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Abstract 

The World-Wide Sensor Web has become a useful technique for monitoring the physical world 

at spatial and temporal scales that were impossible in the past. With the development and 

deployment of sensor technologies and interoperable open standards, sensor web generates 

tremendous volumes of priceless data enabling scientists to observe previously-unobservable 

phenomena. By connecting various types of sensors located worldwide and performs 

observations at high-frequency, sensor web has the ability to capture time-critical events and 

provide up-to-date information to support efficient decision making. We argue that constructing 

sensor web infrastructure and applying interoperable standards are the first steps. In order to 

harvest the full potential of sensor web, efficiently processing sensor web data and providing 

timely notifications are necessary. Therefore, this research proposes GeoPubSubHub, a software 

component applying the publish/subscribe communication model to efficiently process 

geospatial sensor web data. In this thesis, we propose an overall system architecture to address 

the seven challenges identified for constructing a geospatial sensor web publish/subscribe 

system. In addition to the solutions that are similar to existing approaches, we propose sensor 

web input adaptor, LOST-Tree, semantic layer service, AHS-Model, and sensor web browser to 

address challenges that are most unique and critical in the context of a geospatial sensor web 

publish/subscribe system. Our evaluation results demonstrate that these proposed solutions can 

effectively address targeted challenges with efficient performance. As one of the first geospatial 

sensor web publish/subscribe systems, we believe that our proposed solutions and 

GeoPubSubHub architecture serve as a promising initiative to process sensor web data in a 

timely manner and will consequently harvest the full potential of the world-wide sensor web. 
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Chapter One: Introduction 

In recent years, large-scale sensor arrays and the vast datasets produced worldwide are 

being utilized, shared, and published by a rising number of researchers on an ever-increasing 

frequency. The global scale ARGOS network of buoys
1
, the weather networks of the World 

Meteorological Organization, and the global GPS Zenith Total Delay (ZTD) observation network 

are examples of existing large-scale sensor arrays. Moreover, with the advent of the low-cost 

sensor networks and data loggers, it is technologically and economically feasible for individual 

scientists to deploy and operate small- to medium-scale sensor arrays. Individual scientists or 

small research groups can now easily deploy sensor arrays at strategic locations for their own 

research purposes. There is a spectrum of sensor networks ranging from global-scale permanent 

observatories to local-scale short-term sensor arrays (Liang et al. 2010). 

A significant amount of effort, such as Global Earth Observation System of Systems 

(GEOSS) and National Oceanic and Atmospheric Administration (NOAA) Integrated Ocean 

Observing System (IOOS), has been put forth to web-enable these large-scale sensor networks so 

that the sensors and their data can be accessible through the World-Wide Web (WWW). With 

open standards defining data schemas and web interfaces, sensors and their data can be 

integrated in an interoperable manner, which is the main idea of the World-Wide Sensor Web 

(Liang et al. 2005; Botts et al. 2007; Bröring et al. 2011). 

The original world-wide sensor web concept was proposed by the NASA/Jet Propulsion 

Laboratory (JPL) in 1997 (Delin 2005) for acquiring environmental information by integrating 

                                                 

1
 http://www.argos-system.org 
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massive spatially distributed consumer-market sensors. With the development of sensor 

technology, the sensor web concept has become broader than NASA’s original definition and is 

more related to the concepts of web-enabling sensor networks (Liang et al. 2005). Similar to the 

WWW, which acts essentially as a “World-Wide Computer”, the sensor web can be considered 

as a “World-Wide Sensor” or a “cyberinfrastructure for sensors”. This World-Wide Sensor is 

capable of monitoring the physical world at spatial and temporal scales that were previously 

impossible. 

To the best of our knowledge about current sensor web development, at the 

GeoSensorWebLab, we envision that the architecture of sensor web would be very similar to that 

of the WWW. For example, the WWW connects all of the web services around the world 

through open standard protocols, such as the Hypertext Transfer Protocol (HTTP). This solution 

has proven to be very scalable in terms of interchanging messages worldwide. The current sensor 

web development is moving in a direction that harnesses the power of WWW. We can see this 

trend from many sensor web projects, such as SensorWare Systems
2
, Microsoft SensorWeb 

project
3
, and Xively.com

4
. These projects deploy sensors, collect sensor data, and host and share 

the data through their proprietary web services. 

Similar to the WWW, the sensor web has three major layers, namely, the data layer, the 

web service layer, and the application layer. Our view of the sensor web layer stack is shown in 

the Figure 1.1 (Liang and Huang 2013). The data layer can be further divided into the physical 

                                                 

2
 http://www.sensorwaresystems.com/ 

3
 http://research.microsoft.com/en-us/projects/senseweb/ 

4
 https://xively.com/ 
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layer and the sensor layer. While the data layer performs observations
5
 and transmits sensor data 

to the web service layer, the web service layer provides the application layer with access to the 

cached sensor data. 

 

Figure 1.1 The sensor web layer stack. 

 

Since the architecture of a sensor web and WWW are similar, the components that are 

essential for the WWW should be considered in the development of a sensor web. For example, 

open standards such as TCP, UDP, IP, HTTP, HTML, etc. are very important in the success of 

WWW. These open standards (and many others) developed by the Internet Engineering Task 

Force (IETF), the WWW Consortium (W3C), and the ISO/International Electrotechnical 

                                                 

5
 Here we follow OGC SWE’s definition of an observation, which is “an act of observing a property or 

phenomenon, with the goal of producing an estimate of the value of the property”. 
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Commission (IEC) make sure Internet components can communicate with each other in an 

interoperable manner. 

To prevent “reinventing the wheel”, the current sensor web development is built on top of 

many existing WWW standards. However, as content on the sensor web is fundamentally 

different from that on the WWW, additional open standards should be defined. The Open 

Geospatial Consortium (OGC) Sensor Web Enablement (SWE) has defined a suite of open 

standards for the sensor web (Botts et al. 2007), including specifications for data models, data 

encodings, and web service interfaces. Although these OGC SWE standards are not as popular as 

the WWW standards, the development and adaption of sensor web open standards is one of the 

necessary steps to realize the sensor web vision. 

As OGC web services (OWSs) follow W3C’s web service framework, any individual can 

deploy OWSs on their own machines. The availability of OWS implementations is very 

important for data owners to easily install and share their data in an interoperable manner. Take 

OGC Sensor Observation Service (SOS) (Na and Priest 2007) as an example, the public can 

choose between 52°North SOS
6
, MapServer SOS

7
, Deegree SOS

8
, and Geospatial 

Cyberainfrastructure for Environmental Sensing (GeoCENS) SOS
9
 implementations to host their 

sensor data. With these available OWS implementations, we envision that the number of OWSs 

hosted by data owners will grow rapidly. 

                                                 

6
 http://52north.org/communities/sensorweb/sos/ 

7
 http://mapserver.org/ogc/sos_server.html 

8
 http://wiki.deegree.org/deegreeWiki/deegree3/SensorObservationService 

9
 http://wiki.geocens.ca/sos 
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Based on these OGC SWE open standards, there are efforts tried to harness the power of 

sensor web. 52°North
10

 has been actively participating in OGC working groups and has 

developed and open-sourced many OGC SWE client and service implementations. The Center 

for Spatial Information Science and Systems (CSISS) in the George Mason University continues 

to participate in the OGC community over the last decade. In addition, Bröring et al. (2011) and 

Resch et al. (2009) suggested service-oriented architectures (SOA) and workflows that apply 

pure OGC solutions (including SOS, Sensor Planning Service (SPS) (Simonis and Dibner 2007), 

Sensor Event Service (SES) (Echterhoff and Everding 2008), Web Processing Service (WPS) 

(Schut 2007), and Web Notification Service (WNS) (Simonis and Echterhoff 2006), etc.) to 

enable the discovery, exchange, and processing of sensor observations. 

However, these pure OGC approaches still have some issues. For example, Moodley and 

Simonis (2006), and Bai et al. (2010) utilized a Multi-Agent System approach to address 

identified service interaction and semantic interoperability issues. Similarly, in 

GeoSenosrWebLab’s GeoCENS project, we not only applied OGC standards but also proposed 

solutions (e.g., OWS searching engine, sensor web browser, and semantic layer service) to 

address issues that we identified in the real-world OWS services (Liang and Huang 2013). 

In addition to the OGC SWE standards, several works have attempted to propose an 

architecture for sensor web systems. Intel Research’s IrisNet (Gibbons et al. 2003) proposed a 

decentralized architecture based on a hierarchical topology. IrisNet provides techniques to 

process queries over distributed XML documents containing sensor data. Microsoft Research’s 

                                                 

10
 http://52north.org/ 



 

 

6 

 

SensorMap (Ahmad and Nath 2008) uses a centralized web portal design and tackles the 

scalability and performance issues with the proposed COLR-Tree. The COLR-Tree is a data 

structure that indexes, aggregates, and caches sensor streams in order to prevent the transfer of 

large volumes of sensor streams across the network. The LiveWeb project (Yang et al. 2011) 

proposes a sensor web service portal to represent and monitor real-time data from sensors and 

other information providers. LiveWeb uses a content-based publish/subscribe approach (based 

on keywords, category, and measurement value range) to provide real-time notifications of 

sensor data or events. 

With the development and deployment of sensor web and sensor network technologies, 

the sensor web generates tremendous volumes of priceless streaming data that enable scientists 

to observe previously-unobservable phenomena. These technologies are increasingly attracting 

the interest of researchers for a wide range of applications. These include: large-scale 

environmental monitoring (Hart and Martinez 2006; Stasch et al. 2012; Auynirundronkool et al. 

2012), civil structures (Xu 2002), roadways (Hsieh 2004; Bakillah et al. 2012), and animal 

habitats (Mainwaring et al. 2002; Chen et al. 2013). These applications utilize sensors ranging 

from video camera networks that monitor real-time traffic to matchbox-sized wireless sensor 

networks embedded in the environment to monitor habitats. 

Among the applications applying sensor web technology, some of them are time-critical 

and require efficient data processing for timely decision making and notification, such as 

emergency response systems (Kassab et al. 2010). These time-critical applications may be used 

to support decision making when handling time-critical events. Figure 1.2 shows two examples 



 

 

7 

 

of time-critical events. Figure 1.2(a) is a photo of the 2007 Minneapolis Interstate-35W bridge 

collapse, which caused 13 deaths and more than 100 injuries. Figure 1.2(b) shows a photo of the 

2011 Japan earthquake and tsunami, which caused 15,883 deaths, 6,145 injuries, and 2,667 

people missing. As the world-wide sensor web vision is to connect various types of sensors that 

are located worldwide and perform observations at high-frequency, the sensor web may have the 

ability to capture these time-critical events and provide up-to-date information to support 

decision making. We believe that by efficiently converting sensor web data into information and 

providing timely notifications, we can lower down or even prevent the damage from these time-

critical events. 

Therefore, we argue that constructing sensor web infrastructure and applying open 

interoperable standards are only the first steps. In order to harness the full potential of the sensor 

web, efficiently processing sensor web data and providing timely notifications are necessary. In 

this case, not only the emergency response systems can be improved, the sensor web can also 

benefit any applications that require continuous monitoring and timely response, such as house 

and human security. 

Therefore, from a high-level perspective, this research proposes a software component to 

efficiently process sensor web data and provide timely notifications. However, in order to 

achieve this objective, challenges from the big data phenomenon on the world-wide sensor web 

need to be addressed. 
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(a) 

 

(b) 

Figure 1.2 Examples of time-critical events: (a) 2007 Minneapolis Interstate-35W bridge 

collapse and (b) 2011 Japan earthquake and tsunami. 
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1.1 Big data phenomenon on the world-wide sensor web 

In the context of information technology (IT), the term big data is used to describe 

datasets that are too large or too complex to manage and process with traditional database 

management systems (DBMS) and data processing applications. The most widely recognized 

model for big data is the 3Vs model, which was first used by Doug Laney in 2001 (Laney 2001). 

While the 3Vs represent the volume, velocity, and variety, the 3Vs model defines big data as data 

that are large in volume, velocity, and variety. Each “V” poses different data management 

challenges. With the rapid development of the sensor web, we have observed that the sensor web 

also encounters big data challenges. We explain the basic concept of the 3Vs model and how the 

sensor web fits into this model as follows. 

1. Volume: One characteristic of big data is the large data volume, which can mean the large 

size or the large number of data records. While the data volume in social media is known 

to be enormous (e.g., facebook.com receives more than 500 terabytes of new data every 

day), Stephen Brobst, the CTO of Teradata, predicted11 in 2010 that “I don't think social 

media will be the biggest store of unstructured data for long…Within the next three to 

five years, I expect to see sensor data hit the crossover point…From there, the former 

will dominate by factors; not just by 10 to 20 percent, but by 10 to 20 times that of social 

media”.  

Although the GeoCENS search engine currently only discovers 2,884 Web Map Services 

(WMSs), which have 88,281 WMS layers, and 36 SOS services, which have 5,310 SOS 

                                                 

11
 http://www.zdnet.com/sensor-data-is-data-analytics-future-goldmine-2062200657/ 
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observation offerings and 39,368 sensors/procedures (Liang and Huang 2013). It is 

foreseeable that with the increasing number of sensors being deployed worldwide, the 

sensor web will be generating more and more sensor data every day. As a result, how to 

store, transmit, and process sensor web data in large volumes is one of the major 

challenges. 

2. Velocity: The velocity characteristic refers to the rate at which data is produced. Unlike 

human participants using social media, the sensors in the sensor web can produce data at 

very high frequencies as long as they have power. For example, Boeing jet engines 

produce 10 terabytes of sensor data every 30 minutes during flight (Rogers 2011). Other 

examples are closed-circuit television cameras (CCTV) and Internet protocol (IP) 

cameras for traffic monitoring or surveillance purposes that produce pictures from few to 

30 frames per second. As a result, efficiently processing high-velocity sensor data 

streams is challenging. Especially when considering the geospatial nature of sensor data, 

how to finish executing time-consuming geospatial operators before new data are 

measured is another major challenge. 

3. Variety: Many examples have been used to explain the variety characteristic, including 

non-aligned data structures, inconsistent data semantics, and incompatible data formats 

(Laney 2001). In general, the variety characteristic refers to differences between data 

records. On the sensor web, although sensor data are relatively structured in comparison 

to social media data , sensor data have large variety in terms of hardware (i.e., different 

types of sensors), data types (e.g., video, image, text, and number), observed phenomena 
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(e.g., RGB, air temperature, wind speed), communication protocols (e.g., proprietary 

protocols), data encodings (e.g., XML, JSON), semantics (e.g., same term interpreted 

differently), and syntaxes (e.g., same concept described differently). Therefore, how to 

effectively integrate heterogeneous sensor data and provide a coherent view for users is 

one of the major challenges for the sensor web. 

As big data is a critical issue for data management (Babcock et al. 2002), the big data 

phenomenon on the sensor web (or big sensor web data) also causes issues for processing sensor 

web data efficiently. In the next section, we further define these issues, introduce existing works, 

and explain the problems in these works. 

1.2 Problems 

The traditional request/response communication model and DBMS solutions are not 

suitable for providing timely notifications from big data as they are (1) based on point-to-point 

pulling interaction between users and data providers and (2) not designed for rapid and 

continuous data streams (Babcock at al. 2002). For instance, in a system following the 

request/response model (i.e., pull-based system), each communication between a user and the 

system is a complete transaction (i.e., one request and one response), in which the response is 

evaluated with a snapshot of the system. However, consider a use case requiring timely 

notifications, no user can predict when an event will happen (e.g., a start of a fire, a collapse of a 

bridge, or simply an observation). A communication cannot be scheduled ahead of time. By the 

time a user sends requests and receives responses, events may be already outdated. 
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Moreover, as a pull-based system may need to answer users’ queries at any time, the 

system needs to store/cache data that happen after a users’ last request. Otherwise, users would 

miss the data if the system does not preserve them. However, as big data are large in volume and 

velocity, storing a large amount of data in a traditional DBMS is challenging. 

There is an alternative communication model known as the publish/subscribe model (or 

continuous query processing model), which allows users to register queries in a system and the 

system executes the queries whenever it receives new data. In this case, the publish/subscribe 

model can provide notifications more promptly than the request/response model.  

The fundamental distinction between the request/response and publish/subscribe model is 

the one-time ad-hoc queries in the request/response model and the continuous predefined queries 

in the publish/subscribe model (Babcock et al. 2002). One-time queries are only evaluated once 

with a snapshot of dataset, and then answers are returned to users at the moment queries are 

evaluated. Continuous queries, however, are stored in the system and evaluated whenever new 

data arrive. The answers of continuous queries are produced over time and sent to users as 

notifications or streams when new data meet users’ query criteria. As a result, users can receive 

timely notifications since their queries are examined as soon as the system receives new data. 

Moreover, since data are processed upon arrival, systems can assume that the data will no longer 

be needed. Therefore, systems following publish/subscribe model (i.e., push-based systems) may 

simply discard processed data or forward them to data warehouses for permanent storage. The 

high-level workflow of publish/subscribe model is shown in Figure 1.3. 
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Figure 1.3 The high-level publish/subscribe workflow. 

 

There have been different types of systems applying the publish/subscribe model to 

manage and process continuous data streams, such as the publish/subscribe system (Eugster et al. 

2003), the simple event processing system (Michelson 2006), the data stream management 

system (DSMS) (Babcock 2002; Golab and Ozsu 2003; Cugola and Margara 2010), and the 

complex event processing system (CEP) (Luckham 2002). Although the original designs of these 

systems are different in terms of the targeted data type and query complexity, some of their 

functionality starts to overlap as they have evolved. More information about these systems and 

their relationships is presented in Chapter 5. 

In the push-based systems, a typical approach to perform a continuous query is to first 

create a query execution plan (Babcock 2002), which consists of operators and queues (Figure 

1.4), and then every new data will traverse through the query plan. There have been mechanisms 

proposed to optimize query plans. For example, minimizing the number of intermediate results 

before performing high-overhead operators (Arasu et al. 2004), sharing synopses and operators 
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across similar query plans (Arasu et al. 2004), and using an incremental evaluation approach to 

only process new and expired data (Mokbel et al. 2005). However, as most existing mechanisms 

are designed to optimize the overall structure of query plans, there are few works that discuss 

how to improve the efficiency of computational-intensive operators. 

 

Figure 1.4 An example of query execution plan. 

 

In the context of the world-wide sensor web, while many general-purpose operators are 

simple and efficient enough to be used directly in query execution plans (e.g., AVERAGE, 

COUNT, SUM), some geospatial operators are complex and time-consuming. In this research, 

we take the topological operators as an example. OGC Simple Feature Access specification 

defines eight geospatial relationships (Herring 2011). Topological operators are operators for 

determining geospatial relationships between geometries. As the sensor web data are geospatial 

in nature, supporting topological operators is necessary for a sensor web publish/subscribe 
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system. However, the topological operators are usually recognized as time-consuming tasks and 

would be a performance bottleneck on processing a large number of geometries (Clementini et 

al. 1994).  

Although there have been some works discussing the topic of supporting geospatial 

operators in a publish/subscribe system, most of them simply applied spatial database join 

operations to prove the concept. For instance, Kassab et al. (2010) utilized the ArcGIS Engine 

.NET SDK to determine topological relationships. Ali et al. (2010) applied the Microsoft SQL 

Server Spatial Library to support spatial queries in the Microsoft StreamInsight system. Mokbel 

et al. (2005) encapsulated geospatial algorithms as operators (e.g., INSIDE and k-Nearest-

Neighbor operators) in order to support incremental evaluation, reduce intermediate results in the 

query execution plan, and optimize multiple query plans. However, none of these researches 

discussed about improving the efficiency of geospatial algorithms for publish/subscribe systems; 

and we argue that geospatial algorithms can be improved based on the nature of continuous 

query processing model. 

Besides geospatial operators, we have also observed that many of the current sensor data 

sources only support a request/response communication model (i.e., pull-based data sources), 

such as OGC SOSs. While most of previous researches assume that data are automatically 

pushed to the systems, not much focus was put on the retrieval of data streams. As mentioned 

earlier, no user can predict when a new sensor observation will be available in data sources. In 

order to retrieve data in a timely manner, users need to frequently send requests to data sources 

even if many requests are unnecessary (i.e., no new data in the corresponding responses). 
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Therefore, how to retrieve near-real-time sensor data streams from pull-based sensor web data 

sources is another critical challenge for a sensor web publish/subscribe system. 

1.3 Objectives 

The major objective of this research is to propose a comprehensive geospatial sensor web 

publish/subscribe system, called GeoPubSubHub, in order to address the big sensor web data 

challenges and provide timely notifications. As the scope of GeoPubSubHub is large and each 

component in GeoPubSubHub has its own unique challenges, this thesis tries to cover both the 

breadth and depth of this research by (1) identifying challenges of a geospatial sensor web 

publish/subscribe system (Chapter 2), (2) proposing an overall system architecture to address 

identified challenges (Chapter 3.1 and 3.2), and (3) investigating and proposing new solutions for 

selected critical components, including topological operators and near-real-time sensor web data 

retrieving (Chapter 3.3, 3.4, 3.5, 3.6 and 3.7). 

In summary, this thesis has the following contributions. 

1. We identified seven challenges for constructing a sensor web publish/subscribe 

architecture. While some of these challenges also happen in general-purpose 

publish/subscribe systems, some of them are unique because of the nature of geospatial 

sensor web data and data sources. 

2. In order to discuss all aspects of a geospatial sensor web publish/subscribe system, we 

propose solutions with overall system architecture and workflow to address the identified 

challenges. 
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3. While some of the challenges have been discussed in existing literature, this thesis 

focuses on the software components that we believe are most unique and critical in the 

context of a geospatial sensor web publish/subscribe system. For example, the sensor web 

input adaptor presented in Chapter 3.3 aggregates users’ spatio-temporal requests and 

efficiently retrieves sensor data from data sources while avoiding unnecessary requests. 

Chapter 3.4 proposes the LOST-Tree that can effectively and efficiently aggregate spatio-

temporal cubes in order to avoid redundant requests. The AHS-Model introduced in 

Chapter 3.6 is able to efficiently determine topological relationships between users’ 

spatial subscriptions and newly-produced sensor web data in a sensor web 

publish/subscribe system. 

4. To the best of our knowledge, this thesis proposes one of the first geospatial sensor web 

publish/subscribe system architectures, which could serve as a promising initiative to 

address the unique big sensor web data challenges and consequently allow us to harvest 

the full potential of the world-wide sensor web. 

The remainder of this thesis is organized as follows. Chapter 2 presents the challenges 

and existing approaches in general-purpose publish/subscribe architectures, and also identifies 

the challenges in a sensor web publish/subscribe architecture. In Chapter 3, we present the 

proposed solutions, system architecture, and detailed algorithms of selected components. This is 

followed by a performance evaluation of proposed algorithms in Chapter 4. Please kindly note 

that detailed discussions of related works are presented in Chapter 5. Finally, Chapter 6 includes 

conclusion and future work.  
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Chapter Two: Challenges 

In order to provide an overview of this research, this chapter presents the identified 

challenges for constructing a geospatial publish/subscribe system for a sensor web context. In the 

Chapter 2.1, we summarize the challenges and existing approaches in a general-purpose 

publish/subscribe architecture. And in the Chapter 2.2, we discuss the identified challenges in a 

sensor web publish/subscribe architecture. 

2.1 Challenges and existing approaches in a general-purpose publish/subscribe architecture 

In order to design a comprehensive architecture for sensor web publish/subscribe 

systems, we first review the challenges and existing solutions in general-purpose push-based 

systems. As mentioned earlier, these systems including publish/subscribe systems, simple event 

processing systems, DSMSs, and CEP systems follow the same concept of continuous query 

processing model, i.e., users can register queries and receive notifications as new data match 

their queries. In order to provide an overview for general-purpose publish/subscribe systems, we 

summarize and categorize the challenges and existing solutions that are common in these 

systems. 

There have been many papers summarizing these general-purpose push-based systems 

such as Babcock et al. (2002), Eugster et al. (2003), Golab and Ozsu (2003), Cugola and 

Margara (2010). Readers interested in further details of this section are referred to these papers. 

In order to provide a high-level overview of challenges these systems discussed, we observe that 

the challenges can be categorized into two major issues, namely memory and query efficiency. 
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Since these systems aim on handling continuous data streams, which are large in size and 

generated at a high rate, processing these continuous data streams could easily exhaust available 

memory (i.e., memory issue) or result in poor query performance (i.e., query efficiency issue). In 

order to address these two issues, previous works proposed several approaches. Here we 

categorize these approaches into three types, namely approximation, query optimization, and 

adaptivity approaches. We further explain these three categories as follows: 

1. Approximation approaches: Due to limited memory, providing exact answers for data 

stream queries is not always possible. In this case, a high-quality approximated answer 

becomes the second choice. Approaches belonging to this category are sliding windows, 

batch processing, replacing blocking operators by non-blocking operators, load shedding, 

synopsis construction, and the k-constraint in the STREAM system (Arasu et al. 2004). 

While the major objective of approximation approaches is to reduce the memory usage, 

some of these approaches indirectly speed up the query processing. 

2. Query optimization approaches: A typical approach to perform steam query processing is 

to first create a query execution plan (Figure 1.4), and then each new data will traverse 

through the operators and queues in the query plan. There have been some approaches to 

optimize queries by modifying the structure of query plans. For example, minimizing the 

number of intermediate results (based on the selectivity of operators) before performing 

high-overhead operators (Arasu et al. 2004), sharing synopses and operators across 

similar query plans (Arasu et al. 2004), using an incremental evaluation approach to only 

process new and expired data, and distributing query plans to multiple processing nodes 
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(Mokbel et al. 2005). These approaches are mainly for improving the query efficiency 

and would not degrade the quality of answers. 

3. Adaptivity approaches: The throughput of query plans vary with the dynamic nature of 

data streams and queries. For example, the arrival rate of data streams, the number of 

intermediate results, and the available CPU and memory resources all change over time. 

In order to ensure the query plans are the most efficient for the current system condition, 

approaches are proposed to optimize the system performance on-the-fly. For example, the 

Eddies approach (Avnur and Hellerstein 2000) first routes data through query operators 

to discover fast and selective operators and then dynamically re-organize query plans. 

The StreaMon module in STREAM employs three components (i.e., Profiler, 

Reoptimizer, and Executor) to adaptively adjust the k values of k-constraint and the 

structure of query plans (Arasu et al. 2004). 

This review of the challenges and existing solutions in general-purpose publish/subscribe 

systems provides a foundation for designing GeoPubSubHub. While some of the aforementioned 

solutions could be directly applied to GeoPubSubHub, GeoPubSubHub is different from other 

systems in that it is specifically designed to handle sensor web data streams. Since the sensor 

web data streams and data sources have their own unique characteristics, GeoPubSubHub would 

face some unique challenges. Therefore, we identify these challenges in the next section. 

2.2 Identified challenges in a geospatial sensor web publish/subscribe architecture 

In this section, we try to provide a comprehensive understanding about the challenges for 

constructing a geospatial publish/subscribe system in the sensor web context. While some of the 
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challenges may be common with other general-purpose systems, others are unique because of the 

nature of sensor web data and data sources. 

As we explained earlier about the sensor web layer stack (Figure 1.1), the data layer 

performs observations and transmits sensor data to the web service layer, and the web service 

layer provides the application layer with access to the cached sensor data. Since GeoPubSubHub 

is an application that filters sensor web data streams with predefined queries, GeoPubSubHub 

needs to consider the challenges of communicating with data sources in the web service layer. 

Moreover, as sensor web data is geospatial in nature, GeoPubSubHub would have unique 

challenges in handling geospatial queries or visualizing geospatial data. 

We identify and present the major challenges for building a geospatial sensor web 

publish/subscribe system in the following list. In general, the first four challenges are related to 

the data sources, the fifth and sixth challenges are mainly about query processing, and the 

seventh challenge locates in the client side. In addition, to provide a different view for the 

challenges, the first and fifth challenges arise from the nature of continuous data streams, which 

is more similar to the challenges in general-purpose systems, while others are more related to the 

sensor web. 

1. Large amount of continuous data streams: Although large amount of data streams allows 

users to observe events that are previously unobservable, traditional DBMS approaches 

are not designed for the rapid and continuous arrival characteristic of data streams 

(Babcock et al. 2002; Golab and Ozsu 2003). This challenge happens in general-purpose 

publish/subscribe systems as well. 
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2. Pull-based data sources: We have observed that many of the sensor data sources only 

support a request/response communication model, e.g., OGC SOSs. Users need to 

proactively send requests in the first place. However, as mentioned earlier, no user can 

know when new sensor observations will be available in data sources. In order to retrieve 

near-real-time data from pull-based data sources, a naïve approach is to send requests to 

data sources very frequently. However, many of these requests would be unnecessary 

(i.e., no new data in the corresponding responses) and cause extra burden on both clients 

and servers. Therefore, how to retrieve near-real-time sensor data from pull-based sensor 

web data sources with an acceptable overhead is one of the critical challenges. 

3. Large number of data sources: Follow on the previous challenge, if a data source only 

supports pull-based communication model, at least one Internet connection is needed to 

frequently retrieve data from a data source. As we argue that the number of sensor web 

services would grow rapidly, handling a large number of connections becomes an 

important challenge for a client with limited resource. 

4. Heterogeneous sensor web data: We observed that the sensor web is highly 

heterogeneous in terms of communication protocols, data encodings, semantics, 

syntactic, etc. (Knoechel et al. 2011). Some of these heterogeneities can be addressed by 

applying open standard protocols, such as communication protocols and data encodings. 

However, even after applying open standards, there are still some interoperability issues 

due to the lack of standardized naming, such as semantic heterogeneity and syntactic 

heterogeneity. As an example for semantic heterogeneity, consider the two strings 
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“precipitation” and “rainfall”. Since rainfall is a type of precipitation, a user interested in 

precipitation data would likely be interested in rainfall. Although these concepts are 

intuitively related to human, to any computer these are simply different sequences of 

characters. 

The syntactic heterogeneity usually comes from the various labels used to represent the 

same concept, as different data providers may label their data differently. For example, 

Table 2.1 shows an example of the various URIs used in SOSs to represent the concept of 

wind speed. This syntactic heterogeneity causes difficulties for a system to integrate all 

sensor data about wind speed. 

As a result, how to integrate heterogeneous sensor web data and provide users with a 

coherent view of sensor web data is one of the unique challenges for GeoPubSubHub. 

Table 2.1 Various URIs of the concept of wind speed. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

urn:x-ogc:def:property:OGC::WindSpeed 

urn:ogc:def:property:universityofsaskatchewan:ip3:windspeed 

urn:ogc:def:phenomenon:OGC:1.0.30:windspeed 

urn:ogc:def:phenomenon:OGC:1.0.30:WindSpeeds 

urn:ogc:def:phenomenon:OGC:windspeed 

urn:ogc:def:property:geocens:geocensv01:windspeed 

urn:ogc:def:property:noaa:ndbc:Wind Speed 

urn:ogc:def:property:OGC::WindSpeed 

urn:ogc:def:property:ucberkeley:odm:Wind Speed Avg MS 

urn:ogc:def:property:ucberkeley:odm:Wind Speed Max MS 

http://marinemetadata.org/cf#wind speed 

http://mmisw.org/ont/cf/parameter/winds 

 

5. Large number of queries: There have been a number of applications applying world-wide 

sensor web on large-scale monitoring (Xu, 2002). It is foreseeable that numerous domain 
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specialists or the general public will generate various types of queries to receive timely 

notifications from the sensor web. Therefore, how to maintain query efficiency while 

handling a large number of queries becomes one of the major challenges. While this 

challenge also happens in general-purpose publish/subscribe systems, the concepts of 

existing solutions would benefit the design of GeoPubSubHub. 

6. Geospatial data and queries: One of the major differences between GeoPubSubHub and 

general-purpose publish/subscribe systems is the geospatial nature of sensor web data. 

While many general-purpose operators are simple and efficient enough to be applied 

directly in query execution plans, some geospatial operators are complex and time-

consuming, such as topological operators (Clementini et al. 1994). While aiming on 

providing timely notifications, these geospatial operators would become performance 

bottlenecks. As a result, how to efficiently process geospatial operators in a 

publish/subscribe system becomes a critical research question for GeoPubSubHub. 

7. Sensor web data visualization: Due to the geospatial nature of sensor web, the data 

streams, queries, and notifications are inherently geospatial. How to enable users to 

visualize sensor web data, create queries, and display notifications in a geospatial manner 

is another unique challenge for GeoPubSubHub. 

To sum up, in this chapter, we identified the challenges for constructing a geospatial 

publish/subscribe system in the sensor web context. We believe that each of these challenges is 

an interesting and important research question that is worth further investigated. In this research, 

we present an overall system architecture to address these challenges (Chapter 3.1 and 3.2). 
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Then, among the proposed solutions, we selectively choose some to explain in detail (from 

Chapter 3.3 to 3.7). 
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Chapter Three: Methodology 

In this chapter, we present the design of GeoPubSubHub including proposed solutions for 

addressing the identified challenges and overall system architecture. While some of the proposed 

solutions are similar to existing solutions, we put our focus on the modules that we believe are 

most unique and critical in the context of a geospatial sensor web publish/subscribe system. 

Hence, the proposed solutions, including sensor web input adaptor, LOST-Tree, semantic layer 

service, AHS-Model, and sensor web browser, are presented in detail in this chapter. 

3.1 Proposed solutions 

In order to construct an architecture for efficiently examining sensor data streams and 

providing timely notifications, we propose solutions to address the seven challenges presented in 

the Chapter 2.2. While some of the proposed solutions are inspired by existing solutions in 

general-purpose publish/subscribe systems, some solutions are newly proposed to address the 

unique challenges from the nature of sensor web data and data sources. To be more specific, the 

sixth challenge is about processing geospatial data streams and subscriptions; and the second, 

third, and forth challenges are even more domain-specific for the sensor web. The proposed 

solutions are as follows: 

1. Publish/Subscribe communication model: We designed GeoPubSubHub based on the 

publish/subscribe communication model for processing continuous data streams. 

GeoPubSubHub allows users to register continuous queries. And these queries are 

evaluated whenever new data arrive. The answers from the continuous queries are 
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produced over time and sent to users as notifications when a new data meets query 

criteria. 

As mentioned earlier, the publish/subscribe model has been used in literatures to process 

continuous data streams. In this research, we apply the same model on GeoPubSubHub to 

address the large amount of continuous data streams challenge mentioned in Chapter 2.2. 

2. Adaptive sensor stream feeder: As mentioned in Chapter 2.2, many of the sensor web 

data sources pull-based. Since no user can know when new sensor observations will be 

available in data sources, a naïve approach is to send requests to data sources very 

frequently. However, many of these requests would be unnecessary and cause extra 

burden on both client and server. Therefore, in order to retrieve data streams from pull-

based sensor data sources in a timely manner, GeoPubSubHub develops a new 

component called adaptive sensor stream feeder. The adaptive sensor stream feeder 

detects the sampling period of each data source, and adaptively adjusts the frequency of 

retrieving data from sources. 

The idea of adaptive sensor stream feeder is based on two assumptions, namely (1) the 

sampling period of sensor web data is regular, and (2) new sensor data become available 

in data sources as soon as they are measured (i.e., the time difference between sampling 

time and valid time is small). As long as the data updating behaviors of data sources 

match the assumptions, the adaptive sensor stream feeder can retrieve new sensor data in 

a timely manner and consequently address the challenge of pull-based data sources 
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mentioned in Chapter 2.2. The detail of adaptive sensor stream feeder is presented in 

Chapter 3.3. 

3. Semantic layer service: As mentioned in the Chapter 2.2, existing sensor data sources are 

heterogeneous in terms of communication protocol, semantic, and syntactic. The protocol 

heterogeneity could be addressed by supporting different protocols for various types of 

data sources. However, even within the same type of data source (e.g., OGC SOS), 

semantic and syntactic heterogeneities still exist. Therefore, in order to provide a 

coherent conceptual framework for users to query the sensor web, GeoPubSubHub 

establishes a consultant service called semantic layer service. 

The semantic layer service retrieves metadata from sensor data sources to classify their 

data into a predefined phenomenon taxonomy (i.e., a taxonomy for terms representing 

physical properties such as air temperature, pressure, and water level). In this case, users 

can register subscriptions with the terms in the phenomenon taxonomy, while each term 

could essentially link to data instances (measuring the same phenomenon) in multiple 

data sources. As a result, the semantic layer service integrates the heterogeneous sensor 

web data and provides users a coherent view of sensor web data, which addresses the 

challenge of heterogeneous sensor web data mentioned in Chapter 2.2. 

As the semantic layer service is a cooperative contribution, the detailed methodology can 

be found in Knoechel et al. (2013), a high-level introduction is presented in Chapter 3.5. 

4. Subscription aggregation: One of the existing solutions for optimizing continuous queries 

is to aggregate and share operators across multiple query plans (Arasu et al. 2004). That 
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means if one similar operator is required by multiple queries (i.e., subscriptions), a 

system will aggregate these queries and only execute the operator once to answer the 

queries. In this case, compared with the approach of processing these queries 

independently, the system could reduce memory usage and improve performance. 

GeoPubSubHub applies a similar concept on two different modules. One is for retrieving 

data from data sources and the other one is for processing a large number of 

subscriptions. As sensor web data is geospatial in nature, sensor web data sources like 

OGC SOS allow users to retrieve data within spatial and temporal extents (e.g., bounding 

boxes and time periods, or spatio-temporal cubes). This functionality allows 

GeoPubSubHub to only retrieve data in the spatio-temporal cubes that users are interested 

in, and reduces the data transmission size. 

However, users’ spatio-temporal cubes could overlap. If treating each subscription 

independently, sensor data in the overlapped spatio-temporal cubes may be retrieved 

repetitively, which would be redundant and cause extra burden on both clients and 

servers. Therefore, we apply a new indexing structure called Loading Spatio-Temporal 

Indexing Tree (LOST-Tree) as a data loading component to aggregate spatio-temporal 

cubes from multiple subscriptions and avoid redundant data transmission (Huang et al. 

2011). The details of the LOST-Tree are presented in Chapter 3.4. 

Similar to existing solutions, GeoPubSubHub also aggregates subscriptions during query 

processing. Since sensor web data are geospatial in nature, query aggregation in 

GeoPubSubHub would be different from that in non-geospatial publish/subscribe 
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systems. There were existing works that group queries based on spatial operators in a 

DBMS table and are then joined with spatial data (Mokbel et al. 2005). However, we 

argue that this kind of approach simply uses the spatial database join operations to prove 

the concept. Therefore, in this research, we propose new geospatial operators that can 

aggregate spatial queries to address the challenge of a large number of 

queries/subscriptions mentioned in Chapter 2.2. 

5. Geospatial operators: As mentioned in the previous point, GeoPubSubHub is different 

from other publish/subscribe systems as it handles geospatial sensor web data and 

queries. In order to aggregate queries to improve query performance, we propose the 

Aggregated Hierarchical Spatial Model (AHS-Model) to process topological queries 

based on the nature of continuous query processing. 

The AHS-Model uses two key ideas to efficiently determine topological relationships in a 

publish/subscribe system. First, as the queries are predefined and continuous, AHS-

Model pre-generates necessary indices for geometries of subscriptions and re-uses them 

every time new data arrives. Second, by indexing geometries of subscriptions with the 

same indexing structure, we can aggregate together the subscription indices. In this case, 

we can not only save storage space, but also intersect new data with all subscriptions in a 

single process. As a result, the AHS-Model addresses both the geospatial data and 

queries and a large number of queries/subscriptions challenges mentioned in Chapter 

2.2. The details of the AHS-Model are presented in Chapter 3.6. 
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6. Distributed computing: As many challenges in publish/subscribe systems are caused by 

the limited memory and CPU resources, GeoPubSubHub tries to address these challenges 

not only by improving the algorithms and architectures, but also by applying a different 

infrastructure. Many of the aforementioned solutions are designed to be suitable for 

distributed computing, such as feeding data from multiple data sources and executing 

query operators in parallel. With the advance of distributed computing (Dean and 

Ghemawat 2008) and cloud computing techniques (e.g., Amazon Elastic Compute 

Cloud), GeoPubSubHub is designed to scale horizontally to address challenges that 

remain unsolved, such as the large number of data sources mentioned in Chapter 2.2. 

7. Sensor web browser: As we explained about the sensor web data visualization challenge 

in Chapter 2.2, sensor web data are geospatial in nature and how to visualize and query 

sensor data in a coherent environment is a unique challenge in GeoPubSubHub. In this 

research, we propose the sensor web browser, a map-based online platform, as a coherent 

frontend. Details about the sensor web browser are presented in Chapter 3.7. 

Other than these proposed solutions, since GeoPubSubHub is similar to other general-

purpose publish/subscribe systems, it is also flexible enough to leverage existing solutions from 

previous works, such as sliding window, incremental evaluation, minimizing intermediate 

results, etc. 

3.2 System architecture and processing steps 

In this section, we present the design of overall system architecture and the end-to-end 

workflow. GeoPubSubHub contains seven modules, namely (1) query repository, (2) input 
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adaptor, (3) continuous query engine, (4) output adaptor, (5) sensor data cache, (6) semantic 

layer service, and (7) sensor web browser. The system architecture and processing steps are 

shown in Figure 3.1. 

 

Figure 3.1 High-level GeoPubSubHub system architecture and processing steps. 

 

The system has six major steps starting from sending subscriptions to receiving 

notifications. Each step is explained as follows: 

1a. Get phenomenon taxonomy: In order to subscribe to a sensor web topic (i.e., a 

phenomenon), users can get available topics from the phenomenon taxonomy in the 

semantic layer service and then choose the phenomenon that they are interested in. Users 

can also get necessary information (e.g., data instance locations) to preview historical 

sensor data on the senor web browser. 

1b. Advertise a new sensor web topic or data resource: Other than requesting for available 

sensor web topics proactively, GeoPubSubHub can also advertise new sensor web topics 
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or data resources (as Eugster et al. (2003) described). Whenever the semantic layer 

service receives a new data source or classifies a new phenomenon, the semantic layer 

service will task the output adaptor to send notifications to users. Users can then preview 

the data with the sensor web browser. 

2. Register subscription: A subscription in GeoPubSubHub (i.e., SUB) mainly consists of 

four parts, namely sensor web topic SUBTOPIC, spatial predicates SUBSP, temporal 

predicates SUBTP, and attribute predicates SUBAP. The spatial predicate has two 

parameters: a base geometry (i.e., point, line, and polygon) and a geospatial operator 

(which will be further discussed in Chapter 3.6). The temporal predicate could be one of 

the three different kinds of temporal windows: fixed window (i.e., two fixed endpoints in 

the time axis), sliding window (i.e., two sliding endpoints), and landmark window (i.e., 

one fixed endpoint and one sliding endpoint). 

The attribute predicate expresses the criterion of measurement value, which could contain 

four parameters: an aggregation operator (e.g., AVG, SUM, MAX, MIN, and COUNT), a 

comparison operator (e.g., =, >, <, ≥, ≤ for numerical values, and EQUAL and LIKE for 

text values), a comparison value, and a unit of measurement. For example, “AVG(value) 

> 30 km/h” examines whether the average of value is larger than 30 km/h. After using 

these types of predicates to create subscriptions, users can send subscriptions to the query 

repository and get a subscription identifier (i.e., SUBID). 

3a. Prepare continuous query engine: After the query repository receives subscriptions from 

users, it forwards the subscriptions to the continuous query engine. The continuous query 
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engine parses the subscription criteria (i.e., SUBTOPIC, SUBSP, SUBTP, and SUBAP) and 

prepares query operators, such as pre-generating necessary indices for AHS-Model. 

3b. Generate requests for data resources: The query repository also forwards subscriptions 

to the input adaptor. The input adaptor parses and aggregates criteria (where only 

SUBTOPIC, SUBSP, and SUBTP are needed here) from subscriptions. The aggregated criteria 

will be the union of subscriptions for each SUBTOPIC, that is 

Aggregation(Topic)=(SUBTOPIC, SUBSP_AGG, SUBTP_AGG) | SUBi   SUB, SUBi_TOPIC = 

Topic, SUBSP_AGG = Union(SUBi_SP), SUBTP_AGG = Union (SUBi_TP), where SUBi_TOPIC, 

SUBi_SP, and SUBi_TP are the topic, spatial predicate, and temporal predicate of SUBi. In 

addition, the Union function is performed by LOST-Tree. After aggregation, the input 

adaptor generates requests to retrieve data in SUBSP_AGG and SUBTP_AGG from data sources 

that contain data of SUBTOPIC. 

4. Get data from data resources: After the input adaptor aggregates subscriptions and 

generates requests, it then sends out requests with the protocols supported by the data 

sources, such as OGC SOS. When receiving responses from data sources, the input 

adaptor parses the responses and calculates the sampling periods with the data that have 

been previously retrieved and stored in sensor data cache. Then in order to achieve the 

objective of getting data in a timely manner, the input adaptor uses the adaptive sensor 

stream feeder to adaptively schedule the next retrieving tasks with the calculated 

sampling periods. 
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Here we define a sensor observation as PUB, which consists of the sensor identifier 

PUBSID, the sensor location PUBSL, the phenomenon this observation measures PUBPHE, 

the geometry this sensor observes PUBGEO, the sampling time PUBT, the measurement 

value PUBVALUE, and the unit of measurement PUBUNIT. 

5. Process continuous query plans: After the input adaptor parses data from responses, it 

forwards the data to the continuous query engine. The continuous query engine then uses 

the query operators created in step 3a to match the new data with subscription criteria. 

During this process, if operators require calculations of aggregated answers (e.g., AVG, 

SUM, MAX, MIN, COUNT), old sensor data can be retrieved from the sensor data 

cache. After the query process, the continuous query engine stores the new data into the 

sensor data cache and removes the expired data (i.e., data that are no longer needed by 

any subscription). 

6. Send notifications: During the continuous query processing, if the data meet the criteria of 

a subscription, the continuous query engine will task the output adaptor to send a 

notification to the subscriber. The notification contains the SUBID, the data that meet 

criteria, and the timestamp of sending out the notification. If users are not online at the 

time of sending notifications, the notifications will be temporarily stored in the output 

adaptor. When users are back online, they can use the SUBID to retrieve those 

notifications. 

From an implementation point of view, the distributed computing technique could benefit 

all the modules in GeoPubSubHub to address potential scalability issues from the number of data 
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sources, the number of subscriptions, and the amount of sensor data. With the advance of 

distributed computing and cloud computing techniques, GeoPubSubHub is designed to scale 

horizontally to address these scalability issues. For instance, GeoPubSubHub can use multiple 

machines in the input adaptor module to share the load of data retrieving tasks; and the 

continuous query engine can distribute query operators to multiple machines then combine the 

processed results, which is essentially the concept of MapReduce (Dean and Ghemawat 2008). 

As the scope of the entire GeoPubSubHub is large, we try to cover all aspects of a 

geospatial sensor web publish/subscribe system by identifying challenges in Chapter 2, 

proposing possible solutions to address these challenges in Chapter 3.1, and presenting the 

design of overall system architecture and workflow in Chapter 3.2. We argue that the challenges 

identified in Chapter 2.2 are worth further investigated. In this research, we put our focus on the 

modules that we believe are most unique and critical in the context of a geospatial sensor web 

publish/subscribe system. The details of these solutions are presented in the following sections, 

including the sensor web input adapter, LOST-Tree, semantic layer service, AHS-Model, and 

sensor web browser. 

3.3 Sensor web input adaptor 

The input adaptors in existing general-purpose publish/subscribe systems are usually used 

for receiving and parsing streaming data from different types of data sources. The proposed 

sensor web input adaptor in GeoPubSubHub is different from the existing input adaptors because 

of the two following reasons. First, as many major sensor web data sources are pull-based, the 

sensor web input adaptor needs to proactively retrieve sensor data from these data sources in a 
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timely manner and also try to avoid unnecessary requests. Second, as sensor data are located in 

the spatio-temporal domain and users’ spatio-temporal cubes may overlap with each other, the 

sensor web input adaptor needs to aggregate these cubes to avoid sensor data being retrieved 

redundantly. 

The proposed sensor web input adaptor has two major components, namely (1) query 

aggregator, and (2) adaptive sensor stream feeder. With the queries/subscriptions users submit, 

the query aggregator first aggregates queries to avoid redundant requests. Then the adaptive 

feeder tries to get new data with the aggregated queries in a timely manner. After receiving new 

data from data sources, the new data are forwarded to other modules in GeoPubSubHub and 

finally stored in the sensor data cache. The workflow and architecture of the sensor web input 

adaptor is shown in Figure 3.2. 

 

Figure 3.2 System architecture and workflow. 

 

In this research, we use OGC SOS as sensor data sources since it is one of the most 

popular open standards for hosting sensor data online. In addition, OGC SOS only supports pull-

based communication model, which confirms one of the major issues we mentioned earlier. The 
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details of the query aggregator and the adaptive sensor stream feeder are presented in Chapter 

3.3.1 and Chapter 3.3.2, respectively. 

3.3.1 Query aggregator 

The major objective of the query aggregator is to aggregate sensor data retrieving 

requests from multiple subscriptions in order to avoid redundant sensor data transmission. Before 

presenting the details of the query aggregator, we need to introduce the request for sensor web 

data services. As we are using OGC SOS as the sensor web data sources in this research, a data 

retrieving request in SOS (i.e., the GetObservation request) mainly contains the service location 

on the Internet (i.e., service URL), an observation offering ID (i.e., the identifier of a collection 

of related sensor observations), a observed property URI (i.e., the identifier for the phenomenon), 

a geographical coverage (i.e., a bounding box), and a temporal coverage (i.e., a time period). 

Based on users’ subscription SUB (defined in Chapter 3.2), the service URL, observation 

offering ID, and observed property URI can be obtained from the semantic layer service with the 

SUBTOPIC. The geographical and temporal coverage (i.e., spatio-temporal cube) are stored in the 

spatial and temporal predicates (i.e., SUBSP and SUBTP). 

Since subscriptions from users could have different but overlapping geographical and 

temporal coverage, if we treat these subscriptions independently and retrieve data for each 

subscription, the sensor data in the overlapped spatio-temporal cubes will be transmitted 

redundantly. These redundant transmissions could cause a large and unnecessary burden on both 

clients and servers due to the big sensor web data phenomenon. 
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Therefore, in the query aggregator, we utilize the proposed LOST-Tree (Huang and Liang 

2013) to efficiently aggregate spatio-temporal cubes and avoid redundant data transmission. 

LOST-Tree uses two key ideas to aggregate requests and filters out the loaded portions. First, 

LOST-Tree applies predefined hierarchical spatial and temporal frameworks, so that both the 

spatial and temporal extents of requests can be indexed for loading management. Since the 

frameworks are predefined, LOST-Tree can simply compare spatial and temporal indices 

between requests to filter out redundant transmission. Also, because the frameworks are 

hierarchical, LOST-Tree can aggregate several indices to attain a smaller tree size, which 

consequently results in a smaller memory footprint and query latency. The second idea is that 

LOST-Tree uses only the spatio-temporal extent of requests to specify the loaded portions. In 

this case, LOST-Tree does not grow with the sensor data volume, which also allows LOST-Tree 

to attain a small memory footprint and query latency. 

LOST-Tree itself is an independent solution proposed for managing spatio-temporal 

requests and it does not need to be coupled with the input adaptor. For example, we also apply 

LOST-Tree in the sensor web browser to manage local cache and sensor data loading requests. 

Therefore, we present the detail of LOST-Tree in a separate section, Chapter 3.4. 

3.3.2 Adaptive sensor stream feeder 

After the query aggregator aggregates users’ subscriptions, the aggregated requests are 

forwarded to the adaptive sensor stream feeder. The major problem of retrieving data from a 

pull-based data source is that we do not know when new data will be available in the service. A 

naïve solution is to frequently and periodically send requests to services. However, this naïve 
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solution could generate many unnecessary requests with empty-hit response (i.e., no new data in 

the response). 

In order to address this issue, the adaptive feeder attempts to predict when new data will 

be available in data services. The main idea is to detect the sensor sampling period (i.e., the time 

difference between observations) and schedule the next request accordingly. Although the 

sampling time (i.e., the time that the data was measured) and valid time (i.e., the time that the 

data is available online) could be different in reality, a client can only speculate the valid time 

from the sampling time as the valid time is usually unknown to the client. 

Therefore, the idea of adaptive sensor stream feeder is based on two assumptions, namely 

(1) the sampling period of sensor web data is regular, and (2) new sensor data are made available 

in data sources as soon as they are measured (i.e., the time difference between sampling time and 

valid time is small). 

To more formally define the adaptive feeder algorithm, assuming a sensor data instance I 

has a collection of measurements IMeasurements in a descending order of time. And to determine the 

time of sending next request, we need to first calculate the maximum sampling period SP by 

calculating the time difference between each successive pair of measurements, that is 

SP(I)=Max({Time(Mn)-Time(Mn+1) | Mi   IMeasurements, 0 < n ≤ |IMeasurements|}), where the Mi 

represents the i
th

 measurement in IMeasurements, the Max function calculates the maximum value in 

a set, and the Time function outputs the sampling time of a measurement. Then we predict that a 

new measurement of a sensor data instance I will happen at SP(I) after the last measurement, 

which is SP(I)+Time(M0). Finally, in order to accommodate possible delays (e.g., network 
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delays), a small buffer time Buffer is added to the predicted time. Therefore, 

SP(I)+Time(M0)+Buffer will be the time that the adaptive feeder sends request to retrieve the 

predicted measurement. We also provide a figure to express the algorithm (Figure 3.3). 

 

Figure 3.3 An example of adaptive sensor stream feeder algorithm. 

 

To further clarify the definition of a sensor data instance, a sensor data instance can be a 

sensor or a collection of sensor depending on the type of data service and the functionality 

supported by the data service. In principle, the adaptive feeder algorithm is ideal for predicting 

new measurements of each individual sensor as different sensors may have different sampling 

periods. However, that also means one Internet connection would be required for each sensor, 

which is impractical considering the big sensor web data phenomenon. Therefore, in order to 

prove the concept, this research assumes that sensors in the same SOS observation offering and 

observed property update new measurements at similar time. Thus, we treat each observed 

property (which contains a collection of sensors) as a sensor data instance in the proposed 

adaptive sensor stream feeder. 
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The adaptive feeder will be able to retrieve the data in a timely manner when the 

aforementioned assumptions are close to reality. Even in the cases that the valid time is very 

different from predictions, the adaptive feeder can still retrieve data no later than the sampling 

period after the data becomes available in services. The evaluation results of the proposed 

adaptive sensor stream feeder are presented in Chapter 4.1. 

3.4 LOST-Tree 

As mentioned earlier, LOST-Tree is a new solution proposed for managing spatio-

temporal requests. In GeoPubSubHub, we apply LOST-Tree in both the input adaptor and the 

sensor web browser to avoid redundant sensor data transmission. In the input adaptor, LOST-

Tree is used to aggregate the spatio-temporal cubes from users’ subscriptions. In the sensor web 

browser, we apply LOST-Tree to manage sensor data loading from local cache and data services. 

As LOST-Tree was originally proposed for a sensor web browser use case, this section is 

written from this point of view. In Chapter 3.4.1, we introduce the background, define the sensor 

web browser, and explain the needs of LOST-Tree. Chapter 3.4.2 presents the detail algorithms 

of LOST-Tree including four processing steps and one operation. Finally, we sum up in Chapter 

3.4.3. 

3.4.1 Introduction 

In the same way that the WWW needs a web browser to load and display web pages from 

web servers, the world-wide sensor web needs a coherent front end to access distributed and 

heterogeneous sensor networks. However, sensor data are geospatial in nature, and the number of 
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sensor observations can be extremely large. Efficiently transmitting large amounts of sensor data 

over the WWW is known to be a major challenge (Nath et al. 2006). 

There have been some server-side optimization approaches that provide mashups of base 

maps and sensor locations. Since this type of application serves as an intermediary between users 

and the sensor data they host, we term them sensor data portals. Figure 3.4 shows screen 

captures of some existing sensor data portals. 

Since these portals have full knowledge about the data they host (e.g., sensor locations 

and sampling times), they can pre-generate indices or utilize spatio-temporal distributions of 

sensor data to optimize Internet transmission. For example, Ahmad and Nath (2008) proposed 

COLR-Tree to aggregate and sample sensor data to reduce data size before transmission. Some 

sensor data portals, such as the Groundwater Information Network (GIN)
12

, present a map of 

sensor locations at small scale and actual sensor observations at large scale to limit the number of 

sensor observations being transmitted in each request. However, a critical drawback of these 

sensor data portals is that they can only present the data for which they have prior knowledge. As 

a result, these portals are data-specific static maps of sensors. 

We argue that these server-side optimization approaches are very difficult to scale up, 

considering that it is very challenging for a single portal to index every sensor in the world. 

Therefore, instead of a server-side approach, we propose a pure client-side approach to load 

sensor data efficiently without prior knowledge of sensor data. As a result, our approach enables 

a client-side application to load sensor data independently; and we have termed this kind of 

                                                 

12
 http://analysis.gw-info.net/gin/public.aspx 
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application sensor web browser. One of the major use cases is that users can use a sensor web 

browser to access any sensor web services (e.g., OGC SOSs) that are technically interoperable 

with the sensor web browser. 

  

 

(a) (b) (c) 

  

(d) (e) 

Figure 3.4 Existing sensor data portals: (a) EarthScope (http://www.earthscope.org/); (b) 

SciScope (http://www.sciscope.org/); (c) National Data Buoy Centre 

(http://www.ndbc.noaa.gov/); (d) SensorMap 

(http://atom.research.microsoft.com/sensewebv3/sensormap/); (e) Sensorpedia 

(http://www.sensorpedia.com/). 

 

http://www.earthscope.org/
http://www.ndbc.noaa.gov/
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However, unlike sensor data portals, sensor web browsers only have knowledge about the 

sensor data they have already retrieved but not the “empty space” between the sensor data in the 

spatio-temporal domain. A sensor web browser that only records the retrieved data cannot 

recognize whether the “empty space” between data is truly empty (i.e., the space was loaded 

before but has no data) or not-yet-loaded (i.e., the space may or may not contain data). The only 

way for that sensor web browser to make sure is to send request asking for data in the “empty 

space”, which may consequently become an endless loop for space that is truly empty and 

generate redundant transmissions between clients and servers. 

Unlike server-side approaches that reduce data size in transmission, our approach applies 

a client-side cache to avoid redundant transmissions and improve Internet bandwidth utilization. 

For example, today’s earth browser systems (Craglia et al. 2008) (e.g., Google Earth) use a 

quadtree-based tiling scheme to index and manage the cached image tiles at different levels of 

detail. Before sending requests to servers, these systems check the local cache first. In the case of 

a cache hit, no request needs to be sent. Otherwise, in the case of a cache miss, requests are sent 

to servers; and the returned image tiles are then inserted into the local cache for future use. 

However, the same tiling and caching method cannot be directly applied to a sensor web 

browser for two major reasons. First, sensor data is spatio-temporal in nature; compared to static 

map images, as such there is an additional temporal dimension to be considered. Second, sensor 

data may be distributed sparsely in space and even more sparsely in time (e.g., transient sensors 

or sensors with different sampling frequencies). Spatio-temporal requests may receive responses 

without any sensor data (i.e., empty-hits). In order to prevent redundant empty-hits, not only the 
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responses (i.e., sensor data) need to be stored and managed in a cache as a data management 

component, the requests also need to be stored and managed in a separate cache as a data loading 

component. 

The spatio-temporal data management component has long been investigated to 

efficiently query spatio-temporal data in databases (Mokbel et al. 2003). However, there are only 

a few studies that focus on the data loading component for spatio-temporal requests. We argue 

the major reason is that an independent client-side application retrieving spatio-temporal data 

was not common. Most client-side applications were highly coupled with the server-side, such as 

sensor data portals. However, as we are witnessing a technological shift from highly coupled and 

proprietary web applications to interoperable web APIs, an independent and interoperable client-

side application like a sensor web browser becomes necessary to access spatio-temporal data. As 

a result, this work focuses on developing a data loading component for a sensor web browser in 

order to avoid unnecessary transmissions and consequently attain efficient sensor data loading 

with a local cache. 

This research proposes LOST-Tree, which stands for loading spatio-temporal tree. 

LOST-Tree manages sensor web browser requests and acts as a data loading layer between a 

sensor web browser and servers. LOST-Tree uses two key ideas to solve the aforementioned 

challenges. First, LOST-Tree applies predefined hierarchical spatial and temporal frameworks, 

so that both the spatial and temporal extents of requests can be indexed for loading management. 

Since the frameworks are predefined, LOST-Tree can simply compare spatial and temporal 

indices between requests to filter out redundant transmission. Also, because the frameworks are 
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hierarchical, LOST-Tree can aggregate several indices to attain a smaller tree size, which 

consequently results in a smaller memory footprint and query latency. 

The second idea is that LOST-Tree only uses the spatio-temporal extent of requests to 

determine a cache hit or miss. By separating the data loading and data management components, 

any data management method can be applied while LOST-Tree handles the data loading. For 

instance, this work simply uses R-Tree (Guttman 1984) and B-Tree (Bayer, 1972) to manage 

sensor data in the local cache. Moreover, since LOST-Tree only manages the spatio-temporal 

extents of requests, LOST-Tree does not grow with the spatio-temporal density of sensor data, 

which also allows LOST-Tree to have a small memory footprint and query latency. 

Besides the GeoPubSubHub, LOST-Tree has been utilized as a data loading component 

in the sensor web browser of the GeoCENS project, which has been publicly available
13

 since 

2010. 

3.4.2 Methodology 

LOST-Tree manages spatio-temporal requests in a sensor web browser. A typical request, 

R, from a sensor web browser to a sensor web server can be defined by three parameters: Rbbox, 

which is the minimum bounding box of the request’s spatial extent; Rt_period, which is the 

request’s temporal extent defined by a start time, t1, and an end time, t2; and finally Robs, which is 

the observed phenomenon of interest (e.g., air temperature). In fact, we can further define the 

combination of Rbbox and Rt_period as a spatio-temporal cube, RSTCube. Thus, request R and its 

                                                 

13
 GeoCENS sensor web browser (desktop client): http://dev.geocens.ca/gswclient 
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corresponding server response can be defined as follows: R (RSTCube, Robs): {o1, o2, …, oi}, where 

oi is an observation collected by a sensor that fulfills request R. 

LOST-Tree is a data loading layer between a sensor web browser and servers. The major 

objective is to prevent sending unnecessary requests to sensor web servers. When a sensor web 

browser sends request R through LOST-Tree, LOST-Tree has four steps: (1) decompose, (2) 

filter, (3) update, and (4) aggregate (Figure 3.5). 

 

Figure 3.5 LOST-Tree workflow. 

 

3.4.2.1 Decompose step 

The purpose of the decompose step is the conversion of an ad-hoc RSTCube into one or 

many non-overlapping LOST-Tree-based requests: LTSTCubes (i.e., LOST-Tree spatio-temporal 
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cubes). The decomposition is based on two predefined hierarchical spatial and temporal 

frameworks. In this research, we implemented LOST-Tree with a quadtree-based tile system 

(Figure 3.6) (Gaede and Gunther 1998) as the spatial framework and the Gregorian calendar as 

the temporal framework.  

We used an LTSTCube key, which is the combination of a quadkey q, and a calendar string 

gc (e.g., in formats of YYYY, YYYYMM, YYYYMMDD or YYYYMMDDHHMMSS), to 

represent an LTSTCube, where q represents a bounding box and gc represents a time period (e.g., gc 

‘20100930’ represents the entire day on September 30
th

 2010). One important characteristic in 

both q and gc is that they are hierarchical in nature, which means that the lengths of q and gc 

represent their levels of detail. This also allows us to simply apply a prefix matching method to 

identify whether LTSTCube_A  LTSTCube_B. For example, given LTSTCube_A (qA, gcA) and LTSTCube_B 

(qB, gcB), LTSTCube_A  LTSTCube_B if and only if qA starts with qB and gcA starts with gcB. As a 

result, we can easily manage LTSTCubes by manipulating the LTSTCube keys. 

 

Figure 3.6. Quadtree-based tile system. 
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3.4.2.2 Filter step 

The objective of the filter step is to filter out the requests that corresponding responses 

have previously loaded. We use LTCCubes (i.e., LOST-Tree cached cubes) to represent loaded 

LTSTCubes, and Algorithm 3.1 describes the filtering process. The determination of the containing 

relationship between LTSTCubes and LTCCubes (lines 5 and 8) is done by prefix matching of the 

LTSTCube keys (i.e., q and gc). In line 9 of Algorithm 3.1, if LTSTCube covers LTCCube, LTSTCube 

“decomposes” itself and removes the portion covered by LTCCube. For instance, if q of LTSTCube is 

‘01’ and q of LTCCube is ‘0110’ (assuming LTSTCube and LTCCube have the same gc), the 

FilteredLTSTCubes have q equal to ‘010’, ‘0111’, ‘0112’, ‘0113’, ‘012’, and ‘013’. In this way, 

LOST-Tree can filter out redundant requests. 

Algorithm 3.1  The filter step. 

Function  Filter(LTSTCubes, LTCCubes): FilteredLTSTCubes 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

FilteredLTSTCubes  {} 

FOREACH LTSTCube  LTSTCubes 

     previously_loaded  false 

     FOREACH LTCCube  LTCCubes 

         IF LTSTCube is contained by LTCCube THEN  
             previously_loaded  true 

             BREAK 

         ELSE IF LTSTCube contains LTCCube THEN  
             LTSTCube   LTSTCube –LTCCubes          

         END IF 

     END FOREACH 

     IF NOT previously_loaded THEN 

         FilteredLTSTCubes  FilteredLTSTCubes  LTSTCube 

     END IF 

END FOREACH 

RETURN FilteredLTSTCubes 
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In reality, however, there is a trade-off between reducing redundant transmissions and 

keeping the number of requests small. This trade-off comes from the limitation of 

communication protocol or data service implementation. Take OGC SOS as an example, a 

GetObservation request can only have one bounding box as the spatial extent, so that the number 

of requests is the number of unique q in FilteredLTSTCubes (assuming that these quadkeys are not 

connected). For instance, the example in Figure 3.5 will need three requests, if q1, q3, and q4 are 

not connected. Although OGC SOS specification allows multiple time periods as the temporal 

extent in one request, some SOS implementations only support one time period per request. For 

these SOS implementations, the number of requests becomes the number of unconnected spatio-

temporal cubes, e.g., the example in Figure 3.5 will need four requests assuming those 

FilteredLTSTCubes are not connected to each other and cannot be aggregated. As a result, filtering 

out redundant transmissions may generate a large number of requests, which would consequently 

reduce loading efficiency and causes issues in handling a large amount of connections. 

In order to address this issue, we provide a mechanism for LOST-Tree to control the 

trade-off between the number of requests and redundant transmissions.  As mentioned, in order 

to filter out LTCCube from LTSTCube, LTSTCube is decomposed to the same q and gc levels of LTCCube. 

Usually, the larger difference between the level of LTSTCube and the level of LTCCube, the more 

FilteredLTSTCubes are generated, which consequently increases the number of requests.  

Therefore, we allow users to configure two variables, Lq and Lgc, to specify the lowest q 

and gc levels to which LTSTCube can be decomposed. For example, if Lq is 5, the lowest q level of 

FilteredLTSTCubes is equal to or smaller than 5. If Lgc is an hour, the lowest gc level of 
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FilteredLTSTCubes is equal to or larger than hour (i.e., year, month, day, and hour). Even if the 

levels of q and gc in LTCCube are larger than Lq and Lgc, LOST-Tree stops the decomposition after 

reaches the Lq and Lgc. Although this approach may result in some redundant transmissions (i.e., 

LTCCube whose levels of q and gc are larger than Lq and Lgc), the number of requests can be 

dramatically decreased. We show how this mechanism affects LOST-Tree performance in the 

evaluation section. 

3.4.2.3 Update step 

This step is for updating LTCCubes to reflect the request history. Once the client receives 

responses from servers, LOST-Tree inserts the corresponding LTSTCubes into LTCCubes. This 

operation is very important in the context of a sensor web. Since sensor observations may 

distribute sparsely in space and time, server responses may not contain any sensor data (i.e., 

empty-hits). While only caching responses (like today’s earth browsers) cannot avoid empty-hit 

requests, LOST-Tree is unique as it can avoid these redundant transmissions by remembering the 

spatio-temporal extents of successful requests (whether they are empty-hits or not). Therefore, 

LOST-Tree inserts the corresponding LTSTCubes into LTCCubes for the complete history of requests 

(i.e., LTSTCubes) to avoid redundant requests. 

3.4.2.4 Aggregate step  

This step is for minimizing the memory footprint of LTCCubes with the hierarchical 

characteristic of the spatial and temporal frameworks. When all sub-LTCCubes (e.g., the eight 

small green cubes in Figure 3.5) of an LTCCube (e.g., the two large green cubes in Figure 3.5) are 

loaded, we can replace all the sub-LTCCubes with just one LTCCube. Therefore, after the update step 
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inserting the loaded LTSTCubes into LTCCubes, LOST-Tree first identifies those “aggregatable” 

LTCCubes and aggregates them into one LTCCube. For example, quadkeys ‘00’, ‘01’, ‘02’, and ‘03’ 

can be replaced by ‘0’. 

In this case, LOST-Tree can have a smaller number of LTCCubes, which consequently 

allows better query performance in the filtering step. In addition, since LOST-Tree only 

maintains a quadkey (i.e., q) and calendar string (i.e., gc) for each LTCCube, the tree size is small 

enough to fit into memory for efficient processing. 

3.4.2.5 Removal operation 

In addition to the above four steps, LOST-Tree also has an operation to remove LTCCubes. 

Some sensor data providers need time to collect and calibrate data for quality assurance. In this 

case, data would be outdated when they become available online. However, before these 

historical data become available online, clients who request for LTSTCubes covering these data may 

get empty-hit responses and mark these LTSTCubes as loaded in LOST-Tree. In order to reload 

these LTSTCubes, clients need an operation to remove spatio-temporal cubes from LTCCubes.  

The removal operation is shown in Algorithm 3.2, where LTRCubes represents the spatio-

temporal cubes to be removed. Similar to line 9 in Algorithm 3.1, the “(LTCCube – LTRCubes)” in 

line 5 of Algorithm 3.2 means that the LTCCube decomposes itself and removes the portion 

covered by LTRCube. Although Algorithms 3.1 and 3.2 are similar, the meanings of their outputs 

are different. Algorithm 3.1 returns the spatio-temporal cubes to be requested, while Algorithm 

3.2 returns the spatio-temporal cubes that have been loaded. 
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Algorithm 3.2.  The remove function. 

Function  Remove(LTRCubes, LTCCubes): LTCCubes 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

FOREACH LTRCube  LTRCubes 

     FOREACH LTCCube  LTCCubes 

         IF LTRCube is contained by LTCCube THEN  
             LTCCubes  LTCCubes – LTCCube 

             LTCCubes  LTCCubes + (LTCCube – LTRCube) 

             BREAK 

         ELSE IF LTRCube contains LTCCube THEN  
             LTCCubes   LTCCubes – LTCCube 

         END IF 

     END FOREACH 

END FOREACH 

RETURN LTCCubes 

 

3.4.3 Contribution summary 

We evaluated LOST-Tree implementation with a real OGC SOS service. Our evaluation 

results demonstrated that, with LOST-Tree and the local cache, we can attain sensor data loading 

of at least 100 times faster, up to a 100% reduction of unnecessary transmissions, a small tree 

size (less than 164 Kbytes during our evaluation), and a small latency when determining a cache 

hit/miss. The detail of this evaluation is presented in Chapter 4.2. In summary, the proposed 

LOST-Tree makes the following contributions. 

1. We present LOST-Tree, a data loading component that determines whether or not a 

spatio-temporal request has been sent previously. LOST-Tree can significantly improve 

Internet bandwidth usage by filtering out redundant requests, and enable a client-side 

application to load sensor data efficiently. 

2. LOST-Tree applies predefined hierarchical spatial and temporal frameworks to index and 

manage spatio-temporal requests. We demonstrate how to determine a cache hit/miss 
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with spatial and temporal indices and how to aggregate them for storage and computation 

efficiency. 

3. To address the issue of empty-hits, we manage spatio-temporal requests in LOST-Tree. 

By decoupling data loading and management, we show that LOST-Tree is scalable in 

terms of the sensor data volume. This also allows LOST-Tree to work with any data 

management method. 

3.5 Semantic layer service 

As mentioned earlier, sensor web data have semantic and syntactic heterogeneities even 

in the same ecosystem such as the OGC SOS. The semantic layer service is proposed to integrate 

the heterogeneous sensor web data and provides users with a coherent view of the sensor web 

data. As the semantic layer service is a cooperative contribution, a detailed methodology can be 

found in Knoechel et al. (2013), and this section provides a high-level introduction about the 

semantic layer service. 

In this research, we focus on the OGC SOS as a sensor web data source. Here we follow 

the terminology defined in OGC SOS. An observation is the “act of measuring a real world 

phenomenon”. A phenomenon is a “characteristic of one or more feature types, such as wind 

speed”. An observed property uses a unique identifier (i.e., URI) to represent the phenomenon. 

An observation offering is a “logical grouping of observations that are similar in some way”. The 

GetObservation operation, one of three core operations in SOS, is used to get observation data 

from SOS services. In a GetObservation request, one observation offering and at least one 

observed property are required to specify observation data measuring one phenomenon. Here we 
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define the combination of a service location (i.e., service URL), an observation offering, and an 

observed property as a property layer. Besides the aforementioned mandatory parameters, users 

can optionally assign a bounding box and time period(s) to specify the observation data in the 

spatio-temporal cube(s) that they are interested in. 

Although SOS achieves the goal of sharing sensor data online, we observed that the real-

world SOS services are heterogeneous because of two major issues, namely (1) a large variety of 

observed property URIs used to represent the same phenomenon, and (2) missing relationships 

between observed properties. To give an example for the first issue, Table 2.1 shows the URIs 

for wind speed in real-world SOS services. The large variety of observed property URIs causes 

challenges for phenomenon-based searches. For example, a scientist looking for wind speed data 

would need to know all observed property URIs for wind speed used in every service to collect 

all relevant data. The URIs in Table 2.1 show how the same semantic concept “wind speed” is 

encoded with different syntactic schemes. This raises the issue of syntactic differences between 

URIs. 

For the second issue, we observed problems when semantic information between 

observed properties is missing. An example would be the relationship between “precipitation” 

and “rainfall”. A user searching for precipitation would be interested in property layers with 

rainfall data. However, since observed property URIs are defined by data providers, there is no 

semantic relationships between observed property URIs without following a commonly-agreed 

phenomenon taxonomy. Although there has been effort to propose ontologies that can be used to 
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address this issue such as the NASA’s SWEET ontology
14

, it is the data providers’ responsibility 

to follow these ontologies when sharing their data. Therefore, we argue that this kind of top-

down approach is not a viable solution as data providers may not be aware of these ontologies or 

they do not want to expend the effort. 

Therefore, we propose the semantic layer service using a bottom-up approach to address 

these two issues. The approach is to provide a well-defined taxonomy of phenomenon, where 

each element maps to a list of property layers that contain sensor data of this phenomenon. In 

this prove-of-concept implementation, a data processing team in the GeoSensorWebLab first 

creates phenomenon elements and organises them in a hierarchical structure. Then the next step 

is to map each property layer to the phenomenon element. The idea is to first extract the 

information about phenomenon from the observed property URIs as they represent the 

phenomenon each property layer measures, and then compare the information with the 

phenomenon elements. 

To be more specific, we first perform normalization and tokenization text processing on 

the observed property URI of each property layer. Normalization is the process of canonicalizing 

strings such that superficial differences between strings are removed (e.g., “windspeeds” 

becomes “windspeed”). Tokenization is the process of converting text into distinct tokens (e.g., 

“windspeed” becomes “wind” and “speed”). 

Then we map property layers with phenomenon elements by calculating the similarity 

between the processed observed property URIs with the names of phenomenon elements. Three 

                                                 

14
 http://sweet.jpl.nasa.gov/ontology/ 
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similarity functions are used and compared for this work, a length-adjusted Levenshtein 

similarity function (which is a modification of the Levenshtein distance (Levenshtein 1966)), the 

Jaccard similarity function, and a semantic similarity function. The semantic similarity function 

is based on the Jaccard similarity function and uses WordNet
15

 as a lexical database to calculate 

word pair semantic similarity scores. The calculated similarity between two objects is a 

numerical measure of the degree to which the two objects are alike. By ranking the similarities, 

we can map a property layer to the most similar phenomenon element. Figure 3.7 illustrates the 

high-level architecture of the semantic layer service. 

 

Figure 3.7 High level architecture of the semantic layer service. 

 

In addition, as the phenomenon elements are organized in a meaningful hierarchical 

structure, elements that are close to each other in the taxonomy are more similar than distant 

                                                 

15
 http://wordnet.princeton.edu/ 
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elements. Therefore, with the taxonomy structure, the semantic layer service is able to tackle the 

semantic heterogeneity issue. 

Since the semantic layer service is a cooperative work, this thesis only includes the high-

level introduction. Detail algorithms and evaluation can be found in Knoechel et al. (2013). 

3.6 AHS-Model 

As mentioned earlier, GeoPubSubHub is different from other publish/subscribe system as 

it handles geospatial sensor web data and queries. While there have been works discussing 

geospatial operators in a continuous query processing, we argue that time-consuming geospatial 

operators such as topological operators can be improved by designing algorithms based on the 

nature of continuous query processing. Therefore, this research proposes the Aggregated 

Hierarchical Spatial Model (AHS-Model) to efficiently determine topological relationships 

between new data and a large number of predefined queries. 

In Chapter 3.6.1, we introduce the background and objectives of AHS-Model. Chapter 

3.6.2 defines topological operators and presents DE-9IM, a typical approach for determining 

topological relationships. The detailed algorithms of AHS-Model are introduced in Chapter 

3.6.3. Chapter 3.6.4 presents the AHS-Model architecture applying distributed computing 

approaches. Finally, we sum up the AHS-Model in Chapter 3.6.5. 

3.6.1 Introduction 

As mentioned in Chapter 2.1, there have been approaches proposed to optimize query 

execution plans. However, as most existing approaches are designed for optimizing the structure 

of query plan(s), there are few works that discuss how to improve the efficiency of 
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computational-intensive operators. While many general-purpose operators are simple and 

efficient enough to be used directly in query plans, many geospatial operators are complex and 

time-consuming. In this research, we choose the topological operators (Herring 2011) as an 

example. 

The topological operators are recognized as time-consuming tasks and would be a 

performance bottleneck when processing a large number of geometries (Clementini et al. 1994). 

As the sensor web data are geospatial in nature, supporting topological operators is necessary for 

a sensor web publish/subscribe system. Therefore, in order to improve the query efficiency of 

topological operators in a publish/subscribe system, we propose a new topological relationship 

determination model called AHS-Model. 

AHS-Model uses two key ideas to efficiently determine topological relationships in a 

publish/subscribe system. First, as the queries are predefined and continuous in publish/subscribe 

systems, we can pre-generate necessary indices for geometries of subscriptions and re-use them 

every time when needed. In this case, we can avoid generating any redundant index. Although 

this approach may require more disk space, it is a necessary trade-off to determine topological 

relationships efficiently. Second, by indexing geometries of subscriptions with the same indexing 

structure, we can aggregate together the indices into one single object. Thus, we can not only 

reduce the space needed to store the indices, but also intersect the geometries of a new 

publication and all subscriptions in a single process. 

In general, the AHS-Model is inspired by the idea of sharing operators across multiple 

query plans (Arasu et al. 2004), as described in Chapter 2.1. As the AHS-Model aggregates the 
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pre-generated indices, the matching between new data and all the subscriptions can be done in a 

single process. This idea is critical as it allows the AHS-Model to be scalable in terms of the 

large number of queries/subscriptions challenge mentioned in Chapter 2.2. 

3.6.2 Topological operators and DE-9IM 

Here we define the topological operators and introduce the typical approach to determine 

topological relationships. The topological operators are functions that determine the topological 

relationships between two geometries (i.e., point, polyline, polygon, multi-point, multi-polyline, 

and multi-polygon). The OGC Simple Feature Access Specification (Herring 2011) defines eight 

topological relationships: EQUALS, DISJOINT, INTERSECTS, TOUCHES, OVERLAPS, 

CROSSES, WITHIN, and CONTAINS. This specification has been widely adopted in many 

spatial databases, such as PostGIS, Oracle, and Microsoft SQL Server. 

The typical approach to determine topological relationships is the Dimensionally Extend 

9 Intersection Model (DE-9IM) (Clementini et al. 1993). DE-9IM has three steps. First, DE-9IM 

generates the interior, boundary, and exterior regions of two geometries. The boundary of 

geometry   is denoted by  ( ) and is defined for each of the geometry types. The boundary of a 

point geometry is always empty; the boundary of a line geometry is the set of the two separate 

end-points; and the boundary of a polygon geometry is a circular line surrounding the polygon. 

As with the definition of boundary, the interior of a geometry   is denoted by  ( ) and is defined 

as the points that are left when the boundary are removed, that is  ( )     ( ). The exterior 

of a geometry   is denoted by  ( ) and is defined as all the points in the space that are not in the 
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interior and boundary, that is  ( )      ( )   ( )      , where    is the Euclidean 

planes. 

The second step of DE-9IM is to intersect these interior, boundary, and exterior regions 

of two geometries and constructs a three-by-three intersection matrix (Equation 3.1). Finally, if 

the intersection matrix matches the predefined matrices (i.e., Table 3.1), the topological 

relationships between the two geometries can be determined accordingly. Table 3.1 shows the 

topological relationships, the definition of relationships, and the corresponding intersection 

matrices, where the wildcard symbol ( ) means “any value would work” (Herring 2011). 

  -   (   )  [

   ( ( )   ( ))    ( ( )   ( ))    ( ( )   ( ))

   ( ( )   ( ))    ( ( )   ( ))    ( ( )   ( ))

   ( ( )   ( ))    ( ( )   ( ))    ( ( )   ( ))

],  (3.1) 

where     function returns the maximum dimension (i.e., 0 for points, 1 for lines, and 2 for 

polygons) of the intersection ( ) of interior ( ), boundary ( ), and exterior ( ) of geometries   

and  . The geometry   and   are called primary and secondary geometry, respectively. If an 

intersection is an empty set ( ),     function returns -1. Otherwise, if an intersection is not an 

empty set,     function returns 0, 1, or 2. One way to simplify the matrix is to store only True 

(if     function returns 0, 1, or 2) and False (if     function returns -1) in the matrix, which is 

also the representation in Table 3.1. 

Please note that for the CROSSES relationship, the OGC definition shown in Table 3.1 

may not be the most commonly used definition. Instead, the CROSSES relationship is usually 

defined as “(   ( ( )   ( ))      (    ( ( ))     ( ( ))))    (        )    (   
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     )”. Hence, the DE-9IM matrix is defined as    ( ( )   ( ))    for line/line 

relationship. In this research, AHS-Model follows this common definition as well. 

However, DE-9IM is a time-consuming process (Clementini et al. 1994) and could be a 

performance bottleneck when processing a large number of geometries. In order to address this 

issue, a common solution is to reduce the number of unnecessary DE-9IM processes. For 

example, a typical approach consists of two stages: filter and refinement (Clementini et al. 1994). 

The filter stage finds candidate geometries with approximated rectangles of geometries (e.g., 

minimum bounding rectangles (MBRs)); then the refinement stage performs the actual DE-9IM 

process on the candidates found in the filter stage. While this approach has been widely applied 

in many DBMS systems (e.g., PostGIS), we argue that this approach can be further improved for 

a publish/subscribe system to handle a larger number of geometries. 

Although there have been some works that discussed the addition of spatial operators in a 

publish/subscribe system, most of them simply applied the same filter-and-refinement spatial 

join approach to prove the concept. For instance, Kassab et al. (2010) utilized the ArcGIS Engine 

.NET SDK16 to determine topological relationships. Ali et al. (2010) applied the Microsoft SQL 

Server Spatial Library to support spatial queries in their Microsoft StreamInsight system. Mokbel 

et al. (2005) encapsulated geospatial algorithms as operators (e.g., INSIDE and k-Nearest-

Neighbor operators) in order to support incremental evaluation and optimize multiple query 

plans. However, none of these researches discussed how to improve the efficiency of geospatial 

                                                 

16
 ArcGIS Engine: http://www.esri.com/software/arcgis/arcgisengine/ 
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algorithms for publish/subscribe systems. We argue that the geospatial algorithms can be 

improved based on the nature of continuous queries. Therefore, as an example, we propose AHS-

Model as a new determination model to improve the efficiency of topological operators for 

GeoPubSubHub. 
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Table 3.1 The topological relationships and the corresponding intersection matrices. 

Relationship OGC Definition (P: point, L: line, A: polygon) DE-9IM Intersection Matrix (T: True, F: False) 

                         [
   
   
   

] 

                        [
   
   
   

] 

                         [
   
   
   

] or [
   
   
   

] or [
   
   
   

] or [
   
   
   

] 

            
( ( )   ( )   )  (     ). Applies to P/L, P/P, L/L, L/A, 

and A/A situations. 
[
   
   
   

] or [
   
   
   

] or [
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(   ( ( ))       ( ( ))       ( ( )     ( )))   (       
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( ( )   ( )   )   (        )    (        ). Applies to 

P/L, P/A, L/Land L/A situations. 
[
   
   
   

] or [
   
   
   

] (for line/line relationship) 

           (     )   ( ( )   ( )   ) [
   
   
   

] 
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3.6.3 Methodology 

We propose AHS-Model to improve the query efficiency and scalability of topological 

operators in a sensor web publish/subscribe system. The AHS-Model follows the definition of 

the eight topological relationships in OGC Simple Feature Access specification. Hence, AHS-

Model follows the same conceptual framework used in traditional approaches such as DE-9IM. 

The only difference between AHS-Model and traditional approaches is that the current 

AHS-Model does not take multi-point, multi-line, and multi-polygon into consideration. 

Extending the algorithm to support these types of geometries would not change the main idea of 

AHS-Model, but is one of the future directions that this work will pursue. 

Before we introduce the key ideas and algorithms of AHS-Model, we first define the 

subscriptions and publications in a sensor web publish/subscribe system. In general, 

subscriptions are continuous queries registered by users; and publications are the sensor data 

produced by sensors. As sensor data are geospatial in nature, subscriptions and publications both 

have geospatial components. A subscription (SUB) can have different predicates as query 

criteria/filters; among which, the spatial predicate in a subscription (SUBSP) has two parameters: 

a base geometry (SUBSP_GEO) and a topological operator (SUBSP_OPER). These two parameters are 

set by users to select publications whose geometry (PUBGEO) matches the topological 

relationship (i.e., SUBSP_OPER) with SUBSP_GEO. For example, in the context of the sensor web a 

PUBGEO could be a sensor’s location or the geometry of a feature the sensor observed (e.g., the 

coverage of a river or a road intersection). 
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The relationship between PUBGEO, SUBSP_OPER, and SUBSP_GEO follows the subject-verb-

object structure, in which PUBGEO, SUBSP_OPER, and SUBSP_GEO are the subject, verb, and object, 

respectively. For example, if point_1 is PUBGEO, WITHIN is SUBSP_OPER, and polygon_1 is 

SUBSP_GEO, the spatial predicate (i.e., SUBSP) evaluates whether the relationship “point_1 

WITHIN polygon_1” is true or not. To be more specific, in this example “send me notification if 

any water level sensor within 1 km radius of my house reports a reading larger than 50 

centimeter”, the SUBSP_GEO is the “1 km radius of my house”, the SUBSP_OPER is the “within”, and 

the PUBGEO is the location of any water level sensors. Based on this definition and the 

definitions of topological relationships (Table 3.1), we can derive all the possible topological 

relationships between different geometry types as shown in Table 3.2. 

Table 3.2 The possible topological relationships between different geometry types (●: 

possible, ○: impossible, *: these relationships are possible if consider multi-point geometry). 

PUBGEO Point Line Polygon Point Line Polygon Point Line Polygon 

SUBSP_GEO Point Point Point Line Line Line Polygon Polygon Polygon 

EQUALS ● ○ ○ ○ ● ○ ○ ○ ● 

DISJOINT ● ● ● ● ● ● ● ● ● 

INTERESTS ● ● ● ● ● ● ● ● ● 

TOUCHES ○ ● ● ● ● ● ● ● ● 

OVERLAPS ○
*
 ○ ○ ○ ● ○ ○ ○ ● 

CROSSES ○ ○
*
 ○

*
 ○

*
 ● ● ○

*
 ● ○ 

WITHIN ● ○ ○ ● ● ○ ● ● ● 

CONTAINS ● ● ● ○ ● ● ○ ○ ● 
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Since the targeted objectives of traditional DBMS and publish/subscribe systems are 

essentially different, algorithms optimized for DBMS may not be suitable for publish/subscribe 

systems. For example, since the queries in DBMS are atomic and independent, the algorithms are 

optimized for each individual query. However, since the queries are continuous and pre-defined 

in publish/subscribe systems, algorithms should consider the aggregation of multiple 

queries/subscriptions. 

Moreover, with the nature of continuous queries, we argue that it is acceptable spending 

more effort (e.g., create indices) on the start-up preparation stage to execute continuous queries 

more efficiently. Although this approach may cause some delay in the beginning, it can generates 

a larger throughput considering the long running nature of continuous query. Therefore, based on 

these concepts, there are two key ideas in AHS-Model. First, AHS-Model pre-generates 

necessary indices from the geometries of subscriptions and re-uses the indices when needed in 

the continuous queries. Second, by indexing the geometries of subscriptions with the same 

indexing structure, we can aggregate together the indices of all subscriptions to not only save the 

storage space but also intersect PUBGEO with all SUBSP_GEO in a single process. 

AHS-Model consists of the three major stages: (1) Preparation Stage: generate necessary 

information from the geometries of subscriptions, (2) Intersection Stage: intersect with the 

geometry of publication, and (3) Determination Stage: determine geospatial relationship. We 

introduce the details of these three stages in the following sections. 
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3.6.3.1 Preparation stage: Generate necessary information from the geometries of subscriptions 

Similar to the DE-9IM, AHS-Model also determines topological relationships by 

intersecting the interior, boundary, and exterior regions of two geometries. However, instead of 

the typical two-step (i.e., filter and refinement) approach, AHS-Model performs candidate-

finding and intersections at the same time. This is doable in a sensor web publish/subscribe 

system since queries are predefined and PUBGEO is usually small (e.g., a sensor’s location, a road 

intersection, or a football field). We first create the regions of the geometries in subscriptions 

(i.e., SUBSP_GEO) and reuse them until SUBSP_GEO is changed. In this case, we can avoid 

generating redundant indices, which can consequently speed up the query processing. 

However, generating a set of points for interiors, boundaries, and exteriors could create a 

storage issue. In order to address this, the AHS-Model applies a hierarchical indexing structure, 

which is similar to the idea proposed by Zimbrao and Souza (1998). In this case, multiple nodes 

in a lower level can be aggregated as a node in a higher level. In AHS-Model, we use a quadtree 

tile system (Figure 3.6, Gaede and Gunther 1998) as the hierarchical structure. By defining the 

lowest level of the quadtree as the granularity, any geometry can be indexed into (or say 

approximated as) a list of quadtree nodes (i.e., quadkeys). Examples can be seen in Figure 3.8, 

where the maximum quadtree level is 4 and interiors, boundaries, and exteriors are represented in 

dark-gray, light-gray, and white respectively. Since lower level indices can be aggregated into 

higher level indices, the number of indices can be reduced if a large geometry covers multiple 

quadkeys. Use the upper two polygons in Figure 3.8 as an example. The upper-left polygon is 

about four times larger than the upper-right polygon. By using hierarchical structure, we can 
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aggregate upper-left polygon’s interior indices from 72 forth-level indices to 6 indices, which is 

the same number as the upper-right polygon’s interior indices. 

 

Figure 3.8 Examples of AHS-Model indices with the forth level as the lowest quadtree level 

(interior: dark-gray, boundary: light-gray, and exterior: white). 

 

In addition, the determination of a topological relationship does not need all three 

interior, boundary, and exterior of SUBSP_GEO. Instead, the AHS-Model only needs to generate 

the necessary information according to the spatial predicate SUBSP. In this case, we can further 

reduce the number of indices and speed up query processing. Based on the definition of 

topological relationships in OGC Simple Feature Access Specification (Table 3.1) and the 

possible topological relationships between different geometry types (Table 3.2), we can analyze 

and propose the necessary information for determining each geospatial relationship. 

However, during a preliminary test of a first version of AHS-Model, we found that the 

indexing and query performance using exterior indices were poorer than that for interior and 
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boundary indices. This is because the number of exterior indices is usually larger than the 

number of interior and boundary indices. Therefore, we re-designed the AHS-Model to avoid 

exterior indices. Our final analyses are listed below and the necessary indices are presented in 

Table 3.3: 

 EQUALS: Since we can simply compare the interior and boundary of two geometries to 

determine the EQUALS relationship, only the interior and boundary are needed. 

 DISJOINT: Since the DISJOINT relationship can be seen as “no intersection between the 

interiors and boundaries”, only the interior and boundary are needed to determine 

DISJOINT relationship. 

 INTERSECTS: Since the INTERSECTS relationship means that the two geometries have 

at least one interior or boundary point in common, only the interior and boundary are 

needed for this relationship. 

 TOUCHES: The TOUCHES relationship means two geometries are INTERSECTS but 

their interiors do not intersect with each other. Therefore, similar to the INTERSECTS 

relationship, only the interior and boundary are required for the TOUCHES relationship. 

 OVERLAPS: The OVERLAPS relationship means that the interior of both geometries 

intersects the interior and exterior of the other. And if both geometries are line 

geometries, the intersection of interiors needs to be a line for OVERLAPS relationship. In 

order to avoid the processing of exterior indices, we follow the idea that “if the 

intersection of interiors and boundaries are not equal to neither geometries, each 

geometry interests with the exterior of the other”, that is (     ( )     )    ( ( )      
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  )     (         )    (         ). Therefore, only the interior and exterior are 

required for this relationship. In addition, since multi-point is not in the scope, a single 

point does not OVERLAPS with another point. 

 CROSSES: The CROSSES relationship means that the interior of the primary geometry   

intersects the interior and exterior of secondary geometry  . Similar to the OVERLAPS 

relationship, we replace the requirement of exterior with the intersections of interiors and 

boundaries. In addition, for line geometries, they are CROSSES if and only if their 

interiors intersect at a point. Since we only consider single point geometries, no geometry 

can cross a single point based on the OGC definition. As a result, the determination of the 

CROSSES relationship only needs the interior for line geometries and requires both 

interior and boundary for polygon geometries. 

 WITHIN: “  WITHIN  ” means that the interior and boundary of   fully locate in the 

interior and boundary of  . That means only the interior and boundary are required to 

determine WITHIN relationship. 

 CONTAINS: The CONTAINS relationship is the inverse of the WITHIN relationship, 

which means “  CONTAINS  ” and “  WITHIN  ” are equal. Therefore, the interior and 

boundary are also the necessary information for CONTAINS. 
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Table 3.3 Necessary subscription indices for AHS-Model. 

 

 

After generating the necessary information (Table 3.3) from SUBSP, AHS-Model 

aggregates the necessary indices from all subscriptions into a single data structure. In the data 

structure, each quadkey (which is at least one subscription) maintains a list of subscription 

identifier (SUBID) and the corresponding property type (TYPESUB) (i.e., interior or boundary).  In 

this case, the AHS-Model can directly match quadkeys of new data with quadkeys in the data 
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structure to intersect new data with all subscriptions in a single process. Therefore, the worst 

case scenario is that no quadkey is shared by any other subscriptions (i.e., each quadkey only 

matches to one SUBID), which means that the aggregation benefits neither the storage nor the 

query processing. On the other hand, as long as there is more than one subscription sharing the 

same quadkey, the aggregation can reduce both the storage size and the query latency. For the 

remainder of this paper, we refer to this aggregated quadtree structure as AHSSUB for clarity. 

A more critical contribution is that by aggregating quadkeys from all SUBSP_GEO into 

AHSSUB, the AHS-Model can simply match the PUBGEO with the quadkeys in the AHSSUB and 

link to a set of SUBID. This means that the AHS-Model decouples quadkeys and SUBID and 

allows itself to be more scalable in terms of the number of subscriptions. 

3.6.3.2 Intersection stage: Intersect with the geometry of publication 

There are three steps for intersecting the geometry of publication (i.e., PUBGEO) with 

AHSSUB: (1) index, (2) match, and (3) create matrices. This workflow is shown in Figure 3.9. In 

order to efficiently intersect the PUBGEO with the AHSSUB, AHS-Model first indexes the interior 

and boundary of PUBGEO with the same hierarchical structure (i.e., quadtree tile system). We call 

the outcome of this indexing as AHSPUB for clarity. 

As mentioned in Chapter 3.6.3.1, AHS-Model modifies the determination algorithm to 

avoid exterior indices. Therefore, this stage only needs to generate the interior and boundary of 

the publication geometry. 

The matching step benefits from using the same indexing structure. Since both AHSPUB 

and AHSSUB are indexed by the same quadtree tile system, we can match the prefixes of quadkeys 
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to find the intersection. To be more specific, every quadkey q has a corresponding geospatial 

bounding box bbox. Given two quadkeys qA and qB, bboxA  bboxB if and only if qA starts with 

qB. For example, the bounding box of quadkey ‘0’ contains all the bounding boxes of quadkeys 

whose first digit is ‘0’. If a quadkey in AHSPUB intersects with a quadkey in AHSSUB, we refer to 

this intersection as a match. 

Each match contains the following five attributes: the intersected quadkey from AHSPUB, 

the intersected quadkey from AHSSUB, subscription identifier (SUBID), property type of AHSPUB 

(TYPEPUB; i.e., interior or boundary), and property type of AHSSUB (TYPESUB; i.e., interior or 

boundary). After finding all the matches, we group them by SUBID and create a matrix for each 

group. We refer to this matrix as the area matrix because it records the size of the intersected 

area. Similar to three-by-three intersection matrices of the DE-9IM, the area matrices are for 

determining the topological relationship between geometries, which is the third stage of AHS-

Model. The area matrix is a two-by-two matrix, and its form is shown in Equation 3.2. 

           (       )  [
    (  (       ))     (  (       ))

    (  (       ))     (  (       ))
],  (3.2) 

where the      function returns the sum of the number of area unit (here we define that every 

lowest level quadkey has one area unit and the quadkey on level n has 4
(lowest level-n)

 area units), 

  (       ) returns intersected quadkeys whose TYPEPUB and TYPESUB are both interior, 

  (       ) returns intersected quadkeys whose TYPEPUB is interior and TYPESUB is boundary, 

  (       ) returns intersected quadkeys whose TYPEPUB is boundary and TYPESUB is interior, 
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and   (       ) returns intersected quadkeys whose TYPEPUB and TYPESUB are both 

boundary. 

 

Figure 3.9 The workflow of intersecting the geometry of publication. 

 

3.6.3.3 Determination stage: Determine topological relationship 

With the area matrices generated in the previous stage, we can determine the topological 

relationships between PUBGEO and SUBSP_GEO. Similar to the DE-9IM, each relationship has a 

specific matrix pattern. Table 3.4 lists the topological relationships and the corresponding area 

matrices (AMatrix), where      function returns the number of area unit while I and B functions 

return the interior and boundary of SUBSP_GEO or PUBGEO, respectively. In addition, the 

AMatrixII, AMatrixIB, AMatrixBI, and AMatrixBB represent the cell (0, 0), (0, 1), (1, 0), and (1, 1) 

in an area matrix, respectively. Finally, Sum(AMatrix) equals to AMatrixII + AMatrixIB + 

AMatrixBI + AMatrixBB. 

Please also note that most of the information used during the determination process can 

be calculated in advance. For instance,     (         ),     ( (         )), 

    ( (         )),     (      ),     ( (      )), and     ( (      )) can be 

generated at the time subscriptions and publications enter the system. 
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Here we explain the concept of each determination: 

 EQUALS: If PUBGEO EQUALS SUBSP_GEO, their interiors and boundaries should be the 

same, which means that their interiors are completely intersected with each other and so 

are their boundaries. Consequently, AMatrixII equals to the area of both interiors, and 

AMatrixBB equals to the area of both boundaries. 

 DISJOINTS: If PUBGEO DISJOINTS SUBSP_GEO, both the interior and boundary of 

PUBGEO locate completely in the exterior of SUBSP_GEO. There is no intersection between 

the interiors and boundaries of PUBGEO and SUBSP_GEO. Therefore, AMatrixII, AMatrixIB, 

AMatrixBI, and AMatrixBB are all zeros. 

 INTERSECTS: PUBGEO INTERSECTS SUBSP_GEO if any interiors or boundaries intersect, 

which means that one of the cells in AMatrix is not zero. 

 TOUCHES: If PUBGEO INTERSECTS SUBSP_GEO and their interiors do not intersect (i.e., 

AMatrixII equals to zero), PUBGEO TOUCHES SUBSP_GEO. 

 OVERLAPS: As mentioned in Chapter 3.6.3.1, the processing of exterior indices, is 

replaced with the intersection of interiors and boundaries as “if the intersection of 

interiors and boundaries are not equal to both geometries, each geometry interests with 

the exterior of the other”. Therefore, for non-line/line relationships, the determination 

algorithm becomes “if AMatrixII is not zero and Sum(AMatrix) equals to neither 

Area(PUBGEO) nor Area(SUBSP_GEO), PUBGEO OVERLAPS SUBSP_GEO”. 

In addition, as the OGC specification defines, the OVERLAPS relationship requires the 

dimension of intersection region to be equal to the dimensions of both geometries. The 
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intersection of a “line OVERLAPS line” relationship should be a line instead of a point. 

Therefore, for line/line relationship, AHS-Model also checks if AMatrixII is larger than 

one area unit in order to confirm that PUBGEO does not intersect with SUBSP_GEO at a 

point. 

 CROSSES: For non-line/line relationships, the determination algorithm for PUBGEO 

CROSSES SUBSP_GEO relationship is the same as that for the OVERLAPS relationship. For 

line/line relationships, as AHS-Model follows the common definition mentioned in 

Chapter 3.6.2, PUBGEO CROSSES SUBSP_GEO if the interiors intersect at a point (i.e., one 

area unit). 

 WITHIN: The relationship of PUBGEO WITHIN SUBSP_GEO means that AMatrixII, 

AMatrixIB, AMatrixBI, and AMatrixBB contain the entire area of PUBGEO (i.e., interior and 

boundary of PUBGEO). 

 CONTAINS: PUBGEO CONTAINS SUBSP_GEO if AMatrixII, AMatrixIB, AMatrixBI, and 

AMatrixBB contain the entire area of SUBSP_GEO (i.e., interior and boundary of 

SUBSP_GEO). 
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Table 3.4 The topological relationships and the corresponding area matrices. 

Topological Relationship Area Matrix 

                        [
    ( (         ))  

     ( (         ))
] and [

    ( (      ))  

     ( (      ))
] 

                           AMatrixII = AMatrixIB = AMatrixBI = AMatrixBB = 0 

                            [
   
  

] or [
   
  

] or [
  
   

]or [
  
   

] 

                         [
    
  

] or [
   
   

] or [
   
   

] 

                          

AMatrixII ≠ 0 and  

Sum(AMatrix) ≠     (      ) and 

Sum(AMatrix) ≠      (         ) 

For line/line relationship, 

AMatrixII > 1 and  

Sum(AMatrix) ≠     (      ) and  

Sum(AMatrix) ≠      (         ) 

                         

AMatrixII ≠ 0 and  

Sum(AMatrix) ≠     (      ) and  

Sum(AMatrix) ≠      (         ) 

For line/line relationship, 

AMatrixII = 1 

                        Sum(AMatrix) =     (      ) 

                          Sum(AMatrix) =     (         ) 
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3.6.4 Distributed AHS-Model 

As mentioned in Chapter 3.1, GeoPubSubHub tries to use distributed computing and 

cloud computing techniques to provide more memory and CPU resources. The AHS-Model is 

one of the modules that could benefit from distributed computing techniques. For example, as the 

number of pre-generated AHSSUB is potentially large, splitting AHSSUB into pieces and storing 

them in different machines could effectively address the storage issue. In addition, distributing 

computing techniques could also improve query processing performance especially on indexing 

and matching stages. Therefore, with these potential benefits, here we slightly modify the AHS-

Model architecture based on distributed computing concepts. For the remainder of this paper, we 

refer to this modified AHS-Model as distributed AHS-Model for clarity. 

Figure 3.10 shows the high-level architecture and workflow of the proposed distributed 

AHS-Model.  There are four stages in the distributed AHS-Model, namely (1) index, (2) match, 

(3) aggregate area matrices, and (4) determine relationships. As the processes in the (1) index, 

(2) match, and (4) determine relationships stages are the same as the processes introduced in 

Chapter 3.6.3, the (3) aggregate area matrices stage mainly groups and integrates area matrices 

based on SUBID. 

As shown in Figure 3.10, distributed AHS-Model has a master node and a set of worker 

nodes. The master is responsible of receiving subscriptions and publications as well as 

forwarding subscriptions and publications to appropriate workers. Each worker is in charge of 

creating and matching indices according to the set of quadkeys assigned to it. That means if a 

worker is in charge of a quadkey qA, all the indices that have qA as a prefix are created and 

maintained by this worker. The master node has a lookup table storing the set of quadkeys that 

each worker is responsible of. For the remainder of this thesis, we refer to this set of quadkeys as 
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WorkerQ and the lookup table as LUT for clarity. Hence, a worker Workeri has WorkerQi as the 

set of quadkeys it is responsible for. 

 

Figure 3.10 High-level architecture and workflow of the distributed AHS-Model. 

 

Algorithm 3.3 shows the worker selection algorithm. When a master node receives a 

subscription SUB or a publication PUB, the master uses the LUT and SUBSP_GEO or PUBGEO to 

determine the workers that are responsible of processing the SUB or PUB. Workers are returned 

if their WorkerQ overlaps with SUBSP_GEO or PUBGEO. In order to reduce the computation load 

on the master node, we used a coarse estimation on SUBSP_GEO and PUBGEO. That is we first find 

the lowest level of quadkeys (i.e., LowestLevel) in the LUT with the GetLowestQuadkeyLevel 

function (line 2 of Algorithm 3.3), and generate quadkeys of SUBSP_GEO or PUBGEO (i.e., qs) on 

the LowestLevel (line 3 of Algorithm 3.3). Then the containing relationship on line 6 of 

Algorithm 3.3 is determined with the prefix matching of quadkeys from qs and WorkerQi, which 

is the same as the prefix matching approach in LOST-Tree. Finally, if quadkeys from qs and 

WorkerQi overlap with each other, the algorithm returns the Workeri. 
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Algorithm 3.3.  The worker selection algorithm. 

Function  SelectWorkers(LUT, Geo): Workers 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

Workers  {} 

LowestLevel  GetLowestQuadkeyLevel(LUT) 

qs  GetQuadkeysByLevel(Geo, LowestLevel) 

FOREACH WorkerQi  LUT 

     FOREACH q  qs 

         IF q is contained by WorkerQi OR q contains WorkerQi THEN 

             IF Workers does not contain Workeri 

                 Workers  Workers + Workeri 

             BREAK 

         END IF 

     END FOREACH 

END FOREACH 

RETURN Workers 

 

Figure 3.11 shows the sequence diagram for registering a subscription. To simplify the 

diagram, only two workers (i.e., worker 1 and worker 2) are shown. When the master node 

receives a subscription SUB, the master first uses Algorithm 3.3 to select one or more workers, 

and forwards SUB to the selected workers. When a worker receives SUB, the worker first creates 

indices with the SUBSP_GEO based on the quadkeys it is in charge of, and then stores the created 

indices into the local AHSSUB. 

Figure 3.12 shows the sequence diagram for matching a publication. When the master 

node receives a publication PUB, the master first uses Algorithm 3.3 to select one or more 

workers, and forwards PUB to the selected workers. When a worker receives PUB, the worker 

creates indices with the PUBGEO based on the quadkeys it is in charge of, matches AHSPUB with 

the local AHSSUB, creates area matrices based on the local matches, and finally returns the created 

area matrices to the master. Since each worker only has a portion of AHSSUB (based on the 

quadkeys it is in charge of), the created area matrices only represent a portion of the complete 

area matrices. Therefore, after the workers send the partial area matrices to the master, the master 
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groups and aggregates them into complete area matrices based on the SUBID. Finally, the master 

node equally distributes the aggregated area matrices to workers to determine topological 

relationships in parallel. 

 

Figure 3.11 The sequence diagram for registering a subscription in distributed AHS-

Model. 
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Figure 3.12 The sequence diagram for matching a publication in distributed AHS-Model. 

 

Regarding the load balancing in the distributed AHS-Model, the number of quadkeys in 

AHSSUB determines the overall performance. That is because the number of quadkeys in AHSSUB 
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determines the required storage and CPU resources in a worker node. A worker needs more 

storage and CPU resources to store and process a larger number of quadkeys. Therefore, a simple 

load balance approach is to assign a threshold θ on the number of quadkeys each worker handles. 

After each process of registering a subscription, if the number of quadkeys in a worker’s AHSSUB 

is larger than the threshold θ, the worker splits the original AHSSUB into multiple AHSSUB based 

on the quadkeys this worker is in charge of. These split AHSSUBs are then assigned to other 

existing or newly created workers; and finally the master updates its lookup table accordingly. 

To sum up this section, we further improve the AHS-Model with distributed computing 

concepts. The proposed distributed AHS-Model is able to harness the storage and CPU resources 

from multiple machines to address potential storage issues and improve indexing and matching 

performance. The distributed AHS-Model assigns quadkeys to workers (i.e., WorkerQ) to 

distribute the processing load. This approach allows the distributed AHS-Model to retain the 

ability to match a publication with all subscriptions in a single process. This is because the 

quadkeys shared by multiple subscriptions remain aggregated in the same AHSSUB. For example, 

assuming the case where a quadkey ‘01’ is required by all subscriptions, as only one worker is in 

charge of quadkey ‘01’, this worker preserves a SUBID list of all subscriptions that require 

quadkey ‘01’. If the worker receives a publication that intersects with the quadkey ‘01’, the 

worker knows that this match is for all the subscriptions. 

In addition, the load balance approach is a simple naïve solution. There are other factors 

that can be considered in the future. For example, in order to improve service availability and 

avoid the potential issue of machine failure, the distributed AHS-Model can assign multiple 

workers to handle the same quadkeys (i.e., replicas). In addition, as the current load balancing 

approach only considers the geospatial distribution of subscriptions, monitoring the geometries 
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of publications may allow the adaptive distribution of the processing loads. One of the future 

directions is to further investigate more sophisticated load balancing approaches for distributed 

AHS-Model. 

 

3.6.5 Contribution summary 

We have presented the AHS-Model, a model that efficiently determines the topological 

relationship between the geometries in a sensor web publish/subscribe system. Because of the 

potentially for very large amounts of sensor web data, the continuous query processing model is 

increasingly attracting interest for many time-critical applications. However, we argue that time-

consuming geospatial operators are not suitable for applications require timely processing and 

notification. The AHS-Model is one example showing that traditional topological operators can 

be re-designed as efficient continuous query operators in the context of publish/subscribe 

systems. 

The proposed AHS-Model applies two key ideas. First, it pre-generates necessary 

quadkeys for geometries of subscriptions and re-uses these quadkeys whenever needed. Second, 

the AHS-Model aggregates together the quadkeys of different subscriptions to save storage space 

and intersect the geometries between a publication and all subscriptions in a single matching 

process. Furthermore, the AHS-Model is a complete model in comparison to existing works 

(Kassab et al. 2010; Mokbel et al. 2005), because it is able to determine all the topological 

relationships that are defined in the OGC Simple Feature Access specification. 

However, since the AHS-Model pre-generates quadkeys, a large number of quadkeys 

could cause a storage issue even after applying the quadtree tile system to reduce the number of 

quadkeys. To address this issue, we further propose a distributed AHS-Model to harness storage 
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and CPU resources from multiple machines. In this case, we can not only address the storage 

issue, but also improve query efficiency. 

The evaluation of the AHS-Model includes (1) scalability analysis in terms of the number 

of subscriptions, (2) evaluation of indexing latency when handling geometries in various sizes, 

(3) evaluation of matching latency when handling geometries in various sizes, and (4) end-to-end 

performance analysis with simulated city-level subscriptions and publications. Our evaluation 

shows that the AHS-Model is more scalable than PostGIS, can efficiently index and match large 

geometries with multiple worker nodes, and can efficiently determine topological relationships 

with an acceptable overhead. The detail of this evaluation is presented in Chapter 4.3. 

3.7 Sensor web browser 

As mentioned in Chapter 3.4.1, a sensor web browser is a client-side component that 

loads sensor data from sensor web data sources, and renders these data in a coherent and unified 

geographical environment. With the sensor web browsers we developed, users can browse, 

discover, visualize, and access heterogeneous sensing resources from both OGC SOS and WMS. 

During my Ph.D. study, I have developed two types of sensor web browsers. One is a 3D virtual-

globe-based sensor web browser, and the other one is a light-weight 2D map-based sensor web 

browser. Both of them are developed for the GeoCENS project and have been publicly 

available
17

 since 2010. 

3.7.1 3D virtual-globe-based sensor web browser 

The 3D virtual-globe-based sensor web browser was developed on top of the open source 

WorldWind virtual globe system
18

. To the best of our knowledge, it is the world’s first OGC-

                                                 

17
 http://dev.geocens.ca/ 

18
 http://worldwind.arc.nasa.gov/ 
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based sensor web 3D browser. The GeoCENS browser has two unique components. First, in 

order to interoperate with existing sensor web servers, an OGC SWE communication module 

was developed to communicate with OGC SWE-compatible servers. Second, in order to prevent 

transferring large volume of sensor data across the network repeatedly, we designed and 

developed the LOST-Tree (introduced in Chapter 3.4) to control sensor data loading from local 

cache or data sources. 

LOST-Tree is the most critical component for this 3D sensor web browser. As efficiently 

transmitting large amounts of sensor data over the WWW is known to be a major challenge 

(Nath et al. 2006), LOST-Tree is able to determine whether or not a spatio-temporal request has 

been sent previously in order to filter out redundant requests. As a result, with the help of a local 

cache, LOST-Tree allows the sensor web browser to load sensor data efficiently. A screenshot of 

the 3D virtual-globe-based sensor web browser is shown in Figure 3.13. 

 

Figure 3.13 A screenshot of the 3D virtual-globe-based sensor web browser. 
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3.7.2 2D map-based sensor web browser 

In addition to the 3D virtual-globe-based sensor web browser, we also develop a light-

weight 2D map-based sensor web browser. The 2D sensor web browser is developed based on 

the Microsoft Bing Maps AJAX Control
19

. However, unlike the 3D sensor web browser which is 

a pure client-side component, the 2D sensor web browser retrieves cached sensor data from a 

mediator called as the translation engine. This design was adopted because of the heavy 

communication loads of OGC sensor web services (e.g., SOAP and/or XML). A sensor web 

browser that wants to communicate with OGC services independently becomes heavy as well, 

which is the case for the 3D sensor web browser. In the 3D sensor web browser, the libraries 

used to handle communication with OGC services weights 2.7 Mbytes.  

Therefore, with the help of a translation engine, the 2D sensor web browser is developed 

as a lighter choice. While the translation engine handles the heavy communication load with 

OGC sensor web services, the 2D sensor web browser can retrieve the cached sensor data from 

the translation engine in a light-weight and efficient manner. In this case, the 2D map-based 

sensor web browser is mobile-friendly, and users can use it on modern smart mobile devices 

(i.e., smartphones, tablets). The details of the translation engine are published in Knoechel et al. 

(2011). A screenshot of the 2D map-based sensor web browser is shown in the Figure 3.14. 

In addition, to update the cached data in a timely manner, the translation engine utilizes 

the adaptive sensor stream feeder mentioned in Chapter 3.3.2. The adaptive feeder detects the 

data sampling period and fetches the latest sensor data from the services by scheduling requests 

adaptively. In this case, the cached sensor data in the translation engine can always be up-to-date. 

                                                 

19
 http://msdn.microsoft.com/en-us/library/gg427610.aspx 
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Figure 3.14. A screenshot of the 2D map-based sensor web browser. 
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Chapter Four: Evaluation and Results 

As mentioned in Chapter 1.3, this thesis tries to cover all aspects of a geospatial sensor 

web publish/subscribe system by identifying challenges (in Chapter 2), proposing possible 

solutions (in Chapter 3.1), and designing an overall system architecture and workflow (in 

Chapter 3.2). One of our future directions is to further investigate the challenges presented in 

Chapter 2.2. 

As the scope of GeoPubSubHub is large, this thesis focuses on the modules that we 

believe are most unique and critical in the context of a geospatial sensor web publish/subscribe 

system. Therefore, we proposed the sensor web input adaptor (in Chapter 3.3), LOST-Tree (in 

Chapter 3.4), and AHS-Model (in Chapter 3.6) as three new solutions in a sensor web 

publish/subscribe system. In this chapter, we present the evaluations on these solutions. 

4.1 Evaluation on the sensor web input adaptor 

As mentioned in Chapter 3.3, the proposed sensor web input adaptor has two major 

components, namely the query aggregator and the adaptive sensor stream feeder. While the 

query aggregator applies the proposed LOST-Tree to aggregate overlapped spatio-temporal 

cubes, the evaluation of LOST-Tree is presented in Chapter 4.2. Therefore, this section mainly 

presents the experimental results of the adaptive sensor stream feeder. 

We tested the proposed adaptive sensor stream feeder with two real-world OGC SOSs 

(here we name them as service A and service B). While the sensors in both services have similar 

sampling periods (around 15 minutes), these two services have different data update behaviors. 

Service A makes the sensor data available as soon as their sensors perform observations, which 

matches our assumptions mentioned in Chapter 3.3.2. Service B buffers sensor data before 

making them available online, which results in large differences between the sampling time and 
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valid time. To be more specific, service B releases their data 60 to 150 minutes after the data was 

collected by sensors. Therefore, these two services are suitable to examine the performance of 

adaptive feeder as one service matches with our assumptions and the other one does not. 

In this evaluation, we set the buffer time (i.e., the b in Figure 3.3) to 30 seconds to 

accommodate possible delay. In this case, retrieving requests are sent 30 seconds later than the 

actual predicted time points. In reality, the best buffer time setting would be the largest possible 

delay. 

In order to evaluate how “real-time” the data that the proposed adaptive feeder retrieves, 

we calculate the time difference between the time point at which we receive new data and the 

time point that the latest reading was measured. Table 1 shows the statistics of experimental 

results including the testing duration, average time difference, number of empty-hit requests (i.e., 

requests that did not retrieve any new data), and the total number of requests performed during 

the experiments. In addition, Figure 4.1 and Figure 4.2 show the time differences of each non-

empty-hit request for service A and service B, respectively. 

Table 4.1 Statistics of adaptive sensor stream feeder evaluation 

 Service A Service B 

Testing duration (minute) 355 16,830 

Average time difference (second) 28.926 4,603.339 

Number of empty-hit requests 0 1,005 

Total number of requests 23 1,123 

 

Since the data retrieving behavior of service A is relatively stable, we only test it for 

around six hours (355 minutes). However, for service B, since we found that service B’s data 
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updating behavior varied, we test it for a longer period, which is around 11 days (16,830 

minutes). 

As we can see in the column of service A (i.e., the best scenario) in Table 4.1, the 

adaptive feeder can retrieve new data with around 29 seconds time difference. In addition, Figure 

4.1 shows that the maximum delay is less than 3 seconds, which is 32.4 - 30 seconds, during our 

experiment. Therefore, for future usages, the buffer time for service A can be set around 3 

seconds to retrieve data more promptly. Moreover, during the testing period, as all 23 requests 

are able to retrieve new data, there is no unnecessary request in the case of service A. Hence, this 

evaluation proves that if a service matches our assumptions, the adaptive feeder is able to 

retrieve near-real-time sensor data while avoiding unnecessary requests. 

 

Figure 4.1 Time differences of adaptive feeder requests for service A. 

 

However, as we can observe from Figure 4.2, service B does not make data available 

online as soon as they are measured, and the delay varies over time. To be more specific, every 

new data available on service B are measured by sensors more than one hour ago. We suspect 
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that this delay could be because of data post-processing, data transmission, system design, or 

limitations from sensors’ power constraints. While the adaptive feeder cannot retrieve near-real-

time data from service B, it still sends retrieving requests every detected sampling period (about 

15 minutes). Although many of the requests would be empty-hit requests (about 90%), the 

adaptive feeder is able to retrieve new data no later than the detected sampling period after they 

become available in the service. 

 

Figure 4.2 Time differences of adaptive feeder requests for service B. 

 

To sum up, as shown in the experimental results, if a service makes data available online 

as soon as they are measured, the proposed adaptive feeder can retrieve sensor data in a timely 

manner without unnecessary request. For services that do not release their data efficiently, with a 

trade-off of redundant requests, the adaptive feeder can still retrieve new data no later than the 

detected sampling period after they become available online. However, it is arguable that this 

type of services (such as service B) may not be suitable as a data source for time-critical 

applications in the first place. 
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4.2 Evaluation on the LOST-Tree 

In order to provide a comprehensive analysis, we evaluated the performance of our 

LOST-Tree implementation from three perspectives. First, in order to demonstrate the efficiency 

of the data loading, we compared the end-to-end latencies of loading sensor data with and 

without the LOST-Tree scheme. Second, in order to show that LOST-Tree is lightweight and 

scalable in terms of the number of LTCCubes, we measure the LOST-Tree size on spatial, temporal, 

and spatio-temporal aggregations. Third, in order to demonstrate that LOST-Tree can effectively 

and efficiently filter out LTCCubes from LTSTCubes while keeping the number of requests small, we 

analyzed the LOST-Tree performance (including latency of filtering, filter efficiency, and 

number of requests) on different Lq and Lgc settings. 

Since LOST-Tree was originally proposed as the data loading component in a sensor web 

browser, the evaluation presented here is mainly based on the perspective of a sensor web 

browser. As the GeoPubSubHub input adaptor also utilizes LOST-Tree to aggregate spatio-

temporal cubes, it focuses more on the effectiveness of filtering out the overlapped spatio-

temporal areas (i.e., filter efficiency). 

For the second and the third evaluations, we simulated three testing environments: (1) 

modify the spatial components (i.e., spatial aggregation and Lq) with fixed temporal components; 

(2) modify the temporal component (i.e., temporal aggregation and Lgc) with fixed spatial 

components; and, (3) modify both spatial and temporal components. The evaluations were 

performed on a desktop-class machine, which runs an Intel Core2 Quad Q8200 @ 2.33GHz, 

3GB RAM, Western Digital WD5000AAKS, and ATI Radeon HD 3450. 
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4.2.1 Evaluation of data loading efficiency 

In this section, we present the analysis of the data loading efficiency between the 

proposed scheme and a naïve solution. The naïve solution is the case that the client does not store 

loaded data in the local cache and needs to load all data from the server. We compare the end-to-

end latencies of the loading data from a real-world OGC SOS. The end-to-end latency includes 

the latency of retrieving sensor data (from local cache or server) and the latency of creating icons 

for visualization. The server located in the same local network with the testing machine and 

hosted data from the U.S. National Oceanic and Atmospheric Administration (NOAA), which 

contains 2,412 sensors collecting observations every hour. 

Figure 4.3 shows the evaluation results. The end-to-end latencies with and without cache 

are on a different order of magnitude. Without the proposed scheme, sensor data have to be 

transmitted from the server through network. With LOST-Tree and a local cache, the previously 

loaded sensor data could be retrieved from a local disk, which is much faster than transmitting 

data over the network. While the network is relatively unstable and results in large latency 

differences between each transmission, data loading from the disk has a more stable 

performance. 

The latency of loading data from a disk is mainly related to the data management method. 

As LOST-Tree is flexible enough to work with any data management method, we simply used an 

R-Tree and a B-Tree to manage sensor data in this evaluation. As a result, Figure 4.3 indicates 

that the proposed scheme can load sensor data significantly faster than the naïve solution. 

Although the R
2
 values of regression lines in Figure 4.3 are low, we can still observe that the 

proposed scheme could load sensor data at least 100 times faster than the naïve solution. In 

addition, as the naïve solution needs to handle SOS XML responses containing a large number of 
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readings, the evaluation stopped earlier than the proposed scheme due to out-of-memory 

exceptions. Although the latency difference between loading data from a disk and a server is 

already well-known, LOST-Tree is the component enabling a spatio-temporal data cache in a 

sensor web browser by serving as a data loading layer. 

 

Figure 4.3 End-to-end latencies 

 

4.2.2 Evaluation of LOST-Tree size 

Keeping tree size small is very important for storage and computation efficiency. With 

the predefined hierarchal spatial and temporal frameworks in LOST-Tree, we can aggregate 

multiple LTCCubes into one LTCCube to reduce the LOST-Tree size. In this section, we first show 

the aggregation behaviors of quadtree and the Gregorian calendar separately by assigning a 

simulated loading sequence. We then present the integrated spatio-temporal aggregation 

behavior with a random loading sequence. 

First, in order to show the spatial aggregation behavior, we loaded LTSTCubes with all the 

quadkeys on the fourth level and a fixed Gregorian calendar index. We used the Z-order 

sequence (Morton 1966) as the simulated loading sequence. Z-order is a space-filling curve that 

can map multi-dimensional data into one dimension. The Z-order sequence on the fourth level of 
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quadtree is shown in Figure 4.4. In this case, spatial aggregation performs at every 4
m
×n loading, 

where m, n    , and m also represents how many aggregations will be triggered at this loading. 

For example, if m is equal to 2 and n is equal to 1, an aggregation from the fourth level to the 

third level (the light-grey portion in Figure 4.4) is performed first; and this aggregated node is 

then aggregated with the other three quadtree nodes on the third level (the dark-grey portion in 

Figure 4.4). Figure 4.5 shows the LOST-Tree size reductions with a Z-order loading sequence. 

As we can see from Figure 4.5, the LOST-Tree size decreases when a spatial aggregation 

happens (i.e., at every 4
m
×n loading). 

 

Figure 4.4 The Z-order on fourth level of quadtree. 
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Figure 4.5 The LOST-Tree size reductions on spatial aggregations. 

 

Second, in order to show the temporal aggregation behavior, we load every hour for a 

one-year period sequentially with a fixed quadkey. In this scenario, LOST-Tree performs 

temporal aggregation when meet any of the following three scenarios: (1) after loading the last 

hour in a day, (2) after loading the last day in a month, and (3) after loading the last month in a 

year. While temporal aggregation combines 60 (seconds, minutes), 24 (hours), 28 or 29 or 30 or 

31 (days), and 12 (months) LTCCubes into 1 (an aggregated minute, hour, day, month, year) 

LTCCube, Figure 4.6 shows that the LOST-Tree size decreases when a temporal aggregation 

happens. 

 

Figure 4.6 The LOST-Tree size reductions on temporal aggregations. 
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Finally, in order to show the integrated spatio-temporal aggregation behavior, we load 

LTSTCubes in a random sequence, where the quadkeys are in the fourth level and Gregorian 

calendar indices are the days of a year. As shown in Figure 4.7, the LOST-Tree size decreases 

whenever a spatial or temporal aggregation is performed. Once the whole globe and the year are 

loaded, LOST-Tree becomes very small (2.7 Kbytes). 

To sum up this section, by applying hierarchal spatial and temporal frameworks in 

LOST-Tree, spatial and temporal indices can be aggregated to reduce the number of indices. 

During the evaluation, the size of LOST-Tree is always small enough (from 0.3 Kbytes to 163.8 

Kbytes) to be fit into memory for storage and computational efficiency. This evaluation also 

demonstrates that LOST-Tree is scalable in terms of the number of LTCCubes. 

 

Figure 4.7 The LOST-Tree size reductions on both spatial and temporal aggregations. 

 

4.2.3 Evaluation of LOST-Tree performance 

In this section, we evaluate LOST-Tree’s performance. As mentioned in the LOST-Tree 

methodology section (Chapter 3.4.2.2), in order to control the trade-off between reducing the 
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unnecessary transmissions and keeping the number of requests small, users can use Lq and Lgc to 

specify the lowest q and gc levels to which LTSTCubes can be decomposed. Since Lq and Lgc may 

affect the computational load in the filtering process, we analyzed the LOST-Tree performance 

with different Lq and Lgc settings. We used three metrics to evaluate LOST-Tree’s performance, 

namely the query latency (i.e., latency of the filtering process), filter efficiency (i.e., percentage 

of the unloaded portion in the FilteredLTSTCubes, which is the larger the better), and number of 

requests (i.e., number of FilteredLTSTCubes, which is the smaller the better). 

The evaluation in this section has two objectives. The first objective is to evaluate 

whether or not LOST-Tree can completely filter out LTCCubes that have higher levels of q and gc 

than Lq and Lgc. We first simulate LTCCubes with different levels of q and gc, and then examine the 

LOST-Tree performance with different Lq and Lgc settings. The second objective is to propose a 

reasonable Lq and Lgc setting for a sensor web browser application. We first simulate more 

realistic LTCCubes based on our knowledge about users’ behavior on a sensor web browser. We 

then analyze LOST-Tree performance with different combinations of Lq and Lgc. 

In general, we have three evaluations in this section. The first evaluation (Chapter 

4.2.3.1) analyzes how different Lq settings affect the LOST-Tree performance when filtering out 

LTCCubes on different levels of q. The second evaluation (Chapter 4.2.3.2) examines the LOST-

Tree performance using different Lgc settings to filter out LTCCubes on different levels of gc. 

Finally, the third evaluation (Chapter 4.2.3.3) demonstrates the expected LOST-Tree 

performance in a real-world application with different combinations of Lq and Lgc. 

Table 4.2 details the simulated scenarios for the above three evaluations. In the first two 

evaluations, since we try to examine the LOST-Tree performance under all possible 

circumstances, we evaluated four different numbers for LTCCubes (i.e., 1, 33%×n, 66%×n, and n-1 
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cubes, where n is the total number of spatio-temporal cubes with the assigned q and gc levels). 

However, based on our experience from the GeoCENS sensor web browser, the number of 

LTCCubes is usually small in reality. Thus, the results in the first two evaluations cannot represent 

the LOST-Tree performance in a real-world application as they are affected by the large number 

of simulated LTCCubes. 

Based on our experience, we have also noticed that in reality, q usually occurs on the 

second to eighth levels of quadtree (mostly at the second to fifth levels), and gc usually happens 

on the month to hour level of the Gregorian calendar (mostly at the day level). Therefore, for the 

third evaluation, we simulate LTCCubes with q and gc from these levels to provide the expected 

LOST-Tree performance in a real-world sensor web browser. Moreover, for the third evaluation, 

the numbers of LTCCubes are also set closer to real-world scenarios (i.e., 1, 50, and 150 cubes). 

Finally, in order to reduce the influence of outliers, all these evaluations were tested 10 times and 

the final results are the average values of these tests. 

Table 4.2 Settings of simulated scenarios for LOST-Tree evaluations. 

Settings 

 

Evaluations 

Lq Lgc q gc 
Number of 

LTCCubes* 

Lq 1~8 year 

Randomly picked 

from levels 2 to 8 in 

quadtree 

Fixed 
1, 33%×n, 

66%×n, n-1 

Lgc 1 
year~ 

hour 
Fixed 

Randomly picked 

from levels of month 

to hour in the 

Gregorian calendar 

1, 33%×n, 

66%×n, n-1 

Combinations 

of Lq and Lgc 
1~8 

year~ 

hour 

Randomly picked 

from levels 2 to 8 in 

quadtree 

Randomly picked 

from levels of month 

to hour in the 

Gregorian calendar 

1, 50, 150** 

* n is the total number of spatio-temporal cubes with the level of q in quadtree and the level of 

gc in the Gregorian calendar. 

** If n is smaller than the assigned number of LTCCubes, skip the scenario. 
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4.2.3.1 Evaluation of LOST-Tree Performance on Different Lq 

Figures 4.8(a) to 4.8(c) depict the LOST-Tree performance on different Lq and levels of 

q, and Figures 4.8(d) to 4.8(f) present the average LOST-Tree performance across simulated 

scenarios. As shown in Figure 4.8(b), LOST-Tree can completely filter out the LTCCubes whose q 

is smaller than or equal to Lq. Although a large number of LTCCubes seldom occur in reality, we 

simulated large numbers of LTCCubes to demonstrate that LOST-Tree can filter out LTCCubes under 

any scenario. Therefore, filtering out the large number of LTCCubes results in the increases of the 

query latency and the number of requests. For example, in the case of Lq equal to 8, the average 

query latency jumps from less than 100 milliseconds to more than 800 milliseconds (Figure 

4.8(d)); and more than 2,500 requests, on average, are generated (Figure 4.8(f)). Therefore, if 

consider all possible scenarios, we would make a theoretical suggestion to configure Lq as 5 or 6 

to avoid large query latency and a large number of requests and still attain a filter efficiency 

more than 80%. 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 4.8 LOST-Tree performance on different Lq: (a) query latencies for different levels 

of q; (b) filter efficiencies for different levels of q; (c) number of requests for different levels 

of q; (d) average query latencies; (e) average filter efficiencies; (f) average number of 

requests. 
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4.2.3.2 Evaluation of LOST-Tree Performance on Different Lgc 

Figures 4.9(a) to 4.9(c) depict the LOST-Tree performance on different Lgc and levels of 

gc in LTCCubes, while Figures 4.9(d) to 4.9(f) present the average LOST-Tree performance across 

simulated scenarios. As shown in Figure 4.9(b), LOST-Tree can completely filter out LTCCubes 

that have gc smaller than or equal to Lgc. 

As mentioned previously, although a large number of LTCCubes seldom occur in reality, we 

simulated large numbers of LTCCubes to demonstrate that LOST-Tree can filter out LTCCubes under 

any scenario. As a result, filtering out the large number of LTCCubes results in the increases of the 

query latency and number of requests. For example, in the case of configuring Lgc as an hour, the 

average latency grows from 3 milliseconds to 185 milliseconds (Figure 4.9(d)) and 343 requests 

are required (Figure 4.9(f)). Therefore, if consider all possible scenarios, we would make a 

theoretical suggestion to configure Lq as the day level in order to avoid large query latency and a 

large number of requests and still attain a filter efficiency more than 80%. 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 4.9 LOST-Tree performance on different Lgc: (a) query latencies for different levels 

of q; (b) filter efficiencies for different levels of q; (c) number of requests for different levels 

of q; (d) average query latencies; (e) average filter efficiencies; (f) average number of 

requests. 

 

0

100

200

300

400

500

600

Year Month Day Hour

L
a
te

n
cy

 (
m

s)
 

Lgc 

Month

Day

Hour
0

50

100

150

200

Year Month Day Hour

L
a

te
n

cy
 (

m
s)

 

Lgc 

40%

60%

80%

100%

Year Month Day Hour

F
il

te
r 

ef
fi

ci
en

cy
 (

%
) 

Lgc 

Month

Day

Hour
40%

50%

60%

70%

80%

90%

100%

Year Month Day Hour

F
il

te
r 

ef
fi

ci
en

cy
 (

%
) 

Lgc 

0

200

400

600

800

1000

1200

Year Month Day Hour

N
u

m
b

er
 o

f 
re

q
u

es
ts

 

Lgc 

Month

Day

Hour
0

100

200

300

400

Year Month Day Hour

N
u

m
b

er
 o

f 
re

q
u

es
ts

 

Lgc 



 

107 

4.2.3.3 Evaluation of LOST-Tree performance on different combinations of Lq and Lgc 

The previous two evaluations focused on showing the LOST-Tree performance on 

different Lq and Lgc in any possible scenario (i.e., from small to large numbers of LTCCubes). In 

this evaluation, we aim to demonstrate the expected LOST-Tree performance in a real-world 

sensor web browser with a more realistic scenario (as shown in Table 4.2). We examine LOST-

Tree performance with different combinations of Lq and Lgc to show a comprehensive evaluation. 

The evaluation results are shown in Figure 4.10 and Tables 4.3, 4.4 and 4.5. 

Based on the evaluation results, we have the following findings. First, in the case of a 

more realistic scenario, LOST-Tree can efficiently filter out LTCCubes in less than 4 milliseconds 

(Figure 4.10(a) and Table 4.3). Second, as shown in Figure 4.10(b) and Table 4.4, LOST-Tree 

can eliminate all unnecessary requests when Lq and Lgc are equal to or larger than the smallest q 

and gc of LTCCubes (i.e., level 8 and the hour level, respectively).  

Third, Lq and Lgc allow LOST-Tree to control the trade-off between filter efficiency and 

number of requests for different kinds of sensor web servers (Figures 4.10(b) and Figure 4.10(c) 

and Tables 4.4 and 4.5). For instance, if a server accepts multiple spatial and temporal extents in 

a single request, users can configure larger Lq and Lgc settings to filter out all unnecessary 

requests. However, if a server allows only one spatio-temporal cube per request, users have two 

choices: (1) still try to filter out all unnecessary transmissions as long as the number of LTCCubes 

is small (e.g., as shown in our evaluation result, 65 requests are still manageable), or (2) modify 

Lq and Lgc settings to trade filter efficiency for a smaller number of requests. 
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(a) 

 

(b) 

 

(c) 

Figure 4.10 LOST-Tree performance on different combinations of Lq and Lgc: (a) query 

latencies; (b) filter efficiencies; (c) number of requests. 
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Table 4.3 Query latencies with different combinations of Lq and Lgc (unit: millisecond) 

Lq 

Lgc 
1 2 3 4 5 6 7 8 

Year 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 

Month 1.03 1.25 1.15 1.12 1.14 1.15 1.18 1.18 

Day 2.99 3.10 3.08 3.07 3.21 3.14 3.18 3.18 

Hour 3.36 3.47 3.49 3.48 3.54 3.62 3.66 3.84 

 

Table 4.4 Filter efficiencies with different combinations of Lq and Lgc 

Lq 

Lgc 
1 2 3 4 5 6 7 8 

Year 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 

Month 3.1% 6.7% 11.2% 16.0% 20.7% 25.4% 29.9% 33.4% 

Day 4.7% 13.0% 22.4% 31.8% 41.3% 50.7% 59.6% 66.7% 

Hour 6.3% 19.3% 33.5% 47.6% 61.8% 75.9% 89.3% 100.0% 

 

Table 4.5 Number of requests with different combinations of Lq and Lgc 

Lq 

Lgc 
1 2 3 4 5 6 7 8 

Year 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Month 6.4 14.4 21.4 23.9 24.3 24.4 24.4 24.5 

Day 41.4 51.7 59.0 61.2 61.8 62.1 62.1 62.0 

Hour 44.0 54.3 61.7 64.0 64.5 64.6 64.6 64.6 

 

4.2.4 Summary 

In summary, we evaluated and compared the end-to-end data loading latencies with and 

without applying LOST-Tree approach in Chapter 4.2.1. The result shows that the proposed 

solution is at least 100 times faster than the naïve solution. In Chapter 4.2.2, we measured the 

changes of LOST-Tree size by testing spatial, temporal, and spatio-temporal aggregations. The 
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evaluation shows that LOST-Tree is lightweight (always less than 164 Kbytes during our 

evaluation) and scalable in terms of the number of spatio-temporal requests. In addition, since 

LOST-Tree only manages the spatio-temporal extents of requests, the increasing amount of 

sensor data does not affect the LOST-Tree size. 

Chapter 4.2.3 evaluates LOST-Tree performance when applying different Lq and Lgc 

settings. The evaluation results show that LOST-Tree can avoid unnecessary transmissions up to 

100% in an efficient manner (less than 4 milliseconds for the realistic scenario). In addition, the 

evaluation results also show that users are able to control the trade-off between filter efficiency 

and number of requests by setting the Lq and Lgc for different kinds of sensor web services. 

4.3 Evaluation on the AHS-Model 

We evaluate the proposed AHS-Model from four perspectives. First, since the major 

objective of AHS-Model is to efficiently process topological operators when handling a large 

number of geometries, we analyze the scalability of AHS-Model in terms of the number of 

queries/subscriptions by comparing with PostGIS, which we used to represent traditional 

topological operators. 

The second evaluation is for measuring the indexing latency. Since AHS-Model 

approximates geometries with a quadtree tile system, the indexing for large geometries may be 

time-consuming. Although we argue that the subscriptions and data in the context of sensor web 

would not have large geographical coverage, we evaluate the indexing latency of AHS-Model by 

simulating geometries in various sizes to be comprehensive. 

The third evaluation analyzes the matching latency of AHS-Model. To be more specific, 

this evaluation measures the latency of matching AHSPUB and AHSSUB. Similar to the second 



 

111 

evaluation, we examine with geometries simulated in various sizes to provide a comprehensive 

evaluation. 

Finally, the forth evaluation is the end-to-end performance analysis measuring the 

latencies of overhead and each of the following steps: (1) index publication, (2) match AHSPUB 

with AHSSUB, and (3) determine relationship. This evaluation examines all possible relationships 

between two geometries (the relationships in Table 3.2). The testing data for this evaluation are 

city-level subscriptions and publications that were manually simulated to be more realistic and 

provide the expected AHS-Model performance in a real-world application. 

4.3.1 AHS-Model scalability evaluation 

One of the most important design decisions of AHS-Model is to perform topological 

operators in an aggregated manner. By aggregating the indices from all subscriptions in a single 

structure (i.e., AHSSUB) and decoupling the indices and subscriptions, AHS-Model can match 

new data with all subscription in a single process. In this case, subscriptions that have quadkeys 

in common can be benefit from this design. 

Therefore, in order to demonstrate this contribution, we evaluate the scalability of AHS-

Model in this section. To be more specific, we measure the query performance while register 

different number of subscriptions into AHS-Model. Here we choose the point-in-polygon query 

as our testing case, as point-in-polygon is one of the most common queries. We simulated a 

subscription with the coverage of a city (i.e., a polygon) and assign WITHIN as the topological 

operator in the spatial predicate. Then we simulated a publication with a point geometry that 

locates in the city. With the simulated subscription and publication, we register different 

numbers of subscriptions into the AHS-Model (with different subscription identifier SUBID) and 
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measure the query latency every 500 additional subscriptions by sending the publication to the 

AHS-Model. The same test was performed on an untuned PostGIS database as a comparison. 

Since this evaluation is mainly about the scalability in terms of the number of 

subscriptions, this evaluation was performed on a single machine in order to avoid 

communication overhead and machine heterogeneity. This evaluation was performed on a 

desktop-class machine, which runs an Intel
®
 Core™ i5-650 @ 3.20GHz, 6GB RAM, and 

Western Digital WD10EARS-22Y5B1. 

The query latencies on different number of subscriptions are shown in Figure 4.11. Based 

on these experimental results, we observe that the query latency increases with the number of 

subscriptions for both PostGIS database and AHS-Model. However, as the query latency of 

AHS-Model increases 2.5 times slower than that of an untuned PostGIS, this shows that AHS-

Model is more scalable than the traditional solution in terms of the number of subscriptions. 

 

Figure 4.11 The AHS-Model query latency on different number of subscriptions. 
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4.3.2 Evaluation of AHS-Model indexing performance 

This section measures the latency of generating necessary quadkeys from the geometry of 

subscription (as shown in Table 3.3). Since the time cost for indexing may differ based on the 

size of geometry, we randomly generate geometries in different sizes and measure the latencies 

for indexing them. In addition, as mentioned earlier, a lowest level of quadtree tile is needed as 

the granularity on geometry approximation. The quadtree tile system used in this evaluation has 

14 levels. 

In addition, as mentioned in Chapter 3.6.4 that distributed AHS-Model can process the 

indexing tasks in parallel, we also measure the indexing latency when using different numbers of 

workers. However, since we do not have a large number of machines to perform the actual test, 

we used a machine to simulate each worker handling different quadkeys in the distributed AHS-

Model. Here we simulate scenarios of distributed AHS-Models with 1, 4, 16, 64, and 256 

workers. While the 1-worker scenario is basically the stand-alone AHS-Model, each worker in 4-

, 16-, 64-, and 256-workers scenarios handles a quadkey in the first, second, third, and forth level 

of quadtree, respectively. For example, for the 4-workers scenario, we simulated four workers 

handling quadkey ‘0’, ‘1’, ‘2’, and ‘3’. Moreover, as for distributed computing processes, the 

entire process is considered completed at the time that the last worker finishes its task, here we 

present the maximum (instead of average) indexing latency from workers in each scenario. 

The indexing latency of point, line, and polygon geometries are shown in Figure 4.12. 

Since the sizes of point geometries are the same (i.e., one area unit), we take the average for each 

scenario. In general, while the indexing latency for point geometry is much smaller than that for 

other types of geometries, the indexing latency for line geometry is smaller than that for polygon 
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geometry. We believe this is because of the different number of quadkeys being indexed, which 

is related to the size and location of geometries. 

By comparing the indexing latencies based on different numbers of workers, we can 

observe that the performance can be significantly improved by using more workers in the 

distributed AHS-Model. Our evaluation results show that the indexing process of using 256 

workers can be 5 to 10 times faster than the stand-alone indexing process. 

Finally, while this evaluation tests with simulated geometries in various sizes to be 

comprehensive, some of these geometries are too large in the context of sensor web. Among 

these simulated geometries, the longest line geometry we generated was 7,112 kilometer long; 

and the largest polygon geometry was about 37% of Earth’s coverage. However, in reality, a 

major city highway is usually about 100 kilometer; and a city’s coverage is usually smaller than 

1% of Earth’s coverage. 

To sum up, while some of the simulated geometries are not realistic, the AHS-Model is 

able to finish the indexing step in a timely manner with the help of distributed processing. For 

indexing subscriptions, considering the long-running nature of continuous query, we argue that 

the measured indexing overhead is acceptable. In addition, as real-world sensor web data usually 

have much smaller geospatial coverage than the simulated geometries, we believe the indexing 

for publications would be much faster than that for subscriptions. The evaluation of the AHS-

Model performance using a more realistic dataset is presented in Chapter 4.3.4. 
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(a) 

 

(b) 

 

(c) 

Figure 4.12 The indexing latency for (a) point, (b) line, and (c) polygon geometry. 



 

116 

4.3.3 Evaluation of AHS-Model matching performance 

This section measures the latency of matching AHSPUB with AHSSUB. Since the time cost 

for matching may differ based on the number of quadkeys, we randomly generate geometries in 

various sizes. And in order to make sure that the quadkeys of these geometries will be processed, 

we first applied the same geometry in both publication and subscription, and then assigned 

EQUALS as the topological operator. In this evaluation, the quadtree tile system had 14 levels. 

In addition, similar to the previous evaluation, we also measured the matching latency 

when applying different numbers of workers. In this evaluation, we still used the same machine 

to simulate each worker handling different quadkeys in the distributed AHS-Model. Here we 

simulated scenarios of distributed AHS-Models with 1, 4, 16, 64, and 256 workers. And 

considering the nature of distributed computing processes, we present the maximum (instead of 

average) matching latency from workers in each scenario. 

The matching latency of point, line, and polygon geometries are shown in Figure 4.13. 

Since the sizes of point geometries are the same (i.e., one area unit), we take the average on each 

scenario. In general, while the matching latency for point geometry is much smaller than that for 

other types of geometries, the matching latency for line geometry is smaller than that for polygon 

geometry. We believe this is because of the different number of quadkeys being processed. 

By comparing the indexing latencies based on different number of workers, we can 

observe that the performance can be significantly improved by using more workers in the 

distributed AHS-Model. Our evaluation results show that the matching process of using 256 

workers can be 20 to 300 times faster than the stand-alone indexing process. 

Finally, similar to the previous evaluation, this evaluation tests with simulated geometries 

in various sizes to be comprehensive. However, some of these geometries may be too large in the 



 

117 

context of sensor web. For example, among these simulated geometries, the longest line 

geometry we generated was 7,778 kilometer long; and the largest polygon geometry was about 

20% of Earth’s coverage. However, in reality, a major city highway is usually about 100 

kilometer; and a city’s is usually smaller than 1% of Earth’s coverage. 

To sum up, while some of the simulated geometries are not realistic, AHS-Model is able 

to match AHSPUB and AHSSUB in a timely manner with the help of distributed processing. In 

Chapter 4.3.4, we present the evaluation of AHS-Model performance by using a more realistic 

dataset. 
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(a) 

 

(b) 

 

(c) 

Figure 4.13 The matching latency for (a) point, (b) line, and (c) polygon geometry. 
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4.3.4 Evaluation of AHS-Model end-to-end query performance 

In this section, we evaluate the end-to-end query performance of the AHS-Model. We 

measure the latency of indexing publication, matching AHSPUB and AHSSUB, determining 

relationship, as well as the overhead. In addition, we perform this evaluation on any possible 

relationships (Table 3.2). We simulate one subscription/publication pair for each possible 

relationship. The sizes of geometries are created on city level as it may be the most common size 

in many use cases. For example, we create the point, line, and polygon of subscription based on 

the ideas of a point in a city (e.g., a city landmark), a road crossing a city (e.g., a major highway), 

and the coverage of a city, respectively. After creating the subscriptions, we manually create 

publications that match subscriptions for each possible topological relationship (e.g., a sensor 

locates at a road intersection). 

In order to test the overhead of distributed computing, we used two machines in this 

evaluation. The sets of quadkeys each worker is in charge of are manually configured, so that the 

workers handle similar amounts of work. Both machines are desktop-class machines. One of 

them runs an Intel
®
 Core™ i5-650 @ 3.20GHz, and 6GB RAM; and the other has Intel

®
 Core™ 

i7-3770 @ 3.40GHz, and 10GB RAM. Considering the machine heterogeneity and the possible 

unequal amount of work assigned, instead of presenting the maximum latencies, this evaluation 

calculates the average latencies to provide an expected AHS-Model performance in a real-world 

application. 

Therefore, we test each scenario 10 times and take the average for each scenario. The 

end-to-end query performances for using point, line, and polygon geometry as subscription are 

shown in Figure 4.14, Figure 4.15, and Figure 4.16, respectively. Based on these evaluation 

results, we found that it is difficult to simulate datasets that are fair enough to be used in the 
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comparison of different topological operators. We argue that the performance differences 

between topological operators do not hold much meaning as those differences may come from 

the machine heterogeneity or the characteristics of dataset such as the geometry size. Yet, this 

evaluation is still valuable as it measures the overhead of distributed computing, presents the 

latency of each step, and shows the expected AHS-Model performance in a real-world sensor 

web application. 

Therefore, based on the experimental results, our first observation is that the indexing and 

overhead take more than 99% of the end-to-end latency. While the overhead of applying 

distributed computing process is relatively stable (between 10 to 30 milliseconds), the indexing 

latency varies largely depending on the geometry size of publications. Our second observation is 

that the latencies for determining relationships are very small as each determination only handles 

a two-by-two matrix. Finally, since this evaluation is based on a more realistic dataset, the 

measured performance is able to represent the expected AHS-Model performance in a real-world 

application. As we can see from the evaluation results, most of the tests can be finished in 100 

milliseconds while more than 70% of them can be completed in 50 milliseconds. Therefore, we 

believe that AHS-Model can efficiently process any possible topological operators on sensor web 

data, which is critical for time-sensitive applications. 
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(a) 

 

(b) 

 

(c) 

Figure 4.14. The end-to-end query performance for point as subscription and (a) point, (b) 

line, and (c) polygon geometry as publication. 
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(a) 

 

(b) 

 

(c) 

Figure 4.15. The end-to-end query performance for line as subscription and (a) point, (b) 

line, and (c) polygon geometry as publication. 
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(a) 

 

(b) 

 

(c) 

Figure 4.16. The end-to-end query performance for polygon as subscription and (a) point, 

(b) line, and (c) polygon geometry as publication. 
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4.3.5 Summary 

In summary, we evaluated and compared the scalability between AHS-Model and 

PostGIS in terms of the number of subscriptions in Chapter 4.3.1. The result shows that AHS-

Model is 2.5 times faster than PostGIS, which indicates that the proposed solution is more 

scalable than the traditional solution. In Chapter 4.3.2, we simulated different number of workers 

in the distributed AHS-Model to measure the performance of indexing geometries in various 

sizes. The evaluation shows that with the help of distributed processing, AHS-Model is able to 

finish the indexing step in a timely manner even for geometries in large size. In addition, the 

indexing process of using 256 workers can perform 5 to 10 times faster than the stand-alone 

indexing process. 

Chapter 4.3.3 evaluates the matching performance by simulating geometries in different 

sizes. The evaluation results show that the distributed computing process can significantly 

improve the matching performance by 20 to 300 times. And even for large geometries, AHS-

Model is able to match AHSPUB and AHSSUB efficiently with the help of distributed processing. 

Finally, we evaluated the end-to-end query latency with more realistic datasets in Chapter 

4.3.4. We observed that indexing and overhead take more than 99% of the end-to-end latency. 

While the overhead of applying distributed computing process is relatively stable (between 10 to 

30 milliseconds), the indexing latency varies largely depending on the geometry size of 

publications. As demonstrated earlier that AHS-Model can finish most queries in 100 

milliseconds for a more realistic dataset, we believe that AHS-Model is able to efficiently 

process topological operators in a geospatial sensor web publish/subscribe system. 
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Chapter Five: Related Works  

This thesis has two major contributions. The first contribution is more related to the high-

level system architecture of a geospatial sensor web publish/subscribe system. We identify the 

potential challenges and propose an overall system architecture. The second contribution is about 

the new solutions proposed for selected components that we believe are critical and unique in the 

context of a sensor web publish/subscribe system. 

Therefore, we divide the discussion of related works into two parts accordingly to these 

contributions. In Chapter 5.1, we present the related system architecture and their mechanisms. 

And the Chapter 5.2 focuses on the works related to the new solutions proposed to address 

geospatial sensor web challenges. 

5.1 Related systems and their mechanisms 

In Chapter 2.1, we have discussed the major issues and existing approaches in general-

purpose systems applying the publish/subscribe communication model. As mentioned earlier, 

publish/subscribe system (Eugster et al. 2003), simple event processing system (Michelson 

2006), DSMS (Babcock 2002; Golab and Ozsu 2003; Cugola and Margara 2010), and CEP 

system (Luckham 2002) are similar as they all apply the continuous query processing model. 

Although the original designs of these systems are different in terms of the targeted data type and 

query complexity, their functionalities become similar to each other as these systems are 

evolving. In this chapter, we first briefly introduce the original designs of these systems and then 

explain their current architectures and mechanisms. 

Based on original designs of these systems, we can differentiate them by the degree of 

query complexity they handle. In general, publish/subscribe systems handled the simplest queries 

and simple event processing added some simple filtering functionalities on the basic 



 

126 

publish/subscribe communication model. While publish/subscribe and simple event processing 

systems focused on the processing of individual data points, DSMS and CEP tried to handle 

multiple data streams. 

In Dr. Luckham’s blog post
20

 “What’s the Difference between ESP and CEP?” he 

mentioned that ESP (i.e., event stream processing, which is similar to DSMS) was designed in 

the database community for real-time data analysis while CEP was designed to model not only 

the timing of events but also the relationship between events (i.e., pattern). He also mentioned 

that the fundamental difference between DSMS and CEP is at the types of data stream they dealt 

with. DSMS handled data that are ordered by time, which allowed DSMS to process events with 

very little memory since they do not need to cache many data. On the other hand, CEP aimed on 

processing data that may not be perfectly ordered. CEP then needed to cache many data before 

discovering the relationship between them. 

In general, DSMS was focused on high-speed querying and processing ordered data 

while CEP was focused more on discovering patterns from not-perfectly-ordered data and 

extracting information from the patterns. Moreover, at the end of the blog post, Dr. Luckham 

concluded that there will be no difference between DSMS and CEP in the future. 

Therefore, although the original designs of these systems are different, their 

functionalities overlap as they are evolving. For example, publish/subscribe systems start to 

support more filtering functions and DSMS starts merging with CEP. In the following two 

sections, in order to provide enough background for systems that are related to a geospatial 

                                                 

20
 Dr. David Luckham, the originator of CEP as proposed in his book, “The Power of Events” published in 2002. He 

posted this article in a CEP blog: http://www.complexevents.com/2006/08/01/what%E2%80%99s-the-difference-

between-esp-and-cep/ 
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sensor web publish/subscribe system, we introduce the current high-level architectures and 

existing approaches of publish/subscribe systems and DSMSs. 

5.1.1 Publish/Subscribe systems 

Publish/Subscribe is a communication model decoupling publishers and subscribers. 

Subscribers first register their event of interest, and asynchronously get notifications of events 

generated by publishers. Unlike the point-to-point synchronous request/response communication 

model, the asynchronous publish/subscribe model is more suitable for large-scale distributed 

applications. For example, publish/subscribe model has been widely applied in web blogging 

with RSS
21

 (RDF Site Summary) and Atom
22

 technologies. Eugster et al. (2003) wrote a well-

cited summary paper about publish/subscribe systems. Based on Eugster’s paper, here we 

introduce publish/subscribe systems from four perspectives, namely (1) architecture; (2) 

decoupling type; (3) filtering type; and (4) dissemination approach. 

1. Architecture: The basic publish/subscribe architecture relies on an intermediary 

component managing subscriptions and events. This intermediary (named as message 

broker or event notification service) provides three basic functions, namely storing, 

filtering, and notifying. First, the intermediary stores the subscriptions from subscribers. 

Second, when publishers send events to the intermediary, it filters the events based on the 

criteria in subscriptions. Finally, after discovering events that match subscribers’ criteria, 

the intermediary notifies subscribers of these events. The workflow of this basic 

publish/subscribe architecture is shown in Figure 1.3. 

                                                 

21
 RSS 2.0 Specification (http://www.rssboard.org/rss-specification) 

22
 Atom wiki (http://www.intertwingly.net/wiki/pie/FrontPage) 
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2. Decoupling type: There are three types of decoupling between publishers and subscribers 

that publish/subscribe model provides, namely space decoupling, time decoupling, and 

synchronization decoupling. First, the space decoupling means publishers and subscribers 

do not know each other. Both publishers and subscribers only communicate with the 

intermediary. Second, the time decoupling means publishers and subscribers can interact 

with the intermediary at different time. For example, when a publisher publishes an 

event, a subscriber could be offline; and similarly, a subscriber could be notified about an 

event when the publisher of that event is offline. Third, the synchronization decoupling 

means that both the publishing events and receiving notifications activities can occur 

while publishers and subscribers perform other concurrent tasks. As stated in Eugster et 

al. (2003), a publish/subscribe system should provide all these three types of decoupling. 

3. Filtering type: Publish/Subscribe systems are usually categorized based on how they 

filter events. Besides two common filtering types: topic-based and content-based, some 

systems support a hybrid of these two. The earliest publish/subscribe models were all 

topic-based, such as Birman et al. (1987), Powell (1996), Skeen (1998), and TIBCO 

(1999). In topic-based publish/subscribe systems, publishers publish events to “topics” as 

logical channels. Then subscribers receive notifications of events published to the topics 

they subscribe. However, topic-based publish/subscribe systems are static in terms of the 

topics they provide. Subscribers cannot express a customized subscription in topic-based 

systems. 

On the other hand, content-based publish/subscribe systems allow subscribers to specify 

filters based on the content of events. With the expressiveness of content-based systems, 

subscribers can customize subscriptions based on their own interests. Some systems even 
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support complex subscription patterns or event correlation (Bacon et al. 2000). Siena 

(Carzaniga et al. 2001), JEDI (Cugola et al. 2001), and Hermes (Pietzuch 2004) are 

examples of content-based publish/subscribe systems. 

Other than topic-based and content-based systems, a hybrid publish/subscribe system 

allows publishers to publish events to predefined topics while subscribers treat topics as 

another attribute of events (Szarowski 2003). Based on this definition, our proposed 

GeoPubSubHub belongs to a hybrid publish/subscribe system as we use SOS property 

layers or phenomenon elements in the semantic layer service as topics. Another hybrid 

publish/subscribe example is the OGC Sensor Event Service (SES) (Echterhoff and 

Everding 2008). SES has three levels of filtering. The level 1 filter uses XPath
23

 on single 

event. The level 2 filter applies logical, spatial, temporal, arithmetic, and comparison 

operators on incoming events. And the level 3 filter employs the OGC Event Pattern 

Markup Language (EML) (Everding and Echterhoff 2008) to perform filtering on event 

streams. 

4. Dissemination approach: There are various approaches for transmitting events in 

publish/subscribe systems. These approaches can be categorized into centralized and 

decentralized approaches. In a centralized approach, the intermediary (i.e., the event 

notification service) directly communicates with publishers and subscribers. While the 

centralized approaches provide strong guarantee of transmission, their throughput and 

scalability are not as good as that of decentralized approaches. The most common 

decentralized approach is Internet Protocol (IP) multicast (Deering 1989), which is a 

                                                 

23
 http://www.w3.org/TR/xpath/ 
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technique for one-to-many communication. With IP multicast, the data source (i.e., the 

event notification service) only needs to send packets once to the network infrastructure, 

and the network will handle the packet replication and the transmission to multiple 

receivers (i.e., subscribers). 

In topic-based systems, subscribers can be grouped by the topics they subscribe. IP 

multicast dissemination approaches can be easily applied for high-throughput (Floyd et 

al. 1997; Castro et al. 2002). However, an efficient dissemination approach for content-

based system remains an issue since subscribers are hard to be grouped with their ad-hoc 

subscriptions. 

Some works construct an overlay network of event notification servers and only transmit 

events to the servers that manage subscriptions related to these events (Aguilera et al. 

1999; Carzaniga et al. 2001). However, the performance of dissemination will strongly 

depend on the efficiency of filtering processes on each server. Therefore, there have been 

some researches about efficient filtering in publish/subscribe systems, such as Fabret et 

al. (2001), Campailla et al. (2001), and Diao et al. (2002). Similar to DSMS, 

publish/subscribe generates query plans from continuous queries and aggregates identical 

or similar query operators for efficiency. 

In GeoPubSubHub, we have not discussed the dissemination approach yet. Currently, we 

propose using a centralized approach for a more reliable communication. One of our 

future directions is to analyze whether other dissemination approaches can improve the 

performance of GeoPubSubHub. 
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5.1.2 Data stream management systems (DSMSs) 

As many data-intensive applications emerging (e.g. network monitoring, electronic 

trading, and sensor network monitoring), traditional DBMSs are not designed to query rapid and 

continuous data streams. Therefore, the database community proposed DSMS (or called ESP) to 

efficiently query real-time streaming data. Here we compare DBMS and DSMS from three 

perspectives, namely data, processing model, and query. First, while the data in DBMS usually 

represent persistent relations, data in DSMS could be removed for processing and storage 

efficiency. In addition, unlike the data in DBMS, the data streams in DSMS arrive in real-time, 

are potentially unbounded, and will be processed only once. 

Second, the processing model of DBMS is query-driven while that of DSMS is data-

driven. In DBMS, users submit queries to pull out answers, and data are processed upon query 

submission. In contrast, the DSMS processing model is similar to the publish/subscribe model, 

where data are processed upon its arrival and results are then pushed to users. Third, the queries 

in DBMS are one-time queries while the queries in DSMS are continuous queries. Due to the 

nature of one-time queries, the query optimization in DBMS is based on each query. On the other 

hand, DSMS generates a query plan for each query and shares the same query operators between 

query plans in order to optimize the processing of multiple queries. 

In section 2.1, we have discussed the two major issues (i.e., memory and query 

efficiency) in DSMS and the existing approaches proposed to address these two issue. Here we 

introduce the basic DSMS architecture and the continuous query language. 

1. Architecture: The basic DSMS architecture consists of seven modules, namely (1) input 

buffer and input monitor; (2) working storage; (3) summary storage; (4) static data 

storage; (5) continuous query processor; (6) query repository; and (7) output buffer. The 



 

132 

high-level architecture is shown in Figure 5.1. First, the input buffer receives input 

streams from different data sources and parses these streams for internal usages while the 

input monitor collects the statistics of streams (e.g., input rate) and regulates the input 

rate of streams by dropping data (i.e., load shedding). Second, the working storage 

temporarily stores the recent portion of streams with sliding windows. Third, the 

summary storage contains the summarized information that will be used in the later 

operations (i.e., synopses). Fourth, the static data storage holds the static information 

required for queries, such as metadata. 

Fifth, the continuous query processor executes query plans generated from user queries. 

The continuous query processor is also responsible for optimizing query processing. In 

addition, in order to handle the dynamic nature of DSMS, the continuous query processor 

informs the input buffer and input monitor about the current CPU and memory usage. 

Then the input buffer performs load shedding according to the system statistics. 

Conversely, the continuous query processor also receives the statistics of streams from 

the input monitor in order to optimize query plans according to the current input stream 

environment. Sixth, the query repository allows users to submit or cancel their queries. 

Finally, the output buffer streams out the answers of continuous queries. 
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Figure 5.1 The basic DSMS architecture. 

 

2. Continuous query language: The other important feature of DSMS we have not discussed 

is the continuous query language. Like DBMS applies structured query language (SQL) 

to query databases, DSMS community developed continuous query languages to query 

data streams. Various types of languages were proposed. Cugola and Margara (2010) and 

Golab and Ozsu (2003) categorized the existing continuous query languages based on the 

functionality of languages or the backend data structure. Since continuous query 

languages are usually extended from other standard query languages (e.g., SQL), here we 

try to group the existing continuous query languages based on those standard query 

languages, which include (1) SQL-based continuous query language, (2) XML-based 

continuous query language, (3) procedural language, and (4) others. 

(1) SQL-based continuous query language: Since SQL is defined as the standard query 

language in DBMS, most DSMS systems developed continuous query languages based 
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on SQL. These languages construct additional operations on the basic SQL for sliding 

windows or order-dependent operations. For example, CQL (Continuous Query 

Language) in STREAM project (Arasu et al. 2004) defined three types of operators, 

namely relation-to-relation
24

 operator, stream-to-relation
25

 operator, and relation-to-

stream operator. 

First, the relation-to-relation operators are similar to the logical comparison functions in 

DBMS. Second, the stream-to-relation operators are essentially the sliding window 

operators, such as tuple-based sliding windows or time-based sliding windows. Third, the 

relation-to-stream operators contain an insertion of tuples in a relation into a stream, a 

deletion of tuples in a relation from a stream, and a conversion of tuples in a relation into 

stream with the current timestamp. 

There are many other continuous query languages belong to this group, such as Fjords of 

TelegraphCQ (Madden and Franklin 2002; Chandrasekaran et al. 2003), AQuery (Lerner 

and Shasha 2003), COUGAR (Bonnet et al. 2001), PLACE (Mokbel et al. 2005), 

Tapestry (Terry et al. 1992), Alert (Schreier et al. 1991), Xyleme (Nguyen et al. 2001), 

OpenCQ (Liu et al. 1999), Gigascope (Cranor et al. 2003), Stream Mill (Bai et al. 2006), 

Cayuga (Brenna et al. 2007), NextCEP (Schultz-Moeller et al. 2009), SASE (Wu et al. 

2006), StreamBase (2011), Oracle CEP (2009), Esper (2012), SPADE of IBM System S 

(Gedik et al. 2008), LINQ of Microsoft StreamInsight (2013). 

(2) XML-based continuous query language: Some DSMSs are designed to retrieve 

information from data streams stored in the form of XML datasets. In this case, there 

                                                 

24
 In STREAM, relation is defined as a time-varying bag of tuples. 

25
 In STREAM, stream is defined as an unbounded bag of tuples. 
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were continuous query languages developed based on XML-QL
26

, a query language for 

XML, and XPath, a language for addressing parts of an XML document. Both XML-QL 

and XPath are W3C standards. For example, NiagaraCQ (Chen et al. 2000) allows users 

to periodically execute a XML-QL query by specifying a start time, an expiration time, 

and a time interval. On the other hand, XFilter (Altinel and Franklin 2000), a document 

filtering system, applied XPath language for users to express their queries. The XFilter’s 

filter engine also indexes the XPaths for efficient query processing. In addition, the EML 

used in OGC Sensor Event Service is also based on XML (Everding and Echterhoff 

2008). 

(3) Procedural language: Other than the previous two declarative query languages, there 

are some DSMSs that allow users to specify the query flow with operators. For example, 

in Aurora (Abadi et al. 2003), users can construct query plans through a graphical 

interface, where operators and flows are represented as boxes and arrows. STREAM 

(Arasu et al. 2004), on the other hand, not only provides SQL-based continuous query 

language but also developed a graphical query and system visualizer, which allows users 

to view the structure of query plans, detail properties of each entity (i.e., operator, queue, 

and synopsis), dynamically adjust entity properties, and view real-time monitoring graphs 

of properties. Similar to STREAM, Oracle CEP (2009) provides both a SQL-based query 

language and a visualizer for users to create, manage, and monitor CEP applications. 

(4) Others: Beside the aforementioned three types of languages, some DSMSs defined 

their own continuous query languages. For example, Tribeca (Sullivan and Heybey 1998) 
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 http://www.w3.org/TR/NOTE-xml-ql/ 
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created ad-hoc data description languages (DDL) to specify stream sources, filter tuples, 

apply sliding windows, and output results. 

5.1.3 Summary 

As we can see from this Chapter 5.1, publish/subscribe systems and DSMSs are similar in 

terms of their high level architectures and functionalities. Instead of “reinventing the wheel,” we 

have tried to adopt the ideas and solutions from the existing works when proposing 

GeoPubSubHub. However, there are still some important components we have not yet discussed 

in the GeoPubSubHub, such as the dissemination approach, the adaptive query processing, and 

the continuous query language. We believe that these topics are certainly worth investigation; 

and they are in our future directions. 

5.2 Related approaches for the sensor web context 

As mentioned earlier, GeoPubSubHub is a publish/subscribe system specifically designed 

for the sensor web. As this topic is very domain-specific and was seldom discussed, some critical 

issues (as we discussed in Chapter 2.2) have not yet been addressed. Therefore, in this thesis, we 

have proposed new solutions to solve some of these issues, namely the sensor web input adaptor, 

LOST-Tree, and AHS-Model. Here we introduce the existing approaches related to these three 

solutions. Please note that since the work of semantic layer service is a cooperative work and the 

details have been published in other documents, readers interested in those details are referred to 

Knoechel et al. (2011) and Knoechel et al. (2013). 

5.2.1 Works related to sensor web input adaptor 

The sensor web input adaptor in GeoPubSubHub is designed to retrieve sensor data from 

data sources in a timely manner. As the input adaptor utilizes LOST-Tree to aggregate 
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subscriptions and the works related to LOST-Tree are presented in Chapter 5.2.2, this chapter 

mainly focus on the adaptive sensor stream feeder. 

One of the major issues in the input adaptor is that most sensor data sources only support 

request/response communication (e.g., OGC SOS), which means that a client needs to initiate the 

communication in the first place. However, users cannot know when a new data will be available 

in data sources. We propose the adaptive sensor steam feeder to first pull data from sources in a 

timely manner and then push the new data to consumers. Hence, we name this type of processing 

as a hybrid pull-push approach. 

Since the publish/subscribe paradigm has been wildly applied in the web blogging 

applications, users can get notifications of new posts (i.e., feeds) through technologies such as 

RSS or Atom. However, similar to most sensor data sources, some websites do not support 

publishing their contents. In this case, a hybrid pull-push approach similar to the proposed 

adaptive feeder was used to retrieve contents from those websites. For example, Superfeedr
27

 

acts like a proxy that pulls feeds in one to fifteen minutes frequency from any subscribed 

webpages and forwards new content to subscribers. In addition, in order to deal with the 

scalability issues, Superfeedr also utilizes the cloud computing infrastructure. 

The other example is the ifttt.com
28

, which is shorthand for “if this then that”. This 

application allows users to create or use existing “recipes” while each recipe contains a trigger 

and an action. Triggers can be events that happen in supported applications (which are called as 

“channels”). Actions are functions in these channels. For example, one existing recipe is “if a 

new Gmail arrives, change my Philips hue light bulb to red”. In order to use this recipe, users 
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 http://superfeedr.com/ 
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need to first active Gmail and the Philips hue channels by allowing ifttt.com to access these 

applications on behalf of them (through OAuth
29

). Although ifttt.com does not explain their 

algorithms, we believe it would be similar to the hybrid pull-push approach that the adaptive 

feeder and Superfeedr use. 

In addition, PubSubHubbub
30

 is a standard protocol designed to extend the Atom (and 

RSS) protocols for data feeds. PubSubHubbub can be applied to any resource as long as it is 

accessible via HTTP. There are three types of components in PubSubHubbub, namely 

publishers, subscribers, and hubs. First, a subscriber pulls an HTTP resource from a web server. 

If the HTTP response contains a header that references to a hub, the subscriber is able to 

subscribe the resource on that hub. For publishers, whenever they update resources that reference 

to a hub in the HTTP headers, they post notifications to the hub. Then the hubs notify their 

subscribers. Superfeedr supports the PubSubHubbub protocol as well. 

Compared to the aforementioned solutions, the proposed input adaptor is unique in that 

(1) it handles spatio-temporal subscription aggregation with the help of LOST-Tree and (2) it 

tries to reduce the number of requests by detecting sensor data sampling periods and scheduling 

new retrieving requests accordingly. 

5.2.2 Works related to LOST-Tree 

The LOST-Tree was originally designed to be a sensor data loading component in a 

sensor web browser to filter out redundant requests for efficient sensor data loading. Efficiently 

transmitting large amounts of sensor data over the WWW is known as a major challenge (Nath et 

al. 2006). To date there have been few investigations of efficient spatio-temporal data loading 

                                                 

29
 OAuth is an open standard for authorization for clients to access and control server resources on behalf of a 

resource owner. 
30

 https://code.google.com/p/pubsubhubbub/ 
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mechanisms for a sensor web browser. Many tree structures have been extended for supporting 

temporal query on R-Tree (Guttman 1984) or quadtree (Finkel and Bentley 1974), including RT-

Tree (Xu et al. 1990), 3D R-Tree (Theodoridis 1996), MRA-Tree (Lazaridis and Mehrotra 2001), 

aRB-Tree (Papadias et al. 2002), SB-Tree (Yang and Widom 2003), MV3R-Tree (Tao and 

Papadias 2001), and linear quadtree (Tzouramanis et al. 1998). However, these structures were 

all originally developed for data management rather than for data loading. ArchRock (Woo 

2006), IrisNet (Gibbons et al. 2003) and GSN (Aberer et al. 2006) studied sharing sensor data 

over the Internet. However, these three works did not focus on the construction of a sensor web 

browser; and no efficient data loading mechanism was discussed. 

One of the most relevant works is implemented by 52°North. They provide an online 

platform called SensorWeb Client
31

, which allows users to access data from OGC SOSs, 

visualize sensors on a map, and retrieve time-series data after selecting sensors. However, 

although their client is also a sensor web browser, they do not employ any loading management 

mechanism. They use a naïve data loading approach as their client re-loads data whenever the 

view of map is changed. 

The other works similar to LOST-Tree were presented by Nath et al. (2006) and Ahmad 

and Nath (2008). They presented an architecture for a sensor data portal (i.e., SensorMap) and 

proposed COLR-Tree to address challenges of sensor data loading and management on the portal 

side. Although COLR-Tree is designed for a sensor data portal instead of a sensor web browser, 

its strategy on the sensor data loading is worth to be analyzed. 
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COLR-Tree uses slot-cache and sampling mechanisms to reduce transmission load. The 

slot-cache technique appends slots on each R-Tree node, where each slot represents a certain 

time period for sensor data aggregation. When the portal receives spatio-temporal requests, 

COLR-Tree checks whether the number of cached sensors is larger than a predefined number. If 

yes, the portal returns cached data; otherwise, COLR-Tree uniformly loads additional sensors to 

fulfill the predefined number. 

We argue that COLR-Tree has two major issues. First, COLR-Tree couples data loading 

and data management. This means in order to decide whether or not to send out requests, the data 

loading component needs to traverse through an index tree of the cached sensor readings (i.e., the 

data management component). Because of the big sensor web data phenomenon presented in 

Chapter 1.1, we argue that the index tree size would grow rapidly and the COLR-Tree solution 

would subsequently become inefficient. 

The second issue of COLR-Tree is that COLR-Tree aggregates and samples sensors’ raw 

readings to prevent the growth of the data management tree. While we argue that users, 

especially scientists, require raw readings to develop their models and applications, a sensor web 

client that provides aggregated readings may not be suitable for many applications. 

As a result, we recommend that the data loading and management should be decoupled in 

sensor web browsers. In this case, not only the transmission load can be reduced but also raw 

sensor readings can be provided. Hence, we propose LOST-Tree to manage data loading and a 

client-side cache to manage sensor readings. 

5.2.3 Works related to AHS-Model 

AHS-Model is proposed to efficiently process topological operators in a geospatial sensor 

web publish/subscribe system. A geospatial publish/subscribe system was seldom discussed 
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compared to the general-purpose systems. Although there have been some works that discussed 

the topic of supporting spatial operators in a publish/subscribe system, most of them simply 

applied spatial database join operations to prove the concept. 

Kassab et al. (2010) implemented the WITHIN operator in a publish/subscribe system for 

fire emergencies application. They applied ArcGIS Engine v9.3 .NET SDK as a black box in 

their notification service component to determine topological relationships. PLACE (Mokbel et 

al. 2005), as a DSMS application, first groups the geometries of objects (i.e., publications) and 

queries (i.e., subscriptions) into two tables and then performs spatial join on these two tables. 

PLACE implemented INSIDE (i.e., WITHIN) and kNN (i.e., k Nearest Neighbor) operators to 

prove the concept. Ali et al. (2010) applied the Microsoft SQL Server Spatial Library to support 

spatial queries in their Microsoft StreamInsight system. However, we argue none of these 

researches discussed about improving the efficiency of geospatial algorithms for 

publish/subscribe systems, and some of them do not support all topological relationships. 

As we mentioned in Chapter 3.6.2, DE-9IM (Clementini et al. 1993) is the typical 

approach to determine topological relationships; and OGC Simple Feature Access Specification 

has defined eight topological relationships. However, since the topological relationship between 

two geometries is determined independently, the determination process is computationally 

expensive (Clementini et al. 1994). In order to reduce the computation load of determining 

topological relationships, Clementini et al. (1994) proposed a two-steps approach: filter and 

refinement. As many spatial join techniques applied MBRs (i.e., minimum bounding rectangles) 

to reduce computation load (Jacox and Samet 2007), Clementini et al. (1994) also used MBR as 

approximations to find the candidate geometries in the filter stage. Then the refinement stage 

performs the actual DE-9IM process to determine the topological relationships. 
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However, although the two-step approach is suitable on spatial joins and determinations 

of topological relationship in spatial databases, we argue that this approach could be further 

improved for publish/subscribe systems. For example, in a publish/subscribe system, queries are 

continuous and pre-defined. We can pre-generate and pre-index the required information from 

subscriptions’ geometries. Then, similar to the idea of sharing operators across similar query 

plans in publish/subscribe systems (Arasu et al. 2004), we can aggregate pre-generated 

subscriptions indices into a single data structure and directly intersect publications with this 

structure for all the subscriptions. 

Moreover, in order to aggregate as much process as possible, instead of using MBRs to 

find candidates (i.e., the filter step), we try to move the intersection processes from the 

refinement step to the filter step. For example, we generate indices with a quadtree tile structure 

(Gaede and Gunther 1998) and use the indices to represent geometries. Therefore, while 

matching a publication with the aggregated subscription indices, the process not only finds 

candidates but also performs intersections between the publication and subscriptions. With these 

ideas, we propose AHS-Model to efficiently process topological operators in GeoPubSubHub. 

  



 

143 

Chapter Six: Conclusions and Future Work  

We have presented the GeoPubSubHub, a geospatial sensor web publish/subscribe 

system. GeoPubSubHub utilizes the continuous query processing model to address the defined 

big sensor web data challenges and provide timely notifications. Although there has been many 

investigations on general-purpose systems applying continuous query processing model (e.g., 

publish/subscribe systems, DSMS), only few literatures discussed about a geospatial sensor web 

publish/subscribe system. 

In order to provide a comprehensive overview of a geospatial sensor web 

publish/subscribe system, Chapter 2 presented the identified challenges for constructing a 

geospatial publish/subscribe system in the sensor web context. And Chapter 3 presented the 

design of GeoPubSubHub including proposed solutions for addressing the identified challenges 

and overall system architecture. 

While some of the challenges are common with general-purpose systems, some of them 

are unique because of the nature of sensor web data and data sources, such as the pull-based data 

sources, large number of data sources, heterogeneous sensor web data, geospatial data and 

queries, and sensor web data visualization. While some of the proposed solutions are similar to 

existing solutions, we put our focus on the modules that we believe are most unique and critical 

in the context of a geospatial sensor web publish/subscribe system. Hence, we proposed the 

sensor web input adaptor, LOST-Tree, semantic layer service, AHS-Model, and sensor web 

browser. 

The sensor web input adaptor has two major functionalities. First, it applies the proposed 

LOST-Tree to aggregation overlapped spatio-temporal cubes in order to avoid redundant sensor 

data transmission. Second, the adaptive sensor stream feeder tries to detect the sensor sampling 
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period and schedule next requests accordingly. As shown in the experimental results, if a service 

makes data available online as soon as they are measured, the proposed adaptive sensor stream 

feeder can retrieve sensor data in a timely manner without any unnecessary request. 

In GeoPubSubHub, LOST-Tree is applied in both the sensor web input adaptor and the 

sensor web browser to avoid redundant sensor data transmission. We evaluated LOST-Tree with 

an OGC SOS. Our evaluation results demonstrated that, with LOST-Tree and the local cache, a 

sensor web browser can attain sensor data loading 100 times faster than the naïve solution. 

LOST-Tree is lightweight (always less than 164 Kbytes during our evaluation) and scalable in 

terms of the number of spatio-temporal requests. Also, LOST-Tree can avoid unnecessary 

transmissions up to 100% in an efficient manner (less than 4 milliseconds for the realistic 

scenario). 

The semantic layer service was proposed to integrate the heterogeneous sensor web data 

and provides users a coherent view on the sensor web data. The semantic layer service uses a 

bottom-up approach to address the semantic and syntactic heterogeneity issues. As the semantic 

layer service is a cooperative contribution, the detail methodology and evaluation can be found 

in Knoechel et al. (2011) and Knoechel et al. (2013). 

The AHS-Model was proposed to efficiently determine topological relationships between 

new sensor web data and a large number of predefined subscriptions. The experimental results 

show that AHS-Model is more scalable than the traditional solution in terms of handling a large 

number of subscriptions. With the help of distributed processing, AHS-Model is able to perform 

the indexing and matching steps in a timely manner. In addition, AHS-Model can finish most 

queries with 100 milliseconds end-to-end latency for a more realistic dataset. 
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To sum up, while the world-wide sensor web is generating tremendous volumes of 

priceless data that enables scientists to observe previously-unobservable phenomena, a software 

component that efficiently converts sensor web data into information is necessary for time-

critical applications such as emergency response systems. To harness the full potential of sensor 

web, the GeoPubSubHub was proposed to efficiently process geospatial sensor web data streams 

and provide timely notifications. The major contributions of this thesis are as follows: 

1. Based on the challenges and existing approaches in a general-purpose publish/subscribe 

architecture we summarized, we identified seven challenges in a sensor web 

publish/subscribe architecture. While some of them are common with general-purpose 

systems, some of them are unique because of the nature of geospatial sensor web data and 

data sources. 

2. We proposed solutions with overall system architecture and workflow to address the 

identified challenges in order to cover all aspects of constructing a geospatial sensor web 

publish/subscribe system. 

3. This thesis focused on the modules that we believe are most unique and critical in the 

context of a geospatial sensor web publish/subscribe system. The proposed sensor web 

input adaptor is able to aggregate users’ spatio-temporal requests and efficiently retrieve 

sensor data from pull-based data sources while avoiding unnecessary requests. The 

proposed LOST-Tree can serve as a data loading component in a sensor web browser to 

effectively and efficiently aggregate spatio-temporal cubes and avoid redundant requests. 

The proposed AHS-Model is able to efficiently determine the topological relationships in 

a sensor web publish/subscribe system, which demonstrates that time-consuming 

geospatial operators can be revised for time-critical applications. 
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For future directions, we believe that each of the identified challenges (in Chapter 2.2) is 

an interesting and important research question that is worth further investigation. In addition, as 

mentioned in Chapter 5, we have not yet discussed the dissemination approaches, adaptive query 

processing, and continuous query language in the GeoPubSubHub. These topics are also 

important. 

Furthermore, some of the proposed solutions could be further improved. For example, 

LOST-Tree may be improved to attain the best performance with an automatic and adaptive 

configuration mechanism based on different cache scenarios or sensor web services. By 

collecting the information of sensor data sampling rate and geographical density, LOST-Tree 

could further improve the utilization of each request. For distributed AHS-Model or even the 

GeoPubSubHub architecture, further investigation is required for more sophisticated load 

balancing approaches. 

In general, despite the fact that there are still many important topics and directions to be 

investigated, as one of the first geospatial sensor web publish/subscribe system, we believe that 

the proposed solutions and GeoPubSubHub architecture serve as a promising initiative to address 

the unique big sensor web data challenges and consequently allow us to harvest the full potential 

of the world-wide sensor web. 
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