

UCGE Reports
Number 20400

Department of Geomatics Engineering

Implementation and Evaluation of Interoperable Open

Standards for the Internet of Things

(URL: http://www.geomatics.ucalgary.ca/graduatetheses)

by

Seyyed Mohammad Ali Jazayeri

APRIL, 2014

UNIVERSITY OF CALGARY

Implementation and Evaluation of Interoperable Open Standards for the Internet of Things

By

Seyyed Mohammad Ali Jazayeri

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOMATICS ENGINEERING

CALGARY, ALBERTA

APRIL, 2014

© Seyyed Mohammad Ali Jazayeri 2014

ii

Abstract

Recently, researchers focused on a new use of the Internet called Internet of Things (IoT), in

which capable electronic devices can be remotely accessed over the Internet. All around the

world, IoT applications are emerging exponentially with various functionalities in order to

monitor and control the environment. For example, Wemo switch, Philips Hue light bulb, Ninja

Blocks and Air Quality Egg are samples of the existing IoT applications which make

environmental dynamics accessible via the Internet. Each application is developed based on the

developer’s desire of the device. That means the number of proprietary protocols is growing as

the number of IoT devices increases. Moreover, IoT devices are intuitively heterogeneous in

terms of the hardware capabilities and communication protocols. Therefore, ensuring

interoperability is an important step to integrate various devices together. In this research, we

focus on the communication challenges of the IoT objects to make the network suitable for a

wide scale of IoT devices. To do this, we implement open standards in different communication

layers on a resource constraint IoT object. The standard protocols developed in this research are

OGC PUCK over Bluetooth, TinySOS (a lightweight profile of the OGC SOS), SOS over CoAP,

and OGC SensorThings API. To the best of our knowledge, these implementations are the

world’s first contribution for the IoT objects. Eventually, we benchmark the efficiency of the

implemented protocols by a comprehensive performance analysis in terms of memory

occupation, request size, response length and response latency. As a result, by hosting the

aforementioned open standard protocols on IoT devices, not only the devices become self-

describable, self-contained, and interoperable, but also innovative applications can be simply

developed by standardized interfaces.

iii

Acknowledgements

There are a number of people without whom this thesis might not have been written, and to

whom I am greatly indebted. My sense of gratitude to one and all who, directly or indirectly,

have lent their helping hand in this venture.

First, I would like to thank my supervisor, Dr. Steve Liang, for encouraging my research

and for giving me the opportunity to pursue my Masters degree in University of Calgary. Your

advice on both research as well as on my career have been priceless.

I would also like to thank my committee members, Dr. Mea Wang, Dr. Xin Wang, and

Dr. Andrew Hunter. I want to appreciate you for letting my defense be an enjoyable moment,

and for your brilliant comments and suggestions.

I also give thanks to the entire research group, the GeoSensorweb Lab, for helping me

with my research, and providing invaluable feedbacks. I owe Alec Huang thanks for reviewing

my thesis, but more importantly for your academic support during my graduate degree. I give

special thanks to Tania Khalafbeigi, Mahdi Oraei, and Reza Malek, who took it upon yourselves

to help me in revising my thesis content.

I want to give a special thanks to my family including my parents, my siblings and my

grandma. Your love and support have made it possible for me to excel in school and without

you, I would not be where I am today. Words cannot express how grateful I am to the sacrifices

that you have made on my behalf.

At the end, I wish to dedicate this thesis to the person I love and who has changed my life

for the better in every way possible. To Setareh Sajadi, with all the love I have to give. You spent

sleepless nights with and were always my support in the moments when there was no one to

answer my queries. I will be grateful forever for your love.

iv

Table of Contents

Abstract ... ii
Acknowledgements .. iii

Table of Contents ... iv
List of Tables .. vii
List of Figures and Illustrations ... viii
List of Symbols, Abbreviations and Nomenclature ... xi

CHAPTER ONE: INTRODUCTION ..1

1.1 Background ..1
1.2 Internet of Things ...2

1.3 Existing IoT Applications ..5
1.4 Interoperability ...8
1.5 Problem Definition, Motivation and Solutions ..10
1.6 Objective and Contributions ..13

1.7 Development Platform ...14
1.8 Definition of Terms ...15

1.9 Thesis Organization ...17

CHAPTER TWO: PUCK OVER BLUETOOTH..18
2.1 Introduction ..18

2.2 Related Works ..19

2.3 Architecture ...20
2.3.1 OGC PUCK ...20
2.3.2 Sensor Protocol ..22

2.3.3 System Architecture ..24
2.4 Implementation ..25

2.4.1 Service Layer ...25
2.4.2 Additional Software Components ...26

2.5 Discussion ..27

2.6 Summary ..27

CHAPTER THREE: TINYSOS ..29
3.1 Introduction ..29

3.2 Related Works ..32
3.3 Architecture ...34

3.3.1 TinySOS ..34

3.3.2 System Architecture ..35
3.3.3 Resource Discovery ...37

3.4 Implementation ..39
3.4.1 Tiny Web Server ..39
3.4.2 XPU Algorithms ..41

3.5 Discussion ..44
3.6 Summary ..45

CHAPTER FOUR: SOS OVER COAP ...47

v

4.1 Introduction ..47
4.2 Related Works ..49
4.3 Architecture ...50

4.3.1 CoAP Specification ...50

4.3.2 Device Architecture ...53
4.3.3 SOS Integration to CoAP ..54

4.4 Implementation ..56
4.4.1 SOS Request to a CoAP Server ...56
4.4.2 CoAP Request to a SOS Server ...57

4.5 Discussion ..57
4.6 Summary ..58

CHAPTER FIVE: OGC SENSORTHINGS API ..59
5.1 Introduction ..59
5.2 Related Works ..60
5.3 Architecture ...62

5.3.1 API Components and Ecosystem ..62
5.3.2 Data Model ..63

5.3.3 System Architecture ..64
5.4 Implementation ..66

5.4.1 Device Registration ...67

5.4.2 Observations Uploading ..69
5.4.3 Actuator Tasking ...69

5.5 Discussion ..72
5.6 Summary ..73

CHAPTER SIX: EVALUATION AND RESULTS ..74
6.1 Introduction ..74

6.2 Performance Evaluation ...75
6.2.1 Memory Occupation ..75
6.2.2 Request Size ..77

6.2.3 Response Length ...78
6.2.4 Response Latency ..81

6.3 Summary ..83

CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORKS84
7.1 Introduction ..84
7.2 Conclusions ..85

7.3 Future Works ...87

REFERENCES ..89

APPENDIX A ..99
A.1 Sample requests and responses used in Section 6.2 ..99

A.1.1 Simple Web Server ...99
A.1.2 PUCK over Bluetooth ...100
A.1.3 TinySOS ...101

vi

A.1.4 SOS over CoAP ..102
A.1.5 OGC SensorThings API ...104

vii

List of Tables

Table 2.1 Command set of the OGC PUCK ... 21

Algorithm 3.1 Naive pattern matching ... 42

Algorithm 3.2 Revised pattern matching .. 43

Table 4.1 Mapping SOS operations to CoAP requests ... 56

Table 4.2 CoAP responses to SOS requests.. 57

Table 5.1 Device registration procedres ... 67

Table 5.2 Response codes of the response engine .. 71

Table 6.1 RAM and ROM memory occupation.. 77

viii

List of Figures and Illustrations

Figure 1.1 The Internet of Things scheme .. 3

Figure 1.2 Technical overview of the IoT [15] ... 4

Figure 1.3 Existing IoT applications: (a) Wemo switch(http://blessthisstuff.com); (b) Philips

Hue light bulb (http://theverge.com); (c) Ninja Blocks (http://ninjablocks.com); (d) Air

Quality Egg (http://airqualityegg.wikispaces.com) .. 6

Figure 1.4 Internet protocol graph [28] ... 10

Figure 1.5 The placement of PUCK, TinySOS, and CoAP in the IoT ... 13

Figure 1.6 Netduino Plus mainboard [31]... 15

Figure 2.1 The overall workflow of accessing to the sensor measurements 19

Figure 2.2 PUCK memory .. 22

Figure 2.3 Procedures of the sensor protocol.. 23

Figure 2.4 The system architecture supporting PUCK protocol ... 24

Figure 2.5 The high level workflow of the service layer .. 26

Figure 3.1 The system architecture supporting TinySOS protocol [30] 36

Figure 3.2 Resource discovery process [30] ... 39

Figure 3.3 Code size comparison [30] .. 40

Figure 3.4 The high-level workflow of the XPU [30] .. 41

Figure 3.5 Using a SWE client to access a TinySOS device .. 44

Figure 4.1 High level view of the SOS over CoAP strategy .. 48

Figure 4.2 CoAP message format [55] ... 51

Figure 4.3 CoAP client-server interaction: (a) CON request; (b) NON request [55] 52

Figure 4.4 Empty ACK because of response deferral ... 53

Figure 4.5 The device architecture supporting CoAP protocol .. 53

Figure 4.6 The architecture of SOSCoAP Proxy .. 55

Figure 5.1 Ecosystem of the OGC SensorThings API .. 62

ix

Figure 5.2 URI Components ... 63

Figure 5.3 Data Model .. 64

Figure 5.4 The device architecture supporting OGC SensorThings API 65

Figure 5.5 An example of registration request.. 68

Figure 5.6 An example of IoT service response ... 68

Figure 5.7 Tasking request triggered from user to IoT service ... 70

Figure 5.8 Workflow of the response engine .. 71

Figure 6.1 Different components of our development platform ... 74

Figure 6.2 Request size evaluation for the get observation request .. 78

Figure 6.3 Response size vs. the number of sensor readings .. 79

Figure 6.4 Response size vs. the number of sensor readings (removed the OGC SensorThings

trend) ... 80

Figure 6.5 Response latency vs. the number of sensor readings .. 82

Figure 6.6 Response latency vs. the number of sensor readings (removed TinySOS) 83

Figure A.1.1 HTTP GET request to the simple web server .. 99

Figure A.1.2 Wireshark screenshot to analyze the requests sent to the simple web service 99

Figure A.1.3 GETREADING request and its response to a PUCK-enabled Netduino Plus

through Bluetooth ... 100

Figure A.1.4 Statistics of the GETREADING request ... 100

Figure A.1.5 GetObservation request to TinySOS by using 52 North test client tool 101

Figure A.1.6 Wireshark screenshot to analyze the requests sent to TinySOS 101

Figure A.1.7 GetObservation request to the SOSCoAP proxy ... 102

Figure A.1.8 Get observation request sent to a CoAP server (i.e., Netduino Plus) 102

Figure A.1.9 Wireshark screenshot to analyze the requests sent to the CoAP server 103

Figure A.1.10 Details of the get observation request sent to the CoAP server 103

Figure A.1.11 HTTP GET request/response to the OGC SensorThings 104

x

Figure A.1.12 Wireshark screenshot to analyze the request sent to the SensorThings service .. 104

Figure A.1.13 Response of the SensorThings to multiple readings request 105

Figure A.1.14 Summarized response of the SensorThings ... 106

xi

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

API Application Programming Interface

CoAP Constraint Application Protocol

CPU Central Processing Unit

EEPROM Electronically Erasable Programmable Read Only Memory

EXI Efficient XML Interchange

GPRS General Packet Radio Service

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

ITU International Telecommunication Union

IP Internet Protocol

JSON JavaScript Object Notation

LAN Local Area Network

MAC Medium Access Control

MTU Maximum Transmission Unit

M2M Machine to Machine

OS Operating System

OData OASIS Open Data Protocol

OGC Open Geospatial Consortium

OWS OGC Web Services

O&M Observation and Measurement

PC Personal Computer

P2P Peer-to-Peer

RAM Random Access Memory

ROM Read Only Memory

RFID Radio Frequency Identification

SBC Single Based Computer

SensorML Sensor Modeling Language

SID Sensor Interface Descriptors

SOS Sensor Observation Service

SPOF Single Point Of Failure

SPS Sensor Planning Service

SSL Secure Socket Layer

SWE Sensor Web Enablement

SWG Standards Working Group

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identification

URN Uniform Resource Name

URL Uniform Resource Locator

xii

UUID Unique Universal Identification

VGI Volunteered Geographic Information

WSN Wireless Sensor Network

XML Extensible Markup Language

XPU XML Processor Unit

1

Chapter One: Introduction

1.1 Background

The term “Sensor Web” was first used by Kevin Delin in 1997 [1] to describe a wireless sensor

network (WSN) architecture where sensors can cooperate as a whole. Nowadays, we are

witnessing the increasing number of deployments of WSNs and Sensor Web on the Earth. These

networks consist of spatially distributed autonomous sensors, each of which is used to monitor

the physical or environmental conditions (e.g., temperature, humidity, sound, motion, etc.) and to

cooperatively pass their data through the network to a main location (end user) [2]. WSNs have

been involved in many traditional applications, including habitats monitoring systems [3],

environment observation systems [4], structure health monitoring systems [5], health

applications [6], and fire emergency response systems [7].

Although the traditional monitoring systems (e.g., sensor networks) can provide precise

and accurate measurements, the deployment of these systems is usually labour-intensive and

challenging [8]. Therefore, a new paradigm called Citizen Sensing or Volunteered Geographic

Information (VGI) has been proposed to involve the general public into the monitoring system

[9, 10, 11]. With citizens measuring environmental properties voluntarily, scientists are able to

observe the environment with a much higher spatial and temporal resolution. A key to realize the

above citizen sensing vision is to empower citizens with low-cost and easy-to-use sensor

systems. Similar to the fact that the affordable and user-friendly PC democratized computing

[12], such cost-effective and easy-to-use sensor systems would be widely used in environmental

monitoring.

One of the fundamentals of the Citizen Sensing vision is the Internet connectivity to

provide online access to the sensor observations as they are measured [10]. Recently, researchers

2

focused on a new use of the Internet called Internet of Things (IoT), in which capable electronic

devices can be remotely accessed over the Internet. Since the IoT is made of different kinds of

objects, such device heterogeneity will pose challenges in terms of interoperability. Thus, the

goal of this research is to address the interoperability issues of the IoT.

Among the existing Internet-enabled devices, sensor is one of the key enablers in the IoT

paradigm [13]. For instance, sensors allow objects to sense the environment around them such as

thermometer, water gauges, cameras, etc. Since the IoT and sensors are tightly integrated, the

vision of the IoT and the World Wide Sensor Web [14] are similar. One immediate solution to the

IoT interoperability challenge can be using the interoperable protocols for the sensor networks.

The other solution can be to design a new specific protocol for the Internet of Things.

This chapter gives a brief presentation of the research topic by first introducing the

Internet of Things paradigm and the existing progress in the IoT applications. Next, we define

interoperability as a research motivation followed by problem definition and solutions. It then

states the research objectives and our contributions to overcome the introduced problem. In

addition, this chapter mentions our development platform, and a brief definition of the terms

used in the next chapters. Lastly, the remaining chapters are outlined.

1.2 Internet of Things

The Internet connected services are growing rapidly. A great number of people use the Internet

for web surfing, multimedia accessing, sending and receiving emails, playing games, shopping,

social networking and many other daily tasks. Consequently, World Wide Web can intuitively be

a good candidate to involve citizens into the sensing systems.

Therefore, the concept of Internet of Things (IoT) emerged as a networking infrastructure

to interconnect electronic objects over the medium of the Internet. The prime goal of the IoT is to

3

capture the observations from sensors, control IoT devices, and finally make those devices easily

available through the Internet. As illustrated in Figure 1.1, all electronic devices which are

capable of Internet connectivity (e.g., sensors, actuators, machines, and computers) can be visited

through the Internet browsers (e.g., web browsers and cell phone applications).

Figure 1.1 The Internet of Things scheme

To technically define IoT, we echo the definition provided by International

Telecommunication Union (ITU) [15]: "Internet of Things is a global infrastructure for the

information society, enabling advanced services by interconnecting (physical and virtual) things

based on existing and evolving interoperable information and communication technologies".

Figure 1.2 depicts this concept by mapping the physical world to the digital world across

communication networks. According to this technical viewpoint, IoT would certainly affect on

different aspects of the potential user’s life and behaviour. For example, assisted living, e-health,

enhanced learning, automation and industrial manufacturing, and intelligent transportation

4

systems are only a few examples of possible application scenarios in which the new paradigm

will play a leading role in the near future.

Figure 1.2 Technical overview of the IoT [15]

Referring to the definition provided by ITU, a Thing is also described as a uniquely

identifiable instance of the physical world or the information world, which can be integrated into

communication networks [15]. In this research, a Thing denotes a physical device in the physical

world with the mandatory capabilities of communication and the optional features of sensing,

actuation, data capture, data storage and data processing. Bormann et al. [16] worked within

IETF
1
 analyzed and categorized IoT objects into three categories with respect to their

communication capabilities: class-0 devices (i.e., impossibly limited devices), class-1 devices

(i.e., devices with about 10 Kbytes of RAM and 100 Kbytes of code space), and class-2 devices

(i.e., devices with about 50 Kbytes of RAM and 250 Kbytes of code space). Bormann et al. [16]

argue that the class-0 devices require extra help to communicate with other devices; the class-1

1
 IETF: Internet Engineering Task Force

5

devices cannot easily communicate with other devices or applications through traditional XML-

data representations and protocols (e.g., HTTP and Transport Layer Security (TLS)); and the

class-2 devices are able to communicate with the traditional transfer protocols and data

encodings. Based on these arguments, we focus on the relatively inexpensive class-1 IoT devices

in this research. Thus, this approach allows us to explore the lower bound of the resources that

are required for IoT applications. In that way, we ensure that our design choices can deliver an

efficient implementation suitable for a broader application domain.

Here, we identify and emphasis on two of the major issues of the Internet of Things.

First, since objects in the IoT act independently, each IoT object needs to be self-describable and

self-contained in order to communicate with other objects or sensors. That is, a Thing should be

able to describe and advertise both itself and its capabilities, which in general is the metadata of

the Thing. Second, since objects are developed to satisfy a particular need, their communication

protocols and data encodings are usually different from each other. This heterogeneity

consequently obstructs the communication and cooperation between objects. Besides the two

aforementioned issues, there are other issues in the IoT, such as limited power supply, privacy,

and security concerns. While these issues are important, we do not address them here as they are

out of the scope of this research.

1.3 Existing IoT Applications

IoT projects are dramatically growing in different areas, specifically in energy optimization.

Ericsson and Cisco IBSG
2
 predicted there will be 25 billion Internet-connected devices by 2015

2
 Internet Business Solutions Group

6

and more than 50 billion by 2020 [17, 18]. Some of the available IoT projects recently released

to the IoT market are shown in Figure 1.3.

Figure 1.3 Existing IoT applications: (a) Wemo switch(http://blessthisstuff.com); (b) Philips

Hue light bulb (http://theverge.com); (c) Ninja Blocks (http://ninjablocks.com); (d) Air

Quality Egg (http://airqualityegg.wikispaces.com)

Traditionally, network peripherals have not been easy to install. Recent standards such as

Universal Serial Bus (USB) and Plug-and-Play
3
 have improved the situation so that devices are

3
 http://www.pcguide.com/ref/mbsys/res/pnp-c.html

7

automatically detected and device drivers are automatically installed. Yet, networked devices,

such as Internet gateways and networked printers still require manual setup and configuration.

Wemo switch
4
 (Figure 1.3(a)) lets electronic devices to be remotely turned on/off. It is an

IoT application that follows the Universal Plug and Play (UPnP) [19] protocol in its

communication. Using UPnP, when a device is plugged in and turned on, it "just works".

However, the Wemo application has to be installed on an Android or iOS device, in order to

transfer the network settings to the Wemo switch. Furthermore, the Wemo switch cannot be

controlled from outside the network it exists (i.e., Internet).

Philips Hue light bulb
5
 (Figure 1.3(b)) is a wireless light which can display different

tones of white light from warm yellow white to vibrant blue white. The Hue light bulb works

similarly by means of a Hue router as a bridge between the bulb and the Hue app. Later on, it is

possible to talk to the light bulb by Hue bridge across the Internet. Furthermore, the Hue

application and Hue bridge are required to support the remote communication to the device.

Ninja Blocks
6
 (Figure 1.3(c)) are cloud-enabled components including sensors (e.g.,

temperature, humidity, motion, window and door contact) and actuators (e.g., lights, power

sockets) to monitor and control the environment. Ninja Blocks are more accessible than the two

previous IoT apps by integrating the Ninja Block to Ninja clouds on the Internet. The connection

between the Ninja Block and Ninja clouds is established automatically based on an API which

has already hard-coded on the Ninja Blocks. The cloud also provides a web interface for the

clients to aggregate sensor data in a repository. However, if a new device is added to the

4
 http://www.belkin.com

5
 https://www.meethue.com

6
 http://ninjablocks.com

8

network, the device needs to follow the Ninja cloud API to be able to interact with the Ninja

server.

Air Quality Egg
7
 (Figure 1.3(d)) is an air quality monitoring system which provides

online access to its observations. The egg is composed of a sensing device that measures the air

quality in the environment and a gateway that shares the collected data in real-time. The Air

Quality Egg immediately uploads the collected data to an open database service named Xively8

(formerly Cosm and before that Pachube). Although Xively provides online access to the sensor-

derived data, users can register their egg at the Air Quality Egg portal
9
 to visualize the data on a

map. Similar to the Ninja Blocks, the Air Quality Egg follows the robust API provided by

Xively.

Accordingly, IoT is creating innovative applications by assembling the IoT sensing and

controlling capabilities from different sources in effective ways. However, IoT service providers

are developing their own proprietary software interfaces for their devices. As mentioned above,

even these four instances of IoT applications do not apply the same protocol, application, and

communication style in data exchange. This means the number of proprietary interfaces is

growing as the number of IoT devices increases. Consequently, an effort is required to

interconnect various IoT devices with a shared interface to be globally accessed on the Internet.

1.4 Interoperability

Towards the first issue mentioned in Section 1.2, devices should somehow provide web services

to advertise the devices capabilities and information in the network. For the second issue, the

devices need to be interoperable in their communications. Based on the IEEE definition [20],

7
http://airqualityegg.com

8
https://xively.com

9
 http://airqualityegg.com/

9

syntactic interoperability means the ability of interoperation and information exchange in a

system; that is, devices should be able to interactively communicate with a common protocol and

data format. Beyond the syntactic definition of the IEEE, devices should exhibit semantic

interoperability as well. To clarify, semantically interoperable devices can interpret the

exchanged data, and generate meaningful result which is understandable by both sides. Although

interoperability has a broader scope, we focus on the syntactic and semantic interoperability in

this research.

According to Rodriguez et al. [21], Sensor Web and WSNs play an important role in the

IoT. In order to provide global interoperability for all IoT devices, we point to the open standard

interfaces defined for WSNs. One of the pioneers in the standardization of WSNs is the Open

Geospatial Consortium (OGC). OGC has been supporting geospatial interoperability since 1994.

Among all OGC standards, the Sensor Web Enablement (SWE) is a suite of standards to enable

sensor network interoperability. SWE standards include Observations & Measurements (O&M)

[22], Sensor Model Language (SensorML) [23], Sensor Interface Descriptors (SID) [24], Sensor

Observation Service (SOS) [25], Sensor Planning Service (SPS) [26], and PUCK protocol [27].

As a result, one possible solution to achieve the interoperable IoT is the development of these

OGC open standards on the IoT devices. Therefore, one of the objectives is to implement the

suitable SWE standards for IoT devices, and then we can evaluate whether the SWE standards

are suitable for IoT devices or not. In addition, as the SWE standards are designed for scientific

grade sensor systems rather than for resource-constrained low-cost IoT devices, there might be a

need to define a specific standard for the IoT objects.

10

1.5 Problem Definition, Motivation and Solutions

The information communication, including tasking IoT objects and retrieval of spatio-temporal

observations from distributed IoT devices, is a key function in the Internet of Things. The

traditional interaction models in the Internet are based on the request/response communication

style between network entities. The Internet protocol suite is the networking model for the

Internet which contains four layers: Application Layer, Transport Layer, Internet Layer, and

Link Layer [28] as depicted in Figure 1.4.

Figure 1.4 Internet protocol graph [28]

Other than the Link Layer which is significantly related to hardware equipments, Internet

Protocol (IP) in the Internet Layer, Transmission Control Protocol (TCP) in the Transport Layer

and Hyper Text Transfer Protocol (HTTP) in the Application Layer are mostly used to

communicate between computers on the World Wide Web. Therefore, a prominent candidate for

the IoT would be the WWW protocols that are very scalable, robust, and ubiquitous [30].

11

However, the existing Internet protocol suite may not be appropriate for the IoT because of the

following reasons:

1. Internet access problem: Many IoT devices are not capable of accessing the Internet. This

problem occurs because IoT devices do not meet the hardware requirements in order to

connect to the Internet or do not have the stable power supply to be continuously

connected to the network. Consequently, IoT should be flexible in integrating the Internet

protocol with other protocols in order to make those devices available on the Internet.

Involving new protocol(s) to the available network infrastructure typically requires new

software and hardware requirements (e.g., gateway) to facilitate the seamless integration

of those devices with mobile communication networks or Internet. For example, when a

Hue light bulb is going to communicate with a client (e.g., a web browser); the Hue

bridge needs to be installed on the network.

2. Lack of standard protocol for IoT data representation: HTTP is a foundation of data

communication for the World Wide Web to transfer hypertext across the Internet.

However, data representation considerably differs from one device to another because

there is no standard defining the data representation in the IoT. For example, plain text,

Hypertext Markup Language (HTML), JavaScript Object Notation (JSON), and

Extensible Markup Language (XML) are possible response formats. In order to supply

interoperable access between heterogeneous IoT objects, we need to define a standard

protocol on top or in parallel of HTTP.

3. Constrained resources of IoT devices: As we already mentioned in Section 1.2, we focus

on resource limited class-1 objects in this research. The Internet protocol suite itself

might be inappropriate for the constrained network or objects of the Internet of Things.

12

Therefore, efficient and compressed data encodings in terms of computational resource

consumption (e.g., memory, CPU, bandwidth) are required for these devices.

To alleviate the above deficiencies for the existing Internet protocols of the World Wide

Web, an alternative standard protocol(s) needs to be considered. The protocol(s) should be

effectively compliant with the requirements of IoT participants (i.e., objects, users, applications,

networks, gateways, proxies) in order to make the IoT devices interoperable in the network. The

selected protocol(s) can encourage people to participate in the IoT by connecting their sensors

and actuators to the network. In this case, IoT will provide real-time sensor data streams with a

much higher spatial and temporal resolution. Also, end users can remotely command their daily

devices by means of web browsers or mobile applications.

As OGC SOS is a commonly-used web service interface in the Sensor Web, we first

connect users to IoT devices based on that protocol. This connection may be established directly

through TinySOS protocol [30] which is a compressed implementation of the OGC SOS [25] on

the IoT objects. On the other hand, the connection protocol to the device can be modified to

OGC PUCK [27] or CoAP [16] which requires intermediary nodes (i.e., proxy, gateway) for

protocol conversions (Figure 1.5). The OGC PUCK provides access to the driver code,

installation procedures, communication port configuration, and metadata of the device. The

CoAP also employs the basic features of HTTP to the constrained network while maintaining a

low overhead.

13

Figure 1.5 The placement of PUCK, TinySOS, and CoAP in the IoT

In addition to using the existing standards for IoT, there is an ongoing effort of defining a

standard Web Application Programming Interface (API) for the IoT. This API, namely OGC

SensorThings, is built on HTTP protocols and applies the widely-used Representational State

Transfer (REST) style to access the system's components.

1.6 Objective and Contributions

The main objective of this research is to address the IoT interoperability issues. To achieve this

major goal, we first investigate the current progress on this aspect of the IoT. Then, we

implement four standard protocols on a class-1 IoT device including PUCK over Bluetooth,

TinySOS, SOS over CoAP, and OGC SensorThings. Finally, we evaluate the four different

protocols. To summarize, this thesis makes the following contributions:

 We implement the OGC PUCK on a Bluetooth-enabled class-1 IoT object. To make the

sensor data available on the Internet, we also integrate the OGC SOS protocol with the

PUCK-enabled IoT object.

14

 We implement the heavy-weight OGC SOS and SensorML standards on a resource-

constrained sensor (class-1 IoT device). In order to overcome the hardware constraints,

we introduce an efficient XML parser algorithm.

 To interconnect a CoAP-enabled IoT object with other sensors on the Web, we integrate

this protocol to other standards of the WSNs (e.g., OGC SOS) as an interoperable

infrastructure for the IoT. Therefore, we implement the commonly-used SOS standard

over CoAP on a CoAP proxy which has enough computational resources.

 We design a specific RESTful protocol for the Internet of Things called OGC

SensorThings API which communicates with IoT objects based on their own defined

protocols.

 At the end, we complete our contributions by evaluating the performance of the four

aforementioned protocols (i.e., PUCK over Bluetooth, TinySOS, SOS over CoAP, and

OGC SensorThings) in terms of memory occupation (ROM and RAM), request length,

response size and response latency.

The major contribution of this research is to explore the possible approaches to achieve

interoperability between class-1 IoT objects. Furthermore, we expect that the direction addressed

in this research can be a motive to establish a better infrastructure for the future of IoT.

1.7 Development Platform

In this research, we use a sensor compatible Single Board Computer (SBC), namely Netduino

Plus. This electronic framework is a low-price (59$) open source hardware platform built by

Secret Labs Company [31]. The board features a 32-bit Atmel microcontroller with 48 MHz

speed, 28 Kbytes main memory (i.e., RAM), and 64 Kbytes code storage. In this case, Netduino

Plus belongs to the class-1 device category in the framework of Bormann et al. [16].

15

Furthermore, Netduino Plus supports micro SD memory (up to 4 GB) as a permanent

memory to store necessary information such as configuration files, capabilities document, sensor

observations, etc. The network connectivity of the board is established by an Ethernet cable, but

its mainboard can support other network alternatives (e.g., Wi-Fi, Bluetooth, Zigbee, and GPRS).

As shown in Figure 1.6, the mainboard also supports 20 I/O pins (14 digital and 6 analog) where

sensors and actuators can be simply attached to. From the software viewpoint, codes developed

on this device should be written in C# .Net Micro Framework. Netduino Plus can run the codes

directly without any needs for operating systems (OS).

Figure 1.6 Netduino Plus mainboard [31]

1.8 Definition of Terms

For clearer understanding of the terms used in this study, terms and their definitions are as

follows:

Actuator- It refers to a transducer that accepts an electrical signal and converts it into a physical

action [32].

16

Feature of Interest- This describes a feature (so a representation of a real-world object) that

carries the property which is observed. This can be either a domain feature (a.k.a. sampled

feature) such as “Mississippi”, or a sampling feature like “water gage X" at Mississippi river.

[33]

Gateway- It refers to a device used to connect two different networks, especially a connection to

the Internet [29].

Observation Offering- It groups collection of observations which are somehow similar such as

the observations produced by a specific procedure. [25].

Observed Property- Facet or attribute of an object referenced by a name which is observed by a

procedure [25].

Phenomenon- It is an event in the real world which will be measured. A phenomenon may be a

physical property (such as temperature, length, etc.), a classification (such as species), frequency

or count, or an existence indication [34].

Procedure- This involves method, algorithm, instrument, sensor, or system of these which may

be used in making an observation [25].

Proxy server- In computer networks, a proxy server is a server (a computer system or an

application) that acts as an intermediary for requests from clients seeking resources from other

servers. A client connects to a proxy server, requesting some services, such as a file, connection,

web page, or other resources available from a different server. Then, the proxy server evaluates

the request as a way to simplify and control its complexity. Proxies were invented to add

structure and encapsulation to distributed systems [35].

Sensor- It is an entity that provides information about an observed property as its output. A

sensor uses a combination of physical, chemical or biological means in order to estimate the

http://en.wikipedia.org/wiki/Client_(computing)

17

underlying observed property. At the end of the measuring chain, electronic devices produce

signals to be processed [25].

Sensor Web Enablement (SWE) - Among the OGC working groups, SWE focuses on

integrating sensors, transducers, and sensor data storages discoverable, accessible and useable

via the Web. The OGS SWE standards include: Sensor Observation Service (SOS), Sensor

Planning Service (SPS), PUCK, Sensor Model Language (SensorML), and Observations &

Measurements (O&M) [36].

1.9 Thesis Organization

Chapter 2, 3, 4, and 5 overview PUCK over Bluetooth, TinySOS, SOS over CoAP, and OGC

SensorThings API, respectively. Therefore, Chapter 2 to Chapter 5 will independently explain a

specific protocol, each of which contains introduction, literature review, architecture,

methodology, discussion, and summary sections. Then, Chapter 6 evaluates our implementations

by comparing the four protocols in terms of performance analysis. Finally, conclusions and

future work are given in Chapter 7.

18

Chapter Two: PUCK over Bluetooth

2.1 Introduction

Among the large scope of OGC standards, we first choose PUCK which is a simple command

protocol. The PUCK contains a set of standard commands to access the device memory, read the

device metadata, and write data on the memory. The prime purpose of the OGC PUCK is to

provide interoperability for devices connected through serial cables or Ethernet. In order to

enable sensors to be accessible via wireless connections, we analyze possible radio

communication technologies. The choice of the radio highly matters since it influences either

energy consumption or software design. Comparing to Zigbee and RF transceiver alternatives

applied in WSNs or Sensor Webs, Bluetooth is more popular because it has been widely

supported by many daily devices (e.g., cell phone and notebook). In addition, Bluetooth is more

energy-efficient in comparison with Wi-Fi. Therefore, we integrate the Bluetooth protocols to the

PUCK standard in order to raise the interoperability between various types of sensors and

actuators, namely IoT devices.

PUCK standard is efficiently designed to be applied on devices supporting different

protocols. It considers two modes: PUCK mode for processing the PUCK commands, and

instrument mode for handling instrument-specific operations. Since the PUCK itself has no

support for retrieving and publishing the sensor measurements on the Internet, we use other OGC

standards, SID and SOS, to provide users the access to the measurements. The workflow is

shown in Figure 2.1 and is elaborated in Section 2.4.

19

Figure 2.1 The overall workflow of accessing to the sensor measurements

To wrap up, the first contribution of this chapter is that we initially enable sensors to be

accessible through Bluetooth technology. Then, we integrate Bluetooth protocol and PUCK as an

open standard wireless protocol to raise the interoperability of IoT devices.

The remainder of this chapter is organized as follows. In Section 2.2, literature review

and related works are stated. Section 2.3 and Section 2.4 present the proposed architecture and

implementation, respectively. In Section 2.5, we discuss about the PUCK over Bluetooth idea

and its consequent issues. Finally, a summary about this chapter is offered in Section 2.6.

2.2 Related Works

Bluetooth has already been utilized in Sensor Web [37] to let sensors upload their readings to a

data repository. Leopard et al. [38] achieved this by introducing a tiny Bluetooth stack that

allows TinyOS [39] applications to be executed on Bluetooth enabled sensor nodes. While

20

Leopard et al. [38] focused on the efficient network processing and system architecture design,

their research did not consider the interoperability issues between various sensors.

Since the Bluetooth radio range is over a couple of meters [40], the system developed by

Leopard et al. [38] does not provide the world wide access to the sensor measurements. To

overcome this problem, Ferrari et al. [41] proposed a new architecture for the sensor networks to

integrate the Bluetooth-enabled sensors with Internet-connected computers. As a result, these

Bluetooth-enabled sensors are essentially connected to the Internet. Although this

implementation successfully demonstrated the possibility of combining Bluetooth sensor nodes

to the web interfaces, the communication protocol between sensors and computers was

proprietary and did not consider the interoperability issues.

Nevertheless, to the best of our knowledge, there is no standard protocol based on the

Bluetooth that enables embedded sensors and IoT devices to be connected in an interoperable

manner. Therefore, we believe that the integration of Bluetooth and OGC standards for IoT

devices that this chapter presents is a pioneer in this field.

2.3 Architecture

Here, we briefly introduce the OGC PUCK protocol. Next, we explain the sensor protocol for

retrieving sensor observations from the device. Finally, we present the high-level architecture of

our proposed system.

2.3.1 OGC PUCK

The PUCK protocol provides access to the driver code, installation procedures, communication

port configuration, command protocol, and metadata such as OGC SensorML. In general, this

standard protocol mainly consists of two parts: PUCK commands, and PUCK memory.

21

 PUCK commands: The protocol has a command-response style in which commands are

considered as ASCII strings. Upon successful execution, the device executing PUCK

protocol will return the characters: PUCKRDY<CR>. If the PUCK-enabled instrument is

unable to execute a command successfully, it will issue a specific error. Table 2.1 shows

a summary of the PUCK commands.

Table 2.1 Command set of the OGC PUCK

Command Description

PUCKRM Read from PUCK memory

PUCKWM Write to PUCK memory

PUCKFM End PUCK write session

PUCKEM Erase PUCK memory

PUCKGA Get address of PUCK internal memory pointer

PUCKSA Set address of PUCK internal memory pointer

PUCKSZ Get the size of PUCK memory

PUCKTY Query PUCK type

PUCKVR Get PUCK version string

PUCK Null command

PUCKIM Put PUCK into instrument mode

PUCKVB Verify baud rate support

PUCKSB Set PUCK-enabled instrument baud rate

22

 PUCK Memory: PUCK memory provides a space for device information, and a memory

pointer referring to the memory address that will be read or written by the relevant PUCK

commands. Figure 2.2 indicates partitions of the PUCK memory which is mainly divided

into two parts: PUCK datasheet and PUCK payload. PUCK datasheet contains a small

standard datasheet including a Universally Unique Identifier (UUID), manufacturer ID,

PUCK version, header size, and several device related information such as name, version,

model ID, and serial number. On the other hand, the optional PUCK payload stores

additional information needed to operate the device such as device driver code,

SensorML, and so forth.

Figure 2.2 PUCK memory

2.3.2 Sensor Protocol

The purpose of sensor protocol is to allow users to simply query sensor capabilities,

observations, and presentations of observed features in the instrument mode. As the device we

23

used in this research does not provide any sensor protocol, we define a protocol based on the

concept of OGC SOS [25] to serve the demonstration purpose. Most of the terms used in this part

follow the terminology in the OGC SOS. Because of the limited resources in IoT instruments,

the command and response formats should be considered as simple as possible. Therefore, unlike

the SOS applying XML as the format, this protocol simply defines “separators” (e.g., {#, :, |}) to

format requests and responses (Figure 2.3). Similar to the OGC SOS, we define

GETCAPABILITIES operation in order to show the capabilities of the device. The response

includes the unique IDs of the sensors attached to the device, the phenomena IDs which are

measured by the sensors, and the unit of measurements. Next, the other operation,

GETREADING, can be sent to retrieve sensor readings. Figure 2.3 depicts the procedures of the

sensor protocol.

Figure 2.3 Procedures of the sensor protocol

24

2.3.3 System Architecture

As shown in Figure 2.4, the architecture we proposed for the device follows a layered structure

which has three major layers: Communication Layer, Service Layer, and Sensor Layer.

Figure 2.4 The system architecture supporting PUCK protocol

 Communication Layer: This layer includes the Bluetooth hardware and its protocol.

When a request is received, the layer forwards the request string to the service layer for

processing. After the service layer finishes processing the request, a response string is

returned to the communication layer to send back to the client.

 Service Layer: The service layer handles business logic of the system. This layer itself

consists of three modules: sensor data repository, response engine, and memory

management unit (MMU). More details about the service layer are presented in Section

2.4.

25

 Sensor Layer: The sensor layer consists of the physical sensors and the sensor controller.

The sensor controller tasks sensors to collect sensor observations. Next, it sends the

retrieved sensor observations to the sensor data repository of the service layer.

2.4 Implementation

In this section, we explain the service layer in detail. Then, we introduce the required software

components to connect the IoT device to the Internet.

2.4.1 Service Layer

In order to parse the commands and compose response messages on the small memory of IoT

devices, we propose the response engine. This unit is equipped with a buffering mechanism to

handle the large contents. By the way, the maximum memory consumption at any time for

reading and writing a document is equal to the buffer size. In our implementation, the buffer size

is considered 1 KB which is more than enough for the commands of PUCK and sensor protocol.

The high-level workflow of the service layer is illustrated in Figure 2.5. As the response

engine encountered with a carriage return operator, it tries to match the command with the hard-

coded commands (i.e., pattern). After pattern matching, the response engine processes the

request by retrieving necessary information from the MMU (if the command relates to PUCK

memory), or the sensor data repository (if the request contributes to the sensor protocol). Finally,

the response engine packages the result in buffers to be sent to the communication layer. The key

features in the service layer are the buffering and pattern matching approaches. By these features,

we could successively parse and compose large commands (e.g., 100KB) on devices with limited

resources (e.g., 25 KB RAM).

26

Figure 2.5 The high level workflow of the service layer

2.4.2 Additional Software Components

As the proposed IoT devices follow the PUCK open standard, users are able to connect to the

devices using the PUCK commands. For example, users can develop a PUCK detector

application that establishes Bluetooth connections and sends out PUCK Null command (i.e.,

PUCK<CR>) to discover PUCK-enabled devices. After a successful discovery process, the client

can send other PUCK commands to the devices through Bluetooth.

As PUCK provides access to the data in the PUCK memory, PUCK does not support

communications in the device protocol. Therefore, we apply another OGC standard, SID, to

handle the communications in the device protocol. First, we store a SID file which contains the

necessary information about the device protocol, in the PUCK payload for client applications.

Then, a client application can use a SID Interpreter [24] to retrieve sensor readings, and upload

the observations to an online SOS (Figure 2.1).

27

2.5 Discussion

PUCK over Bluetooth was presented in this chapter as a Bluetooth protocol allowing physical

sensors to be interoperable in the Bluetooth established network. Although PUCK protocol was

not designed to be hosted on devices with limited resources, we designed and implemented this

standard to host on class-1 IoT devices. The developed system has demonstrated that it is

feasible to have an interoperable and standard Bluetooth protocol for entire IoT devices. In this

case, the Sensor Web can be easily integrated to our daily devices such as mobile phones or

notebooks. In spite of popularity of the Bluetooth radio in our daily electronic devices, there are

several issues for the aforementioned system.

One issue is that Bluetooth radio has a short frequency range which clearly confines the

users to be in proximity to the sensor (e.g., 10m). Although other wireless technologies (e.g., Wi-

Fi or RF transceiver) might cover this inconvenience, they lack power conservation, or

compatibility with our daily devices.

Moreover, one of the most challenging issues points to the security and privacy concerns.

This issue can be solved by considering a passkey on the sensor’s Bluetooth modem which is

requested during the pairing process. Also, secure connection can be achieved by leveraging

existing standard mechanisms. For example, the current Bluetooth modem uses an encrypted

connection to protect the message content's integrity and confidentiality.

2.6 Summary

In this chapter, we presented the PUCK over Bluetooth protocol, as a wireless profile of the

OGC PUCK for IoT devices. Thereafter, we defined the OGC SOS-like commands to query the

capabilities document, and sensor readings. Furthermore, to address the world-wide access to the

28

sensor readings, we proposed the PUCK detector and SOS service developed on the host, which

is able to establish Internet connectivity.

By hosting open standard Bluetooth protocol on the IoT devices, not only the devices

become interoperable and easily plugged-and-played, but also the collected observations are

accessible via our daily devices as soon as they are measured. In this case, we can easily make

sensors available whenever wherever leading to a part of our tomorrow’s daily life.

29

Chapter Three: TinySOS

3.1 Introduction

The basic concept of the IoT is the ubiquitous existence of various things or objects that can

communicate and cooperate with each other in order to achieve shared goals [42]. By giving

objects the possibility to interact with each other, the IoT is attracting a wide range of

applications. For example, Giusto et al. [42] categorized IoT applications into five categories:

transportation and logistics, healthcare, smart environments, personal and social, and futuristic

applications.

In general, this chapter addresses the issues from the decentralized and heterogeneous

nature of IoT objects and sensors. The main idea is basically inspired by two papers published

by Priyantha et al. [43] and Bormann et al. [16]. Priyantha et al. [43] proposed a tiny web service

for sensors and an application-level interface which have three advantages. First, each sensor

becomes self-describable and self-contained by providing web interfaces for applications to

retrieve sensor's capabilities. Second, some sort of privacy is preserved for device owners by

direct connections to their devices. In addition, the sensor deployment and maintenance are

easier with interfaces for updating a sensor's metadata. However, in order to achieve the

interoperability between sensors and applications, one solution is to use standard-based web

service interfaces and widely-used data encodings in information communication. However,

Priyantha et al. [43] defined their own ad-hoc interfaces rather than implementing existing

standards. On the other hand, Bormann et al. [16] proposed the Constrained Application

Protocol (CoAP) as a lightweight transfer protocol for IoT objects. To develop a lightweight

protocol, they used User Datagram Protocol (UDP) [28] to simplify the information exchange

between the CoAP nodes. UDP is an alternative to the Transmission Control Protocol (TCP) [28]

30

which keeps track of packet delivery. In order to enable CoAP with this advantage of TCP,

CoAP applies a re-transmission mechanism for lost packets. However, as most web applications

are using HTTP, an extra proxy that translates HTTP and CoAP is required for applications to

communicate with IoT objects. Chapter 4 thoroughly explains the specification of the CoAP and

its contribution to this research.

According to the two above papers, one effective way to make IoT objects self-

describable and self-contained is to implement web services on IoT objects. Moreover, the web

services and the communication protocols have to be lightweight enough to be executed on

objects with limited resources. Both the tiny web service paper [43] and CoAP paper [16] present

a concrete idea about how to address the decentralized and heterogeneous issues of IoT and

Sensor Web. However, we argue that the only drawback of these two papers is that they do not

take advantage of the existing open standards to address the interoperability issues.

The Open Geospatial Consortium (OGC) established Sensor Web Enablement (SWE) as

a group of open standards related to sensors, sensor data models, and Sensor Web services [44].

Similar to the W3C standards, the OGC SWE specifications are consensus-based open standards

defined by any individual who is willing to participate. In principle, by following the SWE

standards, we can achieve interoperability for the Sensor Web. However, the SWE standards are

defined under the concept that web services are intermediaries between end-user applications and

the sensors, and the SWE web services are based on HTTP and XML data representation.

Lightweight Sensor Web services are not in the scope of SWE10. Thus, to the best of our

knowledge, there is no existing work that evaluates the feasibility of constructing a SWE web

10
 A new OGC Standards Working Group (SWG) was formed in June 2012 called the Internet of Things REST API

SWG. It focuses on developing an OGC standard for access to sensors in an IoT environment.

31

service directly on an object with limited resources. The reason this evaluation is important is

that if SWE web services can be hosted on IoT objects, the IoT objects will not only be self-

describable and self-contained, but also they will inherit the comprehensive SWE conceptual

model directly. In this case, the IoT objects can interoperate with each other as well as the

existing OGC SWE applications. Moreover, some sort of privacy might be preserved by

removing the gateways in the path between the applications and devices.

Among the SWE specifications, we choose the Sensor Observation Service (SOS)11

which defines a web service interface for accessing sensor observations and metadata [25], to be

implemented on a class-1 IoT object. Our implementation of the SOS is termed TinySOS [30]

that supports a lightweight profile of OGC SOS suitable for limited resources IoT objects.

Moreover, to address the issue of discovering IoT objects, we implement a sensor

registry service that not only allows a sensor to register and advertise itself, but also lets

consumers (e.g., other IoT objects, sensors, or end-user applications) to search for available IoT

resources.

In summary, this chapter makes the following contributions:

1. We present TinySOS as an open standard Sensor Web service on the IoT devices. With

the aim of doing this, TinySOS enables average users to deploy low-cost sensor systems

easily.

2. Instead of using the traditional web service container, we develop a tiny web service

whose code size is four times smaller than that of the traditional web service container.

11
 In this thesis, Sensor Observation Service (SOS) refers to the SOS version 1.0 [OGC, 2007]

32

3. To parse and compose potential large XML documents on an IoT device, we implement

an XML processor unit (XPU) equipped with buffering mechanism to efficiently read and

write XML documents. Therefore, the TinySOS allows a highly constrained device to

handle very large XML documents.

4. Finally, to address the resource discovery issue, we implement the sensor registry service

that acts not only as a catalog service, but also as a proxy to forward requests and

responses between clients and TinySOSs with dynamic IP addresses.

The remainder of this chapter is organized as follows. Section 3.2 reviews the OGC SWE

and the literature of integrating SWE and IoT. Section 3.3 and Section 3.4 present the proposed

architecture and implementation, respectively. This is followed by a discussion about our

findings and other issues about the IoT in Section 3.5. Finally, we this chapter provides a

summary in Section 3.6.

3.2 Related Works

There have been some existing IoT projects applying proprietary protocols, such as Microsoft's

HomeOS [45], Xively12 (previously known as Cosm and before that Pachube), MicroStrain's

SensorCloud13, and Wovyn14. Many of them provide a web portal for users to manipulate the data

collected by their sensors. We refer to these web portals as the IoT portals. Most of the IoT

portals allow users to visualize the time-series data collected by sensors or publish the data with

their own Application Programming Interfaces (APIs). However, in this case, IoT objects, that

support only one type of proprietary APIs, form a “silo”, and cannot interoperate with objects in

other silos. Consequently, the development of various IoT silos obstructs the development of the

12
https://xively.com

13
 http://www.sensorcloud.com/

14
 http://www.wovyn.com/

http://www.sensorcloud.com/system-overview

33

IoT. Therefore, in order to break down these silos and achieve the vision of an open IoT

environment, following open standard protocols is necessary.

Sensor Web Enablement (SWE) as an OGC working group defines open standards

related to Sensor Web. The prominent standards in the SWE frameworks are Observations &

Measurements (O&M) [22], Sensor Model Language (SensorML) [23], Sensor Observation

Service (SOS) [25], Sensor Planning Service (SPS) [26] and PUCK Protocol Standard (PUCK)

[27]. O&M defines the standard models and XML schema for observations and measurements

collected by sensors. The SensorML specification includes the standard models and XML

schema for representing the metadata of sensor systems and processes. SOS presents the standard

web service interface for requesting, filtering, and retrieving observations and sensor system

information. An SOS service is the intermediary between a client and sensor observation

repositories. The SPS specification provides the standard web service interface for users to task

sensors to make observations. The PUCK standard which is introduced in Chapter 2 is a low-

level protocol to retrieve SensorML documents, sensor driver code, and other information from

sensors.

The SOS and SPS are the two SWE specifications defining the standard web service

interfaces. For implementing a SWE web service on an IoT object, we choose the SOS in this

chapter due to the fact that the SPS service requires customized implementations depending on

each sensor's capabilities.

In fact, there have been some initiatives on integrating SWE and IoT. For example,

presentations and talks such as “SWE and IoT”15, “Sensor Web Standards and the IoT”16,

15
 “SWE and IoT,” Mike Botts, Botts Innovative Research, SWE-IoT ad-hoc during OGC TC, March 2012.

34

“Bringing IoT to the mass market - what should a standard do?”17, and “Collaborative

development of open standards for expanding GeoWeb to the Internet of Things”18 were given in

workshops and OGC Technical Committee meetings to discuss the possibility of applying SWE

standards on the IoT. In addition, a new OGC working group was formed in June 2012 to define

open standards for integrating SWE and IoT [46]. Moreover, Broring et al. [47] implemented

SenseBox, which utilizes the O&M standard in their web service API. However, the web service

on their SenseBox does not follow SWE standards. Furthermore, Resch et al. [48] did implement

SWE standards (including SOS) on an embedded sensing device. However, their sensor

hardware has 512 Mbytes RAM and 32 Mbytes flash memory, which even much more powerful

than the class-2 device mentioned in Bormann et al. [16]. Therefore, we argue that it is still

necessary to evaluate the feasibility of implementing SWE standards on a relatively inexpensive

class-1-like device.

3.3 Architecture

In this section, we introduce the lightweight profile of SOS – TinySOS. Next, we present the

high-level system architecture of TinySOS for class-1 IoT objects, and finally discuss our

proposed sensor registry service for IoT resource discovery.

3.3.1 TinySOS

As mentioned earlier, class-1 devices have limited resources. In order to host web services on

class-1 devices, the web service needs to be lightweight enough. Therefore, in this

16
 “Sensor Web Standards and the IoT,” Scott Fairgrieve, Northrop Grumman, Expanding GeoWeb to IoT workshop

during COM.Geo, 24 May 2011.
17

 “Bringing IoT to the Mass Market - What should a standard do?” Ben Pirt, Pachube, IoT Workshop at OGC TC,

November 2011.
18

“Collaborative Development of Open Standards for Expanding GeoWeb to the Internet of Things,” George

Percivall, OGC, COM.Geo, Expanding GeoWeb to IoT workshop during COM.Geo, 24 May 2011.

35

implementation, we only select the mandatory operations of the SOS (i.e., the core operations)

for the TinySOS. There are three mandatory operations in the SOS, namely GetCapabilities,

DescribeSensor, and GetObservation.

The GetCapabilities operation provides access to metadata and detailed information

about the available capabilities of the service. The GetCapabilities request can be sent either by

HTTP GET or POST request type to retrieve the service metadata as an XML file (i.e., the

Capabilities document). The XML file contains metadata about this service, such as unique

sensor identifiers, logical groupings of sensor observations (i.e., the ObservationOfferings in the

SWE terminology), and the URIs of physical phenomena (i.e., the ObservedProperties) that

sensors are measuring. Users can use the information in the Capabilities document to retrieve the

sensor metadata and the observations with the other two core operations.

The DescribeSensor operation allows users to retrieve sensor metadata with a unique

sensor identifier specified in the Capabilities document. If the DescribeSensor request is valid

(i.e., the service has sensor matches the unique identifier), the SOS returns the sensor metadata in

the SensorML format.

The GetObservation operation provides access to the observations made by the sensors.

Users can use the ObservationOffering and ObservedProperty in the GetObservation request as

criteria in querying sensor observations. According to the criteria specified in the request, the

SOS returns the sensor observations in the O&M format.

3.3.2 System Architecture

As we can see from the previous sub-section, to support the three core operations of SOS, an IoT

object needs the functionalities of validating the HTTP request type (i.e., GET, POST), content

type (i.e., text/xml), parse the XML request, and create the XML response. To achieve these

36

functionalities, here we present the proposed system architecture of the TinySOS service. There

are three major layers in the TinySOS service (Figure 3.1), including Communication Layer,

Service Layer, and Sensor Layer.

Figure 3.1 The system architecture supporting TinySOS protocol [30]

1) Communication Layer: The communication layer is responsible for managing the HTTP

requests and responses, including the network related protocols and hardware (e.g.,

Network Interface Card). When a request is received by a TinySOS service, the

communication layer forwards the XML request to the service layer for further

processing. After the service layer finishes the task, an XML response is returned to the

communication layer, and then sent back to the client.

2) Service Layer: The service layer handles the business logic of TinySOS. This layer

consists of three modules: XML processor unit (XPU), response engine, and sensor data

repository. As the XML documents are essentially too large to be stored in the memory

37

of class-1 devices, the TinySOS service needs a new way to parse XML documents.

Therefore, unlike the traditional XML parsers that load the whole XML document into

memory, we propose the XML processor unit (XPU) which reads and parses XML

documents buffer by buffer. The XPU not only extracts the request criteria parameters,

but also composes the GetObservation responses. More details about the XPU are

presented in Section 3.4. The request criteria extracted by the XPU are forwarded to the

response engine. If it is a GetCapabilities request or a DescribeSensor request, the

response engine retrieves a predefined XML file (e.g., the Capabilities document and the

SensorMLs) from the permanent memory, and forwards it to the communication layer.

Otherwise, if the request is a GetObservation operation, the response engine tasks the

XPU to compose the GetObservation response according to the criteria, and forwards the

response to the communication layer. In addition, as an SOS should have the ability to

return the historical observations, the TinySOS stores sensor measurements in a sensor

data repository. Depending on the device, the sensor data repository could be located in

the main memory (RAM) or the permanent memory (e.g., micro SD card).

3) Sensor Layer: The sensor layer consists of the physical sensors and the sensor controllers.

The sensor controllers closely work with sensors. For example, a sensor controller can

task sensors to collect sensor observations and send the collected sensor observations to

the sensor data repository in the service layer. The sensor controller would play an

important role in supporting SPS on IoT objects.

3.3.3 Resource Discovery

For the decentralized environment such as the IoT, resource discovery is always an issue. In our

case, each sensor has a TinySOS web service which allows users to directly connect to sensors.

38

However, users still need to know the service's Internet location (e.g., IP address) in the first

place.

In order to address the resource discovery issue, we propose a sensor registry service.

Sensor registry service is similar to search engines and catalog services [49] that stores the

metadata of web services and allows users to search services with criteria on metadata. However,

in addition to the functionalities of a catalog service, the proposed sensor registry service is

enhanced to support web services without a static IP address. This is because getting a static

unique IP is not always possible, especially for embedded devices such as IoT objects.

Therefore, in order to make a good use of IoT objects with dynamic IP addresses, we enhance

the TinySOS and the sensor registry service to maintain a live connection together. In this case,

the sensor registry service can act as a proxy redirecting requests and responses between users

and TinySOS services.

The overall resource discovery process is shown in Figure 3.2. First, a TinySOS device

with a static IP address registers itself to the sensor registry service by sending its IP address and

service metadata. For a TinySOS device with a dynamic IP address, it not only transmits the

service metadata to the sensor registry service, but also maintains a live connection with the

sensor registry service. After the registration process, a client can send search requests to the

sensor registry service. If the TinySOS that matches the search criteria has a static IP address, the

sensor registry service returns the IP address to the client, and then the client can connect to the

TinySOS through the SOS protocol. If the matched TinySOS has a dynamic IP address, the

sensor registry service returns the IP address of itself (i.e., the sensor registry service) with a

subpath of the unique identifier of that TinySOS (i.e., http://IP of the sensor registry

service/unique ID of TinySOS). In this case, the client can directly send SOS requests to the

39

sensor registry service, and the requests will be forwarded to the TinySOS. Similarly, the sensor

registry service will redirect the SOS responses from the TinySOS to the client.

Figure 3.2 Resource discovery process [30]

3.4 Implementation

In this section, we point to a lightweight web server implementation, and later we explain the

XPU algorithms in parsing XML documents.

3.4.1 Tiny Web Server

As regular web service containers (e.g., Apache web server) would be too heavy for Netduino

Plus, we develop a “Tiny Web Server” as a container for TinySOS. This web server implements

the basic features of an HTTP server which includes getting requests from clients and returning

response data streams.

While the classes and libraries in C# .Net Micro Framework are relatively convenient to

use, they consume a considerable amount of the code storage and memory footprint [50]. Hence,

40

instead of using the predefined C# libraries, we develop most functions by ourselves to decrease

the code space and memory usage. For example, we develop another HTTP request handler to

replace the .NET Micro HTTP library resulting in 35% less code storage occupation (from 17

KB to 11 KB). At the end, our tiny web server implementation only takes 11.72 KB of the code

storage, which is much smaller than a regular SOS server occupying tens of Mbytes of code

space19. Figure 3.3 shows the comparison between the code size of the simple web server and the

three layers of TinySOS (communication layer, service layer, and sensor layer).

Figure 3.3 Code size comparison [30]

To clarify more the performance of the TinySOS, the simple web server is not able to

process the requests including contents larger than 4 KB. In contrast, our TinySOS efficiently

19
 http://wiki.geocens.ca/sos/Installation, and http://52north.org/communities/sensorweb/sos/

41

responds requests up to 82 KB in length. Additionally, the simple web server cannot parse any

XML files due to lack of enough memory.

3.4.2 XPU Algorithms

Since the memory of IoT objects is usually small, the XML request and response documents

cannot fit into the memory. In order to parse and compose XML documents, we propose the

XML processor unit (XPU) to read and write XML documents by utilizing a buffer mechanism.

A buffer refers to a certain physical memory allocated to hold data temporarily. Therefore, by

reading an XML document buffer by buffer, the maximum memory consumption at any time is

equal to the buffer size. In our implementation, the buffer size is considered 1 KB.

Figure 3.4 depicts the high-level workflow of the XPU. First, when the XPU receives an

XML request document straight over the sockets, the XPU calls the buffer reader iterater to read

the document buffer by buffer. Then, in order to extract the information of the request from the

buffer, XPU uses the data extractor to match the bytes in the buffer between some predefined

bytes of patterns.

Figure 3.4 The high-level workflow of the XPU [30]

42

Since SOS defines specific XML elements and attributes for the SOS requests, we can

understand the requests by searching the predefined words. For instance, the data extractor

matches the bytes of the buffer with the bytes of the following words: “XML”, “request”,

“service”, “version”, “GetCapabilities”, “DescribeSensor”, “GetObservation”, “offering”,

“procedure”, “observedProperty”, and “<”. By treating the bytes of the predefined words as

patterns, Algorithm 3.1 shows the naive approach of how the data extractor searches for these

key words. After finding the location of the predefined XML elements or attributes, we can

extract the values of them by simply loading the bytes after the elements/attributes.

Algorithm 3.1 Naive pattern matching

Function Match(pattern, buffer): matched

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

m pattern.length()

n buffer.length()

matched false

i 0

FOR i to n - m

 IF pattern [1..m] is equal to buffer [i+1..i+m] THEN
 matched true

 END IF

END FOR

RETURN matched

However, although the naive approach (Algorithm 3.1) works well in many cases, it fails

on the case that patterns exist across two buffers. To overcome this problem, we merge the

previous buffer to the current buffer for all iterations. In fact, each buffer except the first and last

buffers is processed twice. Since the predefined patterns are all less than 1 KB, the revised

version of the naive pattern matching approach (Algorithm 3.2) can extract all necessary

information.

43

Algorithm 3.2 Revised pattern matching

Function Match_Revised (pattern, buffer_current, buffer_next): matched

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

buffer CONCATENATE (buffer_current, buffer_next)

m pattern.length()

n buffer.length()

matched false

i 0

FOR i to n - m

 IF pattern [1..m] is equal to buffer [i+1..i+m] THEN
 matched true

 END IF

END FOR

RETURN matched

After the data extractor finishes the matching process on each buffer, the buffer cleaner

removes the buffer memory and continues the iterations until the whole XML document is read.

On the other hand, the same buffering approach is applied to compose XML responses. For a

TinySOS responding to an SOS request, the XPU iteratively fills the response message into a

buffer. When the buffer is full, its content is streamed to the client and then the XPU cleans the

buffer. Consequently, with the buffering and pattern matching approaches, we successively

address the issues of parsing and composing large XML document on devices with limited

resources.

To sum up the proposed system, we demonstrate that by hosting an SOS service on IoT

devices, we can use existing SWE applications to retrieve sensor data from the IoT devices.

Figure 3.5 shows the GeoCENS [51] SWE client and the sensor data retrieved from a TinySOS

device.

44

Figure 3.5 Using a SWE client to access a TinySOS device

3.5 Discussion

The proposed TinySOS system allows physical sensors to be interoperable in the OGC SWE

framework. Although SOS was not designed to be hosted on devices with limited resources, we

design and implement the tiny web service container and XPU to host SOS on IoT devices. The

proposed system has demonstrated that it is feasible to host a SWE web service on class-1

devices. In this case, the Sensor Web can provide real-time sensor data streams with a much

higher spatio-temporal resolution. However, we also observe some potential issues on the

TinySOS system.

The first immediate issue is that each IoT device should have a stable and constant

Internet connection in order to receive requests from clients, which is currently unavailable. One

potential solution already discussed in Chapter 2 is to utilize the OGC PUCK standard protocol

45

on IoT devices. However, the PUCK protocol was not designed to be a web service serving

sensor observations. Additional web interfaces are still needed in this case.

The second issue is about the update of metadata, such as the SensorML or sensor

location. As these information can be manually stored in the permanent memory (e.g., SD card),

a standard way provided by SOS is the transaction operations. By supporting the transaction

operations of SOS, sensor owners can register SensorMLs into the SOS. However, to

automatically measure sensor locations, attaching a Global Positioning System (GPS) sensor on

the device may be a better choice.

In addition, privacy and security are the important items as well. The privacy issue is

about whether the sensor owners want their devices to be discoverable or not. In the case of this

implementation, as the resource discovery is handled by search engines or catalog services such

as the sensor registry service, mechanisms to preserve privacy should be implemented in these

resource discovery services. Information security means protecting information and information

systems from unauthorized access, use, disclosure, disruption, modification, perusal, inspection,

recording or destruction [52]. This can be achieved by leveraging existing standard mechanisms.

For example, the current TinySOS implementation uses the Transport Layer Security (TLS) and

Secure Socket Layer (SSL) to protect the message content's integrity and confidentiality.

3.6 Summary

In this chapter, we presented the TinySOS service, a lightweight profile of OGC SOS for IoT

devices. In order to host an SOS service on devices with limited resources, we developed a tiny

web service container to handle HTTP requests/responses; and we proposed the XML processor

unit to parse and compose XML documents with small memory consumption. Furthermore, to

address the resource discovery issue, we developed the sensor registry service which can serve

46

not only as a catalog service, but also as a proxy between clients and devices with dynamic IP

address.

By hosting open standard web services on IoT devices, not only the devices become self-

describable, self-contained, and interoperable, but also the collected observations are accessible

via the Internet as soon as they are measured. In this case, the Sensor Web can provide real-time

sensor data streams in a much higher spatio-temporal resolution, which allows users to observe

phenomena that were previously unobservable.

47

Chapter Four: SOS over CoAP

4.1 Introduction

IoT devices are usually limited in power, network, memory and processing capabilities [16]. The

aforementioned standard protocols, PUCK and TinySOS, have not typically been designed with

power and network efficiency in mind. In battery-operated WSN nodes, the radio transceiver is

certainly the most power-consuming component [53], so power-efficiency translates into

optimized radio duty cycling. Since the IoT and WSN share similar visions, the same scenario

exists in the IoT. The naive solution is enforcing the battery-powered device to keep its radio off

as much as possible. Another solution is to minimize the network load by which not only the

bandwidth is dramatically saved, but also the radio transceiver can fulfill its task faster resulting

in more sleeping [54].

To achieve this, we select the IETF protocol designed for constrained nodes and networks

(e.g., WSNs), and named Constrained Application Protocol (CoAP) [55]. This protocol employs

the basic features of HTTP to the constrained network while maintaining a low overhead. HTTP

is based on the Representational State Transfer (REST) style [56]; in which the web resources

are identified by URIs. Thus, CoAP enables interoperability in machine to machine (M2M)

communications at the application layer through RESTful web services. REST only relies on the

HTTP methods such as GET and POST. Unlike HTTP, CoAP operates over the UDP and applies

an efficient retransmission mechanism instead of complicated congestion control as used in

standard TCP.

The CoAP can easily be translated to HTTP to make the seamless integration of

constrained networks with the Web. To do this, CoAP proxies are employed to convert CoAP

48

messages to HTTP packets. The main interest in making CoAP nodes part of the Internet is to

allow various nodes to interact with each other using the existing web technologies.

Since we have already demonstrated the integration of OGC SOS to the IoT, we combine

this protocol with CoAP in order to make CoAP nodes interoperable to other IoT components.

As we already discussed in Chapter 3, SOS is not originally designed for limited resources IoT

objects. On the other hand, CoAP cannot validate SOS requests which are definitely larger than

the CoAP upper bound for the message size (1280 byes for IPv6 datagram) [55]. Therefore, one

possible solution is to combine SOS and CoAP on the CoAP proxy which has enough resources.

Therefore, the contribution of this chapter is that we are the first to bind the OGC SOS to the

CoAP Proxy denoted as SOSCoAP proxy. According to Figure 4.1, the SOSCoAP proxy can

communicate through CoAP regulations to CoAP nodes (i.e., IoT devices) from one side, and it

can speak through the SOS standard from another side. As a result, we achieve the

interoperability while maintaining minimal resource consumption on IoT devices.

Figure 4.1 High level view of the SOS over CoAP strategy

The remaining sections of this chapter are organized as follows. In Section 4.2, existing

literature about the CoAP implementation is reviewed. Section 4.3 and Section 4.4 present the

proposed architecture and implementation, respectively. Section 4.5 provides a discussion about

49

the SOS over CoAP strategy and its challenges. Finally, this chapter is briefly described in

Section 4.6.

4.2 Related Works

CoAP has been already implemented in the most popular operating systems for WSNs such as

LibCoap for TinyOS [57] and CoapBlip for Contiki [58]. These research efforts mainly

addressed the possibility of the CoAP on target platforms with only tens of KB RAM and ROM.

Later on, some research improved the CoAP implementations for WSNs in case of

energy consumption, memory usage and network latency [59]. Although CoAPBlip [59] has

been previously included in the TinyOS as a CoAP library, Ludovici et al. [59] introduced

TinyCoAP as a more efficient implementation of the CoAP for TinyOS. The TinyCoAP is

implemented only for the devices supporting TinyOS which conflicts with the aim of

interoperability between all kinds of IoT devices.

There are also a few efforts to make the CoAP compliant to the World Wide Web

standards. For example, Simple Object Access Protocol (SOAP) standard [60] for the data

exchange of web services was bound in CoAP in [61]. This research could successfully transport

SOAP messages in resource constrained environments resulting in deployments of web services

in WSNs. However, there is a negative point in combining SOAP and CoAP because SOAP

messages are encapsulated in the XML format which leads to complex message processing.

Since the overhead of data transfer between SOAP-based web services is significantly higher

than the RESTful web services [62] [63], the authors of [64] focused on the combination of

RESTful CoAP and XML to make it more standardized. Thus, they proposed CoAP to supply

RESTful communications among applications, and EXI (Efficient XML Interchange) format

[65] to make their system more standardized according to the World Wide Web Consortium

50

(W3C) [66]. The weakness of this design is that the interoperability issue of the IoT objects was

not touched at all.

Lerche et al. [62] give an overview of the current CoAP implementations and present the

results of an interoperability meeting organized by the European Telecommunications Standards

Institute (ETSI) [67]. In this research, 18 CoAP server and 16 CoAP client implementations were

tested against each other. Although this is a preliminary step towards the interoperability

assessment between CoAP nodes, the use of CoAP solely in the IoT has not been definitely

confirmed yet.

According the above literature, we are not the first to argue the benefits of the CoAP and

its implementation challenges, but we are the first to demonstrate the integration of this protocol

to other standards of the WSNs (e.g., OGC SOS) as an interoperable infrastructure for the IoT.

4.3 Architecture

In this section, the CoAP specification is technically discussed first. Then, the proposed

architecture for a CoAP-enabled IoT device is described. At the end, we also present the

architecture of the SOSCoAP proxy.

4.3.1 CoAP Specification

The CoAP was originally released by the Constrained RESTful Environment (CoRE)
20

 working

group at IETF as a reliable lightweight protocol for the Internet of Things. The CoAP is

lightweight because it keeps the message length as short as possible, and it transmits the packets

over the network by using UDP. The CoAP specification provides an upper bound to the

message size. Since the messages larger than an IP fragment [28] result in undesired packet

20
 http://tools.ietf.org/wg/core/

51

fragmentation, a CoAP message should fit within a single IP packet (i.e., avoid IP fragmentation)

and must fit within a single IP datagram. In cases that the Maximum Transmission Unit (MTU)

of a path is not known for a destination, an IP MTU of 1280 bytes is assumed for the CoAP

message size. If nothing is known about the size of the headers, an upper bound of 1152 bytes for

the message size and 1024 bytes for the payload size must be considered [55].

In general, the CoAP message is composed of a header with at least 4-byte length, a

token, several options, and a payload. To have a better understanding, Figure 4.2 depicts the

format of a CoAP message. The 4-byte header includes CoAP version, message Type

(confirmable, non-confirmable, acknowledgement, reset), token length, code (request, success

response, client error response, server error), and message ID (for detection of message

duplication). The header is followed by a token value (to correlate request and response), options

(if any), and payload (if any) which are all variable-length.

Figure 4.2 CoAP message format [55]

CoAP messages may be Confirmable (CON) or Non-confirmable (NON). In spite of

using UDP in the request/response interactions, reliability is provided when messages are

labelled as Confirmable through end-to-end stop-and-wait retransmissions mechanism [55]. That

is, a CoAP server receiving a CON request must acknowledge its receipt to the client. Until the

acknowledgement (ACK) is received by the client, the previous request will be retransmitted to

52

the server with exponential back-off. Sometimes a request might need further processing to be

responded; so the server sends an empty ACK to indicate that the response will be deferred.

Consequently, the client must also acknowledge the arrival of the server's CON response. On the

contrary, Non-confirmable messages are used to allow sending requests that does not require

reliability. Figure 4.3 exemplifies a client-server interaction for a CON request and a NON

request.

Figure 4.3 CoAP client-server interaction: (a) CON request; (b) NON request [55]

Furthermore, CoAP is able to detect duplicate messages by matching requests to

responses. This is done by checking the message ID of each request which is already generated

by the client. The detection of duplicated messages is available in CON as well as in NON

messages. Finally, the token value (i.e., request ID) is used for distinguishing concurrent

requests. The server must echo the token value of a client request in any relevant responses to

that request (Figure 4.4).

(a)

(b)

53

Figure 4.4 Empty ACK because of response deferral

4.3.2 Device Architecture

As depicted in Figure 4.5, we have integrated a full protocol stack necessary for an IoT device in

order to communicate through the CoAP.

Figure 4.5 The device architecture supporting CoAP protocol

54

The sensor layer pretty remained unchanged comparing to TinySOS and PUCK. The

business logic layer is partially similar to the service layer of the two prior protocols. The

significant highlight in this layer is the Data Uploader component (i.e., client) in order to

frequently upload the sensor observations to a pre-defined CoAP proxy. When a CoAP request is

received in the communication layer, it is directly forwarded to the response engine. The

response engine composes the content, and posts the message to the communication layer to be

packaged in the CoAP message format. Furthermore, as a user may request historical

observations, the sensor readings are dynamically stored in a sensor data repository.

More importantly, CoAP focuses on efficiency in data transmission, so the

communication layer on the device is totally modified from the two previous protocols. The most

fundamental change points to the usage of UDP instead of TCP in the transport layer with

retransmission mechanism.

4.3.3 SOS Integration to CoAP

The SOSCoAP proxy is a regular web service placed in the CoAP network infrastructure as

illustrated in Figure 4.1. One of the responsibilities of this proxy is to interconnect CoAP

endpoints to users via the OGC SOS protocol. As a result, this proxy should be capable of

converting the two protocols together (i.e., CoAP-to-SOS, or SOS-to-CoAP). As shown in

Figure 4.6, we propose the following architecture for the SOSCoAP proxy.

55

Figure 4.6 The architecture of SOSCoAP Proxy

The SOSCoAP proxy consists of a CoAP proxy and a SOS proxy. For the CoAP proxy,

we use jCoAP
21

 which is an open source Java library. While the CoAP proxy is important, we do

not address its components in this chapter as they are pretty unchanged from the CoAP

specification. On the other hand, we develop the SOS proxy that consists of three components:

 XML-to-CoAP Converter: This component receives the core SOS requests

(GetCapabilities, DescribeSensor, and GetObservation) from user. As those requests are

encoded in XML, they need to be formatted to plain text requests encapsulated in UDP

message.

 CoAP-to-XML Converter: This component receives the CoAP messages and it coverts

them to the SOS responses. As the CoAP messages are plain texts, they need to be

encoded in XML format to be sent back to the user.

21
 https://code.google.com/p/jcoap/

56

 Communication Handler: The communication handler checks the user requests in terms

of compatibility to the SOS operations. If the request is validated, the relevant SOS

response is sent to the user.

4.4 Implementation

The CoAP implementation itself is straight forward on our development platform. The CoAP

part of the SOSCoAP proxy is also provided from jCoAP library. Thus, this section mainly

highlights the data exchange between a user and a CoAP node through the SOSCoAP proxy.

4.4.1 SOS Request to a CoAP Server

In our implementation, we only consider the three core SOS operations: GetCapabilities,

DescribeSensor, and GetObservation. First, the SOS part of the SOSCoAP proxy retrieves XML-

encoded SOS requests through the Internet. Since the XML body requires a complex and

expensive message processing [59], the request is encoded to a simpler format according to

Table 4.1. Then, the SOS part packages the mapped request for the CoAP part of the proxy to

send the simplified request to the CoAP server (IoT device).

Table 4.1 Mapping SOS operations to CoAP requests

SOS request (XML) CoAP request (plain text)

GetCapabilities {...} Get /capabilities

DescribeSensor {...} Get /describeSensor?procedure=prodecureValue

GetObservation {...} Get

/observation?observedProperty=observedPropertyValue&offering=offer

ingValue

When one of the three requests of Table 4.1 is received on the CoAP server (i.e., IoT

object), the relevant response is generated according to Table 4.2. The rest is the same as CoAP

message processing which is not the contribution of this research.

57

Table 4.2 CoAP responses to SOS requests

 SOS request converted to

CoAP message (plain text)

CoAP response content (plain text)

Get /capabilities offering: offeringValue, observedProperty:

observedPropertyValue, procedure: procedureValue

Get /describeSensor ... sensorID: URN, unitOfMeasurement: unitValue

Get /observation ... sensorID: URN, observation(s):

resultValue_1|observationTime_1#resultValue_2|

observationTime_1#...

4.4.2 CoAP Request to a SOS Server

Although the sensor measurements are slightly cashed on the limited data repository of the CoAP

server, the data uploader component can be tasked to submit the data to the proxy for historical

record. The content of such request is similar to the response content of the get observation

request (Table 4.2). Later on, the CoAP proxy of SOSCoAP proxy will convert the requests to

HTTP messages accepted by the SOS component of SOSCoAP proxy. In addition to data

uploading on the CoAP server, the SOSCoAP proxy is capable of conveying the sensor data to a

predefined SOS clouds (e.g., GeoCENS [51]) through standard SOS requests. The configurations

of these clouds are recorded in the communication handler component of the SOSCoAP proxy.

4.5 Discussion

The SOS over CoAP protocol is considered as a simple but efficiently integrated protocol for the

IoT. Although the SOS standard is overkill for resource constraint devices, its implementation on

the CoAP proxy does not cause any difficulties. Apart from common issues with the previous

protocols such as power supply, Internet connectivity, and metadata update, some other issues

exist as follows.

First, the connection between each IoT device and the rest of the Internet would be

indirectly through a proxy. Although the proxy can have a more stable and constant Internet

58

connection, the single point of failure (SPOF) [68] issue should be highlighted. The SPOF is

referred to a system component that its failure affects the entire system. Since the proxy is the

only interface between users and IoT objects, it should be equipped enough to guarantee a

constant connection to all IoT devices it relates.

Moreover, a request passes four levels to be delivered to a user: CoAP server, CoAP

proxy, SOS proxy, and client. If the number of requests increases on a single SOSCoAP proxy,

the response time may be affected. One potential solution for this problem can be deployment of

multiple cloud services for IoT devices. The cloud services [69] involve a large number of

computers connected through the Internet. In the other words, cloud services rely on sharing the

computational resources to offer a utility over a network which can solve the aforementioned

problem in an efficient way.

4.6 Summary

In this chapter, we counted some of the strengths of the Internet Engineering Task Force (IETF)

approach. To this end, the resource efficient CoAP was implemented on our class-1 development

platform. Then, the interoperability issue for the newborn CoAP was challenged.

In order to have the potential of popularity of OGC SOS, and the efficiency mechanisms

of CoAP, we detailed the realization of simple but powerful SOSCoAP proxy for the IoT

applications. The SOSCoAP proxy was supposed to establish a connection between CoAP

network through CoAP messages and the rest of the Internet through the OGC SOS standard.

By combining the lightweight CoAP protocol and popular OGC SOS in the IoT network,

a great range of devices can be interoperable together as TinySOS devices, PUCK-enabled

instruments, and SOS services.

59

Chapter Five: OGC SensorThings API

5.1 Introduction

In the previous chapters, we significantly demonstrated that the existing protocols of Sensor Web

and WSNs can be implemented on resource constraint IoT objects. While these efforts are

moving the Internet of Things toward greater interoperability, they do not fit well in the IoT

devices in case of processing load or interconnection with the other Internet nodes. In an attempt

to address both deficiencies of the previous protocols, there is an ongoing effort of defining a

standard Web Application Programming Interface (API) for the IoT.

This API, namely OGC SensorThings, is an OGC candidate standard for monitoring and

controlling IoT devices (sensors and actuators) over the Web. The API is built on HTTP

protocols, and applies the widely-used Representational State Transfer (REST) architectural style

[56] to access a system's components. REST considers the system as a black box with a high

level view regardless of the component details and their functionalities. REST only focuses on

the status of the components and their relationship to each other. Web services complying with

the REST principles are called RESTful. To exemplify, a camera device has a light sensor and

also a LED actuator. When the camera is being accessed through a RESTful protocol, the

camera, light sensor and LED are considered as the system components in which the LED and

light sensor are attached to the camera component.

This API interconnects IoT services and applications over the Web through Java Script

Object Notation (JSON) data format. The JSON is one of the text formats designed for

representing simple data structures, data collections, and of course data exchange over a network

connection. Therefore, as an alternative to the heavy Extensible Markup Language (XML)

format, we use the simple JSON format to efficiently present the data on the server. Since our

60

ultimate goal in defining this standard is an easy-to-use and easy-to-implement for global IoT

devices, we use plain text in the device-server interactions.

The OGC SensorThings service interface differs from the existing OGC web services in

case of RESTful interface and JSON data encoding. This API is essentially inspired by the

OASIS Open Data Protocol (OData)
22

, which defines a general-purpose RESTful service

interface. Besides the OData, the RESTful service interface also leverages the existing and

widely-implemented OGC standards. For example, the capabilities part of the API service

interface adapts several elements from the GetCapabilities response defined in the OGC Web

Service (OWS) Common Standard [70] by converting the XML encoding into the JSON

encoding.

The SensorThings API was mainly developed by a group of researchers in University of

Calgary including Dr. Steve H. L. Liang, Dr. Chih –Y Huang, Tania Khalafbeigi and me. I was

involved in the design and implementation of the device-side protocol that covers the

interactions between IoT objects and the IoT RESTful service. The rest of this protocol focuses

on the users and the IoT server communications which can be found from here: http://ogc-

iot.github.io/ogc-iot-api/.

5.2 Related Works

Linking the Web and physical objects is not a new idea. As we can see, three protocols have

been discussed in the previous chapters. The key idea of those protocols was to provide a virtual

counterpart of the physical objects on the Web. With advances in computing technology, most

devices are enabled with tiny web services [43, 71, 72]. However, the interoperability problem

22
 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata

http://www.opengeospatial.org/standards/common
http://www.opengeospatial.org/standards/common

61

still exists in most of them because lack of a specific standard in the IoT for communication

protocol and data representation.

Several systems for integration of sensor systems with the Internet have been proposed

such as SenseBox [47] and Xively, which offer a platform for people to share their sensory

readings using web services. This sharing is performed by transmitting the data onto an online

repository. Unlike the OGC SensorThings, these approaches exclusively support the sensing

profile, and devices are considered as passive actors only able to push data.

Kindberg et al. [73] developed Cooltown project which associates web pages and URIs to

people, places and things. Kindberg et al. also implemented scenarios where this information

could be physically discovered by scanning infrared tags in the environment. We would like to

go a step further to truly make IoT objects part of the Web so that they proactively serve their

functionality in an interoperable manner.

Similar to our RESTful web interface, T. Luckenbach et al. [74] and W. Drytkiewicz et

al. [75] consider the use of REST-like architectures for sensor networks. However, to make the

API interoperable, we extend the model with the use of other standards (e.g., OGC SOS, OGC

SPS and OData).

In essence, the OGC SensorThings provides a RESTful web interface allowing users and

application developers to apply a common API to retrieve the things’ profiles, and sensor

observations. This protocol will facilitate a generic adapter for integration of devices to the IoT

server, so interoperability between things will become simpler.

62

5.3 Architecture

In this section, we first elaborate the API components and its ecosystem. Then, we present the

data model of this open standard. Finally, we describe the system architecture like the previous

chapters.

5.3.1 API Components and Ecosystem

The SensorThings API follows a RESTful web service interface to access the registered

resources on the server. Each resource is assigned a uniquely identification (UID) by the server.

The API supports the four basic operations of the persistent storage, namely CREATE, READ,

UPDATE, and DELETE (CRUD) to any resources of the service. The API also consists of two

major profiles: Sensing Profile and Tasking Profile. The Sensing Profile is designed based on the

OGC Sensor Observation Service (SOS) specification, in which defines an interoperable

framework to manage and access sensors and observations. The Tasking Profile is based on the

OGC Sensor Planning Service (SPS) specification, in which defines an interoperable way to

submit tasks to control sensors and actuators. Figure 5.1 depicts the ecosystem of this API.

Figure 5.1 Ecosystem of the OGC SensorThings API

63

To address the resources, we define the protocol of retrieving the capabilities document

which includes the service metadata about a specific service instance. By this document, the

service advertises the supported functions and any constraints on using these functions. After a

client retrieves the capabilities document, he/she understands how to perform CRUD actions to

the target resource(s) through URI. There are three major URI components used in this API: the

service root URI, the Resource Path, and the Query Options. The service root URI is the address

of the IoT RESTful service. By attaching the resource path after the service root URI, users can

address different resources (e.g., collection or specific entity). In order to facilitate information

retrieval for the READ action, users can apply query options to the resource path, such as sorting

by properties and filtering with criteria. Figure 5.2 demonstrates the URI components.

Figure 5.2 URI Components

5.3.2 Data Model

The OGC SensorThings API describes a data model for the resources and their connections as

shown in Figure 5.3. The core of the data model is a Thing. Since the geographical positions of

IoT objects may dynamically change, we record multiple locations in place and time for each

Thing. As we mentioned in Chapter 5.3.1, the IoT data model consists of a Sensing Profile and a

Tasking Profile. The Sensing Profile allows IoT devices and applications to perform CRUD

operations on the gathered data from sensors. On the other hand, Tasking Profile provides the

functions to control IoT devices and actuators. According to the data model illustrated in Figure

5.3, each Thing can also have several Datastreams and Tasking Capabilities, which form the core

http://iotrestfulapi.s3-website-us-east-1.amazonaws.com/datamodel.html#DatastreamProfile

64

of the Sensing Profile and Tasking Profile respectively. Datastream relates to observed

properties, and also sensor observations. Each instance of the observation entity is also linked to

a specific sensor. Since sensor observations can be performed in a location different from the

Thing location, Features of Interest is also considered to record the place that observation

occurred. On the other hand, Tasking Capabilities is linked to actuator metadata, and tasks

triggered from client.

Figure 5.3 Data Model

Since more explanation of the data model is out of the scope of this Chapter, we skip to

the system architecture which is related to the IoT device structure.

5.3.3 System Architecture

Like the former chapters, devices supporting the OGC SensorThings API follow a system

architecture to process requests and responses. In this section, we describe the proposed system

architecture of IoT devices displayed in Figure 5.4. In this architecture, you can see the three

common layers including Communication Layer, Business Logic Layer, and Sensor/Actuator

Layer.

65

Figure 5.4 The device architecture supporting OGC SensorThings API

1) Communication Layer: Similar to the previous protocols, the communication layer

contributes in device interactions over the network. Unlike the TinySOS which uses

heavy XML, and CoAP message that is included into UDP packet, the OGC

SensorThings API applies plain text in all communications except for its registration.

When a Thing is registering itself on the server, the requests are formatted in JSON

which are already hardcoded in device’s memory. Our API uses JSON format only for

the registration requests from the device in order to transmit a bunch of data to the

RESTful data service. In other cases, the communication is based on the plain text format

that is more comfortable for IoT devices to process plain texts with no need to a parser.

66

2) Business Logic Layer: The business logic layer can have the function of both client and

server simultaneously. The client role is because a Thing demands to interact with IoT

server in order to register itself, and to upload sensor observations. The data uploader

unit plays the client role once for the registration steps, and frequently for publishing the

sensor measurements. To accept tasking requests from clients, the Thing should also

contain a server which is named the response engine component in this architecture.

Similar to the TinySOS and CoAP, the response engine reads HTTP requests buffer by

buffer. After processing the requests, the task might be sent to the sensor/actuator layer,

and the relevant response is forwarded to the communication layer. Since in OGC

SensorThings API a Thing is always connected to a data service, the Thing does not need

to record the sensor readings on its own memory. Therefore, unlike the other protocols,

on the device architecture of this API (Figure 5.4), the "sensor data repository"

component was removed.

3) Sensor/Actuator Layer: The sensor/actuator layer consists of the physical sensors,

actuators, and their controllers. The sensor controller manages the sensors and actuators.

For example, the sensor controller can command sensors to collect sensor measurements,

or task actuators to do an action.

5.4 Implementation

One of the main advantages of the SensorThings API is simplicity in case of network

communication and device computation. According to Figure 5.1, this API defines three

different types of interactions between IoT object and IoT RESTful service: 1) device

registration, 2) observation uploading, and 3) actuator tasking. In this section, we describe the

implementation of these interactions on a class-1 IoT device.

67

5.4.1 Device Registration

As we have already described the data model of the OGC SensorThings API, the IoT server

should contain IoT devices' information. To do this, when a Thing is connected to the Internet, it

automatically registers its resources and properties on the IoT server though the sequences

shown in Table 5.1.

Table 5.1 Device registration procedres

Procedure Response code Definition

1 Thing Description

2 Datastreams Thing ID, Description

3 Tasking Capabilities Thing ID, Description, Tasking Parameters (Parameter

ID, Necessity, Definition, Input Type, Unit, and Range),

Protocol (HTTP Method, Resource Path, and Message

Body)

4 Sensors Metadata

5 Actuators Tasking Capability ID, Metadata

6 Observed Properties Datastream ID, Unit of Measurement, URN

7 Feature of Internets Description, Geometry (Type, and Coordination)

8 Location Thing ID, Time, Geometry (Type, and Coordination)

Despite of XML and JSON which are widely used encoding data formats for human and

computer, the SensorThings API uses plain text for the requests sent to a Thing. Thus, the Thing

does not require any parser or complicated processing for the incoming messages. On the

contrary, the IoT server interacts with users by JSON standard. As the IoT device can

conveniently encapsulate JSON requests into string values, we force the device to send its

registration requests to the server in the JSON format. Obviously, there is no processing load on

the device because those requests have been previously saved on the device's code storage as

string variables. Figure 5.5 describes an example where JSON is used to create a Tasking

Capability resource on the IoT service.

68

Figure 5.5 An example of registration request

However, the responses of those requests are still in plain text format including resource

ID, and resource location on the IoT RESTful server (i.e., URL). Figure 5.6 represents a

response to a Tasking Capability registration request.

Figure 5.6 An example of IoT service response

To prevent an IoT object from repetitive registrations on all its powering, we record the

retrieved resource IDs and URLs on the device permanent memory (In our implementation, we

69

used a micro SD). Therefore, at the time of powering up, the device checks its registration status

to decide about the next steps. If all IDs are available, there is no need for new registration on the

service.

According to the device architecture (Figure 5.4), the data uploader component provides

the aforementioned requests, forwards them to the communication layer, and finally receives

responses from the communication layer.

5.4.2 Observations Uploading

Not only does the data uploader perform the registration operations, but also it cooperates in the

sensing profile. Therefore, the data uploader that plays the role of a client is responsible to

dynamically collect sensor readings, and upload them to the IoT service based on a preset

frequency (saved on the device). Similar to the registration requests, the sensor observation

request is in JSON format, too. The observation request carries datastream ID, sensor ID, feature

of interest, observation time, result value, and also result type (e.g., measure). Accordingly, the

data service acknowledges the request by messaging the location (URL) of the recorded

observation on the data service. If that response does not contain any location value, the

observation request will be immediately re-submitted to the IoT service.

5.4.3 Actuator Tasking

Tasking requests are mostly triggered from users to IoT service. As shown in Figure 5.7, that

request is encoded in JSON based on the specification of the SensorThings API. The tasking

request contains tasking capability ID (to retrieve the device-defined protocol), input parameters

and trigger time (when the task should be sent to the device).

70

Figure 5.7 Tasking request triggered from user to IoT service

During device registration, the tasking capability request introduces the device

communication protocol to the data service (Figure 5.5). The device protocol is hidden from the

public access and application developers which enables some sort of security and privacy for

controlling the device. Additionally, according to the simplicity approach of the SensorThings

API, the IoT service can effectively convert the user request from JSON to something simpler

(e.g., plain text) to follow the device protocol. In the registration request shown in Figure 5.5, the

request to task the lamp actuator should be sent to the specified resource path including the

required message body by HTTP POST method.

Unlike the sensing profile, the tasking profile merely acts as a simple web server

implemented on an IoT device. Tasking requests delivered by the communication layer are

forwarded to the response engine for further processing. As we have already mentioned, all

requests to a Thing are in the form of plain text (Figure 5.7).

71

Figure 5.8 Workflow of the response engine

Based on Figure 5.8, the tasking request is sent to the data extractor component to extract

the tasking capability ID, parameter name, and parameter value. Then, the request validator

module examines the retrieved values with the device actuators in case of resource availability,

parameter validation, and also request type. After validation process is performed, the actuator

might be tasked, and the relevant response code is delivered to the communication layer. The

response codes of the response engine are listed in Table 5.2.

Table 5.2 Response codes of the response engine

Response code Definition

600 Confirmed

610 Resource is busy

620 Parameters are missing

630 Out of range parameters

640 Invalid parameters

650 Invalid actuator

660 Invalid request type

72

Depending on the request parameters, the appropriate response in JSON encoding is

forwarded to the communication layer. As a server should always remain online, the response

engine does not sleep at all in order to listen to incoming messages.

5.5 Discussion

The OGC SensorThings API establishes an easy-to-develop and easy-to-use protocol for the

resource constraint IoT devices. This protocol was mainly inspired from OData, and OGC SWE

standards (SOS, and SPS). In spite of simplicity demonstrated in this API, there would be several

issues listed as follows.

The first immediate issue is that each IoT device should have a stable and constant

Internet connection in order to receive tasks from outside, and to upload sensor readings to the

server. Obviously, there is no obligation for a Thing to upload its sensor readings to the IoT

service. On contrary, the server side of the Thing is expected to be always online. One potential

solution for this is to consider the IoT service as a forward proxy between user and IoT device.

By the way, the proxy can check the device availability on the network before any interactions. If

the Thing is detected out of the network, the proxy can notify the user from this situation.

The second issue of the proposed API is that it forces the limited resource devices to

interact through HTTP standard and TCP packets. As we illustrated in CoAP, UDP is

significantly more efficient than TCP in packet transmissions. In order to address this issue, one

potential solution is to combine partially the CoAP and OGC SensorThings API. In other words,

a bit change from TCP to UDP in SensorThings API will catch a large achievement in the future.

Since the IoT RESTful service is an intermediary node between user and IoT device, the

privacy is strongly supplied by the IoT service. On the other hand, the security issue is still

remained because no strategy is considered for the data transmission. To overcome this problem,

73

we can simply define a bidirectional rules for the message encryption/decryption to guarantee

message integrity and confidentiality.

5.6 Summary

In this chapter, the OGC SensorThings API was elaborated as a prospective open standard for the

Internet of Things. In this protocol, we reduced the complexity on the device by simplifying the

message format, and lessening message size. The transactions were basically established

thorough JSON language, except the ones sent to the IoT device, so the device does not need any

resource consuming parser. Likewise, the IoT device transmits the requests to the server in hard-

coded JSON format only because JSON is more suitable for the IoT RESTful service.

By hosting the simple open standard API on the IoT devices, not only a great range of

devices can apply that protocol, but also innovative applications can be developed more

conveniently by means of a standard interface.

74

Chapter Six: Evaluation and Results

6.1 Introduction

The objectives of this chapter is as follows: (1) to benchmark the efficiency of the implemented

protocols on a class-1 IoT object, (2) to provide a quantitative guideline for developers to choose

the interoperable protocol that is suitable to their applications. In general, this chapter evaluates

the four standard protocols developed in this research. We assess the performance of those

protocols on a class-1 IoT object. By performance, we mean the measurement of the degree to

which a system accomplishes its functions within given constraints such as CPU speed, memory,

bandwidth, and so forth [76].

In our test environment, we choose Netduino Plus introduced in Section 1.7 as our

development platform as a class-1 IoT object. In order to demonstrate how different components

work together, multiple meteorological sensors (temperature, humidity, carbon monoxide,

hydrogen monoxide, and dust), sound pressure sensor and LED actuator are connected to our

Netduino Plus (Figure 6.1).

Figure 6.1 Different components of our development platform

75

Although more powerful IoT objects exist, they are also more expensive. The reason we

focused on the constrained nodes in this research is because they are more cost-effective and will

be more widely deployed in real world. By using the resource-constrained and cost-effective

nodes, it allows us to explore the lower bound of the resources that are required for IoT

applications. In that way, we ensure that our design choices can deliver an efficient

implementation suitable for a broader application domain.

6.2 Performance Evaluation

This section evaluates each protocol using a service prototype (i.e., server), a gateway (where

applicable), and a client. The metrics selected for this evaluation are as follows: (1) code storage

(EEPROM
23

) occupation, (2) main memory (RAM) usage, (3) request length of an operation, (4)

response size of an operation, and (5) response latency. In all cases except SensorThings, the

tests are carried out using a Netduino Plus as the server and a PC as the client. The two are

connected via Ethernet cable to the Internet.

6.2.1 Memory Occupation

The first experiment is about memory occupation (i.e., ROM and RAM usage). The results

obtained in this experiment demonstrate memory management’s importance in terms of resource

consumption. We also include a HTTP web server in our tests as a reference. The HTTP web

server is implemented on Netduino Plus and responds in plain unstructured text format. This web

service can be a reference because it is purely developed by using C# HTTP libraries with no

enhancement on the code efficiency.

23
 Electronically Erasable Programmable Read Only Memory

76

First, we measure the occupied code space after code deployment from the development

environment (e.g., a PC) to the EEPROM of the Netduino Plus. The occupation of ROM can

serve as an indicator of the required code’s complexity for each implementation. For example,

according to Table 6.1, the OGC SensorThings API and SOS over CoAP need more ROM in

comparison to the other implementations, because both not only need to handle server-side

operations but also should support client-side functions. The simple web service is in the third

place of ROM usage as the classes and libraries in the C# .Net Micro Framework consume a

considerable amount of code storage [50]. Comparing to the simple web server, TinySOS is

more efficient because of two reasons: (1) rather than using the C# .Net Micro Framework’s

libraries, we implemented our own HTTP libraries; (2) we recorded the XML responses on the

micro SD card instead of ROM. The OGC PUCK is the most efficient protocol in terms of ROM

usage because PUCK specification does not require any heavy parser (e.g., XML parser, JSON

parser), retransmission mechanism (e.g., CoAP-To-HTTP), and data uploader component.

Although the OGC PUCK requires PUCK memory, SensorML and driver code, we are able to

use the device's permanent memory (micro SD card) to keep those necessary data.

Moreover, Table 6.1 shows the amount of RAM allocated at compile time for each

implementation. A code with a small memory footprint would allow adding extra capabilities

such as resources that the server could provide to clients. Although PUCK occupies the least

code space, this protocol is highly inefficient in RAM usage. It is possible that the memory

management unit or data transceiver of the Bluetooth module requires more memory in

comparison with other components of this protocol. After the OGC PUCK, TinySOS consumes a

lot of RAM likely due to the XML parser and request validator units. SOS over CoAP and OGC

SensorThings are similar in terms of RAM usage. On the other hand, the simple web server acts

77

better than others in this experiment since it is simple in case of request validation and response

generation.

Table 6.1 RAM and ROM memory occupation

Simple Web

Service

PUCK over

Bluetooth

TinySOS

SOS over

CoAP

OGC

SensorThings

ROM (kB) 16.08 8.48 11.72 29.13 26.11

RAM (kB) 9.54 13.15 11.33 10.36 10.21

6.2.2 Request Size

Both IoT devices and the network they use are highly constrained [16]. And that means the

payload packet size is very important. To identify the efficiency of the above standard protocols,

we record the request size generated for a specific use case (i.e., get one sensor measurement)

that is possibly most widely used. To do this, we use Wireshark
24

, a network protocol analyzer

software for all tests except PUCK. That is Wireshark is unable to monitor the serial ports that

are the communication ports of the PUCK. Thus, to measure the PUCK request size, we simply

count the characters of its plain text request. According to Figure 6.2, PUCK generates the

smallest request since the request is made of a short string of characters with no header,

description or complicated format. Also, CoAP request is at least 67% smaller in comparison

with other Internet-based protocols. This efficiency is because of using UDP instead of TCP in

the transport layer which makes the header size extremely smaller. The simple web service

communicates through HTTP GET request with no request content. Therefore, only the header

24
 http://www.wireshark.org

78

features of the HTTP GET request (350 bytes) are calculated for the simple web service. The

OGC SensorThings requires several parameters embedded in the request body besides the header

features. Therefore, SensorThings is ranked after the HTTP protocol in this experiment. On the

contrary, the requests of the SOS protocol are at least 47% larger than other protocols since they

are packaged in XML format. In order to ensure that the tested SOS request is compatible with

the OGC SOS standard, we used a test client tool developed by 52 North SOS
25

.

Figure 6.2 Request size evaluation for the get observation request

6.2.3 Response Length

Apart from the requests comparison among the standard protocols, we also evaluate the response

length generated by our implementations. Figure 6.3 depicts the response length trend of

different implementations versus the number of sensor readings requested (from 1 to 100). Since

the specification of OGC SensorThings conveys the sensor related requests to a RESTful data

service, we send the get observation request to that data service
26

 (a regular PC) instead of

25
 http://sensorweb.demo.52north.org/52nSOSv3.2.1/

26
 http://demo.student.geocens.ca:8080/SensorThings_V1.0

0

100

200

300

400

500

600

700

800

900

1000

HTTP PUCK SOS CoAP SensorThings

R
e

q
u

e
st

 S
iz

e
 (

B
)

Request Size for Get Observation Operation

79

Netduino Plus. According to Figure 6.3, OGC SensorThings and TinySOS provide larger

responses in comparison with other protocols. One possibility of this difference can be the output

formatting which is in JSON and XML, respectively. After looking at the responses generated by

OGC SensorThings data service, we faced several JSON attribute-value pairs (e.g., observation

ID, request type, feature of interest, sensor profile, and data stream information) repeated in all

sensor readings (Appendix A). Based on the capabilities of the SensorThings data service, we are

able to retrieve only the sensor measurement and the observation time in JSON format

(Appendix A). As a result, the response length would be 71% less in average comparing to the

previous responses of the SensorThings API. On the other hand, TinySOS follows the OGC SOS

specification for the response generation by embedding the observation values and time in the

existing response file. Accordingly, the response size will not be as large as OGC SensorThings

protocol with repetitive attribute-value pairs. As a trade-off, end users can simply parse the

SensorThings responses by a JSON parser while for the TinySOS responses, a new parser needs

to be developed to extract the required data from the XML file.

Figure 6.3 Response size vs. the number of sensor readings

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 S
iz

e
 (

B
)

Number of Sensor Readings Requested

Response Size vs. Number of Sensor Readings Requested

PUCK over Bluetooth

TinySOS

SOS over CoAP

OGC SensorThings API

OGC SensorThings API (Only
Time and Value)

80

To better understand the trends of other implementations, we remove the OGC

SensorThings trend in Figure 6.4. The SOS over CoAP and PUCK over Bluetooth follow each

other closely since the protocols defined to retrieve the sensor readings are similar for both.

According to the CoAP specification elaborated in Section 4.3.1, CoAP messages should not

exceed 1024 bytes [55]. That explains why the green line representing SOS over CoAP in Figure

6.4 has not gone any further than point 30 in which the response size was 1019 bytes. However,

the required response header of CoAP makes the CoAP response size a bit larger than the one

outputted by PUCK for cases with equal number of sensor readings.

Figure 6.4 Response size vs. the number of sensor readings (removed the OGC

SensorThings trend)

According to Figure 6.4, TinySOS and OGC SensorThings API generate the same

response size for forty senor observations. Due to the fact that the observation values and time

are the same for the two protocols, we can conclude that the size of XML tags of the SOS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 S
iz

e
 (

B
)

Number of Sensor Readings Requested

Response Size vs. Number of Sensor Readings Requested

PUCK over Bluetooth

TinySOS

SOS over CoAP

OGC SensorThings API (Only
Time and Value)

81

response is equal to the total length of the JSON attribute-value pairs of the SensorThings

response (i.e., “time”, “result value”, “self-link”)
27

.

6.2.4 Response Latency

To wrap up our performance evaluation, we record the end-to-end response latency. The

experiment is conducted by a PC client to retrieve sensor data from a Netduino Plus-based

service or from a PC-based IoT data service. We define latency as the time elapsed from the

moment the PC client sends a request until the moment it receives the response. Figure 6.5 shows

the latency trend based on our experiments. Each point on Figure 6.5 represents the latency value

of successful request/response transactions. Number of sensor readings ranges from 1 to 100. In

this way, the differences between the other implementations can be better appreciated. Low

latency values can notably improve the user experience and benefit the implementations that

work in real-time.

TinySOS behaves worse than others in this experiment as its communications are in

XML data encoding. Thus, the Netduino Plus server has to parse the XML request, read the

XML response file from the micro SD card, embed the sensor reading(s) into the response body,

and forward the XML file to the client. All these functions are performed on a device with 48

MHz CPU speed and 28 KB memory leading to high latency.

27
 Appendix A provides a sample of such response.

82

Figure 6.5 Response latency vs. the number of sensor readings

Figure 6.6 removes the TinySOS trend in order to determine the behaviour of other

implementations. The SOS over CoAP has more latency than PUCK since the CoAP

communicates over the World Wide Web. As we explained in Section 6.2.3, CoAP stops at point

30 because of the CoAP limitation for the message size. Due to the fact that the SensorThings

data service is a regular PC, if we ignore this protocol, the PUCK over Bluetooth is the most

efficient implementation in this experiment. For the PUCK evaluation, we applied Device

Monitoring Studio software
28

 in order to monitor the serial port of the PC. Since PUCK over

Bluetooth is a wireless protocol, the distance between the pairs affects the response latency. In

our experiments, the Netduino Plus (server) and the notebook (client) were placed close to each

other (less than 1 meter).

28
 http://www.hhdsoftware.com/device-monitoring-studio

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 L
at

e
n

cy
 (

m
s)

Number of Sensor Readings Requested

Response Latency vs. Number of Sensor Readings
Requested

PUCK over Bluetooth

TinySOS

SOS over CoAP

OGC SensorThings API

83

Figure 6.6 Response latency vs. the number of sensor readings (removed TinySOS)

6.3 Summary

We demonstrated the effectiveness of our approaches by a comprehensive performance

evaluation. To conduct a comparative study on the applied protocols, we compared the test

results together in terms of code storage occupation, memory usage, request size, response size,

and finally response latency.

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 L
at

e
n

cy
 (

m
s)

Number of Sensor Readings Requested

Response Latency vs. Number of Sensor Readings
Requested

PUCK over Bluetooth

SOS over CoAP

OGC SensorThings API

84

Chapter Seven: Conclusions and Future Works

7.1 Introduction

We conclude this research in the final chapter by summarizing the research work that has been

carried out and outlining the conclusions drawn out of the result. It also comments on the

limitations and proposes areas for the future work.

This research has contributed in the interoperability approach of the Internet of Things by

adapting existing standards defined for the Sensor Web (PUCK and SOS), implementing the

newly introduced protocol for the Internet of Things (CoAP), and eventually designing a specific

RESTful protocol for the Internet of Things (OGC SensorThings). Besides, a real-time

meteorological system has been developed in this research as a proof of concept to evaluate the

adequacy and efficiency of the interaction.

In general, our contributions could overcome the three problems mentioned in Chapter 1.

For the Internet access problem, we applied PUCK over Bluetooth protocol. We also

implemented the four standard protocols to solve the lack of standardization in data

representation. As a solution for the third problem, we demonstrated the possibility of

implementing open standards on a resource constrained IoT object.

To summarize, Chapter 1 provided a brief introduction regarding the topic of this

research, development platform and outlined the research problem and the key objectives.

Chapter 2 presented PUCK over Bluetooth as a wireless standard protocol for the Internet of

Things. Chapter 3 described TinySOS as a lightweight profile of the OGC SOS suitable for IoT

devices. Chapter 4 also discussed about the possibilities of combining CoAP which is mainly

designed for the Internet of Things, and OGC SOS which is commonly used in WSNs.

Moreover, Chapter 5 introduced our defined protocol under the OGC license supporting REST

85

and JSON, namely OGC SensorThings. Finally, Chapter 6 presented several scenarios to

evaluate the performance of the implemented protocols on a class-1 IoT object.

7.2 Conclusions

All around the world, the IoT applications are emerging exponentially with various

functionalities. Each application is developed based on the developer’s desire of the device. That

means the number of proprietary protocols is growing as the number of IoT devices increases.

Consequently, standardized interfaces are required to interconnect different IoT devices for

innovative applications.

In this research, we presented our contribution in the interoperability aspect of the

Internet of Things by developing PUCK over Bluetooth, TinySOS, SOS over CoAP, and finally

the OGC SensorThings API. Our implementations were the world’s first contribution for the IoT

objects.

At the beginning, we chose a class-1 IoT object as categorized in the framework of

Bormann et al. [14] for our development platform. First, we equipped the class-1 IoT device with

a Bluetooth transceiver in order to establish wireless network in a limited range. We standardized

its connection by means of OGC PUCK. Due to the fact that Internet access is a key requirement

for IoT objects, we applied additional software components to farther enhance this functionality

for the Bluetooth-enabled PUCK instrument.

In the second stage, we removed the intermediary gateway in the path between the user

and IoT object by developing a web service on a Thing itself. Since different device owners or

manufacturers might have their own design for the data representation, we introduced a

lightweight version of the OGC SOS, TinySOS. As a result, the sensor measurements could be

accessed remotely in a standardized way simply through a web browser.

86

According to the complicated nature of the OGC SOS for resource constraint IoT objects,

we proposed another approach which is more suitable for the class-1 IoT devices. Thus, the third

contribution of this research was integrating CoAP into the OGC SOS. The point of

differentiation between this approach and the previous effort (TinySOS) lies in the connection of

the device to the network. In the previous approach, the device was required to tolerate the huge

load of SOS requests/responses formatted in XML. In the new approach, the device supported

CoAP which is a constrained application protocol for the IoT. Moreover, the SOS operations

were processed on the CoAP proxy which is essentially a regular computer with enough

computational resources.

Due to the UDP transmission, CoAP could not establish a direct connection to the

Internet components without the deployment of CoAP proxies. As the IoT will eventually follow

the Internet protocol suite model, it is recommended to adjust the connections compatible with

the Internet standard protocols. Moreover, the IoT infrastructure needs a specific standard

protocol. As a result, we designed our own standard application programming interface called

OGC SensorThings API. The use cases of this API started with IoT device registrations to the

service. For the sensing devices, registration information contained the phenomenon that was

observed. After registration, sensing devices could start uploading their observations to the data

service. From the tasking point of view, actuators could also register and publish their tasking

capabilities to the data service. As a result, users were able to access those observations and also

send controlling tasks to the devices through the service. All the communications with the data

service followed the RESTful architecture.

Finally, the four implementations on Netduino Plus were assessed comparatively. To do

so, each implementation was evaluated according to memory occupation (RAM and ROM),

87

request size, response length and response latency. As a case study, we embedded multiple

meteorological sensors, sound pressure sensor and LED actuator to our Netduino Plus in order to

demonstrate how different components work together.

In the following section, we will discuss our future works on the IoT. Several challenges

in the context of IoT will be discussed and a future road map will be presented.

7.3 Future Works

This thesis takes a practical approach to the interoperability in the Internet of Things. There are

several ways in which this research can be improved and extended. In this section, some of the

major issues that can be later investigated and guidelines of the future work is addressed.

First of all, the aforementioned interoperable protocols follow the client-server

architectural style which has the single point of failure (SPOF) issue [77]. In order to address this

issue, one potential solution is to design a peer-to-peer (P2P) architecture as it has been proven

reliable and effective. In this case, devices can form an overlay network to discover resources

and forward requests; so a centralized component such as the sensor registry service, CoAP

proxy and IoT RESTful server would be no longer needed.

In this research, Bluetooth and Ethernet were considered as the network enablement

technologies for IoT devices. Since Wi-Fi is being dominant in network communications [78],

the study on Wi-Fi communications in the IoT is highly suggested. One immediate issue in Wi-

Fi connection emerges about transmission of network configuration to the IoT device which has

no display equipment and input peripheral.

In addition to Wi-Fi as wireless enablement for the IoT, another research should be

started to improve energy saving on the IoT objects. The first assumption in this research was

that IoT devices having unlimited power resource while this assumption may not be true in many

88

cases. Some sensor nodes will be battery-operated [52], so energy is perhaps the most notable

constraint for the IoT devices. Furthermore, achievement in Wi-Fi connection of IoT objects

leads to removing wires and cords from devices. Therefore, their battery charge must be

efficiently conserved to extend the life of the individual sensor node, and consequently the entire

IoT network.

More potential future works pertain privacy and security for IoT devices. We efficiently

implemented existing security and privacy mechanisms of the information technology and

computer networks on class-1 IoT devices [79]. Although an acceptable level of secure

connection in IoT can be achievable, we believe IoT would require specific rules and

mechanisms for the successful implementation of this approach.

This research mainly concentrated on the way the data is transferred from inexpensive

class-1 IoT objects. However, we do not know how reliable the retrieved data is. According to

the IEEE Standard Computer Dictionary [20], reliability is defined as the capability of a sensor

to perform its measurements under stated conditions for a specific time period. By this definition,

we can intuitively link a sensor's reliability to accuracy and precision. Accuracy denotes the

closeness of a measurement to the actual value, and precision characterizes the reproducibility of

the generated value. In order to achieve the reliability in the IoT, both precision and accuracy

should be considered. For future directions, we believe that data reliability is an important and

interesting approach for the IoT that is worth to be further investigated.

89

References

[1] Mike Botts, Alex Robin (Oct. 2007). "Bringing the Sensor Web Together". Geosciences.

pp. 46–53.

[2] Dargie, W. and Poellabauer, C., "Fundamentals of wireless sensor networks: theory and

practice", John Wiley and Sons, 2010. ISBN 978-0-470-99765-9, pp. 7-10.

[3] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J., 2002. "Wireless

Sensor Networks for Habitat Monitoring." In 2002 ACM International Workshop on

Wireless Sensor Networks and Applications. Atlanta, US.

[4] Hart, J.K. and Martinez, K. 2006. "Environmental Sensor Networks: A revolution in the earth

system science?" Earth Science Reviews. 78, 177-191.

[5] Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., and Turon, M., 2007.

"Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks." In the 2007

ACM International Workshop on Information Processing in Sensor Networks.

Massachusetts, USA.

[6] Schwiebert, L., Gupta, S.K.S., and Weinmann, J., 2001. "Research Challenges in Wireless

Networks of Biomedical Sensors." In the 2001 ACM International Workshop on Mobile

Computing and Networking. Rome, Italy, 151-165.

[7] Kassab, A., Liang, S., and Gao, Y., 2010. "Real-Time Notification and Improved Situational

Awareness in Fire Emergencies using Geospatial-based Publish/Subscribe." International

Journal of Applied Earth Observation and Geoinformation. 12, 6, 431-438.

[8] Lynch, Jerome P., et al. "The development of a wireless modular health monitoring system

for civil structures." MCEER Mitigation of Earthquake Disaster by Advanced Technologies

(MEDAT-2) Workshop. 2000.

http://www.brgm.fr/dcenewsFile?ID=473

90

[9] M.F. Goodchild, "Citizens as sensors: the world of volunteered geography," GeoJournal 69

(2007), pp. 211-221.

[10] Boulos, Maged N. Kamel, et al. "Crowdsourcing, citizen sensing and sensor web

technologies for public and environmental health surveillance and crisis management:

trends, OGC standards and application examples." International journal of health

geographics 10.1 (2011): 67.

[11] A. Sheth. "Citizen Sensing, Social Signals, and Enriching Human Experience." IEEE

Internet Computing, 13(4):87-92, 2009.

[12] Declan Butler, (2006), Virtual globes: The web-wide world, Nature. [online]. Available:

http://www.nature.com/nature/journal/v439/n7078/full/439776a.html [Accessed 1 August

2013].

[13] Aggarwal, Charu C., Naveen Ashish, and Amit Sheth. "The Internet of Things: A Survey

from the Data-Centric Perspective." Managing and Mining Sensor Data. Springer US, 2013.

383-428.

[14] Liang, S.H.L., Croitoru, A., and Tao, C.V., 2005. "A Distributed Geospatial Infrastructure

for Sensor Web." Computers and Geosciences. 31, 2, 221-231.

[15] TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU, Overview of the

Internet of things, Recommendation ITU-T Y.2060, 2012.

[16] Bormann, C., Castellani, A.P., Shelby, Z, 2012. "CoAP: An Application Protocol for

Billions of Tiny Internet Nodes," IEEE Internet Computing, Volume: 16, Issue: 2, Page(s):

62-67.

91

[17] Ericsson: “More than 50 Billion Connected Devices”, [online]. White Paper, February 2011,

Available: http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf [Accessed 1

August 2013].

[18] Evans, Dave. "The Internet of Things: How the next evolution of the internet is changing

everything." CISCO white paper (2011).

[19] Jeronimo, Michael, and Jack Weast. "UPnP design by example." Vol. 158. Intel Press, 2003.

[20] Institute of Electrical and Electronics Engineers (1990), "IEEE Standard Computer

Dictionary: A Compilation of IEEE Standard Computer Glossaries." New York, NY. ISBN

1-55937-079-3.

[21] Rodriguez, M. J., et al., 2013. "Combining Wireless Sensor Networks and Semantic

Middleware for an Internet of Things-Based Sportsman/Woman Monitoring Application."

Sensors, 13(2), 1787-1835.

[22] Cox, S., 2011. Observations and Measurements - XML Implementation [online]. Open

Geospatial Consortium. Available from:

http://portal.opengeospatial.org/files/?artifact_id=41510 [Accessed 1 September 2013].

[23] Botts, M., 2007. OpenGIS® Sensor Model Language (SensorML) Implementation

Specification [online]. Open Geospatial Consortium. Available from:

http://portal.opengeospatial.org/files/?artifact_id=21273 [Accessed 1 February 2012].

[24] Broering, A., Below, S., 2010. OpenGIS® Sensor Interface Descriptors (SID) [online].

Open Geospatial Consortium. Available

from: http://portal.opengeospatial.org/files/?artifact_id=39664 [Accessed 1 September

2013].

92

[25] Na, A., Priest, M., 2007. Sensor Observation Service [online]. Open Geospatial

Consortium. Available: http://www.opengeospatial.org/standards/sos [Accessed 1

September 2013].

[26] Open Geospatial Consortium, 2011, OGC® Sensor Planning Service Implementation

Standard [online]. Open Geospatial Consortium.

Available: http://portal.opengeospatial.org/files/?artifact_id=38478 [Accessed 1 September

2013].

[27] O'Reilly, T., 2012. OGC® PUCK Protocol Standard Version 1.4 [online]. Open Geospatial

Consortium. Available: https://portal.opengeospatial.org/files/?artifact_id=47604 [Accessed

20 August 2013].

[28] Peterson, Larry L., and Bruce S. Davie. Computer networks: a systems approach. Elsevier,

2007.

[29] Lerche, C., Hartke, K., Kovatsch, M. "Industry Adoption of the Internet of Things: A

Constrained Application Protocol Survey." In Proceedings of the 7
th

 International Workshop

on Service Oriented Architectures in Converging Networked Environments (SOCNE 2012),

Kraków, Poland, 17–21 September 2012.

[30] Mohammad Ali Jazayeri, Chih-Y Huang, and Steve H. L. Liang. "TinySOS: design and

implementation of interoperable and tiny web service for the internet of things." In

Proceedings of the First ACM SIGSPATIAL Workshop on Sensor Web Enablement. ACM,

2012.

[31] Netduino Plus, Secret Labs LLC, 2010. [online]. Available: http://www.netduino.com/,

2011 [Accessed 1 September 2013].

https://portal.opengeospatial.org/files/?artifact_id=47604

93

[32] Woods, Stan, M. Geipel, and F. Gen-kuong. "IEEE-P1451. 2 smart transducer interface

module." In Proceedings Sensors Expo Philadelphia. 1996.

[33] OGC Network (n.d.). "How to model your observation data in SOS 2.0?." Open Geospatial

Consortium, Inc. 4 October 2013. [online]. Available:

http://www.ogcnetwork.net/sos_2_0/tutorial/om [Accessed 1 September 2013].

[34] Whiteside, A. "Definition identifier URNs in OGC namespace." OpenGIS Best Practice

document, OGC (2009).

[35] Shapiro, Marc. "Structure and encapsulation in distributed systems: the proxy

principle." icdcs. 1986.

[36] Open Geospatial Consortium (n.d.). "Sensor Web Enablement (SWE)." Open Geospatial

Consortium, Inc. 27 January 2014. [online]. Available:

http://www.opengeospatial.org/ogc/markets-technologies/swe [Accessed 1 February 2014].

 [37] Delin, K.A., and Jackson, S.P., 2001. "The Sensor Web: A New Instrument Concept."

Symposium on Integrated Optics: International Society for Optics and Photonics, 15 May

2001, USA: SPIE, 1-9.

[38] Leopold, M., et al., 2003. "Bluetooth and sensor networks: A reality check." In Proceedings

of the 1st international conference on embedded networked sensor systems, 5-7 Nov. 2003

Los Angeles, LA: ACM, 103-113.

[39] Hill, J., et al., 2000, "System architecture directions for networked sensors." ACM SIGOPS

operating systems review, 34(5), 93-104.

[40] Bluetooth SIG, 2013. Bluetooth Basics [online]. Bluetooth SIG, Inc. Available:

http://www.bluetooth.com/Pages/Basics.aspx [Accessed 2 September 2013].

94

[41] Ferrari, P., et al., 2005. "A Bluetooth-based sensor network with web interface.

Instrumentation and Measurement," IEEE Transactions on, 54(6), 2359-2363.

[42] A. Giusto, G. Morabito, and L. Atzori, The Internet of Things. Springer, 2010.

[43] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, Feng Zhao, 2008. "Tiny Web

Services: Design and Implementation of Interoperable and Evolvable Sensor Networks," In

Proceedings SenSys '08 Proceedings of the 6th ACM conference on Embedded network

sensor systems, Pages 253-266.

[44] Botts, M., Percivall, G., Reed, C., and Davidson, J., 2007. OGC Sensor Web Enablement:

Overview and High Level Architecture (OGC 07-165). Open Geospatial Consortium white

paper, 28 Dec. 2007.

[45] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A.J. Brush, Bongshin Lee, Stefan Saroiu, and

Victor Bahl, The Home Needs an Operating System (and an App Store), In HotNets IX,

ACM, 20 October 2010.

[46] George Percival, Steve Liang, 2012. "Charter for a SWG: Internet of Things (IoT) REST

API [online]. Available: https://portal.opengeospatial.org/files/49608 [Accessed 2 October

2013].

[47] A. Broring, A. Remke, and D. Lasnia, "SenseBox - A Generic Sensor Platform for the

Web of Things." In Proceedings of MobiQuitous, 2011, pp.186-196.

[48] Bernd Resch, Manfred Mittlboeck, and Michael Lippautz, 2010. "Pervasive Monitoring—

An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures," Sensors

2010, 10(12), 11s440-11467.

http://research.microsoft.com/apps/pubs/default.aspx?id=136890
https://portal.opengeospatial.org/files/49608

95

[49] Open Geospatial Consortium, 2007, OpenGIS® Catalogue Services Specification [online].

Available: http://portal.opengeospatial.org/files/?artifact_id=20555 [Accessed 20 September

2013].

[50] Cuno Pfister, Getting Started with the Internet of Things, O'Reilly, pp. 30-100, 2011.

[51] Liang, S. H. L., S. Chen, C. - Y. Huang, R. - Y. Li, D. Y. C. Chang, J. Badger, and R.

Rezel, "GeoCENS: Geospatial Cyberinfrastructure for Environmental Sensing ", GIScience

2010, Zurich, Switzerland, 09/2010.

[52] Ralph C. Merkle, "A Certified Digital Signature," In Gilles Brassard, ed., Advances in

Cryptology – CRYPTO '89, vol. 435 of Lecture Notes in Computer Science, pp. 218–238,

Spring Verlag, 1990.

[53] Tsiftes, Nicolas, Joakim Eriksson, and Adam Dunkels. "Low-power wireless IPv6 routing

with ContikiRPL." In Proceedings of the 9
th

 ACM/IEEE International Conference on

Information Processing in Sensor Networks. ACM, 2010.

[54] Van Dam, Tijs, and Koen Langendoen. "An adaptive energy-efficient MAC protocol for

wireless sensor networks." In Proceedings of the 1
st
 International Conference on Embedded

Networked Sensor Systems. ACM, 2003.

[55] Shelby, Zach, Klaus Hartke, and Carsten Bormann. "Constrained Application Protocol

(CoAP)." draft-ietf-core-coap-18, 2013.

[56] Fielding, Roy T., and Richard N. Taylor. "Principled design of the modern Web

architecture." ACM Transactions on Internet Technology (TOIT) 2.2 (2002): 115-150.

[57] Kuladinithi, K.; Bergmann, O.; Potsch, T.; Beckera, M.; Gorg, C. Implementation of CoAP

and its Application in Transport Logistics. In Proceedings of Extending the Internet to Low

power and Lossy Networks (IP+SN 2011), Chicago, IL, USA, 11 April 2011.

http://portal.opengeospatial.org/files/?artifact_id=20555
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/24
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/29
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/30
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/31
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/27
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/28
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/26
http://sensorweb.geomatics.ucalgary.ca/gsw/biblio/author/26
http://sensorweb.geomatics.ucalgary.ca/gsw/geocens-geospatial-cyberinfrastructure-environmental-sensing

96

[58] Kovatsch, M.; Duquennoy, S.; Dunkels, A. A Low-Power CoAP for Contiki. In

Proceedings of Eighth IEEE International Conference on Mobile Ad-Hoc and Sensor

Systems, Valencia, Spain, 17–22 October 2011; pp. 855–860.

[59] Ludovici, Alessandro, Pol Moreno, and Anna Calveras. "TinyCoAP: a novel constrained

application protocol (CoAP) implementation for embedding RESTful web services in

wireless sensor networks based on TinyOS." Journal of Sensor and Actuator Networks 2.2

(2013): 288-315.

[60] Curbera, Francisco, et al. "Unravelling the Web services web: an introduction to SOAP,

WSDL, and UDDI." Internet Computing, IEEE 6.2 (2002): 86-93.

[61] Moritz, Guido, Frank Golatowski, and Dirk Timmermann. "A lightweight SOAP over

CoAP transport binding for resource constraint networks." Mobile Adhoc and Sensor

Systems (MASS), 2011 IEEE 8
th

 International Conference on. IEEE, 2011.

[62] Lerche, C.; Laum, N.; Moritz , G.; Zeeb, E.; Golatowski, F.; Timmermann, D.

Implementing Powerful Web Services for Highly Resource-Constrained Devices. In

Proceedings of 7th IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March

2011; pp. 332–335.

[63] Groba, H.; Clarke, S. Web Services on Embedded Systems: A Performance Study. In

Proceedings of 8th IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOM Workshops), Mannheim, Germany, 29 March—2

April 2010; pp.726–731.

97

[64] Castellani, A.P.; Gheda, M.; Bui, N.; Rossi, M.; Zorzi, M. Web Services for the Internet of

Things through CoAP and EXI. In Proceedings of IEEE International Conference on

Communications Workshops (ICC), Kyoto, Japan, 5–9 June 2011; pp 1–6.

[65] J. Schneider and T. Kamiya, "Efficient XML Interchange (EXI) Format 1.0," W3C Working

Draft, 2008. [Online]. Available: http://www.w3.org/TR/2008/WD-exi-20080919 [Accessed

2 October 2013].

[66] World Wide Web Consortium (W3C), “XML Technology.” [Online]. Available:

http://www.w3.org/standards/xml [Accessed 2 October 2013].

[67] ETSI. 1
st
 CoAP Plugtest. Technical Report CTI Plugtest Report 1.1.1 (2012-03), ETSI,

2012.

[68] Lynch, Gary S. Single point of failure: The 10 essential laws of supply chain risk

management. John Wiley and Sons, 2009.

[69] Mariana Carroll, Paula Kotze, Alta van der Merwe (2012). "Securing Virtual and Cloud

Environments". Cloud Computing and Services Science. Springer New York, 2012. 73-90.

[70] Greenwood, Jim. "OGC Web Services Common Standard." [Online]. (2010). Available:

http://portal.opengeospatial.org/files/?artifact_id=38867 [Accessed 19 February 2014].

[71] J. W. Hui and D. E. Culler, “IP is dead, long live IP for wireless sensor networks,” In

SenSys ’08: Proceedings of the 6
th

 ACM Conference on Embedded Network Sensor Systems.

New York, NY, USA: ACM, 2008, pp. 15–28.

[72] S. Duquennoy, G. Grimaud, and J. Vandewalle, “The Web of Things: Interconnecting

Devices with High Usability and Performance,” In Proceedings of the International

Conference on Embedded Software and Systems (ICESS ’09), Hangzhou, Zhejiang, China,

2009, pp. 323–330.

98

[73] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal, M. Frid, V.

Krishnan, H. Morris, J. Schettino, B. Serra, and M. Spasojevic, “People, places, things: web

presence for the real world,” Mob. Netw. Appl., vol. 7, no. 5, pp. 365–376, 2002.

[74] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and K. Kim, “TinyREST - A

protocol for integrating sensor networks into the internet,” In Proceedings of the Workshop

on Real-World Wireless Sensor Network (REALWSN), Stockholm, Sweden, 2005.

[75] W. Drytkiewicz, I. Radusch, S. Arbanowski, and R. Popescu-Zeletin, “pREST: a REST-

based protocol for pervasive systems,” In Proceedings of the IEEE International Conference

on Mobile Ad-hoc and Sensor Systems (MASS’04), Lauderdale, Florida, 2004, pp. 340–348.

[76] Smith, Connie U., and Murray Woodside. "Performance validation at early stages of

software development." System Performance Evaluation: Methodologies and Applications

(1999).

[77] Lynch, Gary S. "Single Point of Failure: The 10 Essential Laws of Supply Chain Risk

Management." John Wiley and Sons. Oct 7 2009. ISBN 978-0-470-42496-4.

[78] Al-Alawi, Adel I. "Wi-Fi technology: Future market challenges and opportunities." Journal

of computer Science 2.1 (2006): 13.

[79] M. A. Jazayeri, and S. H. L. Liang, "Security and Privacy: Two Prominent Aspects for the

Internet of Things", In Proceedings of the Spatial Knowledge and Information Canada

2014, Banff, Feb 2014.

99

Appendix A

A.1 Sample requests and responses used in Section 6.2

In this section, requests and responses of the get observation operation for each of the four

implemented protocols are presented. In addition to the message contents, the screenshots of the

Wireshark software and message summary are also provided to demonstrate the network analysis

of those requests.

A.1.1 Simple Web Server

Figure A.1.1 HTTP GET request to the simple web server

Figure A.1.2 Wireshark screenshot to analyze the requests sent to the simple web service

100

A.1.2 PUCK over Bluetooth

Figure A.1.3 GETREADING request and its response to a PUCK-enabled Netduino Plus

through Bluetooth

Figure A.1.4 Statistics of the GETREADING request

101

A.1.3 TinySOS

Figure A.1.5 GetObservation request to TinySOS by using 52 North test client tool

Figure A.1.6 Wireshark screenshot to analyze the requests sent to TinySOS

102

A.1.4 SOS over CoAP

Figure A.1.7 GetObservation request to the SOSCoAP proxy

Figure A.1.8 Get observation request sent to a CoAP server (i.e., Netduino Plus)

103

Figure A.1.9 Wireshark screenshot to analyze the requests sent to the CoAP server

Figure A.1.10 Details of the get observation request sent to the CoAP server

104

A.1.5 OGC SensorThings API

Figure A.1.11 HTTP GET request/response to the OGC SensorThings

Figure A.1.12 Wireshark screenshot to analyze the request sent to the SensorThings service

105

Figure A.1.13 Response of the SensorThings to multiple readings request

106

Figure A.1.14 Summarized response of the SensorThings

