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ABSTRACT 
 

It is well known that Inertial Navigation Systems (INS) can provide high accuracy 

information on the position, velocity, and attitude over a short time period. However, 

their accuracy degrades rapidly with time. The requirements for accurate estimation of 

navigation information necessitate the modeling of the sensors’ noise components. 

 

Several methods have been devised for stochastic modeling of inertial sensors noise. 

Each of them is useful but each has its own disadvantage. The Adaptive Kalman filter is 

one of the mostly used methods to estimate inertial sensor noise, but the form of the 

model needs to be known first. Frequency domain approaching uses the power spectral 

density to estimate transfer functions. It is straightforward but it is difficult for non-

system analysts to understand. In the time domain methods, the correlation function 

approach is very model sensitive. Variance techniques are basically very similar, and 

primarily differ only in that various signal processing, by way of weighting functions, 

window functions, etc., are incorporated into the analysis algorithms in order to achieve a 

particular desired result for improving the model characterizations. The simplest 

technique is the Allan variance method. 

 

Allan variance is a method of representing root mean square (RMS) random drift error as 

a function of average time. It is simple to compute and relatively simple to interpret and 

understand. Allan variance method can be used to determine the character of the 

underlying random processes that give rise to the data noise. This technique can be used 

to characterize various types of noise terms in the inertial sensor data by performing 

certain operations on the entire length of data. 

 

In this thesis, the Allan variance technique is used in noise analysis of different grade 

Inertial Measurement Units (IMU), which include: 

§ Navigation grade IMU:  The Honeywell Commercial IMU (CIMU); 

§ Tactical grade IMU: The Honeywell HG1700; and 
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§ Consumer grade MEMS based IMU: The Systron Donner MotionPak II-3g 

 

By performing a simple operation on the entire length of data, a characteristic curve is 

obtained whose inspection provides a systematic characterization of various random 

errors contained in the inertial sens or output data. Being a directly measurable quantity, 

Allan variance can provide information on the types and magnitude of various noise 

terms. The research work will cover both the theoretical basis for Allan Variance for 

modeling inertial sensors noise terms, and its implementation in modeling different noise 

terms existing in the different grade inertial sensors. Simple implementation and ease of 

interpretation make the Allan variance method suitable in inertial sensor noise 

identification and stochastic modeling.  
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 NOTATION 
 

1. ACRONYMS 

§ 3D Three dimensional 

§ AC Alternating current 

§ A/D Analog to Digital convert 

§ ARW Angle random walk 

§ AV Allan variance 

§ CIMU Commercial Inertial Measurement Unit 

§ CWT Continuous wavelet transform 

§ DFT Discrete Fourier transform 

§ DTG Dynamically tuned free rotor gyroscope 

§ DWT Discrete wavelet transform 
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§ FFT Fast Fourier transform 
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§ IFOG Interferometric fiber-optic gyro 

§ IMU Inertial Measurement Unit 

§ INS Inertial Navigation System 

§ LOD Level of Decomposition 
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§ MEMS Micro electro-mechanical system 

§ MMS Mobile Multi-Sensor System 

§ PIGA Pendulous Integrating Gyro Accelerometer 

§ ppm Part per million 

§ PSD Power Spectral Density 

§ RLG Ring Laser Gyro 

§ RMS Root mean square 
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2. COORDINATE FRAME 

§ Operational Inertial Frame (i-frame) 

§ Origin: at the centre of mass of the Earth; 

§ Z-axis: towards the north celestial pole; 

§ X-axis: towards the mean vernal equinoctial; 

§ Y-axis: completes a right-handed system.  

§ Earth-Fixed Frame (e-frame) 

§ Origin: at the centre of mass of the Earth; 

§ Z-axis: parallels to the mean spin axis of the Earth; 

§ X-axis: towards the mean Greenwich meridian in the equinoctial plane; 

§ Y-axis: completes a right-handed system.  
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§ Body frame (b-frame) 

§ Origin: at the center of accelerometer proof masses. Assumed to be 

identical with center of rotation of rotated sensor unit; 

§ Y-axis: pointing forward; 
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§ Z-axis: pointing upward and completing a right-handed system. 

§ Local-Level Frame (l-frame) 

§ Origin: at the center of the b-frame; 

§ Z-axis: pointing outward along the ellipsoidal normal; 

§ Y-axis: towards the ellipsoidal north; 

§ X-axis: towards the ellipsoidal east. 
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P Kalman Filter Error States Covariance Matrix 

P, Q, R Vehicular angular rates 

Q Kalman Filter Covariance Matrix of Input Noise 

Q Random Walk Coefficient 

QZ Quantization Noise Coefficient 

qc Exponentially Correlated (Markov) Noise Coefficient 

R Kalman Filter Covariance Matrix of Measurement Noise 

R Drift Rate Ramp Coefficient 
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Rx Autocorrelation Function 

S Gyro Scale Factor in Matrix Form 

S1 Accelerometer Linear Scale Factor in Matrix Form 

S2 Accelerometer Non-linear Scale Factor in Matrix Form 

SE Estimated Scale Factor 

Sinput  Input Power Spectral Density 

Soutput Output Power Spectral Density 

ST  True Scale Factor 

SΩ Power Spectral Density of the Random Process 
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CHAPTER ONE: INTRODUCTION 
 

Navigation is a very ancient skill or art, which has become a complex science. It is 

essentially about travel and finding the way from one place to another and there are a 

variety of means by which this may be achieved (Titterton and Weston 1997).  

 

The navigator may choose to observe objects or naturally occurring phenomena to 

determine his/her position. An ancient and well-established technique is to take sightings 

of certain fixed stars to which the navigator can relate his/her position. The fixed stars 

effectively define a reference frame, which is fixed in space. Such a reference is 

commonly referred to as an inertial reference frame and star sightings enable an observer 

to determine his/her position with respect to that frame. Given the knowledge of motion 

of the Earth and the time of the observation, the navigator is then able to use the celestial 

measurements to define his/her position on the surface of the Earth. Navigation systems 

of this type, which rely on observation of the outside world, are known as position fixed 

systems. 

 

An alternative approach is to use the principle of dead reckoning by which one’s present 

position may be calculated from the knowledge of one’s initial position and speed and 

direction measurements. The process of dead reckoning is performed by taking the last 

known position and the time at which it was obtained, and noting the average speed and 

heading since that time to the current time. The speed must be resolved through the 

heading angle  to provide the velocity components in the north and east directions. Each is 
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then multiplied by the time that has elapsed since the last position was obtained, thereby 

giving the change in position. Finally, the position changes are summed with the initial 

position to obtain the present position. 

 

An equivalent process may be conducted using inertial sensors-gyroscopes and 

accelerometers-that sense rotational and translational motion with respect to an inertial 

reference frame. This is known as inertial navigation. 

1.1 INERTIAL NAVIGATION SYSTEMS 
 

The operation of an inertial navigation system (INS) depends on the laws of classical 

mechanics as formulated by Newton. Newton’s First law states, “An object at rest tends 

to stay at rest and an object in motion tends to stay in motion with the same speed and in 

the same direction unless acted upon by an unbalanced force”. Newton’s Second law 

states, “The acceleration of an object as produced by a net force is directly proportional 

to the magnitude of the net force, in the same direction as the net force, and inversely 

proportional to the mass of the object”. Given the ability to measure the moving body 

acceleration, it is possible to calculate the change in velocity and position by performing 

successive mathematical integrations of the acceleration with respect to time. 

Acceleration can be determined using an accelerometer. An inertial navigation system 

usually contains three accelerometers, which are commonly mounted with their sensitive 

axes perpendicular to one another. The working theory of accelerometer is based on the 

Newton’s laws. 
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In order to navigate with respect to the inertial reference frame, it is necessary to keep 

track of the direction in which the accelerometers are pointing. Rotational motion of the 

body with respect to the inertial reference frame may be sensed using gyroscopic sensors 

and used to determine the orientation of the accelerometers at all times. Given this 

information, it is possible to transform the accelerations into the computation frame 

before the integration process takes place. At each time-step of the system's clock, the 

navigation computer time integrates this quantity to get the body's velocity vector. The 

velocity vector is then time integrated, yielding the position vector. These steps are 

continuously iterated throughout the navigation process (Verplaetse 1995). Figure 1.1 

shows this concept in a schematic form. This procedure is, usually, considered as IMU 

mechanization. The mechanization results will be fed into the Kalman filter to correct 

inertial sensor errors for best estimation solution. 

 

Figure 1.1 Inertial Navigation Schematic Plot (after El-Sheimy 2003) 
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Hence, inertial navigation is the process whereby the measurements provided by 

gyroscopes and accelerometers are used to determine the position of the vehicle in which 

they are installed. By combining the two sets of measurements, it is possible to define the 

translational motion of the vehicle within the inertial reference frame and to calculate its 

position within that frame.  

1.2 BACKGROUND AND OBJECTIVE 
 

The Inertial Measurement Unit (IMU) typically provides an output of the vehicle’s (e.g. 

aircraft) acceleration and angular rate, which are then integrated to obtain the vehicle’s 

position, velocity, and attitude. The IMU measurements are usually corrupted by different 

types of error sources such as sensor noises, scale factor and bias variations with 

temperature (nonlinear, difficult to characterize), etc. By integrating the IMU 

measurements in the navigation algorithm, these errors will be accumulated, leading to 

significant drift in the position and velocity outputs. A stand-alone IMU by itself is 

seldom useful since the inertial sensor biases and the fixed-step integration errors will 

cause the navigation solution to diverge quickly. Inertial systems design and performance 

prediction depend on the accurate knowledge of the sensors’ noise model. The 

requirements for accurate estimation of navigation information necessitate the modeling 

of the sensors noise components. 

 

Several methods have been devised for the stochastic modeling of the sensors’ noise. The 

frequency domain approach, which uses the power spectral density (PSD) to estimate 

transfer functions is straightforward but difficult for non-system analysts to understand. 
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The correlation function approach is the time-domain equivalent of the PSD approach, 

being related as Fourier transforms pairs. This is analogous to expressing the frequency 

response function in terms of partial fraction expansion. The correlation method is very 

model sensitive and not well suited to dealing with odd power law processes, higher 

order processes or wide dynamic ranges. They work best with a priori knowledge based 

on a model of few terms (IEEE Std 952-1977). 

 

For the variance techniques, they are basically very similar, and primarily differ only in 

that various signal processing, by way of weighting functions, window functions, etc., are 

incorporated into the analysis algorithms in order to achieve a particular desired result for 

improving the model characterizations. The simplest is the Allan variance.  

 

Allan variance is a method of representing root mean square (RMS) random drift error as 

a function of averaging time (IEEE Std 952-1977). It is simple to compute and relatively 

simple to interpret and understand. The Allan variance method can be used to determine 

the characteristics of the underlying random processes that give rise to the data noise. 

This technique can be used to characterize various types of noise terms in the inertial 

sensor data by performing certain operations on the entire length of data.  

 

Although the Allan variance statistic remains useful for revealing broad spectral trends, 

Allan variance does not always determine a unique noise spectrum cause the  mapping 

from spectrum to Allan variance is not one -to-one (Greenhall 1998). This puts a 
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fundamental limitation on what can be learned about a noise process from examination of 

its Allan variance. 

 

The main objective of this thesis is to investigate, implement, and test the Allan variance 

as a unified method in identifying and modeling noise terms of different grade IMU 

sensors. In order to improve the performance of the inertial sensors, both the 

manufacturers and the users are keen to know more detail about the noise component. 

Once the noise terms are revealed, the manufacturers can find a way to remove or 

minimize the sources causing the noise, during the manufacture process. Complementary 

to this is that the users can have a better modeling of the stochastic part to improve the 

navigation solution. The major success of this thesis is that it proves that Allan variance 

method can be used to investigate all potential noise terms for different levels of inertial 

sensors. Comparing with other methods, such as autocorrelation and power spectral 

density, Allan variance is much easier to implement and understand. Thus this method 

can be widely used in inertial sensor stochastic modeling.  

 

Under the overall objectives, the following tasks have been addressed: 

§ Investigate the methodology of Allan variance, 

§ Distinguish the noise terms obtained from the Allan variance method, 

§ Implement the Allan variance in a software for IMU sensors noise analysis, 

§ Implement short and long term static tests with IMU sensors, 

§ Investigate and model noise terms in different grade IMU sensors. 
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1.3 THESIS OUTLINE 
 

In Chapter Two, the operation principle of both gyro and accelerometer are first 

introduced as well as the technologies that dominate the current market. Then the major 

error sources, which will affect the inertial sensor performance, are discussed. Different 

methodologies that can be used to eliminate or minimize these errors are finally 

presented.  

 

In Chapter Three, the algorithm of discrete Kalman filter is introduced followed by the 

general stochastic modeling methods, such as the autocorrelation method, power spectral 

density method, variance method, and adaptive Kalman filter method. In addition, the 

useful techniques in stochastic modeling including the fast Fourier transform and wavelet 

de-nosing method are reviewed.   

 

The definition and properties of Allan variance are given in Chapter Four. The procedure 

for the analysis and modeling of different noise terms are discussed. The method used to 

evaluate the analysis results is given.  

 

In Chapter Five, the results of testing different types of IMU are presented. The tested 

systems include: 

§ Navigation grade IMU:  The Honeywell CIMU; 

§ Tactical grade IMU: The Honeywell HG1700; and 

§ Consumer grade MEMS based IMU: The Systron Donner MotionPak II-3g 
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Finally, Chapter Six draws the major conclusions from this research work and provides 

recommendations for future work. 

 

Some of the material presented in Chapter Four and Five has been previously published 

in papers. In those cases where the author has been an author or co-author of these 

papers, quotations are not indicated as such, but are simply referenced.  
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CHAPTER TWO: INERTIAL SENSORS AND THEIR ERROR SOURCES  
 

The operation principles as well as the technologies used in the current market of both 

gyro and accelerometer are introduced in this chapter. Then the major error sources of 

inertial sensors are discussed. Finally, the general methods used to eliminate or minimize 

these errors are presented. 

2.1 INERTIAL NAVIGATION PRINCIPLE 
 

The objective of modeling motion in space is to describe the motion of objects on the 

earth’s surface or close to it. These objects are affected by the earth’s gravitational 

attraction due to the Earth’s gravity field and rotation. The general motion of a rigid body 

in space can be described by six parameters. They are typically identified as three 

position and three orientation parameters. Determining the position and orientation of the 

rigid body in 3D space is, in principle, a problem of trajectory determination. This 

necessitates measuring systems with the capability to sense six independent quantities 

from which these parameters can be derived. The motion of any point of a rigid body in 

space can be described as the sum of two vectors: the position vector of the center of  

mass of the body with respect to the earth fixed coordinate frame and the vector between 

the center of mass and another point on the body (El-Sheimy 1996). 

 

Position, velocity and attitude, when presented as a time variable function, are called 

navigation states because they contain all necessary navigation information to 

georeference a moving object at a specific moment of time (El-Sheimy 2003). A 
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combination of sensors capable of determining all navigation states makes up a 

navigation system. Obviously, different sensors can be used to determine the same 

subvector of the navigation states, such as position state or attitude state. Navigation 

comprises the methods and technologies to determine the time varying position and 

attitude of a moving object by measurement.  

 

An equivalent process may be conducted using inertial sensors-gyroscopes and 

accelerometers, which are the two categories of inertial sensor -to sense rotational and 

translational motion with respect to an inertial reference frame. In order to navigate with 

respect to the inertial reference frame, it is necessary to keep track of the direction in 

which the accelerometers are pointing. Rotational motion of the body with respect to the 

inertial reference frame may be sensed using gyroscopic sensors and used to determine 

the orientation of the accelerometers at all times. Given this information, it is possible to 

resolve the accelerations into the reference frame before the integration process takes 

place. Double integration of the accelerations provides the position according to the 

inertial reference frame. This is known as inertial navigation. 

 

The principle of inertial navigation is based on Newton’s first law of motion: every body 

continues in its state of rest or uniform motion in straight line, unless it is compelled to 

change that state by forces imposed on it. The full meaning of Newton’s first law is not 

easily visualized in the Earth’s reference frame. To apply Newton’s laws, the body must 

be in an inertial reference frame (non-rotating frame in which there are no inherent 

forces, such as gravity). Newton’s second law of motion, acceleration is proportional to 
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the resultant force and is in the same direction as this force, shares importance with his 

first law in inertial navigation. The physical quantity in which inertial navigation system 

is interested is acceleration since velocity and displacement can be derived from 

acceleration by integration. An inertial navigation system is an integrated system 

consisting of a detector and an integrator. It first detects acceleration and then integrates 

it to derive the velocity. Then integrates velocity to derive the displacement (Schwarz and 

El-Sheimy, 1999). 

 

Measuring the vehicle acceleration in an inertial frame of reference and transforming it to 

the navigation frame and integrating it with respect to time, velocity, attitude and position 

differences in the navigation frame can be obtained. In this mode of operation, an Inertial 

Navigation System (INS) can be considered as a highly sophisticated dead-reckoning 

system. 

2.2 INERTIAL SENSORS 
 

Many types of inertial instruments have been invented in the past, are currently being 

invented, and will continue to be invented as the market for guidance, navigation, and 

control continues to expand. Based on the technologies used, which decide the size, cost, 

and performance, some of the inertial instruments have found a niche in current 

applications, while some did not progress much beyond the laboratory/prototype stage. 

This will be true to the future development of inertial sensors (Barbour et al. 1992). 
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2.2.1 INERTIAL ROTATION SENSORS 
 

In this section some of the most important gyroscopic rotation sensors that have been in 

use will be discussed. 

2.2.1.1 PRINCIPLE OF OPERATION 
 

The typical quantities to be measured by inertial rotation sensors are the vehicle attitude 

Euler angles Φ, Θ, and Ψ, which are defined with respect to the local level frame and the 

inertial vehicular angular rates P, Q, R. These quantities are depicted in Figure (2.1). The 

transformation of any vector from the Earth’s axes Xe, Ye , Ze to the INS body axes xb, yb, 

zb is performed by the Euler transformation [E]= [Φ][Θ][Ψ], formulated in detail in 

(Merhav 1996). 

 

Figure 2.1 Rotation of body axes and Earth axes (after Merhav 1996). 
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It is important to realize that the inertial angular rates P, Q, R are not identical to the 

Euler angular rates ΨΘΦ &&& ,, . The former triplet represents the projections of the total 

inertial angular rate vector Ω on the vehicle body axes xb, yb, zb while the latter triplet 

represents the Euler angular rates ΨΘΦ &&& ,,  around the axes OM, ON and Ze respectively. 

The kinematic relationships between P, Q, R and ΨΘΦ &&& ,,  are known as the Euler 

differential equations presented in, among others, McRuer et al. (1973), Blakelock (1991) 

and El-Sheimy (2003). They are repeated here for the sake of completeness. 

ΘΨ−Φ= sin&&P  (2.1) 

ΦΘΨ−ΦΘ= &&& sincoscosQ  (2.2) 

ΦΘΨ+ΦΘ−= coscossin &&R  (2.3) 

 

Alternatively, solving for ΨΘΦ &&& ,,  in terms of P, Q, R yields 

ΘΦ+ΘΦ+=Φ tancostansin RQP&  (2.4) 

Φ−Φ=Θ sincos RQ&  (2.5) 

Θ
Φ

+
Θ
Φ

=Ψ
cos
cos

cos
sin

RQ&  (2.6) 

 

Equations (2.4) to (2.6) are of particular important technique because they permit the 

computation of the Euler angles Φ, Θ, Ψ given their initial value Φ0, Θ0, Ψ0 by alignment 

and using the measurements P, Q, R provided by the triad of rate gyros.  

∫ Θ+Θ=Θ
t

dt
00
&  (2.7) 
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∫ Φ+Φ=Φ
t

dt
00
&  (2.8) 

∫ Ψ+Ψ=Ψ
t

dt
00
&  (2.9) 

 

Thus, the Euler angles can be derived simultaneously from the measured inertial angular 

rate components P, Q, R and the computational algorithm based on Equation (2.4) to 

(2.9). However, the measured angular rates P, Q, R invariably incorporate errors known 

as drift rates. Therefore, the integrations of Equation (2.7) to (2.9) will accumulate these 

errors, which will cause the angular output diverge with time. For this reason, the method 

based on the integration of the Euler equations is applicable only in either high-precision 

and costly inertial guidance technology or in very short-term guidance applications 

(Merhav 1996). 

2.2.1.2 CATEGORY AND APPLICATIONS 
 

This section begins by describing the different gyroscope technologies that dominate the 

current market and explains, in terms of performance and technology being used, why 

they have been successful. Since accuracy requirements can be attained by existing 

technologies, the competition is driven by the desire for low cost, small size, and low 

production cost (Barbour et al. 1992). 

 

The spinning mass gyroscope first found a home around 1920 in the single-degree-of-

freedom rate gyro used as a basic turn indicator for instrument flying (Smith and 

Meyraugh 1990). After continuous evolution and improvement it was later used to 
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provide lead angle data for aircraft fire control sights, and later still for aircraft and 

missile flight control systems. The basic configuration of a rate gyro is a ball bearing 

rotor housed in a gimbal whose gyroscopic precession in response to an angular rate is 

restrained by a mechanical spring, making it relatively inexpensive, very rugged, and 

reliable. Rate gyros dominate the 10 deg/h gyro drift rate and applications such as flight 

control, stability augmentation, autopilots, etc (Barbour et al. 1992). 

 

With the need for better performance, such as in aircraft navigation, it was logical to 

improve the rate gyro. When it was identified that the rate gyro’s performance was 

limited by its spring (Smith and Meyraugh 1990) (i.e., the very mechanism that allows it 

to function also limits its capability), the performance requirements were mastered by the 

development of the single-degree-of-freedom, rate-integrating gyroscopes. The 

integrating gyro is basically a rate gyro in which the primary restraining torque on the 

gyro gimbal is a damping reaction with a servo loop to maintain the gimbal at null. The 

floated integrating gyro progressed from revolutionizing aircraft navigation in the 50s to 

enabling strategic missile guidance, autonomous submarine navigation, and space flight 

in the 60s, 70s and 80s (Smith and Meyraugh 1990). 

 

The gas bearing was a significant part of the floated gyro evolution, leading to better 

stability, and a self-aligning capability for strategic missiles, a capability that no other 

instrument to da te provides (Barbour et al. 1992). Another benefit of the gas bearing is 

the reduction of the angle noise of the floated instrument, so that it is used in satellite 
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navigation and control; its most recent application is in the Hubble telescope (Barbour et 

al. 1992). 

 

Floated integrating gyros have a relatively high cost, are labor intensive, and have long 

warm-up (reaction) times (Barbour et al. 1992). Clearly, if a suitable alternate technology 

could be found, it would take advantage of these perceived problems -- and this is exactly 

what happened.  

 

The free rotor gyroscope, which is basically a ball bearing rotated spinning mass that is 

unrestrained about the gyroscope precession axes, was another early development (Smith 

and Meyraugh 1990). The use of one or two gimbals allows these instruments to be used 

as directional gyros for directional references and cockpit displays such as the 

gyrocompass, artificial horizon, etc. These are very low-accuracy instrument, but they 

have maintained their role in the market place (Smith and Meyraugh 1990). 

 

Another early instrument that offered potential advantages over the floated gyro was the 

two-degree-of-freedom, gas-film supported, free rotor gyroscopes. However, it was not 

until the mid-50s that this instrument became viable when the rotor time constant 

problem was solved (Smith and Meyraugh 1990). This type of instrument has fast 

reaction times and results in lower costs because of its two degrees of freedom, but it 

cannot match the best performing floated gyros. 
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The free rotor gyro can be regarded as a precursor to the two-degree-of-freedom 

electrostatic gyro (ESG). The ESG only became viable when machining techniques 

became available to generate the very precise finishes and geometry required. The ESG 

has much lower drift than the best floated gyros and is small; unfortunately, its 

applications are limited to relatively benign environments since it has low g capability 

(Barbour et al. 1992). ESGs are being replaced by lower cost technologies that are better 

suited for strapdown applications. 

 

In the early 60s, the dynamically tuned free rotor gyroscope (DTG) was invented (Smith 

and Meyraugh 1990). The DTG is a two-degree-of-freedom instrument whose rotor is 

suspended by a universal hinge of zero stiffness at the turned speed and rotated by a ball 

bearing. Because of their relatively low cost, fast reaction time, small size and 

ruggedness, DTGs have dominated the market compared to other mechanical instruments 

in most areas where performance is comparable (Barbour et al. 1992). 

 

At the same time that the DTG was being invented, the principle of detecting rotation by 

the Sagnac effect was first demonstrated (1963) in a ring laser gyroscope (RLG). The 

RLG operates by setting up clockwise and count clockwise resonant light beams reflected 

around a closed cavity by mirrors and detecting phase shifts between these beams due to 

a rotation. The laser is inside the cavity, which contains the lasing medium; hence, the 

RLG is termed an active device (Barbour et al. 1992). The RLG is an excellent strapdown 

device because of good scale-factor (SF) linearity and SF stability in the tens of parts per 

billion compared with tens of parts per million for mechanical sensors, and almost 
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negligible g sensitivity (Merhav 1996). The RLG has other attractive features such as 

digital output, very fast reaction times, excellent dormancy characteristics, lower cost, 

and the absence of moving parts. RLG technology is still advancing, but is at the practical 

limit for today’s technology (Barbour et al. 1992). 

 

The fiber -optic gyroscope (FOG) is implemented using an integrated optics chip 

constructed in lithium niobate, and fiber-optic sensing coil, diode light source, and photo-

detectors (Smith and Meyraugh 1990). This configuration is expected to be supplemented 

eventually by quantum well technology, such as gallium arsenide, which will then allow 

integration of most of the above components into a single substrate, increasing reliability, 

and reducing costs even further (Smith and Meyraugh 1990). The most recent emerging 

technology is the interferometric fiber-optic gyro (IFOG). It provides the closed optical 

path by a multi-turn optical fiber coil wound on a coil. It is more compact and potentially 

of lower cost than the RLG (Smith and Meyraugh 1990). 

 

The growing need for highly rugged miniature angular rate sensors has initiated a number 

of studies and prototype product development programs. These products are potentially 

suitable for medium to low accuracy applications. One principle approach is the Coriolis 

angular rate sensor. The underlying idea is to put an accelerometer in motion that is 

relative to the rotating vehicle body. The development of the basic concept is given in 

Merhav (1982), where the realization and analysis are provided, particularly, for rotating 

accelerometers. An alternative mechanization is through vibrating accelerometers, and is 

also presented in Merhav (1982). The leading idea is that these accelerometers are 
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potentially much cheaper, smaller, and more rugged than gyroscopic devices. 

Micromechanical gyroscopes are primarily Coriolis force sensors. 

 

2.2.2 INERTIAL FORCE SENSORS – ACCELEROMETERS 
 

This section introduces specific force sensors, or, as traditionally known in the technical 

literature, accelerometers. They range from traditional spring-mass devices to modern 

vibrating beam quartz or silicon technologies. 

2.2.2.1 PRINCIPLE OF OPERATION 
 

A fundamental requirement in navigation system design and operation is the 

measurement of vehicular acceleration with respect to inertial space. Sensors commonly 

known as accelerometers provide these measurements. Often they are called force sensor 

or specific force sensors (SFS). Specific force, denoted by the vector a, implies the total 

Newtonian force F acting on the vehicle divided by its mass M , i.e. 

2/ sm
M
F

a =  (2.10) 

a is commonly resolved along the body-axes of the vehicle x, y, and z, so that 

[ ] T
zyx aaa ,,∆a , where T denotes the transpose. Since SFS’s are single input -axis 

devices, each axis requires the dedication of at least one SFS.  

 

The term SFS is used because this sensor does not actually measure acceleration. This is 

best verified by considering a vehicle in free fall equipped with an SFS. While the vehicle 
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clearly accelerates at g = 9.8 m/s2, the SFS reading is zero. The reason, of course, is that 

the gravitational pull acts equally on each mass particle of the SFS so that no relative 

displacement takes place between the proof mass m and the SFS casing (Merhav 1996). 

Specific force and acceleration are only identical in a gravitation-free environment that, 

strictly speaking, does not exist in our planetary system, or for that matter in the universe. 

Thus, in every situation, in order to establish the reading of an SFS, one has to identify 

inertial (Newtonian) forces only, disregarding gravitational forces or their projections 

caused by the tilting of the vehicle with respect to the local horizon (Merhav 1996). 

2.2.2.2 SPECIFIC FORCE READING ON MOVING PLATFORMS 
 

Consider the vehicle as a rigid body with a mass M, which moves with the inertial 

velocity V and angular velocity Ω. From Newton’s second law, 

( )
dt
d

dt
dM

dt
d V

MVVMF +==  (2.11) 

Assuming that M = const, so that the first term is zero. Thus, F is determined by the 

second term only, namely (Merhav 1996), 

( )VO
V

l
V

F ×+== M
dt
d

M
dt

d
M v   (2.12) 

where ( )T
v kji ,,∆l  is the unit vector with its components i, j, k along the x, y, z body-

axes. Dividing through by M, the acceleration vector is  

VO
V

la ×+=
dt

d
v  (2.13) 
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The first term represents the tangential acceleration. The second term, often termed the 

Coriolis acceleration, is actually the centripetal acceleration resulting from the angular 

velocity Ω of the velocity vector V in the inertial space. Thus, 

kWjViU ++∆V  (2.14) 

kRjQiP ++∆O  (2.15) 

With these notations, we have  

WkVjUi
dt

d
v

&&& ++=
V

l  (2.16) 

and 

( ) ( ) ( )QUPVkPWRUjRVQWi
WVU
RQP
kji

−+−+−==× VO  (2.17) 

 

We denote 

zyx kFjFiF ++=F  (2.18) 

Combining Equation (2.12) with Equation (2.16) and (2.17) and dividing through by M, 

the Newtonian sensed reading an of the SFS’s are  
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They consist of the linear acceleration components and the components of centripetal 

acceleration due to the curved path of the vehicle. The earth is initially assumed to be flat 

and non-rotating (Merhav 1996). 

 



 22 

A case of special interest, is a vehicle with the resultant net local vertical force Fz + W = 

0, namely, Fz = -W, and one which determines the projections of the specific force az = 

Fz/M =  -g on the x, y, z body axes by means of the Euler transformation previously 

defined in Figure (2.1) (Merhav 1996): 
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where ( ) ( )•∆• sins  and ( ) ( )•∆• cosc . 

Combining (2.19) and (2.20), the total specific force vector is expressed as (Merhav 

1996). 
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It is important to realize that the readings of on-board SFS’s are, in general, not identical 

to the vehicular acceleration as seen by an outside observer. 

2.2.2.3 CATEGORY AND APPLICATIONS 
 

New technologies continue to be developed to meet the SFS market needs. However, 

since accuracy requirements can be attained by existing technology, and since the new 

and emerging technologies offer little in any performance improvement, the decision to 

insert or develop them will depend on low life-cycle cost, small size, and low production 

cost (Barbour et al. 1992). While several of the new technologies are described herein, it 

is expected that only two or three will impact the market in a significant way. 
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The majority of electromechanical accelerometers are the restrained mass or force-

rebalance types, in which a proof mass is supported in a plane perpendicular to the input 

(sense) axis by a flexure, torsion bar, or pivot and jewel (Norling 1990). The motion of 

this proof mass under changes of acceleration is detected by a pickoff. A rebalance force 

may be generated through a servo feedback loop to restore the proof mass to its null 

position. The force rebalance type of accelerometer has been successful not only because 

it is relatively small, simple, very rugged, and reliable, but also because it can be 

designed to meet different performance and application requirements by careful selection 

of the flexure and mass configuration, electromagnetic pickoffs and forces, servo 

electronics, fluid and damping, and materials (Savage 1978). Force rebalance 

accelerometers can operate in strapdown or gimbaled modes. The output needs to be 

digitized (Barbour et. al. 1992). 

 

The highest performance accelerometer available is the Pendulous Integrating Gyro 

Accelerometer (PIGA), which is used for strategic missile guidance (Barbour et al. 1992). 

The PIG part of the PIGA is identical to the floated single-degree-freedom, integrating 

gyro with the addition of a pendulous mass located on the spin axis. The PIGA is a very 

stable, linear device, with very high resolution over a wide dynamic range. PIGAs are 

relatively complex and perceived to have high life-cycle costs due to the three rotating 

mechanisms (gas bearing, servo-driven member (SDM), and slip ring) (Barbour et al. 

1992). 
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Another type of accelerometer is the resonator or open-loop type such as the vibrating 

string accelerometer. This device has low shock tolerance (Barbour et al. 1992). 

 

Angular accelerometers were initially used in the 50s for dynamic compensation of AC 

(alternating current) servomechanisms. The basic configuration is a fluid-filled ring with 

a vane extending into it. Under rotational motion of the ring, the vane is restrained by a 

torquer, whose current indicates the angular displacement (Norling 1990). Such devices 

are used in applications requiring high bandwidth (2000Hz), small magnitude 

stabilization, or jitter compensation. However, angular displacement sensors are not as 

accurate as floated gyros or DTGs below about 20Hz, but the high cost of these gyros 

restricts their use (Barbour et al. 1992). 

 

In less than 20 years, MEMS (micro electro-mechanical systems) technology has gone 

from an interesting academic exercise to an integral part of many common products 

(Weinberg 2004). Silicon micromechanical instruments can be made by bulk 

micromachining (chemical etching) single crystal silicon or by surface micromachining 

layers of polysilicon (Yun and Howe 1991). Many manufactures are developing gyros 

and accelerometers using this technology. Their extremely small size combined with the 

strength of silicon makes them ideal for very high acceleration applications. Silicon 

sensors provide many advantages over other materials, such as quartz or metal, for micro-

sized rate sensor development. These advantages include excellent scale factor matching 

and stability, long life, bias stability, virtually no degradation, and the ability to handle 

larger stress levels (Yun and Howe 1991). 
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2.2.3 SUMMARY 
 

An excellent survey on the state of the art of rotation and force sensors and their potential 

applications is provided in Barbour et al. (1992) along with the better-known mechanical 

and optical gyros. Figures (2.2) and (2.3) describe performance contours of current sensor 

technologies for gyros and accelerometers and their applications as related to ppm of 

scale factor (i.e., how well the gyroscope or accelerometer reproduces the sensed rate or 

acceleration) and µg or deg/h of inherent bias stability (i.e., the error independent of 

inertial rate or acceleration). While these performance factors are not the only ones that 

influence sensor selection, they are useful for comparison purposes.  The closed contours 

are mapped in terms of bias and scale factor uncertainties. The various applications are 

indicated within these contours. Thus, one can see the association between current 

technologies and their operational utilization at a glance. 

 

Figure 2.2 Current Gyro Technology Applications (After Merhav 1996) 
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Figure 2.3 Current Accelerometer Technology Applications (After Merhav 1996) 

 

The utilization of solid-state inertial sensors like those described above have potentially 

significant cost, size, and weight advantages over conventional instruments, which will 

result in a rethinking of the options for which such devices can be used in systems 

(Barbour et al. 1992). Micromechanical inertial sensors are currently dominating the low-

performance end of the application spectrum. These instruments will continue to evolve 

into the middle-performance ground. The commercial market for micromechanical 

inertial sensors is orders of magnitude larger than any contemplated military market. The 

application of micromechanical gyro technology to the automobile industry is one case. 

Products designed for this industry must be inexpensive and reliable, both characteristics 

of solid-state technology. Many other micromechanical inertial sensor applications exist 

for automobiles such as airbags, braking, leveling, and augmentation to Global 

Positioning System (GPS) navigation systems. Additional commercial applications can 
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be found in products such as camcorders, factory automation, general aviation, medical 

electronics, and perhaps one of the largest areas of all, children’s toys and games. If the 

cost can be brought down low enough, one could expect to see an IMU in every home 

(Barbour et al. 1992). 

2.3 INERTIAL SENSOR ERRORS 
 

The performance characteristics of inertial sensors (either gyroscopes or accelerometers) 

are affected by a variety of errors. Most errors can be categorised into sensor bias, scale 

factor, axes misalignment, and noise. In the following section, these errors will be 

discussed briefly. 

2.3.1 BIAS 

2.3.1.1 DEFINITION 
 

The bias for gyro/accelerometer is the average over a specified time of 

accelerometer/gyro output measured at specified operating conditions that have no 

correlation with input acceleration or rotation. The gyro bias is typically expressed in 

degree per hour (°/h) or radian per second (rad/s) and the accelerometer bias is expressed 

in meter per second square [m/s2 or g]. Bias generally consists of two parts: a 

deterministic part called bias offset and a random part.  The bias offset, which refers to 

the offset in the measurement provided by the inertial sensor, is deterministic in nature 

and can be determined by calibration. The random part is called bias drift, which refers to 

the rate at which the error in an inertial sensor accumulates with time. The bias drift and 

the sensor output uncertainty are random in nature and they should be modeled as a 
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stochastic process. Bias errors can be reduced from the reference values, but the specific 

amount is range and type dependent (El-Sheimy 2003). 

 

In addition to the above, there are another two characteristics used to describe the sensor 

bias. The first is the bias asymmetry (for gyro or accelerometer), which is the difference 

between the bias for positive and negative inputs, typically expressed in degree per hour 

(°/h) or meter per second square [m/s2, g]. The second is the bias instability (for gyro or 

accelerometer), which is the random variation in the bias as computed over specified 

finite sample time and averaging time intervals. This non-stationary (evolutionary) 

process is characterized by a 1/f power spectral density. It is typically expressed in degree 

per hour (°/h) or meter per second square [m/s2 , g], respectively. 

2.3.2 SCALE FACTOR 
 

Scale factor is the ratio of a change in the input intended to be measured. Scale factor is 

generally evaluated as the slope of the straight line that can be fit by the method of least 

squares to input-output data. The scale factor error is deterministic in nature and can be 

determined by calibration. Scale factor asymmetry (for gyro or accelerometer) is the 

difference between the scale factor measured with positive input and that measured with 

negative input, specified as a fraction of the scale factor measured over the input range. 

Scale factor asymmetry implies that the slope of the input-output function is 

discontinuous at zero input. It must be distinguished from other nonlinearities (El-Sheimy 

2003). 
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Scale factor stability, which is the capability of the inertial sensor to accurately sense 

angular velocity (or acceleration) at different angular rates (or at different accelerations), 

can also be used to describe scale factor. Scale factor stability is presumed to mean the 

variation of scale factor with temperature and its repeatability, which is expressed as part 

per million (ppm). Deviations from the theoretical scale are due to system imperfections. 

2.3.3 MISALIGNMENT 
 

Axes misalignment is the error resulting from the imperfection of mounting the sensors. 

It usually results in a non-orthogonality of the axes defining the INS body frame. As a 

result, each axis is affected by the measurements of the other two axes in the body frame. 

Axes misalignment can, in general, be compensated or modeled in the INS error equation 

(El-Sheimy 2003). 

2.3.4 NOISE 
 

Noise is an additional signal resulting from the sensor itself or other electronic equipment 

that interfere with the output signals trying to measure. Noise is in general non-systematic 

and therefore cannot be removed from the data using deterministic models. It can only be 

modeled by stochastic process. 
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2.3.5 SENSORS GENERAL MEASUREMENT MODEL 

2.3.5.1 GYROS MEASUREMENT MODEL 
 

Gyroscope is an angular rate sensor providing either angular rate in case of rate sensing 

type or attitude in the case of the rate integrating type. The following model represents 

most of the errors contained in a single gyroscope measurement of the angular rate: 

( )ωωω eN?S?b?? ++++=  (2.22) 

where I?  is the vector of measurements in (deg/hr), ?  is the vector of true angular 

velocities (the theoretically desired measurement) (deg/hr), b?  is the vector of gyroscope 

instrument bias (deg/hr), S is the gyro scale factor in matrix form, N is the matrix 

representing the non-orthogonality of the gyro triad and e(? ) is the vector of the gyro 

sensor noise (deg/hr). These errors are, in principle, minimized by estimation techniques. 

2.3.5.2 ACCELEROMETER MEASUREMENT ERRORS 
 

The accelerometer error sources are quite similar to those of gyroscopes except for the 

scale factor, which contains two components (linear and non-linear). The following 

specific force model represents the errors contained in a single accelerometer 

measurement: 

( )fff egNffSfSbf? ++++++= δ21  (2.23) 

where If is the vector of measurements in (m/s2), f is the vector of true specific forces 

(m/s2), bf is the vector of accelerometer instrument biases (m/s2), S1 is the linear scale 

factor in matrix form, S2 is the non-linear scale factor in matrix form, N is the matrix 

representing the non-orthogonality, dg is the anomalous gravity vector (deviation from 
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the theoretical gravity value) (m/s2) and e(f) is the vector representing the accelerometer 

sensor noise (m/s2). These errors are, in principle, minimized by estimation techniques. 

 

2.3.6 SENSOR ERRORS ELIMINATION/MINIMIZATION TECHNIQUES 
 

In order to minimize the effect from bias and scale factor, the sensor errors elimination 

methods are necessary. The estimation and differencing are introduced only for the bias 

elimination process in accelerometer measurements; however, the principle for the gyro 

is the same. The calibration method is more generally used in inertial sensor bias and 

scale factor elimination.  

2.3.6.1 ESTIMATION 
 

The mathematical model of accelerometer measurement, if it can be perfectly aligned 

with gravity, can be simplified as: 

ε++= ff bfI  (2.24) 

where f , bf, and ε  represent acceleration, bias and noise. 

 

By aligning the accelerometer with the local gravity, the accelerometer measurement can 

be expressed as 

ε++−= ff bgI  (2.25) 

Then the bias can be estimated as 

( ) ε++= gIb ff  (2.26) 
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Clearly, the estimated value for the bias depends on the accuracy of estimating local 

gravity, g. Also, the noise component is assumed to be small. Repeating tests at the same 

point and averaging the measurement can improve the accuracy of estimation. 

2.3.6.2 DIFFERENCING 
 

If there are two known local gravity test points, by aligning the same accelerometer with 

each local gravity, the accelerometer measurement can be expressed as 

111
ε++−= ff bgI  (2.27) 

222
ε++−= ff bgI  (2.28) 

Then the bias is eliminated by the measurement procedure: 

( ) ε∆+−=− 1221
ggII ff  (2.29) 

Here, the sensor axis is also assumed to align perfectly with the local gravity.  Thus the 

measurement can be expressed as Equation (2.25). 

2.3.6.3 CALIBRATION 
 

Calibration is defined as the process of comparing instrument outputs with known 

reference information and determining coefficients that force the output to agree with the 

reference information over a range of output values. The calibration parameters to be 

determined can change according to the specific technology in an inertial measurement 

unit (IMU). The calibration usually takes place in a lab environment in which the inertial 

system is mounted on a level table with each sensitive axis pointing alternatively up and 

down (six positions). Therefore, it is possible to extract estimates of the accelerometer 
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bias and scale factor by summing and differencing combinations of the inertial system 

measurements. 

where bf, S , and g represent bias, scale factor and gravity, respectively. The bias and scale 

factor of the Z-axis accelerometer can be calculated from these measurements as 

( ) 2/
downup fff IIb +=  (2.32) 

( ) ggIIS
updown ff 2/2−−=  (2.33) 

Similarly for the gyros, placing the sensor in static mode with the axis being calibrated 

pointing vertically upward and using the average of 10 to15 minutes’ measurements, 

( ) φωωωω sin1 eSbI
up

++=  (2.34) 

where bω, Sω , φ and ωe represent bias, scale factor, latitude of the gyro location and 

Earth’s rotation rate, respectively. Rotate the sensor 180° such that the same axis is 

pointing vertically downward and get the average measurement, 

( ) φωωωω sin1 eSbI
down

+−=  (2.35) 

The bias and scale factor of the gyro under calibration can be calculated from these 

measurements as, 

( ) 2/
downup

IIb ωωω +=  (2.36) 

( ) ( )φωφωωωω sin2/sin2 eedownup
IIS −−=  (2.37) 

( )gSbI ffup
+−= 1  (2.30) 

( )gSbI ff down
++= 1  (2.31) 
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As described above, the noise is ignored during the calibration process. However, the 

value of the bias and scale factor is still contaminated by residual noise after calibration. 

As a result, further techniques are needed to estimate noise in navigation algorithm. 

2.3.7  IMPACT OF SENSOR BIAS 
 

An uncompensated accelerometer bias error will introduce an error proportional to time, 

t, in the velocity and an error proportional to t2 in the position. 

∫∫∫ ===⇔== 2

2
1

tbtdtbvdtptbdtbv ffff  (2.38) 

From Equation (2.38), an accelerometer bias introduces first order errors in velocity and 

second order errors in the position. If there is a 100µg level accelerometer bias, the error 

in position after 10 seconds is 0.05m and that after 1000 seconds is 500m (assume 

g=10m/s2). 

 

An uncompensated gyro bias in the X or Y gyro error will introduce an angle (in roll or 

pitch) error proportional to time t, 

tbdtb ωωδθ == ∫  (2.39) 

This small angle will cause misalignment of the INS, and therefore the acceleration 

vector will be projected wrong. This, in turn, will introduce acceleration in one of the 

horizontal channels with a value ( ) tgbgga ωδθδθ ≈≈= sin  (Merhav 1996).  

322

6
1

2
1

2
1

gtbdtgtbvdtpgtbgtdtbv ωωωω ===⇔== ∫∫∫  (2.40) 
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Therefore, a gyro bias introduces second order errors in velocity and third order errors in 

the position. If there is a 0.2 deg/h level axis gyro drift, the error in position due to gyro 

drift is 0.0016m after 10 seconds and 1600m after 1000seconds (assume g=10m/s2). That 

means gyro drift is a significant error source. For more details about the effect of inertial 

sensor errors on the derived navigation quantities, it is advised to consult with El-Sheimy 

(2003). 

 

2.3.8 IMPACT OF SCALE FACTOR 
 

According to Equation (2.22), if only the scale factor error is considered, then 

ωωω ET SSI +=  (2.41) 

where ST is the true scale facto and SE is the scale factor error. Clearly, the scale factor 

error worked as a gyro bias, and the value is proportional to the angular rate. Based on 

the previous analysis, gyro drift is a significant error source and a gyro bias introduces 

second order errors in velocity and third order errors in the position. 

 

Similarly, the effect of accelerometer scale factor error, according to Equation (2.23), can 

be expressed, if only linear scale factor is considered, as 

11 fSfSI ETf +=  (2.42) 

Clearly, the scale factor error worked as an accelerometer bias, and the value is 

proportional to the acceleration. Based on the previous analysis, accelerometer bias 

introduces first order errors in velocity and second order errors in the position. 
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2.3.9 IMPACT OF INS MISALIGNMENT 
 

Initial alignment includes two steps: accelerometer leveling and gyro compassing. 

Accelerometer leveling is aligning the z-axis of the accelerometer triad Zb to the z-axis of 

the navigation frame by driving the output of the horizontal accelerometers to zero level 

surface. The assumption for a triad error-free accelerometers, with the accelerometers 

measurements fx and fy described the tilt in the x and y directions of the vertical 

accelerometer with respect to the vertical direction, results in: 

( )gfgf xxxx /sinsin 1−=→= θθ  (2.43) 

( )gfgf yyyy /sinsin 1−=→= θθ  (2.44) 

where θx and θy are the tilt in the x and y directions respectively (usually called roll and 

pitch). This clearly indicates that the roll and pitch accuracy are dependent on the 

accelerometer accuracy, which is mainly gove rned by the accelerometer bias. For small 

roll and pitch angles, the accuracy of roll and pitch angles will be given by: 

gb
xfx /=δθ  (2.45) 

gb
yfy /=δθ  (2.46) 

where 
xfb  is the x-axis accelerometer bias and 

yfb  is the y-axis accelerometer bias. By 

driving fx and fy to zero (mathematically in the case of a strapdown system or 

mechanically in the case of a gimballed system), the true vertical is established and 

therefore the xb and yb accelerometers are located in a level plane. 

 

Gyro compassing makes use of the fact that the gyro with its sensitive axis in the 

horizontal plane (i.e. after accelerometer levelling) at an arbitrary point on the surface of 
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the Earth, will sense a component of the Ea rth rotation. This component will be at a 

maximum when the sensitive axis points North and zero when it points East (El-Sheimy 

2003). 

 

After accelerometer levelling has been established, that is xb and yb accelerometers are 

located in a level plane, the xb and yb accelerometers will be arbitrarily rotated with an 

angle, the azimuth (A), with respect to the east and north directions. The X-axis gyro 

measurement will be given by: 

Ae
b
x sincos φωω −=  (2.47) 

The Y-axis gyro measurement will be given by: 

Ae
b
y coscosφωω −=  (2.48) 

Therefore, the azimuth can be obtained through: 

b
y

b
xA ωω /tan −=  (2.49) 

It should be noted that the latitude of the INS does not need to be known in order to 

accomplish gyro compassing. 

 

Consider the case of small azimuth angles, e.g. A approaching zero, therefore sin A =A 

and cos A =1. Then the X and Y gyro measurements will be given by: 

φωφωω cossincos ee
b
x AA −=−=  (2.50) 

φωφωω coscoscos ee
b
y A =−=  (Independent with A) (2.51) 

This means that the accuracy of the azimuth will mainly depend on the x-axis gyro 

accuracy, which is mainly governed by the gyro bias, 
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φω
δ ω

cose

b
x

b
A =  (2.52) 

In addition to the alignment errors produced by the gyro drift, errors in azimuth also arise 

as a result of gyro random noise (defined by the gyro angle random walk (ARW): the 

angular error build-up with time that is due to white noise in angular rate). Gyro noise 

gives rise to an RMS azimuth alignment error, which is inversely proportional to the 

square root of the alignment time (Ta) (El-Sheimy 2003), 

2

coscos 







=⇒=

A
ARW

T
T

ARW
A

e
a

ae
δφωφω

δ  (2.53) 

This means that, for a given gyro ARW, we can achieve different azimuth accuracies 

with different alignment time. 

2.3.10 SUMMARY 
 

Based on the above discussion, the gyro and accelerometer sensor errors of a strapdown 

inertial navigation system can be divided into two parts: a constant (or deterministic) part 

and a stochastic (or random) part. The deterministic part includes bias and scale factor, 

which can be determined by calibration and therefore can be removed from the raw 

measurements. The random part includes, for example, bias drift, axis misalignment, and 

random noise. These errors can be modeled in stochastic model and included the Kalman 

filter state vector. 

 

Table (2.1) summarizes the characteristics of different inertial sensors error sources as 

well as the procedures to remove or minimize them. 
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Table 2.1 Summary of Inertial Sensor Errors 

Characteristic Procedures to Remove/Minimize 
Errors 

Deterministic Random Calibration Compensation Stochastic 
Modeling 

Bias Offset v  v   

Bias Drift  v   v 

Scale Factor v  v   

Misalignment v v  v v 

Noise  v   v 
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CHAPTER THREE: REVIEW OF STOCHASTIC MODELING TECHNIQUES  
 

In this chapter, the algorithm of discrete Kalman filter is introduced. Then, the general 

stochastic modeling methods are reviewed and examples are provided. In addition, the 

useful techniques in stochastic modeling, such as fast Fourier transform and wavelet de-

nosing method, are introduced.  

3.1 INTRODUCTION 
 

The general non-linear problem was posed by Norbert Wiener during the early 1940s 

(Wiener 1961): given the yet to be analyzed system, which he defined as a black box, 

Wiener identified and characterized the system in terms of bodies of known structures, or 

what he called white boxes. 

 

Based on that concept, the solution to the linear problem uses various time and frequency 

domain techniques to find an operational equivalent of the black box, which may then be 

constructed by combining certain canonical forms of these white boxes. Although the 

model structure may be different from the true structure, the input-output properties are to 

be equivalent. 

 

The foundation of modeling goes back to approximately 1800 with Gauss’s method of 

least square estimation (Gelb 1974). Current methods of determining the steady-state 

input-output characteristics of a variety of devices are based on this approach. 
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By 1960, Kalman conceived a time domain approach to optimal recursive filter design 

(Kalman 1960 and Gelb 1974). By 1963, Signal Identification  (Gelb 1974) and 

frequency domain Time Series Analysis (TSA) (Van Trees 1968 and Gelb 1974) methods 

were developed. In 1965 Tukey and Cooly published their famous paper on the fast 

Fourier transform (FFT) (Gelb 1974). In 1966 David Allan proposed a simple variance 

analysis method for the study of oscillator stability (Allan 1966). Parameter Identification 

methods were known by 1968  (Gelb 1974 and Brogan 1974). During the decades that 

followed, time domain and frequency domain characterization of sensors gained 

importance.  

 

All these methods are impor tant for modeling inertial sensor noise and the next few 

sections will review some of these important methods including the autocorrelation 

method and power spectral density method. In addition, examples are provided to show 

how they will be used in modeling inertial sensors errors. 

3.2 THE DISCRETE KALMAN FILTER 
 

In 1960, Kalman published his famous paper describing a recursive solution to the 

discrete data linear filtering problem (Kalman 1960). Since that time, due in large part to 

advances in digital computing; the Kalman filter has been the subject of extensive 

research and application, particularly in the area of autonomous or assisted navigation. A 

very “friendly” introduction to the general idea of the Kalman filter can be found in 

(Maybeck 1979), while a more complete introductory discussion can be found in 

(Sorenson 1970), which also contains some interesting historical narrative. More 
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extensive references include Gelb (1974), Brown (1983), Lewis (1986), Grewal (1993), 

and Welch and Bishop (2004). 

 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) solution of the least-square method. The filter is very powerful 

in several aspects: it supports estimations of past, present, and even future states, and it 

can do that even when the precise nature of the modeled system is unknown (Welch and 

Bishop 2004). The following discussion is based mainly on Brown (1983) and Welch and 

Bishop (2004). 

3.2.1 THE PROCESS TO BE ESTIMATED 
 

The Kalman filter addresses the general problem of estimating the state x∈Rn of a 

discrete time controlled process that is governed by the linear stochastic difference 

equation (Welch and Bishop 2004). 

11 −− ++= kkkk wBuAxx  (3.1) 

with a measurement z∈Rm that is  

kkk vHxz +=  (3.2) 

The random variables wk and vk represent the process and measurement noise, 

respectively. They are assumed to be independent (of each other), white, and with normal 

probability distributions 

( ) ( )QNwp ,0~  (3.3) 

( ) ( )RNvp ,0~  (3.4) 
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In practice, the process noise covariance Q and measurement noise covariance R 

matrices might change with each time step or measurement, however, here we assume 

they are constant. 

 

The n×n matrix A in the difference equation (3.1) relates the state at the previous time 

step k-1 to the state at the current step k, in the absence of either a driving function or 

process noise. Note that in practice A might change with each time step, but here we 

assume it is constant. The n×1 matrix B relates the optional control input u∈Rl to the 

state x. The m×n matrix H in the measurement equation (3.2) relates the state to the 

measurement zk. In practice H might change with each time step or measurement, but 

here we assume it is constant. 

3.2.2 THE COMPUTATIONAL ORIGINS OF KALMAN FILTER 
 

Define −
kx̂ ∈Rn to be a priori state estimate at step k given knowledge of the process prior 

to step k, and kx̂ ∈Rn to be a posteriori state estimate at step k given measurement zk. 

Define the a priori and the a posteriori estimate errors as (Welch and Bishop 2004) 

−− −≡ kkk xxe ˆ  (3.5) 

kkk xxe ˆ−≡  (3.6) 

The a priori estimate error covariance is 

][ T
kkk E −−− = eeP  (3.7) 

and the a posteriori estimate error covariance is 
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][ T
kkk E eeP =  (3.8) 

In deriving the equations for the Kalman filter, begin with the goal of finding an equation 

that computes an a posteriori state kx̂  as a linear combination of an a priori estimate and 

a weighted difference between an actual measurement zk and a measurement prediction 

−
kxH ˆ  as shown below in Equation (3.9) (Welch and Bishop 2004).  

( )−− −+= kkkkk xHzKxx ˆˆˆ  (3.9) 

The difference (zk - −
kxH ˆ ) in Equation (3.9) is called the measurement innovation, or the 

residual. The residual reflects the discrepancy between the predicted measurement −
kxH ˆ  

and the actual measurement zk. A residual of zero means that the two are in complete 

agreement. 

 

The n×m matrix Kk in Equation (3.9) is chosen to be the gain or blending factor that 

minimizes the a posteriori error covariance, Equation (3.8). This minimization can be 

accomplished by first substituting Equation (3.9) into the above definition for ek, 

substituting that into Equation (3.8), performing the indicated expectations. Then by 

taking the derivative of the trace of the result with respect to Kk , setting that result equal 

to zero, and then the Kk can be determined. One form of the resulting Kk that minimizes 

Equation (3.8) is given by 

( )
RHHP

HP
RHHPHPK

+
=+= −

−
−−−

T
k

T
kT

k
T

kk

1
 (3.10) 

Looking at Equation (3.10), as the measurement error covariance R approaches zero, the 

gain Kk weights the residual more heavily. Specifically, 
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1

0
lim −

→
= HK kRk

 (3.11) 

On the other hand, as the a priori estimate error covariance −
kP  approaches zero, the gain 

Kk weights the residual less heavily. Specifically, 

0lim
0

=
→− k

Pk

K  (3.12) 

Another way of thinking about the weighting by Kk is that as the measurement error 

covariance R approaches zero, the actual measurement zk is trusted more and more, while 

the predicted measurement −
kxH ˆ  is trusted less and less. On the other hand, as the a priori 

estimate error covariance −
kP  approaches zero the actual measurement zk is trusted less 

and less, while the predicted measurement −
kxH ˆ  is trusted more and more (Welch and 

Bishop 2004). 

3.2.3 THE DISCRETE KALMAN FILTER ALGORITHM 
 

The Kalman filter estimates a process by using a form of feedback control: the filter 

estimates the process state at some time and then obtains feedback in the form of (noisy) 

measurements. As such, the equations for the Kalman filter fall into two groups: time 

update equations and measurement update equations. The time update equations are 

responsible for projecting forward (in time) the current state and error covariance 

estimates to obtain the a priori estimates for the next time step. The measurement update 

equations are responsible for the feedback, i.e. for incorporating a new measurement into 

the a priori estimate to obtain an improved a posteriori estimate (Welch and Bishop 

2004). 
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The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations. Indeed the final 

estimation algorithm resembles that of a predictor -corrector algorithm for solving 

numerical problems. 

 

The specific equations for the time and measurement updates are presented below in 

Table (3.1) and Table (3.2). 

Table 3.1 Discrete Kalman filter time update equations  

kkk BuxAx += −
−

1ˆˆ  (3.13) 

QAAPP += −
− T

kk 1  (3.14) 

 

Again notice how the time update equations in Table (3.1) project the state and 

covariance estimates forward from time step k-1 to step k. A and B are from Equation 

(3.1), while Q is from Equation (3.3). Initial conditions for the filter are discussed in the 

earlier references. 

Table 3.2 Discrete Kalman filter measurement update equations  

( ) 1−−− += RHHPHPK T
k

T
kk  (3.15) 

( )−− −+= kkkkk xHzKxx ˆˆˆ  (3.16) 

( ) −−= kkk PHKIP  (3.17) 

 

The first task during the measurement update is to compute the Kalman gain, Kk. Notice 

that the equation given here as Equation (3.15) is the same as Equation (3.10). The next 
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step is to actually measure the process to obtain zk, and then to generate an a posteriori 

state estimated by incorporating the measurement as in Equation (3.16). Again Equation 

(3.16) is simply Equation (3.9) repeated here for completeness. The final step is to obtain 

an a posteriori error covariance estimate via Equation (3.17). 

 

After each time and measurement update pair, the process is repeated with the previous a 

posteriori estimates used to project or predict the new a priori estimates. This recursive 

nature is one of the very appealing features of the Kalman filter—it makes practical 

implementations much more feasible than, for example, an implementation of a Wiener 

filter (Brown 1983), which is designed to operate on all of the data directly for each 

estimate. The Kalman filter instead recursively conditions the current estimate on all of 

the past measurements. Figure (3.1) below offers a complete picture of the operation of 

the filter  (Welch and Bishop 2004). 

 

Figure 3.1 A complete picture of the operation of the Kalman filter (after Welch and 
Bishop 2004) 
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3.2.4 FILTER PARAMETERS AND TUNING 
 

In the actual implementation of the filter, the measurement noise covariance R is usually 

measured prior to operation of the filter. Measuring the measurement error covariance R 

is generally practical (possible) because we need to be able to measure the process 

regardless (while operating the filter) thus we are generally able to take some off-time 

sample measurements in order to determine the variance of the measurement noise. 

 

The determination of the process noise covariance Q is generally more difficult as we 

typically do not have the ability to directly observe the process we are estimating. 

Sometimes a relative simple (poor) process model can produce acceptable results if one 

“injects” enough uncertainty into the process via the selection of Q. Certainly in this case 

one would hope that the process measurements are reliable. 

 

In either case, whether or not we have a rational basis for choosing the parameters, often 

times superior filter performance (statistically speaking) can be obtained by tuning the 

filter parameters Q and R. The tuning is usually performed off-line, frequently with the 

help of another (distinct) Kalman filter in a process generally referred to as system 

identification (Welch and Bishop 2004). 

 

In closing we note that under conditions where Q and R are constant, both the estimation 

error covariance Pk and Kalman filter gain Kk will stabilize quickly and then remain 
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constant (see the filter update equations in Figure (3.1)). If this is the case, these 

parameters can be pre-computed by either running the filter off-line or, for example, by 

determining the steady-state value of Pk as described in Grewal (1993). 

3.3 DIGITAL SIGNAL PROCESSING TOOLS 
 

The subject of digital signal processing has received considerable attention in the past 

few decades, and this has occured concurrently with the advancement of computer 

technology (Brown 1983). In spectral analysis, Fourier transform is a powerful tool to 

identify or distinguish the different frequency sinusoids and their respective amplitudes 

(Brigham 1988). The fast Fourier transform is a discrete Fourier transform algorithm that 

reduces the number of computations needed. Wavelet analysis, in contrast to Fourier 

analysis, uses approximating functions that are localized in both time and frequency 

space. This unique characteristic makes wavelets particularly useful, for example, in 

approximating data with sharp discontinuities (Mallat 1989). 

3.3.1 FAST FOURIER TRANSFORMS 
 

In 1965 Cooly and Turkey described a computationally efficient algorithm for obtaining 

Fourier coefficients (Gelb 1974). The fast Fourier transform (FFT) is a method for 

computing the discrete Fourier transform (DFT) of a time series of discrete data samples. 

Such time series result when digital analysis techniques are used for analyzing a 

continuous waveform. It takes advantage of the fact that many computations are repeated 

in the DFT due to the periodic nature of the discrete Fourier kernel: e-j2πkn/N. The form of 

the DFT is (Embree and Danieli 1999) 
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( ) ( )∑
−

=

−=
1

0

/2
N

n

NknjenxkX π  (3.18) 

By letting Wnk= e-j2πkn/N, Equation (3.18) is rewritten as 

( ) ( )∑
−

=

=
1

0

N

n

nkWnxkX  (3.19) 

Now, W(n+qN)(k+rN) = Wnk for all q, r, which are integers due to the periodicity of the 

Fourier kernel.  

 

Break the DFT into two parts (Embree and Danieli 1999): 

( ) ( ) ( )∑∑
−

=

+
−

=

++=
12/

0

)12(
12/

0

2 122
N

n

kn
N

N

n

nk
N WnxWnxkX  (3.20) 

Where the subscript N on the Fourier kernel represents the size of the sequence. If we 

represent the even elements of the sequence x(n) by xev and the odd elements by xod, then 

the equation can be rewritten 

( ) ∑∑
−

=

−

=

+=
12/

0
2/2/

12/

0
2/

N

n

nk
Nod

k
N

N

n

nk
Nev WxWWxkX  (3.21) 

 

We now have two expressions in the form of DFTs so we can write 

( ) ( ) ( )nXWnXkX od
k

Nev 2/+=  (3.22) 

Notice that only DFTs of N/2 points need to be calculated to find the value of X(k). Since 

the index k must go to N-1, however, the periodic property of the even and odd DFTs is 

used. In other words: 

( ) 1
22

−≤≤





 −= Nk

N
for

N
kXkX evev  (3.23) 
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For the original DFT, the number of multiplications required is of the order N2. This can 

easily get out of hand, especially in “on-line” applications. Fortunately, in an FFT 

algorithm, the number of required multiplications is of the order of Nlog2N. The 

computational saving is spectacular for large N. For example let N be 210=1024, which is 

a modest number of time samples for many applications (Brown 1983). Then N2 would 

be about 106, whereas Nlog2 N is only about 104. This represents a saving of about a factor 

of 100 and impacts directly on the time required for the transformation. Because of its 

efficiency, the FFT is used almost universally in both on-line and off-line spectral 

analysis applications (Brown 1983). 

 

The FFT has applicability in the generation of statistical error models from series of test 

data. The algorithm can be modified to compute the autocorrelation function of a one-

dimensional real sequence or the cross-correlation function and convolution of two one-

dimensional real sequences. It can also be used to estimate the power spectral density of a 

one-dimensional real continuous waveform from a sequence of evenly spaced samples. 

The considerable efficiency of the FFT, relative to conventional analysis techniques, and 

the availability of the outputs from which statistical error models are readily obtained, 

suggest that the FFT will be of considerable utility in practical applications of linear 

system techniques.  

 

Figures 3.2 and 3.3 show examples of FFT results for two hours static x-gyro data of the 

CIMU and the MotionPak II strapdown inertial systems. The first system is a navigation 

grade Ring Laser Gyro systems while the 2nd system is a tactical grade MEMS-based 



 52 

system. The spectrum information can be obtained from the plots. The power at the zero 

frequency is much higher than the rest, so the y-axis value is limited to 4 to make the 

power spectrum clear. For static data, the high frequency info can be considered as noise. 

For CIMU gyro, the major noise gathers close to the range around 100Hz, which means 

that the noise part can easily be removed with a low pass filter. On the other hand, the 

noise for MotionPak II gyro distributes over almost all of the whole frequency ranges, 

which means that it is difficult to remove all the noise to obtain the true signal. 

 

Figure 3.2 Two Hours CIMU X-axis Gyro FFT Result 

 

Figure 3.3 Two Hours MotionPak II X-axis Gyro FFT Result 
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3.3.2 WAVELET ANALYSIS 
 

Wavelets, as a mathematical tool, have received extensive attention in the engineering 

profession during the last two decades. Wavelet analysis is a powerful method for 

decomposing and representing signals that has proven useful in a broad range of fields 

(Mallat 1989). Wavelet transforms are somewhat similar to Fourier transforms, in that 

they expose a function’s frequency content. Fourier analysis begins with a waveform; a 

sequence of values indexed by time, and transforms this waveform into a sequence of 

coefficients, which are indexed by frequency. In a similar manner, wavelet techniques 

can also be used to analyze a time-indexed function and represent it as a group of 

frequency components. Wavelet techniques are based on analyzing a signal through 

signal windowing but with variable window size. This gives an advantage to wavelets 

over other signal processing techniques as it is capable of performing local analysis, i.e. 

analyzing a localized portion of a large signal (Nassar 2003). This is possible since 

wavelets allow the use of narrow windows (short time intervals) if high frequency 

information is needed and wide windows (long time intervals) if low frequency 

information is required. 

 

The continuous wavelet transform (CWT), Xa,b, of a continuous-time domain signal x(t) is 

defined as the inner product of x(t) with a family of functions ψa,b (t) as (Nassar 2003): 

( ) ( )ttxX baba ,, ,ψ=  (3.24) 
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The family ψa,b (t) is defined by continuous scaling (dilation or compression) parameters, 

a, and translation parameters, b , of a single analyzing function ψ (t), which can be written 

as follows 

0
1

, >





 −

= a
a

bt

a
ba ψψ  (3.25) 

Since we are dealing with discrete time signals, the Discrete Wavelet Transform (DWT) 

is implemented instead of the CWT. In this case, the basis functions are obtained by 

discretizing (sampling) the continuous parameters a and b. In the DWT, the sampling of a 

and b  is based on powers of some constant number α, and the coefficient computations 

will be performed at specific scales and locations. Hence, the sampling of a and b in the 

DWT takes the form (Nassar 2003): 

na α=  (3.26a) 

nmb α=  (3.26b) 

where n  and m are integer numbers representing the discrete dilation and translation 

indices. Moreover, from the practical aspects of the wavelet theory analysis, it has been 

found that the most efficient way of determining a and b is the “dyadic” one, i.e. to take 

the value of α to be 2  (Nassar 2003). Then the basis function is given by 

( ) 





 −= m

t
t

nnnm 22

1
, ψψ  (3.27) 

For many signals, the low frequency component of the signal is the one of interest since it 

gives the signal its identity. On the other hand, the high frequency component usually 

constitutes the signal noise. In wavelet terminology, the low frequency component of a 

signal is called the “approximation part” while the high frequency component is called 
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the “detail part”. Therefore, to obtain finer resolution frequency components of a specific 

signal, the signal is broken down into many lower-resolution components by repeating 

the DWT decomposition procedure with successive decompositions of the obtained 

approximation parts. This procedure is called wavelet multi-resolution analysis. 

 

In theory, the decomposition process can be continued indefinitely, but in reality it can be 

performed only until the individual details consist of a single sample. Practically, an 

appropriate Level of Decomposition (LOD) is chosen based on the nature of the signal or 

on a specific criterion (Misiti 2000). 

 

For static inertial data, the sensor output contains the following signals: the Earth gravity 

components, the Earth rotation rate components and the sensors long-term errors  (Nassar 

2003). These signals have a very low frequency, and hence, they can be separated easily 

from the high frequency noise components by the wavelet multi-resolution analysis. To 

select an appropriate LOD in this case, several decomposition levels are applied and the 

raw data was decomposed into low and high frequency components. At each level, the 

mean of the high frequency component was computed as shown in Figure (3.4) and 

Figure (3.5) for CIMU and MotionPak II gyro data, respectively. Since noise is assumed 

to be zero mean, the wavelet decomposition level at which the mean becomes non-zero 

should be used for decomposition, since further decomposition would mean that actual 

trends in the data are being interpreted as noise (Lachapelle, et al. 2003). Therefore, the 

LOD for CIMU gyros is 15 for X and Z-axis and 18 for Y-axis while that for MotionPak 

II is 14.  
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Figure 3.4 Mean of High Frequency Component Versus Wavelet Level for CIMU 
Gyros 

 

Figure 3.5 Mean of High Frequency Component Versus Wavelet Level for 
MotionPak II Gyros  
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Figure (3.6) shows the original data of CIMU Gyro X before (Figure 3.6a) and that after 

15th level decomposition (Figure 3.6b). 

 

Figure 3.6a CIMU X-Axis Gyro Measurements 

 

 

Figure 3.6b CIMU X-Axis Gyro Measurements After Decomposition 

 

3.4 STOCHASTIC MODELING 
 

Some of the important applications of modeling occur in simulation studies, performance 

evaluation, and Kalman filter design (Britting 1971). The basic difference between 

dynamic and stochastic modeling is as follows: in dynamic modeling, given one or more 
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inputs (input vector) and one or more outputs (output vector), it is desired to determine 

the input/output relationships from both time series. Applications include those where 

random noise is summing at the output (IEEE Std 952 1997). 

 

In stochastic modeling, on the other hand, there may be no direct access to an input. A 

model is hypothesized which, as though excited by white noise, has the same output 

characteristics as the unit under test. Such models are not generally unique, so certain 

canonical forms are chosen (IEEE Std 952 1997). The next section will describe the 

general application of several methods in investigation of stochastic models. 

3.4.1 AUTOCORRELATION FUNCTION 

3.4.1.1 DEFINITION AND PROPERTY 
 

The correlation function of a stochastic process with itself is called its autocorrelation 

function and is defined as (Brown 1983) 

( ) ( ) ( )[ ]2121 , tXtXEttRx =  (3.28) 

where t1 and t2 are arbitrary sampling times. The units of a correlation function are equal 

to the product of the units of the signals of interest. The autocorrelation function of a 

stochastic process is essentially a measure of the dependence of the value of the process 

at one time with its value at other times. 

 

A stochastic process is called stationary if its probability density functions are invariant 

with time (Brown 1983). The autocorrelation function of such a process depends only on 
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the time difference τ = t1-t2. Thus Rx reduces to a function of just the time difference 

variable τ, that is, 

( ) ( ) ( )[ ]ττ += tXtXERx  (3.29) 

where t1 is now denoted as t and t2 is (t+τ). Stationary assures that the expectation is not 

dependent on t and the autocorrelation function is even (Brown 1983). 

3.4.1.2 APPLICATION 
 

A stationary Gaussian process X(t) that has an exponential autocorrelation is called a 

Gauss-Markov process. The autocorrelation function for this process is then of the form 

(Brown 1983) 

( ) τβστ −= eRx
2  (3.30) 

The function is sketched in Figure (3.7). The noise variance value and time constant for 

the process are given by the σ2 and 1/β parameters, respectively. The correlation at time 

1/β = τ is 

( ) 2212 3678.0/ σσστ === − eeRx  (3.31) 

 

Figure 3.7 Autocorrelation Function 
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The exponential autocorrelation function indicates that sample values of the process 

gradually become less and less correlated as the time separation between samples 

increases. The autocorrelation function approaches zero as τ→∞, and thus the mean value 

of the process must be zero. 

 

The Gauss -Markov process is an important process in applied work because it seems to 

fit a large number of physical processes with reasonable accuracy, and it has a relatively 

simple mathematical description. As in the case of all stationary Gaussian processes, 

specification of the process autocorrelation function completely defines the process. This 

means that any desired higher -order probability density function for the process may be 

written out explicitly, given the autocorrelation function  (Brown 1983). 

 

Since this is a matter of statistical interference, there will always remain some statistical 

uncertainty in the result. For a Gaussian process, the va riance of an experimentally 

determined autocorrelation function satisfies the inequality (Brown 1983) 

( )[ ] ( )∫
∞

≤
0

24
τττ dR

T
VVar xx  (3.32) 

where it is assumed that a single sample realization of the process is being analyzed, and 

§ T is the time length of the experimental record 

§ Rx(τ) is the autocorrelation function of the Gaussian process under consideration 

§ Vx(τ) is the autocorrelation function determined from a finite record of 

experimental data. 
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The above equation can help to estimate the needed amount of data to reach a certain 

desired accuracy. Thus, for the Gaussian-Makov process (Brown 1983),   

( )[ ] ( )
T

de
T

VVar x β
σ

τστ τβ
4

0

22 24
=≤ ∫

∞
−  (3.33) 

The accuracy is then defined as the ratio of the standard deviation of Vx (τ) to the 

variance of the process, Rx(τ), as: 

( )[ ]
T

VVar
accuracy x

βσ

τ 2
2 ≤=  (3.34) 

Here is the autocorrelation function plot of X-axis gyro of CIMU two hours static data 

after 15 levels decomposition as shown in Chapter 3.3.2. In order to show clearly, only 

the center part of the plot is presented. 

 

Figure 3.8 CIMU Gyro X Autocorrelation Function 
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Similar results can be obtained from other axes gyros. The estimated parameters are listed 

in Table (3.3). The same performance is applied on the data of MotionPak II gyros and 

the estimated parameters are listed in Table (3.3) as well.  

Table 3.3 Gauss-Markov Autocorrelation Parameters  

 σ2 (deg2/h2) 1/β (sec) Accuracy (%) 

CIMU Gyro X 1.22×10-3 58 12.69 

CIMU Gyro Y 7.05×10-5 72 14.14 

CIMU Gyro Z 5.70×10-3 33 9.57 

MP2 Gyro X 545.05 355 31.40 

MP2 Gyro Y 235.11 512 37.71 

MP2 Gyro Z 749.58 690 43.78 
 

The accuracy values are obtained by using Equation (3.34) with the obtained parameters 

(T=2 hours). These numbers indicate that it is very difficult to obtain accurate 

autocorrelation parameters from experimental data, especially for high-grade IMU 

sensors. 

3.4.2 POWER SPECTRAL DENSITY 
 

The frequency domain approach of using the power spectral density to estimate transfer 

functions is straightforward but difficult for non-system analysts to understand. The 

Power Spectral Density (PSD) is the most commonly used representation of the spectral 

decomposition of a time series. It is a powerful tool for analyzing or characterizing data, 
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and stochastic modeling. The PSD, or spectrum analysis, is also better suited to analyzing 

periodic or non-periodic signals than other methods (IEEE Std 952 1997). 

 

The basic relationship for stationary processes between the two sided PSD, S(ω), and the 

covariance, K(τ), which are Fourier transform pairs, is expressed by (IEEE Std 952 

1997): 

( ) ( )∫
∞

∞−

−= ττω ωτ dKeS j  (3.35) 

It can be shown that for non-stationary processes, the average covariance K(τ) and 

average power spectrum S(ω) are related in the same way (Papoulis 1965).  

 

It is most common for data to be taken at discrete times using a digital computer. 

Consider N samples of the sensor output with sample time ∆t. Thus, the length of the time 

ensembles is T=N⋅∆t. In the following computations, the one -sided PSD estimate is given 

by (IEEE Std1293-1998): 

( ) ( ) 21 1
fX

T
fS =  (3.36) 

where X(f) is the Fourier transform of the measured time series x(t) and the superscript 1 

in ( )fS1  to differentiate the one sided PSD. The discrete Fourier transform approximates 

the continuous Fourier transform at discrete frequencies fj by (IEEE Std1293-1998) 

( ) tXfX jj ∆≅  (3.37) 

with  
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Hz
T
j

tN
j

f j =
∆⋅

=  (3.38) 

Thus, the estimate from a finite span of sampled data of the one-sided PSD at frequency fj 

is (IEEE Std1293-1998): 

( ) 



=

∆
=

2
,,2,1,

22
1 N

jX
T
t

fS j K  (3.39) 

3.4.2.1 USEFUL PROPERTIES 
 

For linear systems, the output PSD is the product of the input PSD and the magnitude 

squared of the system transfer function. If state space methods are used, the PSD matrices 

of the input and output are related to the system transfer function matrix by (IEEE Std 

952 1997) : 

( ) ( ) ( ) ( )ωωωω jHSjHS T
inputoutput

*=  (3.40) 

where H                                          is the system transfer function matrix 

           H*T                                        is the complex conjugate transpose of H 

           Soutput                                     is the output PSD 

           Sinput                                      is the input PSD 

Thus, for the special case of white noise input (Sinput  is equal to some constant value, i.e. 

Ni
2), the output PSD directly gives the system transfer function. The transfer function 

form of the stochastic model may be estimated directly from the PSD of the output data 

(on the assumption of an equivalent white noise driving function). 
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The idea of applying white noise and constructing the transfer function in this manner is 

important to stochastic modeling. In stochastic modeling, there may be no direct access to 

an input. A model is hypothesized which, as though excited by white noise, has the same 

output characteristics as the unit under test. The reason for that is, if the input is white 

noise, you can estimate the transfer function of a linear, minimum phase, time invariant 

system simply from the power spectrum of the output. Instead of getting the cross power 

spectral density (PSD) between input and output, the transfer function can be estimated 

from the power spectrum of the output alone. The phase information is uniquely 

determined from the magnitude response. Thus, for a linear time-invariant system, by 

having knowledge of the output only, and assuming white noise input, it is possible to 

characterize the unknown model. Such models are not generally unique, so certain 

canonical forms are usually used  (IEEE Std952-1997). 

 

For a process to have finite power, its PSD must eventually terminate in a negative slope 

at high frequencies. This property must be produced to satisfy the Nyquist sampling 

criterion for sampled data. Likewise, a PSD cannot continue to rise (without limit) toward 

zero frequency (over a finite time interval). In practice, the finite length of the time series 

limits this (IEEE Std952-1997). 

3.4.2.2 APPLICATION 
 

Normally, the PSD of a random process is expected to exhibit even order log-log slopes, 

indicating even powers of frequencies. Thus, the different types of noise imposed on the 

measurement are represented in the PSD by straight lines with different slopes. The 
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expressions of noise are shown together with Allan variance expressions in Chapter Four. 

The typical characteristic slopes are shown in Figure (3.9), where the actual units and 

frequency range are hypothetical. With real data, gradual transitions would exist between 

the different PSD slopes (IEEE Std1293-1998), rather than the sharp transitions in Figure 

(3.9); and the slopes might be different than –2, -1, 0, and +2 values in Figure (3.9). A 

certain amount of noise or hash would exist in the plot curve due to the uncertainty of the 

measured PSD. 

 

Figure 3.9 Hypothetical Gyro in Single-sided PSD Form (after IEEE Std952-1997) 

3.4.2.3 TEST RESULTS 
 

The same data sets used in section 3.3.2 are used here for power spectral density analysis. 

Applying the PSD method described previously, the PSD result on log-log plot is shown 

in Figure (3.10) for CIMU X-axis gyro data. Because of the bunching of the high 

frequency data points in the log-log plot, it is difficult to identify noise terms and obtain 

parameters in such conditions. Hence, the frequency averaging technique (IEEE Std 
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1293-1998) is used to reduce the number of points in the PSD result and make the noise 

term identification easier.  

 

Figure 3.10 CIMU X-Gyro PSD Results 

 

The frequency averaging technique is used to calculate a single PSD for, as an example, 

N = 32 768 measurements, and then average the adjacent frequency values according to 

the scheme in Table (3.4). That is to keep the first 32 frequency data points. And then, at 

each average level (N), obtain 16 averaged frequency data points from 2N frequency data 

points. As a result, the low frequency part of the PSD plot has high uncertainty, but still 

conveys some information. The high frequency part of the PSD plot has the uncertainty 

obtained by ensemble averaging and is conveniently plotted with the low frequency data 
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because the frequency averaging prevents bunching of the high frequency data points in 

the log-log plot. 

 

The PSD results with the frequency averaging technique are shown in Figure (3.11) for 

CIMU X-axis gyro data and Figure (3.12) for MotionPak II X-axis gyro data. 

Table 3.4 Logarithmic Frequency Averaging of 32768 Points 

(after IEEE Std1293-1998) 

Frequency Data 
Points Index 

Total Data 
Points Covered  

Number of Points 
per Averaging 

Number of 
Points to Plot 

Average 
Level (N) 

1-32 32 1 32  

33-64 32 2 16 1 

65-128 64 4 16 2 

129-256 128 8 16 3 

257-512 256 16 16 4 

513-1024 512 32 16 5 

1025-2048 1024 64 16 6 

2049-4096 2048 128 16 7 

4097-8192 4096 256 16 8 

8193-16384 8192 512 16 9 

16385-32768 16384 1024 16 10 
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Figure 3.11 CIMU X-Gyro PSD Results with Frequency Averaging Technique  

 

 

Figure 3.12 MotionPak II X-Gyro PSD Results with Frequency Averaging 
Technique  
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From Figure (3.11), the slopes of the curve include –2, 0, and +2, which indicate that the 

CIMU X-axis gyro data contains rate random walk, angle random walk, and quantization 

noise, respectively. The acquisition of parameters for noise terms from PSD result plot is 

complex. So here only the calculation of angle random walk parameter Q is discussed. 

According to IEEE Std 952 1997, 


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 (3.41) 

The estimated results are listed in Table (3.5). 

Table 3.5 PSD Estimation Results for the CIMU 
and the MotionPak II X-axis Gyro 

 Sample Rate 
(Hz) 

Random Walk 
(deg/h1/2) 

CIMU X Gyro  200 0.0015 

MP2 X Gyro  100 0.5 
 

From Figure (3.12), the slopes of the curve include –1 and 0, which indicate MotionPak 

II X-axis gyro data contains bias instability and angle random walk, respectively. 

According to Equation (3.41), the estimated angle random walk coefficient, Q, is listed in 

Table (3.5). These results shown in Table (3.5) will compare with Allan variance results 

later in Chapter Five. 

3.4.3 VARIANCE TECHNIQUES 
 

Another class of time domain methods, specifically several variance techniques, have 

been devised for stochastic modeling. They are basically very similar, and primarily 

differ in that various signal processing, by way of weighting functions, window 
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functions, etc., is incorporated into the analysis algorithms in order to achieve a particular 

desired result of improving the model characterizations (IEEE Std952-1997). The 

simplest is the Allan variance, which will be discussed in Chapter Four.  

3.4.4 ADAPTIVE (SELF-LEARNING) KALMAN FILTER 
 

The adaptive Kalman filter is another means of system identification (Gelb 1974). The 

noise covariance and dynamics may be estimated if the form of the model is known. This 

may be combined with a model adjustment or learning model approach for more 

flexibility.  

 

In the conventional Kalman filter, all the process parameters are assumed to be known. 

They may vary with time but, if so, the nature of the variation is assumed to be known 

(Chapter 3.2). In physical problems this is often a quick assumption. There may be large 

uncertainty in some parameters because of inadequate prior test data about the process. 

Or, some parameters might be expected to change slowly with time, but the exact nature 

of the change is not predictable. In such cases, it is highly desirable to design the filter to 

be self-learning, so that it can self -adapt itself to the situation at hand, whatever that 

might be (Brown 1983).  

 

Now this is the solution first presented by D.T. Magill (Sinha and Kuszta 1983) to put the 

whole adaptive filter system in perspective. Qualitatively, the adaptation proceeds as 

follows. Prior to receiving any measurements, the system must set the weight factors 

equal to the a priori probabilities. It has no better information about the unknown 
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parameter, e.g. α , as of this point in time. Then, as measurements are accumulated, each 

elemental Kalman filter sums its weighted squared residuals and uses this sum as the 

negative exponent in its Gaussian density computation. As time proceeds, the correct 

filter’s residuals work out to be smaller (on the average) than the others, and thus its 

probability density is the largest and it is given the most weight in the blending of the 

elemental estimates. The measurement residuals are summed, with the effect being 

cumulative; and, in the limit, a weight factor of unity for the correct filter (and zero for 

others) is approached. In effect, the system “learns” which is the correct αi and then 

assigns all of the weight to this filter’s estimate (Brown 1983). 

 

The adaptive scheme due to Magill is important because it is optimal (within the 

Gaussian assumption), and it serves as a point of departure for other less rigorous 

approaches (Brown 1983). After all, the system only has to implement the various 

options and choose the one with the smallest average residuals. Simpler intuitive 

algorithms might not converge quite as rapidly as the optimal scheme, but they might 

well be considerably easier to implement. 

3.4.5 SUMMARY 
 

This chapter summarizes different techniques for the stochastic modeling of inertial 

sensors errors. The selection of method is depends on the application requirements. From 

the discussion of different stochastic modeling methods, the benefits and limitations of 

each method are summarized in Table (3.6). 
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Table 3.6 Comparing with Different Stochastic Modeling Methods  

 Autocorrelation 
Function  

Power Spectral 
Density 

Variance 
Technique 

Adaptive Kalman 
Filter 

Benefits 

§ Suitable for 
periodic and non-
periodic signals 
analysis 

§ Fourier transform 
pairs with power 
spectral density 

§ Suitable for 
periodic and non-
periodic signals 
analysis 

§ Fourier transform 
pairs with 
autocorrelation 

§ Detailed 
understanding of 
a data set in time 
domain  

§ Easy to interpret 
and extract 
useful 
parameters 
pertaining to the 
different errors 

§ Ability to track 
high-frequency 
information in 
the signal 

§ Self-adapted to 
the situation at 
hand 

Limitations 

§ De-noise method 
should be applied 
first. 

§ Long-term signal 
is needed for 
acceptable 
solution 

§ Very model 
sensitive 

§ Frequency 
averaging 
technique is 
needed 

§ Parameters 
abstraction is 
complex 

§ Results depend 
upon the 
understanding of 
the physics of the 
process 

§ Long-term data 
is needed for 
improving 
estimation 
accuracy  

§ Add-on 
computational 
complexity 

§ Possible 
existence of 
blunders limits 
the applicability 
of the algorithm 
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CHAPTER FOUR: ALLAN VARIANCE DEFINITION AND PROPERTIES 
 

This chapter introduces the definition and properties of Allan variance as a tool for 

modeling inertial sensor errors.  

4.1 LITERATURE REVIEW 
 

In 1966, David Allan proposed a simple variance analysis method for the study of 

oscillator stability (Allan 1966), that is the Allan variance method. After its introduction, 

this method was widely adopted by the time and frequency standards community for the 

characterization of phase and frequency instability of precision oscillators. Because of the 

close analogies to inertial sensors, the method has been adapted to random drift 

characterization of a variety of devices  (IEEE Std952-1997). The 1980s witnessed the 

first paper related Allan variance with inertial sensors (Kochakian 1980). In 1983, M. 

Tehrani gave out the detailed deviation about the Allan variance noise terms expression 

from their rate noise power spectral density for the ring laser gyro (Tehrani 1983). This 

method has since been applied to gyro drift analysis. In 1998, IEEE (Institute of 

Electrical and Electronics Engineers, Inc.) standard introduced Allan variance method as 

a noise identification method for linear, single, non-gyroscopic accelerometer analysis 

(IEEE Std1293-1998). In 2003, the Allan variance method was first applied in Micro 

Electrical Mechanical Sensor (MEMS) noise identification (Hou and El-Sheimy 2003). 

 

From the discussion in previous chapter, although computations of the autocorrelation 

function or the power spectral density distribution do contain a complete description of 
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the error sources, these results are difficult to interpret or extract. Allan variance is a time 

domain analysis technique originally developed to study the frequency stability of 

oscillators. It can be used to determine the character of the underlying random processes 

that give rise to the data noise. As such, it helps identify the source of a given noise term 

in the data. The source may be inherent in the instrument, but in the absence of a 

plausible mechanism within the instrument, its origin should be sought in the test set up. 

The Allan variance method adopted in this thesis may be used as a stand-alone method of 

data analysis or to complement any of the frequency domain analysis techniques 

mentioned in Chapter Three. It should be mentioned that the technique could be applied 

to the noise study of any instrument. Its value, however, depends upon the degree of 

understanding of the physics of the instrument. In the Allan variance method of data 

analysis, the uncertainty in the data is assumed to be generated by noise sources of 

specific character. The magnitude of each noise source covariance is then estimated from 

the data. The definition of the Allan variance and a discussion of its use in frequency and 

time metrology are presented in Allan (1966) and IEEE (Std1139-1988).  The key 

attribute of the method is that it allows for a finer, easier characterization and 

identification of error sources and their contribution to the overall noise statistics 

(Lawrence and DarryII 1997). 

 

In this thesis, Allan’s definition and results are related to seven noise terms and are 

expressed in a notation appropriate for inertial sensor data reduction. The five basic noise 

terms are angle random walk, rate random walk, bias instability, quantization noise, and 
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drift rate ramp. In addition, the sinusoidal noise and exponentially correlated (Markov) 

noise can also be identified through the Allan variance method. 

4.2 METHODOLOGY 
 

 

Assume there are N consecutive data points, each having a sample time of t0. Forming a 

group of n consecutive data points (with n<N/2), each member of the group is a cluster, 

as shown in Figure (4.1).  

 

Figure 4.1 Schematic of the Data Structure used in the Derivation of Allan Variance 

 

Associated with each cluster is a time, T, which is equal to nt0. If the instantaneous output 

rate of inertial sensor is Ω(t), the cluster average is defined as:  

( ) ∫
+

Ω=Ω
Tt

tk
k

K

dtt
T

T )(
1

 (4.1) 

where ( )tkΩ  represents the cluster average of the output rate for a cluster which starts 

from the k th data point and contains n data points. The definition of the subsequent cluster 

average is:  
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 (4.2) 

where tk+1 = tk+T.  
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Performing the average operation for each two adjoining clusters and form the 

differences 

( ) ( )TT knextkk Ω−Ω=+ ,1ξ  (4.3) 

For each cluster time T, the ensemble of ξ defined by Equation (4.3) forms a set of 

random variables. The quantity of interest is the variance of ξs over all the clusters of the 

same size that can be formed from entire data. 

 

Thus, the Allan variance of length T is defined as (IEEE Std952-1997):  

( ) ( ) ( )[ ]22

2
1 TTT knext Ω−Ω=σ  (4.4) 

The brackets in Equation (4.4) denote the averaging operation over the ensemble of 

clusters. Thus, above equation can be rewritten as: 
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σ  (4.5) 

Clearly, for any finite number of data points (N), a finite number of clusters of a fixed 

length (T) can be formed. Hence, Equation (4.5) represents an estimation of the quantity 

σ2(T) whose quality of estimate depends on the number of independent clusters of a fixed 

length that can be formed.  

 

The Allan variance can also be defined in terms of the output angle or velocity as (IEEE 

Std952-1997)  
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( ) ( )∫ Ω=
t

dtttθ  (4.6) 

The lower integration limit is not specified, as only angle or velocity differences are 

employed in the definitions. Angle or velocity measurements are made at discrete times 

given by t = kt0, k = 1,2,3,…, N. Accordingly, the notation is simplified by writing θk = 

θ(kt0). Equations (4.1) and (4.2) can, then, be redefined by 

( )
T

T knk
k

θθ −
=Ω +   (4.7) 

and 

( )
T

T nknk
next

++ −
=Ω

θθ 2  (4.8) 

According to Equation (4.5), Allan variance is estimated as follows: 

( )
( )

( )∑
−

=
++ +−

−
=

nN

k
knknknNT

T
2

1

2
22

2 2
22

1 θθθσ  (4.9) 

The Allan variance is a measure of the stability of sensor output. As such it must be 

related to the statistical properties of the intrinsic random processes, which affect the 

sensor performance.  

 

There is a unique relationship that exists between σ2(T) and the power spectral density of 

the intrinsic random processes. This relationship is (IEEE Std952-1997) 

( ) ( ) ( )
( )∫

∞

Ω ⋅⋅=
0 2

4
2 sin

4
fT

fT
fSdfT

π

π
σ    (4.10) 

where SΩ(f) is the power spectral density of the random process Ω(T). In following, the 

derivation of above relationship is given. 
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Equation (4.4) can be expanded to give 

( ) ( ) ( ) ( ) ( )TTTTT knextknext
22

1
222

2
1

2
1

ΩΩ−Ω+Ω=σ    (4.11) 

From Equation (4.1), we can write 

( ) ( ) ( )∫∫
++

′′ΩΩ=Ω
Tt

t

Tt

t
k

k

k

K

k

tdttdt
T

T
2

2 1
   (4.12) 

where  R(t,t’)=<Ω(t) Ω(t’)> is the rate correlation function. In what follows, we assume 

that the random processes Ω(T) are all stationary in time. Therefore, 

( )τRttRttR ≡−′=′ )(),(    (4.13) 

The rate power spectral density is the Fourier transform of the R(τ). Thus, 

( ) ( )∫
∞

∞−

−
Ω = ττ τπ deRfS if2

   (4.14) 

or, inversely 

( ) ( )∫
∞

∞− Ω= dfefSR ifτπτ 2
   (4.15) 

Substitution of Equation (4.15) in Equation (4.12) yields 

  ( ) ( ) ( )∫∫∫
+ −′+∞

∞− Ω
′=Ω
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t

ttifTt

t
k

k

k

K

k

tdedtdffS
T
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2
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 (4.16) 

where we have changed the order of integration. The double integral over time is readily 

calculated to give 

  ( )

( )2

2
2 sin

f
fT

tdedt
Tt

t

ttifTt

t

k

k

K

k π
ππ =′∫∫

+ −′+
 (4.17) 

The use of Equation (4.17) in Equation (4.16) gives 
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  ( ) ( )
( )∫

∞

∞− Ω=Ω df
fT

fTfSTk 2

2
2 sin

π
π

 (4.19) 

Since < ( )Tk
2

Ω > does not depend on tk, the same expression holds for < ( )Tnext
2

Ω >. Thus, 

  ( ) ( )
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∞

∞− Ω=Ω df
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fT
fSTnext 2

22 sin
π

π
 (4.20) 

 

We now calculate <Ωnext (T) Ωk(T)>. From Equation (4.1) we can write 
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 (4.21) 

Straightforward integration of the double integral over time yields  

  ( )

( )2

2
22 2 sin

f
fTetdedt ifTTt
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ttifTt
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k π
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 (4.22) 

From this 

  ( ) ( ) ( ) ( )∫
∞

∞− Ω=ΩΩ df
fT

fT
efSTT ifT

knext 2

2
2 sin

π
ππ  (4.23) 

 

Substituting Equations (4.19), (4.20), and (4.23) in Equation (4.11) gives 

( ) ( )( )
( )

( ) ( ) ( ) ( )∫∫

∫
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∞− Ω
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πσ π

 (4.24) 

The fact is that a real function requires that the second integral in Equation (4.24) be 

identically zero. This is satisfied if SΩ(f) is an even function of f, which is the same 
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requirement for the reality of correlation function (Tehrani 1983). There fore, Equation 

(4.24) can be written as 

( ) ( ) ( )
( )

df
fT

fT
fST ∫

∞

Ω=
0 2

4
2 sin

4
π

π
σ    (4.25) 

Equation (4.25) is same as Equation (4.10), which is the desired relation. 

 

In the derivation of Equation (4.25), it is assumed that the random process Ω(T) is 

stationary in time (Tehrani 1983). For non-stationary processes, such as flicker noise, the 

time average power spectral density should be used. 

 

Equation (4.25) states that the Allan variance is proportional to the total power output of 

the random process when passed through a filter with the transfer function of the form 

sin4(x)/(x)2. This particular transfer function is the result of the method used to create and 

operate on the clusters.  

 

Equation (4.25) is the focal point of the Allan variance method. This equation will be 

used to calculate the Allan variance from the rate noise PSD. The power spectral density 

of any physically meaningful random process can be substituted in the integral, and an 

expression for the Allan variance σ2(T) as a function of cluster length is identified. 

Conversely, since σ2(T) is a measurable quantity, a log-log plot of σ(T) versus T provides 

a direct indication of the types of random processes, which exist in the inertial sensor 

data. The corresponding Allan variance of a stochastic process may be uniquely derived 
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from its power spectral density; however, there is no general inversion formula because 

there is no one-to-one relation (Tehrani 1983) . 

 

It is evident from Equation (4.25) and the above interpretation that the filter bandwidth 

depends on T. This suggests that different types of random processes can be examined by 

adjusting the filter bandwidth, namely by varying T. Thus, the Allan variance method 

provides a means of identifying and quantifying various noise terms that exist in the data. 

It is normally plotted as the square root of the Allan variance versus T, [σ(T)], on a log-

log plot. To estimate the amplitude of different noise components, it is convenient to let n 

= 2l, l = 0,1,2,…(Allan, 1987). 

 

4.3 REPRESENTATION OF NOISE TERMS IN ALLAN VARIANCE 
 

The following sub-sections will show the integral solution for a number of specific noise 

terms, which are either known to exist in the inertial sensor or are suspected to influence 

the data. The definition is defined in Allan (1966) and Keshner (1982), and the detail 

derivations are given in Tehrani (1983). The physical origin of each noise source term 

will be discussed. 

4.3.1 QUANTIZATION NOISE 
 

Quantization noise is one of the types of error introduced into an analog signal that 

results from encoding it in digital form. Quantization noise is caused by the small 
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differences between the actual amplitudes of the points being sampled and the bit 

resolution of the analog-to-digital converter (Savage 2002). 

 

The angle PSD for such a process, given in Papoulis (1991) is: 

( ) ( )
( ) z

zz

z

z
zz T

fQT
fT

fT
QTfS

2
1sin 2

2

2
2 <≈










=

π

π
θ  (4.26) 

where Qz is the quantization noise coefficient 

           Tz is the sample interval 

 

The theoretical limit for Qz is equal to S/121/2 where S is the gyro-scaling coefficient, for 

tests with fixed and uniform sampling times. The rate PSD is related to the angle PSD 

through the equation: 

( ) ( ) ( )fSffS πππ θ 222 2=Ω  (4.27) 

and is (IEEE 952 1997) 

( ) ( ) ( )
z
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z
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fQTffT
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2
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4 222

2

<≈=Ω ππ  (4.28) 

 

Substituting Equation (4.28) in Equation (4.25) and performing the integration yields: 

( )
2

2
2 3

T
Q

T z=σ  (4.29) 

Thus 

( )
T

QT z

3
=σ  (4.30) 
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This indicates that the quantization noise is represented by a slope of –1 in a log-log plot 

of σ(T) versus T, as shown in Figure (4.2). The magnitude of this noise can be read off 

the slope line at T = 31/2. 

 

Figure 4.2 σ(T) Plot for Quantization Noise (after IEEE 952 1997) 

 

It should be noted that there are other noise terms with different spectral characteristics, 

such as flicker angle noise and white angle noise, that lead to the same Allan variance T 

dependence. Also, it should be noted that quantization noise has a short correlation time 

or equivalent a wide bandwidth. Wideband noise can usually be filtered out because of 

low bandwidth of the vehicle motion in many applications; it is not a major source of 

error (Lawrence and DarryII 1997). 

4.3.2 ANGLE (VELOCITY) RANDOM WALK 
 

High frequency noise terms that have correlation time much shorter than the sample time 

can contribute to the gyro angle (or accelerometer velocity) random walk. However, most 

of these sources can be eliminated by design (IEEE 952 1997). These noise terms are all 
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characterized by a white noise spectrum on the gyro (or accelerometer) rate output. Angle 

random walk, if not modeled accurately, can be a major source of error that limits the 

performance of an attitude control system (Lawrence and DarryII 1997). 

 

The associated rate noise PSD is represented by (IEEE 952 1997) : 

( ) 2QfS =Ω  (4.31) 

where Q is the angle (velocity) random walk coefficient. 

 

Substituting Equation (4.31) in Equation (4.25) and performing the integration yields: 

( ) ( ) df
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∞
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4
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4
π
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If the variable of integration is changed to u=πfT, it gives 
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uQ
T

T ∫
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=
0 2

4
22 sin4
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which can be simplified to 

( )
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du
u

u
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QT ∫

∞
=

0 2

42
2 sin4
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σ  (4.34) 

The value of the integral in Equation (4.34) is given in Gradshteyn and Ryzhik (1980) as 

( ) 4
sin

0 2

4 π=∫
∞

du
u

u
 (4.35) 

The Allan variance for angle (velocity) random walk becomes 

( )
T

Q
T

2
2 =σ  (4.36) 

Then, 
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( )
T

Q
T =σ  (4.37) 

As shown in Figure (4.3), Equation (4.37) indicates that a log-log plot of σ(T) versus T 

has a slope of –1/2. Furthermore, the numerical value of Q can be obtained directly by 

reading the slope line at T = 1. 

 

 

Figure 4.3 σ(T) plot for angle (velocity) random walk (after IEEE 952 1997) 

4.3.3 BIAS INSTABILITY 
 

The origin of this noise is the electronics, or other components susceptible to random 

flickering (Keshner 1982). Because of its low-frequency nature it shows as the bias 

fluctua tions in the data. The rate PSD associated with this noise is (IEEE 952 1997): 
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 (4.38) 

where B is the bias instability coefficient 
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           f0 is the cutoff frequency 

 

Substitution of Equation (4.38) in Equation (4.25) and according to Equation (4.33): 

( ) ∫= 0

0 3

42
2 sin2 Tf

u
uB

T
π

π
σ  (4.39) 

Now, consider the integral 

( ) du
u

uaI
a

∫=
0 3
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 (4.40) 

According to Gradshteyn and Ryzhik (1980), 
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Also, from Gradshteyn and Ryzhik (1980), we can write 

( ) ( )uCiuCiudu
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and 

( )uCiudu
u

u
2

2
1

ln
2
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where Ci is the cosine-integral function, defined as 

( ) dt
t

t
xCi

x∫
∞
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 (4.44) 

Substituting Equations (4.42) and (4.43) in Equation (4.41) gives 
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a

a
aI

x
42lim42cos4sin
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02
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−−−++−=
→

 (4.45) 

The last term in Equation (4.45) can be calculated from the expansion of Ci (x) 
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where C is the Euler constant. Using Equation (4.46), we can write 
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To complete the derivation, substitute Equation (4.41), (4.45), and (4.47) in Equation 

(4.39), which gives 
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where x is πf0T. 

 

From Equation (4.48), it is shown 

( )
0

2 1
0

f
TforT <<→σ  (4.49) 

and 

( )
0

2
2 1

2ln
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f
Tfor

B
T >>→

π
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Equation (4.50) can be simplified as 

( )
0

1
664.0~2ln2

f
TforBBT >>=→

π
σ  (4.51) 

 

Figure (4.4) represents a log-log plot of square root of Equation (4.48). It is seen that 

Allan standard deviation begins with a slope of +1 for f0 << 1/T and reaches the 

asymptotic value of 0.664B for T much longer than the inverse cut-off frequency. Thus 
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the flat region of the plot can be examined to estimate the limit of the bias instability. Of 

course, such behaviour, particularly the rising part of the curve, may be overshadowed by 

the influence of other noise terms (IEEE 952 1997). 

 

 

Figure 4.4 σ(T) plot for bias instability (for f0 =1) (after IEEE 952 1997).  

 

4.3.4 RATE RANDOM WALK 
 
This is a random process of uncertain origin, possibly a limiting case of an exponentially 

correlated noise with a very long correlation time. The rate PSD associated with this 

noise is (IEEE 952 1997) : 
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2
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2 f
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fS 





=Ω π

 (4.52) 

where K is the rate random walk coefficient. 

 

Substituting Equation (4.52) in Equation (4.25) and performing the integration yields: 
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( )
3

2
2 TK

T =σ  (4.53) 

Thus 

( )
3
T

KT =σ  (4.54) 

This indicates that rate random walk is represented by a slope of +1/2 on a log-log plot of 

σ(T) versus T, as shown in Figure (4.5). The magnitude of this noise, K can be read off 

the slope line at T = 3. 

 

 

Figure 4.5 σ(T) plot for rate random walk (after IEEE 952 1997) 

 

4.3.5 DRIFT RATE RAMP 
 

The error terms considered thus far are of random character. It is, however, useful to 

determine the behaviour of σ(T) under systematic (deterministic) errors. One such error is 

the drift rate ramp defined as (IEEE 952 1997): 

Rt=Ω  (4.55) 

where R is the drift rate ramp coefficient 
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By forming and operating on the clusters of data containing an input given by Equation 

(4.55), we obtain: 

( )
2

22
2 TR

T =σ  (4.56) 

Thus, 

( )
2

T
RT =σ  (4.57) 

This indicates that the drift rate ramp noise has a slope of +1 in the log-log plot of σ(T)  

versus T, as shown in Figure (4.6). The amplitude of drift rate ramp R can be obtained 

from the slope line at T = 21/2. 

 

Figure 4.6 σ(T) plot for drift rate ramp (after IEEE 952 1997) 

The rate PSD associated with this noise is (IEEE 952 1997): 

( )
( )3

2

2 f
R

fS
π

=Ω  (4.58) 
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It should be noted that there might be a flicker acceleration noise with 1/f 3 PSD that 

leads to the same Allan variance T dependence. 

 

4.3.6 EXPONENTIALLY CORRELATED (MARKOV) NOISE 
 

This noise is characterized by an exponential decaying function with a finite correlation 

time. The rate PSD for such a process (IEEE 952 1997) : 

( ) ( )
( )2

2

21 c

cc

fT
Tq

fS
π+

=Ω  (4.59) 

where qc is the noise amplitude 

           Tc is the correlation time 

 

Substitution of Equation (4.59) in Equation (4.25) and performing the integration yields: 
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Figure (4.7) shows a log-log plot of square root of Equation (4.60). It is instructive to 

examine various limits of this equation. For T much longer than the correlation time, it is 

found that: 

( ) ( )
c

cc TT
T
TqT >>⇒

2
2σ  (4.61) 

which is the Allan variance for angle (velocity) random walk where ccTqQ =  is the angle 

(velocity) random walk coefficient. For T much smaller than the correlation time, 

Equation (4.60) reduces to: 



 93 

( ) ( )
c

c TTTqT <<⇒
3

2
2σ  (4.62) 

which is the Allan variance for rate random walk. 

 

 

Figure 4.7 σ(T) plot for correlated noise (after IEEE 952 1997) 

 

4.3.7 SINUSOIDAL NOISE 
 

The PSD of this noise is characterized by one or more distinct frequencies. A low-

frequency source could be the slow motion of the test platform due to periodic 

environmental changes. A representation of the PSD of this noise containing a single 

frequency is given as (IEEE 952 1997) : 

( ) ( ) ( )[ ]00
2
02

1
fffffS ++−Ω=Ω δδ  (4.63) 

where Ω0 is the amplitude 
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           f0 is the frequency 

         δ(x) is the Dirac delta function 

 

Multiple frequency sinusoidal errors can be similarly represented by a sum of terms such 

as Equation (4.63) at their respective frequencies and amplitudes. Substitution of 

Equation (4.63) in Equation (4.25) and performing the integration yields: 

( )
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0
2

2
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2 sin

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
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


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Tf
Tf

T
π
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Figure (4.8) shows a log-log plot of square root of Equation (4.64). Thus, the root Allan 

variance of a sinusoid when plotted in log-log scale would indicate sinusoidal behaviour 

with successive peaks attenuated at a slope of –1. Identification and estimation of this 

noise in data requires the observation of several peaks. As is seen however, the 

amplitudes of consecutive peaks fall off rapidly and may be masked by higher order 

peaks of other frequencies making observation difficult. This is one case where a 

conventional PSD plot is superior in identifying the sinusoidal components (Lawrence 

and DarryII 1997). 
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Figure 4.8 σ(T) plot for sinusoidal error (after IEEE 952 1997) 

4.4 SAMPLE PLOT OF ALLAN VARIANCE 
 

In general, any number of the random process discussed above (as well as others) can be 

present in the data. Thus, a typical Allan variance plot looks like the one shown in Figure 

(4.9). Experience shows that in most cases, different noise terms appear in different 

regions of T. this allows easy identification of various random processes that exist in the 

data. 
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Figure 4.9 Sample plot of Allan variance analysis results  (after IEEE 952 1997) 

 

With real data, gradual transitions would exist between the different Allan standard 

deviation slopes. A certain amount of noise or hash would exist in the plot curve due to 

the uncertainty of the measured Allan variance (IEEE Std 1293 1998). 

4.5 ESTIMATION QUALITY OF ALLAN VARIANCE 
 
In practice, estimation of the Allan variance is based on a finite number of independent 

clusters that can be formed from any finite length of data. The Allan variance of any 

noise terms is estimated using the total number of clusters of a given length that can be 

created. The confidence of the estimation improves as the number of independent clusters 

is increased. 

 

Defining the parameters δAV as the percentage error in estimating the Allan standard 

deviation of the cluster due to the finiteness of the number of clusters gives (IEEE 952 

1997) 
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( ) ( )
( )T

TMT
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,  (4.65) 

where σ(T,M) denotes the estimate of the Allan standard deviation obtained from M 

independent clusters, σ(T,M) approaches its theoretical value, σ(T), in the limit of M 

approaching infinity. A lengthy and straightforward calculation (Papoulis 1991) shows 

the percentage error is equal to 

( )



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 −

=

12

1

n
N

AVδσ  
(4.66) 

where N is the total number of data points in the entire data set, and n is the number of 

data points contained in the cluster. 

 

Equation (4.66) shows that the estimation errors in the region of  short (long) T are small 

(large) as the number of independent clusters in these regions is large (small). For 

example, if there are 20,000 data points and cluster sizes of 5,000 points are used, the 

percentage error in estimating σ(T) is approximately 40%. On the other hand, for cluster 

containing only 100 points, the percentage error is about 5%. 

4.6 SUMMARY 
 

This chapter introduces the definition and properties of Allan variance as a tool for 

modeling inertial sensor errors. If the total data points and sample rate are known, it is 

easy to obtain Allan variance solution with Equation (4.5) or (4.9). According to the log-

log plot of Allan standard deviation versus cluster length, different noise terms can be 

easily identified and extracted. The noise coefficients abstraction is discussed in Section 
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4.3. The method used to determine the estimation accuracy is discussed in Section 4.5. 

From above discussion, it is convenient to identify the existing noise terms and estimate 

the coefficients for a given data set. The application of Allan variance method for inertial 

sensors will be given in detail in next chapter. 
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CHAPTER FIVE: TEST AND RESULT 
 

The purpose of the tests conducted in this chapter is to identify noise terms existing in 

different grade IMU sensors. The tests are conducted using the Allan variance technique 

presented in Chapter Four, which is expected to provide better understanding of the 

inertial sensors performance and noise sources. 

5.1 TEST ENVIRONMENT 
 

Three different grade IMUs were involved in evaluating the use of Allan Variance in 

modeling inertial sensor noise. The IMUs include the Honeywell CIMU navigation grade 

IMU, the Honeywell HG1700 tactical grade IMU and the Systron Donner MotionPak II-

3g consumer grade MEMS based IMU. The test was held at room temperature for seven 

days at the Mobile Multi-Sensor System (MMS) research group Inertial Lab, in the 

Geomatics Engineering department of The University of Calgary. The test layout and the 

equipment used in this test are shown in Figure (5.1). All of the analysis  presented in this 

chapter was conducted using the MMS research group Allan Variance (AV) Tool Box. 

The AV Tool Box was developed by the author, and was implemented under the 

Matlab® environment (http://www.mathworks.com/). The following sections provide the 

details and the characteristics of the tested IMUs and the data acquisition system. 

5.1.1 CIMU TERRAMATICS BOX 
 

The Commercial Inertial Measurement System (CIMU) (Figure (5.1B)) is a relatively 

small (i.e. a cube 13.4cm high with 19.3cm length and 16.9cm width) navigation grade 
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IMU manufactured by Honeywell International Inc. (http://www.honeywell.com/). The 

gyro-in-run bias is about 0.0022°/h and random walk is about 0.0022 °/h1/2. The 

accelerometer in run bias is about 25 µg and noise is about 0.00076 m/s/h1/2 (0.0025 

FPS/h1/2).  

5.1.2 HG1700 TERRAMATICS BOX 
 

The Honeywell HG1700 (Figure (5.1B)) is a lightweight cylinder 7.6 cm high and 9.4 cm 

in diameter, and is equipped with a low-cost tactical grade IMU that utilizes 3 GG1308 

miniature ring laser gyros (RLGs) along with 3 Honeywell RBA-500 resonant beam 

digital accelerometers to measure angular rate and linear acceleration, respectively. This 

IMU has a gyro bias repeatability of better than 3°/h, gyro scale-factor accuracy of better 

than 150 ppm, and a gyro random-walk PSD level of less than 0.15 °/h1/2. The 

accelerometer residual bias is less than 1000 µg, scale factor stability is 300 ppm, and 

linearity is 500 ppm.  

 

The Terramatics Data Acquisition Board Box (Terramatics Inc., Calgary, Canada) was 

used to perform data acquisition for the CIMU and HG1700 units as well as time tagging 

of the inertial measurement unit. The inertial sensor output data are decoded at 200Hz 

data rate for the CIMU and 100Hz data rate for the HG1700. The output of gyro data is 

the delta angle with units in radians, and that of accelerometer is the delta velocity with 

units in m/s. 
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Figure 5.1 Test Environment Setup 
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5.1.3 MOTIONPAK II ANALOG OUTPUT 
 

The MotionPak® is a solid-state six Degree-of-Freedom inertial sensing system used for 

measuring linear accelerations and angular rates in instrumentation and control 

applications. It uses three orthogonally mounted solid-state micro-machined quartz 

angular rate sensors, and mounted in a compact, rugged package are three high 

performance linear servo accelerometers with internal power regulation and signal 

conditioning electronics. Maximum bias error is ±5°/s for gyro and ±200mg for 

accelerometers. The bandwidth is larger than 30Hz for gyro and 250Hz for 

accelerometers (http://www.systron.com/). 

 

For this unit the data was collected using the National Instruments (http://www.ni.com/) 

DAQCardT M-6036E, which has 16 Inputs/2 Outputs, 200kS/s, 16-bit Multifunction I/O. 

The software used for acquiring and storing data is the National Instrument LabVIEW 

7.0. The connection flow is shown as in Figure (5.2). 

  

MotionPak II  DAQCardTM 6036E  LabVIEW 7.0 

Figure 5.2 MotionPak II Data Acquiring System 
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5.1.4 ALLAN VARIANCE (AV) TOOL BOX 
 

The Allan Variance (AV) Tool Box is developed by the author under the Matlab 

environment according to the methodology described in Chapter Four. 

 

The input data of the AV Tool Box should be transformed into the unit as deg/h for gyros 

and m/s/h for accelerometers. Three-axis sensor data can be loaded at the same time. In 

addition, the input parameters include the number of total data points, sample rate, and 

the IMU type. Then the AV Tool Box will output the Allan variance result plot and the 

identified noise coefficients.  

 

The AV Tool Box has been successfully applied in the following test data analysis. The 

corresponding results and explanation are provided. 

 

5.2 TEST RESULTS 

5.2.1 CIMU ALLAN VARIANCE ANALYSIS 
 

Two-hour static data were collected from the CIMU IMU at room temperature. The entire 

data was then analysed using the AV Tool Box. A log-log plot of CIMU three axis gyros’ 

Allan standard deviation versus cluster time is shown in Figure (5.3).  
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Figure 5.3 CIMU Gyro Allan variance results 

Figure (5.3) clearly indicates that the quantization noise is the dominant noise for short 

cluster times. Figure 5.4 shows an example of how to obtain quantization noise 

coefficient from the Allan variance result in a log-log plot for CIMU Z-axis gyro. A 

straight line with slope of –1 (refer to the dashed line in the figure), fitted to the 

beginning of the plot meets T = 31/2 hour line (see Section 4.3.1) at a value of 1.60 × 10-4 

deg (Point A in Figure 5.4), which is equal to 0.5770 arc seconds. Since the estimation of 

quantization noise is based on very short cluster times, the number of independent 

clusters is very large and the quality of estimation is very good. In fact, even for cluster 

time as long as T=100 sec, according to Equation (4.66), the percentage error is only 

7.58%. In fact, the estimation percentage error can be reduced to 2.7%, making the line 

with slope of –1 to cover only the region from T=0.05 sec till T=10sec. The value of 
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percentage error is equal to 0.5770 × 2.7% = 0.0155 arc seconds. Thus the quantization 

coefficient for CIMU Z-axis gyro is estimated as: 

( ) sec0155.05770.0 arcQz ±=   (5.1) 

 

Figure 5.4 CIMU Z-axis Gyro Allan variance result with slopes of –1 and –1/2 

 

Table (5.1) lists the estimated quantization noise coefficients for seven days tests for all 

three axes gyros. It is clear that the standard deviation of the seven days tests is smaller 

than the estimation percentage error as shown in Table (5.2), which means that the CIMU 

sensor random processes have very good repeatability. In conclusion, each individual test 

result of CIMU can be used for system prediction and analysis.  
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Table 5.1 CIMU Gyro Quantization Noise Estimation Results 

 Gyro X (arcsec) Gyro Y (arcsec) Gyro Z (arcsec) 

Day1 0.9732 0.5174 0.5770 

Day2 0.9601 0.5357 0.6023 

Day3 0.9193 0.5059 0.5745 

Day4 0.9472 0.4982 0.5693 

Day5 0.9577 0.4992 0.5592 

Day6 0.9589 0.5065 0.5624 

Day7 0.9450 0.5068 0.5785 

STD 0.0170 0.0129 0.0141 
 

In Figure (5.3) there is also a clear indication that the angle random walk is the dominant 

noise term for long cluster times. There is an example in Figure (5.4) to show how to 

obtain the random walk coefficients from the Allan variance log-log plot result. A 

straight line with slope of –1/2 (the dotted line) is fitted to the long cluster time part of the 

plot and meets the T=1 hour line (see Section 4.3.2) at a value of 0.0018 (Point B in 

Figure 5.4). The unit of angle random walk is deg/h1/2. Inspection of the curve shows that 

the estimation percentage error in this region can reach to 33.36% according to Equation 

(4.66). The value of the percentage error is calculated as 0.0018 × 33.36% = 0.0006 

deg/h1/2. Thus the angle random walk coefficient for CIMU Z-axis gyro is estimated as: 

( ) hQ deg/0006.00018.0 ±=  (5.2) 

For two hours of static CIMU accelerometer data, the Allan variance results are shown in 

Figure (5.5). The figure clearly indicates that the quantization noise is the prominent 

noise term in short cluster times while the drift rate ramp noise term in long cluster times.  



 107 

 

Figure 5.5 CIMU Accelerometer Allan variance results 

In Figure (5.6), there is an example shown for how to obtain drift rate ramp noise 

coefficient from the Allan variance log-log plot. A straight line with slope of +1 (the 

dashed line) is fitted to the long cluster time part of the plot and meets T = 21/2  hour line 

(see Section 4.3.5) at a value of 0.3915. The unit for velocity drift rate ramp is m/s/h2. 

Inspection of the curve shows that the estimation percentage error in this region can reach 

33.36% according to Equation (4.66). The value of the percentage error is equal to 0.3915 

× 33.36% = 0.1309 m/s/h2. Thus the drift rate ramp coefficient for CIMU Z-axis 

accelerometer is estimated as: 

( ) 2//1309.03915.0 hsmR ±=  (5.3) 
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Figure 5.6 CIMU Z-axis Accelerometer Allan variance result with slopes of –1 and +1 

Table (5.2) lists all the identified noise coefficients for the CIMU two-hour static data. 

Table 5.2 Identified Noise Coefficients for CIMU 

 Quantization 
(arcsec) 

Random Walk 
(deg/√h) 

 Quantization 
(m/h) 

Rate Ramp 
(m/s/h2) 

Gyro X 0.9732±0.0738 0.0015±0.0005 Accl X 1.6801±0.1275 2.6364±0.8795 

Gyro Y 0.5174±0.0197 0.0019±0.0006 Accl Y 1.2980±0.0985 0.8915±0.2974 

Gyro Z 0.5770±0.0155 0.0018±0.0006 Accl Z 0.8785±0.0666 0.3915±0.1309 
 
 

5.2.2 HG1700 ALLAN VARIANCE ANALYSIS 
 

Two-hour static data from HG1700 were collected at room temperature. Applying the 

Allan variance method to the whole data set, a log-log plot of HG1700 three axis gyros’ 

Allan standard deviation versus cluster time is shown in Figure (5.7).  
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From the Allan variance result, for two hours of static HG1700 gyro data, it is clear that 

the quantization noise is the dominant noise for short cluster times while the angle 

random walk is the dominant noise for long cluster times. The methodology for obtaining 

noise coefficients has been discussed in the previous section. Table (5.3) lists the 

estimated quantization noise coefficients for seven days tests for all three axes HG1700 

gyros. The results clearly indicate that the standard deviation for the seven days of tests is 

close to the estimation percentage error as listed in Table (5.4). That means that the 

HG1700 sensor random processes have relatively good repeatability. To conclude, each 

individual test result of HG1700 can be used as system prediction and analysis.  

 

Figure 5.7 HG1700 Gyro Allan variance results  
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Table 5.3 HG1700 Gyro Quantization Noise Estimation Results 

 Gyro X (arcsec) Gyro Y (arcsec) Gyro Z (arcsec) 

Day1 5.1154 1.2742 1.2316 

Day2 5.1117 1.2842 1.2025 

Day3 5.1113 1.2801 1.2227 

Day4 5.1239 1.3065 1.2256 

Day5 5.0312 1.2864 1.2193 

Day6 5.1051 1.3054 1.2065 

Day7 5.0487 1.2954 1.2226 

STD 0.0366 0.0124 0.0104 

 

For two hours of static HG1700 accelerometer data, the Allan variance results are shown 

in Figure (5.8). It is seen that the quantization noise is the prominent noise term in short 

cluster times while the rate random walk noise term in long cluster times. There is an 

example to show how to obtain the rate random walk coefficient in Figure (5.9). For 

HG1700 Z-axis accelerometer Allan variance result plot, Figure (5.9), a straight line with 

slope of +1/2, the dashed line, fitted to the long cluster time part of the plot and meets T = 

3 hour line (see Section 4.3.4) at a value of 3.3514. The unit of the velocity rate random 

walk is m/s/h/h1/2. Inspection of the curve shows that the estimation percentage error in 

this region can reach 33.36% according to Equation (4.66). The value of the percentage 

error is equal to 3.3514×33.36%=1.1180 m/s/h/h1/2. Thus the rate random walk 

coefficient for HG1700 z-axis accelerometer is estimated as: 

( ) hhsmK ///1180.13514.3 ±=  (5.4) 

Table (5.4) listed all the identified noise coefficients for HG1700 two hours static data 

set. 
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Table 5.4 Identified Noise Coefficients for HG1700 

 
Quantization 

(arcsec) 
Random Walk 

(deg/√h)  
Quantization 

(m/h) 

Rate Random 
Walk 

(m/s/h/√h) 

Gyro X 5.1154±0.0683 0.0936±0.0312 Accl X 2.1188±0.0673 0.7637±0.2548 

Gyro Y 1.2742±0.0032 0.0883±0.0295 Accl Y 2.1988±0.1176 1.1572±0.3860 

Gyro Z 1.2316±0.0028 0.0753±0.0251 Accl Z 2.1845±0.0583 3.3514±1.1180 
 

 

Figure 5.8 HG1700 Accelerometer Allan variance results  
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Figure 5.9 HG1700 Z-axis Accelerometer Allan variance result with slopes of –1 and +1/2  

5.2.3 MOTIONPAK II ALLAN VARIANCE ANALYSIS 
 

Since data integration is used in the Allan variance analysis (Equation (4.6)), when 

collecting data through A/D card, the sample rate will affect the Allan variance result. In 

order to check the data-sampling rate effect on the Allan variance result and the fact that 

the MotionPak II provides analog data, different sampling rate data sets were collected 

for the system through the A/D card.  

 

Using the A/D card with the National Instrument LabVIEW 7.0 software, 10 minutes 

data sets at different sampling rates (10Hz, 50Hz, 100Hz, 500Hz, 1000Hz, and 2000Hz) 

were collected separately. Applying the Allan variance method to all the data sets, the 

Allan variance results are shown in Figure (5.10).  
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Figure 5.10 MotionPak II Gyro X Allan Variance Sample Rate Test Result 

 

Figure (5.10) clearly shows similar results for data rates higher than 100Hz sampling rate. 

The attenuation in the high frequency part (i.e. T < 0.01 sec) is the embodiment of the 

sensors bandwidth. From the data sheet of MotionPak II, the bandwidth of gyros is larger 

than 30Hz. Therefore; the sampling rate should reach three to five times the bandwidth to 

meet the requirement for reliable sensor performance analysis, which also meets the 

requirement of Nyquist theorem. Therefore, the sample rate for the MotionPak II gyro is 

set as 100Hz while that for accelerometer is set as 1000Hz.  

 

Two-hour static data from MotionPak II was collected at room temperature at the above 

recommended data rate. Applying the Allan variance method to the whole data set, a log-

log plot of MotionPak II three axis gyros’ Allan standard deviation versus cluster time is 
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shown in Figure (5.11). From the Allan variance result, for two hours static MotionPak II 

gyro data, it is clear that the angle random walk noise is the dominant noise in short 

cluster times while the bias instability noise term is the dominant noise term in long 

cluster times. 

 

What follow is an example of how to obtain the bias instability noise coefficient from the 

Allan variance results. For the MotionPak II Z-axis gyro Allan variance result plot in 

Figure (5.12), the almost flat part of the curve of long cluster part is indicative of the low-

frequency noise, which determines the bias variations of the run. The dashed line, a zero 

slope line, which is fitted to the bottom of the curve determines the upper limit of bias 

instabilities. Such a line meets the ordinate axis at a value of 11.1488 and dividing this by 

0.664 (see Section 4.3.3) yields the maximum bias instability value of 16.79 deg/h. 

Analysis of the curve indicates that the estimation percentage error in this region is 

approximately 10% according to Equation (4.66). The value of the percentage error is 

equal to 16.79 × 10% = 1.68 deg/h. Thus the bias instability coefficient for MotionPak II 

Z-axis gyro is estimated as: 

( ) hB deg/68.179.16 ±=  (5.5) 

The method described above can be used to acquire the bias instability coefficient from 

Allan variance result plot.  

 

Figure (5.13) shows the Allan variance results for two hours of static MotionPak II three 

axes accelerometer data collected at the above recommended data rate. The results clearly 

indicates that, for the MotionPak II accelerometers, the velocity random walk is the 
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dominant noise term in the short clustering time while the bias instability noise term is 

the dominant noise in the long clustering time. The identified noise coefficients for 

MotionPak II are listed in Table (5.5). 

 

 

Figure 5.11 MotionPak II Gyro Allan Variance Test Results 

Table 5.5 Identified Noise Coefficients for MotionPak II 

100Hz 
Data 

Random Walk 
(deg/h1/2) 

Bias 
Instability 

(deg/h) 

1000Hz 
Data 

Random Walk 
(m/s/h1/2) 

Bias 
Instability 

(m/s/h)  

Gyro X 0.5121±0.0068 13.58±1.36 Accl X 0.01664±0.00003 4.36±0.04 

Gyro Y 0.4859±0.0065 11.69±1.17 Accl Y 0.01593±0.00003 4.09±0.08 

Gyro Z 0.4891±0.0065 16.79±1.68 Accl Z 0.01612±0.00003 4.36±0.08 
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Figure 5.12 MotionPak II Z-axis Gyro Allan Variance Result with slope of –1/2 and 0 

 

Figure 5.13 MotionPak II Accelerometer Allan Variance Results 
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5.3 SUMMARY 
 

The Allan variance method presented has proven to be able to identify the 

characterization of various random errors contained in the output data of inertial sensors. 

By performing a simple operation on the entire length of data, a characteristic curve is 

obtained whose inspection facilitates the determination of the different types and 

magnitude of noise terms existing in inertial sensors.  

 

The identified noise terms for two-hour static data from gyros and accelerometers of 

different grades of IMUs are listed in Table (5.6). 

 

Table 5.6 Summary of Identified Noise Terms 

  Quantizati
on 

Angle 
random 

walk 

Bias 
instability 

Rate 
random 

walk 

Drift rate 
ramp 

CIMU √ √    

HG1700 √ √    Gyro 

MP2  √ √   

  Quantizati
on 

Velocity 
random 

walk 

Bias 
instability 

Rate 
random 

walk 

Drift rate 
ramp 

CIMU √    √ 

HG1700 √   √  
Accelero- 

meter 
MP2  √ √   

 

It should be noted that the noise terms, which haven’t been identified, may need long-

term test data to prove whether or not they exist. 
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By comparing the estimated noise coefficients obtained from power spectral density, 

listed in Table (3.5) with Allan variance method, Table (5.2) for CIMU and Table (5.5) 

for Motion Pak II, the noise coefficient is identical for same noise term. Consequently, 

the Allan variance method performed in this thesis work is correct.  

 

In addition, the noise coefficients can be read off directly from the Allan variance result 

plot. For power spectral density method, the frequency averaging technique should be 

applied first to make the slopes of the curve distinguishable. Then, further calculation is 

needed to obtain the coefficients. Thus, the procedure of parameter abstraction for Allan 

variance is much simpler than that for power spectral density. As a conclusion, Allan 

variance method is more suitable for inertial system performance analysis and prediction. 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 
 

Compared to the stochastic modeling methods discussed in Chapter Three, Allan variance 

has many advantages in inertial sensor noise term analysis and modeling. 

 

The autocorrelation method is useful in modeling Gauss-Markov processes. But, in order 

to reveal the parameters, test data needs to be de-noised first. In addition, autocorrelation 

methods need very long term static data to produce results within an acceptable range, 

especially for the sensors in the high grade IMU’s. From experience, the correlation time 

is very long for high grade IMUs; the test can even take a few weeks. 

 

The power spectral density method is straightforward but the computation is complex and 

difficult for non-system analysts to understand. After the calculations are performed, the 

results need to be simplified through the frequency averaging technique. Even after that, 

it is complex to extract the parameters of the identified noise terms from the result plot. 

 

On the other hand, the Allan variance method is a finer, easier characterization and 

identification of error sources and their contribution to the overall noise statistics. 

 

Seven-day static data from CIMU, HG1700, and MotionPak II-3g IMUs were 

investigated. Approximately 80% of results are close to the manufacture claimed 
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performance characteristics of these units, which prove the reliability of the Allan 

Variance method. Overall, the results obtained from the data analysis indicate that: 

 

§ The quantization noise is the dominant noise term in short cluster times while the 

angle random walk noise term is the dominant noise in long cluster times for the 

gyros used in the CIMU and HG1700 IMUs. For the accelerometers, the quantization 

noise is the dominant noise term in short cluster times while the rate random walk and 

drift rate ramp is the dominant noise in long cluster times for HG1700 and CIMU, 

respectively.  

 

§ The results of the MotionPak II sensors clearly indicate that random walk is the 

dominant noise term in the short clustering time while the bias instability noise terms 

are the dominant noise in the long clustering time.  

 

§ When colleting data through the A/D card, the Nyquist theorem should be 

utilized. The recommended sampling frequency should be three to five times of 

sensor bandwidth to meet the requirement for reliable sensor performance analysis. 

 

Based on the above analysis, the Allan variance method is helpful in IMU analysis and 

modeling for both manufacturers and users. Manufacturers can improve sensor 

performance based on the identified noise terms. Users can better model sensor 

performance according to the existing noise terms within the sensor output. 
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Consequently, the author expects that Allan variance will attract more and more attention 

in the field of INS sensors analysis and modeling. 

6.2 RECOMMENDATIONS 
 

Identification and modeling the noise terms within the inertial sensors was the main 

objective of this thesis. There is still a long road ahead to improve the navigation solution 

with all these results. What follows are a few recommendations from the author’s point of 

view in the application of the results and the potential for further research work:  

 

• Quantization noise, which has been identified in CIMU and HG1700 gyro and 

accelerometer sensors, is strictly due to the digital nature of the sensor output. 

Inertial sensor quantization error generally is a minor contributor to attitude/ 

velocity/ position and initial heading determination inaccuracy in a strapdown 

INS. However, mis-modeling of quantization error effects can result in 

erroneously large estimates of their impact on INS performance (Savage 2002). In 

future work, it is necessary to add the quantization noise into the stochastic 

model. 

 

• Random walk is an important noise term and can be used to evaluate the sensor 

noise intensity. In the Kalman filter design, the amplitude of random walk 

coefficients can be directly used in the process noise covariance matrix with 

respect to the  appropriate sensor. 
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• The standard definition of bias instability used by inertial sensor manufacturers is 

the minimum point on the Allan variance curve. This is the best stability one 

could achieve with a fully modeled sensor and active bias estimation (Stockwell 

2004). Thus, in future work, the minimum point on the Allan variance curve can 

be used in the inertial sensor bias instability estimation. 

 

• Since the rate random walk and rate ramp have been identified by Allan variance 

method, in future work, these two noise terms should be considered in system 

modeling. 
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