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Abstract 

 

The research presented is focused on assessment and attenuation of movement disorder 

motion utilizing inertial sensors (accelerometers and gyroscopes); the major finding of 

the work is that inertial sensors are well suited for the assessment and attenuation tasks 

examined. Assessment involves categorizing the motion for patients examined, and 

techniques utilized to assist with diagnosis of ET (essential tremor) and PD (Parkinson’s 

disease) are included. Common assessment methodologies utilized are based on Fourier 

and wavelet spectral analysis. 

 

Another focus of the work is tremor attenuation (active mitigation). This involves 

utilizing two processing methodologies, the first of which is based on understanding 

along which of the six possible degrees-of-freedom tremor is acting and how tremors 

along these different six degrees-of-freedom are related in terms of phase. The second 

methodology is based on designing active and passive systems to mitigate tremor. For 

active inertial feedback systems, it is helpful to track tremor for removal using an 

algorithm well suited to the task; preferably a zero phase lag real time filter.  

 

In order to carry out the tasks identified, data were gathered from 9 ET subjects, 30 PD 

subjects and 11 controls. Firstly, subjects were asked to use a laser mounted on an inertial 

measurement unit (IMU) to point to targets on a computer screen labeled one through ten. 
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The subjects moved their hand to direct the laser at subsequent targets in the order in 

which the targets were labeled. Secondly, subjects were asked to simulate eating using a 

spoon with an IMU attached to the spoon. 

 

It is important to note that to adequately perform the processing tasks identified above, a 

Kalman filter and smoother was needed. This filter and smoother, along with subsequent 

processing, helped to ensure that processed accelerometer data would be representative of 

mostly lateral tremor motion, and not rotational tremor motion. Rotation tremor motion 

can influence accelerometer data indirectly as accelerometers are rotated through the 

gravity field. After the removal of signal components associated with rotational tremor 

motion, processed accelerometer data could be used to understand lateral tremor. In order 

to understand rotational tremor, largely unprocessed gyroscope data were utilized. 

 

  



iv 
 

Preface 

 

There are a number of figures and tables contained in this doctoral thesis that have been 

previously published, whereby the author of this thesis was lead author for such 

publications. The author of this doctoral thesis did receive significant support from co-

authors (from previous published works) in terms of feedback regarding figures and 

tables produced; however, all such figures and tables are the author’s original work. As 

well, all permissions have been obtained from co-authors and publishers so that figures 

and tables can be reproduced within the body of this thesis. Lastly, all such figures and 

tables are appropriately referenced when they are reproduced from another published 

source and full citations can be found in the alphabetized references list at the end of this 

document under the first author name “Teskey” (the last name of the author of this 

thesis). 
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Chapter 1: Introduction 

 

Essential tremor (ET) and Parkinson’s disease (PD), both of which are movement 

disorders under examination in this thesis, can be studied and managed much more 

capably with the advent of inertial technology (accelerometers and gyroscopes). Such use 

of inertial technology in the formal study of movement disorders is the focus of this 

thesis, which includes methodologies to improve the quality of life of those afflicted with 

movement disorders. 

 

Currently, neither ET nor PD is adequately characterized so that diagnoses can be 

performed consistently. ET, for example, has a believed rate of incidence over a very 

large range (0.008% to 22% (Louis, Ottman and Hauser, 1998)) largely because it is 

difficult to come up with an objective measure to standardize diagnostic practices. PD, 

although much better understood than ET, can also stand to benefit from objective 

diagnostic criteria. Currently, responsiveness to medication is often regarded as a 

confirmation of a PD diagnosis because it is otherwise difficult to confirm a diagnosis 

(Koller and Hubble, 1990) and only 75% of PD diagnoses turn out to be true positives 

when autopsies are carried out (Gelb, Oliver and Gilman, 1999); PD affects 

approximately 0.15-0.2% of the population at large (Rao et al., 2003). 

 

Usable procedures to assist with diagnosing PD and ET from only inertial data are 

presented in this thesis. Much of the diagnostic research work carried out using inertial 
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sensors is still in its infancy and there is no standard inertial technology for objective 

diagnoses (Louis, 2005). 

 

In terms of quality of life, patients afflicted by either disorder (ET or PD) could benefit 

from inertial data capture. Utilizing such techniques can help medical practitioners track 

patient motion over time as medications and other treatment options are explored. 

Despite all of the advantages of having an objective means of measuring tremor size as 

well as other significant parameters depicting patient motion, there is no standard 

technology to perform such a task and there is very little research that has examined this 

methodological approach (Louis, 2005). 

 

As a final point, patients’ lives could be made quite a bit better by utilizing tremor 

attenuation methodologies based on inertial data capture and processing, possibly in 

conjunction with a feedback system. Currently, many movement disorder sufferers (PD 

and ET) have trouble performing daily tasks such as eating, drinking and writing; as well, 

ET does not generally have an effective pharmacotherapy based treatment option. As a 

result, many patients go without any treatment even though 73% of ET patients have a 

reported disability (Louis et al., 2001). PD is also quite debilitating and has an estimated 

social cost of $20 billion annually in the United States (Smaga, 2003). The work 

presented here details how to mitigate tremor motion while maintaining intended patient 

motion. This information could be used, for example, to design an inertial feedback 

system for a drinking cup such that the cup handle would move relative to the cup in such 

a fashion as to limit the ability of tremors felt at the cup handle to spill a beverage in the 
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cup. There are very few tremor mitigation technologies currently available despite the 

pressing need, and many of the existing mitigation technologies focus on orthosis based 

approaches which require patients to wear bulky and difficult to manage exoskeletons in 

order to dampen tremor motion (Manto et al., 2003). 

1.1 Major Thesis Objectives 

One of the major objectives of the thesis is to create diagnostic methodologies for 

assessment of movement disorder motion; specifically, differentiating PD and ET 

motion which is a very common challenge for medical professionals.  

 

Another objective of the thesis is to process and comprehensively analyze tremor data 

for six degrees-of-freedom of motion. This is a very significant undertaking and few if 

any thorough analyses of tremor in six degrees-of-freedom have ever been undertaken.  

 

Algorithm validation for attenuation (removal) of tremor is also another objective for 

the work carried out. Tremor is first categorized in terms of its effects along different 

axes of motion and then a popular mitigation algorithm is utilized to determine how 

effectively it can cope with tremor. 

1.2 Novel Thesis Contributions 

The most significant novel contribution for the work carried out was that it is the first 

such thorough six degree-of-freedom motion analysis of movement disorders. It is 

difficult to overstate how significant and instrumental six degree-of-freedom motion 
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analysis was for what was accomplished. Without it, coming up with a unique and novel 

diagnostic methodology to differentiate ET and PD motion may not have been possible. 

As well, many of the patterns of motion observed in the work would not have been 

visible. 

 

The second most instrumental novel contribution of the thesis work conducted was that it 

was the first such thorough wavelet analysis of movement disorder motion. Wavelets 

are quite underutilized for movement disorders research. The work presented for this 

thesis clearly shows that wavelets are a very important signal processing tool for 

movement disorder analysis and they deserve much more implementation in future 

research work. 

 

The implementation of coherence analysis to different (six degree-of-freedom) 

movement disorder channels of motion is also a novel contribution of the thesis work. 

Coherence analysis is a very important tool for electromyography (EMG) signal analysis 

and is often used to compare motion data (often inertial motion data) with EMG data. 

This useful tool was applied in this thesis in a manner such that all six degrees-of-

freedom of motion were compared. 

 

One of the results of implementing coherence analysis in the manner depicted in the 

previous paragraph was that a new methodology for differential diagnosis of ET and PD 

was realized. Such a diagnostic methodology as what was discovered could be very 

useful for medical practitioners because it is very usable and easily understandable for 
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differential diagnosis of ET and PD (which is a significant area of research for movement 

disorders). 

 

Another one of the unique findings of the work is that it is possible to tell the difference 

between medicated and un-medicated PD motion, using control data as a reference. 

Even though to the naked eye medicated PD motion looks like motion of a normal 

healthy subject, inertial data reveal that a trace of non-control motion still exists even 

among medicated subjects. This is a very significant research finding because it suggests 

how medication masks the effects of PD and, more specifically, what motion artifacts this 

medication fails to mask (or creates). For a researcher studying the pathogenesis of PD, 

knowing specifically how medication affects motion is very valuable information. 

 

Another valuable and new piece of information regarding movement disorder motion 

that was realized for the work carried out is that tremor is very similar in frequency for 

all six degrees-of-freedom. The main difference between tremors for different motion 

axes were that they were shifted in phase with respect to one another. 

 

The weighted-frequency Fourier linear combiner (WFLC) filtering was carried out for 

this thesis for the first time using six degree-of-freedom movement disorder data. This 

algorithm was evaluated for its ability to remove tremor motion while not affecting 

intended motion of test subjects. 
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The goal of tremor attenuation was more capably pursued given results of the six degree-

of-freedom analysis. Given such an analysis, it was conceivable to determine how 

attenuation might be applied to a real world scenario where, obviously, patients move in 

six degrees-of-freedom. The tremor motion axes containing the most amplitude were 

determined (for the specific type of motion logged), as were the phases shifts for 

tremors acting along different axes of motion. Such analysis makes the algorithms 

developed for tremor mitigation much more useful than they otherwise would have been 

because they could be realistically implemented in a manner so as to remove the largest 

tremors. 

1.3 Chapter Overview 

There are a total of seven chapters for the thesis. The document begins with a literature 

review in Chapter 2 followed by data collection methods outlined in Chapter 3. After 

that, Kalman filtering and smoothing are the focus of Chapter 4, where data processing 

results are examined. Chapter 5 examines diagnosis and assessment of movement 

disorders, and Chapter 6 details tremor attenuation and mitigation strategies. The 

conclusion of the thesis is written in Chapter 7. 

 

Chapter 2, as previously mentioned, is a detailed literature review for the research 

conducted. It begins with an overview of the two movement disorders examined in this 

thesis (ET and PD) and then focuses on the equipment utilized for motion captured 

(inertial sensors as well as other equipment that may be useful for future research). At the 

conclusion of the chapter, the computational methods for the processing carried out in 

this thesis are examined. 
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Chapter 3 highlights the two different movement disorder tasks for which data were 

captured, these are the laser targeting and eating simulation motion evaluations. In the 

former, test subjects point a laser at targets with their hand while inertial data are logged 

for the motion under examination, and in the later, test subjects simulate eating with a 

spoon while inertial data are again gathered for their hand motion. Chapter 3 includes an 

overview of equipment and test subjects utilized, as well as displays of raw data. 

 

Chapter 4 details the use of Kalman filtering and smoothing for analysis of movement 

disorder motion. More specifically, a quaternion based Kalman filter utilizes known start 

and end points of the IMU (inertial measurement unit) along with other parameters as 

filter updates. The main purpose of the processing in Chapter 4 is to remove the impact of 

gravity from accelerometer data, and this task is achieved by using results from the 

Kalman filter and smoothing. By processing accelerometer data in this manner, the 

impact of rotational tremors can be removed from the data so that the remaining 

accelerometer data are representative of mostly translational tremor (and not rotational 

tremor). Since raw gyroscope data are good at depicting rotational tremors, the processed 

accelerometer data and raw gyroscope data represent, directly, tremor motion for all six 

degrees-of-freedom analyzed. 

 

Chapter 5 of the thesis details the use of auto-spectral and cross-spectral Fourier based 

signal processing for the six degrees-of-freedom under analysis; as well, wavelet based 

spectral processing is utilized. The Fourier based processing proved to be very adept at 
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diagnosing different tremor types (ET and PD) using a novel methodology developed for 

the thesis work. The wavelet based processing showed that diagnosed ET tremor has a 

significant difference in the magnitude of its peak for its spectrum when compared to 

control data (i.e. more tremor was apparent for ET data). 

 

Chapter 6 details the use of phase based analysis to determine tremor phase data between 

any two of the six degrees-of-freedom of movement disorders in question, and to verify 

that tremor tends to be of the same frequency for different degrees-of-freedom examined. 

The phase data show that tremor along two different channels often have a consistent 

phase relationship. This information is important for when designing tremor mitigation 

technologies, such as actuators. The second half of Chapter 6 details how to remove 

pathogenic tremor in six degrees-of-freedom using a WFLC filter. This is performed here 

for the first time. 

 

Chapter 7 concludes the analysis that has been undertaken. Objectives that have been 

realized are discussed in detail; as well, strengths and weaknesses for the approaches 

utilized are examined. Lastly, recommendations are made pertaining to future research. 
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Chapter 2: Literature Review 

 

There are three sections in the literature review. The first section introduces the two 

major movement disorders that are the main focus of the research conducted: essential 

tremor (ET) and Parksinson’s disease (PD). After this, the next section looks at possible 

methods of logging movement disorder motion, including inertial sensing and optical 

techniques among others. The last section of the literature review looks at all of the major 

processing techniques utilized for the signal analysis carried out in this thesis, including 

Kalman filtering, weighted-frequency Fourier linear combiner (WFLC) filtering and 

wavelet based techniques. 

2.1 Movement Disorders Introduction 

Both of the major movement disorders evaluated in the research work presented, ET and 

PD, have been part of the human existence for many thousands of years; ET has been 

documented in ancient Israel and Greece and there are biblical descriptions of PD, as 

well, historical texts thousands of years old describing both of these disorders can be 

found from Egypt and India (Louis, 2000; Ruiz, 2004). There is more of a pressing need 

to understand these disorders now than at many times in the past due to an increase in 

human life expectancy and the aging demographics in western society which will likely 

cause an increasing incidence of both disorders in the coming decades. For this reason, it 

is imperative to understand both disorders as much as possible to potentially help limit 

the rate of incidence and care for those afflicted. 
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2.2 Essential Tremor 

Essential tremor is a very complex movement disorder that is not well understood. It was 

chosen for evaluation in this thesis because of this fact as well as its high rate of 

prevalence. The thesis work laid out here does a thorough job evaluating ET motion and 

suggesting possible means of attenuation, this is a significant advancement for a disorder 

that the medical establishment has not completely categorized. In the following sub-

sections, what is known about ET is summarized. 

2.2.1 ET Epidemiology 

ET is the most prevalent action tremor known to exist (Bhidayasiri, 2005). An action 

tremor is defined as a tremor which manifests itself during voluntary motion. 

Unfortunately, the disease is not well understood largely because of its wide ranging and 

not well defined symptoms (Findley and Koller, 1987; Hubble, Busenbark and Koller, 

1989; Louis, 2001; Louis and Greene, 2000). It has been so difficult for medical 

practitioners to come up with a specific criteria for ET’s diagnosis that the rate of 

prevalence has been quoted as ranging anywhere from 0.008% to 22% of the population 

at large depending on the study cited (Louis, Ottman and Hauser, 1998). Likely, a more 

realistic estimate for ET prevalence is 0.4-3.9% based on more thorough investigative 

studies carried out by experienced researchers (Louis, Ottman and Hauser, 1998). 

 

ET is more common for older individuals (Rajput et al., 1984) and it is often not familial 

(Bain et al., 1994; Herskovitz and Blackwood, 1969). Known causes of ET are exposure 

to certain chemical agents (lead and carboline alkaloids); other environmental factors are 
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thought to increase incidence of ET, but many of these potential causes are not well 

defined (Louis et al., 2002; Louis et al., 2003). 

2.2.2 ET Features 

Writing, drinking and eating can all be affected by ET, which causes a tremor in the 

range of 3-12 Hz (Elble and Koller, 1990). The disorder tends to affect mostly the arms, 

but can affect any limb or major body segment, including the neck and trunk (Critchley, 

1949). Severe cases of ET generally result in postural tremor in addition to kinetic 

tremor; kinetic tremor, which is unwanted tremor while a patient is intentionally moving, 

is the hallmark symptom of ET (Brennan et al., 2002). Postural tremor is defined for 

when a patient is trying to maintain a fixed position while exerting some sort of muscular 

effort, such as when a subject holds their arm straight in front of them perpendicular to an 

upright torso. There are also a small number of cases for which patients exhibit rest 

tremor (Koller and Rubino, 1985; Rajput et al., 1993), which is defined as tremor while a 

patient is trying to keep muscles in a relaxed state. 

 

ET can have a debilitating effort on one’s lifestyle. A large number of sufferers (73%) 

report a disability (Louis, Barnes, Albert et al., 2001), and for individuals seeking 

professional medical help, 15-25% retire earlier than desired (Bain et al., 1994) and 60% 

have reported not applying for a job or promotion because of their condition (Rautakorpi, 

1978). ET is also a disorder linked to a patient’s physical state such that fatigue and 

hunger can affect tremor (Critchley, 1949; Critchley, 1972). Although remissions are 

possible (Kreiss, 1912) ET tends to get worse over time (Critchley, 1949). 
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Accelerometers were used to log a 29% increase in tremor amplitude over a four year 

interval for several patients (Elble, 2000). 

2.2.3 ET Diagnosis 

Because the disease is not well understood, diagnosis of ET is very challenging. The 

main criterion for diagnosis is kinetic tremor (Louis, 2005) and there is difficultly 

creating a standard test to confirm a diagnosis with a high degree of reliability (Louis, 

2001). A major task for medical practitioners is often differentiating ET from PD (Bain et 

al., 1994). 

 

There are two standards by which movement disorders are measured. One standard is the 

Consensus Criteria of the Movement Disorder Society which focuses on whether postural 

tremor is present for five years or more; this is only valid for diagnosing ET in cases 

where such a postural tremor can’t be explained by the use of drugs, a different 

neurological condition of other abnormal factors in the background of a subject (Deuschl, 

Bain and Brin, 1998). The other standard for clinical diagnosis of ET is the Washington 

Heights-Inwood Genetic Study of ET (Louis et al., 1997; Louis, Ford, Frucht et al., 

2001). This diagnostic tool assigns an integer value between 0 (no tremor) and 3 (very 

large tremor) to quantify the severity of tremor for tasks involving patients pouring water, 

drinking and eating. 

2.2.4 ET Pathophysiology 

Similar to many other aspects of ET, its pathophysiology is also not well understood 

(Louis, 2005). The disease may even be familial, contradicting some previously believed 
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assertions, based on recent genetic, pharmacological and clinical evidence (Gulcher et al., 

1997; Higgins, Pho and Nee, 1997; Higgins et al., 1998; Koller, Vetere-Overfield and 

Barter, 1989; Louis, Ford and Barnes, 2000). It is not even known for certain what part or 

parts of the neurological system (including the spinal tissue and portions of the brain) 

play a significant role in the manifestation of ET tremor (Bain et al., 1994). 

2.2.5 ET Treatment 

ET generally lacks effective treatment mechanisms and many patients do not report 

tremor reduction after pharmacotherapy (Louis, 2005). Alcohol is one method of 

reducing tremor, although it is generally not recommended because of other obvious side 

effects and the possibility of creating alcoholic addiction (Critchley, 1949; Davis and 

Kunkle, 1951). Deep brain stimulation (the implanting of an electrode into the human 

brain by surgical methods) has been effective, but there are many large risks associated 

with this treatment method including loss of bodily functions (Schuurman, 2000). 

2.3 Parkinson’s Disease 

PD is generally much better understood than ET. This is due in part to the fact that 

sufferers of PD can’t hide its symptoms well given that many of the movement effects it 

produces are largely involuntary (such as tremor motion while a patient is in a rest 

position); as such, PD has been afforded a much larger focus in the public and in the 

media while ET, whose motion is largely based on kinetic tremor, can remain a bit more 

hidden from the public eye as those who suffer from it can refrain from moving to avoid 

possible drawbacks of others realizing the effect of their disease. 
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ET also is as disorder that is very difficult to distinguish from physiological (healthy) 

tremor which most people share and which also generally grows larger with age; as such, 

motion tremor is a phenomenon that many people are more familiar with in the context of 

their daily lives and it seems less foreign to them when they are confronted with it. This 

is another reason why PD is so well known while ET is not commonly known. 

 

PD can be very difficult to live with for those who suffer from it. It does not only produce 

tremor effects, but can really slow motion for those who are afflicted. There is still much 

need for assistance with PD management for medical practitioners because tracking its 

progress over time (with and without medication and exercise for those suffering from 

the disorder) can be a significant step forward in research. As well, mitigating PD for 

patients would help them greatly in coping with having to live with such an affliction. 

2.3.1 PD Epidemiology 

PD is the most common rest tremor known to exist (Bhidayasiri, 2005) and it affects 

0.15-0.2% percent of people (Rao et al., 2003). In the United States, it is estimated that 

1.5-2.5% of people aged 70 or older have PD (Mansur et. al., 2007). PD is progressive, 

and in general, not familial (Bhidayasiri, 2005). The social cost of PD in the United 

States is about $20 billion each year (Smaga, 2003). 

2.3.2 PD Features 

PD is generally described by its capacity to produce rest tremor in those affected 

(Deuschl et al., 1996; Paulus and Jellinger, 1991; Rajput, Rozdilsky and Ang, 1991); in 

fact, there is generally only one other disorder (Holmes’ tremor) known to commonly 



15 
 

afflict individuals causing rest tremor (Bergman and Deuschl, 2002). PD tremor 

frequency is in the range of 3-12 Hz (Elble and Koller, 1990). There is also another 

disease variant for PD which, instead of producing rest tremor, tends to produce akinetic 

and rigid movement tendencies among those afflicted (Jankovic et al., 1990, Louis et al., 

1999). In general, PD both reduces muscle strength (Jordan, Sagar and Cooper, 1992; 

Stelmach et al., 1989; Stelmach and Worringham, 1988) and limits reaction time 

(Kutukcu et al., 1999). The disorder is also known in some cases to produce kinetic 

tremor (Logigian et al., 1991). 

2.3.3 PD Diagnosis 

The most common method for diagnosis of PD is based on the observation of postural 

and rest tremor, although any diagnosis is often based on a variety of indicators and relies 

heavily on the knowledge of the medical practitioner performing the diagnosis 

(Bhidayasiri, 2005). Bradykinesia (slowness of movement) can also be a telltale sign of 

PD, as can asymmetric tremor (Bhidayasiri, Waters and Giza, 2005). 

 

As a result of generally limited objective diagnostic criteria, responsiveness to medication 

is also sometimes used to confirm a diagnosis (Koller and Hubble, 1990). Commonly, the 

drug levodopa, which boosts dopamine levels in the brain, is used to carry this out. 

2.3.4 PD Pathophysiology 

PD is caused by a lack of cells producing dopamine resulting in a dopamine shortage in 

the striatum (Bernheimer et al., 1973; Pifl, Schingnitz and Hornykiewicz, 1991); 

generally, dopamine producing cells lie within the substantia nigra. The complete 
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understanding of PD has not yet been realized and there are still many neurological 

phenomena associated with PD that are not fully understood (Bergman and Deuschl, 

2002). It is generally agreed upon the spinal neurological influences do not significantly 

contribute to PD (Rack and Ross, 1986; Burne, 1987), but contradictory evidence details 

that the brain (likely the central oscillator for PD manifestation) is affected by inputs into 

spinal tissue (Elble, Higgins and Hughes, 1992). In contrast, the observation that 

deafferentiation usually does not limit PD tends to support the theory of the brain as the 

central oscillator (Pollock and Davis, 1930). 

2.3.5 PD Treatment 

Partly because the pathophysiology of PD is so much more understood than ET, PD tends 

to have much better treatment options when comparing the two disorders. Many PD 

patients rely on pharmacotherapy aimed at boosting dopamine levels in the brain and 

levodopa is among the most common drugs prescribed to carry out such a task 

(Bhidayasiri, 2005). Other commonly used drugs are pramipexole and ropinirole (Navan 

et al., 2003; Pogarell et al., 2002; Schrag, Keens and Warner, 2002). As with ET, deep 

brain stimulation can be used in the treatment of PD, but it carries high risk factors such 

as the loss of bodily functions (Berardelli et al., 2001). 

2.4 Inertial Sensing 

There are two inertial sensing devices commonly used for navigation applications, these 

are accelerometers and gyroscopes. Accelerometers measure positioning information by 

integrating an accelerometer signal twice with respect to time. The first of such 

integrations provides information about velocity and the second provides information 
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about position. Gyroscopes only require their signals to be integrated once with respect to 

time to produce orientation information. 

 

One of the largest difficulties of dealing with inertial sensors is that they are often taking 

measurements on a moving platform. It would be relatively straight forward to analyze 

the signal of a single axis accelerometer for a vessel that could only move along the axis 

of accelerometer measurement. This is rarely the case for most real world applications. 

Accelerometers and gyroscopes are generally mounted on devices which move freely in 

six degrees-of-freedom (three translational and three rotational degrees of freedom). 

When six degree-of-freedom motion is permitted, the sensitive axis for each sensor is 

potentially changing alignment in time with respect to an earth fixed coordinate system. 

This creates many complexities when analyzing inertial sensor data and generally all data 

have to be converted into a consistent coordinate frame so that data processing can take 

place. 

 

One of the most significant challenges when interpreting inertial results is determining 

which portion of an accelerometer signal is a product of lateral motion and which portion 

is a measurement of gravity. Accelerometers do not distinguish between gravitational 

acceleration and acceleration as a result of lateral motion. This means that for an 

oscillatory accelerometer signal, either a lateral or rotational tremor could be the cause. 

The reason this is the case is because a rotational tremor causing a rotation through the 



18 
 

gravity field can generate a tremor signal for an accelerometer. This is illustrated in 

Figure 2.1. 

 

Figure 2.1: Effect of translational and rotational motion on an accelerometer signal 

Taken from Teskey et al. (2011) 

The phenomenon illustrated in Figure 2.1 is of particular concern for the work carried out 

in this thesis because much of the data logged is for lateral and rotational tremors. As a 

result, a great deal of the processing conducted for this thesis was aimed at removing the 

effect of rotational tremor motion from the accelerometer data so that lateral and 

rotational tremor could be analyzed separately. This is illustrated in detail in Chapter 4. 

 

Generally when capturing inertial data, three accelerometer and three gyroscopes are 

utilized because this configuration is ideal for capturing six degrees-of-freedom of 

motion data. Usually, each of the two sensor triads utilized (composed of three 

accelerometers and three gyroscopes) have each individual sensor orthogonal to the other 

two. This makes processing the data much easier, because there is no redundancy in 

captured data. As well, generally for convenience, one sensor triad will have 

corresponding individual sensing elements coincident with the elements of another sensor 
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triad (i.e. the x-accelerometer lies along the same axis as the x-gyroscope, the y-

accelerometer lies along the same axis as the y-gyroscope and the z-accelerometer lies 

along the same axis as the z-gyroscope). There are many other sensor configurations that 

can also achieve six degree-of-freedom motion capture, such as an all accelerometer 

sensor set, but these are far less common because they are not as easily implemented. For 

an all accelerometer configuration in particular, the best results are obtained when 

accelerometers are mounted a long distance from one another so that good orientation 

information can be obtained; for many real world applications, this is not practical. 

2.4.1 Inertial Principles of Operation 

Accelerometers generally operate following Newton’s first and second laws. Newton’s 

first law is based on the principle of inertia which describes that objects in motion will 

tend to remain in motion and objects at rest will tend to remain at rest; this is valid unless 

there is a force acting on an object so as to change its motion or state of rest. When a 

force acts upon an object, Newton’s second law can be applied. This law states that the 

net force acting on an object will be equal to its mass multiplied by its acceleration. 

 

Most accelerometers utilize the principles in Newton’s first two laws by utilizing a proof 

mass suspended by a spring or multiple springs. When the proof mass is undergoing 

acceleration along the sensitive axis of the accelerometer, it is displaced until the force in 

the spring or springs are enough to counteract the tendency of the proof mass to resist 

changes in its motion (based on its inertia). This concept is illustrated in Figure 2.2. It 

should be noted that the sensitive axis of the accelerometer is the axis along which the 

springs in Figure 2.2 coil and uncoil. 
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Figure 2.2: Accelerometer principle of operation 

Original schematic above is based on a schematic from Goodall (2009) 

Microelectromechanical systems (MEMS) accelerometers, such as the ones used for the 

work carried out in this thesis, generally use the same operational principle as what is 

depicted in Figure 2.2. The main difference between most MEMS accelerometers and a 

more traditional accelerometers is that MEMS use very small pieces of material 

(generally silicon) as a proof mass and as part of the spring mechanism; MEMS also 

sometimes utilize a closed loop mechanism whereby some signal (often electrical) is 

utilized to induce a force upon the proof mass to keep it from moving from its central 

location when an external acceleration is acting upon the proof mass (Yazdi, Ayazi and 

Najafi, 1998). Such closed loop architectures produce generally better measurement 

results because they remove many of the difficulties in controlling dynamic effect of the 

proof mass motion. Closed loop architecture can be compared to the open loop 

architecture depicted in Figure 2.2 where the motion of the proof mass is allowed and 

subsequently measured. 
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MEMS gyroscopes generally utilize a different principle of motion than accelerometers; 

specifically, they utilize the Coriolis effect (although, strictly speaking, the Coriolis effect 

follows from Newton’s laws). It is important to note that not all gyroscopes operate based 

on the Coriolis effect, but many MEMS gyroscopes do. The Coriolis effect stipulates that 

if an object is undergoing uniform circular motion (on a rotating frame of reference) and 

that object was to move outward radially, then the object would appear to decelerate in 

the direction of uniform circular motion that it is undergoing with respect to the rotating 

reference frame. Similarly, for the opposite case, if an object is undergoing uniform 

circular motion (on a rotating frame of reference) and that object was to move inward 

radially, then the object would appear to accelerate in the direction of uniform circular 

motion that it is undergoing with respect to the rotating reference frame. Mathematically, 

this can be written as follows 

 ̅       ̅    ̅    (2.1) 

Where  ̅    is the Coriolis acceleration,  ̅   is the circular rotation rate and  ̅    is the 

radial velocity; all three of these vectors have three elements with the first element 

depicting x-data, the second element depicting y-data and the third element depicting z-

data (this is the convention used throughout this document). Note that the symbol   

denotes cross product and a right hand rule sign convention is followed (such a sign 

convention is followed throughout this document). Graphically, the Coriolis effect is 

illustrated in Figure 2.3. 
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  Figure 2.3: Illustration of Coriolis acceleration 

  Original schematic above is based on a schematic from Goodall (2009) 

MEMS gyroscopes utilize a vibrating proof mass which vibrates perpendicular to the 

direction of rotation. Measuring the force acting upon this proof mass and performing the 

appropriate calculation, following from Equation (2.1), will yield the angular rate sought 

(Nasiri, 2005). 

2.4.2 Common Uses for MEMS Inertial Sensors 

MEMS inertial sensors were popularized in the 1990’s due to their use in air bag systems 

for transportation vehicles (Frost and Sullivan, 2006). The popularization for MEMS for 

such air bag systems was driven by the digitization of much of the information in a 

modern automobile, and allowed for the financial resources for large scale development 

of modern MEMS which offered significantly better in performance than previous 

generations of MEMS sensors. 
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Some of the most popular modern uses of MEMS inertial sensors are for personal 

navigation, camera image stabilization and smart phone based applications (Goodall, 

2009). More specifically, many of the newest generations of smart phones have tri-axial 

accelerometers and gyroscopes built into the devices. MEMS are also becoming popular 

for computer gaming applications (some of these games are console based and some of 

these games are smart phone based). Many of the most accurate MEMS inertial sensors 

have high enough accuracy readings that they are beginning to replace older and more 

expensive inertial sensing apparatuses for certain navigation applications. 

2.4.3 Advantages of MEMS Inertial Sensors 

MEMS inertial sensors offer many advantages when compared with other motion 

tracking technology commonly available. They are very convenient to use because of 

their low cost (sometimes only a dollar for each sensor), light weight, low power 

consumption and small size. The particular sensors used in this thesis were not larger 

than 5 mm along their largest dimension and the accelerometer sensor set had a mass of 

0.08 grams based on what is given in ST Microelectronics (2006) and Epson Toyocom 

(2010) (this data is also presented in Table 3.1 of this thesis). MEMS also can be a non-

invasive form of measurement because they can be mounted directly on a subject of 

interest and they don’t necessarily require any data logging cables or power cables; this is 

because the low power consumption allows for the use of very small batteries to power 

the MEMS devices and onboard data logging is possible using a small data logging 

external hard drive device which, like the MEMS sensors themselves, can be smaller than 

a penny. 
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2.4.4 Disadvantages of MEMS Inertial Sensors 

Previously, in the beginning of Section 2.4, a difficulty in dealing with MEMS inertial 

sensor data was discussed; this difficulty regarded problems dealing with gravity 

affecting inertial data and more specifically problems arising from the coupling of 

rotational and translational motion due to the fact that accelerometers pick up 

gravitational acceleration. Another significant disadvantage of using MEMS inertial 

sensors is the large and unrestrained growth in positioning error when processed data are 

analyzed. This large error growth stems directly from the fact that MEMS inertial signals 

need to be integrated to obtain positioning information. Such integration can take small 

errors and amplify them greatly, particularly when multiple integrations are used as is the 

case when accelerometer data are integrated (twice) to produce displacement information. 

 

One mechanism to try to restrain error growth is to carefully remove biases and scale 

factors from MEMS inertial data before the data are processed (Lotters et al., 1998). This 

necessitates a potentially very time consuming calibration process. One problem with 

such calibration is that bias and scale factor errors can shift in time and with respect to 

other parameters like temperature, which then necessitates the generation of new 

calibration parameters that reflect the altered state of the inertial sensors. This can be 

impractical to perform in many circumstances, so bias and scale factor parameters are 

often updated in real time using information from aiding sources, such as global 

navigation satellite system (GNSS) based aiding sources. 
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The difficulty with using such aiding sources to update the error parameters for inertial 

data was that processing data with the inclusion of aiding sources greatly increases 

computational complexity which can be difficult to handle mathematically when 

designing data processing methodologies. As well, such complex data processing tends to 

require a lot of computing resources which are not always available in many 

circumstances. As a further disadvantage, when aiding sources are used, many of the 

advantages of MEMS can be diminished, such as MEMS’ ease of use, small size, low 

cost and non-invasiveness. 

 

Another disadvantage of inertial sensors is that the positioning information that they offer 

is only relative in nature and not absolute. This is because inertial sensors measure 

changes in position and can only reference the current position with respect to previous 

position locations. In order to obtain absolute positioning information (such as latitude 

and longitude), an external reference is needed (such as GNSS) which results in MEMS 

being less useful than they otherwise would have been for many applications because 

other sensors systems have to, in many cases, have their data fused with MEMS inertial 

data to produce meaningful results. 

 

Inertial sensors also have difficulty dealing with the Coriolis effects of earth’s rotation for 

many long range navigation applications. This is generally less of a problem for MEMS 

devices because they tend to be used for more localized positioning which is not as 

impacted by the Coriolis effect. However, MEMS gyroscopes (like all gyroscopes) can be 
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influenced by the rotation of the earth whose axis of rotation needs to be kept track of 

relative to any MEMS gyroscope axis so that the effects of earth’s rotation can be 

removed from the MEMS gyroscope signals. 

2.4.5 Inertial Error Sources 

There are a number of error sources affecting inertial data, some of which have been 

discussed in preceding sub-section (2.4.4). The two error sources already explored were 

bias and scale factor and two significant error sources that have yet to be introduced are 

non-orthogonally (or sensor triads) and sensor noise. All of these error sources can be 

represented mathematically as follows for accelerometers and gyroscopes respectively 

(following from Yang, Niu and El-Sheimy (2006)) 

 ̅  (         )  ̅   ̅   ̅  (2.2) 

 ̅  (         ) ̅   ̅   ̅  (2.3) 

Where all elements for the above vectors (each with three elements) have subsequent 

terms representing x, y and z parameters. The terms  ̅ and  ̅ are measured signals for the 

accelerometers and gyroscope respectively. The term   with subscript   or   (for 

accelerometer and gyroscope data, respectively) denotes a matrix of errors for the linear 

scale factor; it is populated with non-zero elements only along the main diagonal (and 

zeros elsewhere). The convention of using subscripts   and   to denote accelerometer 

and gyroscope terms is used throughout Equations (2.2) and (2.3). The term      (with 

either   or   appended to it) is a matrix to correct for non-orthogonal sensor 

configurations. Parameters   ̅ and  ̅  represent ideal signals with no error for 
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accelerometer and gyroscope data respectively. Finally, the vectors  ̅ and  ̅ represent bias 

and noise errors. 

 

It is important to note that most of the parameters used in the models for Equations (2.2) 

and (2.3) can and do shift in time (especially the bias and scale factor terms). 

Temperature in particular can cause such shifts to occur and it is often parameterized as 

part of an error model so that temperature effect on sensor parameters can be adequately 

quantified. 

 

Another important point is that there are sometime non-linear effects (particularly 

regarding scale factor errors) that can be modeled as well for any inertial signals under 

examination. It is sometimes common to have these non-linear effects being modeled as 

if they were quadratic in nature (Farell, 2007). 

2.4.6 Inertial Sensor Calibration 

Inertial sensors are commonly calibrated using a level table and a turn table. The level 

table is used to calibrate the accelerometers. By utilizing a level table and placing 

accelerometer in the positive and negative direction of gravity, as well as perpendicular to 

gravity, bias and scale factor terms can be realized as can any non-orthogonal sensor 

configurations. A turn table can be used to calibrate a gyroscope in a similar manner as to 

how a level table can be used to calibrate accelerometers. A turn table is operating at a 

known rotation rate, so placing gyroscope with their sensitive axis along the positive and 

negative direction of rotation (right hand rule sign convention), as well as perpendicular 
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to the direction of rotation, can generate bias and scale factor terms, as well as detect any 

non-orthogonal sensor configurations. 

2.4.7 Inertial Stochastic Parameters 

It is necessary to model sensor noise for inertial data in many applications. This is 

particularly the case when inertial data are fused with data from another source as 

stochastic parameters tend to be utilized to determine which data source should be 

regarded as more precise. MEMS inertial sensors quite often have their errors 

approximated as random walks (Goodall, 2009). There exist more complex modeling 

techniques, but these are not as useful for MEMS data because the modeling parameters 

often tend to not fit the signal very well, and this is particularly true for short time 

duration signals where complex error phenomena have very little impact on overall 

processing results (Brown and Hwang, 1997; Maybeck, 1982; Vanicek and Omerbasic, 

1999). 

 

A random walk is generated from the integration of white noise and is commonly named 

a velocity random walk (VRW) for accelerometer data and an angular random walk 

(ARW) for gyroscope data. Multiplying a random walk parameter by the square root of 

time will create an estimate of the standard deviation of the signal change (assuming a 

stationary inertial sensor); as such, accelerometer and gyroscope errors from random 

walks are directly proportional to the square root of time. 
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Both VRW and ARW can be found in a straightforward manner as illustrated in El-

Sheimy, Hou and Niu (2008) using Allan variance. A summary is given here, as 

illustrated using Equations (2.4) through (2.6). To begin the process of determining VRW 

and ARW, data must be separated into clusters of length     seconds as follows (using 

clusters of small fractions of a second up to thousands of seconds) 

   (   )  
 

   
∫  ( )  

      

  

 
(2.4) 

Where  ( ) is the signal under evaluation,    is the time at sample  ,   is time and 

   (   ) represents the signal average for the cluster. The cluster length     is the 

product of the number of samples in the cluster,    , and the time interval between data 

samples,   . A subsequent cluster average can be defined as 

        (   )  
 

   
∫  ( )  

        

    

 
(2.5) 

Where      is the next data sample after   . Allan variance can subsequently be defined 

as 

   
 (   )  

 

 (        )
∑ (        (   )     (   ))

 
        

   
 

(2.6) 

Where     is the total number of samples for the data captured and     
   

 
. When 

Allan variance is plotted against cluster length for the lower values of correlation time 

(   ) chosen, a plot similar to what is depicted in Figure 2.4 is found (the slope of the line 

shown in Figure 2.4, and its other characteristics are revealed to exist theoretically in in 

El-Sheimy, Hou and Niu (2008)). 
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Figure 2.4: Allan variance plot to find random walk (   ) 

 Based on the analysis from El-Sheimy, Hou and Niu (2008) 

From Figure 2.4, it can be seen that the slope when Allan variance is plotted on log scales 

against cluster time is about minus one half. To obtain both VRW and ARW (using 

accelerometer data and gyroscope data, respectively) the location on the slope line at the 

point at which cluster time equals one must be read. Random walk is denoted     in 

Figure 2.4. 

2.5 Non-Inertial Motion Capture Techniques 

Even though inertial sensing technology was chosen for the motion analysis undertaken 

in this thesis, it is important to explore other possible motion capture techniques for the 

benefit of future research. These other techniques are laid out in this section highlighting 

advantages and disadvantages of each. 
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2.5.1 Optical Sensing 

Any technique that in a broad sense utilizes emitted light is an optical technique. The 

most common optical involves the use of digital video recording devices. A standard two-

dimensional video camera does not usually capture particularly high resolution images, 

so analysis of only common video data is not going to be likely to generate much useful 

data. For this reason, passive markers (often circular targets affixed to a subject of 

interest) are used to try to improve the amount of possible usable data captured from a 

two-dimensional camera (Cappozzo et al., 1996; Cappozzo et al., 1997; Chang et al., 

1998). Using markers can allow for image analysis techniques to derive useful 

positioning information from captured video data. Without the assistance of markers, it is 

difficult to derive accurate enough positioning information from two-dimensional video 

data alone to provide data for meaningful motion analysis. 

 

More advanced image capture techniques utilize multiple digital video cameras and thus 

have the capability of logging three-dimensional motion information. Many high budget 

Hollywood movies utilize such a technique to generate the best possible information 

while maintaining reasonable flexibility for data capture purposes. Common systems for 

such three dimensional motion capture can have severe limitations. They can be 

expensive to operate and they generally require a controlled environment whereby there 

are multiple sight lines towards markers so that it is possible to obtain three-dimensional 

motion information in a robust and reliable manner. As well, markers on the skin can 

drift due to sweat and this can create a significant challenge particularly if the motion 
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being captured requires a person to attempt something physically demanding that may 

cause them to sweat. 

 

Likely the biggest advantage of optical motion capture (particularly when using markers 

for three-dimensional motion capture) is the quality of the data captured. Such a motion 

capture technique can reliably pick up most movement perceptible to the human eye. 

 

For more advanced systems, active markers can emit infrared radiation which is then 

captured and analyzed. Such systems are even more accurate than passive system which 

simply log data, but they also require that power be somehow transferred to active 

markers so that a signal can be broadcast and this is one of the main factors limiting their 

use. 

2.5.2 Mechanical Techniques 

It is possible to log motion information utilizing mechanical linkages which are affixed to 

and move with the human body; such linkages are called goniometers. Goniometers 

measure angles and changes in angles and electrical versions of these devices, called 

electrogoniometers, use potentiometers and transducers to log changes in joint angles 

(Norkin and White, 2003). 

 

Electrogoniometers are more capable than non-electrical goniometers of logging time 

based motion information and for this reason they tend to be more useful for most 
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applications. Typically, most goniometers are quite inexpensive and easy to use and these 

are some of their strongest features. 

 

Goniometers unfortunately have some very large disadvantages which significantly 

restrict their usage. Likely the most significant disadvantage is that such devices don’t 

create an overall picture of motion since they are only logging motion for one joint at a 

time and therefore they are very limited in their applications for most research. Multiple 

goniometers can, of course, be mounted on a subject; however, this often results in 

discomfort and possibly also can limit the range of motion for a subject under 

examination (Winter, 1990).  Another disadvantage of goniometers is that they don’t 

always move with the body segments they are measuring in an appropriate manner such 

that they are tracking motion (Bontranger, 1998); in such cases, goniometers can produce 

data with significant errors. 

2.5.3 Global Navigation Satellite System (GNSS) 

The modern GNSS systems were first introduced because the United States Department 

of Defense wanted to improve positioning information for military applications; 

consequently, the Navstar global positioning system (GPS) program was launched in 

1973 (Kaplan, 1996). The GPS positioning system was in time adopted for many civilian 

applications and is commonly used today for ocean, pedestrian, automotive and aerial 

navigation. 
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There are many different GNSS systems currently in operation or development including 

GPS (the first such system), Galileo (a European Union based system), GLONASS (a 

Russian global navigation satellite system) and a Chinese system is also currently in 

development. 

 

GNSS positioning in its basic form uses trilateration for positioning. This positioning 

methodology relies on time of flight measurement of signals sent from satellites in orbit 

to receivers on the ground; satellite positions are known in advance. To improve the 

accuracy of GNSS systems, phase differencing is often used; this generally requires 

multiple receivers close to one another on the ground. 

 

Likely the most significant drawback of GNSS systems is that they have significantly 

limited indoor usage. As well, GNSS systems tend to not track small motions well (such 

as tremor motions which are the focus of the research carried out in this thesis). 

 

The greatest advantage of GNSS based system is their ubiquity in outdoor environments. 

As well, new GNSS receivers are small enough to easily fit within a cell phone which 

greatly enhances their usability. 

 

Quite often, inertial data are mathematically fused with GNSS data (usually using a 

Kalman filter) because these two data sets complement each other very well. Inertial data 
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provides poor long term motion tracking data but good data when tracking motion from a 

known location over a short distance. GNSS, on the other hand, does not have the 

movement resolution of inertial data, but can provide much better absolute accuracy 

information (i.e. latitude and longitude). By fusing together inertial and GNSS data, the 

best combination of both data sets can be preserved such that processed data stemming 

from combined data sets has both good absolute accuracy and movement resolution. 

2.5.4 Pressure and Force Sensing 

There are many pressure and force sensitive devices commonly available for movement 

disorder motion monitoring. Most often, these devices are mounted close to a subject (i.e. 

under to foot) or, in some cases, devices can be mounted in the environment that a test 

subject is interacting with (such as force plates that a subject can walk over). In some 

cases, simple switches communicating an on or off state can also be used to log motion, 

but switches are not nearly as useful as pressure devices because if they are not mounted 

carefully for a well thought out experiment, they can remain in the on or off stage 

inadvertently for large duration of a given experiment (Bontrager, 1998). 

 

The main advantages of force and pressure sensitive devices is that they are easy to use 

and they can communicate a very in depth amount of information to researchers. This is 

particularly the case for foot pressure sensitive pads, because inadvertent pressure 

concentrations on the foot can easily be spotted using such a device; it is difficult to 

conceptualize a device that can perform the function of spotting pressure concentrations 

as readily (Hausdorff et al., 2004; Herman et al., 2005). 
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One of the major disadvantages of force and pressure sensitive devices is that they often 

have to be modified to conform to the particular needs of a given subject. For a foot 

pressure sensitive device, for example, it may be required to fit the device to the shape of 

the foot for the person under examination. Another disadvantage of force and pressure 

sensitive devices is that they don’t give an impression of overall motion as readily as 

optical techniques or inertial data.  

2.5.5 Magnetic Sensing 

Magnetic sensing devices monitor the local magnetic field; this is commonly carried out 

in three dimensions and does not require any line of sight observations because magnetic 

fields are ubiquitous. One of the most popular magnetic sensing systems, a 

magnetometer, generally utilizes the earth’s magnetic field. Such a device is ideal for 

personal navigation applications because of its small size (smaller than a penny in some 

cases), light weight, low cost and capacity to operate from a small size battery. 

Magnetometers are the perfect complement to inertial sensors because they provide 

absolute bearing information. Generally, such bearing information is the most critical 

missing component in an inertial navigation setup because all other orientation 

information (regarding inertial orientation above the horizontal) can be inferred from 

stationary accelerometer signals which are partially logging gravity. 
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The main disadvantage with any magnetic sensing device is that it will pick up magnetic 

disturbances and therefore its data can’t be completely trusted; this is particularly true for 

indoor applications. 

 

For higher accuracy applications, a multi-coil source is used for generate a local magnetic 

field. The disadvantage of using this methodological approach is that it can only provide 

local tracking information (so, for example, the methodology can’t be used to track 

someone as they carry out their daily routine). 

2.5.6 Acoustic Sensing 

Acoustic sensing techniques utilize timing of flight information for sound (Welch and 

Foxlin, 2002). One simple technique utilizes reflected sound waves as is depicted in 

Figure 2.5. 

 

Figure 2.5: Acoustic sensing using reflected sound waves 

Taken from Teskey (2007) 

Reference 
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It is difficult to use the technique from Figure 2.5 over a range of more than a few meters 

and the accuracy of such an approach is quite limited. For this reason, carrier phase based 

approaches have also been implemented whereby a signal is recorded at a location whose 

position is sought and the phase of the transmitted and recorded data are examined to 

determine position; unfortunately, such a technique is only good for relative distance 

measurements unless special procedures for data acquisition are followed (Meyer, 

Applewhite and Biocca, 1992). 

 

Even though acoustic techniques are easily implemented, they have significant 

disadvantages. Temperature, pressure and humidity changes in the air, which are 

common due to changes in weather and indoor climate control settings, can significantly 

affect any acoustic system. It is possible to mitigate such difficulties, but it involves 

tracking climatic information over time. Acoustic systems are also strictly line of sight 

systems and multipath can be a problem. As well, to obtain a broad set of data that are 

useful for most motion tracking applications, it is necessary to use multiple receivers 

which can impinge of the ease of use of acoustic systems. 

2.6 Computational Methods 

There was a wide array of computational methods utilized for processing movement 

disorders data because of the large number of potential algorithms in the literature. This 

section begins with an introduction to Kalman filtering and Kalman smoothing; 

techniques that were utilized to decouple accelerometer data from rotational motion 

(accelerometer data are coupled to rotational motion due to the influence of gravity as 
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depicted in Figure 2.1 from Section 2.4 on “Inertial Sensing”). After Kalman filtering and 

smoothing, Fourier and coherence based processing are introduced. These analysis 

techniques focus on frequency based analysis, and coherence processing in particular 

deals with frequency based closeness of two different data streams. 

 

At the conclusion of this section, an analysis methods utilized for tremor mitigation 

(removal) is given; it is the weighted-frequency Fourier linear combiner (WFLC) filtering 

technique. Later in Chapter 6 of this thesis, the results of using this technique for tremor 

mitigation will be given. 

2.6.1 Kalman Filtering 

Kalman filtering is generally used to fuse data streams together taking into account 

associated statistical information (covariance data) for each of the data streams; one of 

the most popular such data fusions is the combination of inertial and GNSS data. An 

advantage of fusing data streams in this manner is that the analysis will tend to improve 

data quality, robustness and precision (robustness in particular can be materially 

improved in the case one data stream becomes partially impaired) (Groves, 2008). 

Another advantage of Kalman filtering is that if there is a significant blunder in one of the 

data stream, it will be easier to spot from the results of the Kalman filtering. The Kalman 

filtering equations that follow here are from Gelb (1974) and Brown and Hwang (1997); 

specifically, what follows is the extended Kalman filter (EKF) whereby non-linear 

equations have been linearized (using partial derivatives) so that data processing can be 

implemented in a much more straightforward manner. The Kalman filtering operations 
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depicted in this thesis are based on a linearization, and the equations resulting from this 

linearization are depicted in more detail later in this thesis in Chapter 4. 

 

The Kalman filtering algorithm uses a system model to track changes to the state space 

variable   ̅   (also known as the state vector, in this case the discrete version of the state 

space vector is presented). For the purposes of the analysis carried out here, discrete 

versions of the Kalman variables are presented because this thesis utilizes digital data 

streams which are more easily processed using discrete analyses. The state vector under 

examination retains information about the system observed (this often includes, for 

example information such a position, although Kalman filters can be applied to a 

multitude of data sources including fluid flow and electrical flow data). It is also common 

for the state vector to contain information about the derivatives of other state vector 

elements; for example, if the position of a system was an element of a state vector, it 

would not be unusual to have velocity (as a derivative of the position examined) as 

another state vector element. 

 

The state vector is typically updated every time step using a dynamic model of the system 

under examination. This is done using       
  

, which is the discrete form of the state 

transition matrix; it must be deterministic (Abeel et al., 2005). The manner in which the 

state vector is updated (using the discrete form of the state transition matrix) is outlined 

in the next sub-section of this thesis. The (non-discrete) state transition matrix is based on 

a linear dynamic model of the system under examination. This model is often obtained 
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from mathematical and physics based understanding about how the system examined is 

likely to behave, and the reason that the state transition matrix is non-discrete is because 

it is generally presented in the form whereby it is taken directly from a system of 

differential equations. There are many ways to discretize the non-discrete state transition 

matrix, as given in Strauss (1992). 

 

The difficulty with using solely the state transition matrix to update the state vector is that 

the system examined can (and does) drift in its behavior from what is considered the ideal 

case presented in the state transition matrix. For this reason, other data (generally, but not 

necessarily measurement data) are collected so that the state vector can be updated based 

on real world events. This other data, or measurement update data, is stored in the vector 

 ̅  . 

 

When update data are used to correct the state vector, it is not always clear whether the 

update data are of high quality. If the update data were perfect data, then the state 

transition matrix could be changed to directly take on the values that would follow from 

the update data, but the update data are very rarely perfect. The state transition matrix is 

also not perfect in its assessment of the system under examination, but it is often derived 

with a very well thought out theoretical development with past experiences in mind. For 

this reason, the state transition matrix does have some valuable contribution to make to 

the values of the state vector and should not be ignored. 
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Because both the state transition matrix and the update data have inherently useful 

information embedded in them, the Kalman filter attempts to use both of these when 

obtaining values for the state vector. To do this, various statistical parameters are used to 

assess the quality of the values produced from the state transition matrix and the update 

data. These statistical values are examined to determine how much different data streams 

should be trusted and a weighted average (based on the statistical data) of data streams is 

used to come up with the best estimate of the state vector. This is outlined further in the 

next sub-section of this thesis. 

2.6.2 Extended Kalman Filter (EKF) Prediction 

EKF prediction operations are typically applied at every sample taken to approximate the 

system under examination. They utilize a mathematical model of the system derived in 

advance of the filtering operation (this is based on the state transition matrix, as 

previously discussed). The state can be updated at each time step as follows 

 ̂ 
  

       
  

 ̂   
  

 (2.7) 

Where subscripts   and     represent subsequent time steps (the convention whereby 

subscripts   and     represent timing information in used throughout the literature 

review discussion of Kalman filtering and smoothing in Sub-Sections 2.6.2 through 

2.6.4). Often a set of terms including  ̅   
  

 ( ̅   
  

 has the same number of elements as 

 ̂ 
  

) are added onto the end of Equation (2.7) to highlight the fact that the state vector has 

noise associated with the values it represents; this noise is assumed to have a zero mean 

and a normal distribution.  
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The covariance matrix of the state vector,     (found indirectly from  ̅   
  

, as shown 

below), can also be updated for subsequent time steps 

  
  

       
  

    
  

(      
  

)      
  

    
  

(    
  

)  (2.8) 

Where superscript   here denotes matrix transpose, as it does throughout this thesis 

document. The expression       
  

    
  

(      
  

)  transforms the covariance matrix at time 

step     into the time step   and     
  

    
  

(    
  

)  incorporates the covariance matrix 

of the system noise (    
  

) at time step     into the covariance matrix of the state 

vector at time step  . The term     
  

 is the noise coefficient matrix at time step     and 

represents how noise,  ̅   
  

, is transferred into the state vector; the projection of such 

noise into the state vector can be taken directly from     
  

 ̅   
  

. As well, the covariance 

matrix of the system noise,     
  

, is equivalent to    ̅   
  

( ̅   
  

)  , where      is the 

statistical operator for expected value. 

2.6.3 EKF Updates 

Kalman filter updates are performed when there is “measurement data” so that the state 

vector can be adjusted for potential inaccuracies. It is important to note that the fact the 

term measurement is used here does not necessarily imply that there were physical 

measurements carried out; the Kalman filtering scheme is flexible enough that physical 

measurements can be directly implanted into the prediction equations from Sub-Section 

2.6.2, as well, measurement data can be representative of other information critical to 

data fusion other than strictly speaking measurements, such as constraint information for 

example. The term measurement is only used here to describe updates based on 
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convention and historical uses of the filter, without necessarily implying limits to the 

flexibility with which the filter can be used. 

 

Measurement updates are generally not performed at every time step, but instead only at 

time steps where there is data available. After an update is performed, the adjusted values 

for the state vector and state covariance matrix are used for the subsequent Kalman filter 

prediction at the next time step. 

 

Updates are performed by utilizing measurements,  ̅   (as noted in the previous sub-

section of this thesis); the measurements are not necessarily directly analogous to values 

in the state vector. As such, the state vector usually must be transformed utilizing the 

design matrix,    , so that it is differences between state values and measurement values 

can be directly compared. The mathematical expression     ̅   expresses the state 

vector in terms of measurements taken. An important point to note is that the design 

matrix needs to be deterministic (Abeel et al., 2005). The Kalman gain matrix,    , is 

utilized so that measurement data can be used to update the state vector in a manner in 

which statistical information down-weights observations with high standard deviations 

and up-weights observations with low standard deviations (this was discussed in the 

previous sub-section of this thesis) 

  
  

   
  

(  
  

)
 
(  

  
  

  
(  

  
)
 

   
  

)   (2.9) 
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The term   
  

 is a covariance matrix of measurement noise and the superscript    here 

represents matrix inverse, as it does throughout this thesis document. The main diagonal 

of the covariance matrix of measurement noise can be populated by utilizing VRW and 

ARW sensor data, which can be found as shown in Sub-Section 2.4.7; the off diagonal 

terms of the covariance matrix of measurement noise are often presumed to be zeros. 

There are, of course, other methods of populating   
  

 when using inertial data, but these 

can be less reliable because they often depend on more complex and difficult to manage 

models of inertial errors (Brown and Hwang, 1997; Goodall, 2009; Vanicek and 

Omerbasic, 1999). The matrix   
  

 is populated using the assumption that the 

measurement data follow a normal distribution. 

 

Utilizing the Kalman gain matrix, updates can be performed to the state vector as follows 

 ̂         
  

  ̂ 
  

   
  

(  ̅
  

   
  

 ̂ 
  

) (2.10) 

And updates to the state covariance matrix can be found as follows 

          
  

 (    
  

  
  

)  
  

 (2.11) 

Where   represents an identity matrix (as it does throughout this thesis document) of the 

appropriate size as to ensure that the subtraction in Equation (2.11) can take place 

appropriately. 

 

The overall algorithm for Kalman filtering can be summarized using the following 

instructions: 
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1. Apply Equations (2.7) and (2.8) at time step   to predict  ̂ 
  

 and   
  

 

2. If measurements are not available advance to the next time step (meaning that 

data at the current time step   will now be representative of data at time step 

   ) and proceed to instruction 1, if measurements are available, proceed to 

instruction 3 

3. Apply Equations (2.9) through (2.11), utilizing measurements and the associated 

covariance matrix of measurement noise to obtain updated terms  ̂         
  

 and 

          
  

 

4. Set  ̂ 
  

 to  ̂         
  

 and   
  

 to           
  

 and advance to the next time step 

(meaning that data at the current time step   will now be representative of data at 

time step    ) and proceed to instruction 1 

 

To insure stability for the above iterative steps, it is necessary to ensure good initial 

estimates of the state vector and covariance; as well, the overall system has to be well 

modeled, which means the state transition matrix has to be representative of the observed 

phenomenon (Gelb, 1974). 

2.6.4 Kalman Smoother 

The Rauch-Tung-Striebel (RTS) Kalman smoother was chosen for implementation 

because of its fast processing capacity (Shin, 2005). The major disadvantage with this 

smoother is that the state vector and its associated covariance matrix as well as the state 

transition matrix information need to be kept for each time step that is evaluated for the 

Kalman filter (Shin, 2005); this is not a material issue for the analysis because modern 
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computers have easily enough storage capacity for what is carried out in terms of data 

processing in this thesis. 

 

The goal of smoothing the data is to remove discontinuities in the processing that occur 

when measurement and update data cause a large shift in the state vector parameters from 

one time step to the next. The smoother optimally adjusts data according to covariance 

information so that if the processing were applied in either the forward (increasing time) 

or reverse (decreasing time) direction, the end result would be identical (Brown and 

Hwang, 1997, Shin, 2005). 

 

It is most convenient to run the smoother in reverse (from the end of the processed data to 

the beginning) and that is what is carried out here. The three equations for the smoothing 

operation are given below, with all new terms defined after in Figure 2.6 

 ̂     ̂ 
  

   ( ̂       ̂               
  

) (2.12) 

       
  

   (                       
  

)  
  (2.13) 

     
  

(      
  

) (      
  

)   (2.14) 

For Equations (2.12) through (2.14),   is the total number of time steps,    is the 

smoothing weighting matrix; as well,  ̂               
  

 and                 
  

 are the state 

vector and associated covariance information for the forward (Kalman) filter after the 
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prediction at time step     is carried out but before the update (for when an update 

exists at time step    ). 

 

 

Figure 2.6: Kalman smoothing flow chart 

Taken from Teskey, Elhabiby and El-Sheimy (2010a) (slightly modified) 

Original figure is available at Sensors and Transducers: 

http://www.sensorsportal.com/HTML/DIGEST/P_616.htm 

Based on analysis from Shin (2005) 

2.6.5 Fourier and Coherence Analysis 

The Fourier and coherence analysis here is based on what is given in Halliday et al. 

(1995). The goal of such analysis is to be able to study frequency based information for 

an individual signal as well as when comparing two signals to one another; this method 

of analysis is very popular when comparing movement and EMG data for human test 
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subjects. During analysis, the frequency spectrum for an individual signal shows how 

much signal content is present at a given frequency, and this is referred to as an auto-

spectrum. When comparing two signals to one another, the cross-spectrum depicts how 

much signals are matching at different frequencies. 

 

In order to facilitate the implementation of appropriate statistical parameters when 

evaluating auto-spectra and cross-spectra, inertial data are split into   segments, such that 

each segment (labeled          ) has unique non-repeating data; as well, each data 

segment has an equivalent length of   samples. Based on these parameters, the discrete 

Fourier transform of a signal  ( ) can be estimated as follows 

  (   )  ∑       ( )

    

  (   ) 

 

(2.15) 

Where   represents angular frequency, which is the product of frequency in Hz and   ; 

as well,   is the imaginary unit and   represent the exponential function. Given the above 

Fourier transform, a cross-spectral estimate ( ̂  ( )) for two signals,   ( )and   ( ), can 

be found 

 ̂  ( )  
 

    
∑   (   )   (   )̃
 

   

 

(2.16) 

Subscripts   and   denote metadata for signals   ( ) and   ( ), respectively, and the 

notation  ̃ signifies the complex conjugate of  . The term  ̂  ( ) signifies how closely 

related signals   ( ) and   ( ) are at each frequency of interest (not taking signal phase 

shifts into account). If signals   ( ) and   ( ) are equivalent, then the cross-spectral 
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estimate from Equation (2.16) becomes an auto-spectral estimate ( ̂  ( )or  ̂  ( )). An 

auto-spectrum is often evaluated to deduce signal frequency distribution; in contrast, the 

cross-spectrum can be made more useful by scaling it at each frequency to give a 

coherence estimate 

| ̂  ( )|
 

 
| ̂  ( )|

 

 ̂  ( ) ̂  ( )
 

(2.17) 

The operator     denotes absolute value of  . Coherence information lacks any 

contribution from signal phase shift parameters, however, these can be found as follows 

 ̂  ( )     { ̂  ( )} (2.18) 

Whereby the phasor angle from cross-spectrum,  ̂  ( ), can be evaluated at each 

frequency of interest to yield phase shift information. 

 

As statistical parameter can be defined to verify that the coherence from Equation (2.17) 

is meaningful. A 95% confidence limit,   , is set up such that a horizontal line can be 

drawn on a plot of coherence (with frequency on the horizontal axis) to show at which 

frequencies signals   ( ) and   ( ) are independent; data above this line show 

significant coherence 

           (   ) (2.19) 

2.6.6 Weighted-Frequency Fourier Linear Combiner (WFLC) Filtering 

The WFLC algorithm is the most used for tremor removal and it is commonly used with 

inertial data as well as data taken from a patient writing on an electronic scribe (Rocon et 

al, 2004). The reason that this algorithm is so common is because it offers zero phase lag 
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real time tremor tracking for human motion; this is a feat that is very difficult to replicate 

(Riviere, Reich and Thakor, 1997; Riviere, Radar and Thakor, 1998). This is particularly 

the case for tracking human tremor, which can vary in both frequency and amplitude 

(Elble and Koller, 1990). Other techniques, such as Fourier based band pass filtering and 

auto-regression based filtering, have a difficult time handling human tremor for real time 

applications (Gonzalez et al., 1995; Prochazka, Elek and Javidan, 1992; Riley and Rosen, 

1987). Before WFLC filtering was introduced, Fourier based techniques were the most 

popular for human tremor analysis (Oppenheim and Schaefer, 1989) but most analyses 

produce mixed results and in particular frequency spectra were not easily interpreted 

(Gresty and Buckwell, 1990). Even when using the short time Fourier transform it was 

difficult to produce quality results because it proved computationally burdensome to find 

a signal segment that could be treated as stable periodic data without reducing frequency 

resolution during processing (Cohen, 1989).  

 

There are two iterative sets of operations carried out when performing WFLC filtering, 

the first set of iterations obtains the frequency for the tremor evaluated (shown in 

Equations (2.20) through (2.24)) and the second set of iterations matches the amplitude 

and phase lock of the tremor component of the signal (shown in Equations (2.25) through 

(2.28)). Unfortunately, frequency realization can’t be performed in isolation, so the first 

set of iterations utilized (at each time step) for the WFLC algorithm provides frequency 

as well as amplitude and phase lock information; the amplitude and phase lock 

information is then discarded and the second set of iterations (also performed at each time 

step) provides new amplitude and phase lock information. 
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It may seem counterproductive and redundant to perform iterative steps in this way, but it 

provides more flexibility when implementing the filter. For example, human tremor 

amplitude can change quickly but tremor frequency does not change as quickly (Riviere, 

1995); so having a two stage filter can more easily allow for adjusting filter weights to 

track both a fast moving amplitude parameter and a slow moving frequency parameter 

(Gresty and Buckwell, 1990). 

 

The WFLC algorithm is similar to an adaptive notch filter and it uses a least mean 

squares (LMS) gradient descent algorithm (Widrow and Stearns, 1985). The stability of 

the algorithm is highlighted in Riviere (1995) and it can be shown that it minimizes mean 

square error between the signal and the estimated tremor from the filter (Widrow and 

Stearns, 1985). 

 

What follows here mathematically for the WFLC algorithm is from Riviere, Reich and 

Thakor (1997) and Riviere, Radar and Thakor (1998). The parameter used to track tremor 

at time step  ,   
    

, is given in the following model for the first set of iterations in the 

WFLC filter 

  
    

 ∑ (     ( ∑     

 

    

)       ( ∑     

 

    

))

     

   

 

(2.20) 
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Where   represents harmonics of the fundamental frequency,   , used for signal tracking 

up to a total of       harmonics; because    can vary from one time step to the next, the 

term     
 is used to describe    at a given time step   . Terms    and    change values 

as optimization is sought for the WFLC algorithm, and in changing values in this manner 

these terms adapt tremor amplitude and phase. 

 

The error,   , between the tremor tracking parameter and signal of interest (  , which is 

previously denoted  ( )) can be found as follows 

        
    

 (2.21) 

Iterative adjustments to the tremor fundamental frequency are made at each time step 
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(2.22) 

The term    affects the speed of iterative convergence but must not be set to a value 

which is too high, lest it create iterative instability. Parameters    and    are iterated as 

follows 
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(2.23) 
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(2.24) 
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The term    is set high if it is desired for each iteration to produce a large change in 

values of parameters    and   ; but as with   , if    is set too high it may create iterative 

instability. 

 

For the second set of iterations in the WFLC algorithm, values previously found for    

(now denoted  ̂ ) are kept at each time step   , and values for parameters    and    are 

discarded. The following equations are then implemented where the subscript        

denotes that terms are implemented in the second set of iterative steps and a new iterative 

parameter    is utilized 
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(2.28) 

The overall algorithm for performing the WFLC filtering operation is as follows 

1. Apply Equations (2.20) through (2.24) at each time step to obtain  ̂  and discard 

values for parameters    and    

2. Apply Equations (2.25) through (2.28) at each time step utilizing  ̂  to obtain 

parameters    and    (i.e. parameters            
 and            

) 
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3. Proceed to the next time step 

2.6.7 Wavelet Analysis 

Wavelets were first utilized extensively in the mid-1980s and quickly became popular for 

a number of applications, including imaging processing, data compression, signal noise 

removal and pattern detection. Wavelets were originally developed with the prospect of 

evaluating a non-stationary signal (Keller, 2004), and from this desire stems one of the 

biggest advantages of wavelets: their time and frequency localization properties whereby 

any desired signal portion can be evaluated with relative ease to study a chosen particular 

frequency or frequencies. It is difficult to achieve this same localization capacity with 

Fourier based techniques while preserving computational efficiencies. In part due to the 

localization capacities of wavelets, they are well suited to removing transient aspects of 

signal noise or disturbances. Disturbances are common with inertial data, often when a 

person inadvertently strikes an inertial sensor against a foreign object. 

 

Wavelets also offer other advantages such as a large number of possible base functions 

from which to pick when analyzing a signal (a base function is utilized as wavelet 

processing analyzes the closeness of a base function to the signal being evaluated). 

Fourier based techniques tend to be more restricted in terms of possible base functions as 

most Fourier based functions are sinusoidal in nature. 

 

A last major advantage of utilizing wavelets is the capacity to easily speed up processing 

if desired. Discrete wavelets are very well suited for this because they use signal 
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information very efficiently. In many cases (but not all) there is no redundancy among 

discrete wavelet coefficients generated when analyzing a signal.  

 

Despite the many advantages cited above, wavelets have not been utilized extensively in 

movement disorder monitoring, and this is the source of a lot of criticism when 

movement disorders research is evaluated by those outside the field (Begg and 

Palaniswami, 2006). One of the major uses of wavelets for motion monitoring is 

frequency spectrum analysis and filtering. An example of this is research conducted to 

help extract tremor motion for a prosthesis utilizing wavelet filtering (Popovic and 

Popovic, 2008). It was found that the wavelet algorithm outperformed a Butterworth 

filter; this outperformance of wavelets holds for when prior tremor frequency information 

is not available. Another paper utilized accelerometers and wavelets to analyze PD 

walking motion by first extracting seven levels of details coefficients and finding 

variances for each of the seven sets of details coefficients; using these variances 

(specifically, their progression slope) fractal dimension estimates were obtained (Sekine 

et al., 2002). The research paper concluded that the analysis carried out was useful for 

evaluation of PD motion. 

 

There are two research papers (among others) that utilize wavelets for differential 

diagnosis of ET and PD. One of these papers utilizes a number of parameters as inputs 

into a back propagation neural network, including motion signal energy parameters from 

wavelet analysis, extracted coefficients from bispectrum based processing and other 
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parameters of interest from empirical mode decomposition based analysis (Ai, Wang and 

Wang, 2008). After the initial neural network associated computations were carried out, 

DS evidence theory was utilized to help differentiate cases of ET and PD with good 

results; unfortunately, the algorithm lacked computational efficiency. Another paper 

utilized a similar approach but without DS evidence theory and with the following inputs 

into a neural network: wavelet based entropy, higher order cumulants and other 

parameters of interest; the results from this paper were not highly accurate (Engin et al., 

2007). 

 

Wavelets generally tend to contain certain properties that help to define them. Such 

properties tend to include having a zero average, oscillatory tendencies and having a zero 

value far from the center of the wavelet function (Keller, 2004). Wavelets must follow 

the following admissibility equation 

∫
| ̂( )|

   
  

 

  

    

(2.29) 

Where the term  ̂( ) is the Fourier transform of the mother wavelet,  ( ). The 

continuous wavelet transform (CWT) provides a very full view signal frequency 

characteristics and a large amount of redundancy is contained in extracted wavelet 

coefficients  (     ). The terms    and    scale and translate, respectively, the mother 

wavelet’s complex conjugate,  ̃( ); the act of scaling and translating the mother wavelet 

data in this way produces daughter wavelets (Mallat, 1989). The continuous wavelet 

transform attempts to measure the degree of closeness between a given signal portion and 
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a scaled mother wavelet and it can be expressed using the following (Goswami and Chan, 

1999) 

 (     )  
 

√  

∫  ( ) ̃(
    
  

)  

 

  

 

(2.30) 

The term   (a subscript of   ) represents the wavelet scale chosen for a particular 

analysis (which can take a value of one up to as large as the duration of the signal allows 

for). Small values of a wavelet scale utilize smaller size wavelets for analysis and 

consequently wavelets scaled in this way focus on data at higher frequencies. Larger 

values of wavelet scales produce wavelets for looking at lower frequencies. 

 

It is often desired to look how wavelets correspond to certain frequencies of interest. This 

is carried out by utilizing pseudo frequencies which are generated to determine the largest 

possible degree of closeness of a particular scaled wavelet with a frequency scaled 

sinusoidal signal. A constant amplitude sinusoidal signal with a selected adjustable 

frequency is utilized for this task and pseudo frequencies are taken directly from the 

frequency of the sinusoidal matching function. An example of a derivation of pseudo 

frequency parameters is given in Figure 2.7 for a Daubechies wavelet of order 2. Within 

Figure 2.7, the Daubechies wavelet and the scaled sinusoidal matching data are 

displayed. 
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         Figure 2.7: Derivation of pseudo frequency for a Daubechies wavelet of order 2 

         Based on analysis from Matlab (2008) 

Mathematically, it would be tedious to derive pseudo frequencies for every daughter 

wavelet given that identical mother wavelets are used within a wavelet family to create 

variously sized daughter wavelets. For this reason, each mother wavelet has a derived 

value called center frequency (   in Hz) which can be scaled to find the pseudo frequency 

values,   , of daughter wavelets (Matlab, 2008) 

   
  

   
 

(2.31) 

The term    is the time interval between samples. 

 

If it is desired to recreate the original signal from the continuous wavelet coefficients 

(which are found in Equation (2.30)), this can be done by applying the following, but 
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only in cases where the wavelet under examination is invertible (Goswami and Chan, 

1999) 

 ( )  ∫ ∫
 

  
 

 

  

 

 

 (     )
 

√|  |

  (
    
  

)       

(2.32) 

In the above,   ( ) is delineated the dual function for  ( ) and must satisfy  

∫ ∫
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(2.33) 

Where    is a time shift parameter and   (    ) is the Dirac delta function. 

 

The main advantage of the continuous wavelet transform is that it allows for a full view 

of the signal under consideration by allowing a user to choose whatever scaling 

parameters suit their needs. Unfortunately, this flexibility comes at the cost of 

computational efficiency which is quite poor for the continuous wavelet transform. 

 

The discrete wavelet transform (DWT) attempts to alleviate concerns about 

computational efficiency while still trying to preserve most of the analysis capacity of the 

continuous wavelet transform. The manner in which the DWT achieves this is by 

processing data for wavelet scales which are powers of two (wavelet parameters at other 

scales are not generated). Many wavelets (including the Coiflet wavelet of order three, 

which was utilized for most of the processing in this thesis) can capture all signal 

information when only evaluating a signal using scales that are powers of two. The 
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process by which this is carried out involves utilization of a series of cascading filters 

which effectively high pass (HP) and low pass (LP) signal information; this is shown in 

Figure 2.8 for three levels of decomposition. 

  

Figure 2.8: Cascading high and low pass filters that compose the DWT 

Based on analysis from Matlab (2008) 

From each level of decomposition in Figure 2.8, two sets of coefficients are produced, 

details coefficients ( (    )) hold information for high passed data and approximations 

coefficients ( (    )) hold information for low passed data to be subsequently 

processed. For terms  (    ) and  (    ), subscripts  ,   and   denote the level of 

wavelet decomposition. The symbolic representation “↓” from Figure 2.8 denotes sub-

sampling which involves taking only every second data point; this sub-sampling can be 

performed without the loss of any signal information so that the high and low pass 

coefficients preserve any signal frequency content. The reason for sub-sampling is so that 

after data at a frequency band are examined and extracted data components are stored in 

details and approximations coefficients, the next set of approximations and details 
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coefficients can be produced to examine data at a different frequency band. High pass 

and low pass filters, respectively, as shown in Figure 2.8, can be applied as follows for 

the first level of decomposition using the counter      to apply the filters (Chan, 1995; 

Heil and Walnut, 1989; Torrence and Compo, 1998) 

  (    )  ∑  ( )    (       )

 

    

 
(2.34) 

  (    )  ∑  ( )    (       )

 

    

 
(2.35) 

Where     (    ) is a low pass filter with an impulse response      and     (    ) is 

a high pass filter; the two filters have a relation to one another and are delineated a 

quadrature mirror filter. The term       in both filters ensures the sub-sampling takes 

place. Subsequent filters for other levels of wavelet decomposition have the same 

structure as what is given in Equations (2.34) and (2.35), but with inputs and outputs are 

depicted in Figure 2.8. The manner in which     (    ) and     (    ) are related to 

the mother wavelet is described in Burrus, Gopinath and Guo (1998). 

 

As a result of the sub-sampling depicted in Figure 2.8, lower frequencies of signal 

analysis have less data than higher frequencies for every subsequent level of 

decomposition carried out. This is depicted in Figure 2.9 by the decrease in the size of the 

rectangular areas along the frequency axis at progressively lower frequencies. Another 

feature of the DWT that is depicted in Figure 2.9 is that the initial level of decomposition 

obtains data for a large frequency range, and subsequent levels of decomposition do not 

cover such a large range. This is implied by Equation (2.31), which can be used to 
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highlight the fact that as the number of scales utilized becomes very high, subsequent 

scales for the next levels of analysis cover only slightly lower values of frequency (this is 

the case even when increasing scales in powers of two). 

 

Figure 2.9: Frequency range and number of coefficients for different levels of DWT 

decomposition 

Based on analysis from Griffiths, Higham and Watson (1997) 

2.7 Summary 

This chapter outlined a thorough overview of different aspects of evaluating movement 

disorders through the use of inertial sensors. The first part of the chapter looked at the 

two movement disorders evaluated (ET and PD) and what is currently known about them. 

It was important to examine this, because given the current state of relatively limited 

knowledge about movement disorders, there is a lot that can be gained from utilizing 

inertial sensors in the formal study of these afflictions. 
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Inertial sensors were then examined to determine how they measure motion and possible 

errors in their measurements. This knowledge will be utilized throughout the remainder 

of this thesis. Other possible techniques for evaluation of movement were also examined 

highlighting benefits and drawbacks of each; these techniques are of significant for future 

work involving motion monitoring. 

 

The last portion of this chapter examined techniques for processing motion data that will 

be utilized through the remainder of this thesis. Fully outlining these computational 

methods is essential for a complete understanding of processed motion data. 
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Chapter 3: Experimental Methods 

 

This thesis chapter first introduces methods of data logging used to capture tremor data. 

Subsequently, equipment and test subjects are examined and relevant information about 

these is given. At the conclusion of the chapter, raw data are plotted and a wavelet based 

spectral evaluation of the data is performed. 

 

There were two types of experiments carried out to determine the tremor behavior of test 

subjects and these are both detailed in this chapter. The first of these experiments 

required test subjects to use their hand to point a laser attached to an IMU at targets on a 

computer screen. This test was chosen for motion analysis specifically because it required 

that subjects used their hand and arm in a manner such that they could not easily restrain 

their tremor by resting their arm on a foreign object. This test was also somewhat similar 

to what medical professionals use for diagnostic tests in that it allows for unrestrained six 

degree-of-freedom hand and arm motion. The main difference between the test carried 

out in this thesis and a test that medical professionals utilize is that the thesis testing 

utilized a randomized set of targets so that subject motion could be evaluated over a more 

diverse set of movements. Medical professionals, on the other hand, often utilize tests 

that require subjects to undergo more repetitive motion, such as first touching ones finger 

to their nose and then stretching their arm out in a lateral postural motion repeatedly. A 

more diverse data set was useful for the analysis carried out here because it allowed for 
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more general description of motion to be stated rather than coming to a conclusion about 

motion that might only be relevant for one particular type of motion. 

 

The other test carried out, in addition to the laser targeting test highlighted above, was 

meant to simulate eating using a spoon; this task was chosen because it is one of the tasks 

that movement disorder patients often cited as being difficult to perform. A major goal of 

the thesis work is to come up with practical methods of mitigating tremor motion, so 

logging tremor motion for a difficult to perform task provided the ideal data set for 

testing tremor mitigation strategies. 

3.1 Laser Targeting Motion Evaluation 

For the laser targeting motion evaluation procedure, an effort was made to seat test 

subjects at a consistent distance from the targeted computer screen before the testing 

procedure was initiated. Subjects were asked to adjust their seat so that when they were 

sitting in an upright position with their arm outstretched, they would be touching the base 

to the computer screen. This is depicted in Figure 3.1 (full permission was obtained from 

the subject shown in Figures 3.1, 3.2, 3.4 and 3.5 for the use of her image in this thesis). 

 

Once the subject had been properly oriented, the testing procedure was initiated. This 

involved the test subject picking up the IMU data logger from the holster (which is 

labeled in Figure 3.2) and directing the laser mounted on the IMU at ten targets on a 

computer screen. These ten targets were labeled “Click 1” through “Click 10” and had 

randomized positions for ten trials (although the same randomized patterns for each trial 
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were used for each test subject). Rulers mounted on the computer screen and protruding 

0.2 meters towards the subject helped to standardize data collection. Subjects were asked 

to keep their hand roughly in a plane parallel to the computer screen and defined by 

points at the end of the rulers utilized. 

 

 
Figure 3.1: A test subject before the initiation of the laser targeting motion 

evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2010a) – Sensors and Transducers: 

http://www.sensorsportal.com/HTML/DIGEST/P_616.htm 

 

At the conclusion of testing, subjects were asked to place the IMU back into the holster. 

This act of placing of the IMU back in the holster at the conclusion of testing was a very 

Laser 
IMU 

x 
y 

z 
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significant part of the instructions given to test subjects because it allowed for Kalman 

filtering constraints to be determined for the motion analyzed. Such constraints, which 

define the beginning and end position and orientation for data collection, allowed for a 

much more accurate analysis of movement once Kalman filtering and smoothing had 

been implemented. 

 

 
Figure 3.2: A test subject during the laser targeting motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2010a) – Sensors and Transducers: 

http://www.sensorsportal.com/HTML/DIGEST/P_616.htm 

 

 

Rulers 

IMU holster 
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A typical set of targets for a given trial are shown in Figure 3.3. These targets were 

placed to lie completely within the computer screen in a non-overlapping manner so as to 

limit visual confusion for test subjects seeking to find the most appropriate next target of 

interest. 

 

The laser targeting motion evaluation produced very high quality results and even 

allowed for a unique diagnostic technique for movement disorders to be created (as 

highlighted in Chapter 5 of this thesis). One of the strengths of the laser targeting test is 

that it logged both postural and kinetic tremor for subjects. This is because subjects often 

had to pause during motion logging as they searched for the next target of interest. When 

pausing in such a fashion, subjects sometimes produced postural tremor motion because 

they had to support the weight of their arm as well as the IMU for the duration of time it 

took to find the next target. The laser targeting motion evaluation also involved the 

logging of kinetic motion as patients moved between targets of interest. 
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Figure 3.3: Typical target positioning for the laser targeting motion 

evaluation 

 

By logging both postural and kinetic tremor, the laser targeting motion evaluation 

provided a rich test bed for tremor analysis. The motion of a patient’s arm was not 

restrained during the test, nor was it easy for patients to rest their arm during the test 

because, as shown in Figures 3.1 and 3.2, the computer monitor used for evaluation was 

placed on the edge of the table directly in front of subjects so as to limit the availability of 

horizontal surfaces that could be used to brace a patients arm during evaluation. Subjects 

were also specifically instructed not to use both hands in any manner for assistance with 

the targeting tasks; only one hand was allowed to grip the IMU. Some patients attempted 
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to brace the arm directing the laser beam with their other arm; when they were told that 

this was not permissible they subsequently stopped using one arm to brace the other. 

3.2 Eating Simulation Motion Evaluation 

The other major test conducted for subjects was the evaluation of eating motion. This test 

was specifically selected because so many subjects had complained about their inability 

to eat food easily (soup and peas were often cited as among the most difficult foods to 

eat). The eating test required patients to pick up the IMU from the holster (as was the 

case for the laser targeting motion evaluation) and, using a spoon mounted to the IMU, 

simulate eating. A subject is shown in Figure 3.4 directly prior to conducting the eating 

test. 

 

For the eating simulation, subjects were instructed to dip the spoon into the plate in front 

of them so as to touch the spoon at the base of the plate (as shown in Figure 3.5). 

Subjects were then to lift the spoon towards their mouth in a manner such that they were 

pretending that soup was inside the spoon (i.e. they were instructed that they should move 

such as not to spill any fluid that could theoretically be inside the spoon). Sterilized 

spoons were utilized so subjects could touch the spoon to their lips (some subjects had 

the spoon come within a few centimeters of their lips without actually touching). 
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Figure 3.4: A test subject before the eating simulation motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011b) 

 

After subjects had simulated ingesting food, they were asked to again dip the spoon into 

the base of the paper plate as if they were to take a second portion of food (again, this is 

depicted in Figure 3.5). After dipping the spoon into the base of the paper plate for the 

second time, subjects were asked to place the IMU back into the holster. 

 

x-axis 

y-axis 

z-axis 
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Figure 3.5: A test subject during the eating simulation motion evaluation 

Taken from: Teskey, Elhabiby and El-Sheimy (2011b) 

 

This testing procedure was created to give an account of motion during food consumption 

that would be as close as possible to what realistically takes place in a real world 

scenario. Generally, when someone is eating they repeatedly move a spoon (or other 

utensil) from the plate to their mouth and back to the plate again. It was not easy to 

perform this action repeatedly because it was preferred to place the IMU back in the 

holster at the conclusion of each trial so as to accurately keep track to the IMU position 

through the use of Kalman filter updates (as described in Section 3.1 on “Laser Targeting 

Motion Evaluation”). The overall eating simulation experimental protocol was created to 

balance the need to achieve high accuracy positioning results and the need to maintain a 

realistic motion profile. This balance was achieved by having subjects perform one full 
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motion cycle before returning the IMU into the holster (i.e. dipping a spoon into a plate, 

simulating ingesting food and then again dipping a spoon into a plate). 

 

The eating simulation motion evaluation produced very good results for typical test 

subject motion in a simulated real world scenario. The test results depicted a lot of tremor 

motion and subjects stated that they felt that what was simulated was generally similar to 

their dining experiences. 

3.3 Test Subjects Utilized 

Test subjects were recruited through movement disorder societies (particularly, the 

Parkinson Society of Southern Alberta) and through contact persons associated to the 

research project who would contact friends and relatives to participate. A total of 11 

controls (people without any inherent movement disorder) were utilized, along with 9 ET 

patients and 30 PD patients. There were 4 male controls along with 6 male ET patients 

and 10 male PD patients; as well, the mean age for controls was 64.1, the mean age for 

ET patients was 64.8 and the mean age of PD patients was 66.1. Associated standard 

deviations for the mean ages are 7.2, 16.2 and 9.2, respectively. Given these statistics, it 

is clear to see that different groups evaluate shared similar demographic characteristics. 

This is important because both ET and PD are highly age dependent disorders. 

 

Many of the patients were medicated (2 ET and 27 PD) and it was not possible to have 

them discontinue medication for the tests carried out because none of the members of the 

team charged with data collected had an adequate medical background. If complications 
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resulted from medication not been taken it could have caused a very serious professional 

and medical difficulties. The fact that so many patients were medicated did not pose 

nearly as much of a problem as would at first glance seem to be the case. For one thing, 

almost all ET patients noted that medication was largely ineffective and the largest factor 

limiting the size of tremor for ET patients (based on conversations with the patients) was 

the fact that their disorder was not so pronounced in the first place. 

 

For PD patients, the effect of medication sometimes wore off quickly. Many patients 

stated that towards the end of the period of time for which they had taken medication its 

effects were almost completely absent. Since PD patients tend to take medication during 

regular intervals (which did not coincide in any way with the testing intervals utilized for 

data collection) the data that were collected represented a group of patients on various 

levels of medication (some were effectively medicated, but many effectively were not). 

When the data collected is analyzed in subsequent chapters of this thesis, effort is taken 

to split off the group of patients whose tremor suggested limited or ineffective medication 

was used during the time interval for which data was collected (i.e. those with a large 

amount of tremor); this group is separated (for analysis) from the group of patients who 

were well medicated or had limited natural tremor (i.e. those with small or insignificant 

tremor). 

 

All subjects utilized gave written consent as per the documentation approved by The 

Conjoint Health Research Ethics Board at The University of Calgary. 
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3.4 Equipment Utilized 

The IMU utilized was designed and fabricated by the Mobile Multi-Sensor Systems 

(MMSS) Research Group at the University of Calgary, in the Department of Geomatics 

Engineering. The unit was designed to be held easily in a hand and had on board data 

logging capabilities using a USB (Universal Serial Bus) compatible data logging card. 

Using such a set up allowed for very fast collection and download of data, it also helped 

to limit the use of wires during data collection which can significantly complicate the 

process of capturing data (the IMU that was utilized is labeled in Figure 3.1). The sensors 

utilized included three accelerometers that were orthogonally mounted (LIS3LO6AL 

from ST Microelectronics (2006)). As well, three gyroscopes were utilized, these were 

also orthogonally mounted (XV-8100CB from Epson Toyocom (2010)). Accelerometers 

and gyroscopes had coincident x, y and z axes as labeled in Figures 3.1 and 3.4. The 

specification for the sensors are given in Table 3.1. 

 

Table 3.1: Inertial sensor specifications 

Parameter LIS3LO6AL (accelerometer 

data) 

XV-8100 CB (gyroscope data) 

Range ±2g* or ±6g* ±100 degrees/s 

Non-linearity ±1.5% of full scale ±0.5% of full scale 

Noise 50 µg*/√Hz 0.004(degrees/s)/√Hz 

Size 5×5×1.6 mm 5×3.2×1.3 mm 

Mass 0.08 grams Not given 

Temperature 

range 

-40°C to 85 °C -40°C to 85 °C 

Taken from ST Microelectronics (2006) and Epson Toyocom (2010) *g is gravity 
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IMU data were logged at 130 Hz. No on board data filtering was used before analog to 

digital conversion. Care was also taken to design simultaneous signal acquisition 

capabilities for the different IMU sensors, so that all data collected for a given time were 

extracted at precisely the same time instant. It is easier to design the IMU hardware if 

simultaneous signal acquisition capabilities are not utilized, but it would have a very 

negative effect on data quality. Since the data captured is utilized later in this thesis 

(Chapter 5) for cross-spectral analysis, it was imperative that simultaneous signal 

acquisition was used. Without this technological capability, many of the data processing 

techniques used in this thesis would not have yielded the significant results that they did 

because cross-spectral analysis generally requires simultaneous signal acquisition. 

Without simultaneous signal acquisition, partial signal reconstruction would need to be 

attempted to be able to use cross-spectral analysis (or another complex mathematical 

technique would need to be used); it is not completely clear if such data processing would 

produce viable results. 

3.5 Wavelet Chosen to Display Frequency Content 

The frequency content for the thesis tremor data is often displayed by utilizing wavelets 

(first introduced in Sub-Section 2.6.7). The particular wavelet chosen for analysis is the 

Coiflets 3 wavelet. This wavelet was selected after an extensive search of all possible 

wavelets given for the Matlab programming environment (Matlab, 2008) showed that the 

Coiflets 3 wavelet often matched well with the tremor signal often under evaluation. The 

Coiflets 3 mother wavelet is given in Figure 3.6). 
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 Figure 3.6: The Coiflets 3 mother wavelet 

 

From the shape of the mother wavelet, it is easy to see why it might be good at capturing 

tremor motion given that its shape is similar to a tremor pulse. The mother wavelet,  ( ), 

is effectively used for the continuous wavelet analysis in such a manner that its complex 

conjugates’closeness with the signal under evaluation is utilized to determine wavelet 

coefficients  (     ), as depicted originally in Equation (2.30). It should be noted that 

since the Coiflets wavelet is not complex, the complex conjugate of the mother wavelet is 

equivalent to the mother wavelet; the term complex conjugate is only used here for sake 

of generalization for when complex wavelets are used. 

 

Given the manner in which the mother wavelet is used (as described in the previous 

paragraph), it would follow intuitively that a mother wavelet with a shape similar to a 

Units of the 

signal 

examined 

(wavelet is 

scalable) 

Dimensions in time or space (wavelet is scalable) 
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tremor signal would be the best candidate for extracting tremor motion from a signal (and 

this is indeed what was found to be the case). 

 

For discrete wavelet analysis, the mother wavelet is not directly utilized, but instead a 

high pass filter,     (    ), is utilized to find details coefficients   (    ) as depicted 

in Sub-Section 2.6.7 on “Wavelet Analysis” 

  (    )  ∑  ( )    (       )

 

    

 
(2.33) 

There exists a relationship between     (    ) and the mother wavelet function,  ( ), 

as they essentially perform the same operation on the signal of interest (the former 

performs this operation in the discrete domain, and the latter in the continuous domain). 

 

The father wavelet function,  ( ), allows for efficiency during discrete wavelet 

processing because it ensures that processing at different levels of decomposition process 

data in a non-redundant manner. Conceptually, if the complex conjugate of the mother 

wavelet can be thought of as been utilized to measure closeness for the signal under 

evaluation, the father wavelet can be thought of as representing what is left over after 

data close in shape to the mother wavelet have been extracted from the signal. The 

Coiflets 3 father wavelet is shown in Figure 3.7 (also sometimes called the scaling 

function). 
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 Figure 3.7: The Coiflets 3 father wavelet 

 

Just as how there is a relationship between the mother wavelet and the high pass filter 

    (    ), there is also a relationship between the father wavelet and the low pass filter 

    (    ) which is utilized in discrete wavelet analysis to produce approximations 

coefficients   (    ) (as described in Sub-Section 2.6.7) 

  (    )  ∑  ( )    (       )

 

    

 
(2.34) 

The Coiflets 3 wavelet has some very specific properties that can be used to define it. The 

mother wavelet must have minimum support size given    vanishing moments and the 

father wavelet needs to contain a specified number of vanishing moments. Vanishing 

moments are defined for the mother and father wavelets, respectively, as follows (Mallat) 

∫      ( )  
 

  
     For          (3.1) 

And 

Units of the 

signal 

examined 

(wavelet is 

scalable) 

Dimensions in time or space (wavelet is scalable) 



81 
 

∫      ( )  
 

  
     For          (3.2) 

Where     is an exponential parameter. The father wavelet also needs to satisfy the 

following (Mallat, 1999) 

∫  ( )  
 

  

   
(3.3) 

Another property of Coiflets mother wavelets is that they are nearly symmetric. 

3.6 Display of Raw Data and Frequency Content 

Raw data displayed in Figures 3.8 and 3.9 ((a) and (b)) depict typical motion for controls 

and ET patients (PD data are similar to ET data). Figure 3.8 shows typical accelerometer 

data and Figure 3.9 shows typical gyroscope data; both figures show data for the laser 

targeting motion evaluation carried out. For the displays in the figures, x-accelerometer 

and y-gyroscope data, respectively, were chosen, because these are two axes of motion 

which depicted among the most tremor data (the x-axis and y-axis, of course, move with 

the inertial sensors that are gathering the data). Eating simulation motion evaluation data 

contained tremor similar to what is depicted for the laser targeting motion evaluation. 

 

One thing that is clear from both Figures 3.8 and 3.9 is that control data depicted less 

tremor than ET data. This is clear looking at both raw signals as well as the signals 

analyzed utilizing a Coiflets 3 wavelet scalogram (at the bottom half of both Figures 3.8 

and 3.9); whiter shades in the scalogram indicate greater frequency content and darker 

shades indicate an absence of frequency content. The scalogram is constructed using a 

continuous wavelet transform. The data depicted in the scalograms clearly illustrate that 

the Coiflets 3 wavelet chosen for evaluation is capable of picking up tremor at the 
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appropriate frequency range (3-12 Hz), given the more frequency rich content in the 

figures for this range.  

 

 

Figure 3.8 (a): X-accelerometer raw data and time-wise spectral distribution 

(utilizing the Coiflets 3 continuous wavelet transform) for a typical control for the 

laser targeting motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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Figure 3.8 (b): X-accelerometer raw data and time-wise spectral distribution 

(utilizing the Coiflets 3 continuous wavelet transform) for a typical ET patient for 

the laser targeting motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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Figure 3.9 (a): Y-gyroscope raw data and time-wise spectral distribution (utilizing 

the Coiflets 3 continuous wavelet transform) for a typical control for the laser 

targeting motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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Figure 3.9 (b): Y-gyroscope raw data and time-wise spectral distribution (utilizing 

the Coiflets 3 continuous wavelet transform) for a typical ET patient for the laser 

targeting motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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Another important point when looking at data in the scalograms for Figures 3.8 and 3.9 is 

that tremor seems to have a high variation (in terms of amplitude) over the duration of the 

signals studied. This was very typical of data captured for the laser targeting motion 

evaluation because as patients moved between targets of interest and subsequently ceased 

moving for a few seconds when arriving at a target of interest; inertial data logged both 

kinetic motion (generally larger tremor when moving between targets) and postural poses 

(generally less tremor when stationary at a target). These different motion phases can be 

seen to a certain extent in Figures 3.8 and 3.9 for ET data. For the ET motion in Figures 

3.8 and 3.9, the tremor signal portions generally indicate kinetic motion and the signal 

portions with fewer tremors tend to indicate a postural pose. 

 

The data given in Figures 3.8 and 3.9 tend to suggest very particular types of motions for 

the subjects examined. X-accelerometer tremor data tends to suggest a motion whereby a 

subject moves their hand in front of them from right to left in an oscillatory fashion. Y-

gyroscope tremor data tends to suggest a motion whereby a subject has a tremor that 

manifests itself such that it is as if they are turning a door knob back and forth 

continuously. Both of these suggested motion profiles (and their inter relationship) are 

explored in detail in Chapter 6 of this thesis; and Figure 6.1 (also in Chapter 6) displays 

the motion profiles described above. 

 

Large signal spikes are evident in the accelerometer data in Figure 3.8 ((a) and (b)), and 

these occurred as a result of patients inadvertently striking the IMU on the table in front 
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of them during data collection. These signal spikes often represent only one data point 

and for the purposes of most of the signal processing carried out, these unitary data points 

representing signal spikes could easily be ignored during subsequent processing and did 

not pose a significant challenge. Such signal spikes are shown here to help illustrate some 

of the challenges of motion captured using inertial sensors. It is generally easier to log 

data with signal spikes and then remove the signal spikes during processing than it is to 

try to log data without any signal spikes (given that it is difficult to restrain patient 

motion adequately so as to remove signal spikes). 

 

The gyroscopes used have a much lower bandwidth than accelerometers (this is typically 

the cases for MEMS sensors); and as a result, gyroscopes were less sensitive to signal 

spikes. This simplified the processing of the gyroscope data. 

 

Another important factor in evaluating the accelerometer data in Figure 3.8 is that the 

accelerometer signals depicted can spend long durations of time at quite a distance from 

zero acceleration because accelerometers pick up gravitational acceleration. Any 

orientation of an IMU that does not align the accelerometers perpendicular to gravity can 

generate a signal offset from zero. Much of the processing in the next chapter of this 

thesis attempts to deal with this tendency of accelerometers to pick up gravitational 

acceleration (which not only affects the accelerometer long term signal offset from zero 

but also the ability of an accelerometer to distinguish between rotational and lateral 

tremors). 
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Gyroscopes don’t contain long term signal offsets from zero in the same way as 

accelerometers do because they are not, for the most part, sensitive to gravity. However, 

gyroscopes are sensitive to the rotation of the earth; but this is a very weak signal and one 

the MEMS sensors often lack the capacity to resolve in a consistent manner. 

 

The accuracy of the tremor data logged (after accelerometer data are processed to account 

for gravitational acceleration) is quite high. Most sources of error have been removed 

from the tremor data largely because of the manner in which the data were logged. For 

example, by having known start and end orientations for data logging (as is highlighted 

by the use of a holster during the trial start and end) it is possible to remove most signal 

biases from the inertial data. This removal of signal biases is possible because when 

inertial sensors are stationary in a fixed known position, there expected signal reading can 

be anticipated and any deviation from this expected signal reading can be assumed to be a 

signal bias. Another major source of error for inertial data, signal noise, does not affect 

tremor data to a large degree because tremor motion tends to produce oscillatory data. 

The signal noise may have a small impact on the magnitude of peaks and valleys of the 

oscillatory motion (without affecting the overall pattern of motion logged very much); 

this has a very small impact on the overall ability of inertial sensors to track oscillatory 

motion. In contrast to the analysis given in this thesis, when inertial sensors are used to 

describe long term (as opposed to oscillatory) position movement for motion tracking 

applications (such as walking), noise tends to be a very large problem because inertial 

signals (and thus noise) are integrated to produce position data for motion tracking. 

Integration of noise tends to dramatically increase errors in processed results. 
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The only major source of inertial signal error affecting the motion tracking capability of 

the sensors when tracking oscillatory motion is scale factor error. There is not complete 

data from manufacturers regarding the size of scale factor errors for the sensors used, 

however, based on a calibration of the sensors carried out just before experimentation to 

gather data, scale factor errors are at most in the low single digit percentages. This 

suggests that the accuracy of the oscillatory motion peaks and valleys is in the 

neighborhood of the low single digit percentages, which is more than adequate for 

assessment and attenuation of movement disorders (this is shown to be adequate for 

assessment in particular later in this thesis when it is shown that ET and PD data are 

different than control data based on objective analysis of the inertial signals captured). 

 

A last important point to note in Figures 3.8 and 3.9 ((a) and (b)) is the large dynamic 

range motions logged directly at the beginning and end of each trial. These motions are 

due to patients pulling the IMU of the holster or placing the IMU back in the holster and 

are not generally representative of the movement disorder motion that the experiments 

conducted were set up to capture. For this reason, the beginning and end of each trial are 

not examined for most of the processing carried out for the remainder of this thesis. 

3.7 Summary 

Laser targeting and eating simulation motion evaluations were reported on at the 

beginning of this chapter. These evaluations allowed for the capture of relevant inertial 

data that contained tremor motion, so that subsequent data analysis could be performed 

(as will be depicted in subsequent chapters of this thesis). 
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Test equipment was also reported on in this chapter and relevant information about the 

data capture hardware was also given. The most important aspect of the hardware is that 

data are captured from all sensors at exactly the same time for each data logging event. 

This allows for cross-spectral signal evaluation in the subsequent chapters of this thesis; 

and it also allows for Kalman filtering and smoothing to take place, as Kalman filtering 

presumes data are logged for each sensor at the same time instant.  

 

After data logging tests and equipment were presented, the wavelet utilized to evaluate 

tremor data was introduced. This wavelet was chosen largely based on its closeness in 

shape with the tremor motion under evaluation. When raw data were presented just 

before the conclusion of this chapter, it was clear that the wavelet chosen for evaluation 

was capable of capturing tremor motion in the 3-12 Hz tremor frequency range of interest 

for movement disorder motion. This wavelet will be used throughout this thesis to 

evaluate signal spectral information. 
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Chapter 4: Data Analysis using Extended Kalman 

Filtering and Smoothing 

 

This chapter of the thesis examines the quaternion based EKF used to carry out a portion 

of the data processing for this thesis. The main aim of this EKF is to remove large 

processing errors in orientation of the IMU used for data logging. Commonly, an EKF is 

used with inertial data to constrain both lateral errors and rotational errors, however, the 

former is not particularly relevant for that analysis in this thesis because tremor motion is 

the main focus of the work and, as such, large errors in overall position are not 

particularly relevant as they don’t affect the lateral tremor signal logged. 

 

On the other hand, rotational errors in the processed IMU data are quite relevant because 

accelerometers pick up gravitational acceleration, which makes isolating translation 

tremor from rotational tremor difficult. This will be further explored in Section 4.1 

below. 

4.1 Need for Kalman Filtering and Smoothing 

Without appropriate information regarding IMU orientation, it is not possible to 

differentiate lateral tremor and rotational tremor logged by an accelerometer; it is 

essential to differentiate lateral and rotational tremor so that subsequent data processing 

conducted will have a greater capacity to track motion. This is principally why an EKF is 

utilized to correct IMU orientation information for the analysis carried out in this thesis; 
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gyroscopes provide some orientation information, but the gyroscope data has too much 

noise to provide accurate results, and thus Kalman filter updates are utilized along with 

smoothing to improve orientation data. 

 

Accelerometers log lateral tremor directly and log rotational tremor indirectly; the latter 

is logged as an accelerometer is rotated about any given vector perpendicular to gravity, 

as shown in Figure 2.1 (in Chapter 2 of this thesis). The logging of rotational tremor by 

accelerometers is caused by the fact that accelerometers are sensitive to gravity induced 

acceleration measurements which vary as a result of rotation. 

 

Accelerometer data can be corrected so that rotational tremor is removed, as shown in 

Figure 4.1, which depicts the processing needed to create a variable only containing 

translational accelerometer data,  ̅ . However, the removal of rotational tremor data from 

accelerometer signals relies on accurate knowledge of the IMU orientation. This 

knowledge is difficult to obtain from only gyroscope data because of noise in the 

gyroscope signal which tends to make long term orientation tracking difficult. 

 

The processing of gyroscope data with an EKF and appropriate supplementary data can 

greatly increase the accuracy of orientation information. For the experimentation 

conducted in this thesis, it is known that the IMU start and end orientation are identical as 

the IMU is situated in a holster at the beginning and end of each trial, which is described 
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in Sections 3.1 and 3.2. The known relative start and end positions of the IMU provides 

Kalman filtering updates which can help to contain long term growth of errors in 

orientation (other updates are also taken for when the IMU is relatively stationary during 

a trial, as explained later in this section). 

  

Figure 4.1: Flow chart for the removal of rotational tremor data from accelerometer 

signals 

Taken from Teskey et al. (2011) (modified slightly) 

 

In Figure 4.1, the term  ̂ represents a four element quaternion vector (where   ̂depicts that 

adjusted quaternion values are utilized) and the term  ̂ represents adjusted values for a 

three by three rotation matrix. Quaternions are examined in detail in Section 4.3 of this 
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thesis, titled “Quaternion Based EKF and Smoother” and Equations (2.7) and (2.8), 

which are referenced in Figure 4.1, are also explained in more detail in Section 4.3 for the 

purposes of applying a quaternion based EKF. As well, the terms in  ̂ can be found 

directly from the terms in  ̂ (and vice-versa), as shown in (Altmann, 1986; Kuipers, 

1999)). 

4.2 Data Processing to Assist with Removal of Gravity from Accelerometer 

Data 

The manner in which  ̂ is applied in Figure 4.1 (in the expression  ̂  ( ̂ ̅   ̅)) is 

intended to remove rotational tremor from accelerometer data. The expression  ̂ ̅ is 

utilized to rotate raw accelerometer data into a consistent coordinate frame. For the 

experimentation conducted, this consistent coordinate frame is typically defined by the 

orientation of the IMU in the holster at the beginning and end of testing (refer to Sections 

3.1 and 3.2 on “Laser Targeting Motion Evaluation” and “Eating Simulation Motion 

Evaluation”, respectively, for the experimental procedure utilized during data capture, as 

well as IMU axes labels). 

 

Once accelerometer data are in a consistent coordinate frame, gravity,  ̅, can be removed 

directly by subtraction ( ̂ ̅   ̅ in Figure 4.1). After the impact of gravitational 

acceleration is removed from the accelerometer data, the remaining data are rotated back 

into the coordinate frame of the IMU at the time step for which processing is being 

carried out by utilizing  ̂  , as shown in Figure 4.1 (the superscript    denotes matrix 

inverse). 
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Data processing results improved significantly when more data (updates) were utilized to 

restrain the growth of orientation errors; these updates were used for Kalman filtering. 

One source of update data (in addition to updates based on the known start and end 

orientation of the IMU) was accelerometer signals when accelerometer data showed 

limited motion during a trial (i.e. for when a subject was relatively stationary when 

holding the IMU). There is no way to definitively separate accelerometer data based on 

whether no motion exists or a state of constant velocity exists, but generally human 

motion implies a lot of signal variation, even if relatively constant velocity human motion 

is being logged; this tendency of human motion to produce variability in accelerometer 

data is what was utilized to be able to use accelerometer data for orientation updates. 

Thresholding was applied to low passed accelerometer data, as shown in Figure 4.1, to 

ensure that during the period of limited motion, accelerometers were mostly measuring 

gravitational acceleration and thus accelerometer signals could be used to help orient the 

IMU about axes perpendicular to gravity. The thresholding applied was utilized for low 

passed accelerometer signals to ensure they were showing little change in magnitude over 

a period of time (thus implying the IMU was stationary); this thresholding was carried 

out using a standard deviation of each inertial signal for a set number of samples. 

Specifically, data within a set number of samples of the current sample under 

examination were used to compute a standard deviation measure (i.e. only data closest in 

time to the sample under examination were used for the evaluation). If the standard 

deviation measure was greater than the threshold chosen, then the current sample would 

not be used as an update, otherwise it would be used as an update. Thresholding criteria 

were not set firmly and were adjust somewhat for different subjects (with different 
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motion profiles) and then end results were checked visually to ensure that only 

accelerometer data during limited motion were used for updates. Motion profiles of 

subjects still affected the signals during relatively still motion segments, and this is why 

an adaptive thresholding criterion had to be used. 

 

As well, a second thresholding criterion ensured that the magnitude of low passed 

accelerometer data (using all three signals) was roughly equal to the magnitude of gravity 

to further help ensure that accelerometer signals were measuring principally gravitational 

acceleration. Typically, a range of plus or minus 0.5 m/s
2
 would be used as a tolerance 

limit such that the accelerometer data signal norm (magnitude for all three accelerometer 

sensors at a given time step) would need to be within 0.5 m/s
2
 of gravitational 

acceleration for this second thresholding criterion to determine that the signal samples 

examined were appropriate to use for updates. Both of the above mentioned thresholding 

criteria would need to be satisfied so that accelerometer data at a given time step could be 

used as an update of orientation information. 

 

The low pass filtering that was applied for the thresholding as described above (and as 

shown in Figure 4.1) utilized the discrete wavelet transform at scale        , 

corresponding to a pseudo frequency,   , of 2.87 Hz based on Equation (2.31). The low 

pass filter cut off of 2.87 Hz was chosen because it was just below the 3-12 Hz range of 

interest for movement disorder tremor, and thus data low passed in this manner would 

have most patient tremor motion removed. This is important because the thresholding 
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applied, as depicted in Figure 4.1, is more effective when utilized with data lacking 

tremor motion. 

 

To apply the filter, discrete wavelet details and approximation coefficients were created 

for each level of decomposition. When the fifth level of decomposition was reached 

(corresponding to a scale of        ), the details coefficients were zeroed for only 

the first five levels of decomposition and the signal was reconstructed using the zeroed 

details coefficients and non-zeroed values for all other approximations coefficients 

created during the decomposition. Refer to Sub-Section 2.6.7 on “Wavelet Analysis” for 

the necessary background information needed to carry out the filtering operation. 

 

One important point to note for the Kalman filtering evaluation carried out in this thesis 

is that the state vector utilized only contains values for the quaternion terms and not 

biases in the gyroscope data. It is common to use a Kalman filter that utilizes in the state 

vector (and thus adjusts) both quaternion terms and gyroscope biases. However, this is 

not necessary for the experiment conducted here because the duration of experiments 

rarely exceeded twenty seconds and biases therefore did not change substantially for the 

duration of a trial; as such, a model of gyroscope signal bias drifts was not necessary.  

 

As well, since we know in advance that the IMU is stationary in a holster directly before 

and after a trial, any non-zero (bias) signal elements could be subtracted directly from the 
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stationary gyroscope signal. As well, IMU orientation is known for the beginning and end 

of each trial and therefore biases can be subtracted from accelerometer data after 

orientation dependent gravitational accelerations are taken into account. Signal bias drifts 

in both gyroscope and accelerometer data sets are assumed linear when comparing 

computed bias values for a signal directly before and after a trial (computed bias values 

are based on stationary data for the IMU in the holster). In practice, for a trial duration of 

twenty seconds, assuming signal bias drifts were linear was adequate to remove most of 

the signal bias error affecting processing results because many other (non-linear) signal 

bias components do not show up in a twenty second sampling interval (they only show up 

for a much longer sampling interval). 

4.3 Quaternion Based EKF and Smoother 

A quaternion formulation for orientation tracking is based on the fact that any orientation 

in three dimensions can be represented by a scalar rotation,   , about a unit vector  ̅ . 

   √          
(4.1) 

 ̅  [
  

  
 

  

  
 

  

  
]
 

 
(4.2) 

The terms   ,    and    represent rotations about the x-axis, y-axis and z-axis 

respectively. A four element quaternion can be written as follows 

 ̅              [
  

  
   

  

 
 

  

  
   

  

 
 

  

  
   

  

 
    

  

 
]
 

 
(4.3) 

The quaternion is the state vector for the analysis carried out. The following is an 

equation for state a priori  predictions for subsequent time steps (from Chapter 2) 
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 ̂ 
  

       
  

 ̂   
  

 (2.7) 

And it can be applied using quaternions as follows (Gibbs and Wilson, 1960; Goldstein, 

1980; Gruben, 1970) 

 ̅  (     
 

 
 ( ̅)  ) ̅    

(4.4) 

Where      is a four by four identity matrix, subscripts   and     denote subsequent 

time steps, and as given in Sabatini (2006) 

                           

 

Where the constituent elements of  ( ̅) represent raw x, y and z gyroscope data at each 

time step, respectively, as follows 

 ̅              (4.6) 

When comparing (2.7) to (4.4), it follows that the state transition matrix,       
  

, can be 

found as follows 

      
  

      
 

 
 ( ̅)    

(4.7) 

The quaternion (state) covariance matrix,    , has the following a priori  predictions for 

subsequent time steps (from Chapter 2) 

  
  

       
  

    
  

(      
  

)      
  

    
  

(    
  

)  (2.8) 
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The three by three matrix     
  

 is only populated along the main diagonal by angular 

random walk values for gyroscopes, found as depicted in Sub-Section 2.4.7 on “Inertial 

Stochastic Parameters”.  These angular random walk values are labeled          
 (   ), 

         
 (   ) and          

 (   ) for x, y and z gyroscopes, respectively. 

       

The term   
  

 can be found by applying the following to (4.4)  

  ̅  
  ̅ 

  ̅
  ̅ 

(4.9) 

Which yields 

                        

 

In the above development,   depicts differentiation and   depicts a small incremental, but 

finite, change in value. 
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Applying Kalman filtering updates can be carried out in the standard manner as given in 

Sub-Section 2.6.3 on “EKF Updates”. As well, Sub-Section 2.6.4 on the “Kalman 

Smoother” describes the procedure for smoothing the data. 

 

One important consideration when applying the EKF updates is that when low passed 

accelerometer data are used to update orientation information (for when the thresholding 

criteria are satisfied) it is not possible to directly apply accelerometer data to update the 

orientation information stored in quaternions. Generally a design matrix,   
  

 from 

Equation (2.10), is used to so that update and state vector values can be put into a form 

that they directly correspond with one another (specifically, state vector values are put 

into a form such that their theoretically corresponding update values can be directly 

subtracted from measurement update data, as is suggested by the form of Equation 

(2.10)). It is difficult, in this case, to use a design matrix for such a purpose because 

quaternion values and accelerometer data do not have a simple mechanism that can relate 

their values to one another. Instead a small angle approximation (specifically,       ) 

is applied to Equation (4.3) and an iterative approach is used to relate the accelerometer 

update measurement data directly to the theoretically corresponding update values for 

the state vector (quaternion), so that Equation (2.10) can subsequently be used as part of 

the update procedure. When the small angle approximation (      ) is applied to 

Equation (4.3) and    and    are solved for, the following is found 

                
  (4.11) 
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The term    can be related to the y-accelerometer signal in that the sin of the y-

accelerometer signal divided by gravity is equal to   . Similarly, the negative sin of the 

x-accelerometer signal divided by gravity is equal to   . This relationship is the standard 

manner in which static accelerometer readings are used to deduce inclination. 

 

Finding theoretically corresponding update values (to put into Equation (2.10)) involves 

taking quaternion values (   and   ) from the state vector and applying Equation (4.11) 

and the above stated relationship between accelerometer data and angular information 

(this will produce theoretically corresponding update values for the x-accelerometer and 

y-accelerometer readings). Because Equation (4.11) is only an approximation, it needs to 

be applied recursively.  There are a number of ways of doing this, and generally they 

involve applying Equation (4.11) to quaternion values to get theoretically corresponding 

update values for the x-accelerometer and y-accelerometer readings. After this, the 

theoretically corresponding update values for the x-accelerometer and y-accelerometer 

are converted into angles (as described above for inclination measurements) and 

Equations (4.1) and (4.3) are applied to check and see how close the theoretically 

corresponding update values for the x-accelerometer and y-accelerometer are at 

producing the correct figures for    and   . Any discrepancy can be found by subtracting 

   and    values found from the (approximation based) estimation technique from the 

original    and    values of the state vector (respectively). Equation (4.11) can then be 

applied to this discrepancy to find the theoretically corresponding update values for the 

x-accelerometer and y-accelerometer that corresponds more closely to the original    and 

   values of the state vector. This technique can be applied recursively as many times as 
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needed to arrive at the final theoretically corresponding update values for the x-

accelerometer and y-accelerometer data, that correspond to the original    and    values 

of the state vector. Subtraction of quaternions from one another is a non-trivial matter 

because one rotation is being subtracted by another (conceptually similar to rotating in 

one direction and then undoing this rotation partly by rotating in approximately the 

opposite direction). Even though this is a non-trivial subtraction operation, it can be 

readily performed and is well understood common knowledge. 

4.4 Display of Accelerometer Data With and Without Gravity’s Impact 

Figure 4.2 shows y-accelerometer data before (solid line) and after (dotted line) the 

effects of gravity are removed for a typical trial involving the laser targeting motion 

evaluation (as described in Section 3.1). Without any gravitational impact, the data after 

the removal of gravity generally are close to the zero acceleration mark, as is expected. 

This result is anticipated because for the remaining accelerometer data after removal of 

the gravitational impact, lateral tremor is the dominant signal and this signal causes an 

oscillatory motion about zero acceleration. 

 

It is also clear in Figure 4.2 that in the original data logged, the subject lifted the IMU out 

of the holster and subsequently tilted the y-accelerometer axis upwards and away from 

the ground causing the y-accelerometer axis to log a signal with a significant deviation 

from the zero mark. The IMU axes directions are defined for experimentation in Sections 

3.1 and 3.2 on “Laser Targeting Motion Evaluation” and “Eating Simulation Motion 

Evaluation”, respectively. 
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At the conclusion of testing, as depicted in Figure 4.2, the subject rotated the IMU such 

that the y-accelerometer axis was somewhat perpendicular to gravity before placing the 

IMU back in the holster. This is shown in the figure by an acceleration signal that 

migrates back towards the zero mark near the conclusion of testing. 

 

To verify that the Kalman smoothing worked appropriately, the accelerometer signal 

needs to be examined before and after gravity’s removal. Accelerometer data with gravity 

removed should mostly depicted lateral tremor if the smoothing operation was successful. 

As shown in Figure 4.2, the smoothed signal behaves in the manner that is expected as 

long term signal deviations from the zero mark, due to the influence of gravity, are 

mostly removed.  

 

Even though Figure 4.2 clearly depicts that the long term deviations due to gravity have 

been removed, it is not easy to tell whether or not rotational tremors have been removed. 

To effectively examine this, spectral data are plotted in Figure 4.3. 
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Figure 4.2: Raw y-accelerometer data before and after Kalman smoothing to 

remove gravity for a typical trial 

Taken from Teskey, Elhabiby and El-Sheimy (2010a) – Sensors and Transducers: 

http://www.sensorsportal.com/HTML/DIGEST/P_616.htm 

 

For Figure 4.3, and much of the subsequent analysis in this thesis, ET and PD data were 

partitioned to differentiate patients with significant tremor from those with limited 

tremor. This was necessary because patients with limited tremor tended to depict similar 

frequency characteristics to controls in many cases. Data were partitioned according to 

their frequency content at a wavelet scale of      (approximately 5.1 Hz based on 

pseudo frequency calculations). This frequency was chosen because it is near the peak 

frequency for many of the patients examined. The mean for absolute values of continuous 

wavelet coefficients was examined for each sensor and test subject at a scale of      
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over the duration of a test. From this evaluation, all mean control data were averaged 

(creating a mean of means) for each sensor to establish a benchmark against which ET 

and PD data could be evaluated. If data for any ET and PD subject was more than one 

standard deviation larger than the benchmark mean control data, then the patient 

evaluated was considered to have significant tremor; otherwise, this patient was 

considered to have limited tremor. To qualify as having significant tremor, patients 

would need to breach one standard deviation above the benchmark mean for at least one 

of the six sensors examined; 8 of 9 ET patients and 9 of 30 PD patients were found to 

have significant tremor. 

 

Figure 4.3 depicts population averaged x-accelerometer data for controls and patients 

with significant tremor (patients with limited tremor had data similar to controls, as will 

be examined in more detail in the next chapter of this thesis). It can be clearly seen from 

the figure that data after the removal of gravity showed lower amounts of tremor. This 

tends to indicate that the Kalman filtering and other mathematical operations applied, as 

shown in Figure 4.1, successfully removed rotational tremor because in order for the 

spectral distribution to decrease in magnitude, some tremor would have to have been 

removed. Figure 4.2 also validates the assertion that rotational motion was removed from 

the data (as can be seen from the fact that long term signal drifts resulting from gravity’s 

impact during rotation motion are removed, as previously mentioned). From the 

combined results of Figures 4.2 and 4.3, it can be presumed that the Kalman filtering was 

applied successfully. Given that the impact of rotational tremor was removed from 

accelerometer data, the remaining accelerometer data in the 3-12 Hz frequency band 
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mostly depicts translational tremor; the Kalman filtering has thus allowed for the 

isolation of translational tremor components for subsequent study. The gyroscope data in 

the 3-12 Hz frequency band generally depicts rotational tremor so it is not necessary to 

process gyroscope data with the same rigor as accelerometer data before subsequent 

frequency analysis can take place. 

 

It is important to note that generally only a small amount of tremor can be attributed to 

rotational tremor and most of the tremor logged by the x-accelerometers in Figure 4.3 

was translational in nature. This can be inferred from the fact that there is only a slight 

difference in spectral magnitude in the figure for before and after when gravity is 

removed from each signal. If a large difference in pre and post processed signal 

magnitude was observed, it would tend to indicate that a lot of rotational tremor had been 

removed as a result of Kalman filtering and subsequent mathematical operations. 

 

The population y-accelerometer data give similar result to what is shown in Figure 4.3 for 

x-accelerometer data. The z-accelerometer data show almost no difference in spectral 

magnitude before and after gravity is removed. This makes intuitive sense since the z-

axis is generally parallel to the gravity vector and the x-axis and y-axis are generally 

perpendicular to the gravity vector during the course of a trial, and thus are more 

susceptible to gravity’s impact. 
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Figure 4.3: Population Coiflets 3 spectral magnitudes for x-accelerometer data 

before (solid line) and after (dotted line) Kalman smoothing and subsequent 

mathematical operations to remove gravity 

Taken from Teskey, Elhabiby and El-Sheimy (2010a) – Sensors and Transducers: 

http://www.sensorsportal.com/HTML/DIGEST/P_616.htm 

 

4.5 Summary 

In this chapter, the idea of why Kalman filtering is needed to process IMU data is at first 

discussed. The phenomenon where accelerometers log both translational and rotational 

tremor (the latter thanks to the influence of gravity) is examined. As well, the inability of 

gyroscope data to provide sufficient orientation information to correct accelerometers 

such that they only display later tremor is discussed. This inability of gyroscope stems 
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from the errors present in gyroscope signals, and necessitates the use of supplementary 

data so that Kalman updates can be performed. 

 

Once IMU data are processed, lateral tremor can be represented by the processed 

accelerometer data,  ̅ , and rotational tremor can be represented by unprocessed 

gyroscope data (both are generally high pass filtered before subsequent processing to 

remove non-tremor data). 

 

At the conclusion of this chapter, raw accelerometer data are depicted before and after 

gravity is removed and the effects of this processing are examined. As well, a spectral 

evaluation of accelerometer data before and after gravity is removed is given. It is 

described that x-accelerometer and y-accelerometer tend to log a small amount of 

rotational tremor, and the z-accelerometer tends to log almost no rotational tremor for the 

experimentation carried out (i.e. the “Laser Targeting Motion Evaluation”).  
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Chapter 5: Characterization and Diagnostic Algorithms 

 

This thesis chapter outlines the algorithms and mathematical techniques used to 

differentiate control from movement disorder data, as well as algorithms used to 

differentiate ET and PD data from one another. All analysis performed uses data from the 

laser targeting motion evaluation outlined in Section 3.1. As well, much of the analysis 

undertaken utilizes the distinction between patients with significant tremor and those 

with limited tremor, as defined in Section 4.4. 

 

Figure 5.1 shows a typical population spectral distribution for control, ET and PD data 

(such spectral distributions will be examined in more detail throughout this chapter). 

There are a few very significant points to note from Figure 5.1. Firstly, the auto-spectral 

distribution for the y-gyroscope data depicted is very similar for both ET and PD patients 

with significant tremor and it is also similar for patients with limited tremor and controls. 

This is not only true of the y-gyroscope data, but other spectral distributions showed 

similar patterns of motion (for each degree-of-freedom). The fact that population spectral 

distributions are similar for ET and PD with significant tremor is not surprising given that 

both are reported to be in the range of 3-12 Hz. For patients with limited tremor, the fact 

that spectral distributions are similar to those of controls validates the use of the 

thresholding outlined in Section 4.4, titled “Display of Accelerometer Data With and 

Without Gravity’s Impact”. This thresholding successfully differentiated between 
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patients with data similar to controls (depicting limited tremor) and those with data that is 

not similar to controls (depicting significant tremor). 

 

One important finding of this thesis is that peak tremor frequency is similar for all six 

degrees-of-freedom of motion for a given subject, and spectral distribution also tends to 

be similar for each degree-of-freedom. This is true for ET and PD patients and this fact is 

not widely report in the literature (if at all). For anyone studying the pathogenesis of 

movement disorders, similar frequency of motion tends to indicate the presence of certain 

biomechanical and neurological phenomenon which will be discussed in Section 6.1, 

titled “Main Axes of Tremor Motion”. 

 

Note also that the frequency band of peak frequency for significant tremor tends to be in 

the expected 3-12 Hz range. This helps to validate that the data capture was preformed 

properly.  
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Figure 5.1: Population y-gyroscope data continuous Coiflets 3 spectral distribution 

Taken from Teskey, Elhabiby and El-Sheimy (2010a) – Sensors and Transducers: 

http://www.sensorsportal.com/HTML/DIGEST/P_616.htm 

 

5.1 Auto-Spectral Fourier Analysis of Tremor 

This section and the next (Section 5.2) focus on the difference between control data and 

movement disorder patient data. Specifically, inertial sensors are examined to determine 

whether auto-spectral based analysis techniques for inertial data can be used to realize 

diagnosed hand tremor. 
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For the purposes of this examination, only ET data for non-medicated patients are 

displayed in Sections 5.1 and 5.2. ET data are more suited to the analysis carried out in 

these sections because of the fact that there are many ET patients who were not taking 

medications (7 of the 9) when compared to PD patients (only 3 of the 30 were not taking 

medications). 

 

The auto-spectral Fourier analysis that follows in Figure 5.2 is based on Equation (2.16). 

The population data for controls are shown with solid lines, and the population data for 

ET patients are shown with dotted lines. Population data are found by adding together 

data for all controls or ET patients at each frequency plotted and dividing by the number 

of test subject in each group to obtain a population average. Accelerometer data plotted 

have had gravitational effects removed as outlined in Chapter 4. As a result, 

accelerometer data presented represent principally lateral tremor and gyroscope data 

represent principally rotational tremor (this is the case for all analysis undertaken for this 

thesis chapter). 
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Figure 5.2: Population auto-spectral distributions using Fourier analysis for 

controls (solid lines) and ET patients (dotted lines) 

Taken from Teskey, Elhabiby and El-Sheimy (2010b) 

 

Population auto-spectra: accelerometer data in (m/s2) 2 and gyroscope data in (deg/s) 2 
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As previously mentioned in this document, population spectral distributions are very 

similar for all six degrees-of-freedom for control data and separately for all six degrees-

of-freedom for ET data. For individual subjects, spectral distributions for all degrees-of-

freedom were also similar. Another important point is that ET patient data tended to 

exhibit significantly more tremor in the frequency band of interest (3-12 Hz); this was 

often one order of magnitude more than controls. 

 

As a result of such similar spectral distributions across all degree-of-freedom, it is likely 

that a single axis sensor could be used for many characterization and diagnostic 

algorithms. It is not necessary to have six sensors if they give such similar information. 

However, later in this chapter, it will be shown that for other applications, having 

multiple sensors is a significant asset. For cases when a single axes sensor could be 

utilized, it would be better to use a gyroscope to avoid cases for when an accelerometer 

captures both translational and rotational tremor, necessitating the use of Kalman filtering 

and other mathematical techniques to differentiate the two types of tremor logged (the 

other alternative is to simply use data with embedded translational and rotational tremor 

components, but this is intuitively and mathematically difficult to deal with). Another 

important point about the data in Figure 5.2 is that the x-accelerometer and y-gyroscope 

generally depicted the most tremor motion. This observation is important for the analysis 

carried out in Section 6.1, its implications are discussed there. Generally, from what is 

given in Figure 5.2, it seems that inertial sensors can be used to help diagnose ET. This 

will be validated in Section 5.2, below. 
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5.2 Wavelet Spectral Analysis of Tremor 

This section validates the use of inertial sensors to assist with the differentiating between 

diagnosed ET and control motion through the use of wavelet based spectral analysis. 

Much of the wavelet analysis depicted is similar to the Fourier analysis from the Section 

5.1. 

 

Wavelets are a generally a better tool (than Fourier techniques) with which to undertake 

spectral analysis for the purpose of differentiating diagnosed ET from control data 

because their computationally efficient time frequency resolution capabilities allows for 

the variation in the size of tremor to be considered during analysis. Such variation of the 

size of tremor is highlighted in Section 3.6, whereby tremor magnitude is shown to 

increase and decrease for tremor patients, often for a few seconds at a time. 

 

In order to carry out testing to verify the difference in inertial data between controls and 

diagnosed ET patients, the following mean ( ̅(   )) and standard deviation ( (   )) of 

absolute values for continuous wavelet coefficients are needed for each member of the 

population examined given      samples per member where             

 ̅(   )  
 

    
∑ | (     )|

    

   

 

(5.1) 
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The term  (     ) denotes continuous wavelet coefficients as defined in (2.30) and 

population members are denoted        , where there exist a total of   members. 

The term defined in (5.1),  ̅(   ), is bolded to distinguish it from a vector which utilizes 

a similar notation, but without bolding (this notation is used throughout this thesis). 

 

Based on each of the parameters defined in (5.1) and (5.2), a Q-Q plot was used so that 

control and ET data could be checked for normality (Gnanadesikan and Wilk, 1968); 

although normality is not strictly needed for the analysis performed, it is good to remove 

obvious outliers so that end results are not skewed. One ET sample needed to be removed 

based on the results of the Q-Q plot, and this sample is depicted in Figure 5.3, with 

abnormally high magnitudes of mean and standard deviation at each given wavelet scale. 

 

Analysis of mean and standard deviation is carried out at a scale of      because this 

was close to the peak population frequency for the ET data (it has a pseudo frequency of 

4.6 Hz). To compare different groups (populations) analyzed (i.e. control and ET) it is 

constructive to find the mean of the means and mean of standard deviations (within each 

group examined), as given below, respectively 
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 ̅ ̅( )  
 

 
∑  ̅(   )

 

   

 

(5.3) 

 ̅ ( )  
 

 
∑  (   )

 

   

 

(5.4) 

As well, the standard deviation of means and standard deviation of standard deviations is 

quite useful and can be found, respectively, as follows 

 

 

From the above, the specific terms being utilized for the analysis carried out are  ̅ ̅(  ), 

 ̅ (  ),   ̅(  ) and   (  ). The results of applying the above analysis (to produce  

 ̅ ̅(  ),  ̅ (  ),   ̅(  ) and   (  )) are shown in Tables 5.1 (a) and (b). What stands 

out is how different the mean values are from one another in the case of both tables 

(when comparing control and ET patient data). Most of the time, the ET mean data (mean 

of mean and mean of standard deviation) are more than double the value of the 

corresponding control mean data (which lie horizontally across from the corresponding 

ET data in both tables). Even in cases when the ET mean data are not more than double 

the control data, they are close to double the control data. Furthermore, the difference 
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between ET mean data and corresponding control mean data tend to lie outside the 

relevant standard deviation values given in the tables (relevant standard deviation data is 

the standard deviation of means and standard deviation of standard deviations data). It is 

clear from the results that non-medicated ET patients have a tremor magnitude and 

variation that is quite a bit different from control data. Based on this, any one of the six 

inertial sensors (three accelerometers and three gyroscopes) used in the examination 

carried out could be used to differentiate between control and non-medicated ET data.  

Another important point stemming from Tables 5.1 (a) and (b) is that as the magnitude of 

tremor increases for the laser targeting motion evaluation, variation of the size of tremor 

also increases. This is evidenced by mean of means data in Table 5.1 (a) showing larger 

magnitudes for ET data over control subject data, which correspond to similar 

discrepancies in magnitude outlined in the mean of standard deviations data in Table 5.1 

(b) (this is described in Section 3.6, where raw data and frequency content are displayed 

and described). The population member data over all frequencies are shown in Figure 5.3. 

The figure largely verifies an ET peak frequency in the 3-12 Hz range. It also verifies 

visually what has been shown above, that the defined wavelet characteristics (based on 

mean and standard deviation for the absolute value of wavelet coefficients) do a good job 

differentiating control data from ET data. The data shown in Figure 5.3 are for y-

gyroscope data, and similar results could be shown for the other sensors. Figures 5.4 and 

5.5 show population results for all sensors. 
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Table 5.1 (a): Group mean of means ( ̅ ̅(  )) and associated standard deviation of 

means (  ̅(  )) for wavelet coefficients at scale 20 

Inertial Sensor Mean and standard 
deviation for 
control data 

Mean and standard 
deviation for ET data 

X-accelerometer (gravity removed) 0.515 ± 0.061 1.285 ± 0.438 
Y-accelerometer (gravity removed) 0.404 ± 0.083 0.885 ± 0.242 
Z-accelerometer (gravity removed) 0.466 ± 0.104 0.980 ± 0.200 
X-gyroscope 9.29 ± 2.66 26.4 ± 8.1 
Y-gyroscope 9.69 ± 2.87 35.0 ± 17.0 
Z-gyroscope 8.79 ± 2.19 31.4 ± 15.9 

Adapted from Teskey, Elhabiby and El-Sheimy (2011a) 

Table 5.1 (b): Group mean of standard deviations ( ̅ (  )) and associated standard 

deviation of standard deviations (  (  )) for wavelet coefficients at scale 20 

Inertial Sensor Mean and standard 
deviation for 
control data 

Mean and standard 
deviation for ET 
data 

X-accelerometer (gravity removed) 0.528 ± 0.070 1.052 ± 0.344 
Y-accelerometer (gravity removed) 0.399 ± 0.078 0.752 ± 0.211 
Z-accelerometer (gravity removed) 0.478 ± 0.082 0.818 ± 0.187 
X-gyroscope 10.09 ± 3.48 22.05 ± 5.55 
Y-gyroscope 10.50 ± 3.17 27.97 ± 12.34 
Z-gyroscope 9.77 ± 2.66 26.01 ± 12.11 

Adapted from Teskey, Elhabiby and El-Sheimy (2011a) 

The most significant things to notice from Figures 5.4 and 5.5 is how similar they are in 

shape to one another for each degree-of-freedom. This further strongly implies that as 

magnitude of tremor increases, variation of the size of tremor also increases. Also, to 

further validate this point, in both sets of plots x-accelerometer and y-gyroscope data 

were the largest in magnitude. 

 



121 
 

 

 

Figure 5.3: Population wavelet coefficient means (from (5.1)) and standard 

deviations (from (5.2)) for y-gyroscope data of controls (solid lines) and ET patients 

(dotted lines) 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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Figure 5.4: Population means from (5.1) for controls (solid lines) and ET (dotted 

lines) 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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Figure 5.5: Population standard deviations from (5.2) for controls (solid) and ET 

(dotted) 

Taken from Teskey, Elhabiby and El-Sheimy (2011a) 
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When comparing Figure 5.4 to Figure 5.2 (a Fourier auto-spectral analysis of the sensor 

data), it is clear that both figures show very similar data (when the manner in which axes 

are labeled non-linearly are taken into account). Virtually all significant data shown in 

Figure 5.4, including the overall shape of the spectral distribution and the peak frequency, 

are shown in Figure 5.2. Both figures also indicate that the x-accelerometer and y-

gyroscope contain the most tremor as shown by spectral magnitude in each of the figures. 

The fact that the data in both figures is so similar strongly implies that for the purposes of 

auto-spectral analysis, the auto-spectral Fourier based technique produces very similar 

results to the wavelet based technique. The main advantage of using wavelets, then, is 

that they easily allow for other parameters to be defined, such as the standard deviation 

based measure shown in Figure 5.5. Fourier analysis generally cannot as easily allow for 

computation of such measures with the same computational efficiency as wavelets 

because Fourier based analysis generally lacks time resolution; therefore, the standard 

deviation based analysis depicted would likely require multiple Fourier analyses at 

different signal time frames (which if very computationally expensive). 

5.3 Cross-Spectral Fourier Analysis of Tremor 

In Section 5.2, above, wavelet spectral analysis was used along with statistical testing to 

show that ET patients with diagnosed hand tremor had a spectral peak magnitude that is 

higher than for control data. In this section, Fourier spectral analysis will be used to show 

that ET and PD data have significant differences for their motion signature (as defined by 

the difference in the pattern of movement consistent with the different groups examined). 

Specifically, spectral properties derived from ET and PD data will be used in a manner 

similar to how they might be applied for diagnostic applications. 
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Cross-spectral analysis is needed to distinguish between PD and ET data because the 

auto-spectrum of these two data sets can quite similar. Figure 5.6 shows population 

Fourier auto-spectral plots using the definition in (2.16). Data are given for the x-

accelerometer with gravity removed (on the top) and y-gyroscope (on the bottom) for the 

laser targeting motion evaluation. These data are generally representative for results of 

data for all six degrees-of-freedom and show that for ET and PD, patients with significant 

tremor had similar auto-spectral distributions over the population, with a peak frequency 

in the 3-12 Hz range. Control data had similar auto-spectral distributions to PD data with 

limited tremor as both data sets depicted relatively little tremor (ET data with limited 

tremor is not shown here because it consists of only one subject under evaluation and this 

is not a large enough sample size to draw any conclusions). The fact that there is an auto-

spectrum of considerably greater magnitude for significant tremor patients than controls 

in Figure 5.6 validates what was found in Section 5.2, where wavelets and statistical 

testing were used to indicate diagnosed ET patients had significantly higher magnitudes 

in there auto-spectral plots than controls. 

 

It is important to keep in mind that a few tremor patients with very high tremors tend to 

distort the population averages depicted in Figure 5.6 upwards (for patients with 

significant tremor). Table 5.2 shows a number of tremor patients with exceptionally high 

tremor (sometimes more than an order of magnitude larger than other tremor patients). 

Despite the variation of size of tremor in the data set examined, the cross-spectral 
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technique presented later in this section to distinguish between ET and PD motion is quite 

robust given such varied data. 

 

Table 5.2: ET and PD patients with exceptionally high tremor 

Subject X-accelerometer auto-spectral 

peak magnitude occurring 

within 3-12 Hz in unit of 

(m/s
2
)
 2
 

Y-gyroscope auto-spectral 

peak magnitude occurring 

within 3-12 Hz in units of 

(deg/s)
 2

 

ET high tremor #1 7.66 8.36×10
3
 

ET high tremor #2 2.75 2.63×10
3
 

ET high tremor #3 2.37 1.25×10
3
 

PD high tremor #1 28.5 6.75×10
3
 

PD high tremor #2 1.77 0.28×10
3
 

Taken from Teskey et al. (2011) 

The population data shown in Figure 5.6 tends to smooth some of the more important 

aspects of PD and ET auto-spectra because population based averages tend to obfuscate 

certain signal characteristics. For this reason, Figure 5.7 shows data for typical ET and 

PD patients while undergoing the laser targeting motion evaluation; x-accelerometer data 

has gravity removed as depicted in Chapter 4. For Figure 5.7, auto-spectral data are 

shown on the top, and coherence (as defined in (2.17)) is shown on the bottom. Data sets 

with two auto-spectral peaks (local maxima) were not uncommon for ET and PD data (as 

shown in Figure 5.7), although ET data generally tend to depict single spectral peaks 

more often that PD data. The main difference noted for PD and ET data is in cases where 

two auto-spectral peaks are shown. For this case, PD data tended to have a frequency at 

auto-spectral global maxima that did not coincide with the frequency at the coherence 

global maxima (as shown in Figure 5.7); whereas, ET data generally depicted that 
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frequency at auto-spectral global maxima that did coincide with frequency coherence 

global maxima.  

 

Figure 5.6: Population auto-spectra for x-accelerometer data with gravity removed 

(top) and y-gyroscope data (bottom) for the laser targeting motion evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011d) 
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As well, PD data generally depicted a frequency at auto-spectral local maxima (but not 

global maxima) that coincided with frequency at coherence local maxima. This highlights 

a significant difference in the signature of motion between ET and PD data that, as far as 

the author knows, has not been discussed elsewhere in literature. 

 

When other sets of two for the six degrees-of-freedom are analyzed (other than x-

translation and y-rotation as depicted in Figure 5.7) very similar patterns emerge, 

although they tend not to be as pronounced as what is shown in Figure 5.7. This is 

principally because the two degrees-of-freedom of analysis chosen for Figure 5.7 

generally capture more tremor motion for the laser targeting motion evaluation carried 

out, and thus these two degrees of freedom show a more pronounced signature of motion. 

The fact that the x-translational and y-rotational degrees of freedom captured more 

tremor is highlighted for the motion observed in the Fourier auto-spectral analysis 

performed in Section 5.1. 

 

It is difficult to determine why ET data has a consistent frequency at auto-spectral and 

coherence global peaks while PD data had a frequency at coherence global peaks that 

coincided only with the frequency of local (but not global) auto-spectral peaks. One 

important note is that the laser targeting motion evaluation that was utilized for the data 

analysis had patients undergoing both kinetic and postural motion, these two different 

motions tended to produce two different sets of tremor. This helps to describe why auto-
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spectral plots had two local peaks (representing two different sets of tremor), but still 

does not fully describe why ET motion has a frequency of maximum coherence at the 

frequency of largest tremor magnitude. The likely explanation lies in the manner in which 

ET and PD are generated neurologically and/or as a result of the biomechanics of the 

human body. 

 

Another important point that can be viewed in Figure 5.7 is that frequency of coherence 

local peaks almost always coincided with the frequency of local auto-spectral peaks for 

any tremor motion evaluated. This suggests a very strong relationship for tremor captured 

among all six degrees-of-freedom; at very least, it highlights that most tremor is of the 

same frequency when acting along multiple degrees-of-freedom. It also tends to suggest 

that ET and PD each have a common frequency neurological source and/or that the 

biomechanical properties of the arm take whatever tremor is produced neurologically and 

cause the hand motion to display a tremor of consistent frequencies. 

 

A last important note for Figure 5.7 is that the horizontal lines for the plot on the bottom 

highlight confidence limits for the coherence analysis, as defined in (2.19). These 

confidence limits imply that any data of greater magnitude coherence (above the 

confidence limit) is significant in a statistical sense. 
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Figure 5.7: Representative individual x-accelerometer data with gravity removed 

and y-gyroscope data for the laser targeting motion evaluation. Auto-spectra are on 

top and coherence is on the bottom. Confidence limits (horizontal lines) are shown 

on the bottom plot, above which coherence is considered significant (ET - upper line 

and PD - lower line). 

Taken from Teskey et al. (2011) 

Auto-
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Table 5.3 summarizes population data for the phenomenon discussed and shown in 

Figure 5.7. The important things to note from the table is the significant difference in ET 

and PD data, with almost all ET data lying in the rightmost two columns of the table and 

PD data almost all lying in the remaining column in the table (together with control data). 

It is important to note that PD has a rate of misdiagnosis of 25% and ET is not precisely 

defined and has an unknown cause or causes (outlined in Sections 2.2 and 2.3), so the 

data in Table 5.3 differentiate between ET and PD data as much as is possible given 

circumstances by which these disorders are diagnosed. In Table 5.3, ET data are 

generally split in two categories, either having a single frequency of local (and global) 

maxima for auto-spectral and coherence plots or having one frequency for coinciding 

global maxima for plots depicting multiple local maxima. PD data generally have non-

coinciding frequencies for global maxima in auto-spectral and coherence plots. 

Table 5.3: Patterns for auto-spectral and coherence plots given x-accelerometer data 

with gravity removed and y-gyroscope data for the laser targeting motion 

evaluation 

Subject type Non-coinciding 

frequencies for global 

maxima and two or 

more local peak 

frequencies for auto-

spectra and coherence 

Coinciding 

frequency for 

global maxima and 

two local peak 

frequencies for 

auto-spectra and 

coherence 

Coinciding single 

frequency for local 

(and global) 

maxima for auto-

spectra and 

coherence 

Control 11 0 0 

ET with significant 

tremor 

1 4 3 

PD with significant 

tremor 

7 1 1 

PD with limited 

tremor 

19 2 0 

Taken from Teskey et al. (2011) 
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An important point to note for the above is that only a few ET patients (2 of 9) were 

medicated while most PD patients (27 of 30) were medicated. This fact does not 

significantly skew the analysis presented above. One reason is that PD patients who were 

medicated often were near the end of active cycle during which medication was affecting 

their motion significantly. PD patients tend to take medication every few hours, and 

towards the end of the period of time for which medication was taken, their tremors 

return. These patients could prevent this by taking medication more often, but they often 

don’t because overuse of medication in the short term tends to lead to its ineffectiveness 

in the long term. As a result, many of the “medicated” patients were showing tremors as 

if they were temporarily off their medication, and that is why so many PD patients were 

showing significant tremor (9 of 30 when only 3 of 30 were not on medication at all). 

This somewhat replicates many studies of PD tremor where patients are asked to go off 

medication for a period of time. 

 

Another note of significance, as illustrated in Figure 5.8, is that coherence magnitudes for 

distributions were very similar for all PD patients whether or not they were in the group 

with significant tremor or in the group with limited tremor. Figure 5.8 shows coherence 

population data for the auto-spectra in Figure 5.6. In the latter figure, population auto-

spectra for patients with significant tremor (ET and PD) are of large magnitude, but 

population auto-spectra for PD patients with limited tremor and controls are of much 

lower magnitude (the one ET patient with limited tremor was omitted from these figures 

because of a lack of an adequate sample size from which to draw meaningful 

conclusions). Based on data from Figures 5.6 and 5.8, controls consistently had low 
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magnitude coherence and auto-spectral distributions, and ET and PD patients with 

significant tremor had large magnitude coherence and auto-spectral distributions. 

However, PD patients with limited tremor tended to have low magnitude auto-spectral 

distributions and large magnitude coherence distributions. 

 

In other words, the fact that medication often limited the size of PD tremor did not seem 

to affect coherence very much. This is a very significant fact that tends to suggest that a 

lot of the underlying neurological mechanisms causing PD are still present even for 

medicated patients with mitigated tremor motion. This fact definitely opens up new 

research avenues in investigating what parts of the signature of motion for PD patients 

are affected by medication and what parts are not. As well, knowledge about how 

medication affects PD could lead to a better understanding of the neurological 

mechanism causing PD. 

 

The confidence limit in Figure 5.8, above which coherence is considered significant, is 

defined mathematically in (2.19). Since each individual data set had its own confidence 

limit, the worst case scenario was chosen for display in Figure 5.8 (i.e. the individual 

subject for which the confidence limit is the highest). In this manner, it can be assured 

that most of the population data shown in Figure 5.8 display significant results. 
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Figure 5.8: Population coherence values for x-accelerometer data with gravity 

removed and y-gyroscope data for the laser targeting motion evaluation. The 

horizontal dashed line (confidence limit) indicates the values above which coherence 

is considered significant for the worst case individual subject (i.e. the subject with 

the highest value confidence limit). 

Taken from Teskey, Elhabiby and El-Sheimy (2011d) 

 

To further validate the results depicted in Figure 5.8, a statistical analysis is performed 

using the peak coherence values in the 3-12 Hz frequency band for the x-accelerometer 

and y-gyroscope data. The statistical testing involves the comparison of the control 

coherence peak values with the peak values of the each of the other three groups 

examined (ET with significant tremor, PD with significant tremor and PD with limited 

tremor) using three separate statistical tests. Three Q-Q plots, corresponding to the three 
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statistical tests, were used to check the data for normality and abnormalities using means 

and standard deviations provided in Table 5.4 (a similar analysis was performed in 

Section 5.2).  All of the data were found to be suitable for statistical testing. 

 

Statistical testing involved the use of Welch’s one tailed t-test; the Student’s t-test could 

not be used because the population variances could not be assumed equal (Walpole et al., 

2002; Welch, 1947). The null hypothesis utilized is that data sets of two groups had the 

same population mean for the individual peak coherence values examined. The statistical 

testing verified that indeed control data have peak coherence values that are lower than 

the other three groups examined. The highest p-value from the statistical testing was 

0.0854 (for PD subjects with limited tremor from Table 5.4). This p-value can be 

interpreted as meaning that there is only a 8.54% chance of seeing the data observed for 

controls and PD subjects with limited tremor if these two groups examined were not 

statistically different. The other two statistical tests provide even lower p-values, 

validating that ET and PD patients with significant tremor are indeed statistically 

different than control patients based on peak coherence values. 

 

An important point to make is that the values for coherence peaks in Table 5.4 are higher 

than the population averaged data in Figure 5.8 because individual coherence peaks did 

not all occur at the same frequency and this ensures that the average coherence values 

over the population are lower than the peak values at any given frequency. 
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Table 5.4: Population mean, standard deviation and p-values for individual 

coherence peaks for x-accelerometer and y-gyroscope data occurring within the 3-12 

Hz frequency band 

Subject type Mean Standard 

deviation 

P-value from Welch’s one-tailed 

t-test (null hypothesis is that 

data sets are statistically the 

same as control data) 

Control 0.480 0.127 - 

ET– significant 

tremor 

0.660 0.143 0.0067 

PD – significant 

tremor 

0.650 0.136 0.0055 

PD – limited tremor 0.548 0.128 0.0854 

Taken from Teskey, Elhabiby and El-Sheimy (2011d) 

The results in Figure 5.8 and Table 5.4 are significant because they help to partly depict 

the pathogenesis of PD tremor. Generally, tremor is considered a neurological 

phenomenon as well as a biomechanical phenomenon. Neurons create the electrical 

signals that generate tremor and the arm itself also affects tremor because it is a 

mechanical device with resonant frequencies and mass-spring-damping coefficients. The 

evidence presented in Figure 5.8 and Table 5.4 tends to suggest a distinct underlying 

neurological cause for coherence in PD. If coherence was a biomechanical phenomenon 

only, one would expect that as tremor amplitude decreased, coherence would also 

decrease. The fact that coherence is still very prevalent at low magnitude tremor suggests 

that the signature of motion for PD is not completely mitigated with medication, and that 

a residue of the PD motion still exists for medicated patients. 
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5.4 Summary 

Section 5.1 utilized Fourier based auto-spectra to show that ET generally depicted more 

tremor data in the 3-12 Hz range that PD. Subsequently, Section 5.2 utilized wavelet 

analysis to show specific tests that could be used to identify ET tremor from control data. 

After it was clear from Section 5.2 that ET data and control data were quite different in 

terms of auto-spectral magnitude, Section 5.3 focused on the use of Fourier auto-spectra 

and cross-spectra for successful differential diagnosis of ET and PD. As well, a 

phenomenon whereby medicated PD patients still showed some of the motion signature 

of PD patient with limited tremor mitigation was explored using coherence data. 

 

This chapter largely focused on diagnosis of ET and PD. The next chapter will focus on 

tremor mitigation and attenuation strategies. 
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Chapter 6: Attenuation Algorithms 

 

This thesis chapter is divided into two sections. The first section details a methodology 

regarding how to quantify the main axes of tremor for the six degrees-of-freedom 

analyzed. This analysis relies heavily on the methodology and data processing outlined in 

Section 5.3 on cross-spectral Fourier analysis; and as a consequence the analysis in the 

first section of this chapter uses the same source data as Section 5.3 (from the laser 

targeting tremor evaluation) and also relies on the results of Section 5.3. 

 

The second section in this chapter outlines how to apply the WFLC analysis for removal 

of tremor in six degrees-of-freedom. To the knowledge of the author, this is the first time 

that such an analysis will be carried out in six degrees-of-freedom for movement 

disorders. This is of particular relevance because the WFLC algorithm is the most 

popular for tremor removal, as outlined in Sub-Section 2.6.6. The WFLC analysis applied 

in the second section of this chapter utilizes data for the eating simulation motion 

evaluation so that tremor removal can be studied for an application in which it could 

realistically be applied. In the case outlined, removal of tremor from eating using a spoon 

could be achieved by placing an actuator between the spoon handle and the spoon head 

such that tremors were not transferred to the food during eating. This could be 

accomplished using inertial feedback to help generate responses to mitigate tremor. 
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6.1 Main Axes of Tremor Motion 

The tremor investigation carried out here follows from the analysis in Section 5.3, on 

cross-spectral Fourier analysis of tremor. This previously conducted analysis showed 

significant coherence between the x-accelerometer (with gravity’s impact removed) and 

y-gyroscope data and noted that x-translational and y-rotational motion had among the 

greatest coherence for any pair of the six degrees-of-freedom analyzed (for the 3-12 Hz 

range). As well, it is known from Section 5.1, on auto-spectral Fourier analysis, that x-

translational and y-rotational motion had among the most frequency content, particularly 

in the 3-12 Hz range of interest. Because x-translation and y-rotational motion show such 

high auto-spectral and cross-spectral values, they are the focus of the analysis performed 

in this section. 

 

Given that local peaks in both auto-spectral and cross-spectral analyses tended to occur at 

the same frequency (as outlined in Section 5.3), it is appropriate to speculate that 

frequencies of tremor were likely identical for the x-translation and y-rotational motion. 

One of the goals of this analysis is to verify such speculation and to determine the phase 

lag between the x-translational and y-rotational motion. 

 

In order to achieve the goals of confirming that tremor occurred at the same frequency for 

the signals analyzed and identifying the phase lag between the signals, (2.18) is applied. 

This equation gives a phase lag estimate and is used to generate the results in Table 6.1. 
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Table 6.1: Population phase lag results in radians for the y-gyroscope leading the x-

accelerometer at peak coherence for the laser targeting motion evaluation                       

( 
 

 
      ) 

Group Mean for phase lag Standard deviation for 

phase lag 

Control 1.31 0.30 

ET with significant tremor 1.25 0.47 

PD with significant tremor 1.55 0.22 

PD with limited tremor 1.54 0.17 

Taken from Teskey, Elhabiby and El-Sheimy (2011c) 

The results shown in Table 6.1 were calculated at peak coherence in order so that the 

phase lag of the tremor data could be evaluated. The results clearly show that the y-

gyroscope leads the x-accelerometer very consistently with a phase shift of 
 

 
; such 

consistent results further validate the presence of tremors for different degrees-of-

freedom that are at the same frequency. It is important to state that three subjects (one 

control, one ET patient and one PD patient with significant tremor) were not included in 

the analysis displayed in Table 6.1 because they did not fit the general pattern of motion. 

Having said this, the consistency of phase lag is quite strong at peak coherence and 

clearly depicts a commonality in how tremor motion is realized for subjects. 

 

Likely the main factor driving such consistent phase lags for the laser targeting motion 

evaluation outlined is anatomical in nature. One strong argument supporting this point of 

view is that control data also depicted a similar phase lag to what pathogenic data 

displayed. If the phase lag was a factor of neurology, it would be more likely that 

pathogenic tremor would behave differently (in terms of phase lag) than control tremor. 

This statement can be validated further by highlighting the fact that all subjects generally 
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share anatomical features, but not necessarily neurological capabilities. Another strong 

argument in favor of an anatomical cause of phase lag is the structure of the human body. 

 

The impact of the anatomy of the human body is highlighted by observations made 

during data collection whereby the subjects all had a much easier time moving their right 

hand (which was used for data collection) to the left while turning it counter-clockwise, 

concurrently; and subsequently, subjects tended to move their hand to the right while 

turning it clockwise concurrently (motion was along the x-axis and about the y-axis). 

This motion is defined for when looking into the page for Figure 3.1, which outlines data 

collection (i.e. motion is defined when looking at the subject from behind for the laser 

targeting motion evaluation). The tremor motion highlighted is common due largely to 

the structure of the human arm, in that it tends to move more easily in the manner 

outlined; whereby the subject is moving their hand from side to side at the same time as 

turning their hand so as to open a door knob. This motion is shown in Figure 6.1. 

 

 

Figure 6.1: The largest two tremors are shown for the laser targeting motion 

evaluation 

Taken from Teskey, Elhabiby and El-Sheimy (2011c) 
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To verify that the motion shown in Figure 6.1 is consistent with the result in Table 6.1, a 

mathematical analysis is performed. This analysis verifies that subjects move their hands 

to the left while turning them counterclockwise and to the right while turning them 

clockwise during tremor (when looking into the page for Figure 6.1). A sin wave can be 

used for the mathematical evaluation 

          (6.1) 

Where the term      is the amplitude of the sin wave in question. This sin wave can be 

either depicted lateral or rotational tremor; the former will be chosen for analysis first. 

Lateral tremor was depicted by accelerometer data, as such, any lateral motion much be 

differentiated twice so that the logged accelerometer data can be appropriately 

represented. This is given as follows 

  

   
(           )          

       
(6.2) 

Where        denotes amplitude for a lateral tremor. Note that the signal phase for the 

lateral tremor is shifted by   after differentiation, representing that lateral tremor and 

lateral acceleration are out of phase by   radians; lateral acceleration is, of course, what 

is logged by accelerometers. 

 

Rotation data are initially out of phase with lateral motion data by   radians using a right 

hand rule sign convention. This can be implied from hand motion to the left while turning 

counterclockwise and to the right while turning clockwise during tremor (when looking 

into the page for Figure 6.1). As well, gyroscope data measure rotation rate and thus can 
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be represented by differentiating rotation motion once (as opposed to twice, which was 

the case for obtaining acceleration information from lateral motion). When taking the two 

aforementioned considerations into account, the following can be written 

 

  
(            )                

(6.3) 

Where        denotes amplitude for a rotational tremor. When comparing (6.2) to (6.3), it 

can be stated that for the motion observed of test subjects, the y-gyroscope signal should 

lead the x-accelerometer signal by 
 

 
, and this is indeed the case when examining the 

results in Table 6.1. 

 

The implications of the fact that it is possible to deduce closeness of tremor motion 

among the six degrees-of-freedom are quite significant. It is very important to know how 

tremor manifests itself if mitigation is to be carried out. Firstly, knowing the axes along 

which tremor acts most strongly are important considerations because this is where 

efforts to reduce tremor should be targeted. Secondly, knowing how different tremors 

logged relate to one another, specifically in terms of phase, can also add very significant 

information for anyone designing a tremor mitigation apparatus. 

 

For the case of the motion analyzed here, it was found that hand motion to the left while 

turning counterclockwise and to the right while turning clockwise was present during 

tremor (when looking into the page for Figure 6.1). Knowing this, a mitigation strategy 



144 
 

might involve an actuator designed to eliminate both of these tremors concurrently, since 

they are likely anatomically linked. 

 

Even when designing a passive feedback system, information about the magnitude and 

phase of tremor for different degrees of freedom would be very useful. This data could be 

gathered for drinking motion, for example, by having a subject drink water with a cup 

that had inertial sensors attached. These sensors (capturing all six degrees-of-freedom of 

motion) would be able to provide data about tremor magnitude along different axes and 

how these tremors were related to one another in terms of phase and frequency. Once this 

data were known, it would be possible, using fluid dynamic analysis, to optimize a design 

of baffles to limit the most significant tremors present for patients drinking. 

 

There were other significant tremors that were correlated for the six degrees-of-freedom 

examined. In general, tremors tended to share the same frequency for given signal 

portions, and this was particularly true as the magnitude of tremors increased. For this 

reason, the most significant phase data available, between different degrees of freedom, 

stems from data that generally had a large amount of tremor. 

 

One common phase relationship that occurred was for the z-gyroscope leading the x-

accelerometer signal by 
 

 
 radians (in much the same way as how the y-gyroscope signal 

led the x-accelerometer signal by 
 

 
 radians). This z-gyroscope relationship with x-
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accelerometer data commonly occurred when subjects griped the IMU from underneath 

(from its positive z-axis, given axes labels in Figure 6.1). Such a grip was not as common 

as when subject gripped the IMU from behind (from its positive y-axis, given axes labels 

in Figure 6.1). Nevertheless, whichever grip was chosen tended to dictate the motion 

pattern logged. If subjects gripped the IMU from behind, then there was a similar 

frequency in x-accelerometer and y-gyroscope data (as well as a significant phase shift). 

If subjects gripped the IMU more from underneath, then there was a similar frequency in 

x-accelerometer and z-gyroscope data (as well as, again, a significant phase shift). In both 

cases, the gyroscope data led the accelerometer data by 
 

 
 radians. 

 

Hand grip also affected the relationship between the x-axis and y-axis lateral tremor. 

These two tremors were strongly in phase for when subjects wrapped their hand around 

the left side of the IMU (this is the negative x-axis side of the IMU in Figure 6.1). The 

reason that this in phase relationship occurred was because when subjects wrapped their 

hand around the left side of the IMU, the y-axis of the IMU started to capture data that 

would normally be logged almost completely by the x-axis of the IMU. In other words, 

the x-axis tremor being logged was quite similar in many cases, but when the IMU 

positioning shifted, a stronger phase relationship was present between the lateral motion 

along the x-axis and y-axis. From these results, it is obvious that test subject grip on 

inertial equipment is very important when logging tremor data and great care should 

always be taken to obtain consistent results. 
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All of the tremors detailed thus far have focused on the relationship between the x-lateral 

tremor and the y-rotational tremor and other data logged from the same relationship due 

to the test subject grip of the IMU. However, there is a second fundamentally different 

type of tremor that occurred for the data logged, and this involved a tremor for z-

translational and x-rotational motion. These two tremors were out of phase by   radians. 

This kind of phase relationship implies a downward (positive z-axis) motion occurring 

concurrently with a negative x-axis rotational motion (using a right hand rule sign 

convention). The motion captured is thus similar to a cat digging its claw into an object, 

thrusting downwards and inwards toward an object. 

 

It is interesting to note that there were really only two predominant tremor motion 

profiles that occurred. One involved a side to side hand motion with a door knob opening 

motion occurring concurrently and the other involved a clawing motion, as if thrusting 

downwards and inwards into an object repeatedly. Aside from tremor mitigation, which 

will be explored further in the next section of this thesis, a lot of useful data for 

understand both the neurological and anatomical reasons for certain types of tremor 

motion could be explored based on what was presented here. 

6.2 WFLC Based Filtering 

The WFLC filtering analysis here was outlined in detail in Sub-Section 2.6.6. It uses 

iterative steps to solve for frequency, amplitude and phase lock for the signal under 

evaluation. This analysis method is the most popular for human tremor attenuation, 

particularly because it can be implemented in real time and because it offers zero phase 
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lag filtering, both of which are very significant considerations for tremor mitigation. In 

fact, the WFLC algorithm works well enough that is has been used to successfully 

remove tremor from a surgeon’s hand (Riviere, Radar and Thakor, 1998). 

 

The data collected for WFLC analysis is for the eating simulation motion evaluation, as 

outlined in Section 3.2. This movement was captured for WFLC analysis because it 

contained data for which tremor could be realistically mitigated. For example, as 

mentioned at the beginning of this chapter, it is possible to put an actuator between the 

head of a spoon and its handle that utilizes real time inertial feedback to help reduce 

spillage of food. 

 

The data processing utilized first separated lateral tremor from rotational tremor, as 

outlined in Chapter 4; this required signal analysis so that x-accelerometer data could 

become representative of lateral tremor. Gyroscope data generally don’t need much 

modification as they mostly represent rotational tremor in their raw form. To achieve the 

desired signal modification, Kalman filtering and smoothing was employed, as outlined 

in the top half of Figure 6.2 (which is a summary of the Kalman filtering and smoothing 

analysis depicted in Figure 4.1). 

 

After Kalman filtering, a critically damped filter was employed to attempt to remove 

intended motion from subjects so that principally tremor motion remained (shown in the 
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bottom half of Figure 6.2). Once this was carried out, a WFLC filter was used for tremor 

signal approximation, and then tremor removal was carried out from the lateral and 

rotational tremor data. At the conclusion of data processing, continuous wavelet spectral 

analysis was applied to determine how effectively lateral and rotational tremors were 

removed using the WFLC filter. 

 

Figure 6.3 displays the typical application of a critically damped filter to raw gyroscope 

data depicting rotational tremor. The application of the critically damped filter to 

translational tremor data (found from accelerometer data with gravitational impact 

removed) gives very similar results. The filter produces real time results in a manner 

somewhat similar to what a low pass filter would provide. The critically damped filter 

was chosen because it performed best when compared to a number of possible 

alternatives (Gallego et al., 2009). 
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 Figure 6.2: Flow chart for WFLC data processing 

 Taken from Teskey, Elhabiby and El-Sheimy (2011b) 
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The critically damped filter performs an operation similar to a least squares straight line 

fit, but with newer data being given a higher weight than older data (i.e. data more 

recently logged in real time operation has more impact on the fitting parameters than data 

logged further in the past) (Brookner, 1998). Adjusting the value of the filter parameter 

that controls how much influence recent data have on filtered results (relative to older 

data) needs to be done with care. If older data are given too much influence on the 

filtered results, than quick signal movements are not tracked appropriately. On the other 

hand, if newer data are given too much influence on the filtered results, than most of the 

tremor in the filtered signal remains and the filter does not adequately remove unwanted 

data. A balance needs to be struck so that filtering can be carried out to remove tremor 

data while still tracking quick signal movements. The data shown in Figure 6.3 depict 

filtering after adjustments have been made to optimize signal tracking capabilities. 

 

Figure 6.3: Critically damped filtering to remove intended motion depicted 

using representative data from the z-gyroscope 

Taken from Teskey, Elhabiby and El-Sheimy (2011b) 
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After critically damped filtering has been applied, the remaining data can be processed 

using the WLFC algorithm, which tracks tremor. Adjustments need be made for this 

algorithm so that tremor tracking does not cause instability during processing. Because 

the WFLC algorithm is a gradient descent based approach, one of the most significant 

parameters that can be adjusted controls the speed at which the algorithm converges. If 

this velocity parameter is set too high, then instability may result from processing. On the 

other hand, if this parameter is set too low, then the algorithm may not obtain a lock on 

tremor and may not adequately track the signal. As was the case for the critically damped 

filter, the WLFC algorithm requires a balance to be struck so that the algorithm does not 

converge on the signal to aggressively or too slowly. Figure 6.4 shows the WFLC typical 

tracking capability by isolating a signal portion from Figure 6.3; it can usually follow the 

tremor fairly closely, which helps to achieve the best tremor mitigation results. 

 

Figure 6.4: WFLC filtering to track tremor, as depicted using representative 

data from the z-gyroscope 

Taken from Teskey, Elhabiby and El-Sheimy (2011b) 
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The results given in Figures 6.5 and 6.6, for typical accelerometer (without gravity’s 

influence) and gyroscope data respectively, tend to validate the use of the WLFC and 

critically damped filters as they are presented here. For all three data sets utilized, 

including controls, as well as ET and PD patients, the results from utilizing the filters 

outlined tend to suggest that tremor in the 3-12 Hz range was significantly reduced. In 

fact, all three patient data sets tend to show results whereby data in the 3-12 Hz range 

have a smaller spectral magnitude after tremor removal than data for controls had before 

tremor removal. This highlights the fact that tremor was largely removed from the data. 

 

Figure 6.5: Coiflets 3 continuous wavelet analysis to analyze filtering 

capabilities using representative data from the x-accelerometer (with 

gravity’s impact on the signals removed) 

Taken from Teskey, Elhabiby and El-Sheimy (2011b) 
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It should be noted that only ET and PD patients with significant tremor have had their 

data plotted. The patient data that showed limited tremor did not deviate from the data of 

controls very much when the spectra were plotted as given in Figures 6.5 and 6.6. The 

terms significant tremor is used here as it was defined in Section 4.4, when data from the 

laser targeting motion evaluation were examined before and after Kalman filtering (this 

same definition has been used throughout this thesis). Even though the analysis here is 

based on a different data set than the laser targetting motion evaluation, the patients who 

exhibited the most tremor did not change substantially when comparing across datasets. 

For this reason, the same definition of significant tremor is used here to make comparison 

among different thesis sections more straightforward. 

 

Figure 6.6: Coiflets 3 continuous wavelet analysis to analyze filtering 

capabilities using representative data from the x-gyroscope 

Taken from Teskey, Elhabiby and El-Sheimy (2011b) 
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The filtering algorithms performed very similarly for all translational and rotational 

tremor depicted. This was not surprising given that in Chaper 5 it was shown that data 

collected for motion along the six degrees-of-freedom showed similar spectral properties. 

As such, it would follow that one should expect tremor removal to operate in a similar 

manner for all six degrees-of-freedom analyzed. 

 

One of the unfortunate drawbacks of the filtering utilized is that it did not allow data 

above 12 Hz to go through processing unaltered, which would be ideal since it is the 3-12 

Hz range which was targeted for tremor removal. The reason that some of this higher 

frequency data were removed was due to the WLFC filtering responding to this data. 

Although removal of this higher frequency data was not ideal, it does not pose a risk to 

the overall performance of the filtering outlined because limits of the capabilities of 

mechanical equipment would likely results in data above 12 Hz largely going unfiltered 

for any real world application. In fact, often some kind of thresholding is utilized in real 

world applications to limit the types of movements that software can request from 

mechanical equipment so as to stay within the equipment’s operational range. 

 

A much more significant concern for the processing outlined is the inability to leave low 

frequency data, below 3 Hz, unaltered. This is largely the result of the critically damped 

filter not adequately tracking intended motion of subjects. It is unlikely that for real time 

applications the problem of tracking this intended motion will be solved any time soon. It 
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has been a topic of significant research for many years and it is difficult to find adequate 

replacements to the filtering algorithms given here (Rocon et al., 2004). 

6.3 Summary 

The analysis presented in this thesis chapter highlighted the attenuation (mitigation) 

methodologies for tremor removal. In the first section of the chapter, the analysis carried 

out detailed the tremor phase shift between the motion axes (for all six degrees-of-

freedom) along which tremor was acting. Not only did this highlight that tremor was 

largely acting with a given phase shift between pairs of the six degrees-of-freedom of 

motion, but is also further verified that tremor motion occurs at similar frequencies for 

the different degrees-of-freedom under examination. This information could assist with 

designing tremor mitigation equipment by, for example, suggesting a design of actuator 

that can cancel out all tremor acting along multiple axes. 

 

The second section of this chapter focused on removal of tremor utilizing the critically 

damped and WFLC algorithms (no actuator was used for this; tremor removal was 

undertaken on tremor signals logged from subjects instead). These algorithms were 

generally quite capable of removing tremor for all six degrees-of-freedom analyzed. The 

biggest difficulty for data processing was the unwanted removal of data outside of the 3-

12 Hz range targeted, particularly low frequency data. Given that preserving patient 

intended motion (generally below 3 Hz) has been a significant research topic for many 

years without complete resolution, it stands to reason that the algorithm presented here 
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for tremor removal is among the most capable. This algorithm was presented here for the 

first time given data in six degrees-of-freedom. 
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Chapter 7: Conclusions and Recommendations 

 

This thesis began with a literature review (Chapter 2) of movement disorders, including 

different aspects the diseases under consideration (ET and PD), various motion capture 

technologies that could be used to track the motions and computational methods for 

evaluating the data captured using inertial sensors. The next chapter (Chapter 3) focused 

on the inertial data capture techniques from volunteer subjects (ET, PD and controls) and 

this was followed in Chapter 4 with methods outlining Kalman filtering and smoothing 

used the help remove the gravitational impact from accelerometer data (i.e. to obtain 

filtered accelerometer data in which most information remaining is representative of 

lateral tremor). Characterization and diagnostic algorithms where then highlighted in 

Chapter 5, and the main finding displayed that ET and PD data have unique signatures of 

motion that can be used to potentially diagnose ET and PD cases. Chapter 6 focused on 

attenuation algorithms and displayed that not only is attenuation possible, but finding out 

what motion characteristics to design for in six degrees-of-freedom is also possible. 

 

In conclusion, the main overarching goals of the thesis were achieved. It was shown that 

inertial sensors can be used for assessment (assistance with diagnosis) and attenuation 

(active mitigation) of movement disorder motion. The specific objectives realized allow 

for such a conclusion to be drawn, and these are outlined in the next section of this thesis 

on the following page. 
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7.1 Objectives Realized 

From all of the analysis highlighted, there were a number of unique objectives that were 

realized for the research undertaken. These objected were first outlined in Section 1.1. 

 

One of the key objectives outlined was to create diagnostic methodologies for 

assessment of movement disorder motion; specifically to provide differential diagnosis 

techniques for when comparing ET and PD data. This task was accomplished within the 

error rate possible given imperfect capabilities of medical professionals to objectively 

classify the differences between ET and PD motion. Diagnostic methodologies are given 

in Chapter 5, and are based on auto-spectral and cross-spectral plots of test subjects when 

comparing data for the six degrees-of-freedom analyzed. 

 

Another realized objective was to process and comprehensively analyze tremor data for 

six degrees-of-freedom of motion. This goal was realized in that accelerometer data were 

processed in a manner such that data remaining in the 3-12 Hz frequency band after 

filtering represented largely lateral tremor motion. Gyroscope data generally did not 

required extensive processing because in the 3-12 Hz band of interest they mostly 

captured rotational tremor motion. The processing of accelerometer data to obtain lateral 

tremor information is highlighted in Chapter 4. 
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Six degree-of-freedom analysis provided a lot of benefits when analyzing processed data. 

For one thing, it allowed for the development of a simple technique for differential 

diagnosis of ET and PD (as outlined in Chapter 5). Another important fact is that in order 

to mitigate movement disorder motion, its characteristics need to be known and this 

generally requires six degree-of-freedom analysis (unless an orthosis is used, such that 

patient motion is significantly restrained). The WFLC analysis carried out in Chapter 6 

has an added significance in that the six degree-of-freedom application of this analysis 

means that it could be readily applied in a real world scenario. 

 

The third and final major objective realized in this thesis was algorithm validation for 

attenuation (removal) of tremor. The validation was carried out in Chapter 6 which 

applied critically damped filtering and the WFLC algorithm to track tremor motion and 

remove it so that only intended motion of the subject under examination remained. This 

technique has been used before for tremor removal, but this is the first time it has been 

applied for all six degrees-of-freedom of motion for pathogenic tremor. The main 

difficulty encountered with using the processing outlined is that intended motion is 

difficult to judge and therefore it is difficult to tell what part of a patient motion is tremor 

motion and which part is intended motion. Differentiating between these two motion 

types has been an area of significant research for many years and will likely continue to 

need further study well into the future. Overall, the algorithms used for tremor removal 

accomplished the stated task quite well and produced results that would yield significant 

benefits if these algorithms were to ever be applied in a real world scenario; an example 

of such a real world scenario is the use of an actuator between a spoon head and handle 
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using inertial feedback to cancel out movement disorders tremors so that a subject could 

eat more easily.  

7.2 Strengths and Weaknesses of the Approach Presented 

The approach for data collection and processing utilized MEMS inertial sensors and 

custom designed processing software. Here, the strengths and weaknesses of using such 

an approach are highlighted. 

 

A major strength of the data acquisition and processing techniques outlined is that they 

provide full six degrees-of-freedom motion rendering. This is discussed at length in the 

previous section (Section 7.1). 

 

Another one of the most significant strengths of the approach presented is the low cost 

nature of the technology and analysis utilized and its easy accessibility. MEMS inertial 

sensors capable of performing that analysis can be purchased for as little as a few dollars 

each and in recent years the technologies to build a platform for data acquisition have 

become more plentiful. In fact, in many cases a smart phone (worth a few hundred 

dollars) could be used for both data acquisition and processing (such phones commonly 

have MEMS inertial sensors built in). This greatly increases the accessibility for an 

individual wanting to access the algorithms for data processing and also makes 

distributing these algorithms widely much more realistic. For diagnostic algorithms in 

particular, all aspects of the data acquisition and analysis could be contained within a 
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smart phone such that the phone could give a diagnostic result without the need for any 

supplementary technology or algorithms. 

 

Another similar application stemming from the benefits of low cost and easy accessibility 

of MEMS inertial sensors involves monitoring patients for tremor motion. This could 

involve a software application whereby a patient performed a standardized task (such as 

touching there finger to their nose three times while holding a smart phone). In this 

manner, tremor could be tracked so that the impact of things such as physical activity and 

time of day could be analyzed. Even more useful would be analysis of medication to 

determine the ability of different medications to mitigate tremor for different patients. 

 

Another major strength of the approach presented involves the small size and light 

weight of MEMS inertial sensors; as previously stated the particular sensors used in this 

thesis were not larger than 5 mm along their largest dimension and the accelerometer 

sensor set had a mass of 0.08 grams based on what is given in ST Microelectronics 

(2006) and Epson Toyocom (2010) (this data is also presented in Table 3.1 of this thesis).  

The small size and light weight of inertial sensors is, of course, related to the accessibility 

of MEMS inertial sensors previously outlined in this thesis section (indeed, smart phone 

manufacturers would not include MEMS inertial sensors in their phones if the sensors 

were heavy and large). The small size and light weight of sensors allows them to easily 

track motion without significantly affecting the motion under examination in most cases. 

Generally, a sensor and data acquisition system can be built to weigh a small fraction of 
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the limb (or body segment) upon which they are mounted, thereby ensuring that weight 

of a MEMS inertial sensor does not overburden test subjects. As well, MEMS inertial 

sensors are often the size of a coin (or sometimes much smaller). This means that they 

can be mounted without much concern about interfering physically with a subject’s 

intended motion. 

 

Another further advantage of the analysis carried out stems from the non-invasiveness 

of inertial data acquisition; specifically, inertial sensor data can be captured on a data 

card that is smaller than a coin and weighs less than a coin. Such data cards can often 

store many hours of data captured at high frequency. This allows for long term data 

acquisition without the need for cables which can restrict motion. 

 

Inertial sensors are also beneficial for monitoring and attenuation because of their 

ease of use. Someone can just pick up an IMU or attach it to their body and continue 

moving. This is in stark contrast to other motion monitoring techniques which can 

involve time consuming set-ups (such as attaching EMG electrodes to a patient’s arm 

which can take many minutes). 

 

One of the major strengths of the methodology outlined for assessment and attenuation 

of movement disorders is that it is software based. As a result of this, algorithms can be 

transferred to various devices utilizing inertial sensors with relative ease and even re-
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programming algorithms for different programming languages is relatively straight 

forward. Such ease of algorithm transfer is a significant consideration given that it allows 

researchers to network and work in teams more readily when dealing with movement 

disorder based processing. 

 

Another benefit of using a software based methodology for movement disorders 

assessment and attenuation is that algorithms can often be defined mathematically and 

therefore can more easily be communicated to a broad audience. This is a significant 

factor because it means that researchers (and entrepreneurs) can more readily exchange 

ideas about algorithm development which tends to accelerate the pace for development of 

new algorithms. 

 

One of the most significant disadvantage of using inertial sensors for movement 

disorder motion evaluation is the lack of capacity to obtain long term motion tracking 

position information (as opposed to tremor motion tracking data and short term motion 

tracking data, which inertial sensors are well suited to). Inertial sensors generally 

require supplementary data to provide long term position measurements (such as imaging 

data or known start and end points for IMUs); the reason for the need for supplementary 

data is that inertial motion tracking results have errors that grow in a generally 

exponential nature in time. MEMS inertial sensors are particularly bad at giving long 

term position measurements because the quality of data that can be obtained from these 
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sensors is often not sufficient for many applications needing long term position 

measurements. 

 

Despite the difficulties that inertial sensors (and particularly MEMS inertial sensors) pose 

in terms of obtaining long term position measurements, this challenge is largely not 

relevant for tremor related disorders. Only oscillatory signal segments (and not fully 

processed inertial data to obtain positions) are needed to study most of the aspects of 

tremor behavior. It will, however, be significant to determine long term positions for 

subject motion in some cases if non-tremor movement disorders are examined more 

thoroughly. 

 

Another major disadvantage of using inertial sensors is that the data they provide is 

difficult to visualize directly. This can pose a significant problem, particularly if one is 

trying to communicate to patients and medical professionals the differences for 

movement disorder motion types. This problem is solvable by creating a three 

dimensional visualization of motion using computer graphics; however, this can be time 

consuming. 

 

As a further disadvantage of using techniques presented in this thesis, the algorithm 

based approach for assessment and attenuation of movement disorders has some 

significant drawbacks. Such an approach is not highly affective for tremor mitigation 
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and attenuation because it needs to be used indirectly or with the aid of expensive 

mechanical hardware. An indirect method of using algorithm based data processing for 

tremor mitigation is to design baffles for a cup taking into account tremor motion data 

logged. The indirect nature of this technique means that a lot of other analysis needs to be 

done to make sure baffles work as expected when trying to reduce spillage of a fluidic 

beverage. For example, to ensure baffles work as expected, a designer may need to use 

fluid dynamic models to simulate fluid motion. 

 

Using actuators for tremor mitigation and attenuation can be accomplished (this has been 

carried out for the motion of the hand of a surgeon as mention in the literature review in 

Chapter 2). However, this requires a lot of extra work so that actuators can be tuned 

appropriately and so that feedback response times are adequate. As well, actuators needed 

for tremor removal in real time need to have a very fast response time and therefore are 

quite expensive (on the order of at least hundreds of dollars). 

 

Despite the drawbacks outlined, the algorithm based approach for assessment and 

attenuation of movement disorders does generally tend to work well in certain 

circumstances, such as when evaluating the effectiveness of medication on a patient’s 

motion or when using inertial sensors for diagnostic applications. 

7.3 Recommendations 

One of the main recommendations for future work is to gather more inertial data from 

a larger number of patients performing a larger number of tasks; such tasks could 
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include walking, running, tracing shapes etc. By accomplishing this, more analysis could 

be applied to the data and methodologies for diagnosing movement disorders could be 

further extended. Such a large scale accumulation of data should most likely be carried 

out at a medical research center where there are a large number of patients available daily 

for examination (this is the easiest way to gather data for hundreds of patients which 

would not likely be feasible otherwise). As well, such a medical research center would 

likely have extensive patient records (about the progression of the disease and 

medications that have been taken). With the use of extensive patient records, analysis of 

data could provide insight into differences in the motion patterns for different subjects 

(i.e. there might be, for example, a difference in the motion patterns of patients who had 

different disease progressions). Other tasks that could be asked of patients (in addition to 

the clicking on targets on a computer screen and simulating eating as outlined in this 

thesis) might include touching ones finger to one’s nose repeatedly and drawing an 

Archimedes spiral. 

 

Another recommendation which could prove quite fruitful would involve tracking tremor 

motion for patients before and after they are prescribed medication. This is likely one 

of the largest areas of commercial application from what is given in this thesis because it 

would help doctors to objectively monitor patient tremor when patients are on different 

medications. This would help doctors to not prescribe medications that were ineffective. 

Furthermore, combined with a database about other patient information (such as age, sex, 

weight etc.), information about how patients respond to medication can also help 

researchers to determine aspects about movement disorders that had previously not been 
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uncovered. For example, a medication affecting production of a certain chemicals in the 

brain might work better for men than for women, and this would help one to understand 

more about the disorder under examination. 

 

Another important area of focus for future work is to gather motion (IMU) data 

concurrently with EMG and, if possible, EEG (Electroencaphalography) data. Both of 

these techniques record electrical impulses (the former records them for muscles while 

the later records them for electrical activity in the scalp region of the body). It may be 

very difficult to collect large amounts of data with EMG and EEG because of the large 

time it takes to properly mount such systems on patients. Also, there are significant 

challenges when logging IMU, EMG and EEG data concurrently. The largest challenge is 

to time sequence data streams with one another so that they can be directly compared. 

Another challenge is having a patient move in a realistic manner when wearing so much 

monitoring equipment. Despite these challenges, it is worthwhile to try to gather data 

from an IMU, EMG and EEG concurrently because the data would provide significant 

information about the relationship between motion and neurological activity. 

 

Another avenue that could be pursued is capturing FMRI (Functional Magnetic 

Resonance Imaging) data concurrently with IMU data, but this may be less usable in 

many cases than EMG and EEG data. FMRI data do not provide near real time 

information about neurological activity (like EMG and EEG), but rather information 

about the location of blood cells whose resources have been utilized by brain activity 
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many seconds prior. This means that not only does FMRI introduce at time lag when 

monitoring brain activity, but it also can be difficult to isolate the area of the brain that 

has been activated because tracking blood flows through the brain can be difficult. For 

the purposes of investigating movement disorders, EMG and EEG are likely to yield 

significant findings more quickly. This is not to say the FMRI data are not useful; indeed, 

they could provide a breakthrough in movement disorders research. Unfortunately, given 

some of the drawbacks sighted above and also including the extremely high cost of FMRI 

(in the hundreds of thousands of dollars or even millions of dollars for a machine), it is 

clear that gathering FMRI data may be difficult. A further complication also arises if one 

wants to gather FMRI data concurrently with IMU, EMG and EEG data because it is 

difficult to take other electrical equipment into an FMRI machine due to the magnetic 

field used by an FMRI device. 

 

An important area of focus over the long term is monitoring patients over a twenty four 

hour per day basis. Currently existing inertial technology could certainly accomplish this 

task, but specific hardware would likely need to be designed. Data capture would likely 

only take place during a tremor event as defined by the short term standard deviation of 

an inertial signal above a certain threshold (or using a similar definition for a tremor 

event). Long term studies of motion are common, but not in six degrees-of-freedom, and 

gathering such data would be significant. 
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More processing algorithms for diagnosis and attenuation of movement disorder 

motion would also be very helpful. There are many possible candidates for other 

algorithms that would be effective and one very good area to begin with is wavelet 

analysis. It is quite possible that a wavelet filter would be able to provide real time tremor 

attenuation (to the knowledge of the author, such filtering has never before been carried 

out for movement disorder tremor). Another wavelet application is wavelet based 

coherence analysis (similar to the Fourier based coherence analysis presented in Chapter 

5). The wavelet based coherence analysis would be very good at providing time 

resolution capabilities that Fourier analysis tends to lack. 

 

As a last recommendation, providing some sort of physical hardware for tremor 

mitigation would be helpful. Likely drinking and eating are the most suitable tasks for 

which to provide attenuation because they are common in daily life and a very large 

number of test subjects complained that their tremors caused problems when drinking and 

eating. Any device with an active tremor feedback system would likely not be a good 

place to start for tremor attenuation because actuators that can provide quick instant 

motion based on inertial feedback are very expensive (often hundreds of dollars). Instead, 

it would likely be a better idea to design baffles for a drinking cup by logging tremor 

motion for patients drinking and then simulating the tremor  so that different baffles 

could be tested for tremor mitigation effectiveness. Simulations used to test baffle design 

could either be computational (i.e. a numerical simulation) or they could use a 

mechanical actuator and a baffle prototype.  
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