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ABSTRACT 

Integrated navigation systems using inertial and GPS signals are becoming popular in low-

cost vehicle guidance systems as the limits of GPS-only navigators are pushed by 

consumers who operate in areas of poor signal coverage.  Inertial sensors have been used 

successfully in many higher grade systems such as precision farming equipment and high 

accuracy road surveying.  Their deployment in low-cost systems has been limited due to 

cost and performance tradeoffs which result in reduced usability for the user. 

 

Low-cost inertial sensors, on the order of tens of dollars at the time of this publication, can 

be used to aid GPS when the signal quality is poor, but very low-cost inertial sensors, less 

than ten dollars, can introduce large error terms that greatly impact the performance of the 

integrated system if not properly dealt with by the designer.  Unfortunately, the very low 

cost of the integrated systems prevents proper adjustment of these error terms before the 

unit is deployed, which can result in severely degraded performance.  A number of filtering 

algorithms are used to combine GPS and inertial measurements, but regardless of the 

blending method there are a priori parameters used to define the error terms; these 

parameters need to be adjusted for individual systems to achieve optimal performance. 

 

This research explores intelligent methods that are capable of adapting to these error 

parameters as the system is used.  This maintains low cost while improving the 

performance over time to the level of a well tuned system.  Intelligent methods are useful 
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since they can adapt and learn how to improve the performance based on absolute and 

relative measures. 

 

Two methods are detailed for on-line performance improvement.  The first uses two 

parallel filters to create a reference signal for state compensation of the navigation filter.  

This method takes dynamic and temporal inputs and is used to predict the position state 

error signals using an artificial neural network.  An adaptive fuzzy inference system is used 

to control the application of the neural compensations to the filter states. 

 

The second method uses relative performance measures to directly adapt the a priori error 

parameters.  An absolute signal cannot be used since there is nothing known about the true 

parameter values.  Reinforcement learning is applied so that performance can be evaluated 

over many different a priori parameters.  This type of learning improves the performance 

by rewarding good parameters and punishing poor choices of parameters, by monitoring 

relative state improvements or degradations. 

 

Both methods are applied in a general way to specific filtering algorithms, but it should be 

appreciated that the methods have been developed for any filter type that requires a priori 

information and provides position state estimation.  The performance improvements largely 

depend on the quality of inertial sensors used in the integration, but improvements in 

position estimation of over 50% from the default manufacturer values have been obtained 

using two different low-cost sensor triads. 
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CHAPTER 1: INTRODUCTION 

Exploration is inherent to human nature. We have constantly evolved, grown and moved 

our knowledge forward.  The desire to think, invent and create is what makes us unique.  

This inherent nature has also driven humans to explore the boundaries of Earth, and when 

adventuring to new places we strive to know where we are going.  The science of 

navigation has been constantly evolving, but what is interesting is that two very old 

concepts have largely been used, and improved upon:  relative and absolute navigation. 

1.1 Navigation in the past 

Navigation and guidance have, throughout history, pieced together information from a 

variety of sensors.  The concept of fusing triangulation methods with dead reckoning has 

been used for hundreds of years, dating back to the time of tall ships and a perceived flat 

Earth (Sobel, 1995).  A rope with knots tied at intervals was used to estimate distance 

travelled over time, in a relative sense.  When combined with other sensors such as a 

compass, an hourglass and a sextant, navigators could get rough estimates of position, 

heading and speed.   

 

A sextant and compass were both used as triangulation devices.  A sextant could triangulate 

between the known position of the sun, from calendars, and the known position of the 

horizon.  The sextant used simple trigonometry along with the angle between the sun, itself 

and the horizon to determine its own position, or the final point on the triangle.  With a 
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compass and two known points on land a navigator could draw lines along the two 

headings to triangulate position.  Furthermore, the navigator could determine the boat’s 

position twice in a discrete time period and determine approximate boat speed. 

 

Whether it was a triangulation system or relative positioning system, the introduction of 

high precision clocks, known as marine chronometers, enabled a level of accuracy not 

previously possible.  The first high precision clocks, invented by John Harrison, were used 

to guide ships across the Atlantic Ocean to North America.  Although the precision of these 

clocks was no better than quartz oscillators found in common wristwatches today, they 

were such a revolutionary breakthrough that the English Government paid an equivalent of 

20 million US dollars to Mr. Harrison who solved the problem of East-West navigation 

across Longitude (Sobel, 1995).  The chronometer was designed to keep the local time in 

London, then each day when the local sun was highest in the sky (noon), it could be 

determined exactly how far away a navigator was from London.  For example, if the clock 

showed that it was midnight in London at high noon locally, then the navigator was half 

way around the world. 

 

Before the invention of an accurate chronometer, dead reckoning only navigators were the 

cause of many shipwrecks and lost lives.  Still, dead reckoning updates were useful since 

they were not affected by one’s ability to see the sun or stars through clouds.  By 

combining daily absolute updates with continuous dead reckoning, more accurate and 

reliable navigators were created. 
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1.2 Navigation today 

History often repeats itself, and with the introduction of the Global Positioning System 

(GPS) and silicon inertial measurement units (IMU’s) the debate between triangulation 

versus relative positioning seems to have resurfaced.  GPS receivers on the ground require 

a clear line of sight to the satellites orbiting the Earth, similar to the requirement imposed 

on celestial navigation.  Contrary to GPS, IMU’s sense accelerations and turning rates to 

which are sent to an external processor to provide relative position, velocity and attitude 

(PVA) information.  An inertial navigation system (INS) is similar to an IMU but contains 

built in navigation algorithms that output PVA.  Similar to accumulated marine dead 

reckoning errors, inertial navigation errors also grow with time.  So once again, even with 

the most technologically advanced navigators, humans are still stuck with the same 

underlying problems faced by navigators hundreds of years ago: precise timing and 

measurement.  Both the GPS and IMU designers have attempted to improve upon their 

technologies, but the union of the two is the logical choice for vastly improved reliability 

and accuracy.  The concept of multiple sensors worked 400 years ago for accuracies of one 

hundred kilometres; now, using a similar solution, positions are being determined on the 

level of several centimetres. 

 

Portable navigation devices have become common items found within vehicles or cell 

phones, and the advances in their reliability, accuracy and usefulness continues to expand 

the market of these devices.  The GPS has been the backbone of such systems, but with 

more demand come higher expectations.  Users are taking these GPS units into areas where 
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they were not designed to operate, and when failure occurs the results can range from 

simply frustrating to disastrous, in the case of emergency vehicles or valued asset location. 

 

Many GPS designers have been creating new methods of acquiring the satellite signals in 

weak or degraded environments.  Some success has been achieved with high sensitivity 

receivers, but the reliability of these systems is questionable and based largely on the 

environment.  Although GPS has revolutionized modern navigation it cannot be relied upon 

as a primary navigator.  Fortunately, when GPS is used with other sensors, such as IMU’s, 

a more reliable and accurate navigation solution can be provided. 

1.3 Research objectives 

This thesis brings together GPS and inertial technology for low-cost vehicle navigation 

applications.  Current benchmark integrations of these technologies can obtain position 

accuracies on the order of 1 to 5 metres, even when driving a vehicle in an urban setting.  

The issue with IMU/GPS integrations is that low-cost IMU’s display position drifts which 

can exceed several hundred metres in just a few minutes without GPS updates.  The 

integration methodology and error estimation can minimize the level of this drift, which is 

ultimately limited by errors imposed by the manufacturing of the device.  The union of 

these technologies is not new but the integration approach proposed herein will address the 

following questions: 

1. How does cost affect the hardware that can be used? 

2. What sort of reliability and accuracy can be obtained when using low-cost GPS 

receivers and IMU’s? 



             

 

5 

3. What are the best algorithms that can be used for this integrated navigator? 

4. What are the limitations of these algorithms? 

5. How can the accuracy and reliability of the system be improved? 

6. How can usability of the system be improved? 

 

These questions are quite general but they address the underlying problems of all 

navigation systems.  The first three are background questions that address the current 

system, but questions four to six form the novel aspects of this thesis.  The general 

limitations of the current algorithm are centred on the fact that the integration method has 

limited intelligence to adapt itself to varying conditions and changing error characteristics.  

Therefore, artificial intelligence or intelligent adaptation techniques are used to improve the 

current benchmark integration algorithm which uses the Kalman filter, a minimum mean 

squared error approach that uses a priori modelling. 

 

The physical constraints of the device are unavoidable, but by modelling the errors more 

accurately the integration algorithm can help make the PVA solution more accurate and 

reliable.  The issue of reliability is almost more important at this stage of IMU/GPS 

development.  If accuracies of 1 to 5 metres can be maintained in any environment then a 

plethora of everyday applications can be enabled such as indoor tracking, automated 

parking, smart advertising, and child monitoring, just to name a few. 



             

 

6 

1.4 State of the art 

The art of INS/GPS navigation has changed due to advances in inertial manufacturing 

technology.  This has created sensors that can be packaged with a GPS receiver/antenna for 

everyday use such as phone/vehicle location, asset tracking and even new applications such 

as simultaneous location and mapping (Mannings, 2008).  These new manufacturing 

technologies are creating inertial sensors that are smaller and consume less power, but they 

also exhibit much larger errors than their higher priced counterparts.  This has lead the 

research community to find new and more efficient ways of weighting the sensor signals 

with wireless GPS signals. 

 

Kalman filtering has been the backbone of most successful INS/GPS applications.  

Furthermore, adaptive Kalman filters such as Basil et al. (2004), Hu et al. (2003) or 

Khosla,(2004), and advanced correlation methods, Nassar (2003), have shown to be useful 

when using medium grade inertial sensors combined with differential GPS.  Tuning 

procedures using least squares have also shown some promise for off-line adjustment of the 

Kalman filter, see Akesson et al. (2007) and Bolognani et al. (2003). 

 

Following the adaptive Kalman filter, the unscented Kalman filter (UKF) was introduced to 

aid with nonlinear dynamics and faster alignment (El-Sheimy et al., 2006).  Results for land 

vehicles were found to be nearly identical to an extended Kalman filter, but alignment 

times have been shown to be significantly improved (Shin, 2005). 
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More recently, artificial intelligence has been used to estimate errors after deployment of 

the integrated system.  This type of integration does not require a system model and is less 

dependent on designer input.  Chiang (2004) and Forrest et al. (2000) replaced the Kalman 

filter with a neural network as the data integrator.  Unfortunately, despite their ability to 

form a model on-line, neural networks require a learning stage and their estimates can only 

be as good as their training references.  Ojeda et al. (2004) used an expert rule based system 

to fuse the INS/GPS data, but this system is limited to specific applications which have 

been well defined by the expert designer.  For these reasons several researchers have 

suggested combining neural networks with Kalman filtering, see Haykin (2001), Abdel-

Hamid (2005) and Goodall (2006).  A Kalman/neural/fuzzy system is the first proposed 

integration method in this thesis, and is novel in the aspect that a fuzzy system is used to 

provide reliability to a neural/Kalman learning/estimation system.  Chapters 4 and 5 cover 

the neural/Kalman and fuzzy systems respectively. 

 

These intelligent systems can be used to compensate the state estimates of the Kalman 

filter, but a more direct solution can be taken: the a priori parameters used in the filter can 

be adjusted intelligently or through estimation theory.  Korniyenko et al. (2005) used a 

neural network approach to tune the Kalman filter, while Pasadyn (2004) used off-line state 

estimation for the a priori quantities and Soloviev and Grass (2007) used a frequency based 

batch processing to remove additional error sources. 

 

Intelligent tuning is one of the newest areas of research.  Since tuning involves changing 

unknown error characteristics a truth signal cannot be used for learning, as is the case with 
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neural networks.  Self-organizing maps, as in Kohonen (2001) and reinforcement learning, 

found in Sutton and Barto (1998) are two of the most recent approaches to artificial 

learning without a truth signal.  McClelland and Rumelhart (1988) was one of the first 

references to deeply analyze the issue of machine control using reinforcement learning.  

Reinforcement learning was used by Buijtenen et al. (1998) to control the attitude of a 

satellite.  A more obscure publication, Macias and Esposito (2006), used a form of 

competitive learning to self-tune a Kalman filter.  The application of reinforcement learning 

for tuning a Kalman filter is an entirely new approach and is investigated in details in 

Chapter 6 of this dissertation. 

 

Finally, it should be mentioned that INS/GPS integration can be improved by providing 

additional aiding signals or constraints.  Attitude updates to the filter can help prevent 

divergence through poor observability (Skaloud, 1995).  Attitude from GPS can be derived 

from multiple receivers, as in Lu (1995), and then used in the filter to update the inertial 

estimates (Strus et al., 2008).  Velocity constraints, given in Niu (2007), heading 

constraints in Shin (2005) and zero velocity updates can all be used to further help 

observability and improve the filter estimates. 

1.5 Contributions 

Primary contributions of this work are towards the advancement and adoption of low-cost 

GPS and inertial navigation systems.  Many error modelling simplifications are made by 

designers of low-cost solutions which have to be adjusted in an on-line and intelligent way 
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after the unit is deployed.  Furthermore, the methods developed herein can be applied to a 

variety of integration techniques.  The specific contributions are: 

1. A neural method that compensates position state estimates to improve accuracy 

based on dynamic and temporal learning inputs. 

2. A fuzzy reliability system that is used to control the neural compensations.  This 

method of fuzzy reliability can be applied to any system employing neural networks 

as a control mechanism. 

3. A reinforcement learning technique that adjusts a priori filter parameters based on 

relative improvements or degradations to position state estimates and consistency 

measures of the filter.  This provides direct feedback to the filter, which is not 

possible with neural networks since there is no known solution of the a priori 

parameters. 

1.6 Thesis outline and block diagram roadmap 

The next chapter brings together the current benchmark integrated system that uses a 

Kalman filter.  Chapter 2 also introduces the sensors used in this research and discusses 

advances in Micro-Electro Mechanical Systems (MEMS) IMU technology.  The chapter 

finishes with a discussion of the advantages and disadvantages of the current Kalman filter 

and introduces adaptive Kalman filtering. 

 

Chapter 3 moves into novel intelligent methods which address many of the disadvantages 

experienced with the current Kalman filter.  This chapter introduces three distinct types of 

intelligent algorithms that are used extensively in later chapters: neural networks, fuzzy 
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inference systems and reinforcement learning.  Specific details of how each algorithm is 

applied to the Kalman filter problem are discussed in later chapters. 

 

The fourth chapter goes into details on a method to compensate residual Kalman filter 

errors during GPS outages using neural networks.  This method compensates for errors 

after they have propagated through the Kalman filter and it requires training before it can 

be used reliably.  It is a very non invasive approach to correcting the Kalman filter, but 

provides little insight into what is happening in the filter. 

 

This issue of reliability leads the thesis into the fifth chapter which adds a fuzzy inference 

monitoring system to add reliability to the neural network compensations.  Results of the 

entire system are provided at the end of chapter 5. 

 

Chapter 6 changes the focus and attempts to solve the same problem but before the errors 

have been accumulated through the filter.  Reinforcement learning is used to adapt the a 

priori stochastic parameters required by the Kalman filtering algorithm.  Simulation results 

are shown first, followed by real examples using both loosely and tightly coupled extended 

Kalman filters.  A baseline approach using a serial tuning method is also discussed for 

comparative purposes. 

 

Chapter 7 summarizes the results from the previous three chapters so that conclusions and 

recommendations can be drawn in Chapter 8.  Figure 1.1 provides a visual architecture of 

individual chapters and their contributions to the thesis. 
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Figure 1.1:  Block diagram roadmap 
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CHAPTER 2: NAVIGATION AND POSITIONING 

Navigation comprises the methods and technologies to determine the time varying position 

and attitude of a moving object.  Position, velocity and attitude, when presented as time 

variable functions, are called navigation states because they contain all necessary 

navigation information needed to georeference a moving object at any moment in time.  In 

cases where only the position of the moving object is required, the term positioning, instead 

of navigation, is used.  Positioning is commonly used in place of navigation since most 

modern navigators actually position or orient a platform at a discrete time, and from joining 

multiple discrete time periods navigation information can be generated.  Global Navigation 

Satellite Systems (GNSS) are one such class of navigation system that provides absolute 

positioning information through trilateration from known points.  IMU’s also provide 

discrete updates, but these are relative and need to be mathematically integrated to provide 

positioning or orientation information in reference to a known starting point. 

2.1 The global positioning system 

The most successful implementation of a GNSS to date is GPS.  In 1968 the US 

Department of Defense (DoD) issued requirements for worldwide location of its military 

forces.  The response to this was the birth of NAVSTAR GPS in 1973 (Kaplan, 1996).  

With its full operational capability in July of 1995, GPS brought about large scale changes 

to the navigation community.  It was initially adopted primarily for military use, but its 

usefulness quickly extended into the civil community.  Vehicle and personal navigation, 
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asset tracking and weather prediction are just several of the numerous applications that 

have been revolutionized with the advent of GPS. 

 

The GPS satellite constellation together with a receiver on the ground basically does the 

same thing as a sextant or compass, but it does so automatically, in real-time and with 

much greater precision due to accurate timing devices.  GPS provides absolute positioning 

information to a receiver on the ground through trilateration of signals from satellites with 

known positions in space.  In addition, each GPS satellite has a very precise timing device, 

such as an atomic clock, which enables speed and bearing information to be inferred.  With 

a nominal constellation of over 20 satellites, GPS is capable of providing worldwide, 

continuous positioning.  The concept of trilateration is similar to terrestrial positioning, but 

the satellites move through space so the geometry changes as a function of time.  This 

means that to solve for a three dimensional position, four observations are needed since 

there will always be clock timing differences between the receiver and the satellites.  The 

general concept of GPS trilateration, with 4 satellites, is shown in Figure 2.1.   
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Figure 2.1:  GPS trilateration 

The GPS signal structure is important in understanding positioning accuracies.  A carrier 

wave and a modulated Pseudo Random Noise (PRN) code are transmitted from each 

satellite.  There are two different modulation codes used for pseudoranging: the C/A code, 

open to all users, and the P code, encrypted for US military use only.  These are legacy 

signals, with newer signals, such as L2C and L5, soon to be realized.  The chipping rate of 

the C/A and P codes is what distinguishes them.  The C/A code has a chipping rate of 1.023 

MHz and repeats every 1 ms, while the P code has a chipping rate of 10.23 MHz and 

repeats every 267 days.  For this reason, and since the P code is encrypted, the C/A code is 

most often used for civil positioning applications (Misra, 2001). 

 

There are also different frequencies of the carrier wave.  The current signals being 

broadcast are the L1 (1575.42 MHz) and L2 (1227.60 MHz) carriers.  The L5 (1176.45 

MHz) carrier will be broadcast in the future along with L2C.  Different frequencies are 
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useful for mitigating large ionospheric errors, thus improving the positioning accuracies 

available when using a single GPS receiver. 

 

The carrier waves are processed to obtain more accurate positioning, while the codes 

provide rough position fixes.  The term pseudoranging results from the use of these codes 

to get an approximate range measurement between a receiver and satellite.  There are 

numerous errors inherent to the pseudorange signal.  Orbital, satellite clock, receiver clock, 

ionospheric, tropospheric, noise and multipath errors are all unavoidable.  The carrier phase 

observation has similar errors, but is also affected by a cycle ambiguity term (N) that is an 

integer number of unknown carrier wave cycles between the receiver and the satellite.  

Most very low-cost civil GPS receivers only process the C/A code as ambiguity resolution 

can be a difficult, time consuming and computationally intensive task.  Carrier phase 

smoothing of pseudoranges has been shown to be an effective method of filtering 

pseudorange noise (Hatch and Knight, 1995). 

 

Different modes of GPS can be used depending on the application and infrastructure 

available.  GPS can be used in differential (DGPS), using two local receivers, or single 

point (SGPS) mode, which uses only a single local receiver.  Differential mode uses 

differencing (single, double or triple) between a rover and a reference receiver to eliminate 

or reduce many of the errors inherent to single point mode carrier phase processing.  Error! 

Reference source not found. summarizes these carrier phase differencing modes and lists 

the errors that are minimized (X) or reduced.  Blank entries in this table indicate an 

unchanged error term. 
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Table 2.1:  GPS error removal through differencing 

Error Source  
Orbital Atmosphere 

(ionosphere & 
troposphere) 

Satellite 
clock 

Receiver 
clock 

N Noise + 
multipath 
increase 

Between 
satellite SD    X  2  
Between 
receiver SD reduced reduced X   2  
Between 
time SD     X 2  
Satellite & 
receiver DD reduced reduced X X  2 

D
iff

er
en

ci
ng

 m
od

e 

Triple 
difference reduced reduced X X X 22  

 

Although DGPS can remove many of the additional error sources, the practicality of this 

mode is limited to higher precision applications such as surveying or precision farming.  

The use of DGPS, using a local base station, in civil navigation applications is limited due 

to infrastructure and signal requirements.  Therefore, SGPS is the mode of choice for large 

scale use leveraged to millions of users. 

 

It should be noted here that the use of single point GPS is often augmented with Wide Area 

Differential GPS (WADGPS) systems.  These differential updates are provided through a 

network of stations set up over thousands of kilometres and are sent to individual users with 

some time latency, typically on the order of several seconds.  The reference stations are 

used to decompose the errors into satellite clock, ephemeris and ionosphere errors.  The 
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corrections are then broadcast to individual receivers from geostationary satellites.  These 

types of differential corrections are typically referred to as correction vectors, as opposed to 

scalar corrections in DGPS (Misra, 2001).  These WADGPS systems do improve the 

positioning accuracy to within a metre or two, but they cannot provide centimetre level 

positioning as obtained in DGPS with two local receivers.  Most new receivers are 

equipped with appropriate hardware to process these wide area corrections, with systems 

such as the United States Wide Area Augmentation System (WAAS) being the most 

popular in North America since no additional infrastructure imposed upon the user. 

2.2 Inertial measurement units 

The modernization of GPS, along with new GNSS platforms such as Galileo will bring 

about some important improvements to navigation.  But these improvements do not change 

the fact that GNSS positioning requires line of sight between the satellites and the 

receivers.   For this very reason, IMU’s can be used to complement GNSS when the 

satellite signals are blocked, attenuated, reflected or interfered with in harsh environments 

(Li, 2008). 

 

IMU’s are also convenient since they can provide orientation information along with a 

platform position at a high data rate, whereas GPS is typically used for position fixing.  So 

IMU’s can be used to locate a point on a platform through dead reckoning, and they can 

also provide a time variable rotation component. 
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The basic principles of navigation using inertial sensors rely on Newton’s laws of motion.  

The 1st law states: “an object at rest tends to stay at rest and an object in motion tends to 

stay in motion with the same speed and in the same direction unless acted upon by an 

unbalanced force” ” (Lawrence, 1998).  Accelerometers attempt to measure this 

unbalanced force through application of Newton’s 2nd law: “the acceleration of an object as 

produced by a net force is directly proportional to the magnitude of the net force, in the 

same direction as the net force, and inversely proportional to the mass of the object” 

(Lawrence, 1998).  A one dimensional accelerometer formed of a proof mass and two 

springs is shown in Figure 2.2.  Acceleration along this dimension will move the proof 

mass in proportion to the acceleration. 

Proof 
mass

 

Figure 2.2:  One dimensional accelerometer 

Gyroscopes are used to measure angular rates, which provide angular changes when 

integrated.  Nearly all low-cost gyroscopes use proof masses as vibrating mechanical 

elements (Nasiri, 2005).  These types of gyroscopes sense the transfer of energy between 

two vibratory modes caused by Coriolis acceleration.  Coriolis refers to an apparent 

acceleration that is proportional to the rate of rotation when viewed from a rotating frame 

of reference as shown in Figure 2.3. 
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Figure 2.3:  Coriolis acceleration 

 

The frame of measurement is of key importance when using inertial sensors.  When an 

accelerometer senses acceleration in the inertial frame it can simply be integrated twice to 

obtain an incremental displacement, 

  adtdttvdd 00                                                      (1) 

In this equation, 

 d is the displacement 

 d0 is the initial displacement 

 v0 is the initial velocity 

 a is the acceleration 

 t is the elapsed time 
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Unfortunately this frame of reference is seldom useful since the platform position is 

typically located on the surface of the Earth, not that of the theoretical inertial frame which 

has no rotation or acceleration.  This means these inertial measurements have to be 

transformed to the navigation frame for a strapdown system before integrating with respect 

to time. 

 

The most common reference frames used in inertial navigation are the inertial frame, the 

Earth centred Earth fixed (ECEF) frame, the local-level frame (LLF) or navigation frame, 

and the body frame.  The inertial frame (i-frame) is an idealized reference that directly 

follows Newton’s 1st and 2nd laws of motion, having no rotation or acceleration, such as in 

a state of free fall.  This ideal is not possible in reality so the common version of the i-

frame has its origin at the centre of the Earth with non-rotating/accelerating axes with 

respect to distant parts of the universe.  The i-frame has its z axis parallel to the rotation 

axis of the Earth (polar axis), its x axis in the direction of the mean vernal equinox, and a y 

axis that completes a right handed orthogonal frame. 

 

The ECEF frame (e-frame) is a more commonly used frame of reference for navigation 

applications.  The WGS-84 e-frame has its x axis in the equatorial plane pointing toward 

the Greenwich meridian, its y axis also in the equatorial plane but 90 degrees east of the 

Greenwich meridian, and its z axis along the Earth’s polar axis.  Since the e-frame origin is 

also at the centre of the Earth, the only angular velocity between the two frames is the 
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Earth’s rotation.  This rotation, given in the e-frame and rotated from ECEF to inertial, can 

be expressed as, 

),0,0( ee
ie                                                              (2) 

The Earth rotation is a known constant and in WGS-84 is given as 7.292115147e-5 rad/sec 

(Misra, 2001).  Considering Figure 2.4, the Cartesian coordinates of P (x,y,z) are given by, 
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Where N is the radius of curvature in the prime vertical, e is the first eccentricity of the 

ellipsoid, h is the altitude, φ is the latitude, and λ is the longitude (Misra, 2001). 

 

Figure 2.4:  Cartesian reference frame 

 

The navigation frame (n-frame) is also referred to as the local-level frame (l-frame).  The 

origin of this frame is centred with the inertial hardware, which is typically found on the 
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surface of the Earth for a vehicle navigation system.  The axes of this frame correspond to 

WGS-84 east, north and up (ENU) on the Earth ellipsoid.  The transformation between the 

e-frame and l-frame involves two rotations.  The first rotation aligns the up axis with the e-

frame Z axis.  The second rotation brings the east axis in line with the X axis.  A rotation 

matrix, from the l-frame to the e-frame, can be formed as follows, 
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The body frame (b-frame) is common when using IMU’s, since many low-cost civilian 

applications use strapdown sensors.  Its origin is at the centre of the inertial hardware 

assembly.  Its orientation is usually in line with that of the vehicle, but small misalignments 

are inevitable.  The axes of the body frame are aligned with the pitch, roll and heading axes 

of the assembly. 

 

The angular velocity between the l-frame and the b-frame is expressed through the pitch, 

roll and heading angles.  The heading, pitch and roll angles are positive if they are 

eastward, rightward and upward respectively.  To transform to the l-frame three successive 

rotations are needed: 
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The computation of this rotation matrix from measured angular velocity measurements is 

given in the next section after mechanization has been explained. 

2.2.1 Integration equations 

Mechanization refers to the integration equations required to transform the measured 

accelerations and angular rates to positions, velocities and attitudes.  The measured 

accelerations are integrated with respect to time to provide changes in velocity and position.  

The gyroscopes are used to orient the accelerometers with respect to a defined frame.  

Mechanization can be performed in any frame of reference, but the most common is the l-

frame since it outputs roll, pitch and azimuth directly; the horizontal errors are bound due 

to Schuler’s effect, producing a Schuler loop (Groves, 2008). 

 

In the l-frame the position of a moving platform is expressed in terms of φ, λ and h.  The 

velocity components are expressed along the ENU directions.  The attitude components are 

equated by solving the time derivative of the transformation matrix between the b-frame 

and l-frame.  The solutions to the position, velocity and attitude mechanization equations, 

respectively, are (Abdel-Hamid, 2005): 
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In these equations, M is the meridian radius of curvature, f is the specific force measured by 

the accelerometers, g is the Earth’s local gravity vector and Ω is a skew symmetric matrix. 

 

To actually solve these equations, the rotation matrix between the b-frame and l-frame has 

to be parameterized.  Two common transformations are direction cosines and quaternions.  

Quaternions are generally considered the better transformation since they are 

computationally simple and contain no singularities.  Direction cosine matrices (DCMs) are 

still commonly used since the transformation matrix can be calculated directly and there are 

no singularities, but they are computationally expensive (Altmann, 1986). 

 

The DCM representation has a linear relationship between the elements of the rotation 

matrix and the measured angular rates, 

 RR
.

                                                              (9) 

Or, in recursive discrete form, 

t
tt eRR 

 1                                                       (10) 

This forms a system of nine linear differential equations for the DCM.  In comparison, the 

quaternion representation requires the solution of only four linear differential equations.  

Quaternions use Euler’s theorem, which states that the rotation matrix can be expressed by 

a single rotation about a fixed axis.  Four parameters are used to determine the rotation 

matrix, one for the rotation angle and three to define the direction cosines of the relative 

axes.  The quaternion parameters are, 
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The rotation angle is, 

222
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and the three direction cosines with respect to the local level frame are: 
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To compute attitude using quaternions they are considered functions of time with 

differential equations defined by, 
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where ώ contains the x, y and z angular velocities of body rotation measured by the 

gyroscopes after removing the l-frame change of orientation and Earth rotation.  Euler’s 

method, also known as the constant slope method, can be used to solve the above 

differential equation (Spiegel, 1981).  This method numerically solves the following first 

order differential equation, 
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In a numerical integration the starting point is known.  So the question becomes:  given the 

solution of the above differential equation is such that y is equal to c where x equals a, then 
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what is the value at x equals b?  By integrating the equation with respect to x and replacing 

x with a, 


b

a

dyyxfcy ),(                                                   (16) 

The constant slope method uses the approximation that n equal parts subdivide the space 

from x = a to x = b.  Each interval is a fixed length h, 

n
abh 

                                                            (17) 

So now the integral becomes, 





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a

dxyxfcy ),(                                              (18) 

And if only one step is used (n = 1) and the slope is assumed constant the approximation is, 

),( cahfcy                                                      (19) 

So returning to quaternions, the constant slope solution would be, 
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Finally, the rotation matrix can be determined using these quaternion parameters at a 

specific time, 
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For more information on quaternions and attitude parameterization refer to Altmann (1986) 

and Shin (2005). 
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2.2.2 IMU errors 

Any real measurement instrument is prone to errors.  IMU’s contain many possible error 

sources, with new errors and error models being a popular research topic; see Farrell 

(2007).  In general, IMU errors can be separated into deterministic and stochastic.  

Different grades of inertial units contain different levels of these errors, but no sensor is 

immune to any of them.  Common deterministic errors are the bias offset, scale factor error, 

non-orthogonality, gyro g-sensitivity, and scale factor non-linearity (Barshan, 1995).  These 

errors are typically minimized by calibration before navigation, but special on-line methods 

can also be used; these are discussed in the following calibration section.  The stochastic 

parts of inertial errors are short term instabilities of the sensor errors (noise), angular 

random walk (ARW), velocity random walk (VRW), and even bias and scale factor 

changes due to temperature effects.  These stochastic errors are typically described by 

models such as random constant, random walk and the first order Gauss-Markov 

assumption (Gelb, 1974).  Tables 2.2 and 2.3 give an extensive list of commonly used IMU 

errors, both deterministic and stochastic, for accelerometers and gyroscopes respectively. 

 

 

 

 

 

 

 



             

 

28 

Table 2.2:  Accelerometer error terms 

Accelerometer error term Description and [typical units] 

Bias offset A systematic error obtained from a time average of 
the data (long-term). [g] 

Velocity random walk The velocity error build up with time that is due to 
integration of white noise in acceleration.  A zero 
mean Gaussian stochastic process with a standard 
deviation that grows with the square root of time. 
[m/s/hr1/2] 

Bias instability The noise on the bias offset.  Also defined as the 
random variation of the bias offset over a time 
interval. [g] 

Accelerometer triad misalignment 
from gyroscope triad 

Assuming we have two perfectly orthogonal triads, 
we still might have a manufacturing misalignment 
between the triads. [deg] 

Low-pass filter bandwidth Typical hardware low pass filters the output.  Any 
motion above the cutoff will be lost. [Hz] 

Linear scale factor error Linear change in the input to output ratio. [ppm] 
Non-linear scale factor error Non-linear change in the input to output ratio. [ppm 

of full-scale measurement] 
Scale factor thermal drift Linear change in the input to output ratio due to a 

temperature change. [ppm/˚C] 
Bias thermal drift The bias offset change due to a temperature change. 

[g/˚C] 
Triad non-orthogonality The misalignment between x, y and z axes of the 

triad of sensors in the body frame. [deg] 
Measurement full-scale cutoff point Maximum possible limit to measure an input signal. 

[g] 
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Table 2.3:  Gyroscope error terms 

Gyroscope error term Description and units 

Bias offset A systematic error obtained from a time average of 
the data (long-term). [deg/hr] 

Angular random walk The angular error build up with time that is due to 
integration of white noise in angular rate.  A zero 
mean Gaussian stochastic process with a standard 
deviation that grows with the square root of time. 
[deg/hr1/2] 

Bias instability The noise on the bias offset.  Also defined as the 
random variation of the bias offset over a time 
interval. [deg/hr] 

Gyroscope triad misalignment from 
accelerometer triad 

Assuming we have two perfectly orthogonal triads, 
we still might have a manufacturing misalignment 
between the triads. [deg] 

Low-pass filter bandwidth Typical hardware low pass filters the output.  Any 
motion above the cutoff will be lost. [Hz] 

Linear scale factor error Linear change in the input to output ratio. [ppm] 
Non-linear scale factor error Non-linear change in the input to output ratio. [ppm 

of full-scale measurement] 
Scale factor thermal drift Linear change in the input to output ratio due to a 

temperature change. [ppm/˚C] 
Bias thermal drift The bias offset change due to a temperature change. 

[deg/hr/˚C] 
Triad non-orthogonality The misalignment between x, y and z axes of the 

triad of sensors in the body frame. [deg] 
Measurement full-scale cutoff point Maximum possible limit to measure an input signal. 

[deg/hr] 
G-sensitivity A gyroscope error response to an acceleration due to 

a mass unbalance from manufacturing. [deg/hr/g] 
 

There are other IMU errors that expand upon this list but are often overlooked.  Motion 

dependent degradations, such as g2 sensitivity, rotation sensitivity and angular rate2 

sensitivity were commonly discussed decades ago, but are now less common when 

modelling IMU errors (Farrell, 2007).  Thermal effects are receiving more attention from 

researchers and industry but aging and magnetic effects are rarely quantified.  Another error 

source that has received little attention is vibratory motion errors.  Despite vibrations 
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having a zero mean, they produce bias-like effects through rectification.  These rectification 

errors add up in a consistent fashion when the dynamic conditions remain the same, but 

changes in the path or vibrations change the vector sum and in turn the effective bias 

contribution (Farrell, 2007).  These unmodelled errors typically become attributed to other 

errors, such as time-varying biases, but their contribution is often unknown ahead of time 

or even after calibration. 

 

There is even mention of errors that do not fall strictly into deterministic or stochastic 

models.  Bandlimited drift is approximated by a constant for durations shorter than its 

autocorrelation time, but this only gives partial correction of the error source.  A noise 

estimate is used outside the bands to limit error growth (Farrell, 2007). 

 

Several researchers suggest state augmentation for error estimation.  Unfortunately, due to 

the large number of possible error sources, the observability cannot be guaranteed.  The 

system can become unstable with too many states and the real-time potential can be 

weakened (Nassar, 2003).  States are very seldom directly observable due to limited vehicle 

dynamics, loss of GPS signal updates and limited data sets (Petovello, 2004).  Models of 

the accelerometers and gyroscopes are often simplified to include the following terms 

(Yang, 2006), 

aaTanaaaTaaf nbbbfNTSfSSII  )( 21                       (22) 

ggTgngggTgg nbbbNTSSSII   )( 21                      (23) 

The terms used in these equations are defined as, 
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I the measured signal for either the raw accelerometer (f) or the raw 

gyroscope (w) 

f the error-free accelerometer signal 

w the error-free gyroscope signal 

b the bias offset term for either the accelerometer (a) or gyroscope (g) 

bn the bias instability 

bT the bias term due to thermal effects 

S1 a matrix representing the linear scale factor errors 

S2 a matrix representing the non-linear scale factor errors 

ST a matrix representing the scale factor linear error due to a temperature 

change 

ΔT the temperature change 

N a matrix representing the non-orthogonalities of the individual triad axes.  N 

does not consider between triad misalignment. 

n a vector representing sensor noise that drives ARW or VRW 

2.2.3 Calibration procedures 

Calibration of inertial sensors involves the removal of as many error sources as possible 

before deploying the unit for navigation.  Deterministic errors can be largely removed, 

while stochastic errors can be approximated using residual error models.  To remove the 

deterministic errors the IMU outputs have to be compared to a reference.  This type of 

reference can only be obtained by using special equipment such as a perfectly level table 

and a precision turn table.  Techniques such as the six position static test, for 
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accelerometers, and angular rate tests, for gyroscopes, can then be applied to remove errors 

such as bias offsets and linear scale factor errors.  These calibrations assume that aging is 

not an issue and the calibrated results apply for the life of the unit. 

 

There are newer techniques that use more than six positions to calibrate the unit without 

specialized lab equipment.  Shin (2001) developed a method that uses up to 26 different 

positions, of any orientation, that determines the bias, scale factor and non-orthogonality 

for a sensor triad.  Regardless of the calibration technique used, time and processing are the 

main drawbacks to calibration of deterministic errors. 

 

All further performance analyses of inertial systems are applicable to the remaining error 

after calibration (i.e. not accounted for), or due to time changing errors such as aging.  

Filtering techniques are employed in real-time to deal with such effects, which are often 

grouped into modelled errors such as a time varying sensor bias.  Unfortunately, not all 

effects can be modelled by additional states (Titterton and Weston, 2004).  These errors are 

often encompassed by stochastic error models, although they have deterministic properties 

to parameters that are not considered; this often results in pessimistic estimates of the 

stochastic processes. 

2.2.4 Residual error models 

Even if accurate techniques are used to determine the deterministic sensor errors, there still 

exist large uncertainties in many of the outputs (Shin, 2005).  Sensor uncertainties need to 

be modelled to limit their growth and to predict filter performance; stochastic error models 



             

 

33 

are used for this purpose.  The state vector of a navigation filter models some of these 

errors.  Regardless of the filter used, these stochastic models are important aspects of the a 

priori information needed for the filter.  Kalman filters, particle filters and least square 

estimators all need different forms of a priori information, with more accurate models 

yielding more accurate navigation results. 

 

The inertial sensor bias and scale factors are often included in the state vector of Kalman 

filters.  The choice of model for these states is dependant not only on the sensor 

performance, but also on the environment and operation time.  For example, if the 

operation time is very short, on the order of several seconds, then a constant value for the 

state can be used, but if run for a long time, random walk and aging effects would change 

the value of the state. 

 

The assumption of sensor errors having white noise characteristics is a common 

approximation.  Another common model is that of random walk, whereby the white noise 

process is integrated.  An INS does indeed integrate its signals, so the uncertainties of the 

velocities and attitudes increase and are described through the VRW and ARW terms. 

 

Noise, VRW and ARW values are typically determined through Allan Variance analysis.  

Hou (2004) gives an excellent resource for this Allan Variance method.  The underlying 

principles can be taken from Figure 2.5.  The sensor noise, or bias instability, is found by 

the region of zero slope, while the random walks can be found where the Allan Variance 

slope is –1/2.  
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Figure 2.5:  Allan variance analysis results (after IEEE Std 952, 1997) 

 

The length of data is important when performing Allan Variance analysis.  The number of 

clusters, or independent test results, combined with the total number of data points provides 

an estimate of the uncertainty in the measurements (Hou and El-Sheimy, 2003).  IEEE Std 

952 (1997) gives the following equation to estimate the percentage error in the Allan 

standard deviation, 
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Here, σ(T,M) is the estimate of the Allan standard deviation obtained from M independent 

clusters, and σ(T) is the theoretical value as M approaches infinity.  The alternative form of 

the equation contains n, the number of data points in each cluster, and N, which is the total 

number of data points across all clusters.  For 5% error the ratio of N divided by n would be 
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201.  If n were large, say 5000, then the total number of data points required would be 

1,005,000. 

 

Another way to estimate how much data is required for accurate estimation of the noise 

levels is the autocorrelation function.  Reliable determination of the autocorrelation also 

requires very long data collection periods.  According to Brown and Hwang (1997) the 

accuracy can be represented as, 

 
ct
Taccuracy 22                                                             (25)  

T is the time constant of the process and tc is the data collection time.  If T is 1 hour and the 

required accuracy is 5% then the collection time would have to be greater than 200 hours. 

2.2.5 Alignment 

Initial orientation between the sensor body frame and the local level frame is defined as 

alignment.  Alignment should be performed after calibration once the errors have been 

minimized since accurate alignment relies on error-free signals.  In fact, since error-free 

signals can never be guaranteed, alignment can result in de-correlation errors for strapdown 

systems; these are discussed in Chapter 4.  From the mechanization equations it can be seen 

that alignment refers to the initial definition of the l
bR  matrix.  For very accurate inertial 

systems, such as tactical grade or better, with a gyroscope instability better than 10 

degrees/hour, coarse and fine alignment methods can be applied (Brown and Lu, 2004).  

For lower grade sensors, the heading alignment (gyro compassing) cannot be performed 
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since the noise level of the gyroscopes is larger than the Earth’s rotation signal (Li et al., 

2008).   

 

When the unit is static, accelerometer levelling uses the local gravity component to drive 

the output of the horizontal accelerometers to zero.  Gyro compassing is performed after 

levelling so that the heading gyro, with its sensitive axis in the horizontal plane, can detect 

the North direction when its output is a maximum and a minimum when it points East. 

 

For vehicle navigation systems, static alignment is often not possible due to constraints on 

the user.  In-motion alignment uses the GPS derived velocity vector to perform a rough 

alignment.  Roll is initialized to zero while pitch and heading are estimated as follows, 
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In-motion alignment assumes the forward velocity of the vehicle is exactly parallel to the 

velocity vector.  This assumption depends on how well the inertial unit is mounted within 

the vehicle.  If poorly mounted, for example in the case of a cellular phone on a dash, the 

degradation can become severe.  Syed et al. (2007) covers these degradations in details for 

a six degree of freedom MEMS inertial sensor assembly and Shin (2007) describes large 

heading uncertainty (LHU) methods for improved filtering results. 
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2.3 MEMS inertial sensors 

The development of MEMS grade IMU’s for navigation has brought about many new 

research and industrial developments.  Their low-cost, small size and minimal power 

requirements make them excellent candidates for integration into small portable strapdown 

inertial navigation units.  Their use as navigators has yet to fully penetrate the consumer 

market, but they are becoming more popular in vehicle and handheld units that often use 

GPS as a stand-alone navigator (Frost & Sullivan, 2006). 

 

Within vehicle platforms, MEMS inertial sensors were made popular through airbag 

deployment.  Recently, all new cars in the United States are required to be equipped with 

independent tire pressure sensors, which also use low-cost MEMS pressure sensors.  

Finally, MEMS gyroscopes are used in higher grade vehicles for advanced roll-over 

detection and vehicle all-wheel drive (AWD) and electronic stability control (ESC) 

systems. 

 

The mobile handheld platform is also seeing an expansion of integrated MEMS sensors.  

Many new mobile phones are using MEMS accelerometers for mobile gaming and 

improved user interaction through screen orientation (portrait vs. landscape).  Digital 

cameras and camcorders also use MEMS gyroscopes for image stabilization and these 

devices are now being integrated into smart phones.  The applications for inertial sensors 

often overlap those of the traditional GPS dominated navigation units, with the next logical 

step being integration of these navigation units. 
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This integration has some serious hurdles that have to be overcome, such as calibration and 

alignment to the vehicle/platform frame.  Alignment issues have been approached by many 

independent studies and is a topic of much current research; see Syed et al. (2007) or 

Chowdhary et al. (2007).  But before alignment can be accurately tackled, calibration of the 

unit has to be performed.  Calibration for these low-cost units is rarely done by the 

manufacturer.  Very broad ranges are given for both deterministic and stochastic error 

sources, and fine-tuning is left to the designer.  Unfortunately, when manufactured in mass 

quantity, it becomes too costly to calibrate individual MEMS inertial sensors.  Poor 

calibration can severely degrade the performance of an integrated navigation unit (Grewal 

et al., 2001). 

 

It is the intent of this thesis to explore intelligent methods that can adapt to the effects of 

poor calibration without input from the manufacturer, designer or user.  Instead of imposing 

unrealistic constrictions on the user or manufacturer, calibration parameters are developed 

online while the unit is operating.  Several different approaches will be considered and are 

discussed in the following chapters, with most emphasis going to the development of 

appropriate residual error model stochastic parameters.  Of course residual deterministic 

errors are often combined into residual error modelling, but are removed over time through 

Kalman filter state estimation. 
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2.3.1 MEMS specifications 

Some MEMS manufacturers provide stochastic information for the inertial error sources 

and these can be exploited when calibrating a unit.  They can be used as a starting point for 

further calibrations and they can also be used as rough estimates of sensor performance 

when determining which sensors to choose since they represent averages for the hardware 

performances of thousands or millions of similar units.  On average it would be expected 

that these units perform as stated by the manufacturer, although individual units might 

perform better or worse depending on the accuracy of individual calibrations. 

 

Unfortunately, MEMS inertial sensor specifications lack the standards of higher grade 

sensors, so before this information can be exploited it first has to be understood.  The vast 

array of terminology used by manufacturers is overwhelming, but when analyzed carefully 

these terms can be brought together to match the error sources defined in Section 2.2.2.  An 

example of a MEMS gyroscope specification from Analog Devices Inc. (ADI) is given in 

Table 2.4. 
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Table 2.4:  ADI gyroscope specification (ADXRS150) 

 

 

In this table, sensitivity is another term for scale factor.  The dynamic range refers to the 

measurement range, the initial scale factor is the nominal scale factor, over temperature 

refers to the temperature dependent scale factor error, non-linearity refers to the non-linear 

scale factor error, and the voltage sensitivity is just used for conversion purposes. 

 

The term null refers to the bias parameters.  The term initial refers to the nominal bias 

whereas over temperature refers to the bias change with respect to a temperature change.  

Turn-on-time is a parameter that refers to the time it takes for the bias to settle when the 

device is turned on.  The linear acceleration effect is another term for g-sensitivity and the 

voltage sensitivity is used for conversions.  The rate noise density defines the angular 

random walk and the frequency response defines the low-pass filter bandwidth (Oppenheim 

et al., 1997).  Regardless of the manufacturer terminology the parameters can be converted 

to terminology or units as given in Table 2.3. 
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2.4 Kalman filtering 

GPS and inertial navigators are complementary to one another; thus it makes logical sense 

to combine their measurements.  An INS can provide a continuous solution at a high data 

rate since it is immune to jamming, but its errors are time dependent and it has no absolute 

time standard as a reference.  GPS provides time-independent measurements and has an 

extremely accurate time standard, but GPS is sensitive to RF interference and signal 

blockage (Groves, 2008). 

 

To minimize inertial error accumulation with time, GPS measurements can be applied.  To 

optimally combine the two different measurements, a filtering technique needs to be 

employed.  When combining sets of measurements, the Kalman filter is optimal in the 

minimum mean squared error sense and is unbiased.  When combined with its real-time 

recursive and modelling capabilities, it is a natural choice for INS/GPS integration. 

 

Dynamic inertial error state models can be derived for the various error states.  Common 

error states include position, velocity, attitude, accelerometer bias, accelerometer scale 

factor, gyroscope bias, and gyroscope scale factor errors.  These equations are used within 

the Kalman filter to define the dynamic model which is used to predict the next state.  GPS 

measurements are then used to correct the prediction and constrain the growth of the 

inertial errors.  There are of course errors in the GPS measurements, as discussed in Section 

2.1, so the combination of the GPS updates and INS predictions have to be weighted 
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accordingly.  Typically, GPS updates are coordinate updates, but derived GPS velocities 

and attitudes can also be used. 

 

The Kalman filter equations are well documented, see for example Gelb (1974) or Brown 

and Hwang (1997), and will not be derived in detail here, but a short review will prove 

useful when discussing different forms of the filter.  A basic recursive block diagram with 

equations is given in Figure 2.6.   

 

Figure 2.6:  Kalman filter recursive equations (Brown and Hwang, 1997) 

 

In the above equations, shown in Figure 2.6, 
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 x is the state vector 

 P is the covariance matrix of the state 

 Φ is the transition matrix that uses the dynamic model to predict the next 

 state 

 Q is the spectral density matrix that defines the noise of the dynamic model 

K is the Kalman gain matrix that weights the predictions with the measurement 

noise 

R is a matrix that defines the noise of the measurements, and 

H is a matrix that defines the noiseless connection between the measurement 

and state vector 

 

All noise terms are considered to be white sequences with known covariance.  The dynamic 

system used for prediction is non-linear by definition, but the Kalman filter requires a linear 

set of differential equations to relate one state to another.  An extended Kalman filter (EKF) 

performs a linearization of these equations about the predicted state vector.  The EKF 

performs a Taylor series expansion of the non-linear measurement and system equations 

and truncates them to first-order approximations.   

 

The state vector is in turn dependent on the architecture that is used to combine the GPS 

and inertial measurements; this is commonly referred to as coupling.  Historically, there are 

three methods of coupling: loose, tight, and deep.  The terms centralized and decentralized 

have also been used to refer to tight and loose coupling respectively (Gao et al., 1993).  A 

loosely coupled architecture is the simplest to implement since the inertial and GPS 
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navigation solutions are generated independently before being weighted together in a 

separate Kalman filter known as the fusion Kalman filter.  The advantages of this coupling 

strategy are that the INS errors are bounded by the GPS updates, the INS can be used to 

bridge GPS updates, and the GPS can be used to help calibrate the deterministic parts of the 

inertial errors online.  Another advantage is that the loosely coupled architecture can be 

used to integrate existing GPS with available inertial systems, such as those currently found 

in vehicles or mobile phones, since it does not require access to the raw GPS signals.  The 

loosely coupled integration strategy, using position and velocity updates from GPS, is 

shown in Figure 2.7.  P stands for position, V for velocity, and A for attitude. 
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Figure 2.7:  Loosely coupled architecture 

 

The main drawback to a loosely coupled integration strategy is that it requires at least four 

satellites in view, or three for a horizontal solution.  There are typically at least 6 to 8 GPS 

satellites in view at any time and anywhere on the Earth, but due to blockages such as trees 

or tall buildings, there could be significantly less at the antenna location.  The tightly 
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coupled integration strategy alleviates this restraint by combining the integration into a 

single Kalman filter.  Any number of GPS satellites can be used as measurements to limit 

the inertial errors from drifting.  The comparison of parameters in the filter is different from 

the loosely coupled architecture.  Instead of comparing positions and velocities, the tightly 

coupled architecture differences raw GPS pseudorange and Doppler measurements from 

those predicted by the inertial unit.  The filter output is a correction to the inertial outputs as 

shown in block diagram format.  The filter output can also be fed back to the GPS receiver 

in the form of INS derived velocity/Doppler information to aid the code and carrier tracking 

loops, see Petovello (2003) or Yang (2008). 
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Figure 2.8:  Tightly coupled architecture 

 

Deep integration also combines measurements into a single Kalman filter, but combines 

GPS and inertial data at the earliest possible stage (Li, 2008).  Immediately after the RF 

signal is shifted to some lower intermediate frequency (IF), inertial measurements are used 
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(Groves, 2008).  The inertial data is used at this stage to provide a dynamic reference 

trajectory that aids the receiver correlators during signal integration.  A replica GPS signal, 

both code and carrier, is generated by an integrated tracking and navigation Kalman filter 

(Soloviev et al., 2008).  

 

Although the deeply coupled integration fuses inertial and GPS measurements at the 

earliest possible point, it suffers from implementation complications.  A software receiver 

is needed to access the correlators, which is not yet a reality with most GPS receivers being 

hardware based.  For tight integration, access to the raw pseudorange and Doppler is not as 

imposing, with many receivers providing these as standard outputs.  The emphasis of this 

dissertation will be on calibration imperfections that can be corrected without the 

requirement of a software receiver.  The loosely and tightly coupled integrations will be 

analyzed since they represent nearly all potential INS/GPS integrations within the current 

consumer vehicle and portable navigation markets. 

2.4.1 A priori conditions 

Although the Kalman filter is an optimal filter in the minimum MSE sense, it can only be 

optimal if certain conditions are met.  The designer must first provide a priori deterministic 

and stochastic information.  If this given information is incorrect or misleading then the 

filter is no longer guaranteed to give optimal results. 

 

Dynamic and measurement models have to be supplied as deterministic data (Abeel et al., 

2005).  These are provided as the transition (Φ) and measurement design (H) matrices.  The 
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filter also needs starting conditions, namely an initial state vector and an initial state 

covariance matrix P.  These initial values do not affect the steady state optimality of the 

filter, but they do affect convergence time (Gelb, 1974).  A large initial P matrix allows for 

large variability in the state estimation since P characterizes the uncertainty in the state.  A 

large initial P essentially tells the filter that there is little confidence in the initial values of 

the state vector. 

 

A priori stochastic data comes in the form of the measurement and system noise covariance 

matrices, R and Q respectively.  R describes the noise on the measurements and the 

measurement model.  Measurement modelling is often simplistic and usually ignores many 

of the non-white (eg. correlated) measurement errors.  Correlated noise is often present 

when taking GPS measurements, especially in areas of large multipath (Kaplan, 1996).  

These unmodelled errors propagate in the Kalman filter and result in a state covariance (P) 

that is more optimistic than reality. 

 

While the Kalman filter is only sensitive to initial conditions when converging, it can 

become suboptimal if there are errors in the design model or if key assumptions are 

violated, such as that of white measurement errors (Choukroun, 2003).  The Q matrix 

defines how well the predictions can be trusted.  The errors of the inertial sensors and the 

imperfections of the transition matrix are defined by white noise within the Q matrix.  The 

Kalman filter does not restrict Q to a particular value to be optimal, but Q is critical for 

achieving practical results (Gelb, 1974).  In an optimal solution it is desired to minimize 

MSE, but the filter also has to be consistent with results that are achieved in reality.  This 
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means that the output of the P matrix should be sufficiently close to the actual errors the 

estimation is experiencing.  The interaction of the R and Q matrices with that of the P 

matrix can be observed through equation (27), which is an alternate form of the equation 

given previously for the update of P. 

    111   kk
T
kkk RHHPP                                               (28) 

The updated state will be better than the previous state by the amount of information added 

by the measurement update, which is affected by R.  The predicted state is affected by Q, so 

it can be seen that both R and Q determine the quality of the updated P, and to get practical 

results these matrices need to be set to values that are similar to those in reality. 

 

Laboratory solutions for these parameters are sometimes possible but this involves an Allan 

Variance or autocorrelation analysis that can be very lengthy; several days or weeks is not 

uncommon (Hou, 2004).  For low-cost MEMS these lab tests are not performed due to time 

and monetary restrictions; knowledge needed for tuning the dynamic model is almost never 

available in reality, especially for MEMS sensors (Vanicek and Omerbasic, 1999).   

2.4.2 Adaptive Kalman filtering 

There has been significant work done on adapting these noise matrices while the filter is 

used.  One form of these adaptive Kalman filters (AKF) attempts to evolve the Q and R 

matrices by observing the whiteness of the filter innovation sequence (Mehra, 1970).  This 

AKF is often referred to as the innovation-based adaptive estimation (IAE) AKF.  The 

actual updates to R and Q are, 
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where the innovation sequence and its covariance are, 

 kkkk xHzv                                                       (31) 







k

Nkj

T
jjvk vv

N
C

1

1                                                   (32) 

The innovation sequence is simply the difference between the actual measurements and the 

predicted measurements based on the current, predicted, state vector.  The covariance of the 

innovation sequence is used to detect abnormal behaviour by testing the assumptions of 

zero mean Gaussian white noise with a known covariance matrix (Grewal, 2001).  N is 

simply a defined number of previous innovation samples which are used to form the 

covariance, determined by the designer of the AKF. 

 

Unfortunately this approach requires a window length N, which is hard to define for real 

scenarios.  For example, if a vehicle was driving in open sky and then quickly entered an 

urban canyon it would be expected to suffer from very different measurement conditions 

from the GPS.  A long windowing period would tend to blend these changes into the 

previous open sky conditions, while a short window would change quickly to the 

conditions but would be prone to larger errors from blunders.  This AKF also relies heavily 

on the initial Q and R values since bootstrapping is performed; the system noise covariance, 

measurement noise covariance, Q value and Kalman gain K are all functions of the 

previous state estimates (Mehra, 1970). 
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Another AKF, known as Multiple Model Adaptive Estimation (MMAE), runs a bank of 

Kalman filters in parallel, with each filter having different statistical parameters for R 

and/or Q (Brown and Hwang, 1997).  Each filter provides its own estimate and a posteriori 

probabilities for each scenario.  The final estimate is a weighted sum of all the filters based 

on the probabilities.  The optimal solution in this case sets all weights to zero except the 

correct solution which is set to unity.  The bank of filters does this by analyzing the sums of 

the weighted squared innovations.   

 

The MMAE method is highly dependent on the number of filters that have to be run.  If 

only two or three are run then real-time implementation would be possible.  Unfortunately, 

with MEMS inertial sensors the unknowns cover such a wide range that many filters would 

need to be used to come close to optimality.  This would not be possible for a real-time 

application. 

 

AKF’s have been shown to be superior to a conventional Kalman filter especially during 

high dynamics where the optimal R and Q parameters change.  Unfortunately, the 

improvements rely upon proper choice of N in the innovation sequence covariance 

calculation and high quality DGPS data to form the innovation sequences.  Also, the AKF 

adjusts the R and Q matrices, but often the actual dynamic model itself is in error. 

 

The advantage of the MMAE method, over the IAE AKF, is that the MMAE does not 

perform bootstrapping and is less prone to instability.  The Q and R values are independent 
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of the individual starting values since many filters are run in parallel.  The tradeoff between 

real-time implementation and bootstrapping can be dealt with if the entire dataset is re-run 

using different a priori data over time.  The methods outlined in the remainder of this 

dissertation deal with adapting either the state estimates of the Kalman filter or R and Q 

directly.  In both cases intelligent adaptation methods are implemented that retain memory 

of previously learned scenarios.  This avoids the need for a fixed window length, since 

memory from previous windows is maintained, and does not impose unrealistic real-time 

implementation conditions. 

 

The next chapter will introduce the concepts necessary for various types of intelligent 

adaptation.  Chapters 4 and 5 then develop methods for correcting the state estimates for 

poor stochastic parameters.  Chapter 6 delves into more details and directly changes the R 

and Q matrices to provide better state estimates. 
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CHAPTER 3: ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) has become well accepted and documented with many real 

world examples such as intelligent gaming, weather prediction/modelling, and even vehicle 

manufacturing using automated robotic systems.  The actual mathematics behind AI 

systems are not unlike that for other filtering algorithms; minimum mean squared errors are 

still key performance measures.  Important differences are that intelligent algorithms often 

employ non-linear techniques that process many different tasks in parallel with feedback to 

one or more stages of the computation.  AI has been developed to mimic human brains that 

seem to learn from many parallel interactions in a highly non-linear and complex manner 

(Haykin, 1994). 

 

Biological neural networks are much further advanced than current artificial neural 

networks (ANN’s).  A simple example brings light to the difference.  A bat uses sonar to 

detect flying insects.  The bat’s sonar and processing system is capable of detecting 

instantaneous velocity, size, azimuth and elevation of its target so accurately and quickly 

that few insects ever escape (Suga, 1990).  Current radar systems that use highly complex 

parallel processing are still years away from the accuracy and capability of a bat’s sonar.  

Yet a bat has a brain the size of a grape while the parallel computing environment would 

occupy a large room. 
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Although AI is still primitive in comparison to human intelligence, or even a bat, there are 

many interesting algorithms that apply to a wide variety of engineering applications.  The 

specific algorithms developed herein do not represent new mathematical forms of AI, but 

their application to Kalman filtering for navigation applications is novel.   

 

Neural networks are discussed first and used to compensate the Kalman filter state 

estimates in Chapter 4.  They are used to form an input-output relationship using dynamic 

inputs and Kalman filter states as outputs.  These states are another way to assess the 

performance of the system.  They indirectly minimize the innovation sequence since the 

integrated drifts rely heavily on the last innovation before measurements are lost within the 

filter.  Furthermore, this type of incremental learning algorithm is capable of adapting as 

new data is presented for real-time application. 

 

Fuzzy inference systems will then be applied to improve reliability of the neural 

compensations in cases where the learning is not converged.  Fuzzy logic is well suited to 

monitoring the accuracy of an ANN since the designer of the fuzzy system can include 

rules that govern the application of the neural learning. 

 

Reinforcement learning (RL) will then be introduced as an alternative approach to the 

stochastic tuning problem where there are no truth signals that can be used to guide the AI 

learning.  This is the case when direct manipulation of the parameters is desired.  RL will 

be used to adapt the R and Q matrices in a similar manner as an adaptive Kalman filter, but 

without the conditions of a fixed window length for learning or multiple parallel filters.  In 
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fact, it will be seen that this method can be compared to the MMAE method running in 

series instead of parallel with an infinite number of filter possibilities. 

3.1 Adding NOT replacing 

Before moving on to specific methods of intelligently aiding the Kalman filter it needs to 

be stressed that this work attempts to add information to a typical Kalman filter solution, 

not replace the Kalman filter with another estimation tool.  All three block diagrams given 

in the first chapter make one fact clear: the Kalman filter is still the primary state estimation 

tool.  AI is just being used to compensate for or adjust poor a priori information that the 

filter uses. 

 

This is in contrast to several other researchers who have recommended replacing the 

Kalman filter as discussed in Chapter 1.  A complete replacement is suggested to help 

overcome other Kalman filter limitations, such as incorrect dynamic modelling.  These 

systems are typically adaptive or involve learning the input-output relationships needed for 

integration of INS and GPS. 

 

Chiang (2004) replaced the Kalman filter structure entirely with intelligent algorithms in 

the form of ANN’s.  The idea was to limit the need for a priori knowledge of the 

mathematical process and allow the system to develop the model based on supervised 

learning.  During GPS outages, the INS mechanization velocities and headings could be 

used to estimate the positional changes. 
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The primary goal of Chiang (2004) was to replace a tuning dependent algorithm with one 

that can form its own relationships.  This intelligent navigator could also adapt itself over 

time making it applicable for different inertial sensors or varying test conditions.  It was 

shown to be a better estimator than the EKF under several conditions, but if the 

assumptions made within the EKF are upheld then it can be argued that the EKF is truly an 

optimal estimator in an MSE sense.  Unfortunately, in replacing the EKF entirely with 

ANN’s, this optimality could no longer be guaranteed.  In fact, ANN’s can only be 

guaranteed to be as accurate as their training data.  If the networks are trained on minimal 

or poor data then the estimation quality will be very poor.  If they are trained on sufficient 

data and converge on this data then their estimates should approach those of a properly 

tuned and modelled EKF, within the noise level of the training reference. 

3.2 Why is intelligence added to the Kalman filter? 

The primary purpose of this work will be to improve upon the conventional Kalman 

filtering scheme using a combination of adaptive and optimal estimation tools.  Based on 

the limitations of both the Kalman filter and intelligent methods the following will be 

investigated to help unite the two methods and benefit from the advantages of each: 

 

1. Develop an algorithm that is applicable for MEMS sensors using SGPS. 

This method will have to adapt for individual MEMS sensor and GPS receiver 

errors.  Calibration of the MEMS sensors cannot be performed due to cost 

requirements, thus the method will have to compensate for residual stochastic errors 

and in some cases larger deterministic errors that take significant time to converge.  
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These convergence times can be accommodated by increasing the noise levels 

within the R and Q matrices, while fine-tuning can be performed by later tightening 

the noise matrices to more realistic levels.  This means the system has to be 

adaptive over time. 

 

2. Develop an algorithm that can be applied in real-time 

Processor speed is often an issue for complex algorithms such as large neural 

networks.  The developed algorithm should be capable of providing state estimates 

(PVA) in real-time at typical MEMS data rates (50-100Hz).  The proposed method 

should also be applicable to real GPS outages, not just to simulated outages. 

 

3. Compensate for poorly tuned Kalman filters, or filters with dynamically 

changing parameters.  

Similar to AKF’s, this will involve some form of feedback to the filter in order to 

bring the filter closer to its optimal state.  If the filter can reach this state during 

availability of GPS then the position drifts will be minimized when the filter 

operates in prediction mode using only inertial measurements.  Since initial tuning 

accuracy cannot be known ahead of time for MEMS sensors, a learning method will 

be needed. 

 

4. Retain optimality of the Kalman filter.   

When certain assumptions are met the Kalman filter is an optimal estimation tool in 

terms of minimum MSE.  Assuming the correct conditions are met this optimality 
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criterion should be maintained even if using an intelligent method such as neural 

networks. 

 

5. Ensure reliability of the adaptive compensation method.   

Intelligent methods, such as neural networks, involve a learning stage whereby the 

inner weightings of the mathematical model are adjusted based on training data.  

Once converged, these systems are very useful for adaptive estimations, but before 

they converge their estimates can be misleading and detrimental to overall 

estimation quality.  There is also the extrapolation problem; neural networks are 

excellent interpolators, but poor extrapolators.  A method for controlling the 

application of the intelligent compensations for these cases needs to be applied. 

3.3 Neural networks 

ANN’s are capable of solving complex large-scale problems that were previously 

intractable using model based estimation tools.  The networks are composed of many 

parallel layers of neurons with the neurons being connected by synaptic weights and biases.  

Figure 3.1 shows a single neuron and an example of two neurons connected in a layer.  

Three inputs (x) are shown, with three weights (w), a bias (b), an activation function (f) and 

an output (y).  The activation function can be any transformation of the data so that the 

output is in a form required by the designer of the network. 
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Figure 3.1:  Neural network representation 

 

It is the adjustment of these weights and biases that enables the network to change its 

output for given inputs.  These neurons allow the network to adapt to non-linear problems 

and provide responses for interpolated inputs that have not been encountered.  This ability 

to predict outputs from new inputs is a type of knowledge that makes ANN’s different from 

other estimation algorithms. 
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An official definition of knowledge is given by Fischler and Firschein (1987) as “stored 

information or models used by a person or machine to interpret, predict, and appropriately 

respond to the outside world”.  Any AI system should be capable of doing three things with 

knowledge:  (1) store knowledge, (2) apply knowledge, and (3) acquire new knowledge.  

These are commonly referred to as (1) representation, which is a structure used to store 

knowledge for a problem of interest, (2) reasoning, which is the AI’s ability to solve a 

problem, and (3) learning, which is an improvement process to the current knowledge base 

(Haykin, 1994). 

3.3.1 Error-correction learning 

The learning process is the most interesting aspect of ANN’s.  Learning adjusts the weights 

and biases of the neurons as they are stimulated by inputs from the environment.  Any form 

of learning adjusts the internal parameters so that the network responds in a new way to the 

environment.  A weight between two neurons at time epoch n would be updated as follows, 

)()()1( nwnwnw                                                  (33) 

The delta step parameter is computed by the network in a specific way depending on the 

learning algorithm used and stimulation by the environment.  Error-correction learning uses 

a truth target signal to form an error signal as the difference between the target and actual 

network response at iteration k, 

)()(arg)( kresponsekettkerror                                        (34) 

The error signal is then used to form a cost function which is used to solve the 

minimization problem.  Specifically, the mean square value of the sum of squared errors is 

used. 
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E is the expectation operator, the ½ scale factor is used for simplification of future 

derivatives and k represents all the neurons in the output layer of the network.  The method 

of gradient descent is achieved when this cost function is minimized.  Realistically the 

method has no way of knowing the statistical characteristics of the underlying process, so 

an approximate solution is used, which is known as the instantaneous value of the sum of 

squared errors. 
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The solution to the optimization problem is then found by minimizing this simplified cost 

function with respect to the weights.  A common solution, known as the least mean squares 

(LMS) algorithm, differentiates the instantaneous error and minimizes it by setting the 

derivative to zero (Widrow and Hoff, 1960).  Using partial derivatives for both the weights 

and biases the solution for the updates can be given in the form, 

)()()()1( nxnenwnw k                                           (37) 

)()()1( nenbnb k                                                (38) 

In these equations α is a positive constant that defines the rate of learning and x is the input 

vector.  This parameter also has impacts on the stability of the system.  For instance, if α is 

too large the system might oscillate uncontrollably.  In order to be stable, the learning 

parameter has to be larger than zero but smaller than the inverse of the largest eigenvalue of 

the input correlation matrix, defined as, 

R  E x(k)x(k)T                                                     (39) 
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3.3.2 Backpropagation 

The LMS algorithm is appropriate for the case of a single layer of linear neurons, but for 

multiple layers of neurons containing non-linear activation functions a more general 

algorithm has to be applied.  The error backpropagation algorithm is the solution to this 

problem.  The backpropagation algorithm consists of two passes through the network: a 

forward pass that activates the output of the network and a backward pass that adjusts the 

weights and biases in accordance with a generalized error-correction rule similar to that of 

LMS.  The error signal is passed backwards through the network layers and this is from 

where the term backpropagation is derived. 

 

Details of backpropagation can be found in Cichocki and Unbehauen (1993) and Haykin 

(1994) but the basic premise is to minimize the network error function, 

   )()()()( kaktkaktF T 


                                          (40) 

where t(k) is the target value for epoch k and a(k) is the output value at epoch k.  The 

algorithm, for multiple neurons and layers, can be summarized as follows: 

 

1. Initialization: define the network configuration and set all weights/biases to small 

random numbers uniformly distributed. 

2. Training inputs and forward computation: propagate the new input forward 

through the network.  The first input p0 can be taken as the initial layer output a0.  

The remaining q layer outputs are represented by a, 

 1111   mmmmm baWfa                                           (41) 
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for m = 0, 1, 2,…, q-1. 

3. Backward computation: propagate the derivatives backward through the network 
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for m = q-1, q-2,…, 2, 1.  Where, 
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4. Network update: adjust the weights and biases using the approximated steepest 

descent algorithm. 
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5. Iterate: return to step 2 with a new training input 

 

The weights and biases are updated on a pattern by pattern basis.  This means that for every 

new input the network is activated and updated.  This is only an estimate of the true change 

that would occur if the parameters were modified all at once in batch mode using the cost 

function over the entire training set.  However, for real-time applications that require 

constant adaptations, or for systems that would require too much memory to update in 

batch, the pattern mode of updating is more desirable. 
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3.3.3 Universal approximation 

A multilayer network with non-linear sigmoidal activation functions trained with 

backpropagation is capable of estimating any continuous multivariate function to any 

desired degree of accuracy, provided that enough hidden neurons are available (Cybenko, 

1988).  Sigmoidal activation functions are continuously differentiable non-linear activation 

functions that are most commonly used due to the above theorem. 

3.4 Fuzzy inference systems 

Fuzzy inference systems (FIS) address the issue of precision when something mathematical 

has to be described vaguely.  Sometimes precision cannot be entirely guaranteed since there 

will always be some level of uncertainty.  Albert Einstein was quoted as saying, “So far as 

the laws of mathematics refer to reality, they are not certain.  And so far as they are not 

certain, they do not refer to reality.”.  Classical mathematical approaches can have 

difficulties with these situations, so fuzzy set theory was introduced to bridge the gap 

between high precision and complexity of uncertainty (Kantardzic, 2001). 

 

Fuzzy logic is quite simple.  An input space is mapped to an output space through a list of 

weighted if/then rules created by the expert designer.  The system can have any number of 

rules and all rules are evaluated in parallel.  A typical FIS is made up of fuzzy sets, 

membership functions, logical operations, and rules. 
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A fuzzy set has elements that can be entirely or partially attributed to the set.  This is in 

contrast to typical mathematics that says a defined element has to be entirely part of one set 

or another.  If element a is part of set X then it would mathematically be represented by a 

value of 1.  If a was not part of set X it would be valued at 0.  A fuzzy set does not make 

this distinction and allows a to be part of X anywhere between 0 and 1.  This is the first step 

in any FIS and is known as fuzzifying the inputs. 

 

Membership functions are curves that define how each point in the input space is mapped 

to a value between 0 and 1.  Commonly used membership functions are piecewise linear, 

Gaussian, and trapezoidal membership functions.  The fuzzy set and membership functions 

define the fuzzy part of fuzzy logic.  Adaptive fuzzy systems are capable of forming these 

membership functions from training data and are discussed in the next section. 

 

The logic part is defined by basic OR, AND and NOT Boolean operators.  To preserve the 

fuzziness of the system the OR operator is replaced with MAX, the AND operator with 

MIN and the NOT is equivalent to (1-A) where A is the first element.  This conversion to 

retain the fuzziness is multivariate logic. 

 

Applying if/then rules completes the FIS with an implication model.  These rules form the 

conditional statements that allow the designer to achieve certain performance measures.  

An example would be: if the sky is grey, and the clouds are low, and it is daytime then it is 

likely to rain.  The antecendent consists of fuzzifying the inputs and applying the fuzzy 

operators (if the sky is grey, and the clouds are low, and it is daytime).  The implication 
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applies the result to the consequent (then it is likely to rain).  This is a Mamdani fuzzy 

inference method, which is the most commonly used FIS and is the method used in this 

dissertation.  The entire FIS can be summarized by the following transformations 

(Kaufmann and Gupta, 1985): 

1. Inputs to membership functions 

2. Membership functions to rules 

3. Rules to output characteristics 

4. Output characteristics to output membership functions 

5. Output membership functions to a single valued output 

 

Additional details on fuzzy theory and application of FIS can be found in Negoita et al. 

(2005) and Klir and Yuan (1994). 

3.4.1 Adaptive neuro fuzzy inference systems (ANFIS) 

In some cases the Mamdani FIS suffers from unknown membership function details.  In 

this case the designer does not know how the membership functions should be formed since 

the expert knowledge is limited.  An ANFIS system alleviates this issue by learning the 

membership functions using neural networks.  Specifically, ANFIS adjusts the parameters 

of a predefined type of membership function.  For example, the centre and variance of a 

Gaussian membership function can be adjusted.  ANFIS can use existing data to estimate 

the membership functions, or more appropriately, adapt the membership functions as new 

data is collected.  Most ANFIS algorithms use backpropagation for learning. 
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3.5 Reinforcement learning 

ANN’s learn by using a set of target values to generate a performance measure such as 

MSE.  A reinforcement learning system improves performance by learning on the basis of 

any feedback supplied to the system by the environment.  Specifically, in RL there is no 

teacher to provide target values so reinforcements from the environment are used to 

generate gradient information.  Certain actions are tried, the environment provides 

reinforcement signals, and the system is adapted based on how good or bad the 

reinforcements were.  The performance of the adaptation can really only be evaluated after 

many situations are tried and many different reinforcements signals are experienced.  This 

type of learning is more relative than absolute, but given enough experience the system can 

learn things that would be impossible with an ANN.  

 

In any RL problem there is always an interaction between an agent and its environment.  

Within these two, the RL problem contains a policy, a reward function, a value function 

and even a rough model of the environment.  A policy explains how the agent behaves in a 

given scenario, or in other words, what actions should be taken in a given state.  Policies 

are the most important element of the problem, and once learned they are all that is needed 

to determine appropriate behavior.  A reward function associates individual state/action 

pairs of the environment to a number that describes the positive or negative reward.  The 

reward function is typically used to alter the optimal policy depending on what is perceived 

to be good or bad by the agent.  A value function defines what is good for long-term 

rewards.  Typically, an RL problem attempts to maximize the value function over many 
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individual rewards so that the long-term success of the policy is satisfied.  In essence, this 

type of learning needs to maximize long-term gain. 

 

Policy iteration is important to RL theory.  Two simultaneous processes interact with one 

another to converge on a solution.  One process makes the value function consistent with 

the current policy, and the other makes the policy greedy with respect to the current value 

function.  Greedy means that the option with maximal likelihood is chosen.  Both of these 

processes alternate until convergence occurs on both the optimal value function and the 

optimal policy.  Both processes stabilize together, and only when a policy has been found 

that is greedy with respect to its own value function.  In more details, one process takes the 

policy as given and performs policy evaluation which changes the value function to be 

more similar to the true value function for the given policy.  The other process takes the 

value function as given and performs improvement to the policy (Sutton and Barto, 1998). 

 

Discounted returns are often used to relate newer and older rewards.  Equation (45) gives 

the discounted reward Rt using all future rewards discounted by γ, which is always between 

0 and 1.  This equation looks ahead in time, but in causal systems the timing sequence 

would be reversed. 
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Finally, some RL systems use models of the environment (Barto et al., 1991).  These 

models can be provided ahead of time, if sufficient information is available, or they can be 

learned through trial and error, and then incorporated into the policy.  When tuning a KF 

the model is first developed through trial and error learning, and then applied to help guide 
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future tuning decisions; it is assumed that no prior knowledge is available besides a default 

starting point. 

 

In general, the interaction between the agent and the environment can be visualized as in 

Figure 3.2 (Sutton and Barto, 1998).  The agent acts on the environment, which in turn 

provides a reward back to the agent based on the current state.  This continues for the next 

state/action pair in a recursive manner. 

action, at

state, st Agent

Environment

reward, rt

 

Figure 3.2:  Agent-environment interaction (Sutton and Barto, 1998) 

3.5.1 Basic RL theory 

Since the RL algorithm estimates value functions and attempts to maximize these over 

future iterations, the definition of the value of taking action a in state s under policy p is, 
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And the discounted reward can be inserted as, 

},|{),(
0

1 aassrEasQ tt
n

nt
n

p
p  




                                 (48) 



             

 

69 

This last equation says that as the number of states encountered reaches infinity, the 

average reward will approach the actual state value function.  This form of learning is a 

type of Monte Carlo (MC) method.  The most commonly used RL algorithms use a 

combination of modelling (dynamic programming) and trial and error learning (Monte 

Carlo methods). 

 

In terms of dynamic programming (DP), RL learning follows particular recursive 

relationships, such as the Bellman optimality equations for Q*(s,a) shown here, starting 

from the previous equation, after Bellman (1957), 
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                 (49) 

The * denotes the optimal estimate, while P represents the probability of the next state s’ 

from the current state s and action a, and R gives the expected value of the reward. 

 

The importance of the Bellman equation is that if the optimal Q is known then the agent 

does not even have to look ahead, all it has to do is pick the action that maximizes the 

state/action pair of Q.  Unfortunately, explicitly solving the Bellman equation is similar to 

performing an exhaustive search, or having an accurate model in memory.  RL theory 

attempts to approximate solutions to this optimality equation by ‘experiencing’ the 

transitions instead of actually knowing them ahead of time.  This is how the Monte Carlo 



             

 

70 

and Dynamic Programming methods aid each other in finding a solution that neither could 

do alone. 

 

This leads to the core RL algorithm used in this dissertation: temporal difference (TD) 

learning.  TD can learn directly from experience, similar to Monte Carlo, and TD can also 

provide estimates based on previously learned estimates, similar to DP.  For any RL 

algorithm, incremental learning is the key to updating a policy, as is the case for TD 

learning.  The basic formula for this update is, 

Old]tStep[TargeOldNew                                     (50) 

The bracketed expression is an error in the old estimate, and is reduced by taking a step 

towards the target value; this reduction is imperative to avoid noise and oscillations.  To 

understand how TD uses both MC and DP methods, consider the value functions for both 

cases.  MC waits until the return is known, then uses the return as a target value for the 

value of that state, 
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DP updates the value function using discounted returns and the optimal policy (accurate 

system model).  The optimal solution would be found as follows, 
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It can be seen from the final form of the optimal solution that it is impossible to evaluate 

this using DP since the optimal next return, VΠ(st+1), is not known.  DP has an accurate 

model so the expected value is known, but it must use an estimate, V(st+1), instead of the 

unknown optimal next return. 

 sssVrEsV tttt   |)()( 11 
                                    (53) 

In comparison, MC uses an estimate of this last equation as a target.  It is an estimate 

because MC assumes the expected value is not known, so a sample return is used instead of 

the real expected return. 

 

The TD method attempts to unify these two approaches through their dualistic nature.  TD 

uses sampling similar to MC, but does not have to wait until the end of an episode to 

update; it can be updated after each step.  TD also uses modelling like DP but does not 

know the model ahead of time; the optimal policy is what TD is working towards.  Instead, 

TD combines MC and DP theory into a combined method that performs bootstrapping 

(Dayan, 1992).  Bootstrapping means the updated estimate is based on previous estimates.  

This is done as follows, 

 )()()()( 11 ttttt sVsVrsVsV                                      (54) 

It can be noticed that the optimal policy is now no longer followed, but an estimate of this 

policy is used instead.  This estimate is based on previous estimates that have been formed 

by sampling. 

 

When learning Q values with TD, the update can be expressed in a similar form as, 
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)],(),([),(),( 111 ttttttttt asQasQrasQasQ                            (55) 

In this equation, the step size is α and the target is expanded into the first two terms within 

the brackets.  This method of updating the Q values is commonly referred to as SARSA 

since it uses the following information: st, at, rt+1, st+1, at+1. 

 

The definition of episodes can be important for certain RL problems.  An episode is defined 

as the end of a learning process, but is not critical to the implementation of SARSA.  For 

instance, in many games such as checkers there exist distinct episodes, such as the end of a 

game, and new games are played repeatedly.  For some applications there may be only a 

single episode, known as a continuous episode, in which case the steps of the individual 

episode direct the learning.  For the example of checkers a step would be a single move 

within the game. 

 

The advantage of TD learning over Monte Carlo and DP methods are numerous from an 

applications perspective.  TD methods learn estimates based on previous estimates, but 

unlike Monte Carlo methods they do not need to wait until the end of an episode, they can 

update after each step.  In comparison to DP methods they do not require a model of the 

environment, but instead they can build this model through interactions.  These two 

advantages are the main reasons why RL algorithms are better suited to on-line 

applications, such as tuning a KF incrementally as navigation data is collected. 
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3.5.2 Details of the learning strategy 

A form of temporal difference learning can be used to tune a Kalman filter.  The algorithm 

used is the SARSA method using on-policy control, eligibility traces and generalization.  

On-policy simply refers to the fact that the method attempts to improve the policy that is 

used to make decisions for the control problem.  On-policy methods typically use ε-greedy 

methods, which usually choose an action that that has maximal estimated return value. 

 

The general SARSA algorithm is quite simple and is shown as pseudocode in Figure 3.3, 

initially proposed by (Rummery and Niranjan, 1994). 

 

Figure 3.3: Basic SARSA algorithm without eligibility traces and generalization 

 

The actual learning process can be done sequentially with the SARSA method.  This means 

that on-line adjustments can be made to the policy as new data is collected.  Figure 3.4 

shows the algorithm in expanded detail when applied to integrated navigation data. 

Initialize the policy Q(s,a) 
Define the number of episodes and steps 
For each episode, 
 Initialize the state s 
 Choose action a from state s using ε-greedy Q 
 For each step, 
  Take action a 
  Observe return r and new state s’ 
  Choose next action a’ from next state s’ using ε-greedy Q  
  Update )],()','([),(),( asQasQrasQasQ    
  Set s = s’ and a = a’ 
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Figure 3.4: Basic SARSA applied to navigation data 

1. Begin INS/GPS navigation using a priori data in current memory. 
2. Simulate several GPS outages by operating the filter in INS prediction mode.  

The initial window length should be sufficiently long that many GPS outages 
can be simulated. 

3. Run the SARSA algorithm on this window of data while retaining memory of 
past data. 

a. If the method has no knowledge of the model then begin with an 
arbitrary Q.  Otherwise use the optimal policy from a previous tune or a 
similar sensor. 

b. Set the number of episodes and steps.  A single episode can be used, but 
the use of multiple episodes will encourage the method to improve upon 
the process of tuning instead of simply reaching an optimal state.  This 
optimal tuning strategy can be useful for leveraging to additional sensors. 

c. Begin an episode of tuning 
i. Initialize the state of the a priori data.  If the tuning is just starting 

for a specific sensor then set the state to manufacturer values.  If 
the tuning has already been performed on a previous window of 
data for this specific sensor then use the previously defined 
optimal state. 

ii. Choose a set of state changes as actions.  Perform these actions 
on all of the a priori data in parallel; this means that a single 
action can change all of the tuning parameters at once.  Use the ε-
greedy method to make the choice of correct actions.  Allow a 
small random chance for an exploratory action (i.e. one that does 
not follow the ε-greedy policy). 

iii. Begin steps within the episode 
1. Take the action a 
2. Observe the returned reward value and assign this as 

immediate reward. 
3. Update the state of the a priori data using the actions. 
4. Choose the next set of state changes as new actions.  

Perform these actions on all of the a priori data in 
parallel.  Use the ε-greedy method to make the choice of 
actions.  Allow a small random chance for an exploratory 
action. 

5. Update the policy using the SARSA equation. 
6. Set the new state and action values as the current state and 

action values. 
iv. Iterate until done all steps or if a step achieves a desired accuracy 

d. Iterate until done all episodes 
4. Choose a new window of data and return to step 2.  The new window is chosen 

by accepting the next simulated GPS outage and dropping the oldest outage. 
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The moving window of data enables two important characteristics.  Firstly, it allows the 

system to adapt to new data while still retaining knowledge of old data.  The new data will 

provide some new knowledge of the system, but will likely not change the entire policy.  

This incremental knowledge adds to the optimal policy without changing other knowledge 

that has been already accumulated. 

 

The moving window can also be used to balance adaptation and reliability.  Adaptation 

should be performed quickly as new data is received, so a sliding window is used to accept 

new simulated GPS outages.  However, to be reliable the window should encompass as 

many outages as possible to get a good estimate of the variance on the current state 

estimates.  Based on memory constraints the window can be defined in a maximal sense, 

and can drop old outages and accept new outages in a first in first out (FIFO) manner. 

 

The SARSA algorithm can guarantee that it adapts to changing models through continued 

exploration.  This is a small probability that the algorithm ignores the ε-greedy policy and 

chooses another option.  This is useful for exploring new state/action pairs or for checking 

previously visited pairs for any model changes.  To fully converge to a solution the 

designer would have to slowly decrease this probability of a random choice, but in reality 

the model and a priori parameters are prone to change over time so continued exploration 

is preferable. 

 

The stopping criteria within an episode can be defined in an absolute or relative sense.  An 

absolute stopping criterion would set a hard threshold on the reward values and stop the 
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episode if any steps achieved this level.  The difficulty with an absolute threshold is that 

this value cannot be known ahead of time.  Another problem with such a threshold is that it 

takes a long time to achieve this level of performance, resulting in more steps needed for 

convergence.   

 

An adaptive threshold was used to alleviate these issues.  The initial threshold was defined 

as the average value of the individual rewards in the first episode.  After this point the 

threshold was reduced by 10% for each episode that was stopped prematurely.  Eventually 

the threshold was reduced to a level that could not be met and all steps were taken for each 

episode.  This gave the algorithm a better threshold that did not require the need of designer 

input.  Furthermore, if the model of the system were to change, the system would maintain 

memory of the previous best performance measure and would always try to do better. 

3.5.3 Uniting TD and MC using eligibility traces 

TD methods can be compared more closely with MC methods if eligibility traces are used.  

Eligibility traces keep memory of certain events, such as visiting a state and taking an 

action.  The term trace refers to the memory parameters, while the term eligible means that 

these traces can undergo learning changes.   

 

The use of eligibility traces creates a learning method that is somewhere between MC and 

TD methods.  MC methods perform updates using the entire sequence of observed rewards 

whereas TD updates are performed based on every single next reward.  Eligibility traces 



             

 

77 

perform updates based on an intermediate number of rewards.  The TD method described in 

the previous section would be considered a one-step update, or TD(0). 

 

The TD(0) method bootstraps using only the previous estimate, so in the case of a problem 

that is not 1st order Markov it may have convergence problems.  MC methods are not 

concerned with Markov properties, but they do have to wait a long time until an update is 

performed.  It is the use of eligibility traces that blends the advantages of each method into 

a more powerful TD method.  

 

An acausal explanation is given for eligibility traces, but of course a causal implementation 

is used.  The acausal, or forward view in time, is useful for understanding eligibility traces.  

In a one-step update the target is, 
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In this equation the superscript on R refers to the one-step.  To extend this update to n steps 

a discounted return has to be applied, in a similar manner as it was applied to the immediate 

rewards, 
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The actual update occurs to the value function in an increment defined as, 
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n
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This equation is only applicable for states within the defined trace.  For on-line methods the 

updates are done during the episode, 
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78 

The general n-step update is performed by averaging n updates, each proportional to λn-1, 

where λ is between 0 and 1.  λ is commonly referred to as the trace decay parameter.  The 

weights have to all sum to 1 to satisfy the averaging approach, so a normalization factor of 

1-λ is used.  The n-step updates provide a general return called the λ-return, 
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The 1-step return is given a weight of (1- λ), the 2-step return a weight of (1- λ) λ and so 

on.  Two special cases of this equation result by setting λ to 1 and 0.  If λ is 1, then the 

method turns into the MC method.  If λ is 0 then the method is the same as the TD(0) 

algorithm.  After a terminal state is reached all subsequent n-step returns are equal to Rt.  If 

these are separated from the sum the form becomes, 
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In this form it can easily be seen that when λ equals 1, 

tt RR                                                                  (62) 

and when λ is zero, 

1
tt RR                                                                   (63) 

Eligibility traces can only be applied to causal systems, so a backwards view has to be used 

to implement the theory.  For a causal system the eligibility trace for each state s is defined 

by (Sutton and Barto, 1998), 

1)()( 1   sese tt                                                    (64) 

if the state is part of the trace, otherwise the eligibility trace is, 
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As states are visited the eligibility trace accumulates.  If states are not visited the eligibility 

trace fades to a minimum.  λ is referred to as the trace decay parameter and is always 

between 0 and 1.  From a practical viewpoint, these accumulating traces give an idea of 

how eligible a state is for learning changes, should an update occur.  To apply eligibility 

traces in a backward view the following can be used to adjust the value function, 

  )()()()( 11 sesVsVrsV ttttttt                                      (66) 

This theory is then easily extended to the SARSA algorithm (Rummery, 1995), 
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where the eligibility traces are, 

1),(),( 1   asease tt   and ),(),( 1 asease tt                                (68) 

when the state is part of the trace and not part of the trace respectively.  Eligibility traces 

can easily be added to the SARSA algorithm, but they do add memory requirements.  A 2-

step update requires double the memory.  Fortunately, when generalization is applied the 

memory requirements are significantly reduced since traces are not applied to a discrete 

state set. 

3.5.4 Generalizing from discrete to continuous RL 

The policy developed using the basic SARSA algorithm, or SARSA with eligibility traces, 

is essentially a discrete look-up table that maps state/action pairs to rewards.  This table is 

useful in the sense that it guides the learning towards the best a priori values, but it also 

suffers the fact that it can grow exponentially as more states or actions are added.  To avoid 

the issue of increased memory, generalization can be used to make the table continuous, 

which also saves time and data needed to fill the table.  Generalization expands experience 
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from a limited subset of the state space to provide good approximations over much larger 

subsets.  By making the table continuous, fewer discrete steps need to be taken and the 

ranges on individual parameters can be expanded.  Furthermore, without generalization 

eligibility traces add greatly to the computational task, but with generalization the 

computations are only doubled (Cichosz, 1995). 

 

As an example, consider a discrete problem with eight a priori tuning parameters and five 

discrete steps for each parameter.  The Q table would contain 390625 (58) discrete entries.  

These entries represent the reward transitions between different states using different 

actions.  In order to guarantee that the optimal solution had been found, all 390625 tuning 

combinations would have to be attempted with rewards calculated for each.  In a real-world 

example this number of tuning steps could never be attempted in an efficient manner. 

 

Generalization applies the RL algorithm to states that have never been visited before.  

Supervised learning methods can be applied to approximate the value functions of states 

that have never been visited.  In the discrete case a single table entry is moved towards the 

current value function returned by SARSA.  But in the case of generalized function 

approximation using supervised learning, the updated value functions can be considered as 

desired input-output behaviours for the underlying function.  In essence these are the 

training examples that form the function. 

 

The performance measure for any supervised method is minimum MSE.  Considering the 

states as inputs, the target function as the true value function VΠ, the distribution of the 
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inputs as P, and θt as the parameterized form of the table, then the MSE for an 

approximation Vt is, 

 
s

tt sVsVsPMSE 2)]()()[()(                                       (69) 

P distributes weights of errors across different states.  It trades off better approximation at 

some states at the expense of worse approximation at others.  Since ANN’s are very good 

interpolators, but poor extrapolators, to gain uniform level of error across the entire state set 

training examples would have to be chosen uniformly distributed across the entire set.  This 

is not often the case when the RL algorithm is left to learn on its own, but it is useful to 

understand what approximations are likely to be accurate and which will be useless; the P 

matrix provides this information. 

 

Using minimum MSE as the performance measure, gradient descent methods can again be 

used (Widrow and Hoff, 1960).  The parameter vector 
_
  is adjusted in the direction that 

most reduces the error of a sequential sample (Sutton and Barto, 1998).  The step is 

adjusted in the direction of most improvement in terms of minimizing the MSE; the step in 

θt is proportional to the negative gradient of the example’s squared error, 
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When the partial derivative of the MSE is taken, using the chain rule, the equation 

becomes, 
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The derivative of the optimal value function is zero by definition; it is a minimum or 

maximum with zero gradient.  In these equations the gradient denotes a vector of partial 

derivatives.  These derivatives simply represent the gradient of f with respect to the 

parameter vector, 
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In real situations the true value function quantity VΠ is not known.  Instead we have to use 

the target output of the tth output.  In the case of MC, 
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Or in the case of n-step TD the λ-return would be used.  In acausal form this would be, 
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In causal form, and considering eligibility traces combined with generalization the equation 

becomes, 
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Since, 

 tttt sVee
t

  1

__
                                                   (75) 

and in more compact form, 
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In the case of state/action pairs this equation can be rewritten as, 
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This is commonly referred to as gradient-descent SARSA(λ) (Rummery, 1995).  Before 

implementing this update, the function approximation method must first be chosen. 

3.5.5 Radial basis functions for approximation 

Radial basis functions (RBF’s) are a form of ANN and are especially suited to this type of 

function approximation problem.  The RBF network consists of an input layer, a hidden 

layer and an output layer.  The network performs a non-linear mapping from the input 

space to the hidden space, and then provides a linear mapping to the output space.  A 

general RBF network is shown in Figure 3.5. 
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Figure 3.5:  Radial basis function network 
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The output of the RBF is a simple summation of the non-linear functions in the hidden 

layer multiplied by the weights (Simon, 2001), 
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ρ is simply the RBF used in the hidden layer.  A commonly used function is the Gaussian, 

which can conveniently be used to estimate any differentiable non-linear function by 

adjusting the centres and variances.  An example of a two dimension function 

approximation using Gaussians is shown in Figure 3.6. 

 

Figure 3.6:  2D Gaussian RBF approximation 

The resulting output of the network using Gaussians would be, 
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There are three variable parameters within this equation: the centres, the variances and the 

weights.  All these parameters can be adjusted using gradient descent and the LMS 

algorithm, but a more efficient method combines supervised and unsupervised learning 

methods.  The unsupervised learning is performed on the centres and variances, and the 

supervised LMS algorithm is used last to adjust the weights. 
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The centre numbers must first be chosen, then the centres can be positioned using a 

clustering method such as K-means.  Both the selection of the numbers of centres and their 

placement can be done in an iterative heuristic: 

1. Define the maximum and minimum number of centres 

2. Add one centre to the lower limit, and simultaneously subtract one centre from the 

upper limit. 

3. Cluster the centres using K-means and stop adding/deleting centres if either of the 

following occur: 

a. By adding one centre there was minimal change 

b. By subtracting one centre there was a significant change 

 

These changes are defined in a relative sense in comparison to a running average of 

observed changes from previously added/deleted centres.  The K-means algorithm clusters 

the centres and updates their positions until no noticeable changes occur in the centre 

positions. 

 

The variances of the individual RBF’s can be determined using the p-nearest neighbour 

heuristic, 
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The p-nearest neighbour calculates the average of centre position distances over p centres.  

The choice of p can be made as a percentage of the total number of centres, with a 

minimum value defined for p. 

 

The weights of the network are chosen using minimum MSE as the training performance 

measure.  If t is a vector of N target values then the MSE is, 
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The LMS algorithm can be used iteratively to update the weights, 
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Or if training is performed in batch, all of the target values can be related to the weights and 

RBF’s in linear matrix form, 
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And in compact form, 

11 JxNxJxN wt                                                             (84) 

The pseudo inverse can be used to solve directly for the weights where Φ is the matrix of 

RBF’s separated from the weights, 

_*_
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In the case of RL, the weights are adjusted as the θ parameters. 

3.5.6 Simplification for the linear case 

RBF’s contain a linear output layer.  This means that the approximated function Q is a 

linear function of the parameter vector θ combined with the RBF Gaussian features ρ, 
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The partial derivative of Q with respect to θ is simply ρ. 
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And as a Gaussian, the ith feature with the state denoted by s is, 








 
 2

2||||exp)(
i

i
s

csi


                                              (87) 

So the gradient Q value is simply found by summing the j features, i.e. 
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3.5.7 Applying generalization 

The purpose of the generalization is to replace the tabular SARSA with a parameterized 

form which contains significantly less parameters than table entries.  The Q values depend 

completely on how θ varies with time.  When using RBF’s, the output of the network is the 

actual Q values and θ represents the variable parameters within the RBF network: the 

weights, centres and variances.  Since unsupervised methods are used to control the centres 
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and variances, the parameter vector would only contain the weights.  Changing several 

weights changes many more Q values.  The inputs to the network are simply the 

state/action pairs.  The complete algorithm is represented in Figure 3.7, initially proposed 

by Watkins (1989). 

 

Figure 3.7:  Gradient-descent SARSA(λ) 

 

The actions are still discrete for gradient-descent SARSA(λ), it is only the Q value function 

that is parameterized through RBF’s.  For each action in the current state, the Qa(st,a) value 

is computed and the action with the maximum Q return is chosen. 
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Each state is represented by all the RBF features since the Gaussian is continuous across 

the entire state space.  Another important detail is that eligibility traces now correspond to 

components of θ, and not to individual states.  This ensures that the traces now apply to 

many states in a weighted manner.  Due to this fact, the number of eligibility traces can be 

decreased significantly.  In fact, eligibility traces only apply to generalization since the 

discrete case is 1st order Gauss Markov. 

3.5.8 Comparison to AKF 

The RL algorithm performs iterative tuning.  The tuning is expected to get better over time 

using only a single tuning strategy at a given time epoch.  This is in contrast to the MMAE 

AKF which used multiple parallel filters run at the same time epoch.  Within the MMAE 

method, if a sufficient number of filters were run then the solution would converge to the 

optimal filter. 

 

The MMAE method can guarantee optimality but only with an infinite number of parallel 

filters.  The RL algorithm is practical for real-time implementation since it only runs a 

single filter at a time, but it needs a long time to converge to a good solution.  It is the intent 

of the RL algorithm to approach the optimality of the MMAE method as time and data 

increase, or as the unit is used.  This is a more realistic implementation than the MMAE 

AKF and weights cost, usability and performance. 
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In comparison with the innovation sequence AKF, the RL holds memory of the tuning 

procedure that the innovation sequence could only do within a fixed window.  The window 

length of the RL method does not impact memory of the system, it only affects reliability.  

The Q values retain memory of past tuning experiences, so if the optimal state of the 

system changes, the Q values can be used to quickly adapt the system to a new optimal 

state; the tuning method does not change even if the optimal state does. 

 

The RL method of tuning can be thought of as a long-term approximation to the MMAE 

method.  The ANN method performs a more short-term compensation for motion 

dependent errors, similar to the IAE AKF.  If the error models change due to dynamics the 

ANN compensates the state estimates, but the RL learning still tries to get the underlying 

long-term model by averaging out short-term variations; this is done by learning over many 

data sets, as discussed in Chapter 6. 
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CHAPTER 4: COMPENSATION DURING OUTAGES 

This chapter uses a learning algorithm to compensate additional filter state errors that are 

not dealt with properly by a loosely coupled filter.  This requires the use of two parallel 

filters for online operation.  One filter is used for navigation and the other for adapting the 

state estimates of the navigator.  The use of two filters provides a reference signal that can 

be used as a target.  The inputs to the system are temporal and dynamic.  The assumption is 

that poor modelling of the inertial sensor errors creates amplified drifts during periods 

without measurement updates and these can be learned and removed from future scenarios. 

4.1 Concept of using GPS outages 

When GPS updates are not available the filter prediction errors accumulate with time due to 

the integrating nature of the inertial navigator.  The extent of this drift over time and 

through different dynamics can be used to characterize how the filter is performing.  Error 

models in the local level frame are used to understand how sensor errors propagate into 

state estimates, which are then accumulated during periods of prediction. 

 

The error terms are time dependent, so they are represented by first-order differential 

equations.  Starting with the position errors, they are primarily coupled to the velocity 

errors through the approximation, 
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The velocity errors can also be approximated as, 
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And the attitude errors as, 
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These equations show that the latitude error δφ depends mainly on the north velocity error, 

which in turn depends primarily on the pitch error, the gyroscope measurements in the 

parameterization matrix, the accelerometer bias errors and the gyroscope bias errors 

(Abdel-Hamid, 2005).  Similarly, the longitude error depends on the east velocity error, 

which in turn depends primarily on the roll error, the gyroscope measurements and the 

inertial sensor bias errors.  Both horizontal position errors also depend on the azimuth 

errors, but these have much less contribution in vehicle applications since the gravity signal 

contained in fu is usually much stronger than the horizontal accelerations experienced 

through dynamics. 
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The modelling of the inertial sensor errors is typically done using first order Gauss Markov 

processes.  For a general error term b, 

)(2)(1)( 2
.

twtbtb 


                                             (92) 

This model relies on appropriate values for the correlation time and process variance.  

Incorrect modelling can create poor estimates of the sensor error terms which can then 

propagate all the way upwards to eventually affect position estimates. 

 

These stochastic parameters are usually given by the designer of the system as fixed values.  

When the designer changes these values to assess state performance the process is referred 

to as tuning.  Different tuning parameters will result in different mean state drift errors for 

similar outage times and dynamics.  The use of improper stochastic information can create 

deterministic errors on the output of the filter estimates. 

 

An example of improper tuning could occur if the correlation time is too long and the 

variance level too small for a specific sensor.  In this case the filter estimation would 

always be behind changes in the actual sensor bias estimation, leaving residual bias errors 

that could be large for a MEMS inertial sensor with considerable turn on biases.   

 

Figure 4.1 displays two charts for an Analog Devices inertial unit; one plot is for the 

gyroscope bias versus temperature and another is for the accelerometer scale factor versus 

temperature.  Regardless of the temperature range it can be seen that the standard deviation 

levels for each sensor are quite large.  The turn-on gyroscope bias error can easily reach 
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900 deg/hr and the accelerometer scale factor error could be 2500 ppm.  These are large 

values for a filter to have to estimate with any sort of precision.  The manufactured level of 

instability for the gyroscope is 54 deg/hr.  The initial turn on bias of 900 deg/hr could be 

estimated using calibration methods, but with low-cost MEMS sensors these calibrations 

are rarely performed.  To converge on the true deterministic bias the filter would either 

have to wait a long time or increase the noise variance of the first order Gauss-Markov 

model.  Unfortunately, if the noise is increased then future estimations will not be as 

accurate.  Assuming a correlation time of 1 hour and a variance of 500 deg/hr, the level of 

precision after one hour of estimation would only be 180 deg/hr (36% of 500), which is still 

significantly larger than the instability of 54 deg/hr.  This trade-off between correlation 

time and noise is an issue when calibration cannot be performed entirely or when the turn 

on biases are so large that convergence takes too long. 
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Figure 4.1: ADIS16355 bias and scale factor versus temperature (ADIS16355 

datasheet from:  www.analog.com) 

 

Since these a priori tuning parameters are deterministic in nature and inject the same noise 

over time into the system, their effect on state errors can be monitored over time and 

dynamics.  Based on the coupling between error states certain inputs can be used to help 



             

 

96 

predict positional error states.  Table 4.1 gives the inputs used to predict the three positional 

errors used in the ANN. 

Table 4.1:  Inputs to three positional networks 

Error term 
(total #) 

Inputs (#) 

Latitude 
(total = 9) 

 Time elapsed since last GPS measurement (1) 
 North velocity error (2) 
 Pitch error (3) 
 Accelerometer signal in the up direction (4) 
 Gyroscope angular rates in LLF (5, 6, 7) 
 Estimated accelerometer biases in north direction (8) 
 Estimated gyroscope biases in pitch direction (9) 

Longitude 
(total = 9) 

 Time elapsed since last GPS measurement (1) 
 East velocity error (2) 
 Roll error (3) 
 Accelerometer signal in the up direction (4) 
 Gyroscope angular rates in LLF (5, 6, 7) 
 Estimated accelerometer biases in east direction (8) 
 Estimated gyroscope biases in roll direction (9) 

Height 
(total = 12) 

 Time elapsed since last GPS measurement (1) 
 Up velocity error (2) 
 Roll error (3) 
 Pitch error (4) 
 Accelerometer signals in the east and north directions (5, 6) 
 Gyroscope angular rates in LLF (7, 8, 9)  
 Estimated accelerometer biases in up direction (10) 
 Estimated gyroscope biases in roll and pitch directions (11, 12) 

 

The predictability of these position drifts is also driven by other errors that are amplified by 

dynamics and may have not been fully compensated by calibration, 

 Residual non-orthogonalities (if calibration is not performed or is inaccurate). 

 Misalignments between gyroscope and accelerometer triads. 

 Vibration induced errors caused by road dynamics or engine vibrations.  

Rectification of the oscillatory motion creates a bias-like error.  Many IMU signals 
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are products of angular rates or linear accelerations and if they are correlated to each 

other, say a vibration axis is in a skewed direction, then the average value of the 

product is not zero, as is the case of a purely oscillatory signal (Farell, 2007). 

 Non-linear errors.  These are typically negligible for vehicle applications but could 

be a potential source of additional error for pedestrian or aerial navigation.  Vehicle 

navigation is typically very smooth compared to dynamics induced through walking 

or plane maneuvers (Shin, 2005). 

 De-correlation errors.  These errors are due to an alignment procedure that takes 

place in a certain orientation.  Gyroscope and accelerometer biases are removed 

during the alignment, but due to the orientation of the strapdown system when this 

orientation changes the errors can actually be reinforced (Weston and Titterton, 

2004). 

 Lever arm errors.  For low-cost systems the lever arms are often measured roughly 

with several centimetres of error.  Bending errors, between the IMU and GPS 

antenna, can also create errors on the level of centimetres or decimeters (El-

Mowafy, 1994).  These errors propagate directly into the solution and can cause 

convergence issues if they become too large (Titterton and Weston, 2004). 

 

Note that temperature induced errors have not been included in this analysis.  

Manufacturers are generating a better understanding of temperature induced errors as was 

apparent from the plots in Figure 4.1.  However, if temperature has not been directly 

compensated from the bias and scale factor terms of the MEMS inertial sensors, then 

temperature can be added as an additional input to the system. 
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4.1.1 Training 

The system used to perform estimation of the residual position errors is an ANN.  The use 

of two parallel filters allows a target value to be created while the other filter simulates 

GPS outages by removing the GPS signals.  These two filters are referred to as the 

navigation and simulation filters respectively (Goodall, 2006).  The use of these filters 

allows the system to be trained incrementally by comparing the position outputs of the two 

filters to form target error curves as shown in Figure 4.2.  Three distinct learning systems 

are employed for the three LLF position error terms. 
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Figure 4.2:  ANN training architecture 
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In the case of SGPS with MEMS grade sensors the training reference of the navigation 

filter is only precise to within a few metres.  This in turn means that the target values used 

for training can also be in error of several metres.  Therefore, very short outage periods, 

causing position drifts of only a few metres, cannot be expected to be improved using this 

training reference.  The training errors become less noticeable as the length of the GPS 

outage times increase and the position errors grow.  The purpose of this compensation is 

not for high accuracy, but for positioning to within several metres for applications such as 

vehicle navigation using a loosely coupled filter that loses GPS signals for longer than 

several seconds.  For longer GPS outages the position drifts become a problem for such 

applications, but with intelligent compensation they can be minimized. 

 

The training performance can be used as an indicator for future prediction performance.  If 

there are no deterministic relationships between the inputs and target values of the system 

then the output of the ANN would simply inject zero mean noise into the system, with a 

variance equal to that of the reference training error.  Chapter 5 deals with this situation and 

others related to ANN convergence issues and performance when combined with a Kalman 

filter.  For now it is assumed that the filter converges on some deterministic error sources 

and predicts them within the noise level of the target signal. 

4.1.2 Prediction 

Once the networks are trained on a variety of dynamics and outage times they can be used 

to help compensate for real GPS outages occurring after the training has converged.  

During real outages only the navigation filter is used, without GPS, since the reference 
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cannot be generated when the signals are blocked.  The inputs are sent to the three trained 

networks which then provide predictions of the position error.  These predictions are then 

compensated from the EKF predictions to form the corrected positions.  Based on the 

tuning and other residual errors this prediction can be quite helpful if there are significant 

left-over deterministic errors not estimated by the EKF.  A general prediction architecture is 

given in Figure 4.3. 

Corrected 
positions

+

NCORR ECORR UCORR

Prediction Inputs
NPRED, EPRED, UPRED

PINS, VINS, AINSINS
(MEMS)

Navigation KF
(Prediction mode – no GPS)

Neural predicted  
position Errors ∑

 

Figure 4.3:  ANN prediction architecture 

4.2 Network topology and details 

The basic structure of the input/output relationship has been formed.  Many designers then 

consider the specific details of a neural network to be less important, but as will be 

demonstrated there are several topologies that significantly enhance the performance of a 

system containing many inputs and a noisy reference signal. 
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4.2.1 Hidden layers 

The most important aspect to designing a multilayer perceptron ANN is in the choice of the 

number of hidden layers.  The universal approximation theory states that a single hidden 

layer is needed.  But this theorem is only an existence proof (Haykin, 1994).  The theorem 

makes two assumptions that are not practical for the system being estimated in this 

dissertation: 

1. The true continuous function is given.  This assumption is false since the 

reference signal is contaminated by noise and may be changing over time. 

2. A hidden layer of unlimited size is available.  This assumption is not practical 

from a processing point of view.  Furthermore, the topology is fixed ahead of time. 

 

An ANN containing a single hidden layer can have some serious estimation issues for 

complex problems due to global interactions between neurons in the hidden layer.  The use 

of two hidden layers allows the first layer to extract local features and the second layer to 

deal with global features (Haykin, 1994).  The input spaces can be segregated to get better 

approximation across both local and global features.  This prevents the system from 

learning one global feature and forgetting another previously learned feature. 

 

The use of two hidden layers can also help the system detect features that characterize input 

patterns, such as correlations between inputs.  Dimensionality reduction is performed 

internally to the network without the need of a pre-design analysis tool such as Principal 
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Components Analysis (PCA).  Fewer neural nodes are required in the second hidden layer 

due to this form of data compression formed in the first layer (DeMers and Cottrell, 1993). 

 

The original design of the network contained only a single hidden layer with 50 hidden 

neurons.  A revised network topology using 2 hidden layers with 10 neurons in the first 

layer and 5 in the second was found to approximate much more precisely and converge 

faster.  Memory requirements were also decreased significantly since 35 fewer neurons 

were used.  The number of parameters for the single and double hidden layers for the case 

of 9 inputs and a single output are given in Table 4.2. 

Table 4.2:  Parameter requirements for one and two hidden layers 

Parameter 1 hidden layer (50 neurons) 2 hidden layers (15 neurons) 

Input weights 500 (9*50) 90 (9*10) 

Hidden #1 weights 50 (50*1) 50 (10*5) 

Hidden #2 weights 0 5 (5*1) 

Output layer weights 1 1 

Biases 50 35 

Total parameters 551 181 

4.2.2 Activation function 

The activation function of the hidden layers has to be non-linear and differentiable.  The 

most commonly used activation function is the logsigmoid, 
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The resulting derivative of the logsigmoid is, 

 21
)(log

n

n

e
ensig






                                                (94) 

which can be simplified for iterative use as, 
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Although this activation function has a simple form of derivative used for backpropagation, 

it is generally found that the network can learn faster when the activation function is 

asymmetric (Russo, 1991).  An activation function is asymmetric if, 
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The most commonly used asymmetric function is the hyperbolic tangent, 
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Commonly used values for a and b are (Guyon, 1991), 
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So the hyperbolic tangent becomes, 
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The general derivative of the hyperbolic tangent is, 
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The derivative of the hyperbolic tangent can also be simplified as a function of the original 

activation function for iterative use.  Consider a constant c, currently unknown, 
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Now let c = a2, 
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Now also introduce a scaling factor d, 
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So that, 
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Equations (106) through (111) give a summary, 
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The choice of variable a by Guyon (1991) relates to the desired response of input target 

values.  The target value should be within the range of the activation function, or for 

716.1a
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practical applications should be some small distance away from the limiting value of the 

activation function, namely a.  If the small delta is set to 0.716 then the target values can 

range between ±1, which is convenient for scaling purposes.  This is more practical than 

using a = 1 because the target inputs would rail the activation function. 

4.3 Application of intelligent compensation during GPS outages 

To test the applicability of this neural compensation, field test data was collected using 

low-grade MEMS accelerometers and gyroscopes combined with SGPS.  Training was 

performed on one dataset and testing on another collected shortly after the first.  Both 

trajectories are shown combined in red overlay on Figure 4.4.  The test was performed in 

open sky conditions near the Springbank airport just west of the city of Calgary. 

Springbank airport

 

Figure 4.4:  Open sky trajectory 
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The data was collected using a Chevrolet Express Cargo van 2500, shown in Figure 4.5.  

MEMS accelerometers and gyroscopes from Analog Devices Incorporated (ADI) were used 

along with GPS data from a NovAtel OEM4 receiver.  The inertial assembly was designed 

by members of the MMSS research group at the University of Calgary with a system cost 

of approximately 150 US dollars.  This low-cost unit is applicable for civil applications and 

is small enough to be embedded within a GPS receiver as shown in Figure 4.6. 

 

Figure 4.5:  Test vehicle 

 

 

Figure 4.6:  ADI inertial sensor assembly 
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A high-end tactical grade IMU using fiber optic gyroscopes was included in the field test to 

provide a quality reference for error analysis.  The LN-200 INS from Litton was combined 

with DGPS from a NovAtel OEM4 receiver to provide a reference good to within a 

decimetre of the actual unknown true trajectory.  This reference was possible due to the 

lack of any natural GPS outages and a minimum of seven satellites available throughout the 

test.  The reference receiver located in Springbank is shown in Figure 4.7.  The flat treeless 

terrain provided excellent GPS signal quality. 

 

Figure 4.7:  Base station for DGPS in Springbank 
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The inertial EKF was run in forward filter mode with GPS and without additional aiding, 

such as nonholonomic constraints.  Nonholonomic constraints are velocity constraints on 

the vehicle that constrain lateral and vertical velocity.  These have been shown to be very 

useful as velocity updates to the filter, see Niu et al. (2007), but were not considered in any 

of the following analyses due to their complex relationships with other vehicle error 

sources. 

 

Although some small residual misalignment and temperature induced errors were already 

present in the MEMS IMU data, further errors were introduced to replicate an example of 

poor filter tuning.  Since the temperature variations were small (from 10-20 degrees 

Celsius) and the non-orthogonalities were largely removed through a six position static test, 

these tuning induced errors dominated the residual errors. 

 

The 21 state loosely coupled EKF required estimates of the accelerometer and gyroscope 

bias noise levels to optimally combine the inertial measurements with the GPS data.  The 

ideal parameters for these values were developed through extensive pre and post test 

procedures.  Static lab tests, using Allan Variance, were combined with intelligent tuning 

methods from Chapter 6 to generate the ideal a priori parameters.  Deviations from these 

ideal parameters were then introduced by using a quarter the ideal values for both the gyro 

and accelerometer bias noise levels.  By fixing the correlation times at one hour and using 

smaller than ideal tuning parameters, incorrect bias estimates were likely throughout the 

test which took about an hour of driving time.  These incorrect bias estimates are likely 

since systematic errors on the innovation sequence are created by choosing variance values 
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too optimistically (Petovello, 2003).  Figure 4.8 gives a plot of the accelerometer bias 

estimation during the test, which varied largely.  An accelerometer residual error of 0.05 

m/s2 would be roughly 22 metres after 30 seconds of drift.  This additional error could 

easily be injected with poor bias estimation. 

 

Of course, non-compensated motion dependent errors can also contribute to poor bias 

estimation (Titterton, 2004).  Misalignment between accelerometer and gyroscope triads 

can create an error on the bias estimation depending on the orientation of the strapdown 

platform.  When this error is combined with lever-arm and bending effects, the overall error 

becomes less predictable.  De-correlation and rectification errors also contribute as motion 

dependent terms.  Rectification errors can be especially significant in vehicles that are 

subject to road or engine vibrations. 
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Figure 4.8:  ADI accelerometer bias estimation 

 

Based on 40 GPS signal outages, each lasting 30 seconds, these tuning parameters caused 

an average drift of about 55 metres in the horizontal direction.  In comparison to the ideal 

case, which had drifts of 25 metres on average, the poorly tuned results contained an 

additional 55% in positional state errors. 

4.3.1 Training Data 

The training was performed sequentially as new inputs and targets arrived.  The training 

was performed in real-time with a one outage delay.  The network was updated in time for 

the next training outage since there was a minimum of 90 seconds between all the training 
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outages.  Hence, the network could be considered updated with n-1 outages in real-time, 

given n real-time training outages. 

 

A total of 40 simulated outages, each lasting 30 seconds, were used to train the networks.  

The length of the outages was chosen based on a typical time without GPS when navigating 

a vehicle amongst tall buildings.  This of course depends on the receiver used and the 

environment.  This length of outage also allows the EKF position errors enough time to 

diverge past the noise threshold of the training reference so that useful neural 

compensations can be made. 

 

The results after the final batch training are shown in Figure 4.9.  The target errors are the 

smooth drifts in black, while the trained network outputs are the noisy estimations in red.  

Although there are two outages, circled on the figure, which did not converge, the rest of 

the trained outputs are within several metres of the target values, which is as accurate as 

possible given the training reference that uses SGPS and MEMS inertial sensors. 
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Figure 4.9:  Training results on 40 outages 

 

The east and north networks appear to have converged on appropriate values after the 

sequential outages, but the up network estimation is noisy.  This noise level is on the 

magnitude of several metres and is a result of training on SGPS measurements combined 

with an MEMS grade IMU.  This type of reference often exhibits an error that seems like 

noise due to the many contributing error terms of both the SGPS and IMU.  The accuracy 

of the training results cannot be expected to be better than the reference, so this noise level 

is introduced into all three networks.  Its effect is more apparent with the up network since 

the up errors have much smaller magnitudes than the horizontal errors, which are on the 
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level of 2 to 4 metres in the horizontal plane and 6 to 8 metres vertically with an average 

noise level of 3.7 metres horizontal and 6.9 metres vertical.  These ranges are within the 

error level of the single point GPS reference. 

4.3.2 Prediction Results 

Since there were no natural GPS outages in this open sky field test, GPS test outages were 

created by removing the GPS data input to the EKF, similar to how the training outages 

were generated.  The trained networks were then used to generate predictions of the drifts 

using the temporal and dynamic inputs during the test outages.  The results for 11 test 

outages, each 30 seconds long, are given in Figure 4.10.  These simulated outages were 

from the same dataset as the training data, but occurred during the last 20 minutes of 

driving, independent of the training data that was collected during the initial 40 minutes of 

the field test.  The actual errors are shown as smooth black drifts while the neural 

predictions are shown as noisier estimations in purple. 
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Figure 4.10:  Prediction results on 11 test outages 

 

The east and north network predictions show good correlation to the actual Kalman filter 

errors while the up network is mainly noise, as was expected from the training results.  The 

neural predictions were differenced from the actual errors to form residual neural errors 

after compensation.  The sum of the absolute errors at each epoch (100Hz) was used to 

compare the relative improvement between the Kalman filter uncompensated and the neural 

compensated cases.  This performance measure was used since the neural compensated 

error signals contained significant noise which meant the largest errors did not necessarily 

occur at the end of an outage period.  Furthermore, the accumulation of these noisy errors 

could pose a potential problem for some applications, so a cumulative sum of the errors 
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was needed to analyze all the errors over the outage period.  This was done for the 

horizontal networks as shown in Figure 4.11. 

 

Figure 4.11:  Prediction results after compensation 

 

Table 4.3 gives the individual and overall improvements for each network after 

compensation of the predicted errors.  Maximum values could not be used for a fair 

analysis of improvement since the neural compensations had noise levels that sometimes 

created the largest errors.  The absolute sum of the errors was used over each outage as a 

more representative measure, 
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Positive values indicate improvement after compensation while negative values indicate 

degradations.  The north network displayed large improvements for 8 of the 11 outages.  

The three outages that were degraded were among the smaller drifts, all being less than 20 

metres.  The neural compensation cannot be expected to improve upon such small errors 

since their drifts are already close to ideal and approach the noise level of the predictions. 

Table 4.3:  Neural improvements after compensation 

Outage North (%) East (%) Up (%) 
1 72 22 25 
2 87 67 -2 
3 76 -7 -4 
4 52 -7 -67 
5 -166 26 -5 
6 25 46 -9 
7 -76 2 -97 
8 46 40 7 
9 61 70 -33 
10 84 17 -67 
11 -61 57 -89 

Overall 52 40 -11 
 

The overall numbers in the last row represent a percentage improvement when equation 

(112) is used for i over all of the outage times.  The overall improvement is not an average 

of the individual outage improvements since some improvements are worse or better, in 

absolute sense, depending on the magnitude of their original drift errors.  

 

The east network performed well with an overall improvement of 40%.  9 of the 11 outages 

improved with neural compensation, while the two smallest outages degraded slightly due 
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to the noisy training reference and near zero EKF drifts.  The up network was degraded 

overall, due to the noisy reference data and Kalman filter drift errors, less than 5 metres.  

To improve the up network the errors would have to drift beyond the noise threshold of the 

training reference, which would mean longer GPS signal outage times. 

 

The overall improvements for the horizontal compensation networks agree well with the 

computed possible improvement of 55% when compared to an ideally tuned filter.  The 

maximum average improvements should not exceed 55% but should come as close as 

possible to this value within the accuracy of the training reference and additional residual 

errors such as temperature and misalignment induced drifts. 

4.4 Real versus simulated GPS outages 

Testing of simulated outages proved that the neural compensation networks are capable of 

removing most of the deterministic errors introduced through poor tuning of the Kalman 

filter.  Unfortunately, the behaviour of real GPS outages is more complex than simply 

losing the signals and then reacquiring them.  In simulated outages the GPS quality before 

and after the signal outages was not altered, but during real outages the quality is often 

degraded.  To analyze these characteristics a field test including downtown data and real 

GPS outages was conducted. 

 

The test setup used to collect the data was exactly the same as with the simulated GPS 

outages.  The same van was used along with the ADI and NovAtel OEM4.  The reference 

for error analysis was again generated using a tactical grade INS and DGPS, but the 
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accuracy of the unit was degraded due to real GPS outages and additional reflected GPS 

signals in the form of multipath.  The final accuracy of this reference was good to within 2 

metres RMS. 

 

The same 30 second simulated training outages were used along with additional 60 second 

outages.  Since neural networks are very good interpolators but poor extrapolators, these 

additional 60 second outages were needed for longer real outage prediction times (Cichocki 

and Unbehauen, 1996). 

4.4.1 Analysis of several real GPS outages 

The quality of GPS before an outage period can largely impact the growth of errors during 

the outage.  Real GPS signal outages in downtown environments typically display poor 

quality before an outage due to multipath.  Depending on the magnitude of this multipath 

the Kalman filter can begin to diverge before the outage actually begins, which then 

impacts the usefulness of the neural predictions. 

 

An example of this case is shown in Figure 4.12 through to Figure 4.17.  The pink dots are 

GPS measurements, the black line is the tactical grade reference and the blue line shows the 

MEMS Kalman filter solution.  Figure 4.12 gives an overview and numbers the stages of 

this multi-GPS outage period.  This figure also shows the direction of travel and highlights 

the divergence of the original IMU/GPS solution in comparison to the east/west, 

north/south true solution. 
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Figure 4.12:  Original solution using poor GPS measurements 

 

The first loss of GPS signals starts immediately after turning left onto the east-most street.  

The behaviour of the filtered horizontal solution in Figure 4.13 shows a minimal drift of 

less than 50 metres during this 40 second outage period.  Several GPS measurements are 

then received while stopped at a light.  These measurements bring the filtered solution back 

within 5 metres of the reference, but just after the vehicle starts moving the GPS signals are 

seriously contaminated by multipath, stronger than the direct signal, which results in the 

solution being pulled off course by over 250 metres.   
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Figure 4.13:  Zoom in #1 of original solution 

 

This multipath is likely due to the tall buildings that surround the vertical arrow tip in 

Figure 4.14 which shows an overlay for this section of the trajectory.  Since the GPS 

measurements are weighted strongly when using a low quality MEMS unit, it is difficult to 

prevent this situation. 

Stop light 

Multipathed 
GPS 

IMU/GPS 

IMU/GPS 
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Figure 4.14:  Overlay of downtown buildings and test trajectory 

 

After these poor quality GPS measurements, another outage period is started, but this time 

the filter drifts very quickly because of the poor initial GPS measurements.  The solution 

drifts over 1500 metres in less than 1 minute (Figure 4.15) before further GPS 

measurements are received in Figure 4.16.   
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Figure 4.15:  Zoom in #2 of original solution 

 

These new signals are also affected by multipath, but are able to bring the solution to within 

200 metres of the reference.  These few updates are followed by a third GPS outage of 30 

seconds.  This time the filtered solution drifts in the north-east direction in error of nearly 

1400 metres. 

IMU/GPS 
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Figure 4.16:  Zoom in #3 of original solution 

 

When good GPS measurements are finally received in Figure 4.17 the solution takes some 

time to re-converge.  This re-convergence time is typically much faster with simulated 

outages since the quality of GPS is less affected by multipath.  This is evidenced in the next 

figure by the seesaw convergence behaviour of the IMU/GPS solution. 
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Figure 4.17:  Zoom in #4 of original solution 

 

The street view of this convergence period is shown in Figure 4.18.  There are still very 

large buildings but the street is wider so additional GPS signals can be obtained. 

IMU/GPS 

Truth solution 
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Figure 4.18:  Street and surrounding buildings during reacquisition of GPS 

4.4.2 Filtering the GPS data 

The large drifts shown in Figure 4.12 would not be well predicted by the trained networks 

using simulated outages.  The first outage period that drifts only 50 metres would be similar 

to simulated outages, but the large biases created by the multipath in the other outages 

would not be considered when training the networks.  To avoid these large biases and fast 

drift of the Kalman filter, innovation sequence testing and a velocity filter were used to 

remove poor GPS measurements. 
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The innovation sequence testing performed a global test to detect blunders in the latitude, 

longitude and height updates.  The global test statistic used was (Mohamed, 1999), 

       kkk
T
kkkk

T
kkkk xHzHPHRxHzT 1                            (113) 

Or in more compact form, 

kvk
T
kk vCvT 1                                                          (114) 

Where vk is the innovation sequence.  If this test statistic exceeded a threshold level for a 

defined confidence level then all three GPS measurements were disregarded.  The issue 

with this method was that at a low confidence level (eg. 95%) too many measurements 

were discarded and the filter diverged.  When the confidence level was increased (99.5%) 

the filter reached a state of convergence, but there still remained many additional 

multipathed GPS measurements. 

 

To deal with additional blunders a velocity filter was used on any measurements that 

passed innovation sequence testing.  The velocity was derived by averaging the kinematic 

periods of the filtered solution over a 10 minute window.  The standard deviation of the 

vehicle speed was also calculated over this same interval and the maximum vehicle velocity 

was set by adding three times the standard deviation to the mean.  This ensured that very 

poor GPS measurements were ignored if it was found that the vehicle travelled an 

unreasonable distance based on previous velocities.  For example, if a GPS measurement 

placed the vehicle 2 kilometres from its previous position after a minute from the last GPS 

measurement, this would mean the vehicle travelled 120 km/hr on average.  If the previous 

driving was within an urban environment at 50-60 km/hr then this GPS measurement would 
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likely be ignored.  The impact of filtering the occasional good measurement was deemed 

less important than rejecting bad measurements, so the 3 sigma threshold was used. 

 

The results of innovation sequence testing and velocity filtering were dramatic, reducing 

the largest errors by nearly one kilometre.  Figure 4.19 shows the new solution, with the 

largest drift being less than 400 metres.  When this figure is compared to Figure 4.12, the 

result of minimizing poor GPS measurements is obvious. 

 

Figure 4.19:  Filtered solution for EKF 

 

There were a total of 21 largely biased GPS measurements in the original solution.  The 

blunder detection scheme was able to remove 18 of these measurements with the remaining 

3 contributing to the largest remaining bias offsets and resulting drifts.  Unfortunately, there 
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is no logical software method for removing these last three measurements since it is 

possible that the vehicle did indeed move 300 metres within 1 minute and innovation 

testing was unable to remove these without filter divergence. 

4.4.3 Prediction results using real outages 

Using this GPS filtered solution, the neural compensation was applied to 5 real outages.  

The effects of two of these outages are quite apparent in Figure 4.19, with the other three 

being significantly smaller and similar to the simulated outage results.  The length of each 

outage along with the maximum east and north errors are given in Table 4.4.   The effect of 

multipath bias error is especially relevant to the fifth outage. 

Table 4.4:  Filter error during real GPS outages 

Outage Length (sec.) Max. north drift (m) Max. east drift (m) 
1 40 78 138 
2 14 35 29 
3 42 17 22 
4 50 24 83 
5 22 180 365 

 

The prediction results are shown in Figure 4.20, which also gives an idea of the initial 

biases due to GPS multipath for each outage. 
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Figure 4.20:  Prediction results during real GPS outages 

 

Table 4.5 gives the overall and individual improvements for the 5 outages.  2 of the 5 

predictions were very poor, but the overall errors were still decreased significantly.  These 

improvements would have been significantly better had the initial biases been completely 

removed.  Unfortunately, in a real situation these biases cannot be fully removed so the 

predictability of the outages would not be solely based on the Kalman filter tuning 

parameters.  Outage drift rates would also have to account for GPS multipath induced 

biases, which depend on a variety of complex parameters such as environment geometry.  

Since these cannot be easily modelled, the best case would be to assume the biases are zero 

as was done in this analysis. 
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Table 4.5:  Neural improvements during real GPS outages 

Outage North (%) East (%) Up (%) 
1 48 81 3 
2 32 34 3 
3 -180 -8 22 
4 -180 74 30 
5 28 33 26 

Overall 11 43 16 
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CHAPTER 5: RELIABILITY OF THE NETWORK 

The neural compensation results shown in Chapter 4 require certain conditions to achieve 

their improvements over the uncompensated EKF errors.  The inputs used for the 

predictions were similar to those used for training, and the networks were fully converged 

on the training data.  In reality similar training data and the convergence of the networks 

cannot be guaranteed.  In these cases the network predictions could diverge and create large 

degradations over the uncompensated EKF errors. 

 

In a perfect system the neural compensations would only be applied once improvements 

can be guaranteed, without any degradation beyond the EKF uncompensated errors.  This 

means that the neural compensations have to be better or equal to the EKF predictions over 

the entire length of the outage.  By looking at Figure 5.1 (from Chapter 4, reproduced 

below) it can be seen that this is not generally the case.  The EKF predictions are typically 

better towards the beginning of an outage due to the neural prediction noise.  At the end of 

the outage the EKF errors drift significantly so the neural residual errors are smaller.  

Therefore, the optimal system would apply the neural compensations once the EKF drifts 

are larger than the neural residual noise level, and only if the input data during the 

prediction stage is similar to the inputs used for the converged training networks (i.e. 

representative training data). 
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Figure 5.1:  Neural compensations (from Chapter 4) 

5.1 Fuzzy monitoring 

A fuzzy inference system (FIS) is a logical choice for weighting the neural compensations 

with the original uncompensated EKF predictions.  The system takes several inputs such as 

the neural training error, the outage time, and the differences between the input data used 

for training and predicting.  Based on these inputs, and rules governing their values, the 

weighting of the EKF and neural predictions are changed.  If the weighting is close to 

unity, then the EKF estimates are used with very little emphasis given to the neural 

predictions of these errors.  If the weighting is close to zero, then the neural predictions are 

used in full to compensate the EKF predictions. 
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Weightings close to zero (strong neural weightings) should only be obtained for long GPS 

outages using a well trained neural compensation on prediction inputs within the range of 

the training inputs.  If the network has not converged then more emphasis is given to the 

EKF predictions.  Or if any of the prediction inputs are outside the range of the training 

inputs, then only minimal weighting is given to the neural compensations. 

5.1.1 Fuzzy inputs, outputs and rules 

These general heuristics fit nicely into an expert FIS system.  The inputs to the system are: 

1. The outage time 

2. The current ANN training error 

3. The differences between the prediction and training inputs for all network inputs. 

 

The third set of inputs calculated the absolute differences between the prediction inputs and 

the closest training input.  If the absolute differences were small then it was assumed that 

the ANN prediction would be capable of approximating well.  If the difference was large 

then the ANN would not be expected to generalize well. 

 

The output of the FIS was a simple weighting between the EKF and ANN compensated 

predictions.  An output close to unity would weight the EKF predictions highly, while an 

output close to zero would give all the weight to the ANN compensated predictions.  Six 

rules were made to relate the inputs to the output weighting factor: 
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1. If the outage time is short AND the neural training error is large AND any of the 

absolute differences in prediction and training inputs is large THEN give high 

weighting to the EKF predictions. 

2. If the outage time is medium AND the neural training error is small AND all of the 

absolute differences in prediction and training inputs are small THEN give medium 

weighting to the EKF predictions. 

3. If the outage time is long AND the neural training error is small AND all of the 

absolute differences in prediction and training inputs are small THEN give minimal 

weighting to the EKF predictions. 

4. If the outage time is long AND the neural training error is small AND any of the 

absolute differences in prediction and training inputs are large THEN give high 

weighting to the EKF predictions. 

5. If the outage time is very short THEN give very high weighting to the EKF 

predictions. 

6. If the outage time is very long AND the neural training error is small AND all of the 

absolute differences in prediction and training inputs are small THEN give very 

minimal weighting to the EKF predictions. 

5.1.2 Adaptive membership functions 

A fuzzy system was useful due to the number of rules and uncertain nature of these rules.  

Assuming that the network is well trained and the prediction inputs are in the range of the 

trained inputs, the fuzzy system should still weight the early EKF predictions stronger than 

the late EKF predictions due to the neural prediction noise level.  This weighting strategy 
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also depends on how well the Kalman filter has been tuned.  If the filter has been tuned 

ideally, then the EKF predictions will drift more slowly compared with a poorly tuned 

EKF. 

 

The actual definition of the outage time being short, medium or long is in question.  The 

cutoff point for weighting between the filter and neural compensated predictions can 

change.  Figure 5.2 gives a visual representation for two different tuning scenarios.  The 

cutoff points for weighting between the EKF and neural compensated predictions would be 

different depending on the level of drift. 

 

Figure 5.2:  Drifts resulting from different a priori tuning 

 

Since the tuning effectiveness cannot be known ahead of time when using MEMS grade 

sensors, an adaptive method is needed to characterize the time definitions.  An adaptive 

neural fuzzy inference system (ANFIS) was used to adjust the membership functions of the 
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outage time input parameter.  ANFIS is very similar to a regular FIS system, but the 

membership functions can be adjusted based on training data and a backpropagation 

learning algorithm. 

 

The training inputs for the ANFIS were the outage times and the targets were discrete 

weightings, being either 1 or 0.  A target value of 1 represented full EKF weighting while 0 

gave full weight to the neural compensations.  The targets were generated by setting the 0 

or 1 value based on the case that contained the smallest residual absolute error during 

prediction.  A 1 was assigned if the EKF error was smaller and a 0 if the neural 

compensated error was smaller. 

 

The general behaviour of the weighting scheme for short, medium and long outages can be 

approximated by using evenly spaced triangular membership functions spanning the length 

of the possible outage times.  Using outage length as the sole indicator of the weighting, the 

input-output relationship might look something like that shown in Figure 5.3.  This result 

uses membership functions developed by manual adjustment based on expert tuning and an 

understanding of the expected drift characteristics; ANFIS is not applied here.  Even by 

using knowledge of the desired input-output relationship there are still some odd 

characteristics of this figure.  For instance, the increase in weighting near 25 seconds 

should not be possible, and neither should the increase near 3 seconds. 
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Figure 5.3:  User developed weighting for outage time 

 

These membership functions were used as initial values for the ANFIS tuning.  Nine test 

outages were used from the training dataset to generate target values for adjustment.  The 

result of adapting the membership functions using ANFIS is shown in Figure 5.4.  The 

input-output relationship is more evenly spread across the input range, with a distinct linear 

trend towards the middle and less slope towards the extremes.  This figure was trained on 

outages that always showed improvement using neural compensations; this is the reason the 

plot comes very close to zero after 30 seconds. 
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Figure 5.4:  ANFIS developed weighting for outage time 

5.2 Applying the fuzzy reliability monitor 

The fuzzy weighting of the EKF and neural predictions ensures a reliable solution before 

the neural networks have converged and should also provide superior performance after the 

networks have converged.  To analyze these situations, two different scenarios were 

constructed:  a poorly trained case and a well trained case using results from Chapter 4. 

5.2.1 A poorly trained case 

In this scenario, neither east nor north networks were converged.  In a real situation this 

could be due to lack of training data or time restrictions limiting the convergence of the 
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networks.  As a result, the neural predictions are expected to be very poor and should be 

weighted low.  The EKF predictions would be assumed optimal in this case. 

 

The training results of the two networks that have not yet converged are shown in Figure 

5.5.  The training process typically involves several epochs before the networks converge, 

which is determined by the mean squared training error.  The result in Figure 5.5 occurs if 

the training is stopped prematurely.  The accuracy of the training data can be quickly found 

by differencing these two signals and calculating the RMS.  If the RMS is found to be 

much larger than the accuracy of the known target signal RMS, then it can be deemed that 

training has not converged. 

 

Figure 5.5:  Neural training data that has yet to converge 
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The neural prediction errors using this training data are shown in Figure 5.6 in green, along 

with the EKF prediction errors in blue.  Clearly, the neural compensated residual errors are 

large because of the poor training data. 

 

Figure 5.6:  Prediction results using neural compensations that have not converged 

 

The fuzzy weighted solution in Figure 5.7 is very close to the optimal EKF solution since 

the neural errors are very large and are rightfully avoided by the fuzzy reliability weighting.  

In this case the best solution is the EKF solution in blue which is well estimated by the 

fuzzy output in purple.  The overall error difference between the fuzzy and EKF networks 

is less than 2%. 
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Figure 5.7:  Solution of poor convergence case using fuzzy reliability monitoring 

5.2.2 A well trained case 

The next scenario assumes that the neural system has been well trained and the prediction 

inputs are within the range of the training inputs.  The largest effect on weighting between 

the EKF and neural predictions is now based on the length of the outage.  If the outage time 

is short then the EKF is given more weight, but if the outage continues then the neural 

compensations are applied with greater confidence.  Figure 5.4 gives a general idea of the 

weighting for this case. 
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To compare the fuzzy results to the neural improvements previously attained, the same 

outages are once again considered using the well trained networks of Chapter 4.  The only 

new information are the fuzzy errors shown in purple in Figure 5.8 along with the same 

EKF errors in blue and neural errors in green.  It can be seen that the fuzzy errors are 

weighted between the EKF and neural errors depending on the length of each outage.  This 

translates into good estimates throughout the length of the outage regardless of the noise 

level of the neural predictions or drift of the EKF errors.  Towards the beginning of the 

outages the fuzzy errors are smooth and close to zero since they follow the EKF errors.  As 

the outage time continues the fuzzy error weighting shifts from the EKF errors to the neural 

errors.  This makes the fuzzy estimates noisier but also more accurate, avoiding the large 

EKF drifts. 
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Figure 5.8:  FIS results for a well trained network 

 

The individual and overall improvements when using the fuzzy weightings are given in 

Table 5.1.  Positive values represent percentage improvements while negative values 

indicate degradations.  The overall improvements when using the fuzzy weighting 

compared to the EKF predictions were 70 and 52 percent in the north and east directions 

respectively.  These are significant gains over the neural improvements shown previously 

in Table 4.5 of Chapter 4.  To validate these additional gains using the fuzzy weighting, the 

individual improvements of the fuzzy weighting over the neural compensations are also 

given in Table 5.1.  The additional improvements over the neural compensated EKF 



             

 

144 

predictions are 35 and 21 percent in the north and east directions respectively when using 

the fuzzy weighting between the EKF and neural predictions.  This is largely due to the 

ANFIS weighting of outage times. 

Table 5.1:  Fuzzy improvements over neural and EKF 

Outage North % over KF North % over 
neural 

East  % over KF East  % over 
neural 

1 81 26 21 -3 
2 79 -64 57 -32 
3 78 3 43 47 
4 85 68 7 13 
5 -46 45 53 35 
6 59 44 67 39 
7 -5 40 38 36 
8 65 35 50 16 
9 80 47 70 -2 
10 84 -5 21 3 
11 25 53 57 -2 

Overall 70 35 52 21 
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CHAPTER 6: INTELLIGENT TUNING ALGORITHM 

The neural networks and fuzzy logic presented in Chapters 4 and 5 give practical methods 

to aid a general filter, but they do not provide insight about the actual filtering process.  It is 

the intent of this chapter to use intelligent learning methods that feed back to the Kalman 

filter a priori inputs; in doing so the designer of the system can gain knowledge of the 

effects dominating the position state errors.  Instead of compensating the outputs, this 

intelligent feedback system changes the inputs to the filter.  This requires that the system 

have self-learning capabilities, which the RL system does through interaction with the 

environment. 

6.1 Tuning a Kalman filter 

The process of tuning a Kalman filter refers to the steps taken by the designer while 

changing the a priori data in an effort to improve the performance of the filter.  The actual 

performance measures defined by individual designers can vary.  Most INS/GPS designers 

would agree that the positional error drifts during periods without GPS updates are the most 

important measure.  For a consumer product position is of utmost importance, so this is the 

primary measure. 

 

These drifts relate directly back to the performance of the innovation sequence, which if 

white, is considered optimal (Mehra, 1970).  If the last innovation sequence happens to be 

large then large prediction drifts would be expected.  If the innovation sequence is small 
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then the opposite would occur.  So the size of the drifts is governed by the size of the 

innovation sequence, which in turn if optimal, is driven by white noise. 

 

The whiteness of the innovation sequence can be analyzed by looking at many time epochs 

when measurements are available.  Another way of indirectly analyzing the innovation 

performance would be to look at the maximum values of the state drifts, since these depend 

largely on the last innovation sequence before prediction.  These drifts also depend on the 

quality of the dynamic modelling, so if the average of an infinite number of these drifts was 

minimized then the filter would be performing optimal state estimation, in terms of 

accuracy. 

 

Reliability of a Kalman filter is also very important.  A Kalman filter can be considered 

reliable if its estimation of the position error drifts is close to the actual error drifts.  This is 

commonly referred to as consistency of the filter (Crassidis and Junkins, 2004).  In a real 

scenario, where GPS updates are lost it can be very important to reliably estimate the 

position error drift.  An example of this would be map matching.  If two parallel roads are 

100 metres apart, and the error drift is only 20 metres then the display can lock the user to 

the correct road without displaying the 20 metres of error.  If however, the Kalman filter 

incorrectly predicted this error to be over 50 metres then map matching could not be 

applied, or would be incorrectly applied. 

 

In any estimation process accuracy and reliability should be of importance.  If a system is 

accurate there should always be some quantity to maintain this accuracy.  For this reason 
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the position drifts and Kalman predictions of these drifts were weighted equally in the 

development of a tuning performance measure.  Equation (110) gives the minimization 

function, hereby referred to as ‘minFunc’, 

min D
(D P)2

D P








                                                     (115) 

D represents the average value of many state drifts, while P is the average of the Kalman 

filter predictions of these drifts.  The drifts are obtained by simulating GPS outages when 

the GPS signal is available and allowing the inertial-only navigator to accumulate errors.  

The minFunc equation satisfies several important requirements that ensure a quality tuning 

result: 

 

Case 1: a consistent filter, D-P = 0.  In this case the optimization problem becomes 

minimize D. 

 

Case 2: perfect state estimation, D = 0.  For perfect state estimation the filter should predict 

no drift, so the optimization problem now becomes min P. 

 

Case 3: the Kalman filter believes there should be no drifts, P = 0.  In this case the 

optimization problem tries to match the first assumption by minimizing 2D, which is still 

proportional to minimizing D. 

 

From a statistical viewpoint, an infinite number of GPS outages would have to be simulated 

to ensure that the solution is optimal.  The central limit theorem states that the sum of an 
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infinitesimal number of random phenomenon approaches a Gaussian distribution, 

regardless of the individual distributions (Maybeck, 1982).  Since it is not possible to 

collect and analyze the effects of a priori parameters over an infinite number of simulated 

outages, error bounds can be developed around certain solutions to provide insight about 

the level of fine-tuning that can be performed for a given set of data.  Any method, even 

intelligent learning methods, will have limits to how well they can decrease these error 

limits. If a method could hold all past data in memory then the bounds would always 

decrease to the level of system noise.  Even incremental intelligent methods can forget 

previous data and the requirement to hold all past data in memory is not possible.  

Therefore error bounds are applied to understand the limits of the obtainable accuracy. 

6.1.1 Serial tuning procedure 

It is worth discussing a method commonly used by designers to tune a Kalman filter in a 

manual way.  This can be better described as a serial tune as will become apparent once the 

method is explained.  The designer of an MEMS IMU typically starts from the 

manufacturer recommended values or some values that intuitively make sense.  Unlike the 

Kalman filter first state, these starting values make a difference to the convergence of the 

final state when performing a serial tune, so it is important they are chosen carefully. 

 

The second step is to collect some field test data or simulate test data.  This data is then 

used to simulate GPS outages and analyze the performance measures defined by the 

designer; in this dissertation the optimization problem will remain the same, to minimize 

the minFunc equation.  The collected data is crucial to the success of any tuning method.  
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The more data used the better, since the error bounds can then be approximated by the 

variance of the data. 

 

The next step is to form a serial tuning order.  This is typically done by performing a 

sensitivity analysis of the various parameters during GPS outages with respect to the time 

without measurements.  The following equation, as a function of time, relates many of the 

inertial tuning parameters to position error in the horizontal plane. 
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The terms in this equation are defined as, 

p(t)  the positional error drift after time t 

p(t0)  the initial position error at the start of the outage 

v(t0)  the initial velocity error at the start of the outage 

t the time difference between the start of the outage and the current 

time 

ba(t0)  the accelerometer offset bias at the beginning of the outage 

bg(t0)  the gyroscope offset bias at the beginning of the outage 

g  the local gravity constant 

r,p(t0) the nonorthogonality error due to roll or pitch errors at the beginning 

of the outage 
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A(t0) the nonorthogonality error due to azimuth errors at the beginning of 

the outage 

V the average velocity during the outage 

SFa(t0) the accelerometer scale factor error at the beginning of the outage in 

specific force [m/s2] 

SFg(t0) the gyroscope scale factor error at the beginning of the outage [rad/s] 

 

From this equation it can be seen that the residual gyroscope errors create the largest 

positional drifts with respect to time.  Typically the gyro bias would be adjusted first, with 

parameters such as the gyroscope scale factor, accelerometer bias, angular random walk 

and velocity random walk coming after. 

 

What is not shown in equation (111) is the effect of the GPS measurement updates.  In a 

loosely coupled filter these come in the form of GPS position update noise estimation scale 

factors.  The GPS Kalman filter provides estimates of these noise factors within the R 

matrix, but these can be scaled up or down depending on whether the GPS Kalman filter is 

pessimistic or optimistic.  If the GPS Kalman filter was in a state of perfect consistency, the 

scale would be unity. 

 

This R matrix scaling is very important when tuning a loosely coupled filter.  Designers 

often put this parameter first or second in the tuning strategy.  It should be considered at 

least as important as the gyro bias noise estimate since it affects the last innovation 
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sequence directly.  The serial tuning results in this thesis always consider the R noise 

scaling factor first. 

 

There can of course be other parameters such as misalignment and temperature noises, but 

these are often added into the gyroscope and accelerometer bias estimates since their exact 

values are difficult to obtain.  This is a primary reason why the noise parameters of the 

biases are often optimistic when compared to real situations. 

 

Once a priority order has been defined the tuning process can begin.  The most sensitive 

parameter is allowed to vary while the remaining parameters stay fixed at their starting 

values.  Once the best local value is found for this first tuning parameter, the value is fixed 

for the remainder of the tuning.  The second value is then allowed to vary while all others 

stay fixed; the first parameter is fixed to its best local value and the others to their starting 

values.  This process continues until all the tuning parameters have been allowed to vary. 

6.1.2 Issues with the serial tuning method 

Although the serial tuning method is simple and easy to implement in practice, there are 

many problems with tuning a Kalman filter using this approach.  Optimality is 

compromised for the following reasons: 

1. Order of tuning 

The sensitivity analysis and resulting order of serial tuning does not maintain 

optimality.  Only one parameter is allowed to vary at a time and once it is fixed it is 

not adjusted again. 
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2. Starting point 

The tuning of initial parameters relies heavily on the values of the other parameters.  

If these parameters are chosen poorly then the entire tuning procedure can be 

compromised. 

3. Discrete tuning steps 

Discrete steps are taken when tuning a parameter.  Typically the value is scaled up 

or down by a constant multiple.  This multiple will depend on how fine a tune is 

being performed.  For MEMS this tuning approach would have to be performed 

several times with decreasing multipliers to enable a detailed tune. 

4. Range of tuning steps 

A range for tuning has to be defined.  The limits for MEMS sensors can be quite 

broad which would result in multiple tuning attempts using different discrete 

multipliers. 

5. Range of data 

The data used to perform a serial tune typically comes from a single field test.  This 

data is not guaranteed to apply to future tests, since the optimal values rely on 

testing across an infinite number of simulated outages.  It cannot be expected to 

keep all of the data in memory, and the serial method has no way of accumulating 

memory without exceeding space requirements.  Without a significant amount of 

data, the serial method cannot be expected to be very accurate.  In contrast, an 

intelligent method learns sequentially and decreases the variance on the estimates as 

more data is accumulated in memory. 



             

 

153 

6.1.3 Bounding the tuning error 

Tuning will never be perfect due to the fact that an infinite number of outages have to be 

tested.  According to the central limit theorem, a Gaussian can be approximated, with a 

mean and variance, given that many outages are used.  The variance on this data can also be 

used to constrain changes to the filter parameters if insignificant improvement or 

degradations are found.  This analysis applies to any type of method that tunes the a priori 

parameters using position drifts during outages. 

6.2 Learning through reinforcement 

The a priori information should be adjusted online without input from either the user or the 

designer.  This cannot be performed with an ANN since there is no target signal to use as 

reference.  All that is available are changes in the Kalman filter state.  When starting to tune 

it is unknown whether changes to certain parameters would be good or bad to the output of 

the Kalman filter.  All that can be gained are relative changes to previously known 

input/output scenarios. 

 

The desired method of tuning fits nicely into a reinforcement learning strategy.  This type 

of tuning adjusts the parameters up or down depending on comparisons with previous 

tuning results.  This allows multiple a priori tuning values to be updated during a single 

tuning step, making the method a parallel tuning approach. 
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The RL converges its solution around the best tuning procedure.  Positive reinforcements 

are awarded for tuning steps that result in improved performance in terms of both accuracy 

and consistency.  The RL policy actually learns how to tune the filter from any tuning state 

encountered through trial and error.  This is important since the optimal state will result by 

forced improvement from whatever state the system is in.  This also gives the system 

memory of the tuning procedure, which can be extended to other similar sensors, or 

updated sequentially as aging or environmental effects contaminate the optimal solution.  In 

a case where the a priori parameters are static, learning can be used to accumulate data 

without having to store additional space in memory. 

6.2.1 Leveraging the learning process 

The usefulness of this type of adaptive learning can be used to extend the tuning results 

from one filter to another.  Low-cost MEMS coming off the same production line can have 

many similarities, but can also be quite different.  It is hard to know how the hardware 

differs until the sensors are actually used in an integrated system.   

 

The idea of extending tuning results from one sensor to another is referred to as leveraging.  

The assumption is that an individual sensor will have similar error characteristics as another 

sensor of the same type, and that the similarities will be more influential than the 

differences.  If this assumption is maintained, the learning will converge faster and more 

reliably than starting without knowledge.  RL has the ability to begin with an initial model 

of the optimal policy.  This policy can then be adapted as before, through a combination of 

trial and error and greedy exploitation. 
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The RL tuning strategy would typically start from the manufacturer’s default values, and 

then take steps from this starting point towards a better solution.  Other sensors of the same 

type would also start from the manufacturer’s default values, so the models from previously 

tuned sensors could be applied as additional a priori information. 

6.3 Simulation results 

Simulation results are very important in analyzing the validity of the two tuning methods.  

Simulations allow the creation of defined stochastic processes without interference from 

additional unmodelled errors or contamination from incorrect error modelling.  Both GPS 

and inertial sensor data were simulated.  The GPS data was contaminated by time 

correlated and white noise errors, while the inertial error models are given in Table 6.1. 

Table 6.1:  Inertial error models 

Error term Model Units 

Gyroscope bias instability 1st order Gauss-Markov deg/hr 

Accelerometer bias instability 1st order Gauss-Markov mGal 

ARW White noise deg/√hr 

VRW White noise m/s/√hr 

 

Given these user defined parameters the Kalman filter can then be run with confidence of 

the true solution to the stochastic model.  This allows a direct comparison to the true 

solution, whereas using real data the true solution can never be known. 
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The simulation results created the simulated inertial and GPS data through an inverse 

mechanization process using direction cosine matrices.  See Yang (2008) for more details 

on the inertial simulator.  The simulated signals were then passed through a loosely coupled 

extended Kalman filter to produce state estimates of the positions, velocities, attitudes, 

biases and scale factors.  See Shin (2005) for full details on the EKF, which used 

quaternions to parameterize the attitudes.  The actual error values used in the simulations 

are given in Table 6.2. 

Table 6.2:  Simulated error values 

Error term Value 

Gyroscope instability (std) 100 deg/hr 

Accelerometer instability (std) 600 mGal 

ARW 1 deg/√hr 

VRW 3 m/s/√hr 

 

The random walk terms have no correlation times, but the bias standard deviations are 

modelled as 1st order Gauss-Markov so they require definition of correlation times for their 

autocorrelation functions, 

||2)(   etR                                                    (117) 

The correlation time is, 


1

t                                                           (118) 

In control engineering the variance term is considered the initial value since, 

202/||2)(     eetR t                                        (119) 
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The time constant is used to describe how quickly the exponential decays.  When t equals τ 

the value decays by 37% of the original value, 

212/||2 37.0)(     eetR t                                      (120) 

For a time constant equal to 5 times that of the correlation time the system has stabilized to 

less than 1% of the initial value (Dorf, 2000), 

252/||2 007.0)(     eetR t                                     (121) 

This is typically defined as the stable point of the system.  For a correlation time of 1 hour 

the stability would only really be guaranteed after 5 hours.  Since this is not very practical, 

another way to minimize the noise is to reduce the initial value of the variance.  This is 

what the tuning strategy does by keeping the correlation time fixed and adjusting the 

variance value. 

 

If the time constant is fixed to a value that is too short, then the variance can be increased to 

allow the bias estimation to adapt more.  If the time constant is fixed to a value that is too 

long the reverse can be performed by the tuning.  All gyroscope and accelerometer time 

constants were set at one hour for all MEMS and simulated MEMS sensors. 

 

The use of the loosely coupled EKF also allows a scaling factor to be applied on the R 

matrix estimations of the GPS position errors.  Since the GPS data was simulated as white 

noise with a defined variance, the true value of this scaling term would be unity. 

 

32 simulated outages were created with 90 seconds between outages for the filter to re-

converge.  Error bounds were created using the variance of the minFunc solutions.  More 
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simulated outages meant that the error bounds decreased.  Using the optimal stochastic 

solution, 30 simulated outages were used to generate error bounds of 27 metres, relative to 

a minFunc value of 102 metres, or approximately 26% of the minFunc value.  When only 

15 outages were used, the error bounds increased to 72 metres for a minFunc solution of 

128 metres, or 56% of the minFunc value.  By doubling the number of simulated outages 

the bounds on the optimal solution were halved.  This clearly indicates the necessity of 

using as many simulated outages as possible to minimize the relative error on the generated 

solution, and the impracticality of using a fixed window approach without memory. 

6.3.1 Serial tuning 

The serial tuning was applied to the simulated data first to form a benchmark for 

comparisons of the RL tuning.  Two serial tuning scenarios were performed: 

1. The first case started from the optimal solution and used error bounds to constrain 

changes in the tuning solution.  A new minFunc value could only be deemed better 

than the previous solution if it satisfied two conditions: 

a. The new minFunc value was smaller than the previous best minFunc minus 

the lower bound error. 

b. The new minFunc value plus the new upper error bound was smaller than 

the previous best minFunc value. 

2. The second serial tuning approach did not apply the constraints of the error bounds 

and started from a random solution. 
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The first case was simulated to test the validity of the true stochastic solution combined 

with error bounds.  The second serial tune was more realistic of a typical situation where 

the real solution is not known. 

 

The order of serial tuning was kept the same for both scenarios.  The tuning began with the 

R position standard deviation scale factor, the gyro bias standard deviation was tuned 

second, then the accelerometer bias standard deviation, the ARW and finally the VRW 

(Nassar et al., 2006). 

 

The tuning plots for the first serial scenario are given in order of the serial tuning.  The 

horizontal axes represent the discrete tuning values that were taken for each parameter.  

The vertical axes are the returned minFunc values that weighted the average of the 30 

simulated position drifts with the consistency of the filter.  The star denotes the starting 

point, which in the first scenario was the optimal solution.  Each cross is a constant scale 

from the previous cross value on the horizontal axis.  The error bounds for the optimal 

solution are shown as the vertical lines above and below the optimal solution. 
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Figure 6.1:  GPS position std scale results for serial tune of simulated data 

 

For the GPS position standard deviation scale it can be noticed that smaller (optimistic) 

values diverge much more quickly than larger (pessimistic) values.  This is due to the fact 

that the GPS noise variance was set to 5 metres, so when this value is scaled down the filter 

becomes too reliant on these values and contaminates the innovation sequence with 

additional noise on the level of several metres. 
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Figure 6.2:  Gyroscope bias std results for serial tune of simulated data 

 

The gyroscope bias is quite sensitive to changes in its standard deviation value.  This was 

anticipated since a residual gyroscope bias has error proportional to time cubed when the 

filter operates without measurement updates. 
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Figure 6.3:  Accelerometer bias std results for serial tune of simulated data 

 

The accelerometer bias standard deviation was not very sensitive to changes.  None of the 

values surpassed the error bounds of the optimal solution, so the optimal solution of 600 

mGal was maintained. 
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Figure 6.4:  ARW results for serial tune of simulated data 

 

The ARW values showed no improvement or degradation for small values, but some large 

degradations occurred for very large values.  These large errors indicate that additional 

white noise errors would severely degrade the solution, while ignoring the ARW 

completely (i.e. very small values) does not degrade the solution significantly since the 

other stochastic bias errors dominate the solution during outages.  The same explanation 

can be applied to the VRW values which show very similar characteristics, with slightly 

less sensitivity to the minFunc values. 
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Figure 6.5:  VRW results for serial tune of simulated data 

 

The final solution using the serial tuning method, starting from the optimal solution and 

applying error bounds, converged to the true simulated solution.  The average position error 

of the solution was 86 metres and P was slightly inconsistent at 111 metres.  Unfortunately, 

this very contrived solution is not very practical.  It really only proves that the simulator 

and loosely coupled EKF can be used together to produce an optimal solution within the 

errors created by using stochastic drift values as indicators of performance. 

 

The second scenario is more representative of the performance that can be expected from a 

serial tuning method.  Not all of the plots are reproduced, but those for the gyroscope bias 
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standard deviation and ARW are given.  The starting solution was a random point within 

the defined ranges and the error bounds were not used to constrain the solution; the 

minimum minFunc values were chosen as optimal. 

 

Figure 6.6:  Serial tune, scenario 2, Gyro bias std 
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Figure 6.7:  Serial tune, scenario 2, ARW 

 

The serial tuning method came up with the values shown in Table 6.3.  It can be seen that 

the values are no longer the optimal values.  This result is from the serial tuning procedure 

combined with stochastic error that can occur when simply choosing the smallest minFunc 

values.  From a practical viewpoint this is what is expected from the serial tuning method.  

With these stochastic parameters the average position drift was 69 metres and the filter was 

very consistent with a P estimation of 71 metres. 
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Table 6.3:  Serial tuning, scenario 2 results 

Error term (units) Actual value Serial tuned value Absolute difference 

GPS pos std scale 
(unitless) 

1 0.32 0.68 

Gyro bias std (deg/hr) 100 100 0 

Accel bias std (mGal) 600 1030 430 

ARW (deg/√hr) 1 0.57 0.43 

VRW (m/s/√hr) 3 0.98 2.02 

6.3.2 RL tuning 

The RL tuning used the same performance criteria as the second example and also started 

from a random point within the same ranges.  The primary differences between the two 

methods are that RL can tune the parameters in parallel and the state space is made 

continuous through RBF generalization. 

 

Figure 6.8 shows the returned minFunc values over the first 35 iterations using parallel RL 

tuning.  The horizontal axis represents the individual tuning steps taken.  Each step was 

allowed to adjust the individual parameters up or down by discrete steps over the range of 

each parameter.  This meant that any number of parameters could be changed at each step, 

allowing the method many more changes in 35 steps than available with 35 iterations of the 

serial method. 

 

The tuning starts at a reasonable value for the parameters as indicated by the minFunc value 

just over 100 metres.  The policy has not been formed at this time and learning occurs for 
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about the first 17 steps.  In most reinforcement problems the solution gets worse before it 

gets better since the algorithm needs both good and bad examples of behaviour to converge 

upon positive reinforcements.  The solution then slowly gets better until the end of the 

episode at 35 steps. 

 

Figure 6.8:  RL minFunc solution for simulated data 

 

It is also important to analyze the trial steps during the learning process.  The trials have 

been circled in Figure 6.8.  Trials are important to help the algorithm explore new states 

with which it might otherwise not bother.  This is evidenced by the trials at steps 14 and 16, 

which vastly improve the performance of the tuning.  In fact, trial 14 is very close to the 
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best tuning state found in 35 steps; the algorithm just needed another 20 iterations to assure 

itself that this exploratory step was indeed positive reinforcement over the long-term. 

 

Only a single episode was needed to solve this simplified problem, which converged to the 

solution shown in Table 6.4.  The actual solution is closer than that of the serial tune.  The 

actual values have not been found since the drifts are random and have a variance on them, 

which can only be improved with more data on which to learn. 

Table 6.4:  RL solution using simulated data 

Error term (units) Actual value RL tuned value Absolute difference 

GPS pos std scale 
(unitless) 

1 0.5 0.5 

Gyro bias std (deg/hr) 100 100 0 

Accel bias std (mGal) 600 400 200 

ARW (deg/√hr) 1 1 0 

VRW (m/s/√hr) 3 1 2 

6.4 Real MEMS results on a loosely coupled extended Kalman filter 

The same tuning methods were used with real MEMS sensors and SGPS data.  MEMS 

gyroscopes and accelerometers from Analog Devices were used.  The gyroscopes used 

were ADXRS150 and the accelerometers were ADXL105.  The starting points for tuning 

were obtained from the datasheets, or if not available were extrapolated from experience of 

other similar MEMS sensors; both datasheets can be found in Appendices A and B.  

Ranges for the tuning parameters were also obtained from the datasheets, but were 

expanded to consider a broader range in case the datasheets were optimistic.  A NovAtel 
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OEM4 receiver was used in single point GPS mode and was processed with GrafNav 

software for the loosely coupled EKF. 

6.4.1 Serial tuning 

The initial values and ranges for the tuning parameters are given in Table 6.5.  Scale factor 

estimation has been added for the real data to make the tuning procedure complete for all 

tunable parameters of the loosely coupled EKF.  The discrete steps were taken by 

multiplying or dividing the previous tuning value by the multiplier in the last column. 

Table 6.5:  Initial values and ranges for ADI 

Error term Initial value Min value Max value # steps  
(+/-) 

Multiplier 

GPS pos std 
scale 

(unitless) 

1 0.1 9.4 6 +/- 1.75 

Gyro bias std 
(deg/hr) 

2000 213 18757 6 1.75 

Accel bias std 
(mGal) 

10000 1066 93789 6 1.75 

ARW 
(deg/√hr) 

3 0.3 28.1 6 1.75 

VRW 
(m/s/√hr) 

0.21 0.04 3.75 6 1.75 

Gyro SF std 
(ppm) 

1000 107 9379 6 1.75 

Accel SF std 
(ppm) 

1000 107 9379 6 1.75 

 

The best solution using error bound constraints is given in Table 6.6.  These tuning 

parameters produced an average position drift error of 111 metres with an estimated P value 

of 215 metres.  This solution is accurate but not very consistent.  Actual figures of the 

tuning procedure are given in Appendix C. 
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Table 6.6:  Serial tuning result for ADI 

Error term Initial value Tuned value 

GPS pos std scale (unitless) 1 0.19 
Gyro bias std (deg/hr) 2000 213 
Accel bias std (mGal) 10000 10000 

ARW (deg/√hr) 3 3 
VRW (m/s/√hr) 0.21 0.4 

Gyro SF std (ppm) 1000 1000 
Accel SF std (ppm) 1000 1000 

6.4.2 RL tuning 

The same initial starting point was chosen for the RL tuning from the datasheets, but 

instead of taking discrete steps across the state space, the space was made continuous.  The 

ranges used for the space are given as maximum and minimum values in Table 6.7.  The 

action space was discrete and discrete steps are given in the same table. 

Table 6.7:  RL initial start point and ranges 

Error term Initial value Min value Max value Action 
(+/-) 

GPS pos std scale 
(unitless) 

1 0.5 2.5 0.5 

Gyro bias std 
(deg/hr) 

2000 500 2500 500 

Accel bias std 
(mGal) 

10000 4000 12000 2000 

ARW (deg/√hr) 3 0.5 4.5 1 

VRW (m/s/√hr) 0.21 0.01 0.81 0.2 

Gyro SF std 
(ppm) 

1000 500 4500 1000 

Accel SF std 
(ppm) 

1000 500 4500 1000 
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With seven tunable parameters and 5 discrete steps each the state space would have 78125 

entries in the table.  This is not practical, which is why generalization of the state space is 

so important.  The state space is instead represented by 20 RBF features (as a maximum), 

which are adjusted each time an action is performed and a state is visited.  The discrete 

choice of actions can also be changed over time to visit different states, but due to 

generalization this is not as important as in the discrete case. 

 

Figure 6.9 shows the minFunc rewards over 200 steps and 10 episodes (20 steps/episode).  

To facilitate learning, the initial point of a new episode was set as the previously optimal 

solution.  From this plot it can be noticed that the starting value from the datasheet was not 

very appropriate.  Within five steps the RL algorithm quickly dropped the minFunc 

solution several hundred metres. 
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Figure 6.9:  RL rewards over 200 steps for ADI 

Trials occurred at steps 8, 17, 28, 71, 97, 118, 120, 172, 190, and 192.  None of the trials 

helped the RL solution improve significantly.  This is mainly due to chance and the fact 

that later trials occurred after the RL solution had converged.  Trials 97, 172, 190 and 192 

were all poor tuning strategies, but in return they were awarded negative reinforcements 

which led to large minFunc values as evidenced by the circles in Figure 6.9.  These trials 

did not degrade the overall solution; in fact they were useful for the RL system to 

understand that it had indeed converged upon a satisfactory solution compared with 

previous examples. 
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The reason for the large drop in minFunc at the beginning of the tuning is due to the 

consistency of the filter.  Figure 6.10 gives the same minFunc plot, but with the actual and 

predicted position errors as overlays.  The actual position errors are quite good using the 

manufacturer start point, but the Kalman filter is not very consistent.  The minFunc 

performance measure tries to minimize the difference between the two while also 

minimizing each individual signal.  Emphasis is still given to position error minimization, 

but only if the filter is sufficiently consistent. 

 

Figure 6.10:  RL minFunc, position error, and predicted position error for ADI 

 

During the first five tuning steps the filter is made more consistent, but less accurate.  Then 
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(episode 5) that the RL solution begins to converge on what it believes to be the most 

accurate and consistent solution.  Attempts to improve the accuracy are continued, while 

the consistency gets a little worse.  It is the balancing of these two performance measures 

that creates slight oscillations in the RL minFunc solution.   

 

To gain a better understanding of convergence, it is more useful to look at the average 

returns over each episode.  Figure 6.11 shows that the RL solution begins to converge 

around the fourth or fifth episode.  There will always be fluctuations after convergence due 

to the fact that the state space is still relatively unexplored and generalization is just 

providing an approximation to the state space.  The poor trials also contribute to the 

average over each episode, and the effects of two poor trial steps are evidenced in the last 

episode. 
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Figure 6.11:  Average returns of minFunc over 10 episodes for ADI 

 

The best optimal solution after 10 episodes is given in Table 6.8.  A direct comparison 

cannot be made to the serial tuning result since the correct stochastic solution is no longer 

known.  Only relative comparisons of the accuracy and consistency can be made between 

the two methods.  The accuracy of the RL solution was 103 metres while the filter was 

pessimistic in predicting these errors at 270 metres.  A more consistent solution could be 

obtained at the expense of accuracy.  This is apparent from the beginning of Figure 6.10 

when the accuracy and predicted accuracy are both near 210 metres.  The minFunc 

performance measure significantly improves accuracy at the expense of consistency. 
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Table 6.8:  RL tuning results for ADI 

Error term Initial value Tuned value 

GPS pos std scale (unitless) 1 0.54 

Gyro bias std (deg/hr) 2000 498 

Accel bias std (mGal) 10000 6202 

ARW (deg/√hr) 3 2.56 

VRW (m/s/√hr) 0.21 0.15 

Gyro SF std (ppm) 1000 511 

Accel SF std (ppm) 1000 1460 

6.4.3 Leveraging to another unit 

The best solution from the RL algorithm of the previous section was applied to a different 

triad of ADI inertial sensors.  The tuning began from the optimal solution and the optimal 

policy found from the previous sensor triad.  The point of leveraging is to show that even 

similar sensors coming off the same manufacturing line can have slightly different error 

characteristics, but have sufficiently enough similarities that the policy from one sensor can 

be applied to another sensor with some small adaptations. 

 

Figure 6.12 shows the changes in minFunc and the position errors for 25 tuning steps.  The 

initial solution is quite accurate which means that the solution from the previous sensor can 

be used as a good starting point.  The minFunc value is 227 metres with an absolute 

position drift of 198 metres and a predicted drift of 240 metres. 
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Figure 6.12:  Leveraging tuning results to another ADI unit 

 

The question now becomes: can the previous policy be adapted quickly to improve the 

overall solution?  From the previous figure, it takes 12 tuning steps for the solution to adapt 

to a new minimum.  The RL tuning then proceeds to try new tuning strategies, but the 

solution keeps returning to the same minimum value at steps 16, 21 and 24.  This new 

minFunc value is 224 metres, while the actual position error is 186 metres and the predicted 

position error is 241 metres.  The new solution is provided in Table 6.9.  Small changes in 

all the parameters occurred with the largest occurring in the ARW and accelerometer scale 

factor standard deviation. 
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Table 6.9:  Leveraged solution for new ADI triad 

Error term Initial value Tuned value 

GPS pos std scale (unitless) 0.54 0.5 

Gyro bias std (deg/hr) 498 502 

Accel bias std (mGal) 6202 5907 

ARW (deg/√hr) 2.56 3.4 

VRW (m/s/√hr) 0.15 0.15 

Gyro SF std (ppm) 511 499 

Accel SF std (ppm) 1460 2400 

 

If this sensor were tuned without knowledge of the tuning policy and optimal solution from 

the previous sensor, the minFunc plot would look like that shown in Figure 6.13.  It takes 

33 tuning steps to get to the level of the leveraged solution.  So by leveraging the solution 

has been found approximately three times faster.  Furthermore, the leveraged solution 

varies less since it has memory of 225 tuning strategies, not just 33. 
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Figure 6.13:  Second ADI tuning without leveraging 

 

The solution without leverage is similar to that of using leverage, it has just taken longer to 

find.  Table 6.10 gives the solution for the case without leveraging.  The only parameters 

that changed significantly were the VRW and accelerometer scale factor standard deviation 

parameters.  Due to their small significance during times without measurements, the large 

relative change in these parameters is not considered significant. 
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Table 6.10:  Tuning results of second ADI without leveraging 

Error term Initial value Tuned value |Lev – No Lev|/Tuned 
% 

GPS pos std scale 
(unitless) 

1 0.51 2 

Gyro bias std (deg/hr) 2000 500 0.4 

Accel bias std (mGal) 10000 6003 1.5 

ARW (deg/√hr) 3 3.45 1.4 

VRW (m/s/√hr) 0.21 0.07 114 

Gyro SF std (ppm) 1000 505 1.2 

Accel SF std (ppm) 1000 4210 65 

6.5 Real MEMS results on a tightly coupled extended Kalman filter 

The tuning strategies employed in this chapter can be applied to a variety of different filter 

configurations.  To show this, a tightly coupled extended Kalman filter was tuned with both 

the serial and RL methods.  Furthermore, a different MEMS inertial unit was used.  The 

BEI Motionpak II is a higher grade MEMS inertial device that has much better noise 

performance than the ADI sensors. 

 

The tightly coupled Kalman filter uses the raw pseudorange and carrier phase 

measurements, and there is no longer a scaling factor on the GPS Kalman filter position 

estimates since the entire integration is centralized in one filter; the scaling can now be 

performed directly on the variance of the pseudorange measurements, not on the output of 
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another Kalman filter.  The loss of one parameter and the addition of two more clock 

parameters gives a total of eight a priori values required for tuning. 

 

The results of the serial tuning are provided in Table 6.11 with detailed plots in Appendix 

D.  All tuning of the tightly coupled filter used zero satellites during simulated outages to 

prevent differences in dilution of precision when using less than four satellites.  The effects 

of the serial tuning order is even more apparent with more parameters.  Only the first two 

parameters change, while the last six remain fixed to their initial values.  

Table 6.11:  Serial tuning results for tightly coupled architecture 

Error term Initial value Tuned value 

Clock bias RW (m/√s) 5 0.17 

Gyro bias std (deg/hr) 100 57 

Accel bias std (mGal) 5000 5000 

ARW (deg/√hr) 1 1 

VRW (m/s/√hr) 0.4 0.4 

Gyro SF std (ppm) 2000 2000 

Accel SF std (ppm) 2000 2000 

Clock drift RW (m/s/√s) 0.5 0.5 

 

The serial tuned minFunc value was 109 metres with an average position drift of 81 metres 

and predicted position drift of 42 metres.  This solution is much too optimistic due to the 

inability to change previously tuned values when performing the serial tune. 
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6.5.1 RL tuning 

The same data was processed with the RL tuning algorithm.  300 steps were taken before 

convergence was reached.  Significantly more steps were needed due to the increase in 

parameters and uncertainty on the parameter ranges which were left very broad due to the 

unknown nature of the clock parameters.  10 steps defined an episode, and the average 

minFunc value over the 30 episodes is shown in Figure 6.14.  The general trend is a 

decreasing minFunc value, with some learning and trial periods.  The best minFunc after 

300 steps was 89 metres.  This solution was actually found after 202 steps (20th episode), 

but could not be trusted until converged upon at the 30th episode, at which point the 

minFunc value dropped significantly. 
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Figure 6.14:  Average minFunc RL rewards for tightly coupled filter 
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The minFunc performance measure balances accuracy and consistency within the solution.  

This is evident from Figure 6.15 which shows the minFunc signal, the position error signal 

and the predicted position error signal.  The best minFunc value returned an actual position 

error of 89 metres with a predicted error of 76 metres.  It is clear that the RL method 

minimizes position error while also making the filter consistent.  In this case the predicted 

error starts off too optimistic and is brought to the level of the true accuracy as the position 

errors are decreased; both signals converge towards each other. 

 

Figure 6.15:  Tightly coupled minFunc, position error, and predicted error 
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The RL solution for the tightly coupled filter is given in Table 6.12.  The values are very 

different than the serial solution since the RL has made the filter significantly more 

consistent with similar accuracy. 

Table 6.12:  RL solution for the tightly coupled filter 

Error term Initial value Tuned value 

Clock bias RW (m/√s) 5 10.1 

Gyro bias std (deg/hr) 100 63 

Accel bias std (mGal) 5000 2460 

ARW (deg/√hr) 1 1.94 

VRW (m/s/√hr) 0.4 0.11 

Gyro SF std (ppm) 2000 4060 

Accel SF std (ppm) 2000 9817 

Clock drift RW (m/s/√s) 0.5 0.014 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

This chapter brings together the theoretical and practical results to create a unified view of 

the intelligence added to the filtering algorithm for INS/GPS integrations.  All conclusions 

and recommendations are made in an attempt to improve usability and adoption of low-cost 

integrated systems for large scale consumer use. 

7.1 Conclusions 

Due to their symbiotic relationship, inertial and GPS systems can be very useful for 

improving navigation reliability and accuracy.  There are many issues that need to be 

resolved before these systems can be used in very low-cost integrations.  Some of the more 

important considerations are calibration, alignment and modelling.   

 

Restrictions on the user prevent quality alignment before the device is used.  Many newer 

techniques have been developed to deal with alignment, such as in-motion alignment using 

GPS or other external signals.  Further work is being done to deal with misalignment 

between the body and vehicle frames, but additional filtering algorithms have been shown 

to perform well for a full six degree of freedom IMU (Syed, 2007), and for partial IMU 

configurations (El-Sheimy, 2008). 

 

The issue of calibration and modelling is a serious hurdle that remains.  Individual MEMS 

units are calibrated using general parameters for both deterministic and stochastic models.  
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Due to the large variance of these low-cost sensors the general parameters are usually far 

from optimistic, and the imposition of pre-deployment calibration and modelling for 

individual sensors is not cost effective.  For these reasons, on-line intelligent methods were 

used to adapt the model parameters towards more realistic values. 

 

There are two approaches to this problem that were presented in this thesis.  The first is 

very non-invasive, and simply compensates the filter state estimates without adjustment of 

the internal filter.  The actual error signal can be formed as a target by using two Kalman 

filters which are run in parallel.  Using temporal and dynamic inputs, the deterministic part 

of the error signal is predicted and removed from the filter output.  Results showed that 

positional state estimates could be brought back to the level of a well-tuned filter using 

these intelligent state compensations; in the case considered in this thesis that meant an 

improvement of horizontal positioning accuracy approaching 50%, after being initially 

degraded by 55%. 

 

The issues with this type of state compensation were the injection of additional system 

noise, due to the noisy training reference, and the problem of applying predictions when the 

system was not capable of improving.  A fuzzy reliability monitor was applied to properly 

weight both parallel outputs using expert knowledge that was adapted over time.  This 

method used the uncompensated EKF predictions when the intelligent compensations were 

not reliable, and applied the intelligent compensations to larger outages once training 

convergence was reached.  An adaptive FIS was used to further adapt certain membership 

functions to weight predictions across time. 



             

 

188 

 

Two separate results were demonstrated for the intelligent compensations combined with 

the fuzzy reliability monitor.  The first set showed that in a worst case scenario the EKF 

filter predictions could be used with a minimal 2% degradation of the original predictions.  

As the intelligent compensations converged, the fuzzy system was used to apply weighting 

between the two sets of filters to improve the intelligent compensations by an additional 

20% in horizontal positioning accuracy. 

 

The second intelligent approach to solving the problem of calibrations and modelling was 

to use a form of adaptive feedback to the internal parameters of the filter based on relative 

differences of state estimates.  A reinforcement learning algorithm was used to alter the a 

priori parameters of the system and measurement noise matrices within loosely and tightly 

coupled extended Kalman filters.  The reinforcement learning used trial and error to 

develop a model of how to tune the parameters so as to minimize a performance measure 

that weighted accuracy and consistency of the filter position state estimates.  This type of 

relative learning algorithm could form its own tuning model, and then exploit this model to 

obtain the best results in terms of positional state estimates. 

 

Results applied to real MEMS data for a loosely coupled EKF showed that the RL method 

could quickly and efficiently tune many parameters in parallel, which made the filter more 

accurate and consistent than a manually tuned method using expert knowledge.  Most 

importantly, the RL method required no designer input beyond what was already known 

from the datasheets.  In comparison to the manufacturer suggested values, the tuning was 
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able to reduce the actual position error by over 50 metres.  Furthermore, the filter 

consistency was improved by over 700 metres, demonstrating a significant improvement in 

reliability. 

 

The tuning knowledge acquired from one MEMS unit was then applied to tune another 

similar MEMS unit.  Convergence was obtained three times faster when using knowledge 

from a previous sensor, and the variations during learning were significantly reduced due to 

accumulated knowledge. 

 

The RL method was also applied to a tightly coupled EKF that contained more a priori 

parameters.  The method clearly displayed convergence properties between accuracy and 

consistency of the filter during tuning.  In this case, the RL method improved positioning 

accuracy by over 55 metres and consistency by 75 metres.  The algorithm was shown to be 

robust regardless of the type of filter being tuned; the same internal RL algorithm and state 

outputs were used, all that was changed were the a priori tuning inputs. 

7.2 Recommendations 

This work has combined existing filtering methods with newer mathematical methods that 

adapt their models over time or samples.  The mathematical concepts are not new, but with 

the addition of learning techniques with filtering methods, usability of integrated devices 

can be improved without additional cost to the designer or manufacturer.  The proposed 

intelligent methods are new in their application to INS/GPS data and much work is still to 

be done before adoption of these or similar methods. 
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Temperature and misalignment errors have not been included in the analyses.  

Manufacturers are beginning to compensate for temperature before their devices are used, 

but for very low-cost inertial systems temperature can still be an issue for bias and scale 

factor estimation.  If temperature signals are available, it is recommended that these be 

added to the input of the ANN’s used in Chapter 4. 

 

Misalignment is another error that can be included as an input in terms of a noise 

parameter.  This would mean addition of the deterministic misalignment error in the filter 

state estimation, which was not included in the EKF of this analysis.  Nevertheless, this 

state augmentation can be made easily and the rigid body deformation could be modelled 

with a white noise term similar to other sensor errors. 

 

If misalignment and temperature are added to the intelligent method of Chapter 4, then the 

RL and intelligent compensations could be used in a single system.  The RL could be used 

for adjustment of a priori models while the ANN compensation could be used to correct 

errors due to temperature, misalignment and dynamics. 

 

The separation of individual sensor signals for tuning should be performed.  This analysis 

assumes a single error model for all three individual sensor types, for the gyroscopes and 

accelerometers.  These should be separated for tuning purposes since individual sensors can 

have slight variances.  This would increase the number of tuning parameters but not the 

overall states of the filter. 
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The minFunc equation given in Chapter 6 assesses only the position accuracy and 

prediction quality.  For many applications it may be beneficial to also include the velocity 

and attitude signals into the minFunc equation.  This can easily be done by extending this 

equation to include RMS values of all available EKF state errors and predictions.  The 

designer could then scale these values based on importance or weight them all equally. 

 

Finally, more data should be processed to fully assess the memory retention ability of the 

intelligent methods.  This type of analysis could only be done with many sensors over 

many different data sets.  The effect of leveraging and memory transfer can be fully 

assessed and made statistically significant with more data. 
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APPENDIX A: ADXRS150 DATASHEET 
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APPENDIX B: ADXL105 DATASHEET 
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APPENDIX C: ADI SERIAL TUNING PLOTS 

Error bounds were used to constrain the optimal solution of the ADI data for the serial tune.  

This is apparent in the last five plots which do not vary outside of the error bounds, so the 

solution stayed fixed. 
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Figure C.1:  GPS position std scale for ADI serial tune 
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Figure C.2:  Gyroscope bias std for ADI serial tune 
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Figure C.3:  Accelerometer bias std for ADI serial tune 
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Figure C.4:  ARW for ADI serial tune 
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Figure C.5:  VRW for ADI serial tune 
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Figure C.6:  Gyroscope scale factor std for ADI serial tune 
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Figure C.7:  Accelerometer scale factor std for ADI serial tune 



             

 

209 

APPENDIX D: SERIAL TUNING FOR TIGHTLY COUPLED 

FILTER 

The tuning order for the tightly coupled filter was performed with the clock parameters first 

and last to test their relationship to positional state error.  As is clear, their order made little 

difference to the overall results. 
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Figure D.1:  Clock bias RW tuning for tightly coupled filter 
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Figure D.2:  Gyroscope bias std tuning for tightly coupled filter 
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Figure D.3:  Gyroscope scale factor tuning for tightly coupled filter 
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Figure D.4:  Accelerometer bias std tuning for tightly coupled filter 
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Figure D.5:  ARW tuning for tightly coupled filter 
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Figure D.6:  VRW tuning for tightly coupled filter 
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Figure D.7:  Accelerometer scale factor std tuning for tightly coupled filter 
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Figure D.8:  Clock drift RW tuning for tightly coupled filter 

 

If the clock drift and bias are tuned first, they do not contribute significantly to the overall 

change in minFunc value as evidenced by the flat response: 
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Figure D.9:  Clock drift RW tuning done first in order 
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Figure D.10:  Clock bias RW tuning done first in order 


