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Abstract 

Recently, researchers focused on a new use of the Internet called Internet of Things (IoT), in 

which capable electronic devices can be remotely accessed over the Internet. All around the 

world, IoT applications are emerging exponentially with various functionalities in order to 

monitor and control the environment. For example, Wemo switch, Philips Hue light bulb, Ninja 

Blocks and Air Quality Egg are samples of the existing IoT applications which make 

environmental dynamics accessible via the Internet. Each application is developed based on the 

developer’s desire of the device. That means the number of proprietary protocols is growing as 

the number of IoT devices increases. Moreover, IoT devices are intuitively heterogeneous in 

terms of the hardware capabilities and communication protocols. Therefore, ensuring 

interoperability is an important step to integrate various devices together. In this research, we 

focus on the communication challenges of the IoT objects to make the network suitable for a 

wide scale of IoT devices. To do this, we implement open standards in different communication 

layers on a resource constraint IoT object. The standard protocols developed in this research are 

OGC PUCK over Bluetooth, TinySOS (a lightweight profile of the OGC SOS), SOS over CoAP, 

and OGC SensorThings API. To the best of our knowledge, these implementations are the 

world’s first contribution for the IoT objects. Eventually, we benchmark the efficiency of the 

implemented protocols by a comprehensive performance analysis in terms of memory 

occupation, request size, response length and response latency. As a result, by hosting the 

aforementioned open standard protocols on IoT devices, not only the devices become self-

describable, self-contained, and interoperable, but also innovative applications can be simply 

developed by standardized interfaces. 
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Chapter One: Introduction  

1.1 Background 

The term “Sensor Web” was first used by Kevin Delin in 1997 [1] to describe a wireless sensor 

network (WSN) architecture where sensors can cooperate as a whole. Nowadays, we are 

witnessing the increasing number of deployments of WSNs and Sensor Web on the Earth. These 

networks consist of spatially distributed autonomous sensors, each of which is used to monitor 

the physical or environmental conditions (e.g., temperature, humidity, sound, motion, etc.) and to 

cooperatively pass their data through the network to a main location (end user) [2]. WSNs have 

been involved in many traditional applications, including habitats monitoring systems [3], 

environment observation systems [4], structure health monitoring systems [5], health 

applications [6], and fire emergency response systems [7].  

Although the traditional monitoring systems (e.g., sensor networks) can provide precise 

and accurate measurements, the deployment of these systems is usually labour-intensive and 

challenging [8]. Therefore, a new paradigm called Citizen Sensing or Volunteered Geographic 

Information (VGI) has been proposed to involve the general public into the monitoring system 

[9, 10, 11]. With citizens measuring environmental properties voluntarily, scientists are able to 

observe the environment with a much higher spatial and temporal resolution. A key to realize the 

above citizen sensing vision is to empower citizens with low-cost and easy-to-use sensor 

systems. Similar to the fact that the affordable and user-friendly PC democratized computing 

[12], such cost-effective and easy-to-use sensor systems would be widely used in environmental 

monitoring.  

One of the fundamentals of the Citizen Sensing vision is the Internet connectivity to 

provide online access to the sensor observations as they are measured [10]. Recently, researchers 
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focused on a new use of the Internet called Internet of Things (IoT), in which capable electronic 

devices can be remotely accessed over the Internet. Since the IoT is made of different kinds of 

objects, such device heterogeneity will pose challenges in terms of interoperability. Thus, the 

goal of this research is to address the interoperability issues of the IoT. 

Among the existing Internet-enabled devices, sensor is one of the key enablers in the IoT 

paradigm [13]. For instance, sensors allow objects to sense the environment around them such as 

thermometer, water gauges, cameras, etc. Since the IoT and sensors are tightly integrated, the 

vision of the IoT and the World Wide Sensor Web [14] are similar. One immediate solution to the 

IoT interoperability challenge can be using the interoperable protocols for the sensor networks. 

The other solution can be to design a new specific protocol for the Internet of Things.  

This chapter gives a brief presentation of the research topic by first introducing the 

Internet of Things paradigm and the existing progress in the IoT applications. Next, we define 

interoperability as a research motivation followed by problem definition and solutions. It then 

states the research objectives and our contributions to overcome the introduced problem. In 

addition, this chapter mentions our development platform, and a brief definition of the terms 

used in the next chapters. Lastly, the remaining chapters are outlined. 

1.2 Internet of Things 

The Internet connected services are growing rapidly. A great number of people use the Internet 

for web surfing, multimedia accessing, sending and receiving emails, playing games, shopping, 

social networking and many other daily tasks. Consequently, World Wide Web can intuitively be 

a good candidate to involve citizens into the sensing systems. 

Therefore, the concept of Internet of Things (IoT) emerged as a networking infrastructure 

to interconnect electronic objects over the medium of the Internet. The prime goal of the IoT is to 
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capture the observations from sensors, control IoT devices, and finally make those devices easily 

available through the Internet. As illustrated in Figure 1.1, all electronic devices which are 

capable of Internet connectivity (e.g., sensors, actuators, machines, and computers) can be visited 

through the Internet browsers (e.g., web browsers and cell phone applications). 

 

Figure  1.1 The Internet of Things scheme 

To technically define IoT, we echo the definition provided by International 

Telecommunication Union (ITU) [15]: "Internet of Things is a global infrastructure for the 

information society, enabling advanced services by interconnecting (physical and virtual) things 

based on existing and evolving interoperable information and communication technologies". 

Figure 1.2 depicts this concept by mapping the physical world to the digital world across 

communication networks. According to this technical viewpoint, IoT would certainly affect on 

different aspects of the potential user’s life and behaviour. For example, assisted living, e-health, 

enhanced learning, automation and industrial manufacturing, and intelligent transportation 
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systems are only a few examples of possible application scenarios in which the new paradigm 

will play a leading role in the near future. 

 

Figure  1.2 Technical overview of the IoT [15]  

Referring to the definition provided by ITU, a Thing is also described as a uniquely 

identifiable instance of the physical world or the information world, which can be integrated into 

communication networks [15]. In this research, a Thing denotes a physical device in the physical 

world with the mandatory capabilities of communication and the optional features of sensing, 

actuation, data capture, data storage and data processing. Bormann et al. [16] worked within 

IETF
1
 analyzed and categorized IoT objects into three categories with respect to their 

communication capabilities: class-0 devices (i.e., impossibly limited devices), class-1 devices 

(i.e., devices with about 10 Kbytes of RAM and 100 Kbytes of code space), and class-2 devices 

(i.e., devices with about 50 Kbytes of RAM and 250 Kbytes of code space). Bormann et al. [16] 

argue that the class-0 devices require extra help to communicate with other devices; the class-1 

                                                 

1
 IETF: Internet Engineering Task Force 
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devices cannot easily communicate with other devices or applications through traditional XML-

data representations and protocols (e.g., HTTP and Transport Layer Security (TLS)); and the 

class-2 devices are able to communicate with the traditional transfer protocols and data 

encodings. Based on these arguments, we focus on the relatively inexpensive class-1 IoT devices 

in this research. Thus, this approach allows us to explore the lower bound of the resources that 

are required for IoT applications. In that way, we ensure that our design choices can deliver an 

efficient implementation suitable for a broader application domain.  

Here, we identify and emphasis on two of the major issues of the Internet of Things. 

First, since objects in the IoT act independently, each IoT object needs to be self-describable and 

self-contained in order to communicate with other objects or sensors. That is, a Thing should be 

able to describe and advertise both itself and its capabilities, which in general is the metadata of 

the Thing. Second, since objects are developed to satisfy a particular need, their communication 

protocols and data encodings are usually different from each other. This heterogeneity 

consequently obstructs the communication and cooperation between objects. Besides the two 

aforementioned issues, there are other issues in the IoT, such as limited power supply, privacy, 

and security concerns. While these issues are important, we do not address them here as they are 

out of the scope of this research. 

1.3 Existing IoT Applications 

IoT projects are dramatically growing in different areas, specifically in energy optimization. 

Ericsson and Cisco IBSG
2
 predicted there will be 25 billion Internet-connected devices by 2015 

                                                 

2
 Internet Business Solutions Group 
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and more than 50 billion by 2020 [17, 18]. Some of the available IoT projects recently released 

to the IoT market are shown in Figure 1.3. 

 

Figure  1.3 Existing IoT applications: (a) Wemo switch(http://blessthisstuff.com); (b) Philips 

Hue light bulb (http://theverge.com); (c) Ninja Blocks (http://ninjablocks.com); (d) Air 

Quality Egg (http://airqualityegg.wikispaces.com) 

Traditionally, network peripherals have not been easy to install. Recent standards such as 

Universal Serial Bus (USB) and Plug-and-Play
3
 have improved the situation so that devices are 

                                                 

3
 http://www.pcguide.com/ref/mbsys/res/pnp-c.html 
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automatically detected and device drivers are automatically installed. Yet, networked devices, 

such as Internet gateways and networked printers still require manual setup and configuration. 

Wemo switch
4
 (Figure 1.3(a)) lets electronic devices to be remotely turned on/off. It is an 

IoT application that follows the Universal Plug and Play (UPnP) [19] protocol in its 

communication. Using UPnP, when a device is plugged in and turned on, it "just works". 

However, the Wemo application has to be installed on an Android or iOS device, in order to 

transfer the network settings to the Wemo switch. Furthermore, the Wemo switch cannot be 

controlled from outside the network it exists (i.e., Internet). 

Philips Hue light bulb
5
 (Figure 1.3(b)) is a wireless light which can display different 

tones of white light from warm yellow white to vibrant blue white. The Hue light bulb works 

similarly by means of a Hue router as a bridge between the bulb and the Hue app. Later on, it is 

possible to talk to the light bulb by Hue bridge across the Internet. Furthermore, the Hue 

application and Hue bridge are required to support the remote communication to the device. 

Ninja Blocks
6
 (Figure 1.3(c)) are cloud-enabled components including sensors (e.g., 

temperature, humidity, motion, window and door contact) and actuators (e.g., lights, power 

sockets) to monitor and control the environment. Ninja Blocks are more accessible than the two 

previous IoT apps by integrating the Ninja Block to Ninja clouds on the Internet. The connection 

between the Ninja Block and Ninja clouds is established automatically based on an API which 

has already hard-coded on the Ninja Blocks. The cloud also provides a web interface for the 

clients to aggregate sensor data in a repository. However, if a new device is added to the 

                                                 

4
 http://www.belkin.com 

5
 https://www.meethue.com 

6
 http://ninjablocks.com 
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network, the device needs to follow the Ninja cloud API to be able to interact with the Ninja 

server. 

Air Quality Egg
7
 (Figure 1.3(d)) is an air quality monitoring system which provides 

online access to its observations. The egg is composed of a sensing device that measures the air 

quality in the environment and a gateway that shares the collected data in real-time. The Air 

Quality Egg immediately uploads the collected data to an open database service named Xively8 

(formerly Cosm and before that Pachube). Although Xively provides online access to the sensor-

derived data, users can register their egg at the Air Quality Egg portal
9
 to visualize the data on a 

map. Similar to the Ninja Blocks, the Air Quality Egg follows the robust API provided by 

Xively. 

Accordingly, IoT is creating innovative applications by assembling the IoT sensing and 

controlling capabilities from different sources in effective ways. However, IoT service providers 

are developing their own proprietary software interfaces for their devices. As mentioned above, 

even these four instances of IoT applications do not apply the same protocol, application, and 

communication style in data exchange. This means the number of proprietary interfaces is 

growing as the number of IoT devices increases. Consequently, an effort is required to 

interconnect various IoT devices with a shared interface to be globally accessed on the Internet. 

1.4 Interoperability 

Towards the first issue mentioned in Section 1.2, devices should somehow provide web services 

to advertise the devices capabilities and information in the network. For the second issue, the 

devices need to be interoperable in their communications. Based on the IEEE definition [20], 

                                                 

7 
http://airqualityegg.com 

8 
https://xively.com 

9
 http://airqualityegg.com/ 
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syntactic interoperability means the ability of interoperation and information exchange in a 

system; that is, devices should be able to interactively communicate with a common protocol and 

data format. Beyond the syntactic definition of the IEEE, devices should exhibit semantic 

interoperability as well. To clarify, semantically interoperable devices can interpret the 

exchanged data, and generate meaningful result which is understandable by both sides. Although 

interoperability has a broader scope, we focus on the syntactic and semantic interoperability in 

this research. 

According to Rodriguez et al. [21], Sensor Web and WSNs play an important role in the 

IoT. In order to provide global interoperability for all IoT devices, we point to the open standard 

interfaces defined for WSNs. One of the pioneers in the standardization of WSNs is the Open 

Geospatial Consortium (OGC). OGC has been supporting geospatial interoperability since 1994. 

Among all OGC standards, the Sensor Web Enablement (SWE) is a suite of standards to enable 

sensor network interoperability. SWE standards include Observations & Measurements (O&M) 

[22], Sensor Model Language (SensorML) [23], Sensor Interface Descriptors (SID) [24], Sensor 

Observation Service (SOS) [25], Sensor Planning Service (SPS) [26], and PUCK protocol [27]. 

As a result, one possible solution to achieve the interoperable IoT is the development of these 

OGC open standards on the IoT devices. Therefore, one of the objectives is to implement the 

suitable SWE standards for IoT devices, and then we can evaluate whether the SWE standards 

are suitable for IoT devices or not. In addition, as the SWE standards are designed for scientific 

grade sensor systems rather than for resource-constrained low-cost IoT devices, there might be a 

need to define a specific standard for the IoT objects.  
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1.5 Problem Definition, Motivation and Solutions 

The information communication, including tasking IoT objects and retrieval of spatio-temporal 

observations from distributed IoT devices, is a key function in the Internet of Things. The 

traditional interaction models in the Internet are based on the request/response communication 

style between network entities. The Internet protocol suite is the networking model for the 

Internet which contains four layers: Application Layer, Transport Layer, Internet Layer, and 

Link Layer [28] as depicted in Figure 1.4. 

 

Figure  1.4 Internet protocol graph [28] 

Other than the Link Layer which is significantly related to hardware equipments, Internet 

Protocol (IP) in the Internet Layer, Transmission Control Protocol (TCP) in the Transport Layer 

and Hyper Text Transfer Protocol (HTTP) in the Application Layer are mostly used to 

communicate between computers on the World Wide Web. Therefore, a prominent candidate for 

the IoT would be the WWW protocols that are very scalable, robust, and ubiquitous [30]. 
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However, the existing Internet protocol suite may not be appropriate for the IoT because of the 

following reasons: 

1. Internet access problem: Many IoT devices are not capable of accessing the Internet. This 

problem occurs because IoT devices do not meet the hardware requirements in order to 

connect to the Internet or do not have the stable power supply to be continuously 

connected to the network. Consequently, IoT should be flexible in integrating the Internet 

protocol with other protocols in order to make those devices available on the Internet. 

Involving new protocol(s) to the available network infrastructure typically requires new 

software and hardware requirements (e.g., gateway) to facilitate the seamless integration 

of those devices with mobile communication networks or Internet. For example, when a 

Hue light bulb is going to communicate with a client (e.g., a web browser); the Hue 

bridge needs to be installed on the network. 

2. Lack of standard protocol for IoT data representation: HTTP is a foundation of data 

communication for the World Wide Web to transfer hypertext across the Internet. 

However, data representation considerably differs from one device to another because 

there is no standard defining the data representation in the IoT. For example, plain text, 

Hypertext Markup Language (HTML), JavaScript Object Notation (JSON), and 

Extensible Markup Language (XML) are possible response formats. In order to supply 

interoperable access between heterogeneous IoT objects, we need to define a standard 

protocol on top or in parallel of HTTP.  

3. Constrained resources of IoT devices: As we already mentioned in Section 1.2, we focus 

on resource limited class-1 objects in this research. The Internet protocol suite itself 

might be inappropriate for the constrained network or objects of the Internet of Things. 
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Therefore, efficient and compressed data encodings in terms of computational resource 

consumption (e.g., memory, CPU, bandwidth) are required for these devices. 

To alleviate the above deficiencies for the existing Internet protocols of the World Wide 

Web, an alternative standard protocol(s) needs to be considered. The protocol(s) should be 

effectively compliant with the requirements of IoT participants (i.e., objects, users, applications, 

networks, gateways, proxies) in order to make the IoT devices interoperable in the network. The 

selected protocol(s) can encourage people to participate in the IoT by connecting their sensors 

and actuators to the network. In this case, IoT will provide real-time sensor data streams with a 

much higher spatial and temporal resolution. Also, end users can remotely command their daily 

devices by means of web browsers or mobile applications. 

As OGC SOS is a commonly-used web service interface in the Sensor Web, we first 

connect users to IoT devices based on that protocol. This connection may be established directly 

through TinySOS protocol [30] which is a compressed implementation of the OGC SOS [25] on 

the IoT objects. On the other hand, the connection protocol to the device can be modified to 

OGC PUCK [27] or CoAP [16] which requires intermediary nodes (i.e., proxy, gateway) for 

protocol conversions (Figure 1.5). The OGC PUCK provides access to the driver code, 

installation procedures, communication port configuration, and metadata of the device. The 

CoAP also employs the basic features of HTTP to the constrained network while maintaining a 

low overhead. 
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Figure  1.5 The placement of PUCK, TinySOS, and CoAP in the IoT 

In addition to using the existing standards for IoT, there is an ongoing effort of defining a 

standard Web Application Programming Interface (API) for the IoT. This API, namely OGC 

SensorThings, is built on HTTP protocols and applies the widely-used Representational State 

Transfer (REST) style to access the system's components. 

1.6  Objective and Contributions 

The main objective of this research is to address the IoT interoperability issues. To achieve this 

major goal, we first investigate the current progress on this aspect of the IoT. Then, we 

implement four standard protocols on a class-1 IoT device including PUCK over Bluetooth, 

TinySOS, SOS over CoAP, and OGC SensorThings. Finally, we evaluate the four different 

protocols. To summarize, this thesis makes the following contributions: 

 We implement the OGC PUCK on a Bluetooth-enabled class-1 IoT object. To make the 

sensor data available on the Internet, we also integrate the OGC SOS protocol with the 

PUCK-enabled IoT object. 
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 We implement the heavy-weight OGC SOS and SensorML standards on a resource-

constrained sensor (class-1 IoT device). In order to overcome the hardware constraints, 

we introduce an efficient XML parser algorithm.  

 To interconnect a CoAP-enabled IoT object with other sensors on the Web, we integrate 

this protocol to other standards of the WSNs (e.g., OGC SOS) as an interoperable 

infrastructure for the IoT. Therefore, we implement the commonly-used SOS standard 

over CoAP on a CoAP proxy which has enough computational resources. 

 We design a specific RESTful protocol for the Internet of Things called OGC 

SensorThings API which communicates with IoT objects based on their own defined 

protocols. 

 At the end, we complete our contributions by evaluating the performance of the four 

aforementioned protocols (i.e., PUCK over Bluetooth, TinySOS, SOS over CoAP, and 

OGC SensorThings) in terms of memory occupation (ROM and RAM), request length, 

response size and response latency.  

The major contribution of this research is to explore the possible approaches to achieve 

interoperability between class-1 IoT objects. Furthermore, we expect that the direction addressed 

in this research can be a motive to establish a better infrastructure for the future of IoT. 

1.7 Development Platform 

In this research, we use a sensor compatible Single Board Computer (SBC), namely Netduino 

Plus. This electronic framework is a low-price (59$) open source hardware platform built by 

Secret Labs Company [31]. The board features a 32-bit Atmel microcontroller with 48 MHz 

speed, 28 Kbytes main memory  (i.e., RAM), and 64 Kbytes code storage. In this case, Netduino 

Plus belongs to the class-1 device category in the framework of Bormann et al. [16]. 
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Furthermore, Netduino Plus supports micro SD memory (up to 4 GB) as a permanent 

memory to store necessary information such as configuration files, capabilities document, sensor 

observations, etc. The network connectivity of the board is established by an Ethernet cable, but 

its mainboard can support other network alternatives (e.g., Wi-Fi, Bluetooth, Zigbee, and GPRS). 

As shown in Figure 1.6, the mainboard also supports 20 I/O pins (14 digital and 6 analog) where 

sensors and actuators can be simply attached to. From the software viewpoint, codes developed 

on this device should be written in C# .Net Micro Framework. Netduino Plus can run the codes 

directly without any needs for operating systems (OS). 

 

Figure  1.6 Netduino Plus mainboard [31] 

1.8  Definition of Terms 

For clearer understanding of the terms used in this study, terms and their definitions are as 

follows: 

Actuator- It refers to a transducer that accepts an electrical signal and converts it into a physical 

action [32]. 



 

16 

Feature of Interest- This describes a feature (so a representation of a real-world object) that 

carries the property which is observed. This can be either a domain feature (a.k.a. sampled 

feature) such as “Mississippi”, or a sampling feature like “water gage X" at Mississippi river. 

[33] 

Gateway- It refers to a device used to connect two different networks, especially a connection to 

the Internet [29]. 

Observation Offering- It groups collection of observations which are somehow similar such as 

the observations produced by a specific procedure. [25]. 

Observed Property- Facet or attribute of an object referenced by a name which is observed by a 

procedure [25]. 

Phenomenon- It is an event in the real world which will be measured. A phenomenon may be a 

physical property (such as temperature, length, etc.), a classification (such as species), frequency 

or count, or an existence indication [34]. 

Procedure- This involves method, algorithm, instrument, sensor, or system of these which may 

be used in making an observation [25]. 

Proxy server- In computer networks, a proxy server is a server (a computer system or an 

application) that acts as an intermediary for requests from clients seeking resources from other 

servers. A client connects to a proxy server, requesting some services, such as a file, connection, 

web page, or other resources available from a different server. Then, the proxy server evaluates 

the request as a way to simplify and control its complexity. Proxies were invented to add 

structure and encapsulation to distributed systems [35]. 

Sensor- It is an entity that provides information about an observed property as its output. A 

sensor uses a combination of physical, chemical or biological means in order to estimate the 

http://en.wikipedia.org/wiki/Client_(computing)
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underlying observed property. At the end of the measuring chain, electronic devices produce 

signals to be processed [25]. 

Sensor Web Enablement (SWE) - Among the OGC working groups, SWE focuses on 

integrating sensors, transducers, and sensor data storages discoverable, accessible and useable 

via the Web. The OGS SWE standards include: Sensor Observation Service (SOS), Sensor 

Planning Service (SPS), PUCK, Sensor Model Language (SensorML), and Observations & 

Measurements (O&M) [36]. 

1.9 Thesis Organization 

Chapter 2, 3, 4, and 5 overview PUCK over Bluetooth, TinySOS, SOS over CoAP, and OGC 

SensorThings API, respectively. Therefore, Chapter 2 to Chapter 5 will independently explain a 

specific protocol, each of which contains introduction, literature review, architecture, 

methodology, discussion, and summary sections. Then, Chapter 6 evaluates our implementations 

by comparing the four protocols in terms of performance analysis. Finally, conclusions and 

future work are given in Chapter 7. 
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Chapter Two: PUCK over Bluetooth 

2.1 Introduction 

Among the large scope of OGC standards, we first choose PUCK which is a simple command 

protocol. The PUCK contains a set of standard commands to access the device memory, read the 

device metadata, and write data on the memory. The prime purpose of the OGC PUCK is to 

provide interoperability for devices connected through serial cables or Ethernet. In order to 

enable sensors to be accessible via wireless connections, we analyze possible radio 

communication technologies. The choice of the radio highly matters since it influences either 

energy consumption or software design. Comparing to Zigbee and RF transceiver alternatives 

applied in WSNs or Sensor Webs, Bluetooth is more popular because it has been widely 

supported by many daily devices (e.g., cell phone and notebook). In addition, Bluetooth is more 

energy-efficient in comparison with Wi-Fi. Therefore, we integrate the Bluetooth protocols to the 

PUCK standard in order to raise the interoperability between various types of sensors and 

actuators, namely IoT devices. 

PUCK standard is efficiently designed to be applied on devices supporting different 

protocols. It considers two modes: PUCK mode for processing the PUCK commands, and 

instrument mode for handling instrument-specific operations. Since the PUCK itself has no 

support for retrieving and publishing the sensor measurements on the Internet, we use other OGC 

standards, SID and SOS, to provide users the access to the measurements. The workflow is 

shown in Figure 2.1 and is elaborated in Section 2.4. 
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Figure  2.1 The overall workflow of accessing to the sensor measurements 

To wrap up, the first contribution of this chapter is that we initially enable sensors to be 

accessible through Bluetooth technology. Then, we integrate Bluetooth protocol and PUCK as an 

open standard wireless protocol to raise the interoperability of IoT devices. 

The remainder of this chapter is organized as follows. In Section 2.2, literature review 

and related works are stated. Section 2.3 and Section 2.4 present the proposed architecture and 

implementation, respectively. In Section 2.5, we discuss about the PUCK over Bluetooth idea 

and its consequent issues. Finally, a summary about this chapter is offered in Section 2.6. 

2.2 Related Works 

Bluetooth has already been utilized in Sensor Web [37] to let sensors upload their readings to a 

data repository. Leopard et al. [38] achieved this by introducing a tiny Bluetooth stack that 

allows TinyOS [39] applications to be executed on Bluetooth enabled sensor nodes. While 
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Leopard et al. [38] focused on the efficient network processing and system architecture design, 

their research did not consider the interoperability issues between various sensors. 

Since the Bluetooth radio range is over a couple of meters [40], the system developed by 

Leopard et al. [38] does not provide the world wide access to the sensor measurements. To 

overcome this problem, Ferrari et al. [41] proposed a new architecture for the sensor networks to 

integrate the Bluetooth-enabled sensors with Internet-connected computers. As a result, these 

Bluetooth-enabled sensors are essentially connected to the Internet. Although this 

implementation successfully demonstrated the possibility of combining Bluetooth sensor nodes 

to the web interfaces, the communication protocol between sensors and computers was 

proprietary and did not consider the interoperability issues. 

Nevertheless, to the best of our knowledge, there is no standard protocol based on the 

Bluetooth that enables embedded sensors and IoT devices to be connected in an interoperable 

manner. Therefore, we believe that the integration of Bluetooth and OGC standards for IoT 

devices that this chapter presents is a pioneer in this field. 

2.3 Architecture 

Here, we briefly introduce the OGC PUCK protocol. Next, we explain the sensor protocol for 

retrieving sensor observations from the device. Finally, we present the high-level architecture of 

our proposed system. 

2.3.1 OGC PUCK 

The PUCK protocol provides access to the driver code, installation procedures, communication 

port configuration, command protocol, and metadata such as OGC SensorML. In general, this 

standard protocol mainly consists of two parts: PUCK commands, and PUCK memory. 
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 PUCK commands: The protocol has a command-response style in which commands are 

considered as ASCII strings. Upon successful execution, the device executing PUCK 

protocol will return the characters: PUCKRDY<CR>. If the PUCK-enabled instrument is 

unable to execute a command successfully, it will issue a specific error. Table 2.1 shows 

a summary of the PUCK commands. 

Table  2.1 Command set of the OGC PUCK 

Command Description 

PUCKRM Read from PUCK memory 

PUCKWM Write to PUCK memory 

PUCKFM End PUCK write session 

PUCKEM Erase PUCK memory 

PUCKGA Get address of PUCK internal memory pointer 

PUCKSA Set address of PUCK internal memory pointer 

PUCKSZ Get the size of PUCK memory 

PUCKTY Query PUCK type 

PUCKVR Get PUCK version string 

PUCK Null command 

PUCKIM Put PUCK into instrument mode 

PUCKVB Verify baud rate support 

PUCKSB Set PUCK-enabled instrument baud rate 
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 PUCK Memory: PUCK memory provides a space for device information, and a memory 

pointer referring to the memory address that will be read or written by the relevant PUCK 

commands. Figure 2.2 indicates partitions of the PUCK memory which is mainly divided 

into two parts: PUCK datasheet and PUCK payload. PUCK datasheet contains a small 

standard datasheet including a Universally Unique Identifier (UUID), manufacturer ID, 

PUCK version, header size, and several device related information such as name, version, 

model ID, and serial number. On the other hand, the optional PUCK payload stores 

additional information needed to operate the device such as device driver code, 

SensorML, and so forth. 

 

Figure  2.2 PUCK memory 

2.3.2 Sensor Protocol 

The purpose of sensor protocol is to allow users to simply query sensor capabilities, 

observations, and presentations of observed features in the instrument mode. As the device we 
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used in this research does not provide any sensor protocol, we define a protocol based on the 

concept of OGC SOS [25] to serve the demonstration purpose. Most of the terms used in this part 

follow the terminology in the OGC SOS. Because of the limited resources in IoT instruments, 

the command and response formats should be considered as simple as possible. Therefore, unlike 

the SOS applying XML as the format, this protocol simply defines “separators” (e.g., {#, :, |}) to 

format requests and responses (Figure 2.3). Similar to the OGC SOS, we define 

GETCAPABILITIES operation in order to show the capabilities of the device. The response 

includes the unique IDs of the sensors attached to the device, the phenomena IDs which are 

measured by the sensors, and the unit of measurements. Next, the other operation, 

GETREADING, can be sent to retrieve sensor readings. Figure 2.3 depicts the procedures of the 

sensor protocol. 

 

Figure  2.3 Procedures of the sensor protocol 
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2.3.3 System Architecture 

As shown in Figure 2.4, the architecture we proposed for the device follows a layered structure 

which has three major layers: Communication Layer, Service Layer, and Sensor Layer. 

 

Figure  2.4 The system architecture supporting PUCK protocol 

 Communication Layer: This layer includes the Bluetooth hardware and its protocol. 

When a request is received, the layer forwards the request string to the service layer for 

processing. After the service layer finishes processing the request, a response string is 

returned to the communication layer to send back to the client. 

 Service Layer: The service layer handles business logic of the system. This layer itself 

consists of three modules: sensor data repository, response engine, and memory 

management unit (MMU). More details about the service layer are presented in Section 

2.4.  
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 Sensor Layer: The sensor layer consists of the physical sensors and the sensor controller. 

The sensor controller tasks sensors to collect sensor observations. Next, it sends the 

retrieved sensor observations to the sensor data repository of the service layer. 

2.4 Implementation 

In this section, we explain the service layer in detail. Then, we introduce the required software 

components to connect the IoT device to the Internet. 

2.4.1 Service Layer 

In order to parse the commands and compose response messages on the small memory of IoT 

devices, we propose the response engine. This unit is equipped with a buffering mechanism to 

handle the large contents. By the way, the maximum memory consumption at any time for 

reading and writing a document is equal to the buffer size. In our implementation, the buffer size 

is considered 1 KB which is more than enough for the commands of PUCK and sensor protocol. 

The high-level workflow of the service layer is illustrated in Figure 2.5. As the response 

engine encountered with a carriage return operator, it tries to match the command with the hard-

coded commands (i.e., pattern). After pattern matching, the response engine processes the 

request by retrieving necessary information from the MMU (if the command relates to PUCK 

memory), or the sensor data repository (if the request contributes to the sensor protocol). Finally, 

the response engine packages the result in buffers to be sent to the communication layer. The key 

features in the service layer are the buffering and pattern matching approaches. By these features, 

we could successively parse and compose large commands (e.g., 100KB) on devices with limited 

resources (e.g., 25 KB RAM). 
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Figure  2.5 The high level workflow of the service layer 

2.4.2 Additional Software Components 

As the proposed IoT devices follow the PUCK open standard, users are able to connect to the 

devices using the PUCK commands. For example, users can develop a PUCK detector 

application that establishes Bluetooth connections and sends out PUCK Null command (i.e., 

PUCK<CR>) to discover PUCK-enabled devices. After a successful discovery process, the client 

can send other PUCK commands to the devices through Bluetooth. 

As PUCK provides access to the data in the PUCK memory, PUCK does not support 

communications in the device protocol. Therefore, we apply another OGC standard, SID, to 

handle the communications in the device protocol. First, we store a SID file which contains the 

necessary information about the device protocol, in the PUCK payload for client applications. 

Then, a client application can use a SID Interpreter [24] to retrieve sensor readings, and upload 

the observations to an online SOS (Figure 2.1).  
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2.5 Discussion 

PUCK over Bluetooth was presented in this chapter as a Bluetooth protocol allowing physical 

sensors to be interoperable in the Bluetooth established network. Although PUCK protocol was 

not designed to be hosted on devices with limited resources, we designed and implemented this 

standard to host on class-1 IoT devices. The developed system has demonstrated that it is 

feasible to have an interoperable and standard Bluetooth protocol for entire IoT devices. In this 

case, the Sensor Web can be easily integrated to our daily devices such as mobile phones or 

notebooks. In spite of popularity of the Bluetooth radio in our daily electronic devices, there are 

several issues for the aforementioned system. 

One issue is that Bluetooth radio has a short frequency range which clearly confines the 

users to be in proximity to the sensor (e.g., 10m). Although other wireless technologies (e.g., Wi-

Fi or RF transceiver) might cover this inconvenience, they lack power conservation, or 

compatibility with our daily devices. 

Moreover, one of the most challenging issues points to the security and privacy concerns. 

This issue can be solved by considering a passkey on the sensor’s Bluetooth modem which is 

requested during the pairing process. Also, secure connection can be achieved by leveraging 

existing standard mechanisms. For example, the current Bluetooth modem uses an encrypted 

connection to protect the message content's integrity and confidentiality. 

2.6 Summary 

In this chapter, we presented the PUCK over Bluetooth protocol, as a wireless profile of the 

OGC PUCK for IoT devices. Thereafter, we defined the OGC SOS-like commands to query the 

capabilities document, and sensor readings. Furthermore, to address the world-wide access to the 
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sensor readings, we proposed the PUCK detector and SOS service developed on the host, which 

is able to establish Internet connectivity. 

By hosting open standard Bluetooth protocol on the IoT devices, not only the devices 

become interoperable and easily plugged-and-played, but also the collected observations are 

accessible via our daily devices as soon as they are measured. In this case, we can easily make 

sensors available whenever wherever leading to a part of our tomorrow’s daily life. 
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Chapter Three: TinySOS 

3.1 Introduction 

The basic concept of the IoT is the ubiquitous existence of various things or objects that can 

communicate and cooperate with each other in order to achieve shared goals [42]. By giving 

objects the possibility to interact with each other, the IoT is attracting a wide range of 

applications. For example, Giusto et al. [42] categorized IoT applications into five categories: 

transportation and logistics, healthcare, smart environments, personal and social, and futuristic 

applications. 

In general, this chapter addresses the issues from the decentralized and heterogeneous 

nature of IoT objects and sensors.  The main idea is basically inspired by two papers published 

by Priyantha et al. [43] and Bormann et al. [16]. Priyantha et al. [43] proposed a tiny web service 

for sensors and an application-level interface which have three advantages. First, each sensor 

becomes self-describable and self-contained by providing web interfaces for applications to 

retrieve sensor's capabilities. Second, some sort of privacy is preserved for device owners by 

direct connections to their devices. In addition, the sensor deployment and maintenance are 

easier with interfaces for updating a sensor's metadata. However, in order to achieve the 

interoperability between sensors and applications, one solution is to use standard-based web 

service interfaces and widely-used data encodings in information communication. However, 

Priyantha et al. [43] defined their own ad-hoc interfaces rather than implementing existing 

standards. On the other hand, Bormann et al. [16] proposed the Constrained Application 

Protocol (CoAP) as a lightweight transfer protocol for IoT objects. To develop a lightweight 

protocol, they used User Datagram Protocol (UDP) [28] to simplify the information exchange 

between the CoAP nodes. UDP is an alternative to the Transmission Control Protocol (TCP) [28] 



 

30 

which keeps track of packet delivery. In order to enable CoAP with this advantage of TCP, 

CoAP applies a re-transmission mechanism for lost packets. However, as most web applications 

are using HTTP, an extra proxy that translates HTTP and CoAP is required for applications to 

communicate with IoT objects. Chapter 4 thoroughly explains the specification of the CoAP and 

its contribution to this research. 

According to the two above papers, one effective way to make IoT objects self-

describable and self-contained is to implement web services on IoT objects. Moreover, the web 

services and the communication protocols have to be lightweight enough to be executed on 

objects with limited resources. Both the tiny web service paper [43] and CoAP paper [16] present 

a concrete idea about how to address the decentralized and heterogeneous issues of IoT and 

Sensor Web. However, we argue that the only drawback of these two papers is that they do not 

take advantage of the existing open standards to address the interoperability issues. 

The Open Geospatial Consortium (OGC) established Sensor Web Enablement (SWE) as 

a group of open standards related to sensors, sensor data models, and Sensor Web services [44]. 

Similar to the W3C standards, the OGC SWE specifications are consensus-based open standards 

defined by any individual who is willing to participate. In principle, by following the SWE 

standards, we can achieve interoperability for the Sensor Web. However, the SWE standards are 

defined under the concept that web services are intermediaries between end-user applications and 

the sensors, and the SWE web services are based on HTTP and XML data representation. 

Lightweight Sensor Web services are not in the scope of SWE10. Thus, to the best of our 

knowledge, there is no existing work that evaluates the feasibility of constructing a SWE web 

                                                 

10
 A new OGC Standards Working Group (SWG) was formed in June 2012 called the Internet of Things REST API 

SWG. It focuses on developing an OGC standard for access to sensors in an IoT environment. 
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service directly on an object with limited resources. The reason this evaluation is important is 

that if SWE web services can be hosted on IoT objects, the IoT objects will not only be self-

describable and self-contained, but also they will inherit the comprehensive SWE conceptual 

model directly. In this case, the IoT objects can interoperate with each other as well as the 

existing OGC SWE applications. Moreover, some sort of privacy might be preserved by 

removing the gateways in the path between the applications and devices. 

Among the SWE specifications, we choose the Sensor Observation Service (SOS)11 

which defines a web service interface for accessing sensor observations and metadata [25], to be 

implemented on a class-1 IoT object. Our implementation of the SOS is termed TinySOS [30] 

that supports a lightweight profile of OGC SOS suitable for limited resources IoT objects. 

Moreover, to address the issue of discovering IoT objects, we implement a sensor 

registry service that not only allows a sensor to register and advertise itself, but also lets 

consumers (e.g., other IoT objects, sensors, or end-user applications) to search for available IoT 

resources. 

In summary, this chapter makes the following contributions: 

1. We present TinySOS as an open standard Sensor Web service on the IoT devices. With 

the aim of doing this, TinySOS enables average users to deploy low-cost sensor systems 

easily. 

2. Instead of using the traditional web service container, we develop a tiny web service 

whose code size is four times smaller than that of the traditional web service container. 

                                                 

11
 In this thesis, Sensor Observation Service (SOS) refers to the SOS version 1.0 [OGC, 2007] 
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3. To parse and compose potential large XML documents on an IoT device, we implement 

an XML processor unit (XPU) equipped with buffering mechanism to efficiently read and 

write XML documents. Therefore, the TinySOS allows a highly constrained device to 

handle very large XML documents. 

4. Finally, to address the resource discovery issue, we implement the sensor registry service 

that acts not only as a catalog service, but also as a proxy to forward requests and 

responses between clients and TinySOSs with dynamic IP addresses. 

The remainder of this chapter is organized as follows. Section 3.2 reviews the OGC SWE 

and the literature of integrating SWE and IoT. Section 3.3 and Section 3.4 present the proposed 

architecture and implementation, respectively. This is followed by a discussion about our 

findings and other issues about the IoT in Section 3.5. Finally, we this chapter provides a 

summary in Section 3.6. 

3.2 Related Works 

There have been some existing IoT projects applying proprietary protocols, such as Microsoft's 

HomeOS [45], Xively12 (previously known as Cosm and before that Pachube), MicroStrain's 

SensorCloud13, and Wovyn14. Many of them provide a web portal for users to manipulate the data 

collected by their sensors. We refer to these web portals as the IoT portals. Most of the IoT 

portals allow users to visualize the time-series data collected by sensors or publish the data with 

their own Application Programming Interfaces (APIs). However, in this case, IoT objects, that 

support only one type of proprietary APIs, form a “silo”, and cannot interoperate with objects in 

other silos. Consequently, the development of various IoT silos obstructs the development of the 

                                                 

12 
https://xively.com 

13
 http://www.sensorcloud.com/  

14
 http://www.wovyn.com/ 

http://www.sensorcloud.com/system-overview
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IoT. Therefore, in order to break down these silos and achieve the vision of an open IoT 

environment, following open standard protocols is necessary. 

Sensor Web Enablement (SWE) as an OGC working group defines open standards 

related to Sensor Web. The prominent standards in the SWE frameworks are Observations & 

Measurements (O&M) [22], Sensor Model Language (SensorML) [23], Sensor Observation 

Service (SOS) [25], Sensor Planning Service (SPS) [26] and PUCK Protocol Standard (PUCK) 

[27]. O&M defines the standard models and XML schema for observations and measurements 

collected by sensors. The SensorML specification includes the standard models and XML 

schema for representing the metadata of sensor systems and processes. SOS presents the standard 

web service interface for requesting, filtering, and retrieving observations and sensor system 

information. An SOS service is the intermediary between a client and sensor observation 

repositories. The SPS specification provides the standard web service interface for users to task 

sensors to make observations. The PUCK standard which is introduced in Chapter 2 is a low-

level protocol to retrieve SensorML documents, sensor driver code, and other information from 

sensors. 

The SOS and SPS are the two SWE specifications defining the standard web service 

interfaces. For implementing a SWE web service on an IoT object, we choose the SOS in this 

chapter due to the fact that the SPS service requires customized implementations depending on 

each sensor's capabilities. 

In fact, there have been some initiatives on integrating SWE and IoT. For example, 

presentations and talks such as “SWE and IoT”15, “Sensor Web Standards and the IoT”16, 

                                                 

15
 “SWE and IoT,” Mike Botts, Botts Innovative Research, SWE-IoT ad-hoc during OGC TC, March 2012. 
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“Bringing IoT to the mass market - what should a standard do?”17, and “Collaborative 

development of open standards for expanding GeoWeb to the Internet of Things”18 were given in 

workshops and OGC Technical Committee meetings to discuss the possibility of applying SWE 

standards on the IoT. In addition, a new OGC working group was formed in June 2012 to define 

open standards for integrating SWE and IoT [46]. Moreover, Broring et al. [47] implemented 

SenseBox, which utilizes the O&M standard in their web service API. However, the web service 

on their SenseBox does not follow SWE standards. Furthermore, Resch et al. [48] did implement 

SWE standards (including SOS) on an embedded sensing device. However, their sensor 

hardware has 512 Mbytes RAM and 32 Mbytes flash memory, which even much more powerful 

than the class-2 device mentioned in Bormann et al. [16]. Therefore, we argue that it is still 

necessary to evaluate the feasibility of implementing SWE standards on a relatively inexpensive 

class-1-like device. 

3.3 Architecture 

In this section, we introduce the lightweight profile of SOS – TinySOS. Next, we present the 

high-level system architecture of TinySOS for class-1 IoT objects, and finally discuss our 

proposed sensor registry service for IoT resource discovery. 

3.3.1 TinySOS 

As mentioned earlier, class-1 devices have limited resources. In order to host web services on 

class-1 devices, the web service needs to be lightweight enough. Therefore, in this 

                                                                                                                                                             

16
 “Sensor Web Standards and the IoT,” Scott Fairgrieve, Northrop Grumman, Expanding GeoWeb to IoT workshop 

during COM.Geo, 24 May 2011. 
17

 “Bringing IoT to the Mass Market - What should a standard do?” Ben Pirt, Pachube, IoT Workshop at OGC TC, 

November 2011. 
18 

“Collaborative Development of Open Standards for Expanding GeoWeb to the Internet of Things,” George 

Percivall, OGC, COM.Geo, Expanding GeoWeb to IoT workshop during COM.Geo, 24 May 2011. 
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implementation, we only select the mandatory operations of the SOS (i.e., the core operations) 

for the TinySOS. There are three mandatory operations in the SOS, namely GetCapabilities, 

DescribeSensor, and GetObservation. 

The GetCapabilities operation provides access to metadata and detailed information 

about the available capabilities of the service. The GetCapabilities request can be sent either by 

HTTP GET or POST request type to retrieve the service metadata as an XML file (i.e., the 

Capabilities document). The XML file contains metadata about this service, such as unique 

sensor identifiers, logical groupings of sensor observations (i.e., the ObservationOfferings in the 

SWE terminology), and the URIs of physical phenomena (i.e., the ObservedProperties) that 

sensors are measuring. Users can use the information in the Capabilities document to retrieve the 

sensor metadata and the observations with the other two core operations. 

The DescribeSensor operation allows users to retrieve sensor metadata with a unique 

sensor identifier specified in the Capabilities document. If the DescribeSensor request is valid 

(i.e., the service has sensor matches the unique identifier), the SOS returns the sensor metadata in 

the SensorML format. 

The GetObservation operation provides access to the observations made by the sensors. 

Users can use the ObservationOffering and ObservedProperty in the GetObservation request as 

criteria in querying sensor observations. According to the criteria specified in the request, the 

SOS returns the sensor observations in the O&M format. 

3.3.2 System Architecture 

As we can see from the previous sub-section, to support the three core operations of SOS, an IoT 

object needs the functionalities of validating the HTTP request type (i.e., GET, POST), content 

type (i.e., text/xml), parse the XML request, and create the XML response. To achieve these 
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functionalities, here we present the proposed system architecture of the TinySOS service. There 

are three major layers in the TinySOS service (Figure 3.1), including Communication Layer, 

Service Layer, and Sensor Layer. 

 

Figure  3.1 The system architecture supporting TinySOS protocol [30] 

1) Communication Layer: The communication layer is responsible for managing the HTTP 

requests and responses, including the network related protocols and hardware (e.g., 

Network Interface Card). When a request is received by a TinySOS service, the 

communication layer forwards the XML request to the service layer for further 

processing. After the service layer finishes the task, an XML response is returned to the 

communication layer, and then sent back to the client. 

2) Service Layer: The service layer handles the business logic of TinySOS. This layer 

consists of three modules: XML processor unit (XPU), response engine, and sensor data 

repository. As the XML documents are essentially too large to be stored in the memory 
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of class-1 devices, the TinySOS service needs a new way to parse XML documents. 

Therefore, unlike the traditional XML parsers that load the whole XML document into 

memory, we propose the XML processor unit (XPU) which reads and parses XML 

documents buffer by buffer. The XPU not only extracts the request criteria parameters, 

but also composes the GetObservation responses. More details about the XPU are 

presented in Section 3.4. The request criteria extracted by the XPU are forwarded to the 

response engine. If it is a GetCapabilities request or a DescribeSensor request, the 

response engine retrieves a predefined XML file (e.g., the Capabilities document and the 

SensorMLs) from the permanent memory, and forwards it to the communication layer. 

Otherwise, if the request is a GetObservation operation, the response engine tasks the 

XPU to compose the GetObservation response according to the criteria, and forwards the 

response to the communication layer. In addition, as an SOS should have the ability to 

return the historical observations, the TinySOS stores sensor measurements in a sensor 

data repository. Depending on the device, the sensor data repository could be located in 

the main memory (RAM) or the permanent memory (e.g., micro SD card). 

3) Sensor Layer: The sensor layer consists of the physical sensors and the sensor controllers. 

The sensor controllers closely work with sensors. For example, a sensor controller can 

task sensors to collect sensor observations and send the collected sensor observations to 

the sensor data repository in the service layer. The sensor controller would play an 

important role in supporting SPS on IoT objects. 

3.3.3 Resource Discovery 

For the decentralized environment such as the IoT, resource discovery is always an issue. In our 

case, each sensor has a TinySOS web service which allows users to directly connect to sensors. 
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However, users still need to know the service's Internet location (e.g., IP address) in the first 

place. 

In order to address the resource discovery issue, we propose a sensor registry service. 

Sensor registry service is similar to search engines and catalog services [49] that stores the 

metadata of web services and allows users to search services with criteria on metadata. However, 

in addition to the functionalities of a catalog service, the proposed sensor registry service is 

enhanced to support web services without a static IP address. This is because getting a static 

unique IP is not always possible, especially for embedded devices such as IoT objects. 

Therefore, in order to make a good use of IoT objects with dynamic IP addresses, we enhance 

the TinySOS and the sensor registry service to maintain a live connection together. In this case, 

the sensor registry service can act as a proxy redirecting requests and responses between users 

and TinySOS services. 

The overall resource discovery process is shown in Figure 3.2. First, a TinySOS device 

with a static IP address registers itself to the sensor registry service by sending its IP address and 

service metadata. For a TinySOS device with a dynamic IP address, it not only transmits the 

service metadata to the sensor registry service, but also maintains a live connection with the 

sensor registry service. After the registration process, a client can send search requests to the 

sensor registry service. If the TinySOS that matches the search criteria has a static IP address, the 

sensor registry service returns the IP address to the client, and then the client can connect to the 

TinySOS through the SOS protocol. If the matched TinySOS has a dynamic IP address, the 

sensor registry service returns the IP address of itself (i.e., the sensor registry service) with a 

subpath of the unique identifier of that TinySOS (i.e., http://IP of the sensor registry 

service/unique ID of TinySOS). In this case, the client can directly send SOS requests to the 
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sensor registry service, and the requests will be forwarded to the TinySOS. Similarly, the sensor 

registry service will redirect the SOS responses from the TinySOS to the client. 

 

Figure  3.2 Resource discovery process [30] 

3.4 Implementation 

In this section, we point to a lightweight web server implementation, and later we explain the 

XPU algorithms in parsing XML documents. 

3.4.1 Tiny Web Server 

As regular web service containers (e.g., Apache web server) would be too heavy for Netduino 

Plus, we develop a “Tiny Web Server” as a container for TinySOS. This web server implements 

the basic features of an HTTP server which includes getting requests from clients and returning 

response data streams. 

While the classes and libraries in C# .Net Micro Framework are relatively convenient to 

use, they consume a considerable amount of the code storage and memory footprint [50]. Hence, 



 

40 

instead of using the predefined C# libraries, we develop most functions by ourselves to decrease 

the code space and memory usage. For example, we develop another HTTP request handler to 

replace the .NET Micro HTTP library resulting in 35% less code storage occupation (from 17 

KB to 11 KB). At the end, our tiny web server implementation only takes 11.72 KB of the code 

storage, which is much smaller than a regular SOS server occupying tens of Mbytes of code 

space19. Figure 3.3 shows the comparison between the code size of the simple web server and the 

three layers of TinySOS (communication layer, service layer, and sensor layer). 

 

Figure  3.3 Code size comparison [30] 

To clarify more the performance of the TinySOS, the simple web server is not able to 

process the requests including contents larger than 4 KB. In contrast, our TinySOS efficiently 

                                                 

19
 http://wiki.geocens.ca/sos/Installation, and http://52north.org/communities/sensorweb/sos/ 
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responds requests up to 82 KB in length. Additionally, the simple web server cannot parse any 

XML files due to lack of enough memory. 

3.4.2 XPU Algorithms 

Since the memory of IoT objects is usually small, the XML request and response documents 

cannot fit into the memory. In order to parse and compose XML documents, we propose the 

XML processor unit (XPU) to read and write XML documents by utilizing a buffer mechanism. 

A buffer refers to a certain physical memory allocated to hold data temporarily.  Therefore, by 

reading an XML document buffer by buffer, the maximum memory consumption at any time is 

equal to the buffer size. In our implementation, the buffer size is considered 1 KB. 

Figure 3.4 depicts the high-level workflow of the XPU. First, when the XPU receives an 

XML request document straight over the sockets, the XPU calls the buffer reader iterater to read 

the document buffer by buffer. Then, in order to extract the information of the request from the 

buffer, XPU uses the data extractor to match the bytes in the buffer between some predefined 

bytes of patterns. 

 

Figure  3.4 The high-level workflow of the XPU [30] 
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Since SOS defines specific XML elements and attributes for the SOS requests, we can 

understand the requests by searching the predefined words. For instance, the data extractor 

matches the bytes of the buffer with the bytes of the following words: “XML”, “request”, 

“service”, “version”, “GetCapabilities”, “DescribeSensor”, “GetObservation”, “offering”, 

“procedure”, “observedProperty”, and “<”. By treating the bytes of the predefined words as 

patterns, Algorithm 3.1 shows the naive approach of how the data extractor searches for these 

key words. After finding the location of the predefined XML elements or attributes, we can 

extract the values of them by simply loading the bytes after the elements/attributes. 

Algorithm  3.1 Naive pattern matching 

Function  Match(pattern, buffer): matched 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

m  pattern.length() 

n  buffer.length() 

matched  false 

i  0 

FOR i to n - m 

      IF pattern [1..m]  is equal to buffer [i+1..i+m]  THEN  
             matched  true 

     END IF 

END FOR 

RETURN matched 
 

However, although the naive approach (Algorithm 3.1) works well in many cases, it fails 

on the case that patterns exist across two buffers. To overcome this problem, we merge the 

previous buffer to the current buffer for all iterations. In fact, each buffer except the first and last 

buffers is processed twice. Since the predefined patterns are all less than 1 KB, the revised 

version of the naive pattern matching approach (Algorithm 3.2) can extract all necessary 

information. 
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Algorithm  3.2 Revised pattern matching 

Function  Match_Revised (pattern, buffer_current, buffer_next): matched 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

buffer CONCATENATE (buffer_current, buffer_next) 

m  pattern.length() 

n  buffer.length() 

matched  false 

i  0 

FOR i to n - m 

      IF pattern [1..m]  is equal to buffer [i+1..i+m]  THEN  
             matched  true 

     END IF 

END FOR 

RETURN matched 
 

After the data extractor finishes the matching process on each buffer, the buffer cleaner 

removes the buffer memory and continues the iterations until the whole XML document is read. 

On the other hand, the same buffering approach is applied to compose XML responses. For a 

TinySOS responding to an SOS request, the XPU iteratively fills the response message into a 

buffer. When the buffer is full, its content is streamed to the client and then the XPU cleans the 

buffer. Consequently, with the buffering and pattern matching approaches, we successively 

address the issues of parsing and composing large XML document on devices with limited 

resources. 

To sum up the proposed system, we demonstrate that by hosting an SOS service on IoT 

devices, we can use existing SWE applications to retrieve sensor data from the IoT devices. 

Figure 3.5 shows the GeoCENS [51] SWE client and the sensor data retrieved from a TinySOS 

device. 
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Figure  3.5 Using a SWE client to access a TinySOS device 

3.5 Discussion 

The proposed TinySOS system allows physical sensors to be interoperable in the OGC SWE 

framework. Although SOS was not designed to be hosted on devices with limited resources, we 

design and implement the tiny web service container and XPU to host SOS on IoT devices. The 

proposed system has demonstrated that it is feasible to host a SWE web service on class-1 

devices.  In this case, the Sensor Web can provide real-time sensor data streams with a much 

higher spatio-temporal resolution. However, we also observe some potential issues on the 

TinySOS system. 

The first immediate issue is that each IoT device should have a stable and constant 

Internet connection in order to receive requests from clients, which is currently unavailable. One 

potential solution already discussed in Chapter 2 is to utilize the OGC PUCK standard protocol 
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on IoT devices. However, the PUCK protocol was not designed to be a web service serving 

sensor observations. Additional web interfaces are still needed in this case. 

The second issue is about the update of metadata, such as the SensorML or sensor 

location. As these information can be manually stored in the permanent memory (e.g., SD card), 

a standard way provided by SOS is the transaction operations. By supporting the transaction 

operations of SOS, sensor owners can register SensorMLs into the SOS. However, to 

automatically measure sensor locations, attaching a Global Positioning System (GPS) sensor on 

the device may be a better choice. 

In addition, privacy and security are the important items as well. The privacy issue is 

about whether the sensor owners want their devices to be discoverable or not. In the case of this 

implementation, as the resource discovery is handled by search engines or catalog services such 

as the sensor registry service, mechanisms to preserve privacy should be implemented in these 

resource discovery services. Information security means protecting information and information 

systems from unauthorized access, use, disclosure, disruption, modification, perusal, inspection, 

recording or destruction [52]. This can be achieved by leveraging existing standard mechanisms. 

For example, the current TinySOS implementation uses the Transport Layer Security (TLS) and 

Secure Socket Layer (SSL) to protect the message content's integrity and confidentiality.  

3.6 Summary 

In this chapter, we presented the TinySOS service, a lightweight profile of OGC SOS for IoT 

devices. In order to host an SOS service on devices with limited resources, we developed a tiny 

web service container to handle HTTP requests/responses; and we proposed the XML processor 

unit to parse and compose XML documents with small memory consumption. Furthermore, to 

address the resource discovery issue, we developed the sensor registry service which can serve 
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not only as a catalog service, but also as a proxy between clients and devices with dynamic IP 

address. 

By hosting open standard web services on IoT devices, not only the devices become self-

describable, self-contained, and interoperable, but also the collected observations are accessible 

via the Internet as soon as they are measured. In this case, the Sensor Web can provide real-time 

sensor data streams in a much higher spatio-temporal resolution, which allows users to observe 

phenomena that were previously unobservable.  
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Chapter Four: SOS over CoAP 

4.1 Introduction 

IoT devices are usually limited in power, network, memory and processing capabilities [16]. The 

aforementioned standard protocols, PUCK and TinySOS, have not typically been designed with 

power and network efficiency in mind. In battery-operated WSN nodes, the radio transceiver is 

certainly the most power-consuming component [53], so power-efficiency translates into 

optimized radio duty cycling. Since the IoT and WSN share similar visions, the same scenario 

exists in the IoT. The naive solution is enforcing the battery-powered device to keep its radio off 

as much as possible. Another solution is to minimize the network load by which not only the 

bandwidth is dramatically saved, but also the radio transceiver can fulfill its task faster resulting 

in more sleeping [54].  

To achieve this, we select the IETF protocol designed for constrained nodes and networks 

(e.g., WSNs), and named Constrained Application Protocol (CoAP) [55]. This protocol employs 

the basic features of HTTP to the constrained network while maintaining a low overhead. HTTP 

is based on the Representational State Transfer (REST) style [56]; in which the web resources 

are identified by URIs. Thus, CoAP enables interoperability in machine to machine (M2M) 

communications at the application layer through RESTful web services. REST only relies on the 

HTTP methods such as GET and POST. Unlike HTTP, CoAP operates over the UDP and applies 

an efficient retransmission mechanism instead of complicated congestion control as used in 

standard TCP.  

The CoAP can easily be translated to HTTP to make the seamless integration of 

constrained networks with the Web. To do this, CoAP proxies are employed to convert CoAP 
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messages to HTTP packets. The main interest in making CoAP nodes part of the Internet is to 

allow various nodes to interact with each other using the existing web technologies. 

Since we have already demonstrated the integration of OGC SOS to the IoT, we combine 

this protocol with CoAP in order to make CoAP nodes interoperable to other IoT components. 

As we already discussed in Chapter 3, SOS is not originally designed for limited resources IoT 

objects. On the other hand, CoAP cannot validate SOS requests which are definitely larger than 

the CoAP upper bound for the message size (1280 byes for IPv6 datagram) [55]. Therefore, one 

possible solution is to combine SOS and CoAP on the CoAP proxy which has enough resources. 

Therefore, the contribution of this chapter is that we are the first to bind the OGC SOS to the 

CoAP Proxy denoted as SOSCoAP proxy. According to Figure 4.1, the SOSCoAP proxy can 

communicate through CoAP regulations to CoAP nodes (i.e., IoT devices) from one side, and it 

can speak through the SOS standard from another side. As a result, we achieve the 

interoperability while maintaining minimal resource consumption on IoT devices.  

 

Figure  4.1 High level view of the SOS over CoAP strategy 

The remaining sections of this chapter are organized as follows. In Section 4.2, existing 

literature about the CoAP implementation is reviewed. Section 4.3 and Section 4.4 present the 

proposed architecture and implementation, respectively. Section 4.5 provides a discussion about 
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the SOS over CoAP strategy and its challenges. Finally, this chapter is briefly described in 

Section 4.6. 

4.2 Related Works 

CoAP has been already implemented in the most popular operating systems for WSNs such as 

LibCoap for TinyOS [57] and CoapBlip for Contiki [58]. These research efforts mainly 

addressed the possibility of the CoAP on target platforms with only tens of KB RAM and ROM.  

Later on, some research improved the CoAP implementations for WSNs in case of 

energy consumption, memory usage and network latency [59]. Although CoAPBlip [59] has 

been previously included in the TinyOS as a CoAP library, Ludovici et al. [59] introduced 

TinyCoAP as a more efficient implementation of the CoAP for TinyOS. The TinyCoAP is 

implemented only for the devices supporting TinyOS which conflicts with the aim of 

interoperability between all kinds of IoT devices. 

There are also a few efforts to make the CoAP compliant to the World Wide Web 

standards. For example, Simple Object Access Protocol (SOAP) standard [60] for the data 

exchange of web services was bound in CoAP in [61]. This research could successfully transport 

SOAP messages in resource constrained environments resulting in deployments of web services 

in WSNs. However, there is a negative point in combining SOAP and CoAP because SOAP 

messages are encapsulated in the XML format which leads to complex message processing. 

Since the overhead of data transfer between SOAP-based web services is significantly higher 

than the RESTful web services [62] [63], the authors of [64] focused on the combination of 

RESTful CoAP and XML to make it more standardized. Thus, they proposed CoAP to supply 

RESTful communications among applications, and EXI (Efficient XML Interchange) format 

[65] to make their system more standardized according to the World Wide Web Consortium 
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(W3C) [66]. The weakness of this design is that the interoperability issue of the IoT objects was 

not touched at all. 

Lerche et al. [62] give an overview of the current CoAP implementations and present the 

results of an interoperability meeting organized by the European Telecommunications Standards 

Institute (ETSI) [67]. In this research, 18 CoAP server and 16 CoAP client implementations were 

tested against each other. Although this is a preliminary step towards the interoperability 

assessment between CoAP nodes, the use of CoAP solely in the IoT has not been definitely 

confirmed yet.  

According the above literature, we are not the first to argue the benefits of the CoAP and 

its implementation challenges, but we are the first to demonstrate the integration of this protocol 

to other standards of the WSNs (e.g., OGC SOS) as an interoperable infrastructure for the IoT. 

4.3 Architecture 

In this section, the CoAP specification is technically discussed first. Then, the proposed 

architecture for a CoAP-enabled IoT device is described. At the end, we also present the 

architecture of the SOSCoAP proxy. 

4.3.1 CoAP Specification 

The CoAP was originally released by the Constrained RESTful Environment (CoRE)
20

 working 

group at IETF as a reliable lightweight protocol for the Internet of Things. The CoAP is 

lightweight because it keeps the message length as short as possible, and it transmits the packets 

over the network by using UDP. The CoAP specification provides an upper bound to the 

message size. Since the messages larger than an IP fragment [28] result in undesired packet 
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fragmentation, a CoAP message should fit within a single IP packet (i.e., avoid IP fragmentation) 

and must fit within a single IP datagram.  In cases that the Maximum Transmission Unit (MTU) 

of a path is not known for a destination, an IP MTU of 1280 bytes is assumed for the CoAP 

message size. If nothing is known about the size of the headers, an upper bound of 1152 bytes for 

the message size and 1024 bytes for the payload size must be considered [55]. 

In general, the CoAP message is composed of a header with at least 4-byte length, a 

token, several options, and a payload. To have a better understanding, Figure 4.2 depicts the 

format of a CoAP message. The 4-byte header includes CoAP version, message Type 

(confirmable, non-confirmable, acknowledgement, reset), token length, code (request, success 

response, client error response, server error), and message ID (for detection of message 

duplication). The header is followed by a token value (to correlate request and response), options 

(if any), and payload (if any) which are all variable-length. 

 

Figure  4.2 CoAP message format [55] 

CoAP messages may be Confirmable (CON) or Non-confirmable (NON). In spite of 

using UDP in the request/response interactions, reliability is provided when messages are 

labelled as Confirmable through end-to-end stop-and-wait retransmissions mechanism [55]. That 

is, a CoAP server receiving a CON request must acknowledge its receipt to the client. Until the 

acknowledgement (ACK) is received by the client, the previous request will be retransmitted to 
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the server with exponential back-off. Sometimes a request might need further processing to be 

responded; so the server sends an empty ACK to indicate that the response will be deferred. 

Consequently, the client must also acknowledge the arrival of the server's CON response. On the 

contrary, Non-confirmable messages are used to allow sending requests that does not require 

reliability. Figure 4.3 exemplifies a client-server interaction for a CON request and a NON 

request. 

 

Figure  4.3 CoAP client-server interaction: (a) CON request; (b) NON request [55] 

Furthermore, CoAP is able to detect duplicate messages by matching requests to 

responses. This is done by checking the message ID of each request which is already generated 

by the client. The detection of duplicated messages is available in CON as well as in NON 

messages. Finally, the token value (i.e., request ID) is used for distinguishing concurrent 

requests. The server must echo the token value of a client request in any relevant responses to 

that request (Figure 4.4). 

(a) 

(b) 
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Figure  4.4 Empty ACK because of response deferral 

4.3.2 Device Architecture 

As depicted in Figure 4.5, we have integrated a full protocol stack necessary for an IoT device in 

order to communicate through the CoAP. 

 
 

Figure  4.5 The device architecture supporting CoAP protocol 
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The sensor layer pretty remained unchanged comparing to TinySOS and PUCK. The 

business logic layer is partially similar to the service layer of the two prior protocols. The 

significant highlight in this layer is the Data Uploader component (i.e., client) in order to 

frequently upload the sensor observations to a pre-defined CoAP proxy. When a CoAP request is 

received in the communication layer, it is directly forwarded to the response engine. The 

response engine composes the content, and posts the message to the communication layer to be 

packaged in the CoAP message format. Furthermore, as a user may request historical 

observations, the sensor readings are dynamically stored in a sensor data repository. 

More importantly, CoAP focuses on efficiency in data transmission, so the 

communication layer on the device is totally modified from the two previous protocols. The most 

fundamental change points to the usage of UDP instead of TCP in the transport layer with 

retransmission mechanism. 

4.3.3 SOS Integration to CoAP 

The SOSCoAP proxy is a regular web service placed in the CoAP network infrastructure as 

illustrated in Figure 4.1. One of the responsibilities of this proxy is to interconnect CoAP 

endpoints to users via the OGC SOS protocol. As a result, this proxy should be capable of 

converting the two protocols together (i.e., CoAP-to-SOS, or SOS-to-CoAP). As shown in 

Figure 4.6, we propose the following architecture for the SOSCoAP proxy.  
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Figure  4.6 The architecture of SOSCoAP Proxy  

The SOSCoAP proxy consists of a CoAP proxy and a SOS proxy. For the CoAP proxy, 

we use jCoAP
21

 which is an open source Java library. While the CoAP proxy is important, we do 

not address its components in this chapter as they are pretty unchanged from the CoAP 

specification. On the other hand, we develop the SOS proxy that consists of three components:  

 XML-to-CoAP Converter: This component receives the core SOS requests 

(GetCapabilities, DescribeSensor, and GetObservation) from user. As those requests are 

encoded in XML, they need to be formatted to plain text requests encapsulated in UDP 

message. 

 CoAP-to-XML Converter: This component receives the CoAP messages and it coverts 

them to the SOS responses. As the CoAP messages are plain texts, they need to be 

encoded in XML format to be sent back to the user. 

                                                 

21
 https://code.google.com/p/jcoap/ 
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 Communication Handler: The communication handler checks the user requests in terms 

of compatibility to the SOS operations. If the request is validated, the relevant SOS 

response is sent to the user. 

4.4 Implementation 

The CoAP implementation itself is straight forward on our development platform. The CoAP 

part of the SOSCoAP proxy is also provided from jCoAP library. Thus, this section mainly 

highlights the data exchange between a user and a CoAP node through the SOSCoAP proxy. 

4.4.1 SOS Request to a CoAP Server 

In our implementation, we only consider the three core SOS operations: GetCapabilities, 

DescribeSensor, and GetObservation. First, the SOS part of the SOSCoAP proxy retrieves XML-

encoded SOS requests through the Internet. Since the XML body requires a complex and 

expensive message processing [59], the request is encoded to a simpler format according to 

Table 4.1. Then, the SOS part packages the mapped request for the CoAP part of the proxy to 

send the simplified request to the CoAP server (IoT device). 

Table  4.1 Mapping SOS operations to CoAP requests 

SOS request (XML) CoAP request (plain text) 

GetCapabilities {...} Get /capabilities 

DescribeSensor {...} Get /describeSensor?procedure=prodecureValue 

GetObservation {...} Get 

/observation?observedProperty=observedPropertyValue&offering=offer

ingValue 
 

When one of the three requests of Table 4.1 is received on the CoAP server (i.e., IoT 

object), the relevant response is generated according to Table 4.2. The rest is the same as CoAP 

message processing which is not the contribution of this research. 
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Table  4.2 CoAP responses to SOS requests 

 SOS request converted to 

CoAP message (plain text) 

CoAP response content (plain text) 

Get /capabilities offering: offeringValue, observedProperty: 

observedPropertyValue, procedure: procedureValue 

Get /describeSensor ... sensorID: URN, unitOfMeasurement: unitValue 

Get /observation ... sensorID: URN, observation(s): 

resultValue_1|observationTime_1#resultValue_2| 

observationTime_1#... 
 

4.4.2 CoAP Request to a SOS Server 

Although the sensor measurements are slightly cashed on the limited data repository of the CoAP 

server, the data uploader component can be tasked to submit the data to the proxy for historical 

record. The content of such request is similar to the response content of the get observation 

request (Table 4.2). Later on, the CoAP proxy of SOSCoAP proxy will convert the requests to 

HTTP messages accepted by the SOS component of SOSCoAP proxy. In addition to data 

uploading on the CoAP server, the SOSCoAP proxy is capable of conveying the sensor data to a 

predefined SOS clouds (e.g., GeoCENS [51]) through standard SOS requests. The configurations 

of these clouds are recorded in the communication handler component of the SOSCoAP proxy. 

4.5 Discussion 

The SOS over CoAP protocol is considered as a simple but efficiently integrated protocol for the 

IoT. Although the SOS standard is overkill for resource constraint devices, its implementation on 

the CoAP proxy does not cause any difficulties. Apart from common issues with the previous 

protocols such as power supply, Internet connectivity, and metadata update, some other issues 

exist as follows. 

First, the connection between each IoT device and the rest of the Internet would be 

indirectly through a proxy. Although the proxy can have a more stable and constant Internet 
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connection, the single point of failure (SPOF) [68] issue should be highlighted. The SPOF is 

referred to a system component that its failure affects the entire system. Since the proxy is the 

only interface between users and IoT objects, it should be equipped enough to guarantee a 

constant connection to all IoT devices it relates. 

Moreover, a request passes four levels to be delivered to a user: CoAP server, CoAP 

proxy, SOS proxy, and client. If the number of requests increases on a single SOSCoAP proxy, 

the response time may be affected. One potential solution for this problem can be deployment of 

multiple cloud services for IoT devices. The cloud services [69] involve a large number of 

computers connected through the Internet. In the other words, cloud services rely on sharing the 

computational resources to offer a utility over a network which can solve the aforementioned 

problem in an efficient way. 

4.6 Summary 

In this chapter, we counted some of the strengths of the Internet Engineering Task Force (IETF) 

approach. To this end, the resource efficient CoAP was implemented on our class-1 development 

platform. Then, the interoperability issue for the newborn CoAP was challenged. 

In order to have the potential of popularity of OGC SOS, and the efficiency mechanisms 

of CoAP, we detailed the realization of simple but powerful SOSCoAP proxy for the IoT 

applications. The SOSCoAP proxy was supposed to establish a connection between CoAP 

network through CoAP messages and the rest of the Internet through the OGC SOS standard. 

By combining the lightweight CoAP protocol and popular OGC SOS in the IoT network, 

a great range of devices can be interoperable together as TinySOS devices, PUCK-enabled 

instruments, and SOS services. 
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Chapter Five: OGC SensorThings API 

5.1 Introduction 

In the previous chapters, we significantly demonstrated that the existing protocols of Sensor Web 

and WSNs can be implemented on resource constraint IoT objects. While these efforts are 

moving the Internet of Things toward greater interoperability, they do not fit well in the IoT 

devices in case of processing load or interconnection with the other Internet nodes. In an attempt 

to address both deficiencies of the previous protocols, there is an ongoing effort of defining a 

standard Web Application Programming Interface (API) for the IoT. 

This API, namely OGC SensorThings, is an OGC candidate standard for monitoring and 

controlling IoT devices (sensors and actuators) over the Web. The API is built on HTTP 

protocols, and applies the widely-used Representational State Transfer (REST) architectural style 

[56] to access a system's components. REST considers the system as a black box with a high 

level view regardless of the component details and their functionalities. REST only focuses on 

the status of the components and their relationship to each other. Web services complying with 

the REST principles are called RESTful. To exemplify, a camera device has a light sensor and 

also a LED actuator. When the camera is being accessed through a RESTful protocol, the 

camera, light sensor and LED are considered as the system components in which the LED and 

light sensor are attached to the camera component. 

This API interconnects IoT services and applications over the Web through Java Script 

Object Notation (JSON) data format. The JSON is one of the text formats designed for 

representing simple data structures, data collections, and of course data exchange over a network 

connection. Therefore, as an alternative to the heavy Extensible Markup Language (XML) 

format, we use the simple JSON format to efficiently present the data on the server. Since our 
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ultimate goal in defining this standard is an easy-to-use and easy-to-implement for global IoT 

devices, we use plain text in the device-server interactions. 

The OGC SensorThings service interface differs from the existing OGC web services in 

case of RESTful interface and JSON data encoding. This API is essentially inspired by the 

OASIS Open Data Protocol (OData)
22

, which defines a general-purpose RESTful service 

interface. Besides the OData, the RESTful service interface also leverages the existing and 

widely-implemented OGC standards. For example, the capabilities part of the API service 

interface adapts several elements from the GetCapabilities response defined in the OGC Web 

Service (OWS) Common Standard [70] by converting the XML encoding into the JSON 

encoding. 

The SensorThings API was mainly developed by a group of researchers in University of 

Calgary including Dr. Steve H. L. Liang, Dr. Chih –Y Huang, Tania Khalafbeigi and me. I was 

involved in the design and implementation of the device-side protocol that covers the 

interactions between IoT objects and the IoT RESTful service. The rest of this protocol focuses 

on the users and the IoT server communications which can be found from here: http://ogc-

iot.github.io/ogc-iot-api/. 

5.2 Related Works 

Linking the Web and physical objects is not a new idea. As we can see, three protocols have 

been discussed in the previous chapters. The key idea of those protocols was to provide a virtual 

counterpart of the physical objects on the Web. With advances in computing technology, most 

devices are enabled with tiny web services [43, 71, 72]. However, the interoperability problem 

                                                 

22
 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata 

http://www.opengeospatial.org/standards/common
http://www.opengeospatial.org/standards/common
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still exists in most of them because lack of a specific standard in the IoT for communication 

protocol and data representation.  

Several systems for integration of sensor systems with the Internet have been proposed 

such as SenseBox [47] and Xively, which offer a platform for people to share their sensory 

readings using web services. This sharing is performed by transmitting the data onto an online 

repository. Unlike the OGC SensorThings, these approaches exclusively support the sensing 

profile, and devices are considered as passive actors only able to push data. 

Kindberg et al. [73] developed Cooltown project which associates web pages and URIs to 

people, places and things. Kindberg et al. also implemented scenarios where this information 

could be physically discovered by scanning infrared tags in the environment. We would like to 

go a step further to truly make IoT objects part of the Web so that they proactively serve their 

functionality in an interoperable manner. 

Similar to our RESTful web interface, T. Luckenbach et al. [74] and W. Drytkiewicz et 

al. [75] consider the use of REST-like architectures for sensor networks. However, to make the 

API interoperable, we extend the model with the use of other standards (e.g., OGC SOS, OGC 

SPS and OData). 

In essence, the OGC SensorThings provides a RESTful web interface allowing users and 

application developers to apply a common API to retrieve the things’ profiles, and sensor 

observations. This protocol will facilitate a generic adapter for integration of devices to the IoT 

server, so interoperability between things will become simpler.  
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5.3 Architecture 

In this section, we first elaborate the API components and its ecosystem. Then, we present the 

data model of this open standard. Finally, we describe the system architecture like the previous 

chapters. 

5.3.1 API Components and Ecosystem 

The SensorThings API follows a RESTful web service interface to access the registered 

resources on the server. Each resource is assigned a uniquely identification (UID) by the server. 

The API supports the four basic operations of the persistent storage, namely CREATE, READ, 

UPDATE, and DELETE (CRUD) to any resources of the service. The API also consists of two 

major profiles: Sensing Profile and Tasking Profile. The Sensing Profile is designed based on the 

OGC Sensor Observation Service (SOS) specification, in which defines an interoperable 

framework to manage and access sensors and observations. The Tasking Profile is based on the 

OGC Sensor Planning Service (SPS) specification, in which defines an interoperable way to 

submit tasks to control sensors and actuators. Figure 5.1 depicts the ecosystem of this API. 

 

Figure  5.1 Ecosystem of the OGC SensorThings API 
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To address the resources, we define the protocol of retrieving the capabilities document 

which includes the service metadata about a specific service instance. By this document, the 

service advertises the supported functions and any constraints on using these functions. After a 

client retrieves the capabilities document, he/she understands how to perform CRUD actions to 

the target resource(s) through URI. There are three major URI components used in this API: the 

service root URI, the Resource Path, and the Query Options. The service root URI is the address 

of the IoT RESTful service. By attaching the resource path after the service root URI, users can 

address different resources (e.g., collection or specific entity). In order to facilitate information 

retrieval for the READ action, users can apply query options to the resource path, such as sorting 

by properties and filtering with criteria. Figure 5.2 demonstrates the URI components. 

 

Figure  5.2 URI Components 

5.3.2 Data Model 

The OGC SensorThings API describes a data model for the resources and their connections as 

shown in Figure 5.3. The core of the data model is a Thing. Since the geographical positions of 

IoT objects may dynamically change, we record multiple locations in place and time for each 

Thing. As we mentioned in Chapter 5.3.1, the IoT data model consists of a Sensing Profile and a 

Tasking Profile. The Sensing Profile allows IoT devices and applications to perform CRUD 

operations on the gathered data from sensors. On the other hand, Tasking Profile provides the 

functions to control IoT devices and actuators. According to the data model illustrated in Figure 

5.3, each Thing can also have several Datastreams and Tasking Capabilities, which form the core 

http://iotrestfulapi.s3-website-us-east-1.amazonaws.com/datamodel.html#DatastreamProfile
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of the Sensing Profile and Tasking Profile respectively. Datastream relates to observed 

properties, and also sensor observations. Each instance of the observation entity is also linked to 

a specific sensor. Since sensor observations can be performed in a location different from the 

Thing location, Features of Interest is also considered to record the place that observation 

occurred. On the other hand, Tasking Capabilities is linked to actuator metadata, and tasks 

triggered from client. 

 

Figure  5.3 Data Model 

Since more explanation of the data model is out of the scope of this Chapter, we skip to 

the system architecture which is related to the IoT device structure. 

5.3.3 System Architecture 

Like the former chapters, devices supporting the OGC SensorThings API follow a system 

architecture to process requests and responses. In this section, we describe the proposed system 

architecture of IoT devices displayed in Figure 5.4. In this architecture, you can see the three 

common layers including Communication Layer, Business Logic Layer, and Sensor/Actuator 

Layer. 
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Figure  5.4 The device architecture supporting OGC SensorThings API 

1) Communication Layer: Similar to the previous protocols, the communication layer 

contributes in device interactions over the network. Unlike the TinySOS which uses 

heavy XML, and CoAP message that is included into UDP packet, the OGC 

SensorThings API applies plain text in all communications except for its registration. 

When a Thing is registering itself on the server, the requests are formatted in JSON 

which are already hardcoded in device’s memory. Our API uses JSON format only for 

the registration requests from the device in order to transmit a bunch of data to the 

RESTful data service. In other cases, the communication is based on the plain text format 

that is more comfortable for IoT devices to process plain texts with no need to a parser. 
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2) Business Logic Layer: The business logic layer can have the function of both client and 

server simultaneously. The client role is because a Thing demands to interact with IoT 

server in order to register itself, and to upload sensor observations. The data uploader 

unit plays the client role once for the registration steps, and frequently for publishing the 

sensor measurements. To accept tasking requests from clients, the Thing should also 

contain a server which is named the response engine component in this architecture. 

Similar to the TinySOS and CoAP, the response engine reads HTTP requests buffer by 

buffer. After processing the requests, the task might be sent to the sensor/actuator layer, 

and the relevant response is forwarded to the communication layer. Since in OGC 

SensorThings API a Thing is always connected to a data service, the Thing does not need 

to record the sensor readings on its own memory. Therefore, unlike the other protocols, 

on the device architecture of this API (Figure 5.4), the "sensor data repository" 

component was removed. 

3) Sensor/Actuator Layer: The sensor/actuator layer consists of the physical sensors, 

actuators, and their controllers. The sensor controller manages the sensors and actuators. 

For example, the sensor controller can command sensors to collect sensor measurements, 

or task actuators to do an action. 

5.4 Implementation 

One of the main advantages of the SensorThings API is simplicity in case of network 

communication and device computation. According to Figure 5.1, this API defines three 

different types of interactions between IoT object and IoT RESTful service: 1) device 

registration, 2) observation uploading, and 3) actuator tasking. In this section, we describe the 

implementation of these interactions on a class-1 IoT device. 
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5.4.1 Device Registration 

As we have already described the data model of the OGC SensorThings API, the IoT server 

should contain IoT devices' information. To do this, when a Thing is connected to the Internet, it 

automatically registers its resources and properties on the IoT server though the sequences 

shown in Table 5.1. 

Table  5.1 Device registration procedres 

Procedure Response code Definition 

1 Thing Description 

2 Datastreams Thing ID, Description 

3 Tasking Capabilities Thing ID, Description, Tasking Parameters (Parameter 

ID, Necessity, Definition, Input Type, Unit, and Range), 

Protocol (HTTP Method, Resource Path, and Message 

Body) 

4 Sensors Metadata 

5 Actuators Tasking Capability ID, Metadata 

6 Observed Properties Datastream ID, Unit of Measurement, URN 

7 Feature of Internets Description, Geometry (Type, and Coordination) 

8 Location Thing ID, Time, Geometry (Type, and Coordination) 

 

Despite of XML and JSON which are widely used encoding data formats for human and 

computer, the SensorThings API uses plain text for the requests sent to a Thing. Thus, the Thing 

does not require any parser or complicated processing for the incoming messages. On the 

contrary, the IoT server interacts with users by JSON standard. As the IoT device can 

conveniently encapsulate JSON requests into string values, we force the device to send its 

registration requests to the server in the JSON format. Obviously, there is no processing load on 

the device because those requests have been previously saved on the device's code storage as 

string variables. Figure 5.5 describes an example where JSON is used to create a Tasking 

Capability resource on the IoT service. 
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Figure  5.5 An example of registration request  

However, the responses of those requests are still in plain text format including resource 

ID, and resource location on the IoT RESTful server (i.e., URL). Figure 5.6 represents a 

response to a Tasking Capability registration request. 

 

Figure  5.6 An example of IoT service response 

To prevent an IoT object from repetitive registrations on all its powering, we record the 

retrieved resource IDs and URLs on the device permanent memory (In our implementation, we 
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used a micro SD). Therefore, at the time of powering up, the device checks its registration status 

to decide about the next steps. If all IDs are available, there is no need for new registration on the 

service.  

According to the device architecture (Figure 5.4), the data uploader component provides 

the aforementioned requests, forwards them to the communication layer, and finally receives 

responses from the communication layer.  

5.4.2 Observations Uploading  

Not only does the data uploader perform the registration operations, but also it cooperates in the 

sensing profile. Therefore, the data uploader that plays the role of a client is responsible to 

dynamically collect sensor readings, and upload them to the IoT service based on a preset 

frequency (saved on the device). Similar to the registration requests, the sensor observation 

request is in JSON format, too. The observation request carries datastream ID, sensor ID, feature 

of interest, observation time, result value, and also result type (e.g., measure). Accordingly, the 

data service acknowledges the request by messaging the location (URL) of the recorded 

observation on the data service. If that response does not contain any location value, the 

observation request will be immediately re-submitted to the IoT service. 

5.4.3 Actuator Tasking 

Tasking requests are mostly triggered from users to IoT service. As shown in Figure 5.7, that 

request is encoded in JSON based on the specification of the SensorThings API. The tasking 

request contains tasking capability ID (to retrieve the device-defined protocol), input parameters 

and trigger time (when the task should be sent to the device). 
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Figure  5.7 Tasking request triggered from user to IoT service 

During device registration, the tasking capability request introduces the device 

communication protocol to the data service (Figure 5.5). The device protocol is hidden from the 

public access and application developers which enables some sort of security and privacy for 

controlling the device. Additionally, according to the simplicity approach of the SensorThings 

API, the IoT service can effectively convert the user request from JSON to something simpler 

(e.g., plain text) to follow the device protocol. In the registration request shown in Figure 5.5, the 

request to task the lamp actuator should be sent to the specified resource path including the 

required message body by HTTP POST method.  

Unlike the sensing profile, the tasking profile merely acts as a simple web server 

implemented on an IoT device. Tasking requests delivered by the communication layer are 

forwarded to the response engine for further processing. As we have already mentioned, all 

requests to a Thing are in the form of plain text (Figure 5.7).  
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Figure  5.8 Workflow of the response engine 

Based on Figure 5.8, the tasking request is sent to the data extractor component to extract 

the tasking capability ID, parameter name, and parameter value. Then, the request validator 

module examines the retrieved values with the device actuators in case of resource availability, 

parameter validation, and also request type. After validation process is performed, the actuator 

might be tasked, and the relevant response code is delivered to the communication layer. The 

response codes of the response engine are listed in Table 5.2. 

Table  5.2 Response codes of the response engine 

Response code Definition 

600 Confirmed 

610 Resource is busy  

620 Parameters are missing  

630 Out of range parameters  

640 Invalid parameters  

650 Invalid actuator  

660 Invalid request type  
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Depending on the request parameters, the appropriate response in JSON encoding is 

forwarded to the communication layer. As a server should always remain online, the response 

engine does not sleep at all in order to listen to incoming messages.  

5.5 Discussion 

The OGC SensorThings API establishes an easy-to-develop and easy-to-use protocol for the 

resource constraint IoT devices. This protocol was mainly inspired from OData, and OGC SWE 

standards (SOS, and SPS). In spite of simplicity demonstrated in this API, there would be several 

issues listed as follows. 

The first immediate issue is that each IoT device should have a stable and constant 

Internet connection in order to receive tasks from outside, and to upload sensor readings to the 

server. Obviously, there is no obligation for a Thing to upload its sensor readings to the IoT 

service. On contrary, the server side of the Thing is expected to be always online. One potential 

solution for this is to consider the IoT service as a forward proxy between user and IoT device. 

By the way, the proxy can check the device availability on the network before any interactions. If 

the Thing is detected out of the network, the proxy can notify the user from this situation.  

The second issue of the proposed API is that it forces the limited resource devices to 

interact through HTTP standard and TCP packets. As we illustrated in CoAP, UDP is 

significantly more efficient than TCP in packet transmissions. In order to address this issue, one 

potential solution is to combine partially the CoAP and OGC SensorThings API. In other words, 

a bit change from TCP to UDP in SensorThings API will catch a large achievement in the future. 

Since the IoT RESTful service is an intermediary node between user and IoT device, the 

privacy is strongly supplied by the IoT service. On the other hand, the security issue is still 

remained because no strategy is considered for the data transmission. To overcome this problem, 
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we can simply define a bidirectional rules for the message encryption/decryption to guarantee 

message integrity and confidentiality.  

5.6 Summary 

In this chapter, the OGC SensorThings API was elaborated as a prospective open standard for the 

Internet of Things. In this protocol, we reduced the complexity on the device by simplifying the 

message format, and lessening message size. The transactions were basically established 

thorough JSON language, except the ones sent to the IoT device, so the device does not need any 

resource consuming parser. Likewise, the IoT device transmits the requests to the server in hard-

coded JSON format only because JSON is more suitable for the IoT RESTful service. 

By hosting the simple open standard API on the IoT devices, not only a great range of 

devices can apply that protocol, but also innovative applications can be developed more 

conveniently by means of a standard interface. 
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Chapter Six: Evaluation and Results 

6.1 Introduction 

The objectives of this chapter is as follows: (1) to benchmark the efficiency of the implemented 

protocols on a class-1 IoT object, (2) to provide a quantitative guideline for developers to choose 

the interoperable protocol that is suitable to their applications. In general, this chapter evaluates 

the four standard protocols developed in this research. We assess the performance of those 

protocols on a class-1 IoT object. By performance, we mean the measurement of the degree to 

which a system accomplishes its functions within given constraints such as CPU speed, memory, 

bandwidth, and so forth [76].  

In our test environment, we choose Netduino Plus introduced in Section 1.7 as our 

development platform as a class-1 IoT object. In order to demonstrate how different components 

work together, multiple meteorological sensors (temperature, humidity, carbon monoxide, 

hydrogen monoxide, and dust), sound pressure sensor and LED actuator are connected to our 

Netduino Plus (Figure 6.1). 

 

Figure  6.1 Different components of our development platform 
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Although more powerful IoT objects exist, they are also more expensive. The reason we 

focused on the constrained nodes in this research is because they are more cost-effective and will 

be more widely deployed in real world. By using the resource-constrained and cost-effective 

nodes, it allows us to explore the lower bound of the resources that are required for IoT 

applications. In that way, we ensure that our design choices can deliver an efficient 

implementation suitable for a broader application domain. 

6.2 Performance Evaluation 

This section evaluates each protocol using a service prototype (i.e., server), a gateway (where 

applicable), and a client. The metrics selected for this evaluation are as follows: (1) code storage 

(EEPROM
23

) occupation, (2) main memory (RAM) usage, (3) request length of an operation, (4) 

response size of an operation, and (5) response latency. In all cases except SensorThings, the 

tests are carried out using a Netduino Plus as the server and a PC as the client. The two are 

connected via Ethernet cable to the Internet. 

6.2.1 Memory Occupation 

The first experiment is about memory occupation (i.e., ROM and RAM usage). The results 

obtained in this experiment demonstrate memory management’s importance in terms of resource 

consumption. We also include a HTTP web server in our tests as a reference. The HTTP web 

server is implemented on Netduino Plus and responds in plain unstructured text format. This web 

service can be a reference because it is purely developed by using C# HTTP libraries with no 

enhancement on the code efficiency.  

                                                 

23
 Electronically Erasable Programmable Read Only Memory 
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First, we measure the occupied code space after code deployment from the development 

environment (e.g., a PC) to the EEPROM of the Netduino Plus. The occupation of ROM can 

serve as an indicator of the required code’s complexity for each implementation.  For example, 

according to Table 6.1, the OGC SensorThings API and SOS over CoAP need more ROM in 

comparison to the other implementations, because both not only need to handle server-side 

operations but also should support client-side functions. The simple web service is in the third 

place of ROM usage as the classes and libraries in the C# .Net Micro Framework consume a 

considerable amount of code storage [50]. Comparing to the simple web server, TinySOS is 

more efficient because of two reasons: (1) rather than using the C# .Net Micro Framework’s 

libraries, we implemented our own HTTP libraries; (2) we recorded the XML responses on the 

micro SD card instead of ROM. The OGC PUCK is the most efficient protocol in terms of ROM 

usage because PUCK specification does not require any heavy parser (e.g., XML parser, JSON 

parser), retransmission mechanism (e.g., CoAP-To-HTTP), and data uploader component. 

Although the OGC PUCK requires PUCK memory, SensorML and driver code, we are able to 

use the device's permanent memory (micro SD card) to keep those necessary data. 

Moreover, Table 6.1 shows the amount of RAM allocated at compile time for each 

implementation. A code with a small memory footprint would allow adding extra capabilities 

such as resources that the server could provide to clients. Although PUCK occupies the least 

code space, this protocol is highly inefficient in RAM usage. It is possible that the memory 

management unit or data transceiver of the Bluetooth module requires more memory in 

comparison with other components of this protocol. After the OGC PUCK, TinySOS consumes a 

lot of RAM likely due to the XML parser and request validator units. SOS over CoAP and OGC 

SensorThings are similar in terms of RAM usage. On the other hand, the simple web server acts 
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better than others in this experiment since it is simple in case of request validation and response 

generation. 

Table  6.1 RAM and ROM memory occupation 

 
Simple Web 

Service 

PUCK over 

Bluetooth 

TinySOS 

SOS over 

CoAP 

OGC 

SensorThings 

ROM (kB) 16.08 8.48 11.72 29.13 26.11 

RAM (kB) 9.54 13.15 11.33 10.36 10.21 

 

6.2.2 Request Size 

Both IoT devices and the network they use are highly constrained [16]. And that means the 

payload packet size is very important. To identify the efficiency of the above standard protocols, 

we record the request size generated for a specific use case (i.e., get one sensor measurement) 

that is possibly most widely used. To do this, we use Wireshark
24

, a network protocol analyzer 

software for all tests except PUCK. That is Wireshark is unable to monitor the serial ports that 

are the communication ports of the PUCK. Thus, to measure the PUCK request size, we simply 

count the characters of its plain text request. According to Figure 6.2, PUCK generates the 

smallest request since the request is made of a short string of characters with no header, 

description or complicated format. Also, CoAP request is at least 67% smaller in comparison 

with other Internet-based protocols. This efficiency is because of using UDP instead of TCP in 

the transport layer which makes the header size extremely smaller. The simple web service 

communicates through HTTP GET request with no request content. Therefore, only the header 

                                                 

24
 http://www.wireshark.org 
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features of the HTTP GET request (350 bytes) are calculated for the simple web service. The 

OGC SensorThings requires several parameters embedded in the request body besides the header 

features. Therefore, SensorThings is ranked after the HTTP protocol in this experiment. On the 

contrary, the requests of the SOS protocol are at least 47% larger than other protocols since they 

are packaged in XML format. In order to ensure that the tested SOS request is compatible with 

the OGC SOS standard, we used a test client tool developed by 52 North SOS
25

. 

 

Figure  6.2 Request size evaluation for the get observation request 

6.2.3 Response Length 

Apart from the requests comparison among the standard protocols, we also evaluate the response 

length generated by our implementations. Figure 6.3 depicts the response length trend of 

different implementations versus the number of sensor readings requested (from 1 to 100). Since 

the specification of OGC SensorThings conveys the sensor related requests to a RESTful data 

service, we send the get observation request to that data service
26

 (a regular PC) instead of 

                                                 

25
 http://sensorweb.demo.52north.org/52nSOSv3.2.1/ 

26
 http://demo.student.geocens.ca:8080/SensorThings_V1.0 
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Netduino Plus. According to Figure 6.3, OGC SensorThings and TinySOS provide larger 

responses in comparison with other protocols. One possibility of this difference can be the output 

formatting which is in JSON and XML, respectively. After looking at the responses generated by 

OGC SensorThings data service, we faced several JSON attribute-value pairs (e.g., observation 

ID, request type, feature of interest, sensor profile, and data stream information) repeated in all 

sensor readings (Appendix A). Based on the capabilities of the SensorThings data service, we are 

able to retrieve only the sensor measurement and the observation time in JSON format 

(Appendix A). As a result, the response length would be 71% less in average comparing to the 

previous responses of the SensorThings API. On the other hand, TinySOS follows the OGC SOS 

specification for the response generation by embedding the observation values and time in the 

existing response file. Accordingly, the response size will not be as large as OGC SensorThings 

protocol with repetitive attribute-value pairs. As a trade-off, end users can simply parse the 

SensorThings responses by a JSON parser while for the TinySOS responses, a new parser needs 

to be developed to extract the required data from the XML file. 

 

Figure  6.3 Response size vs. the number of sensor readings 
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To better understand the trends of other implementations, we remove the OGC 

SensorThings trend in Figure 6.4. The SOS over CoAP and PUCK over Bluetooth follow each 

other closely since the protocols defined to retrieve the sensor readings are similar for both. 

According to the CoAP specification elaborated in Section 4.3.1, CoAP messages should not 

exceed 1024 bytes [55]. That explains why the green line representing SOS over CoAP in Figure 

6.4 has not gone any further than point 30 in which the response size was 1019 bytes. However, 

the required response header of CoAP makes the CoAP response size a bit larger than the one 

outputted by PUCK for cases with equal number of sensor readings. 

 

Figure  6.4 Response size vs. the number of sensor readings (removed the OGC 

SensorThings trend) 

According to Figure 6.4, TinySOS and OGC SensorThings API generate the same 

response size for forty senor observations. Due to the fact that the observation values and time 

are the same for the two protocols, we can conclude that the size of XML tags of the SOS 
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response is equal to the total length of the JSON attribute-value pairs of the SensorThings 

response (i.e., “time”, “result value”, “self-link”)
27

. 

6.2.4 Response Latency 

To wrap up our performance evaluation, we record the end-to-end response latency. The 

experiment is conducted by a PC client to retrieve sensor data from a Netduino Plus-based 

service or from a PC-based IoT data service. We define latency as the time elapsed from the 

moment the PC client sends a request until the moment it receives the response. Figure 6.5 shows 

the latency trend based on our experiments. Each point on Figure 6.5 represents the latency value 

of successful request/response transactions. Number of sensor readings ranges from 1 to 100. In 

this way, the differences between the other implementations can be better appreciated. Low 

latency values can notably improve the user experience and benefit the implementations that 

work in real-time. 

TinySOS behaves worse than others in this experiment as its communications are in 

XML data encoding. Thus, the Netduino Plus server has to parse the XML request, read the 

XML response file from the micro SD card, embed the sensor reading(s) into the response body, 

and forward the XML file to the client. All these functions are performed on a device with 48 

MHz CPU speed and 28 KB memory leading to high latency. 

                                                 

27
 Appendix A provides a sample of such response. 
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Figure  6.5 Response latency vs. the number of sensor readings 

Figure 6.6 removes the TinySOS trend in order to determine the behaviour of other 

implementations. The SOS over CoAP has more latency than PUCK since the CoAP 

communicates over the World Wide Web. As we explained in Section 6.2.3, CoAP stops at point 

30 because of the CoAP limitation for the message size. Due to the fact that the SensorThings 

data service is a regular PC, if we ignore this protocol, the PUCK over Bluetooth is the most 

efficient implementation in this experiment. For the PUCK evaluation, we applied Device 

Monitoring Studio software
28

 in order to monitor the serial port of the PC. Since PUCK over 

Bluetooth is a wireless protocol, the distance between the pairs affects the response latency. In 

our experiments, the Netduino Plus (server) and the notebook (client) were placed close to each 

other (less than 1 meter). 

                                                 

28
 http://www.hhdsoftware.com/device-monitoring-studio 
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Figure  6.6 Response latency vs. the number of sensor readings (removed TinySOS) 

6.3 Summary 

We demonstrated the effectiveness of our approaches by a comprehensive performance 

evaluation. To conduct a comparative study on the applied protocols, we compared the test 

results together in terms of code storage occupation, memory usage, request size, response size, 

and finally response latency.  
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Chapter Seven: Conclusions and Future Works 

7.1 Introduction 

We conclude this research in the final chapter by summarizing the research work that has been 

carried out and outlining the conclusions drawn out of the result. It also comments on the 

limitations and proposes areas for the future work. 

This research has contributed in the interoperability approach of the Internet of Things by 

adapting existing standards defined for the Sensor Web (PUCK and SOS), implementing the 

newly introduced protocol for the Internet of Things (CoAP), and eventually designing a specific 

RESTful protocol for the Internet of Things (OGC SensorThings). Besides, a real-time 

meteorological system has been developed in this research as a proof of concept to evaluate the 

adequacy and efficiency of the interaction.  

In general, our contributions could overcome the three problems mentioned in Chapter 1. 

For the Internet access problem, we applied PUCK over Bluetooth protocol. We also 

implemented the four standard protocols to solve the lack of standardization in data 

representation. As a solution for the third problem, we demonstrated the possibility of 

implementing open standards on a resource constrained IoT object.  

To summarize, Chapter 1 provided a brief introduction regarding the topic of this 

research, development platform and outlined the research problem and the key objectives. 

Chapter 2 presented PUCK over Bluetooth as a wireless standard protocol for the Internet of 

Things. Chapter 3 described TinySOS as a lightweight profile of the OGC SOS suitable for IoT 

devices. Chapter 4 also discussed about the possibilities of combining CoAP which is mainly 

designed for the Internet of Things, and OGC SOS which is commonly used in WSNs. 

Moreover, Chapter 5 introduced our defined protocol under the OGC license supporting REST 
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and JSON, namely OGC SensorThings. Finally, Chapter 6 presented several scenarios to 

evaluate the performance of the implemented protocols on a class-1 IoT object. 

7.2  Conclusions 

All around the world, the IoT applications are emerging exponentially with various 

functionalities. Each application is developed based on the developer’s desire of the device. That 

means the number of proprietary protocols is growing as the number of IoT devices increases. 

Consequently, standardized interfaces are required to interconnect different IoT devices for 

innovative applications. 

In this research, we presented our contribution in the interoperability aspect of the 

Internet of Things by developing PUCK over Bluetooth, TinySOS, SOS over CoAP, and finally 

the OGC SensorThings API. Our implementations were the world’s first contribution for the IoT 

objects. 

At the beginning, we chose a class-1 IoT object as categorized in the framework of 

Bormann et al. [14] for our development platform. First, we equipped the class-1 IoT device with 

a Bluetooth transceiver in order to establish wireless network in a limited range. We standardized 

its connection by means of OGC PUCK. Due to the fact that Internet access is a key requirement 

for IoT objects, we applied additional software components to farther enhance this functionality 

for the Bluetooth-enabled PUCK instrument. 

In the second stage, we removed the intermediary gateway in the path between the user 

and IoT object by developing a web service on a Thing itself. Since different device owners or 

manufacturers might have their own design for the data representation, we introduced a 

lightweight version of the OGC SOS, TinySOS. As a result, the sensor measurements could be 

accessed remotely in a standardized way simply through a web browser. 
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According to the complicated nature of the OGC SOS for resource constraint IoT objects, 

we proposed another approach which is more suitable for the class-1 IoT devices. Thus, the third 

contribution of this research was integrating CoAP into the OGC SOS. The point of 

differentiation between this approach and the previous effort (TinySOS) lies in the connection of 

the device to the network. In the previous approach, the device was required to tolerate the huge 

load of SOS requests/responses formatted in XML. In the new approach, the device supported 

CoAP which is a constrained application protocol for the IoT. Moreover, the SOS operations 

were processed on the CoAP proxy which is essentially a regular computer with enough 

computational resources. 

Due to the UDP transmission, CoAP could not establish a direct connection to the 

Internet components without the deployment of CoAP proxies. As the IoT will eventually follow 

the Internet protocol suite model, it is recommended to adjust the connections compatible with 

the Internet standard protocols. Moreover, the IoT infrastructure needs a specific standard 

protocol. As a result, we designed our own standard application programming interface called 

OGC SensorThings API. The use cases of this API started with IoT device registrations to the 

service. For the sensing devices, registration information contained the phenomenon that was 

observed. After registration, sensing devices could start uploading their observations to the data 

service. From the tasking point of view, actuators could also register and publish their tasking 

capabilities to the data service. As a result, users were able to access those observations and also 

send controlling tasks to the devices through the service. All the communications with the data 

service followed the RESTful architecture. 

Finally, the four implementations on Netduino Plus were assessed comparatively. To do 

so, each implementation was evaluated according to memory occupation (RAM and ROM), 
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request size, response length and response latency. As a case study, we embedded multiple 

meteorological sensors, sound pressure sensor and LED actuator to our Netduino Plus in order to 

demonstrate how different components work together. 

In the following section, we will discuss our future works on the IoT. Several challenges 

in the context of IoT will be discussed and a future road map will be presented. 

7.3 Future Works 

This thesis takes a practical approach to the interoperability in the Internet of Things. There are 

several ways in which this research can be improved and extended. In this section, some of the 

major issues that can be later investigated and guidelines of the future work is addressed. 

First of all, the aforementioned interoperable protocols follow the client-server 

architectural style which has the single point of failure (SPOF) issue [77]. In order to address this 

issue, one potential solution is to design a peer-to-peer (P2P) architecture as it has been proven 

reliable and effective. In this case, devices can form an overlay network to discover resources 

and forward requests; so a centralized component such as the sensor registry service, CoAP 

proxy and IoT RESTful server would be no longer needed. 

In this research, Bluetooth and Ethernet were considered as the network enablement 

technologies for IoT devices. Since Wi-Fi is being dominant in network communications [78], 

the study on Wi-Fi communications in the IoT is highly suggested. One immediate issue in Wi-

Fi connection emerges about transmission of network configuration to the IoT device which has 

no display equipment and input peripheral. 

In addition to Wi-Fi as wireless enablement for the IoT, another research should be 

started to improve energy saving on the IoT objects. The first assumption in this research was 

that IoT devices having unlimited power resource while this assumption may not be true in many 
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cases. Some sensor nodes will be battery-operated [52], so energy is perhaps the most notable 

constraint for the IoT devices. Furthermore, achievement in Wi-Fi connection of IoT objects 

leads to removing wires and cords from devices. Therefore, their battery charge must be 

efficiently conserved to extend the life of the individual sensor node, and consequently the entire 

IoT network. 

More potential future works pertain privacy and security for IoT devices. We efficiently 

implemented existing security and privacy mechanisms of the information technology and 

computer networks on class-1 IoT devices [79]. Although an acceptable level of secure 

connection in IoT can be achievable, we believe IoT would require specific rules and 

mechanisms for the successful implementation of this approach.  

This research mainly concentrated on the way the data is transferred from inexpensive 

class-1 IoT objects. However, we do not know how reliable the retrieved data is. According to 

the IEEE Standard Computer Dictionary [20], reliability is defined as the capability of a sensor 

to perform its measurements under stated conditions for a specific time period. By this definition, 

we can intuitively link a sensor's reliability to accuracy and precision. Accuracy denotes the 

closeness of a measurement to the actual value, and precision characterizes the reproducibility of 

the generated value. In order to achieve the reliability in the IoT, both precision and accuracy 

should be considered. For future directions, we believe that data reliability is an important and 

interesting approach for the IoT that is worth to be further investigated. 
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Appendix A 

A.1 Sample requests and responses used in Section 6.2 

In this section, requests and responses of the get observation operation for each of the four 

implemented protocols are presented. In addition to the message contents, the screenshots of the 

Wireshark software and message summary are also provided to demonstrate the network analysis 

of those requests. 

A.1.1 Simple Web Server 

 

Figure A.1.1 HTTP GET request to the simple web server 

 

Figure A.1.2 Wireshark screenshot to analyze the requests sent to the simple web service 
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A.1.2 PUCK over Bluetooth 

 

Figure A.1.3 GETREADING request and its response to a PUCK-enabled Netduino Plus 

through Bluetooth 

 

Figure A.1.4 Statistics of the GETREADING request 
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A.1.3 TinySOS 

 

Figure A.1.5 GetObservation request to TinySOS by using 52 North test client tool 

 

Figure A.1.6 Wireshark screenshot to analyze the requests sent to TinySOS 
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A.1.4 SOS over CoAP 

 

Figure A.1.7 GetObservation request to the SOSCoAP proxy 

 

Figure A.1.8 Get observation request sent to a CoAP server (i.e., Netduino Plus) 
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Figure A.1.9 Wireshark screenshot to analyze the requests sent to the CoAP server  

 

Figure A.1.10 Details of the get observation request sent to the CoAP server 
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A.1.5 OGC SensorThings API 

 

Figure A.1.11 HTTP GET request/response to the OGC SensorThings 

 

Figure A.1.12 Wireshark screenshot to analyze the request sent to the SensorThings service 
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Figure A.1.13 Response of the SensorThings to multiple readings request 
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Figure A.1.14 Summarized response of the SensorThings 


