
correct, the resulting statistical estimates after applying the integer constraint will be
grossly optimistic despite the fact that the resulting position estimates will be also biased.
For this reason, it is crucial that the float ambiguity vector remain as unbiased as possible,
which required appropriate modelling of observational errors and careful selection of the
regul arization technique, as discussed previoudly.

Lastly, if any base satellite changeover constraints have been applied in the determination
of the float solution, the integer ambiguity search must be restricted to the independent
ambiguities if the constraints are to apply after the resolution process. This creates a
situation where some ambiguities are actualy partially fixed, since one of the parent

ambiguities is fixed and the other is not.

5.2.2 -Ambiguity Success Rate
According to Joosten and Tiberius (2000), the lower-bound probability that a set of n

unbiased ambiguities can be resolved as their true integer values is given by

®1 0 U
- 1 (5.118)
BN 2% 5 4§



77

with

F(x)= OEG-_ZZ dz (5.11b)

where ASRis the lower-bound probability that the ambiguity set can be resolved as integer,
F is the standard normal cumulative probability distribution and sj; is the standard
deviation of the f" ambiguity conditioned on the solution of all the previous ambiguities.
The values of s are obtained from the diagonal elements of the D matrix resulting from
the triangular decomposition of the variance-covariance matrix of the ambiguities, Camp,

written as
C.p = LT xDxL (5.12)

For the assumptions inherent in Eq. (3.7b) to hold, this probability must be sufficiently
high such that the integer ambiguities can be considered exact. A different view is to
consder that any ambiguity can be resolved as some integer, regardiess of its accuracy.
However, a high success rate ensures that the ambiguities are being resolved to their
correct values, neglecting the effects of biases in the float ambiguity solution. Ambiguity
success rates of 99% are usualy used for this purpose since an incorrectly resolved

ambiguity will cause undetectable biases in the position estimates.

In a typical observation campaign, some ambiguities will be determined to a high
accuracy, whereas others, perhaps due to low elevation of the satellite, or great separation
of the receivers, will be estimated with a lower accuracy. As a result, it is usualy very
difficult for the entire set of ambiguities to be resolved as integer to a sufficiently high
probability. Traditionally, this would result in no ambiguities being resolved as integers,
resulting in a float solution. However, a more effective procedure is to order the
ambiguities in order of decreasing conditional accuracy (i.e. by inspection of the D matrix

of the L'DL decomposition), and to only select the set of ambiguities that result in an
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ambiguity success rate of 99%. These ambiguities are then determined as integer, and their
constraint improves both the position solution and the remaining float ambiguities. The
main advantage of using this strategy for deformation monitoring is that the accuracy of
subsequent epochs is made more consistent, since a single bad satellite or receiver does not

cause the entire network to revert to a float mode solution.

5.2.3 -Ambiguity Decorrelation

The main problem with a naive search for an integer vector w. based from the float
ambiguity solution is that the float ambiguities are typically highly correlated. For this
reason, the error ellipsoid surrounding the float ambiguity estimate is highly elongated and
as aresult, the search for the integer ambiguities is very inefficient (Teunissen et al, 1994).
In genera, the most efficient searching occurs when the ambiguities are uncorrelated, and
if the ambiguities are completely decorrelated, the solution for the most likely integer

ambiguities simplifies to a rounding of the float estimates to their nearest integer.

Teunissen (1993) shows that it is possible to develop a transformation that transforms the
correlated ambiguities into an almost uncorrelated equivalent set, while maintaining the
integer nature of these ambiguities. Determination of the integer matrix Z that
accomplishes this partial decorrelation is the heart of the LAMBDA method, and details on
the procedure for determining the Z matrix is given by De Jonge and Tiberius (1996).

Application of the Z matrix to the original ambiguities results in a transformed set, with an
associated variance covariance matrix that has the same volume as the original set. Thus
the accuracy of the ambiguities is not changed, but merely their correlation. The integer
vector that minimizes the weighted distance to the transformed float ambiguity is then
chosen as the most likely integer. Due to the reduced correlation of the transformed
ambiguities, the efficiency of this process is greatly improved, often reducing the number
of candidates to be tested by several orders of magnitude. The resulting most-likely integer
vector in the origina system is then solved using the inverse of Z, which is aways square
and invertible. Finaly, this integer vector is used as a constraint and the solution for the

positions and ambiguities is updated.
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Note that in the case that constraints on the ambiguities have been applied, such as those
due to base satellite changeovers, only the independent ambiguities are considered. As
well, from the subset of independent ambiguities, only the ambiguity set that allows for a
sufficiently high ambiguity success rate is estimated.

Advantages of decorrelating the ambiguities goes beyond increasing the efficiency of the
integer vector determination. Eq. (5.11a) provides alower bound on the ambiguity success
rate. Teunissen (2000) shows that this lower bound becomes increasingly sharp as the
ambiguities become increasingly decorrelated. Although the decorrelating transformation
does not improve the overall accuracy of the ambiguities to be solved, the decorrelation of
the ambiguities raises ambiguity success rate estimate for a given set of ambiguities, which
in turn alows more ambiguities to be added to maintain the success rate estimate at a

particular level.
5.3 - Summary of the Ambiguity Resolution Process and Precise Position Determination

This section provides a step-by-step summary of the solution for the positions of receivers

in a static network and the ambiguities associated with a particular observation session.

Sep 1. Establish the regularization method to be used.
If no prior information on the receiver positions is available, use the single point
solutions of the receivers to establish the centre-of-mass of the network and utilize
a high Z/a value (i.e. 0.001 m). Otherwise, use the variance-covariance matrix of
the estimated parameters from the prior epoch and their estimates. This results in

the regularized normal equations

é\l 0S + az >P Nam OSl\J
g =8 " PPy, (5.4)
g N Namo

amb

N

pos/amb
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Step 2 Determine the regularized float solution of the ambiguities and the receiver
positions.
This results in the quantities d ey and Cyeg, calculated using the methods of

Chapter 3, with the forms

_ édpos U _ é Cpos Cposlambl-‘;I
reg A i xreg e_c C l;l (513)
éjamb u e amb (J

amb/pos

d

where dpes and damb are the corrections to the initial estimates of the position and
ambiguity unknowns and Cpoes, Camp are the variance covariance matrices of the
estimated positions and ambiguities and Cpogamb IS the cross-covariance matrix of

the position and ambiguity unknowns.

Step 3 Apply any base satellite changeover constraints to improve the receiver position
and ambiguity estimates.
The updated quantities are calculated via :

dbase = dreg - ereg >(';base X(G -ll)-ase >(:xreg ><';base)-l >(G base >dreg) (39&)

Cbase = ereg - ereg >G base >(G -tl)-ase >(:xreg >(-:'base)-1 >G-tl)-ase >(:xreg (39d)

where Gpase 1S the matrix consisting of the base satellite changeover constraints.
Note that both the position and ambiguity estimates are affected due to their cross-
correlation at the float estimation stage.

The constraint matrix, Gpase Can be used to establish a matrix Zjng which collects
the remaining independent ambiguities. These will be the ambiguities that have not
yet been expressed as the sum of any other ambiguities. Thus the independent

ambiguities are collected via:
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Qnd = Ling ot (5.149)

where a4 are the independent ambiguities and a;o; are the total ambiguities.

Application of Eqg. (5.14) also results in the modified variance-covariance matrix of

the ambiguities given by

Cind = Zing Camp i (5.14p)

amb

Sep 4. Form the L™D'L decomposition of the variance-covariance matrix of the

independent float ambiguities.

Sep 5.

Sep 6.

This decomposition is necessary for the subsequent decorrelation step and
inversion of the variance-covariance matrix of the ambiguities. Algorithms for the

decomposition are widely available, for examplein Press et a (1992).

Decorrelate the independent ambiguities.

The decorrelation process relies on the determination of the integer decorrelating
matrix Z, as per de Jonge and Tiberius (1996). The development of the Z matrix
therein operates on the L "D'L decomposition and also reorders the elements such
that the transformed ambiguities are arranged from lowest to highest accuracy. The
decorrelation matrix Z creates a transformed ambiguity vector, agecor, and its

associated variance covariance matrix, given by

adecor = Zdecor >eind (5153)

C = Z >Cind XZ gecor ® C = L-Eiecor >D >4— decor (515b)

decor decor decor decor

Select the ambiguities that allow for an ambiguity success rate of at least 99%.
This is accomplished by going through the Dgecor matrix from the most precise to

the least precise ambiguity and calculating successive ambiguity success rates until
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Sep 8.

Sep 9.
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the rate drops below 99%. A matrix Zsq then selects the ambiguities to be solved as

integer.
asd = Zsel >adecor (5163-)
Csel :Zsel >Cdecor ><ZTseI ® Lsel :Zsel >4‘decor XZ; ’Dsel :Zsel >Ddecor ><ZTseI

(5.16b)

Calculate the inverse of the variance-covariance matrix of the selected ambiguities.
This is necessary to calculate the distance between the various integer vectors to be
tested and the transformed float solution. Since Ly is lower triangular and Dgg IS

diagonal, the inverse is efficiently calculated via

Cl=LiD2xy] (5.17)

Select the most likely integer for the selected ambiguities.

This process relies on calculating the distances from a set of integer vectors to the
transformed selected ambiguities and selecting the one that minimises the distance
under the transformed variance-covariance matrix for the subset. This results in the

integer vector we.

Solve for the updated positions and ambiguities.

Setting the solved transformed ambiguities as constraints, the effective constraint
matrix as applied to the entire, untransformed set can be written as :

w, =2Z4%X

><Zind >e'tot = Ztot ac! (518)

decor tot

The updated position and ambiguities can then be solved using this constraint and
Eqg. (3.9), aong with the float solution after the application of the base satellite
changeover constraint :
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1

dint = dbase - CbaseXZ;rot X(Ztot ><:base Xz;rot) ><(Ztot >dbase - Wc) (519a)
-1

Cint = Cbase - Cint ><Z;rot )(Ztot >CbasexZ;rot) ><Ztot >(:base (519b)

where the term in parenthesis has already been calculated via Eq. (5.17). Note that
if the regularization matrix used is not equal to the apriori variance-covariance
matrix of the initial estimates, the final variance-covariance matrix for the
unknowns and ambiguities must be calculated using the modified method of

Section (3.11a). However, the actua solution procedure does not change.

Note that as a result of this process, not all the ambiguities will be fixed, since only a
transformed subset are fixed as integer, thus the procedure is termed a partial-fix mode.
However, due to the correlation of other ambiguities to the fixed subset, the overal
accuracy of the solution improves significantly. Also, since not al the integers are required
to be fixed as integer, it can be expected that a few bad satellites will not significantly
corrupt the solution, since these will not be selected to be fixed, and as a result, their high
variance will be weakly weighted in the overal postion solution. This is a desirable
property in any scenario where accuracies are desired to be similar from epoch to epoch,

such as deformation monitoring.

The application of the base satellite changeover in particular improves the ambiguity
resolution procedure by reducing the number of independent ambiguities to be solved and
essentially lengthening the observation period of these ambiguities. For example, in a
typical 24 hr observation span of al0O receiver network, 1251 ambiguities were to be
solved. However, after the application of the changeover constraints, only 182 remained.
Of these 182, none would have been identified as fixable prior to decorrelation. After
decorrelation, 132 could be solved at the 99% level. This illustrates the necessity of both
tracking the base satellite changeovers and ambiguity decorrelation for successful

application of carrier phase measurements to the precise positioning problem.



84

6.0 - ANALYSIS OF ERROR SOURCES IN GLOBAL NAVIGATION

SATELLITE SYSTEMS AND STOCHASTIC MODELLING

At the centre of every least-squares adjustment lies the need to relate the stochastic
properties of the observations via the variance-covariance matrix. In the simplest sense, the
variance covariance matrix describes the proper weighting of the observations to be used
and allows the accuracies of the resulting parameters to be properly estimated. Early
studies in satellite-based network positioning recognized the importance of modelling the
covariances between double-differences (Beutler et a, 1986; Remondi, 1984), but focused
on the mathematical correlations due to the differencing. Interestingly, these studies
recognized the existence of physical correlations between the origina phases, but were
forced to ignore them due to a lack of suitable correlation models and difficulties in

handling the large matrices required, especialy when multiple baselines were involved.

Much research has been dedicated to assessing the possible accuracy achievable with
satellite-based ranging systems and GPs in particular. For example, the literature abounds
with studies of the noise properties of various receivers (Tiberius et al, 1999; Langley,
1997; Gerdan, 1995; Kujawa, 1998, among others) and of multipath effects in various
environments (Ray, 2000; Braasch, 1998; Georgiadou and Kleusberg, 1988). Asaresult, a
good deal of information exists regarding the magnitude of these errors. Similarly,
tropospheric and ionospheric modelling has been ongoing for several decades, starting
with studies by Hopfield (1963) and Klobuchar (1986), and more modern studies by
Mendes (1999) and Schaer (1999) provide thorough studies of the accuracies of the
models popularly used.

Unfortunately, the majority of this work has been done in an ad-hoc fashion and usualy
focuses on a single error source, to the neglect of others. This has led to a system of “rule-

of-thumb” in estimating the achievable accuracy of GPS as a function of receiver
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separation. In particular, knowledge of the spatial correlations of tropospheric and
ionospheric errors is scant, as is understanding of the time variations of these errors and
their statistical properties. Similarly, while work has been dedicated to minimizing noise
and multipath, modelling the statistical properties of the remaining errors needs to be
investigated. Overall, a systematic procedure for establishing and testing stochastic models

of various error sources is needed.

This chapter seeks to analyse the main error sources affecting GPs and to model their
stochastic properties. The ultimate goa of this work is to develop a method of using these
models to properly create a variance-covariance matrix describing the relationship between
observations, for use in a rigorous least- squares adjustment.

6.1 - Covariance of GNSs Error Sources

The basic model of a range measurement made between a receiver and a satellite was
givenin Chapter 2 as:

p=d, - cXDt,- Dt )+ T+l +e (2.4)

where p is the measured pseudorange, dgy is the actual geometric distance between the
satellite and receiver, Dts and Dt, are the satellite and receiver clock offsets, T and | are the
tropospheric and ionospheric delays and e is the noise. In the case of a carrier phase
measurement, an ambiguity term is added. In general, a tropospheric and ionospheric
model is used, ard thus the T and | terms become dT and dl. In addition, the noise term can

be separated into two components — namely noise and multipath. Furthermore, assuming
that all the errors have zero mean expectation, the resulting error in the pseudorange

measurement is denoted

er =p- E(p)=-Dt,+Dt, +dT+dl +n+m (6.1)
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where the clock offset terms have been parameterized as distances, and m denotes the
multipath component of the observational noise and n denotes the remaining noise
component. In the case of a carrier phase measurement, the sign of the ionospheric term is
reversed and the values are divided by the wavelength of the carrier to express the error in
cycles. Thisis further discussed in Section 6.5.

Each error teem in Eq. (6.1) is due to a different physical process. Thus, for agiven carrier
phase, the individual error components are uncorrelated with one another. For example,
there is no logical reason why the value of the satellite clock offset should at all affect the

residual tropospheric delay contained within a measured carrier phase.

In addition it is important to note that we assume that the individua error components are
stationary, or that their statistics can be meaningfully described by moments that are
independent of time or space. In particular, we assume that all the errors have zero-mean.
However, the ergodicity of the error processes is not guaranteed. For example, the receiver
clock offset of areceiver at start up is random and has an expected value of zero since the
clock can be ahead or behind GPS time with equal probabilities. However, for a given
sample set (or realisation), the receiver clock offset can be constant with time at some
value. Thus, simply taking the average of the receiver clock for a given realisation does not
correctly imply the actual mean value of the process. On the other hand, the noise and

multipath processes are ergodic.

Consider the situation of three receivers making simultaneous measurements to three
satellites. The covariance of any two carrier phase measurements between receivers A and
B and satellitesi and | is expressed as



s =eltr- el o) - e

éxl i ou

gr[(u:atl - DtrecA) + dTl A- di iA + mA + nlA]B{I (62)
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since the expected value of f #; is equal to the range and ambiguity of the carrier phases and

the error sources have zero mean. Note that the satellite clock error is wholly dependent on

the satellite, the receiver clock error is dependent on the receiver and all other errors are

dependent on both the particular receiver/satellite combination.

Eqg. (6.2) can be further simplified by taking into account that the error sources are

physically uncorrelated among themselves. This results in the following expression :

S izE[(DtA DS, + Dty DtLg) +dTAITS +di Adl ® +mPm® +n/n®]

ij | sati — -satj recA

=5 (Dtey) +5 " (Dty) +s (°(dT) +s [P (dl) +s *(m) +s *(n)

(6.3)

where the covariances of the individual error sources have been introduced.

For the nine observations implied by the three receiver, three satellite scenario, the

variance-covariance matrix for the set can be written as :
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S17 sk sk s{® s s s sl sl
€55 S35 Sk ST S S Si S Sy
55 sh s s s s sy sE s
s sp sh s sp sk s sE s S
Ci=g s s sh s sf sif s sy (64)
S sF P sy sh sP s sy s
2 osE osg s sP sP s sh shy
Sa s sH sT s sT sh sf sgl
&5 S S5 Sy Sy S5 Sa Sy S5

Note the expected symmetry of the above matrix and the fact that only four basic forms of

variances exist, namely s?, s”8, s#;, s"B;;. Furthermore, elements of the form s*; are

equal to their corresponding elements of the form s*. As well, ements of the form s,

are equal to elements of the form s®4. This aso holds for pairs of elements with the form

s”8; and s®4;, respectively. However, elements s”®; are not in general equal to elements
AB

s™5 or SBAij. Applying these equdlities, it can be shown that the above matrix is

Symmetric, as expected.

6.1.1 -Effect of Double-Differencing on the Variance-Covariance Matrix

As indicated in the above section, errors between satellites are often correlated, as are
errors between receivers. In Chapter 3, the satellite and receiver clock errors were treated
as unknowns to be solved, which is contrary to the treatment given here, where they are
considered as errors. However, the method of double-differencing, which was previously
used to remove the unknown clock offsets as unknowns, can also be shown to remove the
clock offsets if they are considered as errors. In addition, dowbl e differencing reduces other
errors correlated between receivers, such as tropospheric and ionospheric errors. One
consequence, however, is that error sources previously uncorrelated between observations,
such as multipath and noise, become correlated when the double-differenced observations
are formed.
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For the set of observations made by three receivers to three satellites, the resulting
variance-covariance matrix of the double-differenced observations can be calculated via

propagation of variances, using a suitable B matrix.

6l 1 1 1y
é G
é‘l 0 '1 Ou
4-10-1100 000 g ~+09 -1
- - u A 7|
- i &1 -10 0y
;g 0 -1-101 0 00 3 /
C,, =BC,BT =€ Uxc, €1 0 0 ou
@ -1 0 0 00 -1100 'e (
a G g0 1 0 Oy
& 0 -1 0 00 -10 15 ¢ ,

€0 o0 -1 - (6.5)
e u
&80 0 1 0¢
&0 o o -1
e s*(NDi7) s (ND,ND37) s(ND3Z ,NDy) s (NDy ,NDg)u
é . . - ~ ~ - . U
_& (NDi7,NDy;)  s?*(ND) s (NDF,NDi7) s (NDi,NDi3)y
%(N 5 NDy) s (NDS,ND7) s ?(NDy) s (NDj7,N 15)8
& (ND; NDi5) s (NDy3,NDig) s (NDy7 ,ND) s °(NDis) g

where C; isgiven by Eq. (6.4). The resultant terms in the Cpp matrix are the variances and

covariances of the double-differenced observations formed.

The variance-covariance matrix shown is fully-populated and symmetric. The explicit form
of each element can be derived by completing the multiplication indicated in Eq. (6.5),

given the C; matrix shown in Eq. (6.4). The results are as follows :



~ 2 2 2 2
s*(ND)=s, " +s; +s ;) +s; - 2 5-257-25°- 25 % +25 7 +25 )
2 /RIRAB QIRABY _ o A2 B2 A A B B A B AB AB AB
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1
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) S, -8, -S,
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S “(NDi;,NDy3) =S, -Si;-Sy3-S; +S; -S; +S;3+S;, +S4 -Sy
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-S +323
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(6.6)
where

s(ND*81,,ND"8,,), s(ND"E15,ND B,5), s(NDAC1,,ND ), and s(ND*C15,ND S 5)
s?(ND"B,,ND",5) and s?(RDA;,,ND )
s(ND*8,,,ND",5) and s?(ND*,5,ND" )
s%(ND"8,5,ND"%,5) and s?(ND*,,,ND))

have similar forms, respectively.
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The covariances of the double-differences do not only contain terms relating to the

variances of the component observations, but also terms describing the correlation between

different observations. Using the property of independence between physical processes, the

variances described in Eg. (6.6) can be described as the sum of variances and covariances

of each double-differenced error source. For example,

s *(NDj?) =s *(NDj7Dt, ) +s *(ND7 Dt ) +s *(NDj7n) +s *(NDi;dT)

6.7
vs 2D +s 2(NDEm) ©

This is a crucial fact, as it implies that the total double-differenced variance-covariance

matrix can be formed using the summation of individua double-differenced variance-

covariance matrices for each error source. This also will influence the methods used to
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study each error source individually, as any one error variance can be calculated if the total

variance, and the variances of the other errors sources are provided.

Finaly, it is aso important to note that traditionally, a diagonal C; matrix has been
assumed, often with equal weights assumed for each observation. In such a case, the

variance-covariance matrix of the double differences becomes

& 2 2 10
& 4 1 2U
C._ =528 a 6.8
DD 0§2142l;l ()
g 2 2 44

where s, represents the variance of the observed phase multipath and noise. If Eq. (6.8) is

compared to the expressions in Eg. (6.5) and (6.6), it is evident that they are equivalent
only if one assumes that all covariances are zero, or if al covariances are equal.

6.1.2 -Developing Variance-Covariance Models for GNSS

One of the fundamental goals of this work is to establish a methodology for determining
the appropriate variance-covariance matrix for use during a particular observationa
campaign. Thisis anontrivia task, asit iswell known that the error sourcesin Gps are not
ergodic (for example, the ionospheric error magnitude varies with the time of day) and can
sometimes be site specific. As aresult, the variance-covariance matrix for the observations
is expected to change between observation sessions. Thus a flexible model that adequately
models the observational variance under a variety of conditionsis required.

Traditional methods of variance-component estimation have fallen into two categories —
gpriori and simultaneous. Apriori modelling seeks to determine appropriate models for

observations expected to be made in a given network, usually relying on laboratory
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experimentation and calibration. For example, in traditional terrestrial networks, distance

measurement variances are often modelled by the following model
S, =at+bx (6.9)

where d is the measured distance and a and b are experimentally determined constants. The
study by Nickerson (1978) is an excellent example of this form of variance modelling, and
contains many model parameter values for a wide variety of equipment types and
situations encountered in terrestrial networks. The advantage of apriori models lies in that
they are simple to implement once al the model parameters have been established.
Unfortunately, in the case of GpPs, there is simply little knowledge of the stochastic
properties of error sources, so no widely accepted apriori models exist. In addition, since it
is known that GPs errors, such as the ionosphere, vary over time and space, it is unlikely
that a useful stochastic model can be purely based on theoretical considerations

Simultaneous variance-covariance modelling seeks to simultaneously determine the value
of unknown parameters of interest and the variance-covariance matrix linking the
observations. The MINQUE (Minimum Norm Quadratic Unbiased Estimator) method of Rao
(1971) is a classic example of this class and attempts to solve the standard least-squares

problem with additional unknowns in the variance-covariance matrix itself, such that

k
C =@ 27T, (6.10)

i=1

where ¢ is an unknown variance factor and T; is a known matrix. Many aternative, but
often numerically equivalent, methods exist in this class, and are extensively reviewed by
Grodecki (1997). The appea of simultaneous methods lies in the fact that the variance-
models are derived from the data themselves, so they are very useful if the variances are

expected to change or are unknown. For example, Wang et al (1998) used the MINQUE
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method to derive the covariance matrix of a very short GPs baseline with some success and
discovered that the double-differences were indeed correlated.

The major shortcoming in simultaneous methods lies in their computational complexity
and numerical instability, which can sometime result in nonsensical results such as
negative variances (Grodecki, 1997). These problems are amplified when one considers the
sheer number of observations that must be considered in a typical GPS observation session
and the fact that the variances are expected to vary from epoch to epoch. Furthermore, a
more subtle limitation in the simultaneous techniques is that for stable solutions to occur,
the T; matrices must be well estimated, and describe the covariance between observations.
Again, thisis information that is not precisely known in Gps. Of course, alarge number of
T; matrices, representing every conceivable pattern of correlations could be included, but

then the number of unknowns becomes impractical and solution stability suffers.

Instead, the approach used in this thesis is a hybrid between the two methods. Firstly, due
to the principle of physical independence of error sources, noise, multipath, tropospheric
and ionospheric errors are al considered separately. Traditionally, orbital error has been
considered as a ranging error, but in this work its effect has been studied instead as a

datum error and its effects documented in Chapters 4 and 5.

For a given error source, the first step in developing the variance mode lies in
investigating the theoretical underpinnings of the error source and from these
considerations, developing an appropriate error model. Empirical data is then used to
gauge the validity of the theoretical model. Also, this empirical data can be used to
determine key parameters of the theoretical model, which may be time-varying. This
affords insight into how the stochastic properties of the error source behave over space and
time. The advantage of this method is that the preliminary theoretical study essentially
serves the process of determining the T; matrices required by the MINQUE method, while
the empirical study allows the model to be flexible to changes in the observation
environments. Work by Raquet (1998) follows a similar tact, but with less emphasis on the
initial model development.
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6.2 -Noise Errors

Noise error is an effect that is unavoidable in any measurement process. In the case of GPs,
it is the error in phase and code measurements due to imperfect tracking of the GpPs signdl
by the phase and delay lock loops. As a result, it is internal to the receiver and is usually
independent between satellites since separate loops are dedicated to each signal tracked
(Ward, 1996a). Furthermore, measurement noise is typically considered uncorrelated in
time beyond the predetection integration period (typically 20 ms). Thusit can be treated as
a white noise process, assuming the output phases and ranges are not smoothed internally

by the receiver.

In static applications, the predominant error component in carrier phase noise is jitter of the

phase lock loop caused by thermal noise. This can be expressed as (Ward, 1996a) :

S . =S -1 | B a?[+ 1
T c/nog 2Tc/n,

I-]-O:

(metres) (6.11)

Q

where B, is the carrier loop noise bandwidth in Hz, c/no is the carrier to noise power
expressed as 10“™M'1% with C/No in dB-Hz, T is the predetection integration time in seconds
and | is the carrier wavelength. The code measurement noise is dependent on the
correlation processes internal to the receiver, and is generally at the decimetre level
(Langley, 1998), compared to the millimetre level for carrier phase measurements. Since
the code measurements are so noisy that the final result essentially depends on the

accuracy of the carrier phases, the code measurements will not be considered here.

Since the noise is uncorrelated between satellites, the double difference covariances

expressed in Eq. (6.6) can be written, for the noise component, as :
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. 2 2 2 2

s 2(ND8n) =s A*(n) +s B*(n)+s 2*(n)+s 2°(n)

s 2(RiD%8n,NID28n) =s A% () +s % (n) (6.12)
~ ~ 2 2

s 2(NDen,NDSn) =s A*(n)+s °(n)

s 2(NDn,NDXSn) =s 2*(n)

where the noise variances of each observation are calculated using Eq. (6.11). All the
parameters involved in Eg. (6.11) are either calculable or available from calibration, thus

forming the theoretical variance-covariance mode.

6.2.1 -Sgnal Power and Theoretical Noise Variance Modelling

Eq. (6.11) indicates that receiver noise is dependent on the carrier to noise ratio (CNR) of
the incoming signd. This is the CNR at the receiver front end, and as a results depends on
the transmitted power of the signal, the transmitting beam pattern, atmospheric attenuation,
free space loss, the antenna gain pattern, and the effects of the antenna preamplifier and
line losses. In total, this can be expressed as (Ward, 1996b):

C/No=P; - 10log(kT,)- L - Loy, +Gar +Ga - L (dB-H2) (6.13)
with  C/No ... carrier to noise ratio at receiver front end (dB)
Pr ... power radiated by antennain direction of user (including

transmitting antenna gain effects) (dB)

10log(kTp) ... thermal noise density (-204 dB-Hz)
Ls, Latm ... free space / atmospheric loss (dB)
Gant, Gina ... receiver antenna gain and low noise amplifier gain (dB)

L ... other system losses, including line and connector losses (dB)
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The free space loss depends on the frequency of the carrier wave, |, and the radiation

distance, R, and can be calculated by :
el o
L; =20logc——= (dB) (6.14)
TR

Typical values of L; are 184.4 dB for L1 frequencies and 182.2 dB for L2 signals.

In addition, the atmospheric attenuation can be broken down into two parts — that of the
troposphere and the ionosphere. lonospheric scintillation is due to irregularities in the
ionospheric electron content which can cause diffraction and refraction of the GPs signal.
This results is fading of the signal up to 20dB, depending on solar activity and the latitude
and longitude of the observer. (Klobuchar, 1996). In general, the severity of ionospheric
scintillation is much worse around 21:00 local time and varies with the 11-year solar cycle
(large sunspot numbers are highly correlated to active ionospheres). Typically, however,
ionospheric scintillation causes losses of afew dB and is very difficult to predict. Thus we

ignore it in the following analysis.

Tropospheric attenuation at GPS frequencies is mainly due to absorption by oxygen and
can be expressed as (Spilker, 1996) :

2:0.035:(1+h_/2R)
§n E+4/dn?E+2x, /R +(h,/R)>

(dB) (6.15)

I‘ATM =

where E is the elevation angle of satellite, hy, is the equivalent height of the troposphere,
usually set as 6 km, and Re is the radius of the Earth, approximately 6378 km
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Figure 6.1 shows the variation in tropospheric attenuation with elevation angle. The
attenuation can increase by afactor of 10 when elevation angles become low. This effect is

partially offset by the gain pattern of the transmitting antenna, as discussed below.

0.7
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Figure 6.1. Atmospheric Attenuation Versus Elevation Angle.

Unfortunately, it is difficult to predict the transmitted antenna power directly. Figure 6.2
shows the minimum signa power on the L1 carrier guaranteed by the GpPs Standard
Positioning Service Signal Specification (GPS-SPS, 1995) to be received by a user on the
Earth. The power estimates assume i) a 3 dB antenna gain ii) a 2 dB atmospheric
attenuation and iii) a minimum SV elevation of 5 degrees above the horizon and iv) that
the SV attitude error is 0.5 degrees (toward reducing levels). Note that Figure 6.2 shows
the minimum power received, and that in reality the signal strengths have been observed to
be higher by up to 6 dB. Also, the maximum power received occurs when the satellite is at
about 40° elevation. This is due to the shaping of the transmitting antenna. Also, the L2

power is guaranteed to be no more than 5 dB less than the L1 power.
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Figure 6.2.Minimum Received L1 Signal Power (from GPS-SPS, 1995)

To predict the actual power at the receiver front end, the elevation of the observed satellite
is first calculated and then the appropriate minimum power taken from Figure 6.2. 3dB is
then subtracted from the minimum power to strip the effect of the estimated antenna gain
and 2 dB are added to remove the estimated atmospheric attenuation. The actual
atmospheric attenuation is then subtracted using values calculated using Eg. (6.15) and the
true antenna gain added using manufacturer specifications. The antenna gain is the most
elevation dependant quantity, varying by as much as 20dB over the entire range of
elevations and is shown for three varieties of NovAtel antennas in Figure 6.3. Finally,
corrections for the line losses and preamplifier gain are made using manufacturer
specifications. Since Figure 6.2 shows conservative power levels, the resulting predicted
power should be a conservative estimate as well. Given the values of the carrier loop noise
bandwidth and the preintegration time, all the double differenced noise variance required
can be calculated.
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Figure6.3. L1 Antenna Gain Patterns for Three Varieties of Antennas.

6.2.2 -Empirical Assessment of the Noise Variance Behaviour

A very useful way to analyse receiver noise is to perform a zero-baseline test. The test
consists of two receivers processing a signal collected at a single antenna and split to each
receiver. Upon double differencing the results, the effects of all error sources occurring
prior to the signal passing the splitter are completely differenced out, leaving only receiver
noise and the integer ambiguities. These ambiguities are easily solved for due to the small
value of the carrier phase noise relative to the wavelength of the carrier (severa

millimetres versus 19 cm or 24 cm).

A zero-baseline test was conducted using three different GPs receivers with standard (not
chokeringed) antennas. Two hour data spans were used with a zero degree elevation mask
and 1Hz sampling interval. In al cases, the base satellite was above 40° elevation. Each
double-difference sample was then binned according to satellite elevation in 3 bins and
the standard deviation of samples in each bin computed. The results are shown in Figure

6.4 for al receiversusing L1 datawhile Figure 6.5 shows the case of L2 data. The standard
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Figure 6.4. Comparison of double difference standard deviationsfor L1 signals.

14

12 1
S .
£ == Trimble 4700 L2
c 10 =A=NovaTel Oem3 L2
2 =¥ Ashtech Z-12 L2
°
S 8
)
O \\
©
S 6
e}
C
I}
oHh 4
&)
o

2
o T T T T T T T
0 10 20 30 40 50 60 70 80

Low Satellite Elevation (deg)

Figure6.5. Comparison of double difference standard deviationsfor L2 signals.
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deviations of the L2 data sets are higher due to tacking of the P codes in semi-codeless

mode (resulting in asignal loss of 14 dB) and the longer wavelength of the L2 carrier.

As expected, the double differenced noise drops as the elevation of the lower satellite
increases. This is mainly due to the effect of the antenna gain pattern, which is usually
lower at low elevations to more effectively attenuate multipath signals. Above 40°

elevation, the standard deviations become relatively constant for all three receivers.

If we assume that the double-difference standard deviation is constant when the low
satellite elevation angle is above 40°, and that the performance of both receiversis equal,
the variance of a double differenced observation above 40° can be calculated using Eq.
(6.12) :

s 2(NDn)=s **(e,) +s, % (e) +s > (04 ) +5,% (6,) =45 ,° () (6.16)

where the notation implies that the noise standard deviations are dependant on the

elevation angles of the low and high satellites, e, and ey and the receivers, A and B.

Once the variance of the high elevation observations has been calculated, the variance of

any single observation can be calculated from its double differenced variance using :

S 2(N[)“;-ﬁ_n):25n2(eH)+28n2(eL)
s *(NDin)- 25 ,%(ey) (6.17)

\'s (e )=
. (&) >

since both receivers are assumed to have identical noise profiles.
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Another test was performed on a2 hour data set collected using one receiver (NovAtel
OeEM 3) equipped with three types of antennas. Manufacturer's specifications for the
receiver and the antennas gain patterns in Figure 6.3 were then used to predict the noise
profile for each test using EqQ. (6.9). The signal power was predicted as per Section 6.2.1,
but an added 3dB loss was taken into consideration due to the splitting of the signal into
two receivers and thus halving the available power. Finally, the true noise profile was then
determined from the zero-baseline data and Eq. (6.15). Figure 6.6 shows the results for
each antenna.

As seen in Figure 6.6, the theoretic noise levels closely match the noise measured in the
zero-baseline test. Not only does this confirm the manufacturers’ specifications ard the
validity of Eq. (6.11), it aso illustrates the impact that antenna selection has on results. The
NovAtel Antenna 503 is a chokeringed antenna designed to provide high multipath
mitigation at low elevations. As a result, it has low gain at low elevation angles. Although
this does mitigate multipath (discussed in the next section), it also means that the noise on
low elevation satellites is increased.

A further impact of these results is that they imply that the noise variances at a given
receiver may be modelled by a zenith term, corresponding to the noise encountered by high
elevation satellites, multiplied by a mapping function, which alows the calculation of the
actual noise variances at lower elevations. Thus the noise of any particular observation is
calculated as

s /() =s 2(n)>m,(e,) (6.18)

where s2?(n) is the zenith noise variance at receiver A and e; is the elevation angle of
satellite 1 and m,() is the noise mapping function. Collins and Langley (1999) suggest a
1/sin(e) model for the mapping function, but this does not always sufficiently simulate the
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shape of the theoretic noise profile at low elevations. Instead, an examination of Eq. (6.11)

shows that the noise variance can be approximated, to the first order, by the expression:

s fz (n) -C (6.199)

where ¢ is a ste-dependant constant and Pi”, is the power of the observation from

receiver A to satellite 1, given by Eqg. (6.13) and equivalent to

PA =107 fale) (6.19h)

where b* is another antenna dependant constant representing the average power received
and fa() is the power that varies with elevation angle. This is dominated by the variation in
antenna gain. The gain patterns plotted in Figure 6.3 indicate that a quadratic relation
adequately models the gain. This implies that the power can then be modelled by two
additional parameters, since the offset is absorbed by the b* term.

Putting these relations together and collecting constant terms results in an improved model

for the receiver noise, namely

s /?(n)=s 2(n)x10c™o0 &) a’(s0 ) (6.19c)

where ¢* and d* describes the variation of the antenna gain pattern with the elevation
angle. Figure 6.7 shows a comparison of the theoretic noise profile with various popular
weighting schemes and that of Eq. (6.19c) for two of the tested antennas. The latter gives
the best fit over all elevation angles, especialy for the chokeringed antenna and is simply
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calculated from empirical data available. From a practical standpoint, use of EQ. (6.19c) to
describe the variance of noise is preferred over that of Eq. (6.11) since manufacturer’ s data
is often not available. Conversely, the three parameters required by EqQ. (6.19¢c) can be
easily determined by fitting the curve through data available from a zero-baseline test.
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Figure 6.7. Comparison of Various Noise Mapping Functions for Two Antennas.
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Multipath error is the error caused when a receiver receives a transmitted signal via
multiple paths. Graphically, the effect isillustrated in Figure 6.8(a). The measured signa is
a superposition of al the received signals and as such can be described as

s, =S, +Q S" = AXG, cosf , +Q b, XA>G, cog(f , + X ,)

(6.20)

where s is the measured signal, sy isthe direct signal with amplitude A and phase Df ;, s™

is the " multipath signal with amplitude damped by the factor b; and phase delay Df i. Gp

and G; refer to the antenna gain patterns of the direct and reflected signals, and are

amplitude factors between 0 and 1, rather than power levels asin the previous section.
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\{ndirect Signal

‘\?\.‘k\\ AR AR AR R AR R

Resulting Signal ) .
Indirect Signal
-
&*; -
Direct Slgnal
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Figure 6.8. Multipath Effect (a) and Resulting Multipath Error(b).

The effect of multipath on carrier phase signals can be best seen in the form of a phasor

diagram as in Figure 6.8(b). Each signa component is expressed as a complex number s =

AdY where s is a complex number, A is the amplitude of the signal and q is the phase of

the signal. From Figure 6.8, it is apparent that the multipath phase error is the difference in
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phase between the direct signal and the composite signal. The resulting multipath error,

df , isgiven by (Ray, 2000):

é 4 b GsnDx,

df =tan &

radians 6.21
gGD+é b, XG cosDf, ( ) (621)

[coR g anY any ed

For the receiver to be able to lock onto the direct signal, the sum of the reflective

coefficients must be less than the antenna gain attenuating the direct signal, otherwise the
reflections would overpower the direct signal. This implies that b; << 1. Using this

assumption, Eqg. (6.21) can be approximated by

€ a b, *G, sn Of, u
df » &1 u
gGD-I-abi)GiCOSDfil:I
e i ¢]
» 83 b, 3G, dn Df, 285, - 4 b, G, cosDF , 2 (6.22)
ei ge i 2
e 520 € 40
éGD +(?é bi ><GiCOSDfi9 l:|><é(3D +€Bé bi >‘GiCOSDCiQU
g € i 24 e € i 2

using the expansion for 1/(x+1) and the small angle approximation for the arctangent. The
maximum value of the carrier phase multipath error using these assumptions is ¥ of a

wavelength. Again, the code multipath is not considered as it is too noisy for precise

positioning.

6.3.1 - Theoretical Multipath Variance Modelling
The variance of multipath can be derived by expanding Eq. (6.22), and calculating the

variance of each term, taking into account the orthogonality of the sinusoids involved. The

resulting expression, neglecting higher order terms, is given in metres by :
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s Z(m) :é(briean-'- bvar)><n><l Zgy 1
g 2 i G (6.23)
=s ,xm,(e)

where bmean 1S the mean reflectance of reflectors in the environment incorporating the
effects of the antenna gain pattern, bya is the variance of the reflectivites of these
reflectors, and n is the number of reflectors in the environment. Note that the terms in the
brackets can be considered “site-specific” and constant over the observing period, while
the antenna gain varies with the elevation of the direct signal. Thus the multipath variance
can be expressed as the product of a zenith multipath variance multiplied by an elevation
dependent mapping function, much like in the case of noise.

Furthermore, Eq. (6.23) essentially relates the total power of the reflected signals to the
power of the direct signal, since the power of a signal is related to the sguare of its

amplitude (Lathi, 1992). Thus, Eqg. (6.23) can be re-written as

) Bk P
s ?(m)=— (6.24)
2 P,

where P, is the reflected power and Pp is the direct power in watts. According to EQ.
(6.13), the power in decibels is equal to the sum of individual gains and losses along the
transmission path. Since the reflect and direct differences are small with respect to the total
transmission path, the only differences to be considered are the attenuation of the reflectors
and the antenna gain pattern affecting the direct signal. As aresult, EQ. (6.24) is equivalent

to

s ?(m) = % [(10P“”5 0" )/ (10%"5 10" )] (6.25)
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where Pryans IS the maximum received power, Py is the power loss due to the reflections,
Pg is the power loss on the direct signal due to the antenna gain pattern, in decibels. The
form of the antenna gain term is equal to that encountered in Eq. (6.19b) when determining
the noise mapping function. The conclusion is that the multipath variance for a single

observation can be modelled via :
s 2*(m) =s 2 (m) X100 &) +a*(0-e) (6.26)

where the ¢ and d* factors are identical to that for the noise model and s 4%(m) term is the

site-dependant zenith multipath variance.

To complete the theoretical model, it can be shown that multipath is uncorrelated between
satellites and receivers by taking the cross-variance of Eqg. (6.22) for two different
observations. Thus the double-differenced multipath variance-covariance model follows

the same form as that of the noise, namely :
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R3S m, RD,Sm) =s [ (m) +s 2*(m)
m

6.3.2 -Empirical Assessment of the Multipath Variance Behaviour

If aloca-area network of receivers with known coordinates is observed over time, and the
noise profiles of the receivers are known, it is possible to determine the double-differenced
multipath variances for each baseline by removing the predicted noise variance from the

observed variance, based on the principle of independence of error sources.

Such atest was performed using a short-baseline network consisting of two NovAtel OEM3
receivers and two Trimble 4000ss receivers, located on the roof of the Engineering
Building at the University of Calgary. Basdline lengths were less than 10 metres, ensuring
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that tropospheric, orbital and ionospheric errors essentialy differenced out completely and
that the multipath environment would be the same for al receivers. Two hours of L1 carrier
phase data was collected, resulting in 6000 observed double-differenced residuals. These
residuals were binned according to elevation angle and the variance of each bin calculated,

as in the noise variance study.

The predicted noise variances were then removed from these observed double-differenced
variances using the noise model previously derived from a zero-baseline test. The
remaining double differenced residuals for the NovAtel and Trimble baselines were then
processed in the same manner as the double-differenced noise variances to produce
undifferenced multipath variances for the Trimble and NovAtel receivers, using Eq. (6.17).
Note that a key assumption in this procedure is that the zenith variance of both receiversin
pair are equal, which was why the receiver pair were kept close together, ensuring identical
multipath environments. The resulting multipath standard deviations for both receiver
types are plotted in Figure 6.9. In addition, the theoretica multipath variance was
calculated using the observed zenith multipath variance and the previously determined
noise mapping function, which according to Eq. (6.26) is identical to the mapping function
for multipath. The predicted multipath standard deviations are shown in Figure 6.9 as
smooth curves

Two important observations can be made from Figure 6.9. Firstly, the shape and offset of
the observed multipath variances is different for the two receiver types, despite being
exposed to identical multipath environments. This is explained by the dependence of the
multipath error on the antenna gain, which is different for the two receiver types. Also, the
predicted and actual curves show good fit, which validates the model implied by Eq.
(6.26). Residua scatter is due to changes in the particular reflectors affecting the signal at
different elevation angles, which is not taken into account by the single zenith variance
model. Modelling of the particular reflectors in an environment a difficult task, and
requires specialized techniques and equipment (Ray, 2000). For the purposes of variance
modelling, the single zenith model is sufficient.
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Figure 6.9. Comparison of Observed and Theoretical L1 Multipath Variance for Two Receivers.

6.4 -Tropospheric Error

The tropospheric error was introduced in Chapter 2 as the delay a radio wave encounters
due to its passage through the Earth’s neutral atmosphere, or the troposphere. This region
extends to an atitude of approximately 10 kilometres above the Earth’s surface and is
composed mainly of nitrogen, oxygen and argon. Water vapour is aso found in this region.
The presence of these gasses causes the index of refraction to become greater than one,
which results in a retardation of the radio wave. At the frequencies of the Gps signals, the
atmosphere is non-dispersive, implying the delay is equal for L1 and L2 frequencies
(Hofmann-Wellenhof et al, 1994).

Mendes (1999) provides a very thorough overview of the physics behind the tropospheric
delay. Essentially, tropospheric modelling consists of developing a model of the pressure,
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temperature and water vapour variation throughout the atmosphere. A refractivity model is
then developed around this atmospheric model. Early pioneers in this field include
Hopfield (1963) and Saastamoinen (1973), who devel oped models still in use today.

Essentially al nodern models separate the tropospheric delay problem into two parts — a
wet and dry delay (Hopfield, 1969). More precisely, the dry delay is the component
attributable to hydrostatic equilibrium, which includes the contribution of water vapour.
The wet conponent is attributable to the water vapour not in equilibrium with the
atmosphere. At zenith, the hydrostatic component causes approximately 2.3 metres, while
the wet delay can account for up to 30 centimetres (Spilker, 1996).

A further common feature of models in use today is modelling of each component in the

form

T =T72 »xm,(e) (6.28)

where T is the zenith tropospheric delay for the wet or dry component and my) is a
tropospheric mapping function relating the zenith delay to delays at lower elevation angles.
Ifadis and Savvaidis (1999) provides a study of the performance of various wet and dry
tropospheric mapping functions, as does Mendes (1999). Individual zenith delay models
and mapping functions vary in terms of their accuracies and the input parameters required.
For example, the NMF model (Niell, 1996) requires the latitude and height of the observing
station, as well as the day of year. Others, such as the CfA-2.2 (Davis et al, 1985) require
surface measurements of pressure, tenperature and humidity. In general, it has been found
that models depending on surface measurements have resulted in poorer performance,
since surface measurements do not necessarily correlate with conditions even a few
hundred metres above the surface (Brunner and Welsch, 1993). Thisis the justification for
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use of the uNB2 modd (Callins, 1999) which is parameterized solely in terms of the user’s

latitude and height.

6.4.1 -Theoretical Tropospheric Variance Modelling

The basis of al tropospheric modelsis that the atmosphere can be completely described by
a certain refractivity profile with regard to atitude, and that the atmosphere is homogenous
from point-to-point. The real atmosphere, of course, is much more complex and as a result,
a residual tropospheric delay error remains. This error is basically an integration of the
point-to-point refractivity errors along the line-of-sight to the satellite. Assuming that the
variations of refractivity are constant throughout the atmosphere, the delay error variance
is then proportional to the path length of the observation ray. The path length is in turn
proportional to the mapping function (Marini, 1971) for the observation and so the delay

variance can be written as ;

s £2(T) = E[dT 5dT2) = E(my (e, )T/ xm; (e)dTS )= my (e,)?s 2(T) (6.29)

where the dT terms represents the residual tropospheric errors along the line of sight and in
the zenith direction at site A, respectively. sz%(T) represents the zenith tropospheric
variance and my() is the tropospheric mapping function used. E() is the expectation
operator and it is assumed that the residual tropospheric delays are zero-meaned, as they
are due to variations about the average refractivity of the atmosphere. Also, note that the
mapping function is assumed to be errorless, which is acceptable for the purposes of
variance modelling, as the majority of the errors are due to the variation of water vapour in
the atmosphere. In the same vein, although the hydrostatic component contributes 90% of
the total tropospheric effect, it is the uncertainty in modelling the wet component that
results in the mgjority of the error (Mendes, 1999). As a result, only the wet component is

considered for variance-modelling.
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In the case of observations made from a station to two satellites, the residual tropospheric
errors are expected to be correlated if the line-of-sights to the two satellites pass through
the same region of atmosphere, since the refractivity variations are assumed to be smoothly
varying in space. From spherical trigonometry, the angle of separation between two

observation line-of-sights, g, can be written as :

cosg =9n e, Sne, +Ccose, cose, Cos(A - A,) (6.30)

where A; and A2 are the azimuths of line-of-sights to satellites 1 and 2 and e1,e; are the

corresponding elevation angles.

For satellites in the same region of the sky (Q near zero), the line-of-sight vectors pass
through similar portions of the troposphere and as a result the respective delay errors are
the sum of the integration of similar point-to-point refractivity errors. Thus the covariance
of the two delay errors should be nearly equal to the variance of a single observation (or
the covariance of an error with itself). For satellites in very different parts of the sky (q
near 180°), the point-to-point refractivity errors will be very uncorrdlated and the
covariance of the delays nearly equal to zero. Consequently, the covariance of the delay
errors will be modeled in similar fashion as the variance of a single delay, with an
exponential factor added to take into account decorrelation with increasing angular

separation. This results in a modd of the form :

s A(T) = EdT,* >dT, ) = E(m(e,)dT, xm(e,)dT,*) = m(e,)m(e,) exp(-q / W) 5s 2(T)
(6.31)

where Wis a constant representing the angular decorrelation of the tropospheric errors.
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A similar model is used for the correlation between observations made to the same satellite
from different receivers. In this case, the tropospheric delay errors should carcel exactly if
the receivers are collocated, and become completely uncorrelated if the receivers are
separated by a great distance. Using an exponential decay model, the covariance is
expressed as :

s °(T) = E(dT,* T, )= E(m(ef)dT, >m(e?)dT, )= m(e,) > exp(- d / D) >s 2(T)
(6.32)

where d is the distance between receivers and D is a constant representing the correlation
distance for the zenith tropospheric errors. In addition, the mapping function to the satellite
IS assumed to be identical at both receivers, which is admissible considering that a 100

kilometre separation resultsin only a 0.3° change in elevation angles.

Note that Eq. (6.32) assumes that the zenith tropospheric variance is equal at both
receivers, which is compatible with the assumption that the accuracy of the base
refractivity model is the same everywhere. However, it is known that changing weather
affects the performance of the tropospheric models through their unpredictable effects on
temperature, pressure and humidity (Gregorius and Blewit, 1998). Thisin turn implies that
for receivers separated at distances similar to the scale of weather systems (i.e. hundreds of
kilometres) this assumption may not exactly hold. However, weighing the increase in
variance modelling accuracy against the complexity of modelling such an effect, a constant

tropospheric variance must be assumed.

The final covariance to be considered is that of two observations made between different
satellites and receivers. A composite of Eq. (6.31) and (6.32) provides the necessary

model, namely:
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s 28(T) = E(dT* «dT2 )= E(m(e/)dT/ xm(e)dT2)

(6.33)
=m(e,)m(e,) exp(-q /W)exp(- d/ D)>s 2 (T)

Taking Egs. (6.31), (6.32) and (6.33) and substituting them into the double-differenced
variance eguations contained in EQ. (6.6) yields the theoretical tropospheric model which,
after collecting terms, is:

s 2(NDET) = 2x{m(e,)? + m(e,)? - 2m(e,)m(e,) exp(- O, / W))XL- exp(- 5 / D))>s 2 (T)
s 2(N 1§T, NDAIET) - 2?(61)2 + m(ez)m(es)eXp(‘ q23/V\/) - m(el)m(ez) eXp(‘ Q.2 /V\bg
" m(el)rr(es)eXp(‘QB/\M Qf
§{1- exp(- d g/ D))s 3 (T)
s 2(NDEET, NDST) = (m(e,)2 + m(e,)? - 2m(e,)m(e,) exp(- .,/ W)
{1+ exp(- dgc /D) - exp(- d g/ D) - exp(-d,c / D))>s 2 (T)
s ?(NDET, NDST) zgn(el)z + m(e;)m(e;) exp(- s/ W) - m(e;)m(e,) exp(-, /WO
" m(el)m(es)@(p('QB/\M ﬂ
{1+ exp(- dgc /D) - exp(- d g/ D) - exp(- d,c / D))>s 2 (T)
(6.34)
where the only three unknowns required to completely describe the double-differenced

tropospheric variance are W, D and s Z2(T).

Inspection of Eg. (6.34) shows that the variances all decrease towards zero as receiver
separation goes to zero and the satellite line-of-sights become coincident. This is expected
since the tropospheric errors become increasingly correlated and thus cancel out. At the
other extreme, the double differenced variance simply becomes twice the accuracy of the
tropospheric model itself, as no cancellation occurs. This is theoretically appealing, as the
ultimate lower accuracy limit of the double-differenced observations must be that of the

undifferenced observations themselves.
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6.4.2 -Empirical Assessment of the Tropospheric Variance Behaviour

To determine the feasibility of modeling the residual tropospheric covariance as described
above, a network of ten reference stations forming part of the Southern California
Integrated GPs Network (SCIGN) was used. The network configuration is shown in Figure
6.10. Station elevations ranged from —103 to 933 meters above the wGs84 ellipsoid and
receiver separatiors varied from 30 to 464 kilometres. Data was collected at 30 second
intervals using ASHTECH Z-XI113 receivers. Reference coordinates were generated by
processing a 24hr session of datain a simultaneous adjustment of all observations available
and a solution regularized by the centre of mass constraint discussed in Chapter 5.
Processing resulted in 1203 L1 and L2 ambiguities, of which 143 were independent. 83 of
these ambiguities could be successfully resolved, yielding a total of ~170 000 fixed L1/L2
data mints for analysis since only observations with fixed L1 and L2 ambiguities were

considered.
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Figure 6.10. Network Configuration for Tropospheric Study.

To extract the tropospheric error, the ionospheric-free combination (Hofmann-Wellenhof
et al, 1994) is created via :

f
fre=fii- = L2 (cycles) (6.35)

le
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where f 1 and f |, are the carrier phase measurements in cycles on the L1 and L2
frequencies, fi1 and f . Aswill be shown in Chapter 7, this combination removes the effect
of the ionosphere. The tropospheric error in metres is the same as on the L1 and L2
frequencies, but a propagation of errors analysis shows that the multipath and noise
variance in metres is increased by a factor of 3.2. The wavelength of this observable is
0.4844 metres. The fixed ambiguities were removed from the L1 and L2 observations prior
to the application of Eq. (6.35) as well as the theoretic ranges, resulting in a direct estimate
of the tropospheric error for each observation pair.

As in the case of the multipath and noise studies, the resulting double-differenced
ionospheric-free residuals were binned into elevation ranges according to the low satellite
of the double difference and the variance of each bin calculated. The result for a sample of
baseline lengths is presented in Figure 6.11. A previous study of Radovanovic et a (2001)
found that a ssimilar model (UNB3) contained significant, receiver-height based biases, but
no such biases were found in the UNB2 model. This is a finding consistent with that of
Callins (1999). The elevation dependence of the tropospheric variance is clearly evident, in
accordance with Eq. (6.34). In addition, the variance curve is scaled upwards as the
baseline length increases, which aso follows the behaviour predicted by Eq. 6.34.

The remaining problem is to determine a vaue of the three tropospheric model
coefficients, W, D and s 7%(T). The process of calculating the variances shown above for the
entire network resulted in 810 variance “observations’, as the data from each of the 45
baselines was binned into 18 5° elevation bins. For a given set of initia approximates for
the model parameters, the theoretical variance of each bin/baseline pair could be calculated
using the first expression in Eq. (6.34). A least-squares adjustment then determined the
values of the tropospheric model parameters that resulted in values of W, D and s2(T)
which minimised the overal error of the observed binned variances compared to the
theoretical variance. An average multipath variance was aso incorporated into the
problem, as individual multipath variances for each station were unknown. The resulting

parameter estimates are shown in Table 6.1.
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Figure6.11. Double-Differenced Residual Error Standard Deviations for Various Baseline Lengths

Table6.1. Estimated Tropospheric Model Parameters.
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Correlation | Correlation Zenith Average Zenith
Epoch Angle Distance Tropospheric Multipath Std.
(degrees) (km) Std. Dev. (cm) Dev. (mm)
November 11, 2001 14.3 253 151 4.2
June 1, 2002 12.2 232 1.52 3.8
June 22, 2002 12.0 240 1.48 3.9
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The experiment described above was repeated for two other epochs spaced 6 and 7 months
later. The results from these sessions are also contained in Table 6.1. Several conclusions
can be drawn from these results. Firstly, there is little difference between the epochs
separated by one month, indicating that the tropospheric variarce parameters are stable
over short time periods and as such do not need to be revauated frequently in practical
applications. Surprisingly, these parameters are stable even over different seasons. Also,
note that the multipath standard deviations listed are for the ionospheric-free observable
and should be divided by afactor of 6.6 to arrive at the multipath standard deviation on the
L1 signa. Comparison to the results in Section 6.3 indicate that these values are not

unusual .

The zenith tropospheric standard deviation is significantly lower than the value of 5
centimetres reported by Collins and Langley (1998). However, this value was determined
solely using radiosonde data and the resulting accuracy is reported to be at the centimetre
level. Regardless, the above adjustment for the tropospheric variance models was repeated,
holding the value of the zenith tropospheric standard deviation at 5 centimetres. This
yielded the same correlation angle and multipath variance, but the corresponding
correlation distance was extended to approximately 3000 kilometres. Figure 6.12 shows
the observed mean zenith tropospheric variances for each baseline. The error bars
correspond to the range of observed zenith tropospheric variances for each baseline. The
two smooth lines correspond to the theoretical zenith variances calculated using zenith
variance / correlation length combination of ( 1.5 cm /250 km ) and ( 5 cm / 3000 km ),
respectively.

The results immediately show that the two models do not significantly differ over the
range of baseline lengths considered. On one hand, this is unfortunate since it implies that
it is not possible to effectively separate the actual tropospheric variance and correlation
distances using the experiment conducted. Rather, only the ratio of the two quantities is
determinable. Conversely, the results also suggest that if receiver separations are limited
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Figure 6.12. Comparison of Observed and Theoretical Zenith Tropospheric Variances for

Various Separations.

to several hundred kilometres, it is not necessary to separate these quantities for accurate
variance modelling and a solution can be made by constraining one of the parameters

based on externa knowledge.
6.5 -lonospheric Error

There exists above the Earth aregion of positively and negatively charged ions, created by
the interaction of the upper atmosphere with incoming ultraviolet light produced by the
Sun. This region is known as the ionosphere, and its interaction with electromagnetic

waves in the radio frequency is of great importance to satellite-based navigation systems.

The physics behind the effects of the ionosphere on radio waves is well documented by
Komjathy (1997) and the detail provided here is only meant to be cursory. Essentialy,

unlike the troposphere, the refractive index of the ionosphere is disperive at radio
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frequencies, and as a result the index of refraction is not equal for different frequencies.
Also, a further effect is that the velocity of the energy of a given radio wave (or group
velocity) is ot the same as the apparent velocity of its phase (or phase velocity). Thus the
code information and carrier of a ranging signa are retarded by different amounts.
Denoting the indices of refraction for the group and phase as ny and rpn, the following
relation holds (Hofmann-Wellenhof et al, 1994):

dn,,

ngr = nph + f x? (636)

where f is the frequency of the wave and the derivative is zero for nondispersive media;

hence the group and phase delays are identical for the troposphere.

A firg-order approximation phase index of refraction is given by (Seeber, 1993) as

Ny, =1- e (6.37)

where Ne is the electron density, and it always positive. Taking the derivative of Eq. (6.37)
and substituting the result into Eg. (6.36), it can be shown that the group index of
refraction is as much greater than one as the phase index of refraction is below one. Thus
the existence of the ionosphere retards the group as much as it advances the phase. Note
that this implies that the phase velocity is greater than the speed of light in vacuo, but that
this limit only applies to the transfer of energy and that the phase velocity is only an
apparent velocity.

Overal, the group range effect of the ionosphere is given by (Klobuchar, 1996)

_ 40.3: TEC

I o2

(metres) (6.38)
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where TEC is the total electron content along the line of sight in units of 10*° electrons per

n?. The corresponding phase ranges are shortened by this amount.

6.5.1 - Klobuchar Ionospheric Model

The usud way to model the ionospheric effect is to assume that the entire ionosphere,
which ranges in altitude from 50 to 1500 kilometres, is concentrated in a thin shell at some
height Hge @bove the Earth’s surface. The height used often varies from 300 to 500
kilometres (Schaer, 1999) but is typicaly selected at 350 kilometres. Referring to Figure
6.13, the resulting TEC affecting a given observation is

VTEC
cos 7'

TEC =

(6.39)

where VTEC is the vertica total electron content at the ionospheric pierce-point

compressed to the shell, and Z is the zenith angle at the ionospheric point.

To Satellite

lonosphere / / /
e/ i

Layer 77/ } /AP

rer-ce' Point

To Centre of Earth

Figure 6.13. Relationship between TEC and VTEC.

The value of Z isrelated to the height of the shell and the zenith angle, z, at the station via
the equation (Hofmann-Wellenhof el al, 1994) :
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z'—as'né Re xan zl:J (6.40)
= — _
6Re +H g H

where R= is the nomina radius of the Earth.

Putting Eq. (6.39) into Eq. (6.38) shows that the ionosphere can be modelled by the
familiar form of a zenith delay, multiplied by a corresponding, elevation dependant
mapping function. The remaining problem is to determine the VTEC corresponding to a
particular observation. The standard model used in GPs positioning is that of Klobuchar
(1986), which parameterizes the VTEC with a haf-cosine model, dependant on the local
solar time, the latitude of the ionospheric point and several empirical constants. These
constants are broadcast with the GPS navigation message and are usually updated every
10 days (Newby, 1992). Figure 6.14 shows the resulting vertical ionospheric delay
estimates given by the Klobuchar model broadcast in June of 2002, and clearly shows that
the ionospheric effect is greatest during the daytime at 14:00 hr loca time, and near the
equator.
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Figure6.14. Vertical Zenith Delay Estimates from Klobuchar 1onospheric Model (June, 2002)
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The actual VTEC is strongly correlated to the number of sunspots, and as a result, varies
according to an approximately 11-year cycle (Klobuchar, 1996). At the time of writing, the
ionospheric effect was near the maximum of the cycle. In addition, the average VTEC
changes over the year, peaking in the Northern Hemisphere in the winter months
(Kleusberg, 1998). Furthermore, sudden ionospheric irregularities, such as those caused by
solar storms, can drastically and suddenly change the VTEC over a particular region, an
effect that sometimes manifests itself as the aurora borealis in the auroral zones (Skone,

1998).

6.5.2 -Theoretical Modelling of the lonospheric Error
Since the distribution of VTEC is highly variable in space and time, it is difficult to make
genera statements regarding the accuracy of a particular ionospheric model (Schaer,
1999). As aresult, the goal of this work in modelling the variance-covariance properties of
the ionosphere is to provide a general specification on the gochastic proprieties of the
ionospheric error on a large scale. Small scale disturbances caused by solar storms and

scintillation are not considered.

The starting point of the model development will be the assumption that the majority of the
ionospheric error results from a mis-modelling of the vertical total electron content.

Therefore, the error in estimating the ionospheric delay (or advance), di1”, is given by

A _ 40.3 dV1 EClA
dll - 2 x
f CcoSsz

(metres) (6.41)

Thisimplies that the variance of the observation can be calculated as

2 o
s 12(1)= 2030 5, (VTEC) (6.42)
f°g cos"Z
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where s 4>(VTEC) is the variance of the VTEC estimation error at the ionospheric point for

the observation.

Aside from localized disturbances, the physical distribution of the VTEC is smoothly
varying (Schaer, 1999). Consequently, the errors in the VTEC estimation are smoothly
varying in space as well and so the spatial correlation of the VTEC is modelled in the same
way as the troposphere, using an exponential decay shaped by a correlation distance D.
Thus, for two observations, the correlation between the VTEC errors affecting them is
determined by calculating the distance between their ionospheric pierce-points. The

covariance between any two observationsis given by

AB(l)_aerLo.:sQ s ?(VTEC)
f? Hoosz/ >coszy
sz() s A 1D

cosz/\>coszy

-d/2 /D

xe
(6.43)

where d/® is the distance between the two pierce points, and z" and z® are their
respective zenith angles. Eq. (6.43) can be modified to express the VTEC variance as a

zenith ionospheric delay, sz*(1), by multiplying the terms in brackets by the VTEC
variance to arrive at a variance in nt.

Incorporating Eq. (6.43) into EQ. (6.6) produces the resulting expressions for the double-
differenced ionospheric error, after smplification and collecting like terms :
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s 2(NDig1) = 2{m(e,)? +m(e,)? - 2m(e,)m(e,)exp(- d,, / D)){L- exp(- d,s/D))>s 2(1)
s 2(ND®1, ND®1) = 2% mét):):n r(z((ji)(m(eg) &p(- dy; /D) - m(e,)m(e,)exp(- dy, /D)2
1 p(-dy;/ D) o
A{L- exp(- d,s/D))>s 5(1)
s 2(NDE1, RDEST) = (m(e,)? + m(e,)? - 2m(e,)m(e,) exp(- d,, / D))
{1+ exp(- dge /D) - exp(- d g/ D) - exp(- d e/ D))>s 2 (1)
 2(RIDE1 DS 1) = ?‘&l ):n r(r;(iixn(es)exp( d,/D)- m(e,)m(e,) exp(- d,, /D)9
)m(e;) exp(- d;;/ D) o
XL+ exp(- dgc /D) - exp(- d,s / D) - exp(-d,e / D))s 2 (1)

(6.44)
where m(e) and D now refer to the ionospheric mapping functions and correlation
distances respectively. Two distance quantities must be calculated, of the form dag and
di2. The first refers to the distance separation between the receivers and the second is the
average separation of the pierce points corresponding to satellites 1 and 2. Note that
although the ionospheric model is similar in form to the tropospheric model, it contains
one less term, as the D parameter controls both the inter-station and inter-satellite
correlations and all pierce-points are referred to the ionospheric shell. Using different
considerations, Yang and Goad (1997) also arrive at an exponential decorrelation model
for the dowble-differenced ionospheric variance, but do not include the correlations
between different double-differences, nor the mapping function dependant portion of the

variance model.

6.5.3 -Empirical Assessment of lonospheric Variance Behaviour

The same data set used in the previous section on tropospheric variance behaviour was
used to investigate the feasibility of the ionospheric model presented. To extract the
ionospheric error, the following linear combination was formed for all the fixed-ambiguity
data available :

2
fL2

2 2
fL2 - f|_1

fion = (I TR TR NTR | L2) =dl (metres) (6.45)
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where the known ambiguities have been removed from the phase measurementsf 1 and f .
The remaining quantities are a scaled value of the residua ionospheric error and an
amplified noise and multipath term, whose variance in metres is approximately 3.8 times

greater than the multipath and noise on the L1 carrier alone.

Figure 6.15 shows the residual undifferenced ionospheric errors calculated from code data
collected by the network receivers during the June, 2002 campaign, plotted as a function of
local time and scaled to the zenith using Eq. (6.39). Results before the Klobuchar model
was applied and after are shown. As can be seen, the Klobuchar model does not
significantly improve the scatter (and hence the variance) of the data, but it does remove
the mean diurnal trend. Assuming an average zenith code noise and multipath standard
deviation of 25 cm (Langley, 1998; Tiberius et al, 1999) the resulting ionospheric standard
deviation was estimated to be 90 cm, independent of the time of day. These are results
comparable to those obtained by Newby (1992), who performed a study during the
previous solar cycle and found no significant difference in the residual accuracy between
night time and day time conditions and estimated a model accuracy of 1 metre. In addition,
the results for the November, 2001, data set are plotted for comparison. Interestingly, while
the actual ionospheric effect is markedly different for the two sessions, the residual
ionospheric error after applying the Klobuchar model has approximately the same variance
in both seasons. However, this accuracy consistency is not expected to hold in periods of

unsettled ionospheric activity, such asin the auroral region or during ionospheric storms.

Having established an estimate of the ionospheric variance, the remaining task is to
evaluate the correlation length of the residual ionospheric error. A similar approach to that
demonstrated in the tropospheric study was used. The available fixed ambiguity data was
binned according to elevation angle and receiver separation, and the observed variance for
each bin was calculated, along with the theoretical multipath variance, according to the
values determined in the tropospheric study. Using the observed minus multipath variances
as observations, a correation length and zenith variance was found that minimized the

error in the observed and predicted bin variances. A comparison between the observed and
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theoretical zenith ionospheric variances is provided in Figure 6.16 for the November, 2001
and June, 2002 data sets. The error bars shown correspond to the spread of the observed
variances at each separation. There exists a definite difference between the trends in the
zenith variances for the two sessions, with the summer ionospheric errors being worse but
more highly correlated with pierce-point separation. An analysis of a July, 2002 data set
indicated an identical zenith ionospheric variance as the June, 2002 set, but with a
decorrelation distance of 6000 km rather than 7000 km. This may imply that the zenith
variance varies slowly over the course of the year, whereas the correlation distance is
sensitive to the current state of the ionosphere. It should be noted that no ionospheric storm

events were recorded for any of the sessions processed.
6.6 -Treatment of Temporal Correlations

One consequence of the high data rate capabilities of satellite-based navigation systems is
the fact that the observations are temporally correlated. Essentially, the temporal
correlation describes the correlation between two observations (typicaly from the same
data stream) separated by some period of time. Given a data stream of zero-centred

residuals of length L, the temporal correlation f(t), of the series can be calculated as :

t=T-t

) 2 (t+t )t

()= 52— o (6.46)

where t is the time separation between the observations in the data streamand s? is the
variance of the data stream (assumed to be constant over time). In the limit, as t becomes
zero the correlation function becomes equal to one, which is the maximum allowable
correlation for any value of t. A high value of f(t) indicates that samples separated in time
by t are highly correlated. In general, the temporal correlation between two different data
streams, r(t) and g(t), can be calculated by replacing one r(t) in Eq. (6.46) by g(t) and an

appropriate value of the covariance between the data streams.
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In the case of traditional terrestrial observations, observations taken at different epochs
were either considered independent or contaminated by a constant bias. Unfortunately, this
is not so in the case of GPS errors, which are often slowly varying over time. El-Rabbany
(1994) was the first to study this property in depth, and proposed an exponential decay to

model the temporal correlation of GPs errors::

ft)=e"'" (6.47)

where T is the tempora correlation length of the GPs errors, set at approximately 300s
This correlation length has been used in subsequent studies, including Han and Rizos
(1995) and Howind et a (1999).

Given two GPs observations of equal variance separated by a time t, the covariance

between the two observationsis given by :

S o) =1()% > (6.489)

where s? is the variance of the data stream. The above can be expanded to the case of the

covariance matrix for two sets of observations to yield

D> D

2C, Cpu_é C  f(t)Cu

u_é
= ¢ (6.48b)
» C,i &BC C g

where C;, C, are the variance-covariance matrix of the observations at epochs 1 and 2 and

C1o is the cross-covariance matrix for the observations. Note that since the double-
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difference operator is linear, the full double differenced variance-covariance matrix can be
expressed as

& O0u eCl C,ués™ 0 u é B>CxB' ft)B >C><BT§I
p— € 0% uxe uzg T U (6.49)
& Bp&y C,0e0 a (t)B>C>B B>xCxB'

where B is the Jacobian with respect to the observations. The significance of the above
expression is that the temporal correlation of a stream of double-differences is identical to

the temporal correlation of the component observations.

El-Rabbanny (1994) shows that use of the exponential model has several advantages in the
formation and inversion of the full variance-covariance matrix. For example, if the satellite
geometry is constant over time and the variances vary smoothly with time, the inverse of
the variance-covariance matrix becomes band-limited. This property was exploited by Han
and Rizos (1995), who show that the temporal correlation of errors causes a scaling of the

normal equations, with the factor

1- f + 2

where f is equal to f(t), with t equal to the sampling rate, and n is the number of samples
used. The corrected normal equations N and u are simply multiplied by the above factor.
Thus, the actual parameter estimates are not significantly affected by neglection of the
temporal correlations, but the resulting variance-covariance matrix is scaled. Since k is
usualy less than one, the reported variances will be greater after correction for the

temporal correlation. As most commercial processors neglect the temporal correlations, it
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has become the norm for the statistical results from these packages to be considered

grossly optimistic.

Eq. (6.50) further introduces the futility of dense data sampling in GPs. Assume that a 10
minutes segment of data has been collected and that the satellite visibility is constant.
Since the satellite geometry varies slowly with time, it can be shown that the normal
matrix formed via the standard summation of normal equations at every epoch is
equivalent to a normal matrix formed by averaging the normal matrices formed by the first
and last epochs and multiplying the resulting matrix by the number of observations. This

can be expressed as
N, +N
Nrg =8 N, @nx—io=t =nxi,, . (6.51)

where N1 IS the total normal matrix, neglecting temporal correlations, N; is the normal
matrix formed from each epoch and N, is the average single-epoch normal equation.
Using Eg. (6.51) and (6.50), the normal matrix corrected for temporal correlations, Ncor,

will be :

1-f+2 ]
N - A*NTOF(l neaf

(6.52)

o 1+f 1+f

\"

The expected accuracy of the parameters is dependant on the inverse of the above matrix.
Given two identical observing sessions, distinguished only by their sampling rates, the

ratio of their expected overall standard deviations will be
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S, _ [+, @-f,), +2f, (6533)
s, 1+f, (@-f,)xn +2f, '
with

fi = e—t,/ T (653b)

where n1, ny are the number of samples collected in each session, t;, t, are the sample
spacings for the two sessions. The poor return on collecting higher data rates is quite
shocking. For example, based on a 20 minute data span and a correlation period of 300 s,
the improvement in collecting one sample every 5 seconds instead of 30 isonly 2%! Truly,
the most effective way to improve positioning accuracy is through lengthening the
observation period, which not only alows errors to decorrelate, but aso adds more
variation in the satellite geometry observed.

6.7 -A Note on | nter-Frequency Correlation

One aspect of correlation modelling that does not often receive direct treatment is the
correlation of GPs errors between frequencies. For example, since the tropospheric error is
due to the neutral atmosphere and not dependant on carrier frequency, it expected that the
tropospheric error on two carrier phases made from the same receiver to the same satellite
but on two different frequencies are identical. Conversely, errors such as noise are often
considered to be independent between frequencies. This is not necessarily the case
however, if L1 codeis used to aid tracking of the L2 frequency, asin many receivers Still,
such effects are very difficult to quantify and as a result, the noise and multipath is

considered uncorrelated between frequencies.
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Perhaps the most significant inter-frequency correlation is due to the ionosphere. With
reference to EQ. (6.41), the covariance between the ionospheric error on the L1 and L2

frequencies for a given observation can be written as :

40.3?
S Ele =W)S '?EC (metres) (654)
L2

where s %1gc is the variance of the TEC along the line of sight.

Given a set of dual frequency observations, the variance-covariance matrix for the set can
be expressed by :

co
C =a C“é (cycles) (6.55a)

2 2

o= #1588 s 2 uszes? (6.550)

(I C

sz 32
Cpp=g 2 ,———s 45245} (6.55¢)

15,

s2 40.3°
Cr=Cp = v +1 Lll |_2—4S |2 (6-55d)
' ,X s, c

where s?; is the tropospheric variance in metres’, s2, and s, are the noise and multipath
variances in cycles” and s? is the ionospheric variance in units of TEC2. The double-
difference variance covariance matrix can be made via the appropriate substitution of the
double-differenced variances into Eg. (6.55). Furthermore, to create the variance-
covariance matrix for a set of dual-frequency observations, the inter-frequency and inter-
gpatia correlations between al lines-of-sights observed must be generated. Fortunately,
these can be ssimply generated by first calculating the inter-spatia correlations of the lines-
of-sights, and then dealing with all the inter- frequency correlations using Eq. (6.55).
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The importance of treating inter-frequency correlations is two-fold. Firstly, proper
treatment of the ionospheric correlation is necessary for proper dual-frequency ambiguity
resolution. Traditional techniques of ambiguity resolution have relied on the formation of
widelane and ionospheric free linear combinations (Raquet, 1998) to allow for ambiguity
resolution on longer baselines due to the effects of the ionosphere. However, such
techniques result in ad-hoc methods of resolving the ambiguities. Rather, by properly
incorporating the ionospheric inter-frequency covariance into the variance-covariance
matrix of the double-differences, the LAMBDA method is able to implicitly estimate the
ionospheric effect affecting each observation and resolve the L1 and L2 ambiguities as
integers. As a result, one finds that the ambiguity success rate calculated via Eq. (5.11) is
drastically higher when the ionospheric inter-frequency correlations are included than if

the ionospheric error is considered uncorrelated between frequencies.

The second application of inter-frequency correlations lies in the field of determining
optimal linear combinations of carrier phases which allow the compression of two or more

observations into one single pseudo-observation. Thisis discussed in Section 7.3.
6.8 -Practical Determination of Variance-Covariance Models

The preceding sections have established stochastic models for the major errors sources
present in differential GPs and validated these models using empirical data collected.
However, the key element of the modelling methodology presented is the solution for
defining parameters (i.e. zenith variance, correlation distance, etc.) from the data collected.
Some parameters, such as those of the tropospheric model, have been shown to be stable
over time, whereas other, such as the ionospheric parameters, vary over the course of
months. Also, it is expected that the defining parameters may change with location, the
types of receivers used, and the environment surrounding the receivers. Thus a practical
method of establishing the appropriate variance-covariance model for a network under

consideration must be developed.
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In engineering networks of extent less than a few kilometres, the dominant error effects
will be noise and multipath. The noise variance model is simply determined via a zero-
baseline test of the receivers to be used in the network. Since most engineering projects
will use identical receivers at each station, only one pair of receivers need to be tested.
However, since in practice it is difficult to accurately calculate the actual power received at
each receiver, this test is not useful for calculating the zenith noise variance. Rather, its

utility lies in establishing the shape of the noise mapping function.

Section 6.3 established that noise and multipath are both affected by the same mapping
function — thus both effects may be grouped together into a single zenith variance value.
Since the multipath effect depends on the reflective environment surrounding areceiver,
multipath/noise zenith variances must be calculated for each receiver in the network. A
practical method of doing this is to take one roving receiver to each site and place it a few
metres away from the station to be analysed. Collecting thirty minutes of data creates a
short-baseline on which the multipath variances at both receivers are expected to be
identical, despite the fact the actual multipath quickly decorrelates spatially (Ray, 2000).
Following the analysis of Section 6.3, combined with the now known noise mapping
function allows the zenith multipath at the site to be established. This test can be repeated
whenever it is felt that the reflective environment has significantly changed, such as when
earthwork has been completed nearby. Otherwise, it is assumed that the multipath variance
will remain quite stable, although a summer and winter value might be worth determining

to account for the effects of snow cover, if appropriate.

If the network is of larger extent, the tropospheric and ionospheric stochastic models must
be derived as well. The best method for accomplishing this is to use data collected at a
larger reference receiver network that encompasses the site to be studied. For example,
data from IGS stations may be used for this pupose, as well as data from a variety of
scientific reference networks. The Scripps Orbit and Permanent Array Center
(http://sopac.ucsd.edu) is an excellent source of data from more than 1000 sites located
worldwide. The methods of Sections 6.4 and 6.5 can then be applied to establish the
defining tropospheric and ionospheric parameters for the epoch under consideration. In
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general, the tropospheric parameters are expected to be stable over time, whereas the
ionospheric model should be updated once a week 1 take into account the variability of
the ionosphere. Of coursg, if the engineering network is of small extent, then the actual
values of the tropospheric and ionospheric models are not significant, and the results

presented in this thesis may be used without loss of positioning accuracy.
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7.0 - APPLICATION OF GLOBAL NAVIGATION SATELLITE SYSTEMS

TO NETWORK POSITIONING

Traditional methods of applying data collected with satellite-based navigation systems
have been heavily biased by the heritage of these systems as navigation instruments and
the high cost of available equipment. For example, most early GPS surveys and research
were completed using pairs of receivers, resulting in baseline processing techniques that
yielded the vector between two occupied stations. Networks were built up by moving the
receivers to all points of interest and accumulating individua interstation vectors. A
network “adjustment” of these vectors was then completed to calculate the positions of al
gations in the network. Furthermore, due to limitations in computing power and a lack of
knowledge of the stochastic properties of the errors affecting GPS, variance-covariance
matrices used in the adjustment of these individual baselines were often ssimply diagonal,
and at best only modelled the mathematical correlations of the formed double differences
were considered. Finally, datum definition was typicaly only implicitly accomplished by

assuming a “base station” as fixed, with known coordinates.

With a few exceptions, these processing methodologies remain today, primarily because
despite improper treatment, the high accuracy GPS observations often yield results
significantly better than those achievable by terrestrial methods, especially when long
observation sessions are used and baseline lengths exceed a few kilometres. This chapter
seeks to incorporate the datum definition and variance-modelling concepts developed in
the previous chapters into a robust GPS processing methodology suitable for precise
positioning. The capabilities of satellite-based systems for precise positioning on short and
medium range static networks are analysed, and a novel application of variance-modelling

for efficient network-based kinematic positioning is presented.
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7.1 - Application to Short Range Deformation Monitoring

Short range deformation monitoring includes applications where the total network extent is
less than a few kilometres. Such applications include dam and bridge deformation
monitoring, the modelling of slope movements and building sway, among many others.
The main appea of applying GPs to these applications is the autonomous operation of the
system, as the number of points to be monitored and the position update frequency can be
quite high. For example, one application involving monitoring of the Diamond Valley
Reservoir involves 250 points to be monitored every 12 hours (Duffy et al, 2001).

Collecting such a great amount of data manually would be impossible.

7.1.1 - Principles of a GPs Based Deformation Monitoring System

A hypothetical deformation monitoring system involving GPs would consist of a series of
receivers, permanently mounted at monitoring points. Due to the tempora correlations of
GPS observations, continuous data collection at a high data rate would be wasteful in terms
of both memory and power, as closely spaced epochs do not provide independent
information. Rather, an acceptable position update interval must be set by the project
designer, possibly based on apriori assumptions of deformation rates. Within the constraint
of the interval separation, the network designer can then chose an appropriate data
sampling interval and data span to achieve a particular accuracy. The relationship between
these concepts are shown in Figure 7.1. Note that increasing the sampling rate yields
reducing returns as discussed in Section 6.6, due to the temporal correlation of the GPs
errors, wheresas increasing the data span can cause slow deformation trends to be absorbed
into the individual static solutions, thus reducing the dynamic response of the system. For a
typical application with an update interval of 1 hour, a suggested data span would be

twenty minutes, with a sampling interval of 10 seconds.
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Figure 7.1. Relationship Between Update Interval, Observation Span and Sampling Rate.

Data is then collected at the sites and transmitted to a central processing centre, possibly
using radio, telephone or internet communication strategies. The data is then processed
using a newly developed GPS processing package based on the results of this research,
called PADRES- GPS (Position And DefoRmation Estimation System via GPS). At the central
dite, the data is first pre-processed to identify cycle-dips and obtain initial estimates for the
receiver locations. At this stage, the station locations are compared to their locations in the
previous epoch and any gross receiver movements are flagged (i.e. due to deliberate or
inadvertent movement of the receivers to different locations by personnel). The
observations are then processed first processed in float-mode using a full variance-
covariance model and a suitable regularization scheme. The ambiguities are then resolved
using the partia- fix method outlined in Chapter 5.

An important distinction at this point must be made between the differencing base, defined
as the station used as the basis of all the double-differences formed and the concept of a
base station, used in traditional processing modes as a datum definition. In the PADRES-
GPS system, the differencing base is used to facilitate the ordering and formation of the
normal equations by ensuring that all double-differences produced use one station in
common. However, this station plays no specia role in the regularization and its
coordinates are treated as unknown in the same manner as al the other gations. Thus, the
differencing base can be a station that is actively deforming, but should be located near the
centre of the network to minimize the residua double-differenced errors, as discussed in
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Section 7.2. It should aso be alocation where cycle-dips are a minimum and the multipath

effect islow, thus providing a clean data stream to form the other double differences upon.

Several appropriate regularization strategies may be employed, depending on apriori
knowledge of the network deformations. For example, if certain points are known to be
stable with known coordinates, then the initial estimates of these points may be given very
high weights. This will aid in ambiguity resolution by providing information regarding the
relative geometry of the network. On the other hand, if no points may be considered stable
or if their initial estimates are unknown, then the centre-of-mass regularization discussed in
Chapter 5 should be used. Although no internal geometry information is provided by this
method, the ambiguities will remain minimally biased. This is the default mode for
processing, as it alows the greatest flexibility in the subsequent deformation monitoring

stage.

Since the normal equations for the small-extent case are essentially rank deficient due to a
poor control of trandations, the results of a centre-of-mass regularization based on all the
network points can be effectively transformed to those produced by a centre-of- mass
regularization involving a subset of points via an Stransformation (Baarda, 1973). The S
transformation matrix can be defined as :

Sep =1 - GH{DTG) DT (7.1)

where G and D are the datum constraint matrices corresponding to different centre-of- mass

regularization schemes and | is an identity matrix. The results using the G scheme can be

transformed into the D scheme using
do = Sep g (7.28)

Cyo =Sep Cis Sco (7.2b)
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where dg and C,g are the correction vector and variance-covariance matrix calculated
using the G scheme. Note that it is assumed that both schemes use the same initia

estimates for the parameters.

Egs. (7.1) and (7.2) are particularly important if the position estimates of two epochs are to
be compared. Obviously, the position results and the associated statistics are dependant on
the regularization scheme used. As a result, for comparisons to be meaningful, two epochs
must be compared using the same regularization scheme. This can be ssmply accomplished
by using the Stransform to convert the results of each epoch to the same regularization
scheme. Again, it must be assumed that both epochs use the same initia estimates for
station positions. The two epochs can then be compared for “significant” deformation
using many different techniques — Yong-Qi (1983) gives an excellent review of prevailing

theories.

In this thesis, a method outlined by Biacs (1989) for use in conventional networks is used,
with modifications for the peculiarities involved in satellitebased systems. Given the
position results of a two epochs, the displacement vector, d, and associated variance-

covariance matrix, Cq, will be given by

d=d,-d, (7.33)
Ci=Cp+Cy - Chu- Cu (7.3b)

where Cqp, Cq1 are the variances of the vector of corrections, d, and d1, for the two epochs
and Cypoq1 and Cy1qp are their cross-covariances. Note that the displacement variance-
covariance matrix will contain the same near rank-deficiency in trandation as the variance-
covariance matrices of the original problem. Also, since both epochs have the same centre-
of-mass, trandlations of the entire network are undetectable, although an overall rotation is
detectable since the orientation is well defined by the satellite coordinates.
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In genera, two separate goals must be distinguished — the detection of a deformation, and
its appropriate modelling. Deformation detection simply seeks to detect that a point or
points in a network have been disturbed from their positions in a previous epoch.
Deformation modelling, on the other hand, seeks to test the hypothesis that a particular
deformation trend can be suitably described by a particular model. The latter is obviously
the more difficult task, and is discussed by sources such as Teskey (1987) and Kuang
(1996). In this thesis, the scope is limited to the detection of deformation of individual

points, or conversely, the identification of stable points between epochs,

A method implemented by Grundig et a (1985), and Biacs (1989), determines stable
points in a network via the following method. Given a set of network points, each point in
the network is individualy investigated for stability by partitioning the displacement

vector as follows :

_d
d= éé'd g
iu (74a)
with an associated weight matrix of
- éPrr ri u
P,=C, = _é_P P d
elir iU (7.4b)

where the i and r subscripts refer to the point under investigation and the remaining points
points, respectively, and the inverse of the displacement variance-covariance matrix is
calculated as a reflexive generalized inverse (see Biacs, 1989 for implementation details).
To effectively gauge whether the point under investigation has deformed or not, its
solution must first be disengaged from its inclusion in the computational base. Thus an S
transform is used to convert the solution of the points from one where all points are used in
the regularization to one where the point under investigation is excluded. This can be

succinctly expressed as:
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d, =d, +P; P, >d,

(7.5)
The test quantity used is then
a7,
T= p— (7.6)

where m is the dimension of the coordinate system (typicaly 3) and s,? is the apostori-
variance factor, usually taken as one if appropriate variance-covariance modelling has been
performed using the techniques of Chapter 6. The above test statistic follows the Fisher
distribution with (m, ¥) degrees of freedom. If the test quantity exceeds the allowable
value of the Fisher distribution for the level-of-significance chosen, then the point cannot
be assumed to be stable and so is flagged for possible removal from the regularization set.
This procedure is repeated for the remaining points and the point with the largest
significant test statistic removed from the list of stable points. The entire analysis is then
repeated until no points can be considered displaced. Although computationally tedious,
this procedure has been shown to be more sensitive than an inspection of individual error
ellipsoids. Of course, the sensitivity of the test relies an the confidence level selected.
However, appropriate selection of the confidence level and the associated problems of
errors in hypothesis testing is beyond the scope of this thesis — interested readers are
referred to Y ong-Qi (1983).

An interesting peculiarity of GPS networks is that once displaced points have been
identified, it is relatively simple to test the direction of the deformation. It is well known
that the least accurate dimension observable in GPs networks is the zenith direction, due to
the fact that all the satellites are above the horizon and so result in poor geometry.
However, due to the configuration of the satellite orbits, there exists a polar “cap” that
manifests itself as a lack of satellites visible in the north direction for stations in the

northern hemisphere — the opposite effect occurs in the Southern. Figure 7.2 shows a
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typical plot of the satellite orbits overhead of the network in question for a 24 hour period.
Asaresult of this effect, when the variance-covariance matrix of a given position estimate
is rotated into alocal level frame, its was found that the principal axes of the error ellipsoid
lies very nearly along the axes of the coordinate system — and thus the errors are largely
decorrelated in these directions. The implication of this peculiarity is that if a station has
been flagged as displaced, the components of the displacement vector in the north, east and
zenith direction can be individualy tested by dividing the movement in a particular
direction by the standard deviation of the position estimate in that direction and comparing
the resulting test statistic to the F-distribution with (1, ¥) degrees of freedom.

East

Figure7.2. Typical Overhead Skyplot Showing Effect of Polar Caps.

7.1.2 - Test of the PADRES-GPS Software

To fidd-test the capabilities of the PADRES-GPS software, a five receiver network was
established in August, 2002, at the Province of Alberta Calibration Baseline, located east
of the City of Edmonton. The network consisted of five concrete pillars with forced-
centring plates, equipped with Trimble 4600LS GPs receivers. L1-only receivers were used
since the additional cost associated with dual-frequency receivers precludes their use in
large numbers. In addition, two stations were equipped with trandation stages, which
allowed deformations to be induced with an accuracy of 1/10th of a millimetre. The
maximum station separation was 3 kilometres, and the average station spacing was 500
metres.
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The first stage of this test was to establish an appropriate variance-covariance model for
use in the subsequent processing. Due to the small extent of the network, the ionospheric
and tropospheric variance model was identical to that presented in Chapter 6 for the
July, 2002 sCIGN data set. The multipath variances for the stations were calculated by
occupying each station for twenty minutes, with an additional (and identicad model)
receiver located 3 metres away. In this way, double-differenced observations were
collected at various elevation angles, which could then be reduced to a single zenith
multipath/noise variance for each station in the manner presented in Section 6.3. The
resulting zenith multipath/noise variances for each station are shown in Table 7.1. A
V/sn(e) mapping function was found to suitably model the elevation variation in the
variance. The results of Table 7.1 fall within the expected range of carrier phase multipath
variance, based on prior experiences presented in Chapter 6, and indeed, the variations in
the variances can be largely explained by the environment of the stations. Stations B, C
and D, for example, lay insde fields, whereas stations A and E were located near paved

roadways.

Table 7.1. Zenith Multipath/Noise Standard Deviations for Stations Involved in the Short Range Test.

M ultipath/Noise Zenith
Standard Deviation (mm)

Station

1.9

1.3
15

1.3
2.3

mf O O m >

With the variance models established, the next stage was to collect data to test the
deformation monitoring capabilities of the proposed system. For this purpose, three hours
of data were collected on two different days. One the first day, the stations remained static,
whereas on the second day known deformations were induced in stations B and C. These
deformations were such that the station remained deformed at particular value for fifteen

minutes. The data sampling rate was 5 seconds.
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Reference coordinates were generated by processing the whole of the ninety minute static
data for both days and averaging the results. Subsequently, the data was partitioned such
that the position update rate was fifteen minutes with a ten minute data span. The spans
were located such that they would encompass only one single deformation state. An
adjustment of each epoch using PADRES-GPS was then compared to that of a commercial
GPS processing package which processes data in a baseline-by-baseline fashion and relies
on a float/fixed ambiguity resolution scheme. To allow meaningful comparison, the results
of the PADRES-GPS software (which are not based on afixed base station) were converted
via S-transformation to a minimally constrained solution with station D considered fixed.

The commercial processor used station D as a fixed base for all baselines processed.

Although there exist many varieties of GPS processors on the market, and the particular
algorithms they apply vary widely, the author believes that the commercia processor
chosen as a benchmark accurately reflects the state-of-the-art in genera-purpose GPs
processing. The processor used allows sophisticated adjustment of many processing
parameters and has, in the author’ s experience, consistently provided superior position and
accuracy estimates, in particular when considering problematic or short data sets. Of
course, various processors can be optimized for particular applications, but the commercial
processor used is representative of a high-quality general-purpose processor commonly
used in industry.

7.1.3 -Deformation Detection Performance

Figures 7.3-7.6 show the position estimates for each station over the epochs observed. The
results are those stemming from a minimally constrained adjustment using the station D as
a known station. The PADRES-GPS results are shown as solid symbols along with their
associated one-sigma standard deviation error bars. The results from the commercial
processor results (when available) are shown as open symbols. Finaly, the theoretical
position of the station at each epoch is shown by the lighter solid line. The overal RMS
positioning error using the PADRES-GPS software are shown in Table 7.2, aong with the
average positioning accuracy predicted by the system, without any apostori scaling of the
estimates.
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Figure 7.4. Position Estimates of Station B in Short Range Network Test.

"i/t\\{/?\ Y/vta\ )\Iﬂ
®
=N (mm)
=*=E (mm)
=*H (mm)
[e] /L\\- - /& .1
/"/4_;\T . .
A A /§ |
1/ AN\ /L Na/TN§
VIT X1 Ve Y
0 2 4 6 8 10 12 14 16 18 20 22 24
Epoch
Figure 7.3. Position Estimates of Station A in Short Range Network Test.
; \2
%\r 1
< t 4 NI Y
- ’ I =N (mm)
I 'Y 8- E (mm)
P N 4
YN
ﬁ/‘_ \\ %z ] A /%\ |
\/} : P A\ /D 4
1 1 VAR ‘§/
‘[ = 1
0 2 4 6 8 10 12 14 16 18 20 22 24
Epoch

149



Reported Deformation (mm)

Reported Deformation (mm)

'70 T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24
Epoch
Figure 7.5. Position Estimates of Station C in Short Range Network Test.
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Figure7.6. Position Estimates of Station E in Short Range Network Test.
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Table7.2. Observed and Predicted Positioning 1-s Accuracies of Stations
During Short-Range Monitoring Test.

Observed Accuracy (mm) || Predicted Accuracy (mm)
N E H N E H

Station

A 52 3.7 114 5.5 3.5 11.0

B 3.7 24 9.3 4.2 24 8.6

C 3.2 1.7 7.6 34 2.5 6.6

E 6.5 4.7 10.2 6.2 4.1 134

Note : Station D held fixed.

Severa important findings are worth discussing. Firstly, in terms of position availability,
the PADRES-GPS software was able to provide position estimates accurate to the centimetre
level in 78 of 80 trials, whereas the commercia processor was able to provide centimetre
level results in only 22 cases. Station E was particularly affected, possibly due to the
severity of cycle-dlipping due to the proximity of tree cover to the north of this station.
This problem is aggravated by the relatively short time periods used. In the PADRES-GPS
software, the partial-fix ambiguity strategy implies that the presence of unresolvable cycle-
dips does not seriously impair the accuracy of the solution, since the fixed, high-accuracy
carrier phase observation are weighted more heavily than their floating, low-accuracy
counterparts. In the conventional processor, unresolvable cycle-dips can result in the
processor reverting to float-only mode which provides position estimates accurate to the
decimetre-level. The sability of the solution accuracy is of particular importance in
deformation monitoring, as no reasonable assessment of the deformation can be made if
two epochs are of grossly differing accuracies. In turn, this can pose a truly dangerous
situation if continuity of monitoring is paramount, as in dam deformation monitoring. Note
however, that when the conventional processor is capable of returning avalid solution, the
position estimate is wsually equivalent to that returned by PADRES-GPS within the accuracy

reported by the processor devel oped.
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A second key issue in deformation monitoring is the validity of the estimated accuracy of
the position solutions. Position estimates are of little use in deformation monitoring if the
analyst does not have accurate knowledge of their accuracy. A common shortcoming of
most commercia processors is that the estimates of positioning accuracy returned are
notoriously optimistic. Thisis largely due to neglecting temporal correlations (Section 6.6)
and of the physical correlations between the observations. For example, in the test under
study, the commercial processor steadfastly reported an accuracy of roughly 1mm laterally
and 3 mm vertically for al stations. Inspection of the reported movements using this
accuracy estimate would result in a plethora of false-deformations reported. On the other
hand, as shown in Table 7.2, the actual and estimated accuracies are identical at any
reasonable significance level.

However, this accurate assessment of the achievable positioning accuracy may come as a
disappointment to those who believe that GPs is capable of achieving millimetre level
precison in a semi-kinematic mode. This is quite smply not the case, mainly due to the
effects of multipath and its tempora correlation. Even if an hour of data is used, the
estimated one-sigma height accuracy remains limited to the 5 millimetre level — to achieve
one millimetre accuracy in height at a 95% confidence level would require 10 such hour-
long sessions combined together over the course of one day. Thus, if longterm
deformation trends are to be studied, a permanent GPs array can provide excellent position
estimates. However, if intracday movements are to be studied, an accuracy of severa

millimetres laterally is expected to be the ultimate achievable accuracy.

Finaly, an investigation of the results of Figure 7.3-7.6 brings to the fore the problem of
robust deformation detection. Given that the error bars shows are & the one-sigma level,
their length must be multiplied by 1.95 to form a 95% confidence interval. The simplest
deformation monitoring system would be to take the observed displacements in the North,
East and Zenith directions and divide them by their corresponding estimated accuracies. If
this ratio exceeds 1.95 (the square root of Foos(1,¥)), a deformation is flagged as occurring
at the 95% level. Several problems exist with this method. Firstly, the constraint of Station
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D as afixed-station implies that any deformations in D become mapped as deformations in
the other stations, thus creating a false map of the actual deformation trends in the network.
Also, while the position traces of stations B and C do follow the theoretic positions overal,
it can be seen that upon scaling of the error bars, many of the smaller deformations will not
be trapped at the required level of significance. A naive solution is to reduce the level of
significance, and hence the size of the error bars, but this will result in greater false-

deformations being reported during the static periods.

As a result, the more involved deformation detection approach outlined previously was
implemented to identify deformed stations before using the simpler test to identify the
most probable directions of the movements. An added benefit of this method is that it does
not rely on the fixing of one station in particular, which not only improves the positioning
accuracy of al the stations in general, but also frees the system from the requirement of a
stable base station. At each epoch, the reported positions of the stations were compared to
their reference positions and each station tested for stability at the 95% level using the
rigorous test for localized deformation. Unstable stations were renmoved from the
regularization base and the results correspondingly adjusted via appropriate S-transforms.
The significant direction of movements for the unstable stations were then tested using the
95% error ellipsoid corresponding to the station. Unstable stations for which no significant
direction can be established are termed “marginally stable.”

The resulting deformation report is shown in Table 7.3. Only significant epochs are shown,
included if an actual deformation occurred during the epoch, or a deformation was
reported. A summary of the performance is presented in Table 7.4. As can be seen, the
PADRES-GPS software was very effective in detecting deformations of one-centimetre, even
when the deformations were in several directions and at multiple stations. However, its
performance was notably poorer when deformations at the 5 millimetre level were induced.
Interestingly, at three epochs, Station D was reported to be either deformed or marginally
stable. Reference to Figure 7.2 shows that the positions of al four other stations show
apparent, but identical, movements in the height direction at these epochs, highlighting the
problems encountered when fixing a base station



Table 7.3. Deformation Report Produced During Short-Range Test and Actual Movements.

Reported Actual
Epoch | Station || overall Overall
Direction Direction
Movement No Movement
° ° Z: 147 mm
Movement Movement
11 B
E:185mm E:10 mm
Movement Movement
° E:11.6mm N:10mm E:10mm
o C Marginally Stable No Movement
Margindly Stable No Movement
Movement Movement
° N:92mm E:13.2mm N:10mm E:10mm
13 Movement Movement
¢ E: 142 mm E:10mm
D Margindly Stable No Movement
Movement Movement
° N:83mm E:81mm N:10mm E:10mm
“ Movement Movement
¢ N:-95mm E: -13.2 mm N:-10mm E:-10 mm
Movement Movement
16 B
E:-65mm E:-5mm
No Movement Movement
17 B

N:5mm E: -5mm
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Table 7.3 (continued). Deformation Report Produced During Short-Range Test and Actual Movements.

Movement Movement
N:62mm E: -7.6 mm N:5mm E:-5mm
18
No Movement Movement
N:5mm
Movement
Marginally Stable
N:5mm E:-5mm
19
Movement Movement
E:55mm N:5mm E:5mm
Movement Movement
20
E:48mm E:5mm

Table 7.4. Summary of Deformation Monitoring Performance for Stable and Deformed Stations.

Total Incorrect Marginal | Missed
. - . Correct
Instances | Deformation || Stability Deformation
Reported Reported Analysis
Sable 87 1 3 n‘a 83
Deformed 13 0 1 2 10
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Finaly, note that fase deformation rate was roughly 1% — an attractive feature in an

automated deformation monitoring system. The number of true deformations missed can

be reduced by lowering the level of significarce of the stability test, but a corresponding

increase in the number of false alarms is an unfortunate consequence. To simultaneousy

improve both the false-alarm rate and the detection sensitivity, the actual positioning

accuracy must be improved.
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Improved accuracy of the deformation monitoring system can result from severa changes.
The author feels that the best method of improving the system accuracy is to incorporate
dual- frequency receivers even on network extents of one kilometre. The reason for thisis
two-fold. Firstly, according to the results of Chapter 6, the ionospheric error quickly grows
with receiver distance, and is responsible for approximately 5mm of error even on these
short separations. Dual frequency processing removes this effect by modelling the
correlation of L1 and L2 ionospheric errors, as discussed in depth in Section 7.3. Also,
since multipath and noise are generally uncorrelated between the two frequencies, the L2
observations afford a truly independent observation. Increasing the data sampling does not
add useful information, as the tempora correlations reduce the value of the added
observations. However, due to the high cost of dua frequency receivers, it is anticipated
that this is not a practical gpproach to increasing the deformation sensitivity. Instead,
common approaches such as equipping stations with chokerings to mitigate multipath, and
simply extending the data spans used are possibilities.

7.2 - Application to Medium Range Static Positioning and Results

Perhaps the most important advantage of satellite-based measurement systems is that direct
measurements between stations are never required. As a result, there is no theoretic limit
on the separation between stations. In addition, traditional terrestrial networks are
developed through the propagation of “chains’ of distance or angular measurements.
Consequently, the positioning accuracies can vary significantly depending on the network
geometries and the location of stations with known coordinates (Vanicek and Krakiswsky,
1986). Satellite-based networks, on the other hand, can be solved via a simultaneous
adjustment of observations directly to common satellites and so show greater homogeneity

in their positioning accuracies throughout the network.

Medium range positioning refers to applications where the network extents range from tens
to several hundreds of kilometres. The judtification for this extent-based classification lies
in the fact that the dominant error source affecting networks of this size is the ionosphere,

with the troposphere playing a secondary role. As a result, the use of dua frequency
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measurements is required for practical ambiguity resolution. In addition, the network
extent is small enough to ensure that a suitable large set of common satellites is nominally
visible from all receiversin the networks, allowing the establishment of a differencing base
station at the centre of the network. As discussed previoudly, the differencing base is
simply the station which forms part of al each double-difference and does not play any
specia role in the regularization scheme. At larger scales, orbital errors necessitate the use
of precise ephemerides and specialized techniques to deal with the lack of common

satellite visibility; topics which are beyond the scope of thisthesis.

A key distinction between medium and short range positioning lies in the spatid
correlation of errors. On short receiver separations, the ionosphere and troposphere are
effectively cancelled out by the double-differencing operation, leaving only the multipath
and noise effects. As a result, the double-differences are mainly only mathematically
correlated, with little spatial correlation. However, as the recelver separations increase, the
variances of the double-differenced observations grow as well, and the true variance-
covariance matrix of the double-differences diverges from that created from only
mathematical considerations. However, it was not well known what the effects of these
gpatial correlations were on both the positioning accuracy and on the estimates of the

positioning accuracy.

Fortunately, the PADRES-GPs software alows processing of network GPs data using
whatever variance-covariance model the analyst wishes to specify. As such, it affords a
useful tool for the study of the effects of variance-covariance modelling on positioning
accuracy and accuracy estimation. In particular, the effects of neglecting the spatial
correlations between baselines entirely were studied, as well as the accuracies achievable

in atypical medium range GPS network.

To test the capabilities of the PADRES-GPS software in a medium-range positioning mode,
the July, 2002 data set collected from the SCIGN network for the purpose of tropospheric
and ionospheric variance-modelling discussed in Chapter 6 was used. Fifteen forty minute
data segments evenly spaced throughout the day were isolated and processed using the
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PADRES-GPS software. Dual frequency measurements were used, as was the centre-of- mass
regularization scheme; incorporating the published site coordinates as initial estimates.
Errors from the published coordinates for each station over the fifteen epochs were
calculated and treated as formal errors. The resulting positioning accuracies for each
station are plotted in Figure 7.7 as a function of station distance from the BRAN station,
which was used as the differencing base. The average predicted accuracies are plotted as

well, showing good agreement with the results actually observed.

18
16
14 @ North
East
A Zenith A

=
o

g

Position Standard Deviation (cm)

0 T T T T
0 50 100 150 200 250

Distance from Differencing Base (BRAN) (km)

Figure 7.7. Observed and Predicted Position Accuracies for Medium Extent Network using Centre-of-M ass

Regularization. Estimated accuracies are shown as solid lines, observed accuracies as solid symbols.

Figure 7.8 shows the results achieved when the BRAN station is held fixed with known
coordinates in a minimally constrained adjustment. The degradation in positioning
accuracy is immediately apparent, mainly due to the propagation of errors at the BRAN
station into the position results of the other stations. Whereas the positioning accuracy

slowly degrades with receiver separation when the centre-of-mass regularization is used,
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the error profile in the minimally constrained case follows a 1-9P curve. The reason for
this behaviour is most likely due to the increase in the tropospheric error with receiver
separation, which follows a similar curve, as discussed in Section 6.4. In the centre-of-
mass regularized case, these errors are averaged throughout the network to create a more
homogenous accuracy behaviour. The residual degradation of positioning accuracy with
receiver distance from the differencing base is mainly then due to the gradua increase in

the proportion of ambiguities that cannot be resolved for that receiver.
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Figure 7.8. Observed and Predicted Position Accuracies for Medium Extent Network using Fixing of

Station BRAN. Estimated accuracies are shown as solid lines, observed accuracies as solid symbols.

To further homogenize the positioning accuracies across the network and possibly improve
the overal positioning accuracy, the notion of a single differencing base must be
discarded. Figure 7.9(a) shows the relationship between receivers involved in producing
double-differences stemming from a single differencing base. Essentially, the data is

processed as individual baselines radiating from a central site, with the spatial correlation
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between the baselines rigorously modelled. As the baseline lengths increase, the
differencing becomes less effective and as a result, ambiguities become less likely to be
resolved as integers. This causes a corresponding degradation in positioning accuracy for
the receivers located further away from the centre, although the modelling of the spatial
correlations tempers this effect. A more effective scheme would be to form the double-
differences by selecting pairs of receivers that would create the shortest baseline lengths,
and hence minimize the effects of the undifferenced atmosphere. Of course, care must be
taken to ensure that the number of baselines formed is equal to the total number of stations
minus one, in order to ensure that the double-differences formed are all independent. As
well, the algorithm must ensure that the topology of the baselines in the network is logical,
such that there are no “hanging subnets’ unconnected to the main network. Figure 7.9(b)

shows the resulting optimized baseline selection.
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Figure 7.9. Possible Baseline Configurations. (a) Differencing-base Scheme (b) Shortest Baseline Scheme

In theory, a system based on this method could maintain a consistent accuracy over a much
larger extent, especially if the requirement for satellites to be visible at al stations is
discarded. Unfortunately, the implementation of such a system is beyond the scope of this
thesis, especialy due to the logistics involved in properly generating the variance-
covariance matrix for the double-differences formed in a network with such flexibility in
its configuration. In addition, as the PADRES-GPS software was primarily designed for use

on small-extent networks, the gains stemming from such flexibility are dight.
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Aside from dependence on a fixed base station, the second most common feature of
commercial GPS processors is a reliance on a baseline processing methodology where all
baselines are formed separately and later combined, neglecting the correlations between
baselines. To study the effects this has on positioning, the network under study was re-
processed with PADRES-GPS, but the variance-model was changed to neglect the spatial
correlations of the atmosphere. The centre-of-mass regularization was retained. The
resulting accuracies are shown in Figure 7.10. Again, a significant degradation in
positioning accuracy is apparent, especialy for receivers located further away from the
station BRAN. Overall, the effects of not considering the spatial correlation reduces the
accuracy of positioning by an average of 22%. In addition, the agreement between the
estimated and observed positioning accuracies is worse.
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Figure 7.10. Observed and Estimated Position Accuracies for Medium Extent Network Neglecting Spatial

Correlations. Estimated accuracies are shown as solid lines, observed accuracies as solid symbols.
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When the correlations between the baselines are neglected, the network solution problem
degenerates into a series of n independent and isolated |east-sgquares problems, where n is
the number of baselines formed. If the spatial correlations are properly accounted for, on
the other hand, then the solutions for each basdline are strengthened by information
provided by observations made at neighbouring stations. This behaviour is perhaps best
explained through analogy with a two stage collocation process, where, in the first stage,
the observed errors in the double-differences and the spatial correlation model are used to
determine the “spatially varying error” (i.e. tropospheric and ionospheric error) across the
network. The predicted error (equivaent to the signal in classical collocation) is then used
to improve the observations in the subsequent position and ambiguity solution phase. Of
course, in the actua adjustment under consideration, these two steps are implicitly and
simultaneously completed via the inversion of the variance-covariance matrix of the
double-differences, which are created using the spatial model, and the solution of the
whole set of norma questions. However, the two-stage approach does find direct
application when reference networks are used for kinematic positioning; a concept studied
by Raquet (1998). Regardless of the implementation details of the network adjustment
system, results show that proper accounting of the spatial correlations is critical in large

network processing to ensure maximum accuracy.

7.3 -Application to Kinematic Network Positioning and Optimal Linear Combination

Determination

A fast-developing area of application for GPs lies in the field of kinematic positioning
using reference networks. Essentially, the goal is to improve the robustness and precision
of positioning a moving platform by combining the data collected at the platform with
observations made at a number of reference receivers with known coordinates in the
project area. The current approaches to implementing such network positioning all rely on
some level on the concept of the spatial correlation of GPs errors. For example, the method
of Raquet (1998) uses empirical variance-covariance modelling and collocation, coupled
with appropriate trend fitting (Fotopoulos, 1999) to generate corrections subsequently
transmitted to the remote user.



163

At the same time, proposed improvements to GPs include the provision of extra frequencies
available for civilian use (Loverro, 2002). Given the addition of these extra observations,
and the large number of reference receivers that may be available, it becomes evident that
bandwidth limitations become a concern if data must be transmitted from one site to
another. As a result, a method of compressing multi-frequency data has the potential to
improve the efficiency of network based positioning. This section investigates how this can

be done using variance-covariance analysis.

7.3.1 -Linear Phase Combinations

A linear carrier phase combination is smply a pseudo-observation formed from the scaled
addition of two or more observed carrier phases. For the purposes of this thesis, a linear
combination will be restricted to a combination of a particular carrier phase on the L1 and
L2 GPs frequencies, although it is readlized that there is no theoretica reason why
combinations between multiple frequencies (when they become available) or even multiple
systems (i.e. GLONASS or GALILEO) might not be possible.

The resulting linear phase combination, f «, can be expressed in cycles as

pu

f.=[a b]xg .7

u
L2U

wheref ; and f » are the parent carrier phase observations and a and b are the coefficients of
the combination. Eq. (7.7) shows that the linear phase combination is actualy the
projection of a two dimensional observation space onto a single line. The effective

wavelength, | «, of the new pseudo-observation is given by :

— Ilel L2

" ax ,+bA

(7.8)
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wherel 1 and | > are the wavelengths of the L1 and L2 carrier.

In Section 6.7 it was shown that some of the errors affecting the two GPS frequencies are
correlated between frequencies. Specifically, the tropospheric error, in metres, is identical
between frequencies, whereas the multipath and noise was considered uncorrelated. Using
these assumptions, and the expression for the ionospheric inter-frequency covariance from

Eq. (6.55), the variance of the linear combination is calculated in cycles as :

+2abeT 4] |, 222 522 (7.9
I1|2 (4]

where s .2 is the noise and multipath variance in cycles®, s+ is the tropospheric variance in

metres’ and s, is the ionospheric variance in units of TEC?.

Both the process of double-differencing and linear-combination are linear processes, and
as aresult they are communitative. As a result, the above expressions hold for the double-
differences formed at both frequencies, with the ND symbol, appropriately substituted into
Egs. (7.7) and (7.9). In addition, although the original and double-differenced ambiguities
on both frequencies are integer quantities, the integer nature is not necessarily preserved in
the linear combination if either coefficient is rea valued. For the integer ambiguity

resolution techniques of Chapter 6 to hold, the values of a and b must be held to integers as
well.
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7.3.2- " Optimal” Linear Phase Combinations

In Chapter 2 it was shown that the variance-covariance matrix of the estimated parameters,
Cx+, depends on the variance-covariance matrix of the observations used and their
linearised mathematical model. The relationship is summarized again here, simplified as

c. =(A"@®c,B") A" (7.10)

where again A is the Jacobian matrix with respect to the unknown parameters, B is the
Jacobian matrix with respect to the observations and C; is the variance-covariance matrix
of the observations. If a linear combination of two carrier phases is used, the number of
effective observations is reduced by half, and thus the number of rows in the A and B
matrices. The C; matrix is also transformed in a@cordance with the principle of the

propagation of errors.

Inspection of Eq. (7.10) shows that the matrices A and B are invariant under various
choices for the linear combination coefficients, a and b, assuming that the observation
equations are expressed in meters. However, the C; matrix is directly affected by the choice
of these coefficients, as it contains the variances of the new pseudo-observations, which
are given by Eq. (7.9). Thus, by minimizing the variances of the pseudo-observations
through an appropriate choice of a and b, the accuracy of the resulting position estimates
will improve. The Optimal Linear Phase Combination (OLPC) is the combination that
optimizes some aspect of the positioning problem through an appropriate choice of a and
b.

Furthermore, due to the physical independence of error sources, one can derive OLPC's that
minimize the variance of a particular error source. For example, inspection of Eq. (7.9)
shows that an OLPC that eliminates the ionospheric error is given by (a,b) = (1, -fi2 / fi1),
which is the well known ionospheric free combination with fi; and f, as the frequencies of
the L1 and L2 carriers. Unfortunately, this is not an admissible oLPC since the b term is not

integer. In addition, it can be shown that regardless of the oLPC chosen, the tropospheric
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variance will remain the same in units of distance, although the wavelength of the oLPC
will change. The only exception is the linear combination @,b) = (1, -f.1 / f2), which
eliminates the tropospheric error in cycles, but yields an observable with infinite
wavelength, as well as not containing integer coefficients. Finaly, as expected by the
principle of the propagation of random errors, the noise variance in cycles goes up as aand

b increase, but the variance in metres depends on the wavelength of the particular OLPC.

This illustrates one of the key difficulties in defining “optimality” for linear combinations.
While it may be possible to minimize the cyclic error variance of a combination, it is not
guaranteed thet this combination will minimize the error in units of meters. Similarly,
while short wavelengths generally reduce the error variance in metres” (which is desirable
for positioning accuracy) it is more difficult to resolve ambiguities reliably under such

circumstances. Thus, the definition of optimality is somewhat arbitrary.

In this work, an optimal combination is defined as a combination that minimizes the total
error variance in metres’, while maintaining an error variance in cycles’ that is at least
equd to that of the L1 observable. In this way, the positioning accuracy is maximized, but
ambiguity resolution does not become more difficult than in the L1-only case. Thisis an
effective strategy when baseline lengths are less than 50 kilometres, as the ionospheric
error remains limited to less than ¥z of the L1 wavelength. Hence the float ambiguities,
although biased by the undifferenced ionosphere, are till likely to converge to their true
integers. Once the ambiguities are resolved as integer, the key factor is a reduction in error
variance in metres to achieve high positioning accuracy. On larger network extents, this
optimality criteria may not be appropriate. Regardless, once the definition of optimality is
set, the techniques presented herein can be used to find an OLPC to satisfy the definition.

Figure 7.11 shows the relationship between the error components considered for various
valuesof a and b. In cycles, the noise error variance function forms a paraboloid with
global minimum at (@,b) = (0,0). Thus the variance contour lines form concentric circles
about the origin. The tropospheric and ionospheric error variance functions, however, form
parabolic cylinders, whose global minima are described by lines passing through the
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origin. These relationships are shown graphicaly in Figure 7.11. The total error variance
function is ssimply the sum of these surfaces and thus forms a saddle-shaped surface, whose

ridge liesis described by the line passing through the origin satisfying the relation :

(7.11)

where the variances are al considered in cycles. This line is smply the weighted average

of the tropospheric and ionospheric variance minimization lines.
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Figure 7.11. Selection of an Optimal Linear Combination.

To determine an optimal integer combination, integer pairs lying on either side of the line
described by Eq. (7.11) are chosen, and the combinations with total error variances less
than that of the L1 double-differenced observations are retained. The remaining
combination that minimizes the total error variance in metres’ is then chosen as the optimal
candidate. Thus, the errors are initialy analysed in terms of cycles to derive a subset of

potential candidates, and then in terms of metres to chose the optimal candidate.
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In an operational sense, it is desirable to choose a single oLPC to apply to all the dual-
frequency observations observed in a reference network, rather than calculating an oLPC
for each observation pair. To do this, one smply has to calculate the average values of the
double differenced noise, tropospheric and ionospheric variances observed in a given
reference network. Fortunately, since the stochastic models describing the noise,
tropospheric and ionospheric errors are fairly stable over time, the determination of the
OLPC can be done in advance by using an almanac to predict the satellite orbits and an

appropriate stochastic model to derive the predicted error variances

7.3.3 -Determination of Optimal Linear Phase Combinations From Reference Network

Data

To illustrate the procedure of determining an oLPC from data available from a reference
network a test was conducted using the July 2002 data set analysed in the medium-extent

network of the previous section

Using the ephemerides available for the 24 hour period of data collected, the theoretical
observations made during the observation period was generated. The variance-covariance
models for the tropospheric, ionospheric and multipath effects developed in Chapter 6
were then used to generate average values of the variances of these error sources. Model
values were those calculated for the July 2002 data set from the reference network. Based
on these average double-differenced variances for both frequencies, the average variance
for a linear combination based on a particular (a,b) selection can be calculated using Eq.
(7.9). The resulting ionospheric/tropospheric error variance minimization line is given by
therdation a/b = -1.232, which is very close to the pure ionospheric minimization line of
alb = -1 5/l ;1= -1.283. Thisis due to the dominance of the ionospheric error over that of

the troposphere, as discovered in Chapter 6.

Figure 7.12(a) shows the error in cycles’ for a subset of potentia integer combination
candidates selected. The xaxis shows values of the a parameter, and the different lines
represent different choices of the b parameter - namely selecting integer values on either
side of the line defined by a/b = -1.232. The heavy black line indicates the error in cycles’
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of the L1 observation. From Figure 7.12 it can be seen that the error of the combinationin
cycles increases as the values for a and b increase. This is primarily due to the

amplification of noise.
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Figure 7.12.Candidate combination variancesin (a) cycles® and (b) nt-

According to the “optimality” criterion defined, the final step for determining the optimal
combination is to choose the remaining integer candidate that minimizes the total variance
in metres”. The results for each combination candidate are also shown in Figure 7.12. Once
again, the heavy black line indicates the variance of the L1 observation. Interestingly, as
the coefficient value a increases, the total variance converges to the tropospheric variance
in metres”. After performing the above mentioned steps, the overall ‘optimal’ integer
combination (a,b) is given by the pair (4, -3). This resulting combination has an associated
wavelength of 13.4 cm and an error variance (in nf) of ~ 5 times smaller than the L1

observable (or roughly twice as small in units of cycles).

7.3.4 -Positioning with an Optimal Linear Phase Combination

To gauge the utility of oLPC's in kinematic network position, the following test was
employed. A five-station subset of the sCIGN network was selected, along with a station

approximately 1500m above the other five reference receivers. This station simulated the
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conditions encountered by an aircraft in flight during a medium-scale photogrammetric
survey. Any variation in the epoch-to-epoch position estimates of this static point can then
be interpreted as an indication of positioning accuracy. Resulting baseline lengths from the
reference receivers to the high platform ranged from 20 to 60 kilometres. Coordinates for
the reference receivers and the test station were generated using a full 24 hours of dua

frequency data processed using the PADRES-GPS software.

The first processing mode used was a rigorous adjustment using both L1 and L2 data
simultaneously. The observations were processed using a full variance-covariance matrix
based on the stochastic model described above. As this mode utilized the most information
available, it was assumed that this would result in the best (most consistent) results. On the
other hand, this mode requires the most data handling. Secondly, the data was processed
using the (4, -3) oLPC. The data was then also processed using only L1 and using the
widelane observable which corresponds to a (1,-1) linear combination. In all cases, the full
variance-covariance between observations made at different receivers and satellites was
propagated.

Table 7.5 shows the position variation standard deviation for each of the processing modes
along with the average bias from the known coordinates. Figure 7.13 graphically shows the
variation in the height coordinates the four processing modes. As expected, the L1/L2 mode
performs the most consistently. Note that the centimetre-level epoch-to-epoch positioning
accuracy has been achieved despite the relatively long baseline lengths, due to the rigorous
incorporation of dual frequency data. However, the oLPcC performs equally well and in fact,
returns almost identical results every epoch. The L1 mode returns the worst variation, and

the results are heavily affected by the variations in the ionosphere.

An explanation for the results lies in the domain of principa component analysis. As
previousdy mentioned, for any dua-frequency measurement, the variance-covariance
matrix takes the form of Eg. (6.55). Thus one can visualize an error élipse around the two

dimensional dual- frequency measurement pair. When the errors are contaminated only by
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Table 7.5. Position Standard Deviations of Various Processing Modes.

L1 LUL2 WL Optimal
N | 145 (17) | 18 (02) | 35 (04) | 20 (03)
E | 124 (03) | 09 (00) | 22 (0.2) | 1.0 (0.0)
H | 326 (60) | 33 (07) | 7.8 (10) | 35 (0.6)

Average bias shown in parenthesis. All valuesin cm.
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Figure7.13. Height Variation for Various Processing Modes
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uncorrelated noise, the error ellipse has its principal axes aligned along the L1 and L2
"directions.” However, if tropospheric or ionospheric effects exist, the variance-covariance

matrix contains off-diagonal elements, and the error ellipse rotates accordingly.

A linear phase combination is smply a projection of the 2 dimensional dual-frequency set
onto a single observation in the direction <a, b>. As a result, the variance-covariance
matrix is reduced to a single variance. The process of choosing an OLPC is essentially
rotating the <a,b> vector until the projected variance is a minimum. Thus when the dual-
frequency data is pre-processed by applying the OLPC, the data is effectively filtered of the

major correlated errors.

Since the ionospheric error significantly dominates the error budget in most medium to
long range networks, the corresponding dual-frequency variance-covariance matrix is
highly elongated. Therefore, the variance of the oLPC will be very small in relation to the
semi-major axis of the error elipse and the positioning accuracy will be high. In the
widelane case, the corresponding <1,-1> vector is rather arbitrary and thus cannot be
expected to minimize the error variance in any fashion. Similarly, the L1 only mode is a

projection in the <1,0> direction and so bears the brunt of the full ionospheric error.

The above test relied on the use of an accurate stochastic model to achieve correct relative
weighting of the available observations. However, it is often difficult to estimate the
parameters of the stochastic model, in particular in terms of the tropospheric and
ionospheric correlation lengths. As a result, as second test was conducted in which the data
was reprocessed under the assumption that there were no tropospheric or ionospheric error
- i.e. only an €elevation dependent weighting was applied and no physical cross-
correlations exist. Table 7.6 contains the results of this test and Figure 7.14 shows the

corresponding variation in the height coordinates.



Table 7.6. Position Standard Deviations of Various Processing Modes with an Improper
Stochastic Model Assumed.

L1 LUL2 WL Optimal
N | 125 (34) | 40 (02) | 49 (08) | 21 (0.3)
E| 9110 | 27 (00) | 27 (02) | 1.0 (0.0)
H | 276 (11.0) | 82 (22) | 101 (1.0) | 36 (06)

Average bias shown in parenthesis. All vauesin cm.
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Figure 7.14. Height Variation for Various Processing Modes using an Incorrect Stochastic Model
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As expected, the L1/L2 processing mode yielded better results than the L1 and widelane
modes, mainly because twice as many observations were used and thus the ionospheric
errors were able to cancel out somewhat, despite neglecting the correlation between the
errors on both frequencies. Interestingly, the overall standard deviations of the L1 solutions
improved, but the biases became significantly worse, as the dfects of the uncorrected
ionosphere propagated undetected into the solution. However, it is very surprising to note
that the oLPC mode performed better than the L1/L2 mode. In fact, the oLPC mode

performed amost as well asin the case of using a full-stochastic model.

Thereason for the convenient behaviour of the oLPC lies again in the concept of the error
ellipse. In the L1/L2 case, using the full stochastic model gave information to the least-
squares adjustment regarding the correlation between the L1 and L2 frequencies. Implicitly,
the adjustment was able to use this information to calculate the ionospheric error affecting
each observation and remove this error effect. However, once the stochastic information
was dropped, the adjustment could only treat the ionospheric effect as noise and the
subsequent positioning accuracy was degraded. In the L1 case, this shows up as the large
bias in the position estimates — the adjustment simply cannot “see” the ionospheric error,
and consequently the ionospheric error causes a scaling of all the satellite-receiver ranges.

Thisis also why the height component is the most affected.

In the case of the OLPC, a pseudo-observation that was relatively free of ionospheric effects
was generated. Consequently, it is to be expected that the spatial correlations of the
pseudo-observations would be significantly reduced and that the variance-covariance
matrix for the set of observations becomes more diagona as a consequence. In addition,
the variance-covariance matrix of a set of uncorrelated observations (i.e. only affected by
noise) is diagona as well, and so the variance-covariance matrix of the OLPC observations
becomes more like a scaled version of the noise only assumption (i.e. no stochastic
information regarding spatially correlated errors). Thisis key, since it is well known from
adjustment theory (Mikhail, 1971) that the results of a least-squares adjustment are
invariant upon scaling of the variance-covariance matrix. An added benefit of the noise-
like variance-covariance matrix lies in the fact that the inversion of such a matrix is much
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more efficient than the inversion of a matrix where spatial-correlations cause significant

off-diagonal terms.

In this work, the generation of an OLPC has been limited to the compression of two carrier
phases into a single pseudo-observation. In the future it is anticipated that observations at
multiple frequencies will be available. Fortunately, the concept of the single oLPC is il
useful in such a scenario, and in fact, is even more attractive due to the restriction of
transmission and processing loads to a single pseudo-observation, rather than a set of
multiple frequency observations. In the case of observations at severa frequencies, the
variance-covariance information relating the observations can be visuaized as a hyper-
ellipsoid. The oLPcC is then defined as the projection of the data collected at different
frequencies into a single pseudo-observation, the “direction” of which is defined as the
direction of the semi-minor axis of the error elipsoid. Thus observations at additional
frequencies are expected to alow for better extraction of the ionospheric error (as it is

frequency dependent) and allow for the averaging out of multipath and noise.
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8.0 - CONCLUSIONS AND FUTURE WORK

The objectives of this research were satisfied. By eliminating traditional shortcuts and
assumptions regarding GPs, an improved method of adjusting observations made with
satellite-based navigation systems was developed. The key developments of this
dissertation included :

Study of the least-squares adjustment problem as applied to satellite-based
positioning, in particular in terms of adjustment under constraints, proper
propagation of parameter dtatistics and linearization of the positioning
mathematical model.

Investigation of the datum definition problem and the development of a
regularization scheme to solve the problem of poor datum visibility.

Development of a partial-fix ambiguity resolution scheme which depends on
appropriate apriori variance models and minimally biased float ambiguity
estimates, achievable through a centre-of-mass regul arization scheme.
Establishment of variance-covariance models for GPS error sources and the

development of practical techniques to determine estimates of model parameters.

The above findings were then combined to form the basis of a very robust and flexible GPs
processing package. The performance of this package was tested under small and medium

network extents.

This chapter summarizes the key findings of each chapter individually, discusses other

possible application areas, and makes recommendations for future research.
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8.1 -Key Findings by Chapter

Chapter 2. Basics of Space-Based Radio Ranging.

Determination of satellite coordinates requires accounting of the frame rotation and
satellite motion during transmission time to ensure accuracy of satellite orbits remains at
the severa metre level (as determined from the broadcast ephemeris). Otherwise orbital

errors of up to 500 metres can resullt.

Chapter 3. General Solution to the Space-Based Positioning Problem.

The GPs solution space is relatively flat with respect to the position unknowns, and
completely linear with respect to unknown clock offsets and ambiguities. Position initia
estimates accurate to the 300 metre level are required to preclude the need for iteration;
initial estimates are not required for clock and ambiguity unknowns.

Double-differencing serves to eliminate both satellite and receiver clock offset unknowns
from the positioning problem, significantly improving the efficiency of the solution for the
receiver positions. Double-differencing maintains the integer nature of the ambiguities, but
causes the full set of (originally independent) ambiguities inestimable, necessitating he
solution for a reduced set of mathematically correlated double-differenced ambiguities.

The least-squares solution is complicated by the addition of constraints, in particular in
terms of error propagation. Furthermore, modifications to the standard equations for
variance propagation must be made if the regularization for the parameters used does not

correspond to the apriori variance-covariance of the initial estimates.

Chapter 4. Datum Issuesin Satellite-Based Navigation Systems

The GPs datum is overconstrained by the assumption of satellite coordinates as known
quantities. However, assuming them as unknowns or as observations causes unacceptable
inefficiencies in the solution for the receiver positions due to the size of the matrices

involved as the satellites move over time.



178

Without differencing, the network solution is limited in accuracy to the accuracy of the
satellite orbits. The resulting error imparted into the solution for the receiver positions is
highly correlated between receivers. The overall accuracy of the network improves as the
network extent increases, due to decorrelation of the orbital errors, but at the same time,

the relative accuracy degrades for the same reason.

Under differencing, the satellitebased datum becomes poorly visible, resulting in
instabilities in the normal matrices required to be inverted. This problem can be aleviated
by Tikhonov regularization. As the regularization is increased, the solution becomes more
stable, but increasingly biased. As the network extent increases, the visibility of the datum
improves, and the amount of regularization required is reduced.

For deformation monitoring, high regularization is desirable. Despite the highly biased
results, the bias is correlated between epochs, and thus largely cancels out upon creation of

the displacement vector.

Chapter 5. Ambiguity Resolution for Precise Positioning.

Regular |east-squares return real-valued estimates for the integer ambiguities. The process
of ambiguity resolution determines the most- likely integer values for the ambiguities based
on their float solutions, and by applying these integer values as constraints, the solution for

the recelver positions can be considerably improved.

Double-differenced ambiguities depend on the relative geometry of the receiver network
and thus are largely insensitive to overall trandations of the network. Heavy Tikhonov
regularization results in highly biased ambiguities due to distortion of the relative
geometry of the network. Instead, regularization using a constraint of the network centre-
of-mass is preferred, athough loss of relative geometrical information results in poorer
accuracy of the float ambiguities. Nonetheless, this is preferable to a biased estimate if the
integer values of the ambiguities are to be determined. Heavy regularization based on the
centre-of-mass constraint can be applied without adversely affecting the ambiguity

solutions, which is desirable from a deformation monitoring standpoint.
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Integer values of the ambiguities can be efficiently determined via the LAMBDA method. A
modification of this method was devel oped where the total number of ambiguities that can
be resolved at the 99% level are chosen as a subset of the total ambiguities. Thisleads to a
partial- fix methodology, where only some of the ambiguities are resolved as integer, and
the remaining ambiguities are improved due to their correlation to the resolved
ambiguities. The end result is more stable positioning accuracy between observation

Sessions.

Chapter 6. Analysis of Error Sources in Global Navigation Satellite Systems and
Sochastic Modelling.

Proper stochastic modelling of the GPs observations is crucial for both positioning
accuracy and the accuracy of the dtatistica estimates returned by the least-sgquares
adjustment.

The stochastic modelling method employed herein combined a theoretical an empirical
approach, relying on mathematical models developed from a theoretical considerations of
the error processes coupled to an empirical determination of the models' parameters. Once
these models for the undifferenced errors are developed, they can be mathematically
propagated depending on the differencing and network configuration scheme used.

All error sources were modelled using a zenith variance term multiplied by a mapping
function. For noise and multipath, this mapping function is dependant on the antenna gain
pattern, whereas for tropospheric and ionospheric erors this mapping function is

dependant on the mapping functions used in the original error models.

The noise and multipath zenith variance are determinable using a zero-baseline and a
short-baseline test, respectively. It was shown that the noise and multipath variances can be
combined in practice, since their variance mapping functions are identical. Typical zenith
variances of carrier phase noise and multipath are at the few millimetre level, and are site

dependant.
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The tropospheric and ionospheric variances were shown to be spatially correlated. This
correlation was shown to decrease exponentially with increasing receiver distance and
increasing angular separation of the receiver-satellite line-of-sight. The parameters of the
resulting double-differenced variance models can be determined from a reference network.
Although the parameters of the tropospheric model were fairly stable, it was shown that it
is difficult to separate the zenith variance from the correlation length if the network extent
Is not larger than 500 kilometres. However, on networks of smaller extent, this also implies
that only theratio of the two quantities is of importance, and values of 1.5 cm/ 250 km are
suggested for the zenith standard deviation and correlation length respectively, assuming
use of the UNB2 model. Typica model values for the ionosphere, using the Klobuchar
model, are 0.9 m / 7000 km, but vary dlightly over the course of the year and should be re-
evaluated at 4 month intervals.

A simple method of adjusting the normal equations for the temporal correlations of the GPs
errors was presented, based on the correlation period of the errors (assumed as
approximately 300s), the sampling rate and the length of the observation session. It was
shown that increasing the sampling rate has very limited gains in terms of improving the

solution accuracy.

Chapter 7. Application of Global Navigation Satellite Systems to Network Positioning.

A processor adjusting GPs observations was developed for the primary purpose of high
precision short-range deformation monitoring. The PADRES-GPS software combines robust
variance modelling, variable regularization schemes and rigorous |east-squares processing
into a package capable of returning stable, precise results with reliable statistical estimates.

The success of the system in short-range deformation was shown using a real-data set with
known induced deformations. The PADRES-GPS software consistently provided more
reliable results than a commercial GPS processing package used for comparison mainly
due to the short time spans used. This success was attributed to the partial-fix processing

mode with regards to the ambiguities. Also, it was shown that the possibility for centre-of-
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mass regularization allows more sophisticated deformation detection techniques to be used
instead of a simple comparison of observed movements to their standard deviations.
Application of the method was very successfully in identifying lateral deformations on the
level of 10 millimetres, and marginally successfully in identifying deformations on the 5
millimetre level. Observation session lengths were limited to 10 minutes, and it is believed
that better positioning accuracy is possible if observation sessions are significantly

extended (i.e. to the hour level), or if dual-frequency datais available.

PADRES-GPS was also shown to provide decimetre-level results when network extents of
several hundred kilometres are involved and dual-frequency data is available, based on a
forty minute observation span. The significant positive effects of centre-of-mass

regularization and spatial correlation modelling were demonstrated.

Based on the variance-covariance modelling developed through this research, a novel
method of combining dual-frequency data into a single optimal-linear phase combination
(oLPC) was developed. Processing using this combination was shown to have advantages
interms of processing and data transmission efficiencies in kinematic network positioning.
In addition, use of the oLPC yields results amost equivalent to that obtained when dual-
frequency data is processed together with a proper stochastic model. When no such model
is available, results using the oLPC remain largely unaffected, due to the implicit
encapsulation of the stochastic model into the oLPC during its determination.

8.2 -Thesis Contributions

The author believes that the maor contribution of this dissertation is the re-evaluation of
the traditional dogma surrounding the processing of measurements collected using
satellite-based navigation systems. Traditionally, satellite-based ranges have been treated
as “special” observations, completely removed from traditional geodetic observations such
as distances, angles and astronomic azimuths. In this thesis, every attempt has been made
to treat GNSS measurements purely as very long range spatial distances and their

similarities with those collected using terrestrial methods have been emphasised.
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This change in perception directly led to the investigation of variance-covariance
properties of the satellite-based measurements, and on datum definition and observation
adjustment. At each stage, investigations were led by theoretical considerations and then
supported by empirical data, rather than vice versa. The development of the multipath
variance mapping function is an excellent example of this process Although this thesis
provided several contributions in terms of new variance-covariance models, ambiguity
resolution techniques and datum regularization methods, the author feels the greatest
contribution of this thesis is as an example of how a rigorous application of the
hypothesi stesting/validation/refinement sequence can uncover previously unseen issues in
an otherwise established problem.

8.3 -Recommendations for Future Work

Although these considerations led to an improved processing strategy, they also unveiled

many new areas of research. Included below are some of the more pertinent topics :

Proper variance-covariance modelling of the GPs observations should allow
improved integration of these observations with terrestrial measurements. To date,
integration of GPS and terrestrial measurements is done after processing of the GPs
data to provide interstation vectors — these vectors are then used in a combined
adjustment with the terrestrial data. Large problems exist in integrating the two sets
of data due to improper weighting of the GPS interstation vectors. However,
combining the normal equations corresponding to the terrestrial measurements and
the GPs measurements directly, with a correct relative weighting, will alow the
terrestrial data to directly improve ambiguity resolution by affording unambiguous
information regarding the relative station positions — this in turn should result in
overall improved accuracies. Similar research could involve the integration of

photogrammetric flight data with GPS observations at the normal equations level.
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Further investigation of the covariance models developed should be performed.
Specifically, the following areas are of interest

o0 More comprehensive evauation of the time varying nature of the variance
model parameters for the multipath, tropospheric and ionospheric errors. In
particular, it would be interesting to obtain better information regarding the
variation in the ionospheric variance model under storm conditions and
during different phases of the 11-year sunspot cycle. Similarly, it would be
instructive to analyse the variation in the tropospheric model in different
climate zones and under changing weather situations.

o Further study of the temporal correlations is required. This dissertation
limited itself to accounting for the temporal correlations based on the
method of El-Rabbany (1994). However, initia research indicates that the
correlation lengths for multipath and atmospheric effects may be different.
Methods to determine and account for these differences are required, as

well as an assessment on their effects on the adjustment of observations.

The PADRES-GPS software was designed for use on small-extent networks. To
smplify the formation of double-differences and the creation of ther
corresponding variance-covariance matrix, the concept of the differencing base was
relied upon, athough it played no part in datum definition. On larger network
extents, ambiguities become more difficult to resolve for stations further away from
the differencing base due to the decorrelation of errors and thus positioning
accuracy suffers. Work should be undertaken to modify the PADRES-GPS to
eliminate this formation constraint, thus forming double-differences between pairs

of closest receivers.

As observations on more frequencies become available, the applicability of forming
Optimal Linear Phase Combinations using multiple frequencies should be

investigated. Also, the applicability of a particular Optima Linear Phase
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Combination over time should be studied, as it may be discovered that one

particular combination is optimal over arange of ionospheric conditions.

The author feels that the above recommended areas of study are only some of the
topics that may arise from the work presented herein. Overadl, the methods and
concepts developed of dealing with spatial distances and the correlations of their errors

will be widely applicable as various Global Navigation Satellite Systems are devel oped
and put to use for precise positioning.
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