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Abstract 

Urban mapping is one of the most important tasks in military and civilian applications. Since the 

launching of high resolution satellite imagery; such as IKONOS, QUICKBIRD, WorldView-2 

and their high spatial and high spectral resolution are much appreciated for urban mapping, as 

high spatial resolution provides better geometric quality while high spectral resolution provides 

better object identification. If we add the reliability and unmatched coverage area, compared to 

other sensors, with the previous advantages so we are using the optimum tool for urban planning 

and mapping purposes. 

Current scientific efforts in image and signal processing fields have led to more powerful and 

reliable tools for fast and efficient analysis and handling of large amounts of data sets currently 

available from the new satellite missions. This thesis contributes to this development by 

introducing an innovative combination of various methods from image processing and the new 

eight bands from the WorldView-2 to derive reliable information for land use and land cover 

types. 

In this thesis, data from WorldView-2 satellite for Ismailia city, EGYPT, is used. The study area 

was selected to cover the main necessary classes to produce an urban classification map. A new 

multi-layer classification algorithm using the traditional NDVI and two new NDVI like ratio 

were used to separate between six main classes; water, vegetation, shadow, bare soil, asphalt and 

buildings. 

 A new technique based on second generation curvelet transforms was used to detect edges and 

was compared with wavelet and traditional canny operator. Both approaches; the multi-layer 

classification algorithm and curvelet transforms, were integrated to enhance the quality of the 

classification. A calibration process preceded the proposed algorithms and succeeded together in 
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extracting the desired classes with a high accuracy in an almost automatic procedure without user 

intervention.  

Shorelines were also extracted using the new algorithm and the relative bathymetry of the water 

way of the Suez Canal and the Temsah Lake were derived using innovated band ratios with the 

new spectral bands. 
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Chapter One: Introduction 

For many years, satellite-based remote sensing has been a highly invaluable tool for urban 

planning as no other platform can reliably and repeatedly revisits an area on such a broad scale. 

Generally, satellite-based remote sensing can be considered  a cost-effective alternative to aerial 

photography or LiDAR, especially in the acquisition of land cover and land use information 

(Ouma et al. 2010). 

Since the launching of many high resolution satellite imagery in the first decade of this century, 

remote sensing has undergone a rapid development, boosting the possibility of many new and 

improved applications (Ünsalan and Boyer 2011). Ongoing scientific efforts in image and signal 

processing fields have led to more powerful and reliable tools for fast and efficient analysis and 

handling of large amounts of data currently available from new satellite missions.  

This thesis contributes to this development, by introducing an innovative combination of various 

methods from image processing and the new eight bands from the WorldView-2 to derive 

reliable information for land use and land cover types. 

1.1 Motivation  

Recent advances in satellite imagery have resulted in the availability of high-resolution 

multispectral imagery with, meter and sub meter resolution. Before WorldView-2, high spatial 

resolution images were usually of low spectral resolution, typically containing only three or four 

spectral data bands, red, green, blue and infrared, as in the case of IKONOS or Quickbird. This 

shortage of mid-infrared bands limit the ability of traditional classifiers to accurately detect 

detailed land-cover types (Thomas et al. 2003). Geo-Eye-1 is considered the most comparable 

satellite to WorldView-2 in the spatial details perspective because it provides sub-meter accuracy 

for the panchromatic sensor and 1.65 m for the multispectral sensor. However, in terms of its 
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spectral resolution, its capabilities remain far from those of the WorldView-2 since it only 

provides four spectral bands like IKONOS and Quickbird imagery.  Although medium resolution 

satellites such as Landsat Thematic Mapper introduced eight spectral bands ranging from the 

visible to infra-red, and also include two thermal bands, they did not provide the required spatial 

details necessary for many urban planning applications. Additionally, automated image 

classification techniques relied entirely on the pixel characteristics such as the digital number or 

colour, leaving behind key characteristics of texture, shape and context (Sharma and Sarkar 

1998).  

The previous limitation could be accepted in low or medium resolution satellite imagery as the 

pixel is relatively large and already contains texture information. However, in high-resolution 

satellite imagery, the pixel is relatively small and the texture information occurring in the 

relationship between pixels is quite meaningful. Therefore, the use of a pixel-approach alone for 

classification is not enough, and the use of contextual information in addition to spectral features 

for image classification will  result in an improved level of accuracy (Ouma et al. 2010) 

The main objective of this research thesis is to introduce a mapping solution for urban, 

agricultural, marine classification, and coastal edge detection including shallow water depth 

estimation using the enhanced capability of the new satellite mission, WorldView-2. Achieving 

this objective first requires the application of supervised classification techniques through 

Maximum Likelihood Classification (MLC). In addition, some traditional and innovative band 

ratios are used in a decision tree to evaluate the contribution of each of the new bands into the 

quality of classification. Then as a new technique, the second generation curvelet transform 

(DCTG2) is applied for edge detection of coastal lines, buildings, and road networks and 

compared to the traditional edge detectors such as Canny edge detector and wavelet transform. 
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Finally, the two approaches are combined to produce an efficient urban and coastal classification 

technique that can be later used in change detection or any further process. 

1.2 Thesis Objectives 

The main objective of this study is to introduce a classification and edge detection solution for 

classifying urban, vegetation, desert and coastal areas utilizing second-generation multi-

resolution techniques combined with traditional edge detection operators and the enhanced 

capability of the new satellite mission WorldView-2.  

The workflow is summarized in Figure  1-1, first, supervised classification techniques are applied 

by maximum likelihood classification (MLC) and parallelepiped methods using innovative band 

ratios that are combined to introduce an efficient classification and identification technique with 

a detailed evaluation that tests the quality of the resulting classification.  Next, the second 

generation curvelet transform (DCTG2) will be implemented  for edge detection  of different 

features and regions, mainly coastal lines, buildings and road networks which will then be 

compared to the traditional edge detectors results such as Canny edge detector and discrete 

wavelet transform (DWT). A comparison between the application of a curvelet transform as a 

standalone technique or a combination with Canny is developed to achieve the most efficient 

combination of the three techniques for edge detection. 
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Figure  1-1 Research Workflow 

This thesis also includes the following sub-objectives that will contribute to the achievement of 

the main objective: 

 Validating of the improvement in classification accuracy attributable to the new spectral 

bands versus the traditional visible and near-infrared (VNIR) bands used for a broad 

range of land cover types, by implementing only traditional spectral classifiers and 

without using any textural information. 

Satellite imagery 
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Edge detection 

DCTG2 DWT 

Water Veg. Urban  

Supervised 

classification 

MLC Parallelepiped  

Buildings Roads 

network 

Integration & 

Accuracy assessment 

Utilising new bands Utilising of new bands 

Canny  

Shoreline 

detection 
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 Developing of a detailed assessment of the predictive role of each of the new bands, 

coastal-blue (C), yellow (Y), red edge (R-E) and near-infrared 2 (NIR2), with a quality 

assessment and an analysis of their contribution to the classification process. 

 Developing new band ratios specially designed to detect shadow, bright surface and 

asphalt.  

 Modifying the parallelepiped method and solving some of its drawbacks and 

disadvantages (misclassified and overlapped pixels) without affecting its simplicity and 

minimum calculation time.  

 Implementing second-generation curvelet transforms as an edge detector of shorelines 

and buildings with the aid of the 8-bands and assessing its efficiency in comparison to the 

traditional first generation multi-resolution analysis techniques. 

 Assessing the accuracy of edge detection using DCTG2, compared to the accuracy 

obtained from classical techniques (Canny and wavelet transformation) regarding 

building and shorelines extraction. 

 Methodology to incorporate spatial and spectral approaches to enhance classification 

quality. 

 Estimating the bathymetry of shallow water through the use of red edge (R-E) and 

coastal-blue (C) bands respectively. 

 

1.3 Thesis Outlines 

The thesis consists of six chapters; chapter two covers the necessary background about image 

spectrometry and the behaviour of the main four features, water, vegetation, manmade objects 
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and barren, on the earth surfaces when it is subjected to light. Also, chapter two describes the 

data used and the required pre-processing and data handling steps.  

Chapter three deals with the implementation of three edge detection techniques; wavelet, canny 

and curvelet transforms, and why the conversion from spatial to frequency domain is 

recommended. In this chapter a detailed comparison between the three techniques and their 

implementation with high resolution satellite imagery were introduced in addition to the new 

method (curvelet - canny approach) for edge detection. 

Chapter four covers the techniques used for urban classification in both approaches pixel and 

object bases separately. A new multi-layer classification algorithm is introduced to effectively 

separate between six main classes; water, vegetation, shadow, bare soil, buildings and asphalt. 

Second generation curvelet transforms will be implemented for edge detection to enhance the 

classification results especially for the buildings class. Then the integration process between the 

two approaches takes place. 

Chapter five deals with the shoreline extraction and bathymetry problems. First curvelet 

transforms with the new band ratios are introduced to separate shorelines. Then, the new bands; 

coastal blue, yellow, near-infrared 2 and red edge will be used to extract the relative depths of 

the water way of the Suez Canal and the Temsah lake. Figure  1-2, illustrates the thesis outlines 

and the purpose of each chapter. Finally, chapter six includes the conclusion, recommendations 

and future work.  
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Figure  1-2 Thesis outlines 
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Chapter Two: Multi-spectral Image Processing and Feature Extraction  

2.1 Imaging Spectrometry 

Spectral reflectance in visible and near-infrared offers a rapid and inexpensive technique for 

determining the physical properties of samples and obtaining information on their chemical 

composition. Spectroscopy is the study of light as a function of wavelength that has been emitted, 

reflected or scattered from a solid, liquid, or gas (Clark 1999). This concept will be discussed in 

this chapter for four main objects; water, vegetation, soil, man-made objects. Although it is quite 

difficult to cover this topic adequately in a single chapter, a reasonable effort has been done to 

introduce an exhaustive and complete overview.  

2.1.1 Absorption and Scattering 

When light interacts with an object on the ground, light of certain wavelengths may be absorbed 

or transmitted through the substance while at other wavelengths, it may be reflected or refracted 

(scattered) as in Figure  2-1. The scattered portion may be scattered away from the surface, so 

they may or may not be detected and measured by the sensor. Reflectance may be defined as the 

ratio of the intensity of light reflected from an object to the intensity of the light incident on it. 

This light beam interacts with the object and the intensity of the reflected light at various 

wavelengths is measured by a detector. This detector is usually calibrated to a reference standard 

(surface) of known reflectance, enabling a continuous reflectance spectrum of the detected object 

in the measured wavelength region (Meer 2001).  
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Figure  2-1 Forms of light interactions with objects 

Photons (light) interact with objects by several processes. The variety of absorption processes 

and their wavelength dependence allows us to derive information about this feature from its 

reflected or emitted light. Our eyes and brain can be considered as a natural reflectance 

spectrometer where the wavelength-dependent scattering of visible-light photons are processed 

to reveal some information about what we are observing, like the red color of hematite or the 

green color of leaves. However, current spectrometers can measure finer details over a wider 

wavelength range and with greater precision (Clark 1999).  

Before we go through the interaction of light with the four objects on the ground; water, 

vegetation, soil, man-made objects, we will give a brief explanation for some of spectrometry 

terms. 

2.1.2 Spectroscopy Terms 

Generally, to describe the capability of a spectrometer, 4 parameters are used: 

 Spectral range,       

 Spectral bandwidth,  
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 Spectral sampling,     

 Signal-to-noise ratio (S/N).  

Spectral range is an important index to describe the spectral absorption characteristics. 

According to the Canada Centre for Remote Sensing, (CCRS 2012), there are four spectral 

ranges that are in common use, a) ultraviolet (UV): 0.001 to 0.4 µm, b) visible: 0.4 to 0.7 µm, c) 

infrared : 0.7 µm to 100 µm ; and e) microwaves : 1mm to 1m. These ranges are illustrated in 

Figure  2-2. 

 

Figure  2-2 Different spectral ranges, after (CCRS 2012) 

Spectral bandwidth is the width of an individual spectral channel in the spectrometer. The 

narrower the spectral bandwidth, the narrower the absorption feature the spectrometer will 

accurately measure.  Figure  2-3 shows the spectra for the mineral alunite, sample HS295.3B 

from the USGS spectral library (Clark 1999), that could be obtained by different spectrometer 
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systems; each spectrum is offset upward 0.6 units from the one below it for clarity.  Notice the 

increase of the level of details with the decrease of the spectral band width. Generally, 

bandwidths and sampling greater than 25 nm rapidly lose the ability to resolve important mineral 

absorption features (Meer 2001).  

 

Figure  2-3 Alunite spectra as seen by three different systems (Clark 1999) 

Note that the FWHM is the Full Width at Half Maximum, defined in Figure  2-4.   
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Figure  2-4  A Gaussian profile with a Full Width at Half Maximum (FWHM) of 10 nm 

(Clark 1999) 

Spectral sampling is the distance in wavelength between the spectral band pass profiles for each 

channel in the spectrometer as a function of wavelength (Clark 1999).  

Figure  2-5 illustrates different types of spectral sampling in spectrometers. Nyquist’s sampling 

occurs when the band pass (BP) is double the sampling interval (SI), then, Critical sampling 

occurs when the BP and the SI are comparable. Detector limited critical sampling occurs when 

the optical response bandwidth is narrower than the spectral width of the detectors resulting in 

flat-topped band passes. Finally, under sampling occurs when the BP is less than the SI. The 

implication in under sampling is that light is being wasted between adjacent spectral channels. 

The spectrometer BP is the convolution of the optical response bandwidth and the spectral width 

of a detector (Swayze et al. 2003). 



 

13 

 

Figure  2-5 Different types of spectral sampling in spectrometers (Swayze et al. 2003) 

Signal-to-noise ratio, (S/N) is dependent on the detector sensitivity, the spectral bandwidth, and 

intensity of the light reflected or emitted from the surface being measured. This parameter is 

usually required to determine the strength of the spectral response of features under study. A S/N 

ratio of about 10 will be adequate to identify an object, the higher (several hundred), are often 

required for better feature identification.  

2.2 Spectral Reflectance of various features 

2.2.1  Spectral Reflectance of vegetation 

Generally, the studies of vegetation reflectance are limited to the green leaf part of the plants 

giving little consideration to the non-green dry vegetation components (Meer 2001). The 

chlorophyll, chemical compound in leaves, strongly absorbs radiation in the red and blue 

wavelengths but reflects green wavelengths. When chlorophyll content is at its maximum level, 

in summer, leaves appear greener than any other season. While, in autumn, the chlorophyll level 

decreases, so less absorption and proportionately more reflection of the red wavelengths occurs, 
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making the leaves appear red or yellow (CCRS 2012). This is why the best false-color 

combination for emphasizing the presence of vegetation must include the near-infrared band, 

usually in place of the red band. In fact, measuring and monitoring the near-infrared reflectance 

is one way to determine how healthy or unhealthy vegetation may be. The spectral responses of 

healthy vegetation pixels were staked, Figure  2-6, over a small agriculture parcel in the area of 

study, the different colors of the broken lines signifies different pixels spectral curves. The 

horizontal axis represents the wavelength in micrometer and the vertical axis represents the 

reflectance value.  

 

Figure  2-6 Characteristics of the Spectral response of green vegetation  

Vegetation indices are ratios of single-band or linear combined reflectance their purpose is to 

minimize the effect of factors like optical properties of the soil background, illumination and 

variation of sensor-earth-sun geometry as well as wind, cloud and haze effect. The vegetation 
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index must be sensitive to the green part and not to the soil. Generally, Ratio-based vegetation 

indices can be computed from radiance values instead of reflectance values, if radiances are 

measured in the same irradiance conditions (Hoffer 1978). 

The red band, which is related to the chlorophyll light absorption, Figure  2-6, and the near-

infrared one, which is related to the green vegetation density, are the most used spectral bands to 

calculate vegetation indices, because these bands contain more than 90% of the information on a 

plant canopy. Also, in red and near-infrared bands, the contrast between vegetation and soil is 

maximal. In the next sections, examples will be given to some of the vegetation indices.  

2.2.2 Spectral Reflectance of Soil 

Spectral reflectance characteristics of soils are largely affected by the compositional nature of 

soils in which main components are inorganic solids, organic matter, air and water. As a result of 

this compound nature, the spectral reflectance also inhibits the same complexity with the varying 

of their physical and chemical properties (Meer 2001). Due to the electronic transition of the 

iron, the visible and near-infrared is the main part of the spectrum in which the main features of 

soil are characterized.  The characteristics of soil reflectance can be summarized in the following 

points: 

 The majority of absorption features diagnostic for mineral composition occurs in the 

short-wave infrared (SWIR) portion of the wavelength spectrum ranging from 2.0 to 2.5 

µm.  

 Layered silicates such as clays and micas and also of carbonates absorption occur in the 

SWIR region.  

 Organic matter has a vital influence on the spectral reflectance properties of soils, where 

amounts exceeding 2% will cause reducing of the overall reflectivity of the soil, due to 
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masking effect, and reducing (and sometimes completely obscuring) the diagnostic 

absorption features (Meer 2001). Thus, soils with a high amount of organics appear dark 

throughout the 0.4 to 2.5 µm range.  

 Less decomposed soils have higher reflectance in the near-infrared region and enhanced 

absorption features.  

 Major absorption features near 1.4 and 1.9 µm due to bound and unbound water are 

typical for soil reflectance.  

 Less water absorption features can be found at 0.97, 1.20 and 1.77 µm.  

 Increasing moisture content generally decreases the overall reflectance of the soil.  

 Similar effect results from increasing the particle size resulting in a decrease in 

reflectivity and contrast between absorption features (Meer 2001).  

Some studies on the spectral reflectance characteristics of soils and attempts to make 

classifications can be found in (Condit 1970; Stoner and Baumgardner 1981; Baumgardner et al. 

1985; Irons et al. 1989; Singh and A 1994). Following the same procedure as in Figure  2-6, a 

small parcel in the area of study was chosen, the different colors of the broken lines signifies 

different pixels spectral curves. The horizontal axis represents the wavelength in micrometer and 

the vertical axis represents the reflectance value, Figure  2-7. 
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Figure  2-7 Reflectance spectra of soils 

2.2.3 Spectral Reflectance of Water 

Water absorbs longer wavelength, green, red and near-infrared radiation, more than shorter 

visible wavelengths, blue and coastal blue. This is why water typically looks blue or blue-green 

in a natural color image, due to a stronger reflectance at these shorter wavelengths, and darker if 

viewed at red or near-infrared wavelengths. However, suspended sediment, in the upper layers of 

water body causes increased reflectance in the visible portion of the spectrum (CCRS 2012). 

Figure  2-8 illustrates the spectral response of a collection of water pixels. 
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Figure  2-8 Spectral response of a collection of water pixels 

Figure  2-9 represents the superposition of typical reflectance curves for the three aforementioned 

features, soil, vegetation and water.  
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Figure  2-9 Typical reflectance curves for soil, vegetation and water 

2.2.4 Spectral Reflectance of Man-made Objects 

Being aware of the physical nature of different materials covering the earth surface is a 

prerequisite to thoroughly understand the various spectral reflectance’s of man-made objects. In 

the following sections two main man-made objects will be targeted, asphalt and concrete, as they 

are the main constituent for many of well-known features; road network, buildings, rooftops, and 

parking lots.  Figure  2-10 illustrates the spectral response for concrete, red roofs and asphalt. 

Soil 

Vegetation 

Water 
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Figure  2-10 Typical reflectance curves for concrete, red roofs and asphalt  

2.3 Radiometric Calibration 

Multi-temporal High resolution satellite imagery is one of the most important tools for urban 

planning, change detecting and analyzing trends (El Hajj et al. 2008). In order to obtain accurate 

quantitative information from multispectral satellite data, such as WorldView-2, conversion of 

raw digital numbers (DN) to reflectance values is required. 

The fact that a uniform scene does not create a uniform image in terms of raw (DN), therefore 

relative radiometric calibration and correction are necessary. Major causes of non-uniformity 

include variability in detector response, variability in electronic gain and offset, lens falloff, and 

particulate contamination on the focal plane (Updike and Comp 2010). The apparent effects of 

this non-uniformity on the final product will be of the form of: 

Concrete 

Red Roofs Asphalt 
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 Random bad pixels. 

 Line start/end problems. 

 Full or partial line-column drop-outs. 

 Line or column striping. 

Normally, as commercial prerequisite, WorldView-2 products are delivered free of the 

aforementioned deficiencies. However, in case of dealing with multi-temporal data coming from 

the same or different satellite and to ensure a reliable use of this kind of data, a further 

radiometric normalization step is required. This step of normalization should include accounting 

for earth-sun distance, azimuth angle, and relative/absolute atmospheric correction for each of 

the images in the time series. The main problem here is the difficulty of obtaining an 

atmospheric characterization at a given acquisition date as it requires the knowledge of the 

atmospheric properties at the time of acquisition, which is a difficult task even when planned and 

of course for most historic satellite data (Jensen 1994). In this section, we investigate the quality 

of the calibration factors provided by the service provider through a process of radiometric 

calibration which starts with converting DN’s to radiance then to reflectance and finally, a 

relative atmospheric correction takes place. A multi-layer classification scheme will be used as a 

measure of the quality of the radiometric calibration process. Two scenes for the area of Ismailia, 

Egypt, captured on the 7
th

 and 16
th

 of April, 2011will be used, the first as a master scene and the 

second as a slave. Then, a selection of pseudo invariant features will be done to normalize the 

slave scene to the master scene through a linear regression process. The classification results will 

be compared and used as a quality control measure for the provided radiometric calibration 

parameters from the given Meta data file provided by data service provider. In the following 
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section the calibration parameters and the atmospheric normalization step are evaluated  

(Elsharkawy et al. 2012). 

2.3.1 Data Used 

WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in 

the visible to the near-infrared range, multi-spectral bands come with 2 meters spatial resolution, 

and a panchromatic band comes with 0.5 meter spatial resolution. Each sensor is closely focused 

on a particular range of the electromagnetic spectrum, which is sensitive to a specific feature on 

the ground. Together, they are designed to improve the segmentation and classification of land 

and marine features (Globe 2009). Figure  2-11 shows a comparison between QuickBird, 

IKONOS, GeoEye-1 and WorldView-2 in terms of their spectral and panchromatic bands 

coverage in the spectrum. 

 

 
Figure 2-11 Panchromatic and multispectral wavelengths for different satellites, (Elsharkawy et 

al. 2011) 
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Generally, The new spectral bands in WorldView-2, Coastal blue, Yellow, Red edge and NIR-2, 

are targeting costal and vegetation land cover types with applications in plant species 

identification, mapping of vegetation stress and crop types, wetlands, coast water quality, and 

bathymetry (Marchisio et al. 2010). Table  2-1, summarizes the range of the spectrum and the 

characteristics of each band of the WorldView-2 satellite. 

Table  2-1 Spectral range and characteristics for each of the eight band (Globe 2009) 

Band 
Spectral 

Resolution 
Characteristics 

Coastal Blue 

 
(400-450 nm) 

New band /least absorbed by water/ Absorbed by chlorophyll 

in healthy plants 

Blue 

 
(450-510 nm) 

Provides good penetration of water/ Less affected by 

atmospheric scattering and absorption. 

Green 

 
(510-580 nm) 

Ideal for calculating plant vigour and plants types when used 

in conjunction with the Yellow band 

Yellow 

 
(585-625 nm) New band/Very important for feature classification 

Red 

 
(630-690 nm) 

Very important band for vegetation Discrimination/Very 

useful in classifying bare soils, roads, and geological features 

Red-Edge 

 
(705-745 nm) 

New band/Very valuable in measuring plant health and aiding 

in the classification of vegetation 

NIR1 

 
(770-895 nm) 

Separates water bodies from Vegetation/ identifies types of 

vegetation / discriminates between soil types 

NIR2 

 
(860-1040 nm) 

New band/ less affected by atmospheric influence/Enables 

broader vegetation analysis. 
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As noted in Figure 2-11 and Table  2-1, the Yellow and Red edge bands are filling important gaps 

in the spectrum that relate to the ability of capturing vegetation (Shafri et al. 2006). Moreover, 

Coastal blue and NIR2 bands are very helpful to discriminate among different types of 

vegetation and many man-made objects (Herold et al. 2002).  

2.3.2 Area of study 

The study area is a residential area in Ismailia city about 120 Kms to the north east direction 

from Cairo the capital of EGYPT. The study area is mostly urban, vegetation, and desert area 

with a large mass of a water body. The data was provided by Digital Globe. The images were 

captured on April 7
th

 and 16
th

, 2011 at 9:11 AM and 8:40 AM respectively. Figure  2-12 

illustrates the study area in false-color composite, NIR-1, G and B. 

 
Figure  2-12 Area of Study 
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2.3.3 Relative Normalization Process 

Generally, any imagery will be used in a radiometric/spectral analysis must be converted to 

spectral radiance at a minimum, or top of atmosphere reflectance in order to account for the 

variation in the relative positions between the sun, the Earth and the satellite to obtain absolute 

values for the NDVI ratios can be applied in any other scene (Updike and Comp 2010). 

Converting the Digital Numbers (DN) to Top of Atmosphere (ToA) reflectance is a two-step 

process. First DN’s are converted to ToA radiance values. Then these radiance values are then 

converted to reflectance values (Observation 2010).  

2.3.3.1 Conversion to Top-of-Atmosphere Spectral Radiance  

According to (Globe 2009), WorldView-2 products are delivered to the customer as 

radiometrically corrected image pixels. The values of these pixels are calculated as a function of 

the amount of the spectral radiance enters the telescope aperture and the instrument conversion 

of that radiation into a digital signal. Therefore, image pixel data are unique to WorldView-2 and 

should not be directly compared to imagery from other sensors in a radiometric/spectral sense. 

Instead, image pixels should be converted to a top-of-atmosphere spectral radiance at a 

minimum. Top-of-atmosphere spectral radiance is defined as the spectral radiance entering the 

telescope aperture at the WorldView-2 altitude of 770 kms. The conversion from radiometrically 

corrected image pixels to spectral radiance uses equation  2-1 for each band of a WorldView-2 

product (Updike and Comp 2010): 

 

             
 

                 

      
  2-1 
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Where,               
       are the top-of-atmosphere spectral radiance image pixels [W.m

-2
.sr

-1
.μm

-1
], 

         is the absolute radiometric calibration factor [W.m
-2

.sr
-1

.count
-1

] for a 

given band,  

                  are the given radiometrically corrected image pixels [counts] and 

          is the effective bandwidth [ m] for a given band 

Both       and         can be found in the image metadata files (*.IDM), attached with the 

WorldView-2 product, see appendix B, under the names (absCalFactor) and 

(effectiveBandwidth) respectively. The following table summarizes both of these quantities for 

both the panchromatic and the eight multi-spectral bands. 

 

Table  2-2 Absolute Radiometric Calibration and Effective Bandwidth for the Given Bands 

Band name       

W.m
-2

.sr
-1

.count
-1

 

       

 m 

C 9.30E-03 4.73E-02 

B 1.78E-02 5.43E-02 

G 1.36E-02 6.30E-02 

Y 6.81E-03 3.74E-02 

R 1.10E-02 5.74E-02 

R-E 6.06E-03 3.93E-02 

NIR1 1.22E-02 9.89E-02 

NIR2 9.04E-03 9.96E-02 
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2.3.3.2 Conversion to Top-of-Atmosphere Spectral reflectance 

Right now, we have the ToA spectral radiance. However, this top-of-atmosphere spectral 

radiance varies with Earth-Sun distance, solar zenith angle, topography, bi-directional 

reflectance distribution function (BRDF-the target reflectance varies depending on the 

illumination and observation geometry), and atmospheric effects (absorption and scattering) 

(Updike and Comp 2010). As mentioned earlier that converting multispectral data into 

reflectance before performing spectral analysis techniques such as band ratios, Normalized 

Difference Vegetation Index (NDVI), matrix transformations, etc., is a must. For each scene the 

distance between the sun and earth in astronomical units, the day of the year (Julian date), and 

solar zenith angle must be known. 

 

 

                                                      
  

  
   

     
    

    
      

    
    
     

 
          

 2-2 

 

 
D= JD - 2451545.0 

 2-3 

 

 

 
g = 357.529 + 0.98560028 * D 

 2-4 

        

 

 
dES=1.00014-0.01671.cos(g)-0.00014.cos(2g) 

 2-5 

 

 

The Earth-Sun distance will be in astronomical units (AU) and should have a value between 

0.983 and 1.017, equation  2-2. To calculate the distance between earth and sun, equation  2-5, the 
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constant D, equation  2-3, and the constant g, equation  2-4, must be calculated first. For the 

WorldView-2 launch date, October 8, 2009 at 18:51:00 GMT corresponds to the Julian Day 

2455113.285; the Earth-Sun distance is 0.998987 AU. At least six decimal places should be 

carried in the Earth-Sun distance for use in radiometric balancing or top-of atmosphere 

reflectance calculations (Updike and Comp 2010). The average solar Zenith angle has to be 

calculated for the whole scene at the time of acquisition according to the following equation: 

                2-6 

 

  
Where, sunEl value can be found in the same file *.IDM. Now we can convert the radiance 

values to ToA reflectance values using the following equation. 

 

             
 

            
    

   

         
         

  2-7 

 

          

Where              
  are the ToA reflectance values 

              
  are the ToA radiance values 

       is the Earth-Sun distance in Astronomical Units (AU) 

          
              WorldView-2 Band-Averaged Solar Spectral Irradiance (Updike and 

Comp 2010) 

                     The average solar Zenith angle 

  

The next step involves the relative calibration of the atmospheric effect by normalizing the 

reflectance values of the second scene (the slave) to the first scene (the master) using regression 
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line. Pseudo invariant features (PIF’s) points were selected in both scenes covering the entire 

reflectance values and have the following properties: 

 be spectrally homogenous; near lambertian and flat surfaces;  

 minimal amount of vegetation;  

 cover an area greater than three times the pixel size of the sensor;  

 And the most important is to exhibit minimum change in spectral characteristics through 

time. 

Good examples of PIF’s are: open water points, concrete slabs, sport field grass, bare soil. Figure 

 2-13, demonstrate examples of the chosen PIF’s and their values in the two scenes, for the 

coastal blue band, before and after regression. 

 

 

Figure  2-13 ExamplesofPIF’sreflectancevaluesbeforeandafterregression 
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And Table  2-3 lists the eight regression line parameters with their confidence level R
2
. 

Table  2-3 Regression line parameters for the 8-bands 

 Interception Slope Confidence level 

R
2 

C-band -  0.0045 1.1048 0.9844 

B-band + 0.0124 1.0254 0.9824 

G-band + 0.0147 1.0012 0.9838 

Y-band + 0.0194 0.9745 0.9865 

R-band + 0.0225 0.9697 0.9856 

R-E-band + 0.0314 0.9575 0.9923 

NIR-1-band + 0.0425 0.9281 0.9933 

NIR-2-band + 0.0362 0.9233 0.9925 

 

The intercept and slope values were applied against the slave scene to normalize the atmospheric 

effects with respect to the master scene. The next step will include applying of a multi-layer 

classification algorithm as shown in Figure  2-14. More details about this algorithm can be found 

in chapter four. This algorithm will be applied to the master scene and to the slave scene before 

and after relative atmospheric calibration. 
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Figure  2-14 Applying the band ratios with the proposed thresholds (Elsharkawy et al. 

2012) 

2.3.4  Results and Analysis of the relative calibration process  

The classification results from the previous multi-layer classification step were then compared 

with ground truth pixels and the confusion matrices are given in Table  2-4, Table  2-5 and Table 

 2-6. Note that, all values in these tables are in percentages, an example of Table  2-4 in pixels 

values will be given in appendix A, and also the definitions of the confusion matrix terms and the 

calculation procedures will be explained. 
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Table  2-4 Confusion matrix of the master scene 30-1-2 with the ground truth pixels 

Overall Accuracy = 99.2889% 

Kappa Coefficient = 0.9885 

Class water vegetation 

Bare 

Soil 

Asphalt Shadows 

Red 

Roof 

Buildings Total 

Prod. 

Acc. 

(%) 

User 

Acc. 

(%) 

water 100.00 0.00 0.01 0.00 9.15 0.00 0.00 45.21 100.00 99.93 

vegetation 0.00 99.30 0.00 0.24 0.12 0.00 0.00 14.07 99.30 99.99 

Bare Soil 0.00 0.26 99.50 21.46 0.16 32.16 27.66 39.44 99.50 99.26 

Asphalt 0.00 0.27 0.03 62.35 4.44 0.00 7.27 0.42 62.35 78.94 

Shadows 0.00 0.10 0.05 13.11 86.13 0.00 1.00 0.36 86.13 70.07 

Red Roof 0.00 0.07 0.09 1.95 0.00 67.84 0.00 0.12 67.84 52.80 

Buildings 0.00 0.00 0.32 0.89 0.00 0.00 64.07 0.38 64.08 65.38 

Total 100% 100% 100% 100% 100% 100% 100% 100%   

 

Table  2-5 Confusion matrix of the slave scene 30-1-1 without relative atmospheric 

correction with the ground truth pixels 

Overall Accuracy = 97.9841% 

Kappa Coefficient = 0.9676 

Class water vegetation 

Bare 

Soil 

Asphalt Shadows 

Red 

Roof 

Buildings Total 

Prod. 

Acc. 

(%) 

User 

Acc. 

(%) 

water 99.75 0.67 0.05 4.68 90.62 0.00 0.38 44.42 99.75 98.85 

vegetation 0.04 98.20 0.00 1.86 0.00 2.51 0.00 13.54 98.20 99.75 

Bare Soil 0.00 0.20 98.38 19.99 0.73 70.01 32.15 40.39 98.38 99.10 

Asphalt 0.02 0.22 0.01 47.22 2.33 1.08 12.93 0.41 47.22 77.29 

Shadows 0.19 0.69 0.01 23.42 5.05 0.47 1.44 0.37 5.05 5.56 

Red Roof 0.00 0.02 1.06 1.06 0.04 25.93 0.00 0.48 25.93 7.05 

Buildings 0.00 0.00 0.49 1.77 1.23 0.00 53.10 0.39 53.10 44.13 

Total 100% 100% 100% 100% 100% 100% 100% 100%   
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Table  2-6 Confusion matrix of the slave scene 30-1-1 after relative atmospheric correction 

with the ground truth pixels  

Overall Accuracy = 97.3187% 

Kappa Coefficient = 0.9572 

Class water vegetation 

Bare 

Soil 

Asphalt Shadows 

Red 

Roof 

Buildings Total 

Prod. 

Acc. 

(%) 

User 

Acc. 

(%) 

water 97.00 0.18 0.04 0.07 49.31 0.00 0.00 42.94 97.00 99.44 

vegetation 0.04 98.80 0.00 1.93 0.00 2.15 0.00 13.62 98.81 99.74 

Bare Soil 0.00 0.25 98.97 24.45 1.34 74.07 48.82 40.72 98.97 98.96 

Asphalt 0.03 0.32 0.02 62.15 3.22 0.60 11.39 0.55 62.15 78.76 

Shadows 2.93 0.43 0.01 9.14 45.29 0.24 0.82 1.60 45.29 11.52 

Red Roof 0.00 0.02 0.80 1.68 0.04 22.94 0.00 0.37 22.94 8.08 

Buildings 0.00 0.00 0.16 0.58 0.8 0.00 38.97 0.20 38.97 63.61 

Total 100% 100% 100% 100% 100% 100% 100% 100%   

 

A careful study of the results showed that four classes, highlighted in green, were improved 

when applying the relative atmospheric correction to the slave scene, Table  2-4, compared to the 

results from the slave scene without applying the relative atmospheric correction, Table  2-5. 

Also, the producer and user’s accuracies, highlighted in green, were improved for almost all 

classes. It was notable that the overall accuracy and K coefficient was reduced in Table  2-5 

compared to Table  2-4 as the red roofs and buildings’ classes give comparatively low 

percentages. 

The same procedure was applied for different study areas over the globe; Brisbane, Cairo, 

Miami, Rio de Janeiro, San Francisco and Ismailia. The first five scenes were normalized to the 

scene of Ismailia city. The results of this investigation show very good potentials for the use of 

the calibration parameters after applying the relative atmospheric normalization (Elsharkawy et 

al. 2012). 
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2.4 Linearized Vegetation and shadow Indices 

As discussed in section  2.2.1, multispectral bands are extremely important to detect various 

objects in the image. Most remote sensing satellite sensors offer multispectral images besides 

panchromatic images. In this section, we summarize various vegetation and shadow–water 

indices. These indices and other innovated ones will be used in chapter four to extract water, 

vegetation, shadow, roads network and building classes.  

2.4.1 Linearized Vegetation Indices 

The primary concept of  vegetation indices is that rationing two spectral bands can ultimately 

cancel the effect of any irrelevant multiplicative factors in sensor data that act equally in the 

analyzed wave bands (Lillesand and kiefer 2001). The ratio images have two major advantages: 

 Large differences in the intensities of the spectral response of different features are well 

displayed in rationed images if selected properly. 

 Ratios can suppress the topographic effects and normalized differences in irradiance 

when using multi-data images.  

This method was originally developed for vegetation studies, commonly known as vegetation 

indices. For example, the NIR aspect of the spectrum is highly absorbed by water and highly 

reflected by vegetation, while the red part of the spectrum has the same reflective properties for 

both of water and vegetation. Therefore, it is expected for the NIR band to exhibit a low DN 

value in the body of water areas and high DN values in vegetation areas. 

As explained in section  2.2.1, and following (Ünsalan and Boyer 2011) in his survey, the 

aforementioned characteristics of chlorophyll are usually used to create indices to detect the 

presence and the density of vegetation in multispectral satellite or airborne imagery.  
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In 1969, (Jordan 1969) introduced the ratio vegetation index (RVI) to estimate the vegetation 

density in a given region. Jordan designed his ratio based on the high absorption in the red band 

and low absorption in the near-infrared, as follows: 

 

 nir

red

RVI



   2-8 

      

Where:  ρnir and ρred are reflectance values in near-infrared and red bands, respectively. 

(Colwell 1973), found that the RVI ratio diverges to infinity when ρred goes to zero. Later, 

(Nalepka et al. 1977) introduced more linearized index using the square root of the RVI, and 

generate the SRRVI as follows: 
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(Rouse et al. 1974) introduced the most popular vegetation indices among all the normalized 

difference vegetation indices (NDVI) as follows: 

 

 
nir red

nir red

NDVI
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(Kauth and Thomas 1976) introduced another vegetation index using four Landsat MSS bands, 

(d4, d5, d6, d7), d4 is the blue band, d5 is the red band while, d6 and d7 are near-infrared. 
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Where b stands for ‘brightness’, g stands for ‘greenness’, y stands for ‘yellowness’, and n stands 

for ‘nonesuch’. Greenness is taken as a vegetation index from this transformation (Ünsalan and 

Boyer 2011).  

Generally, NDVI continues to be one of the most effective indices indicating the presence and 

density of vegetation. All the comparison studies with other indices didn’t declare a clear winner 

(Ünsalan and Boyer 2011). In this study, we will use NDVI in essence to differentiate between 

two main classes, vegetation and water, as they fall in the two far ends of the ratio range. 

Moreover, two new NDVI like ratios will be used to detect, shadow, asphalt, buildings and bare 

soil. The details of this algorithm will be discussed in chapter four. 

2.4.2 Linearized Shadow Indices 

Shadow effect is unavoidable phenomenon, and it is very difficult to classify shaded area as the 

radiance values drops significantly and gives a very close spectral response to water. However, 

this phenomenon may be very useful in determining other objects which are known to be 

associated with shadows such as buildings. In this study a new band ratio to detect shadow is 

introduced using the coastal-blue (C) and red (R) bands of the WorldView-2 imagery.  

2.5 Land Use Classification  

The term land use classification can be extended to cover many applications ranging from 

general land cover detection to detailing crop specifications.   
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In order to classify an image, we have to go through several steps; starting from handling the 

data by means of some pre-processing steps, then a feature extraction step, then a training phase 

and ending with a classification and labeling algorithm. Figure  2-15 illustrates the outlines of this 

process. 

Handling the data is basically a series of pre-processing steps may include, but not limited to, 

the following:  

 Increasing the spatial resolution by means of a data fusion technique between the 

panchromatic and multispectral bands,   

 Converting the digital numbers, DN, values to top of atmosphere radiance or reflectance, 

 Relative/absolute atmospheric corrections, 

 Various geometric corrections. 

Feature extraction step includes the transformation of the multi-spectral image to other domains 

(spatial-frequency) and applying certain filters to enhance, detect or extract a certain feature. 

Also feature extraction step involves data dimensionality reduction through PCA or data 

subsisting (Schowengerdt 2006).  

Classifier step may be carried out using supervised or unsupervised classification techniques to 

determine the boundaries of each class. Finally, a Labeling process is carried out to label each 

group of pixels to a certain class; the output map should have a unique label for each class. 

In the following two sections, two basic methods of land use classification will be emphasized. 

The first explored approach is the pixel-based classification method and the second one, is the 

object-based classification method. These two methods are among the earliest approaches to the 

land use classification problem. What characterizes these two methods is the simplicity in 

concept and in application compared to other feature extraction methods such as; Markov 
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Random Fields, artificial intelligence, rule based systems or Bayesian belief networks (Ünsalan 

and Boyer 2011). 

In general, monitoring of urban environments is a challenging area of remote sensing because of 

different and excessive spatial and spectral diversity of surface matter (Herold et al. 2003). As 

discussed in (Taubenbock et al. 2010), the contrast of urban surfaces, particularly those in 

developing countries, is due mainly to their unstructured urban patterns which contain a 

complicated wide range of urban landscapes such as; bare soil, water, vegetation, roads, 

sidewalks and buildings with different patterns and alignments. As a result of the increase in  

spatial resolution individual pixels may only have a meaning in the context where they take place 

(Franklin and Wilson 1991). Therefore, both contextual and spectral attributes must be involved 

in the classification algorithm. In the next two sections pixel-based and object-based concepts 

will be emphasized and some of their techniques will be explained. 
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Figure  2-15 Outlines of data flow in a classification process, after (Schowengerdt 2006) 

2.5.1 Pixel -based approach 

A conventional pixel-based classification approach, based on statistical algorithms has been used 

for decades (Tso and Mather 2009). Generally, this approach is very useful in large scale images 

where a separation can be efficiently established between water, urban, and vegetation areas 

according to their spectral characteristics.  However, in cases of similar spectral information  the 

ability of this approach is limited (Yan 2003). The main assumption in using this approach is that 

the single pixel contains sufficient grey level information to be assigned to a certain class. Recent 

advances in satellite imagery provide sub meter spatial resolution as in IKONOS, GeoEye, 

Quickbird and WorldView-2. The challenge in using this approach, especially in urban areas, is 
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the heterogynous nature of objects in these areas, as the classification will be entirely depending 

on the spectral response to the objects on the earth surface, without looking into the spatial 

coherence between adjacent pixels. Moreover, many objects such as; buildings, concrete roads, 

sidewalks and parking lots will have a nearly identical spectral response as the main construction 

material is almost the same. Another example for spectral similarity is the resemblance of water 

with shadowed areas, which makes the classification process almost impossible due to this 

spectral confusion.  

There are three popular pixel-based statistical classifiers commonly used in the supervised 

classification; the parallelepiped method, minimum distance classifier, and the maximum 

likelihood classifier. 

In the three aforementioned methods the signatures generated by the training data will differ 

according to the classifier type used. “For parallelepiped classification the class signatures will 

be the upper and lower bounds of brightness in each spectral band. For minimum distance 

classification the signatures will be the mean vectors of the training data for each class, while 

for maximum likelihood classification both class mean vectors and covariance matrices 

constitute the signatures” (Richards and Jia 2006).  

The primary difference between the unsupervised and supervised approaches is that for the 

unsupervised methods, only the number of clusters are entered without selecting any training 

data set, and the classifier automatically constructs the clusters by minimizing a predefined error 

function. However, in certain cases the number of clusters can be detected automatically by the 

classifier (Yiu-ming 2005). While the unsupervised classification approach is often more suitable 

in an automatic classification solution, where user interference is not required, in practice,  
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results are accepted or rejected based on whether they meet the user’s expectations (Tso and 

Mather 2009).  In the next subsections, the three popular techniques for the supervised pixel-

based classifiers will be explained. 

2.5.1.1   Parallelepiped method 

In this method a parallelepiped-like (i.e., hyper-rectangle) subspace is defined for each class. 

Using the training data for each class the limits of the parallelepiped subspace can be defined 

either  by the minimum and maximum pixel values in the given class, or by a certain number of 

standard deviations on either side of the mean of the training data for the given class (Tso and 

Mather 2009).  

The pixels lying inside the parallelepipeds are tagged to this class. Figure  2-16 depicts this 

criterion in cases of two-dimensional feature space. 

 

Figure  2-16 Implementation of the parallelepiped classification method for three classes 

using two spectral bands, after (Tso and Mather 2009). 
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Although this method is quick and easy to implement it is very difficult to grant a robust 

classification performance as a result of serious errors that may take place. These errors are 

originated from the possibility of having one or more pixels lying in more than one 

parallelepiped, or outside all parallelepipeds. Essentially, these errors are likely to occur with 

more complex feature space (Tso and Mather 2009). A modification to this method was 

introduced by (Elsharkawy et al. 2011). The proposed modification involves applying this 

method using only one pair of bands at a time to overcome the problem of finding one pixel in 

more than one class. On the other hand, many un-classified pixels will exist which will be 

classified later using another spectral characteristic. 

 

Figure  2-17 Study area for the modification of the parallelepiped method  

Figure  2-18 and Figure  2-19 demonstrate the classification results for the proposed modification 

and one of the commercial software respectively, using the same training pixels. 
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Figure  2-18 Classification results using the modified parallelepiped method  

 

Figure  2-19 Classification results using commercial software 
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It was clear that the proposed modification yields better results than the commercial software, 

while blue arrows are pointing towards unclassified pixels and red arrows are pointing towards 

misclassified pixels. For more detail regarding this method please refer to (Elsharkawy et al. 

2011). The proposed methodology showed a good result for distinguishing four main classes, 

namely; vegetation, water, shadow, and man-made objects. WorldView-2 eight band data will be 

used in the assessment and verification of the new approach. 

2.5.1.2    Maximum Likelihood Classifier (MLC) 

The maximum likelihood (ML) procedure is the most common supervised method used with 

remote sensing. It can be described as a statistical approach to pattern recognition where the 

probability of a pixel belonging to each of a predefined set of classes is calculated; hence the 

pixel is assigned to the class with the highest probability (Tso and Mather 2009). ML is based on 

the Bayesian probability formula. 

Bayes’Classification: 

The MLC decision rule is based on a normalized (Gaussian) estimate of the probability density 

function of each class (Pedroni 2003). Hence, under this assumption and using the mean vector 

along with the covariance matrix, the distribution of a category response pattern can be 

completely described (Yan 2003). Given these parameters, the statistical probability of a given 

pixel value can be computed for being a member of a particular class. The pixel would be 

assigned to the class with highest probability value or be labelled “unknown” if the probability 

values are all below a threshold set by the user (Lillesand and kiefer 2001). 

  Let the spectral classes for an image be represented by 

ωi   ,   i = 1, . . . M 
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Where,   M is the total number of classes.  

In order to determine the class to which a pixel vector x belongs; the conditional probabilities of 

interest should be followed. 

p ωi|x),  i = 1, . . . M 

The measurement vector x is a column of Digital Number’s (DN) values for the pixel, where its 

dimension depends on the number of input bands. This vector describes the pixel as a point in 

multispectral space with co-ordinates defined by the DN’s (Figure  2-20).  

 

Figure  2-20  Feature space and how a feature vector is plotted in the feature space (Yan 

2003) 

The probability p(ωi |x) gives the likelihood that the correct class is ωi for a pixel at position x. 

Classification is performed according to: 
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 x ∈  ωi          if p ωi |x  > p ωj |x)         for all     j ≠ i  2-12 

  

i.e., the pixel at x belongs to class ωi if p(ωi|x) is the largest. This general approach is called 

Bayes’ classification which works as an intuitive decision for the Maximum Likelihood 

Classifier method (Richards and Jia 2006). 

From this discussion one may ask how can the available p(x|ωi) can be related from the training 

data set, to the desired  p(ωi|x) and the answer is again found in Bayes’ theorem (Freund 1992). 

 

 
p ωi|x    p x|ωi  p ωi )/p(x) 

 2-13 

                                             

Where  p(ωi ) is the probability that class ωi occurs in the image and also called a priori or 

prior probabilities. And p(x) is the probability of finding a pixel from any class at location x 

Rewriting the classification rule, Eq. 2-12, using Eq. 2-13 and removing p(x) as a common factor 

results in: 

 

     x ∈ ωi    if   p x|ωi  p ωi  > p x|ωj  p ωj)     for all     j ≠ I  2-14 

 

The rule of Eq. 2-14 is more acceptable than that of Eq. 2-10 since the p(x|ωi) are known from 

training data, and p(ωi) are also known or can be estimated from the user’s experience and the 

prior knowledge of the image (Richards and Jia 2006). A detailed comparison between two data 

sets, one with near-infrared and three visible and the other with the full 8-bands, was made  to 
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emphasize the important role of the new bands for improving the separability measurement and 

the final classification results (Elsharkawy et al. 2012). 

2.5.1.3 Minimum distance to mean classifier: (The Case of Limited Training Data) 

To have an effective maximum likelihood classification one should have a sufficient number of 

training pixels for each class. This is because this method is entirely dependent on the quality of  

the estimation of  the mean vector and the covariance matrix for each spectral class (Richards 

and Jia). Contrastingly, when no sufficient training data is available the MLC will lead to poor 

classification. In this particular case, it will be better to use Minimum Distance rather than mean 

classifier. This classifier does not make use of covariance information but instead depends only 

upon the mean positions of the spectral classes (Richards and Jia). 

The minimum distance between the pixel and the class centers, is the decision rule to determine a 

pixel’s label (Tso and Mather 2009). Figure  2-21 depicts an example of minimum distance 

classification criteria. 

 

Figure  2-21 Example of minimum distance classification criteria, after (Tso and Mather 2009) 
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2.5.2 Object -based approach 

In high-resolution satellite imagery, the pixel is relatively small and the texture information 

occurring within the relationship between pixels is quite meaningful. Therefore, the use of 

contextual information in addition to spectral features for image classification will  result in an 

improved level of accuracy (Ouma et al. 2010). The assumption behind this approach is that the 

classification is based on pixel grouping that will devise set of objects; this devise a set of objects 

will be later classified using specific rule sets (Cu et al. 2009). The segmentation process is the 

most important step in the object-based process, where the segments are determined based on 

specific scale, shape and compactness factors. Most effort of researchers was towards generating 

innovative rule sets according to the nature of the input date, the detected objects and the 

targeted classes, or developing novel methods for integrating pixel and object-based techniques 

(Yan 2003; Bhaskaran et al. 2010; Ouma et al. 2010; Taubenbock et al. 2010; Elsharkawy et al. 

2012). According to (Gonzalez and Woods 1992) segmentation can be done either two ways; 

detecting similarity, as in clustering pixels according to specific rules, or detecting singularity 

i.e edge detection. Most of the researches in the area of object-based classification are using the 

first method, detecting similarity, where the clustering of pixels being done according to their 

texture, intensity …etc. In this thesis the second generation curvelet transform will be used as an 

edge detection tool to start the segmentation part during the process of the object-based 

classification algorithm, as explained in chapter three. 
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Chapter Three: Edge Detection Techniques  

3.1 Introduction  

In this chapter, three edge detection techniques will be discussed; two in the frequency domain, 

curvelet and wavelet transforms and one in the spatial domain, the canny operator. First a brief 

introduction to the filtering in the frequency domain, section  3.2, will be introduced to emphasize 

the advantages of switching from the spatial domain to the frequency domain. Then in the 

following three sections,  3.3,  3.4 and  3.5, a theoretical background for the three techniques will 

be given. In section 3.6 the implementation of curvelet transform for edge detection of high 

resolution satellite imagery will be discussed with the results compared to the other two 

techniques. Finally, in section  3.7 a new approach for combining curvelet and canny for edge 

detection will be introduced with the corresponding results. 

3.2 Filtering in the frequency domain 

Filtering is one of the most fundamental digital image processing research fields. This 

significance comes from the fact that all imagery must undergo different types of texture and 

edges enhancement, images sharpening, etc., in order to highlight certain features to smooth the 

process of either classification or detection of objects (Liu and Mason 2009). Filtering can be 

done either using the concept of convolution, in the spatial domain,  by studying the relatively 

small neighbourhood of a pixel or using the Fourier transforms, FT, by examining the global 

spatial content in the frequency domain (Schowengerdt 2006).  

3.2.1 The convolution theorem 

The process of convolution in the spatial domain is underlying the use of a moving window 

along the image pixels. A certain operation, a filter, is performed within this window and the 

calculated output, at the center of this window, then produce the output image. This process will 
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be repeated for every pixel in a row then for every row in an image (Schowengerdt 2006). 

Examples of the filters that may be implemented in the spatial domain using the convolution are 

given in Table  3-1. 

Table  3-1 Examples for spatial domain filtering using convolution theorem, after 

(Schowengerdt 2006) 

Type Output Examples Applications 

Linear Weighted sum Low-Pass filter (LPF) 

High-Pass filter (HPF) 

High-Boost filter (HBF) 

Band-pass filter (BPF) 

Enhancement, sensor 

simulation and noise 

removal 

Statistical  Given statistic Minimum, maximum, 

median, standard 

deviation,…… 

Noise removal, feature 

extraction and S/N 

measurement 

Gradient  Vector 

gradient 

Sobel, Roberts,…. Edge detection 

 

Thanks to the famous convolution theorem, the process of convolution has a particularly 

straightforward and convenient form, in the frequency domain. Consider two 2-D functions 

f(x,y) and h(x,y) having Fourier transforms respectively denoted by F(kx,ky) and H(kx,ky) 

(Solomon and Breckon 2011). F is denoting the operation of taking a 2-D Fourier transform, the 

convolution theorem states that: 
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 { ( , ) ( , )} ( , ) ( , )x y x yF f x y h x y F k k H k k    3-1 

The previous equation indicates that, the processing of convolving two functions in the spatial 

domain can be equivalently carried out by simple multiplication of their transforms in the 

frequency domain. This form of the convolution theorem outlines the fundamental core for the 

powerful methods of frequency-domain filtering (Solomon and Breckon 2011).  

Although, the FT is less computationally efficient for raster data, in terms of speed and 

computing resources, it is more flexible than convolution in accommodating many filtering 

functions (Liu and Mason 2009). In this research curvelet transforms will be implemented for 

edge detection, in the frequency domain, and will be compared to wavelet and the traditional 

Canny operator in the spatial domain. The following summarize the reasons of why frequency 

domain filtering is implemented in this research: 

- Introducing an alternative description to the spatial representation.  

- Filtering can be performed on selected frequencies which may decrease the 

computational burden. 

- Hosting of more efficient and less sensitive to noise calculations. 

- Designing of considerably flexible  various filters such as; image enhancement, image 

restoration, image compression, image denoising (Solomon and Breckon 2011). 

In the next three sections, the implementation of three techniques, curvelet transforms, wavelet 

transforms and canny operator, will be discussed addressing the edge detection problem in high 

resolution satellite imagery. 
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3.3 Curvelet transform 

Curvelet transforms technique was originally introduced by Candes and Donoho in 1999 as a 

result of the increasing demand for an effective multi- resolution analysis that has the ability to 

overcome the drawbacks of wavelet analysis. The transform was designed to represent edges and 

other singularities along curves much more efficiently than traditional transforms, i.e. using 

significantly fewer coefficients for a given accuracy of reconstruction (Donoho and Duncan 

2000). This transform used a complex series of steps involving the ridgelet analysis of the radon 

transform of an image. However, the performance was considered slow. 

Later and based upon a frequency partition technique, the same authors, Donoho and Duncan, 

proposed a considerably simpler second-generation curvelet transform. This second-generation 

curvelet transform is meant to be simpler to understand and use. It is also faster and less 

redundant compared to its first-generation version (Ma and Plonka 2009). In the new version of 

curvelet, the ridgelet transforms was discarded, thus reducing the amount of redundancy in the 

transform and increasing the speed considerably. Curvelet transform is defined in both 

continuous and digital domain. Moreover, it can be used for multi-dimensional signals. Since the 

image-based feature extraction requires only 2D FDCT, the discussion will be focused on only 

two-dimensional applications and implementations (Candes et al. 2006). 

3.3.1 Continuous-time Curvelet Transforms 

The curvelet representation in two dimensions continuous space, i.e., R
2
, will be through spatial 

variable x, with ω, a frequency-domain variable, and with r and ɵ, polar coordinates in the 

frequency domain. Then, a pair of windows function, W(r) and V(t), is introduced, the "radial 

window" and "angular window" respectively. These windows will obey the admissibility 

conditions: 
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Where, j is a radial variable and l is an angular variable. The frequency window in the Fourier 

domain is defined by: 

 

            
  
          

       

  
   3-3 

 

Where        is the integer part of j/2 

In the spatial Cartesian domain, the scaling of the radial window introduces an angular window 

with short axis with 2
-j
, and a long axis with 2

-j/2
. Therefore, the effective length and width obey 

the anisotropy scaling relation width ≈ length
2
, and Uj is a polar wedge window, as shown in 

Figure  3-1. 
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Figure  3-1  Curvelets in Fourier frequency (left) and spatial domain (right) after (Candes et 

al. 2006) 

In the frequency domain, the curvelet coefficient, with the j scale, the l angle and the sequence of 

translation parameters k = (k1,k2)   Z
2
, is defined as: 

 

          
 

     
                  

     
       3-4 

 

Figure  3-1, illustrates the result of partitioning the Fourier plane into radial (concentric circles) 

and angular divisions. The concentric circles are responsible for the decomposition of an image 

into multiple scales, j, while the angular divisions partition the band passed image into different 

angles or orientations l (Zhenghai and Jianxiong 2009). For instance, the yellow wedges 

represent the maximum support of the curvelet function    (3,3,k) and    (13,3,k), while the green 
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wedges represent    (2,4,k) and    (13,4,k) and the red wedges represent    (4,5,k) and    (26,5,k). 

As a result, defining the scale j and angle l is the proper way to deal with a particular wedge. By 

assessing the spatial domain in Figure  3-1right, it was found that each of the wedges corresponds 

to a specific curvelet, shown as ellipses, at a given scale and angle. This indicates that the 

curvelet coefficients for that scale and angle can be determined by the inverse FFT of this 

particular wedge (Guha and Wu 2010). This is the main idea behind the implementation of 

curvelet transform. Generally, curvelets are well localized, needle-shaped in higher scales, and 

the wedges are longer and thinner with scale growing (Ma and Plonka 2009).  

3.3.2  Discrete Curvelet Transform 

Coronae and rotations, as in the continuous-time definition, are not especially adapted to 

Cartesian arrays, so it is convenient to replace these concepts by Cartesian equivalents; here, 

“Cartesian coronae” based on concentric squares (instead of circles) and shears.  

 

Figure  3-2 The transition from the continuous-time definition (right) to the discrete-time 

definition(left) after (Candes et al. 2006). 
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Figure  3-2 (left) illustrates the basic digital tiling where the windows ˜Uj` smoothly localize the 

Fourier transform near the sheared wedges obeying the parabolic scaling. The shaded region 

represents one such typical wedge. Now the Cartesian window    is defined as: 

 

                            3-5 

 

Where: 
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Φ is defined as the product of low-pass one dimensional windows: 
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And Sɵ is the shear matrix: 
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Hence, the discrete curvelet coefficients are defined as: 

 

 

 
                      

          
        

 3-9 

 

According to (Candes et al. 2006), there are two different digital implementations of FDCT:  

 Curvelets via USFFT (Unequally Spaced Fast Fourier Transform), and 

 Curvelets via Wrapping.  

Both variants are linear and take a cartesian array as input to provide an output of discrete 

coefficients. The only difference is in the choice of the spatial grid where curvelets at each scale 

and angle are translated. As the FDCT wrapping is the fastest curvelet transform currently 

available (Candes and Donoho 2005), the wrapping version of curvelet transforms, will be used 

throughout the implementation. The FDCT wrapping algorithm may be summarized as follows: 

1. Perform FFT of the image 

2. Divide the FFT into collection of Digital Corona Tiles as shown in Figure  3-2 

3. Perform the following for each corona tile: 

- Translate the tile to the origin as in Figure  3-3. 

- Wrap the parallelogram shaped support of the tile around a rectangle centered at the 

origin as in Figure  3-4. 

- Take the inverse FFT of the wrapped support. 

- Add the curvelet array to the collection of curvelet coefficients. 
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Figure  3-3 Support of wedge before Wrapping 

 

Figure  3-4 Support of wedge after 

Wrapping 

The values of curvelet coefficients depend on how they are aligned in the real image. One can 

expect higher coefficient’s values when the curvelet is accurately aligned to a given curve in an 

image. A clear explanation is provided in Figure  3-5. The curvelet named ‘c’ in the figure is 

almost perfectly aligned with the curved edge and therefore, has a higher coefficient value. 

Curvelets ‘a’ and ‘b’ will have coefficients close to zero as they are quite far from alignment 

with the curve (Guha and Wu 2010).  

 

Figure  3-5 Alignment of curvelets along curved edges (Guha and Wu 2010) 
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From the previous discussion, it is clear that the curvelet transform provides a distinguished 

characteristic for the signals where they are better localized in both frequency and spatial domain 

compared to wavelet or any other transform. The unique mathematical property for representing 

curved singularities in a non-adaptive manner makes the Curvelet transform a higher-

dimensional generalization of wavelets. 

The major advantage of the curvelet transforms over the wavelet is that the edge discontinuity is 

better approximated by curvelets than wavelets. Curvelets can provide solutions to the 

limitations of wavelet transforms, which are: 

 Limited curved singularity representation,  

 Limited orientation (Vertical, Horizontal and Diagonal), and 

 Absence of anisotropic element (isotropic scaling)  

If an image function, f, is approximated by the largest m coefficients as    , then the 

approximation errors are given by: 

1
2

2 ,F

mf f m m


      Fourier transforms 

2
1,W

mf f m m      Wavelet transforms 

2
2 3log( ),C

mf f m m m       Curvelet transforms  

Figure 3-6 shows the edge representation capability of wavelet (left) and curvelet transform 

(right). More wavelets are required for an edge representation using the square shape of wavelets 

at each scale, compared with the number of required curvelets, which are of an elongated needle 

shape. The main idea here is that the edge discontinuity is better approximated by curvelets than 
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wavelets. Curvelets can provide solutions for the limitations (curved singularity representation, 

limited orientation and absence of anisotropic element) existing in the wavelet transform. 

 

Figure 3-6 Representation of curved singularities using wavelets (right) and curvelets (left) 

after (Guha and Wu 2010). 

3.4 Wavelet and edge detection 

3.4.1 Wavelet image analysis and edge detection criteria 

Multi-resolution techniques aim at transforming images into a representation where both spatial 

and frequency information can be identified (Livens et al. 1997). A wavelet transform 

decomposes images into a complete set of wavelet functions, which then form a basis, generally 

orthogonal. These functions are constructed by translating and dilating a single-mother wavelet 

which is localized in both spatial and frequency domain (Mallat 1989). Once this is completed in 

discrete steps, the discrete wavelet transform is obtained, for which there exists an efficient 

filtering implementation in the real space. Every wavelet corresponds to a high and low-pass 

filter. For the most common cases with dilations by a factor of two, the scheme is called "dyadic" 

wavelet transform and introduced in Figure  3-7, (Livens et al. 1997). 
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The procedure of decomposition in order to obtain the approximation, horizontal, vertical and 

diagonal details is as follows: 

- Approximation image (LL); convolving image rows by a one-dimensional low-pass 

filter (Lo-F), down-sampling of filtered signals to keep every other column, convolving 

the columns of resulting signals by another one-dimensional low-pass filter and down-

sampling to keep every other row. 

- Horizontal detail image (H); convolving the image rows by one-dimensional low-pass 

filter, down sampling of filtered signals to keep one column out of two, convolving the 

columns of resulting signals by a high-pass filter (Hi-F) and keeping one row out of two. 

- Vertical detail image (V); performance of a high-pass filter on the original image 

followed by a low-pass filter with two down-sampling steps to keep every other column 

and row for each step respectively. 

- Diagonal detail image (D); in order to obtain the diagonal detail image, two high-pass 

filters with two steps of down sampling are carried out on the original image (Myint 

2001; Daryaei 2003). 
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Figure  3-7 Example of wavelet transform for two-dimensional imagery, after (Tso and 

Mather 2009) 

According to the above dyadic scale, if we take as an example a 256x256 pixels image, the 

resulting decomposed images will be eight images, representing the produced eight scales, and in 

two directions, the horizontal and vertical directions. At each scale level, the image is convolved 

with a 1-D wavelet to obtain the coefficients at that level vertically and horizontally.  

Then the modulus maxima of the resulting images are calculated in each direction. In order to 

avoid plotting weak edges, only the maxima with a value above a certain threshold are taken and 

plotted.  

 



 

63 

3.4.2 Comparison with curvelet 

Fourier’s series require a large number of terms to reconstruct a discontinuity with acceptable 

accuracy. This is the well-known Gibbs phenomenon. Wavelets have the ability to solve the 

problem of Fourier’s series as they are localized and multi-scaled. However, though wavelets do 

work well one-dimensionally, they fail to effectively represent higher-dimensional singularities 

(especially curved singularities, wavelets can handle point singularities quite well) due to limited 

orientation selectivity and isotropic scaling. Standard orthogonal wavelet transform has wavelets 

with primarily vertical, horizontal and diagonal orientations independent of scale. 

Curvelet transform has drawn much attention lately because it can efficiently handle several 

important problems, while the traditional multi-scale transforms like wavelet fail. First, Curvelets 

can provide a sparse representation of the objects that exhibit ‘curve punctuated smoothness’, 

(Candes and Donoho 2004) i.e. objects that  are smooth except along a general curve with 

bounded curvature. Curvelets can model such curved discontinuities so well that the 

representation becomes as sparse as if the object were not singular. From Figure 3-6, we identify 

the sparsity and efficiency of curvelet representation of curved singularities compared to 

wavelets. At any scale j, curvelets provide a sparse representation O(2 
j / 2

 ) of the images 

compared to wavelets’ O(2
j
) .  

3.5 Canny edge detector 

Canny edge detection is an optimal method for step edges’ detection in the spatial domain. 

Canny uses three criteria to design his edge detector. First, a reliable detection of edges with low 

probability of missing true edges, and a low probability of detecting false edges must be 

achieved. Second, the detected edges should have a minimum distance to the true location along 

the edge. Third, there should be only one response to a single edge (thin lines for edges). 
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Based on these criteria, the Canny edge detector first smoothes the image to eliminate any noise, 

then it finds the image gradient to highlight regions with high derivatives. The regions with high 

derivatives are tracked by the algorithm to suppress any pixel that is not at the maximum (non-

maximum suppression). The remaining pixels are further reduced by two thresholds T1 and T2. 

If the magnitude is below T1, it is set to zero (none edge), if the magnitude is above T2, it is 

made an edge. And if the magnitude is between the two thresholds, then it is set to zero unless 

there is a path from this pixel to a pixel with a gradient above T2 (Canny 1986). 

Step 1: Gaussian filtering to remove noise 

The first step of canny edge detection is to filter out any noise in the original image before trying 

to locate and detect any edges. The Gaussian filter is used to blur and remove unwanted detail 

and noise. By calculating a suitable 5 X 5 mask, Gaussian smoothing can be performed using the 

standard convolution method. The larger the width of the Gaussian mask, the lower the detector's 

sensitivity to noise. By increasing the standard deviation the intensity of the noise is either 

reduced or blurred. An example of 2D Isotropic Gaussian equation is given below: 

 

 G(x,y) = 
 

     
 

     

    
 3-10 

    

Step 2: Gradient calculation 

After smoothing the image and eliminating the noise, the next step is to find the edge strength by 

taking the gradient of the image –there are many ways and masks to perform the gradient 

calculation. One of these ways is to find the difference between the intensity value of the two 

consecutive pixels in both directions (x and y). When finding edges, we are looking for the 
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steepest descent as well as the steepest ascent since both represent a high change in the intensity 

of the image. Figure  3-8 depicts the gradient and orientation process. 

 

Figure  3-8 Illustration of gradient calculation in canny operator 

Once we have the gradient value for each pixel we can get the magnitude of the gradient by:  

 

                            
 3-11 

 

The main purpose of doing this is to highlight regions with high spatial derivatives. The 

orientation of the edge can be determined by the next equation: 

 

           
     

     
  

 3-12 

 

Step 3: Non-Maximal Suppression  

This step works with the magnitude and orientation of the gradient of the pixel under 

consideration and creates one pixel-width edge. However, we need to interpolate the values of 
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the pixels found at the neighborhood around the point under analysis. The pixel that has no local 

maximum gradient magnitude is now eliminated and the comparison is made between the actual 

pixel and its neighbors along the direction of the gradient as in Figure  3-9.  

 

 

Figure  3-9 Non Maximal Suppression Procedure  

Step 4: Hysteresis  

The problem now is that we may have some pixels that, despite being a local maximum, 

represent noise. At this stage, most of the edge detectors apply a threshold process. The threshold 

is then defined so that each pixel with a value below it is eliminated. Two levels of thresholding 

are selected: high threshold (TH) and low threshold (TL). For a given pixel, if the gradient 

magnitude is below TL, it is unconditionally set to zero.  If the gradient is at least TH, the pixel 

is left alone. And finally, if the gradient is between these two thresholds, then it is set to zero 

unless there is a path from this pixel to a pixel with a gradient above TH. An example is in 

Figure  3-10. 



 

67 

 

 

 

TL=0.2     TH=0.6  TL=0.4      TH=0.8 

Figure  3-10 applying hysteresis to Canny edge map 

(www.cs.washington.edu/research/imagedatabase/demo/edge) 

Table  3-2 summarizes a comparison between curvelet, wavelet and canny operator. 

Table  3-2 Comparison between wavelet, curvelet and Canny 

 
Wavelet Curvelet Canny 

Scale Isotropic Anisotropic N/A 

Directionality 

Limited 

(vertical, horizontal and 

diagonal) 

Multi directional (through 

wedges) 

According to the 

calculated direction 

from the gradient 

value 

Edge detection 

Handle point singularity 

quite well, but fail to 

represent higher 

dimensional singularities 

(curved singularity) 

Handle both point and smooth 

curves quite well 

Depends on the 

thresholds values 

Processing time 

(512X512) 

Pixel 

0.76 (s) 2 (s) 1.07 (s) 

Criteria 
The maxima of the wavelet 

transform modulus 

Curvelet, which most fit the 

curves, have the higher 

coefficient values 

Gradient calculation 

followed by non-

maxima suppression 

and hysteresis 

http://www.cs.washington.edu/research/imagedatabase/demo/edge
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3.6 Implementation of the edge detection techniques for high-resolution satellite imagery 

The influence of edge detection process comes from the fact that it is usually lies at the bottom of 

the classification process to serve as a base map for all other coming modules. Consequently, the 

more accurate this process, the more accurate the whole classification results are. 

In this section, edge detection results using curvelet, wavelet and Canny operator will be 

compared. Figure  3-11, illustrates the proposed algorithm for edge detection using curvelet 

transform with some pre-processing steps. The pre-processing steps involve data fusion between 

the multispectral bands with 2.00 m resolution with the panchromatic band with 0.5 m 

resolution. The resulting image will be a multi spectral image with 8-bands. The next step is to 

convert the RGB image to gray level image using the standard perceptual weightings for the 

three-color components RGB using the equation  3-13, 

(www.mathworks.com/help/toolbox/wavelet/gs/f4-1013594.html). 

After that, a high-pass filter is applied, and the resulting image will be added to the original 

image as in Figure  3-12.  

 

 Gray level = 0.2990 * R + 0.5870 * G + 0.1140 * B  3-13 

http://www.mathworks.com/help/toolbox/wavelet/gs/f4-1013594.html
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Figure  3-11 Edge detection technique using curvelet transform (Elhabiby et al. 2012)  

 

 
Figure  3-12 The grey level image after high pass results added to the original image 
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The 2D FFT of the output image is then calculated to obtain Fourier’s samples. And according to 

the size of the original image, the scale levels are determined by using: 

 

 n=log2(N)-3   3-14 

 

Where N is the minimum number of the image size and n is the number of the scale levels, i.e. 

for N=512 pixels, n=6 levels. These scale levels are divided into three parts, which are coarse 

level, detail level and fine level. Then curvelet transform is applied to extract the coefficients 

from these parts. Images are then reconstructed for each level with those coefficients as shown in 

Figure  3-13. 
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Figure  3-13 The reconstructed images using different scales levels 

 

Analyzing the curvelet transform coefficients, it can be found that they contain different 

information in each scale level. Consequently, by arranging the coefficients of each level and 

take the most significant part of them, this will enhance the edge information that represents the 

image part of interest. Then, the coefficients are reconstructed to get a new image called the edge 

map, as shown in Figure  3-14, where the edge parts are enhanced.  
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Figure  3-14 The reconstructed edge map 

Table  3-3 summarizes the total number of coefficients in each scale and the actual used 

percentage. 

Table  3-3 The percentage used in reconstructing the edge map image 

Scale No. of total coefficients 

Percentage 

used 

No. of used 

coefficients 

1 625 0% 0 

2 8320 0% 0 

3 32032 100% 32032 

4 124064 100% 124064 

5 491264 1% 4912 
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6 1944856 1% 19448 

Total 2601161 6.9 % 180456 

 

The edge map is then thresholded to get enhanced edge map as shown in Figure  3-15. The 

reconstructed edge image was thresholded based on the fact that any edge will have abrupt 

changes in the pixel from negative towards positive values, and the absolute summation will 

determine the strength or the weakness of that particular edge.  

 

Figure  3-15 The thresholded edge map 

Figure  3-16, demonstrates the impact of the thresholding process on the criteria of selecting 

edges. For instance, two points on both sides of a strong edge with indices’ values +5.503 and -

5.43 respectively, while the same figure (down) illustrates two points on the sides of a weak edge 
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having the values of -26.35 and -21 respectively, this is why first point will be considered as an 

edge while second point is not.  

 

  

  

Figure  3-16 An example of the thresholding criteria 

 

The next step is applying morphological filters to get rid of undesired artifacts, i.e. isolated pixels 

below certain threshold, and the result is shown in Figure  3-17. 
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Figure  3-17 Final edge map after morphological filters  

 

To illustrate the quality of this algorithm compared to Canny and wavelet transforms, the 

procedure was repeated using these two methods and the final results are shownin Figure  3-18 

and Figure  3-19. Canny was used with sigma equal to 1 and the thresholds T1= 0.006 and T2= 

0.02. 
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Figure  3-18 Final edge map with Canny Operator  

 
Figure  3-19  Final edge map with Wavelet transforms 
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The result of Canny shows almost identical result with the curvelet transforms edge detection 

result. The case was different with the wavelet as in the Figure  3-19, which illustrates the edge 

detection result when using the original image as an input to the wavelet transforms.  

A tiny area in the original image, Figure  3-12, was picked and enlarged to emphasize the 

potentials of using the curvelet transform as an edge detector against Canny and wavelet 

transform. Figure  3-20, highlights a small area in both Curvelet (left) and Canny edge map 

(right) overlaid on the original image. It is very clear that Canny wasn’t able to siege or block 

many features leaving a lot of open boundaries, e.g. see the cricked areas in the Canny edge map, 

while curvelet gave the most accurate delineation of the edges better than the Canny. 

 

 

 

 

Figure  3-20 Highlight a certain area in curvelet (left) and Canny (right) images 

 

In chapter four and five more results and detailed discussions for each of the previous techniques 

will be given. 
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3.7 Curvelet-Canny approach for edge detection 

In this section, a new approach using the capability of the second generation curvelet transform 

together with the traditional Canny operator for edge detection from high-resolution satellite 

imagery; the combined technique will be applied on WorldView-2 imagery. First, the curvelet 

coefficients will be generated in multi-scales and multi-directions using a forward discrete 

curvelet algorithm. Then, these coefficients will be sorted in each scale to generate the edge map 

using the larger coefficients for the coarser scales. Second, this edge map will be the input to the 

second stage where the three main steps of the traditional canny operator, gradient calculation, 

non-maximal suppression and hysteresis, will be applied. The first step results in removing noise, 

fine edges, from the image aiding the second step for better connecting the strong edges without 

the effect of weak edges coming from the noise. 

The percentage of the utilised coefficients in the curvelet transforms step together with the 

weight for each scale are the tuning parameters the user has to adjust to getting the desired level 

of edges detected. The results from the proposed approach were compared to the traditional 

canny edge detection algorithm. The results showed very good potentials for detecting elongated 

edges and also for generating more closed objects, which make this method a good alternative 

for the segmentation step for any further object-based classification algorithm.  

3.7.1 Methodology 

Figure  3-21, illustrates the proposed algorithm for edge detection using curvelet transforms and 

canny operator with some pre-processing steps.  

The data is WorldView-2 imagery, provided by Digital Globe Company for a part of San 

Francisco, USA. The imagery was captured on October, 2011 morning time. Second generation 

curvelet transform wrapping algorithm will be applied to the gray level image, Figure  3-22, 
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resulting in generating of the curvelet coefficients in different scales and orientations. The 

coarser level starts from scale number one and gets finer as we move to the second , third fourth 

scales.  

 

 

Figure  3-21 The proposed edge detection technique using curvelet-canny  
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Figure 3-22 The grey level image for the area of the study 

Reconstructing the images from each scale individually shows that coarser scales, first four 

scales, contain the most important information about the image, while finer scales, fifth and sixth 

scales mostly contain noise or very fine details about the image, as in Figure  3-23. Therefore, the 

main purpose of this step is to suppress the coefficients coming from the finer scales, as a result 

the reconstructed image will be partially free from insignificant information, noise and very fine 

details, to help the next step for better detecting the strong edges. Consequently, by arranging the 

coefficients of each level and take the most significant part of them, this will enhance the edge 

information that represents the image part of interest. Then, the coefficients are reconstructed to 

get a new image called the edge map (Elsharkawy et al. 2011), as shown in Figure  3-24, where 

the edge parts are enhanced.  
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Coarse Level 

 
Detail Level 2 

 
Detail Level 3 

 
Detail Level 4 

 
Detail Level 5 

 
Detail Level 6 

Figure 3-23 The reconstructed images using different scales levels 
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Figure 3-24 The reconstructed edge map 

Table  3-4, summarizes the total number of coefficient in each scale and the weight of each scale 

level used to reconstruct the edge map. 

Table 3-4  the percentage used in reconstructing the edge map image 

Scale No. of total coefficients 

Percentage 

used 

No. of used 

coefficients 

Weight of each 

scale level 

1 625 100% 625 1 

2 8320 100% 8320 1 

3 33488 100% 33488 1 

4 129792 100% 129792 1 
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5 510848 1% 5108 0.9 

6 2022976 1% 20229 0.9 

Total 2706049 7.3 % 197562  

 

The reconstructed edge map, Figure  3-24, will be the input to the next step, which includes 

gradient calculation, non-maximal suppression and hysteresis. The result from this stage is 

illustrated in Figure  3-25.  

 

 

Figure 3-25 Edge detection result using the proposed algorithm  

To illustrate the quality of this algorithm the result was compared with the traditional Canny, 

Figure  3-26. Details of the comparison are given in the next section.  
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Figure 3-26 Results with Canny Operator  

3.7.2 Results and discussion of the curvelet-canny integration  

Comparing the two figures, it was clear that Canny wasn’t able to siege or block many features 

leaving a lot of open boundaries, and also canny alone, was not able to detect many elongated 

structures, while curvelet-canny approach gave better results regarding more detection of 

elongated structures and more closed boundaries. Figure  3-27, enlarge some snapshots to 

illustrate these findings. 
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Figure 3-27 Comparing certain areas in curvelet-canny and canny 
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Chapter Four: Urban Classification 

4.1 Introduction 

In this chapter, urban classification problem will be tackled using the advantages of the 

WorldView-2 imagery. First, a new multi-layer classification algorithm is introduced in section 

 4.2, using the will known NDVI ratio and two other innovated NDVI like ratios. The new  

algorithm targets six common classes which can be found in most urban classification scales; 

vegetation, water, asphalt roads, bare soil, shadow and buildings. Second, curvelet transform will 

be introduced, in section  4.3, as a feature extraction technique for building extraction. Third, the 

integration between the aforementioned two approaches is introduced in section  4.4.  

4.2 Land cover classification: pixel-based approach 

4.2.1 Area of study 

The study area is part of the whole area of study, previously described in chapter two. It is 

mainly a residential area, comprises scattered buildings, roads, vegetation areas, shadowed areas, 

shoreline and water body. The data was provided by Digital Globe, the images were captured on 

April 7th, 2011 in morning time. Figure  4-1, illustrates a false color composite, NIR-1, G and B, 

of the study area. 
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Figure  4-1 Area of study 

4.2.2 Pixel-based Classification Algorithm 

For the purpose of the study, two data sets will be generated from this imagery, as there is no 

IKONOS or QUICKBIRD data were available, one will be notified by (Data Set I), which 

comprises the full 8-bands, and the other will be notified by (Data Set II), in which the four new 

bands will be omitted and it will contain only the 3-visible bands and the NIR-1, as in the next 

figure. 
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Data set I 

C-B 

B 

G 

Y 

R 

R-E 

NIR-1 

NIR-2 

Data set II 

 

B 

G 

 

R 

 

NIR-1 

Figure  4-2 Data set used 

As described in the radiometric calibration section, section  2.3.3, a conversion to radiance 

followed by a conversion to reflectance takes place for the original DN’s values.  

To get the most gain of the spatial resolution capability of the WorldView-2 data, a fusion 

technique has to be applied. The proposed algorithm begins with a data fusion between the 

panchromatic band of the WorldView-2 data, 0.50 m, and the multispectral ones, 2.00 m 

resolution, to generate 8-spectral bands with a resolution of 0.50 m. One of the most common 

fusion techniques is the Brovey Transform. This technique is optimum when increase in contrast 

in the low and high ends of an images histogram (i.e., to provide contrast in shadows, water, and 

high reflectance areas such as urban features) is needed. The procedure of this transform starts 

with multiplying each Multi-Spectral, MS, band by the high-resolution Panchromatic, PAN, 

band, and then divides each product by the sum of the MS bands. Since the Brovey Transform is 

intended to produce RGB images, only three bands at a time should be merged from the input 

multispectral scene (Nikolakopoulos 2008) in our case we choose NIR-1, Green and Blue bands. 

The study uses two different methods for extracting land cover information, namely;  

1) Supervised classification approach using the Maximum Likelihood Classifier,  

2) Image classification using multi-layer classification tree analysis.  

In the following sections the details of these methods will be demonstrated. 
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4.2.3 Supervised classification approach using the Maximum Likelihood Classifier 

For the purpose of applying Maximum Likelihood Classifier, training pixels for six classes; 

asphalt roads, vegetation, Bright surface, red roofs, shadow, water and bare soil, were chosen for 

the two data sets (I, II). Table 2 summarizes the number of pixels used for training and 

verification for each class. 

 

Table 4-1 Training and verification pixels summary  

Class name Training pixels No. Validation pixels No. Total 

Asphalt roads 3798 3484 7282 

Vegetation 6984 2936 9920 

Bright surface 4280 4726 9006 

Red roofs, 2710 1551 4261 

Shadow 1278 934 2212 

Water 23467 3823 27290 

Bare soil 5872 783 6655 

Total 48389 18237 66626 

 

The classification results were compared with the validation pixels, as ground truth data, to 

assess the overall accuracy. The error matrix was generated to obtain the user’s and producer’s 

accuracy (Congalton 1991). The user’s accuracy refers to the measure of commission errors that 

correspond to those pixels from other classes that the classifier has labeled as belonging to the 

class of interest. Moreover, the producer’s accuracy refers to the measure of omission errors that 
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correspond to those pixels belonging to a class of interest that the classifier didn’t recognize 

(Richards and Jia 2006; Bhaskaran et al. 2010). 

4.2.3.1 Evaluation of Training Sets 

In order to evaluate certain training data sets against specific classes it is common to run 

statistical measures of distances between two signatures for all possible combination of bands 

that is used in the classification. This process will help us to rule out any bands that are not 

useful in the results of the classification. In remote sensing literature, the most popular 

separability measures are the separability indices; namely, divergence, transformed divergence, 

Bhattacharyya distance and Jeffries-Matusita distance (Kavzoglu and Mather 2000). For 

instance, one of the most popular separability measures, divergence, is computed using the mean 

and variance-covariance matrices of the data representing feature classes. While, the transformed 

divergence measure, the one we used in this research paper, can be considered as the 

standardized form of divergence as it scales the divergence values to a certain range, 0 to 2 here. 

Generally, pairs with values greater than 1.9 indicate that the ROI pairs have good separability. 

Separability of the training pixels for all possible combinations was calculated for the 2 data sets 

and the results were as in the figure 5. The formula for computing the divergence (Dij) is as 

follows: 

 

      
 

 
             

     
     

 

 
      

     
                 

 
   4-1 

       

 

Where: 

i and j are the two signatures (classes) being compared 
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Ci is the covariance matrix of signature i 

μi is the mean vector of signature i 

tr is the trace function (matrix algebra) 

T is the transposition function 

And the formula for computing the transformed divergence (TDij) is as follows: 

 

                 
    

 
    4-2 

 

    

 
Figure  4-3 Separability values for all possible pairs for the 2 data sets 

4.2.4 Supervised classification approach using the new band ratios 

The traditional NDVI ratio plus two new band ratios are introduced, the original NDVI (R1) 

specially suited for vegetation and water, second one (R2) to detect asphalt, shadow and man-
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made objects and finally (R3) to detect red roofs, buildings and barren. Table  4-2, summarizes 

the three ratios and their usage. Note that we flipped the original NDVI, equation  2-10, by 

subtracting the reflectance values of the visible band minus the reflectance values of the near-

infrared values divided by the summation of the two values as in Table  4-2. 

 

Table  4-2 Band ratios and their implementation 

 Band ratio Target classes 

R1 
        

        
 

Vegetation 

Water 

R2 
     

     
 

Asphalt 

Shadow 

Manmade object 

R3 
        

        
 

Red roof 

Building 

Barren 

 

 

R1 is applied twice to separate between water and vegetation classes, and then R2 is applied to 

detect asphalt, shadow and red roofs are detected through lower and upper thresholds, finally the 

R3 ratio is applied to detect bright surfaces below certain threshold. Figure  2-14, summarize 

these steps along with the applied thresholds. 
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4.2.5 Classification Results  

4.2.5.1 Supervised classification results using MLC 

Data set I: 

Classification results were evaluated using validation pixels as shown in Table 4-1. Table  4-3, 

summarizes the confusion matrix of the data set I against the verification pixels, the overall 

Accuracy was 99.3% and the Kappa Coefficient was 0.9907.  

 

Table  4-3 Confusion matrix for the data set I 

 Asphalt Vegetation 

Bright 

Surface 

Red 

Roofs 

Shadow Water Bare Soil Total 

Asphalt 99.54 0.00 0.11 0.00 1.21 0.00 2.30 10.93 

Vegetation 0.14 99.95 0.00 0.00 0.82 0.00 0.00 14.89 

Bright 

Surface 

0.25 0.04 99.13 0.00 0.43 0.01 1.38 13.52 

Red Roofs 0.04 0.01 0.00 100.00 0.09 0.00 0.00 6.40 

Shadow 0.00 0.00 0.00 0.00 95.75 0.01 0.00 3.32 

Water 0.00 0.00 0.71 0.00 1.69 99.98 0.00 40.96 

Bare Soil 0.03 0.00 0.04 0.00 0.00 0.00 96.32 9.99 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

  

 

 

Data set II 

Table  4-4, summarizes the confusion matrix of the data set II against the verification pixels, table 

2, the overall Accuracy was 97.5280% and the Kappa Coefficient was 0.9679. 
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Table  4-4 Confusion matrix for the data set II 

 
Asphalt Vegetation 

Bright 

Surface 

Red 

Roofs 

Shadow Water Bare Soil Total 

Asphalt 99.51 0.00 0.09 0.00 0.87 0.30 2.25 11.03 

Vegetation 0.14 99.98 0.00 0.00 1.26 0.03 0.00 14.92 

Bright Surface 0.25 0.01 98.62 0.35 0.13 0.15 2.04 13.58 

Red Roofs 0.07 0.01 0.00 99.65 0.00 0.00 0.01 6.37 

Shadow 0.00 0.00 0.00 0.00 93.37 3.28 0.00 4.57 

Water 0.00 0.00 0.57 0.00 4.38 96.25 0.00 39.51 

Bare Soil 0.03 0.00 0.73 0.00 0.00 0.00 95.70 10.02 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Figure  4-4, Figure  4-5 and Figure  4-6, illustrate the classification results for the data sets and the 

user’s and producer’s accuracy comparisons respectively.  

 

 
 

Vegetation 
 

 
Water 

 

 
Asphalt 

 

 
Bright Surface 

 

 
Bare Soil 

 

 
Red Roofs 

 

 
Shadow 

 

MLC results for Data I MLC results for Data II 

Figure  4-4 supervised classification results for the two data set 
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Figure  4-5 User’saccuracycomparison for the two data sets 

 

 
Figure  4-6 Producer’saccuracycomparisonforthetwodatasets 

 

4.2.5.2 Supervised classification results using band ratios 

Applying the band ratios in the shown sequence as in Figure  2-14, showed good results. Water, 

vegetation, manmade objects and shadow were all successfully classified using the 3 band ratios 

without any spatial attributes, in which it will give a good solution for those who need fast and 

reliable land cover types. The original image and the classified image are shown in Figure  4-7 

and Error! Reference source not found. respectively. 
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As a result of lack of ground truth and for assessment purposes, a ground truth map was 

generated to the same scene in the ENVI software using MLC, utilising more than 50% of the 

image as a training pixels. The original image, the ground truth image and the classified image 

using the proposed algorithm are shown in Figure  4-7, 4-8 and Error! Reference source not 

found. respectively. 

 

 
Figure  4-7 Area of study 
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 Bare soil  Asphalt  Vegetation 

 Shadow  Water  Buildings 

 

Figure  4-8 Ground truth map 

 

 Bare soil  Asphalt  Vegetation 

 Shadow  Water  Buildings 

Figure  4-9 Classification results for the proposed band ratios 



 

98 

 

The confusion matrix between the generated ground truth and the classified image is tabulated in 

the following table. 

Table  4-5 Confusion matrix for the multi-layer algorithm results compared to the 

generated ground truth 

 Bare 

soil 

Veg. Buildings Shadow Asphalt Water 

User’s 

Accuracy 

Producer’s 

Accuracy 

Bare soil 60 0 35 0 5 0 60 74 

 
Veg. 0 99 1 0 0 0 99 74 

 
Buildings 15 5 66 0 13 0 66 56 

 
Shadow 0 45 2 33 19 0 33 87 

 
Asphalt 4 16 21 1 58 0 58 70  

Water 0 0 1 0 0 99 100 100  

 

4.2.6 Analysis of the classification results 

For the first approach, MLC, visual inspection showed better results for the data set I than the 

data set II. Statistically, both the overall accuracy and kappa coefficients were enhanced by 3% 

higher, than those of data set II. Consequently, user’s and producer’s accuracy were higher for 

data set I relative to data set II for all classes as shown in Figure  4-5 and Figure  4-6. Even for the 

separability analysis the 8-band combination gives better separability measures for all class 

combinations comparing to the 4-band combination as in Figure  4-3. 

Regarding the multi-layer classification approach, applying the band ratios in the shown 

sequence in Figure  2-14, results in good delineation of vegetation, asphalt, shadow, water, red 
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roofs and bright surfaces. Visual inspection of the generated ground truth shows that building 

class was greatly confused with bare soil class; also the shadow class was mixed with the 

vegetation class. Even though, the producer’s accuracy for almost all classes was greater than 

70% except for the buildings class it was 60%. And the user’s accuracy was almost 100% for 

water and vegetation classes, while it has less percentage for the other classes due to the 

aforementioned confusion between classes. The new bands, namely C, Y, Red edge and NIR2 

showed very good potentials for detecting manmade objects and vegetation as well. 

In order to enhance the overall classification result, the buildings class will be targeted in the 

next two sections,  4.3 and  4.4. 

 

4.3 Building extraction 

The process of automatic extraction of buildings from digital imagery has a major practical 

importance in the areas of data acquisition and updating of geographic information system (GIS) 

databases. This process also involves a number of scientific challenges for researchers as a result 

of the heterogeneous nature of the buildings, especially in the developing countries (Aytekin et 

al. 2009). 

Several techniques are used in building extraction from satellite images. In this section, second 

generation curvelet transform will be introduced as an edge detection tool for detecting of 

buildings boundaries. Second generation curvelet transform provides optimally sparse 

representations of objects, which display smoothness except for discontinuity along the curve 

with bounded curvature (Candes et al. 2006). Some papers have investigated this technique for 

edge detection from high resolution satellite imagery such as IKONOS or QuickBird, and 

microscopic imagery (Xiao et al. 2008; Geback and Koumoutsakos 2009; Zhenghai and 



 

100 

Jianxiong 2009; Guha and Wu 2010), which clearly show a great potential of using curvelet 

transform in solving edge detection problems. However, to-date there is no researches to tackle 

the building detection problem using the curvelet transform from high resolution satellite 

imagery. 

In this section an algorithm for building detection based on curvelet transform will be 

introduced. The algorithm consists of four main parts; first data fusion between the panchromatic 

band, 0.50 m resolution, and the multispectral ones, 2.00 m resolution, to generate 8-spectral 

bands with a resolution of 0.50 m. Second, a Gaussian high pass filter is applied to enhance the 

edges. Third, using the curvelet transform edges will be detected depending on the fact that the 

values of curvelet coefficients are determined by how they are aligned in the real image. The 

more accurately a curvelet is aligned with a given curve in an image, the higher is its coefficient 

value. Fourth, a filling process for every closed boundary followed by calculation of statistics for 

these enclosed boundaries; such as area, major and minor axis and compactness to extract the 

buildings (Elsharkawy et al. 2011).  

The difficulty of implementing an automatic building extraction technique comes from the 

heterogonous nature of the buildings, where buildings have different shapes and sizes. 

Furthermore, the buildings may be occluded by shadows or by taller buildings. Moreover, the 

diverse materials used for the top roofs play an important role in this heterogeneity as these 

materials could have a similar texture and spectral properties with the surrounding objects, which 

make the segmentation process very difficult (Yanfeng et al. 2004). Consequently to overcome 

all these difficulties, there are many trials and proposed methods to solve building extraction 

problem using different approaches. (Mayer 1999), and (Braun et al. 1995)  provide a good 

review about the different approaches related to automatic building extrication problem, while 
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(Matsuyama et al. 1990) provides an overview of the whole detection and photo interpretation 

problem. 

There are a number of challenges when addressing the problem of building extraction.  The first 

is related to how buildings are presented in imagery? Roofs as seen from above have a wide 

spectral diversity, from colored roof tiles, to metal roofs which may be confused with 

surrounding objects such as roads or parking lots or even bare soil. The second, what are the 

significant shape characteristics for buildings? Roofs have a wide variety in shape and in size. 

They can differ in shape from rectangular to circular, small family houses to larger industry 

buildings. In general, buildings if compared to other classes such as trees, cars or any other man-

made objects can be considered a quite larger in size. Third, what is the role of contextual 

information?, the answer here points toward the shadow problem, as buildings in general are 

higher than its surrounding so in most cases they have shadows. Many researchers considered 

shadows as an important evidence for detecting building, see (Yanfeng et al. 2004) for example.  

One more important character about buildings is that they are generally not covered by water or 

vegetation. Finally, how the ancillary data  be employed? this will be through providing a Digital 

Surface Model (DSM) for the study area, which may be the only way to detect building from 

surrounding areas in some cases. These data may be generated from stereoscopic imagery for the 

study area or directly from LIDAR data.  These questions summarize the problem of building 

extraction from high resolution satellite imagery and also show the need of a new algorithm that 

can help in having an efficient automation for building extraction. 

Following (Mayer 1999) in his surveying for building extraction, (Ünsalan and Boyer 2011) 

update this survey by adding missing and new papers published after this survey. Generally the 
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building extraction systems can be classified based on their complexity in data, complexity in 

building model, and the system strategy used (Ünsalan and Boyer 2011).  

 Data complexity deals with the image types, some used satellite images (such as Landsat, 

SPOT, and IRS) with resolutions ranging from 5 to 30 meter or high resolution satellite 

images ( IKONOS, QUICKBIRD, WorldView-2) where spatial resolution approach the 

50 cm. Others used aerial images with resolutions ranging from 0.3 up to 1 meter. 

Complexity in building model deals with the relative location and orientation of the 

buildings and the complexity of the scene (tall trees- shadows- different material types of 

roof construction). Some have used even ancillary data such as Digital Elevation Map 

(DEM) or Digital Surface Model (DSM) data. Finally, some have used Synthetic 

Aperture Radar (SAR) images. Each of these representations has its own benefits and 

shortcomings (Ünsalan and Boyer 2011). 

 Model complexity simply represent the building model used wether it is 2-D rectangle, a 

2D polynomial, or a 3D surface. The choice of the building model is characterized by the 

type of input data and the type of application where the results will be used. 

 System strategy captures the complexity of the system. This strategy may range from 

simple classification rules to more complex Bayesian networks, and graph-theoretical 

methods.  

After 1999, several commercial satellites with high-resolution imaging capability were launched 

and being increasingly employed for large-scale topographic mapping, and especially for 

updating databases (Grigillo and Fras 2011). Few researches utilized high resolution satellite 

images in building extraction without the help of ancillary data, (Grigillo and Fras 2011) for 

instance used GeoEye-1 images with 0.5 m resolution for building detection using supervised 
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classification and region growing technique to get the building extracted, the authors 

recommended using DSM for better results. Also, (Wei et al. 2004) used Panchromatic 

QUICKBIRD images for building extraction using unsupervised clustering and Hough transform 

for edge detection. The authors indicated that the quality of detection relies heavily on the quality 

of segmentation or the clustering process. From this discussion it is quite clear the lack of 

research in this area. This research mainly focus on building detection from high resolution 

satellite images without any ancillary date using the enhanced capability of the WorldView-2 in 

its spectral and spatial resolution and the large covering area to work as a standalone sensor for 

building extraction. 

4.3.1 Study area  

The study area is part of the image previously described in chapter two. The study area includes 

well structured urban area comprises small family houses, shadows, trees, grass area and part of 

asphalt road. The images were captured on April 7
th

, 2011 in morning time. Figure  4-10, 

illustrates a false color composite, NIR-1, R and Y, of the study area. 
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Figure  4-10 Area of study 

The choice of this 3-band combination is coming from the calculation of the Optimum Index 

Factor of the WorldView-2 data. Optimum Index Factor (OIF) is a statistical value that can be 

utilized to choose the best combination of three bands in a satellite image(Jensen 1994). The 

optimum combination of bands out of all possible 3-band combinations is the one with the 

highest amount of information, with the least amount of duplication.  4-3 describes how to 

calculate this index. 

 

     
   

 
   

        
 
   

  4-3 

 

Where  

Sk standard deviation of band-k 

rj  correlation coefficient  between any two bands 
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Standard deviation and correlation coefficients for all bands were calculated and all possible 

combinations were computed, the results are listed in Table  4-6, arranged from the greater value 

to the smaller one. 

Table  4-6 OIF for all possible combinations 

No. 

Band 

combination 

OIF No. 

Band 

combination 

OIF No. 

Band 

combination 

OIF 

1 178 28.42393 19 358 24.8232 37 238 20.85876 

2 378 26.64355 20 567 24.67987 38 345 20.3925 

3 457 26.36094 21 678 24.44914 39 256 19.94141 

4 458 26.05515 22 368 24.41157 40 127 19.9052 

5 278 25.8133 23 267 23.6883 41 246 19.86977 

6 467 25.76912 24 247 23.60386 42 128 19.6042 

7 157 25.5563 25 258 23.3367 43 145 19.57658 

8 147 25.4897 26 248 23.3282 44 245 18.75718 

9 168 25.3997 27 268 23.2565 45 136 18.7019 

10 158 25.31879 28 456 23.0016 46 236 17.54582 

11 468 25.3023 29 137 22.7607 47 135 17.0053 

12 148 25.24069 30 138 22.517 48 134 16.7669 

13 347 25.161 31 257 22.0375 49 235 16.11067 

14 357 25.08621 32 356 21.59818 50 126 16.0153 

15 568 25.01004 33 346 21.5813 51 234 15.92579 

16 348 24.89036 34 156 21.35826 52 125 14.3482 
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17 167 24.84341 35 146 21.22792 53 124 14.1125 

18 367 24.83921 36 237 21.13095 54 123 11.2804 

The third combination was chosen as it has high OIF and also gives very good visual separation 

between different land cover classes (vegetation, water, manmade objects …….). 

 

4.3.2 Building Extraction Algorithm 

Basic spectral information for mapping applications such as land-use surveys are essentially 

provided by the multispectral bands. However, as the limitation to the data storage volume and 

transmitting capability of the satellite, satellites do not collect high-resolution multispectral 

images directly.  So, what happen is the sensor collects only one panchromatic band, wide range 

of spectrum, with higher spatial resolution and the rest of the bands, with narrower ranges of the 

spectrum, with lower resolution (Nikolakopoulos 2008). In case of WorldView-2, the 

panchromatic band volume is twice as the whole 8-spectral bands together. Considering these 

limitations, it is clear that effective image fusion techniques are the most effective solution for 

providing high-spatial-resolution and high-spectral-resolution images. 

The proposed algorithm begins with a data fusion between the panchromatic band of the 

WorldView data, 0.50 m, and the multispectral ones, 2.00 m resolution, to generate 8-spectral 

bands with a resolution of 0.50 m. One of the most common fusion techniques is the Brovey 

Transform. This technique is optimum when contrast in shadows, water, and high reflectance 

areas such as urban features is needed. The procedure of this transform starts with multiplying 

each multi spectral band by the high-resolution panchromatic band, and then divides each 

product by the sum of the multi spectral bands. Since the Brovey Transform is intended to 
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produce RGB images, only three bands at a time should be merged from the input multispectral 

scene (Nikolakopoulos 2008) in our case we choose NIR-1, R and Y bands. 

The next step is applying a Gaussian high pass filter to enhance the edges. Based on the curvelet 

transform theory, an implementation for detecting edges will be introduced depending on the fact 

that the values of curvelet coefficients are determined by how they are aligned in the real image. 

The more accurately a curvelet is aligned with a given curve in an image, the higher is its 

coefficient value. Analyzing these coefficients, it can be found that the coefficient in each scale 

level contains different information. Consequently, by arranging the coefficients of each level 

from the higher to the lower values and take the most significant part of them will enhance the 

edge information that represents the important part of the image to us. Then, the coefficients are 

reconstructed to get a new image where the edge parts are enhanced.  

Morphological filters will be applied to remove the undesired noised pixels. After that, a filling 

process will be used to generate colored candidate parcels, in which buildings will be extracted 

from it in a final step. 

The final step involves calculation of statistics for the enclosed boundaries; such as area, major 

and minor axis and solidity. Based on shape and area characteristics, buildings will be extracted 

from the candidate parcels. Figure  4-11, represent a schematic diagram of the aforementioned 

algorithm. 



 

108 

 

Figure  4-11 The proposed algorithm 

4.3.3 Results of building extraction 

The proposed algorithm will follow the described algorithm in chapter three for implementing 

curvelet transforms for edge detection. First, data fusion between the multispectral bands with 

2.00 m resolution with the panchromatic band with 0.5 m resolution takes place. Then, the 

resulting image will be a multi spectral image with 8-bands. Second, a gray image will be 

generated using the equation 3-14.  

After that a high pass filter is applied and the resulting image will be added to the original image 

as in Figure  4-12. Scaling the previous image to two pins only is an essential step to remove the 
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undesired noise and give more ability to the curvelet transform to detect the edges effectively, 

the result is in Figure  4-13. 

 

 

Figure  4-12 The original image + high pass 

filter after converting to gray level image 

 

Figure  4-13 The image in Figure  4-12,after 

scaling to two pins 

A forward curvelet transform is, then, applied and the curvelet coefficients are generated in 

multi-scale and multi-directions. These scale levels are divided into three parts, namely coarse 

level, detail level and fine level. Then curvelet transform is applied to extract the coefficients 

from these parts. Images are then reconstructed for each level with those coefficients as shown in 

Figure  4-14. 
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Coarse Level 

 

Detail Level 1 

 

Detail Level 2 

 

Detail Level 3 

 

Figure  4-14 The reconstructed coarse and fine details levels 

Analyzing the curvelet transform coefficients, it can be seen that they contain different 

information in each scale level. Consequently, by arranging the coefficients of each level and by 

taking the most significant part of them, this will enhance the edge information that represents 
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the image part of interest. Then, the coefficients are reconstructed to get a new image called the 

edge map, as shown in Figure  4-15, where the edge parts are enhanced. The edge image is then 

thresholded to get enhanced one as shown in Figure  4-16.  

 

 

Figure  4-15 The reconstructed edge map 
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Figure  4-16 The reconstructed edge map after thresholding 

The reconstructed edge image was thresholded based on the fact that any edges will have abrupt 

changes in the pixel from negative to positive values and the absolute summation will determine 

the strength or the weakness of that particular edge. Figure  4-17, (upper row) illustrate two 

points on both sides of a strong edge and the index values are +3882 and -3820 respectively 

gives an absolute summation of 7702, while the same figure (lower row) illustrate two points on 

the sides of a weak edge having the values of -220 and +270.2 respectively gives an absolute 

summation of 490.2 which is far lower than the previous value.  
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Figure  4-17An example of the thresholding criteria(Elsharkawy et al. 2011) 

The next step is applying morphological filters to get rid of undesired artifacts and the result is in 

Figure  4-18.  
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Figure  4-18 The reconstructed edge map after applying morphological filters 

A filling process to all closed area is applied to generate colored parcels to work as candidates 

for the next building extraction process. The result is in the following figure. 
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Figure  4-19 the colored edge map after filling 

Statistics such as; area, major and minor axis of the closed boundaries are then calculated to help 

in choosing the parcels that represents buildings out of the candidate parcels. Three thresholds 

for the area, the ratio between the major and minor axes and finally the compactness, 

area/perimeter^2, of the closed parcels are computed and used to get the best extraction of the 

building parcels. For instance, the ratio between major and minor axes was very helpful in 

rejecting elongated parcels such as the one indicated by the white arrow in Figure  4-19. Also the 

area threshold was used to eliminate very large parcels or very small parcels such as the small 

parcel indicated by the black arrow in the same figure, while the last ratio was used to eliminate 
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un-compacted parcels such as the one indicated by the red arrow in the same figure. The final 

result is in Figure  4-20. 

 

 

Figure  4-20 Final detection of building parcels 

The edge detection process was repeated using Wavelet transform and Canny Edge detector for 

comparison purpose between these traditional techniques and the curvelet transform approach 

and the results in Figure  4-21. On one hand, it was clear that Canny edge detector, which is 

known as the optimum detector in the spatial domain gives almost identical solution to the 

curvelet transform which can be considered then as the optimal edge detector but in the 

frequency domain, which is very good results putting in mind the advantages of working in the 
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frequency domain. On the other hand the wavelet transform solution was very bad compared to 

the curvelet and Canny Due to the limitation in directionality and scaling of the wavelet 

transform. 

 

  

Figure  4-21 edge detection results using canny operator (left) and wavelet transform (right) 

4.3.4 Accuracy assessment of the building extraction results 

Overlaying the final detection image over the original image will emphasize the efficiency of this 

method where 19 building out of 24 buildings were perfectly delineated and accurately extracted 

and marked within the white pixels. The overall accuracy is approximately 80%. The processing 

time was less than 17 seconds for a 512X512 pixels starting from reading the images until the 

final results. The process is considered automatic as there is no interference from the operator 

side during the processing, putting in mind that the thresholds will be determined previously 

based on the characteristics of the buildings in the study area such as the area and the shape. 

Figure 18 shows the final result overlaid on the original image. 
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4.4 Integration of both object/pixel based approaches 

The processes of per-pixel supervised classification methods were always the primary tool to 

extract land cover classes  from digital remotely sensed data (Bhaskaran et al. 2010). The 

ultimate goal of any image classification procedure is to automatically categorize all pixels in an 

image into land cover classes (Lillesand and kiefer 2001). For the purpose of urban planning, 

supervised classification has been used extensively. Unfortunately, this procedure always results 

in mixed pixel’s problem (Bhaskaran et al. 2010). This problem leads many researchers to 

incorporate segmentation, texture, context, colour, and many other parameters to glide the mixed 

or wrongly classified pixels into their proper classes. Segmentation can be done either by 

detecting similarities or by detecting singularities (edge detection) (Gonzalez and Woods 2002). 

Contrasting spectral methods, object-oriented methods are based on segmenting the image into 

homogeneous parcels of pixels then these parcels are classified using spectral, spatial, textural, 

relational and contextual methods (Bhaskaran et al. 2010).  

The primary objective of this section was to classify urban features from a WorldView-2 

imagery by using both per-pixel classification, three new band ratios as describes in section 

 4.2.4, and object-oriented classification method, edge detection using curvelet transforms as 

described in section  4.3. The first step implements the three new band ratios to classify the image 

and check accuracy of all classes. The second step improves the accuracy of the lowest two 

classes’ accuracy. The final step involves the integration between the previous two steps to 

enhance the pixel-based classification results. The main idea behind this step is to incorporate the 

object-based results as a classification layer to be added to the multi-layer classification process. 

In this integration step, we have confidence in the water, vegetation, asphalt and shadow classes, 

while building and bare soil classes can be modified according to the edge detection process. If 
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we denote the pixel-based classification results by p(m,n) and object-based classification results 

as E(m,n) and the final classification results as f(m,n) so we can apply the following rule to 

integrate the object and pixel based results. 

  
 

Generally, any imagery will be used in a radiometric/spectral analysis must be converted to 

spectral radiance at a minimum or top of atmosphere reflectance in order to account for the 

variation in the relative positions between the sun, the earth and the satellite to obtain absolute 

values for the NDVI ratios can be applied in any other scene (Updike and Comp 2010). 

Converting the Digital Numbers (DN) to top of atmosphere (ToA) reflectance is a two-step 

process. First DN’s are converted to top of atmosphere radiance values. Then these radiance 

values are then converted to reflectance values(Observation 2010; Elsharkawy et al. 2012). 

 

 

4.4.1 Results and analysis of the integration between object/pixel based approaches 

Figure  4-9, illustrates the output from the multi-layer classification process. While Figure  4-22 

and Figure  4-23, represent the edge detection map for the study area and the candidate parcels as 

buildings, as described in section 4.5 respectively. 

 

If p(m,n) water then ……….f(m,n) = water 

If p(m,n) vegetation ……….f(m,n) = vegetation 

If p(m,n) shadow………….f(m,n) = shadow 

If p(m,n) asphalt and f(m,n)  not buildings then f(m,n)= asphalt 

If p(m,n) bare soil and f(m,n) not buildings then f(m,n)= baresoil  

If p(m,n) building ………..f(m,n)= buildings 

If E(m,n)>0 and f(m,n) not vegetation or shadow or asphalt then f(m,n) is building 
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Figure  4-22 Edge detection result 

 

 
Figure  4-23 Candidate parcels as buildings 
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Figure 4-9, shows that the algorithm mixed between shadow and vegetation areas with buildings. 

The integration part, Figure  4-24, will account for this confusion as vegetation and shadow areas 

are well defined in the multi-layer classification part. A quantitative analysis for the building 

class (extracted) were done by comparing the number of buildings in the original image by the 

complete detected number of buildings being detected in the classified images either from pixel-

based output or from the final integrated output. Table  4-7, summarizes the comparison results. 

 

Table  4-7 Pixel-based results Vs. proposed method  

 

No. of Red 

Roofs 

No. of Tall 

buildings 

No. of Short 

buildings 

Total  No. 

Ground truth 14 17 17 48 

Pixel-based 

result 

12 9 1 22 

Accuracy % 85.7 52.9 5.8 45.8 

Proposed method 14 16 11 41 

Accuracy % 100 94.1 64.7 85.4 

 

 



 

122 

 

 Bare soil  Asphalt  Vegetation 

 Shadow  Water  Buildings 

Figure  4-24 final classification results 
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Chapter Five: Coastline Detection and Bathymetry  

5.1 Introduction 

In this chapter, second generation curvelet transform in the edge detection of coastline is 

presented and applied on WorldView-2 imagery, together with a comparison with the classical 

edge detection methods such as Canny operator and the traditional wavelet transforms. This 

implementation is aiming to compare this new approach to the traditional edge detection 

techniques. Then, the new bands of WorldView-2 will be utilised in deriving the relative 

bathymetry of part of the water way of the Suez Canal and Temsah Lake, Egypt.  

5.2 Coastline detection 

Urban studies, coastal erosion, and agricultural surveys are a few examples where edge detection 

can be utilized. In the past few years, the development of edge detection techniques for the 

analysis of multi-temporal remote sensing imagery has been intensively growing. One of the 

most important characteristic in an image is the features edges, which can be described as a 

discontinuity in the local domain of the image. These discontinuities may result as gray, colors 

and texture variations (Zhenghai and Jianxiong 2009). Edge detection has broad applications in 

the domain of image processing, computer vision and so on. In the next three sections the area of 

study, methodology and the discussion of the results will be explained. 

5.2.1 Study area  

The study area is an urban area comprises scattered buildings, two shorelines and water body. 

The data was provided by Digital Globe, the images were captured on April 7th, 2011 in 

morning time. Figure  5-1, illustrates a gray scale image of the study area. 
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Figure  5-1 Gray scale image of the area of study 

 

 

5.2.2 Methodology 

 

As described in section  4.3.2, image sharpening takes place at the beginning of this algorithm, 

then water body will be extracted using an NDVI like ratio, using the NIR-2 and C bands. Then, 

based on the curvelet transform theory an implementation for detecting edges will be introduced 

(Elhabiby et al. 2012). As described in chapter three, the coefficients are reconstructed to get a 

new image where the edge parts are enhanced. Morphological filters will be applied to eliminate 

the undesired noised pixels. Figure  5-2, represent a schematic diagram of the aforementioned 

algorithm. 



 

125 

 

 

 

 
Figure  5-2 The proposed algorithm 

 

5.3 Results and Discussion 

NDVI rationing between bands 8 and 1 is then applied to extract the water body. Then, 

thresholding is applied to the NDVI output to get binary image as in Figure  5-3.  
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Figure  5-3 The image after water extraction 

 

Then, the 2D FFT of the output image is calculated to obtain the curvelet coefficients. These 

coefficients are generated in multi-scale levels will be grouped into three parts, which are coarse 

level, detail level and fine level. Images are then reconstructed for each level with those 

coefficients as in Figure  5-4. First scale generates the coarse level image, while second and third 

scales were merged to generate the detail level 1 image, fourth and fifth scales were merged to 

generate the detail level 2 image and finally sixth scale was responsible for the generating of the 

detail level 3 image.  
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Figure  5-4 The reconstructed coarse and fine details levels 

 

Analyzing the coefficient of curvelet, it can be found that the coefficient in each scale level 

contains different information. Consequently, by arranging the coefficients of each level and take 

the most significant part of them, this will enhance the edge information that represents the 

important part of the image to us. In other words, larger coefficients will be emphasized and 
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small coefficients in value will be suppressed. Then, the coefficients are reconstructed to get a 

new image called the edge map, where the edge parts are enhanced. Table  5-1, summarizes the 

total number of coefficient in each scale and the actual used percentage. 

 

Table  5-1 the percentage used in reconstructing the edge map image 

Scale 

No. of total 

coefficients 

Percentage used 

No. of used 

coefficients 

1 441 0% 0 

2 5984 0% 0 

3 22880 0% 0 

4 90144 100% 90144 

5 357408 1% 3574 

6 1417248 1% 14172 

Total 1894105 5.7 % 107890 

 

The edge map is then thresholded to get enhanced edge map as in Figure  5-5. The reconstructed 

edge image was thresholded based on the fact that the strong edges have abrupt changes in the 

pixel from negative to positive values and the absolute summation falls within a certain 

threshold. The next step is applying morphological filters to clear the undesired artefacts and the 

result is in Figure  5-6.  
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Figure  5-5 The reconstructed edge map after thresholding 

 
Figure  5-6 The reconstructed edge map after applying morphological filters 
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The final result was overlaid over the original image to show the exact matching of the 

delineation of the coastline, Figure  5-7. 

To illustrate the quality of this algorithm compared with Canny and wavelet transforms, the 

procedure was repeated using these two methods, canny was used with sigma equal to 1 and the 

thresholds T1= 0.006 and T2= 0.02. 

 

 
Figure  5-7 Final result overlaid over the original image 
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Figure  5-8 Results with Canny Operator (the input is the classified image) 

 
Figure  5-9 Results with Canny Operator (the input is the original image) 
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The result in Figure  5-8, shows almost identical similarity with the curvelet transforms edge 

detection result, when the input to Canny was the classification image. While if the input was the 

original image without any classification the result was in Figure  5-9. 

The case was different with the wavelet as in the Figure  5-10, which illustrate the edge detection 

result when using the classified image as an input to the wavelet transform. And it was much 

worse when using the original image as an input to the transforms. The total number of generated 

coefficients was 262144 and it was used totally, which is more than twice the number of 

coefficients used in case of curvelet. 

 

 
Figure  5-10 Results with Wavelet transform (the input is the classified image) 
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A small area in the classification map, Figure  5-6, was picked and enlarged to emphasize the 

potentials of using the curvelet transform as an edge detector against Canny and wavelet 

transform. Figure 19 is highlighting one pixel in every edge map and in the original classification 

map as well.  

 

 
 

 

  

Figure  5-11 Highlighting a certain pixel in curvelet , Canny and wavelet transform  
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It was very clear that curvelet gave the most accurate delineation of the edges better than the 

Canny and the wavelet transform. 

 
5.4 Bathymetry  

Typically, bathymetric charts are generated from ship-borne sounding surveys with single- or 

multi-beam echo sounders, in which they can operate to depths more than 500 m. State-of-the-art 

acoustic multi-beam, swath-mapping systems can achieve 6 m spatial resolution and about 8 cm 

depth accuracy in 200 m water depth (Su et al. 2008).  However, in case of shallow water, ship-

borne surveys may not be the proper solution for the following reasons: 

 The survey will be time consuming and expensive, as the survey swaths are narrow.  

 It may not be feasible to survey waters shallower than 2–3 m deep because of sound 

saturation or/and inaccessibility of survey vessels.  

Recently, airborne bathymetric LiDAR (Light Detection And Ranging), introduced an optimum 

solution for the mapping of shallow coastal waters. The only limitations occur with this 

relatively new technology are; the high cost of operation and that the amount of maximum 

penetration of LiDAR systems is greatly dependent upon water transparency. Average 

penetration depth for most of currently operated systems are in the range of 30 meters, LADS 

(Laser Airborne Depth Sounder) developed by Tenix LADS Corporation is an exception where 

penetration depth reaches 70 meters. Also, most systems can reach up to 4 meters spatial 

resolution with 20 cm accuracy (Su et al. 2008). In 2012, Optech developed CZMIL, coastal 

zone mapping and imaging LiDAR. CZMIL is an innovative airborne coastal zone mapping 

system that integrates bathymetric LiDAR, with a hyper-spectral imaging system and digital 
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metric camera to produces simultaneous high-resolution 3D data and imagery of the beach and 

shallow water seafloor (www.optech.ca/Optech_News_Release_CZMIL-120507.html).  

Optical remote sensing was also introduced as an alternative solution for bathymetric 

applications. David R. Lyzenga, first introduced a model for shallow water depth estimation 

using a single band from aerial photography (Lyzenga 1978). This model was then expanded to 

multi-spectral satellite imagery using a non-linear bathymetric inversion model (Stumpf et al. 

2003).   

According to Beer’s law, the basic physical principles underlying the retrieval of bathymetric 

information from optical remote sensing images are: 

 Light attenuation in the water column increases exponentially as depth increases. 

 Additionally, attenuation varies by wavelength, resulting in less attenuation and greater 

depth penetration in the blue region of the visible spectrum than the green or red regions 

(Lyzenga 1978; Lyzenga 1981).  

These two properties are the basis for optically-derived bathymetry from multispectral, passive 

sensors. In the next section a brief summary of these two properties and how they can be applied 

to finally derive water depth of shallow waters will be introduced. 

 

5.4.1 Bathymetric Models for Optical Multi-spectral Imagery 

According to (Jensen 2007), the total upwelling radiance (Lt) recorded by the remote sensor 

consists of four components, Figure  5-12, as shown in equation  5-1. 

 

 
Lt = Lb + Lv + Ls + Lp  5-1 

 

http://www.optech.ca/Optech_News_Release_CZMIL-120507.html
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Where, (Lp), atmospheric path radiance, is a function of atmospheric scattering, including 

both Rayleigh (molecular) scattering and Mie (aerosol) scattering, (Lv), subsurface volumetric 

radiance, results from volume scattering from the water and its organic/inorganic constituents 

like sediment and chlorophyll. (Ls), Specular radiance, is the reflection from the water surface, 

including possible sun-glint effects. Finally, (Lb), the bottom radiance, is the energy reflected 

from the seabed, which integrates the information about water depth and bottom characteristics.  

In order to retrieve water depth information from the total radiance, bottom radiance (Lb), has to 

be extracted from the total radiance (Lt). Atmospheric correction and sun-glint removal are 

applied first to remove (Lp) and (Ls), then deep water correction is accomplished to remove (Lv) 

(Lyzenga 1978; Lyzenga 1981; Stumpf et al. 2003). 

 

 

Figure  5-12 Four main components of the total radiance, after (Jensen 2007) 
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As long as, the bottom radiance (Lb) equals zero for deep water, then the measured total radiance 

over optically-deep water (L∞) includes the joint effects of subsurface volumetric radiance (Lv), 

specular radiance (Ls), and atmospheric path radiance (Lp). After atmospheric and sun-glint 

corrections, the deep water radiance (L∞) only contains subsurface volumetric radiance (Lv) (Su 

et al. 2008). Assuming that the values of (Lv) of shallow and deep waters will not change, then 

we can use optically deep water radiance (L∞) recorded by the remote sensor to correct the 

subsurface volumetric radiance (Lv) in shallow water.  

Based on Beer’s Law, (Lyzenga 1978; Lyzenga 1981) introduced a simple radiative transfer 

model for shallow waters: 

 L = L∞ [ 1- exp(-gz) ] +Ad exp(-gz) 
 5-2 

 

Where, L = Lt − Lp − Ls, is the measured radiance after atmospheric and sun-glint corrections, L  

is deep water radiance (equivalent to volumetric radiance Lv), Ad is the upwelling spectral 

radiance directly reflected from the bottom before interacting with the overlying water column, g 

is a two-way attenuation coefficient, and z is depth. Rearranging this equation, putting z in the 

left hand side, results in the equation of the bathymetric inversion model for a single spectral 

band as follows: 

 

 
z = g-1 [ ln(Ad - L∞ ) – ln(L - L∞ )]  5-3 

 

Later on, Lyzenga developed a new bathymetric inversion model using more than one band as 

follows:  
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Where, ai are the constant coefficients, N is the number of spectral bands, L(λi ) is the remote 

sensing radiance after atmospheric and sun-glint corrections for spectral band λi , and L∞(λi ) is 

the deepwater radiance for spectral band λi .  

The model explained in Eq.  5-4, referred to as the log-linear inversion (or deepwater correction) 

model, this model has been extensively used for estimating water depths from optical multi-

spectral remote sensing imagery (Su et al. 2008). 

In 2003, (Stumpf et al. 2003) proposed a non-linear bathymetric inversion model based on a log-

transformed band ratio: 
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    5-5 

 

Where, m0, m1, and n are constant coefficients for the model, and L (λ1) and L (λ2) are the 

atmospheric and sun-glint corrected remote sensing radiances for bands λ1 (short wave length), 

and λ2 (long wave length) (Stumpf et al. 2003).  

When two bands are used, with different water absorptions, the log values change with depth and 

the whole ratio will change. If we abide to retain the shorter wave length in the nominator and 

the longer wave length in the denominator so the log ratio will increase as the depth increase.  

This ratio will compensate for the implicitly for variable bottom type (Stumpf et al. 2003), but 

changes in depth affect the high absorption band more. As a result, the effect of change in ratio 

because of depth is much greater than that caused by change in bottom reflectance. Generally, 
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(Stumpf et al. 2003) demonstrated that their non-linear inversion model is more robust and 

accurate than the conventional log-linear inversion model for relatively deep areas. This is why 

we will utilise this method with WorldView-2 imagery to examine the role of the new bands in 

bathymetry. 

Blue light (450-510 nm) can penetrate clear water down to 30 m depth, and thus serves as the 

optimum spectral band from which to extract depth information (Su et al. 2008). WorldView-2 

provides a new band; costal blue (400-450 nm), with higher capability of penetrating water 

(Globe 2009). Also, the yellow band (585-625 nm) will be examined as the longer wavelengths 

attenuate rapidly in water.  

The main assumption for both aforementioned models is based on the assumption that water 

optical properties are spatially homogeneous, which results in uniformity in water quality over 

the area of study. In addition, both models assume that the ratio of bottom reflectances is the 

same for different types of bottoms in the same scene. In general, high water clarity and uniform 

bottom types are two vital conditions, that must be met for reliable depth retrieval from optical 

multispectral imagery (Su et al. 2008). In this research the relative depths of part of the water 

way of the Suez Canal and the over polluted Temsah Lake will be derived from the WorldView-

2 imagery, using the non-linear bathymetric inversion model derived by Stumpf.  

5.4.2 Data description  

Lake Temsah has a nearly triangular shape with elongated sides extending East-West. The lake is 

small and shallow. It has a surface area of about 8 square kilometers with an average depth of 

only 11 meters and containing about 90 million cubic meters of water. The lake is surrounded by 

industrial workshops for shipyards, domestic areas, recreational beaches and agricultural lands.  
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The Suez Canal pathway is deep, about 24 m depth, but narrows about 300-360 m wide at water 

level. Figure  5-13 illustrates a false color image for the area of study. 

 

 

Figure  5-13 Temsah Lake and Canal Suez water way 

Unlike the Canal water way, Temsah Lake receives a great deal of untreated domestic and 

industrial waste discharges and agricultural drainage return flows. Consequently, the lake and its 

beaches exhibit serious water quality problems in many locations. Moreover, the substantial 
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amounts of sediment loads, which enter the lake, produce higher accumulation rates and 

seriously obstruct lake transportation (Donia 2011). 

A water quality index, WQI, is a mathematical way of summarizing multiple properties into a 

single value. This index values are ranging between 0 and 100, with higher numbers indicating 

lower quality water. (Donia 2011), introduced one of the standers WQI chart for the Temsah 

Lake and it used in this study to demonstrate the differences in water quality across this region. 

 

Figure  5-14 A WQI for the Temsah Lake, after (Donia 2011) 

The figure above shows that almost all the lake water quality is considered very bad except the 

southern region of the lake that is considered better quality but still bad. 

5.4.3 Methodology  

A conversion to the radiance then to reflectance followed by relative atmospheric correction will 

be applied to the master scene as in section 2.3.3. The traditional NDVI ratio will be used to 

generate a mask to separate the water body of the study area, as in Figure  5-15. C/RE, C/Y, B/Y, 
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C/G, B/G and G/Y ratios will be used to derive relative bathymetry of the study area using the 

non-linear bathymetric inversion model derived by Stumpf. 

 

Figure  5-15 Masked area of study 

Ideally, atmospheric effects must be removed together with the water column correction in order 

to achieve radiometric values that are only representative of the sea depth and to make the 

upwelling response from different bottom types homogeneous (Deidda and Sanna 2012). 

Moreover, if sun-glint is present, the effect of the sun beams reflecting on the sea surface, it has 

to be corrected. Knowing that, the upwelling radiance of NIR bands have very low values even 
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for shallow waters. Subsequently, dark pixel subtract will be applied to account for sun-glint and 

atmospheric effects by subtracting the Min. value in the NIR bands for a deep water area from 

the reflectance values for all other visible band.  

The available data about the depth of Suez Canal and the Temsah Lake indicates that the 

dominant depth of the Suez Canal water way is about 24 meters, and an average of 11 meters for 

the Temsah Lake. No DEM data was available for this site, so the analysis of this result will be 

depending on the aforementioned information and considering the environmental condition of 

this area. As discussed before the logarithmic ratio will increase as the depth increase, if we 

apply this rule on the given results will leads to un realistic results. For instance, considering 

C/R-E result, if we start with a depth of 24 meters at the blue range (1.033-1.07) will lead to a 

nominal depth of 46 m at the brown range (1.0885-1.11) which is not true.   

 

  
C/RE C/Y 
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B/Y C/G 

  
B/G G/Y 

Figure  5-16 Relative non-linear bathymetric inversion results 

The reason behind this result is the water quality and bottom type condition of the water way of 

the Suez Canal and the Temsah Lake. The water way of Suez Canal is much better than the one 

exist in the Temsah Lake as it is always running water has two sources of fresh water coming 
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from both the Red sea and the Mediterranean Sea. Moreover, the bottom type is homogeneous 

sand with small gravel, which follows the main assumptions for the bathymetry derivation from 

satellite imagery; shallow water with homogenous bottom and clear water. But in case of the 

Temsah Lake results, the bottom of the lake suffer from a lot of sediments coming from the 

water way plus enormous domestic pollution from the ship yards, the agriculture land and 

domestic waste water. This pollution affects both water quality and bottom type. 

Based on visual comparison, C/RE, C/Y and C/G give better results compared the other ratios, as 

they were able to separate between two homogeneous ranges (the green and the blue) to depicts 

both 4-5 meters and 24 meters depth ranges respectively for the water way. Moreover, these 

ratios give a distinct three ranges for the Temsah Lake (red, cyan and brown) all of them have an 

average depth of 11 meters, but with different bottom types; the more the ratio value the more 

sediments and impurities.  
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Chapter Six: Summary, Conclusions, Contributions and Recommendations 

 

The main objective of this thesis was to introduce an integrated urban classification solution. It 

was successfully achieved through a number of sub-objectives. In this thesis six main classes 

were targeted; water, vegetation, asphalt, shadow, buildings and bare soil. Additionally, the 

extraction of shorelines and the development of algorithms for relative bathymetry were also 

successfully implemented. A new multi-layer classification algorithm integrated with a novel 

implementation of the second generation multi-resolution techniques for edge detection to 

overcome the limitations of solely used pixel-based approach was successfully implemented. 

 

6.1 Summary 

First, two multi-temporal high resolution satellite imagery were developed to evaluate the 

calibration parameters for the WorldView-2 data. This was achieved by applying a multi-layer 

classification algorithm with fixed thresholds. DN’s were converted to top of atmosphere 

reflectance values. Then a relative atmospheric calibration process was applied to the slave scene 

using manually selected PIF’s. The classification algorithm was applied to the master scene and 

to the slave scene before and after normalization. 

New bands of WV-2 were used to develop new band ratios to extract shadow, asphalt, bare soil 

and building classes in a pixel-based approach, using a multi-layer classification algorithm, and 

then was integrated with an  edge detection algorithm based on the second generation curvelet 

transforms to enhance the building class percentage.  

A further use of the new bands was extended to extract the shorelines and the relative bathymetry 

of the waterway of the Suez Canal and the Temsah Lake.  
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6.2 Conclusions and Contributions  

The results of the calibration and relative atmospheric step show very good potentials for the use 

of the calibration parameters even without applying the relative atmospheric normalization. This 

was achieved because we have the same area and almost the same time of acquisition of April, 

2011. Even better results were achieved after applying the normalization process.  

The proposed algorithm for edge detection using curvelet transforms was compared with wavelet 

transform and canny operator on a high-resolution satellite imagery data, the results were 

promising and shows an improvement in detection of elongated curves and percentage of 

bounded objects. The total number of coefficients used to reconstruct the edge map using 

curvelet transforms was 1894105, representing almost 6% of the total coefficients, while in case 

of wavelet, the number coefficients was 360000, 100% of the total coefficients. Although 

Curvelet transforms is promising and efficient for edge detection, there is one drawback which 

must be addressed in the future, related to the quality of the edge detection and its relation with 

the pre-processing steps (the high-pass filter to enhance edges).  As any edge detector will suffer 

from a great deal of heterogeneity of the images, especially when using very high resolution 

imagery, which will be the motivation for more distant investigation in the near future.  

The proposed algorithm of integrating building extraction technique, using curvelet, with the 

pixel-based approach results in significant enhancement for the buildings’ class accuracy from 

45.8% to 85.4% using the new technique. This technique was applied for many other parts of the 

large scene, Ismailia city, and the results showed great potentials of using this method in 

enhancing the percentage of the detected buildings.  

A further enhancement for the edge detection technique was introduced using a novel curvelet-

canny combined approach for edge detection and was applied on high-resolution satellite 
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imagery data, and repeated using the traditional canny operator, the results were promising. The 

curvelet-canny approach gives an improved delineation to edges when compared to Canny. The 

proposed method was able to detect longer edges and generate more closed objects. This method 

can be used as an alternative for the segmentation process, as it gives a closed boundary for 

almost all main features in the input image, in an object-based classification approach.  

Regarding the relative bathymetry and based on visual comparison, C/RE, C/Y and C/G give 

better results compared the other ratios, as they were able to separate between two homogeneous 

ranges (the green and the blue) to depict both 4-5 meters and 24 meters depth ranges respectively 

for the water way. Moreover, these ratios give a distinct three ranges for the Temsah Lake (red, 

cyan and brown) all of them have an average depth of 11 m, but with different bottom types; the 

more the ratio value the more sediments and impurities.  

The main contribution of this research is the establishment of an integrated framework for the 

classification of land use and land cover for urban areas. These contributions can be summarized 

as follows: 

 The implementation of the second-generation curvelet transform (DCTG2) as an edge 

detector for very high-resolution satellite imagery. 

 The development of a detailed comparison between traditional edge detection techniques 

(Canny and wavelet transformation) against the second-generation curvelet 

transformation (DCTG2) regarding coastlines, and building extraction. 

 The development of a novel approach integrating both canny and curvelet transforms for 

better edge detection results. 
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 Validating the improvement in classification accuracy attributable to the new spectral 

bands versus the traditional VNIR bands used for a broad range of land cover types. 

 Determining the predictive role of each of the new spectral bands for each land cover. 

 The development of optimal methodology for incorporating spatial and spectral 

approaches to enhance the classification. 

 The development of best band ratio to be used for extracting building, shadow, asphalt, 

and bare soil in the scope of the new 4-bands. 

 Utilizing the new bands, C-B and Y, in relative water depth estimation. 

 Full assessment of WorldView2 for local urban monitoring using the full eight bands.   

 

6.3 Recommendations  

The recommendation to extend this research thesis is mostly related to the integration with a GIS 

data base to introduce continuously updated maps for urban areas.  Moreover, ground truth 

regarding vegetation types, water depths, pollution and environmental parameters are essential to 

produce complete maps containing absolute depths and crops types. Additionally, it is crucial to 

apply these proposed techniques to different data images from different dates and areas.  

The following list contains some of the interesting research topics that are recommended for 

future work:  

- Continuous monitoring of isolated urban areas. 

- Detection of underwater object for shallow water areas. 

- Integrating the proposed techniques with other sensors such as LiDAR or aerial 

photogrammetry for the generation of ortho-photos and digital elevation model 

generation on large scale. 
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Appendix A 

 

In this section the calculation of the confusion matrix will be explained using the data in Table 

 2-4. Table A-1, illustrates the pixel count format of table 2-4, in this table we can see that total 

number of pixels under consideration is 625186 pixels. 

The overall accuracy can be calculated by dividing the summation of the diagonal by the total 

number of pixels. Table A-1  

                   
                         

                      
  

      

      
  99.2889%    

 

Table A-1 The confusion matrix in table 2-4 in pixel count format 

  Class water vegetation Bare Soil Asphalt Shadows Red Roof Buildings Total 

water 282422 0 25 0 169 0 0 282627 

vegetation 0 87949 0 8 2 0 0 87960 

Bare Soil 0 230 244739 720 3 192 666 246553 

Asphalt 0 239 74 2092 82 0 175 2650 

Shadows 0 89 123 440 1590 0 24 2269 

Red Roof 0 62 221 65 0 405 0 767 

Buildings 0 0 787 30 0 0 1543 2360 

Total 282432 88570 245978 3355 1846 597 2408 625186 

 

To calculate producer’s and user’s accuracy the following rules were used 

User’saccuracy: Corresponds to error of commission (inclusion); 

                             
                            

                   
  

      

      
  99.927 %    

Producer’s accuracy: Corresponds to error of omission (exclusion);  
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  99.99 %    

Table A-2 summarizes the producer’s and user’s accuracies for all classes. 

 

Table A-2 The producer’sanduser’saccuracies associated to the data in table A-1 
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water 
0.07          0.00           205/282627            10/282432   100.00         99.93        282422/282432        282422/282627   

vegetation 
0.01          0.70             11/87960            621/88570   99.30         99.99          87949/88570          87949/87960   

Bare Soil 
0.74          0.50          1814/246553          1239/245978   99.50         99.26        244739/245978        244739/246553   

Asphalt 
21.06         37.65             558/2650            1263/3355   62.35         78.94            2092/3355            2092/2650   

Shadows 
29.93         13.87             679/2269             256/1846   86.13 70.07            1590/1846            1590/2269   

Red Roof 
47.20         32.16              362/767              192/597   67.84         52.80              405/597              405/767   

Buildings 
34.62                     35.92             817/2360 865/2408   64.08         65.38            1543/2408            1543/2360   
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Appendix B 

IDM file for the master scene 

 

Version = "23.2"; 

generationTime = 2011-04-19T01:12:57.000000Z; 

productOrderId = "052487923030_01_P002"; 

productCatalogId = "2030010075559400"; 

imageDescriptor = "ORStandard2A"; 

bandId = "Multi"; 

panSharpenAlgorithm = "None"; 

numRows = 5348; 

numColumns = 5650; 

productLevel = "LV2A"; 

productType = "Standard"; 

numberOfLooks = 1; 

radiometricLevel = "Corrected"; 

radiometricEnhancement = "Off"; 

bitsPerPixel = 16; 

compressionType = "None"; 

BEGIN_GROUP = BAND_C 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 9.295654e-03; 

 effectiveBandwidth = 4.730000e-02; 

 TDILevel = 24; 

END_GROUP = BAND_C 

BEGIN_GROUP = BAND_B 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 
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 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 1.783568e-02; 

 effectiveBandwidth = 5.430000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_B 

BEGIN_GROUP = BAND_G 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 1.364197e-02; 

 effectiveBandwidth = 6.300000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_G 

BEGIN_GROUP = BAND_Y 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 6.810718e-03; 

 effectiveBandwidth = 3.740000e-02; 

 TDILevel = 18; 

END_GROUP = BAND_Y 

BEGIN_GROUP = BAND_R 

 ULLon =   32.21541943; 
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 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 1.103623e-02; 

 effectiveBandwidth = 5.740000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_R 

BEGIN_GROUP = BAND_RE 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 6.063145e-03; 

 effectiveBandwidth = 3.930000e-02; 

 TDILevel = 18; 

END_GROUP = BAND_RE 

BEGIN_GROUP = BAND_N 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 
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 absCalFactor = 1.224380e-02; 

 effectiveBandwidth = 9.890000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_N 

BEGIN_GROUP = BAND_N2 

 ULLon =   32.21541943; 

 ULLat =   30.63334663; 

 ULHAE =    28.00; 

 URLon =   32.33330738; 

 URLat =   30.63400453; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21619617; 

 LLLat =   30.53685515; 

 LLHAE =    28.00; 

 absCalFactor = 9.042234e-03; 

 effectiveBandwidth = 9.960000e-02; 

 TDILevel = 24; 

END_GROUP = BAND_N2 

outputFormat = "GeoTIFF"; 

BEGIN_GROUP = IMAGE_1 

 satId = "WV02"; 

 mode = "FullSwath"; 

 scanDirection = "Forward"; 

 CatId = "1030010009920300"; 

 firstLineTime = 2011-04-16T08:42:36.001090Z; 

 avgLineRate = 5000.01; 

 exposureDuration = 0.0002; 

 minCollectedRowGSD =   2.183; 

 maxCollectedRowGSD =   2.189; 

 meanCollectedRowGSD =   2.186; 

 minCollectedColGSD =   2.433; 

 maxCollectedColGSD =   2.433; 

 meanCollectedColGSD =   2.433; 

 meanCollectedGSD =   2.306; 

 rowUncertainty =   36.75; 

 colUncertainty =   64.12; 

 minSunAz = 138.4; 

 maxSunAz = 138.6; 

 meanSunAz = 138.5; 

 minSunEl =  64.1; 

 maxSunEl =  64.2; 

 meanSunEl =  64.2; 
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 minSatAz =  62.5; 

 maxSatAz =  63.2; 

 meanSatAz =  62.9; 

 minSatEl =  58.7; 

 maxSatEl =  58.9; 

 meanSatEl =  58.8; 

 minInTrackViewAngle =  15.4; 

 maxInTrackViewAngle =  15.7; 

 meanInTrackViewAngle =  15.6; 

 minCrossTrackViewAngle =  23.0; 

 maxCrossTrackViewAngle =  23.1; 

 meanCrossTrackViewAngle =  23.0; 

 minOffNadirViewAngle =  27.6; 

 maxOffNadirViewAngle =  27.6; 

 meanOffNadirViewAngle =  27.6; 

 PNIIRS = 2.8; 

 cloudCover = 0.000; 

 resamplingKernel = "CC"; 

 positionKnowledgeSrc = "R"; 

 attitudeKnowledgeSrc = "R"; 

 revNumber = 7965; 

END_GROUP = IMAGE_1 

BEGIN_GROUP = MAP_PROJECTED_PRODUCT 

 earliestAcqTime = 2011-04-16T08:42:36.572473Z; 

 latestAcqTime = 2011-04-16T08:42:36.572473Z; 

 datumName = "WE"; 

 semiMajorAxis = 6378137.0000; 

 inverseFlattening = 298.257223563; 

 datumOffset = (0.000,  0.000,  0.000 ); 

 mapProjName = "UTM"; 

 mapProjCode = 1; 

 mapZone = 36; 

 mapHemi = "N"; 

 mapProjParam = ( 0.000000000,  0.000000000,  0.000000000,  0.000000000, 

0.000000000, 0.000000000,  0.000000000,  0.000000000,  0.000000000,  0.000000000,  

0.000000000,  0.000000000,  0.000000000,  0.000000000,  0.000000000 ); 

 productUnits = "M"; 

 originX =     424812.99999997; 

 originY =    3389230.99999930; 

 orientationAngle =    0.0; 

 colSpacing =  2.00; 

 rowSpacing =  2.00; 

 productGSD =  2.00; 

 ULX =  424812.99999997; 

 ULY = 3389230.99999930; 



 

163 

 ULH =      28.00; 

 URX =  436110.99999999; 

 URY = 3389230.99999931; 

 URH =      28.00; 

 LRX =  436110.99999999; 

 LRY = 3378536.99999929; 

 LRH =      28.00; 

 LLX =  424812.99999997; 

 LLY = 3378536.99999928; 

 LLH =      28.00; 

 DEMCorrection = "Base Elevation"; 

 terrainHae =   28.00; 

 numGCP = 0; 

END_GROUP = MAP_PROJECTED_PRODUCT 

END; 

 

IDM file for the slave scene: 

 

Version = "23.2"; 

generationTime = 2011-04-19T01:16:03.000000Z; 

productOrderId = "052487923040_01_P001"; 

productCatalogId = "2030010075559800"; 

imageDescriptor = "ORStandard2A"; 

bandId = "MS1"; 

panSharpenAlgorithm = "None"; 

numRows = 5349; 

numColumns = 5702; 

productLevel = "LV2A"; 

productType = "Standard"; 

numberOfLooks = 1; 

radiometricLevel = "Corrected"; 

radiometricEnhancement = "Off"; 

bitsPerPixel = 16; 

compressionType = "None"; 

BEGIN_GROUP = BAND_B 

 ULLon =   32.21433412; 

 ULLat =   30.63335813; 

 ULHAE =    28.00; 

 URLon =   32.33330725; 

 URLat =   30.63402258; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21511208; 
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 LLLat =   30.53684862; 

 LLHAE =    28.00; 

 absCalFactor = 1.783568e-02; 

 effectiveBandwidth = 5.430000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_B 

BEGIN_GROUP = BAND_G 

 ULLon =   32.21433412; 

 ULLat =   30.63335813; 

 ULHAE =    28.00; 

 URLon =   32.33330725; 

 URLat =   30.63402258; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21511208; 

 LLLat =   30.53684862; 

 LLHAE =    28.00; 

 absCalFactor = 1.364197e-02; 

 effectiveBandwidth = 6.300000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_G 

BEGIN_GROUP = BAND_R 

 ULLon =   32.21433412; 

 ULLat =   30.63335813; 

 ULHAE =    28.00; 

 URLon =   32.33330725; 

 URLat =   30.63402258; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21511208; 

 LLLat =   30.53684862; 

 LLHAE =    28.00; 

 absCalFactor = 1.103623e-02; 

 effectiveBandwidth = 5.740000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_R 

BEGIN_GROUP = BAND_N 

 ULLon =   32.21433412; 

 ULLat =   30.63335813; 

 ULHAE =    28.00; 

 URLon =   32.33330725; 
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 URLat =   30.63402258; 

 URHAE =    28.00; 

 LRLon =   32.33396743; 

 LRLat =   30.53751054; 

 LRHAE =    28.00; 

 LLLon =   32.21511208; 

 LLLat =   30.53684862; 

 LLHAE =    28.00; 

 absCalFactor = 1.224380e-02; 

 effectiveBandwidth = 9.890000e-02; 

 TDILevel = 10; 

END_GROUP = BAND_N 

outputFormat = "GeoTIFF"; 

BEGIN_GROUP = IMAGE_1 

 satId = "WV02"; 

 mode = "FullSwath"; 

 scanDirection = "Reverse"; 

 CatId = "103001000A1C9300"; 

 firstLineTime = 2011-04-16T08:44:19.001008Z; 

 avgLineRate = 5000.01; 

 exposureDuration = 0.0002; 

 minCollectedRowGSD =   2.812; 

 maxCollectedRowGSD =   2.870; 

 meanCollectedRowGSD =   2.836; 

 minCollectedColGSD =   2.480; 

 maxCollectedColGSD =   2.505; 

 meanCollectedColGSD =   2.490; 

 meanCollectedGSD =   2.658; 

 rowUncertainty =   81.53; 

 colUncertainty =   56.70; 

 minSunAz = 139.2; 

 maxSunAz = 139.4; 

 meanSunAz = 139.3; 

 minSunEl =  64.4; 

 maxSunEl =  64.5; 

 meanSunEl =  64.4; 

 minSatAz = 155.4; 

 maxSatAz = 155.8; 

 meanSatAz = 155.6; 

 minSatEl =  50.7; 

 maxSatEl =  51.0; 

 meanSatEl =  50.9; 

 minInTrackViewAngle = -28.5; 

 maxInTrackViewAngle = -27.7; 

 meanInTrackViewAngle = -28.0; 
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 minCrossTrackViewAngle =  20.2; 

 maxCrossTrackViewAngle =  20.3; 

 meanCrossTrackViewAngle =  20.2; 

 minOffNadirViewAngle =  34.1; 

 maxOffNadirViewAngle =  34.1; 

 meanOffNadirViewAngle =  34.1; 

 PNIIRS = 2.6; 

 cloudCover = 0.000; 

 resamplingKernel = "MTF"; 

 positionKnowledgeSrc = "R"; 

 attitudeKnowledgeSrc = "R"; 

 revNumber = 7965; 

END_GROUP = IMAGE_1 

BEGIN_GROUP = MAP_PROJECTED_PRODUCT 

 earliestAcqTime = 2011-04-16T08:44:20.327011Z; 

 latestAcqTime = 2011-04-16T08:44:20.327011Z; 

 datumName = "WE"; 

 semiMajorAxis = 6378137.0000; 

 inverseFlattening = 298.257223563; 

 datumOffset = ( 0.000,  0.000,  0.000 ); 

 mapProjName = "UTM"; 

 mapProjCode = 1; 

 mapZone = 36; 

 mapHemi = "N"; 

 mapProjParam = (  0.000000000,  0.000000000,  0.000000000,  0.000000000,  

0.000000000,  0.000000000,  0.000000000,  0.000000000,  0.000000000,  0.000000000,   

0.000000000,  0.000000000,  0.000000000,  0.000000000,  0.000000000 ); 

 productUnits = "M"; 

 originX =     424708.99999997; 

 originY =    3389232.99999930; 

 orientationAngle =    0.0; 

 colSpacing =  2.00; 

 rowSpacing =  2.00; 

 productGSD =  2.00; 

 ULX =  424708.99999997; 

 ULY = 3389232.99999930; 

 ULH =      28.00; 

 URX =  436110.99999999; 

 URY = 3389232.99999930; 

 URH =      28.00; 

 LRX =  436110.99999999; 

 LRY = 3378536.99999929; 

 LRH =      28.00; 

 LLX =  424708.99999997; 

 LLY = 3378536.99999928; 
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 LLH =      28.00; 

 DEMCorrection = "Base Elevation"; 

 terrainHae =   28.00; 

 numGCP = 0; 

END_GROUP = MAP_PROJECTED_PRODUCT 

END; 

 


