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Abstract 

The performance of current MEMS based inertial units is usually insufficient to be used 

in applications for which high accuracy is required. For such applications, if the size and 

power constraints do not allow the use of traditional high-end inertial sensors, an 

alternative solution is strongly required. In this study such an alternative INS design 

method using redundant low cost inertial sensors is described. 

In the first part of this study the solution of the optimum inertial sensor fusion problem is 

derived. In the skew redundant inertial measurement units (SRIMU), the redundancy of 

the sensors generates additional observations which can be used to estimate the sensor 

errors without requiring any external aid. In this study, it is proved that the projection of 

raw sensor outputs to the left null space of the sensor configuration matrix can be used to 

define these redundancy observations. Based on these observations, the computation of 

best acceleration and rotation rate which can be used to execute the standard INS 

equations in an SRIMU based navigation system is explained. 

In the second part, the optimum navigation solution for the SRIMU based INSs is 

defined. In general, such optimum configurations are hard to implement due to the 

structure of the navigation filters. Therefore, in this study, alternative suboptimal SRIMU 

based INS configurations are introduced and the conditions for which these alternative 

configurations become optimal are described. These configurations can be conveniently 

implemented in the existing navigation software/libraries without requiring any 

significant modification. 

Finally, the comparison of SRIMU based single-INS configurations with the multi-INS 

configurations is presented. In the existing literature, the multi inertial sensor navigation 
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problems are usually handled within multi-INS approaches. However, such multi-INS 

approaches i) are numerically very problematic, ii) require extensive modification in the 

existing navigation libraries and iii) cannot be used when sensors are arbitrarily oriented. 

In this study it is shown that the proposed single-INS configurations for SRIMU systems 

are theoretically equivalent to the multi-INS configurations and hence can be 

implemented instead of any multi-INS configuration without dealing with any of the 

aforementioned problems. 
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Chapter One: Introduction 

1.1 Background and Problem Definition 

With the emergence of MEMS (micro-electromechanical system) inertial sensors in the 

commercial markets in the 1990s, the researches in the inertial navigation technologies 

gained another dimension. Until that time, inertial navigation systems (INS) were 

designed using only high end components such as fibre optic gyroscopes (FOG) and ring 

laser gyroscopes (RLG). Over the years, as new and better INS algorithms were 

developed specifically for these high-end inertial measurement units (IMU), it became 

possible to reach very precise 6DoF navigation solutions even under complete 

autonomous mode of operations. On the other hand, despite their spectacular precision, 

these high-end IMUs had 2 major drawbacks which render them unsuitable for a wider 

range of consumer applications: i) They were too expensive, ii) They were too heavy 

(and usually too large) to be employed in applications for lightweight systems. 

Because of these problems, the new MEMS based inertial sensor products were 

immediately accepted by INS designers as an alternative for the existing navigation 

systems. Their low costs, ultra small sizes and very low power requirements provided 

INS designers endless opportunities to develop inertial navigation products for new 

applications for which high-end IMUs cannot be employed. Especially, thanks to their 

affordable prices and ultra small sizes, new concepts which are impossible to realize with 

high-end IMUs such as indoor personal navigation and (commercial) automotive driver 

assistance have emerged among navigation community. These new exiting application 

areas make MEMS based sensors an indispensible part of every design affords. 
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On the other hand, despite the fact that over 20 years had passed since the first MEMS 

based inertial units appeared in the commercial markets, the INS community has not been 

able to fulfill most of the navigation system demands of the consumers with these low-

cost MEMS units. For many fields such as mobile mapping, autonomous robotics and 

personal navigation, the existing MEMS based INSs are still not sufficient to provide as 

accurate navigation solution as required by these applications. Still, in many cases, high-

end IMUs stand as the only possible choice for system designers if relatively long term 

stable autonomous navigation solution is desired. 

The primary reason for the insufficiency of the MEMS based IMUs is that their outputs 

are corrupted by several high power error components. During the unaided mode of 

operation, these high power error components quickly accumulate in the navigation states 

leading to unacceptable navigation solutions in a very short period of time. The most 

basic solution to such fast error build up is to aid (integrate) IMUs with the external 

navigation devices such as GPS. Even without absolute positioning aids, promising 

navigation results can be still obtained with the (almost) standard Kalman filtering 

methods as long as some form of external aids can be generated from either the 

environment or application specific constraints. Some recent examples with these kind of 

aids can be found in [Tardif et al., 2010] (for visual odometry), [Skog et al., 2010] (for 

zero-velocity updates) and [Kleinert et al., 2010] (for monocular SLAM). However, such 

a strong dependence of the INSs to external measurement sources usually contradicts 

with the main motivation behind the INS concept: INSs must be autonomous and self 

sufficient. Such dependence on the external sources ruins this self-sufficiency property of 

the INSs and makes the final navigation product less attractive for some applications. 
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Over the years, increasingly complex and innovative solutions have been proposed by 

several research groups to decrease the dependence of INS stability to the external 

navigation aids. For instance, along with numerous other studies, [Kaygisiz et al., 2003] 

and [Noureldin et al., 2011] propose neural networks, [Carvalho et al., 1997] and 

[Nordlund et al., 2001] employ particle filters, [Noureldin et al., 2007] and [Sasiadek et 

al., 2000] uses fuzzy logic to adaptively adjust parameters of the main estimation 

algorithms. Essentially, most of such proposed solutions focus on developing more 

efficient algorithms to estimate the navigation information and IMU errors under limited 

external navigation aids. However, to the best knowledge of the author, no such solution 

has been able to permanently supersede the (almost) standard Kalman filtering based INS 

aiding methods. Therefore, the problem of developing a method (or an algorithm) which 

leads to accurate and sufficiently autonomous navigation solutions for MEMS based 

inertial sensors has yet to be solved. 

1.2 Thesis Objectives 

In this thesis, the objective is to solve the problem of designing stable INSs with only 

MEMS inertial sensors using a completely new point of view. Instead of focusing on 

developing a new (and hopefully more efficient) algorithm for better error estimation, it 

is aimed to employ redundant (abundant) number of inertial sensors in the IMU to 

achieve high accuracy acceleration/rotation rate measurements which eventually leads to 

better and more stable autonomous navigation solutions for extended durations. In such 

design approach, extra inertial sensors (without any orientation constraint) are added to 

the IMUs until the overall accuracy of the final IMU configuration becomes sufficient to 
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satisfy the specified mission/application requirements. As the final IMU contains both 

redundant and skewed (not aligned with body frame) inertial sensors, in this thesis it will 

be called as SRIMU (skew redundant inertial measurement unit). 

Despite this simple objective definition, the implementation and the design aspects of this 

concept entail a large number of ambiguities. First of all, the existing INS design methods 

(and practices) are not capable of answering any questions regarding the use of SRIMUs 

in the INSs. In the standard approach, the INS algorithms take 3 acceleration/rotation 

rates (for 6DoF navigation) and generate the navigation solution. This computed 

navigation solution is then considered as a nominal solution around which the linearized 

INS error propagation models are defined. These error models are then utilized in a 

Kalman filter to estimate both the sensors and navigation errors whenever an external 

observation becomes available. 

On the other hand, when an SRIMU is used in the INS, the above steps of standard 

approach become quite ambiguous: Which inertial sensors of the SRIMU should be used 

to run the INS algorithms? If a combination of all sensors is to be used, how this 

combination should be formed? Does the redundancy of the sensors provide any 

information other than the raw outputs? If the redundancy provides such additional 

information, how should it be mathematically represented? What is the optimal 

navigation solution for such SRIMU based INSs? Is it sufficient to run an INS with 

optimally combined (fused) SRIMU outputs to reach the optimal navigation solution?  

The main objective of this thesis is to provide a general framework to answer these types 

of questions regarding the SRIMU based INS designs. As will be explained in the 

following chapters, in the developed framework, the real kinematic variables measured 
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by the inertial sensors (i.e. acceleration and rotation rates defined for the fictitious body 

frame of reference) are also considered as unknowns to be estimated (computed) together 

with the other navigation and IMU states. However, in contrast to the navigation and 

IMU related states, no stochastic descriptors are associated with these unknown 

kinematic variables. Therefore, the entire framework is constructed on a mixed stochastic 

and deterministic estimation problem. 

In the course of describing a main theoretical framework for optimal processing of 

redundant inertial systems, the following topics/questions will also be addressed in this 

thesis: 

i. How can an SRIMU based navigation system be formulated? 

ii. How can a cost function be associated with the selected formulation to specify the 

optimality? 

iii. How can this optimization problem be solved? 

iv. How can all the inertial sensor outputs be combined (fused) to form a single 

“optimal” measurement? 

v. What is the optimal navigation solution for SRIMU based systems? 

vi. What is the relation between the optimally fused sensor outputs and optimal 

navigation solution? 

vii. Which kind of navigation structures can be used for SRIMU based systems 

viii. What is the error model of the optimally fused sensor outputs? 

ix. Is it possible to processes subsets of sensors individually and combine the 

navigation solution later? 
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x. What are the conditions for which the separate processing of sensors provides the 

optimal solution? 

xi. How can the external measurements be handled when the sensors are processed 

separately? 

1.3 Review of the Existing Literature 

The initial studies about the redundant inertial sensor configurations were mostly focused 

on the reliability issues of the navigation systems. Several studies investigating different 

fault detection and identification (FDI) algorithms were published in the 70s and 80s. A 

comprehensive review of these methods can be found in [Ho, 1999]. The main idea 

behind these studies is based on the so-called parity vectors which is the projection of the 

sensor outputs to the orthogonal complement space of the configuration (sensor 

observation) matrix [Skoogh et al., 2006]. Once the parity vector is computed, a decision 

algorithm is used over the magnitude of the parity vector to detect any sensor failure (and 

isolate them if redundant configuration permits). 

A parity vector compensation algorithm was first presented in [Hall, 1982]. In this study, 

inertial sensor errors (e.g. stability, misalignment etc. which are not considered as failure) 

are estimated with a Kalman filter which uses the parity vector itself as the observation 

for the filter. The innovation process of this filter is defined as the compensated parity 

vector which is processed by the decision algorithms. In this method the Kalman filter is 

used as a whitening filter for the parity vectors rather than an observer for the systematic 

sensor errors. Although the proposed Kalman filter estimates the sensor errors implicitly, 
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these estimated values are not used to correct the computed kinematic variables 

(acceleration/rotation rates) which are used to drive the navigation algorithms. 

In all of these early studies on FDI methods, the main objective was only to detect (and 

isolate) the failed sensors so that the computed navigation solution are not affected by 

these failures. Once the healthy sensors are identified with a detection algorithm, the 

outputs of these healthy units are combined with a simple least square algorithm 

(weighted with the sensors’ additive white noise powers) to compute the body frame 

referenced 3-axis acceleration/rotation rates (this process is called as data reconstruction 

in [Ho, 1999]). These computed kinematic variables are then processed by the standard 

navigation algorithms to form the final navigation solution. 

In [Sukkarieh et al., 2000] a partial application of the aforementioned FDI methods was 

implemented for a low cost MEMS unit (it is a partial application because only a 

redundant sensor configuration was used without any real fault detection algorithm). In 

this study, it was shown that it is possible to improve the navigation accuracy of low cost 

systems by using redundant inertial sensors with proper sensor orientations. 

Although the redundant sensor configurations had been used for FDI purposes for a very 

long time, it was not until [Bar-Itzhack et al., 2002] that such configurations are used to 

obtain better rotation rate measurement from an SRIMU. In that study it was shown that 

the raw sensor outputs can be processed as observations in a Kalman filter to estimate the 

calibration parameter errors of the skew redundant inertial measurement units. However, 

the proposed method requires the Kalman filter’s state vector to be augmented with a 

model for rotation rates which is derived from the dynamical equation of the (space) 

vehicle. 
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The first solution for the problem of the optimal use of redundant sensors during in-

motion sensor calibration problem was presented in [Pittelkau 2005a, 2005b, 2005c]. In 

these studies it is shown that when the navigation equations are executed by the estimated 

kinematic variables obtained as the weighted average solution of the sensor 

measurements, the parity vector must be used as the redundancy observation in the 

navigation Kalman filter. However, in these studies the optimality of such a solution was 

not defined at all. The reason why the navigation equations are executed with the 

weighted average solution is described as a practical solution to avoid the use of dynamic 

motion models of the vehicle in the Kalman filter as suggested in [Bar-Itzhack et al., 

2002]. Furthermore, as these studies ([Pittelkau 2005a, 2005b, 2005c]) mainly focused on 

in-motion sensor calibration problem, no analysis was provided about the possible 

simplifications of the navigation filters for identical multi inertial sensor systems. 

Some methods for the determination of the optimal orientation of individual sensors in an 

SRIMU are also described in the related literature. In [Harrison et al., 1977] and [Sturza, 

1988], the comparison of several sensor orientations are provided. Furthermore, in 

[Sukkarieh et al., 2000] the same problem is also analyzed using the so-called 

information filter (which is nothing but the inverse covariance form of the standard 

Kalman filter). As depicted in these studies, the solution of the optimal placement 

problem can only be solved based on simplified cost function definitions which do not 

have any direct relation to the optimal navigation solutions. As an example, the well-

known polyhedral configurations in [Sturza, 1988] is optimal only if i) all sensors are 

identical, ii) all sensors are influenced by only additive white noise, iii) navigation errors 

in all 3-axis propagates identically. Unfortunately, for the MEMS based navigation 
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systems, none of these assumptions holds in general. Therefore, in this thesis no such 

special configurations for sensors are pre-assumed in the derivations. 

In [Colomina et al., 2003, 2004a, 2004b], [Waegli et al., 2008], [Waegli 2009] and 

[Bancroft et al., 2008] and [Bancroft 2009, 2010], some examples of multi-INS 

implementations for redundant inertial sensors are described. However, these studies lack 

any theoretical background on the subject matter. Some of the reasoning presented in 

corresponding papers is based on some ambiguous intuitions which seem to lead 

conflicting conclusions. On the other hand, these studies can still be regarded as valuable 

for they at least present some application areas for which successful implementations 

with redundant sensors can provide some accuracy improvements. 

1.4 Thesis Outline 

In this thesis the entire treatment of the subject is presented in the 3 successive steps. 

In the first step (Chapter 2), the most general solution of the mixed 

stochastic/deterministic estimation problem for the state space models are derived. This 

general solution is then applied to the sensor fusion problem for SRIMUs. The sensor 

fusion problem can be defined as the problem of computing the best (with respect to a 

cost function which will also be defined in Chapter 2) acceleration and rotation rates at 

time “n” given all the inertial sensor outputs up to and including time “n”. The solution of 

such a fusion problem is important because once the best (optimal) kinematic variables 

(acceleration and rotation rates) are computed for the SRIMU, the remaining INS 

algorithms can be executed with these optimal outputs without making any modification 

in the existing navigation libraries. 
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In the second step (Chapter 3), the optimal navigation solution for the SRIMU based 

INSs will be introduced. In this chapter, it will be shown that the solution obtained by 

running an INS with the optimally fused SRIMU outputs is not theoretically optimal (in 

this study, this type of solution will be called “pseudo-optimal” for the reasons described 

in Chapter 3). In order to reach the optimal solution, the navigation states must also be 

updated with the IMU redundancy observations defined in Chapter 2. Such updates can 

be implemented either in a single or in a cascaded Kalman filter structure. In Chapter 3, it 

will be shown that the pseudo-optimal solutions correspond to a form of cascaded 

Kalman filter implementation in which the redundancy observations are ignored in the 2
nd

 

stage filter. 

In the final step (Chapter 4), the relationship between the single INS solutions, as 

described in the Chapter 3, and the multi-INS solutions will be analyzed. In the existing 

literature the INS design for the redundant sensors are usually handled in the scope multi-

INS approach. In this approach, a separate INS solution is computed for only a sufficient 

number of sensors (i.e. for each set of 3 accelerometers and 3 gyroscopes for 6DoF 

navigation problem) and then all INS solutions are combined in a single Kalman filter 

which processes the equivalency of the navigation states as the only form of redundancy 

observations. Although such an approach is both very problematic in terms of 

implementation issues and incapable of covering all the possible SRIMU configurations 

(e.g. the cases for which sensors are skewed or the number of sensors are not integer 

multiple of number of kinematic axis), it can still be regarded as a valid design method 

especially for the cases where significant unknown bore-sight exists between different 

sets of inertial sensors. In Chapter 4, it is shown that when certain conditions are 
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satisfied, multi-INS implementations become theoretically equivalent to the optimal 

single INS implementations with sensor redundancy observations and hence can also be 

regarded as optimal. 

Chapter 5 concludes this thesis with a summary of important findings and discussion of 

future works to which the results of this study can be extended. 

The major questions that are listed among thesis objectives (Section 1.2) are categorized 

with respect to corresponding chapters in Table 1.1. 

 

Table 1-1 : Questions classified with respect to the chapters 

Chapter 

Questions 

Addressed 

Chapter One  

Chapter Two (i) – (iv) 

Chapter Three (v) – (viii) 

Chapter Four (ix) – (xii) 

Chapter Five  
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Chapter Two: Optimal Sensor Fusion Method For Skew-Redundant Inertial 

Measurement Units 

2.1 Introduction 

There are some navigation applications (e.g. drilling and pipeline mapping) for which the 

performance of current micro-electro-mechanical-system (MEMS) inertial units are not 

sufficient to achieve the required navigation accuracies for these applications. For such 

applications, one of the foreseeable solution is to use abundant number of inertial sensors 

together (as the size and power constraints permit) to obtain more accurate navigation 

solution. 

On the other hand, the current understanding (practices) do not answer the important 

questions regarding the optimal use of redundant sensors to achieve improved navigation 

performance over standard 6-degrees of freedom (6DoF) IMUs. For 6Dof IMUs, the 

optimal solution can be obtained by forming an extended Kalman filter (EKF) defined for 

the error model of the navigation states which are linearized around the nominal INS 

outputs. This Kalman filter is then used to process any external navigation aid to stabilize 

the navigation errors. However, when a redundant number of sensors exist, the steps in 

this standard approach become ambiguous. Should only a critical number of sensors (i.e. 

3 accelerometers and 3 gyroscopes) be used for a nominal solution or should all the 

sensors be used? In case of the latter, how will sensor outputs be combined so that the 

usual navigation equations can be executed? Does the redundancy of sensors provide any 

additional information other than the redundant raw measurements? If such additional 

information exists, how can they be represented and processed in an optimal way? 
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This chapter will address the above questions. In the first part of this chapter, the main 

framework (the problem formulation and the most general solution of this problem) for 

the optimal fusion of redundant inertial sensors will be presented. Using this framework, 

the problem of computing the best acceleration/rotation rates (kinematic variables) on the 

kinematic axis (the axis for which the navigation equations are defined, i.e. body frame) 

given all (skew) redundant sensor measurements will be explained. 

Once the optimal kinematic variables are estimated from the redundant raw sensor 

outputs, the usual navigation equations can be executed with the computed accelerations 

and rotation rates (kinematic variables). In general, as shown in the next chapter, the 

navigation solution obtained with such an approach is not the optimal navigation 

solution. Although the computation of this optimal navigation solution depends on 

exactly the same theoretical framework presented in this chapter, the explicit solution for 

this specific problem will be derived in Chapter 3. 

2.1.1 Scope and content of this chapter 

The main objective of this chapter is to answer the following questions: 

Let us assume that a redundant number of accelerometers and gyroscopes (e.g. an inertial 

measurement unit with N≥3 sensors) are placed at the same point (i.e. close enough to 

ignore any lever arm effects) but arbitrarily oriented in space.  

i. What is the optimal acceleration/rotation rate (kinematic variables defined 

for the kinematic axis only) that can be obtained from this SRIMU?  

ii. How would the errors on these computed kinematic variables propagate in 

time? 
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As seen from these questions, the objective in this chapter is limited to the estimation of 

the best sensor outputs rather than obtaining the best navigation solution. However, as it 

is explained in Chapter 3, the results of this chapter can also be used directly to derive the 

best navigation solution for the SRIMU based navigation systems. 

In Section 2.2, the most general problem formulation is presented using the state space 

representation. The definition of optimality will be explained based on a selected cost 

function. The equivalence of this selected cost function to the other possible cost function 

definitions that are frequently used in estimation theory will be provided. 

In Section 2.3, the optimal solution of the selected cost function will be derived. The 

implementation of this optimal solution using Kalman filters will be explained. 

The computation of optimal outputs for SRIMUs will be presented in Section 2.4. It will 

be shown that this problem is in fact just a simplified form of the general problem 

formulation introduced in Sections 2.2 and 2.3. Using this simplified form, the cases for 

which the SRIMU contains only identical sensors (or sets of identical sensors) will be 

examined in greater detail. In this thesis, inertial sensors with identical stochastic error 

models are referred to as identical sensors. The equivalent error models for the computed 

(estimated) kinematic variables which are used in the navigation filters will also be 

derived. Finally, some simulation results which both clarify and verify the theory 

described in this chapter will be presented in Section 2.4. 

2.2 Problem formulation and associated cost functions 

A navigation system which uses an SRIMU can be modeled with the following 

dynamical system representation: 
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1k k k k k k kx A x N u B w+ = + +        (2.1a) 

k k k k k ky C x M u v= + +        (2.1b) 

0

0 0 0 0 0

0 0 0 , ,

0 0 0
1

l

T

k k kl

k

l

k kl

x
x

w
E w Q k l

v
v R

δ

δ

  
     
      = ∀                

Π



    (2.2) 

where “ kx ” is the state vector of the entire system including both the navigation states 

and sensor error states (with an initial covariance matrix 0Π ). “ ku ” is the vector of the 

real kinematic variables (i.e. real acceleration and rotation rates defined on the body 

frame) which is assumed to be a deterministic (non-random) unknown.“ ky ” is the 

observation vector which is provided by the inertial sensors (i.e. raw sensor outputs). 

Throughout this thesis, the italic type lowercase and uppercase letters are always used to 

represent vectors and matrices respectively with appropriate dimensions unless they are 

explicitly specified as scalar quantities. An arrow is used over a letter only when the 

corresponding vector/matrix is formed by combining some other (lower dimension) 

vectors/matrices. 

In this chapter, it is assumed that there are no additional observation sources (e.g. GPS) 

other than the inertial sensors themselves. Furthermore, it is also assumed that the inertial 

sensors are oriented in such a way that all kinematic variables can be observed by the 

SRIMU. Thus, kM  is always a full column rank matrix. kw  and kv  denotes the system 

disturbance and observation white noises with covariance matrices kQ  and kR  

respectively. In the standard IMU terminology kv  is called as A(V)RW (angle/velocity 
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random walk) component despite the fact that it is a white noise process. Finally, kN  and 

kC  are matrices with appropriate dimensions. 

The objective is to causally estimate the kx and ku  given { }
0l

k

l
y

=
 ∀ k. Due to this causality 

condition, only filtering solutions will be considered in the rest of this thesis. 

As (2.1) consist of both deterministic (i.e. “ ku ” which is a non-random unknown) and 

stochastic (i.e. 0, ,k kw v x ) variables, this is a mixed random/non-random estimation 

problem. Because of this mix nature, neither random (e.g. Kalman filter (KF), maximum 

a posteriori estimate (MAP) etc.) nor non-random (e.g. maximum likelihood (ML), 

minimum variance unbiased (MVU)) estimation methods can be directly used to obtain 

an immediate answer. Therefore, we first analyze the possible cost functions whose 

solutions can be used to define the “best” { },k kx u estimates. 

In Section 2.2.1, the equivalent matrix form of (2.1) is introduced. The solution of the 

standard ML, MAP, Bayesian and Joint PDF cost functions are derived in Section 2.2.2. 

It will be shown that all these cost functions have identical solutions. In Section 2.2.3, a 

quadratic cost function whose optimal solution is also identical to the previous cost 

functions is defined. In Section 2.3, the main causal (filtering) estimation algorithm will 

be derived using this final quadratic cost function definition. 

2.2.1 Equivalent Matrix Form 

Using the linearity property, (2.1) can be rewritten as follows: 
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( )

1

1

s s

k k

d d

k k

s d

k k

k k k

k k k

k k k k k

x A x B

x A x N u

w

y C x x M u v

+

+

= +

= +

= + + +

       (2.3) 

{ }0 0 0

0
0

s sT

d

E x x

x

= Π

=
        (2.4) 

where “ s

kx " represents the purely stochastic part and “ d

kx ” is the unknown deterministic 

part of the system defined in (2.1). Let us assume ( ) 1, k mk m A A−Φ = × ×… . Thus, (2.3) 

can be expressed in the following matrix form: 
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     
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     
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⋮ ⋮

…
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    (2.5) 

s s d dy x x ν= Φ + Φ +
�� � �

        (2.6) 

where 

{ } 0

0

1

0 0

0

0

0 0

s sT

n

Q
E x x

Q −

Π 
 
 = Π =
 
 
 

� ⋮� �

⋮ ⋱

⋯

     (2.7a) 
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0 0

0

0

0 0

T

n

R

R
E R

R

νν

 
 
 = =
 
 
 

⋯

� ⋮��

⋮ ⋱

⋯

      (2.7b) 
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It should be noted that as each kM  in (2.5) is full column rank, so is 
dΦ . 

As a next step, using a series of linear transformations, (2.6) will be transformed into 

another form which will be more useful for later derivations. As only linear estimators 

are considered in this study, these linear transformations have no effect on the final result. 

Define a full rank ˆ
T

T
T

 
=  
 

 such that  

{ } { }T dRange T Range= Φ        (2.8a) 

0d
TΦ =          (2.8b) 

(i.e. rows of T  spans the range space of 
dΦ and rows of T is the basis for left null-space 

of 
dΦ . Hence, by construction T̂  is a full rank matrix.) 

Transform (2.6) using T̂ : 

s sTy T x Tν= Φ +
�� �

        (2.9a) 

s s d dTy T x T x Tν= Φ + Φ +
�� � �

       (2.9b) 

Define a 2
nd

 transformation using the LDU decomposition of ( ){ }ˆ ˆ ˆ ˆ
T

T
E Tv vT TRT=

�� �
. 

( )
1

I

0

T

W

V TRT TRT
−

−

Ι 
 

= − 
 
 

� �

������	
       (2.10) 

Pre-multiply both sides of (2.9) (in the matrix form) with (2.10): 

� �� �1 1y vxA

s s
Ty T x Tν= Φ +

�� ��

�� �
        (2.11a) 

( )� �� ( )
2

2

s s d d

x Cy vB

s
Ty WTy T WT x T x T WT

θ

ν ν− = Φ − + Φ + −Φ
��� �

�
�

� �� � � �
����	 ����	������	    (2.11b) 
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Where 

( )

1 2

2 2

1 1

1

0

0

0

0

T

T T T

T T

T

v R
E v v

v R

TRT

TRT TRT TRT TRT
−

     
  =      

     

 
 =
 − 

��
� �

��

�

� � � �

  (2.12) 

It should be noted that this final diagonalization of the observation noise covariance is a 

consequence of the 2
nd

 transformation. 

2.2.2 Cost Function Definitions and Their Equivalence 

As shown in the previous section, for each dynamical system representation defined by 

(2.3), there exists an equivalent representation in the following form: 

1 1

2 2

y Ax v

y Bx C vθ

= +

+= +

�� � �

�� � �� �         (2.13) 

where θ
�

and x
�

 represents the non-random and random parameters respectively to be 

estimated. [ ]1 2;y y y=
� � �

 are the observations whose respective noise components (

[ ]1 2;v v v=
� � �

) are uncorrelated as shown in (2.12). It should be noted that (2.13) is just a 

simplified representation of (2.11) where ,A B
� �

 and C
�

 are explicitly defined as functions 

of , , ST T Φ  and W  which are derived from the state space representation of (2.1). 

In this section, based on the form of (2.13), several cost function definitions and their 

solutions will be presented. The objective of this section is to show that, with some 

modifications, the standard cost functions can still be used over the mixed model defined 

in (2.13) to estimate ; xθ 
 

� �
. 
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Throughout this section, it will be always assumed that all the random vectors (i.e. 

1 2, ,x v v
� � �

) have Gaussian distribution. 

2.2.2.1 Joint PDF Maximization 

The cost function is defined as follows: 

( ) ( ) ( )
,

max , ; | ;
x

pdf y x pdf y x pdf x
θ

θ θ=��

� � � � � ��
     (2.14) 

Using the Gaussian distribution assumption and the orthogonality of the observation 

noises [ ]21;v v
� �

, (2.14) can be written as: 

11 1
1 2,

2 2

2

2

1min
x R R

xy Ax y Bx C
θ

θ −− − Π
+− + − −�� � � �
�� ��� � � � �

     (2.15) 

where 
2

•
 notation represents the (squared) weighted L2-norm (i.e. 

2 T

Y
x x Yx= ). 

By setting the gradient of (2.15) zero, the optimal solution can be found as: 

( ) ( )
1 1

1 1 1

1 1 1
ˆ T T T Tx A R A A R y A R yA A

− −
− − − Π= Π=Π + +

� ��� � �� � �� � �� �
   (2.16a) 

( )1

2
ˆ ˆy BC xθ −= −

���
        (2.16b) 

It should be noted that the optimal solution of x
�

 is independent of 2y
�

. Furthermore θ̂  

depends on 1y
�

 only via x̂ . 

2.2.2.2 Maximum Likelihood (ML) 

As x
�

 is a random parameter, standard ML method cannot be used directly for x
�

 

estimation. On the other hand, the ML estimate of θ
�

can be defined as the result of the 

following cost function: 
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( ) ( ) ( )1 12 2max , ; max , | ;ˆ
M

x

L pdf y y pdf y y x pdf x dx
θ θ

θ θ θ
∀

= = ∫
�

� �
� � � � �� �� �

  (2.17) 

Using the jointly Gaussian assumption, the probability distribution (pdf) of the 

observations can be written as: 
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�����

�
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    (2.18) 

where ( ),N m C  notation represents a Gaussian distribution with mean “ m ” and variance 

“C ”. Hence, the optimum θ
�

 estimate in ML sense can be defined as: 
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   
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� �� �        (2.19) 

The LDU decomposition of ObsR
�

is as follows: 
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where ( )2

1

1

T T T TB A A BX B R B A R A
−

= + +Π Π Π Π−
� �� �� � � �� ��� � �

 is a positive definite matrix. Using 

(2.20), (2.19) can be written as follows: 
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  (2.21) 

where x̂  is as defined in (2.16a). It should be noted that C
�

is invertible by construction. 

As seen from these results, for the ML case although the cost function is defined for only 
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θ
�

, the optimal solution also implicitly depends on the optimal x̂  which is defined as the 

optimal result of the joint PDF maximization in (2.16a). 

2.2.2.3 Maximum aposteriori maximization 

The cost function is as follows: 

( )
( ) ( )

( ),

| ;
max | ;

;x

pdf y x pdf x
pdf x y

pdf yθ

θ
θ

θ
=��

� � �
� �

�

�
�

�      (2.22) 

Although this cost function is similar to the classical MAP cost function definition, it has 

one important difference: the denominator depends on θ
�

. Therefore it is not apparent 

whether or not this maximization is equivalent to the joint-pdf maximization defined in 

Section 2.2.2.1. 

For a given θ
�

, the mean and cross-covariance of random parameters can be written as: 
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    (2.23b) 

Therefore, using the notation defined in (2.23b), the conditional Gaussian PDF can be 

written as: 

( ) 11 1

12 22 11 12 22 21

2

| ; ,

c

pdf x y N
C

y

y
θ

θ

− −

Σ

  
 = −
 −
 

Σ Σ Σ Σ Σ Σ 
 

�
�

�� �
�

��� �
�

�
�

	
   (2.24) 
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It should be noted that because of jointly Gaussian property, 
c

Σ  in (2.24) is independent 

of both θ
�

 and y
�

. Using the logarithm of (2.24), the optimization can be rewritten as 

follows: 

( )
1

1

1

2

2

1

2 22
, ,

ˆ
max | ; min

ˆ
C

MAP

x
MAP

x

x y
pdf x y x

y Cθθ
θ

θθ −Σ

−
   

= = −   
− 

Σ Σ


�� � �

�
� � �

��
�

�     (2.25) 

Using the LDU decomposition of 22Σ , the term inside the norm bars of (2.25) can be 

rearranged as: 

( ) ( )( )1 1

12 2

1

2 1 1 2 1 1

1

2

T T T T
x x A R y X y C B AA yA RA A

y

y C
θ

θ

− −
−

− = − + −Σ Σ Π Π − Π− +Π
 
 

− 

� � �� �� � � �� � � � ��� �� � �
�

� ��  (2.26) 

where, X  is a positive definite matrix whose exact value is not crucial for this 

discussion. As 
c

Σ  is a positive definite matrix, the minimum of (2.25) is obtained when 

(2.26) is equal to zero. The x̂  and θ̂ values defined in (2.16) sets (2.26) to zero. 

Therefore, the solution (2.16) is also optimum in terms of MAP sense. 

2.2.2.4 Minimum Mean Square Solution 

For a given θ
�

, the optimum x
�

 in minimum mean square sense can be defined as: 

( ) ( ){ }
ˆ

ˆ ˆ ˆmin
MMSE

x

T

x E x x y x x y   = − −   
� � � �

      (2.27) 

The optimum solution for this cost is: 

{ }ˆ | ;MMSEx E x y θ=
� ��

         (2.28) 

Using (2.24) it can be shown that: 
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11

1

2

2 22
ˆ

MMSE

y
x

y Cθ

−= Σ Σ
−

�

�� �         (2.29a) 

( ) 1

11 12 22 12
ˆcov

T

MMSEx x
−− = −Σ Σ Σ Σ

�
       (2.29b) 

Therefore, such an approach cannot be used to obtain a solution. As soon as θ
�

 is 

assumed to be an unknown constant, the value of the cost becomes independent of the θ
�

, 

and hence, no additional constraints can further be imposed on θ
�

 for this cost function. 

One possible way to obtain a meaningful cost function based on estimation error variance 

without any prior knowledge of θ
�

 is to assume that θ
�

 itself is a stochastic variable with 

the following properties: 

{ } [ ]

{ } [ ]0

T

T

E

E x

θ
θθ

θ

= = ∞Π

=

�

�

��

�          (2.30) 

where [ ]∞  represents a matrix with infinite variance values. For this θ
�

 definition the 

optimum solution can be computed as follows: 

Let { } { }
1

2 1 11

T TK E y y E y y
−

=
� � � �

 and ( )2 2 1 2 1y y Ky A B C KvK x vθ= − = + +− −
� �� � �� � � �

ɶ . Then 

{ } [ ]1 2 0T
E y y =
�
ɶ  and { } [ ]2 2

TE y y = ∞ɶ ɶ . Thus the optimum x
�

 estimate can be found as: 

{ } { }

{ } { }

( ) { } { }
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2 2
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1 1

1

1 1

1 2 2

1

1

ˆ | , | ,

| |
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T T

A A

x E x y y E x y y

E x y E x y

A R y E xy E y y y

A R yA A
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−

= =

Π Π

Π Π

= +

= + +

= +

� � � � �
ɶ

� � �
ɶ

� � � �
ɶ ɶ ɶ ɶ
����	

� �

� ��

� �� �

�

�

    (2.31) 
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The final step in (2.31) is a consequence of the fact that { } ( ) ( )2

T
T

E xy A KB A KBΠ= − −
� �� �

ɶ
��

 

has a finite value and { }2 2

T
E y yɶ ɶ  has infinite covariance. 

Furthermore: 

{ } { }

{ } { }

( )

1 2 2

1

2 2 2 2

1

2

ˆ | , |MMSE

T T

T T

y y

y y y y

C

E y E

E E

C C Z y
θ θ

θ θ θ

θ
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−

= =

=

= Π +Π� �

ɶ ɶ

ɶ ɶ ɶ

� ��
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� �

ɶ

� � �
ɶ

       (2.32) 

where ( ) ( ){ }2 2

T

Z E y C y Cθ θ= − −ɶ
� �

ɶ
��

 is some finite covariance. Therefore, as C
�

 is an 

invertible matrix by construction, the MMSE solution can be derived as follows: 

( )

( )

( )

1

2

1

2 1

1

2

ˆ lim

ˆ

T T

MMSE

MMSE

C C C Z y

C y Ky

C y Bx

θ
θ θ

θ
−

Π ∞

−

→

−

+

= −

Π

−

= Π

=

�

� ��

� �� � �
ɶ

� � �

� �
      (2.33) 

The above discussion shows that when θ
�

is assumed to be independent of x
�

 and has 

infinite covariance, the minimum mean square estimation solution becomes identical to 

the previous solutions. 

2.2.2.5 Quadratic cost function minimization 

The quadratic cost function for (2.1) can be defined as follows: 

1 1 1
00

1
2 2 2

, ,
0

0

0

min
k kk k

k k k k k k R

n n

Qx u
k k

x y C x M u
ω

ω− − −

−

=
Π

=

+ + − −∑ ∑      (2.34a) 

Subject to: 

1k k k k k k kx A x N u B ω+ = + +         (2.34b) 
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It should be noted that this quadratic cost is equivalent to the logarithm of the joint 

(Gaussian) PDF defined in (2.14) regardless of the invertibility of kB . Therefore, the 

solution of (2.34) is also the solution of the joint PDF maximization problem presented in 

Section 2.1.1. Hence the solution of (2.34) is also optimal in the sense of ML, MAP, 

MMSE as described in the previous sections. 

The algorithm for causally solving (2.34) for optimum kx  and ku  for each “k” instant is 

derived in the next section. 

2.3 The quadratic cost function 

In Sections 2.2.2.1 through 2.2.2.3 several cost functions based on classical estimation 

methods were introduced and it was shown that all lead to exactly the same solution 

defined in (2.16) which is based on the equivalent matrix form (2.13). Although this 

solution has a relatively simple form, in practice it has very little usage. In practical 

applications the matrix size becomes unmanageable in a very short duration of time 

which makes (2.16) impossible to be implemented. 

From application point of view, an acceptable solution must have a filtering (sequential 

processing of measurements to obtain the best estimate of only the current state) form 

rather than the batch form defined in (2.16). In this section such a sequential and causal 

algorithm is derived using the quadratic cost function defined in (2.34) (Section 2.2.2.4). 

The proposed solution to this quadratic cost function optimization problem depends on 

the results presented in [Hassibi et al., 1999 - Chapter 3]. For the sake of completeness 

the relevant result of [Hassibi et al., 1999 - Chapter 3] is summarized below: 

Lemma 1 
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Let an optimization problem be defined as follow: 

1 1 1
00

0

1
2 2 2

,
0 0

min
k kk

n n

Qx
k

k k

k

k k R
x w y C x

ω
− − −Π

−

= =

+ + −∑ ∑      (2.35a) 

Subject to: 

1k k k k kx A x B w+ = +         (2.35b) 

At time “n”, the optimal value of nx  is equivalent to the optimal 
|

ˆ
n nx  estimate ( nx  

estimate given all the observation up to and including ny ) of the Kalman filter for the 

following system: 

1k k k k k

k k k k

x A x B w

y C x v

+ = +

= +
        (2.36a) 

0 0

0

0 0

0 0
, ,

0 0

1 0 0 0

l l

k k klT T T

k k kl

x

w Q
E x w v k l

v R

δ

δ

    
    
      = ∀      
       

Π

 

   (2.36b) 

(For the complete proof see, [Hassibi et al., 1999, Lemma 3.2.1, 3.2.2, 3.2.3 & 3.3.1].) 

A simpler approach than the one used in [Hassibi et al., 1999] for the derivation of this 

duality between the Kalman filters and deterministic quadratic optimization problems is 

also presented in [Kailath et al., 2000 – Chapter 3.5 and 10.7]. 

It should also be noted that as mentioned in [Kailath et al 2000 – Chapter 10.3 Remark 

3], this duality is still valid regardless of the invertibility of T
k k kB Q B  as long as kQ  is an 

invertible matrix. 
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2.3.1 Optimal solution of the quadratic cost function 

The objective is to find 
|

ˆ
k kx  and 

|
ˆ

k ku  for each instant k which minimizes the cost defined 

in (2.34). 

Unfortunately, Lemma 1 cannot be used directly to obtain this optimal solution because 

of the existence of non-random parameter ku  in the original cost function definition. 

Therefore, first of all using a series of linear transformations and change of variables 

(2.34) must be converted into a form for which Lemma 1 can be applied. Once such a 

form is obtained, the optimal solution can be derived using the Kalman filter as described 

in Lemma 1. 

First, the following 2 linear transformation are applied to the observation in (2.1b): 

Let ˆ k

k

k

T
T

T

 
=  
 

 be a non-singular square matrix such that rows of kT  represents the basis 

vectors of the left null space of kM  and the rows of 
kT  are the orthogonal complement of 

the rows of kT . In other words:  

0k kT M =          (2.37a) 

{ } { }T

k kRange T Range M=        (2.37b) 

(This is the same kind of transformation as defined in (2.8). However, in this case the 

transformation is defined for each “k” instant rather than for the overall matrix notation.) 

Thus: 

1

k k k k k k k ky T y T C x T v= = +        (2.38a) 

2

k k k k k k k k k k ky T y T C x T M u T v= = + +       (2.38b) 
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Furthermore using the LDU decomposition of ˆ ˆ T

k k kT R T  (where { }T

k k k
R E v v= ), a 2

nd
 

transformation is defined as follows: 

( )
1

0

I

I

k

T T
k k k k k k k

T

V T R T T R T
−

−

 
 

= − 
 
 ɶ
��������	

       (2.39) 

Pre-multiplying the both sides of (2.38) with (2.39), the following new set of 

observations can be formed: 

�
1

1

k

k k k k k k k k

v

y T y T C X T v= = +         (2.40a) 

( ) � ( )
3

3 3

3 2 1

k
k k

k k k k k k k k k k k k k k

M
T v

k ky y T y T T T C x T M u T T T v= − = − + + −ɶ ɶ ɶ
����	 ������	

    (2.40b) 

It should be noted that 3

kM  is a non-singular matrix. Furthermore, due to the 2
nd

 

transformation 1

kv  and 3

kv  is orthogonal: 

( )

1 1

1
1

3

3 3

00

0 0

T T

T

k k k
k k

k k T T T
k k k k k k k k k k k k k

T

k

E
T R Tv R

v v
v R T R T T R T T R T T R T

−= =
                −       

 (2.41) 

Using this orthogonality property, the cost function (2.34) can be rewritten for the 

transformed observations as follows: 

0

11 1 3 11
0

1
3

, ,
0 0 0

1 3 3

0

2 22 2
min

k k
k k k

k k k k k k k k k k

n n n

x
k k

k
u

k
R RQ

x y T C x y T C x M u
ω

ω − −− −

−

= = =
Π

+ + − + − −∑ ∑ ∑   (2.42a) 

Subject to: 

1k k k k k k kx A x N u B ω+ = + +         (2.42b) 

Now the following change of variables is employed: 

3 3 3

k k k k k k kz y T C x M u= − −         (2.43a) 
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Hence: 

( )
13 3 3

k k k k k k ku M y T C x z
−

= − −         (2.43b) 

With this change of variables (2.42) becomes: 

3 111 1 1
00

1
22 2 2

, ,
0 0 0

1

0min
k kkk k

k k

n n n

Qx z
k k

k k k R
k

k
R

x y T C x z
ω

ω −−− −

−

= = =
Π

+ + − +∑ ∑ ∑     (2.44a) 

Subject to: 

( )( )
( )

1

1 1 1

3 3 3

1

3 3 3 3 3

k k k k k k k k k k k k

k k k k k k k k k k k k k k k

x A x N M y T C x z B

A N M T C x B N M z N M T y

ω

ω

−

− − −

+ = + − − +

= − + − +
   (2.45b) 

In order to get rid of the deterministic input “ ky ” from the constraints, the following 

dynamical change of variables is introduced: 

Let e N

k k kx x x+=  and 1 e N

k k ky y y+=  where: 

( )1 1
3 3 3 3

1

N N

k k k k k k k k k k kx A N M T C x N M T y
− −

+ = − +       (2.46a) 

N N

k k k ky T C x=           (2.46b) 

0 0N
x =            (2.46c) 

Hence an equivalent cost function can be defined in e

kx  and e

ky  as follows: 

3 111 1 1
0

0

0

1
22 2 2

, ,
0 0 0

min
e k kkk k

e

k k

n n n
e

Qx z
k k

k k R
k

k k
R

x y T C x z
ω

ω −−− −

−

= = =
Π

+ + − +∑ ∑ ∑     (2.47a) 

Subject to 

( )1 1
3 3 3

1

e e

k k k k k k k k k k kx A N M T C x B N M zω
− −

+ = − + −      (2.47b) 
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This final form given in (2.47) is equivalent to the form defined in Lemma 1. Therefore, 

Lemma 1 can now be used over (2.47) to find the optimal solution for the cost function 

defined in (2.34). These results are summarized in Lemma 2. 

Lemma 2 

i. The optimal |
ˆe

n nx  solution for the cost defined in (2.47) is equal to the Kalman 

filter solution of the following system: 

( )

#

#

1 13 3 3

1

ke e

k k k k k k k k k

k

A

k
x A N M T C x B N M

z

ω

ω− −

+

  = − + −     

����
��������
����

     (2.48a) 

�
#

1

k

e e

k k k

C

k ky T C x v= +          (2.48b) 
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0

3
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1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 01

e
T

e

kk

k
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k

kk

k

x
x

Q

E Rz
z

Rv
v

ω
ω

    
     
          =                   

Π

 

      (2.48c) 

Where 

{ } ( )
1

3 T T T T

k k k k k k k k k k k

T

k k kkR E z z T R T T R T T R T T R T
−

= = −     (2.48d) 

{ }1 1 1
T

T

k k k k k kR E v v T R T= =         (2.48e) 

ii. The optimal 
|

ˆ
n nx  (optimal nx  estimate given all the observation up to and 

including ny ) is equal to: 

|
ˆ ˆN e

n n n nx x x= +           (2.49) 

where N

nx  is the state of the deterministic system defined in (2.46). 
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iii. As defined in (2.43b), the optimal nu is ( )
1

| |

3 3 3

|
ˆ ˆ ˆ

n n n n n n n n n nu M y T C x z
−

= − − . The 

optimal 
|

ˆ
n nz  is always zero as the cost function is independent of nz . Therefore: 

( ) ( )
1 13 3 3 3 3

|| |
ˆ ˆ ˆ

n n n n n n n n n n n nn nu M y T C x M T y C x
− −

= − = −      (2.50) 

2.3.2 Implementation of the optimal Solution 

The Lemma 2 might seem rather complicated. However, in this section it will be shown 

that it is nothing more than what can be anticipated with the basic engineering intuition. 

To this end it will first be proves that the term 
13 3

k kM T
−

 in Lemma 2 is in fact equivalent to 

the left (weighted) pseudo inverse of the observations. 

Property 1 

When kR  is invertible, 
13 3

k kM T
−

 is equal to the weighted pseudo inverse of kM . In 

mathematical terms: 

( ) ( )( )
( )

1 113 3

1
1 1

#

T T

k k k k k k k k k k k k

T T

k k k k k

k

M T T M T T R T T R T T

M R M M R

M

− −−

−− −

= −

=

≜

     (2.51) 

Proof: 

Let y Mx v= +  where v  has a Gaussian ( ( )0,N R ) distribution and M  has full column 

rank. It is well known that the MVU estimate of x  is ( )
1

11 1ˆ T T

optx M R M M R y
−− −= . 

Linear transformations on y  do not change the optimal solution. Hence the following 2 

transformation can be applied on y  without affecting the solution. 
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i) ˆ
T

T
T

 
=  
 

 is a nonsingular matrix where { } { }TRange T Range M=  and 0TM = . 

ii) ( )
1

0

T T

T

V TRT TRT

−

−

Ι 
 

= − Ι 
 
 ɶ
������	

 

Thus: 

( ) ( )
Ty Tv

T TT y TMx T TT v

=

− = + −ɶ ɶ       (2.52) 

TM is a full rank matrix by construction and Tv  is orthogonal to ( )T TT v− ɶ . Therefore 

another optimal solution is ( ) ( )2 1
ˆ

optx TM T TT y
−

= − ɶ . 

As M  is assumed to be a full column rank matrix, optimal solution is unique for this 

problem. Hence, 
1 2ˆ ˆ
opt optx x=  for all y . Therefore, 

( ) ( ) ( )
11 1 1 #T T

TM T TT M R M M R M
−− − −− = =ɶ  as stated in the Property 1. 

Using this equivalence, the results of the Lemma 2 can be rewritten as follows: 

Lemma 3 

The optimal nx  solution for the cost function defined in (2.34) is equal to the Kalman 

filter solution (
|

ˆ
n nx ) of the following system: 

( )
#

#

# #

1

#

k

k k k k k k k k k k

w

k k k k

A

x A N M C x B N v yM MNω+ = − + − +
������	������	

   (2.53a) 

� �
# 1

1

k

k k k k

C

k

v

ky T C x T v= +         (2.53b). 
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0 0

0

0 0

0 0 ,

0 0

T T T

k k k k

k k

w

x

E x v Q k

v R

w

    
      = ∀     
       

Π



    (2.53c) 

Furthermore, the best nu  estimate (
|

ˆ
n nu ) given all observations can be computed as: 

( )#

| |
ˆ ˆ

nn n n n n
u M y C x= −        (2.54) 

It should be noted that the system defined in (2.53) is obtained by adding (2.48) with the 

nominal system defined in (2.46). Furthermore, the covariance equivalence 

{ } { }3 3
T

T

k k k kE z z E v v=  is used to replace kz  with kv . 

In (2.53) 
k k

T v  is orthogonal to #

k k kN M v . Therefore, there is no cross correlation between 

observation and system driving noises. Hence, any straightforward Kalman filter 

implementation can be used compute the optimal 
|

ˆ
n nx . Such an implementation is 

presented in Figure 2.1. In this implementation, the pseudo inverse of the observations is 

used to drive a deterministic system which provides a nominal solution N

kx  around which 

errors e

kx  are defined. Then, the orthogonal complement of observations (i.e. k kT y ) are 

used to drive the Kalman filter to compute these error estimates. The optimum solution is 

then obtained as the sum of the nominal states and estimated error states. The most 

important property of this implementation is that it defines how a nominal trajectory 

should be computed when multiple sensors exist. 



 

Figure 2-1 : Optimal estimation structure for the cost function defined in (

Kalman filter and nominal trajectory parameters are as defined in (

In the case when 0kN =  

propagation of random (stochastic) variables), the form of the optimum solution takes a 

more simple form as presented in figure 2.2. This form can simply be derived by setting 

0kN = in (2.53).  

Figure 

Optimal estimation structure for the cost function defined in (

Kalman filter and nominal trajectory parameters are as defined in (2.

0  (i.e. when the non-random variables does not affect the 

propagation of random (stochastic) variables), the form of the optimum solution takes a 

more simple form as presented in figure 2.2. This form can simply be derived by setting 

 

Figure 2-2 : Optimal structure when 0kN =  
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Optimal estimation structure for the cost function defined in (2.34). 

2.48) and (2.53). 

oes not affect the 

propagation of random (stochastic) variables), the form of the optimum solution takes a 

more simple form as presented in figure 2.2. This form can simply be derived by setting 
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2.4 Application to Multi-Inertial Sensor Fusion 

2.4.1 Solution of Multi Sensor Fusion Problem 

In this section, the application of Lemma 3 to the SRIMU problem stated in Section 2.1 is 

presented. 

This problem can be formulated as follows: 

Let’s assume there exits N sensors (accelerometers and/or gyroscopes) with the following 

error models and output relations: 

1

i i i

k k k

i

k

i

kx A x B w+ = +         (2.55a) 

k k k

i i i

k k

i
y C x v Mu= + +        (2.55b) 

{ }

{ }

{ }

0 0 0

k k

i i T i

i i T i

k

i i T i

k k k

E x x

E v v R

E w w Q

=

=

=

Π

        (2.55c) 

Where each { }
1

i

k

N

i
y

=
 represents the individual (i

th
) sensor output, { }

1

i

k

N

i
x

=
 is the 

corresponding sensor’s stability error state (possibly with a dimension greater than 1), 

{ }
1

i

k

N

i
v

=
 is the additive white noise component (i.e. ARV/VRW) and ku  is the real 

kinematic quantity which the sensors are expected to measure (i.e. acceleration/rotation 

rates on the body frame). { }
1

i

k

N

i
M

=
 is the unit vectors representing the orientation of the 

sensors in the defined kinematic frame of reference (e.g. body frame). It should be noted 

that as inertial sensors are multiple input/single output (MISO) systems, each { }
1

i

k

N

i
C

=
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corresponds to a row vector. After combining all the states in a single state vector, (2.55) 

can be represented in a more compact form as follows: 

1k k k k k

k k k k k

x A x B w

y C x Mu v

+ = +

= + +
        (2.56) 

where 1 ; ;
k

N
T

k k
x x x =  … , 1 ; ; k

N
T

k ky y y =  … , 
1 ; ;N

T

M y M =  … and 

{ } ( )1 , ,T
k k k k k

N
E v v R diag R R = =  … . (2.56) is equal to the (2.1) with 0kN = . Therefore, 

Lemma 3 (specifically Figure 2.2) can now be applied to compute the optimal ku  at each 

time instant. Thus, ( )#

| |
ˆ ˆ

kk k k k k
u M y C x= −  where ( )

1
# 1 1T T

k kM M R M M R
−

− −=  and 
|

ˆ
k kx  is 

the optimal solution of the Kalman filter for the following system model: 

1k k k k k

k k k k

x A x B w

Ty TC x Tv

+ = +

= +
        (2.57) 

where rows of T  is the basis for left null space of M  (i.e. 0TM =  as defined in (2.37)). 

A dynamical system representation for the errors on the estimated kinematic variables 

|
ˆ

k ku  is also required for integrated (aided) inertial navigation applications. These error 

modes for the 
|

ˆ
k ku  can be derived from the individual sensor’s error states as follows: 

Let 
|

ˆ
k k k ke u u= −  be the error on the computed (estimated) kinematic variable. Then 

( )

( )( )

#

|

#

|

# #

|

ˆ

ˆ

k k k k k k

k k k k k k k

k k k k

e M y x u

M x x Mu v

C

C

C

u

M x M v

= − −

= − + + −

= +ɶ

     (2.58) 

Where 
|k kxɶ  represents the error on the output of the Kalman filter for the system (2.57): 

( ) ( )| 1 1| 1 1 1I Ik k k k k k k k k k k k kx K TC A x K TC B w K Tv− − − − −= − + − −ɶ ɶ    (2.59) 
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As a result (2.58) and (2.59) defines the dynamical system representation of the errors on 

the computed IMU output 
|

ˆ
k ku . In this formulation #

kM v  and 
|k kxɶ  represents the effective 

ARW/VRW component and repeatability/stability errors respectively for the computed 

kinematic variables that can used to drive navigation equations in an INS. It should be 

noted that although kv  appears as a part of both the observation noise in (2.58) and 

system noise in (2.59), there exists no cross-correlation between system and output noises 

as kTv  and #

kM v  is orthogonal by construction. Therefore, this final error model can be 

implemented in any existing integrated navigation application without any complication. 

2.4.2 Simulated data results for multi-inertial sensor fusing problem 

In this section the results of the method described in the previous section is presented for 

the simulated system shown in Figure 2.3. This figure represents a skew redundant 

inertial sensor configuration for a planar navigation application where the IMU consist of 

2 gyroscopes on z-axis and 4 accelerometers on the X-Y plane. It is assumed that the 

sensors have the following error models defined at 1Hz. 

Accelerometers (same for all 1 4i≤ ≤ , defined in 2/m s ): 

[ ]

9

Acc Acc

12

7

Acc 9 Acc Acc

0 6

0.99871 0 1.2 0
,

0 1 0 1

4.9 0
8.55 , , 1 1

0 1

i i

i i i

A Q

R C

−

−

−
−

−

  
= =   
   

 
= =Π = 

 

    (2.60a) 

Gyroscope 1 ( / secrad ): 

1 Gyro 1 Gyro 9

1 Gyro 10 11 Gyro 7 Gyro

0

0.99546, 5.6

4.4 , ,6.2 1

A Q

R C

−

− −Π

= =

= ==
     (2.60b) 



 

Gyroscope 2 ( / secrad ): 

Gyro Gyro 10

Gyro 7 Gyro 8 Gy

2

2

2

0

2 2

0.99773, 4.2

3.7 ., , 19 4

A Q

R C
− −

=

=

=

= =Π

As can be seen from (2.60b) and (2.60c), gyroscope 1 has considerably less additive 

white noise than gyroscope 2. On the other hand, the stability error characteristic of 

gyroscope 2 is better than gyroscope 1.

Figure 2-3 : Multi inertial sensor configuration used in the simulation. The 

configuration matrix corresponding to this orientation is defined in (2.61).

distance between the origin and the sensors are assumed to be negligible.

For this redundant inertial sensor system, the configuration matrix (“

relating real kinematic variables (

Rotation Rate ( zω )]) with the sensor outputs is as follows:

 

Gyro Gyro 10

Gyro 7 Gyro 8 Gy or2 2

0.99773, 4.2

., , 19 4R C

−

− −

=

= =
     

As can be seen from (2.60b) and (2.60c), gyroscope 1 has considerably less additive 

white noise than gyroscope 2. On the other hand, the stability error characteristic of 

better than gyroscope 1. 

 

: Multi inertial sensor configuration used in the simulation. The 

configuration matrix corresponding to this orientation is defined in (2.61).

distance between the origin and the sensors are assumed to be negligible.

inertial sensor system, the configuration matrix (“ M ” in (2.5

relating real kinematic variables ( u =[x-Acceleration ( xa ), y-Acceleration (

)]) with the sensor outputs is as follows: 
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(2.60c) 

As can be seen from (2.60b) and (2.60c), gyroscope 1 has considerably less additive 

white noise than gyroscope 2. On the other hand, the stability error characteristic of 

: Multi inertial sensor configuration used in the simulation. The 

configuration matrix corresponding to this orientation is defined in (2.61). The 

distance between the origin and the sensors are assumed to be negligible. 

” in (2.56)) 

Acceleration (
ya ), z-
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1 0 0

1 0 0

cos sin 0

cos sin 0

0 0 1

0 0 1

6 6

4 4

M

π π

π π
=

 
 
 
    
    

    
    
    

    
 
 
  

        (2.61) 

Thus, each individual sensor output can be represented as: 

1 Acc1 1 Acc

Acc2 Acc

Acc3 Acc

Acc4 Acc

22

33

4

1 Gyro1

Gyr2

4

2 o

0

0 0

0 0

0 0

0 1 0

0 1

k

k
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    
     
     = = +    
    

    
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 
 
 
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 
  

 (2.62) 

where “ ,i Acc Gyro
x ” denotes the error states of each individual sensor. 

Using the error and configuration definitions given in (2.60)-(2.62), 100 minutes of 

stationary sensor output was generated using Matlab at 1Hz. Then, the generated outputs 

were processed as described in Section 2.4.1 to obtain the best kinematic variable 

estimates 
|

; ; ˆˆ ˆ ˆ
y z

T

n n x
u a a ω =   . 

The comparison of individual raw gyro outputs ( 1Gyro  and 2Gyro ) is shown in figure 

2.4. In figure 2.5, the comparison of 2 different z-rotation rate estimates ( ˆ
zω ) which are 

derived from these raw gyro outputs are presented. The first “ ˆ
zω ” estimate (blue curve in 

Figure 2.5) is the optimal solution which is computed using the structure shown in the 

figure 2.2 ( ( )#

| |
ˆ ˆ

n n n n

o

n

ptu M y Cx= − ). The second estimate (red curve in Figure 2.5) is the 
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simple weighted least square solution ( #ˆ wls

nu M y= ). From these figures the following 

observations can be made: 

1. As seen from Figure 2.4 (and error definitions given in (2.60)), the 2 gyroscopes have 

complimentary characteristics: 2Gyro  has relatively big additive white noise (ARW) but 

small stability errors, whereas 1Gyro  has low “ARW” but a bigger stability error. 

2. As the WLS solution ( ˆ wls

zω ) only considers the ARW values to form an average, this 

solution is mainly characterized by 1Gyro . Therefore, as seen in Figure 2.5, it also 

suffers from the large stability errors. 

3. On the other hand, the optimal solution ( ˆ opt

zω ) in Figure 2.5 combines (fuse) both 

gyroscope outputs in such a way that the optimal result has both small additive white 

noise (as inherited from 1Gyro ) and small stability errors (as inherited from 2Gyro ).  

As these figures suggest, the optimal solution has the property of blending the best 

characteristics of individual sensors which is a clear advantage over WLS type solutions 

when the underlying sensors have different (but complimentary) characteristics. 
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Figure 2-4 : Comparison of simulated raw gyroscopes outputs on z axis. 

 

Figure 2-5 : Comparison of optimal ( ˆ opt

zω ) and WLS ( ˆ wls

zω ) solutions for estimated z-

axis rotation rate ( ˆ
zω ). The dashed lines correspond to the standard deviation (3σ) 

values of the corresponding solutions. 
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In figure 2.6, a similar kind of comparison for the computed (estimated) y-axis 

accelerations ( ˆ
ya ) are provided. In this figure, 3 different results are compared. These 

are: i)the optimal solution ( ˆopt

ya ), ii)WLS solution ( ˆ s

y

wl
a ) and iii)Partial WLS solution 

computed only with 3
Acc  and 4

Acc ( ( ) ( )( )3 4/ 4ˆ -3.8637 sin s 6o /cls

y
a Acc Accπ π= − ). 

From this figure, the following observations can be made: 

1. Although only 3
Acc  and 4

Acc  are directly affected by the y-axis acceleration, the 

combined solution of all 4 accelerometers ( ˆ s

y

wl
a ) is significantly less erroneous than ˆ s

y

l
a  

as expected. 

2. Optimal Solution and WLS solutions ( ˆopt

ya , ˆ s

y

wl
a ) are exactly the same (they are 

represented by a single (red) curve in Figure 2.6). 

This second observation is important because it suggests that under certain conditions the 

Kalman filter in the optimum solution has no use at all, and hence, can be completely 

eliminated. 

The theoretical reason and useful consequences of this final observation is further 

described in the next section. 
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Figure 2-6 : Comparison of optimal ( ˆopt

ya ), WLS ( ˆ s

y

wl
a ) and partial WLS ( ˆ s

y

l
a ) 

solutions for the computed y-axis acceleration. The Optimal and WLS solutions 

exactly overlap, and hence seem as a single curve. 

2.4.3 Optimal sensor fusion results for the case of identical inertial units 

When an SRIMU contains only inertial sensors which have identical stochastic error 

models (or at least contains sets of sensors that have identical models) then the optimal 

solution for the inertial sensor fusing problem reduces to more simple forms. 

Furthermore, for such systems the number of states in the equivalent error models can be 

greatly reduced. In this section these properties of optimal solutions are analyzed. 

2.4.3.1 Case I: Identical Inertial Sensors 

In this section, it will be proved that when i) all the inertial sensors in an SRIMU have 

exactly the same error model parameters (same 
0, , , , ,

i i i i i i
A B C R QΠ  in (2.55)) and ii) 
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the sensor error characteristics are independent (no cross correlation between sensor 

errors), then regardless of the sensor orientations ( M ), the optimum solution is 

#

|
ˆopt

k k ku M y= . In other words, for such systems 
#

|
ˆ 0k k kM C x =  for k∀  in (2.54). 

To prove this, it will be shown that required linear combination of error states #

k kM C x  is 

always orthogonal to the redundancy observations kTy  (i.e. { }# 0, ,T T

k k l
E M C x y T k l= ∀ ) 

when the sensors are identical as stated above. 

First, it should be noted that as the sensors are independent and identical Ik kR r=  is a 

diagonal matrix where kr  is the power (scalar) of the additive white noise of the 

individual sensors. Thus: 

( )

( )

# 1 1
1

1

0

T T T T

T T T

M T M R M M R T

M M M T

− −
−

−

=

=

=

      (2.63) 

The final step is the direct consequence of the fact that rows of T  is orthogonal to the 

columns of M  by construction. 

The cross covariance between the redundancy observations and combination of error 

states is equal to: 

{ } { }# #

kl

T T T T T

k k l k k l kE M C x y T M C E x x C T

Π

=
����	

     (2.64) 

Assuming there exist “n” sensors, ( )1

kl kl kl

ndiagΠ Π Π= …  is itself a block diagonal 

matrix with identical block diagonal elements (as each unit is assumed to be identical and 

independent). Therefore: 

I
T

k kl l klC C γ=Π         (2.65) 
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where klγ  is a scalar. Thus, combining (2.65) with (2.63): 

# #
0

T T T

k kl k klM C C T M Tγ= =Π       (2.66) 

This shows that observations are always orthogonal to the required linear combination of 

states. Therefore, 
#

|
ˆ 0,k k kM C x k= ∀  as claimed. 

Under these conditions, the error model of the computed optimal outputs ( | |
ˆ ˆ

k k

opt ls

k

w

ku u= ) also 

has a relatively simple form as shown below: 

Let |
ˆopt

k k k ke u u= − , then: 

( )

#

#

# #

k k k

k k k k k

k k k

e M y u

M Mu C x v u

M C x M v

= −

= + + −

= +

      (2.67) 

The correlation structure of ke  can be represented as: 

{ } [ ]

( ) ( ) [ ]

# # # #

1 1

T TT T

k l kl l kl l k

T T

kl k

E e e P M C C M M R M

M M r

k

k lM

l

M

δ

γ δ
− −

= = Π +

= +

−

−
    (2.68) 

For the Kalman filtering point of view, any dynamical system representation (DSR) 

which has this correlation structure is equivalent (because Kalman filters use only 2
nd

 

order stochastic properties). Therefore, instead of the real sensor error model (for which 

(#states)=(#sensor)*(#states per each sensor)) any other DSR which has the same 

correlation as in (2.68) can be implemented in the navigation Kalman filter. (It should be 

noted that the equivalent error models is only required by the navigation Kalman filters, 

not by the optimal sensor fusion filters). 

In figure 2.7, an alternative structure which can be used to generate the same correlation 

as (2.68) but with possibly less number of states is presented. This structure assumes that 
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regardless of how many inertial sensors are used in the real system, each kinematic axis 

contains only one (virtual) independent sensor whose output error correlation is equal to “

[ ]kl k lr kγ δ+ − ”. Therefore, the error model assigned for each axis is identical to the 

single individual sensor error model. 

As an example, using the alternative structure in figure 2.7, an equivalent representation 

of the errors on the computed acceleration values ( ˆ ˆ; ;
T

opt opt

k x x yy
e a a a a  = −    ) for the 2D 

SRIMU shown in figure 2.3 (where all accelerometers have identical error models) can 

be derived as follows: 

Let M  be the first 4 rows of the M  matrix defined in (2.61). Then: 

1 Acc 1 1

1

Ac2 2c

1

2

0

0

eq eq

k k k k

eq eq

k k k k

x A x

x A x

ω

ω
+

+

       
= +       

       
      (2.69a) 

( ) ( )
Acc 1 1

1 1

Ac 2 2c

0

0

x

eq eq
k k

y

Acc eq
k T Tk k k

k eqAcc

k

v

k kk

C

e C x v
e M M M M

C x ve

− −       
= = +       
         ����������	 ��������	

   (2.69b) 

where ( )
1 1

Acc Acc

0

0 0

2 2

0 0

0 ,

T
eq eq

eq eq

x x
E diag

x x

     
=    

    

Π Π
 

, ( )
1 1

Acc A

2 2

cc,

T

k k

k k

E diag Q Q
ω ω

ω ω

     
=    

     

, 

( )
1 1

Acc A

2 2

cc,

T

k k

k k

E diag R R
v v

v v

     
=    

     

. Furthermore, 
0

Acc Acc Acc Acc Acc
, , , ,k kA C Q RΠ  are 

exactly the same as defined in (2.60a). 

It should be noted that in this equivalent representation only 4 states are used to represent 

the errors on the computed acceleration values whereas in the real system there exists 8 

states (2 for each 4 accelerometers). Furthermore, even if the system defined in figure 2.3 



 

had 100 identical accelerometers on the x

for the equivalent representation. As this example suggests, these equivalent 

representations provide a great convenience for the navigation Kalma

when there exists abundant number of sensors in an SRIMU.

Figure 2-7 : Equivalent error model for the errors on the (optimal) computed 

kinematic variables when all the sensors are identical

equal to the number of kinematic axis (i.e. size of 

2.4.3.2 Case II: Sets of identical sensors

In this section the ideas presented in the previous section are extended to the case in 

which there exist L sets of inertial sensors and each set consist of 

identical sensors. For such a case the entire observation equations can be represented as 

follows: 

1 1 1 1 1

k k k k k

k k k k k

L L L L L

y Mu C x v

y Mu C x v

= + +

= + +

⋮

had 100 identical accelerometers on the x-y plane, still only 4 states would be sufficient 

for the equivalent representation. As this example suggests, these equivalent 

representations provide a great convenience for the navigation Kalman filter designs 

when there exists abundant number of sensors in an SRIMU. 

: Equivalent error model for the errors on the (optimal) computed 

kinematic variables when all the sensors are identical. The number of models used is 

equal to the number of kinematic axis (i.e. size of ku ).

Case II: Sets of identical sensors 

In this section the ideas presented in the previous section are extended to the case in 

ets of inertial sensors and each set consist of { }
1

i
L

i
N

=

identical sensors. For such a case the entire observation equations can be represented as 

k k k k k

k k k k k

y Mu C x v

y Mu C x v
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y plane, still only 4 states would be sufficient 

for the equivalent representation. As this example suggests, these equivalent 

n filter designs 

 

: Equivalent error model for the errors on the (optimal) computed 

. The number of models used is 

). 

In this section the ideas presented in the previous section are extended to the case in 

1

L

=
 number or of 

identical sensors. For such a case the entire observation equations can be represented as 

(2.70) 



49 

 

It should be noted that in the previous section left-superscripts were used to represent the 

individual sensors. However, in this section they are used to represent all the sensors in 

the individual sets. Furthermore, to avoid unnecessary complexity in the notation it is 

assumed that all { }
1

i
L

i
M

=
 matrices are full column rank. 

Using the same linear transformations as described in (2.37) (but with specifically 

selecting 
i i T
T M= ), the observation equations (2.70) can be rewritten as: 

1 1 1# #1 1 #

# # #

1 1

k k k k k

k k k k k

L L L L L L L

M y u M C x M v

M y u M C x M v

= + +

= + +

⋮      (2.71a) 

11 11

L

k k k k

k

L L

k k

L L

k

L

Ty TC x Tv

Ty T C x T v

= +

= +

⋮        (2.71b) 

where 

( ) ( )
1 1

# 1 1i i i i iT T T Ti i

k

i i

kM M R M M R M M M
− −− −= =      (2.72) 

Again using the similar linear transformations, the first set of equation in (2.71a) can be 

decomposed into 2 sub-sets one of which does not contain non-random parameter ku  as 

follows: 

Let ˆ S
S

S

 
=  
 

 be a non singular matrix where the row space of S  is the orthogonal 

complement of the row space of S and [ ]
#

I I

L

S = …
����	

 contains only L identity matrices. 

Thus, (2.71a) can be rewritten as: 
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( )

( )

#1 1 #1 # #

#

1

1 #

1

1

L L LL L

L L

k k k kk k
k

k k

M C x M C xM y M y
u

L L

M v M v

L

+ ++ +
= +

+ +
+

……

…
   (2.73a) 

1 # #1 #11 1 1

# #

1

#L L L L L

k k k k

k k k k

L L

M y M C x M v

S S S

M y M C x M v

     
     

= +     
     
     

⋮ ⋮      (2.73b) 

As (2.71b) and (2.73b) does not contain “ ku ” and (2.73a) does not contain any further 

redundancy, the Kalman filter to estimate the best 1 1

| |
ˆ ˆ

k k L L
x x…  requires only (2.71b) 

and (2.73b) as the sensor redundancy observations. 

Furthermore, as each set of sensors is assumed to be independent, the optimal solution 

can be algebraically expressed as the combination of 2 consecutive WLS steps as 

follows: 

1 1 1 1 #1 1 #1 1

|

# #

|

|

# #

| |

ˆ ˆ

ˆ

ˆ ˆ

k k k k k k k k

k k B

L L L L L

k k k k k k

L L

k k

L

y C x M y M C x

u M M

y C x M y M C x

   − −
   

= =   
   − −   

⋮ ⋮     (2.74) 

where: 

( )

1 1

1
# 1 1

0

, 0 0 ,

0
L L

k

T T

k k k

k

M R

M R M M R M M R

M R

−
− −

   
   

= = =   
   
   

⋮

⋮ ⋱

…

   (2.75) 

( ) ( )( )

( ) ( )( )

1 1 1 1

1

1

0

0

T

k

k

T
L LL

k

M R M

R

M R M

−

−

−

 
 
 =
 
 
 

⋱     (2.76a) 
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  =   
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      (2.76b) 

and |
ˆi

k kx  is the solution of the Kalman filter with the observation models presented in 

(2.71b) and (2.73b) and with the following state transition model: 

2

1 1 1 1

1

1

0

0

k

L L L

k

k k k

k kk

x A x

x xA

ω

ω

+

+

      
      

= +      
      

      

⋮ ⋱ ⋮       (2.77) 

On the other hand, as seen in (2.74), the optimal 
|

ˆ
k ku  estimate depends only on the “

#

k

i i i

kM C x ” term. However, as proved in the previous section all the observations defined 

in (2.71b) is orthogonal to this linear combination of states as all sensors in a single set is 

identical. Therefore, these observations can be completely ignored and the Kalman filter 

for the system (2.77) can be run only with the observations defined in (2.73b). 

Furthermore, as explained in the previous section, when the sensors are identical, each 

#

k

i i i

kM C x  term can be represented with another equivalent model which usually has less 

number of states than the actual error model for the corresponding set. Therefore, instead 

of (2.77), the Kalman filter can be defined using these reduced order alternative models 

for each set. As 
|

ˆ
k ku  only requires the best estimate for #

k

i i i

kM C x  (rather than i

kx ), the 

use of such reduced order error models in the Kalman filter does not affect the optimal 

solution at all. 

As a result, the above discussion shows that when there are L sets of identical inertial 

sensors, the optimal solution of inertial sensor fusion problem can be solved with the 

following steps: 
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i. Consider each set of identical sensors as a single (multidimensional) sensor whose 

output is equal to ( ) ( )#i i i

k k
y M y= . 

ii. For each set, derive the reduced order alternative error models for the { }
1

i
k

L

i
y

=
as 

described in Section 2.4.3.1. 

iii. The optimal solution can then be obtained by applying the optimal sensor fusion 

algorithm described in Section 2.4.1 over these virtual (multidimensional) sensor 

outputs ({ }
1

i
k

L

i
y

=
) with the reduced order error models derived in step ii. In this 

case the fusion algorithm uses (2.73b) as the only source of redundancy 

observations. 

In the next section, the application of this method for the SRIMU systems is described 

(clarified) using simulated data examples. 

2.4.3.3 Simulated Data results for SRIMU systems with Identical Sensors 

In this section, the results of the optimal inertial sensor fusion algorithm for the multi 

sensor configuration shown in Figure 2.8 are presented. As seen from this figure, the 

SRIMU under consideration contains 2 sets of accelerometers placed in the x-y plane and 

1 set of gyroscope on the z-axis (this is an SRIMU configuration for a 2D planar 

navigation application). Each accelerometer sets contains 5 identical accelerometers, and 

the gyroscope set contains 2 identical gyroscopes. The error model parameters for the set 

1 accelerometers ( 1,2,3,4,5Acc ) and the gyroscope set ( 1,2Gyro ) are as defined in (2.60a) 

and (2.60b) respectively. For the accelerometers in set 2 ( 6,7,8,9,10Acc ), the following error 

model parameters (defined for 1Hz) were used: 



 

Accelerometers Set 2 ( 6 10≤ ≤

Acc Acc 12 Acc 9 Acc 5 Acc
1, 1 , 8.

i i i i i
A Q R C

− − −= =

By comparing (2.60a) and (2.78) it can be seen that the accelerometers in 

better stability characteristics than Set 1. However the initial covariance of stability errors 

for Set 2 is much worse. The two sets of accelerometers have the same additive white 

noise powers. 

Figure 2-8 : Sensor configurations for 

accelerometers on the x

between the sensors and the origin is assumed to be negligible.

The configuration matrices for each 

6 10i≤ ≤ ): 

Acc Acc 12 Acc 9 Acc 5 Acc

01, 1 , 8. 155 , , 1.3
i i i i i
A Q R C

− − −Π == =    

By comparing (2.60a) and (2.78) it can be seen that the accelerometers in 

better stability characteristics than Set 1. However the initial covariance of stability errors 

for Set 2 is much worse. The two sets of accelerometers have the same additive white 

: Sensor configurations for the 3D SRIMU containing 2 sets of 

accelerometers on the x-y plane and 1 set of gyroscope on the z-axis.

between the sensors and the origin is assumed to be negligible.

The configuration matrices for each set of sensors are as follows: 

53 

 (2.78) 

By comparing (2.60a) and (2.78) it can be seen that the accelerometers in Set 2 have 

better stability characteristics than Set 1. However the initial covariance of stability errors 

for Set 2 is much worse. The two sets of accelerometers have the same additive white 

 

D SRIMU containing 2 sets of 

axis. The distance 

between the sensors and the origin is assumed to be negligible. 
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1
1

1

G
M

 
=  
 

          (2.79c) 

As described in the previous section, instead of using this real system, the optimum 

solution can be derived using “virtual” sensor equivalents for each set of identical 

sensors. For each time instant the output of each (multi-dimensional) virtual sensor is 

computed as follows: 
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The new configuration corresponding to these virtual sensors is presented in Figure 2.9. 

As seen from this figure, in the new configuration it is assumed that each axis contains 

only one sensor for each type. As explained in Section 2.4.3.1, the overall observation 

and error model for this virtual configuration can be represented as follows: 
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eq eq Acc Acc Acc Acc Acc

k kE diag Q Q Q Q Q Qω ω =
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0 0 0 0 0 0 0

T
eq eq Acc Acc AcE x x diag Π Π Π Π Π=

As can be seen from (2.81b), in this equivalent 

define the errors whereas the real system contains 17 states.

Figure 2-9 : Configuration of virtual sensors used to compute the optimal sensor 

fusion solution. The outputs of these virtual sensors are as defined in (2.80) and the 

corresponding error model for these outputs is defined in (2.81).

In figure 2.10 and 2.11, the comparison of 5 different x and y ac

results are presented. The compared re

i. The optimal acceleration estimate (

using the real system and observation model. (This result was computed using a 

17 states Kalman filter which processes 9 redundancy 

interval.) 

ii. The optimal acceleration estimate (

using the reduced order system and observation models presented in (2.8

)1 6 6 11 1, , , , ,eq eq Acc Acc Acc Acc Acc GyroE diag Q Q Q Q Q Q    

)6 61 1 1

0 0 0 0 0 0 0, , , ,eq eq Acc Acc Ac Gyroc AccΠ Π Π Π Π    

As can be seen from (2.81b), in this equivalent representation only 7 states are used to 

define the errors whereas the real system contains 17 states. 

 

: Configuration of virtual sensors used to compute the optimal sensor 

utputs of these virtual sensors are as defined in (2.80) and the 

corresponding error model for these outputs is defined in (2.81).

In figure 2.10 and 2.11, the comparison of 5 different x and y acceleration estimation 

presented. The compared results are as follows: 

The optimal acceleration estimate ( ˆoptu ): Optimally fused outputs were

using the real system and observation model. (This result was computed using a 

17 states Kalman filter which processes 9 redundancy observations at each update 

The optimal acceleration estimate ( ˆ redu ): The optimal outputs were

using the reduced order system and observation models presented in (2.8

56 

 (2.82e) 

 (2.82f) 

representation only 7 states are used to 

: Configuration of virtual sensors used to compute the optimal sensor 

utputs of these virtual sensors are as defined in (2.80) and the 

corresponding error model for these outputs is defined in (2.81). 

celeration estimation 

: Optimally fused outputs were computed 

using the real system and observation model. (This result was computed using a 

observations at each update 

The optimal outputs were computed 

using the reduced order system and observation models presented in (2.80) and 
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(2.81). (In this reduced order case, the number of states of the Kalman filter was 

only 7 and the Kalman filter processed only 2 redundancy observations). 

iii. The WLS acceleration estimate ( ˆwlsu ): The combined outputs were computed as 

the weighted (with VRW coefficients) least square solution of all sensors. 

iv. The optimal acceleration estimate for only set-1 accelerometers ( 1ˆ Au ): Only set-1 

accelerometers were optimally fused to form the combined output (the set-2 

accelerometers were completely ignored in this solution.). As all accelerometers 

are identical in set 1, this result was computed using the WLS algorithm. 

v. The optimal acceleration estimate for only set-2 accelerometers ( 2ˆ Au ): Similar to 

“ 1ˆ A
ku ” solution, only set-2 accelerometers were optimally fused with WLS 

algorithm to form the combined output. (In this case, set-1 accelerometers were 

ignored.) 

The key observations regarding to the figures 2.10 and 2.11 are summarized below: 

1. Both of the optimal results ( ˆoptu , ˆ redu ) and the error standard deviation of these 

optimal results are exactly identical as anticipated. 

2. As the set 2 accelerometers have large initial bias errors, the 2ˆ Au  result also suffer 

from these initial biases. However, (except these initial bias errors) 2ˆ Au  results are 

more stable than 1ˆ Au  results. 

3. ˆwlsu  is equivalent to simple weighted combination of 1ˆ Au  and 2ˆ Au  (This fact can 

be observed from (2.74) by setting 
|

ˆ 0k kx = ). Therefore, ˆwlsu  is also affected by 

both the initial bias errors of set 2 and large stability errors of set 1 

accelerometers. 
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4. Due to the Kalman filter in the optimal sensor fusing algorithm, the optimal result 

(both ˆoptu  and ˆ redu ) blends the best characteristics of both sets of accelerometers: 

it has the initial bias characteristics of set 1 and the stability characteristics of set 

2. 

 

Figure 2-10 : Comparison of several x-axis acceleration estimation results. Solid 

lines represent the combined outputs whereas dashed lines represent the error 

standard deviations of the corresponding solutions. 
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Figure 2-11 : Comparison of several y-axis acceleration estimation results. Solid 

lines represent the combined outputs whereas dashed lines represent the error 

standard deviations of the corresponding solutions 
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Chapter Three: Design of Inertial Navigation Systems Using Skew Redundant 

Inertial Measurement Units 

3.1 Introduction 

In this chapter, the INS designs with SRIMUs are analyzed using the general framework 

presented in Chapter 2. In the previous chapter, the algorithm for optimally estimating the 

system states and unknown deterministic inputs for the system model defined in (2.1) was 

derived. Furthermore, a method for optimally fusing redundant inertial sensor data was 

described based on this algorithm. 

Although the kinematic variables (i.e. acceleration and rotation rates defined on the body 

frame) can be optimally estimated with the algorithm presented in Chapter 2, the INS 

outputs which are driven by only these optimal kinematic variable estimates ( |
ˆ

k ku ) are not 

in general the optimal navigation solution. As it will be explained later in this chapter, it 

only constitutes a pseudo-optimal solution in which some observations provided by the 

redundancy of the sensors are ignored in the estimation of navigation states. Hence, the 

problem of computing the optimal navigation solution for skew redundant multi inertial 

measurement units (SRIMU) has yet to be answered. 

In this chapter, the derivation and implementation of this optimal navigation solution will 

be presented. Based on the results of the previous chapter, the optimal navigation 

structure for the SRIMUs is derived in Section 3.3. In this section, it will be shown that 

the optimal solution can theoretically be implemented as a cascade of 2 Kalman filters. 

The first Kalman filter is used for the (SR)IMU errors and the second one is used for the 

navigation errors. The relationship between the optimal solution and the pseudo-optimal 
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solutions (the navigation solution which is computed using only |
ˆ

k ku ) will also be 

explained in this section. 

Section 3.4 deals with the pseudo-optimal and suboptimal navigation structures for 

SRIMUs. In this section it will be shown that when the identical sensors are used in an 

SRIMU, the 1
st
 stage IMU Kalman filter in the optimal solution can be removed without 

affecting the optimality of the results. 

Some simulated data results will be presented in Section 3.5 to clarify the implementation 

issues for SRIMU based INSs. 

The steady state (SS) performance of the SRIMU Kalman filter will be explained in 

Section 3.6. When a steady state Kalman gain is used for the 1
st
 stage SRIMU Kalman 

filter, the equivalent sensor error models used in the navigation filters also become time 

invariant. For such cases, it is usually more feasible to re-derive these equivalent error 

models empirically from the computed |
ˆ

k ku  rather than to define it theoretically based on 

individual sensor error models. In a recent paper [Yuksel et al., 2010], a new modeling 

method that can be used to model stability errors based on these combined outputs ( |
ˆ

k ku ) 

for SRIMU systems has been developed. In Section 3.6, the application of this new error 

modeling method for the 1
st
 stage steady state SRIMU Kalman filter will be presented. 

In this thesis the comparison of several proposed structures is performed using an INS 

simulation environment. Therefore, before describing the main SRIMU concepts, this 

simulation environment will be introduced in Section 3.2 first. The preferred INS 

mechanization equations and corresponding error propagation models for this 

mechanization will also be derived in this section. 
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3.2 The INS mechanization equations and the simulation environment 

In the first part of this section, the body frame mechanization equations and the 

corresponding linear error propagation models for a 6DOF navigation system will be 

introduced. In the second part (Section 3.2.2), the mechanization equations and 

simulation environment for a 2D (3DoF) navigation system defined on a non-rotating 

planar navigation frame of reference is described. In the rest of this chapter, all the 

SRIMU simulations will be performed using this simplified 2D navigation system and 

corresponding simulation environment. 

3.2.1 Body Frame Mechanization Equations 

The mechanization equation for which the velocity (with respect to earth) “ bv ” is defined 

in body frame and the attitude n

bC  is defined from body to navigation frame of reference 

is as follows: 

( )b b b b b b n

ie n
v a v C gω ω= − + × −ɺ        (3.1a) 

( ) ( )n n b n n

b i bb n
C C S S Cω ω= −ɺ         (3.1b) 

n b

bp RC v=ɺ           (3.1c) 

where position “ p ” is defined as latitude/longitude/height [ ], ,L l h  (

1 1
, , 1

en

R diag
R h R h

 
= − 

+ + 
is derived from the radius of the earth). ba  and bω  is the 

acceleration and rotation rate defined in the body frame, ng  is the gravity vector (in NED 

frame). ( )S  is the operator which transforms a vector into the skew-symmetric matrix. 

b

iew  is the Earth’s rotation defined in the body frame and n

inω  is the transport rate of the 
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navigation (e.g. local geodetic) frame. The detailed derivation of these equations are 

explained in standard INS books such as [Titterton, 2004 – Chapter 3]. 

Although these body frame mechanization equations have not in general been popular in 

traditional INS designs, we observed that this type of mechanization is more suitable for 

low-cost INSs of ground vehicles for which the main source of external observation is 

odometer outputs defined in the body frame. With the body frame mechanizations, the 

initial covariance errors do not lead to erroneous heading angle estimations under 

holonomic constraints. Furthermore, different error models can be associated to the 

odometer based velocity and position observations. This provides more flexibility during 

the design of the navigation Kalman filters. 

For the mechanization equations in (3.1) the navigation errors ( , ,v pφ δ δ ) with respect to 

any nominal trajectory ( , ,b n

bv C pɶɶ ɶ ) are defined as follows: 

( )In n

b b
C S Cφ = − 
ɶ          (3.2a) 

b bv v vδ = −ɶ           (3.2b) 

p p pδ = −ɶ           (3.2c) 

Furthermore, the sensor errors are defined as: 

b ba a aδ = −ɶ           (3.3a) 

b bδω ω ω= −ɶ           (3.3b) 

where baɶ  and bωɶ  are the observed (computed) kinematic variables. In the literature 

(3.2a) is called as phi-angle formulation for attitude errors (e.g. [Arshal 1987]). 

For any nominal trajectory that satisfies (3.1), the simplified error propagation equations 

can be expressed as follows: 
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( )n n n

b in in
C Sφ δω δω ω φ−= − +ɺ ɶ ɶ         (3.4a) 

( ) ( ) ( )b b b b b n

ie ie n
v a v v C S gδ δ δω δω ω ω δ φ+ − ×+= − × + ɶɶ ɶɺ ɶ     (3.4b) 

( )( )n n b n b

b b bvp R C v S C vRCδ δ φ δ= + +ɶ ɶ ɶɶ ɶ ɶɺ       (3.4c) 

Where φ , vδ  and pδ  corresponds to the attitude, velocity and position errors 

respectively. n

inδω  and 
e

b

iδω  are the errors in earth and transport rate. These equations are 

obtained as a result of the perturbation of (3.2) with respect to navigation and IMU error 

states. Such perturbation techniques are described extensively in books on inertial 

navigation such as [Titterton et al., 2004] and [Savage 2000a]. Although only navigation 

frame error propagation equations are explicitly derived in these references, as the 

derivation of (3.4) is almost identical to the NED frame case, these derivations are not 

repeated here. 

For the body frame mechanizations, definition of n

inδω  and b

ieδω  in terms of , ,v pφ δ δ  is 

more complicated than the corresponding variables in NED frame. On the other hand, for 

the low cost INS designs the effect of these variables on the overall error growth are 

completely negligible with respect to the sensor errors. Therefore, these variables can be 

completely ignored in (3.4). However, for the sake of completeness, the expressions for 

these variables are also given below: 

( )

( )
1

sin

0

cos

Earth

Earth

L L

O

L L

δ

δ

δ

 −Ω
 
 =
 
−Ω  

ɶ

ɶ

        (3.5a) 
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( )

2

1
0 0

1
0 0

tan
0 0

e

e

n

R h

O
R h

L

R h

 
 
 +
 
 = −
 +
 
 

− 
+  

ɶ

ɶ

ɶ

ɶ

       (3.5b) 

( )( )3 2

n n b

b bO O C v CS vδ δ φ= +ɶ ɶ ɶ        (3.5c) 

1 3

n

in O Oδω δ δ= +          (3.5d) 

( )( )1

b b n

ie n ieC SOδω δ ω φ= − ɶɶ         (3.5e) 

It should be noted that, the perturbation of (3.5b) with respect to position errors are 

ignored in (3.5d). 

3.2.2 2D navigation equations and the simulation environment 

In this study, all simulations were performed based on a 2D navigation system defined on 

a planar surface. For this system, the navigation frame is assumed to be fixed (non-

rotating, non-moving) in the position where the simulation starts. Furthermore, the 

gravity is also assumed to be constant (not position dependent). The position of the 

system is defined in this (Cartesian) navigation frame. 

The 2D (3DoF) navigation equations for this set-up can be derived from (3.1) by setting 

0e

ieω =  and 0n

enω =  as follows: 

( )b b b b b n

n
vv a S C gω= − −ɺ         (3.6a) 

( )n n b

b b
C C S ω=ɺ          (3.6b) 
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n b

bp C v=ɺ           (3.6c) 

The most important property of this set of equations is that when 0b b

y

b

z xa ω ω= = =  

(assuming that the initial tilt angles are also 0), roll, pitch, z velocity and position 

becomes algebraically decoupled from the rest of the navigation states. Therefore (3.6) 

can be directly used for 2D navigation on planar surfaces. 

Similar to (3.4), the error propagation equations for (3.6) are as follows: 

n

bCφ δω= −ɺ ɶ           (3.7a) 

( ) ( ) ( )b b b n

n
Sv a gv v SS Cδ δ δω ω δ φ−= + + ɶɶɺ ɶ       (3.7b) 

( )n n b

b bC vp v S Cδ δ φ= + ɶɶ ɶɺ         (3.7c) 

For the 2D case, as the unused navigation states are algebraically uncoupled, the error 

propagation equations can be obtained from (3.7) by directly removing the corresponding 

states. Thus, the 2D error propagation equations can be represented in matrix form as 

follows: 

nav navnav

11 12

21 22

33

0 0 00 0

0 0 00 0

1 00 0 0 0

0 10 0 0 0

0 00 0 0 0 0

n
x xy

n

nb
yx xz

n

y yx

xy
b

Nx x

yz

A

C C v

C C v

p p

p p

v v

v

v

v

C

v

δ δ

δ δ

δ δω

δ δω

ψ ψ

      
      

−      
      = +
      

−      
          

−

 
ɺ

ɶɺ

ɺ

ɺ

ɺ

ɺ ɺ
��	 � �����������	

ɶ

ɶ

ɶ

��	

�

y

x

x

u

a

a

δ

δ

δω

 
 
 
  
ɶ

�� ��	

   (3.8a) 

{ }nav nav nav

0 0 0

T

E x x Π=          (3.8b) 

where ψ  is the heading angle error and klC  is the corresponding element of 
n

bCɶ . 
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Because of the nature of the kinematic equations, (3.8a) is derived in continuous time. 

However, in navigation applications discrete time Kalman filters are always preferred 

[Maybeck 1982]. Therefore, in practice (3.8) is converted into discrete time using any of 

the approximate discretization methods (e.g. 1
st
 order Euler approximation). After 

discretization, (3.8) can be expressed as follows: 

nav nav nav

1k k k k kx A x N u+ = + ɶ          (3.9a) 

imu imu

k y k k k

x

x

k

u C x

a

a v

δ

δ

δω

 
 = = + 
  

ɶ         (3.9b) 

where, nav

kA  and kN  are the discrete counterparts of navA  and N  in (3.8a) and 

; ;k y zxa au δ δ δω =  ɶ  are the sensor errors defined in discrete time. “ imu

kv ” corresponds to 

the sensor additive white noise which is also called as ARW/VRW in the standard error 

modeling literature. It is assumed that imu

kx  has the following model whose parameters are 

determined as a result of inertial sensor modeling tests. 

imu imu imu imu

1k k k kx A x w+ = +          (3.9c) 

{ }imu imu imuT

k k kE w w Q=          (3.9d) 

{ }imu imu imu

0 0 0

T

E x x Π=          (3.9e) 

In order to both compare several proposed navigation structures and verify the results of 

the related derivations, an inertial navigation simulation environment was developed for 

SRIMU based systems. The same approach described in [Savage 2000b – Chapter 17] 

was implemented for the trajectory simulator. In this approach, the trajectory simulator is 
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composed of a trajectory shaping function and a trajectory generation function. The 

trajectory shaping function is responsible for generating the body accelerations and the 

derivatives of Euler angles for a user defined motion. The outputs of the shaping function 

are then converted into the required kinematic variables (e.g. acceleration, rotation rates 

and PVA) by the trajectory generator part. 

In this chapter, the 2D trajectory presented in Figure 3.1 was used in the simulations. A 

trajectory shaping function for ground vehicles which can only accelerate/decelerate 

along only the x-axis of its body frame was implemented to drive the trajectory generator. 

As the trajectory was generated on a plane, the simulated b

xω , 
b

yω  and b

za  were 0 for the 

entire simulation. Therefore, the error propagation equation for this simulated trajectory 

is as defined in (3.8). 

The generated conditions and the steps followed during the simulation analysis can be 

summarized as follows: 

1. Using the trajectory generator, the kinematic variables defined for the centre of the 

IMU are computed for the specified trajectory shape. 

2. For a given SRIMU structure, the true outputs of each sensor unit are computed by 

transforming the kinematic variables generated in the previous step for the centre 

point to the individual sensor locations and orientations. In this thesis, as all the 

sensors are assumed to be placed at the central point, no lever arm effect was 

considered. Therefore, the transformation of variables was mainly performed based 

on only the sensor orientations (i.e. configuration matrix). 
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3. Sensor errors are added to the computed true kinematic values to simulate the realistic 

(and erroneous) sensor outputs. In this thesis, sensor errors were always characterized 

by state space representations as defined in (3.9). Although the effect of scale factor 

and temperature dependent errors can also be handled in this state space forms, in this 

thesis only the sensor stability and repeatability errors (including the random biases) 

were considered as a part of the simulated sensor errors. During the simulations, all 

noise components (i.e. imu

kw  and imu

kv  in (3.9)) were generated as a Gaussian 

distribution. The numerical values of the state space models (i.e. imu

kA , kC , imu

kQ  and 

u

0

imΠ  in (3.9)) used in each simulation analysis are specified in the sections where the 

corresponding simulation results are presented. In general, the values used in the 

simulations are selected to reflect the low-end MEMS sensors characteristics. 

However, in some cases, the selected error model parameters are modified to a certain 

degree to emphasize the differences between the proposed structures more clearly. 

4. The initial navigation states of the INSs which are used to process the simulated 

sensor outputs are generated by adding noise on the initial PVA output of the 

trajectory generator. In this thesis, these initialization errors were simulated as a 

Gaussian distribution with the following covariance values: 

( )
2nav

0 0,0,0.05 / ,0.05 / ,0.1diag m s m s radΠ =     (3.10) 

where the first two elements represents initial position error covariance, the 3
rd

 and 4
th

 

elements represents the initial velocity error covariance and the final element 

represents the initial heading angle error covariance value. 
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After the erroneous SRIMU outputs and initial navigation state values are generated as 

described above, the simulated data set is processed using different structures which are 

described throughout this thesis. The outputs of such simulation analysis are presented in 

Sections 3.5, 3.6, 4.3 and 4.5.  

 

Figure 3-1 : Simulated trajectory. A) Simulated position profile on x-y plane. B) 

Velocity profiles of the body frame x & y axis. 

3.3 The optimal navigation solution for SRIMU systems 

As presented in Chapter 2, one possible way of obtaining optimal state estimates for 

linear systems defined in (2.1) is to define a Kalman filter for only the stochastic part of 

the system which is defined as the difference between the system state and the nominal 

trajectory generated by the deterministic (and known) input ( )# ˆ
k k kM y Cx−  where ky  
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represents the (skew redundant) sensor outputs, ˆ
kx  is the nominal state value and “

( )
1

# 1 1T T

k k k k k k
M M R M M R

−
− −= ” (Chapter 2 - Lemma 2 & 3). 

This approach can be directly extended to the non-linear INS equations to obtain so-

called optimal solution for the SRIMU based INSs. In this method, the Kalman filter is 

defined for the difference between the true navigation states and the nominal solution 

generated by the INS which is driven by the (combined) weighted least square solution of 

the inertial sensor outputs. Theoretically, this difference between the true navigation 

states and the nominal solution is characterized by non-linear differential equations for 

which a Kalman filter cannot be employed. On the other hand, these differential 

equations of errors are in general not sensitive to the variations of the nonlinear 

coefficients. Therefore, they can be safely linearized around the nominal INS outputs 

without inducing significant approximation errors (as long as the nominal INS output 

errors are guaranteed to be kept within certain limits). In practice, these linearization 

errors are almost completely negligible with respect to other type errors (e.g. sensor 

modeling errors for low-cost MEMS units). Hence, in general, they are completely 

ignored during the design phase and the Kalman filter based solutions are referred to as 

optimal solutions. 

Ignoring such approximation errors due to the linearization, the system model of the 

Kalman filter can be derived as described below. 

The inertial sensor outputs can be represented as: 

imu imu imu

k k k k k ky M u C x v= + +        (3.11) 
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where ku  is the vector of true kinematic variables (i.e. [ , ]b b

k k ku a ω= ), imu

kv  is the additive 

white noise of the sensors (ARW/VRW components) and the imu

kx  denotes the stability 

errors of the sensors as defined in (3.9c). kM is the configuration matrix, each row of 

which is the unit vector representing the orientation of the individual sensors in the body 

frame of reference. The weighted least square estimate of kinematic variables for this 

model can be defined as: 

( )
#

1
1 1 imuˆ

k

wls T T

k k k k k k k

M

u M R M M R y
−− −=

��������	
      (3.12) 

where { }imu imu
T

k k kR E v v= . 

As described in Chapter 2, the nominal trajectory for the optimal solution should be 

generated with ( )# imu imuˆ ˆwls

k k k k ku M y C x= − . However, due to the IMU calibration processes, 

it is always assumed that the nominal IMU errors (
imuˆ
kx ) are 0. Therefore, for the SRIMU 

based INS case, the nominal trajectory can be assumed to be generated by 
# imuˆwls

k k ku M y=  

rather than ( )# imu imuˆ ˆwls

k k k k ku M y C x= − . 

Let the difference between the true navigation solution and the nominal INS outputs be 

represented as: 

nav

k

p p

x v v

C C

   
   = −   
      

ɶ

ɶ
ɶ

        (3.13) 
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where , ,p v C  are the true position, velocity and the attitude (DCM matrix) respectively. 

Also, the variables with tilde represent the INS outputs for the corresponding variables. 

The time propagation of nav

kx  can be defined as: 

( ) ( )nav #, , , , , ,x f p v C M y f p v C u= −ɶɺ ɶ ɶ      (3.14a) 

( ) ( )
( )nav nav #

ˆ, ,
ls

u

w

f f
x x M y u

up v C

∂ ∂
≅ − −

∂∂
ɶ

ɺ
ɶ ����	ɶ ɶ

     (3.14b) 

where f is the kinematic equation of motion such as (3.1) and (3.14b) is obtained as a 

result of linearization of (3.14a) around , ,p v Cɶɶ ɶ . By discretizing (3.14b) the following 

form of the propagation model can be obtained: 

nav nav

1k k k k kx A x N u+ = + ɶ         (3.14c) 

Using (3.11), kuɶ  in (3.14c) can be expressed as follows: 

# # imu # imu

k k k k k ku M y u M C x M v= − = +ɶ      (3.15) 

Therefore, by combining (3.9c), (3.14) and (3.15) the overall system model can be 

represented as follows: 

nav nav nav # imu

1

imu imu

1

#

0 imu

k k k k k k k k k

k k k k

x A N M C x N M v

x A x w

+

+

       
= +       

       
    (3.16) 

As an example, for the body frame mechanization defined in Section 3.2, the linear error 

propagation model parameters ( nav

kA  and kN ) of a 2D planar navigation system is the 

discrete time counterparts of (3.8). By comparing (3.8) with (3.16) it can be seen that the 

only difference between the SRIMU and IMU systems is that kC  and imu

kv  is replaced by 

their combined equivalents #

kM C  and # imu

kM v . 
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In an SRIMU based navigation system 2 types of observation can be identified: i) 

observations generated by the redundancy of the inertial sensors, ii) observations 

generated by the external navigation aids (e.g. GPS, odometer etc). As described in 

Chapter 2, all sensor redundancy based observations can be represented as the projection 

of sensor outputs (3.11) to the left null space of kM . Denoting this projection operator as 

kT , the redundancy based observations can be represented as follows: 

� �
1 imu

imu imu imu

k ky H

k k k k k k kT y T C x T v= +        (3.17a) 

For the 2
nd

 type of observation (external navigation observations), the measurement 

model can be expressed as: 

nav nav nav nav

k k k ky H x v= +         (3.17b) 

It should be noted that although both the system noise in (3.16) and observation noise in 

(3.17a) contains imu

kv , the system and observation noises are orthogonal (i.e. 

{ }# imu imu # 0
T

T T

k k k k kE M v v T M R T= = ). Therefore, standard Kalman filter recursions can be 

directly applied to  (3.16) and (3.17) without any modification. 

In Figure 3.2, the general structure of the optimal navigation solution for SRIMU systems 

is presented. In this figure the Kalman filter is run in closed loop form where the best 

estimates are fed back to the INS and IMU subsystems. Thanks to this closed loop 

structure, no additional system implementation is required inside the Kalman filter block 

to generate the innovation process (i.e. ˆ
k k ky H x− ). 

In this structure, for each IMU output cycle, the Kalman filter has to be run to process 

imu

k kT y  observations. The estimated IMU error parameters are fed back and subtracted 



 

from ˆ wls

ku . Therefore, implicitly

by the best kinematic variable estimate 

navigation aid is available, these external observations are also processed by the Kalman 

filter and the results are again fed back to the INS and IMU subsystems exactly in the 

same manner as it is done in si

Figure 3-2 : The optimal structure for the SRIMU based navigation system. The 

Kalman filter processes both the external and the redundancy based observations. 

The system and obser

As can be seen from (3.16) the system model for INS errors have an upper diagonal 

matrix form. Furthermore, the IMU redundancy observations are only related with the 

sensor error states. Therefore, using a 

form [Brown 1996 – Chapter 9.2], the optimal Kalman filter can be implemented as 

shown in Figure 3.3. As seen in this figure, the redundancy observations 

processed by a 1
st
 stage IMU Kalman Filter to form “

using these |
ˆ

k ku  estimates.

. Therefore, implicitly, the INS subsystem is not driven by the 

by the best kinematic variable estimate 
imu

|

#

|
ˆ ˆ ˆwls

k kkk k k ku u M C x= − . Whenever an external 

navigation aid is available, these external observations are also processed by the Kalman 

filter and the results are again fed back to the INS and IMU subsystems exactly in the 

same manner as it is done in single IMU implementations.  

: The optimal structure for the SRIMU based navigation system. The 

Kalman filter processes both the external and the redundancy based observations. 

The system and observation models are as defined in (3.16) and (3.17)

As can be seen from (3.16) the system model for INS errors have an upper diagonal 

matrix form. Furthermore, the IMU redundancy observations are only related with the 

sensor error states. Therefore, using a similar approach employed in Schmidt

Chapter 9.2], the optimal Kalman filter can be implemented as 

shown in Figure 3.3. As seen in this figure, the redundancy observations 

age IMU Kalman Filter to form “ |
ˆ

k ku ”, and then the INS is run by 

estimates. 
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ˆ wls

ku  but rather 

. Whenever an external 

navigation aid is available, these external observations are also processed by the Kalman 

filter and the results are again fed back to the INS and IMU subsystems exactly in the 

 

: The optimal structure for the SRIMU based navigation system. The 

Kalman filter processes both the external and the redundancy based observations. 

vation models are as defined in (3.16) and (3.17) 

As can be seen from (3.16) the system model for INS errors have an upper diagonal 

matrix form. Furthermore, the IMU redundancy observations are only related with the 

lar approach employed in Schmidt-Kalman 

Chapter 9.2], the optimal Kalman filter can be implemented as 

shown in Figure 3.3. As seen in this figure, the redundancy observations imu

k kT y  are first 

”, and then the INS is run by 



 

Figure 3-3 : Optimal structure for the SRIMU based navigation system using 2 

separate Kalman filters. The 1

filter is in the closed loop form. The system model for the 1

and (3.17

In this structure, the equivalent IMU error model in the 2

is replaced by the error propagation model of the 1

error model can be represented

� ( )
imu

|

| |

# imu imu im

|

ˆ

ˆ

k
k k

k k k k k

k k k k

x

k

C

u u u

M C x x M v

= −

= − +

ɶ

ɶ

����	
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imu

imu imu imu imu imu imu imu

1| 1 | 1 1 1 1 |

imu imu imu imu imu

1 1 1 | 1 1 1 1 1

ˆ ˆ

I I

k

k k k k k k k k k k k k k k k

k k k k k k k k k k k

A

x A x K T y C A x A x w

K T C A x K T C K T

+ + + + + +

+ + + + + + + +

= + − − −

= − + − −

ɶ

��������	

where imu

1kK +  corresponds to the Kalman gain of the 1

As can be seen in Figure 3.3, the redundancy observations 

1
st
 stage IMU Kalman filter

optimality. The reason for this is that the navigation states in the 2

: Optimal structure for the SRIMU based navigation system using 2 

separate Kalman filters. The 1
st
 stage filter is in the open loop form, whereas the 2

filter is in the closed loop form. The system model for the 1
st
 filter is defined in (3.9c) 

and (3.17a), and for the 2
nd

 filter in (3.20). 

In this structure, the equivalent IMU error model in the 2
nd

 stage navigation Kalman filter 

is replaced by the error propagation model of the 1
st
 stage SRIMU Kalman filter. This 

represented as follows: 

imu

# imu imu im# u

k

k k k k

v

M C x x M v= − +
��	����	

      

( )

)
�imu

imu imu imu imu imu imu imu

1| 1 | 1 1 1 1 |

imu imu imu imu imu

1 1 1 | 1 1 1 1 1 imu

1

ˆ ˆ

I I

k
k

k k k k k k k k k k k k k k k

k

k k k k k k k k k k k

B
k

w

x A x K T y C A x A x w

w
K T C A x K T C K T

v

+ + + + + +

+ + + + + + + +

+

= + − − −

= − + − −ɶ
��������	 ������������	

 

corresponds to the Kalman gain of the 1
st
 stage IMU Kalman filter.

As can be seen in Figure 3.3, the redundancy observations must be processed 

Kalman filter and the 2
nd

 stage navigation Kalman filter to preserve 

optimality. The reason for this is that the navigation states in the 2
nd

 stage filter are still 
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: Optimal structure for the SRIMU based navigation system using 2 

the open loop form, whereas the 2
nd

 

filter is defined in (3.9c) 

stage navigation Kalman filter 

stage SRIMU Kalman filter. This 

(3.18a) 

(3.18b) 

stage IMU Kalman filter. 

processed both in the 

stage navigation Kalman filter to preserve the 

stage filter are still 
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correlated with the redundancy observations, even though the nominal INS outputs are 

generated with the optimally fused sensor outputs |
ˆ

k ku . On the other hand, it must be 

noted that the sensor states in the 2
nd

 stage, whose models are defined in (3.18), are 

always orthogonal these redundancy measurements. Hence, these measurements do not 

generate any additional estimate for the sensor states in the 2
nd

 stage filter. They only 

affect the navigation states. 

The new measurement model of the redundancy observations for the 2
nd

 stage filter can 

be defined based on the innovation processes of the 1
st
 stage IMU KF as follows: 

( )imu imu imu imu imu

|
ˆ

k k k k k k k k k k k
T y T y y T C x T v= − = − +ɶ ɶ       (3.19) 

Finally, by combining (3.14c), (3.17b), (3.18) and (3.19), the overall system and 

observation model of the 2
nd

 stage navigation Kalman Filter can be written as follows: 

System model: 

( )

# imunav navnav #
1

imu imuimu imu imu imu
1| 1 |1 1 1 1 1 1 1 1 10 I I

k kk kk k k

k k k kk k k k k k k k k k

N M vx xA N M C

x xK T C K T C w K T v

+

+ + + + + + + + + + +

     
 = +    

− − −          
ɶ ɶ

 (3.20a) 

Observation Model 

navnav nav nav

imuimu imu
|

0

0

kk k k

k kk k k k k k

xy H v

xT y T C T v

      
= +      

−        ɶɶ
      (3.20b) 

It must be noted that (3.20) is not compatible with the standard Kalman filter system 

model definition. The reason for this is that the observation noise “ imu

k kT v ” is correlated 

with the system noise “ imu imu

1 1 1k k kK T v+ + + ” in an unusual manner. Therefore, standard Kalman 

filter recursions cannot be applied to this system definition. On the other hand this form 
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of the optimal structure is useful for this study as it relates the optimal solution to the 

pseudo-optimal solutions which is described in the next section. 

Although, in this thesis the structure shown in figure 3.3 is not used for the optimal 

estimation at all, for the sake of completeness, the modified form of the Kalman update 

equations which can be applied to this system (when there is no external navigation aid) 

is presented in Appendix A. 

3.4 Suboptimal Solutions 

3.4.1 Pseudo – Optimal Solution 

In this thesis, the pseudo-optimal solution denotes the case where the redundancy 

observations are used only to estimate the optimal kinematic variables that run the INS 

algorithm. In this type of solution, the redundancy observations are not used to estimate 

the navigation errors as it is done in the optimal configurations. 

The system configuration which realizes this pseudo-optimal solution is shown in Figure 

3.4. As proved in Chapter 2, the output of the first stage Kalman filter is equivalent to the 

optimal kinematic variable estimate “ |
ˆ

k ku ” for the SRIMU. The INS is run by these 

optimal “ |
ˆ

k ku ” estimates. Therefore, the errors on |
ˆ

k ku , which are derived in (3.18), are 

augmented to the navigation error states in the navigation Kalman filter. Thus, the overall 

system model of the navigation filter is the same as (3.20a). However, as the redundancy 

based observations are completely ignored in the navigation filter, the filter observation 

model for the 2
nd

 Kalman filter only constitutes (3.17b). 



 

As can be seen from Figure 3.3 and 3.4, apart from the use of redundancy based 

observations for the navigation state estim

are exactly the same. 

Figure 3-4 : Pseudo-optimal structure for the SRIMU based navigation system. The 

navigation Kalman Filter only processes external naviga

3.4.2 WLS Based Solutions

In the existing literature about FDI methods (such as 

2000]), the structure shown in Figure 3.5 is used for the navigation systems. In this 

configuration, all sensor outputs (after they 

combined using a simple weighted least square algorithm and the INS is run by this 

combined output ˆwls

k ku M y=

In the navigation Kalman filter, the errors on 

states. The model for these combined sensor errors are as defined in (3.15). Hence, the 

overall system model of the navigation filter of the WLS based solution becomes equal to 

(3.16).  

As can be seen from Figure 3.3 and 3.4, apart from the use of redundancy based 

observations for the navigation state estimation, the optimal and pseudo-optimal solutions 

optimal structure for the SRIMU based navigation system. The 

navigation Kalman Filter only processes external navigation observations.

WLS Based Solutions 

In the existing literature about FDI methods (such as [Ho, 1999], [Sukkarieh

), the structure shown in Figure 3.5 is used for the navigation systems. In this 

configuration, all sensor outputs (after they are verified by the FDI methods), are 

combined using a simple weighted least square algorithm and the INS is run by this 

# imu

k ku M y  as defined in (3.12). 

In the navigation Kalman filter, the errors on ˆ wls

ku are augmented to the navigation error 

states. The model for these combined sensor errors are as defined in (3.15). Hence, the 

overall system model of the navigation filter of the WLS based solution becomes equal to 
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As can be seen from Figure 3.3 and 3.4, apart from the use of redundancy based 

optimal solutions 

 

optimal structure for the SRIMU based navigation system. The 

tion observations. 

[Sukkarieh et al., 

), the structure shown in Figure 3.5 is used for the navigation systems. In this 

are verified by the FDI methods), are 

combined using a simple weighted least square algorithm and the INS is run by this 

are augmented to the navigation error 

states. The model for these combined sensor errors are as defined in (3.15). Hence, the 

overall system model of the navigation filter of the WLS based solution becomes equal to 



 

By comparing Figures 3.5

optimal and WLS based configuration is that the redundancy based observation are not 

used in the navigation Kalman filter. However, this does not mean that WLS based 

solutions are equivalent to the p

configurations the 1
st
 stage IMU Kalman filter still uses the redundancy observation to 

compute the optimal |
ˆ

k ku , whereas in the WLS based solutions the redundancy 

observations are completely ignored in all levels.

Figure 3-5 : System configuration for WLS based solution for SRIMU navigation 

3.4.3 System Configuration for identical inertial sensors

3.4.3.1 Case I: All sensors are identical

When all the inertial sensors in an

configurations (optimal, pseudo

proved in Section 2.4.3.1, 

( imu

kTy ) become orthogonal to 

3.5 and 3.2, it can be seen that the only difference between the 

optimal and WLS based configuration is that the redundancy based observation are not 

used in the navigation Kalman filter. However, this does not mean that WLS based 

solutions are equivalent to the pseudo-optimal solutions. In the pseudo-optimal 

stage IMU Kalman filter still uses the redundancy observation to 

k k
, whereas in the WLS based solutions the redundancy 

completely ignored in all levels. 

System configuration for WLS based solution for SRIMU navigation 

systems. 

System Configuration for identical inertial sensors 

Case I: All sensors are identical 

inertial sensors in an SRIMU are identical, the navigation solution of all 3 

configurations (optimal, pseudo-optimal, WLS) becomes theoretically identical. As 

2.4.3.1, when all the sensors are identical, the redundancy obser

) become orthogonal to # imu

k kM C x . Therefore, the 1
st
 stage IMU Kalman filter 
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, it can be seen that the only difference between the 

optimal and WLS based configuration is that the redundancy based observation are not 

used in the navigation Kalman filter. However, this does not mean that WLS based 

optimal 

stage IMU Kalman filter still uses the redundancy observation to 

, whereas in the WLS based solutions the redundancy 

 

System configuration for WLS based solution for SRIMU navigation 

SRIMU are identical, the navigation solution of all 3 

optimal, WLS) becomes theoretically identical. As 

the redundancy observations 

stage IMU Kalman filter 
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becomes completely functionless in both the optimal and pseudo-optimal solutions and 

hence for this case |
ˆ ˆwls

k k ku u= . 

Furthermore, as shown in (3.14c) and (3.15), the navigation errors are only affected by 

# imu # imuwls

k k k ku M C x M v= +ɶ . As imu

k kT y  is orthogonal to both # imu

k kM C x  and # imu

kM v , the 

navigation errors also become orthogonal to the redundancy observations. Hence, the 

redundancy observations in the navigation filter of the optimal solution also become 

functionless. Therefore, the optimal navigation solution becomes equivalent to the 

solution computed by the structure shown in Figure 3.5. 

On the other hand, it should be noted that the equivalency is only valid for the navigation 

states. Because of the 1
st
 stage IMU Kalman filter, some combination of sensor errors can 

still be estimated even for the identical IMU case. Therefore, the pseudo-optimal and 

optimal solutions can still be used for the IMU calibration purposes. However, as these 

combinations of sensor error states do not affect the combined output |
ˆˆ wls

k k kuu = , the 

navigation errors are invariant to the redundancy observations. 

As showed in Section 2.4.3, when identical sensors are used, the errors on the combined 

outputs ( ˆwls wls

k k ku u u= −ɶ ) can be remodeled with less number of states using a different 

system representation which has the same 2
nd

 order characteristics (Chapter 2, Figure 

2.7). As the optimal navigation solution only depends on wls

kuɶ , these equivalent 

representations can also be used in the navigation filters without affecting the optimality. 

Such a model order reduction provides a great flexibility on the filter design when 

abundant number of identical sensors is used in the system. 
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3.4.3.2 Case II: Sets of identical Sensors 

As described in Section 2.4.3.2 when sets of identical sensors are used, each set can be 

represented by an equivalent (virtual) IMU configuration which contains only critical 

number of sensors (i.e. one sensor per each kinematic axis). In these virtual 

configurations, each virtual sensor set corresponds to the weighted least square solution “

ˆi wls

ku ” of the real i
th

 sensor set. Furthermore, the redundancy observations can now be 

defined using only the outputs ˆi wls

ku  of these virtual sensor sets as the remaining 

observation are orthogonal to the # imu

k kM C x . Similar to the case described in the previous 

section, when the INS is run by the combination of these virtual sensor outputs, the 

navigation error estimates are also not affected by the replacement of real sensor models 

with the equivalent models of these virtual sensors. 

In the next section the application of these virtual sensor concepts to the SRIMU based 

navigation systems will be clarified based on simulated data examples. 

3.5 Simulated Data Examples 

In this section, using the simulation environment introduced in Section 3.2, the 

performance comparison of several structures described in the Section 3.4 is presented. 

Furthermore, some implementation issues regarding the identical sensors are clarified 

using simplified examples. 

3.5.1 Example I 

The sensor configuration simulated for this 2D navigation example is shown in Figure 

3.6. As seen from this figure, the simulated SRIMU contains 5 accelerometers placed on 



 

the x-y plane to sense the x & y accelerations. Furthermore

axis to sense the yaw rate.

For this SRIMU configuration the trajectory shown in Figure 3.1 was 

described in Section 3.2. It was assumed that only a single external position observation 

become available at the 50

the corresponding linear error propagation model for this system are as presented in (3.6) 

and (3.8). 

Figure 3-6 : Inertial Sensor Configuration for Example I. All accelerometers are 

placed on the x-y plane

sensors and the origin are assumed to be negligible.

The sensor observation model for the specified c

y plane to sense the x & y accelerations. Furthermore, it has 3 gyroscopes on the z

axis to sense the yaw rate. 

configuration the trajectory shown in Figure 3.1 was simulated

3.2. It was assumed that only a single external position observation 

become available at the 50
th

 seconds of the trajectory. The 2D navigation equations and 

the corresponding linear error propagation model for this system are as presented in (3.6) 

: Inertial Sensor Configuration for Example I. All accelerometers are 

y plane and gyroscopes are on the z-axis. The distances between the 

sensors and the origin are assumed to be negligible. 

The sensor observation model for the specified configuration is as follows:
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3 gyroscopes on the z-

simulated as 

3.2. It was assumed that only a single external position observation 

ds of the trajectory. The 2D navigation equations and 

the corresponding linear error propagation model for this system are as presented in (3.6) 

 

: Inertial Sensor Configuration for Example I. All accelerometers are 

The distances between the 

 

onfiguration is as follows: 
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 (3.21) 

where imu

ky  is the sensor outputs, ku is the kinematic variables to be estimated. imu

kx  and 

imu

kv  represents the sensor stability errors and ARW/VRW components respectively for 

which { }imu imu imuT

k k kR E v v=  and { }imu imu imuT

ko kE x x=Π . 

For this example, It was assumed that all 3 gyroscopes and 5 accelerometers have the 

following identical stochastic error parameters defined at 25Hz: 

Accelerometers Stability Errors (i=1..5): 

{ } ( )

{ } ( )

acc acc 4 acc

1

2
acc acc 4 2

2
acc a

0 0

cc 5 2

1.1

1 / sec

7.5 / sec

T

T

k k k

k

i i

i i

k

i i

x x w

E x x m

E v v m

−
+

−

−

= +

=

=

      (3.22a) 

Gyroscope Stability Errors (i=1..3): 

{ } ( )

{ } ( )

gyro gyro 4 gyro

1

2gyro gyro 9

2gyro g

0

6

0

yro

1.8

6 / sec

6.25 / sec

T

T

k k k

k

i i

i

k

i

i i

x x w

E x x rad

E v v rad

−
+

−

−

= +

=

=

      (3.22b) 

In (3.22), acc,gyro

kv  represents the V/ARW components of the sensors. It is assumed that 

each inertial sensor has a stability error component ( acc,gyro

kx ) in the form of 1
st
 order 
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Markov processes all of which are independent of each other. It should be noted that as 

each sensor has only one stability error state, kC  is an 8 8×  identity matrix. 

As all the sensors in this configuration have identical error parameters, the optimal 

navigation solution can be computed using the equivalent virtual sensor configuration 

with reduced order sensor models. Using the method described in Section 2.4.3, the 

virtual configuration and the associated error models can be derived as follows: 

Let ( )
1

# 1 1

acc/gyro acc/gyro acc/gyro acc/gyro acc/gyro acc/gyro

T TM M R M M R
−

− −= , where “acc” denotes nonzero 

columns of the first 5 rows of M  and imu

kR , and “gyro” denotes the non-zero columns on 

the last 3 rows. Hence: 

( ) ( )eq

acceq

acceq

acc acc
1 1acc #

acc

1 1

2 2 acc

k

xacc T Tk k

k acc k acc

C

acc acc acc

y k k

v

k

a x v
y M y M M M M

a x v

− −    
= = + +    

     ������	
��������	

 (3.23a) 

( ) ( ) ( ) ( )
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1
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1

yro #

1 1
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gyro k

gyro gyro
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z k k

y M y
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− −

=

= + +
������	 ����������	

  (3.23b) 

where the numerical values of the corresponding matrices are equal to: 

eqacc 0.5194 0

0 0.8795
C =        (3.23c) 

{ }eq eq

5
acc acc

5

2 0

0 5.8

T

E v v
−

−
=        (3.23d) 

eqgyro
0.5774C =         (3.23e) 

{ }eq eqgyro gyro 62.08
T

E v v −=        (3.23f) 



86 

 

As seen from (3.23), in the virtual configuration there is only one sensor per each 

kinematics axis (i.e. 1 accelerometer on x and y axis and 1 gyroscope on z axis). 

Furthermore only 3 states are used to represent the stability errors of this virtual 

configuration. Also, for this configuration, the stochastic error models turn out to be 

independent for each axis (the off diagonal elements in (3.23c-d) are zero). This 

independence of error model for each virtual axis comes from the fact that all the 

accelerometers in Figure 3.6 are placed symmetrically around x-axis. As a result of this 

independence, the error model of the virtual configuration can be handled as if it is the 

error model of a standard orthogonal single IMU system. Hence, this form can be 

implemented in any existing navigation software without any modification at all. 

For this example, the following 3 different navigation solutions were defined and 

implemented: 

i. Optimal Solution: 

In this solution, the structure shown in Figure 3.2 was implemented. The IMU 

observation model shown in (3.21) was used in the system models of the Kalman filter 

(No reduction of system model was considered for this implementation). Therefore, for 

this solution the main filter consisted of 13 states (8 states for the sensor errors, and 5 

states for the navigation errors defined in (3.8)). A single Kalman filter was used to 

process both sensor redundancy observations which are derived from (3.21) and the 

single external navigation observation at the 50
th

 second. 

ii. Reduced order WLS solution:  

This solution was obtained with the structure shown in Figure 3.5. However, the entire 

implementation was derived based on the virtual sensor configuration defined in (3.23). 
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Therefore, the navigation filter for this solution contained only 8 states (5 for navigation 

errors and 3 for virtual sensor errors). 

iii. Pseudo-Optimal Solution: 

This solution was obtained with the structure presented in Figure 3.4. The design was 

derived based on the real configuration defined in (3.21). 

During the simulations, the navigation Kalman filter was used to process only one 

external position observation which occurred at the 50
th

 second. In Figure 3.7, the 

position results of all 3 solutions are presented. As can be seen from this figure the 

position solutions are exactly the same for all implementation as explained in the 

previous sections. This figure verifies the fact that when identical sensors are used in an 

SRIMU system, the equivalent virtual sensor configuration can be used for the design of 

the entire system without affecting the optimality. This property provides great 

convenience when abundant number of sensors is used in a SRIMU system. It should be 

noted that even if 1000 accelerometers were used in the original configuration, only 3 

states would still be sufficient to model all of these sensors in the navigation filter. 

Furthermore, this figure also verifies that when only 1 type of sensor is used in a SRIMU, 

no 1
st
 stage IMU Kalman filter is required for the optimal solution. The optimal 

navigation solution can be obtained simply by running the INS algorithm with the WLS 

solution # imuˆwls

k ku M y=  as shown in Figure 3.5. 
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Figure 3-7 : Comparison of position solution of all 3 solutions. optx , pox  and wlsx  is 

the solutions of the optimal, pseudo-optimal and reduced order WLS 

implementations respectively 

In Figure 3.8, the accelerometer bias estimate for the 1Acc  is shown for the optimal and 

pseudo-optimal solutions. As seen from this figure, with the redundancy observations (

imu

kTy ), it is possible to obtain a bias estimate for each individual sensor even if all 

sensors are identical. Therefore, if for some reason, the primary objective is to estimate 

sensor errors rather than to obtain optimal navigation solution, then the optimal and 

pseudo-optimal structures should be used instead of WLS based configurations. 

On the other hand, as explained in Section 3.4.3, these individual bias estimates have no 

effect on the optimal navigation solution. The reason for this can be seen from Figure 3.9. 

In this figure, the “ # imu

k kM C x ” estimates for the x-axis are presented for the optimal and 

reduced order WLS configurations. These estimates correspond to the effective bias 
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estimates on the “ |
ˆ

k ku ” which runs the INS. Therefore, INS is only affected by this value 

rather than the individual sensor error estimates such as the one presented in Figure 3.8. 

As shown in Figure 3.9, the optimal estimate for “ # imu

k kM C x ” is exactly zero under the 

redundancy observations. (The change in the 50
th

 second is due to the external position 

observation processed by the navigation Kalman filter.). This figure verifies the fact that 

when identical sensors are used, “ # imu

k kM C x ” is always orthogonal to the redundancy 

observations ( imu

kTy ). 

 

Figure 3-8 : The 1Acc  bias estimate computed in optimal and pseudo-optimal 

configurations.  
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Figure 3-9 : The effective bias estimates on x-axis. The jump in the solution at the 

50
th

 second is due to the effect of external position observation. 

3.5.2 Example II 

In this example, 3 more accelerometers were added to the sensor configuration used in 

Section 3.5.1. The new sensor configuration is shown in Figure 3.10. These 3 

accelerometers are identical with each other but have different error model parameters 

than the remaining 5 accelerometers. The model parameters (at 25Hz) for the new 

accelerometers are as follows: 

Accelerometer Set 2 (i=6..8) 
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      (3.24) 

Where acc

kv  and acc

kx represents the VRW and stability error components respectively. 
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Figure 3-10 : Inertial Sensor configuration for Example II

on the x-y plane and the gyroscopes are on z

The overall sensor observation model for this system can be represented as foll
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: Inertial Sensor configuration for Example II. All accelerometers are 

y plane and the gyroscopes are on z-axis. The sensor lever

assumed to be negligible. 

The overall sensor observation model for this system can be represented as foll
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is the corresponding columns of the first 5 rows of (3.21), 

corresponding columns of last 3 rows of (3.21) and 2S

accM  is equal to: 
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. All accelerometers are 

axis. The sensor lever-arms are 

The overall sensor observation model for this system can be represented as follows: 

 (3.25a) 

first 5 rows of (3.21), 
1S

gyroM  is the 

(3.25b) 
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{ }1 1 1acc acc

5 5

57.5 I
T

acc k k

S S SR E v v −
×= =       (3.25c) 

{ }2 2 2acc acc

3 3

52.5 I
T

acc k k

S S SR E v v −
×= =       (3.25d) 

{ }1 1 1gyro gyro 6

5 56.25 I
T

k k

S S S

gyroR E v v −
×= = .     (3.25e) 

As the system in Figure 3.10 consists of 3 sets of identical sensors, an equivalent virtual 

configuration can be generated using the method described in Section 2.4.3.2. This virtual 

equivalent configuration is shown in Figure 3.11. As seen from this figure, in this virtual 

configuration there are only 4 accelerometers and 1 gyroscope all of which are placed on 

the body frame axes. As each x and y axis contains 2 accelerometers, there are still 

redundancy observations that must be processed to reach the optimum solution. The 

overall sensor observation model for this virtual equivalent system can be defined as 

follows: 

Let: 
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It should be noted that the redundancy observation for this equivalent configuration can 

now be defined using the left null space of 

Figure 3-11 

For this example, 4 different methods were identified and implemented:

i. Optimal Solution:

The structure shown in Figure 3.2 was implemented for thi

sensor model was used in the Kalman filter and the redundancy observations were 

derived from (3.25). (The total number of Kalman filter states was 16 for this solution.)
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It should be noted that the redundancy observation for this equivalent configuration can 

now be defined using the left null space of eqM . 

 

 : Equivalent virtual configuration for example II

4 different methods were identified and implemented: 

Optimal Solution: 

The structure shown in Figure 3.2 was implemented for this solution. The complete 

sensor model was used in the Kalman filter and the redundancy observations were 

derived from (3.25). (The total number of Kalman filter states was 16 for this solution.)
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 (3.26e) 

 
 
 
 
 
 
 
 

 (3.27) 

It should be noted that the redundancy observation for this equivalent configuration can 

: Equivalent virtual configuration for example II 

 

s solution. The complete 

sensor model was used in the Kalman filter and the redundancy observations were 

derived from (3.25). (The total number of Kalman filter states was 16 for this solution.) 
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ii. Reduced order optimal solution: 

In this solution the structure shown in Figure 3.2 was implemented using the equivalent 

virtual sensor configuration defined in (3.27) and Figure 3.11. (The total number of 

Kalman filter states was 10 for this solution) 

iii. Reduced order WLS solution: 

The structure presented in Figure 3.5 was implemented using the equivalent virtual 

sensor configuration defined in (3.27). 

iv. Pseudo-optimal Solution: 

For this solution, the structure shown in Figure 3.4 was implemented using the complete 

sensor error and observation models. 

These configurations were run using the simulation environment described in Section 3.2. 

During the simulations only 1 external position observation at 40
th

 second was processed 

by the navigation Kalman filter. In Figure 3.12 and 3.13, the position and x-velocity 

solutions of all 4 configurations are presented. From these figures the following 

observations can be made: 

I. The optimal and reduced order optimal solutions are exactly the same as 

explained in Section 3.4.3.2. 

II. The optimal and pseudo-optimal solutions are almost the same. This shows that 

the navigation state aiding provided by redundancy observations is not significant. 

III. WLS solution is not as accurate as optimal and pseudo-optimal solutions. This is 

an expected result as the redundancy observations are completely ignored in the 

WLS based solution. 



95 

 

 

Figure 3-12 : Comparison of position solutions. opx  is the optimal solution (i), ropx  is 

the reduced order optimal solution (ii), wlsx is the WLS based solution (iii) and pox  is 

the pseudo-optimal solution (iv) 

 

Figure 3-13 : Comparison of x-axis velocity solutions for optimal ( opx ), reduced 

order optimal ( ropx ), WLS ( wlsx ) and pseudo-optimal ( pox ) solutions. 
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3.5.3 Example III 

In this example the same configuration used in Section 3.5.2 (Figure 3.10) was used. 

However, in this section it was assumed that all the accelerometers have the same error 

model defined in (3.24) except the initial covariance of the accelerometers in set 1 

(accelerometers 1-5 in Figure 3.10) which were set to { }acc acc 4
5

0 0
1

4
T

i i

i
E x x

=

−= . 

In Figure 3.14, the y-axis velocity errors of 3 different solutions are presented. These 

solutions are i)optimal solution (Figure 3.2), ii) pseudo-optimal solution (Figure 3.4) and 

iii)WLS based solution (Figure 3.5). As seen from these figures, optimal and pseudo-

optimal solutions are almost the same. However, although all sensor error parameters 

except the initial covariance are the same, the WLS and optimal solutions turned out to be 

very different. The reason for this difference can be seen from Figure 3.15. In this figure 

the effective y-axis accelerometer bias estimation errors ( ( )# imu imuˆ
k k k

M C x x− ) is 

presented for the optimal and WLS solutions. As redundancy observations are completely 

ignored in WLS solutions, the bias could not be estimated until the external position aid 

was processed at the 40
th

 second. On the other hand, as the set 2 accelerometers had 

lower initial bias error, the bias errors of set 1 accelerometers could be quickly estimated 

in the optimal (and pseudo-optimal) solutions. Hence navigation solution was not 

affected by the relatively large bias errors of set 1 in the optimal solution. 
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Figure 3-14 : Comparison of y-axis velocity errors for optimal (
opx ), pseudo-optimal 

(
pox ) and WLS (

wlsx ) solutions.  

 

Figure 3-15 : Comparison of the effective y-axis acceleration bias estimation errors 

for optimal ( ˆopu ) and WLS ˆ wlsu solutions.  
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3.6 Steady State Solution and Effective Sensor Modeling for Pseudo-Optimal 

Structures 

In the pseudo-optimal solutions, the system model of the navigation Kalman filter must 

consist of the output error model of the 1
st
 stage IMU Kalman filter. As shown in (3.18), 

these error models can theoretically be defined using the error model of each sensor and 

the parameters of the 1
st
 stage IMU Kalman filter (e.g. kK , kT ). However, when an 

abundant number of non-identical sensors is used, this approach becomes impractical 

because of the increased number of states in the navigation Kalman filter. It should be 

noted that, as described in Section 3.4.3, this is not a problem for the identical sensor 

case. 

On the other hand, for the navigation Kalman filter, the use of exact models as in (3.18) is 

not essential. Any error model which approximates the 2
nd

 order stochastic characteristics 

of (3.18) can be used in the navigation Kalman filter without compromising the accuracy 

too much. Such approximate models can be computed from i) the theoretical 

autocorrelation of (3.18) or ii) directly from a test data. In this second test based 

approach, the combined output of the SRIMU (after corrected by the IMU Kalman filter) 

is collected for sufficiently long time under stationary conditions in the laboratory 

environment and the error models are extracted from this combined data ( |
ˆ

k ku ) using the 

inertial sensor modeling methods. 

Although the first approach theoretically seems more accurate, in practice more useful 

results can be obtained with the 2
nd

 test based approach, especially for the low cost units. 

The reason for this is that as explained in [Yuksel et al., 2010] the low cost sensor errors 

are mainly characterized by the external conditions which usually cannot be modeled by 
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dynamical system representations. Hence, the error models associated with the individual 

sensors are just a rough approximation of observed characteristics. Therefore, instead of 

theoretically re-approximating (3.18), which is itself based on approximate models, re-

modeling the real combined SRIMU output data using the inertial sensor modeling 

methods is usually both more practical and more accurate. 

On the other hand, the Allan variance method, which is the most accepted sensor 

modeling method, cannot be used to model combined SRIMU outputs “ |
ˆ

k ku ”. Allan 

variance procedure is defined for only single axis data and it completely ignores any 

cross correlation between the errors on different axis. However, depending on the sensor 

configuration, the errors on the IMU KF outputs can be highly correlated for each 

kinematic axis. 

In a recent paper [Yuksel et al., 2010], a new sensor error modeling method which is also 

capable of modeling the cross-correlations between axes has been introduced. In this 

section the application of this modeling method for the combined SRIMU outputs (output 

of the 1
st
 stage IMU KF) of the pseudo-optimal solutions is described. As the modeling 

method assumes that the sensor errors are stationary, first a discussion about the steady 

state characteristics of the IMU Kalman filters will be presented in Section 3.6.1. Then in 

Section 3.6.2, modeling the steady state IMU Kalman filter output errors will be 

explained using simulated data examples. 

3.6.1 Steady State IMU Kalman Filters 

When the individual sensor errors do not contain any time varying component (such as 

the scale factor and temperature dependent bias errors), the time-varying (and optimal) 
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gain of the 1
st
 stage IMU Kalman filter in the pseudo-optimal solution can be replaced by 

a steady state Kalman gain to eliminate the need for any Kalman filter recursion. In 

general as the associated Ricatti equation for the IMU Kalman filter does not have a 

unique solution (because in almost all cases the SRIMU system models are not detectable 

and stabilizable), these steady gains can only be defined as the solution to which the 

Newton iterations converge. Although those converged solutions depend on the initial 

covariance, in practice such deviations from real steady state gains do not lead to 

significant difference. 

The adverse effect of using constant gain becomes apparent when the individual sensors 

have strong random constant type repeatability errors. Regardless of whether such states 

are observable or not, the Kalman gain corresponding to these states becomes 0 in the 

steady state conditions. When these random constant type states are indeed observable, 

the optimal (time-varying) Kalman filter can estimate these states whereas in the 

suboptimal filters with constant steady state gains these states are not estimated at all. 

On the other hand, in practice the use of optimal (time-varying) Kalman filters does not 

always mean better results for these repeatability errors. As explained in [Yuksel et. al. 

2010], the determination of initial covariance values for the repeatability errors is 

generally very difficult. Hence, usually some approximate covariance values are used in 

the Kalman filters. Therefore, even if the optimal Kalman filters are used, in most cases 

the estimation results for these repeatability errors are far from being optimal due to these 

initial covariance mismatches. 

In the next section, simulated data results comparing steady state and (time-varying) 

Kalman filter outputs will be presented. 
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3.6.2 Simulated data results for Steady State IMU Kalman Filters and output modeling 

In this section the sensor configuration presented in Figure 3.16 was used in the 

simulations. As seen from this figure, the SRIMU unit contains 5 accelerometers on the 

x-y plane and 2 gyroscopes on the z-axis. The overall output model for this configuration 

is as follows: 
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In (3.28) imu

kx  represents the stability error states for the entire SRIMU. It is assumed that 

all sensors have stability errors in the form of 1
st
 order Markov processes which are also 

time-invariant. As seen from (3.28b), significantly different initial error covariance 

values are used for each sensor. However, as shown in (3.28d), it was assumed that all 

accelerometers and gyroscopes have identical random walk (additive white noise) 

components. 

The same navigation mechanization equations and trajectory described in Section 3.2 was 

used in all simulations. In addition to inertial data, an external velocity observation is 

generated for the navigation Kalman filter to process at 0.1Hz. 

For this simulation 3 different solutions were implemented: 

i) Pseudo-optimal solution with optimal gain 

ii) Pseudo-optimal solution with constant steady state gain 

iii) Pseudo-optimal solution with constant steady state gain and approximate sensor error 

models 



 

Figure 3-16 : Sensor configurati

The solution “i” was the direct implementation of Figure 3.4. (3.28) was used as the 

sensor error model in IMU Kalman filter and (3.18) 

model in the navigation Kalman filter.

In the solution “ii”, the IMU KF was executed with the steady state Kalman gain instead 

of the optimal time varying gain. This steady state gain was computed using Newton 

iterations over corresponding Ricatti equation starting from the initial covariance 

in (3.28b). The sensor error models in the navigation Kalman filter w

(3.18), but with the computed steady state gain.

The solution “iii” is similar to the sol

models in the navigation Kalman filter w

purpose, 8 hours of stationary data for the system in Figure 3.16 was generated. This data 

is then processed by only the IMU Kalman filter with the constant steady state gain to 

 

: Sensor configuration. All accelerometer are placed on the 1

of the x-y plane 

The solution “i” was the direct implementation of Figure 3.4. (3.28) was used as the 

sensor error model in IMU Kalman filter and (3.18) was used the equivalent sensor error 

model in the navigation Kalman filter. 

In the solution “ii”, the IMU KF was executed with the steady state Kalman gain instead 

of the optimal time varying gain. This steady state gain was computed using Newton 

ver corresponding Ricatti equation starting from the initial covariance 

in (3.28b). The sensor error models in the navigation Kalman filter were 

(3.18), but with the computed steady state gain. 

The solution “iii” is similar to the solution “ii”. However in this solution, the sensor error 

models in the navigation Kalman filter were derived from a simulated test data. For this 

purpose, 8 hours of stationary data for the system in Figure 3.16 was generated. This data 

only the IMU Kalman filter with the constant steady state gain to 
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on. All accelerometer are placed on the 1
st
 quadrant 

The solution “i” was the direct implementation of Figure 3.4. (3.28) was used as the 

used the equivalent sensor error 

In the solution “ii”, the IMU KF was executed with the steady state Kalman gain instead 

of the optimal time varying gain. This steady state gain was computed using Newton 

ver corresponding Ricatti equation starting from the initial covariance defined 

 derived using 

ution “ii”. However in this solution, the sensor error 

derived from a simulated test data. For this 

purpose, 8 hours of stationary data for the system in Figure 3.16 was generated. This data 

only the IMU Kalman filter with the constant steady state gain to 
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obtain the kinematic variable estimates ( |
ˆ

k ku ). Then the sensor error modeling method 

described in [Yuksel et al., 2010] was applied to these |
ˆ

k ku  estimates. 

The computed autocorrelation curves and fitted exponentials to these curves for the x and 

y accelerations are presented in Figure 3.17. These curves were obtained at the 10
th

 

filtering level (the filtering and exponential curve fitting operations are explained in 

[Yuksel et. al. 2010]). From the fitted exponentials (including the exponential for the z-

gyroscope which is not shown in Figure 3.17), the following approximate error model 

was extracted as described in [Yuksel 2010 et al.]: 
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where |

apx

k kuɶ  represents the errors on the |
ˆ

k ku  which is computed as a result of the IMU 

Kalman filter. As seen from (3.29a) and (3.29d) the errors on the x and y axis 

accelerations are strongly correlated with each other. If the Allan variance method had 

been used to model |
ˆ

k ku  sequence, these cross-correlation effects could not be modeled at 

all. 
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Figure 3-17 : Computed correlation of simulated (generated) |
ˆ

k ku  sequence for the x 

and y accelerations. The solid blue curves represent the computed correlation of 

raw data. Dashed red curves represent the fitted exponential functions for the 

corresponding correlations. 

In Figure 3.18, the theoretical autocorrelation of (3.29ac) is compared with the theoretical 

autocorrelation of the output of steady state IMU Kalman filter (which was derived based 

on (3.28) and the steady state Kalman gain). As can be seen from this figure, although 

only 3 states are used in the approximate model of (3.29), the final 2
nd

 order 

characteristics of the both models (stability parts for the approximate model of (3.29) and 

the true model of (3.18)) are very similar. This figure verifies the fact that the new error 

modeling method described in [Yuksel et. al. 2010] can be used to obtain approximate 

error models with less number of states for SRIMU systems. 
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Figure 3-18 : Comparison of theoretical autocorrelation of (stability part of) 

approximate model (3.29) and true model (3.18) (which is derived from (3.28)). Solid 

curves represent the true model’s autocorrelation whereas dashed curves represent 

the approximate model’s autocorrelation. 

The position results of the 3 types of solutions described above are presented in Figure 

3.19. As shown in this figure, there is no significant difference between the navigation 

results obtained with the theoretical error model of (3.18) with the steady state gain and 

the reduced order approximate model of (3.29). The navigation filters which use these 

error models (solutions “ii” and “iii”) produced almost exactly the same position solution. 

However, as can be seen from the same figure, the results of the configurations which use 

the steady state IMU filters (solutions “ii” and “iii”) are slightly worse than the 

configuration which uses the optimal Kalman gain in the IMU filter (solution “i”). The 

main reason for this difference lies in the initial stability error covariance values of the 2 
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gyroscopes. As can be seen from the last two elements of (3.28b) the initial covariance of 

1Gyro  is 410  times bigger than 2Gyro . As the steady state Kalman filter does not 

consider this difference, the heading angle computed using the results of the steady state 

IMU Kalman filter is also corrupted by these initial gyroscope biases. 

 

Figure 3-19 : Comparison of position results for 3 implementations. “Sol i” is the 

pseudo-optimal solution, “Sol ii” is the pseudo-optimal solution with steady state 

IMU Kalman filter and “Sol iii” is the pseudo-optimal solution with steady state 

gain and approximate error models. 

The heading angle estimation errors for all 3 types of implementation are presented in 

Figure 3.20. As seen from this figure, the IMU Kalman filter with the optimal gain can 

quickly estimate the initial bias error of gyroscope 1 using the outputs of gyroscope 2, 

and hence leads to better heading angle results. This figure also verifies that when 

different sensors have very large initial bias errors and when these biases are correctly 
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modeled in the IMU Kalman filter, the optimal gain can lead to better navigation 

solutions than the IMU Kalman filter with steady state gains. However, it should be noted 

that for real sensors these initial bias differences are usually not as much as it was used 

for this simulation. Therefore, in most practical cases, the IMU Kalman filters with 

steady state gains also provide similar navigation solutions with the optimal gains. 

 

Figure 3-20 : Comparison of heading angle error for 3 types of solutions. Solid lines 

represent the errors and dashed lines represent the standard deviation estimates of 

navigation Kalman Filter. Sol i, ii and iii are as described in Section 3.6.3. 
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Chapter Four: Comparison of Multi-INS and Single-INS Solutions for the Skew 

Redundant Inertial Measurement Unit based Inertial Navigation systems 

4.1 Introduction 

The optimal navigation solution for the SRIMU based INSs has been introduced in 

Chapter 2 and 3. The optimal solution described in these chapters leads to the following 

SRIMU based strapdown implementation steps (the symbols are defined in Section 3.3): 

i. Compute # imuˆwls

k ku M y=  (the weighted least square estimate of kinematic 

variables) 

ii. Run a single strapdown implementation using ˆwls

ku  

iii. Generate Kalman filter observations as the projection of imu

ky  into left null space 

of configuration matrix M . 

iv. Run a Kalman filter with these redundancy observations and correct the 

navigation and sensor error states. 

As seen from these steps, this optimal approach uses only a single strapdown 

implementation. On the other hand, in the existing literature there exists another type of 

solution which utilizes multiple strapdown implementations for SRIMU systems. Such 

multi-INS based methods are presented in [Colomina et al., 2004], [Waegli et al., 2008] 

and [Bancroft 2009]. Although these studies are generally ambiguous and contain some 

inconsistent points, they can still be regarded as important because they present some 

field test results with real redundant sensors. The main structure of the proposed methods 

in these studies can be summarized as follows: 
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i. For each complete sensor set (e.g. 3 accelerometers and gyroscopes for 6DoF 

navigation) a separate INS is implemented (the existing studies do not consider 

the case in which the number of sensors are not suitable for such exact grouping). 

ii. Kalman filter observations are generated in the form of the equivalence of the 

navigation states of different INSs (i.e. PVA of INS1=PVA of INS2 etc) 

iii. A Kalman filter is run with these equivalency observations and each individual 

strapdown INS and IMU error states are corrected with the filtered estimates. 

Although the aforementioned studies ([Colomina et al., 2004], [Waegli et al., 2008], 

[Bancroft 2009]) can successfully explain the general structure of multi-INS 

configurations for SRIMUs, all these 3 studies lack the theoretical background and 

contain some errors which render their conclusions unreliable. For instance, the two 

methods (“synthetic mechanization” and “extended mechanization”) described in 

[Colomina et al., 2004] and [Waegli et al., 2008] as different methods are theoretically 

identical. Therefore, in contrast to what was claimed in the corresponding studies, the 

outputs of these methods must be the same. Also, in [Bancroft 2009], the external 

observations are processed as if they are independent for each INS which is not a correct 

way of using these external measurements. 

In this chapter, the theory that is presented in the previous chapters based on single INS 

implementations is extended to cover multi-INS implementations. 

In Section 4.2, it is shown that the multi-INS implementation is just a reformulation of 

single INS implementation with redundant number of navigation states. 

In Section 4.3, the relation between 2 types of observations (i.e. observations based on 

equivalence of navigation states in multi-INS implementations and observations based on 
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the projection of sensor outputs to the left null space of configuration matrix) are 

described. It is proved that these 2 types of observation are equivalent under some 

conditions. 

Section 4.4 describes the processing of external PVA type observations in multi-INS 

systems. For single INS implementations the processing of external measurements with 

the standard navigation Kalman filter is trivial. However, for multi-INS systems there 

exist several different ways of processing these measurements. Although all of these 

alternatives are theoretically equivalent to each other, in practice the selected approach 

can have some effects on the overall system stability. These differences will be presented 

in Section 4.5 using some simulated data examples. 

The effect of unknown and time-varying boresight between inertial sensors on the final 

navigation solution is also analyzed in Section 4.5. Using simulations, it is shown that 

multi-INS implementation can be better modified to reduce the effect of the unknown 

bore-sight factors in SRIMU based navigation systems. 

4.2 Optimal Processing of SRIMU outputs using Multi-INS implementations 

In Chapter 2, it was shown that the optimal kx  estimate ( |
ˆ

k kx ) for: 

1k k k k k k kx A x N u B w+ = + +        (4.1a) 

k k k k k ky C x M u v= + +        (4.1b) 

is equal to the Kalman filter output for the following system: 

( )# #

1k k k k k k k k k k k k kx A x N M y C x B w N M v+ = + − + −     (4.2a) 

k k k k k k kT y T C x T v= +         (4.2b) 
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where { }T

k k k
E v v R= , { }T

k k k
E w w Q= , ( )

1
# 1 1T T

k k k k k k
M M R M M R

−
− −=  and kT  is the basis 

matrix for the left null space of kM  (i.e. 0k kT M = ). (The rest of the parameters are 

defined in Chapter 2 – Lemma 3.) 

In this section, it is shown that the Kalman filter output for the system in (4.2) is also 

equivalent to the Kalman filter output for the following system: 

( )*

1

*

k k k k k k k k k k k k kx A x N M y C x B w N M v+ = + − + −     (4.3a) 

k k k k k k kT y T C x T v= +         (4.3b) 

where *

kM is any matrix (not necessarily #

kM ) such that * Ik kM M = . 

First of all, it should be noted that, using the linearity property, the system defined in 

(4.2) and (4.3) can be expressed as the sum of stochastic and deterministic subsystems. If 

the deterministic subsystem is considered as a nominal trajectory, the stochastic part 

represents the propagation of errors defined around the nominal trajectory which is 

generated by the input #ˆ
ku M y=  (for (4.2)) or *ˆ

ku M y=  (for (4.3)). 

To prove the equivalence of the Kalman filter results for the systems defined in (4.2) and 

(4.3), it will be shown that the optimal Kalman filter form of (4.3) has exactly the same 

system model defined in (4.2). 

The system noise “ *

k k k k kB w N M v− ” and the observation noise “ k kT v ” of (4.3) are 

correlated with each other. Therefore, as described in [Kailath et al., 2000 – Chapter 9.5], 

the optimal Kalman filter for (4.3) must use the following model: 

( ) ( )( )*

1k k k k k k k k k k k k k k k k k k k
x y Cx A x N M y C N S R T T x v B w+ = + − − − + +ɶ  (4.4a) 

k k k k k k kT y T C x T v= +         (4.4b) 
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where, 

( )
1

T

k k k k
R T R T

−

=         (4.4c) 

( )( ){ }* *T T

k k k k k k k kS E M v T v M R T= =       (4.4d) 

{ } * *TT T

k k k k k k k kE v v M R M S R S= −ɶ ɶ       (4.4e) 

(4.4a) can be re-arranged as follows: 

( ) ( )( )*

1k k k k k k k k k k k k k k kx A x N M S R T y C N v B wx+ = + − − − +ɶ    (4.5) 

Furthermore, using (2.51), it can be shown that: 

( ) ( )

( )

1
* * *

1
1 1 #

T T

k k k k k k k k k k k k

T T

k k k k k

M S R T M M R T T R T T

M R M M R M

−

−− −

− = −

= ≜
     (4.6) 

Also, 

( )( ){ } ( )( )( )
( )
( )

( )( ){ }

1
* * *

# *

1
1

# #

T

T T T

k k k k k k k k k k k k k k k k k k k k k

T

k k k k k k

T T

k k k k k k

T

k k k k k k k k k k

E B w N v B w N v Q N M M R T T R T R M N

Q N M R M N

Q N M R M N

E B w N M v B

T

w N M v

−

−−

− − = + −

= +

= +

= − −

ɶ ɶ

 (4.7) 

Replacing (4.7) and (4.6) into (4.5) the following system model is obtained: 

( )( )# #

1k k k k k k k k k k k k k
x A x N M y x BC w N M v+ −= + + −     (4.8) 

(4.8) is exactly the same as (4.3a). Therefore, the optimal estimation solutions of (4.4) 

and (4.3) are algebraically equivalent as claimed above. 

This result can be extended to the multi-INS implementations as follows: 

Let * *

k k

A LM M…  be L different matrices such that 
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* * IA L

k k k kM M M M= = =…        (4.9) 

Then, given an SRIMU with a configuration matrix M , it is possible to implement L 

different SINS all of which are run by independent sets of sensors. Hence (using the 

terminology defined in Chapter 3), the combined system model for the entire multi-INS 

system can be written as follows: 

( )

( )

nav nav nav * imu imu imu nav

1

nav nav nav * imu imu imu nav

1

imu imu imu imu

1

k k k k k k k k k k

k k k k k k k k k k

A A A

L L L

k k k k

x A x N M y C x v w

x A x N M y C x v w

x A x w

+

+

+

= + − − +

= + − − +

= +

⋮
   (4.9a) 

imu imu imu imu

k k k k k k ky TT x vT C +=        (4.9b) 

where, rows of kT  are the basis of the left null space of kM , { }nav
L

i

k
i A

x
=  represents the 

navigation states for each SINS implementation and 
nav nav

0 0

A Lx x= =… . 

In (4.9) the system noise for each navigation model (
nav * imui

k k k kw N M v− ) and observation 

noise (
imu

k kT v ) are correlated. Therefore, these cross-correlations must be removed for the 

Kalman filter. When such a removal operation is performed as shown in (4.4), the overall 

system model has exactly the same 
nav

kx  model for each SINS implementation. In this 

case, the overall system model can be represented as: 

( )nav nav nav nav nav # imu imu nav

1 1 1

imu imu imu imu

1

k k k k k k k k k k k k

k k k

A L

k

x x x A M C xx N y w

x

v

xA w

+ + +

+

= = = −+

= +

−= +…
 (4.10a) 

imu imu imu imu

k k k k k k ky TT x vT C +=        (4.10b) 
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This shows that multi-INS type implementations are nothing but just the repetitions of the 

same navigation states for each implementation in the overall state vector. 

The key conclusions of this section can be summarized as follows: 

i. The selection of nominal trajectory has theoretically no effect on the Kalman filter 

solution as long as the observations are optimally processed. 

ii. If the nominal trajectory is generated by inputs other than # imuˆ
k k ku M y= , then in 

the Kalman filter for the optimal solution, the cross-correlations between the 

system and observation noises must be corrected. Once this correction is done, the 

system model becomes exactly equivalent to the system model which is obtained 

with the nominal trajectory generated by # imuˆ
k k ku M y= . 

4.3 Optimal solution based on the equivalency of navigation states for multi-INS 

implementations 

In the previous section, all the observations obtained from the redundancy of the sensors 

are represented using imu

k kT y  as described in Chapter 2. However, in the related literature 

(e.g. [Colomina et al., 2004], [Bancroft 2009]), the equivalence of the navigation states of 

different strapdown implementations are used as the only form of the redundancy 

observations in the multi-INS configurations instead of the imu

k kT y .  

In this section, the relation between these equivalency based observations and the sensor 

based observations ( imu

k kT y ) are explained. Also, the conditions for which the navigation 

state equivalence type observations lead to optimal solution are derived. 

The observation model for the multi strapdown implementations (whose system model is 

defined in (4.9a)) can be represented as follows: 
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nav nav

nav nav

nav nav1

0eq

k k k

k k

B

C

L L

k

A

B

k

y x x

x x

x x
−

= = −

= −

= −

⋮
       (4.11) 

At k=0, the states are all equivalent by definition. Therefore, 0

eqy has no effect. 

At k=1: 

( ) ( ) ( ) ( )

( ) ( )

nav nav nav nav nav * * imu imu imu imu nav nav

1 1 0 0 0 0 0 0 0 0 0 0 0 0

* * imu imu imu imu

0 0 0 0 0 0 0

A B A B A B

A B

x x A x x N M M y C x v w w

N M M y C x v

− = − + − − − + −

−= − −

          (4.12) 

For the navigation applications 
k

N  is a full column rank matrix. Therefore (4.11) can be 

rewritten as: 

( )( )

( )( )

nav nav * * imu imu imu imu

0 0 0 0 0 0

nav nav * * imu imu imu

1 1

1 1

1 1

imu

0 0 0 0 0 0

0

0

A B A B

L L L L

x x M M y C x v

x x M M y C x v
− −

− = − − − =

− = − − − =

⋮    (4.13) 

Let 0D  be as: 

* *

0 0

0

* *

0 0

1

A B

L L

M M

D

M M
−

 −
 

=  
 − 

⋮         (4.14) 

Then (4.13) can be rewritten as: 

imu imu imu imu

0 0 0 0 0 0 0D y D C x D v= +  

The same line of derivation can be used to verify that the reverse is also true (i.e. 

imu imu imu imu

0 0 0 0 0 0 0 1 0eq
D y D C x D v y= + ⇒ = ). Furthermore, these derivations also hold for 

any “k”. Therefore: 
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imu imu imu imu

1 0 ,eq

k k k kk k k ky D y D C x D v k+ = ⇔ = + ∀     (4.15) 

From (4.15) it can be seen that navigation state equivalency constraint at time “k” is 

equivalent to some form of sensor redundancy observations at “k-1”. 

In the previous section it was shown that the Kalman filter with the sensor redundancy 

observations in the form of imu

k kT y  is the optimal solution for the SRIMU systems. 

Therefore, it is concluded that the Kalman filter for the system (4.9a) and observation in 

(4.11) is optimal if and only if 
k k

D T≡  for k∀ . It should be noted that this equivalence is 

defined as the equivalency of range spaces of the corresponding matrices rather than an 

algebraic equivalence. 

The consequences of this result are hard to see in this general matrix form. Therefore, in 

the next section these consequences are clarified using a fictitious navigation system 

example. 

4.3.1 Simulated data results for multi-system implementations 

4.3.1.1 Case I: Different Inertial Sensor Characteristics 

In this section, several results for a (fictitious) multi-sensor based navigation system are 

presented and compared. The overall model for this (fictitious) system is as follows: 

nav

nav nav

1

imu imu imu

1

1 0 1 0

0 1 0 1
k k k

k k

NA

k

x x u

x A x w

+

+

   
= +   
   

= +

��	 ��	        (4.16a) 

�
imu

imu imu

imu imu

imu imu

k

A AA

B BB

M v

k k

k k k

k k

y vM
y u x

y vM

    
= = + +    

    ����	

     (4.16b) 
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These equations represent the body velocity of a non-rotating system on a planar surface. 

k
u  denotes the velocity increments (integral of body acceleration in a defined 

discretization period) ( ),
x y

a a on each axis which are measured by 5 different 

accelerometer placed on the x-y plane as shown in Figure 4.1. The model parameters for 

the sensor error ( imu

kx ) and navigation states ( nav

kx ) are as follows: 

5

imu

50.99998IA ×=         (4.17a) 

{ } 92.495 ,10 ,100diag ,0.1 ,0.01T

k k
Q E w w

χ

χ χ χ χ−
 
  


= =


����	    (4.17b) 

{ } �
imu imu 6 ,0.1 ,0.01 ,10 ,100diag 4

T

A B

k k

R R

R E v v
χ

χ χ χ χ−= =

 
 
 
 

���
��� ��
��
   (4.17c) 

{ }imu imu 7

0 0 6.25 ,0.1 ,0.01 ,10diag ,100
T

E x x
χ

χ χ χ χ−
 
  
 

= ��	    (4.17d) 

{ }nav nav 4

0 0 2 21 I
T

E x x −

×=         (4.17e) 

In the above set of definitions all the values are selected in a way that all sensors have 

complimentary characteristics. As described in Chapter 3, the effectiveness of the 

redundancy measurements can be observed much easily under such complimentary 

configurations. 



 

Figure 4-1 : Sensor configuration for the fictitious 2Dof navigation system

In this example, the 5 accelerometers are divided into 2 sub

implementations for multi

Figure 4.1 are referred to as Set

The configuration matrices for these sets of sensors are as follows:

( )
( )
( )

/11 /11

2 /

cos sin

cos si11 2 /11n

cos 3 /11 3 /1sin

AM

π π

π π

π π

 
 

=  
  

( )
( )

cos sin

co

4 /11 4 /11

5 /s sin11 5 /11

BM
π π

π π

 
=  
 

A

B

M
M

M

 
=  
  

   

For this system, 5 different solution methods were implemented 

navigation solution and to estimate 

summarized below. 

Solution I: Optimal solution based on single INS implementation.

: Sensor configuration for the fictitious 2Dof navigation system

accelerometers are divided into 2 sub-sets to define 2 

implementations for multi-INS based solutions. The first 3 accelerometers (

referred to as Set-A, whereas the rest ( 4,5
Acc ) are Set-B.  

The configuration matrices for these sets of sensors are as follows: 

( )
( )
( )

/11 /11cos sin

cos si11 2 /11n

3 /11 3 /1sin 1

π π

π π

π π

 
 
 
  

      

( )
( )

cos sin4 /11 4 /11

s sin11 5 /11

π π

π π

 
 
 

      

      

For this system, 5 different solution methods were implemented both to compute

to estimate the individual sensor errors. These methods are 

Solution I: Optimal solution based on single INS implementation. 
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: Sensor configuration for the fictitious 2Dof navigation system 

to define 2 separate INS 

INS based solutions. The first 3 accelerometers ( 1,2,3
Acc ) in 

 

(4.18a) 

(4.18b) 

(4.18c) 

compute the 

the individual sensor errors. These methods are 
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This is the direct application of Section 2.3.2. The system model for the Kalman filter is 

as follows: 

nav nav # imunav # # imu

1

imu imuimu

1 0 0

k k k k

k k k

x x M vA M M y

x x wA

+

+

        −−
= + +        
        

   (4.19a) 

imu imu imu

k k kTy Tx Tv= +         (4.19b) 

where, 

( )
1

# 1 1T T
M M R M M R

−
− −=        (4.19c) 

( )T LNull M=         (4.19d) 

In (4.19d) LNull  represents the basis set of the left null space of its argument (i.e. 

0TM = ). 

Solution II: Multi-INS solution with state equivalency constraints. 

In this solution two separate navigation systems were implemented. The first used only 

the accelerometers in set A, whereas the second system used the set B. The state 

equivalency constraints for these 2 systems were used as the only form of redundancy 

observations. The overall system and observation model for this configuration is as 

follows: 

nav *
nav nav * imu * imu

1

nav nav * nav * imu * imu

1

imu imuimu
1

0 0

0 0

00 0

k k k k

k k k k

k k k

A
A A A A A A

B B B B B B B

A Mx x M v M y

x A M x M v M y

x x wA

+

+

+

  −         − 
         = − + − +         
               

 

 (4.20a) 

nav nav0 A Beq

k k ky x x= = −        (4.20b) 

where 
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( )1 1*
1

A A A A AT T A
M M R M M R

−
− −=       (4.20c) 

( )1 1*
1

B B B B BT T B
M M R M M R

−
− −=       (4.20d) 

Solution III: Multi-INS solution with both state equivalency constraints and sensor 

redundancy observations. 

This solution is similar to Solution II. However, in this case, together with the 

equivalency constraints, the redundancy observation for set A was also processed as 

measurements in the Kalman filter. The observation model for this solution is as follows: 

nav

nav

imuimu

imu

0I I 00

0 0

A

B

A

keq

k

k

kk

AA A

x
y

x
TvTT y

x

 
  −=     

= +      
      

 

    (4.21) 

where 

( ) 1 20A A
T LNull M ×

 =          (4.22) 

As can be seen from (4.22), the redundancy observation for set A is defined as the basis 

for the left null space of (4.20c) (The dimension of the null space is 1 as there are only 3 

accelerometers in set A). 

Solution IV: Single-INS implementation with redundancy observations derived from the 

equivalency constraints. 

For this solution only one INS was implemented which was run with # imuˆ
k kyu M= . Only 

the sensor redundancy observations which were equivalent to the navigation state 

constraints were processed by the Kalman filter. Thus, the observation model is as 

follows: 
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( )( )* *A B

k
D M M = −         (4.23a) 

imu imu imu

k k k k k ky x vD D D= +        (4.23b) 

The system model is as defined in (4.19a). It should be noted that as 0
k

D M = , the 

observation and system noises are also independent for this configurations. 

Solution V: Alternative implementations for optimal solutions 

a. Kalman filter for correlated system and observation noises 

For this case (which consisted of 2 distinct INS implementation), (4.20a) was used as the 

system model and (4.19d) was used as the observation model. The Kalman filter 

described in [Kailath et al., 2000 – Chapter 9.5] was directly implemented for these 

models. 

b. Redundancy observations derived from equivalency constraints. 

This configuration was similar to Solution IV. However, in this case the following 

complete observation model was used: 

imu imu imuk k k

kA A kAk

D D D
y x v

T T T

     
= +     

     
      (4.24) 

Where 
k

D  and AT  is as defined in (4.23b) and (4.22). 

As described in the previous section, these 2 solutions are in fact theoretically equivalent 

to Solution I. However, they were included in the simulations to see whether the 

numerical aspects have any noticeable effect on the solution. 

In Figure 4.2, 2
Acc  error estimation result for Solution I, II, V(a) and V(b) are presented. 

As seen from this figure Solution II is not equivalent to the optimal solutions (Solutions I, 

Va, Vb). The reason for this is that the equivalency constraint does not consider the extra 
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observation arising from the redundancy in Set A. These equivalency constraints are 

conceptually equivalent to the observation in (4.23a), whereas the optimal solution uses 

(4.24). 

 

Figure 4-2 : Comparison of 2
Acc  bias estimates for Solution I, II, V(a) and V(b). 

Figure 4.3 represents the comparison of 3
Acc  bias estimates for Solution I and III. As 

seen from this figure, when the missing sensor redundancy observation ( imuA

kTy ) is 

augmented to the equivalency constraints based observation, the Kalman filter output for 

the multi-INS implementation becomes almost identical to the optimal results of Solution 

I. On the other hand, the small difference between the 2 curves verifies that they are not 

theoretically identical. Equation (4.15) explains the reason for this mismatch of the two 

results. As can be seen from (4.15), the equivalency constraint applied at time “k” is 

equivalent to the redundancy observation at time “k-1”. Therefore equivalency constraint 

based observation is only equivalent to delayed state redundancy observations. 

0 50 100 150 200 250 300 350
-1

0

1

2

3

4

5

6
x 10

-3
A

c
c

2
 b

ia
s
 E

s
ti
m

a
te

 (
m

/s
e
c

2
)

time (sec)

 

 

Sol 1

Sol 5a

Sol 5b

Sol 2

Sol1, Sol5a, Sol5b

Sol 2



124 

 

 

Figure 4-3 : Comparison of 3
Acc  bias estimates for Solution I and III. 

For navigation application point of view such a slight difference is not significant for any 

practical purposes. Furthermore, it should be noted that under some conditions, it is also 

possible to define exact equivalence between the predicted and filtered solution of these 

configurations. As an example, in Figure 4.4, the filtered 4
Acc  bias estimates of Solution 

I and II and predicted bias estimate of Solution IV is presented. As seen from this figure, 

the filtered result of Solution II and predicted (only 1 sample delay) result of Solution IV 

is exactly identical. 
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Figure 4-4 : Comparison of 4
Acc  bias estimates for filtered results of Solution I, II 

and predicted result of Solution IV. 

4.3.1.2 Case II: Identical Inertial Sensor Characteristics 

In this section, the simulations were performed using the same system and sensor 

configuration as defined in (4.16) and Figure 4.1. However, in contrast to previous 

section, all sensors were assumed to be identical with the stochastic error model 

parameters equivalent to parameters of 1
Acc ( χ  in (4.17)). 

For this configuration, 3 types of solution method were implemented: 

Solution I and II: 

These configurations were exactly the same as the type of implementation presented in 

Solution I and II of the previous section. 
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In this solution no filtering was used at all. The two navigation solutions were computed 

using set A and B accelerometers as follows: 

1

nav nav nav *

3

1

2ˆ ˆA A A

k k k

Acc

x A x N M Acc

Acc

+

 
 

= +  
 
 

      (4.25a) 

4

nav nav nav *

1 5
ˆ ˆ

k k k

B B B Acc
x A x N M

Acc
+

 
= +  

 
      (4.25b) 

where *AM  and *BM  is as defined in (4.20c-d). 

Once these two separate navigation solutions were computed, the combined navigation 

solution was computed as the weighted average of these 2 solutions based on a MVU 

(minimum variance unbiased estimator) problem formulation as follows: 

Let, the real navigation solution ( nav

kx ) and the outputs of the 2 implemented INS has the 

following relation: 

nav

nav

nav

Iˆ

Iˆ

A

k

k

B

k

k

x
x

x
η

   
= +   
  

        (4.26) 

Where nav

kx  is the combined output to be estimated for which navˆA

kx  and navˆB

kx  (the 

outputs of individual implementations) are considered as the 2 separate observations. 
k

η  

represents the fictitious observation noise whose covariance (
k

Π ) is equal to the error 

covariance of the navigation states for each INS. These error covariances were computed 

as in the Kalman filter (without any update cycle) with the system model defined in 

(4.20). Thus, the combined navigation solution is computed as follows: 

[ ] [ ]
nav

nav 1 1

nav

I ˆ
ˆ I I I I

I ˆ

A

B

k

k k k

k

x
x

x

− −
    

=     
 

Π


Π


     (4.27) 
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In Figure 4.5, the comparison of the navigation solutions are presented for all 3 

implementations defined above (Solution I, II and VI). As seen from this figure all 3 

implementations have exactly identical navigation (velocity) solution. 

 

Figure 4-5 : Comparison of velocities for the solutions I, II and VI. The blue curve is 

the x-axis velocity computed by all 3 solutions and red curve is the y-axis velocity. 

The reason for the theoretical equivalence of these solutions can be explained as follows: 

In Section 4.2, it is shown that the equivalency constraints are identical to some form of 

the redundancy observations. In Section 2.4.3 and 3.4.3, it was shown that when identical 

sensors are used in an SRIMU, the redundancy observations have no effect on the 

navigation solution for single-INS implementations. In Section 4.2, it was also showed 

that as long as the equivalent form of observations are used in the Kalman filter, the 

single and multi INS implementations are algebraically equivalent. Therefore, when 
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identical sensors are used, equivalency constraints can be completely ignored in multi-

INS implementations. However, in this case, the knowledge of equivalence (Equation 

(4.11)) must be used to form the optimal average of individual implementations which 

leads to the MVU formulation defined in (4.26). 

On the other hand, it should be noted that the equivalence of solutions VI and I-II are 

only limited to the navigation states. As shown in Section 3.5.1, even when all the 

sensors are identical, redundancy observation can still be used to perform sensor 

calibration. However, these sensor errors that are estimated do not have any effect on the 

navigation state error propagation unless the sensor configuration matrix changes. 

4.4 Processing of the External PVA measurements in multi-INS implementations 

All the discussion presented so far in this chapter has focused on the redundancy 

observations. However, in integrated navigation applications the system stability is 

dependent on external observations. Even with the SRIMU systems, it is not possible (at 

least with the currently available inertial sensor accuracies) to remove such dependence 

in most of applications. 

For single-INS based SRIMU implementations the processing of external PVA 

measurements are exactly the same as the single IMU systems. As a matter of fact this is 

one of the reasons why single-INS implementations have more value for practical 

applications: this kind of implementation does not require significant modification in the 

existing integrated navigation software developed only for a single IMU. 

On the other hand, as will be shown in the next section, single-INS based 

implementations have their own drawbacks (especially when there are significant 
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unknown bore-sight problems) and hence sometimes multi-INS implementations may 

become more favourable. For such implementations, the processing of external PVA 

observations in Kalman filter is not as trivial as the case for single-INS case. 

In this section several methods for modeling external PVA observations in the multi-INS 

configurations are presented. Although all the presented methods are theoretically 

equivalent, they have different advantages and disadvantages from the implementation 

point of view. In this section, different methods are mainly compared in terms of ease of 

implementation. The robustness of these methods to the unknown bore-sight effects are 

discussed in the next section. 

In order to simplify the notation in the following discussions only the direct PVA type 

observations are considered. Furthermore, it is assumed that the external observations are 

synchronized with the internal discretization time of INS implementations. 

If it is assumed that a multi-INS configuration consists of L strapdown implementation 

each of which is run by an independent set of sensors located at the same point (but with 

arbitrary orientations), the main form of the observation model (including both the 

external observations and equivalency constraints) for such a configuration can be 

represented as follows: 
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   (4.28) 
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where, [ ]nav nav nav navI I
T

k k k k
y H x v= + …  represents the external PVA observations and 

{ }
1

1
0

L
i

i

eq

ky
−

=
=  are the state equivalency observations arising from the redundancy of the 

sensors. It must be noted that nav

kv  for each sub-system in (4.28) represents the same 

identical noise. In other words: 

{ }
( )* 0

0 0

T

k k

R R

ones L R R R
E v v

  
  =  =
   
 
  

⋯

⋮

⋮ ⋯ ⋱
     (4.29a) 

where { }nav nav
T

k kR E v v= . 

Therefore, some of the observations in (4.28) are in fact just the linear combination of the 

others and hence do not carry any additional information at all. Furthermore, this form of 

the observation model is the most problematic model in terms of the numerical 

considerations. As { }T

k k
E v v is not invertible, the inverse of the innovation process’s 

correlation is mainly determined by the correlation of the navigation states. However, 

because of the equality constraints, the navigation state correlation also has a very low 

condition number. Thus, in most cases, direct application of this observation model leads 

to divergent Kalman filter results due to the almost rank deficient innovation correlation. 

Therefore, equivalent observation models should be used for multi-INS implementations. 

These equivalent models are obtained by removing some of the linear combination of 

states from (4.28) which does not carry additional information. Although there are many 

such ways of obtaining equivalent measurement models, in this study only the following 

4 models are considered. 



131 

 

Model I: Measurement model based on a single sub-system. 
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   (4.30) 

Model II: Measurement model based on a combination of observations. 

Let A L
G G…  be L invertible matrices such that IA B L

G G G+ + + =… . Then: 

nav nav

nav

nav

1

1

0 I I 0 0 0

0 0 0 I I 0

k k k k

keq

k

ke

A B L

Ak

L q

k

L

y GH GH GH v
x

y

x
y

−

     
      

= −       = +      
       = −         

⋯

⋯
⋮

⋮ ⋮ ⋮

⋯

  (4.31) 

Model III: Measurement model based on a combination of states. 

Let A L
J J…  be L invertible matrices such that IA B L

J J J+ + + =… . Then: 
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⋯

  (4.32) 

Model IV: Measurement model based on all sub-systems. 
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⋮ ⋱ ⋮ ⋮      (4.33) 

Below, it will be shown that these sets of observations are equivalent to (4.28). To show 

the equivalency it is sufficient to show that (4.30)-(4.33) can be generated from (4.28) 

using only linear transformations and vice versa. As the derivations of (4.30)-(4.33) from 

(4.28) is trivial, only the computation of (4.28) from (4.30)-(4.33) is provided below. 
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Model I: 

According to (4.30) nav nav nav

k k

A

k

B L
x x x= = =… . Therefore, 

nav nav nav nav nav

k k k k k k k

A B
y H x v H x v= + = + … . This completes all the observations in (4.28). 

Model II 

It is sufficient to show that (4.31) is equivalent to (4.30). Using (4.31), 

( )

nav nav nav nav
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k k k k k k

k k k

k k
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y GH x GH x v

G G H x v

H x v
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= + + +

= +

…

…      (4.34) 

Model III: 

Similar to the previous case, using (4.32) it can be shown that: 

( )

nav nav nav nav

nav nav

nav nav

k k k k k k
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A A L L
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y H J x H J x v

H J J x v
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…

…   (4.35) 

Model IV: 

( )nav nav nav nav nav nav nav0
k k k k k k k

A

k k k

B A By H x v H x v H x x= + = + ⇒ = −   (4.36) 

In almost all practical cases, kH  is not a full rank matrix. Therefore, in general (4.36) is 

not equivalent to (4.28). However, in practice, even if kH  is rank deficient, the results of 

this form of observations are close to the main form defined in (4.28). Therefore, for 

practical applications this form can also be used as an alternative to (4.28). On the other 

hand, as this model is not theoretically equivalent to other models, in this thesis it is not 

used as a part of the comparisons. 
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In Model II and III, some kinds of weighting matrices are used to generate observations. 

A natural choice for these matrices is the MVU estimation coefficients of the 

corresponding states. As described in the previous section, at any time instant “k”, the 

navigation states of each INS implementation can be considered as an observation for the 

kinematic states of the real system. The errors on these observations can be assumed to 

have zero mean and have a variance equal to the Kalman Filter covariance estimate. 

Hence this MVU problem can be formulated as: 
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⋮ ⋮         (4.37) 

where { }T

k k k
E η η = Π  is the covariance of the Kalman filter (which is not a block 

diagonal matrix), nav navˆ ˆA L

k kx x…  is the navigation result outputs of each INS and nav

kx  is 

the real kinematic state (PVA) of the system which has to be estimated from the 

observations nav navˆ ˆ
k

A L

k
x x  … . 

The MVU solution of nav

kx  in (4.37) can be computed as follows: 
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      (4.38) 

As (4.38) is an unbiased estimator, IA L
J J+ + =… . Therefore, these matrices can be 

used as the weighting coefficients in Model III. 
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Similar to the case presented above, G  matrices for Model II can computed using the 

MVU estimation formulation for nav

k kH x  as follows: 
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where { }T T

k k k k k
E H Hη η Π= , nav

kHx  is the combination of the states to be estimated and 

nav navˆ ˆA

k k k

L

kH x H x…  represents the observations provided by each INS. The MVU 

estimate of nav

k kH x  can be computed as: 

� ( )( ) ( )

nav

1
1 1

nav

nav

nav nav

ˆ

ˆ

ˆ ˆ

k

A

L

k

T T T T

k k k k k k k k

k

k

L

k

G

A A L

k

H

H x

U H H U U H H

H x

G

x

H x GH x

−− −

Π Π

 
 

=  
 
 

= + +

⋮
����������������	

…

  (4.40) 

Again, as (4.40) is an unbiased estimator, IA L
G G+ + =… . Therefore these G  matrices 

can be used in the Model II. 

It should be noted that as kH  is not an invertible matrix, �nav

k k
H x  of (4.40) is not 

equivalent to navˆ
k kH x  of (4.38). 

In the above discussions, the MVU estimation formulations are described assuming linear 

observation models. However, for the INS implementations, especially the attitude states 

have a nonlinear relation. In Appendix B, the MVU estimation formulation for the INS 

states are described. Although there is no difference for the Kalman filtering point of 

view, the implementation of the above ideas for the navigation system must be performed 

as described in Appendix B. 
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The ultimate aim in introducing different observation models is to derive a Kalman filter 

formulation whose final estimation performance least depends on the explicit state 

equivalency constraints { }
1

1
0

L
i

i

eq

ky
−

=
= . This is because: i) as 0R =  for these observations, 

the equivalency constraints usually create numerical problems, ii) when there are 

unknown lever arm (and boresight) effects these constraints may degrade the overall 

system performance rather than supporting it. 

In the next section, the effect of i) the selected observation model and ii) the Kalman 

filter update period for the equivalency constraints on the final navigation solution are 

further discussed based on simulated system examples. 

4.5 Simulation Results For Multi-INS implementations 

In this section, results of several multi-INS integration methods are presented for the 2D 

(3DoF) planar navigation system example introduced in Section 3.2. The multi sensor 

configuration for this system is presented in Figure 4.6. As seen from this figure, it is 

assumed that the SRIMU has 2 sets of IMUs each of which contains 2 accelerometers (on 

X-Y plane) and a gyroscope (on Z-axis). For the multi-INS implementation, 1
Acc , 2

Acc  

and 1Gyro  is used to run INS A, whereas 3
Acc , 4

Acc  and 2Gyro  runs the INS B. The 

discrete time output model at 100hz for these sensors are as follows: 

4

2

1

2

3

imu imu imu

1

1 0 0

0 1 0

1 0 0

0 1 0

0 0 1

0 0 1

x

k y k k

k

M

z

Acc

Acc
a

Acc
y a x v

Acc

Gyro

Gyro

ω

   
   
     
     = = + +     
         
   
     ����	

    (4.41a) 
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imu imu

1

1

1

diag
1

1

1

0.9999866
k k kx x w+

 
 
 
 
 
 
 
  


+



=       (4.41b) 

{ } ( )9 9 12 9 10 9, ,diag 3.025 3.025 1.7 3.025 1 8.1, , ,T

k k
E w w − − − − − −=    (4.41c) 

{ } ( )4 4 4 6 5 5diag 13 ,3 , ,3 , 2.5 , 2.5T

k k
E v v − − − − − −=

     (4.41d) 

{ } ( )imu imu 4 4 7 4 8 9

0 0 , , 2diag .5 ,1.0 ,6 ,61 1
T

E x x − − − − − −=
    (4.41e) 

As seen from the above error definitions, it was assumed 1
Acc  and 2

Acc  have identical 

characteristics which is worse than 3
Acc  and 4

Acc . The 3
rd

 and 4
th

 accelerometers have 

complementary characteristics in such a way that 4
Acc  has better VRW characteristics 

but worse stability properties than 3
Acc . Also, the initial stability covariance of 3

Acc , 

4
Acc , 1Gyro  and 2Gyro  are selected to be substantially different from each other. 

For all simulations presented in the following section, the corresponding optimal 

solutions were computed using the optimal single-INS based SRIMU configuration 

described in Section 3.3. The reason for this is that the theoretically optimal multi-INS 

implementation (i.e. the Kalman filter processing the navigation states equivalency 

constraints at IMU-output frequency) is numerically very problematic. Especially, when 

the discretization of navigation state error propagation models is performed using 1
st
 

order Taylor series expansion, standard form of the Kalman filter cannot be used for the 

processing of equivalency constraints at this frequency. Therefore, instead of dealing 



 

with such kind of numerical problems, the optimal solutions were computed using the

optimal single-INS implementation.

The navigation and corresponding error propagation equations for this 2D (3DoF) 

navigation system are presented in 

corresponding simulations is shown in Figure 4.7

simulated system is allowed to accelerate/decelerate along only its x

Figure 4-6 : Inertial Sensor configuration for the simulations.

In the first part of this section, using the simulated system i) the effect of Kalman filter 

update period for the equivalency constraints and ii) the selected external observation 

model type on the navigation performance 

4.5.2), the effect of unknown bore sight between the several sensor sets on the Kalman 

filter outputs are examined.

with such kind of numerical problems, the optimal solutions were computed using the

INS implementation. 

The navigation and corresponding error propagation equations for this 2D (3DoF) 

presented in Section 3.2. The trajectory that is used in the 

corresponding simulations is shown in Figure 4.7. As can be seen from this figure, the 

simulated system is allowed to accelerate/decelerate along only its x-axis.

 

: Inertial Sensor configuration for the simulations.

In the first part of this section, using the simulated system i) the effect of Kalman filter 

update period for the equivalency constraints and ii) the selected external observation 

model type on the navigation performance are presented. In the second part 

4.5.2), the effect of unknown bore sight between the several sensor sets on the Kalman 

examined. 
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with such kind of numerical problems, the optimal solutions were computed using the 

The navigation and corresponding error propagation equations for this 2D (3DoF) 

The trajectory that is used in the 

be seen from this figure, the 

axis. 

: Inertial Sensor configuration for the simulations. 

In the first part of this section, using the simulated system i) the effect of Kalman filter 

update period for the equivalency constraints and ii) the selected external observation 

presented. In the second part (Section 

4.5.2), the effect of unknown bore sight between the several sensor sets on the Kalman 
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Figure 4-7 : Simulated trajectory. (A) is the simulated position and (B) is the 

velocity defined in the body frame. 

4.5.1 Effect of update period and observation models 

In Figure 4.8, position results of several multi-INS configurations discussed in the 

previous sections are presented. In the corresponding simulations no external navigation 

aids were used. Hence, the Kalman filter in the optimal solution only processed the 

redundancy observations. 

The implemented configurations and the corresponding results that are compared in this 

figure are as follows: 

i. TT: True trajectory that is simulated by the trajectory generator. 

ii. OP: Optimal result which was computed using the optimal single-INS 

implementation described in Section 3.3. 
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iii. INS-A: Output of the (unaided) INS which was run using only the set A sensor 

outputs. 

iv. INS-B: Output of the (unaided) INS which was run using only the set B sensor 

outputs. 

v. A1: The average of INS-A and INS-B outputs. The computation of this average as 

described in Appendix B. All navigation states were used in the MVU 

formulation to compute the average. 

vi. A2: The sub-optimal average of INS-A and INS-B outputs. Only the position and 

velocity states were used in the MVU formulation. 

 

Figure 4-8 : Comparison of position (X-Y) results for several multi INS 

configurations. Only in the optimal solution (OP) a Kalman filter is used. 
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From Figure 4.8, it can be seen that although no Kalman filter was used for multi-INS 

solutions (other than the optimal solution which was obtained using a single-INS 

implementation), AV2 turned out to be very close to the optimal solution (OP). This hints 

the fact that, for multi-INS implementations, the apparent improvement is mostly 

achieved by simple blending of the individual INS outputs rather than the error feedback 

provided by the navigation states equivalency constraints. 

On the other hand, as can be seen from Figure 4.8, only the initial part of the AV1 is 

close to the optimal solution. Although, as described in Appendix B, AV1 corresponds to 

the optimal blending of all navigation states, AV1 result deviated from the optimal (and 

AV2) solution starting from approximately the 40
th

 second of the simulation. The reason 

for this deviation is the small angle assumption used in the MVU formulation of the 

attitude states. As the attitude errors get bigger, this small angle assumption becomes 

invalid and the linear estimation method described in Appendix B cannot be used. On the 

other hand, as the attitude states were not included in the MVU formulation of the AV2, 

the position result obtained with this method turned out to be more stable than AV1. 

It should be noted that the same linearization problem also exists for the Type III 

observation model (Equation 4.32) described in the previous section. In this observation 

model all navigation states need to be combined using the weighting matrices { }
L

i

i A
J

=
. 

When the attitude errors start to violate the small angle assumption, this type of 

combination is not valid and hence type III observation models cannot be used for large 

attitude errors. 
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In Figure 4.9, the x-axis velocity estimation errors together with the associated standard 

deviations for the same simulation (and configurations) are presented (the standard 

deviation of the average was computed using (Appendix B – Equation B.8)). As seen 

from this figure, although the individual INS outputs have different error characteristics, 

the error on the average output (AV2) stays close to the error on the optimal solution 

especially for the initial part of the simulation. 

 

Figure 4-9 : Comparison of x-axis velocity results and the corresponding standard 

deviations (1σ ) for multi-INS implementations. 

The above results suggest that as long as the best average of INS outputs are used as the 

overall system output, the update frequency of the Kalman filter which processes the 

navigation state equivalency constraints of a multi-INS implementation is not very 

crucial (at least for the error models used in these simulations). To further verify this 

point, comparison of position results for 5 multi-INS implementations each of which uses 
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a Kalman filter with a different update period is presented in Figure 4.10. In this figure, 

each curve represents the combined output of individual INSs corrected by a Kalman 

filter which processed navigation state equivalency constraints. However, for each 

implementation a different update frequency was used for the Kalman filter. In KA1 it 

was set to 12.5Hz. For KA2, KA3 and KA4 these update periods were 1, 10, and 20 

seconds respectively. As can be seen from this figure, the position results are not affected 

by the reduction of Kalman filter update period as much as 10 seconds. 

 

Figure 4-10 : Comparison of position results for Kalman filters with different 

update frequencies. Because of the scale of the axis, OP, KA1, KA2 and KA3 curves 

seem as a single curve. The combined outputs were computed as the optimal average 

of position and velocity results of individual INSs. 

In Figure 4.11, the set B\Y-axis accelerometer ( 4
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an equivalency constraint is processed by the Kalman filter, the bias errors can be 

reduced to the levels which can be obtained with the optimal configuration. Furthermore, 

again by noting the similarity between KA3 curve and the OP, KA1-2 curves, it can be 

concluded that for this configuration the reduction of Kalman filter update frequency up 

to 0.1Hz does not affect the sensor error estimation performance. 

 

Figure 4-11 : Comparison of 4
Acc  bias estimation errors. The dashed lines 

correspond to the standard deviation of the estimates whereas the solid lines 

represent the estimation errors. 

In Section 4.3.2.1 it was shown that when all inertial sensors have identical stochastic 

error model parameters, the optimal solution can be obtained without implementing any 

Kalman filter for the equivalency constraints. The best weighted average of the individual 
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the other hand, as shown in Figure 4.8, when the magnitude of the attitude errors violate 

the small angle assumption (which is required to form the best averages) the averaging 

results tend to be incorrect. Therefore, in order to prevent the attitude errors of individual 

INS’s to grow fast, it is advisable to use a Kalman filter with very low frequency 

(possibly in the order of 0.1Hz) to implement the equivalency constraints even for 

identical inertial sensor configurations. 

In Section 4.4, it was shown that several observation models can be constructed for a 

given external PVA measurement in a multi-INS implementation. As all of these 

observation models are theoretically equivalent, selection of any of these models does not 

affect the system performance. On the other hand, if (for any reason) it is required to 

avoid implementing equivalency constraints, then the choice of observation model may 

change the individual strapdown results. 

As an example, the comparison of position results of 3 different multi-INS 

implementations is presented in Figure 4.12 for the same simulation. However, in 

contrast to previous simulations, in this simulation it was assumed that an external 

position observation is available for the Kalman filter to process at 0.5Hz. Throughout 

the simulation, the navigation state equivalency constraints was processed by the Kalman 

filter for only 2 times at the 40
th

 and 80
th

 seconds. 

In all 3 implementations presented in Figure 4.12, the external position observations were 

processed differently. In the first implementation (Figure 4.12.A), only INS B (the INS 

which was run by IMU set B in Figure 4.6), was directly aided by these position 

observations. Therefore, the measurement model for the external observations was as 

follows: 
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INS B nav

k k k

Ext
P vP

− +=        (4.42a) 

In the second implementation (Figure 4.12b), the measurements were formed using the 

best average of individual INS outputs as explained in Section 4.4 (First row of (4.31)). 

Hence, the measurement model was in the following form: 

INS A

navk

k k k k

Ext A B

INS B

k

P
P G G

P
v

−

−

 
 =   +

 
     (4.42b) 

In the third implementation (Figure 4.12c), the position observations were used to aid 

both INS’s (A & B) in an alternating fashion. At instant “k” only INS-A was aided 

whereas at “k+1” only INS-B was aided. The measurement model for this 

implementation can be represented as follows: 

1 1 1

INS A nav

k k k

INS

Ext

Ex B n v

k

t a

k k

P v

v

P

P P

−

−
+ + +

+

= +

=
       (4.42c) 

As mentioned above in all 3 implementations, the equivalency constraints were also 

processed by the Kalman filter only for 2 times during the entire simulation. The 

corresponding measurement models for these 2 equivalency constraint based 

observations can be represented as follows: 

( )1

0

0

0

k k

k k

A B

A B

B

k

n

b

A b

n

P P

V V

S C C
−

 − 
   = −  
      

      (4.43) 

where P , V  and n

bC  are the position velocity and attitude states of the individual INSs 

and “k” represents the index which corresponds to the only 40
th

 and 80
th

 seconds of the 

simulation. 1
S

− denotes an operator which converts a skew symmetric matrix into its 

vector form. 
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Figure 4-12 : Comparison of position outputs for 3 types of multi-INS 

implementation. In (A), measurement model (4.42a) was used. In (B) and (C), 

(4.42b) and (4.42c) were used respectively. 

As seen from Figure 4.12, for all 3 configurations the combined results are almost 

identical to the optimal solution. However, for the first and second implementations 

(which uses observation models (4.42a) and (4.42b) respectively), the INS-A position 

errors tends to grow fast. This is natural for the first implementation because INS-A is not 

directly aided by the external position observations at all. However, although a 

combination of INS-A and INS-B states are used to form the measurements, the second 

implementation is not efficient to limit the error growth of the individual INSs either. As 
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can be seen in Figure 4.12B, the errors on both of the INS outputs in the second 

implementation tend to grow faster than the other implementations. 

For the third implementation, both INS’s can be aided with the external observations 

without using any equivalency constraints. In general, it has been observed in several 

simulations that this kind of alternating aiding method provides the most feasible solution 

for multi-INS configurations for which the frequency of equivalency updates for Kalman 

filters are required to be reduced as much as possible. 

4.5.2 Effect of Unknown Bore-Sight between multiple IMUs 

In all discussions presented so far in this chapter, it was always assumed that the inertial 

sensor configurations are known perfectly and remain rigid during the entire operation. 

On the other hand, in practice there may be situations in which especially the relative 

orientation of sensor sets with respect to each other cannot be fixed during the field 

operation. As such relative motion between the sensors is completely ignored in the 

SRIMU systems, the navigation results can be seriously damaged by these effects. In this 

section, the effect of such changing (and unknown) bore-sight effects on the overall 

navigation performance of a multi inertial sensor system will be presented based on 

simulation results. 

The same sensor configuration and simulation environment introduced in the beginning 

of Section 4.5 was also used in the simulations of this section. However, in contrast to the 

previous section, it was assumed that the sensor set B (in Figure 4.6) is not rigidly 

connected along the z-axis and hence can undergo a free rotational motion about the z-

axis while preserving its position and internal orthogonality between the sensors. Under 
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this assumption, the simulated true heading angle profiles for the set A and B sensors are 

presented in Figure 4.13. As seen from this figure, the heading angle of set B sensors 

changes around the nominal heading angle of set A which is assumed to be perfectly 

aligned with the system body frame. 

 

Figure 4-13 : Comparison of simulated heading angles of Set A and Set B sensors. 

Set A sensors are assumed to be aligned with the system body frame. The standard 

deviation of the difference between the heading angles is 6°. 

For this simulated data set, 3 different multi-sensor navigation systems were 

implemented. In all system designs, the relative motion between the two sets of sensors 

was completely ignored. These systems can be summarized as follows: 

System I: In this system, a single-INS configuration described in Section 3.3 (Figure 3.2) 

was implemented without any modification. It was assumed that both sensor sets are 
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System II: In this system, two INSs were implemented. INS-A and INS-B processed the 

set A and set B sensors respectively. In a Kalman filter, the equivalency constraints for 

the entire navigation states (position, velocity and attitude) of these two INSs were 

processed at 1Hz. No modification was made in the design of the Kalman filter to 

consider the effect of relative motion between the sensors (i.e. no artificial measurement 

noise was injected for the equivalency constraints). 

System III: This system is similar to system II. However in this case, only the 

equivalence of position states was used as the observation in the Kalman filter. As the 

separation between two sets of sensors did not change during the simulations, this 

configuration corresponds to some form of pseudo-optimal solution. It is not optimal 

because optimality requires the bore-sight effects to be modeled and augmented in the 

Kalman filter. 

In Figure 4.14 and 4.15 the position and x-axis velocity results for all 3 systems are 

presented. As can be seen from these figures both the system I and II are significantly 

affected by the changing bore-sight between the sensor sets. Especially the velocity 

results are seriously degraded under these conditions. Every time the system undergoes a 

heading angle change, the x-axis velocity results for the system I and II converged to a 

wrong solution due to the unconsidered bore-sight effects. 
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Figure 4-14 : Comparison of position results for the 3 systems 

 

Figure 4-15 : Comparison of x-axis velocity results for the 3 systems. The INS-A and 

INS-B results for the system III is shown separately 
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Figure 4-16 : Comparison of attitude estimation errors for the 3 systems. For 

System I and II the errors are defined as the difference between the combined 

output and the true INS-A attitude. Due to the scale of the figure, the 3σ  std. dev. 

values for all systems seem like a single curve 

The unknown bore-sight effects can also cause serious problems on the overall integrity 

of the Kalman filter for system I and II. In Figure 4.16 and 4.17, such problems are 

presented. In Figure 4.16 heading angle estimation error and the 3σ  value of the 

corresponding Kalman filter standard deviation estimate are shown. As shown in this 

figure, the heading angle estimation error during the entire simulation exceeded the 3σ  

value which indicates that the Kalman filter covariance values cannot be relied on at all 

under these conditions. However, as system III does not contain any structural model 

mismatch, it does not suffer from such problems. 
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Similar situation can also be observed in Figure 4.17 where 1
Acc  bias estimation error is 

presented together with the corresponding 3σ  values. As seen from this figure, under 

changing bore-sight, the sensor error states estimates for system I and II may become 

completely unreliable whereas system III can continue to generate reliable results. 

 

Figure 4-17 : Comparison of 1
Acc  bias estimation errors and the Kalman filter 

standard deviation estimates for the 3 systems. Due to the scale of the figure, the 3σ  

(std. dev.) values for all systems seem like a single curve. 
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also be seen in Figure 4.18 where the 1Gyro  bias drift estimation errors are shown. As 

seen from this figure system I and II have very similar gyro drift estimation error. 

 

Figure 4-18 : Comparison of 1Gyro  bias estimation errors and the Kalman filter 

standard deviation estimates for the 3 systems. Due to the scale of the figure, the 3σ  

std. dev. values for all systems seem like a single curve. 

When there are no bore-sight effects, single-INS implementation can always be used 

instead of multi-INS implementations in order to obtain the optimal navigation solutions. 

In general, single-INS implementations are easier to design and also they do not require 

many modifications for the existing inertial navigation software. On the other hand, as 

shown in the above simulations results, when there are significant bore-sight effects 

between the inertial sensor sets, the multi-INS implementations can be better modified to 

eliminate the effect of these unknown bore-sights which eventually leads to better 
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navigation solutions. However, it must be noted that in the above simulations an 

unrealistically exaggerated amount of bore-sight factor was simulated to present this 

point more clearly (the standard deviation of the bore-sight angle was 6° in the 

simulations). In the real applications, it is not required to deal with such big bore-sight 

problems. In general, it was observed in several other simulations that under realistic 

bore-sight conditions the single-INS implementations can generate as accurate results as 

any other (modified) multi-INS implementations. Therefore, in most practical 

applications the SRIMU based navigation system with a single-INS implementation is the 

most convenient choice to obtain the best navigation solutions. 
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Chapter Five: Conclusions and Discussions 

In this thesis, a general framework for the design of inertial navigation systems using 

skew redundant inertial measurement units was presented. This general framework is 

capable of providing answers to most of the questions regarding the SRIMU 

configurations and the optimality of navigation results for such configurations. 

5.1 Conclusions 

Some of the key findings that have been addressed in this thesis are summarized below. 

i. Redundancy Observations 

In Chapter 2, it was proved that when there are redundant sensors, the projection of the 

sensor outputs to the left null space of the configuration matrix provides additional 

observations which can be used to self-calibrate the system. 

ii. Effectiveness of Redundancy Observations 

In Chapters 2 and 3, it was shown that the effectiveness of the redundancy observations is 

directly related with the error characteristics of the redundant sensors. If all sensors have 

identical error models, the redundancy observations do not provide any additional 

information about the kinematic variables which are used to drive the navigation 

algorithms. 

iii. Optimal Navigation Solution 

In addition to the optimal sensor fusion algorithm presented in Chapter 2, the optimal 

navigation solution for the SRIMU systems was derived in Chapter 3. Based on the 

simulations (Section 3.5), it has been shown that the pseudo-optimal solutions can be 

reliably used instead of the optimal solution without affecting the overall performance. 
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iv. Multi-INS Implementations 

It has been proved in Chapter 4 that multi-INS implementations are theoretically 

equivalent to the single INS implementations. As multi-INS implementations are both 

harder to implement and very problematic in terms of numerical considerations, single 

INS implementations described in this thesis should be the preferred choice for the 

SRIMU systems. 

Although the presented framework is capable of providing valuable insights about the 

SRIMU based navigation systems, it is not claimed that the application of this framework 

will immediately lead to better INS designs with MEMS units. As mentioned above the 

effectiveness of the SRIMU systems mainly depends on error characteristics of the 

individual sensors. In practice, as most of the SRIMUs are formed using only identical 

sensors, the corresponding redundancy does not provide any additional improvement 

other than the simple averaging of the noise. However, as more specialized sensors for 

specific applications are developed, it is believed that the use of sensors with 

complementary characteristics in SRIMUs will become a standard procedure in the 

future. For such SRIMU systems, the configurations presented in this study will 

hopefully provide a reliable method for the computation of optimal navigation solution. 

There are some other important aspects of the SRIMUs which are not discussed in this 

thesis at all. One of the most important of such aspects is the determination of the sensor 

orientations in the SRIMUs. As mentioned in Chapter 1, the former studies about the 

sensor orientation problem is not sufficient to determine the optimal configuration for the 

MEMS based SRIMUs. In this thesis, no assumptions are made about the sensor 

orientations. The results presented in this thesis are valid regardless of any orientation. 
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However, some preliminary results suggest that sensor orientation can be extremely 

important especially for the robustness of the SRIMU based INSs. In a recent paper 

[Yuksel et al., 2010] such an example is provided. In that paper, it has been showed that 

when identical sensors are placed on the same axis with opposite directions the 

temperature induced errors can be automatically cancelled at the final kinematic variable 

estimates. Therefore, such a configuration becomes robust for unknown temperature 

effects. As that example suggests, further studies on the optimal orientation problem can 

provide very fruitful results for the effective SRIMU designs. 

5.2 Contributions 

1. This thesis presents a practical way of designing high accuracy inertial navigation 

systems using only low cost off-the-shelf inertial sensors. This is a major leap in 

the area of inertial navigation systems that has long been required. With the 

methods described in this thesis, any navigation system requirements can be 

fulfilled without limited by any physical (and commercial) constraints. 

2. There have been some former efforts directed to achieve this goal with multiple-

INS concepts. This thesis showed that such approaches are both impractical and 

suboptimal, and hence should be avoided. 

5.3 Recommendation for Future Works 

In the following sections, some further discussions and application areas for the 

framework described in this study are presented. These additional preliminary 

discussions summarized some important points where future studies on SRIMU based 

designs can be directed. 
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5.3.1 Application of Multi-Sensor approach to the Stationary INS updates 

When an INS is stationary, the following observations can be used to aid (and self-

calibrate) the system: 
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where , ,b n
bv p C

� �
 represents the velocity, position and attitude of the system respectively. 

n
g
�

 is the local gravity vector and eω
�

 is the earth rotation rate. ,
b b

a ω  denotes the 

acceleration and rotation rates sensed by the inertial sensors. 

In order to avoid modeling any possible vibration effects during the stationary period, 

only the following subset can be used instead of (5.1): 

0bv =
�

          (5.2a) 

0bb e
eCω ω= ≈
�

         (5.2b) 

In (5.2b) it is assumed that the earth rotation rate is negligible with respect to gyroscope’s 

intrinsic error sources which are almost always a valid assumption for the currently 

available MEMS sensors. 

Although 0bv =
�

 type observations (ZUPT – zero velocity update) can be easily processed 

with any straightforward Kalman filtering application, the implementation of 0bω =  

requires significant modification in the existing navigation models. The reason for such 

modifications can be seen from the associated observation model presented below: 

vibˆ b b
k k k k ky v vω δω= = + +        (5.3) 
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where ˆ b
kω  is the gyroscope output, b

kδω  is the sensor stability errors, kv  is the sensor 

additive white noise (ARW: angle random walk component) and vib
kv  is the observation 

noise due to the vibration (if there is any). 

As can be seen from (5.3), the gyroscope ARW component, which is essentially the white 

disturbance noise for the INS attitude states, also appears as the measurement noise in 

this kind of formulation. Therefore, in order to process such an observation the form of 

the Kalman filter which considers the cross correlation between the measurement and 

system noises must be used (an example for such Kalman filters are described in [Kailath 

et al., 2000 –Chapter 9]). However, this form of the Kalman filter usually requires some 

changes in the existing navigation libraries. 

Because of this difficulty, in most applications 0bω =  type observations are simply 

ignored during stationary update periods. However, such an approach basically causes 2 

problems: 

i. With only zero velocity updates azimuth errors cannot be stabilized. Therefore, 

during the stationary period the azimuth errors continue to grow unbounded. 

ii. Although the errors on the horizontal gyroscopes can be estimated by the 

feedback provided by the zero velocity updates, the vertical gyroscope errors 

(which mainly determine the azimuth error growth) cannot be calibrated at all. 

Therefore, 0bω =  type observations should be used as an integral part of ZUPT periods. 

This is especially important for MEMS units which require continuous calibration 

because of the unforeseeable effects of environmental factors on MEMS sensor outputs 

(this point will further be elaborated in Section 5.3). 
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Fortunately, the multi inertial sensor framework presented in this thesis provides a way to 

incorporate such sensor based observations in aided navigation applications with minimal 

change in the existing navigation libraries. In the multi-sensor approach to stationarity 

updates, 0bω =  observations are processed as additional sensors in an SRIMU. Hence, 

with this approach, the navigation filter part of the INS can be used without any 

modification as presented below. 

Using the same terminology introduced in Chapter 2, the inertial sensor outputs for any 

IMU can be represented as follows: 

imu imu

b

k k k kb

a
y M C x v

ω

 
= + + 

  
        (5.4) 

where ky  is the inertial sensor outputs, M  is the (SR)IMU configuration matrix. imu
kx and 

imu
kv  represents the inertial sensor error states and additive white noises (A(V)RW) 

respectively. 

When the system (and the IMU) becomes stationary, (5.4) can be augmented by the 

additional measurements arise from the stationarity. Therefore, in the stationary mode, 

the overall kinematic variable observation model can be described as follows: 

imu

imu

vib0 0I0

b
k kk

ke b
k

y vM a C
x

vω ω

       
= + +        

≈            
�       (5.5) 

As seen from (5.5), the gyroscope stationarity observations do not cause any difference in 

the general form of kinematic variable observation model. During the normal mode of 

operation, the source of all kinematic variable observations is the inertial sensors, 

whereas when the system stays stationary, the knowledge of the stationarity also provides 

additional observations. As the general form of the kinematic variable observation model 
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is exactly the same as the form defined in Chapter 2, all the techniques described in this 

study can be immediately applied to this case without any modification. 

As an example, let us assume an INS is constructed using the pseudo-optimal 

configuration described in Chapter 3. In this case when the system becomes stationary, 

the 1
st
 stage IMU Kalman filter processes (5.5) to both estimate the best kinematic 

variables and self-calibrate the gyroscopes. During the stationary period the INS 

equations are executed using the optimal rotation rate estimates computed by this first 

stage. If there is no vibration (i.e. vib 0kv = ) then the optimal rotation rate estimate 

becomes 0 and hence the azimuth error does not grow at all regardless of the stationary 

period duration. 

In such a pseudo-optimal configuration, the zero velocity updates (i.e. 0bv =
�

) is 

processed in the navigation filter (2
nd

 stage filter) together with any other external 

navigation aid measurements. This navigation filter is an ordinary Kalman filter which is 

employed in any standard integrated navigation application.  

As can be seen in this example, when an INS is designed using the framework described 

in this thesis, sensor and navigation domain observations can be completely separated 

from each other and processed in different Kalman filters. Due to this separation 

property, any kind of sensor measurement can be easily incorporated to the existing 

software without making any modification in the main navigation routines. Such an 

approach may provide INS designers an opportunity to develop more efficient (and 

robust) self-calibration and stationary alignment algorithms in the future. 
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5.3.2 Application of smoothers to multi inertial sensor systems 

As can be seen in the previous section, the division of a single Kalman filter into 2 

distinct stages provides great flexibility in the design of the navigation systems. With 

such a division, every observation related with the IMU can be processed in a separate 

structure and the remaining navigation operations can be implemented more easily. 

This is especially the case for the SRIMU systems. In these systems the sensor 

redundancy observations need to be processed much faster than any other navigation 

observations. Also, in contrast to the navigation observations, the sensor redundancy 

observations have usually simpler (more regular) forms. Therefore, whenever possible, it 

is highly desired to process the navigation and sensor redundancy observations 

separately. As presented in Chapter 3, the pseudo-optimal configuration provides a way 

for such a separation in the filtering applications. However, the question of whether or 

not such a separation is possible for the smoother applications has yet to be answered in 

this thesis. 

Fortunately, as the smoother errors also have the Markovian property ([Kailath et al., 

2000], [Verghese et al., 1979]), separation of IMU and navigation stages is possible for 

the smoother structures. Although, as in the case of filtering, the optimality is 

compromised in favor of ease of implementation, the separation can be performed in a 

way very similar to the pseudo-optimal configuration presented in Chapter 3. In the 

smoothing case, the 1
st
 stage IMU and the 2

nd
 stage navigation filters are replaced with 

any possible smoother forms. However, it must be noted that when a smoother is used in 

the 1
st
 stage, the error model of the smoothed kinematic variables must be employed in 

the 2
nd

 navigation stage. 
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Basically, any kind of smoother formula can be implemented in the navigation stage. In 

the existing literature, the “two-filters” ([Fraser et al., 1969]) and “RTS” ([Rauch et al., 

1965]) formulas seem mostly to be the preferred choice of INS designers for navigation 

problems. However, we found that Bryson and Frazier formula as described in [Kailath et 

al., 2001] is marginally easier to implement than these formulations as it does not require 

any inversion of the covariance matrix. 

For the IMU stage, again any one of these well-known smoother formulations can be 

used in theory. However, as mentioned above, the Markovion smoothing error models are 

also needed to be derived together with the smoother results for the navigation stage. In 

general, the derivation of these error model parameters is a very involved task. In [Bello 

et al., 1989] several formulations for the smoother error models are provided. Once a 

smoother structure is chosen for the IMU stage, any of the error model formulations 

defined in [Bello et al., 1989] can be implemented in the navigation stage. 

On the other hand, we noticed that, although not widely used in the inertial navigation 

field, the smoother formulation of Weinart and Desai’s complementary model approach 

([Weinart 2001], [Desai et al., 1983]) is a much more suitable choice for the IMU stage 

than any of the smoother formulas mentioned above. The most important property of this 

formulation with respect to the other ones is that the smoother error models can be easily 

defined in this formulation as a simple by-product of smoothing computations. 

In [Weinart 2001], a clear derivation of these types of smoothers and the associated error 

models are presented based on the complementary space approaches (the same 

formulation is also derived using innovation process approach in [Kailath et al., 1983]). 
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When the results of [Weinart 2001] are applied for the IMU states, the following forward 

time Markovian error model is obtained for the smoothed estimates: 

Let the system and observation model for the IMU is represented as follows: 

1

1 1

k k k k k

k k k k
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= +
         (5.6a) 
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        (5.6b) 

Where kx  is the IMU stability errors and 1

ky  is the sensor redundancy observation which 

is obtained as a result of multiplying all the sensor outputs with the left null space of 

configuration matrix as descried in Chapter 2 (e.g. Chapter 2 - Equation 57). 

Furthermore, let: 

ˆs s

k k kx x x= −ɶ           (5.7) 

be the smother errors at time “k”, where ˆ s

kx  denotes the fixed interval smoother results 

for the system defined in (5.6) for the time interval 0 k n≤ ≤ . 

In this case, as proved in [Weinart 2001], the forward time Markovian model for the s

kxɶ  

can be represented as follows: 
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1 0nM + =           (5.8e) 

This error model represents the time propagation of errors on the smoothed kinematic 

variable (acceleration/rotation rate) estimates. Therefore, when an INS is run by the 

smoothed kinematic variables, (5.8) must be used to represent the smoothed sensor errors 

in the 2
nd

 navigation stage. 

As can be seen from the above discussion, there is some flexibility in the application of 

smoothers for the multi-sensor case. Substantially different smoother formulations can be 

applied for each stage. In general, the improvement obtained by using a smoother instead 

of a filter in the first stage is quite marginal. In most cases, the 1
st
 stage IMU filters 

converges to the steady state performances very quickly and this converged point is 

usually very close to the optimal smoother results. Therefore, for practical purposes, even 

if a smoother is employed in the navigation stage, a filter rather than a smoother can be 

preferred in the 1
st
 stage without affecting the results too much. 

Additional analysis and simulations are required to understand the cases for which IMU 

smoothers can be replaced with IMU filters for improved performance. Such further 

studies may also provide additional insights about whether or not some additional 

robustness properties can be gained with these smoother structures. 

5.3.3 Application of Multi-Sensor approach to the traditional INS design process 

As mentioned in the first chapter, the main motivation behind the use of the SRIMUs in 

INSs is to be able to satisfy the specified mission objectives by using only low cost 

MEMS inertial units. On the other hand, even if the mission objectives can be 
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theoretically satisfied without any redundant sensors, the developed framework can still 

be very useful for the standard single IMU based INS design process. 

As described in [Maybeck 1982], the INS design process starts with the covariance 

analysis. Once the objectives are defined, a covariance analysis is performed to roughly 

determine the required IMU error specifications. However, covariance analysis method 

assumes that the inertial sensors under consideration have known error characteristics. 

Unfortunately, none of these error characteristics are defined in the specification sheets of 

the MEMS units. Currently, MEMS sensors’ specification sheets contain only 

performance figures which are derived from the Allan variance tests. However, Allan 

variance characteristics of low cost MEMS units are usually among the least significant 

error components. In general, the errors induced the by external conditions (e.g. 

temperature, vibration etc) are more important than the short term stability properties 

characterized by the Allan variance results for the MEMS sensors. 

An example of this situation is presented in figure 5.1 where the Allan standard 

deviations of 2 different gyroscopes are compared. The first gyroscope (G1) is a 

relatively expensive (and high accuracy) ADIS16120 unit ([ADIS16120]), whereas the 

second gyroscope (G2) is a very low cost L3G4200D unit which is currently used in the 

smartphones. According to the current market prices the G1 is approximately 200 times 

more expensive than the G2. However, Allan variance characteristics presented in Figure 

5.1 shows that the short term error characteristics of the G1 are only 4 times better than 

the G2. Although the price and Allan variance comparison of these units seems quite 

inconsistent, a more detailed error analysis reveals the fact that G1 outperforms G2 in 

other more important aspects. As presented in [Yuksel et al., 2010], the G1 unit has a 
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very consistent temperature dependence which can easily be compensated with some 

deterministic methods. Furthermore, with suitable compensation methods, the 

repeatability errors of G1 can be almost completely removed. However, initial analysis of 

G2 units showed that these units have significant temperature and repeatability errors 

which cannot be compensated. Therefore, a covariance analysis for G2 units will lead to 

completely wrong performance specification results if the analysis is performed based on 

only the Allan variance characteristics. 

 

Figure 5-1 : Allan standard deviation comparison of 2 gyroscopes. G1: ADIS16120, 

G2: L3G4200D. 

In order to design a navigation system with units similar to G2, very extensive error 

characterization tests such as the one described in [Yuksel et al., 2010] must be 

performed prior to start of design process. However, this initial error characterization 
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phase are so time consuming and labor demanding that it is not possible to repeat it for a 

large variety of MEMS sensors just to find the most suitable sensor candidate for the INS 

design. Because of such difficulties, most INS design project fails even in the very initial 

phases. 

On the other hand, the SRIMU based INS design methodology presented in this thesis 

can be used to avoid such difficulties in MEMS based INS designs. In this approach, only 

MEMS units which has completely known error characteristics (possibly due to the fact 

that it was used in a previous project) can be used in the covariance analysis to determine 

the approximate number of redundant sensors (of the specified kind) to achieve the 

mission objectives. Once such a sufficient SRIMU configuration is specified, the 

remaining INS design tasks can be started while a search for better (and newer) sensor 

can be simultaneously performed. As all the risks and expenses of the initial modeling 

phase are removed, the probability of successfully finishing an INS design project can be 

greatly increased in this approach. 
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APPENDIX A 

The structure presented in Section 3.3 (Figure 3.3) corresponds to the case where the 

same observation is processed twice to form an optimal estimate of the overall state. In 

the first iteration, only the sensor error states are optimally estimated using the 

redundancy observations. This corresponds to the Schmidt-Kalman filter where the 

suboptimal gain is obtained by setting the rows of the optimal gain corresponding to the 

navigation states to zero. In the second iteration, the same observations are once more 

used to estimate only the navigation states. 

In this appendix, the modified form of the Kalman filter recursions for which the same 

observation is applied twice is described. 

Let ˆ
kx
−  represent the best estimate of kx  computed using all the observations up to but not 

including ky . Also, it is assumed that: 

( )( )ˆ ˆ

k
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k k k

x

E x x x x
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− − −

 
 

− − = 
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����	
       (A.1a) 

k k ky Hx v= +          (A.1b) 

{ }T

k k
E v v R=          (A.1c) 

Let 1K  be any gain (not necessarily optimal in any sense). With this arbitrary gain, the 

new ˆ
kx
+  estimate can be computed as follows: 

( )1
ˆ ˆ ˆ

k k k k
x x K y Hx+ − −= + −        (A.2) 

Furthermore, the error is: 

( )1 1
ˆ Ik k k k kx x x K H x K v

+ + −= − = − −ɶ ɶ       (A.3a) 
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{ } ( ) ( )1 1 1 1I I
T T T

k k k kE x x K H K H K RK+ −+ += = − +Π Π −ɶ ɶ     (A.3b) 

It should be noted that ˆ
kx
+  is not an optimal estimate. It is just an ordinary blending of ˆ

kx
−  

with ky  using (somehow) an arbitrary gain 1K . Therefore, 
kx
+ɶ  is still correlated with ky , 

and hence, ky  can still be used to estimate 
kx
+ɶ  as follows: 
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Therefore (assuming Gaussian distributions), the best estimate of 
kx
+ɶ  given ky  is: 
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(It should be noted that when 1K  is the optimal gain, (A.5b) becomes algebraically 0.) 

Thus, with the 2 successive updates from the same observation (the first being the 

suboptimal, the second being the optimal), the modified form of the Kalman update 

equations can be written as follows: 

( )1
ˆ ˆ ˆ

k k k k
x x K y Hx+ − −= + −        (A.6a) 

( ) ( )1 1 1 1I I
T T

k k
K H K H K RK−+ = − +Π Π−      (A.6b) 
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( ) ( ) ( ) ( )2 2 2 2 1 2 2 12 2
I I I I

T TT T T

k k
K H K H K RK K H RK K K K R K H

++ +
= − − + + + −Π Π −  (A.6d) 

In the above equations ˆ
kx
+  is the result of the first update, and ˆ

kx
++  is the result of the 

second. Therefore ˆ
kx
++  corresponds to the optimal estimate of kx  given all observations 

up to and including ky . 

In Figure 3.4, the 1
st
 stage IMU Kalman filter realizes the first update. The equivalent 

error models used in 2
nd

 stage Kalman filter reflects the effect of this update in the 

covariance calculation. Therefore, when the innovation process of the 1
st
 stage filter 

( )imu

|
ˆrmimu

k k k k k
T y H x−  is processed in the 2

nd
 stage KF with the update equations shown in 

(A.6c) and (A.6d), the overall structure becomes optimal. 
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APPENDIX B 

In this appendix the solution of the following problem is presented: 

Given the PVA (position, velocity and attitude in the form of direction cosine matrix) 

results ( ˆ ˆA L
x x… ) and associated covariance matrix “ Π ” of the zero mean (Gaussion) 

PVA errors of “L” INS implementation, compute the best minimum variance unbiased 

(MVU) PVA estimate of the system. 

Before presenting the solution to the above problem, first it will be shown that the MVU 

estimates can be computed around a nominal value defined on one of the observations: 

Let  
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Therefore, 
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where ˆA
xδ  is the best MVU estimate of the errors on the ˆA

x  given all observations. As 

ˆA A
x x xδ= + , the best estimate of x  ( x̂ ) is equal to ˆ ˆ ˆA A

x x xδ= + . 
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Furthermore, this idea can be generalized to any other observation. Hence: 
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     (B.4) 

The above way of computing the best estimates can be used for navigation states as 

follows: 

Let , , , ,A n n

b b

A A L L LP V C P V C      …  be the outputs (position, velocity attitude) of L 

navigation system. (it is assumed that there is no lever-arm/boresight effect between 

units.) 

Using the φ -formulation, the attitude errors can be defined as follows: 

( )ˆ I+
b

n n

b
C S Cφ=            (B.5) 

Therefore, using INS A as the nominal solution: 
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Where J is as defined in (A.3) and 1
S

−  is the operator which converts skew-symmetric 

matrices into the corresponding vector form. 

Using (B.6), the best PVA estimates can be computed as: 
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Furthermore, the covariance of this estimate is: 

( )
1

1T
U U

−
+ −Π Π=         (B.8) 

Errors on the estimated (combined) navigation states in terms of the errors on the 

individual INSs can be represented as follows: 
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  (B.9) 

As can be seen from (B.9), the relation between the best navigation state estimate and 

individual navigation systems outputs are equivalent to the relation between the error on 

the best estimate ([ ], ,P Vδ δ φ ) and the errors on individual systems ( , ,i i i
L

i A
P Vδ δ φ

=
   ). 

Therefore, observation models presented in Section 4.4 (which are defined based on the 
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navigation states rather than the errors on the navigation states), is also valid for these 

error states. 

As a final note, it should be noted that if only the combination of some of the navigation 

states are required (e.g. if only the best position estimate is required rather than the best 

PVA solution), then only the corresponding states can be used to form a solution (e.g. in 

(B.1) x P= ). However, in this case the implicit information which is represented as the 

cross-correlation between the states are completely ignored (e.g. the cross correlation 

between P  and V ). On the other hand, as shown in Section 4.5, there are cases where 

such sub-optimality is generally preferred. 
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