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ABSTRACT

The purpose of carrier phase ambiguity resolution is to
improve upon the precision of the estimated GNSS base-
line by means of the integer ambiguity constraints. There
exists a whole class of integer ambiguity estimators from
which one can choose. Members from this class are, for
instance, integer rounding, integer bootstrapping and in-
teger least- squares. In this review paper we will present
the theory and application of the method of integer boot-
strapping. Particular emphasis is given to the proba-
bilistic properties of the bootstrapped estimator. We will
present the probability mass function of the bootstrapped
estimator, the bootstrapped pull-in regions, the distribu-
tion of the bootstrapped baseline and easy-to-compute
ways of evaluating the confidence regions of the GNSS
baselines. They are important if one wants to perform a
rigorous quality control.

INTRODUCTION

Global Navigation Satellite System (GNSS) ambiguity
resolution is the process of resolving the unknown cycle
ambiguities of double difference (DD) carrier phase data
as integers. Ambiguity resolution applies to a great vari-
ety of GNSS models which are currently in use in navi-
gation, surveying, geodesy and geophysics. An overview
of these models, together with their applications, can be
found in textbooks such as [Hofmann-Wellenhof, 1997],
[Leick, 1995], [Parkinson and Spilker, 1996], [Strang
and Borre, 1997], and [Teunissen and Kleusberg, 1998].

Any GNSS model can be cast in the following system of
linear(ized) observation equations

y � Aa
�

Bb
�

e (1)

where y is the given GNSS data vector of order m, a
and b are the unknown parameter vectors respectively
of order n and p, and where e is the noise vector. The

data vector y will usually consist of the ’observed mi-
nus computed’ single-, dual- or triple-frequency double-
difference (DD) phase and/or pseudorange (code) obser-
vations accumulated over all observation epochs. The
entries of vector a are then the DD carrier phase ambigu-
ities, expressed in units of cycles rather than range. They
are known to be integers, a � Zn. The entries of the vec-
tor b will consist of the remaining unknown parameters,
such as for instance baseline components (coordinates)
and possibly atmospheric delay parameters (troposphere,
ionosphere). They are known to be real- valued, b � R p.
Although vector b may contain other or more real-valued
unknown parameters than only those of the baseline(s),
we will in this contribution, as a matter of terminology,
still call its estimator the baseline estimator.

The procedure which is usually followed for solving the
GNSS model (1), can be divided into three steps [Teu-
nissen, 1993]. In the first step one simply disregards the
integer constraints a � Zn on the ambiguities and per-
forms a standard adjustment. As a result one obtains the
(real-valued) estimates of a and b, together with their
variance-covariance (vc-) matrix�

â
b̂ ��� � Qâ Qâb̂

Qb̂â Qb̂ � (2)

This solution is referred to as the ’float’ solution. In the
second step the ’float’ ambiguity estimate â is used to
compute the corresponding integer ambiguity estimate

ǎ � S � â � (3)

with S : Rn 	
 Zn a mapping from the n-dimensional
space of real numbers to the n-dimensional space of in-
tegers. Once the integer ambiguities are computed, they
are used in the third and final step to correct the ’float’
estimate of b. As a result one obtains the ambiguity re-
solved baseline solution

b̌ � b̂ � Qb̂âQ � 1
â � â � ǎ � (4)

This solution is usually referred to as the ’fixed’ baseline.
The quality of the estimator b̌ depends on the quality of
the ’float’ solution, â and b̂, and on the quality of the
integer estimator ǎ. When evaluating the quality of the
GNSS baseline, one usually relies on the assumption that
the integer ambiguities are deterministic. Strictly speak-
ing this is not correct, as was pointed out in [Teunissen,



1990]. The integer ambiguities are estimated from the
data and since the data are modelled as random variates,
the estimated ambiguities are random variates too. They
have their own probability distribution, despite their in-
tegerness. For a proper evaluation of the quality of the
GNSS baseline, one should therefore take the random
characteristics of the estimated integer ambiguities into
account as well. Hence, we also need the probability
distribution of the integer estimator ǎ. This distribution
depends however on the type of integer estimator cho-
sen. Different choices of the map S : Rn 	
 Zn, will result
in different integer estimators and will thus also produce
differences in the probability distribution. In this contri-
bution we will concentrate on the bootstrapping principle
of integer estimation.

It is the purpose of the present contribution to review
our current knowledge of the theory of integer bootstrap-
ping. For easy reference the main results are formulated
as theorems and corollaries. Proofs of these theorems
and corollaries can be found in [Teunissen, 1998a+b,
1999a+b, 2001]. This contribution is organized as fol-
lows. In section 2 we introduce the bootstrapped am-
biguity estimator and show how this integer estimator
is related to sequential conditional least-squares and to
the unique triangular decomposition of the ambiguity
variance-covariance matrix. The link with the triangu-
lar decomposition is used to describe the bootstrapped
pull-in regions and to show that the bootstrapped esti-
mator is an admissible integer estimator. A probabilistic
description of integer bootstrapping is given in section
3. Exact and closed form expressions are given for the
bootstrapped probability mass function and for the dis-
tribution of the ambiguity bootstrapped baseline. These
results enable one to study and evaluate the probabilis-
tic properties of the bootstrapped baseline rigorously.
We also present easy-to-compute measures for the boot-
strapped baseline’s probability of concentration. Appli-
cations of the bootstrapped estimator are presented and
discussed in section 4.

INTEGER BOOTSTRAPPING

Sequential conditional least-squares

To prepare for our discussion of the bootstrapped es-
timator, we first consider the adjustment principles of
’conditional least-squares’ and ’sequential conditional
least-squares’. These principles form the basis of the
bootstrapped estimator. We will show how the sequen-
tial conditional least-squares ambiguity estimator is con-
structed and how it is related to the unique lower triangu-
lar decomposition of the ambiguity vc-matrix. We com-
mence with the principle of conditional least-squares es-
timation. The following corollary is a well known result
from standard adjustment theory.

Corollary 1 (Conditional least-squares)

Let the expectation and dispersion of â I
�

� â1 � ����� � âi � 1 � T � Ri � 1 and âi � R be given as

E
�
�

âI

âi � � � � aI

ai � � D
�
�

âI

âi � � � � QI QIi

QiI σ2
i �

Then the least-squares estimator of a i, when aI is con-
strained to the fixed vector zI , is given as

âi � I � âi � QiIQ � 1
I � âI � zI � (5)

The estimator âi � I is referred to as the conditional least-
squares ambiguity estimator. It is conditioned on fixing
the previous ambiguities to the values z j, j � 1 � ����� � � i �
1 � . Note that âi � I and âI are uncorrelated. This is an
important property that will be used repeatedly in the
following.

The above result can be used to derive a sequential ver-
sion of the conditional least-squares estimator. For i � 2,
we obtain the scalar version of (5)

â2 � 1 � â2 � σ21σ � 2
1 � â1 � z1 � (6)

in which â2 � 1 is uncorrelated with â1. For i � 3, the con-
ditional least-squares estimator â3 � 2 � 1 follows from fix-
ing the two ambiguities a1 and a2 to the values z1 and
z2. Note however, since â3 � 2 � 1 is invariant to any regular
transformation of â1 � â2, that we may as well fix â1 and
â2 � 1 to the values z1 and z2. This has the advantage that
matrix QI of (5) becomes diagonal. As a result we obtain

â3 � 2 � 1 � â3 � σ3 � 1σ � 2
1 � â1 � z1 � � σ3 � 2 � 1σ � 2

2 � 1 � â2 � 1 � z2 �
(7)

in which â3 � 2 � 1 is uncorrelated with both â1 and â2 � 1. It
will be clear, that we may continue in this way to obtain
the corresponding expressions for the next and follow-
ing ambiguities as well. The result is summarized in the
following corollary.

Corollary 2 (Sequential conditional least-squares)

The conditional least-squares estimator â i � I can be com-
puted sequentially as

âi � I � âi � i � 1

∑
j � 1

σi � j � Jσ � 2
j � J � â j � J � z j � � i � 1 � ����� � n (8)

where σi � j � J denotes the covariance between â i and â j � J ,
and σ2

j � J is the variance of â j � J . For i � 1, âi � I is set equal
to â1.

With this result we are now also in a position to show
how sequential conditional least-squares estimation re-
lates to the unique lower triangular decomposition of the
ambiguity vc-matrix. From (8) it follows that the differ-
ence � âi � zi � may be written in terms of the differences� â j � J � z j � , j � 1 � ����� � i, as

� âi � zi � � � âi � I � zi � � i � 1

∑
j � 1

σi � j � Jσ � 2
j � J � â j � J � z j � (9)



When written out in vector-matrix form, this gives����
�

â1 � z1

â2 � z2
...

ân � zn

� ���
� �
����
�

1
l21 1
...

...
. . .

ln1 ln2 ����� 1

� ���
�
����
�

â1 � z1

â2 � 1 � z2
...

ân �N � zn

� ���
�

(10)
with li j

� σi � j � Jσ � 2
j � J , for 1 � j � i � n. Since the se-

quential conditional least-squares ambiguities are mutu-
ally uncorrelated, their vc-matrix is diagonal, as a conse-
quence of which the vc-matrix of the â i is given a trian-
gular decomposition, when applying the error propaga-
tion law to (10). The relation between sequential condi-
tional least-squares and the triangular decomposition is
summarized in the following corollary.

Corollary 3 (The statistics of the triangular decomposi-
tion)

Let the âi, i � 1 � ����� � n, be collected in the vector
â � � â1 � ����� � ân � T and let their sequential conditional
least-squares estimators be collected in the vector âc

�� â1 � ����� � ân �N � T . Then â and âc, and their vc-matrices, are
related as

â � z � L � âc � z � and Qâ
� LDLT (11)

where the matrix entries are given as

� L � i j
�	�
 � 0 for 1 � i � j � n

1 for i � j
σi � j � Jσ � 2

j � J for 1 � j � i � n

and D � diag � ����� � σ2
j � J � ����� �

The bootstrapped estimator

We are now in a position to describe the integer boot-
strapping principle. In order to compute the sequential
conditional least-squares solutions, one needs to specify
the z j on which the conditioning takes place. In case of
bootstrapping, z j , for j � 1 � ����� � n, is chosen as the near-
est integer of â j � J . Hence, for âi � I the conditioning takes
place on the nearest integers of all previous i � 1 condi-
tional estimates. The ith component of the bootstrapped
solution itself is then given as the nearest integer of â i � I .
We thus have the following definition.

Definition (Integer bootstrapping)

Let â � � â1 � ����� � ân � T � Rn be the ambiguity ’float’ solu-
tion and let ǎB

� � ǎB � 1 � ����� � ǎB � n � T � Zn denote the cor-
responding integer bootstrapped solution. The entries of
the bootstrapped ambiguity estimator are then defined as

ǎB � 1 � � â1 
ǎB � 2 � � â2 � 1  ��� â2 � σ21σ � 2

1 � â1 � ǎB � 1 � 
...

ǎB � n � � ân �N  ��� ân � ∑n � 1
j � 1 σn � j � Jσ � 2

j � J � â j � J � ǎB � j � 
(12)

where � � �  � denotes the operation of rounding to the near-
est integer.

As the definition shows, the bootstrapped estimator can
be seen as a generalization of the method of ’integer
rounding’. If n ambiguities are available, one starts with
the first ambiguity â1 and rounds its value to the near-
est integer. Having obtained the integer value of this
first ambiguity, the real-valued estimates of all remaining
ambiguities are then corrected by virtue of their correla-
tion with the first ambiguity. Then the second, but now
corrected, real-valued ambiguity estimate is rounded to
its nearest integer. Having obtained the integer value of
the second ambiguity, the real-valued estimates of all re-
maining n � 2 ambiguities are then again corrected, but
now by virtue of their correlation with the second am-
biguity. This process is continued until all ambiguities
are accommodated. Thus the bootstrapped estimator re-
duces to ’integer rounding’ in case correlations are ab-
sent, i.e. in case the ambiguity vc-matrix is diagonal.

Note that the bootstrapped estimator is not unique.
Changing the order in which the ambiguities appear in
vector â will already produce a different bootstrapped es-
timator. Although the principle of bootstrapping remains
the same, every choice of ambiguity parametrization has
its own bootstrapped estimator.

The bootstrapped pull-in regions

Integer bootstrapping is not the only principle which one
can use for estimating integer ambiguities. Two other
principles are, for example, integer rounding and integer
least-squares. In fact, there exists a whole class of inte-
ger estimators from which one can choose. In order to
introduce this class, we start from the map S : Rn 	
 Zn.
Due to the discrete nature of Zn, the map S will not be
one-to-one, but instead a many-to-one map. This im-
plies that different real-valued ambiguity vectors will be
mapped to the same integer vector. One can therefore
assign a subset Sz � Rn to each integer vector z � Zn:

Sz
� �

x � Rn � z � S � x � � � z � Zn (13)

The subset Sz contains all real-valued ambiguity vec-
tors that will be mapped by S to the same integer vector
z � Zn. This subset is referred to as the pull-in region of
z. It is the region from which all ambiguity ’float’ so-
lutions are pulled to the same ’fixed’ ambiguity vector
z. Since the pull-in regions define the integer estimator
completely, one can define classes of integer estimators
by imposing various conditions on the pull-in regions.
The class of admissible integer ambiguity estimators is
defined as follows [Teunissen, 1999b].

Definition (Admissible integer estimators)

The integer estimator ǎ � S � â � is said to be admissible
when its pull-in regions Sz

� �
x � Rn � z � S � x � � , z � Zn,



satisfy� i � �
z � ZnSz

� Rn

� ii � IntSz1

�
IntSz2

� /0 � � z1 � z2 � Zn � z1 �� z2

� iii � Sz
� z
�

S0 � � z � Zn

(14)

One can now show that the bootstrapped estimator be-
longs to this class of admissible integer estimators. In
order to do so, we first need the bootstrapped pull-in re-
gions. They are given in the following corollary.

Corollary 4 (Bootstrapped pull-in regions)

The pull-in regions of the bootstrapped ambiguity esti-
mator ǎB

� � ǎB � 1 � ����� � ǎB � n � T � Zn are given as

SB � z � �
x � Rn � � cT

i L � 1 � x � z � � � 1
2 � i � 1 � ����� � n �

(15)

�
z � Zn, where L denotes the unique unit lower triangular

matrix of the ambiguity vc-matrix’ decomposition Q â
�

LDLT and ci denotes the ith canonical unit vector having
a 1 as its ith entry and zeros otherwise.

That the bootstrapped estimator is indeed admissible,
can now be seen as follows. The first two conditions
of (14) are easily verified using the definition of the
bootstrapped estimator. Since every real-valued vector â
will be mapped by the bootstrapped estimator to an inte-
ger vector, the pull-in regions SB � z cover Rn without any
gaps. There is also no overlap between the pull-in re-
gions, since - apart from boundary ties - any real-valued
vector â is mapped to not more than one integer vector.
To verify the last condition of (14), we make use of (15).
From

SB � z � �
x � Rn � � cT

i L � 1 � x � z � � � 1
2 � i � 1 � ����� � n �� �

x � Rn � � cT
i L � 1y � � 1

2 � x � y
�

z � i � 1 � ����� � n �� SB � 0
�

z

it follows that all bootstrapped pull-in regions are trans-
lated copies of SB � 0. All pull-in regions have therefore
the same shape and the same volume. Their volumes
all equal 1. This can be shown by transforming S B � 0 to
the unit cube centered at the origin. Consider the linear
transformation y � L � 1x. Then

L � 1 � SB � 0 � � �
y � Rn � � cT

i y � � 1
2 � i � 1 � ����� � n �

equals the unit cube centered at the origin. Since the de-
terminant of the unit lower triangular matrix L � 1 equals
one and since the volume of the unit cube equals one, it
follows that the volume of SB � 0 must equal one as well.
To infer the shape of the bootstrapped pull-in region, we
consider the two-dimensional case first. Let the lower
triangular matrix L be given as

L � � 1 0
l 1 �

Then

SB � 0 � �
x � R2 � � cT

i L � 1x � � 1
2 � i � 1 � 2 �� �

x � R2 � � x1
� � 1

2 � � x2 � lx1
� � 1

2

�

which shows that the two-dimensional pull-in region
equals a parallellogram. Its region is bounded by the two
vertical lines x1

� 1
2 and x1

� � 1
2 , and the two parallel

slopes x2
� lx1

� 1
2 and x2

� lx1 � 1
2 . The direction of the

slope is governed by l � σ21σ � 2
1 . Hence, in the absence

of correlation between the two ambiguities, the parallel-
logram reduces to the unit square. In higher dimensions
the above construction of the pull-in region can be con-
tinued. In three dimensions for instance, the intersection
of the pull-in region with the x1x2-plane remains a par-
allellogram, while along the third axis the pull-in region
becomes bounded by two parallel planes.

Figure 1 shows 3 examples of two-dimensional pull-in
regions, namely of integer rounding, integer bootstrap-
ping, and of integer least- squares. The shape of the el-
lipse as determined by the ambiguity vc-matrix is also
shown. The bootstrapped pull-in region is a parallel-
logram, the pull-in region of rounding is a square and
the pull-in region of integer least-squares is a hexagon.
All three pull-in regions have the same area, namely
one. The shapes of the pull-in regions of bootstrapping
and least-squares are determined by the ambiguity vc-
matrix. The shape of the pull-in region of rounding is
however independent of the ambiguity vc-matrix. It al-
ways equals the unit-square.

BOOTSTRAPPED DISTRIBUTIONS

The bootstrapped probability mass function

In this section we present exact and closed-form expres-
sions for the distribution of the bootstrapped ambiguity
estimator and for the distribution of the ambiguity boot-
strapped baseline. The distribution of an admissible am-
biguity estimator can be determined once its pull-in re-
gions are known and once the probability density func-
tion (pdf) of the ’float’ solution is given. Since the inte-
ger estimator is by definition of the discrete type, its dis-
tribution will be a probability mass function (pmf). It has
zero masses at non-integer points and nonzero masses at
some or all integer points. The pmf of the integer boot-
strapped estimator ǎB will be denoted as P � ǎB

� z � , with
z � Zn. The pdf of the ’float’ ambiguity solution â will
be denoted as pâ � x � .
Since the integer bootstrapped estimator is defined as
ǎB
� z ��� â � SB � z, it follows that P � ǎB

� z � � P � â �
SB � z � . The pmf of ǎB follows therefore as

P � ǎB
� z � �	�

SB 
 z pâ � x � dx � z � Zn (16)

Hence, the probability that ǎB coincides with z is given
by the integral of the pdf p â � x � over the bootstrapped
pull-in region SB � z � Rn.
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Fig. 1. The shape of the ambiguity ellipse and the two-
dimensional pull-in regions of (top) integer rounding; (middle)
integer bootstrapping; and (bottom) integer least-squares

Note that the above expression holds for any distribu-
tion the ’float’ ambiguities â might have. In most GNSS
applications however, one usually assumes the vector of
observables y to be normally distributed. In that case
the ’float’ solutions â and b̂, both being linear estima-
tors, will be normally distributed too. In the remainder
of this contribution we shall therefore assume that the
’float’ solutions are normally distributed as�

â
b̂ � � N � � a

b ��� � Qâ Qâb̂
Qb̂â Qb̂ � � (17)

The following theorem, due to Teunissen (2001), gives
an exact expression for the bootstrapped pmf in case (17)
holds true. As the theorem shows, the pmf equals a prod-
uct of univariate pmf’s and is therefore very easy to com-
pute.

Theorem 1 (The integer bootstrapped pmf)

Let â be distributed as N � a � Qâ � , a � Zn, and let ǎB be the
corresponding integer bootstrapped estimator. Then

P � ǎB
� z � �

∏n
i � 1
�Φ � 1 � 2lT

i
�
a � z �

2σâi � I
� � Φ � 1 � 2lT

i
�
a � z �

2σâi � I
� � 1 � z � Zn

(18)
with

Φ � x � �	� x� ∞

1�
2π

exp
� � 1

2
v2 � dv

and with li the ith column vector of the unit lower trian-
gular matrix L � T and σ2

âi � I the variance of the ith least-

squares ambiguity obtained through a conditioning on
the previous I � �

1 � ����� � � i � 1 � � ambiguities.

It follows from (18) that the bootstrapped pmf is sym-
metric about the mean of â. This implies that the boot-
strapped estimator ǎB is an unbiased estimator of a � Zn.
Since the ’float’ solutions, â and b̂, are unbiased too, it
follows from taking the expectation of (4) that the boot-
strapped baseline is also unbiased.

For the purpose of predicting the success of ambiguity
resolution, the probability of correct integer estimation
is of particular interest. For the bootstrapped estimator
this success rate is given in the following corollary.

Corollary 5 (The bootstrapped success rate)

The bootstrapped probability of correct integer estima-
tion (the success rate) is given as

P � ǎB
� a � � n

∏
i � 1

� 2Φ � 1
2σâi � I

� � 1 (19)

From (18) it follows that the bootstrapped pmf reaches
its maximum at its point of symmetry. Thus maxz P � ǎB

�
z � � P � ǎB

� a � . This is a reassuring result, since its im-
plies that the bootstrapped success rate is largest of all
the bootstrapped probability masses.

Finally observe that the shape of the bootstrapped pmf
is completely governed by the ambiguity vc-matrix Q â.
The pmf follows once the triangular factor L and the di-
agonal matrix D of the decomposition Q â

� LDLT are
given.

The distribution of the bootstrapped baseline

We are now in the position to determine the pdf of the
bootstrapped baseline

b̌B
� b̂ � Qb̂âQ � 1

â � â � ǎB � (20)

In order to determine the pdf of this baseline estimator,
one needs to propagate the uncertainty of the ’float’ so-
lution, â and b̂, as well as the uncertainty of the integer
solution ǎB through (20). Should one neglect the ran-
dom character of the integer solution and therefore con-
sider the ambiguity vector ǎB as deterministic and equal



to, say, z, then the pdf of b̌B would equal the conditional
baseline distribution

pb̂ � â � x � y � z � �
1�

detQb̂ � â
�
2π � 1

2 p
exp

� � 1
2 � x � b � â � z � 2

Qb̂ � â
�

(21)

with conditional mean b � â � z
� b � Qb̂âQ � 1

â � a � z � , con-

ditional variance matrix Qb̂ � â
� Qb̂ � Qb̂âQ � 1

â Qâb̂ and

� � � 2
Qb̂ � â
� � � � T Q � 1

b̂ � â � � � . However, since ǎB is random and

not deterministic, the conditional baseline distribution
will give a too optimistic description of the quality of
the ’fixed’ baseline. To get a correct description of the
’fixed’ baseline’s pdf, the integer ambiguity’s pmf needs
to be considered. As the following theorem shows this
results in a baseline distribution, which generally will be
multi-modal.

Theorem 2 (Distribution of the bootstrapped baseline)

Let the ’float’ solution, â and b̂, be distributed as in (17),
let ǎB be the integer bootstrapped estimator and let the
’fixed’ bootstrapped baseline b̌B be given as in (20). The
pdf of b̌B reads then

pb̌B
� x � � ∑

z � Zn
pb̂ � â � x � y � z � P � ǎB

� z � (22)

This theorem was first introduced and proved in [Teunis-
sen, 1999a]. Note that, although the model (1) is linear
and the observables normally distributed, the distribution
of the ’fixed’ baseline is not normal, but multi-modal.
As the theorem shows, the ’fixed’ baseline distribution
equals an infinite sum of weighted conditional baseline
distributions. These conditional baseline distributions
pb̂ � â � x � y � z � are shifted versions of one another. The

size and direction of the shift is governed by Q b̂âQ � 1
â z,

z � Zn. Each of the conditional baseline distributions
in the infinite sum is downweighted. These weights are
given by the probability masses of the distribution of the
integer bootstrapped ambiguity estimator ǎB. This shows
that the dependence of the ’fixed’ baseline distribution
on the choice of integer estimator is only felt through the
weights P � ǎB

� z � .
Figure 2 shows two examples of the multi-modality of
the distribution of the ’fixed’ DD range in case of single-
epoch ambiguity resolution, based on the long baseline
(ionosphere-float) geometry-free GPS model. Figure 2a
shows the distribution in case dual-frequency data are
used, while figure 2b corresponds to the triple-frequency
case (modernised GPS).

The quality of the bootstrapped baseline

In order to describe the quality of the bootstrapped base-
line, one would like to know how close one can expect
the baseline estimate b̌B to be to the unknown, but true
baseline value b. As a measure of confidence, we take

P � b̌B � R � �	�
R

pb̌B
� x � dx with R � Rp (23)
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Fig. 2. Distribution of the ’fixed’ DD range in case of
single-epoch ambiguity resolution, based on the long baseline
(ionosphere-float) geometry-free GPS model: (a, top) dual-
frequency case; (b, bottom) triple-frequency case. The uni-
modal normal distributions shown in green are those of the
corresponding “float” solution for the DD range.

But in order to evaluate this integral, we first need to
make a choice about the shape and location of the sub-
set R. Since it is common practice in GNSS positioning
to use the vc-matrix of the conditional baseline estima-
tor as a measure of precision for the ’fixed’ baseline, the
vc-matrix Qb̂ � â will be used to define the shape of the
confidence region. For its location, we choose the confi-
dence region to be centered at b. After all, we would like
to know by how much the baseline estimate b̌B can be
expected to differ from the true, but unknown baseline
value b. That is, one would like (23) to be a measure of
the bootstrapped baseline’s probability of concentration
about b.

With these choices on shape and location, the confidence
region R takes the form

R � �
x � Rp � � x � b � T Q � 1

b̂ � â � x � b � � β2 � (24)

The size of the region can be varied by varying β.



The following theorem shows how the bootstrapped
baseline’s probability of concentration (23) can be eval-
uated as a weighted sum of probabilities of noncentral
Chi-square distributions [Teunissen, 1999a].

Theorem 3 (The bootstrapped baseline’s probability of
concentration)

Let b̌B be the ambiguity bootstrapped baseline estimator,
R be defined as in (24), and χ2 � p � λz � denote the noncen-
tral Chi-square distribution with p degrees of freedom
and noncentrality parameter λz. Then

P � b̌B � R � � ∑
z � Zn

P � χ2 � p � λz � � β2 � P � ǎB
� z � (25)

with

λz
� � ∇b̌z � 2

Qb̂ � â and ∇b̌z
� Qb̂âQ � 1

â � z � a �
This result shows that the probability of the ambigu-
ity bootstrapped baseline lying inside the ellipsoidal re-
gion R centered at b equals an infinite sum of proba-
bility products. If one considers the two probabilities
of these products separately, two effects are observed.
First the probabilistic effect of shifting the conditional
baseline estimator away from b and secondly the prob-
abilistic effect of the peakedness or nonpeakedness of
the bootstrapped pmf. The second effect is related to the
expected performance of bootstrapped ambiguity resolu-
tion, while the first effect has to do with the sensitivity of
the baseline for changes in the values of the integer am-
biguities. This effect is measured by the noncentrality
parameter λz. Since the tail of a noncentral Chi-square
distribution becomes heavier when the noncentrality pa-
rameter increases, while the degrees of freedom remain
fixed, P � χ2 � p � λz � � β2 � gets smaller when λz gets larger.

The two probabilities in the product reach their maxi-
mum values when z � a. The following corollary shows
how these two maxima can be used to lower bound and
to upper bound the probability P � b̌B � R � . Such bounds
are of importance for practical purposes, since it is diffi-
cult in general to evaluate (25) exactly.

Corollary 6 (Lower and upper bounds)

Let b̌B be the ambiguity bootstrapped baseline estimator
and let R be defined as in (24). Then

P � b̂ � â � a � R � P � ǎB
� a � � P � b̌B � R � � P � b̂ � â � a � R �

(26)
with

��

�

� P � b̂ � â � a � R � � P � χ2 � p � 0 � � β2 �
P � ǎB

� a � � ∏n
i � 1
� 2Φ � 1

2σâi � I
� � 1

Note that the two bounds relate the probability of the
bootstrapped baseline estimator to that of the conditional
estimator and to the bootstrapped succes rate. The above

bounds become tight when the ambiguity success rate
approaches one. This shows, although the probability of
the conditional estimator always overestimates the prob-
ability of the bootstrapped baseline estimator, that the
two probabilities are close for large values of the suc-
cess rate. This implies that in case of GNSS ambigu-
ity resolution, one should first evaluate the bootstrapped
success rate P � ǎB

� a � and make sure that its value is
close enough to one, before making any inferences on
the basis of the distribution of the conditional baseline
estimator. In other words, the (unimodal) distribution
of the conditional estimator is a good approximation to
the (multimodal) distribution of the bootstrapped base-
line estimator, when the success rate is sufficiently close
to one.

APPLICATIONS OF INTEGER BOOTSTRAPPING

Bootstrapping as a genuine ambiguity resolver

In the previous sections we have presented the theory of
integer bootstrapping and showed that the principle of
bootstrapping can be used as a viable option for resolv-
ing the integer carrier phase ambiguities. The method of
integer bootstrapping is easy to implement and it does
not need, as opposed to the method of integer least-
squares, an integer search for computing the sought for
integer solution. However, as it was mentioned earlier,
the outcome of bootstrapping depends on the chosen am-
biguity parametrization. Bootstrapping of DD ambigui-
ties, for instance, will produce an integer solution which
generally differs from the integer solution obtained from
bootstrapping of reparametrized ambiguities. Since this
dependency also holds true for the bootstrapped pmf,
one still has some important degrees of freedom left for
improving (25) or for sharpening the lower bound of
(26).

In order to improve the bootstrapped success rate, one
should work with decorrelated ambiguities instead of
with the original ambiguities. The method of bootstrap-
ping performs relatively poor, for instance, when ap-
plied to the DD ambiguities. This is due to the usu-
ally high correlation between the DD ambiguities. Boot-
strapping should therefore be used in combination with
the decorrelating Z-transformation of the LAMBDA
method. This transformation decorrelates the ambigui-
ties further than the best reordering would achieve and
thereby reduces the values of the sequential conditional
variances. By reducing the values of the sequential con-
ditional variances, the bootstrapped success rate gets en-
larged.

Bootstrapping in the context of integer least-squares

The estimation principles of integer bootstrapping and
integer least- squares both result in integer estimators
which are admissible. The following theorem, due to Te-
unissen (1999b), shows however that integer bootstrap-



ping is outperformed by integer least-squares.

Theorem 4 (Integer least-squares is optimal)

Let the integer least-squares estimator be given as ǎLS
�

argminz � Zn � â � z � 2
Qâ

. Then

P � ǎLS
� a � �

P � ǎ � a � (27)

for any admissible estimator ǎ.

This result shows that the integer least-squares estima-
tor is best in the sense that it maximizes the ambiguity
success rate. When aiming at a large as possible success
rate, one is thus better of using the integer least-squares
estimator than any other admissible estimator, including
the bootstrapped estimator. Does this result automat-
ically disqualify the applicability of integer bootstrap-
ping? No, not quite. From theorem 4 it follows that

P � ǎB
� a � � P � ǎLS

� a � (28)

A very useful application of this result is now that it
shows how one can lower-bound the probability of cor-
rect integer least-squares estimation. This is particularly
useful since the success rate of integer least-squares is
usually difficult to compute, whereas the bootstrapped
success rate is very easy to compute. Moreover, when
the above lower bound is applied to the decorrelated am-
biguities, it becomes a very sharp lower bound. In fact,
the bootstrapped lower bound is presently the best avail-
able lower bound of the least-squares success rate. This
has also been verified empirically by various researchers,
and more recently also by Thomson (2000).

The fact that the bootstrapped estimator is so easy to
compute and still gives a good approximation to the in-
teger least-squares estimator when applied to the decor-
related ambiguities, makes it also an important tool for
setting the size of the ambiguity search space. Follow-
ing the decorrelation step, the LAMBDA-method uses,
as one of its options, the bootstrapped solution ǎB for
setting the size of the ambiguity search space as� â � z � T Q � 1

â � â � z � � χ2

with
χ2 � � â � ǎB � T Q � 1

â � â � ǎB �
In this way one can work with a very small search
space and still guarantee that the sought for integer least-
squares solution is contained in it. For more informa-
tion on the LAMBDA method, the reader is referred
to [Teunissen, 1993], [Teunissen, 1995] and [de Jonge
and Tiberius, 1996a] or to the textbooks [Hofmann-
Wellenhof, 1997], [Strang and Borre, 1997], [Teunis-
sen and Kleusberg, 1998]. Practical results obtained
with it can be found, for example, in [Boon and Am-
brosius, 1997], [Boon et al., 1997], [Cox and Brading,
1999], [de Jonge and Tiberius, 1996b], [de Jonge et
al., 1996], [Han, 1995], [Jonkman, 1998], [Peng et al.,
1999], [Tiberius and de Jonge, 1995], [Tiberius et al.,
1997].

Bootstrapping for partial ambiguity resolution

One usually aims at resolving all ambiguities simultane-
ously. It may happen however that it is simply not pos-
sible to resolve the complete vector of ambiguities with
sufficient probability. As an alternative of resolving the
complete vector of ambiguities, one might then consider
resolving only a subset of the ambiguities. This idea of
partial ambiguity resolution was introduced in [Teunis-
sen et al., 1999], where it was applied to long baselines
using the current GPS. The idea of partial ambiguity res-
olution is based on the fact that the success rate will
generally increase when fewer integer constraints are im-
posed. However, in order to apply partial ambiguity res-
olution, one first will have to determine which subset of
ambiguities to choose. It will be clear that this decision
should be based on the precision of the ’float’ ambigui-
ties. The more precise the ambiguities, the larger the am-
biguity success rate. It is at this point where the decorre-
lation step of the LAMBDA method and the bootstrap-
ping principle can be applied. Once the transformed and
decorrelated ambiguity vc-matrix is obtained, the con-
struction of the subset proceeds in a sequential fashion.
One first starts with the most precise ambiguity, say ẑ1,
and computes its success rate P � ž1

� z1 � . If this suc-
cess rate is large enough, one continues and determines
the most precise pair of ambiguities, say � ẑ1 � ẑ2 � . If their
success rate is still large enough, one continues again
by trying to extend the set. This procedure continues
until one reaches a point where the corresponding suc-
cess rate becomes unacceptably small. When this point
is reached, one can expect that the previously identified
ambiguities can be resolved successfully.

Once the subset for partial ambiguity resolution has been
identified, one still needs to determine what this will do
to improve the baseline estimator. After all, being able to
successfully resolve the ambiguities does not necessarily
mean that the ’fixed’ solution is significantly better than
the ’float’ solution. The theory presented in the previous
sections provide the necessary tools for performing such
an evaluation rigorously.
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