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Abstract 

Pedestrian navigation has received significant attention in the last few years due to potential 

development in the smartphones’ technologies. Todays, most smartphones, tablets, and other 

handheld devices are fully packed with the required sensors that can provide navigation 

information such as Global Positioning System (GPS), triad gyroscope, triad accelerometer, triad 

magnetometer, and pressure sensors. The pedestrian dead-reckoning (PDR) technique requires 

traveled distance and direction in order to estimate the user position. Total distance can be 

determined using the step counting and step length estimation techniques using accelerometer 

data while, the relative attitude information can be estimated using gyroscope and accelerometer 

data. However, absolute heading information is required which can be provided using GPS or 

magnetometer.  

In GPS-denied environments, a magnetometer is used as the main source of heading update. 

However, the EMF is experienced to severe degradation in such environments which affects the 

overall performance of the magnetometer. Different techniques are proposed to overcome the 

deficiency due to the distortion in the sensed magnetic field to improve the overall performance 

of the magnetometer in the cluttered environments. For that end, this research is targeted towards 

improving the attitude estimation for pedestrian navigation in the harsh environments by 

developing sensor fusion technique to utilize the gyroscope rate in complementary with 

accelerometer and magnetometer data. Also, several contributions for step detection and step 

length estimation techniques are achieved to improve the overall performance and accuracy of 

the Pedestrian Dead Reckoning (PDR) algorithm. 
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Chapter One: Introduction 

1.1 Navigation  

Navigation is the art of determining the time varying positions, velocities and attitudes of a 

moving body. Nowadays, navigation technologies are expanding at a phenomenal rate, especially 

in the civilian community, with devices such as vehicle/personal navigators, smartphones, 

tablets, and other handheld devices. Navigation is achieved on these devices by integrating the 

output of a group of sensors to compute the necessary navigational information. A sensor that 

can measure one or more of the navigation states is referred to as a “navigation sensor” while the 

combination of all these sensors that can provide all of the navigation states is a “navigation 

system” (Syed 2009). However, a Navigation Aid is a sensor that can only provide indirect 

partial information and can be used as a constraint for some of the navigation states (Navaid) (El-

Sheimy 2012). Positions, velocities and attitudes are called navigation states since they contain 

all the information required to geo-reference a rigid body at a specific moment in time.  

Nowadays, GPS is the most widely used navigation system. It is available almost everywhere in 

the world: in air (aircraft navigation), sea (ship navigation) or land (vehicle navigation). 

However, with the growing demand for solutions in harsh GPS environments, such as in 

downtown areas, under heavily treed canopies, or in the presence  of jamming,  the  limits  of 

GPS signal availability  are being  reached. In other words, the system does not work well in 

urban areas due to signal blockage and/or attenuation which may deteriorate the positioning 

accuracy.  
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Inertial Navigation Systems (INS) can help provide a continuous navigation solution for harsh 

GPS environments. Inertia sensors are self-contained and provide the position, velocity, and 

attitude of a moving body by measuring its acceleration and rotation angle. However, when an 

inertial sensor’s gyroscope and accelerometer outputs drift over time it means that standalone 

inertial based navigation systems have an upper bound for accuracy. Thus, various aiding sensors 

have been tied into inertial systems, such as GPS, velocity meters (odometer), geomagnetic 

sensors (magnetometer), etc. Figure 1.1 shows the error propagation of the INS standalone 

technique where the positional error drifts and accumulates over time in the absence of any 

update source.  

Figure 1.1: The effect of GPS outages. 

Inertial sensors can be divided into two general categories according to their accuracy (El-

Sheimy 2012). The first category includes navigational and tactical grade INS, which are 

accurate, have minimal noise interference in the signal and can be used for long periods of time 

without significant drifts.  The second category includes low cost and compact commercial 

sensors such as Micro Electro Mechanical System (MEMS). These sensors have high noise and 

2 




 

 

 

     

     

    

 
 

 
 

 
 

 

   

 
  

  

 

 

 

     

   

   

   

  

     

  

 

   

    

    

drift rates in the output, and as such, require special algorithms to be modelled and compensated 

for error growing. Civilian navigation applications (such as vehicle and pedestrian navigation) 

are part of  a huge consumer market for low-cost and compact size MEMS inertial  sensors. 

Table 1.1 (Barbour 2004) shows the expected accuracy ranges for the different inertial grades. 

Table 1.1: Inertial Sensor Application Grades. 

Category 
Application 

Grade 
Gyro 

Performance 
Accelerometer 
Performance 

Low Accuracy Consumer (MEMS) >1 deg/s >50 mg 

High Accuracy 
Tactical ~1 deg/h ~1 mg 

Navigation 0.01 deg/h 25 μg 

1.2 Smartphones and Mobile Navigation Market 

In the recent years there has been a significant increase in demand for pedestrian navigation with 

hand-held devices, particularly for GPS-denied environments. Portable Navigation Devices 

(PND) such as tablets, smartphones, and other hand-held devices are widely used and have 

become a large part of our daily activities. Most of these devices include GPS, low-cost MEMS 

sensors, accelerometers, gyroscopes, barometers, temperature sensors, and magnetometers. The 

integration of these sensors enables 3D sensing for any type of motion experienced by the 

device. 

The manufacturers and developers of these navigation systems have started to pay closer 

attention to pedestrian navigation along with the vehicle navigation and the potential of 

switching between the two modes of operation. Plenty of applications have emerged, which 

incorporate context-aware, adaptive, and personalized systems with smartphones. However, 
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migrating into such applications requires the device to be fully embedded with self-contained 

systems that do not depend on pre-established infrastructure. Figure 1.2 shows the rapid growth 

of the Smartphone market and the expectations for sales by the year 2016 (Blodget et al. 2012). 

The figure suggests that worldwide sales of smartphones will reach 1600 million units by the 

year 2016.  

Figure 1.2: Global Smartphones sales expectation (Blodget et al. 2012). 

Location Based Services (LBS) can be defined as the ability to merge location or position 

information with other information to provide more useful data (Schiller et al. 2004). With such 

a fast growing smartphone market, LBS have a variety of applications in the social networking 

applications, which can be accessed on the mobile device through the mobile networks. In 

regards to potential development of the LBS applications, Allied Business Intelligence Inc. 

(ABI) research predicts that LBS business will reach $13 billion by 2013 versus the $515 million 

reached in 2008. A user’s location can be linked to local events that match their interest by using 
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the social networking application supported by the geo-location approaches. Figure 1.3 shows an 

info-graphic that highlights the use and popularity of different geo-social networking services 

around the world. According to the Figure, there are 5.3 billion mobile devices that use geo­

social networking globally, which helps users interact relative to their current locations. 

Figure 1.3: An info-graphic presenting the usage and popularity of different networking 
applications and services in May 2011 (courtesy of (Thomas 2011)) 

Friend finder, local information searches, traffic information, and crisis management applications 

are quickly gaining traction in the same way as personal navigation (TelecomCircle 2009). 

Furthermore, logistics, health care monitoring, tourism and people management are just some of 

the applications that can be developed with access to social networks. Therefore, the mobile 

device market is pushing for the development of technologies that are able to provide significant 

location information, path guidance systems, and other location related services. 
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1.3 Problem Definition 

In general, pedestrian navigation is a challenging process compared to vehicle navigation 

(Morrison et al. 2012).  Design and cost are the most important factors for manufacturing an 

integrated product since navigation sensors generally are part of the mobile device carried by the 

pedestrian. Usually, manufacturers target devices with lightweight, small size, and power-

efficient sensors. Additionally, there is a wide range of dynamics that may be produced by 

pedestrian motion, which may potentially occur out of the covered ranges of the used sensors 

(Kwakkel et al. 2008). Consequently, the selected sensors for the pedestrian navigation system 

should be capable of measuring the full range of the expected human motion. Also, the 

pedestrian is highly expected to use the navigation device in some environments with limited 

access to GPS such as food courts, banking machines, shopping centers, or any other places of 

interest. For these scenarios, the discontinuity of the GPS signal requires alternative navigation 

sources, such as inertial navigation, to bridge the GPS outage for seamless navigation. However, 

the inertial based stand-alone navigation systems suffer from error propagation in the absence of 

an update. Therefore, the pedestrian navigation system should have the ability to benefit from 

other alternative sources of navigation information. Certain technologies, including Radio 

Frequencies (RF) such as Wi-Fi and RFID, can be used for position updates inside the buildings. 

Map matching techniques can also be used to help correct the person/vehicle location. 

Pedestrian navigation is the process of providing pedestrians with the necessary guidance 

information to reach a particular destination. One of the major challenges in pedestrian 

navigation is obtaining a good heading solution in different environments. Part of this challenge 
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is that pedestrians spend most of their time in indoors; one of the most challenging environments 

for the PND to operate in. These challenges arise from the limitations of the information that is 

required to estimate the navigation parameters. Various heading resources can be exploited in 

pedestrian navigation for both indoors and outdoors. For shorter periods of time, the inertial 

sensors can be used to provide relative heading information. Furthermore, information can be 

retrieved from the GPS ephemeris to derive the necessary heading information which can help 

attitude determination with inertial sensors. The magnetic field sensor (magnetometer) can also 

be used to provide an absolute geomagnetic heading of the device using EMF.  However, there 

can sometimes be a disturbance in the magnetic field due to the presence of ferrous materials 

around the magnetometers. In such closed environments, this can affect the estimated 

geomagnetic heading. The use of the magnetic field for navigation has some limitations as 

discussed in the literature (Afzal 2011). The magnetometer cannot be used as a standalone source 

for heading information in the harsh environments, particularly indoor ones (Xue et al. 2009). In 

addition, knowledge is required about the pre-existing magnetic anomalies resulting from man-

made infrastructures (Storms & Raquet 2009). The use of magnetic field measurements in 

heading estimation for indoor navigation also has some limitations since the magnetic field 

signal may not always be strong enough. Mobile navigation devices should be kept away from 

any source of disturbances to avoid unwanted perturbation effects (Bachmann et al. 2004). 

Furthermore, devices that are used in indoor environments might experience additional 

challenges since the magnetic field is not completely constant when in the presence of electronic 

and electrical devices. 
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Given the challenges of using a magnetometer on its own, it is best to combine it with other 

sensors to perform as an aiding source for heading estimation in harsh environments such as 

indoors, downtown, and parking lots. This integrated solution requires an investigation into the 

performance of sensors in order to improve their accuracy Magnetometer data must be calibrated 

in order to provide consistent magnetic field readings and reduce the impact of the perturbations 

on the magnetic field. In addition, a magnetometer anomaly detection technique is required to 

indicate the intervals of poor performance to avoid any unpredictable performance from the 

magnetometer. 

1.4 Thesis Objectives 

Ubiquitous and continuous navigation information is a basic necessity for any navigation system. 

An integrated GPS/INS can significantly improve the quality of navigation information for 

indoor and outdoor applications However, in GPS denied areas such as indoor environments and 

urban canyon areas; there is still a lack of suitable sources of update for the inertial sensors based 

solution. The primary challenge with low-cost MEMS sensors during the absence of the GPS 

update in PND is that they cannot operate well without proper error source modeling and source 

of attitude update. Different approaches have been developed for analyzing human motion in 3D 

space with PND such as Smartphones, tablets, and any other hand-held devices. 

One of the major objectives of any mobile navigation system is to be highly convenient for the 

user. A common scenario in t conventional inertial-based navigation systems is to request that 

the user fix and align the device to his body. However, it can be quite problematic and 
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inconvenient to force the user to keep the device in that orientation. With current advances in 

technology, consumer mobile devices can be used in a variety of locations: in offices, parking 

lots, food courts, high rises, or even entertainment hubs. Users can also hold their devices in 

different orientation, for example texting or reading, on a belt, or against the ear when talking. 

These varying device orientations and user locales make accurate sensors-based navigation very 

difficult to achieve. 

The main objective of this thesis is to develop a pedestrian navigation algorithm capable of 

providing seamless navigation information. This can be achieved by developing and 

implementing an integrated heading estimation technique based on low cost MEMS sensors and 

magnetometer to improve the heading estimation strategy. The heading information received 

from inertial sensors and magnetometers are blended using the Kalman filter technique. In the 

proposed technique, the contribution of the gyroscope-based heading and the magnetometer-

based heading is evaluated on the bias level of the gyroscope and the detected disturbance of the 

magnetic field. In order to improve the  performance of  the   involved sensors, the effect that 

errors and disturbances have had on the signal must be taken into account. This integration 

scheme will provide heading information that can be used in a variety of environments. To 

achieve this objective, several important implementation and development issues must be 

addressed. 

1.	 Sensor error issues: There is a need to investigate the possible source errors in the estimated 

heading from both gyroscope and magnetometer data in order to understand the factors that 

limit the accuracy of the derived navigation solution. 
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2.	 Sensors calibration:  Since the pedestrian navigation system is a candidate for indoor and 

outdoor use, a calibration scheme that works effectively and efficiently in all environments 

must be determined to meet the needs of the end user. is 

o	 Magnetometer calibration: A magnetometer is an essential tool for acquiring heading 

information. Therefore, an effective calibration technique that can function in various 

environments is required. Since the movement of the device is not constrained to 2D 

movement for pedestrian navigation, a 3D calibration technique must be further 

investigated. A Swarm Intelligence (SI) based calibration technique is implemented 

to estimate the bias and scale factor values for the magnetometers. 

o	 Low-cost MEMS calibration: These sensors suffer errors drift regardless of the 

environment and usually come with  manufacturer-provided calibration values, 

which significantly reduce the time and cost associated with calibrations. Therefore, 

the first issue to investigate is whether the manufacturer-provided information about 

the sensors calibration is sufficient for a navigation process. In this study, the first 

order Gauss-Markov model is used for error modeling parameters of the gyroscope 

bias drift estimation.  

3.	 Improving the magnetometer performance: Magnetometers can perform well in outdoor 

areas, far away from any sources of magnetic field disturbances such as vehicles and 

electronic devices. However, to put the magnetometer up to the challenge of the proposed 

use, the magnetometer should be properly calibrated. Therefore, moving the device in the 3D 

space before the navigation process starts has a large impact on the calibration process. As a 

result, the possible manoeuvring modes will be discussed to determine a recommended 

manoeuvring mode best used for the portable navigation device. In addition to this, a 
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magnetometer anomaly detection technique is implemented to indicate how healthy the 

magnetometer signal is so that the recalibration process can be acquired based on the 

distortion that occurred to the magnetic field. 

4.	 Sensor fusion technique for attitude estimation: To develop a robust fusing scheme for 

inertial based heading and geomagnetic heading, the different techniques for the integration 

between the gyroscope and the magnetometer heading are investigated. A proposed 

technique based on KF principles is implemented to fully estimate the pedestrian heading 

while considering different device orientations and user modes for handheld devices 

(smartphones, tablets, and any other handheld devices within the system constraints.) 

5.	 Human activities detection: Recognizing different human activities that occur in motion or 

statically, are an important consideration for the PDR algorithm. Step detection techniques 

for step detection/counting are implemented with the step length estimation to achieve a total 

traveled distance by the user. Also, detecting static/motion periods can help in the sensors 

calibration process.  

A complete description of the implementation of these techniques will be provided in the thesis 

since it represents the first step towards the development of a ubiquitous PDR that can work in 

different environments, under with different user modes or device orientations. All analyses and 

validations are done using real field datasets to provide conclusions for realistic situations. 
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1.5 Thesis Outline and Roadmap 

This thesis explores the issues facing the development and implementation of PDR navigation 

applications in smartphones, tablets and other handheld devices.  The thesis consists of a total of 

seven chapters at the beginning of which will be a brief overview. Below is an outline of 

chapters two through seven. 

Chapter 2 introduces the necessary background for the PDR algorithm while Chapter 3 discusses 

the magnetometer calibration technique. One of the more important contributions of this thesis is 

the application of Swarm Intelligence to the magnetometer calibration presented Chapter 3. The 

technique starts with minimizing the data used in the calibration process. It is modified to 

accelerate the estimation process to fit real-time applications. A compression between the 

common calibration technique and the proposed technique is presented.  Results of the 2D and 

3D calibrations are provided at the end the chapter. In Chapter 4, the pre-processing and inline­

processing of the magnetometer is presented. This chapter focuses on the various sources of error 

in magnetometer measurements, which affect the magnetometer signal. This describes the 

avoidable and unavoidable error sources. Pre-processing refers to the recommended 

manoeuvring modes that move the device prior to beginning the magnetometer calibration 

process, which allows for maximum change in the magnetic field signal levels within the 3D 

space. In contrast, inline-processing refers to the detection of any distortion of the magnetic field 

during the operation interval of the magnetometer to indicate a need for recalibration.  
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Chapter 5 describes the development of a heading filter applicable to pedestrian navigation. In 

this chapter, a seamless heading integration technique is proposed to fuse the heading estimate 

from both the gyroscope and magnetometer using KF.  

Chapter 6 explains the test assessments conducted on the proposed techniques in different 

environments and under different operating conditions. The tests include a person walking in 

outdoor, indoor, and urban canyon testing areas. The proposed algorithm is tested against a 

change in the device’s orientation by switching from reading/texting to belt tethering or ear 

talking scenarios. 

Finally, Chapter 7 presents the major conclusions and contributions of this research work based 

on an analysis of the results. It also provides recommendations for future work. The thesis 

roadmap is described in Figure 1.4 below. 

Figure 1.4: Roadmap block diagram for the thesis flow. 

13
 



 

   

 

   

  

   

     

  

   

 

   

    

 

  

 

    

 

   

 
    

     

       

Chapter Two: Background 

This chapter introduces the necessary background information on pedestrian navigation systems. 

The PDR mechanization is an effective approach to propagate user position, which is commonly 

used with body-fixed inertial sensors.  The necessary steps required to implement a PDR 

algorithm are presented in this chapter including step detection/counting to evaluate the distance 

travelled, and the attitude representation methods for estimating the user heading. The chapter 

begins with the definition of various reference frames used in the implementation of a personal 

navigation system. The chapter then proceeds with a presentation of different techniques for 

personal navigation and attitude representations. Furthermore, heading estimation using the 

magnetometer data is explained along with the limitations of using the magnetic field in the 

navigation process. Finally, a brief introduction of the principles of the KF technique is given.  

2.1 Coordinate Frames 

This section introduces the most commonly used reference frames in pedestrian navigation. 

2.1.1 The Inertial Frame 

The inertial frame (i-frame) is a stationary, non-rotating, and non-accelerating reference frame 

with the origin at the centre of the Earth. The Cartesian coordinate system of the i-frame has its 

z-axis (zi) parallel to the Earth’s polar axis as shown in Figure 2.1. The x-axis (xi) pointing 
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towards the mean vernal equinox and the y-axis (yi) complete the orthogonal basis. The system’s 

origin is located at the earth’s center of mass. 

- Origin: the earth’s center of mass. 

- xi: towards the mean vernal equinox 

- yi: completes a right-handed system 

- zi: towards the north celestial pole 

2.1.2 Earth Center Earth Fixed frame (ECEF-frame) 

This frame (e-frame) has its z axis (ze) defined in the same way as the z axis is the i-frame; 

however the x axis (xe) in this case points toward the Greenwich meridian in the equatorial plane, 

with the y axis (ye) at 90o east of the Greenwich meridian completing the right-handed system as 

shown in Figure 2.1. The origin is at the earth’s center of mass. 

- Origin: Earth’s center of mass 

- xe: towards the mean Greenwich meridian in the equatorial plane. 

- ye: completes right-handed system 

- ze: direction of mean spin axis of the Earth 

The e-frame is a non-stationary frame that rotates with respect to the i-frame at the earth’s 

e
angular rate (  ) of approximately 15 o/h about the polar axis. ie
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Figure 2.1: Definition of i-frame and e-frame 

2.1.3 Local Level Frame (LLF) 

The local level frame (l-frame), also known as the navigation frame (n-frame), is the most 

commonly used frame for position and attitude representation (Farrell 2008).  It is defined by a 

plane locally tangent to the surface of the Earth at the user’s position. In this research, the 

system-frame is the North, East, and Down (NED) axes, where Down (zl) is the gravity vector, 

North (xl) points toward the spin axis of Earth on the plane and East (yl) completes the right 

handed orthogonal system as shown in Figure 2.2. The centre of NED is the origin of the 

navigation system.  
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Local-Level Frame or North-East-Down (N-E-D) Frame 

- xl: pointing towards true north 

- yl: points in the local vertical along the gravity vector. 

- zl: completes the right-handed system 

Figure 2.2: Definition of the navigation/local level frame (l-frame) 

2.1.4 Body Frame 

In personal navigation the main goal is to estimate the position and attitude of the user with 

respect to a navigation frame. The body frame (b-frame) is an orthogonal frame that is aligned 

with the roll, pitch and heading axes of the pedestrian. It is associated with the pedestrian and has 

its origin and orientation fixed. The orientation of the body frame with respect to the navigation 

17
 



 

 

      

     

      

 

 

 

  

   

     

  

    

  

   

    

   

frame must be estimated, as the pedestrian can be oriented arbitrarily with respect to the 

navigation frame.  In this thesis, the b-frame has an x-axis that is chosen to point toward the 

pedestrian’s direction of motion (Forward), a y-axis that is pointed the side direction of the 

motion (Lateral) and z-axis is directed along the gravity vector (Down) as shown in Figure 2.3. 

2.1.5 Sensor Frame 

The sensor-frame (s-frame), also called the device frame, is fixed to the navigation device. It is 

the reference frame in which the inertial sensors operate. The device can be held in different 

orientation with respect to the pedestrian such as in a pocket, against an ear while talking, in a 

hand while texting/reading, or any other orientation. Holding the navigation device freely creates 

a misalignment between the sensors and body frames. The s-frame has its x-axis pointing in the 

same direction as the walking direction (Forward), and its z-axis pointing to the ground (Down). 

For this thesis, the majority of tests are conducted with zero misalignment between the sensors 

and body frames. For the purposes of this experiment, the device is used in texting/reading. 

Figure 2.3 shows the relation between the s-fame, b-frame, and n-frame. 
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Figure 2.3: Definition of the s-frame with respect to the other frames 

2.2 Pedestrian Navigation  

Pedestrian navigation is a new and exciting field of mobile navigation that has a wide range of 

applications and a large number of potential end users. It can improve the quality of life by 

providing the means for navigation to aid visually impaired people in unknown environments 

(Wieser et al. 2007). In general, pedestrians spend most of their time indoors, the rest of the time 

they are moving around outside, in parking lots or going to work in urban environments. 

Pedestrian motion is extremely random and at a relatively low velocity. Furthermore, a person 

may turn suddenly at high angular velocities (Syed 2009). 

Pedestrian navigation in outdoor environments is usually supported by a Global Navigation 

Satellite System (GNSS), which can provide long-term stable position estimates with relatively 

high accuracy ranging from a few meters to tens of centimeters according to the receiver 

technology. Generally, GPS is preferred in outdoor navigation as there is no need to know the 
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receiver orientation and no growth in the position error with time. The recent progress in 

developing high sensitivity receivers makes it possible to use GPS for navigation applications in 

certain harsh areas such as wooden structure buildings (Lachapelle et al. 2004; MacGougan et al. 

2002). However, their weak power levels and signal reflections limit their use in many indoor 

settings (Zhang et al. 2010).  

Estimating a person’s position becomes more challenging in indoor environments or under 

conditions where the GPS signals are not continuously available, since there are significant 

shortcomings, such as:  

- Loss of satellites; 

- Multipath; 

- Signal jamming or fading; and 

- Inability to provide heading information correctly. 

A major advantage to using inertial sensors is that it they are self-contained and can be packaged 

and sealed from the environment  (Nebot & Durrant-Whyte 1999), and can therefore work as a 

standalone. INS has been used in land vehicle applications (El-Sheimy 1996; Lapucha et al. 

1990), in aerospace vehicles (Crocker & Rabins 1970), and military applications such as ships, 

submarines, and missiles (Rogers 1996). The main disadvantages of standalone inertial sensors 

navigation systems are the unbounded growing of error over time and deciding the initial 

conditions. This requires an integration of inertial sensors with other sensors or referenced 

techniques. In order to reduce the drift for long periods of standalone inertial navigation system 

use, it is necessary to reset the unit while the vehicle or the person is stationary. This can be 
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accomplished by using the Zero Velocity Update (ZUPT) approach or landmark points with 

predefined coordinates, known as the Coordinate Update (CUPT). The IMU provides high 

frequency information to generate position estimates between GPS data and velocity fixes. 

Furthermore the data provided by the GPS may be faulty or may not be available for extended 

periods of time. During these periods the IMU provides the navigation information either in a 

standalone mode or in combination with any other available aiding sources. The aiding source 

for the IMU can be a magnetometer which is used in most Pedestrian Navigation System (PNS) 

as a heading sensor to estimate the direction of the device (Bekir 2007). Another aiding source 

can be a barometer, which measures atmospheric pressure that once converted into height 

information can help estimate the altitude (Tang et al. 2005). The navigation system may also 

use, when appropriate, constraints on the motion of the moving platform such as non-holonomic 

constraints. These, for example, prevent a platform from moving sideways or vertically jumping 

off the ground and are used according to the dynamic whether pedestrian or vehicle.  

Other externally-referenced sensing techniques that can be used for positioning indoors include 

video movement-sensing, infrared, active/passive RFID, Ultra-Wide Band (UWB), and Wi-Fi 

(Kotanen et al. 2003; Wang et al. 2007). However, the complexity and cost of the hardware and 

the need for dense infrastructure to provide appropriate operational range are major obstacles for 

a mainstream adaptation of these technologies. As a result of these challenges, the use of other 

external information sources for estimating navigation parameters is also common. Table 2.1 

(Koyuncu & Yang 2010; Retscher & Kealy 2005) shows the expected accuracy from various 

positioning techniques, where y, x, and z represent the 3D coordinate position. 
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Table 2.1:  Comparisons between various positioning systems 

Technique 
Navigation 

Information 
Accuracy 

GNSS 

GPS 

x, y, z 

6 - 10 m 

DGPS (Code) 1 - 4 m 

DGPS (Phase) 5 - 10 cm 

WLAN 
RSS 

x, y 
2 - 6 m 

Finger-Printing 1 - 3 m 

UWB Positioning x, y ~ 20 m 

RFID Positioning (active landmarks) x, y 6 m 

Bluetooth (active landmarks) x, y 10 m 

Cellular Phone Positioning x, y 50 - 300 m 

Inertial Dead-Reckoning 
x, y 20 - 50 m/km 

z 3 m 

2.3 Principles of Pedestrian Dead-Reckoning (PDR) 

This section introduces the concept of the PDR technique and its main components.  

2.3.1 Dead Reckoning (DR) Technique 

PDR is a process of determining the position of a person who is traveling on foot using the 

estimated traveled distance and direction. PDR techniques (Gädeke et al. 2011; Godha & 

Lachapelle 2008; Groves et al. 2007; Jirawimut et al. 2003; Kim et al. 2004; May et al. 2003; 

Ojeda & Borenstein 2007) can help bridge the GPS signal gaps in outdoor environments or be 

used as the main navigation technique for indoor or GPS-denied environments. It is a relative 

means of positioning where the initial position and heading of the user are supposed to be 
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known. PDR works for in situations where a PND is handheld or rigidly mounted on the body 

and the alignment and calibrations for the system have been accomplished. In a classic 

configuration, the inertial sensors data is integrated to provide the navigation information. 

However, PDR offers an interesting strategy for inertial sensors by exploiting the kinematic 

qualities of human  gait (Beauregard 2007; Lee & Mase 2001; Stirling et al. 2003; Suh & Park 

2009) and prevents the need for continuous integration processes even when the user is not 

moving.  

In PDR, the total travelled distance can be calculated by estimating the step length and counting 

the number of steps. Most PDR systems use data from accelerometers to detect the occurrence of 

steps and provide a means for estimating the total travelled distance and direction in which the 

step was taken. For these systems, the position error is proportional to the number of steps. In 

addition to these basic objectives, the technique must be able to estimate the orientation of the 

device for the leveling process and minimize the errors inherent in the calculation processes. The 

basic concept and components of the proposed PDR algorithm are shown in Figure 2.4. Based on 

the information presented, there are two important parameters of the PDR technique: human 

motion analysis and user attitude estimation. The human motion analysis strategy includes 

static/motion detection, step detection/counting, and step length estimation. 
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Figure 2.4: The main concept of the PDR algorithm 

The process of the PDR technique begins when the walking mode is detected. The solution is 

initiated with the initial user position and device orientation. Once the parameters are estimated, 

the initial position can be propagated using Equation (2.1) and Equation (2.2) for the latitude (φ) 

and longitude (λ), respectively (Boulic et al. 1990): 

  r cos(     )PDR mis  k  k        (2.1) R        h k  N  k  

 sin(     )  PDR mis  k   k       r  
   (2.2) RM  k  h k  cos   k           
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In the above equations, k + and k - denote the current and previous steps, respectively. ψmis 

is the misalignment angle between the device forward and user direction, in the event they are 

not aligned in the same direction. The angle ψ refers to the heading measured in the navigation 

frame. Step length is denoted as rPDR . RN and RM are the ellipsoidal radii of the earth, 

and h is the ellipsoidal height. The ellipsoidal radii are estimated by the following formulae: 

a
R N 2 2  1/ 2  (2.3) ( 1  e  sin (  b ))     

R  
a( 1  e2 ) 

M 2 2  3/ 2  (2.4) ( 1  e  sin (  b ))     

Where a and e are the semi-major axis and linear eccentricity of the reference ellipsoid, 

respectively. Figure 2.5 shows a representation for the position propagation in the PDR 

technique. 

Figure 2.5: Position propagation in PDR approach 
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2.3.2 Static/Motion Detection 

It is important to distinguish between different user activities for the navigation solution. An 

algorithm is described, which recognizes the walking intervals from others such as stationary or 

magnetometer calibration intervals. The algorithm is used to eliminate confusion about what is or 

is not a step, which generally creates an error in the counting. The detection of the stationary 

periods can help in calibrating the inertial sensors to eliminate the error drifts. Also, detecting the 

device manoeuvring periods helps calibrate the magnetometer measurements.  To achieve the 

detection process and to distinguish between the different periods, a simple logic is applied using 

a threshold crossing for accelerometer data. The gravity is subtracted from the acceleration norm. 

The resulted data is compared with a known threshold (obtained by repeated tests) to 

conclusively detect stationary movement from walking or manoeuvring as shown in Figure 2.6. 

In this figure, a handheld Smartphone was moved in the 3D space followed by a stationary 

period and finally walking interval. 
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Figure 2.6: Human activities recognizing 
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The design of detection algorithm is an important aspect in pedestrian navigation since any false 

step taken contributes to the position error. The technique is based on detecting the maximum 

variation in the acceleration within a window of data and comparing it to a certain threshold. The 

manoeuvring movement has the biggest variation as the device is moved in 3D space for the 

purpose of calibrating the magnetometer measurement. Thus, it has the biggest threshold value, 

meaning any value greater than 4 m/s2. The walking activity can have threshold values anywhere 

between 1 and 4 m/s2 while stationary achieves values less than 1 m/s2. 

2.3.3 Step Detection and Step Counting 

Step detection is a basic step in any PDR technique. A step detection algorithm can be performed 

based on the different kinds of sensors. In this thesis, a step event detection scheme uses the 

acceleration sensed by the accelerometers. Once the step is detected, the total number of steps for 

a pedestrian can be counted. As a result, the total travelled distance can be estimated by 

multiplying the step length by the total number of steps. The norm for the three accelerometers is 

used as in Equation (2.5), where it is possible to clearly identify the steps by observing, for 

example, the signal over time. Steps are detected as peaks in the resulting norm where the step is 

at the highest local maximum in the norm acceleration between the current peak and the previous 

step peak.  

2 2 2accel _ norm  ( f x  f y  f z ) (2.5) 
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The process for step detection can be summarized as follows: 

- Define the necessary parameters for the step detection process; 

o	 window_size: Number of samples to be searched for a step that is ½ second. 

o	 norm_threshold: The difference between the maximum and minimum norm values. 

The range of this threshold is set between 3.5 m/s2 and 15 m/s2 to recognize the 

walking activity from static or moving the device for calibration. 

o	 walk_freq: The walk frequency between detected steps. The range of this threshold is 

set to be between walk_freq_min = 1.5 m/s2 and walk_freq_max = 6 m/s2 to 

recognize the normal walking. 

o index_threshold: Minimum epochs between steps which is ⅓ second. 

- Calculate the acceleration norm as in Equation (2.5). 

- Signal  peaks detection is performed by  recognizing the local maximum  and minimum 

values within a window of size (window_size) and comparing that with the norm_threshold. 

- Estimate the user walk frequency as the time between the current candidate step and the 

previous detected steps and compare to the range of walk_freq_max and walk_freq_min. 

	 1 1  
walk _ freqk  	 (2.6) T Step  T Step  


 k k 1  

- To validate the candidate step, the number of epochs between the current candidate step and 

the previous detected step is calculated and compared to index_threshold. 

The parameters or thresholds used must be calibrated as the walking style differs from person to 

person (Ladetto 2000). These parameters are set based on testing different values to reach those 

that are most appropriate yield the best performance of the step detection algorithm. Figure 2.7 
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shows the result for the step detection technique. The figure shows that the algorithm was 

successfully able to detect all steps correctly during the walking period of the test 

Figure 2.7: Detected steps from 3D accelerometer data 

2.3.4 Step Length Estimation 

Step length is an important component in PDR because in order to calculate the total travelled 

distance of a person while walking, the length of every detected step must be estimated. In this 

work, the device is supposed to be firmly attached to the user’s body like much of the work in 

the literature (Foxlin 2005; Li et al. 2010; Sabatini et al. 2005; Sagawa et al. 2000). A simple 

method to estimate the total distance travelled by detecting the step and using a constant length 
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might be satisfactory for estimating energy consumption during the day but is not accurate for 

position estimation. 

(Ladetto 2000) estimates the step length using the measured acceleration with the IMU fixed to 

the body.  This approach assumes that the human step length varies according to a stable value in 

average. In order to improve the PDR accuracy, the step length should not be considered a 

constant since it varies significantly from step to step depending on the person, leg length, 

walking speed and frequency (Weinberg 2002). Another approach utilizing the ZUPT technique 

is presented by (Feliz Alonso et al. 2009) which  does not consider any user parameters and 

activity patterns. The algorithm applies zero velocity updates every time a step is detected as the 

velocity is known to be zero to correct the linear velocities obtained after integrating the 

accelerometer data. As a result, the bias drift in velocity and position can be attenuated. 

In this thesis, a general model is used for step length estimation  (Kim et al. 2004). It is based on 

the relationship between the step length and the measured acceleration. The model is reliable for 

the change in the user speed which leads to an improved level of PDR precision. Equation (2.7) 

represents the relation between measured acceleration and step length. 

N 

 Ai 
i 1    (2.7) SL l

3 

N 
Where A and N are the acceleration norm after removing the gravity component and the number 

of samples between the current step and the previous step, respectively. The step length tuning 

factor l is set to be 1.25 based on conducted tests for different users. 
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2.3.5 Attitude Kinematic Equations 

Gyroscopes measure the angular rates (also known as angular velocity) around their axes; the 

attitude of the device can be derived by integrating rigid body kinematic equations, starting from 

a known initial attitude at a given point in time. Attitude kinematic equations can be used to 

compute estimates of a moving body’s attitude from measurements of the moving body’s angular 

velocity. The formulation of these equations depends on the attitude parameterization 

(Bageshwar 2008). In this thesis, attitude parameterizations are used to define the Direct Cosine 

Matrices (DCMs) that specify the orientation of the object in the body frame relative to the 

navigation frame. Numerous attitude parameterizations methods are discussed and surveyed in 

(Shuster 1993). Among the different techniques, Direction Cosine Matrix (DCM), quaternion, 

and Euler angles are commonly used in the inertial navigation (Savage 2000). In this section, the 

relationships between the different attitude parameterizations will be discussed. For more details 

about the quaternion technique, readers are referred to (Altmann 1986; Kuipers 1999). 

2.3.5.1 Euler Angles Representation 

It is possible to completely rotate from one frame to another by performing three rotations about 

the three axes. This can occur when any coordinate frame is represented by three orthogonal 

coordinate axes. The three successive rotation angles are referred to the Euler angles, shown in 

Figure 2.8 and introduced by Leonhard Euler (1707-1783). 
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Figure 2.8: The definition of Euler angles 

Equation (2.8) gives an explicit form of the primitive direction cosine matrices for right-handed 

rotations about the x, y and z axes, respectively. 

1 0 0  
 R( )  0 cos  sin   
0  sin   cos    

cos  0  sin   
R( )   0 1 0  

(2.8)   
 sin 0 cos    

 cos  sin  0 
 R( )   sin  cos  0  
 0 0 1  

Euler angles are the most common representation for describing the attitude of one coordinate 

frame with respect to another because it provides a direct measure of the actual angles that are 

formed between two different reference frames. As the sequence of rotations from one frame to 

the other is performed Euler angles can have a singularity at a particular orientation (Giardina et 
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al. 1981). The disadvantage however, is that Euler angles require an additional logic to avoid the 

conditions that cause the singularity. The attitude of a body with respect to the local-level 

coordinate frame is defined by the three Euler angles, namely roll (ϕ), pitch (θ), and azimuth (ψ). 

2.3.5.2 DCM Representation 

DCM is a 3x3 rotation matrix consisting of nine unique elements. The columns for each element 

represent the rotations from the axes of one frame into the axes of another frame (Titterton & 

Weston 2004). For attitude determination, the rotation matrix is often referred to as the DCM and 

is considered the fundamental quantity specifying the orientation of a rigid body. Unlike the 

Euler angle parameterization, it completely describes the orientation of one coordinate frame 

with respect to another, without singularities. The main disadvantage of the direction cosine 

parameterization of attitude is that it contains nine parameters, whereas the Euler angle 

parameterization has only three (Schleppe 1996). The DCM is commonly represented by 

Equation (2.9) 

c c c 11 12 13 
b  Ca  c21 c22 c23  (2.9) 

c31 c32 c33  

2.3.5.3 Quaternions Representation 

Sir William Rowan Hamilton, an Irish mathematician (1805-1865), invented the hyper-complex 

numbers of rank 4 and termed them quaternions. Quaternions are a four-dimensional extension 
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of complex numbers. A quaternion consists of four scalar components, three of which are 

commonly grouped into a vector component. Quaternions use four components to parameterize a 

three dimensional orientation and, thus, only three of the four components are independent. 

Quaternions are based on Euler’s theorem of rotation which states that it is possible to move 

from one coordinate system to another through one rotation using Euler angles. This requires a 

single rotation about a three dimensional vector to transform between two frames (Grubin 1970).   

A quaternion q is represented in vector notation form as in Equation (2.10): 

q q  iq  jq  kq 1 2 3 4 
 (2.10)  q q] 

Where q
 
 ( ,q q q  , ) represents vector part and the scalar part of the quaternion q is denoted by 

[ 1 

2 3 4 

q1 . The quaternions should satisfy the following normality condition; 

2 2 2 2q1  q2  q3  q4  1 (2.11) 

The differential equations for the quaternion parameters is given by (Schwarz & Wei 2000): 

 0 z y x  

1 
z 0 x y 

 
q  q (2.12) 

2  y x 0 z  
    0 x y z  

Where   (   )T  is the angular velocity of the moving device. The quaternion x y z 

representation of the frame transformation has an advantage over other representations, such as 

Euler angles and DCM. The quaternion algebra is the preferred choice due to better accuracy, 
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more efficient implementation (less time consuming), and strong protection against gimbal lock 

situations that are usually associated with Euler angle implementation.  

The following summarizes the advantages of quaternion algebra over other representations: 

- There is no singularity when approaching a pitch angle of 90o. 

- The linearity of its differential equations makes it is possible to implement via digital 

computers. 

- There is less complexity in computations compared to Euler angles and DCM 

representations, which improve the real time performance. 

2.4 The Earth’s Magnetic Field (EMF) 

The Earth’s Magnetic Field (EMF), as measured at any point on the Earth’s surface is a 

combination of several magnetic contributions generated by various sources. The magnetic 

compass was first used in China around 200 B.C., and was transferred to Europe much later to be 

used as indispensable tool for maritime navigation. The geomagnetic field can be fully described 

by measuring the intensity and two angles or three orthogonal components (Mandea et al. 2006). 

The two angles are the declination and the inclination angles while the orthogonal components 

are X, Y, and Z for the directions towards geographic north, east and vertically down, 

respectively. Nowadays, with the progress in sensors technology, the EMF can be precisely 

measured using the magnetometer. Valuable information can be extracted from the 

magnetometer measurements with the proper transformation of the field components such as the 

geomagnetic heading. 
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Generally, magnetometers measure the vector components of the magnetic field. The magnetic 

field can be characterized by different components. These include the strength of the magnetic 

field (F), the vertical and horizontal components (V, H), and the inclination and declination 

angles (I, D). What makes these parameters important for the magnetometer operation is that 

their values can be considered roughly constant over a small area, which is normally covered by 

a walking person. These values used as a reference for the measured values by the magnetometer 

to be compared.  

Figure 2.9: Geomagnetic field components and vectors. 

Three parameters are required to describe the magnetic field at any point on the surface of the
 

Earth which can be sensed by an orthogonal arrangement of magnetometers as shown in
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Figure 2.9 where Bx, By, and Bz represent the measured components of the magnetic field vector. 

D is the declination angle referenced to true North, which indicates the difference, in degrees, 

between the true north and magnetic north, which ranges from 0 to 360o. The field also has a 

vertical contribution; the angle between the horizontal and the magnetic field direction is known 

as the inclination angle. Magnetic inclination varies from 90o (perpendicular to the surface) at the 

poles to 0o (parallel to the surface) at the equator. The magnitude of the magnetic field varies 

from about 650 mGauss at the poles to about 300 mGauss at the equator.  

The heading with respect to true North can be estimated as:  

 B  tan 1( x )  D ( 2-13) By 

Equation (2-13) implies that the estimated magnetic heading is affected by any disturbance or 

perturbation in the horizontal magnetic field components. Consequently, the local magnetic 

components controlled the magnetic heading estimation process.  

The strength of the magnetic field is expressed as the norm of the measurements. Any significant 

deviations from the expected values for the different magnetic field components may be 

presented as disturbances. Unfortunately, small random variations can occur in the environment 

when someone is moving. 

The magnetic field can be characterized by four major components: 

- Total Geomagnetic Field Strength: F = || Bx + By + Bz || 

- Geomagnetic Field Horizontal Intensity: H = || Bx + By || 
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- Vertical Geomagnetic Field Intensity: V = || Bz ||
 

- Geomagnetic Field Inclination Angle: the angle of the magnetic field above or below 


  V horizontal, I  tan 1 
 
 H  

The expected values for the different magnetic field parameters are shown in Table 2.2 with 

respect to the city of Calgary, Alberta, Canada (Finlay et al. 2010). 

Table 2.2: The reference values of the tested parameters. 

Component Symbol Ref. Value Unit 

Total Magnetic Field F 567 mGauss 

Horizontal Component H 161 mGauss 

Vertical Component V 543 mGauss 

Inclination Angle I 73.5 Deg. 

Declination Angle D 14.8 Deg. 

Unpredictable perturbation of the magnetic field is a major drawback of using geomagnetic 

sensors. Pedestrians spend most of their time in harsh environments such as urban areas and 

indoor environments. Unlike outdoor environments, indoor ones mainly contain metal 

infrastructures, electrical and electronic devices. Such objects generate or influence the magnetic 

field which can alter the EMF magnitude and direction. These kinds of disturbances lower the 

performance of the magnetometer which leads to inappropriate positioning for pedestrians. 

However, a change the environment affects the magnetometer’s measuring operation.  

Two tests were conducted outdoors to show the impact of the perturbations on the EMF 

components where the device was held stationary. During the first test the device was kept away 

from any source of perturbations while in the second a magnetic dipole was moved near the 
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device for approximately 20 seconds. Figure 2.10 shows the components of the magnetic field in 

the absence of any source of perturbations. As depicted in the figure, there is no change in the 

values of the magnetic field components. This reflects on the heading estimation as heading is 

almost constant without any change, seen in Figure 2.11.  
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Figure 2.10: EMF as sensed in free perturbation area. 
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Figure 2.11: Heading estimates from non-perturbed magnetic field. 

In contrast, Figure 2.12 depicts the magnetic field components in the presence of a perturbation 

source as it is moved closer to the device. The presence of an artificial magnetic field beside the 

device causes a disturbance for the magnetic field where the values change abruptly (refer to 

Figure 2.13). The change in the magnetic field components creates a change in the estimated 

value of the heading as it is supposed to be constant. 
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Figure 2.12: EMF’s components in the presence of perturbation. 
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Figure 2.13: Heading estimates from perturbed magnetic field. 

Since the EMF is weak and can be easily masked and unpredictably distorted by any kind of 

natural or man-made magnetic disturbance, it is necessary to evaluate and assess the performance 

of the magnetometer signals during the navigation process. This can be achieved by inspecting 

the different levels and reference values for the different components of the magnetic field. This 

requires the use of a technique that will compensate for the effect of the different sources of 

distortion. This process is known as magnetometer calibration, where the necessary parameters 

are estimated to reduce the effect of the magnetometer perturbations. A proposed magnetometer 

calibration technique is described in Chapter 3. 

Occasionally, the calibration process must be repeated. Recalibration occurs when; (1) there is a 

significant change in latitude and longitude (2) there is a change in environment such as indoor 

to outdoor or to a vehicle. To detect such change in the magnetic field, a magnetometer anomaly 

detection algorithm should be used in combination with the navigation process to indicate the 
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need for magnetometer recalibration, described in Chapter 4. Unlike MEMS based sensors such 

as accelerometer and gyroscope which use mechanical sensing elements unaffected by 

electromagnetic components on the device, magnetometers are sensitive to the magnetic fields 

generated by other circuit components. The most common magnetic field sources are: 

- Induced fields within any ferromagnetic materials lacking a permanent field (such as 

sheet steel). 

- Generated fields by current flows from the power supply. 

Due to these factors, most magnetometer calibrations degrade over time and regular re-

calibration is a necessary step to ensure the integrity of the measurements. Even in well-designed 

handheld devices, these sources create extraneous fields with high magnitudes. Designers of such 

devices should not assume that the calibration process will always be correct for a poor layout. 

The device should also be moved in all possible directions in the space during the calibration 

process to ensure maximum benefit. Different Manoeuvring Modes (DMMs) are investigated to 

achieve the best estimation for the calibration parameters in the 3D Space. The purpose of this 

manoeuvring is to move the device in the space so as to allow the magnetometers the opportunity 

to cover a wide range of change in the magnetic field. This will be discussed in Chapter 4. 

2.5 Kalman Filter (KF) Principles 

Integrating different sources of information requires an efficient combination of sensors in an 

optimal filter. The Kalman filter is a well-known filter, employed in the fusion of information 

and estimation of states of interest. It plays a key role in several applications; because it has an 
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optimal  combination,  in terms of  minimization of variance, between the prediction of 

parameters  from  a previous  time  instant and external observations at the  present instant 

(Brown & Hwang 1992; Gelb 1974). The Kalman filter principle is built around two independent 

models:  kinematic and observation. Each model has a functional and a stochastic part. The 

general Kalman filter consists of two main steps: a prediction and correction step. The prediction 

step reflects the effects produced by a change in the states and states-covariance over time while 

the correction step presents combined information of the states and states-covariance with the 

measurements and its covariance. The strength of the KF technique lies in its ability to 

recursively estimate current states based on previous time steps and current measurement input 

data.  

The implementation of the KF is optimal for linear systems driven by Additive White Gaussian 

Noise (AWGN). The state model can be written in the following form:  

x  Fx  Gw (2.14) 

Where x is the state vector, F is the state transition matrix, and Gw represents the covariance 

matrix of the applied state model. The measurement system can be represented by a linear 

equation of the form of Equation (2.15). 

Z  Hx  v (2.15) 

Where Z is the vector of measurement updates, H is the design (observation) matrix that relates 

the measurements to the state vector, and v is the measurement noise. 
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KF equations are divided into two  groups; time prediction and measurement  update (Grewal & 

Andrews 2001).  The  time prediction  equations  are responsible  for the  forward time 

transition of  the current  epoch (k)  states to the next epoch (k+1) states. Time prediction 

equations are given by: 

x̂  x̂ 
k 1  k 1 k k  (2.16)   ,

  TP   ,  k Qk 1  k 1 k  k  P k 1 , k (2.17) 

Where (ˆ) denotes estimation, Φ is the model transition matrix,  P is the estimated variance-

covariance matrix of system states, Q is the system noise matrix, (-) denotes the estimated value 

after prediction, and (+) denotes the estimated value after update. 

The measurement update equations utilize new measurements into the states estimate equations 

are given as: 

 T  TK P H H P H  k  k  k  Rkk  k  k 1 
(2.18) 

  ˆ ˆ ˆx xk K z   k H x  k   k  k k  (2.19) 

 T  
k    ( I  K H )k PkP k (2.20) 

Where K is the Kalman gain, R is the measurements variance-covariance matrix. All noise terms 

are considered to be white sequences with known covariance. The general process of the discrete 

time KF is presented in Figure 2.14. 
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Figure 2.14: The general process of the Discrete time KF 

The dynamic system used for prediction is non-linear by definition, but the Kalman filter 

requires a linear set of differential equations to relate one state to another.  The Kalman filter 

performs  a linearization  of  these  equations  using the  Taylor series expansion of  the non­

linear  measurement  and  system  equations and truncates them to first-order approximations. 
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Chapter Three: Swarm Intelligence Based Magnetometer Calibration 

In this chapter, a magnetometer calibration technique is presented using the concepts of swarm 

intelligence and its application to pedestrian navigation. First, a brief background is presented on 

the state-of-the-art real-time calibration technique for magnetometer measurements. Then, a 

PSO-based technique of magnetometer calibration is described. 

3.1 Introduction 

In recent years, inertial sensors, gyroscopes and accelerometers, have become more popular for 

navigation in cluttered indoor environments that challenge the capabilities of for GNSS. The 

output of these sensors can be used to provide different navigational information. However, the 

errors produced by the data from these sensors are rapidly especially with low cost MEMS 

sensors that achieve low accuracy levels. Consequently, regular updates are necessary to provide 

drift free data for device attitude estimation. For heading updates, a triad magnetometer can be 

employed to measure the different EMF components in the space. These components help 

provide an estimate for an absolute value of the device heading. The ubiquitous nature of the 

EMF makes magnetometers usable more favorable tool in airplanes, vehicles, and ships. 

Nowadays, they are also available in smartphones, tablets, and most other handheld devices. To 

provide an accurate heading solution from a magnetometer or gyroscope depends on the cost, 

accuracy, and type of application at hand. Therefore, magnetometers offer the opportunity to 

have an update source for the heading can therefore be used over extended periods of time, 

especially in magnetically stable environments. 
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In densely cluttered outdoor or indoor areas, navigating a pedestrian with the use of a personal 

device becomes even more challenging due to the proximity of metallic objects and walls 

supported by ferrous pillars. These can cause a distortion in the EMF.  Even when travelling in 

certain outdoor environments, the EMF can be distorted due to the presence of power lines or 

moving vehicles. In order to improve the performance of the magnetometer, a calibration process 

is required to compensate for the distortion in the measured EMF.  The calibration process 

provides the required parameters to compensate for the various distortion effects. Therefore, 

without an appropriate calibration process, the magnetometer-based estimated heading is subject 

to inaccuracies resulting from the uncompensated errors. 

In most of the previous research, the calibration of magnetometers accomplished in the magnetic 

field domain (Gebre-Egziabher et al. 2006). The application of the calibration algorithm has 

convincing benefits for the compensation of the calibration parameters.  For a given region, the 

Earth’s total magnetic field is constant and its value can be obtained from the International 

Geomagnetic Reference Field (IGRF) model (Finlay et al. 2010) which becomes a base for 

developing a mathematical model for sensor calibration (Siddharth et al. 2011). A simplified 

calibration technique is presented in (Caruso 1997) which determines the calibration parameters 

in the  horizontal) (X-Y) plane only. The estimated parameters are two scale factors and two 

biases. Recently, a batch least square technique is presented for magnetometer calibration in 

(Elkaim & Foster 2006) that accounts for different distortion effects. In (Alonso & Shuster 

2002), a non-linear two-step calibration parameter estimator was presented.  The main operation 

of this algorithm was to estimate the initial values of the calibration parameters in the first step 
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and provide them to a linearized least square batch algorithm in the second step. An extension of 

this work including misalignment and scale factors is presented in (Alonso & Shuster 2003). 

Although the algorithm achieved good results, it becomes complex when all parameters are 

considered such as biases, scale factors and misalignment angles.  A related work in (Crassidis et 

al. 2005) presented a recursive algorithm for magnetometer calibration based on nonlinear 

Kalman filter. In another  study, (Gebre-Egziabher et al. 2006) implemented an algorithm that 

estimates the bias and scale factor of magnetometer based on least squares which takes in 

account the effect of the different distortions. The major defect of the method is that the 

algorithm requires several iterations to converge to the required values. The proposed work in 

(Santana 2009) combines the advantages in (Foster & Elkaim 2008; Lötters et al. 1998) to obtain 

a reasonable results from the previous technique. A game theory based calibration technique is 

proposed in (Siddharth et al. 2012). In this application the Kalman filter is tuned for the 

calibration parameters estimation using the game theory concept. The primary weakness of the 

technique is that nonlinearity still could not be handled. 

3.2 Swarm Intelligence 

Artificial Intelligence (AI) based algorithms are considered practical tools for nonlinear 

optimization problems (Kaniewski & Kazubek 2009). Various approaches are implemented 

based on AI such as Artificial Neural Network (ANN), Genetic Algorithms (GA), and Swarm 

Intelligence (SI). SI is the property of a system whereby the collective behaviours of 

(unsophisticated) agents interacting locally with their environment cause coherent functional 

global patterns to emerge. SI provides a basis with which it is possible to explore distributed 
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problem solving without centralized control or the provision of a global model (Liu & Passino 

2000). Anti-Colony Optimization (ACO), Bees Algorithm, and PSO are just some examples of 

the approaches and versions of SI, which are implemented and explained in detail in the 

literature. PSO is one of the modern heuristic algorithms (Kennedy & Eberhart 1995) and can be 

applied to nonlinear optimization problems (Wang et al. 2006). It has been developed through 

simulation of simplified social models. PSO has gained wide recognition for its ability to provide 

solutions efficiently and for requiring only minimal implementation effort. 

3.2.1 Particle Swarm Optimization (PSO) 

Bird flocks, fish schools, and animal herds are all examples of natural systems where an 

organized behaviour is successful in producing impressive, collision-free, and synchronized 

movements (Kennedy & Eberhart 1995). In these natural systems, the behaviour of each group 

member is based on simple inherent responses. SI is mainly inspired by such kinds of animal and 

natural systems. Although SI is still in its infancy compared to other paradigms of artificial 

intelligence, it offers an attractive new research field.  

Swarm-based algorithms are beginning to show promising performance in efficiency, ease of use 

and in comprehensive functionality (Parsopoulos & Vrahatis 2010). One of the most interesting 

research areas within computational swarm intelligence is the PSO which was developed based 

on the concepts and rules of socially organized populations in nature. The swarm is a group of 

individual agents called particles. Each particle follows a simple behaviour to achieve best 

performance by following the best in the group. PSO is a population based stochastic 
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optimization technique, developed by Eberhart and Kennedy in 1995 (Kennedy et al. 2001). 

They claimed that searching for a food source is similar to finding a solution for a common 

research goal (Hernane et al. 2010). In comparison with other AI based optimization techniques, 

the power of PSO lies in its simplicity of implementation. The performance of different 

optimization techniques used in industry today, along with their computational efficiency, clearly 

indicates that PSO performed better than other algorithms in terms of success rate, solution 

quality, and convergence speed (Elbeltagi et al. 2005). It can be applied to solve various 

functional optimization problems. In contrast with other optimization algorithms that require the 

objective function to be differentiable, PSO can work in cases of non-differentiable transfer 

functions where no error information is available (Rajini & David 2010).  

The PSO technique employs a set of feasible solutions called a ‘swarm of particles’ that are 

populated in the search space with initial random positions and velocities as shown in Figure 3.1 

(a). At any particular instant, each particle has its own position and velocity (Havangi et al. 

2010). In essence, it is trying to find its own solution for the problem in the search space to target 

the optimal “solution”. All particles have fitness values that are evaluated according to the cost 

or fitness function to be optimized.  They also have update values and velocities that control the 

movement of the particles. When PSO is initialized it is done so with a group of random particles 

(solutions) and then searches for optima by updating generations. The algorithm is iterative and 

the locations will change at each time step. In addition, each particle will record the location of 

its ‘best position’. In every iteration, the particle (P) is updated by two best values. The first best 

value is the best solution (fitness) achieved so far among the closest particles in the 

neighbourhood, where the fitness values are stored during the process up to the current 
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iteration—this is known as the local best particle or pbest (pi). The other best value is the global 

best or gbest (pg) which represents the best fit position at that moment among all the particles in 

the population (Bai 2010; Dian et al. 2011; Liang et al. 2006; Sabat et al. 2011; Sedighizadeh & 

Masehian 2009). After finding these two best values, the algorithm then updates the position of 

each particle iteratively through the process, defined in Section 3.4.  Figure 3.1 (b) shows the 

visualization of the PSO vector components during the update process. The updated position is 

the result of a summation for the basic vectors of the current position, local best vector, and 

global best vector (Blum & Li 2008). 

(a) Swarm search technique for the particle local and global 
(b) Particle’s vector update. 

best. 

Figure 3.1: Principles of Swarm Intelligence. 

3.3 Magnetometer Calibration Technique 

A calibration technique based on PSO technique is presented in the current work (Ali et al. 

2012a; Ali et al. 2011). There are a number of reasons for why a PSO-based technique would be 
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used over other well-known estimators such as the Kalman filter. The following list outlines the 

drawbacks of using the latter method: (Siddharth et al. 2011): 

- A prior knowledge of initial states is required. 

- Inaccurate knowledge of noise statistics (Process Noise/state Covariance). 

- Matrix implementation, especially, inversion operation which may lead increased 

computation time and leads to singularity. 

- Higher uncertainty of heading initialization. 

Furthermore, the PSO algorithm has an advantage over other optimization techniques since it has 

no need for linearization and fast convergence. Additionally, the PSO has been proven to be 

stable and   efficient in  noise optimization problems (Pan et al. 2006; Parsopoulos & Vrahatis 

2001) which makes it suitable for the magnetometer calibration process. 

Dealing with low cost magnetometers requires improving the accuracy of raw measurements 

(Dorveaux et al. 2009). Therefore, the mathematical models should be adequately prepared to 

take into account the various sources of disturbance.  A major part of the magnetic field 

distortion is produced when the induced permanent unwanted fields from ferromagnetic 

materials exist in the vicinity of the magnetometer, which create a bias. Another type of 

distortion is generated by the materials that react with the externally magnetic field. Based on the 

EMF, the formulation can be stated according to the following mathematical model (Ali et al. 

2012b): 

  B AH b  ( 3.1) 
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Equation (3.1) can be rewritten in the form: 

H A B b  ) 

Where 

 H is 3x1 estimated EMF vector, 

 1(    ( 3.2) 

 B is 3x1 magnetometer measured magnetic field vector, B  Bx By Bz 
 

T 

 A is 3x3 magnetometer scale factor matrix, A daig( a a a ) ,x y z 

 b is 3x1 magnetometer bias vector, b  bx b y b z 
T 

and 

 ε is 3x1 magnetometer noise vector,   y z 
T

   x 

To simplify the mathematical formulation in Equation ( 3.2), matrix A compensates for the errors 

due to misalignments, scale factors, and soft iron where b combines biases caused by the 

combination of misalignments and hard iron. Additionally, the white noise can be ignored as it 

is not part of the model used for calibration parameters in the estimation process. As such 

Equation (3.2) can be rewritten as: 

 1( H A B b  ) ( 3.3) 

In a disturbance free environment, the value of the norm of the measured magnetic field 

components should be equal to the reference value of the EMF. Consequently, the bias and scale 

factors are estimated and subject to the objective function as represented in Equation ( 3.4) 

Hm 
2  H

2 

m 
2  T H  0 ( 3.4) H H

Where Hm is the true reference magnitude of the Earth’s magnetic field in a given geographical 

location (which can be obtained from the IGRF model). Every five years, the International 
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Association for Geomagnetism and Aeronomy (IAGA) revises and updates the IGRF parameters. 

The user is required to input the latitude, longitude and height of the place where the Earth’s 

magnetic field intensity is sought. The 11th generation IGRF accepts years ranging from 1900 to 

2020. The accuracy of the reference value based on this model is within 10 (nT) Nano Tesla; 

more details about IGRF-11 in (Finlay et al. 2010). 

The proposed technique has been adapted to achieve a real time performance. Both 

magnetometer and gyroscope data are utilized to perform the calibration process. This process 

requires that the gyroscope data is used to detect the range of the manoeuvring movement and 

distinguish between the static and motion states. The user is asked to perform the manoeuvring 

movement for about 20 seconds so that the magnetometer data will be patched for the calibration 

process. The proposed technique consists of three main parts as shown in Figure 3.2. 

Figure 3.2: Schematic diagram for the PSO based calibration scheme 

The first part is the basic PSO based calibration algorithm which estimates the bias and scale 

factor values. To optimize the operation, a second part is added to select the effective range of 
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the magnetometer measured data during the manoeuvring movement. This part is called the 

Region of Interest Selection Technique (RIST) which returns the start and end indices. The 

output of this part is the actual input for the calibration algorithm. The third part is a modification 

of the basic PSO algorithm to accelerate the convergence of the estimated parameters. This is 

referred to as the Modified PSO Technique (MPSOT). Each of these parts will be explained in 

further detail in the following section. 

3.3.1 Basic PSO Based Calibration Algorithm 

The proposed algorithm is used to estimate the bias (b) and scale factor (SF) values of the 

magnetometer measurements by minimizing the difference between the measured and the 

reference values of the EMF. The proposed method is best suited for problems of a non-linear 

and non-Gaussian nature (Ali et al. 2012b). This consideration also becomes important since in 

most cases there is no prior knowledge about the nature of the external fields corrupting the 

magnetometer’s signal. PSO is a better choice to circumvent these difficulties, and is employed 

extensively to solve complicated design optimization problems as they can handle both discrete 

and continuous variables in addition to non-linear objective and constrained functions without 

the computation of a gradient (Alonso & Shuster 2002). Three bias and three scale factor terms 

corresponding to each axis of the tri-axial magnetometer are estimated, which constitute the six 

elements of the state vector. 
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To define the ith position and velocity of the particle as xi = (xi1, xi2, ..., xiD) and vi = (vi1, vi2, ..., 

viD,) respectively for a swarm of N particles and a search space of dimension D, the PSO 

algorithm is performed: 

k k1 k1 k1 k1 k1 k1 k1vi  w v  . i  c1ri1 ( pi  xi )  c2ri2 ( pg  xi ) ( 3.5) 

k k 1 kxi  xi 
  vi ( 3.6) 

Where  

- k is the index of the current, new, iteration and k-1 refers to the previous, old, iteration. 

- i = 1, 2, …,N where N is the size of the population, number of particles,  

- c1 and c2 are acceleration coefficients, 

- ri1 and ri2 are random numbers uniformly distributed within the range [0, 1]. 

- w is inertial weight factor, and the bigger the value of w, the wider is the search range. 

Equation ( 3.5) is used to estimate the update of change in position, velocity, of the ith particle 

while Equation ( 3.6) provides the new updated position. The standard values for w, c1, and c2 to 

be 1, 2, and 2, respectively are used as fixed values during this process. These parameters are set 

according to different groups of values where they are found to provide the best performance for 

the PSO algorithm in its current application. For more information about selecting of the 

different parameters in the PSO algorithm please refer to (Pedersen 2010; Shi & Eberhart 1998). 

The error in the magnetic field magnitude ∆H is given by comparing the norm of calibrated of 

magnetic field (H) with the reference value in a certain area (Hm). 

   H H  H Hm 
2  T 

(3.7) 
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N

Fit _ alue ( H  )  
2

V    i (3.8) 
i 1 

Where N is the number of samples. 

The performance of each particle is measured according to a fitness function, which is problem-

dependent. In optimization problems, the fitness function is usually identical to the objective 

function under consideration. Equation (3.8) shows the applied fitness function is the difference 

(error) between the estimated value of the total magnetic field and the reference value. The 

reference value is 170 mGauss in the case of 2D calibration while 570 mGauss is for the 3D 

calibration case. These reference values are obtained from IGRF for the city of Calgary (Finlay 

et al. 2010). The fitness value is computed as the square root of the summation of the squared 

error. 

The algorithm re-evaluates the locations of all particles’ after each iteration and receives the new 

best values. To determine the optimum value, a recurring searching process is performed until 

the maximum iteration number is reached or the minimum error condition is achieved. The PSO 

general computational steps are shown in Figure 3.3.  
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Figure 3.3: The basic PSO algorithm. 

The main objective of the proposed technique is to estimate the values of the scale factor and 

T T 
bias respectively according to Equation (3.8) where SF  ax ay az  and b  bx by bz  . 
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3.3.2 The Range of Interest Selection Technique (RIST) 

In all previous research on the calibration of magnetometers, a range of interest selection for the 

measurements was not taken in account. In order to make the calibration procedure more 

efficient, the appropriate range of the signal from the entire dataset is extracted and processed. 

The RIST is used to select the most effective part of the raw data which will be used during the 

calibration process.  

The proposed technique searches for the maximum change in the magnetic field for each axis 

and acquires the interval in between. The algorithm receives the overall raw measurements and 

returns the start and end indices of the nominated interval as shown in Figure 3.4. The selection 

operation is based on detecting the maximum and the minimum signal amplitude in the raw 

measurements. Based on the selected indices, the range of interest is extracted and passed to the 

calibration algorithm to get the estimated values for SF and b. 

Figure 3.4: The range of interest Selection technique principles. 
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RIST is important for real time calibration; a typical process for most magnetometer calibration 

in any PND. In doing so, the calibration algorithm becomes fast, and therefore, fit the real time 

requirements. To improve upon this methodology, outlier detection may be implemented to 

achieve greater results by distinguishing between signal max/min arising out of rotation and 

external disturbance or noise. Enhanced accuracy can take place in the selection of peak values 

by observing the signal pattern of other sensors.  These sensors might be found in the same 

device (e.g. gyroscopes and accelerometers), which attain a specific pattern during rotation 

motion as the calibration of the magnetometer requires a full rotation of the sensor on a 

(horizontal/vertical) plane. 

Figure 3.5 shows the first stage of the proposed calibration scheme. The measurements taken 

from magnetometers and gyroscopes are entered into the RIST so they can be trimmed. The 

output of the auto-selection algorithm is the beginning and end of a selected range of 

magnetometer measurement. 

Figure 3.5: The RIST algorithm. 
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The embedding of RIST to the scheme means fewer samples have to be processed during the 

calibration step. As a result, the total time of the calibration process is reduced and improves 

power consumption on consumer devices. 

3.3.3 Modified PSO Technique (MPSOT) 

The PSO algorithm is based on an iterative process to reach optimum solution. This algorithm 

uses an iterative process to estimate b and SF. Over the iterations, these values converge to the 

best values and then the process is terminated. The purpose of MPSOT is to create new criteria to 

terminate the estimation process. To reduce the processing time, the basic PSO algorithm is 

modified by creating termination criteria for the calibration process seen in Figure 3.6. The stop 

criteria requires that the following three factors exist: 

- A maximum number of iterations.  

- A minimum error value. 

- Change in bias and scale factor values becomes less than a threshold of 0.01 for 

consecutive iterations. 
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Figure 3.6: The MPSO based calibration algorithm. 

Once the convergence is reported by the termination criteria, the requirement of more 

iterations or process time is redundant, thereby improving the efficiency of the algorithm and 

reducing the time-complexity. 

3.4 Test and Discussion 

To assess the performance of the proposed calibration technique, a group of field tests were 

conducted. The tests include data collection for static, walking, indoors and outdoors modes of 

operation. For 2D calibration, the magnetometer was rotated 360◦ in the horizontal plane while 

the heading was computed using the magnetometer-calibrated measurements based on the 

estimated b and SF. The 3D test was conducted by rotating the device about the three axes in the 

vertical and horizontal directions.  

A description of the results can be found in the next section, where the basic PSO algorithm is 

first applied using the entire dataset of the magnetometer measurements in the parameters 
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estimation process. First, with the basic PSO there is no modification to the core of the 

algorithm. Secondly, the application of RIST illustrates where a range of interest in the dataset is 

selected for use rather than the entire dataset, as described in Section 3.2. Third, the MPSOT is 

used when a significant change is applied to the core of the basic PSO algorithm. Finally, the 

effect of the proposed modification on the PSO processing time performance is discussed.   

3.4.1 2D Calibration Scenario 

2D calibration tests conducted by maintain the PNS in the horizontal plane. The total magnetic 

field is calculated in the horizontal frame (X-Y) and tests are performed in the multi-sensors lab 

at the University of Calgary using the rotation table shown in Figure 3.7.  

Figure 3.7: Rotation table 

Tests include two 360-degree turns around the z-axis using a rotation table to ensure that the 

device is held in the horizontal plane. Both b and SF values are estimated by passing the 

magnetometer readings to the basic PSO algorithm. 
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3.4.1.1 Basic PSO Results 

Figure 3.8 shows the results for the basic PSO where “Raw” and “PSO” terms refer to the 

calculated magnetic field using the raw measurements and the calibrated data respectively. 

Figure 3.8 (a) shows the raw magnetic field in the X and Y directions, while the total horizontal 

magnetic field is shown in Figure 3.8 (b). The calibrated readings show the constancy of the 

estimated magnetic field, which is approximately the reference value of the EMF. Figure 3.8 (c) 

shows the resulted track after calibration where the two 360-degree turns around the z-axis are 

calibrated and adjusted around the origin in the shape of circles based on the values estimated by 

the Basic PSO algorithm. 

The Raw Data 
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(a) Raw magnetic field readings. 

-150 

-100 

-50 

0 

50 

100 

150 

200 

250 

M
ag

ne
ti

c 
F

ie
ld

  (
m

G
au

ss
) 

MagX 

MagY 

65 




 

 
  

 
 

   

  

 

 

 

 

Total Horizontal Magnetic Field 
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(b) Horizontal raw and PSO calibrated magnetic field. 
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(c) 2-D calibration for adjusted magnetic field. 

Figure 3.8: Standard PSO based 2D calibration 
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3.4.1.2 RIST Results 

In this section, the impact of applying RIST to reduce the time required for estimating b and SF 

values is observed. The number of samples is compared the entire dataset and the range of 

interest (part of the data). Figure 3.9 shows the compared results where the total number of 

samples decreased for all cases. For example, 1240 samples (all the measured data) are used in 

Test1; however, applying RIST reduces the number to just 279 samples. As a result of this 

decrease, the time required to perform the calibration process is also decreased. 

Figure 3.9: Number of applied samples in 2D calibration. 

Although less information is fed to the PSO algorithm, the accuracy of the results has not been 

affected, as indicated in Table 3.1 where the values of SF and b are close in all tests and in both 
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cases. Therefore, the results gathered from the PSO, with the entire dataset and with RIST, 

behave almost identically. 

Table 3.1: Comparison of calibration parameters in 2D calibration. 

X Scale Factor Y Scale Factor X bias (mGauss) Y bias (mGauss) 

All RIST All RIST All RIST All RIST 

Test1 0.873 0.866 0.998 0.973 87.279 87.419 54.190 50.008 

Test2 0.601 0.598 0.655 0.649 33.490 32.674 42.887 42.193 

Test3 0.925 0.913 1.018 1.050 66.016 63.461 61.332 58.556 

Test4 2.498 2.535 2.720 2.773 36.912 50.207 42.229 51.725 

Test5 0.791 0.793 0.872 0.869 19.483 19.986 42.121 43.142 

3.4.1.3 MPSOT Results 

To demonstrate the final impact of the proposed algorithm, both RIST and MPSOT were fused 

together in the calibration process. In this scenario, the entire dataset was applied to RIST to 

produce the range of interest for the dataset. Then, the MPSOT was applied to reduce the number 

of iterations required to converge by the algorithm. Figure 3.10 provides a comparison between 

the number of iterations, which the algorithm consumes to converge when using the basic PSO, 

and its modified version, MPSOT. 
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Figure 3.10: Number iterations basic PSO and MPSOT in 2D calibration. 

The comparison establishes that the number of iterations decreased in most cases by 1/3 when 

MPSOT is applied. Without doubt, the values of SF and b were unaffected, as illustrated in 

Table 3.2.  

Table 3.2: Comparison of PSO and MPSOT in 2D calibration. 

X Scale Factor Y Scale Factor X bias (mGauss) Y bias (mGauss) 

PSO MPSOT PSO MPSOT PSO MPSOT PSO MPSOT 

Test1 0.858 0.863 0.982 1.027 85.615 86.025 50.381 46.695 

Test2 0.597 0.602 0.649 0.629 32.659 29.96 42.003 43.227 

Test3 0.913 0.911 1.05 1.049 63.563 62.955 58.489 58.503 

Test4 2.534 2.535 2.773 2.773 50.356 50.162 51.822 51.59 

Test5 0.787 0.775 0.856 0.859 18.75 16.295 40.415 47.76 
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3.4.2 3D Calibration Scenario 

 

To examine the performance of the proposed technique in 3D space calibration, six different 

tests were conducted. During these tests, the device was moved freely in the space; in fact 3D 

calibration is more convenient for the user when the device is not held in the horizontal plane. 

The total magnetic field was calculated when the reference value of the total EMF reached 570 

mGauss. The algorithm received data from the 3-axis magnetometer.  

 

Figure 3.11 illustrates the calibration results for the magnetic field sensors, where both the un­

calibrated and calibrated magnetic fields are plotted in 3D. The mesh globe outlines the expected 

3D magnetic field, which differs significantly from the one that was measured in the un­

calibrated version. After calibration, the measured field components coincided with those that 

were expected, thereby proving a successful calibration. 
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Figure 3.11: 3D PSO magnetic field sensors calibration. 
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3.4.2.1 RIST Results 

Figure 3.12 shows the comparison between the number of samples in both cases using the entire 

dataset and the region of interest.  

Figure 3.12: A comparison between the numbers of samples applied for magnetometer 

calibration in case of using the entire dataset and RIST in 3D calibration. 

Error! Reference source not found. indicates no significant change in SF and b values and the 

results confirm the validity of the proposed calibration technique even with a fewer number of 

observations. Much like the previous case in 2D calibration, a comparison of the RIST results 

highlights the benefits of the proposed technique for calibrating the magnetometer. 
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Table 3.3: Magnetometers parameters resulted from using the entire dataset and RIST in 
3D calibration. 

X Scale Factor Y Scale Factor Z Scale Factor 

All RIST All RIST All RIST 

Test1 1.0371 1.0325 1.1141 1.0985 0.9394 0.9317 

Test2 1.0479 1.0465 1.1003 1.1014 0.9364 0.9384 

Test3 1.0153 1.0158 1.0895 1.0860 0.9318 0.9324 

Test4 0.9136 0.9249 0.9761 0.9718 0.8453 0.8541 

Test5 0.9286 0.9248 0.9817 0.9859 0.8368 0.8460 

Test6 0.9454 0.9311 1.0169 1.0167 0.8733 0.8674 

(a) Scale factor values 

X bias (mGauss) Y bias (mGauss) Z bias (mGauss) 

All RIST All RIST All RIST 

Test1 38.1795 40.0139 30.8485 38.8051 135.8694 128.0139 

Test2 36.3021 35.7039 34.2721 33.6313 135.5421 134.6297 

Test3 40.3624 38.9419 37.8209 36.4251 134.4415 134.2701 

Test4 28.4165 16.2188 46.2673 53.2383 121.8317 114.8561 

Test5 34.5628 34.1847 58.8522 58.1043 129.9453 126.9294 

Test6 46.1353 40.1545 33.8024 37.6382 126.3606 128.5436 

(b) Bias values 

3.4.2.2 MPSOT Results 

Figure 3.13 shows the comparison between the number of iterations for the basic PSO and the 

MPSOT. 

72 




 

 

 

   
 

 

      

   

 

 
   

    

    

   

    

    

    
  

 
 
 

Figure 3.13: A comparison between the numbers of iterations in case of using the basic 

PSO and MPSOT in 3D calibration. 


Table 3.4 presents the different values of SF and b for both algorithms where the values are 

close. These results indicate that the MPSOT reduces the time required for the calibration 

process as in the previous 2D calibration case. 

Table 3.4: Magnetometers parameters resulted from using the basic PSO and MPSOT in 
3D calibration. 

X Scale Factor Y Scale Factor Z Scale Factor 
PSO MPSOT PSO MPSOT PSO MPSOT 

Test1 1.0267 1.0228 1.1643 1.1334 0.9385 0.9515 

Test2 1.0485 1.0449 1.0994 1.0998 0.9385 0.9325 

Test3 1.0079 1.0082 1.0807 1.0903 0.928 0.9371 

Test4 0.9249 0.9152 0.9717 0.9868 0.8539 0.8452 

Test5 0.9235 0.9008 0.9812 0.9916 0.8504 0.8608 

Test6 0.9227 0.9276 1.0191 1.0281 0.8703 0.8644 
(a) Scale factor values 
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X bias (mGauss) Y bias (mGauss) Z bias (mGauss) 
PSO MPSOT PSO MPSOT PSO MPSOT 

Test1 40.0418 35.2361 8.1353 23.3182 133.0826 150.0231 

Test2 36.1018 25.7854 33.8402 42.4474 134.9986 130.0379 

Test3 33.6985 32.2681 32.9084 20.48 135.5549 139.0494 

Test4 18.5793 8.9173 51.7038 49.8835 115.2107 128.7535 

Test5 32.2353 33.1784 59.1892 49.9255 127.8947 126.5982 

Test6 38.1294 36.6339 31.4223 28.0506 130.0527 119.8037 

(b) Bias values 

The innovative features of the proposed PSO-based magnetometer calibration technique can be 

summarized as the following: 

- It accounts for unexpected terms - that may be neglected - to simplify the objective 

function.   

- It makes no assumptions for the magnetic deviation. 

- The magnetometer measurements are calibrated directly without estimating the 

geometrical proprieties of the ellipsoid (rotation, translation and lengths of the semi-

axes). 

3.4.3 2D Calibration bias and scale factor convergence 

This section describes the effect of the modification in the PSO algorithm in the required time 

for the calibration process. Figure 3.14 provides the results of the comparison between the 

calibration process using standard PSO and the MPSOT. As shown in Figure 3.14, the 

standard PSO terminates after 309 iterations to estimate the proper bias values while the 
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MPSOT consumes only 108 iterations (≈ 1/3rd) to provide closer bias values to the standard 

version. 
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Figure 3.14: The convergence of estimated bias and scale factor values in 2D calibration. 

3.4.3.1 3D Calibration bias and scale factor convergence 

The results of the comparison between the calibration process using standard PSO and the 

MPSOT in the scenario of 3D calibration are shown in Figure 3.15. The standard PSO algorithm 
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takes 310 iterations to converge while the MPSOT takes only 83 iterations to estimate the proper 

bias values. The ratio between standard and the modified algorithm is (≈ 1/4rd). 
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Figure 3.15: The convergence of estimated bias and scale factor values in 3D calibration. 

3.5 Comparison between PSO & KF techniques 

In this section, the performance of the proposed PSO-based magnetometer calibration technique 

is compared to the Kalman filter technique. 
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3.5.1 KF Parameters Conversion  

One of the major disadvantages to using the KF technique for magnetometer calibration is the 

conversion of the bias and scale factor values. Figure 3.16 provides an example for 2D 

calibration using the KF technique. As shown in the figure, the values diverge and fail to indicate 

an appropriate termination for the calibration process. 
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Figure 3.16: KF-based calibration parameters convergence. 

3.5.2 2D Calibration 

For comparisons purposes, two types of tests were conducted for the 2D scenario. The first test 

included a hand rotation applied to the device in the horizontal plane, ensuring that rotations 

were sensed about the horizontal frame, x and y, axes of the device. The test was conducted 

outdoors.  

As evidence by Figure 3.17 (a), the PSO successfully estimates bias and scale-factor errors while 

KF fails to converge for the correct values as shown. The correct heading values should change 

from 250o to 250o again as the device is rotated one circle in the horizontal plane around z-axis. 
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Where the KF-based heading yields different values with errors caused by improper calibration 

processes, the PSO-base estimated heading follows the correct heading values as seen in 

Figure 3.17 (b). 
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(b) One 360 degrees turn around z-axis and corresponding estimated heading. 


Figure 3.17: A comparison between PSO and KF calibration techniques performance.
 

For the second type of test, a typical lab environment with even more dense magnetic structures 

was chosen. 2D rotation of the module was performed using a rotation table about the vertical z-

axis. The results are shown in Figure 3.18. The bias and scale-factor errors shift the circle from 

the origin and skew the circle to form an ellipse The PSO works well to estimate this bias and 

scale-factor error while the KF fails however, to estimate the correct scale factor value as shown 

in Figure 3.18 (a) since the calibrated data shape is an ellipse and not a circle. The total magnetic 

field is expected to be around 170 mGauss after calibration. As shown in Figure 3.18 (b), the 

PSO algorithm achieves the closest result to the reference value and has less variation during the 

calibration movement. Figure 3.18 (c) illustrates the estimated heading for all techniques. 
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(c) Estimated heading for two 360 degrees turns around z-axis. 

Figure 3.18: A comparison between PSO and KF calibration techniques performance for 
rotation-table motion of the device. 

The PSO for both indoor and outdoor scenarios performed well when estimating the bias and 

scale factors. After a comparison of the outdoor and the indoor results, a higher scale-factor 

error is determined to have corrupted the magnetometer. This is to be expected since indoor 

environments contain more ferrous objects than outdoor environments 

3.5.3 3D Calibration 

To evaluate the performance of the different techniques in 3D space, an outdoor test was 

conducted in a soccer field, as shown in Figure 3.19 (a). The device was first moved in the space 

around 3 axes, meaning it, was held in the compass mode during the test. The test began in a 

south direction at 180o. A complete square was tracked as 180, 90, 0, and 270 degrees.  The total 
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magnetic field is shown in Figure 3.19 (b) as the PSO and KF results are close to the reference 

value. Figure 3.19 (c) demonstrates that the obtained heading from the calibrated magnetometer 

readings were close to the reference heading. This can be seen in the heading comparison 

between PSO-and KF-based calibrated and un-calibrated magnetometer readings. 

(a) The field test 
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Figure 3.19: A comparison between PSO and KF base calibration performance in 3D space 
with the raw measurement. 
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As mentioned in the previous sections, the objective of the estimation algorithm is to obtain 

bias and scale-factor values in different environments. By using the proposed formula, it is 

assumed this is nearly constant and hence the process noise is negligible.  Even if a small 

amount of it were to have any effect it would be modeled by default in the estimated values 

achieved by using the swarm technique - according to which all effects are modeled as bias 

and scale factor.  The selection of the swarm parameters’ values had some influence on the 

algorithm performance. In this algorithm however, it was determined to be sensitive only to 

the parameter initialization. The range of the parameter initialization should be investigated 

from the signal behaviour in order to have the appropriate range for each parameter. 

However, the PSO was found to be robust against the environment change and many parts of 

the surrounding objects distortions. The PSO-based calibration technique leads to improved 

calibration performance and significantly outperforms the KF in harsh conditions. 
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Chapter Four: Magnetometer Measurement Pre-Calibration and Post-

Calibration Analysis 


As discussed in Chapter 3, measurements acquired from magnetometers require frequent 

calibration due to the change in the environment and the surrounding objects. Moving the 

magnetometer around the different axes significantly affects the calibration process. To improve 

the performance of the magnetometer in cluttered environments, pre- and post-calibration 

procedures should be followed (Ali et al. 2013). The pre-calibration process is the movement of 

the device to affect the magnetic field around the different axes while the post-calibration 

process involves monitoring and assessing the measured magnetic field to initiate the 

re-calibration process. In this chapter, efficient manoeuvring modes for pedestrian navigation 

applications are investigated to calibrate low-cost magnetometers. A magnetometer anomaly 

detection technique is also proposed for the recalibration process. 

4.1 Error Sources in Magnetometer Measurements 

Distortion in the magnetic field can occur as a result of different objects in the surrounding 

environment. Even in well-designed handheld devices, these sources create extraneous fields 

with high magnitudes. Designers of such devices should not assume that the calibration process 

will be always correct for a poor layout. Magnetometers’ measurements are influenced by 

several types of errors which can be grouped in one way mathematically (Takahashi et al. 2010). 

The scale factor can be modeled together with hard and soft iron effects, as they have the same 

mathematical consequence (Foster & Elkaim 2008).  The scale factor and bias therefore become 
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the main calibration parameters to be considered. Such parameters have a significant effect on 

the overall performance of the magnetometer and should be corrected (Granziera Jr 2006). The 

temperature can also be considered as one of the distortion sources for the magnetic field 

(Titterton & Weston 2004). 

However with an efficient calibration technique, there is no need to have a specific method for 

thermal effect correction as the recalibration process for the different parameters can be 

sufficient. In general, hard iron effect causes much larger contribution for the resulted 

distortions. It is important to understand the different effects, of hard and soft-iron, to estimate 

the appropriate and necessary parameters. The following subsections describe the different 

source of distortion for the magnetic sensor. 

4.1.1 Ideal case without distortions 

In the absence of any disturbance on the sensed field, the plot of the measurements in the 

horizontal plane should form a perfect circle. The circle is centered on the origin, (0, 0), with a 

radius equal to the magnitude of the magnetic field. Figure 4.1 presents the resulted track from 

plotting the magnetometer x vs. magnetometer y and rotating the device in the horizontal plane 2 

turns at 360o about the z-axis. The result shows a circle around the origin as no distortion effects 

in the surrounding environment. 
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Figure 4.1: Distortion-free magnetometer data. 

However, the perturbation in the magnetic field can be produced in the presence of any hard or 

soft iron effect. The perturbation shifts the center of the data at a point rather other than (0, 0) in 

the case of hard iron effects while soft iron effects cause the plotted data to appear deformed as 

the circle shape becomes an ellipse with a different offset angle. 

4.1.2 Hard Iron Effect 

Hard iron distortions are generated by the objects that produce a constant and additive magnetic 

field to the EMF. Thus, the generated magnetic field is presented by a constant permanent bias in 

the output of each magnetometer. The hard iron distortions shift the origin of the produced circle 

out from (0, 0) as shown in Figure 4.2. The figure shows that the center point is moved to (70, 
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65) which means that there is a 70 mGauss hard iron bias in Mag_x’s measurements and 65 

mGauss hard iron bias in Mag_y’s measurements. However, the hard iron effect does not change 

the shape of the circle. Consequently, a compensation for the hard iron distortion is 

accomplished by estimating the offset in the x and y direction. The estimated values are then 

subtracted from the measurements. It is important to convert the measured data into the 

horizontal plane before estimating the hard iron corrections.   

Figure 4.2: Magnetometer data with hard-iron distortion. 

4.1.3 Soft Iron Effect 

Soft iron effects are caused by the interaction of an external magnetic field with ferromagnetic 

materials in the neighbourhood of the magnetometer (Vasconcelos et al. 2011). In other words, 

soft iron distortion is commonly caused by materials that influence or distort a magnetic field but 

that do not necessarily generate a magnetic field, such as nickel and iron. Only the magnitude 
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and direction of the applied magnetic field with respect to the soft iron material affects the 

resulting magnetic field. Therefore, it is not additive distortion and can be considered as 

deflections in the existing EMF. The effect of the soft iron materials depends on the direction in 

which the field acts related to the magnetometer. Thereby, the compensation of the soft iron is 

more complicated than for the hard iron distortion and not as straightforward. As made evident 

by Figure 4.3, the typical effect of a soft iron distortion is exhibited as a deformation of the circle 

into ellipse at (0, 0). 

Figure 4.3: Magnetometer data with soft-iron distortion. 

4.1.4 Case with Hard and Soft Iron Distortions 

Figure 4.4 shows a combined hard and soft iron distortion where the circle has been distorted 

into an ellipse. The center of the ellipse is shifted from (0, 0) into (17, 68) in the presence of the 

hard iron distortions.  
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Figure 4.4: The effect of soft and hard iron effects. 

4.2 Pre-Calibration process (Manoeuvring Modes) 

Once the user is asked to do magnetometer calibration, he/she can move the device in different 

ways. In this section, suggested different manoeuvring modes are presented and analyzed. 

4.2.1 Different Manoeuvring Modes (DMMs) 

Since the EMF is weak and can be easily masked and unpredictably distorted by any sort of 

natural or man-made magnetic disturbance, a good manoeuvring technique during the calibration 

process can help improve the accuracy of calibration which will improved estimated heading. 

Different Manoeuvring Modes (DMMs) are investigated to achieve best estimation for the 

calibration parameters in the 3D Space. The purpose of the manoeuvring is to move the device in 
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the space and give the magnetometers the opportunity to cover a wide range of the change in the 

magnetic field. 

Manoeuvring Mode (MM) is important for the calibration of magnetometer, which depends on 

the application at hand. It is proven by the experiments, shown later, even in cluttered indoor 

environments, a good Manoeuvring of the navigation device can lead to an improved heading 

estimation quality. This is mainly due to weak Signal to Noise Ratio (SNR), in dense indoor 

scenarios. The most common way to calibrate magnetometers in smartphones is by moving the 

device for a few seconds in the space to create 3D figure eights. By investigating the effect of 

this kind of motion other kinds of movement were found to be worth analyzing as well. This 

section focuses on the investigation of DMMs for the calibration process with the handheld 

devices such as portable navigations, smartphones, and tablets. Two more MMs, random and 

coordinated manoeuvring modes, are proposed for the purpose of the comparison. In the random 

MM, the device is moved randomly in space, while for the coordinated mode the device is 

rotated around the three axes in space. 

The device can be maneuvered in different ways within the space, but some device movement 

could be restricted to certain space dimensions due to the applied dynamics. The device can be 

moved in 2D or 3D space. In 2D space, the coordinates refer to the movement in a plane with 

only 2 axes whilst 3D space represents the movement in the entire space with full axes 

definition. 2D calibration is suitable for constrained situations such as wheel-chair motion, 

vehicle dash-board fixed device, marine navigation (ships) etc. For these applications, the 

movement in circles is more intuitive. However, 3D calibration is apparent for pedestrian 
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navigation due to higher degrees of freedom in three dimensions. While moving the  sensor in 

space,  the shape, as  described  by  its  measurements, should be  a  sphere  with  a  radius 

equal  to the  magnitude  of  the  local  Earth’s magnetic field  (Gebre-Egziabher et al. 2006). 

Thus, it is recommended to calibrate the device before starting the navigation mission for 

enhanced positioning accuracy. Three main MMs are selected to be compared, listed below. 

4.2.1.1 Random Movement 

The device is moved randomly in space as shown in Figure 4.5. The idea is to acquire significant 

changes in the signal levels for each axis of the magnetometer to allow the algorithm an 

opportunity to work efficiently. However, random movements may not always guarantee that. 

The absence of movements along a particular axis defies the purpose of 3D calibration logic and 

may not lead to optimal calibration. 
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Figure 4.5: Random movement in the space. 
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4.2.1.2 Figure of Eights Movement  

The device is moved to form a 3D-Figures Eight (3D-Eights) shape in the space. For the 

movement most smartphone devices, a 3D-Eights patter is recommended, shown in Figure 4.6. 

Accordingly, this technique was adopted to test other manoeuvrings to allow for results 

comparisons with other industry benchmarks. 
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Figure 4.6: 3D- Figure Eights movement 

4.2.1.3 Coordinated Movement 

The device is moved in the space around the 3 axes X, Y, and Z, independent of the rotation 

sequence and direction.  A synchronized movements about each axis as shown in Figure 4.7, is 

another way to calibrate the device which guarantee to cover the 3D space for calibration. 
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Figure 4.7: Coordinated movement 

4.2.2 DMMs Performance and Analysis 

In this section the testing of the calibration technique’s performance is presented. This process 

was performed with each MM separately. The benchmark for testing the DMMs was the 

proximity of a calibrated magnetic field with a reference value for the EMF that did not contain 

any large perturbations. DMMs such as Random, 3D-Eights, and Coordinated are tested in 

different environments such as indoors and outdoors. Also, different users were involved in the 

experiment to validate the algorithm. 

4.2.2.1 Accuracy of the calibrated magnetic field 

It was important that the EMF value after the calibration process compensated for bias and scale 

factor effects in order to be close to the reference value of the local EMF. Therefore, the 

accuracy of the calibration process is reflected by the raw and calibrated total magnetic field 
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plots shown in Figure 4.8 (a - c) for indoor environment and Figure 4.9 (a - c) for outdoor 

environment. The estimated (after calibration) and raw values of earth’s magnetic field are 

plotted on both figures. The calibrated readings show the constancy of the magnetic field, which 

is closer to of the EMF’s reference value. These results indicate that the MMs play an important 

role in calibration; where the best results are obtained from coordinated modes. 
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(b) 3D Eights MM 
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(c) Coordinated MM 
Figure 4.8: Total raw and calibrated magnetic field indoors. 
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Figure 4.9: Total raw and calibrated magnetic field outdoors. 
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Figure 4.10 (a - c) shows the calibration results using the PSO algorithm for the magnetometer 

measurements where both raw and calibrated measurements are plotted in a 3D mesh globe. As 

shown in Figure 4.10, the calibrated magnetic field differs from the raw in the un-calibrated case 

for all MMs which indicate the effects of the calibration process. The calibrated data is expected 

to fit the surface of the sphere with a radius of 570 mG. A comparison of the performance of the 

three manoeuvring modes shows that the coordinated mode is the most accurate where the 

calibration successfully coincides the field components with the mesh globe.  
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Figure 4.10: Magnetometer calibration using DMMs. 

 

4.2.2.2 Residual error analysis 

 

The accuracy of the performance for the DMMs is compared in Figures (4.11 – 4.14) where the 

calibration error are calculated to assess the performance of the DMMs-based sensor calibration. 

Through these figures, the prefix “in_” is used to refer to indoor environment and “out_” is used 

to refer to outdoor environment. The MM calibration error for each user, User_MM_error, is 

calculated as the difference between the reference EMF value, Hm, and the calibrated magnetic 

field values, H, as given in Equation ( 4-1). 

User _ MM error  H H   m ( 4-1)
 

For all users, the mean and standard deviation of the error for each MM are calculated for the 

purpose of comparison as in Equation ( 4-2) and Equation ( 4-3).    
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User _ error _ mean  
1 User _ MM error  ( 4-2) n  

2

User _ error _ std  

1  
n 

User _ MM error i User _ error _ mean ( 4-3) 
n  1
 i0 

Where n is the total number of the measured samples. 

Figure 4.11: DMMs error means for all users. 
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Figure 4.12: DMMs error standard deviations for all users. 

For all users, the coordinated MM in both indoor and outdoor environments produces the lowest 

error on average. Compared to other MMs for all users in Figure 4.11, the recommended MM 

gives the minimum average error. Furthermore, Figure 4.12 indicates that for the same user, the 

coordinated MM is more accurate than other MMs, as observed from the standard deviation 

values. 

To evaluate the overall performance of each MM, the errors for all users of the same MM are 

concatenated in one vector as given in Equation ( 4-4) where the mean and standard deviation are 

calculated, as in Equation ( 4-5) and Equation ( 4-6). 

MM error  MM error _ user MM error _user  MM error _user T 
( 4-4)   1  2  m 
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4.2.2.2.1.1.1.1 MM error  _ _ mean   
1  MM  error  
N  ( 4-5) 

MM _ error _ std  
1  

N 

MM error MM _ error _ mean 2 
( 4-6) 

N  1  i 
i0 

Where N is the number of all error samples as listed in Table 4.1 and m is the number of users ­

in this case four. Table 4.1 shows the total number of samples that were used in the evaluation 

process for each MM in the indoor and outdoor cases. The number includes samples of the four 

users for each MM. 

Table 4.1: Total number of samples for each MM. 

Manoeuvring Mode N (samples) 

Indoor Coordinated 1960 

Indoor Eights 1780 

Indoor Random 2440 

Outdoor Coordinated 2480 

Outdoor Eights 2720 

Outdoor Random 2840 

Figure 4.13 and Figure 4.14 illustrate that the coordinated MM yields the lowest error on average 

and has a smaller standard deviation among all other MMs in both indoor and outdoor 

environments. 
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Figure 4.13: The average of the error mean of all users for DMMs. 

Figure 4.14: The average of the error standard deviation of all users for DMMs. 
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4.2.2.3 Error Distribution 

The different histograms for the DMMs are plotted for the total error of both indoor and outdoor 

scenarios. The histogram provides important information about the shape of a distribution. 

According to these values, the histogram is either highly or moderately skewed to the left or 

right. The error levels percentages are shown in 

Table 4.2:   
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a) Random. b) 3D-Eights. c) Coordinated. 


Figure 4.15: Histogram for the total errors (indoor and outdoor) of the DMMs.
 

Any natural process with unbiased errors tends to approximate a Gaussian behaviour (bell-

shaped curve) (Chen 1996). The histograms in Figure 4.15 (a - c) present the error values of the 

DMMs and demonstrate the nature of the error values. A typical assumption is that the errors are 

normally distributed, i.e., the deviations between the actually measured data if plotted as a 

histogram form a Gaussian (bell shaped) curve. This behaviour was observed in the MM 

described as coordinated. Indeed, the error vector behaves as a Gaussian noise with small 

standard deviation, and hence the manoeuvring can be described as optimal for magnetometer 

calibration.  

-150 -100 -50 0 50 100 150 
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Table 4.2: The percentages of error ranges. 

Mode ≤ 10 mGauss 
>10 mGauss & 
≤ 20 mGauss 

>20 mGauss 

Random 68.13 % 19.00 % 12.87 % 

3D-Eights 79.88 % 16.43 % 03.69 % 

Coordinated 88.55 % 11.13 % 00.32 % 

The percentage of the error values which lies around zero is also another important criterion to 

be discussed. As shown in  

Table 4.2, the error range is divided into three main ranges; <= 10 mGauss, >10 & <= 20 

mGauss, and > 20 mGauss. The results show that 88.55% of the error values are in the range of ­

10 and 10 mGauss whereas it was 79.89% and 68.13 for 3D-Eights and random modes 

respectively. In the meanwhile, the portion of the error greater than 20 mGauss in coordinated 

mode is 0.32% while it was 3.69%, 12.87% for 3D-Eights and coordinated modes respectively. 

4.2.2.4 Impact on magnetometer based heading estimation  

In this section, the effects of different manoeuvring modes on the navigation solution are 

presented where the solution is estimated using the PDR algorithm. The magnetometer is 

calibrated based on DMMs mentioned earlier. At the beginning of the test, the DMMs were 

applied and a walking interval began while the device was held in the texting/reading mode. The 
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track was a tennis court in a rectangular shape that began at point 0, reflected in Figure 4.16. The 

duration of the walk was 4 minutes around the 4 sides of the rectangle (1, 2, 3, and 4). The 

results were plotted to evaluate the efficiency of the estimated heading values. As shown in 

Figure 4.16, the coordinated manoeuvring mode resulted track was the closet to the GPS 

solution. All DMMs yielded acceptable results along sides 1 and 2. However, at side 3 the PDR 

solutions based on random and 3D Figure Eights began to drift while the coordinated solutions 

followed those from the GPS. As observed, the solution of Random and 3D Eights continuously 

drifted as time passed. In the meantime, the coordinated solution was closest to the GPS solution. 

As seen in the figure, the maximum drift of the coordinated manoeuvring mode after the 4 

minute walking test was around 3-4 meters and 8 meters for the other modes. The drift in the 

different solutions was due to the surrounding elements and objects in the environment. 

Figure 4.16: Heading results based on DMMs. 
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4.3 Magnetic Field Perturbation Detection Technique 

Unpredictable perturbation of the magnetic field is a major drawback of geomagnetic sensors. 

Pedestrians spend most of their time in harsh environments such as urban areas, parking lots and 

offices. Unlike outdoor environments, harsh indoor environments are infrastructures containing 

primarily metals, electrical and electronic devices. Such objects generate or influence by the 

magnetic field which may change the EMF magnitude and direction. These kinds of disturbances 

make the magnetometer perform unsatisfactorily, which leads to inappropriate positioning for 

pedestrians.  

4.3.1 Perturbation Detection 

Due to the fluctuations in the magnetic field, it is necessary to smooth the measurements using a 

low pass filter to have the signal around the reference value of the magnetic field. To recognize 

any perturbations in the measurement, a threshold is defined as a normal margin for the signal 

variation. A threshold value of 3µT (30 mGauss) has been roughly defined as the root mean 

square value of the magnetic field during three steps (Ladetto et al. 2002). Thus, any signal 

bigger than this value will be considered a perturbation where the last estimated heading value 

will be held until the field becomes normal again. The effect of the disturbances decreases as the 

user is moving away from the source of the distortion. However, the effects are visible only for a 

few meters. 
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The proposed technique for magnetometer measurements perturbation detections is based on 

comparing the values of the different parameters with the expected values over fixed time 

interval.  In this technique, the values are checked over a window size of 3 steps or 2 seconds of 

data. If there is a perturbation over 3 consecutive steps, the perturbation algorithm set a flag to 

indicate inaccurate magnetic measurement. The error values for the different parameters of the 

magnetic field can be calculated as in Equation ( 4-7): 

S Err _ i  S meas _ i  S ref _ i ( 4-7) 

Where: 

- i = 1:N is ith element of the error vector in the data window 

- S is the error value for each parameter Err _ i 

- S is the measured value for each parameter meas _ i 

- S is the expected value for each parameter ref _ i 

The different thresholds for the test parameters are defined in Table 4.3.  

Table 4.3: The threshold values for the parameters. 

Parameter Threshold (Sthr) Unit 

F 30 mGauss 

H 10 mGauss 

V 30 mGauss 

I 5 Deg. 

The calculated errors of the magnetic field parameters as in Equation ( 4-7) are compared to the 

predefined thresholds to detect the perturbation in the magnetic field as given in Equation (4-8) 

based on the values shown in Table 4.3. 
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S Err _ i  Sthr (4-8) 

The effect of the perturbation vector on the different magnetic field components should be taken 

into consideration for any magnetometer anomaly detector.  When a pedestrian is walking in 

areas of dense infrastructure or even indoors it causes changes in the measured magnetic field. 

Such changes affect the different parameters and consequently lead to inaccurate heading 

estimation (Faulkner et al. 2010).  The perturbation problem becomes difficult and more 

complicated if the external disturbance source affects different magnetic field parameters in 

different ratios. In contrast, the perturbation effect will be ignored if the external source affects 

the different components equally. The only change in this case is that the measured values of the 

parameters will be different from the expected, reference, values. Thus, the detector should 

compare the change in components individually and assess their different ratios. The 

magnetometer-based heading estimate is considered free of perturbation if the differences 

between the reference and the measured values are within the predefined thresholds. 

Extensive tests have been conducted at the University of Calgary Campus. One test is done 

indoors using the Samsung Galaxy SII smartphone at the Olympic Oval, which consists of steel 

walls and concrete floors. The ability of the anomaly detection technique to detect the 

perturbation areas and the distorted magnetic field measurements is shown in Figure 4.17 and 

Figure 4.18. The figures describe two different parts of the trajectory with perturbed and non- 

perturbed areas. Figure 4.17 shows the interval of 60t - 90th second while Figure 4.18 shows the 

interval of 530th – 560th second. As shown in Figure 4.17 (a), magnetic field strength variation 

was much larger than the expected value and creates an inaccurate heading estimation 
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(Figure 4.17 (b)). Only a few samples of the measurements successfully met the conditions of 

correct heading estimation.  

Total Magnetic Field 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

T
ot

al
 M

ag
ne

ti
c 

F
ie

ld
 (

m
G

au
ss

) 

28 30 32 34 36 38 40 42 44 46 

Time (s) 

(a) Total magnetic field in perturbed area. 

Magnetic Perturbation 

51.0773 

51.0773 

51.0773 

51.0773 

51.0774 

51.0774 

51.0774 

51.0774 

51.0774 

51.0775 

51.0775 

L
at

it
ud

e 
(D

eg
) 

Ref. Trajectory 
Integrated Haeding 
Magnetic Haeding 

-114.1348 -114.1347 -114.1346 -114.1346 -114.1345 -114.1345 -114.1345 -114.1344 -114.1344 

Longitude (Deg) 

(b) Expected heading vectors in perturbed area. 


Figure 4.17: Magnetometer behavior in a perturbed area.
 

In contrast, Figure 4.18 shows that the magnetic field does not have an abrupt change in the 

value, which indicates a normal area without perturbation. 
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Figure 4.18: Magnetometer behavior in a non-perturbed area. 


The quality of the magnetometer based heading estimate can be observed and assessed based on 

the proposed anomaly detection. The technique estimates the different associated errors with the 

magnetic parameters.  As a result, this can lead to significantly reduced heading errors and 

improved position accuracy by rejecting distorted magnetic measurements efficiently in real-

time.  
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Chapter Five: Integrated Gyroscope/Magnetometer Heading Estimation 

The PDR navigation is mainly based on estimating the traveled distance and the attitude of the 

user. As described in Chapter 2, the total traveled distance is estimated by detecting and counting 

the user steps and step length using accelerometer data, while the heading information can be 

determined using GPS, gyroscope, or magnetometer information. In certain areas, satellite 

signals are partially or completely blocked limiting the use of the GPS. In contrast, the heading 

information from a magnetometer and gyroscope is continuously available. Integrating the 

solutions from both gyroscopes and magnetometers can play an important role in pedestrian 

navigation through various environments. In this chapter, a de-centralized LKF-based technique 

with an open loop error feedback scheme is proposed to estimate the device’s attitude using the 

quaternion mechanization from the gyroscopes’ data. 

5.1 Introduction 

Nowadays, most smartphones are programmable and equipped with self-contained, low cost, 

small size, and power-efficient sensors, such as gyroscopes and accelerometers in addition to 

magnetometer. Therefore, an integrated inertial navigation solution with a magnetometer-derived 

heading can significantly improve the heading estimates for pedestrian navigation applications in 

different environments. In current state of the art of MEMS technology, the accuracy of 

gyroscopes is not good enough for deriving the attitude information over longer durations of 

time. However, for short periods this accuracy is quite acceptable. Magnetometers in contrast, 

provide absolute heading information once it they have been correctly calibrated. However, the 
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EMF can easily be disturbed by nearby ferrous objects, which makes the data unreliable for brief 

intervals. This highlights a need for further investigation into possible integration scheme for 

complementary sensors such as gyroscope and magnetometer. 

There have been several studies in recent years that investigate the use of magnetometers for 

personal positioning applications. Some approaches use magnetometers exclusively for heading 

estimation (Cho et al. 2003) while others integrate them with an IMU (Aparicio 2004; Yun & 

Bachmann 2006). One commercially available personal locator system based on this principle is 

the Dead Reckoning Module DRM-4000 made by Honeywell (Honeywell 2009). A quaternion 

based method to integrate IMU with magnetometer is presented by (Marins et al. 2001). Three 

body angular rates and four quaternion elements were used to express orientation and were 

selected as the states of KF. In (Han & Wang 2011), a linear system error model based on the 

Euler angles errors expressing the local frame errors was developed and the corresponding 

system observation model derived. The proposed method does not need to model the system 

angular motion. It also avoids the issue of nonlinearity, which is inherent in the more frequently 

used methods. A similar technique is proposed by (Emura & Tachi 1994) where the angular rates 

were modeled for constant. A nonlinear derivative equation for the Euler angle integration 

kinematics is investigated in (Cooke et al. 1992). (Foxlin 1996; Setoodeh et al. 2004) presented a 

Euler angle error based method to integrate IMU with magnetometer data where three Euler 

angle errors and three gyroscope biases were used as states for KF. The estimated states were 

used to correct the Euler angles and to compensate gyroscope drifts, respectively.  
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As will be described through this chapter, the integration between the gyroscope and 

magnetometer based attitude was performed using the LKF technique. The quaternion 

mechanization using the gyroscopes’ measurements was used to estimate the attitude information 

along with the gyroscope bias. The accelerometer data was used to update for roll and pitch 

information while the magnetometer data provided the heading update. 

5.2 Sensors Heading Information 

Heading estimation is probably the most challenging aspect of PDR, which largely determines 

the ultimate accuracy and quality of the navigation solution. Combining gyroscopes with 

magnetometers helps to achieve a desired level of accuracy in the heading solution, due to their 

complementary characteristics 

5.2.1 Gyroscope Attitude Estimation 

Gyroscopes are mainly used to determine the system orientation in many applications. The 

output of this sensor is a rotational rate. Performing a single integration on the gyroscopes 

outputs is necessary to obtain a relative change in angle. In the following subsections, the effect 

of the gyroscope bias on the estimated heading and the manner in which to estimate it using the 

appropriate sensor model will be described. Also, the quaternion-based heading estimation 

technique will be investigated.  
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5.2.1.1 Sensors Performance 

All sensors are characterized by several errors types which it can be caused externally such as 

disturbance or internally such as noise (Boulic et al. 1990). The disturbance is more similar to a 

bias with respect to the noise. Such errors, noise and disturbance, are random in nature and can 

make the measurement sometimes unstable. The effects of the different errors can be reduced by 

conducting a rigorous investigation into their potential causes. This section will describe the 

effect of the drift on the gyroscope measurements and the appropriate way to reduce such effect. 

Also, AV analysis is a common procedure used for modeling the effects of sensor noise is 

presented (Xing & Gebre-Egziabher 2008) 

5.2.1.1.1 Effect of Bias Drift on Gyroscope based Heading Estimation 

All sensors are characterized by several errors types which it can be caused externally such as 

disturbance or internally such as noise (Boulic et al. 1990). The disturbance is more similar to a 

bias with respect to the noise. Such errors, noise and disturbance, are random in nature and can 

make the measurement sometimes unstable. The effects of the different errors can be mitigated 

by conducting an investigation into their causes. Bias can be considered the main source of error 

in inertial sensors, which has systematic behavior for all data epochs. There are two major types 

of bias; static bias and dynamic bias. Static bias is called the turn-on or repeatable bias because it 

is constant during the run; however it has a different value each time the device is turned on. The 

effect of such bias can be considered constant if the operation time is limited to a few hours (De 

Agostino et al. 2010). On the other hand, the dynamic bias, known as in-run bias, depends on the 
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sensitivity of the sensors to the variation in the temperature. The effect of such error can be 

significant in the case of using MEMS sensors. Therefore, the bias should be compensated to 

avoid any effect on the navigation solution.  

Due to the integration process, which is highly sensitive to the systematic errors of the 

gyroscopes, the bias introduces a quadratic error in the velocity and a cubic error in the position 

(El-Sheimy 2012). Gyroscopes measurements can generally be described using Equation (5.1): 

I   b  S  N  ( )  (5.1)    

Where Iω is the measured angular rate, ω is the true angular rate, bω is the gyroscope bias, S is the 

linear scale factor matrix, N is the non-orthogonality matrix and ε(ω) is the sensor noise. With 

integration, the gyroscope bias will introduce an angle error in pitch or roll proportional to time 

i.e.  b dt    b t  ; this small angle will cause misalignment of the IMU. Therefore, when  

projecting the acceleration, from the gravity vector g, from the body frame to the local-level 

frame, the acceleration vector will be incorrectly projected due to this misalignment error. This 

will introduce an error in one of the horizontal acceleration i.e. a  g sin(  )  g  gb t . 

Consequently, this leads to an error in velocity v  b gtdt  b gt and in position   

1

2  
2 

1 2 1 3 p  vdt  b gt dt   b gt . To overcome the problem of error drift, a bias   2 6 

compensation of gyroscopes is required.  

The deterministic bias can be sensed using a static period of 30 seconds, where the deviation in 

the gyroscope output can be observed. The effect of gyroscope drift on the estimated heading is 
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shown in Figure 5.1. The figure shows the results of seven tests conducted in static mode where 

the device is held on a table for approximately six minutes. The gyroscope-based heading 

estimated value is provided for each test. The expected heading during a test should be 0, 10, …, 

and 60o for all tests respectively. However, due to the gyroscope bias drift, the estimated heading 

drifted continuously with time. 

Figure 5.1: The effect of bias drift on the estimated gyroscope-based attitude. 

5.2.1.1.2 Allan Variance (AV) Analysis  

Irrespective of the type of sensor behaviour and structure, sensors calibration is necessary and 

required as part of the pre-processing stage. The calibration effectively enables the sensors to be 

able to combine their data effectively in real-time. After completion of the pre-processing stage, 

a further signal conditioning is required to remove the residual bias. Then, scale-factor errors 

analysis on the PND was done using AV analysis (El-Sheimy et al. 2008; Hou & El-Sheimy 

118 




 

 

 

 

 

  

  

       

    

    

 

    

     

 

      

   

 

  

       

    

   

 

2003; Shin 2005) and preliminary bias and scale factor estimation for the accelerometer and 

gyroscope.  

Calibration for the deterministic errors associated with the different sensors involved in the 

navigation solution such as inertial and magnetic field sensors is not enough since their outputs 

should be compensated regarding the stochastic error. Different suggested approaches in the 

literature (El-Sheimy et al. 2008; Hou & El-Sheimy 2003; Savage 2000; Shin 2005) are available 

for calibrating accelerometer and gyroscope signals.  Lab tests were also conducted to estimate 

the bias and scale factors of the gyroscope and accelerometer.  

The performance of the sensors is characterized by two major sources of errors: noise and 

disturbance, where noise is an internal source and disturbance external (De Agostino et al. 2010). 

The disturbance is random, unpredictable and varies from epoch to epoch. The MEMS sensors 

that were used were low-cost, which makes the signal highly disturbed by noise and also subject 

to random and unpredictable, run-to-run, uncertainty. To estimate the error associated with the 

gyroscopes, AV analysis was used and realized. A static experiment was conducted for the 

different gyroscopes while taking into consideration a data logging time of about 22 hours. A 

series of data composed by N elements with a sampling rate of Δto, can be clustered to groups 

with n elements where n<N/2. The AV analysis can be described as: 

2N n  
2 1 2 ( ) (  T  ) (Si n   2S  Si )2  2 in (5.2) 

T N   i2 (  2 )  n 1 
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Equation (5.2), S is the gyroscope sensors data to be analyzed in Figure 5.2. During the test, a 

gyroscope Invensense MPU 3050 was used. A complete description of the sensor’s 

characteristics will be discussed in Chapter 6. 

Allan deviation of Invensense MPU3050 gyroscope 
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Figure 5.2: Allan Deviation for the Invensense MPU3050 gyroscopes. 

Table 5.1 shows the angle random walk and bias instability values of the gyroscopes axes. The 

values are estimated and derived from the Allan deviation plots. 

Table 5.1: Gyroscopes Noise Measurements. 

Bias Instability Angle Random Walk 

Gyro_X 3.473 o/h     (164 s) 20 o/√h 

Gyro_Y 16.37 o/h     (20 s) 22 o/√h 

Gyro_Z 2.804 o/h   (82 s) 16.27 o/√h 

Avg 7.958 o/h   (82 s) 19.75 o/√h 
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5.2.1.2 Quaternion Mechanization 

In order to obtain the heading from the gyroscope, the initial attitude should be provided from an 

absolute reference or by the user. At the first epoch, the derived heading from the magnetometer 

is provided to the algorithm. In addition to that, the initial roll and pitch angles, calculated from 

the accelerometer signal during a static period, should be passed as well. The relationship 

x y zbetween the Cn matrix and Euler angles is given in Equation (5.3) with the sequence ( R R R )  

(Kuipers 1999). 

 coscos  cos  sin  sin  
n  C  sin sin  cos   cos sin  sinsin sin  cos cos  sin cos  (5.3)   

sin cos    cos     sincos  cos cos  cos  sin sin sin sin   

A quaternion is a four dimensional vector which is defined based on a vector q and a rotation 

angle. The vector q is given as: 

q  (q1, q2 , q3, q4 ) (5.4) 

While the magnitude of the rotation angle can be written as; 

2 2 2    x y z (5.5) 

Where x y z 
T 

is the rotation angle of the moving device. The angular increments for the 

above rotation angle, at ΔT = 1/(gyroscope rate), are: 

x  x  
   y  T y (5.6)     
    z   z  

The magnitude of the above angular increment is: 

2 2 2    x    y    z (5.7) 

121
 



 

 

     

    

  

  

 

  

   

 
 

  

  

   

      

   

   

The angular increments obtained in Equation (5.7) is used to update the quaternion (Schwarz & 

Wei 2000): 

q1  q1   c s z s y s x  q1  
       q2 q2 1 s z c s x s  y q2        (5.8) q3  q3  2  s y s x c s z  q3  
       q 

 
q4 s s s z c q 4 k 1   k x y   4 k 

And the coefficients c and s are computed as: 

  c 2(cos     1 )   
 2  

(5.9) 
2    s  sin     2  

The norm of the quaternion qnorm q୬୭୰୫is defined as: 

q1  q
 

nrom 

 
 1  
 

 2  1 q2nrom (qnorm )k 1   
q 

    (5.10) q q q 3 mag 3nrom  
q4nrom 

k 1 

q4 

 
k 1 

Where the quaternion magnitude qm ag  q୫ୟ୥ is defined as: 

2 2 2 2qmag  ( q1  q2  q3  q4  )k1 (5.11) 

The updated DCM can be calculated based on the quaternions norm values as in Equation (5.12). 

Where, the DCM matrix, in terms of quaternion vector components, can be obtained by using the 

following formulation: 

 2q2 1 q2 q q   2 q q  11    2 2 2 3 q q  1 4 2 2 4  2q q  3  
l n  2 2 

Cb C q   2 2 3  2 1 4 2 1 1  q3 2 3 4  2q q  1( )  q q  q q  q  q q  2 (5.12)   
2q q   2q q  2q q   2q q 2q2 1  q2  2 4 1 3 3 4 1 2 1 4  
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l CnWhere Cb  or represents the transformation matrix between the quaternion vector and the 

DCM. The matrix transforms from the body frame to the local level (navigation) frame. The roll, 

pitch, and azimuth values can be obtained by using the atan2 math function on the values of the 

Cn propagated inside the sensors navigation equations; 

nC 2,3    tan1  n (5.13)C 3,3   

1 n sin C 1,3 (5.14) 

Similarly, the gyroscope-based heading values, ψgyroh୥୷୰୭, can be evaluated as: 

n 
1 
 C 1, 2 

 gyro  tan   (5.15) n 1,1C    

5.2.2 Magnetometer Based Heading Estimation 

As discussed in Chapter 3 and 4, the magnetometer provides absolute measurement of the mobile 

device heading, or any object to which it is attached. The magnetometer is leveled with respect to 

the local level frame using the roll and pitch information. The heading (ψmag), magnetic direction 

can be calculated using the horizontal components (x and y axes) of a magnetic sensor as 

follows; 

 H y  mag  tan1 
   D (5.16)
 H x  

Where D is the declination angle (15o for Calgary), Hx and Hy are the horizontal components of 

the de-tilted observed magnetic field.  In order to account for the roll (ϕ) and pitch (θ) between 

the sensor frame and the local level frame, the sensor observations should be rotated by the 
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respective angles (roll and pitch) using Equation (5.17) and Equation (5.18) in prior to applying 

Equation (5.16) 

H x  B cos x   By sin  sin  z  sin B cos (5.17) 

H y  y   B  sin  B cos  z  (5.18) 

For an estimate of the heading angle from the magnetometer, the roll and pitch angle may be 

used to transform the magnetometer’s measurements (denoted as H) from the sensor frame to the 

horizontal level frame (local level/h-frame). The heading value is obtained in the h-frame, and is 

measured about z-axis clockwise from a north direction. 

5.3 Multi-Sensors Heading Fusion Filter 

There are two different strategies that can be applied to the heading information from both the 

magnetometer and gyroscope in the PDR algorithm (Ladetto et al. 2001). In the first strategy, the 

magnetometer can be considered the primary source of heading while the gyroscope is used in 

the case of a geomagnetic disturbance. In the second approach, a self-contained gyroscope 

provides the attitude and the magnetometer functions as an absolute source for heading update to 

avoid error drift problem. As a complementary system, the gyroscope can be used to provide 

useful information to detect magnetometer disturbances while the magnetometer itself can be 

used to evaluate the bias and the initial heading for the gyroscope. Table 5.2 shows the different 

advantages and disadvantages of the gyroscope and magnetometer (Ladetto et al. 2001). 
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Table 5.2: Comparison between magnetometer and gyroscope. 

Advantages Disadvantages 

Gyroscope 
- Self-contained, no external 

disturbances 

- Short term accuracy 

- Error drift with time 

- Relative attitude 

Magnetometer 

- Absolute heading 

- Long term accuracy 

- No bias or error drift 

- Unpredictable error 

- Measurement distortion  

A complementary sensor fusion technique was designed to estimate the device attitude by 

combining the signals of three gyroscopes, three accelerometers, and three magnetometers. 

Gyroscopes measure orientation by integrating angular velocities and an accelerometer (as an 

inclinometer) while magnetometers (as a compass) provide a noisy and disturbed but drift-free 

measurement of orientation. The proposed fusion technique weighs the different sources of 

heading information appropriately according to knowledge about their signal characteristics. 

The orientation of the device is commonly estimated using the inertial sensor. As described in 

Chapter 2, there are three main approaches for attitude representation; DCM, Euler Angle, and 

Quaternion. Among the three techniques, quaternion algebra was the preferred method. The 

estimated orientation from the gyroscope was very noisy leading to unbounded growth in the 

heading errors. An integration scheme for the gyroscope, accelerometer, and magnetometer data 

is proposed to estimate the device orientation and the gyroscope bias. The proposed scheme is a 

quaternion based KF as shown in Figure 5.3. 
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Figure 5.3: Flow of the Kalman filter process 

In order to estimate the quaternion parameters and gyroscope biases estimation for a device 

carried by a pedestrian, the required models for the states and measurements  in KF and  their 

respective  system  and measurement error models are presented in this section. 
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5.3.1 The States Error Model  

Essentially, the target of the proposed filter is to estimate the device attitude based on the 

quaternion technique. As discussed, the attitude information can be driven from the quaternion 

based DCM where roll, pitch, and azimuth can be estimated using Equations (5.13) to Equation 

(5.15) respectively. 

The non-linear form of the system model in the absence of the known input can be written as 

x ( t )  F( x( t ), t )  G(t )W (t )  (5.19) 

Where F(x(t), t) is now a non-linear function describing the time evolution of the states. Consider 

a nominal trajectory, xnom(t), related to the actual trajectory, x(t), as 

x( t )  x( t )  x nom( t )  (5.20) 

where δx(t) is a perturbation from nominal trajectory. performing a Tylor Series expansion 

Equation (5.19) about the nominal trajectory yields 

F( x ( t ), t ) 
x ( t )  F( x  nom( t ), t )   x ( t )  G( t )W ( t )   

x ( t )  nomx ( t )  x  ( t )  

  (5.21) 

x ( t )  x nom( t )   Fx ( t )  G( t )W ( t )  

x nom( t )  Fx ( t )  G( t )W ( t )  

   

x ( t )   Fx ( t )  G( t )W ( t )     
where F is now the dynamic matrix for a system with state vector consists of the perturbed states, 

δx. 

The main states to be estimated are the error in the quaternion parameters which can be given by: 
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Tqq q q q  (5.22) 1 2 3 4 

The quaternion parameters are primarily determined using the angular rates obtained from 

gyroscopes’ measurements. The deterministic errors associated with the gyroscope can be 

compensated using data from static interval at the beginning of the test while the stochastic 

errors in biases, bωx, bωy, and bωz, are given by: 

b x y z  
T 
bx by bz  

T 

(5.23) 

The complete state vector is defined as a 7-dimensional vector with the first four components 

being errors in quaternion elements and the last three being the elements of the gyroscope biases. 

xq b
T q1 q2 q3 q4 bx by bz  

T 

(5.24) 

5.3.2 The States Transition Model  

The quaternion derivative is used for estimating the attitude using angular rate measurements. 

The angular rate is linked to the quaternion parameters as in Equation (5.25) 

q q q 2 3 4 
  x  

 1 1  q1 q4 q3   q    q  y (5.25) 2 2  q4 q1 q2    
    z 

q3 q2 q1  

Where q is the orientation quaternion,   represents quaternion representation, and ωx, ωy, and 

ωz represent angular rate measurements in the sensor frame obtained using the rate gyroscopes. 

Quaternions are  used to  represent orientation in  the  filter design  because do  not have the 

singularity  problem  commonly associated  with  Euler  angles. The previous equation can be 

rewritten as: 
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 q   q   q  1  2 x  3 y  q 4 z   
   q 1 q1 x  q4  y    q3 z    2   (5.26) q 2  q   q   q     
   

3 4 x  1 y  2 z  

q q   q   q 4  3 x  2 y     1 z   

The Taylor series expansion to first order is shown in Equation (5.27). 


 r  r  r (5.27) r 

Where r is the state vector, δr is the error in the state. Thus, the quaternion parameters error can 

be obtained as: 

q 1   0 x y z  q1  
     q 2 1 x 0 z y  q2    (5.28) q  2   0   q 3 y z x 3
     q    0 q 4   z y x   4  

A general equation for the 1st order Gauss-Markov model is given as: 

2b     b 2   w (5.29) 

Where β is the reciprocal of the correlation time and σ2 is the variance of the gyroscope signal. 

The different parameters of the Gauss-Markov model can be determined as shown in Figure 5.4. 

The real gyroscope data is plotted in Figure 5.5 with the fitted Gauss-Markov curve. 
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Figure 5.4: Signal correlation and Gauss-Markov parameters 

X Gyroscope Autocorrelation Fit - Gauss Markov Process x 10
-9 

-1000 -800 -600 -400 -200 0 200 400 600 800 1000 
 (s) 

Figure 5.5: Autocorrelation fit for X gyroscope 

From the exponential fit Figure 5.5, Gauss Markov process variance σ2 time constant τ are 

computed for gyroscopes and tabulated in Table 5.3: 
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Table 5.3: Gauss-Markov parameters for the gyroscopes 

σω τ 

Gyroscope 

X 9.86 x 10-9 (rad/s)2 12.6 s 

Y 1.37 x 10-8 (rad/s)2 37.5 s 

Z 6.64 x 10-9 (rad/s)2 13.05 s 

According to Equation (5.29), the gyroscopes bias can be modeled as: 

 2 x x  
          2 

bx 
  x 0 0    bx  

 2 

b  b  0  0 b  2   w( t )  y y  y y y (5.30)          b   0 0     b z  z    z     2  2 

z z  
The complete state model can be written as Equation (5.31) : 

 0 
q1   0 x / 2  y / 2  z / 2  0  0  0   q1   
     q2 x / 2  0  z / 2  y / 2  0  0  0  q 2 

 0 
       0 
q3  y / 2  z / 2  0  x / 2  0  0  0   q3   
      0 q   / 2   / 2   / 2 0  0 0 0   q  w t( ) 4   z y x   4   2        2   (5.31) b 0 0 0 0  0 0 b  x x x x x       2 b 0 0 0 0 0  0 b 2   y   y    y  y y 
       b 0 0 0 0 0 0  b  z   z   z  22  z z  

 x F  x G 
Let Δt be the interval and using the dynamic matrix F in Equation (5.31), the state transition 

matrix can be defined as 

( F  t )   e  I F    t (5.32)    k 1 ,k 
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   	  x y z1 t t t 0 0 0	 2 2 2  
x z 

y 
t 1 t t 0 0 0	 2	 2 2  

y z x t t 1 t 0 0 0
k 1,   2 2 2  (5.33) k	   

z 
y x t t t 1 0 0 0	 2 2 2

	 
0 0 0 0 1  t 0 0 x  

 0 0 0 0 0 1  t 0  
	 y 

0 0 0 0 0 0 1  t	 z  

5.3.3 The Measurements Model  

The update is designed to be performed at every detected step. The magnetometer measurements 

along with the accelerometer data are used for the update process in the Kalman filter. The 

measured magnetic field is tested for any perturbations. Once the magnetic field is free of 

disturbances, the geomagnetic heading is estimated based on the calibrated data. The 

accelerometer measurements are noisy since low-cost MEMS sensors are used and usually 

measured at higher rates. Therefore, the average of the measured data over the step time is used 

to estimate the roll and pitch values. The roll, pitch, and heading estimates are used to calculate 

the quaternion parameters using Equations (5.11) to (5.14). The only source of update is the 

quaternion parameters. Thus, the design matrix can be set as in Equation (5.34): 
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 q1  
  
 q2 q1  1 0 0 0 0 0 0    
 q     3 q2 0 1 0 0 0 0 0    z        q4  (5.34)  q3  0 0 1 0 0 0 0   
 b     x

 q4  0 0 0 1 0 0 0     
 b y  
  bz  

5.3.4 Modeling of Process and Measurement Noises 

In order to complete the design of the KF, it is necessary to define the noise covariance matrices; 

the process noise covariance matrix Q and the measurement noise covariance matrix R. These 

matrices reflect the confidence in the system model and the measurements respectively. The 

covariance of wk is often called the process noise matrix, Qk, and can be computed as: 

 w w5.3.4.1.1.1.1.1 Q E  k  k 
T
k  5.3.4.1.1.1.1.2 (5.35) 

The Qk matrix is a 7-dimension square matrix which can be computed using as in Equation 

(5.36)  (Brown & Hwang 1992; Gelb 1974). 

t k 1 

Qk  t G ( ) Q    T    t
T 

 d , ( ) G ( )  , (5.36) k 1 k 1   

t k 

The measured noise covariance matrix R also known as the covariance matrix for v. The Rk 

matrix represents the level of confidence placed in the accuracy of the measurements, and is 

given by: 

R E v vT k  k  (5.37) k  
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The Rk matrix is a 4-dimension diagonal square matrix. The diagonal elements are the variances 

of the individual measurements, which can be determined experimentally using measurement 

data from the used sensors. 

5.3.5 Filter State Initialization 

The state vector should be initialized at the beginning of the process. For the gyroscope bias 

states, all biases are initialized as zeros.  The quaternion states can be initialized from the DCM 

matrix using the Euler angles. The mean of the accelerometer calibrated data during a stationary 

period can be used to estimate the initial roll and pitch using the following relationships (Luinge 

& Veltink 2005): 

 2 2  f  f  f
1 y 1 x y o  tan  
 2 2 

 o  tan 
  (5.38) 

f x  f z 
 f z     

Where f x , f  y , f  z are the mean values of the accelerometer data.  ϕo and θo represent the initial 

values of the roll and pitch angles respectively. During the same interval, the roll and pitch 

estimates are used for levelling the magnetometer data to be in the navigation frame. The 

calibrated magnetometer data is used to estimate the initial azimuth ψo as in Equation (5.16):  

The DCM is calculated using the initial Euler angles values as in Equation (5.3). Then, the 

relation between the quaternion and the Euler angles is used to calculate the initial quaternion 

vector. 
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        c c c  s s s  
  

s c  c           c s s   q  where   ,   ,and  (5.39)  c s c        2 2 2s c s  
 

   s s c    c c s    

Where c is used for cos and s for sine. The initial value of the quaternion vector q is calculated at 

the initial values of the roll, pitch, and azimuth. Equation (5.39) (Kuipers 1999) is also used to 

get the updated quaternion parameters. 

5.4 Misalignment Effect on the Heading Estimation 

Misalignment and boresight angles refer to the angle in the horizontal plane between the 

platform, pedestrian or vehicle, motion direction and the device direction. The direction of the 

pedestrian and the device are defined by the direction of their respective forward axis. In case the 

user remains in a given mode during the navigation, their direction can be acquired by estimating 

the horizontal components of acceleration. However, changing the orientation of the device 

during the navigation process requires estimating the change in the heading of the device with 

respect to the user direction of motion. As a result, the derived heading from the different 

sensors will not be enough to navigate the user as the misalignment angle will have to be 

compensated. A change in the axes definition will also not be suitable for the Kalman filter 

operation. Estimating the misalignment angle is a challenging process as the device can be held 

in any orientation with respect to the user body. The signal of the low cost MEMS sensors, 

commonly used in PNDs, is very noisy and requires considerable effort in the preprocessing 

operation. 
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During everyday use, a pedestrian will be required to carry the PND in different orientations. 

Reading/texting, ear talking, and belt tethering are common orientations for the device with 

respect to the user’s body. Reading/texting has a negligible misalignment between the device’s 

forward axis and the motion direction of the user at the horizontal level frame since both user 

and device have the same forward direction. In this scenario, the device’s forward axis is aligned 

closely with the user’s forward motion and boresight may be neglected. However, other 

orientations such as ear talking and belt produce a misalignment angle, as the forward axis of the 

device is not aligned with the user’s motion direction. Such changes should conform to the 

heading changes of the human body about the vertical axis, when a hand-held 

device/smartphone, is used for navigation. Roll and pitch angles are permitted to change during 

motion, as these can be estimated in real-time using a suitable orientation filter used for levelling 

or de-tilting of sensors (transforming the sensor frame measured readings into LLF). The roll and 

pitch angles can be estimated from quaternion mathematics as in Equation (5.13) and Equation 

(5.14) respectively. 

The normal usage of the PND as in reading/texting (compass) does not cause any problems for 

heading estimation as the device is aligned in the same direction of the user. Therefore, the 

misalignment angle is zero as both device and user have the same forward direction. 

Figure 5.6 shows the frame orientation for the user and the device where the subscripts d and p 

denote device and pedestrian frames respectively. 
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(a) Pedestrian frame (b) Device (s-frame) frame (c) Misalignment angle 

Figure 5.6: Reading/Texting misalignment definition 

In the case of ear talking and belt, the situation is different as the misalignment angle can’t be 

neglected. The device in each case has a forward direction different than the user’s motion 

direction. Figure 5.7 and Figure 5.8 show the frame orientation for each case with the expected 

misalignment angle. 

(a) Ear talking mode (b) Device orientation after leveling (c) Misalignment angle 

Figure 5.7: Ear talking misalignment definition 
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(a) Belt tethering mode (b) Device orientation after leveling (c) Misalignment angle 

Figure 5.8: Belt tethering misalignment definition 

Table 5.4 shows the expected values for the roll and pitch with each orientation. It also presents 

the expected misalignement angle for each orientation to be compenated for the device heading 

in the attempt to povide user heading. 

Table 5.4: Expected roll and pitch values for the different orientations 

Orientation 
Roll Pitch  Misalignment 
ϕ θ ψmis 

Compass/Texting/Reading  ≈ 0o ≈ 0o ≈ 0o 

Ear Talking ≈ -90o ≈ 0o ≈ 180o 

Belt ≈ 0o ≈ 90o ≈ 90o 

During the transition from one mode to another, the heading estimation process became a 

challenging task. In order to overcome this difficulty, a suitable coordinate transformation was 

performed by acquiring the axis orientation, which is closer or parallel to gravity vector as shown 

in Figure 5.9. Clearly, the coordinate transformation matrix for ear talking and belt to achieve the 

transformation task, with pedestrian frame as reference are given by Equations (5.40) and (5.41) 
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respectively. The original equation for heading estimation can now be used based on the 

knowledge of the above transformation. 

new _ x  1 0 0 x _	      dd ear   
       new _ yd ear  _  0 0 1 yd	 (5.40) 	       

 znew _ z  0 1 0      d ear  _ 	     d 

new _ x 0 1 0     _   xdd belt  
	       
new _ yd belt  _	   0 0 1 yd (5.41)      

 znew _ z 1 0 0     d belt   _ 	     d 

Figure 5.9 shows an example of mode switching where the device orientation changes from 

compass to ear taking and belt tethering. As shown in the figure, the sensor axes changed 

according to the orientation of the device. This change produced different values for the gravity 

vector axes other than the z-axis. Also, the forward axis should have been redefined to match the 

new orientation of the device. However, the axis transformation based on Equations (5.40) and 

(5.41) returned the device to the normal orientation to be matched with the original frame 

definition as x is the forward axis and axis z represents the gravity vector.  
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 (b) Magnetometers data 

Figure 5.9: Sensors data before and after axes transformation 
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Chapter Six: Proposed PDR Technique: Performance and Assessment 

The purpose of this chapter is to test and assess the proposed PDR technique. The chapter begins 

with the description of the platform and sensors used in the field tests. The sensor specs are 

illustrated with the accuracy of the measured data and the associated rates. The chapter also 

includes the possible ways to initialize the PDR algorithm and the criteria for selecting the 

different field tests and environments. Finally, the overall performance of the proposed PDR 

algorithm is presented. 

6.1 Sensors Specifications and Selection 

Two main terms used in this thesis should be defined: the platform and the navigation device. 

The navigation device is defined as the integrated sensors necessary for estimating the platform 

navigation parameters. Most smartphones and tablets nowadays are the typical navigation device 

since they contain many navigation sensors. In general, the device is commonly tethered to the 

platform. An example of these platforms may be the pedestrian, a vehicle or an aircraft. For the 

purpose of this research, the platform refers to the pedestrian. 

Recently, MEMS technology has allowed for the production of low-cost, small size, and 

lightweight inertial sensors that consume very little making them appropriate for mobile 

navigation devices. However, MEMS sensors exhibit very high noise and large error drifts. 

Therefore, they have not been widely used for navigation applications. In order to reduce the 

deterministic and the stochastic errors of MEMS sensors, compensation techniques must be 
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developed and implemented. The previous chapters described various calibration techniques for 

the output of the sensors. The concept of gyroscope calibration is illustrated in Chapter 5 while 

Chapters 3 and 4 describe in detail the process of magnetometer calibration and the necessary 

conditions to improve its overall performance. 

Some sensors manufacturers provide stochastic information for the error sources, which can be 

exploited in the sensors calibration process. Therefore, this information can be used as a starting 

point for any further calibrations or as rough estimates about the performance of the sensors 

since they represent averages for the hardware performances of thousands or millions of similar 

units. On average, some individual units might perform better or worse than what is stated by the 

manufacturers depending on the accuracy of individual calibrations. Therefore, estimating the 

required parameters not only depends on the calibration algorithm but also on the selection of the 

necessary information sources for navigation (sensors). 

Several tests were conducted in order to validate the proposed PDR technique. The tests included 

different trajectories, specifically normal human walking behaviour using a low-cost mobile 

navigation device. The device used in the test was a Samsung Galaxy Nexus smartphone, 

depicted in Figure 6.1. It was equipped with sensors such as GPS receiver, a triad magnetometer 

(M), a triad gyroscope (G), a triad accelerometer (A), a barometer, and a temperature sensor. The 

focus however, will be on the sensor trio (M-G-A) since they can provide all the necessary 

navigation parameters in the absence of GPS information. 
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Figure 6.1: Samsung Galaxy Nexus smartphone 

In order to show the performance of the M-G-A sensors, the GPS satellites were used in some 

tests to obtain a reference trajectory; however this data is not included in the solution. The 

manufactures and the ranges of the main sensors are listed below in Table 6.1. 

Table 6.1: The main operating characteristics of the used sensors 

Sensor Manufacture Parameter Typical 

Gyroscope 
MPU-3050 

Dynamic Range 
±250, ±500,  
±1000, ±2000 °/sec 

Word Length 16-bit 

Zero-Rate Output ±20 o/s 

Total RMS Noise 0.1 o/s 

Operating Temperature -40 : +85   o C 

Practical Data Rate 20 Hz 

Accelerometer 
BMA250 

Sensitivity ±2, ±4, ±8, ±16 g 

Word Length 8-bit 

Zero-g Output ±80 mg 

Total RMS Noise 0.8 mg/√Hz 

Operating Temperature -40 : +85   o C 

Practical Data Rate 20 Hz 

Magnetometer 
YAS530 

Magnetic Field Range ±800 μT 

Operating Temperature -40 : +95   o C 

Practical Data Rate 20 Hz 
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6.2 Test Preparation 

This section explains the criteria for selecting the test environments. It also discusses the possible 

ways for initializing the various parameters of the PDR algorithm (namely position, heading, and 

orientation). 

6.2.1 How to Select the Test Environment 

The environment has a great impact on all navigation solution components such as the technique 

and methodology, the accuracy of the navigation solution and the sensors involved in the 

solution. In order to assess the proposed PDR algorithm, different tests were conducted in 

common environments. These environments were selected to cover a variety of areas that are 

important to pedestrians. The University of Calgary (UofC) Campus is one example for the test 

environment where students are moving from building to building, walking in high buildings or 

going to the food court via tunnels. In addition, some tests were conducted in the downtown 

quadrant of Calgary where many commercial and business attractions are located. 

A group of tests are started outdoors and switched indoors while another group started indoors 

and switched outdoor. The 2nd floor of the CCIT building at UofC is an example of a steel 

structured environment (as shown in Figure 6.2) representative of a harsh environment 

appropriate for testing the performance of magnetometers. This environment was considered a 

good test area to evaluate the attitude estimation technique developed herein because it includes 

numerous magnetic field perturbation sources. 
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Figure 6.2: The structure at the CCIT 2nd floor 

The Kinesiology Complex at the UofC is another test area that was selected as an indoor 

environment. It is an attractive area for students since it houses all sporting activities. The test 

track began outside the Olympic Oval where there is a big metal sculpture - the Spire 

(Figure 6.3) - made out of metal which effectively contributed to the magnetic field perturbations 

in this region. 

Figure 6.3: The Spire 
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6.2.2 How to Initialize the PDR Algorithm 

A large part of the tests was conducted outdoors due to the presence of a reference solution from 

GPS satellites. As the inertial sensors provide a relative solution, it is necessary to initialize the 

PDR solution.  There were three main parameters required for the initial value prior to beginning 

the algorithm: initial position, initial heading, and initial orientation. (1) For the initial position, 

the GPS is used in outdoor scenarios while the position is initialized manually by the user in the 

absence of the GPS (e.g. if the test starts indoor). Also, Wi-Fi can be used to initialize the 

position by detecting the closest access point position. (2) The initial values for the roll and pitch 

angles can be determined from accelerometer data. For this purpose, stationary data acquired 

over approximately 30 s is collected at the beginning of the test. Alternatively, these values can 

be set manually by the user. (3) The initial heading can be determined according to the 

magnetometer data at the start of the test or manually by the user. 

6.3 Step Detection and Length Estimation Accuracy 

This section discusses the performance of the step detection algorithm and its accuracy. It shows 

the technique’s efficiency in estimating the correct step length. 

6.3.1 Step Detection Performance 

Several data sets are collected to assess the proposed step detection algorithm. In these tests, the 

actual number of steps were counted by the user and used as a reference. For this purpose, the 
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step events are detected where the device is held in compass mode with normal walking. 

Different users are involved in the test to obtain different walking behaviours. The tracks are 

chosen based on turns and doors to simulate real walking conditions. 

The results of this analysis are summarized in 

Table  6.2 provides the comparison for the detected number of steps and reference number of 

steps. The number of un-detected steps appears with (-) sign and the number of over-detected 

steps appears with (+) sign. Also, the percentage accuracy of the step detection algorithm is 

calculated according to Equation ( 6.1). 

Detected _Steps  Actual _Steps 
Acurracy  ( ) 100%  (6.1) Actual _Steps 

Table 6.2: Performance analysis of the step detection algorithm 

Test 
Steps 

Wrong Steps Error 
Ref. Detected 

Test1 60 60 0 0 % 

Test2 60 60 0 0 % 

Test3 65 64 -1 -1.54 % 

Test4 65 65 0 0 % 

Test5 97 97 0 0 % 

Test6 105 105 0 0 % 

Test7 114 114 0 0 % 

Test8 120 121 1 0.83 % 

Test9 1032 1031 -1 -0.10 % 

Test10 394 393 -1 -0.26 % 

Total 2112 2108 4 0.19 % 

It can be seen that the total accuracy of the step detection algorithm is higher than 99%. Among 

the ten tests, six tests have 100 % accuracy where only four contain errors. The maximum error 
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was one step up or under the correct number of steps. Finally, it is worth mentioning that the 

performance of the algorithm is high regardless of the type of activity performed by the 

pedestrian such that the algorithm successfully avoid the stationary periods, as indicated in 

Figure 6.4. 

Figure 6.4: Example for step detection performance with turns 

6.3.2 Step Length Estimation 

Because the step length is not a constant value and changes with user’s speed and walking 

behaviour, its value must be determined continuously during the walk to increase the PDR 
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algorithm’s efficiency. The step length depends on the acceleration magnitude and the walking 

frequency. To evaluate the performance of the step length estimation technique, a group of tests 

were conducted with a pre-determined path.  

Two trajectories were selected one with a 60 m length and another with a 120 m length. Each 

trajectory was repeated twice at slight difference in the walking speed. The true number of steps 

for the first trajectory was 79 in the first round and 83 steps in the second. For the second set, the 

true number of steps was 162 for both rounds. 

The step length was determined as described in Chapter 2. Table 6.3 summarize the results for 

the step length estimation. The maximum error in the estimated distance is 2.87 m which is 

equivalent to 2.39% error of the total traveled distance. 

Table 6.3: Performance analysis of the step length estimation technique 

Normal Walking Distance 

Actual Measured Error Ratio 

Test1 
Round1 60 m 60.95 m + 0.95 m + 1.58 % 

Round2 60 m 59.17 m - 0.83 m - 1.38 % 

Test2 
Round1 120 m 117.13 m - 2.87 m - 2.39 % 

Round2 120 m 118.36 m - 1.64 m - 1.37 % 

Figure 6.5 shows the estimated step length. The mean estimated length is determined to be 77 cm 

and 71 cm for test 1 and 73 cm and 74 cm for test 2. These results verify that the proposed 

method can measure step length accurately. 
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Total distance: 60.95 m with average step length of 0.77 m Total distance: 59.17 m with average step length of 0.71 m 
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Figure 6.5: Estimated step length
 

6.4 PDR Algorithm Performance Evaluation 

In this section, the performance of the proposed PDR algorithm is evaluated to demonstrate the 

accuracy of the orientation filter in estimating the device heading and orientation. Various tests 

are conducted in different environments such as indoor locations or parking lots full of cars. The 

user position was propagated based on the detected steps, estimated step length, and the heading. 

During all tests the device was held in the texting mode except in the switching mode test where 

the device was held in an ear talking and belt mode. Similar steps were followed at the beginning 
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of all tests; beginning with an approximately 30-second stationary period to calibrate for the 

gyroscope bias and when coordinated manoeuvring was performed to help in the magnetometer 

calibration process. For indoor and downtown tests, the initial position was defined by the user 

since GPS was practically unavailable in these areas. However, some GPS data was used to 

provide the user’s initial position for the tests that were done in clear sky areas. 

6.4.1 Indoor Test 

The scenario for the indoor test is discussed to show the performance of the proposed PDR in the 

absence of the GPS update and to show the effect of the different infrastructures on the 

performance of the magnetometer. The test was conducted on the 2nd floor of the CCIT building, 

the University of Calgary. The device was held in the compass mode and the user moved freely 

throughout the second floor to reach the main office of the Department of Geomatics 

Engineering at building E. The total distance travelled was 231 m. The track was selected based 

on the following criteria: 

- Long corridor with many turns to help assess the performance of the gyroscope. 

- Majority of the building, particularly CCIT, composed of steel, which affects the 

performance of the magnetometer. 

- Many doors to be opened in different areas of the track which forced the user to change 

his speed and step length simulating a real scenario of a walking person. 
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Due to the harsh conditions at the start of the test - absence of GPS and the presence of magnetic 

field perturbation—the PDR solution was initialized manually by the user for the position and 

heading. 

The estimated heading from the magnetometer and the orientation filter are shown in Figure 6.6. 

The figure indicates that the magnetometer heading is strongly affected by the steel structures of 

the building and dense walls throughout many areas of the test. The distortion in the magnetic 

field was present for more than 40% of the total test time resulting in incorrect 

magnetometer-based heading estimation. As a result, the filter is propagated using the 

gyroscopes’ measurements where the filter shows a strong performance during these intervals. 
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Figure 6.6: Heading estimation
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Figure 6.7 shows a vector plot for a trajectory based on the filter and magnetometer stand-alone 

heading. The magnified portion establishes that the heading in the perturbation area is not 

uniform and is diverted due to the distortion in the magnetic field. 

Figure 6.7: Magnetometer heading direction during perturbation area 

Figure 6.8 shows a comparison between the PDR solution using the orientation filter and to the 

same solution based on the heading from the magnetometer stand-alone. The solution is plotted 

on a Google map to show the actual track travelled by the user during the test. The results on the 

figure suggest that the magnetometer-based PDR solution (in red) is inappropriate during 

movement in the steel structure while the orientation filter-based PDR solution (in blue) is 

propagated correctly in the same area. 
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Figure 6.8: PDR solution using filter and magnetometer based heading plotted on Google 
map 

The overall accuracy of the PDR solution is estimated by comparing it with a reference trajectory 

for the test track. The University of Calgary’s interactive map is used to show the 2nd floor of 

the Schulich School of Engineering building In Figure 6.9, the trajectory ends with a position 

drift of about 12 m and the error in the distance is approximately 5.2 % of the total travelled 

distance. The error is high as a result of the harsh environment, which made the magnetometer 

data too unreliable for consistent use. 
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Figure 6.9: PDR trajectory compared to a reference trajectory  

6.4.2 Environment Changing Test (from outdoor to indoor) 

For the outdoor to indoor test, the scenario began close to the Olympic Oval at the University of 

Calgary. The PDR solution was initialized using an initial position from GPS and initial heading 

from the magnetometer. The device was held stationary at the beginning of the test for about 40 

seconds to calibrate for the gyroscope deterministic bias and to estimate the initial orientation, 

roll, and pitch of the device. The user held the device in compass mode and moved through the 

first floor with a long corridor inside the building. The trajectory ended outside the McEwan 

Student Center in front of the Taylor Family Digital Library (TDFL). The time for this trajectory 

was about 5.5 minutes with 594 steps for a total travelled distance of 461 m. Several conditions 

made this location an ideal test candidate: 
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- It is a popular and attractive place for student activities. 

- It has a long corridor, which is a challenging area for magnetometer. 

- At the start of the test track, in front of the building, there is a huge metal structure that 

can affect the magnetometer’s performance. 

- The building is full of students and simulates a normal walking scenario of a smartphone 

user.  

Figure 6.10 shows the detected steps during the test. The figure also shows the successful 

detection of the user steps at the entrance of the building where there were two consecutive 

doors. The maximized view in the figure demonstrates the performance of the step detection 

algorithm during a transition area between two doors. There two static intervals for the opening 

of the doors and four steps in between to move from the first to the second. 
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Figure 6.10: Steps detection 

The step length varied with user speed as seen in Figure 6.11. At the entrance of the building it 

can be observed that the length the step is relatively small compared to the normal walking step 

length that occurred throughout the test. The average estimated step length was 78 cm for the 

overall test. 
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Figure 6.11: Step length estimation 

The derived heading from the magnetometer was entirely affected at the beginning due to the 

presence of a huge metal object in the surrounding area. The total magnetic field was distorted 

yielding incorrect heading estimation from the magnetometer during the first 40 seconds of the 

test. In addition, the calibration process was performed according to data gathered from outside 

the building, so that once the user moved indoors the distribution of the magnetic field differed 

from what existed outside as shown in Figure 6.12. Therefore, magnetometer-based heading 

remained inaccurate. However, after approximately 2 minutes the heading from the 

magnetometer begins to act as main source of update for the orientation filter attitude. As a 
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result, during the perturbation interval the orientation filter does not perform the update stage and 

continues propagating the orientation of the device based on the gyroscopes’ measurements. 
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Figure 6.12: Heading estimation 

The magnified portion of Figure 6.13 represents the magnetometer heading during the 

perturbation area. The figure shows that the heading is diverted and scattered when the magnetic 

field is distorted in contrast to the orientation filter heading during the same interval. 

159
 



 

 

   

 

    

    

    

     

   

  

Figure 6.13: Magnetometer heading direction during perturbation area 

The propagated user’s position using the PDR technique is plotted on a Google map to show the 

real test track. Figure 6.14 shows the PDR solution using the orientation filter compared to the 

same solution based on the heading from the magnetometer stand-alone. It is clear that the 

trajectory at the beginning was messy and went in the wrong direction. However, the 

performance improved during time when no perturbations were present, as expected. In contrast, 

the filter performed well in tracking the correct direction of the user through the test.   
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Figure 6.14: PDR solution using filter and magnetometer based heading on Google map 

To evaluate the overall accuracy of the PDR algorithm, the reference trajectory was plotted on 

the map of the test site. The reference trajectory for the actual direction of the test is plotted on 

the map of the first floor of the University of Calgary. As shown in Figure 6.15, the maximum 

error is less than 5 m during the test. Furthermore, the trajectory ended at the correct point with a 

position drift of less than 4 m. The error in the distance was approximately 1.1 % of the total 

distance travelled. 
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Figure 6.15: PDR trajectory compared to a reference trajectory 

6.4.3 Parking lot Test 

Parking lots are often places of that produce the most confusion and disorientation for many 

users parking their cars, or locating their parked car. The large number of vehicles found in a 

shopping mall parking lot can be considered an obstacle for the magnetometer performance. To 

perform the test, the parking lot of Alastair Ross Technology Centre (ARTC) building is 

selected. As the location had clear sky, the GPS solution was used as reference.  

The main challenge for this test is the presence of a large number of cars where the test was 

conducted. The presence of cars near the user can affect the performance of the magnetometer. 

Consequently, the magnetometer based heading was diverted and lead to error in the position 

during the west side of the trajectory. Figure 6.16 shows the magnetometer heading during a 

perturbation area where the user was moving beside cars. 
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Figure 6.16: Magnetometer heading direction during perturbation area 

In Figure 6.17 the PDR solution is compared to the GPS solution on a Google map. It is clear 

that the PDR trajectory follows the correct direction of the GPS reference solution. The 

magnetometer anomaly detection technique sets the perturbation flag ON when the user is 

moving through a perturbation area. This flag prevents the orientation filter from updating the 

solution and keeps propagating the solution based on gyroscope data. In this test, there is a good 

opportunity for magnetometer performance improving as the test is conducted in an open area. 

The error of the PDR solution during the test did not exceed 2 m with respect to the reference 

trajectory from GPS as shown in Figure 6.17. However, the GPS solution was affected when the 

user moved near the building. The results conclude that the overall performance of the PDR 

algorithm can be improved in case the magnetometer is performing well. 
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Figure 6.17: PDR solution using filter and magnetometer based heading plotted on Google 
map 

6.4.4 Downtown Test 

Downtown is attractive place for tourists in addition to many Calgarians. It has several major 

attraction sites such as shopping centers, business offices, museums, restaurants, cafes, and 

theaters. So, it is important to have a navigation system that is able to help pedestrians find their 

destinations in a heavily congested environment. This test was conducted in downtown Calgary 

to assess the performance of the proposed algorithm in GPS-denied or signal outage 

environments. The performance of the magnetometer was totally affected by the distortion of the 
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magnetic field in the downtown area. The high buildings, cars, and traffic signals added 

significantly more complications for the heading estimation based on the magnetometer. 

The test is started at the intersection of the 7th street and 8th Avenue SW in the downtown 

quadrant of Calgary (Figure 6.18.) The selected trajectory was a square starting at an East 

direction followed by North, West, and South directions. The length of the trajectory was 490 m 

requiring about 6 minutes of walking.  

Figure 6.18: Test starting point 

Although the magnetometer had good manoeuvring at the start of the test, the presence of a 

strong perturbation source affected the heading estimation.  As shown in Figure 6.19, the 

estimated heading from the magnetometer is not useful for the majority of the test due to the 
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distortion in the magnetic field. It shows that the heading update is available for only two 

minutes during the interval of 140 s to 260 s. 
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Figure 6.19: Heading estimation 

Figure 6.20 shows the PDR solution using the orientation filter compared to the same solution 

based on the heading from the magnetometer stand-alone, gyroscope heading stand-alone, and 

GPS solution. As shown in the figure, there is no accurate stand-alone solution for the test 

trajectory.  

- The gyroscope stand-alone solution provides accurate direction but its derived position 

drifted because of the gyroscope’s uncompensated bias.  

- The magnetometer stand-alone solution is diverted in many parts of the test. However, in 

certain parts it did perform well and provided the correct heading. 
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- The GPS technique is considered the poorest solution as it failed to provide any correct 

information at all during the test due to the satellite’s unavailability. 

The PDR algorithm based on the orientation filter, in cooperation with the magnetometer 

anomaly detection technique, provides an acceptable solution. 

Figure 6.20: PDR solution using filter, magnetometer, and gyroscope based heading 
compared to GPS solution plotted on Google map 

The overall accuracy of the PDR algorithm is evaluated by comparing the PDR solution with a 

reference trajectory on a Google map. As shown in Figure 6.21, the maximum error in position 

occurs at the North side of the trajectory where no update was yet available, which lasted for 

approximately 10 m. Despite these errors, the trajectory ends at the correct place with position 

drift of less than 7 m. The overall error in distance is about 2 % of the total travelled distance. 
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Figure 6.21: PDR trajectory compared to a reference trajectory 

6.4.5 Switching Mode Test  

This test was conducted to verify the proposed algorithm in a situation where the device mode 

(orientation) is changed during the navigation process. The mode changes mean that the 

orientation of the device is changed from one orientation to another such as from texting to ear 

talking or belt tethering. In these scenarios, the roll and pitch angles are changed. Two main 

problems were raised in this case: sudden change in the device orientation leading to problems in 

the estimated heading and misalignment where the device was not aligned with the user’s 

direction.  An outdoor environment is selected due to the presence of a reference solution from 
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GPS. Figure 6.22 shows the original raw measurements form the sensors. It is observed that the 

gravity, and vertical axis is changed according to the device orientation. 

Figure 6.22: Sensors’ raw measurements 

A new finding to emerge in the results is that slow walking turns are hardly picked up by the 

gyroscope, while they are picked up by the magnetometer. During the test, there were four 

different consecutive intervals with three mode changes: 

- Texting to ear talking. 


- Ear talking to texting.
 

- Texting to belt. 


The raw measurements are transformed, as described in Chapter 5, to the correct frame matching 

the navigation frame definition. Consequently, the sensor frame axes are flipped to compensate 
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for the expected misalignment in each orientation. Figure 6.23 shows the vertical axis after it has 

been transformed to be the z axis for all orientations.  
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Figure 6.23: Sensors’ transformed data 

The transformation is executed using two steps; the levelling step and the misalignment 

correction step. A window of one second of sensor data is verified to detect the vertical axis in 

order to identify the device orientation. A combination of roll angle, pitch angle, and the gravity 

axis values is used to determine the device orientation. 
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As shown in Figure 6.24, the values of the roll and pitch are changed according to the device 

orientation. For example, during the ear talking orientation, the roll angle values are -90o while 

the pitch angle values are 90o during the belt orientation. 
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Figure 6.24: The device orientation 


171 



 

 

  

   

    

     

       

     

 

  

  

  

 

    

      

 

 

 

There is no misalignment between the user and device if the device is held in the texting mode 

during the test. However, a misalignment angle is created between the user and the device if the 

device orientation is changed. Figure 6.25 presents the estimated values for the heading of the 

device compared to the heading of the user. It is clear that there is a difference between the user 

heading and the device heading due to the misalignment. For example, at the beginning the user 

is heading north holding the device in the same direction with zero heading expected for both 

user and device. During ear talking, the user is still heading north but the device orientation is 

changed to be in the forward axis heading south. In this scenario, the expected heading for the 

user is zero while the device heading is 180o. The situation required a compensation of 180o to 

provide the user’s correct direction. 
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Figure 6.25: The device and user estimated heading 

Figure 6.26 shows the user heading compared to the magnetometer heading. As previously, if the 

magnetometer is used in stand-alone mode then the results are not reliable, and a gyroscope 
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alone is insufficient. Therefore, the orientation filter is updated along with the magnetometer 

heading to assist in seamless navigation. It many areas, the filter heading in the figure does not 

match the magnetometer heading. The orientation filter update process is done only when a step 

stance occurs, so at the beginning and at the end of the test there are no detected steps as the user 

is stationary. The plotted heading from the orientation filter only represents the values when the 

step occurs, while the magnetometer heading is plotted for the whole duration of the test. 
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Figure 6.26: The estimated heading 

Figure 6.27 shows the magnetometer heading during a transition interval from one orientation to 

another. The figure shows that the heading is diverted due to the sudden change in the device 

orientation. This confirms the importance and the need for using different sources of navigation 

information to match the requirements of seamless navigation. 
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Figure 6.27: Magnetometer heading direction during perturbation area 

The result of the detection step is shown in Figure 6.28. The figure shows that the algorithm is 

able to detect the user steps regardless the device orientation.  

Figure 6.28: Step detection 
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In Figure 6.29, PDR solution is compared with GPS for the switching mode scenario. The 

resulted PDR solution produces a position error in the range of 2 m compared to the GPS 

trajectory. It is also observed that the solution is diverted somehow after the transition period due 

to unstable sensors’ measurements. 

Figure 6.29: PDR solution compared to GPS solution plotted on Google map 
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Chapter Seven: Conclusion and Recommendations 

In this thesis, the use of the low cost sensors in the pedestrian navigation is investigated. The 

proposed work targeted the embedded sensors in different portable devices such as smartphones, 

tablets, and any other handheld devices. Step detection, step length estimation, and device 

attitude errors strongly affect the performance of the PDR algorithm. As a result, the proposed 

research focuses on improving the performance of the PDR in both normal and manoeuvring 

environments. This chapter summarizes the main contributions of the proposed work and 

provides.  Lastly, recommendations are made for future work based on this research that will 

help develop of a seamless pedestrian navigation system. 

7.1 Thesis Conclusions and Contributions 

The main focus of this research work is on pedestrian navigation in GPS-denied areas. The 

overall objective of this thesis was to develop and test algorithms for pedestrian navigation with 

enhanced step detection, step length estimation, and heading estimation techniques. A special 

focus on the device attitude was undertaken for improving the efficiency of the PDR algorithm. 

The overall conclusion of the thesis is listed below:  

1.	 Different tests were conducted using Samsung Galaxy Nexus smartphone as an example of 

current mobile devices in use by pedestrians. The device is suitable for personal use since it 

is lightweight and small. Furthermore, since this device has an open source operating system 

(Android), it is easier than ever to develop applications. The major advantage of these 

devices is that most of them are embedded with the necessary sensors for the navigation 
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process. However, these sensors are consumer (MEMS) grade, which mean that it is very low 

cost and inaccurate. This calls for the investigation of the possible ways to improve the 

performance of the different sensors. This requires a detailed analysis for the different terms 

of error to be handled. 

2.	 As discussed in the literature, the magnetometer performance is determined to be totally 

subject to the quality of the measured magnetic field, which can be affected by any 

ferromagnetic materials in the vicinity. Different methods and techniques are investigated to 

improve the performance of the magnetometer in harsh environments to achieve the best 

accuracy of the sensed magnetic field: 

I. Magnetometer Calibration 

 A robust magnetometer calibration method is implemented based on the PSO 

technique to estimate the bias and scale factor values. The proposed technique is 

found to have many advantages over other conventional methods where it does not 

require any error modeling or awareness of the nonlinearity. 

 RIST technique is proposed to reduce the required number of samples for the 

calibration algorithm by using a window of the measurement. This reduces the 

processing time to 40% compared to using the entire dataset. 

 The PSO technique, as described in Chapter 3, is an iterative process and occasionally 

requires longer times to converge for the bias and scale factor values. Thus, MPSOT 

is implemented to decrease the overall processing time to 35% of the consumed time 

by the basic PSO. 
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 The fusion of the RIST and MPSOT techniques with the basic PSO algorithm 

decreased the required time for the calibration process. This extends the opportunity 

to apply the proposed algorithm in real-time applications. 

 Additionally, the proposed calibration technique is implemented in the magnetic field 

domain rather than the heading domain. This makes it applicable for different 

applications that include the magnetometer in their operations, not only navigation 

applications. 

II. Different Manoeuvring Modes: 

 Three different manoeuvring modes, coordinated, 3D Figure-Eight, and random, are 

investigated to assess the impact of each on the magnetometer calibration process. 

Among the three manoeuvring modes, the coordinated mode is found to be the most 

effective one in terms of residual error distribution, the constancy of the estimated 

magnetic field, and error mean and standard deviation ranges. Thus, it is 

recommended to move the navigation device around the different axes to cover a 

wide range of the expected movements of the pedestrian as in the coordinated 

manoeuvring mode. 

III. Magnetometer Anomaly Detection: 

 Characterizing  the  magnetic field  perturbations  through various pedestrian 

navigation environments was determined to be effective at providing detailed  insight 

into  the strength, occurrence  as well  as  the  distribution of perturbations. Thus, 

investigation and recommendation for perturbation detection technique is found 

necessary as the quality of the used magnetometer is not high. 
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 A perturbation detection scheme is developed utilizing the different magnetic field 

parameters to avoid using incorrect magnetometer based heading information. 

 In addition, the anomaly detection technique is found to be important to request a 

recalibration process in case the user moves from outdoors to indoors as the magnetic 

field is candidate to have different distribution or in case the change in the magnetic 

field due to an external factor is very high for long time.  

3. For future generations of Smartphones and other handheld devices, this investigation adds to 

the pre-existing knowledge of calibration, and to reap maximum benefit from low cost 

magnetometers. In this thesis, gyroscope is used as main source for attitude information 

where accelerometer provides the roll and pitch update and magnetometer is used for heading 

update.  

- A KF-based fusion technique is used to estimate the device attitude and gyroscope bias as 

well as combine these with the magnetic field perturbation detection technique.  The 

Proposed technique exploits two different attitude sensors, gyroscope and magnetometer, 

as a complementary fusion scheme. 

- Due to the noisy data of accelerometers and magnetometers, both data are averaging over 

the update interval meaning a one-step occurrence. The proposed technique improves the 

accuracy of the device attitude estimation leading to improved PDR results where it can 

bridge the GPS gaps. 

-	 The limitation of magnetometer measurements caused a position error up to 3% in the 

downtown area and 5% indoors of the total traveled distance.  This suggests that the 

accuracy of the PDR algorithm that uses a magnetometer is unexpected when subjected 

to certain environmental conditions. 
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4.	 Step detection, step length estimation, and false step mitigation techniques are implemented 

to estimate the total travelled distance. The proposed schemes achieved an accuracy of about 

97% for step detection and 95% for the step length estimation. 

5.	 Different areas for field tests are selected, namely downtown and parking lot areas, to 

provide a perturbed magnetic field outdoor environment.  The Kinesiology Complex and 

lecture theaters building offered a perturbed magnetic field indoor environment. The 

selection of such environments for assessing the proposed PDR offered a true example of the 

sensors’ data for detailed and realistic investigation for the technique. 

6.	 The investigation into the device mode leads to the derivation of a correct heading for the 

user during the change between the different modes of usage. 

7.2 Recommendations and Future Work 

Improving the performance of the PDR requires not only better modeling of the different error 

sources but also more benefits from different forms of navigation information. Such changes and 

additions would improve the overall performance and accuracy of a PDR device. Several 

recommendations for ongoing future work are listed below: 

- For better results from the calibration process, it is recommended that the device be 

moved in the entire 3D space to obtain maximum change in all directions. 

- The magnetic field is sensitive to the surrounding environment contents and structure. In 

order to achieve better performance from the geomagnetic field sensor, it is 

recommended to perform the magnetometer calibration at each change in the 

environment, such as switching from outdoor to indoor. 
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- The perturbation detection technique can be improved by utilizing a Knowledge Based 

System (KBS). The system can incorporate the available information for the different 

magnetic field components which improve the algorithm’s robustness. 

- Use of all possible CUPT techniques to update the position of the user. This can be 

achieved using GPS when available or landmarks (RFID tags). The tags should be 

installed at noticeable points for the pedestrian. For example, they could be set at the 

entrance of buildings, main doors, stairs, or elevators. Also, Wi-Fi access points can be 

used for position updates in indoor environments once the infrastructure allows for that. 

In addition, A ZUPT technique can be used for updating the attitude filter during a 

stationary interval of the user when entering elevators or opening a door. 

- Modeling the 3D positioning instead of 2D positioning can improve the accuracy of the 

PDR algorithm. This leads to accurate estimates for the traveled distance in cases where 

stairs are encountered. Moreover, the use of additional sensors, such as a barometer, is 

recommended to increase the ability to detect the floor change. 

- A significant amount of research is required to the device more user friendly and 

convenient. Since the pedestrian is expected to carry or hold the device in different 

orientations, the misalignment angle must be estimated to obtain an accurate heading. 

- The proposed PDR algorithm deals only with a normal walking case. However, different 

user activities must be further investigated such as running, jogging, or slow walking. 

- The performance of the PDR algorithm can be improved by including the GPS solution 

wherever is available as the proposed technique is fully built for completely GPS-denied 

environments.  
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