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Abstract 

Although a Red, Green and Blue (RGB) image provides rich semantic information for 

different features, it is difficult to extract and separate features which share similar 

texture properties. The data provided by a LIght Detection And Ranging (LIDAR) system 

contain dense spatial information for terrain and non-terrain objects, but feature 

extraction poses difficulties in separating different features sharing the same height 

information. The thesis objective is to introduce an automated urban classification 

technique using combined semantic and spatial information leading to the ability to 

extract different features efficiently.  

RGB color channels are used to produce two color invariant images for vegetation and 

shadowy areas identification. Otsu segmentation is applied on these color invariant 

images to identify shadows and vegetation candidates from each other. An RGB image is 

transformed into two other color spaces,       and    . Luminance color channel is 

extracted from       color space, while hue and saturation color channels are extracted 

from     color space. Global thresholding is applied on these color channels 

individually and collectively for detecting sandy areas.  

Wavelet transform is used for detecting building boundaries from LIDAR height data. 

Final building candidates are identified after removing vegetation areas from the resulting 

image of extracted buildings from LIDAR data. After successful building extraction 

using wavelets and vegetation, sandy and shadowy areas from an RGB, remaining 

features will be the roads. This new filter combination introduces a highly efficient 

automatic urban classification approach from combined LIDAR/RGB data.     
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The proposed urban classification algorithm will introduce classified libraries for several 

features and in order to use this output efficiently an independent search algorithm is 

required. An efficient texture and boundary search algorithm is introduced for automatic 

object recognition of buildings using both wavelet transform and Monte Carlo simulation. 

The classification is achieved using a minimum distance classifier. The new search 

algorithm is applied on objects and libraries
’
 descriptors with the same scale and 

orientation as on a distorted (scale and orientation) descriptor. The technique showed 

efficiency on both types of data.   

The investigated feature classification technique is automated and efficient and presents a 

suitable method for extracting all different features while overcoming most of the 

problems in situations of similarity existing in texture or height information accompanied 

by fast and reliable results.  

The Monte Carlo simulation descriptor succeeded in recognizing objects regardless their 

shape or orientation. It is considered as an efficient descriptor for shape recognition 

application, so it can be used for different object types (as buildings and vehicles) with 

different scales and orientations. 



iv 

Preface 

This is an unaltered version of the author's Doctor of Philosophy thesis of the same title. 

The supervisor of this work is Dr. Naser El-Sheimy and the supervisory committee are 

Dr. Ayman Habib, Dr. Mohamed Elhabiby and Dr. Ismail Abdel Ghafar Ismail Farag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

Acknowledgements 

I would like to express my gratitude and appreciation to my supervisor Dr. Naser El-

Sheimy for his professional supervision, strong support, guidance and abundant 

cooperation. I was very pleased to attend to his great graduate course. His professional 

teaching is amazing and makes the scientific material interesting and easy for 

understanding.  Really, I was very glade to work under his supervision. 

 

I would like to give great thanks and extend my appreciation to Dr. Mohamed Elhabiby 

for his vision, proposed ideas, valuable discussion and constructive suggestions during 

my studies. His great effort and valuable time in revising my thesis and published papers 

are highly appreciated. Indeed, I had great professional skills for researches, scientific 

article writing and presentations during my work with Dr. Mohamed Elhabiby.  

 

I wish to extend my appreciation to my supervising committee Dr. Ayman Habib for his 

professional teaching and valuable discussion. He helped me to get the LIDAR and RGB 

images that represent the base for my research thesis. I would like to extend my gratitude 

and appreciation to Gen. Dr. Ismail Abdel Ghafar for his unwavering support. 

 

I would like to thank Ana Paula B. Kersting, graduate students in Digital 

Photogrammetry Research Group, for her help and discussion about the LIDAR data and 

RGB images for my research.  

 



vi 

I would like to give a great thanks to my friend Ahmed Mohsen, graduate student in 

Plane Group, for his amazing friendship during my staying in Calgary. We came together 

from Egypt at the same time for PhD and we leave together at the same time to Egypt. He 

was an excellent guide for many issues especially for programming language. Indeed, 

Ahmed is not only a friend but also same like brother for me and I’m very lucky to have a 

friend same like Ahmed. 

 

I wish give many thanks to my colleagues in my research group, Mobile Mapping Sensor 

Systems, for their wonderful friendship, support and valuable discussion: Dr. Sameh, Dr. 

Walid, Dr. Zainab, Dr. Crius, Xing (Bob) Zhao, Dr. Wes, Ahmed El-Ghazouly, Dr. 

Yigiter, Sara, Adel, Abdelrahman, Mohamed Ali, Mazen, Naif, Bassem, Siddharth, Dr. 

Dina and Hsiu-Wen Chang (Killy). I was pleasure to work with them in this wonderful 

working environment.  

 

I would like to thank my dear friend Ahmed Shawky for his cooperation and wonderful 

friendship feelings and for the time we shared together, individually or with our families. 

We are friends for a long time, but our shared time here in Calgary makes this friendship 

stronger than previous, thanks Ahmed so much. 

 

I would like to thank all the faculty and staff members of the Geomatics department, 

Schulich School of Engineering for providing a wonderful educational environment. 

 

http://mms.geomatics.ucalgary.ca/mms/Xing
http://mms.geomatics.ucalgary.ca/mms/Xing
http://mms.geomatics.ucalgary.ca/mms/Kelly


vii 

I cannot find words to express my gratitude and thanks to my wife, Amira, for her 

continuous support. She came with me to Calgary and give me a wonderful and suitable 

environment that is helping me to concentrate on my work. Amira, thanks so much for 

your help, time, sacrifice and your prayers for me.  My great son, Ahmed, and my lovely 

daughter, Engy, thank you so much for the happiness that I get it from the shared time 

with you.  

 

I owe my life to my great mother, Amina, thank you so much for your prayers and 

support. I cannot express my feeling to you. Indeed, I love you so much and I pray for 

your asking ALLAH to give you a good health. My mother, continue pray for me, I 

cannot imagine the life without your prayers. Your prayers are the secret and the key of 

my success. I love you and thank you for everything that I remembered or not. My 

brother, Ahmed, and my sisters, Samira and Doaa, thanks so much for your continuous 

support and encouragements. 

 

I give a great thanks to my government and my country, Egypt, for funding and 

supporting my research thesis. I`m sponsored by the Egyptian Armed Forces, so I would 

like to extend my gratitude and appreciation my sponsor for unwavering support. 

 

Finally, I give great thanks to who give me the life, ALLAH, thanks so much for 

everything, faith, health, power, brain, thinking, ….etc, I cannot count your givens. I pray 

to you to give me a good health and make me in continuous success. I pray to you to 

make my country in safe and peace and same for all worldwide countries. 



viii 

Dedication 

 

 

 

 

 

To My Beloved Family 

My Mother, 

My Brother and My Sisters, 

 My Wife, My Son and My Daughters 

(Thank You So Much) 



ix 

Table of Contents 

Approval Page……………………………………………………………………………...i 

Abstract ............................................................................................................................... ii 

Preface................................................................................................................................ iv 
Acknowledgements ..............................................................................................................v 
Dedication ........................................................................................................................ viii 
Table of Contents ............................................................................................................... ix 
List of Tables ..................................................................................................................... xi 

List of Figures and Illustrations ........................................................................................ xii 
List of Symbols, Abbreviations and Nomenclature ........................................................ xvii 

CHAPTER ONE: INTRODUCTION ..................................................................................1 

1.1 Motivations ................................................................................................................1 
1.2 Thesis Objectives .......................................................................................................2 
1.3 Thesis Outline ............................................................................................................4 

CHAPTER TWO: AIRBORNE RGB/LIDAR DATA ........................................................6 
2.1 Airborne RGB Data ...................................................................................................6 

2.1.1 Image Capturing ................................................................................................6 
2.1.2 Input RGB Images .............................................................................................7 

2.2 Airborne LIDAR Data ...............................................................................................8 

2.2.1 LIDAR System Components .............................................................................9 
2.2.2 Data Acquisition ..............................................................................................10 

2.2.3 Data Processing ...............................................................................................12 
2.2.4 LIDAR Data for Study Area ............................................................................16 

CHAPTER THREE: URBAN AREA SEGMENTATION AND CLASSIFICATION 

FROM SEMANTIC INFORMATION .....................................................................21 

3.1 Literature Review ....................................................................................................21 
3.2 Feature Classification Methodology ........................................................................26 

3.2.1 Color Invariant Image Production ...................................................................26 

3.2.2 Otsu Segmentation for Vegetation and Shadow Identification .......................27 
3.2.3 Color Transformation for Feature Detection ...................................................28 

3.3 New Implementation for Feature Extraction from RGB Image Using a 

Combination of Traditional Filtering Methods ......................................................32 

3.4 Feature Extraction from Different RGB Images for Urban Classification ..............33 

CHAPTER FOUR: BUILDING EXTRACTION FROM SPATIAL DATA FOR 

EFFICIENT URBAN AREA CLASSIFICATION FROM COMBINED 

LIDAR/RGB DATA .................................................................................................57 
4.1 Literature Review ....................................................................................................58 
4.2 Literature Review for Wavelet Feature Extraction from LIDAR Data - 

Efficiency and Limitations .....................................................................................64 

4.3 Multi-Resolution Analysis for Building Extraction from LIDAR Data ..................69 
4.3.1 Wavelet Analysis for LIDAR Data Applications ............................................70 
4.3.2 Wavelets versus Fourier Transform ................................................................70 



x 

4.3.3 One Dimensional Continuous Wavelet Analysis ............................................75 

4.3.4 One Dimensional Discrete Wavelet Analysis .................................................76 
4.3.5 One Dimensional Multi-Resolution Analysis .................................................77 
4.3.6 Two Dimensional Multi-Resolution Analysis .................................................78 

4.4 New MRA Building Extraction Implementation from LIDAR Data ......................79 
4.5 Multi Resolution Analysis of LIDAR Height Image ...............................................80 
4.6 Data Fusion for 3-D RGB Building Modelling .......................................................84 
4.7 Feature Classification from Combined RGB/LIDAR Data .....................................95 
4.8 Quantitative Assessment for the Automatic Classification Technique from 

Combined RGB/LIDAR Data Using Wavelets and Statistical Filters.................102 

CHAPTER FIVE: MONTE CARLO SIMULATION DESCRIPTOR FOR OBJECT 

SHAPE RECOGNITION........................................................................................112 

5.1 Different Object Descriptors, Production and Assessment, Literature Review ....114 
5.2 Object Description and Classification Methodologies ..........................................117 

5.2.1 Monte Carlo Simulation for Object and Image Processing Applications .....117 

5.2.2 Monte Carlo Simulation Descriptor for Object Recognition ........................118 
5.2.3 Minimum Distance Classifier ........................................................................119 

5.3 Library Preparation from Building Extracted Image .............................................120 
5.3.1 Boundary and Texture Object Representation ..............................................123 
5.3.2 Wavelet Object Description ..........................................................................126 

5.3.3 MCS Object Description ...............................................................................128 
5.4 Recognition Descriptors Assessment .....................................................................129 

5.4.1 Object Recognition from Original LIDAR Height Image .............................131 
5.4.2 Object Recognition from Scaled and Oriented Original LIDAR Height 

Image..............................................................................................................135 

CHAPTER SIX: SUMMARY, CONCLUSIONS, CONTRIBUTIONS AND 

RECOMMENDATIONS ........................................................................................142 
6.1 Summary ................................................................................................................142 
6.2 Conclusions and Contributions ..............................................................................143 

6.3 Recommendations ..................................................................................................147 

REFERENCES ................................................................................................................149 

APPENDICES………………………………………………………………………….156 

 

 



xi 

List of Tables 

Table  2-1: Flight Configuration and Accuracies .............................................................. 17 

Table  2-2: University of Calgary LIDAR Project Summary ............................................ 17 

Table  3-1: Color Ranges for Different Features Suggested by Bong et al. [2009] ........... 24 

Table  4-1: Confusion Matrix of the Classification Results Versus GIS Data ................ 107 

Table  4-2: Confusion Matrix after Adding the Classification Results of Shadowy 

Areas ....................................................................................................................... 110 

Table  5-1: MCSD for Library Objects – First Trial ........................................................ 129 

 



xii 

List of Figures and Illustrations 

Figure  1-1: Research Workflow.......................................................................................... 3 

Figure  2-1: Airborne Image Production and Applications [Sandau, 2010] ........................ 7 

Figure  2-2: Input RGB Data ............................................................................................... 8 

Figure  2-3: LIDAR System Components ......................................................................... 10 

Figure  2-4: Linear Scanning Pattern ................................................................................. 11 

Figure  2-5: Zigzag Scanning Pattern ................................................................................ 11 

Figure  2-6: Nutating Scanning Pattern ............................................................................. 12 

Figure  2-7: Ellipsoidal Scanning Pattern .......................................................................... 12 

Figure  2-8: LIDAR Coordinate System ............................................................................ 13 

Figure  2-9: Range Image .................................................................................................. 15 

Figure  2-10: Intensity Image ............................................................................................. 15 

Figure  2-11: Optech ALTM 3100 Laser Scanner System ................................................ 16 

Figure  2-12: Nearest Neighbor Interpolation Technique .................................................. 18 

Figure  2-13: Height Image ................................................................................................ 19 

Figure  2-14: Intensity Image ............................................................................................. 20 

Figure  3-1:     Color Space ............................................................................................ 29 

Figure  3-2:     Color Space ............................................................................................ 30 

Figure  3-3:     Color Space ............................................................................................. 31 

Figure  3-4: Algorithm of Feature Extraction from RGB [Elhifnawy et al., 2011c] ......... 32 

Figure  3-5: Input RGB - Image I [Image Courtesy of Twisted Sifter] ............................. 34 

Figure  3-6: Color Invariant Image (Vegetation) - Image I ............................................... 34 

Figure  3-7: Otsu Segmentation Vegetation Image - Image I ............................................ 35 

Figure  3-8: Vegetation Candidates - Image I .................................................................... 35 

Figure  3-9: RGB Vegetation Image - Image I .................................................................. 36 



xiii 

Figure  3-10: Invariant Image (Shadows) – Image I .......................................................... 37 

Figure  3-11: Otsu Segmentation Shadow Image – Image I .............................................. 37 

Figure  3-12: Shadow Candidates – Image I ...................................................................... 38 

Figure  3-13: RGB Shadow Image – Image I .................................................................... 38 

Figure  3-14: Input Image after Removing Vegetation and Shadows – Image I ............... 39 

Figure  3-15: Input Image in       Color Space – Image I .............................................. 40 

Figure  3-16: Input Image in     Color Space – Image I ................................................. 40 

Figure  3-17: Luminance Color Channel – Image I ........................................................... 41 

Figure  3-18: Saturation Color Channel – Image I ............................................................ 42 

Figure  3-19: Hue Color Channel – Image I ...................................................................... 42 

Figure  3-20: Road Candidate Image after Luminance Thresholding - Image I ................ 43 

Figure  3-21: RGB Road Image after Luminance Thresholding - Image I ........................ 44 

Figure  3-22: Non-Road Candidate Image after Hue Thresholding - Image I ................... 45 

Figure  3-23:  Non-Road Image after Hue Thresholding - Image I ................................... 45 

Figure  3-24: Sandy and Unhealthy Vegetation Candidates after All Color 

Thresholding - Image I .............................................................................................. 46 

Figure  3-25: RGB Sandy and Unhealthy Vegetation Areas Image after All Color 

Thresholding - Image I .............................................................................................. 47 

Figure  3-26: Road Candidates from RGB Image - Image I .............................................. 48 

Figure  3-27: RGB Road Image - Image I ......................................................................... 48 

Figure  3-28: Building Candidates from RGB Image - Image I ........................................ 49 

Figure  3-29: RGB Building Image - Image I .................................................................... 50 

Figure  3-30: Features Classification for Urban Area – Image I ....................................... 51 

Figure  3-31: RGB Input Image – Image II ....................................................................... 52 

Figure  3-32: RGB Vegetation Image – Image II .............................................................. 52 

Figure  3-33: RGB Shadow Image – Image II ................................................................... 53 



xiv 

Figure  3-34: Input Image after Removing Vegetation and Shadows – Image II .............. 53 

Figure  3-35: RGB Sandy and Unhealthy Vegetation Areas Image - Image II ................. 54 

Figure  3-36: RGB Road Image - Image II ........................................................................ 54 

Figure  3-37: RGB Building Image - Image II .................................................................. 55 

Figure  3-38: Features Classification for Urban Area – Image II ...................................... 55 

Figure  4-1: Fourier Transform Image ............................................................................... 72 

Figure  4-2: After Log Transformation .............................................................................. 73 

Figure  4-3: Samples of Different Wavelet Base Functions .............................................. 75 

Figure  4-4: Mallat Algorithm............................................................................................ 78 

Figure  4-5: Building Extraction Algorithm ...................................................................... 80 

Figure  4-6: LIDAR Height Image of the Area of Study ................................................... 81 

Figure  4-7: SYM4 Wavelet Base Function ....................................................................... 81 

Figure  4-8: Wavelet Analysis ........................................................................................... 82 

Figure  4-9: Feature Edges of the Area of Study ............................................................... 83 

Figure  4-10: Feature Image of the Area of Study ............................................................. 84 

Figure  4-11: Building Candidates of the Area of Study ................................................... 85 

Figure  4-12: MOSAIC Includes the Area of Study .......................................................... 86 

Figure  4-13: RGB Image of the Area of Study ................................................................. 86 

Figure  4-14: Building Extraction Image of the Area of Study (Intensity Information) .... 87 

Figure  4-15: Building Extraction Image of the Area of Study (RGB) ............................. 88 

Figure  4-16: Building Extraction Image of the Area of Study (Height Information) ....... 88 

Figure  4-17: 3-D Building Model (View 1) ...................................................................... 89 

Figure  4-18: 3-D Building Model (View 2) ...................................................................... 90 

Figure  4-19: Input LIDAR Height Image ......................................................................... 91 

Figure  4-20: Building Extraction Image (Height) ............................................................ 92 



xv 

Figure  4-21: Building Extraction Image (RGB) ............................................................... 92 

Figure  4-22: 3-D Building Model (View1) ....................................................................... 93 

Figure  4-23: 3-D Building Model (View1) ....................................................................... 93 

Figure  4-24: Input LIDAR Height Image (British Columbia) .......................................... 94 

Figure  4-25: 3-D Building Models (Second Data – View1) ............................................. 94 

Figure  4-26: 3-D Building Models (Second Data – View2) ............................................. 95 

Figure  4-27: RGB Input Image ......................................................................................... 96 

Figure  4-28: Feature Classification Algorithm from RGB/LIDAR Data ......................... 97 

Figure  4-29: Building Extraction Image after Removing Vegetation and Shadows ........ 98 

Figure  4-30: Sandy Areas after Eliminating Building Candidates ................................... 99 

Figure  4-31: Road Image ................................................................................................ 100 

Figure  4-32: Road Extraction Image after Considering Sandy Areas as Roads ............. 101 

Figure  4-33: Final Feature Classification Image [Elhabiby et al., 2011]........................ 101 

Figure  4-34: Final Building Candidates from the Proposed Classification Technique 

using Combined RGB/LIDAR Data ....................................................................... 103 

Figure  4-35: GIS Data for the University of Calgary Including Buildings, Roads and 

Vegetation ............................................................................................................... 104 

Figure  4-36: Building Candidates from GIS Data .......................................................... 105 

Figure  4-37: Road Candidates from GIS Data ................................................................ 105 

Figure  4-38: Vegetation Candidates from GIS data ....................................................... 106 

Figure  4-39: Building Classification Assessment versus GIS Data................................ 108 

Figure  4-40: Road Classification Assessment versus GIS Data ..................................... 108 

Figure  4-41: Vegetation Classification Assessment versus GIS Data ............................ 109 

Figure  4-42: Classification Technique Assessment versus GIS Data for Building, 

Road and Vegetation Classification ........................................................................ 109 

Figure  5-1: Generated Random Values Segmentation .................................................... 119 



xvi 

Figure  5-2: Library Preparation Algorithm ..................................................................... 121 

Figure  5-3: Building Image ............................................................................................. 122 

Figure  5-4: Building Separation...................................................................................... 123 

Figure  5-5: Object Boundary Images .............................................................................. 124 

Figure  5-6: Object Texture Representation..................................................................... 125 

Figure  5-7: Wavelet Function for Object Descriptors .................................................... 127 

Figure  5-8: Object Shape Recognition Algorithm .......................................................... 130 

Figure  5-9: Object Recognition Results from Original Input Data using Wavelet 

Descriptors .............................................................................................................. 132 

Figure  5-10: Object Recognition Results from Original Input Data using MCSD......... 134 

Figure  5-11: MCSD Recognition Successful Percentage form Original Input Data ...... 134 

Figure  5-12: Scaled and Oriented LIDAR Height Image ............................................... 135 

Figure  5-13: Scaled and Oriented RGB Image ............................................................... 136 

Figure  5-14: Recognition Results for Scaled and Oriented Objects using Wavelet 

Descriptors .............................................................................................................. 138 

Figure  5-15: Wavelet Descriptors Recognition Successful Percentage for Scaled and 

Oriented Objects ..................................................................................................... 139 

Figure  5-16 Recognition Results for Scaled and Oriented Objects using MCSD .......... 140 

Figure  5-17: MCSD Recognition Successful Percentage for Scaled and oriented 

Objects .................................................................................................................... 140 

 

  



xvii 

List of Symbols, Abbreviations and Nomenclature 

Symbol Definition 

RGB Color image with Red ( ), Green ( ) and Blue ( ) 

color channels 

LIDAR Light Detection And Ranging 

        color space 

MCS Monte Carlo Simulation 

MRA Multi- Resolution Analysis 

AOSR Automatic Object Shape Recognition 

MCSD Monte Carlo Simulation Descriptor 

        Image dimension (rows, columns) 

GPS Global Positioning System 

INS Inertial Navigation System 

IMU Inertial Measurement Unit 

  ⃗⃗  ⃗  Ground coordinates of point of interest 

  ⃗⃗  ⃗ Ground Coordinates of antenna phase center 

   
⃗⃗ ⃗⃗  ⃗ Vector of lever arm between antenna phase center and 

center of laser scanner coordinate system with respect 

to IMU coordinate system 

  ⃗⃗  ⃗ Vector of range of point of interest with respect to 

laser beam coordinate system 

    rotation matrix between ground coordinate system and 

IMU coordinate system 

    Rotation matrix between IMU coordinate system and 

laser scanner coordinate  system 

    Rotation matrix between laser scanner coordinate 

system and laser beam coordinate system 

NN Nearest Neighbor 

AWT A trous Wavelet Transform 

KLT Karhounen-Louve Transfrom 



xviii 

   Road Candidates 

             Commission International de l’Eclairage LAB color 

space 

JSEG J value SEGgmentation 

   Building Index 

  Luminance color channel 

   Difference between blue channel and a reference value 

   Difference between red channel and a reference value 

  Hue color channel 

  Saturation color channel 

  Value color channel 

RADAR Radio Detection And Ranging 

   Ratio Index 

     Visible Atmospherically Resistant Index 

   Vegetation Index 

   Shadow Index 

  Gray value of image pixel 

   Number of pixels that have gray level   

  Total number of image pixels 

    Probability of existence of gray level   

L Total number of gray values 

  
  Between-class variance 

  Gray thresholding value 

  Intensity color channel 

    Road Candidates from luminance color channel 

     Non-Road Candidates from Hue color channel 

   Sand areas Candidates 

   Building Candidates 

RANSAC RANdom SAmple Consensus 

DSM Digital Surface Model 



xix 

NDVI Normalized Difference Vegetation Index 

DTM Digital Terrain Model 

PTS Planar Terrain Surface 

DEM Digital Elevation Model 

GIS Geographic Information System 

ALSWave Airborne Laser Scanner Wavelet 

TIN Triangular Irregular Network 

CHM Canopy Height Model 

VWF Variable Window Filter 

SWA Spatial Wavelet Analysis 

DWT Discrete Wavelet Transform 

EMT Expectation Maximization Technique 

NCC Normalize Cross Correlation 

  Period of Time 

  Signal or function 

  Space variable 

   Amplitude of periodic function number   

  Exponential 

  Imaginary part = √   

   Wavelength of periodic function number   

  Frequency 

     Amplitude spectrum of   at frequency   

   New intensity value after log transform 

        Log transform constant 

 { }   transformation of   using window function   

  Transition parameter 

  Window function 

CWT Continuous Wavelet Transform 

  Wavelet Transformation 

  Wavelet function 



xx 

  Scale parameter 

  Translation parameter 

  Domain of integers 

   Scale 

   Translation 

  Scaling function 

  Total number of signal sampling 

  Scaling coefficients 

  Detail coefficients 

  Total number of levels of decomposition 

  Tensor product 

       Two dimensional scaling function 

        Two dimensional horizontal wavelet function 

        Two dimensional vertical wavelet function 

        Two dimensional diagonal wavelet function 

           Coordinates of the output image 

           Coordinates of the input image 

        Scale parameters in x and y directions 

MMS Mobile Mapping System 

ATR Automatic Target Recognition 

AMCR Active Monte Carlo Recognition 

OCE Object oriented Contour Extractor 

CDCA Curvature Dependent Contour Approximation 

KNN K-Nearest Neighbour 

PDF Probability Density Function 

      Probability distribution of random variable    

    Probability distribution parameters 

  Mean 

   Variance 

                      Decision functions  



xxi 

   Total Number of classes 

MDCT Minimum Distance Classifier Technique 

ED Euclidean Distance 

   Object of interest descriptor 

   Library of classes descriptors 

   Boundary function 

  Order of boundary pixel 

   Total number of boundary pixels 

      Total number of random values 

  The order of the descriptor in MCSD vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter One: Introduction 

The hybrid data (LIght Detection And Ranging (LIDAR) and Red, Green and Blue 

(RGB)) contains many features. Feature extraction is the process of separating features in 

individual data sets. Each data set contains all information from the input data for specific 

feature. Feature classification is the process of defining all features in the input data to 

classes. Object recognition is the process of identifying an object of interest to specific 

class. Feature extraction, classification and recognition are the basis and target for many 

civil and military applications such as urban planning and development, forest 

monitoring, road network extensions, battle field monitoring and target detection. Feature 

extraction and classification applications sometimes have many obstructions depending 

on data availability and quality. This research thesis introduces an automatic urban area 

classification and recognition technique from hybrid data.  

1.1 Motivations 

The availability of high quality hybrid data, namely digital images and LIDAR data 

captured in the same flight missions was the main motivation for introducing a combined 

algorithm for efficient urban area classification using the properties of these two sources 

of information. Although the RGB image provides rich descriptive information for 

ground and non-ground objects, detecting and separating different features sharing the 

same texture or color properties remains difficult especially in the     color space. In 

contrast, the LIDAR data provides rapid and dense information for surface elevation and 

non-terrain objects however efficient feature extraction from LIDAR data can face the 

same problem detecting and separating different objects sharing the same height values or 

located close proximity to each other. These two difficulties, from both RGB and LIDAR 
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data, represent a motivation for combining semantic and spatial information to classify 

and separate all different features efficiently. The proposed research thesis introduces an 

automatic urban area classification technique using combined RGB/LIDAR data. The 

proposed technique is composed of several color transformation and segmentation 

methods combined together and applied with RGB images. The semantic transformation 

techniques are aided by wavelet transformation of the LIDAR height data for building 

extraction. The new combination of color transformation-RGB and wavelet-LIDAR 

introduces an automatic urban classification technique for extracting roads, green areas, 

buildings and sand areas. 

The availability of detailed classified objects from the extraction process was the 

motivation behind having one more step toward an efficient change detection algorithm 

for buildings. The objects identified and classified from the extraction process are then 

used in creating an object recognition library that can be used in change detection search 

algorithms. Extracted objects are represented generally by their boundaries. Monte Carlo 

Simulation (MCS) technique is used to get each object area based on generating random 

values inside each object boundary. The ratio between the numbers of random values 

inside an object boundary to that covering the object image, represents the ratio between 

the object area and the complete image area. This research thesis assesses the use of 

different descriptors and their corresponding efficiency for feature recognition 

applications.  

1.2 Thesis Objectives 

The main objective of the thesis is to implement an efficient fully automatic feature 

classification and recognition technique from combined RGB and LIDAR data for urban 
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areas. Figure  1-1 shows the schematic diagram of an overview about the thesis workflow. 

The thesis work begins with the extraction and classification of different features in an 

urban area. The extracted features are then used to build a library of different classes used 

for recognizing any object of interest. The object of interest can be identified from RGB, 

LIDAR, intensity, satellite or any other imaging data captured at any time. 

 

Figure  1-1: Research Workflow 

Consequently, the thesis has two sub-objectives. The first objective is to introduce and 

implement an efficient feature extraction and classification technique from RGB and 

LIDAR data. This objective is achieved by creating a combination between color 

segmentation, color transformation, global color thresholding techniques and image 

Multi-Resolution Analysis (MRA) using wavelet transform. The second objective is to 

introduce a new spatial domain object descriptive for Automatic Object Shape 

Recognition (AOSR) for change detection. The investigated spatial domain object 
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descriptor is based on the Monte Carlo Simulation (MCS) application for object area 

determination. The thesis will include the following sub-objectives that lead to the main 

objectives as follows: 

- Implementation of an automated feature classification technique for urban areas 

from RGB image. 

- Implementation of an automated Multi Resolution Analysis (MRA) building 

extraction technique from LIDAR data. 

- Investigation of a new spatial domain descriptor based on Monte Carlo 

Simulation (MCS) application. 

- Assessment of Monte Carlo Simulation Descriptor (MCSD) versus other object 

descriptors for shape recognition application. 

- Developing a complete software package for automatic feature extraction and 

recognition for urban applications, with minimum need of human intervention. 

The package can deal with RGB only for image classification, LIDAR data only 

for building extraction and combined hybrid data for complete urban 

classification of complex images and data. 

1.3 Thesis Outline 

The thesis is arranged into six chapters. Chapter One is for the introduction and overview 

of the research target and contents. 

Chapter Two introduces an overview of the different available data. It introduces an RGB 

image, components and properties. Also, it explains the basics of the LIDAR system 

components and LIDAR data, collecting and processing.  
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Chapter Three introduces a feature classification technique from RGB image. It explains 

the feature classification algorithm and all methodologies. It shows the implementation of 

the proposed algorithm through urban classification results of urban area images.  

Chapter Four introduces a building extraction technique from LIDAR data. It explains the 

building extraction algorithm and mathematical models of wavelet analysis for signal and 

image processing. It shows the implementation of the proposed algorithm through 

building extraction results from LIDAR data for urban areas. 

Chapter Five introduces a new spatial domain object descriptive. It explains the 

production of an object descriptive from a boundary image. It also introduces the 

assessment of the new descriptor versus wavelet descriptors for object recognition using 

different objects with random shapes, orientations and scales.  

Chapter Six provides the summary and conclusion of this research. It shows the 

contribution from all proposed techniques and mentions some of interesting research 

topics to extend and develop this research thesis as recommendations for future work. 
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Chapter Two: Airborne RGB/LIDAR Data 

As mentioned in Chapter One, the thesis target is the investigation of feature 

classification and recognition techniques using available data. Two different types of data 

are prepared for this research. RGB and LIDAR data are produced for the same study 

area representing an urban area located in city of Calgary, Alberta in Canada. By 

considering any of these data as complimentary to one another, they can be used to verify 

an efficient urban classification technique using RGB/LIDAR data. This chapter 

introduces an overview of airborne RGB and LIDAR data and the images used for 

verifying and assessing the proposed techniques.  

2.1 Airborne RGB Data 

An RGB image is the best descriptive data for ground and non-ground objects. It is 

composed of three color channels red, green and blue. All color channels have the same 

dimension    , number of rows, and    , number of columns. Mathematically, an RGB 

image is represented as a matrix of dimension              .  

2.1.1 Image Capturing 

There are two methods to produce an RGB digital image. The first method is classified as 

a post mission by scanning an analogue image with a digital scanner. This is not a 

preferable method since the resultant image may contain scanning errors in addition to 

raw production errors such as lens distortion and atmospheric refraction effects.  The 

second method is preferable however, because an RGB image is captured directly, using 

a digital camera. Figure  2-1 explains the difference between the two methods and their 

applications [Sandau, 2010]. 
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Figure  2-1: Airborne Image Production and Applications [Sandau, 2010] 

2.1.2 Input RGB Images 

Two different RGB images are used for verifying the proposed feature classification 

algorithm from RGB data. The first RGB image for urban area (Housing Subdivision, 

Arizona) contains buildings, vegetation and roads as shown in Figure  2-2(a). The selected 

image has a high differentiable and distinguishable contrast between different features. 

Different features can be efficiently identified and classified from this image.  
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                                   (a)                                                                 (b) 

Figure  2-2: Input RGB Data 

The second input RGB image is a part of the University of Calgary campus as shown in 

Figure  2-2(b). Building and road features share texture properties. Features cannot be 

correctly classified from this image based on the shared texture properties of different 

objects. This is a motivation for using additional information such as spatial data to solve 

the problems that arise from these shared texture properties and effectively extract and 

classify different features. This will be explained clearly through the results discussed in 

Chapters 3 and 4.   

2.2 Airborne LIDAR Data 

A LIDAR system provides dense positioning information for surface topography and all 

features for the study area. LIDAR systems provide not only positioning information but 

also property information, referred to as intensity values, for all scanned points. Two 

types of images can be produced from this information, a range image and an intensity 
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image. A range image is based on height values while an intensity image is based on the 

intensity values for all scanned points [Shan and Toth, 2009]. The LIDAR system is 

composed of many sensors to collect this data with high density and accuracy.  

2.2.1 LIDAR System Components 

A LIDAR system consists of two main components, a data collection component and a 

navigation component. For the data collection component, a laser scanner is the main 

sensor as it collects both dense range and intensity information for the scanned area [El-

Sheimy et al., 2005; Al-Durgham, 2007; Habib et al., 2009]. Newer versions of the 

LIDAR system contain additional data collection sensors such as a digital camera and/or 

an infrared sensor. Not only do these systems collect positional information, they also 

collect semantic information for each scanned point. The LIDAR system consists of a 

laser scanner and a digital camera, as an additional data collection sensor, used for 

producing LIDAR, height and intensity, and at the same time, an RGB image for the 

same scanned area. The classification results using the data produced from this system 

are a significantly better quality than those using each data separately for any given study 

area. This will be illustrated in more detail in Chapters 3 and 4.    

As for the navigation component, it consists of two systems; Global Positioning System 

(GPS) and Inertial Navigation System (INS). Figure  2-3 identifies the main components 

of the LIDAR system; laser scanner that provides range and intensity data, GPS that 

provides 3D positioning and timing parameters, while Inertial Measurement Unit (IMU) 

that provides orientation parameters. 
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Figure  2-3: LIDAR System Components 

2.2.2 Data Acquisition 

The laser scanner contains a rotating mirror that reflects the laser beam and produces the 

required scanning pattern. The laser scanner may contain one mirror; in this case, the 

scanning pattern will be linear, zigzag or nutating. The scanner pattern assumes an 

ellipsoidal shape when the laser scanner contains two rotating mirrors. A linear scanning 

pattern (Figure  2-4) is undesirable since no data is collected from the areas between the 

lines. Alternatively, a zigzag scanning pattern (Figure  2-5) provides a continuous 

collection of data of the scanning area. A nutating scanning pattern (Figure  2-6) provides 

dense collection of data with a low flying speed. Amongst all the scanning patterns listed, 

the elliptical scanning pattern (Figure  2-7) is preferable because it gives a dense 

collection of data from any flying speed since it duplicates the data collected from the 

scanned area, however, it does require more complicated calculations as a result of the 

two existing mirrors that rotate at different scanning angles [El-Sheimy et al., 2005].   
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Figure  2-4: Linear Scanning Pattern 

 

Figure  2-5: Zigzag Scanning Pattern 
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Figure  2-6: Nutating Scanning Pattern 

 

Figure  2-7: Ellipsoidal Scanning Pattern 

2.2.3 Data Processing 

An Inertial Measurement Unit (IMU) collects navigation data for flying missions while a 

GPS antenna collects coordinates of flying directions referenced to the GPS coordinate 

system. The laser scanner collects range and intensity information for each scanned point. 

An IMU and GPS are working together to provide integrated navigation data; data which 
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is used to calculate the coordinates of the flying direction referenced to the ground 

coordinate system. These coordinates are used in collaborating with the LIDAR system 

calibration parameters and range information to calculate ground coordinates for each 

scanned point. A LIDAR system is a direct georeferencing system, and as such the 

ground coordinates of the point of interest are calculated as a vector summation, shown in 

Figure  2-8, that represents a LIDAR equation [El-Sheimy et al., 2005]. Equation  2.1 

[Habib et al., 2009] represents a mathematical model of LIDAR equation for calculating 

ground coordinates of point of interest. 

 

Figure  2-8: LIDAR Coordinate System 

  ⃗⃗  ⃗     ⃗⃗  ⃗         
⃗⃗ ⃗⃗  ⃗                ⃗⃗⃗⃗     2.1 
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where:   ⃗⃗  ⃗  = ground coordinates of point of interest 

   ⃗⃗  ⃗ = ground coordinates of antenna phase center 

    
⃗⃗ ⃗⃗  ⃗ = vector of lever arm between antenna phase center and center of laser scanner 

coordinate system with respect to IMU coordinate system 

   ⃗⃗  ⃗ = vector of range of point of interest with respect to laser beam coordinate system 

     = rotation matrix between ground coordinate system and IMU coordinate system 

     = rotation matrix between IMU coordinate system and laser scanner coordinate  

system 

     = rotation matrix between laser scanner coordinate system and laser beam 

coordinate system 

Positional, spatial and intensity information are gridded using an interpolation technique 

to produce LIDAR images, a range image and an intensity image. The grid remains the 

same for both images, however while a range image requires the pixel values to represent 

the heights of scanned points, an intensity image requires the pixel values to represent 

intensity information [Al-Durgham, 2007]. Figure  2-9 and Figure  2-10 show a range 

(height) image and an intensity image for the same area, and both images are of the same 

area depicted in Figure  2-2b.  
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Figure  2-9: Range Image 

 

Figure  2-10: Intensity Image 
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2.2.4 LIDAR Data for Study Area 

LIDAR data is used for building extraction as mentioned in Chapter One, so the selected 

area of study has to be focused on a region rich with buildings. This condition is provided 

by the selected area of study that is located in Calgary, Canada and covers part of the 

University of Calgary campus. Part of the selected area covers the same area as the RGB 

image shown in Figure  2-2b. The area of study was scanned by Optech ALTM 3100 

LIDAR system (Figure  2-11).  

Table  2-1 lists the flight configuration and accuracy specifications of this mission and 

Table  2-2 outlines the summary of this LIDAR project produced by Airborne Imaging 

Company on May 22, 2007.  

 

Figure  2-11: Optech ALTM 3100 Laser Scanner System  
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Table  2-1: Flight Configuration and Accuracies 

Vertical Accuracy Horizontal Accuracy 2 Surveying 

Days 

 1
st
 Day 6 strips @1000m  

15 cm 50cm@1000m 70cm@1400m 2
nd

 Day 4 strips @1400m 

 

Table  2-2: University of Calgary LIDAR Project Summary  

Project Info: 

Project Name: U of C Campus Client: Univ. Of Calgary 

Project Number: 8077 Acquisition: Spring 2007 

General Information 

Project Type: Wild Area 

Project Location: Calgary, Ab, Canada 

Project Size: 5.8 sq km 

Acquisition 

Parameters 

Flying Height 

AGL: 

1000/1400 m Pulse Rate Rep: 50 kHz 

Flying Speed: 160 kts Scan Frequency: 33/38 Hz 

Side Lap: 50 % Scan Angle:       

Point Spacing: 0.75 m LIDAR System: Optech 3100 

Geodetic Control 

Horizontal Datum: Nad83 CSRS Vertical Datum: CGVD28 

Geoid Model: HT2.0 UTM Zone: 11 

Notes: local geodetic network was established fixed to the following governmental control: 

Control Station 

(ASCM): 

Sta_ID Lat Lon MSL Hgt 

77x1058 51 5 47.10080 -114 22 24.08720  1198.909 m 

Observed Accuracy 

Ground Truth 

RMS: 

9 cm 
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This project provides ten LIDAR strips for the whole scanned area. The area of study is 

the fourth strip from this project; it is bounded with X-coordinates from 

699,915.05583963 m to 701,414.63341027 m and Y-coordinates from 

5,661,929.8682168 m to 5,662,769.353172 m. The LIDAR system scanned this area with 

a zigzag scanning system with a total amount of scanned points equaling 982,956. The 

distribution of scanned points is irregular and it is therefore necessary to regulate this 

distribution to produce height and intensity images. Redistribution of these points using 

an interpolation technique generates an equally spaced mesh and calculates height and 

intensity information for each node. The building extraction is based on detecting its 

edge, so a gridding or an interpolation method used for producing a height image must 

not change or distort height information of building edges. This condition is only fulfilled 

when using the Nearest Neighbor (NN) interpolation technique. Figure  2-12 shows the 

mathematical principal for NN interpolation technique that is applied to generate height 

and intensity images over a 0.5-m equally spaced mesh.  

 

Figure  2-12: Nearest Neighbor Interpolation Technique 
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Figure  2-13 shows the height image after the interpolation process. The pixel values 

represent the height information for objects. Figure  2-14 shows the descriptive data of 

features produced by the LIDAR data referred to as the intensity image. The pixel values 

in the intensity image are calculated based on the transmitted and received energy of the 

laser pulse. These values depend on the object material and its efficiency for absorbing 

laser energy [Vain et al., 2010]. 

 

Figure  2-13: Height Image 
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Figure  2-14: Intensity Image 

The building extraction algorithm from LIDAR data is applied to the height image by 

detecting the locations of height changes using a Multi-Resolution Analysis (MRA) tool 

as will be mentioned later in Chapter 4. All buildings can be extracted, but other features 

sharing height properties such as trees located close to the buildings cannot be separated.  

This is the motivation for using combined height image (Figure  2-9) and an RGB image 

(Figure  2-2b) to enable an efficient separation of these features. The results discussed in 

Chapter 4 will help to explain this in further detail. 
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Chapter Three: Urban Area Segmentation and Classification from Semantic 

Information 

As mentioned in the previous chapter, an RGB image provides rich semantic information 

for ground and non-ground objects [Ghanma, 2006].  Semantic information is a powerful 

feature descriptive because different objects can be identified visually from RGB images. 

In this thesis, detailed investigation of a new fully automated technique for feature 

extraction from RGB data is introduced based on the combinations of supervised and 

unsupervised segmentation methods. The proposed technique is used for extracting 

vegetation, shadows, sandy areas and roads with only the buildings left as a result of 

these successive removals. This is done through the use of different color spaces indexing 

based on statistical assumptions and empirical formulas corresponding to certain color 

candidates.      

3.1 Literature Review 

There are several researchers who have worked on the extraction of different features 

from digital, aerial or satellite, images such as Laptev et al. [2000], Mena and Malpica 

[2005], Ooi and Lim [2006], Dong et al. [2007], Li et al. [2007b], Mokhtarzade and Zoej 

[2007], and Tuncer [2007] .  

Tuncer [2007] introduced a fully automated technique for road extraction from satellite 

images. The research paper began with transforming the satellite image to a gray scale 

image while wavelet filtering based on A trous Wavelet Transform (AWT) algorithm is 

applied on this gray scale image. This application employed two wavelet base functions, 

Haar and Daubechies (db8), while stopping at the fourth level of decomposition. The two 

results are fused in one image using the Karhounen-Louve Transform (KLT). Fuzzy logic 
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and Hough transform are used for building a fuzzy logic interface algorithm to detect 

road candidates. Equation  3.1 shows a mathematical model for detecting road candidates, 

  . This equation is applied for each window after dividing the fused image into small 

windows.  

    {
                                                              
                                                                                                             

  3.1 

This technique provides acceptable results in the case of non-urban areas, but for urban 

areas some building pixels are extracted as road candidates.  

Song and Shan [2008] investigated a building extraction technique from high resolution 

RGB images. The input image is transformed to Commission International de l’Eclairage 

LAB (            ) color space, where   is a vertical axis that represents lightness,   

axis is circular, normal to   axis, and runs horizontally from red (positive values) to green 

(negative values), and   axis is also circular and runs from yellow (positive values) to 

blue (negative values). The output image is de-noised using an anisotropic diffusion 

technique that is based on Laplacian filtering of the Gaussian smoothing image. This 

diffusion is applied on each color channel of the output image and active contour image 

segmentation is applied to detect building boundaries. The J value segmentation (JSEG) 

frame worm is used to construct building polygons and a 3-D wired frame. This 

technique has succeeded in case of red rooftop buildings that provide high contrast 

between buildings and background, but has presents issues when dealing with different 

rooftop colors.  
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Sirmacek and Unsalan [2008] detected building pixels based on calculating building 

index (  ) from red and green color channels as shown in Equation  3.2, where   and   

represent red and green color channels in an input RGB image.  

    
 

 
        (

   

   
)  3.2 

This technique succeeded in cases of red rooftop buildings only, but it is unsuitable for 

other rooftop colors.  

Bong et al. [2009] investigated color channel ranges that represent a road texture property 

after transforming an RGB image from     color space to       color space, where   

refers to a luminance color channel that represents gray scale information,    and    

components represent color differences between blue and red channels and reference 

values respectively, and     color space, where   represents the hue color channel that 

represents a true color,   represents the saturation color channel that represents the 

degradation measurements for diluting a true color by a white light and   represents the 

value color channel corresponding to brightness color spaces. This research produced 

color ranges that represent different features concentrating on luminance, hue and 

saturation color channels as shown in Table  3-1. 
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Table  3-1: Color Ranges for Different Features Suggested by Bong et al. [2009]    

Color Channel 

Features 

Road Sand Building 

Luminance ( ) 110 – 160 100 – 200 50 – 150 

Saturation ( ) 0.1 – 0.25 0.3 – 0.5 0.1 – 0.5 

Hue ( ) 0.05 – 0.2 0.05 – 0.1 0 – 0.1 

 

Road image is produced by applying global color thresholding on color channels using 

specific ranges as shown in Equation  3.3, where    represents road candidate and  ,   

and   represent luminance, saturation, and hue color channels.   

    {
                                              
                                                                                   

  3.3 

This technique is acceptable for high resolution satellite images, but with clearly 

differentiable and distinguishable semantic information between buildings and roads; 

such as red rooftop buildings that avoid extracting building pixels as road candidates.  

Shorter and Kasparis [2009] investigated an automatic technique for building extraction 

from an RGB aerial image. The proposed technique started with a color quantization 

process. The output image is segmented, and small areas are removed based on a specific 

area thresholding value since small areas are classified as ground areas. The segmented 

image is used for producing a color invariant vegetation image based on green and blue 

color channels by calculating the vegetation index. The raw RGB image is used for 

producing another color invariant image for shadow detection based on all RGB color 

channels by calculating the shadow index. The watershed segmentation technique is 
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applied on a raw RGB image followed by calculating solidity properties for all 

segmented regions to investigate building and non-building candidates in the input image. 

The output image is investigated after removing vegetation and shadowy areas from the 

building candidate image. This technique succeeded in detecting vegetation, shadows and 

building areas from the RGB image, but it depends on the input image and color varieties 

in all color channels. The main drawback of this approach is that roads with texture 

properties similar to buildings are identified as building candidates.  

Feature classification resulting from RGB images is challenging when there are features 

sharing similar texture properties. Wegner et al. [2009] used an RGB image aided by 

Radio Detection And Ranging (RADAR) data to overcome the problem of building 

extraction, however, this aid could not provide an acceptable solution for extracting all 

buildings.  

These feature extraction problems are the motivation behind this research thesis for 

investigating a combined technique that maximizes the benefits of different feature 

extraction algorithms. This thesis will introduce an automated feature classification 

technique from an RGB image based on the combination of two different algorithms, 

gray scale segmentation and color thresholding [Gonzalez and Woods, 2002].  

The proposed feature extraction technique from an RGB image is aided by spatial 

information using the power of Multi-Resolution Analysis (MRA) for height information 

for building extraction from LIDAR data. This will create an efficient automatic feature 

classification technique that overcomes all problems from the existence of different 

features sharing texture properties. The algorithm improvement by aiding with LIDAR 

data will be illustrated later in the next chapter in detail.  
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3.2 Feature Classification Methodology 

A feature extraction technique from an RGB image is a well-known topic and there are 

many techniques that have been used such as color invariant images production, color 

segmentation, color space transformation and global color thresholding [Sirmacek and 

Unsalan, 2008; Song and Shan, 2008; Bong et al., 2009]. The proposed feature 

classification technique from an RGB image will be investigated by using and combining 

several image processing techniques, color invariant image production, Otsu 

segmentation, color transformation and global color thresholding. This section introduces 

an overview of different color image processing techniques in addition to their respective 

mathematical representations used while investigating the proposed feature classification 

technique from RGB images. 

3.2.1 Color Invariant Image Production 

Color invariant image represents a ratio between radiometric measurements among 

different color channels. Basically, if this ratio is between green and blue color channels 

it is defined as Ratio Index (  ) [Jensen, 2005],  if it is calculated using all color channels 

it is referred to as Visible Atmospherically Resistant Index (    ) [Gitelson et al., 2002]. 

Equations  3.4 and  3.5 show the mathematical models for calculating    and     .   

    
 

 
  3.4 

      
   

     
  3.5 

Two of these types of radiometric measurement ratios are the vegetation index and 

shadow index. Shorter and Kasparis [2009] used a Vegetation Index (  ) proposed by 

Boyer and Unsalan [2005] to investigate a color invariant image that is effective in 
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detecting vegetation areas after quantizing all the     color channels to sixteen color 

ranges. Also, the Shadow Index (  ) introduced by Sirmacek and Unsalan [2008] is used 

to identify shadow regions. Equations  3.6 and  3.7 show mathematical models for 

calculating    and   .  

    
 

 
        (

   

   
)  3.6 

    
 

 
       [ 

               
 
 

               
 
 

]  3.7 

3.2.2 Otsu Segmentation for Vegetation and Shadow Identification 

The Otsu thresholding process is an unsupervised segmentation process using a global 

thresholding technique to separate specific features. This method is called the gray 

thresholding technique because it is based on an image gray values histogram. The image 

histogram is normalized as shown in Equation  3.8 [Otsu, 1979].  

    
  

 ⁄    3.8 

where:    = number of pixels that have gray level   

   = total number of image pixels 

       = probability of existence of gray level   

   = 1,2 ,3, ….., L 

 L = total number of gray values 

The selected gray thresholding   must maximize a specific value that is termed between-

class variance (Equation  3.9) [Otsu, 1979; Gonzalez et al., 2004]. 
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3.2.3 Color Transformation for Feature Detection 

Although an RGB image produces rich semantic information for ground and non-ground 

objects, RGB color channels are not always suitable to use directly in feature extraction 

or classification. Consequently, the three channels data have to be transformed from     

color space (Figure  3-1) to other color spaces. In this thesis, two color spaces are used for 

road and building extraction from the RGB image,       and     [Bong et al., 2009]. 
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Figure  3-1:     Color Space  

      color space is used in digital video applications; Equation  3.10 shows the 

mathematical model for color space transformation from     color space to       color 

space, where  ,  and   representing red, green and blue color channels respectively. 

[
 
  

  

]   [
  
   
   

]   [
                   
                     
                     

] [
 
 
 
]  3.10 

    color space (Figure  3-2) is used for selecting colors. In   ,   is not suitable for 

human interpretation, so intensity value is used instead of the   color channel. This led to 

investigating     color space that is represented in triangular or circular shapes as shown 

in Figure  3-3. Equation  3.11 shows the mathematical model for color transformation from 

    color space to     color space [Gonzalez and Woods, 2002; Gonzalez et al., 2004].  
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Figure  3-2:     Color Space  
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Figure  3-3:     Color Space 

The proposed algorithm of feature classification from RGB data is a combination of 

various mentioned methods. Each method is used in a certain order to extract specific 

features to create an efficient urban classification from RGB images. First, vegetation and 

shadow area identification are done based on segmentation of color invariant images 

generated from RGB color channels. Second, roads are extracted using global color 

thresholding for luminance, hue and saturation color channels generated after 

transforming the data from     color space to       and     color spaces. The 

methodology for combining these techniques is discussed in the next section and through 

results represented in this chapter.  
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3.3 New Implementation for Feature Extraction from RGB Image Using a 

Combination of Traditional Filtering Methods 

RGB images contain descriptive information, so feature extraction is based on identifying 

color ranges suitable for each feature. RGB color channels are used to calculate index 

values that are used for generating color invariant images for vegetation and shadowy 

area detection. The investigated technique relies on a combination of these techniques to 

be able to extract specific features from an RGB image. Figure  3-4 shows a schematic 

diagram of the proposed algorithm that consists of two main stages. The first stage, 

bounded by a red frame, is the color segmentation for generating color invariant images 

for vegetation and shadows identification. The second stage, bounded by a green frame, 

is the color thresholding for three color channels extracted after transforming the input 

image into two different color spaces to identify roads, subsequent to the removal of 

vegetation and shadows.  

 

Figure  3-4: Algorithm of Feature Extraction from RGB [Elhifnawy et al., 2011c] 
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Vegetation, shadows, sandy areas and roads are detected at the end of the second stage. 

After removing successive extracted features the remaining features in the input image 

are classified as buildings.    

3.4 Feature Extraction from Different RGB Images for Urban Classification 

The algorithm is applied on different images with varying characteristics. The first image, 

Image I, shown in Figure  3-5 has no buildings with red rooftops, but with high 

differentiable texture properties among different features. Figure  3-6 shows the color 

invariant image generated after calculating the vegetation index (  ), as explained in 

section 3.2.1 using Equation  3.6, for vegetation identification. Figure  3-7 and Figure  3-8 

show the segmented image after applying the Otsu segmentation technique on a color 

invariant image to detect the vegetation candidates, as explained in section 3.2.2. The 

candidate image is of logical class with ones in candidate pixels and zeros for others. 

Figure  3-9 shows a vegetation image in     color space after fusing RGB color channels 

with the vegetation candidate image. 
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Figure  3-5: Input RGB - Image I [Image Courtesy of Twisted Sifter]   

 

Figure  3-6: Color Invariant Image (Vegetation) - Image I 
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Figure  3-7: Otsu Segmentation Vegetation Image - Image I  

 

Figure  3-8: Vegetation Candidates - Image I 
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Figure  3-9: RGB Vegetation Image - Image I 

For shadowy areas identification, color invariant image (Figure  3-10) is generated after 

calculating the shadow index (  ), as explained in section 3.2.1 using Equation  3.7. 

Figures from Figure  3-11 to Figure  3-13 show the steps of shadowy areas detection as 

mentioned in the vegetation identification process.  

Vegetation Image
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Figure  3-10: Invariant Image (Shadows) – Image I 

 

Figure  3-11: Otsu Segmentation Shadow Image – Image I 

Color Invariant Image (Shadows)
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Figure  3-12: Shadow Candidates – Image I 

 

Figure  3-13: RGB Shadow Image – Image I 
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Figure  3-14 shows the output of the first stage of the research algorithm, bounded by the 

red frame in Figure  3-4, which is an RGB image after removing vegetation and shadowy 

areas. This image is input data for the second stage of the algorithm, bounded by the 

green frame in Figure  3-4 [Elhifnawy et al., 2011c].   

 

Figure  3-14: Input Image after Removing Vegetation and Shadows – Image I 

The first process of the second stage is the color transformation of the input image into 

two color spaces,       and    . Figure  3-15 shows the image after color 

transformation to       color space and Figure  3-16 after color transforming to     

color space.  

Input image after removing vegetation and shadows
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Figure  3-15: Input Image in       Color Space – Image I 

 

Figure  3-16: Input Image in     Color Space – Image I 

Input Image YCbCr color space

Input Image HSV color space
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This is followed by applying global color thresholding using three color channels from 

both of the color spaces. The first color channel is the luminance color channel (Figure 

 3-17), the first layer of        color space, and the second, saturation (Figure  3-18), and 

third, hue (Figure  3-19), color channels are extracted from     color space.  

 

Figure  3-17: Luminance Color Channel – Image I 
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Figure  3-18: Saturation Color Channel – Image I 

 

Figure  3-19: Hue Color Channel – Image I 
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Bong et al. [2009] succeeded in identifying color ranges representing different features 

from the specific high resolution satellite image, listed in Table  3-1 for luminance, hue 

and saturation color channels. This research thesis uses these color ranges as a guide or 

starting point and applies a combination of them for investigating final color thresholding 

ranges suitable for different color image types to successfully extract specific features 

(sand and roads). In another words, global color thresholding is applied on all color 

channels combined and individually to end up with the extraction of road candidates. 

Equation  3.12 represents the investigated formula for road candidates from luminance 

color channel only, where     represents road candidates from luminance color channel 

and   represents the luminance color channel. Figure  3-20 and Figure  3-21 show the road 

candidates image and the RGB road image.  

     {
               
                

  3.12 

 

Figure  3-20: Road Candidate Image after Luminance Thresholding - Image I 

Road Candidates after Luminance Thresholding
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Figure  3-21: RGB Road Image after Luminance Thresholding - Image I 

Many areas other than roads still exist in the image and extracted as a road candidates. 

This thesis took into consideration the luminance color channel as a basis for road 

extraction from an RGB image. The next step is the removal of any non-road feature 

from the image of extracted roads from luminance color channel. This is done by 

applying global color thresholding on hue color channel using Equation  3.13, where 

     represents the non-road candidates from hue color channel and   represents the 

hue color channel. Figure  3-22 and Figure  3-23 show the image of these non-road 

candidates and the same candidate image after fusion with the input RGB image. 

       {
                
                  

  3.13 

Road Image after Lumunance Thresholding



45 

 

 

Figure  3-22: Non-Road Candidate Image after Hue Thresholding - Image I 

 

Figure  3-23:  Non-Road Image after Hue Thresholding - Image I 

Non-Road Candidates after Hue Thresholding
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After testing the color ranges representing sandy soil from Table  3-1, it is found that 

sandy areas can be detected from an RGB image after applying global color thresholding 

on all color channels using the investigated mathematical model shown in Equation  3.14, 

where    represents candidates of sand areas and  ,   and   represent luminance, 

saturation and hue color channels respectively. 

    {
                                                     
                                                                                                                   

  3.14 

Figure  3-24 shows sandy soil candidates and Figure  3-25 shows RGB image of sandy 

areas. After visual inspection and comparison between an RGB image of sandy areas and 

the original input RGB image, this mathematical model can be used not only for sandy 

areas identification but also for detecting unhealthy vegetation areas. 

 

Figure  3-24: Sandy and Unhealthy Vegetation Candidates after All Color 

Thresholding - Image I 

Sandy Areas Candidates
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Figure  3-25: RGB Sandy and Unhealthy Vegetation Areas Image after All Color 

Thresholding - Image I 

Now it is possible to extract road candidates from all previous thresholding by taking  

    (Equation  3.12) as main road candidates in an RGB image and eliminating any other 

candidates that are extracted from      (Equation  3.13) and    (Equation  3.14). The 

investigated mathematical model is shown in Equation  3.15, where    represents the 

road candidates from RGB image. It equals to     and the mathematical model shows 

the updating process applied on this candidate image. Figure  3-26 shows the extracted 

road candidates and Figure  3-27 shows the extracted RGB road image. 

    {
                            
                                         

  3.15 

Sandy Areas Image
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Figure  3-26: Road Candidates from RGB Image - Image I 

 

Figure  3-27: RGB Road Image - Image I 

Road Candidates

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Road Image



49 

 

For urban areas, any pixel that is not classified as vegetation, shadow, sandy soil or road 

is classified as a building candidate. So, building candidates are detected after eliminating 

all successive extracted features, vegetation, shadows, sandy areas and roads, as shown in  

Equation  3.16, where    represents building candidates. Figure  3-28 shows a building 

candidate image and Figure  3-29 shows an RGB building image extracted from the RGB 

input image. 

    {
                                       
                                                                           

  3.16 

  

Figure  3-28: Building Candidates from RGB Image - Image I 

Building Candidates
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Figure  3-29: RGB Building Image - Image I 

Figure  3-30 shows the classification results for this urban area where red color represents 

buildings, green color represents vegetation areas, black color represents roads, gray 

color represents shadows and yellow color represents sandy and unhealthy vegetation 

areas. 

Building Image
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Figure  3-30: Features Classification for Urban Area – Image I 

To assess this technique, it is applied on another RGB image, Image II, shown in Figure 

 3-31. This image shows similarities in texture properties for different features, buildings 

and roads. Figure  3-32 to Figure  3-38 show feature extraction and classification results 

following the same steps that are applied on Image I.  

Segmentation Image
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Figure  3-31: RGB Input Image – Image II 

 

Figure  3-32: RGB Vegetation Image – Image II 

Input Image

Vegetation Image
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Figure  3-33: RGB Shadow Image – Image II 

 

Figure  3-34: Input Image after Removing Vegetation and Shadows – Image II 

Shadow Image

Input image after removing vegetation and shadows
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Figure  3-35: RGB Sandy and Unhealthy Vegetation Areas Image - Image II 

 

Figure  3-36: RGB Road Image - Image II 

Sandy Areas Image

Road Image
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Figure  3-37: RGB Building Image - Image II 

 

Figure  3-38: Features Classification for Urban Area – Image II 
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This technique succeeded in extracting vegetation and shadowy areas, but it could not 

separate buildings, roads and sandy areas because of the similarity existing in roads, 

buildings and sandy areas texture properties. This classification problem is the motivation 

for aiding RGB data with spatial information, as well as height from LIDAR data to be 

able to separate buildings and roads, features sharing in texture properties, efficiently. 

The proposed classification technique using combined RGB/LIDAR data will be 

explained and implemented in more detail in the next chapter. 
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Chapter Four: Building Extraction from Spatial Data for Efficient Urban Area 

Classification from Combined LIDAR/RGB Data 

As mentioned in the previous chapter, an RGB image is not enough to classify different 

features which share the same texture properties as roads and buildings. As a result, 

spatial information such as height from LIDAR must be used to aid an RGB image in 

effectively separating various features. Since LIDAR data provide full spatial information 

for ground and non-ground objects it produces accurate height information for different 

features. These features can be extracted by segmenting LIDAR points related to certain 

grouping shapes and height information for differentiating between ground and non-

ground points.  

In the case of RGB images, features that have the same texture properties as buildings 

and roads cannot be separated as shown in Figure  3-38. However, the use of LIDAR data 

will help in differentiating buildings from roads using the sudden change in height 

information between ground and non-ground points (buildings). This chapter focuses on 

building extraction using spatial information provided by LIDAR data to facilitate the 

RGB urban classification algorithm illustrated in Chapter 3. 

The buildings can be extracted by identifying the positions of height changes for all 

features in the LIDAR height image. These positions represent the locations of feature 

(buildings) boundaries. The extraction process is executed based on an image Multi-

Resolution Analysis (MRA) operation using wavelet transform. Wavelet, as a MRA tool, 

is a powerful technique used for de-noising and compressing signals and images by 

applying several thresholding techniques [Jansen and Bultheel, 1999; Cheng et al., 2004]. 

Wavelet transform is very effective for detecting feature edges by monitoring the 
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changing positions of spatial or intensity properties. Wavelet has many applications with 

the LIDAR system output and can be applied to LIDAR signals, data and images 

investigated by LIDAR data. In addition, it can de-noise LIDAR signals [Yin and Wang, 

2006] and compress data to solve LIDAR storage problems while posting no significant 

effect on the derived surface elevation model [Pradhan et al., 2005]. Wavelet is also used 

for filtering and smoothing LIDAR data when separating between high and low 

frequency signal content. And the surface elevation derived from the LIDAR data can be 

filtered using discrete wavelet analysis [Tate et al., 2005]. 

This chapter introduces a literature review of feature extraction algorithms from LIDAR 

data by discussing the conditions associated with verifying each algorithm and the 

subsequent advantages and disadvantages for each one. Furthermore, the mathematical 

background of wavelet transform will be explained in details. At the end of this chapter, 

the process of combining RGB and LIDAR data resulting in efficient urban area 

classification results will be introduced and tested. 

4.1 Literature Review 

Many algorithms have been used when performing feature extraction from LIDAR data, 

such as the research works of Nardinocchi et al. [2001], Rottensteiner and Briese [2002], 

Schwalbe et al. [2005] and Li et al. [2007a]. Nardinocchi et al [2001] used a last return of 

LIDAR pulses to generate a LIDAR image with a 1-m x 1-m grid. Terrain points were 

removed by analyzing residuals through spline interpolation, while the connected height 

regions were grouped using the growing technique. Roof plane segmentation was 

performed using the RANdom SAmple Consensus (RANSAC) algorithm which seeks to 

fit data on planes and then used to build contour lines. Once a 3-D vector representation 
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of these planes has been derived, the roof can then be obtained. External and internal 

nodes can be derived by establishing the relationship between every two adjacent planes. 

Least-squares estimation is then used to produce a 3-D approximation for the building 

models. The roof planes are modeled in 3-D space given the orthogonality constraints of 

the boundary lines. However, this algorithm is only suitable for orthogonally edged roof 

shapes.  

Combined 2-D/3-D Hough transform technique is introduced for detecting planar patches 

[Vosselman and Sander, 2001]. While 3-D Hough transform is used for line detection to 

form planar patches from irregular LIDAR point clouds, 2-D Hough transform is applied 

after projecting the points of lines on vertical planes to get the roof faces. The splitting 

and merging technique for the segmented planes is applied when detecting two types of 

lines: the intersected lines and the height jump lines. The 3-D model is then formed by 

combining segments related to the same planar faces. This technique is also suitable for 

planar surfaces with rectangular shapes.  

Rottensteiner and Briese [2002] generated a polyhedral building model from LIDAR 

data. This algorithm originated from a point classification applied when identifying off-

terrain object points. Tree removal is achieved by evaluating terrain roughness based on 

texture homogeneity. An opening morphological filter is applied when removing 

vegetation areas that are connected to the buildings. Seed growing is then added to 

connect adjacent planar patches while a label image is introduced for grouping these 

planar surfaces and extracting polygon borders to create the final polyhedral models. On 

one hand, this algorithm consists of a variety of complex methods and on the other hand, 

it is appropriate for extracting objects with rectangular roofs only.  
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Rottensteiner et al. [2003] succeeded in extracting buildings from three different data 

sets. The first two are from LIDAR data, Digital Surface Models (DSM) for the first 

pulse and the last pulse. All DSM
’
s are gridded using linear prediction. The third data set 

is the Normalized Difference Vegetation Index (NDVI) and is produced by infrared and 

green channels from a multi-spectral image. A Digital Terrain Model (DTM) is generated 

after applying a morphological gray scale opening algorithm on the DSM for the last 

pulse. The opening operation is executed in a hierarchical manner with carefully selected 

structuring elements to completely remove all non-ground objects. The height difference 

between the DSM and DTM with specific threshold is used to detect a building candidate 

and the morphological opening is applied with a small structuring element (3x3) to 

remove small objects. Segmented buildings image is produced once tree removal has 

been accomplished using NDVI. The drawback of this technique is that additional data 

such as multi-spectral sources are needed to be able to remove vegetation pixels that are 

extracted as building candidates and first and last LIDAR pulses must be available.   

Sohn and Dowman [2003] used combined satellite image and LIDAR data for building 

extraction. The first step is the DTM generation from the LIDAR data and is based on 

fragmenting the LIDAR points to Planar Terrain Surfaces (PTS) which are triangular in 

shape with three vertices. The points that have continuity and homogeneity criterions are 

classified as on-terrain points. This analysis is executed on a LIDAR Digital Elevation 

Model (DEM) in a hierarchical manner from coarse to fine using the Delaunay 

Triangulation method for defragmenting PTS. The final DTM is generated from finer 

PTS. By using the height threshold from the DTM the off-terrain points are identified. 

The tree removal is performed with NDVI that can be identified by IKONOS imagery 
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using red and near infrared channels. The boundary lines are also extracted from an 

IKONOS image. LIDAR off-terrain points are used with the help of extracted lines to 

investigate points for building boundaries. Final building boundaries are extracted based 

on specific length and angle thresholding, which are referred to intensity lines. Virtual 

lines are generated from intensity lines because they form virtual boxes. These boxes are 

expanded in two directions to contain building points, without terrain points and have 

what are termed virtual lines. The geometric lines projected afterwards onto the image 

space are adjusted using gradient weighted least-squares method. The building polygon is 

generated by the intersection between intensity and virtual lines. Building polygon 

grouping is performed using the binary space partitioning method. This technique is 

complicated because many segmenting, partitioning and vegetation removing methods 

are used. This technique failed to extracting buildings from only LIDAR data, but 

succeeded when aided by a multi-spectral satellite image used for initial building 

boundary identification and producing NDVI image for vegetation removal. This 

technique is suitable for extracting building roofs with rectangular shape only.  

Schwalbe et al. [2005] constructed 3-D building models using neighboring planes formed 

by line tracking to respective boundary points after projecting LIDAR point clouds to a 2-

D orthogonal projection aided by 2-D Geographic Information System (GIS) data to 

identify plane orientation. The reconstruction algorithm consists of many steps; the first 

step is the elimination of the ground points using height histogram analysis followed by 

determination of the primary roof orientation by height histogram bin analysis or ground 

plane analysis to get the building azimuth. The segmented point clouds are projected to 

the XZ plane after rotating by the building azimuth and to the YZ plane after adding 90
o
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to the building azimuth. The roof planes appear as lines in these projections and roof 

planes are formed from the detected lines, and are ultimately combined to form roof 

structure. Walls are generated by projecting the roofs on the ground. A final building 

model is reconstructed after these walls are added to the roof structures. This technique 

used LIDAR data for detecting solely off-terrain points, not building edges or roofs. The 

extracted building is mainly based on GIS data for identifying roof and wall orientations.   

Kim et al. [2007] investigated a new approach for LIDAR data segmentation based on 

three main requirements, neighbourhood definition, deriving attributes for the 

neighbourhood points and clustering neighbourhood points with similar attributes. Points 

are defined as neighbourhoods if they are located on the same surface. Neighbourhood 

points located on the same surface are detected using the adaptive cylinder method. The 

magnitude of the surface normal from the origin to the plane of neighbourhood points is 

considered a derived attribute. Two origins are used to provide two attributes for each 

surface and the line joining two origins has to form an angle of 45
o
 with the horizontal 

plane to minimize the possibility of segmentation ambiguities. The neighbouring points 

with the same attribute are then aggregated and the boundary for each group of points is 

detected and all points located within form one cluster. But the boundaries for all 

segmented clusters are irregular. The Douglas-Peucker algorithm is used to simplify the 

detected boundaries. Boundary points are fitted using least square to form four boundary 

lines. The intersection between these boundary lines forms the planar patch corners. This 

approach is complicated and involves mostly segment LIDAR data in planar patches. 

Although this is suitable for building extraction or any feature with planar surface-top 
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and regular boundaries it cannot be considered a general segmentation technique for 

extracting all features from LIDAR data.  

Kim et al. [2008] investigated a new algorithm for generating a 3-D wire frame for 

building extraction from LIDAR data. This algorithm consists of four steps. First, non-

ground points are identified by point classification and performed based on visibility 

analysis. This analysis is applied by looking for points which cause occlusion in the 

perspective projection aerial image in the area of interest. The second step, a generation 

of building hypothesis, is achieved by studying the spatial relationship between points to 

detect those related to the same planar surface. The third step is the segmentation of 

planar patches, a process consisting of three sub-steps; neighborhood definition using 

adaptive cylinder definition technique, attribute derivation and clustering based on 

attribute similarity [Kim et al., 2007]. The modified convex hull approach is used to 

detect the boundary for all planar patches. Finally, planar boundary refinement is 

achieved. By knowing the average elevation of points around the building, a 3-D wire 

frame is investigated to represent buildings in the area of study. This technique succeeded 

in extracting non-terrain LIDAR points after aiding LIDAR data with an aerial image. 

This technique is complicated and it is unsuitable for extracting features other than those 

with rectangular shapes.  

Zeng [2008] used a planar filter on the point clouds to extract building surfaces by 

employing specific height, length and delineation thresholds. This filter studied the 

relationship between all adjacent points to detect features surfaces. Feature points are 

obtained after the ground points from LIDAR point clouds have been removed. Building-

top points are classified as points with a continuous distribution. Finally, the 3-D building 
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points (surface top and walls) are extracted. This technique assumed that, non-ground 

points form areas smaller than that from ground points. This condition is not suitable for 

crowded urban areas and as a result this technique cannot be generalized for all study 

areas, rural and urban. However, this technique successfully extracted features with 

planar surface only but cannot extract other non-ground objects such as trees.  

On one hand, the techniques previously mentioned concentrate more on objects 

extraction with regular boundaries, continuous distributed point clouds and/or uniformly 

sloped surfaces while on the other hand, they are unsuitable for objects with irregular 

boundaries such as trees and poles. Moreover, they will not work with circular or 

ellipsoidal surfaces structures. This research thesis introduces a technique for extracting 

objects with different shapes and boundary regularities using the power of wavelet 

transform for edge detection applications.  

4.2 Literature Review for Wavelet Feature Extraction from LIDAR Data - 

Efficiency and Limitations 

Feature extraction can rely mainly on height properties for different features, which help 

in the separation between ground and non-ground points. Non-ground features can be 

identified by detecting the positions of non-continuous height properties or the positions 

of a sudden change in height among different features. This feature extraction trend, 

based on sudden change in height, with the use of wavelet localization property is the 

motivation for analysing LIDAR height images by wavelet transform to detect locations 

of height differences and consequently boundaries of the feature corresponding to this 

sudden change in height. The extraction technique is not sensitive to the shape, boundary 

regularity or point cloud distribution.  
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There are many approaches and implementations for feature extraction using wavelet 

transform such as Vu and Tokunaga [2002], Wang and Hsu [2006] and Falkowski et al. 

[2006]. Vu and Tokunaga [2001] applied wavelet transform on LIDAR data to monitor 

feature properties through different scale ranges. The first step is gridding LIDAR data to 

regular representation forming the LIDAR image based on height information called a 

range image. This image is analysed using wavelet transform at different scales. The 

smoothed image (low frequency) and edge image (high frequency) are extracted at each 

scale. The clustering of LIDAR points is applied using the K-mean clustering method 

[Kanungo et al., 2002], which aims to partition a number of observations into a number 

of clusters, in which each observation belongs to the cluster with the nearest mean. The 

resulting clusters are formed in three main categories. The first category is for ground 

points, the second, for high rise buildings and the third for low buildings, trees and 

others. The final segmentation results are formed by the combination between clustering 

LIDAR points and features extracted after wavelet analysis. The segmented points are 

classified into ground points used to produce a DTM and object points used to produce a 

DSM for the area of study.  

Vu and Tokunaga [2002] to produce a clustering technique based on wavelet smoothing 

LIDAR images at different successive scales corresponding to different frequencies. The 

first step is the production of LIDAR image after gridding the LIDAR data to regular 

representation resulting in a range image. Wavelet transform is then applied on a LIDAR 

image to produce four successive scales. The last smoothed image represents the higher 

smoothed objects in the LIDAR image and are considered buildings. The buildings points 

are extracted by masking the smoothed image to the original LIDAR image and are used 

http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Mean
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to reconstruct 3-D building models for the area of interest. This research was developed 

by [Vu and Tokunaga, 2004] to produce a modified clustering technique based also on 

wavelet analysis, which is referred to as Airborne Laser Scanner Wavelet (ALSwave) for 

LIDAR data. The first step of the new approach is the presentation of LIDAR data over a 

Triangular Irregular Network (TIN) using the planar interpolation technique, which 

minimizes the loss of information and gives an accurate interpolated image. The second 

step is the application of wavelet analysis. Wavelet analysis is executed using a cubic B-

spline wavelet function with compact support. The wavelet multi-resolution framework is 

prepared based on a trous algorithm. The fuzzy edge points are detected along with 

ground points and object edge points. The Delaunay neighbors of points are used for 

classifying fuzzy edge points. Global thresholding and local thresholding are applied with 

the Delaunay neighbors to detect heights points. The ground points can be detected, and 

then used for generating the ground surface. This research is complicated and used a 

combination of wavelet transform, fuzzy edge pixels and Delaunay neighboring points to 

separate object points from ground points to produce the DSM and the DTM of the area 

of study. This research thesis will introduce a standalone wavelet technique for detecting 

object boundaries directly from LIDAR data without requiring any other technique to 

classify LIDAR points to ground and object points. 

Wang and Hsu [2006] detected building boundaries using a spatial edge detection 

technique and analysing this edge image using a wavelet transform. The LIDAR point 

clouds are interpolated to a regular grid using the Kriging interpolation method. The 

edges are detected after applying a Canny edge detection technique. The resulting image 

contained edges for all non-ground points including trees and buildings. Wavelet 
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transform is applied on the resulting image up to three levels of decomposition to detect 

finer edges which represent building boundaries. Because of adjacent buildings or trees 

that are located close to the extracted buildings, these boundaries do not form closed lines 

or curves. A morphological closing operation is then applied to solve this issue and close 

the building boundaries and a 3-D building model is reconstructed from the extracted 

lines. This research paper used wavelet transform as an auxiliary tool to detect finer 

edges from the image of building edges produced by the Canny edge detection technique. 

This research thesis will detect building edges using only a wavelet transform without the 

aid of any other edge detection technique. 

Falkowski et al. [2006] succeeded in extracting conifer trees from LIDAR data after 

generating a 2-m DEM and Canopy Height Model (CHM) using the natural neighbour 

interpolation method through ArcGIS software. The first tree detection technique used in 

this research paper is the Variable Window Filter (VWF). This filter is based on detecting 

local maxima (tree height) through the CHM within a specific window size and is 

required to have a prior knowledge of tree height and crown diameter. The major 

disadvantage of this technique is the estimation of the fixed relation between height and 

crown diameter. The second tree detection technique introduced by Falkowski et al. 

[2006] is Spatial Wavelet Analysis (SWA). Wavelet analysis is executed using the 2-D 

Mexican Hat wavelet function. 2-D Mexican Hat wavelet function is suitable when 

extracting this specific tree type since its shape looks like the shape of a conifer tree. This 

filter doesn’t require a prior knowledge of tree height or crown diameter. The wavelet 

function has three main components, wavelet size, location and a goodness of fit metric. 

When the tree is fitted, the wavelet function, the crown diameter (wavelet size) and the 
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tree location are all recorded. The tree height is estimated by fitting the scaled wavelet 

function with the tree size. This technique explains the efficiency of wavelet analysis for 

extracting conifer trees, but is unsuitable for other types of trees or for building 

extraction.  

Separation of ground and non-ground points in hilly terrain is not straight forward, 

especially when the slope of the terrain is not steep and uniform. Bartels and Wei [2006] 

overcame this problem by using wavelet analysis and extracted buildings from hilly 

terrain. The first step is gridding of LIDAR data to regularly spaced representation. 

Second order Daubechies wavelet filter is applied on the LIDAR image resulting in sub-

images representing an approximation and three details. The approximation represents 

the ground points with regular distribution. This regularly distribution is formed by points 

with low degrees of inclination or flat areas. The details indicate locations of sharp 

inclination between adjacent points. The object boundary image is obtained by 

reconstructing wavelet coefficients using a 2-D Discrete Wavelet Transform (DWT) after 

replacing the approximation image with zeros.  

Within the same year, this research was broadened in order to investigate a segmentation 

technique based on wavelet transform [Wei and Bartels, 2006]. The extended approach is 

composed of three main steps. The first step is the representation of LIDAR data as a 

gray scale image. This image is analysed using Gabor wavelet function to three scales 

with four different orientations using different windows. Finally, a statistical analysis is 

done and the standard deviation and the mean are calculated for each window. Windows 

with low standard deviation and low mean, and windows with high standard deviation 

and low mean are considered as ground areas. Windows with low standard deviation and 
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high mean are considered as buildings and vegetation areas. This technique succeeded in 

segmenting flat, ground and non- ground areas, but a problem arises in identifying 

buildings with large flat roofs, as they are classified as ground areas. Consequently, it is 

important to use additional classification information to segment all features in the input 

image efficiently.  

The aforementioned feature extraction techniques based on wavelet analysis used 

additional aids to extract features such as Canny edge detection [Wang and Hsu, 2006], 

wavelet analysis on a trous algorithm method [Vu and Tokunaga, 2002] and necessary 

representation of LIDAR data in TIN format [Vu and Tokunaga, 2004; Wang and Hsu, 

2006]. In this research thesis, an independent wavelet based building extraction 

technique, without any aid, is used in combination with a very simple and efficient 

interpolation method the Nearest Neighbour (NN) interpolation technique which 

maintains the spatial information of feature edges. The main advantage of the proposed 

approach is its simplicity and efficiency compared to the other previously mentioned 

approaches. The methodology and wavelet implementation will be described in detail in 

the following sections. 

4.3 Multi-Resolution Analysis for Building Extraction from LIDAR Data  

A Multi-Resolution Analysis (MRA) using wavelet transform is used for building 

extraction from the height information produced by the LIDAR system. The proposed 

MRA implementation is executed so as to benefit from the sudden change in height at the 

edges of all buildings. Because of the wavelet localization properties and its ability to 

detect singularities and sudden changes (high frequency), wavelet is used for building 

edge identification and extraction. The following section will introduce the mathematical 
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background of the wavelet transform for feature extraction without requiring further 

assistance.   

4.3.1 Wavelet Analysis for LIDAR Data Applications 

The proposed feature extraction technique from LIDAR data is based on wavelet 

analysis, so before introducing the wavelet implementation for feature extraction it is 

important to mention why wavelet is a suitable tool for this application. The following 

sub-sections explain the wavelet advantages compared to Fourier transform, which was a 

well-known signal processing technique for numerous applications for a significant 

amount of time [Elhabiby, 2007].  

4.3.2 Wavelets versus Fourier Transform 

In the 19
th

 century, French mathematician Joseph Fourier succeeded in analyzing any 

periodic function as an infinite sum of periodic complex sinusoidal functions [Graps, 

1995; Elhabiby, 2007]. Equation  4.1 [Keller, 2004] shows a Fourier series representation 

of a function over a period of   . It shows that Fourier can represent any function   as a 

superposition of periodic functions with different wavelengths     (Equation  4.2) with 

amplitude     (Equation  4.3). 

      ∑   
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Fourier transform can express any non-periodic function when  
      
→       in a frequency 

domain as shown in Equation  4.4. The transition from   to   is called Fourier 

transformation (Equation  4.5), where   is an amplitude spectrum of   [Keller, 2004]. 

      ∫     

 

  

        4.4 
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         4.5 

The first disadvantage of the Fourier transform is deduced from these equations because 

an exponential form can be represented as a summation of sine and cosine functions 

(Equation  4.6), so Fourier transform is based only on two base functions. 

                          4.6 

Fourier transform can analyse any function to oscillations of different frequencies as 

mentioned before, but it cannot detect positions or occurrence time of each frequency or 

any change in frequencies. This is called lack of space localization and it represents the 

second disadvantage of Fourier transform [Keller, 2004]. To understand the lack of 

frequency localization problem, Figure  4-1 shows the Fourier transform of height image 

from LIDAR data shown in Figure  2-9. Due to a high dynamic range of Fourier 

spectrum, it is impossible to detect different frequencies in the image, but it becomes 

possible after applying an image enhancement using the log transform (Equation  4.7) 

[Gonzalez et al., 2004] as shown in Figure  4-2. 

                    4.7 
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where:   = intensity value of pixel 

    = new intensity value of intensity   

   = Log transform constant 

 

Figure  4-1: Fourier Transform Image 
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Figure  4-2: After Log Transformation 

Fourier transform detects all different frequencies in the image, but it is not possible to 

detect or monitor the exact positions of certain frequency or positions of transient from 

any frequency to another because Fourier transform analyses a signal over the whole 

space span of the signal. 

Short time Fourier transform, as a solution to the lack of space localization problem, is a 

localization technique that is applied by masking an input signal by a window function 

with compact support. This function has a specific frequency and space resolution, so it is 

called windowed Fourier transform technique. Equation  4.8 represents a mathematical 

model for windowed Fourier transform, where   is a transformation function,    a 

window function and   a transition parameter [Keller, 2004; Elhabiby, 2007]. 

Fourier Transform

 

 

2

4

6

8

10

12

14

16

18

20



74 

 

 { }      
 

√  
 ∫                  

 

  

  4.8 

An input signal is divided into sub-signals with same space/frequency window; and then 

each window is analysed separately using a masking window function [Graps, 1995]. The 

main disadvantage of windowed Fourier transform is that, the window function has a 

constant space/frequency resolution and becomes unsuitable for different frequencies that 

exist in an input signal. High frequency resolution with low space resolution is suitable 

for localizing high frequencies and low frequency resolution with high space resolution is 

suitable for localizing low frequencies. So the space/frequency window for masking 

function must be coupled, in other words window size must change according to required 

frequency resolution; this is the idea of wavelet invention. 

Wavelet transform overcomes the disadvantages of Fourier transform because it has 

many different base functions that give it flexibility to analyse and represent any signal or 

functions better than Fourier transform. The other advantage of wavelet transform is a 

compact support property for wavelet function that means it is bounded by limited range 

that can be tuned with respect to the space/frequency resolution. This property makes 

wavelet transform a powerful localization tool.  

Figure  4-3 shows a sample of different wavelet functions. It can be based on a 

mathematical model such as HAAR or based on derived coefficients as Daubechies 

functions. Wavelet analysis has two main types, continuous and discrete. The selected 

analysis type is based on the nature of the input signal, wavelet function, and the 

application. This research thesis tested several wavelet base functions for building 

extraction. It is found that Symlets (sym4) is the most suitable wavelet base function for 
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building extraction from LIDAR data by analysing the LIDAR height image up to two 

levels of decompositions using 2-D discrete wavelet transform. 

 

  

Figure  4-3: Samples of Different Wavelet Base Functions 

4.3.3 One Dimensional Continuous Wavelet Analysis 

Continuous Wavelet Transform (CWT) is the transform of continuous function with 

continuous variables that form a highly redundant function [Gonzalez et al., 2004]. When 

using continuous wavelet transform there are three properties that are taken into 

consideration. The first property is the high redundancy occurring because the wavelet 

transform is calculated by continuously shifting a continuously scalable function over a 
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signal and calculating the correlation between them. This tends to obtain the wavelet 

coefficients with high redundancy.  The second property is the infinite number of 

wavelets that can be used. The high redundancy and infinite number of created wavelets 

make the calculation of the transformation highly time-consuming [Keller, 2004]. 

The transformation variables are the translation and scale parameters as shown in 

Equation  4.9 that represents a wavelet transformation function [Gonzalez et al., 2004]. 

         ∫     
 

  

           4.9 

 

where:   = scale parameter 

   = translation parameter 

4.3.4 One Dimensional Discrete Wavelet Analysis 

When a variable   and its values      are all finite and discrete quantities, the wavelet 

function is discreditized into a grid with dimensions (  
     ), where   is the scale 

parameter and   the translation parameter. This grid is not regular, and it is changed 

related to the scale and level of decomposition. Equation  4.10 outlines the mathematical 

model of Discrete Wavelet Transform (DWT) [Keller, 2004].  

{    
              

  
 ⁄     

        |     }  4.10 

 

where:    = scale 

    = translation 

A signal or function      can be analysed using an expansion function   to obtain the 

function approximations. In wavelet analysis there is another function,  , that is used to 
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obtain the differences between adjacent approximations.   is a scaling function and   a 

wavelet function. So, wavelet transform analyses the signal into two main parts; a low 

frequency part called approximation and a high frequency part called detail. Equation 

 4.11 shows the mathematical model for calculating DWT coefficients of function      

[Gonzalez et al., 2004]. 
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 4.11 

where:   = scaling function 

   = total number of samples 

   = scaling coefficients 

   = transition coefficients 

 Equation  4.12 shows the mathematical model of scaling and wavelet functions in cases 

where     equals to two and    equals to one [Gonzalez and Woods, 2002; Gonzalez et 

al., 2004].  

          ⁄           

          ⁄           

 4.12 

4.3.5 One Dimensional Multi-Resolution Analysis 

Multi-resolution analysis (MRA) technique is used for fast analysis of a signal into its 

frequency bands. As this process is iterated, the resulting approximation is decomposed 

into its finer frequency components with dyadic down sampling, so the signal is divided 

into many fine resolution components which is known as the Mallat algorithm shown in 
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Figure  4-4, where C is the indication of approximations and D is the indication of details. 

The final reconstructed signal is the result of the final approximation and the summation 

of all details as shown in Equation  4.13 [Keller, 2004].  

 

Figure  4-4: Mallat Algorithm 

     ∑            

 

  ∑ ∑            

   

 

   

  4.13 

 

where:   = scaling coefficient 

   = detail coefficient 

   = total number of level of decompositions 

4.3.6 Two Dimensional Multi-Resolution Analysis 

The image is a two dimensional function. For each direction X and Y, there are two 

analysing functions   and   (Equation  4.12), Stefen Mallat used the tensor product 

between scaling and wavelet functions in two directions to investigate the two-

dimensional scaling and wavelet functions (Equation  4.14). This process tends to result in 

four analysing functions, one scaling and three wavelet functions in three directions 
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(horizontal, vertical and diagonal). At each level of decomposition, image approximation 

is analyzed into one approximation and three details, horizontal, vertical and diagonal. 

                       

 4.14 
                  

                  

                  

 

where:        = two-dimensional scaling function 

         = two-dimensional horizontal wavelet function 

         = two-dimensional vertical wavelet function 

         = two-dimensional diagonal wavelet function 

Equation  4.15 outlines the mathematical model for scaled and translated two-dimensional 

scaling and wavelet functions where    equals to two and    equals to one [Gonzalez et 

al., 2004; Keller, 2004]. 

        
           ⁄            

        

        

            ⁄            
       ,         

 4.15 

Building extraction from LIDAR data is executed by analysing the height LIDAR image 

using two-dimensional wavelet transform to detect building boundaries by monitoring 

height change positions which will be explained later in this chapter in further detail.  

4.4 New MRA Building Extraction Implementation from LIDAR Data 

A building extraction process is executed by detecting positions of height differences 

between adjacent objects using wavelet transform for urban areas. Figure  4-5 shows a 
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schematic diagram of a building extraction algorithm from LIDAR data [Elhifnawy et al., 

2011a]. 

 

Figure  4-5: Building Extraction Algorithm 

LIDAR data is a point cloud of irregular distribution. LIDAR point cloud is regularized 

using Nearest Neighbour interpolation technique to produce LIDAR images, height and 

intensity. LIDAR height image is analysed by wavelet transform to detect buildings’ 

boundaries. Images of extracted buildings are produced after applying data fusion 

between image of buildings boundaries and LIDAR images resulting intensity building 

image and height building image. the height building image is used to produce a 3-D 

building model referenced to a ground coordinate system. 

4.5 Multi Resolution Analysis of LIDAR Height Image 

The LIDAR height image (Figure  4-6) is analysed by sym4 wavelet function (Figure  4-7) 

to two levels of decompositions. Wavelet function decomposes height image into 

approximation and six details wavelet coefficients sets, as shown in Figure  4-8 

[Elhifnawy et al., 2011b]. 
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Figure  4-6: LIDAR Height Image of the Area of Study 

 

Figure  4-7: SYM4 Wavelet Base Function 
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Figure  4-8: Wavelet Analysis 

Feature edges are detected as high frequency components in the height image and can be 

extracted after reconstructing the three details from the second level of decomposition 

only. In other words, the three details coefficients sets from the first level of 

decomposition and the approximation set of coefficients are set to zero.  Figure  4-9 

shows the image of edges of all features in the area of study. 
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Figure  4-9: Feature Edges of the Area of Study 

A morphological operator is applied to fill all feature edges to produce a binary image 

representing all features in the study area as shown in Figure  4-10, which represents all 

non-ground objects. Based on Figure  4-10, It can be easily concluded that the wavelet 

transform with two levels of decompositions and a simple thresholding technique (setting 

the details coefficients from the first level and approximation coefficients left after the 

second level to zero) can easily identify and extract all non-ground features from the 

LIDAR range image. The feature image contains all non-ground objects of urban areas, 

buildings, trees and cars. The next step involves removing trees and cars from the feature 

image resulting in building extraction image.    

Boundary Image
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Figure  4-10: Feature Image of the Area of Study 

4.6 Data Fusion for 3-D RGB Building Modelling 

A feature resultant image from the wavelet transform step contains all non-ground objects 

including buildings, cars and trees. Building extraction from this feature image is 

performed using area thresholding to remove objects that have an area less than a specific 

value, such as cars and vehicles. The feature image is labelled and each label is reviewed 

with respect to its area. Any feature with an area less than a specific thresholding area is 

eliminated and considered as a non-building. The remaining labelled pixels represent the 

most probable building candidates. Figure  4-11 shows the image of building candidates 

after area thresholding.  

ALL FEATURES
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Figure  4-11: Building Candidates of the Area of Study 

This image is in binary format meaning all building candidates are represented by ones 

and others are represented by zeros.  

An RGB image for the same area of study is produced by MOSAIC, shown in Figure 

 4-12. This MOSAIC is a true orthoimage which includes the same area of study but is not 

the same LIDAR height image scale. Geometric corrections are applied to rescale this 

MOSAIC for it to be of the same LIDAR image scale using Equation  4.16 [Gonzalez et 

al., 2004]. 

[   ]   [   ] [
    
    

   

]  4.16 

 

where:            = coordinates of the output image 

            = coordinates of the input image 

         = scale parameter in x and y directions 

FEATURE IMAGE (Binary)
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An RGB image with the same scale, orientation, and dimensions as a LIDAR height 

image is extracted using X and Y coordinates that are bounding the area of study (Figure 

 4-13). 

 

Figure  4-12: MOSAIC Includes the Area of Study 

 

Figure  4-13: RGB Image of the Area of Study 

RGB Georeferenced Image
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Data fusion is applied between this building candidates
’
 image and corresponding LIDAR 

intensity data as well as an RGB image for the same area of interest to produce a building 

image in different color domains (intensity and RGB). It is applied by replacing each one 

value by its intensity and RGB information. Figure  4-14 shows a building extraction 

image with intensity information and Figure  4-15 shows an RGB building extraction 

[Elhifnawy et al., 2011b]. 

 

Figure  4-14: Building Extraction Image of the Area of Study (Intensity Information) 
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Figure  4-15: Building Extraction Image of the Area of Study (RGB) 

Data fusion is applied between this building candidates image and corresponding LIDAR 

height data to represent an image of extracted buildings by their height information as 

shown in Figure  4-16. 

 

Figure  4-16: Building Extraction Image of the Area of Study (Height Information) 
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After transforming the image of extracted buildings from an image coordinate system to a 

ground coordinate system, the full ground coordinates of extracted buildings are 

investigated. The 3-D building model for the extracted buildings can be generated after 

calculating full ground positioning information for all extracted buildings. Figure  4-17 

and Figure  4-18 depict, from different views referenced to the ground coordinate system, 

the 3-D building model of the extracted buildings. 

 

Figure  4-17: 3-D Building Model (View 1) 
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Figure  4-18: 3-D Building Model (View 2) 

To assess this algorithm, it is applied on two other LIDAR data, the first is a part of the 

input LIDAR strip shown in Figure  4-19, while the second is of a residential area located 

in the province of British Columbia, Canada, shown in Figure  4-24. 

The first LIDAR data contains a limited number of buildings and the second represents a 

crowded urban area. This investigated building extraction technique succeeded in 

efficiently extracting buildings from the first LIDAR data. Figure  4-20 and Figure  4-21 

show building extraction images from the first LIDAR data with height and RGB 

information respectively. The buildings are extracted with full details as shown in the 3-D 

building model shown in Figure  4-22 and Figure  4-23. The investigated technique 

succeeded in extracting buildings from a crowded urban area with high efficiency as 

m 

m 

m 
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shown in the 3-D building models for the LIDAR data in a residential area of British 

Columbia (Figure  4-25 and Figure  4-26). 

 

Figure  4-19: Input LIDAR Height Image 

LIDAR Height Image
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Figure  4-20: Building Extraction Image (Height) 

 

Figure  4-21: Building Extraction Image (RGB) 

Feature IMAGE - HEIGHT

Feature IMAGE - RGB
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Figure  4-22: 3-D Building Model (View1) 

 

Figure  4-23: 3-D Building Model (View1) 
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Figure  4-24: Input LIDAR Height Image (British Columbia) 

 

Figure  4-25: 3-D Building Models (Second Data – View1) 
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Figure  4-26: 3-D Building Models (Second Data – View2) 

From the building extraction images, it is observed that there are some features other than 

buildings extracted as building candidates such as trees. Trees close to the buildings that 

have the same height information and trees located in a group close to each other forming 

large areas equal to or larger than the area thresholding value, mentioned before, are 

extracted as building candidates. This problem is the motivation for using additional 

information such as texture properties from an RGB image to aid the MRA approach and 

to be able to separate features sharing height properties.  

4.7 Feature Classification from Combined RGB/LIDAR Data 

As mentioned in Chapter 3, it is not possible to separate and classify different features 

sharing same the semantic and texture properties using RGB data only, and it is therefore 

recommended to use spatial data to aid RGB data in solving this problem. From the 

m 

m 
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results of the previous sections, it is not possible to separate features which share the 

same height properties using spatial data only. Subsequently, RGB data is recommended 

to aid LIDAR data as a solution to this problem. It is clear that both types of data 

(semantic and spatial) are crucial to complete the picture of an efficient and robust urban 

classification technique and accurate building extraction technique. This is the main 

reason and motivation behind the introduction of a new feature classification algorithm 

using both RGB and LIDAR data for urban classification. Figure  4-27 shows an RGB 

image that registered with the height image produced by LIDAR data shown in Figure 

 4-19.  

 

Figure  4-27: RGB Input Image 

The proposed technique applies a combination of these available data for extracting and 

classifying all features overcoming the problems that arise from features sharing same 

RGB Input Image
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texture or height properties. Figure  4-28 shows the algorithm for the automatic urban 

classification technique.  

 

Figure  4-28: Feature Classification Algorithm from RGB/LIDAR Data  

This algorithm consists of six steps. The first step is the building extraction from LIDAR 

data, this process is illustrated in detail earlier in this chapter (Sections 4.5 and 4.6). 

Figure  4-21 shows RGB building extraction images from LIDAR data after data fusion 

with the RGB image. The second step is the vegetation, shadows, and sandy area 

extraction from the RGB image. The results are previously shown in chapter 3 (Figure 

 3-32, Figure  3-33 and Figure  3-35). The third step is the removal of vegetation and 

shadows areas from building extraction image produced by LIDAR data (Section 4.6, 

Figure  4-21). This step removes any extracted green features that are sharing buildings
’
 

height information as shown in Figure  4-29. From Figure  4-29 and Figure  3-35, there are 

shared candidates in both images, some pixels identified as sandy candidates and building 
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candidates. The fourth step is the removal of building candidates that are identified as 

sandy areas as shown in Figure  4-30. 

 

Figure  4-29: Building Extraction Image after Removing Vegetation and Shadows 

Building image after removing vegetation and shadows
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Figure  4-30: Sandy Areas after Eliminating Building Candidates 

The fifth step of feature extraction is the road identification. Road candidates can be 

identified by removing vegetation, shadows, buildings, and sandy areas from the input 

RGB image as shown in Figure  4-31.  

Sandy Areas Image after Removing Building Candidates
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Figure  4-31: Road Image 

From Figure  4-30 and Figure  4-31, it is found that the remaining sandy areas, after 

eliminating shared candidates with buildings, must be reclassified as roads, this is the last 

step of the urban area classification algorithm. Figure  4-32 shows the final RGB road 

image and Figure  4-33 is the final feature classification image [Elhabiby et al., 2011]. 

Road Image
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Figure  4-32: Road Extraction Image after Considering Sandy Areas as Roads 

 

Figure  4-33: Final Feature Classification Image [Elhabiby et al., 2011] 
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4.8 Quantitative Assessment for the Automatic Classification Technique from 

Combined RGB/LIDAR Data Using Wavelets and Statistical Filters 

The area of interest is located on the University of Calgary campus. The assessment of 

the classification results was done in two steps. The first step was a visual, object-based 

assessment, where the extracted objects were counted visually from the aerial image and 

on the ground. This step focuses on the buildings that are extracted from combined the 

LIDAR and RGB image. This collected data is considered as ground truth for buildings. 

The classification technique using combined LIDAR data with RGB imagery succeeded 

in extracting all the buildings inside the area of study with a success percentage equal to 

100 % (13 buildings out of 13). The automatic classification technique succeeded in 

extracting all the edges of the existing buildings in the scene (complete building or parts 

of the buildings that exists in the scene image) with a success percentage approximately 

equal to 90%. Figure  4-34 shows the final building candidates that are extracted from the 

automatic classification technique presented in this research thesis. 
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Figure  4-34: Final Building Candidates from the Proposed Classification Technique 

using Combined RGB/LIDAR Data 

The second step is a comparative pixel-based assessment that was applied by checking 

the number of pixels that verify and compare the correct extracted objects with the GIS 

data from the area of study (created from an independent source of data). Figure  4-35 

shows the available GIS data for the University of Calgary. The available data is a shape 

file including buildings, roads and vegetation areas.  

Final Building Candidates
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Figure  4-35: GIS Data for the University of Calgary Including Buildings, Roads and 

Vegetation 

The available GIS data was used to produce three different images (layers) for buildings, 

roads and vegetation areas from the same area of study. The images from Figure  4-36 to 

Figure  4-38 show the building, road and vegetation candidates from the GIS data. 
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Figure  4-36: Building Candidates from GIS Data 

 

Figure  4-37: Road Candidates from GIS Data 

Building Candidates from GIS Data

Road Candidates from GIS Data
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Figure  4-38: Vegetation Candidates from GIS data 

In Figure  4-37, it is determined that the GIS data collected and built by the University of 

Calgary, focused on recording the main roads and neglected the secondary roads, while 

the classification technique was entirely successful in extracting all the road types by 

producing complete geometric properties, shape and width.  

The classification results and GIS data were used to build a confusion matrix [Dance et 

al., 2004] for the sake of comparison. Table  4-1 shows the confusion matrix between the 

classification results and the GIS data (reference). This matrix represents the number of 

pixels that verify specific features against the results from the new extraction technique 

and the GIS reference data. The first row of the confusion matrix listed the available 

features in GIS data (reference data) while the first column lists the extracted features 

from the classification technique. The last row lists the total number of pixels in GIS data 

Vegetation Candidates from GIS Data
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corresponding to each feature of the three while the last column lists the total number of 

classified pixels for the Classification results. 

Table  4-1: Confusion Matrix of the Classification Results Versus GIS Data 

Reference GIS 

Classification 

Buildings Roads Vegetation Total 

Classification 

Results 

Buildings 285990 535 9572 296097 

Roads 27079 134476 82277 243832 

Vegetation 32473 46168 431955 510596 

Total 345542 181179 523804 1050525 

 

The numbers of pixels that verify correct classification are listed in the confusion matrix 

in diagonal direction. The classification technique succeeded in extracting buildings with 

a success percentage equal to 83 % (285990 building pixels/345542 total GIS data 

building pixels) as shown in Figure  4-39 , while 74 % (134476 roads pixels/181179 total 

GIS data road pixels) for roads (neglecting the extracted secondary roads) as shown in 

Figure  4-40 and 82 % (431955 vegetation pixels/523804 total GIS vegetation pixels) for 

vegetation as shown in Figure  4-41. Figure  4-42 shows the overall classification 

assessment for the three classified features, building, road and vegetation with a total 

success percentage equal to 81 % (852421/1050525). 
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Figure  4-39: Building Classification Assessment versus GIS Data 

 

Figure  4-40: Road Classification Assessment versus GIS Data 
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Figure  4-41: Vegetation Classification Assessment versus GIS Data 

 

Figure  4-42: Classification Technique Assessment versus GIS Data for Building, 

Road and Vegetation Classification 
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The classification technique succeeded in classifying not only three features; building, 

road and vegetation, but also succeeded in detecting the shadow areas. The shadow areas 

might share pixels with any of the three main extracted features, buildings, road and 

vegetation. Table  4-2 shows the same confusion matrix as Table  4-1 however has an 

additional row of the shadow areas to represent the number of shadow area pixels and 

their classification related to the three main features in urban areas (building, road and 

vegetation) that affect pixel-based assessment using available GIS data.  

Table  4-2: Confusion Matrix after Adding the Classification Results of Shadowy 

Areas 

Reference GIS 

Classification 

Buildings Roads Vegetation Total 

Classification 

Results 

Buildings 285990 535 9572 296097 

Roads 27079 134476 82277 243832 

Vegetation 32473 46168 431955 510596 

Total 345542 181179 523804 1050525 

Shadows 29382 10518 7493  

 

The visual, object-based assessment of the classification technique established on ground 

truth reference data,  using the number of buildings, yields better results than the  pixel-

based assessment, using available GIS data since the available GIS data is inaccurate and 
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is produced from an RGB image without any ground truth data evaluation. The results 

from the previous two assessments achieved excellent results from both the visual object-

based assessment,, and the statistical comparative pixel-based assessment. This indicates 

the high efficiency of the proposed automatic classification technique using a 

combination of RGB, semantic, LIDAR, and spatial data for introducing an automatic 

and complete urban classification technique (buildings, roads and vegetation).      
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Chapter Five: Monte Carlo Simulation Descriptor for Object Shape Recognition 

The results of the feature extraction technique implementation are represented by object 

boundaries (Chapter 4) and textures (Chapters 3 and 4). These representations are used 

for creating a library of objects of interest (buildings) for an automatic object recognition 

application. Object recognition is one of these database approaches that have many 

applications especially in the military field, such as live monitoring change detection for 

targets or objects [Butkiewicz et al., 2008]. The thesis concentrates on object boundary 

representations to be utilized for an innovative and efficient object descriptor that can be 

employed in the automatic recognition of urban objects through different images 

(registered or not) captured at different times. Object descriptor is considered as a second 

step for an efficient urban features classification search algorithm, the first step is an 

object representation.  

The automatic urban classification technique introduced in this thesis will help in 

building a library of the classified objects. Having an efficient search algorithm for 

automatic object recognition will be very important to efficiently utilize the classification 

output. The exact identification of an object can be determined with the aid of a 

knowledge database that contains the most probable objects existing in the application 

field [Ruel et al., 2004]. Object recognition is based on forming specific descriptors and 

having an efficient classification technique. An object is identified by the image as being 

a vehicle, a tree or a building and can be classified into many categories and/or classes, 

which can be efficiently identified from images. The classes can include usage, types, 

shapes or any other specific categories. The classification of objects to predefined classes 

is known as the object recognition process and is usually based on the fact that an object 
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consumes a region in the image and the boundaries of this region are used to generate 

object descriptors. This research thesis produces and assesses a new spatial domain object 

descriptor using the advantages of efficient urban classification investigated by an object 

boundary image based on the Monte Carlo Simulation (MCS) technique for object area 

determination application.   

There are many object recognition techniques based on MCS such as traffic light 

recognition from color images produced by the Mobile Mapping System (MMS) [Tu and 

Li, 2002]. The Monte Carlo optimization technique was used for investigating a 3-D 

object recognition framework using     color space properties [Sungho et al., 2005]. 

Gronwall et al. [2006] used MCS for testing the performance of the rectangular 

estimation technique for the Automatic Target Recognition (ATR). Hundeishausen and 

Veloso [2007] introduced a new technique called Active Monte Carlo Recognition 

(AMCR)  for object recognition with different scales and orientations. And Liang [2008] 

used MCS for the ATR for simulated objects in radar sensor networks.  

In this thesis, the proposed techniques are based on the Monte Carlo Simulation (MCS) 

methods for estimating the probability of occurrence/existence for an object of interest 

required to be recognized from input imagery or data. But no previous research dealing 

with a new Monte Carlo Simulation Descriptor (MCSD) as will be illustrated later in this 

chapter. The efficiency of this new descriptor is tested and assessed in comparison to 

other varying descriptors for object shape recognition; they will be presented in this 

chapter in details.  
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5.1 Different Object Descriptors, Production and Assessment, Literature Review 

The object descriptor can be represented in both spatial and frequency domains. Fourier 

and wavelet transform can be used for generating object descriptors [Tieng and Boles, 

1997; Boulinguez and Quinquis, 1999; Osowski and Nghia, 2002; Kunttu et al., 2003; 

Mahmoud and Mahmoud, 2006; Ali et al., 2008; Smach et al., 2008]. These object 

descriptor parameters are then used in producing the objects library otherwise, the 

backbone of the object recognition process. 

Many researches have shown the efficiency of wavelet and Fourier transform for 

generating object descriptors in object recognition applications. Osowski and Nghia 

[2002] presented a comparative study between Fourier descriptors and wavelet 

descriptors in object recognition applications. The object of interest is represented by its 

boundary and is used to extract the coordinates for boundary pixels. The boundary 

coordinates are used to form three 1-D functions. One of these functions is analysed by 

Fourier transform to investigate Fourier coefficients and the others are analysed by 

wavelet transform to investigate wavelet coefficients. 1-D function for Fourier transform 

is formed by complex numbers. Each function pin is formed from coordinates of a 

boundary pixel. Each pin is composed of an X-coordinate as a real component and a Y-

coordinate multiplied by the square root of -1 as an imaginary component. Calculation of 

wavelet descriptors is based on dividing boundary coordinates into two 1-D functions. X-

coordinates form a 1-D function and Y-coordinates form another 1-D function. The 

wavelet transform is applied to these two functions so as to investigate wavelet 

coefficients using the Daubechies (db4) wavelet function. The normalization process is 

required to make coefficients translation, orientation and scale invariant. Three neural 
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network classifiers are applied for the comparative study; Multilayer perceptron, self-

organizing Kohonen-type network and Hybrid neural network. The best results are 

obtained when using self-organizing for both Fourier and wavelet descriptors. The 

comparative study is performed based on the results from self-organizing only. The 

wavelet descriptors provided better results than Fourier descriptors, but the entire 

procedure remained complicated and obscure.  

Tiehua et al. [2004] tested the efficiency of wavelet coefficients in object recognition. 

The first step of object recognition was the feature extraction. The object of interest is 

represented by line segments. Each line segment has two corner points. The 

normalization process is applied to make each line segment transition, orientation and 

scaling invariant. The resultant line segment is divided into 2
n
 segments to be suitable for 

dyadic wavelet decomposition. The x components and y components for each line 

segment form a 1-D function. The wavelet transform is then applied to each function for 

each line segment to get wavelet coefficients for three levels of decomposition using B-

spline 1.3 wavelet function. The last step of object recognition was the segment matching 

between segments of the object of interest and model object. The matching was applied 

for the approximation coefficients and for the detail coefficients. The matching process 

began by using approximation coefficients only and was repeated several times based on 

the number of details by adding one set of detail coefficients at a time. The segment 

matching is accepted if the dissimilarity function gives a value less than or equal to a 

predefined threshold. This step is followed by a hypothesis verification step. This step 

analyses the matching results to investigate the final recognition result of the object 

model related to the objects in the image. Wavelet descriptors gave adequate recognition 
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results, but this approach was complex using a combination of many techniques to end up 

with the classification result. This research thesis will produce a recognition technique 

using simple object description and classification methods. 

Nabout and Tibken [2004] also introduced a wavelet object description method, where 

the object contours are extracted using the Object oriented Contour Extractor (OCE) 

method. The object boundary is represented by an outer contour line to form a polygon. 

This polygon is represented by polar representation and signal is represented by periodic 

angle function that contains the length of the polygon line in each pin. This function is 

analysed using the Daubechies (db4) wavelet function to obtain the object descriptors. 

This research is extended by introducing an object descriptor method based on the 

Mexican Hat wavelet function [Nabout and Tibken, 2007]. The object is represented by 

its outer contour line. The OCE method is used to extract the contour line and is 

described using a chain code. The Curvature Dependent Contour Approximation (CDCA) 

method is used to represent the contour line as a polygon. The angle differences between 

polygon vertices are calculated and form an angle function that contains the polygon 

lengths of its sides. As previously mentioned, this function is analyzed using the Mexican 

Hat wavelet function considering the first sixteen wavelet coefficients as the object 

descriptor. The recognition is mainly to differentiate between circular, triangle and square 

object shapes. The minimum distance method is used as a classification technique. The 

same research work is repeated with the Haar wavelet function [Nabout and Tibken, 

2008]. Generally, as an output it has been found that the wavelet descriptors are efficient 

when using a minimum distance equation as a classification method.  
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The previous research work showed the efficiency of using the wavelet transform in 

object recognition in different applications. In this chapter the automatic urban 

classification technique will be completed by an efficient search algorithm for the 

identification of different objects from libraries created during the classification step. The 

proposed technique will be based on MCSD. 

In addition, the efficiency of the new spatial domain descriptor, MCSD, will be 

introduced versus the wavelet descriptors for object recognition. The application and 

assessment will be introduced for both the boundary and texture of the objects 

(buildings). 

5.2 Object Description and Classification Methodologies 

As mentioned in the previous sections, a new spatial domain descriptor is used for object 

recognition from any data type based on the MCS technique. This section introduces an 

overview of MCS applications for image processing and the method of calculating its 

new spatial domain descriptor. Moreover, the mathematical background of object 

classification methodology used in the proposed recognition technique, Minimum 

Distance Classifier (MDC), will be introduced. 

5.2.1 Monte Carlo Simulation for Object and Image Processing Applications  

Monte Carlo Simulation (MCS) is a modelling process technique using a generation of 

random values [Huber, 1997]. MCS is used to generate different filters based on random 

variables with specific distributions. These filters have a great impact for image de-

noising applications [Xu and Pattanaik, 2005; Wong et al., 2008]. MCS succeeded in 

deriving object area by generating random numbers with specific probability density 

function inside the object boundary. This section introduces the method of generating a 
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new object spatial domain descriptor based on the MCS technique.  

5.2.2 Monte Carlo Simulation Descriptor for Object Recognition 

The extracted object (Chapters 3 and 4) is represented by a boundary image. This image 

contains one object boundary only, where the image borders are bounding and touching 

the object boundary. Uniformly distributed random values are generated inside this 

image, and the distribution is controlled by a Probability Density Function (PDF) shown 

in Equation  5.1 where   and   are the distribution parameters. These parameters are used 

for calculating the mean and variance as shown in Equation  5.2 [Gonzalez et al., 2004]. 

      {
 

   
         

                     

  5.1 

 

   
   

 
 

 5.2 

    
      

  
 

where:   = mean 
 

    = variance 

Random values will be segmented into two groups as shown in Figure  5-1. The first 

group includes the random values that are located inside the object boundary, shown as 

red points. The second group represents the total generated random values, shown as all 

points (red and green).  
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Figure  5-1: Generated Random Values Segmentation  

The ratio between the number of random values inside the object boundary and the 

number of all generated random values represent the ratio of object area with respect to 

the total area of the image. This ratio is used as an object boundary or area descriptor and 

is known as the Monte Carlo Simulation Descriptor (MCSD) [Elhifnawy et al., 2010], 

which is not dependent upon object scale or orientation, thereby is considered as effective 

object descriptive information. 

5.2.3 Minimum Distance Classifier 

The last step of the object recognition process is classification. Object classification is 

based on calculating decision functions using the object of interest and library of classes 

descriptors as                      . Decision functions for assessing and testing the 

efficiency of the new investigated object descriptor are calculated using the Minimum 

Distance Classifier (MDC) method. This method tends to assign objects to the specific 
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class by the minimum distance classifier matching. This method is based on calculating 

the distance between vectors using Euclidean Distance (ED) (Equation  5.3). The object is 

classified to the class related to the vector that gives the minimum value [Gonzalez et al., 

2004]. 

   ‖      ‖  5.3 

 

where:    = decision function 

 

    = object of interest descriptor 

    = library of classes descriptors 

   =1, 2, 3,……….,    

    = total number of classes 

5.3 Library Preparation from Building Extracted Image 

The most important step for object recognition is the generation of a library of different 

classes. The classes in this research are presented by objects with different shapes. The 

source of the library is the buildings extracted from the urban classification step 

introduced in the previous chapters. This library contains all geometric and semantic 

information and descriptors about the buildings extracted from LIDAR data such as area, 

centroid, boundary and intensity information. Figure  5-2 shows a library preparation 

algorithm for each object (class) using different descriptors, MCSD and wavelet 

descriptors. 
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Figure  5-2: Library Preparation Algorithm  

The algorithm begins with the buildings extracted from LIDAR data, as a result of the 

urban classification technique, shown in Figure  5-3. All extracted buildings are separated 

to get an image for each building. Building separation is performed in three steps. The 

first step involves the removal of small connectivity between buildings executed using 

morphological operators. The second step is labelling connected pixels based on the 

eight-connectivity behaviour. The last step is the production of an image for connected 

pixels (one building alone) after removing small objects based on predefined area 

thresholding. The number of images equals the number of extracted buildings from 

LIDAR data. Figure  5-4 shows buildings after the separation process. These images 

represent objects with different shapes and the library then contains all information for 

each object such as area, perimeter and centroid. All available information can be used to 

recognize the corresponding object from any image. The research thesis concentrates on 

the boundary and texture representatives for object recognition application. The next sub-
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sections illustrate the methodology to represent and describe objects in the wavelet 

transform and MCS domains.  

 

Figure  5-3: Building Image 

Feature IMAGE - HEIGHT
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Figure  5-4: Building Separation 

5.3.1 Boundary and Texture Object Representation 

The boundary tracing technique is applied on each image to extract building boundary 

coordinates. The boundary coordinates of each building are used to generate building 

boundary image. Each object is represented by its boundary as shown in Figure  5-5. The 

boundaries in these images are in irregular shapes without any boundary enhancement or 

removing attached vegetation. This approach is useful for generating a library of objects 

with random shapes, irregular boundaries, random scales and orientation. The 

consequences and success of this approach can be generalized for almost all object 

shapes.  
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Figure  5-5: Object Boundary Images 

Figure  5-6 shows texture object representation after filling object boundary by available 

data (LIDAR and RGB). 
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Figure  5-6: Object Texture Representation   
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5.3.2 Wavelet Object Description 

Another approach is the representation of object boundary using continuous wavelet 

transform. The boundary representative is described using continuous wavelet transform. 

The first step is to transform the boundary coordinates to a one dimensional function 

using Equation  5.4 where   represents the x–coordinates and   represents the y–

coordinates of the object boundary [Gonzalez et al., 2004]. 

                    5.4 

 

where:   = 1, 2,…………..,    

    = total number of boundary points 

   = √   

The produced 1-D function is a simple and requires no need for dyadic decomposition. 

And in order to test the efficiencies of complex wavelet descriptors, the continuous 

wavelet transform (Section 4.3.4) is applied on each object function to obtain object 

wavelet boundary descriptors.  

The texture object representations are images, so wavelet texture descriptors are 

calculated by applying two dimensional discrete wavelet transform (Section 4.3.6) on 

each texture image (Height, Intensity and RGB).  

Four real wavelet functions, Haar, Daubechies, Symlets and Discrete approximation of 

Meyer, and four complex wavelet functions, two Complex Gaussian and two Complex 

Morlet are tested for generating object wavelet boundary descriptors. Only the four real 

wavelet functions are used to generate object wavelet texture height, intensity and RGB 
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descriptors. Figure  5-7 shows the wavelet functions used for generating object wavelet 

boundary and texture descriptors. 

  

   

     

Figure  5-7: Wavelet Function for Object Descriptors 

Object wavelet boundary descriptors are a vector of all wavelet coefficients after 

analysing 1-D boundary by a wavelet transform (CWT, Section 4.3.4). Object wavelet 

texture descriptors are a vector of all wavelet coefficients after analysing a texture image 
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by scaling and wavelet functions (2-D DWT, Section 4.3.6). Wavelet coefficients are 

arranged as four parts in the descriptors vector. The first part is corresponding to the 

approximation wavelet coefficients, the second part is the horizontal detail wavelet 

coefficients, the third part is the vertical detail wavelet coefficients and the fourth part is 

the diagonal detail wavelet coefficients. Each object in the library has four wavelet 

descriptor vectors, boundary and three textures, in addition to a vector of Monte Carlo 

Simulation Descriptors (MCSD).  

5.3.3 MCS Object Description 

The object boundary is represented by a 1-D function to calculate wavelet boundary 

descriptors. However, for calculating MCSD, the object is required to be represented by 

its boundary image. MCSD is a vector of five elements calculated and corresponding to 

five different numbers of random values generated and distributed all over the image 

using Equation  5.5.  

                        5.5 

where:       = total number of random values 

                = image dimension 

   = the order of the descriptor in MCSD vector 

For each number of random values the vector element is calculated as shown in section 

5.2.2. For assessing and gathering a trusted conclusion about the efficiency of this 

descriptor, it is generated eight times for all objects representing eight trials. Table  5-1 

shows the MCSD of all library objects for first trial, as an example.  
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Table  5-1: MCSD for Library Objects – First Trial 

Object MCSD 

B1 0.244 0.269 0.271 0.278 0.266 

B2 0.418 0.450 0.471 0.481 0.490 

B3 0.274 0.303 0.316 0.302 0.319 

B4 0.247 0.269 0.278 0.284 0.275 

B5 0.211 0.229 0.232 0.252 0.250 

B6 0.251 0.275 0.272 0.288 0.298 

B7 0.370 0.402 0.416 0.426 0.433 

B8 0.448 0.491 0.510 0.514 0.528 

B9 0.307 0.320 0.348 0.339 0.349 

B10 0.228 0.247 0.255 0.264 0.262 

B11 0.345 0.368 0.384 0.392 0.409 

B12 0.383 0.418 0.431 0.442 0.467 

B13 0.301 0.328 0.333 0.359 0.345 

 

5.4 Recognition Descriptors Assessment 

This section assesses the MCSD versus wavelet descriptors for object shape recognition 

application. The object classification technique is applied using Minimum Distance 
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Classifier (MDC) (Section 5.2.3). The object of interest is associated with the class that 

gives the minimum value. Figure  5-8 shows the general methodology of applying the 

proposed object recognition technique. This algorithm is suitable for recognizing any 

object of interest from available data (LIDAR or RGB).  

 

Figure  5-8: Object Shape Recognition Algorithm 

Because the main target of this section is the assessment and testing of the efficiency of 

the descriptors (wavelet and MCSD) for object shape recognition application for 

buildings, this technique is applied for the recognition of the same objects in the library in 

two different cases. The first case is the object recognition from the original LIDAR 

height image, where both the object and the library have the same scale and orientation. 

The second case is the object recognition from the distorted LIDAR height image after 

changing scale and orientation. The object recognition algorithm is applied eight times 
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using eight different wavelet functions for both cases, as shown in Figure  5-7 and eight 

MCSD to assess the efficiency of all descriptors (wavelet and MCSD). 

5.4.1 Object Recognition from Original LIDAR Height Image  

The first case study is the object recognition from original LIDAR height image without 

changing scale or orientation. The recognition is applied using the minimum distance 

classifier technique. Figure  5-9 shows object recognition results for original input objects 

without change using eight different wavelet functions. Haar, Daubechies, Symlets and 

Discrete approximation of Meyer, real wavelet functions, are all used to obtain boundary 

and three different texture descriptors. Two Complex Gaussian and two Complex Morlet, 

complex wavelet functions, are used to obtain boundary descriptors only. The horizontal 

axis represents the objects of interest and the vertical axis represents the library of 

objects. The red square colour marker represents successful recognition objects, and the 

green circle colour marker represents failed recognition objects. All wavelet descriptors 

(boundary and texture) succeeded in the recognition process with one hundred percent for 

all objects of interest.  
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(a) Haar 

    

(b) 

Daubechies 

    

(c) Symlets 

    

(d) Discrete 

approximation 

of Meyer 

    

 

    

 (e) Complex Gaussian1 (f) Complex Gaussian2 (g) Complex Morlet1-1 (h) Complex Morlet1-1.5 

Figure  5-9: Object Recognition Results from Original Input Data using Wavelet 
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As previously mentioned in Section 5.3.3, MCSD is calculated eight times for all objects 

of interest. Object recognition using MCSD is applied for all eight trials (Figure  5-10). 

The first trial MCSD succeeded in recognizing nine objects with their correct classes but 

failed to recognize four objects. The recognition process succeeded with sixty nine 

percent. The second, fifth and seventh trials MCSD succeeded in recognizing eleven 

objects with their correct classes but failed to recognize two objects. The recognition 

process succeeded with eighty four percent. The third trial MCSD succeeded in 

recognizing ten objects with their correct classes but failed to recognize three objects. 

The recognition process succeeded with seventy six percent. The fourth, sixth and eighth 

trials MCSD succeeded in recognizing twelve objects with their correct classes but failed 

to recognize one object. The recognition process succeeded with ninety two percent. 

Finally, MCSD succeeded in recognizing objects with general percentage of eighty four 

as shown in Figure  5-11. 
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 (a) First Trial (b) Second Trial (c) Third Trial (d) Fourth Trial 

 

    

 (e) Fifth Trial (f) Sixth Trial (g) Seventh Trial (h) Eighth Trial 

Figure  5-10: Object Recognition Results from Original Input Data using MCSD 

 

Figure  5-11: MCSD Recognition Successful Percentage form Original Input Data 
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5.4.2 Object Recognition from Scaled and Oriented Original LIDAR Height Image 

The recognition process is repeated for wavelet boundary and texture descriptors after 

changing the scale and orientation of LIDAR and RGB images. The scaling process is 

applied to the original height, intensity and RGB images after distorting with scale factor 

       in X - direction and      in Y - direction. The scaled images are oriented with 

a rotation angle that equals 90
o
. Figure  5-12 and Figure  5-13 show the height and RGB 

images after scaling and orientation processes. 

 

Figure  5-12: Scaled and Oriented LIDAR Height Image 
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Figure  5-13: Scaled and Oriented RGB Image 

Figure  5-14 shows the recognition results using eight different wavelet functions. 

Wavelet boundary descriptors succeeded in recognizing one object in cases using the 

different proposed wavelet functions and failed to recognize the other twelve objects. 

Wavelet boundary descriptors succeeded in recognizing objects with seven percent. 

Wavelet texture descriptors failed to recognize all objects using four different wavelet 

functions in case of height and intensity properties. Wavelet RGB texture descriptors 

succeeded in recognizing one object and failed to recognize the other twelve objects in 

cases using three different wavelet functions (Haar, Daubechies, Symlets). Wavelet 

height and intensity texture descriptors succeeded in recognizing objects with seven 

percent. In cases using Discrete approximation of Meyer wavelet function, wavelet RGB 

texture descriptors succeeded in recognizing two objects but failed to recognize other 
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eleven objects. Discrete approximation of Meyer wavelet RGB texture descriptors 

succeeded in recognizing objects with fifteen percent. In general, object recognition 

process succeeds using wavelet descriptors with successful percentage equals to seven 

percent as shown in Figure  5-15.   
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(a) Haar 

    

(b) 

Daubechies 

    

(c) Symlets 

    

(d) Discrete 

approximation 

of Meyer 

    

 

    

 (e) Complex Gaussian1 (f) Complex Gaussian2 (g) Complex Morlet1-1 (h) Complex Morlet1-1.5 

Figure  5-14: Recognition Results for Scaled and Oriented Objects using Wavelet 

Descriptors 
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Figure  5-15: Wavelet Descriptors Recognition Successful Percentage for Scaled and 

Oriented Objects 

In the case of MCSD, it succeeded in recognizing twelve objects but failed to recognize 

just one object in the case of seven trials (from trial two to trial eight) with a successful 

percentage equal to ninety two percent. In the case of the first trial, MCSD succeeded in 

recognizing eleven objects but failed to recognize two objects with a successful 

percentage equal to eighty four percent. Figure  5-16 demonstrates all object recognition 

results for all eight trials. In general, object recognition process succeeds in recognizing 

objects using MCSD with successful percentage equals to ninety one percent as shown in 

Figure  5-17. 
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 (a) First Trial (b) Second Trial (c) Third Trial (d) Fourth Trial 

 

    

 (e) Fifth Trial (f) Sixth Trial (g) Seventh Trial (h) Eighth Trial 

Figure  5-16 Recognition Results for Scaled and Oriented Objects using MCSD 

 

Figure  5-17: MCSD Recognition Successful Percentage for Scaled and oriented 

Objects 
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Based on the previous results, it is found that wavelet descriptors are efficient with one 

hundred percent of cases recognizing objects with the same scale and orientations as 

library of classes, but cannot be used for recognizing objects in random scales and 

orientations. In cases of MCSD, there is no need to register the input image referenced by 

the same scale and orientation as the library of classes. MCSD succeeded in recognizing 

all different objects in random scale and orientation with a general successful percentage 

equal to eighty seven percent. MCSD with minimum distance classifier method form an 

efficient and simple recognition technique regardless of the scale or orientation of the 

input image. 
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Chapter Six: Summary, Conclusions, Contributions and Recommendations 

Efficient urban classification and recognition techniques are introduced. Feature 

extraction technique from combined semantic and spatial data overcomes the problems 

for extracting different features sharing same texture or height information. Proposed 

feature extraction techniques with recognition technique using Monte Carlo simulation 

descriptor form an efficient object extraction and recognition technique that is suitable for 

different features regardless of their shapes, scales or orientations.  

6.1 Summary 

This research thesis identified four different approaches for introducing complete object 

extraction, classification and recognition of urban areas. The first approach is for feature 

classification from an RGB image using a combination between supervised and 

unsupervised segmentation methods. Different features sharing texture properties are 

hardly separated from an RGB image.  

The second approach is designed for building extraction from LIDAR data based on 

Multi Resolution Analysis (MRA) using wavelet transform. Trees located close to the 

buildings and have height information similar to some of the buildings are extracted as 

building candidates. The third approach used two different data, RGB and LIDAR, 

combined together to be efficiently extract all urban area features.  

The fourth approach for object recognition using new spatial domain descriptor 

representing objects by boundary images and classifying the object of interest used the 

minimum distance classifier method. The new spatial domain descriptor is based on the 

Monte Carlo Simulation (MCS) technique. And the object is described by the ratio 

between the number of random values generated inside the object boundary and the total 
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number of random values that cover the object boundary image. The thesis assessed the 

efficiency of this descriptor versus different wavelet descriptors for object boundary and 

texture representations and concluded that the proposed descriptor gave better results 

than wavelet descriptors for object recognition. 

6.2 Conclusions and Contributions 

This thesis introduced the real automated urban classification technique from airborne 

LIDAR/Imaging systems. The proposed technique does not require any human interface 

in the classification process. The new classified features and especially the buildings are 

ready for commercial use and adaptive and efficient search, through the developed object 

recognition algorithmic that took into account both the boundary and texture proprieties.  

The thesis applied traditional segmentation methods with a new implementation approach 

to classify urban area features from an RGB image. The proposed classification technique 

introduces an efficient combination of supervised and unsupervised segmentation 

methods to classify vegetation, roads and buildings in urban areas.     Color space is 

suitable for identifying vegetation and shadows areas, but must transform to       and 

    domains to identify color ranges used in detecting and separating roads and 

buildings. The proposed technique succeeded in identifying color ranges that are 

corresponding to sandy and unhealthy vegetation areas (mixed together). The proposed 

technique is fully automated and suitable for all urban areas using high resolution RGB 

images. It has encounters difficulties when dealing with a similarity in texture properties 

of different features, buildings and roads, which was the motivation for aiding with 

additional information (spatial data) to extract, separate, and classify different features 

efficiently. 



144 

 

A standalone technique based on Multi-Resolution Analysis (MRA) using wavelet 

transform is used for the production of a 3-D building model from LIDAR data. Wavelet 

is a more sensitive MRA tool for analysing signals with different frequency/space 

resolutions. LIDAR height image is analysed by wavelet transform which efficiently 

helped in detecting building edges from LIDAR height image regardless of the building 

shape or image scale. It is found that trees located close to the buildings with the same 

height information are extracted as building candidates. This problem was the motivation 

for aiding the wavelet building extracting technique with semantic information to 

efficiently separate buildings from LIDAR data. 

Although RGB images contain high descriptive information for ground and non-ground 

features, it is not enough to clearly classify all features. LIDAR data provides important 

spatial information that helps to distinguish between ground and non-ground objects 

sharing same texture properties (roads and buildings). The combination of these two 

types of data, along with the application of the proposed combined filtering statistical 

wavelet MRA analysis, introduced an effective algorithm for automatic urban feature 

classification.  

In order to utilize the amount of information available from the proposed urban 

classification technique, a new search algorithm for object (buildings) recognition is 

introduced based on the Monte Carlo Simulation descriptors. It is also proven that the 

wavelet descriptors have greater accuracy for object recognition in cases of objects of 

interest with the same scale and orientations for both the objects used in the search and 

the developed library. The Monte Carlo Simulation Descriptors (MCSD) are used based 

on random number generators with a specific distribution function for object recognition 
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using distorted objects with libraries containing a different scale and orientation than the 

distorted object. MCSD is used to overcome this drawback and is used to describe the 

object regardless of the scale or orientation of the input image. It succeeded in 

recognizing different objects regardless of their shape, edge regularity, scale or 

orientation. MCSD was combined with minimum distance classifier method to form an 

effective object recognition technique.  

The contributions of this thesis work can be summarized in the following points: 

- A new combination of five traditional filtering techniques (Vegetation and 

Shadow indexes, Otsu segmentation, color transformation and global color 

thresholding) for urban classification from digital images has been efficiently 

implemented for features extraction with significant color channels diversity. 

Each of these techniques was efficiently implemented in a certain order and with 

specific statistical hypothesis between the three-color channels of RGB images 

and projected in different color spaces to introduce a complete and exact urban 

classified features without human intervention. Vegetation areas, buildings, roads, 

shadows and sandy areas were perfectly separated by the proposed new 

implementation for the cases of color diversity between these five features.  The 

five features were efficiently classified in the area of study with more than 90% 

success based on visual assessment. The proposed new methodology and 

implementation succeeded in overcoming the main drawbacks and disadvantage 

of all the former digital imaging classification techniques. However, in the case of 

features with the same semantic properties, which fall in the same color channel, 

the digital RGB images were effectively aided with spatial information from 
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LIDAR data for the same area of interest. All the buildings were extracted from 

the height information (projected in the gray scale domain) with almost 90% 

success using first generation wavelet transform and the other 10% were mainly 

due to the interference from trees with almost the same height values. The 

proposed technique is very efficient to separate and classify buildings from the 

LIDAR height data using multi-resolution analysis wavelet transform. 

- The two previously mentioned approaches, urban classification for RGB images 

and building separation from LIDAR height data, were combined together to 

overcome the two main disadvantages of having either same semantic information 

or same spatial values. The combination of both approaches led to almost over 

95% success in separation of different features and in achieving an efficient 

automatic urban classification not only for areas with significant color diversity 

between different features, but also for complex images and LIDAR  data that has 

a significant amount of features with common height values and/or color  

channels values. 

- The success of the proposed classification technique led to the presence of a lot of 

objects that will introduce a huge amount of information that require storage and 

availability for easy and efficient reuse for some applications like change 

detection. The proposed classification technique is followed by a fast efficient 

object recognition technique that can be the main engine for monitoring any 

changes and developments in urban areas. The success of the new search 

algorithm was at least 85% with several complex structures (buildings) for both 



147 

 

texture and boundary changes using wavelets and Monte Carlo random numbers 

generation techniques.  

- One of the main contributions of this thesis is the development of a complete 

software package that is able to introduce the automatic urban classification and 

recognition implementations efficiently and quickly.  

6.3 Recommendations 

The recommendation to extend this research thesis is mostly related to an increase in the 

number of features to be classified and to apply it to a more complex urban structure. 

Moreover, it is crucial to apply this proposed technique to different data images from 

different sources such as satellite images. The following list contains some of the 

interested research topics that are recommended for future work: 

- Terrestrial mobile mapping has many important applications based on feature 

extraction such as traffic monitoring and city development, so it is recommended 

to test the investigated feature extraction and classification techniques using 

RGB/LIDAR data captured from terrestrial mobile mapping systems. 

- Urban classification technique succeeded in identifying vegetation, shadows, 

sandy areas, roads and buildings for urban area. Water areas are considered as 

urban area features, so it is recommended to develop this urban area classification 

technique for detecting water areas such as lakes and swimming pools 

- Wavelet transform succeeded in producing a 3-D building model from LIDAR 

data. It is recommended to investigate a standalone technique based on the 

wavelet transform to extract trees and produce Canopy Height Model (CHM) for 

different types of trees. 
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- Monte Carlo Simulation Descriptor (MCSD) succeeded in recognizing buildings 

from airborne LIDAR regardless the object shape, scale or orientation. It is 

recommended for assessing MCSD by testing its efficiency for recognizing 

different urban area objects such as cars and vehicles. 
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Appendix A: RGB/LIDAR Data used for Implementation of Automatic Urban Area 

Classification Techniques 

A-1 Images for Urban Area Classification from RGB Data Alone  

This section shows the different RGB images used for in the assessment and development 

of the new urban area feature classification technique from RGB images and their 

classification results. These images are used for identifying the optimum methods to be 

combined inside the new classification techqniue for detecting vegetation and shadow 

areas. It is found that Otsu segmentation algorithm is the optimum method for detecting 

vegetation and shadow areas after applying on color invariant images produced from 

RGB color space. These images are also used for determining, through contionus testing 

with different values, the thresholding values for detecting road,sandy and unhealthy 

vegetation areas after transforming RGB image to       and     color spaces. The 

thresholding values are implemented after applying on Luminance, Hue and Saturation 

color channels. 
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Figure A-1: Input RGB Image – im1 

 

Figure A-2: Classification Results of Image – im1 
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Figure A-3: Input RGB Image – im2 

 

Figure A-4: Classification Results of Image – im2 
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Figure A-5: Input RGB Image – im3 

 

Figure A-6: Classification Results of Image – im3 
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Figure A-7: Input RGB Image – im4 

Figure A-8: Classification Results of Image – im4 
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Figure A-9: Input RGB Image – im5 

 

Figure A-10: Classification Results of Image – im5 

Input Image

Segmentation Image

 

 

Shadows

Sandy Areas

Roads

Vegetation

Buildings



A7 

 

 

Figure A-11: Input RGB Image – im6 

 

Figure A-12: Classification Results of Image – im6 
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Figure A-13: Input RGB Image – im7 

 

Figure A-14: Classification Results of Image – im7 
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Figure A-15: Input RGB Image – im8 

 

Figure A-16: Classification Results of Image – im8 
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Figure A-17: Input RGB Image – im9 

 

Figure A-18: Classification Results of Image – im9 
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The proposed urban area classification technique achieved excellent results in the case of 

having high differentiable texture properties, but it faces difficulties in separating features 

sharing the same texture properties, and this is the motivation for aiding RGB image with 

spatial information from LIDAR Data, which was developed in this research thesis. 

A-2 RGB/LIDAR Data for the developed Urban Area Classification technique 

Figure A-19 shows the LIDAR data for the same area of interest shown in Figure A-17. 

The proposed algorithm succeeded in classifying urban area features effectively, 

especially the features sharing same texture properties (roads and buildings), by aiding 

with the height LIDAR information shown in Figure A-20. 

 

Figure A-19: Input LIDAR Data for RGB Image – im9 
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Figure A-20: Classification Results of Image – im9 and Corresponding LIDAR Data 

using Combined Classification Technique based on RGB/LIDAR Data 
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Appendix B: The Workflow of Complete Software Package for Urban Area 

Classification and Object Recognition 

The proposed complete software package for urban area classification and object 

recognition is based two main algorithms. The first algorithm for urban area classification 

and the second one for object recognition using extracted objects. 

B-1 Urban Area Classification Workflow  

Figure B-1 shows the schematic diagram of the software package workflow for urban 

area classification.  

 

Figure B-1: Urban Area Classification Workflow through the Proposed Software 

Package 
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The software starts with the input data. Based on the input data, the software takes its 

workflow as follows: 

- If the input data is LIDAR data alone the software concentrates on building 

extraction using wavelet analysis and it will end up with an image of the extracted 

buildings with LIDAR data representations, height and/or intensity. 

- If the input data is an RGB image alone the software concentrates on classifying 

all urban area features. This step is consists of three stages. The first stage is using 

Otsu segmentation method that is applied on the color invariant images that are 

produced from RGB color channels and it will end up with two images for 

shadows and vegetation areas. The second stage is applying global color 

thresholding on luminance, hue and saturation color channels that are produced 

after transforming an input RGB image from     color space to       color 

spaces and it will end up with two images for roads and sandy and unhealthy 

vegetation areas. The third step is producing an image of the buildings by 

removing all successive extracted features from an input RGB image. 

- If the input data are LIDAR data and RGB image the software applies a 

combination between the previous mentioned classification technique to end up 

with an efficient urban features classification overcoming the problems in cases of 

features sharing semantic or height information. The final building image is 

produced after removing vegetation areas that is extracted from an RGB image 

alone from the image of extracted buildings that is produced from LIDAR data 

alone. The final road network and all paved areas image is produced after 

removing shadows, vegetation and buildings from an input RGB image. 
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  B-2 Object Recognition Workflow 

Figure B-2 shows the schematic diagram of the software package workflow for object 

recognition using extracted objects from urban area classification results. 

 

Figure B-2: Object Recognition Workflow through the Proposed Software Package 

The software uses the extracted objects in three cases of applications as follows: 

- If it is required to build a library of classes of the extracted features to be able to 

reuse for search applications the extracted features are represented by boundary 

images for each object. The Monte Carlo Simulation method is applied on these 

boundary images to calculate the object descriptors that are arranged with full 

available information, semantic and/or spatial, to build a library of classes. 

- If a library of classes is available and it is required to recognize all or some of the 

extracted objects with respect to the existence library the minimum distance 
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classifier method uses all descriptors for both the available library of classes and 

the extracted objects to classify the required objects of interest. 

- If there is information about a specific object of interest, image and/or spatial,  

and it is required to search about this object with respect to available data that is 

used in classification process to get more extensive information about this object 

the software uses the available information for the object of interest to produce 

the object descriptor. The minimum distance classifier uses the library of the 

extracted objects and the descriptor of the object of interest to recognize this 

object with respect to the extracted objects from the area of study. With minimum 

knowledge about any object, as dimension, shape and/or usage, and when the 

software succeeds in recognizing this object, it is possible to get full information 

about this object, semantic and/or spatial based on the available data; this is the 

target behind this software package.  

 


