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ABSTRACT

It is well known that Inertial Navigation Systems (INS) can provide high accuracy
information on the position, velocity, and attitude over a short time period. However,
their accuracy degrades rapidly with time. The requirements for accurate estimation of

navigation information necessitate the modeling of the sensors' noise components.

Severa methods have been devised for stochastic modeling of inertial sensors noise.
Each of them is useful but each has its own disadvantage. The Adaptive Kalman filter is
one of the mostly used methods to estimate inertial sensor noise, but the form of the
model needs to be known first. Frequency domain approaching uses the power spectral
density to estimate transfer functions. It is straightforward but it is difficult for non
system analysts to understand. In the time doman methods, the correlation function
approach is very modd sendtive. Variance techniques are basically very smilar, and
primarily differ only in that various signa processing, by way of weighting functions,
window functions, etc., are incorporated into the analysis algorithms in order to achieve a
particular desired result for improving the model characterizations. The simplest

technique is the Allan variance method.

Allan variance is a method of representing root mean square (RMS) random drift error as
a function of average time. It is smple to compute and relatively simple to interpret and
understand. Allan variance method can be used to determine the character of the
underlying random processes that give rise to the data noise. This technique can be used
to characterize various types of noise terms in the inertial sensor data by performing

certain operations on the entire length of data.

In this thesis, the Allan variance technique is used in noise analysis of different grade
Inertial Measurement Units (IMU), which include:
= Navigation grade IMU: The Honeywell Commercia IMU (CIMU);

» Tactical grade IMU: The Honeywell HG1700; and



=  Consumer grade MEMS based IMU: The Systron Donner MotionPak 11-3g

By performing a ssimple operation on the entire length of data, a characteristic curve is
obtained whose inspection provides a systematic characterization of various random
errors contained in the inertial sensor output data. Being a directly measurable quantity,
Allan variance can provide information on the types and magnitude of various noise
terms. The research work will cover both the theoretical basis for Allan Variance for
modeling inertial sensors noise terms, and its implementation in modeling different noise
terms existing in the different grade inertial sensors. Simple implementation and ease of
interpretation make the Allan variance method suitable in inertial sensor noise

identification and stochastic modeling.
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CHAPTER ONE: INTRODUCTION

Navigation is a very ancient skill or art, which has become a complex science. It is
essentialy about travel and finding the way from one place to another and there are a

variety of means by which this may be achieved (Titterton and Weston 1997).

The navigator may choose to observe objects or naturally occurring phenomena to
determine hig’her position. An ancient and well-established technique is to take sightings
of certain fixed stars to which the navigator can relate his’/her position. The fixed stars
effectively define a reference frame, which is fixed in space. Such a reference is
commonly referred to as an inertial reference frame and star sightings enable an observer
to determine his’her position with respect to that frame. Given the knowledge of motion
of the Earth and the time of the observation, the navigator is then able to use the celestial
measurements to define his’her position on the surface of the Earth. Navigation systems
of this type, which rely on observation of the outside world, are known as position fixed

systems.

An aternative approach is to use the principle of dead reckoning by which one's present
position may be calculated from the knowledge of one's initia position and speed and
direction measurements. The process of dead reckoning is performed by taking the last
known position and the time at which it was obtained, and noting the average speed and
heading since that time to the current time. The speed must be resolved through the

heading angle to provide the velocity components in the north and east directions. Each is



then multiplied by the time that has elapsed since the last position was obtained, thereby
giving the change in position. Finaly, the position changes are summed with the initial

position to obtain the present position.

An equivalent process may be conducted using inertial sensors-gyroscopes and
accelerometers-that sense rotational and translational motion with respect to an inertial

reference frame. This is known as inertial navigation.

1.1 INERTIAL NAVIGATION SYSTEMS

The operation of an inertial navigation system (INS) depends on the laws of classical
mechanics as formulated by Newton. Newton's First law states, “An object at rest tends
to stay at rest and an object in motion tends to stay in motion with the same speed and in
the same direction unless acted upon by an unbalanced force’. Newton's Second law
states, “The acceleration of an object as produced by a net force is directly proportional
to the magnitude of the net force, in the same direction as the net force, and inversely
proportional to the mass of the object’. Given the ability to measure the moving body
acceleration, it is possible to calculate the change in velocity and position by performing
successve mathematical integrations of the acceleration with respect to time.
Acceleration can be determined using an accelerometer. An inertial navigation system
usually contains three accelerometers, which are commonly mounted with their sensitive
axes perpendicular to one another. The working theory of accelerometer is based on the

Newton’s laws.



In order to navigate with respect to the inertial reference frame, it is necessary to keep
track of the direction in which the accelerometers are pointing. Rotational motion of the
body with respect to the inertial reference frame may be sensed using gyroscopic sensors
and used to determine the orientation of the accelerometers at all times. Given this
information, it is possible to transform the accelerations into the computation frame
before the integration process takes place. At each time-step of the system's clock, the
navigation computer time integrates this quantity to get the body's velocity vector. The
velocity vector is then time integrated, yielding the position vector. These steps are
continuously iterated throughout the navigation process (Verplaetse 1995). Figure 1.1
shows this concept in a schematic form. This procedure is, usualy, considered as IMU
mechanization. The mechanization results will be fed into the Kalman filter to correct

inertial sensor errors for best estimation solution.
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Figure 1.1 Inertial Navigation Schematic Plot (after EI-Sheimy 2003)



Hence, inertial navigation is the process whereby the measurements provided by
gyroscopes and accelerometers are used to determine the position of the vehicle in which
they are installed. By combining the two sets of measurements, it is possible to define the
trandational motion of the vehicle within the inertial reference frame and to calculate its

position within that frame.

1.2 BACKGROUND AND OBJECTIVE

The Inertial Measurement Unit (IMU) typically provides an output of the vehicle's (e.g.
aircraft) acceleration and angular rate, which are then integrated to obtain the vehicle's
position, velocity, and attitude. The IMU measurements are usually corrupted by different
types of error sources such as sensor noises, scale factor and bias variations with
temperature (nonlinear, difficult to characterize), etc. By integrating the IMU
measurements in the navigation agorithm, these errors will be accumulated, leading to
significant drift in the position and velocity outputs. A standalone IMU by itself is
seldom useful since the inertial sensor biases and the fixedstep integration errors will
cause the navigation solution to diverge quickly. Inertial systems design and performance
prediction depend on the accurate knowledge of the sensors noise model. The
requirements for accurate estimation of navigation information necessitate the modeling

of the sensors noise components.

Several methods have been devised for the stochastic modeling of the sensors’ noise. The
frequency domain approach, which uses the power spectral density (PSD) to estimate

transfer functions is straightforward but difficult for non-system analysts to understand.



The correlation function approach is the time-domain equivalent of the PSD approach,
being related as Fourier transforms pairs. This is analogous to expressing the frequency
response function in terms of partial fraction expansion. The correlation method is very
model sensitive and not well suited to dealing with odd power law processes, higher
order processes or wide dynamic ranges. They work best with a priori knowledge based

on amodel of few terms (IEEE Std 952-1977).

For the variance techniques, they are basically very similar, and primarily differ only in
that various signal processing, by way of weighting functions, window functions, etc., are
incorporated into the analysis algorithms in order to achieve a particular desired result for

improving the model characterizations. The simplest isthe Allan variance.

Allan variance is a method of representing root mean square (RMS) random drift error as
a function of averaging time (IEEE Std 952 1977). It is smple to compute and relaively
simple to interpret and understand. The Allan variance method can be used to determine
the characteristics of the underlying random processes that give rise to the data noise.
This technique can be used to characterize various types of noise terms n the inertia

sensor data by performing certain operations on the entire length of data.

Although the Allan variance statistic remains useful for revealing broad spectral trends,
Allan variance does not always determine a unique noise spectrum cause the mapping

from spectrum to Allan variance is not one-to-one (Greenhall 1998). This puts a



fundamental limitation on what can be learned about a noise process from examination of

its Allan variance.

The main objective of this thesis is to investigate, implement, and test the Allan variance
as a unified method in identifying and modeling noise terms of different grade IMU
sensors. In order to improve the performance of the inertial sensors, both the
manufacturers and the users are keen to know more detail about the noise component.
Once the noise terms are reveded, the manufacturers can find a way to remove or
minimize the sources causing the noise, during the manufacture process. Complementary
to thisis that the users can have a better modeling of the stoctestic part to improve the
navigation solution. The major success of this thesis is that it proves that Allan variance
method can be used to investigate al potential noise terms for different levels of inertial
sensors. Comparing with other methods, such @ autocorrelation and power spectra
density, Allan variance is much easier to implement and understand. Thus this method

can be widely used in inertial sensor stochastic modeling.

Under the overall objectives, the following tasks have been addressed:
» Investigate the methodology of Allan variance,
= Distinguish the noise terms obtained from the Allan variance method,
» Implement the Allan variance in a software for IMU sensors noise analysis,
» Implement short and long term static tests with IMU sensors,

» |nvestigate and model noise terms in different grade IMU sensors.



1.3 THESIS OUTLINE

In Chapter Two, the operation principle of both gyro and accelerometer are first
introduced as well as the technologies that dominate the current market. Then the major
error sources, which will affect the inertial sensor performance, are discussed. Different
methodologies that can be used to eliminate or minimize these errors are finaly

presented.

In Chapter Three, the algorithm of discrete Kalman filter is introduced followed by the
genera stochastic modeling methods, such as the autocorrelation method, power spectra
density method, variance method, and adaptive Kalman filter method. In addition, the
useful techniques in stochastic modeling including the fast Fourier transform and wavelet

de-nosing method are reviewed.

The definition and properties of Allan variance are given in Chapter Four. The procedure
for the analysis and modeling of different noise terms are discussed. The method used to

evaluate the analysis results is given.

In Chapter Five, the results of testing different types of IMU are presented. The tested
systems include:

» Navigation grade IMU: The Honeywell CIMU;

» Tactical grade IMU: The Honeywell HG1700; and

» Consumer grade MEMS based IMU: The Systron Donner MotionPak 11-3g



Finally, Chapter Six draws the maor conclusions from this research work and provides

recommendations for future work.

Some of the material presented in Chapter Four and Five has been previously published
in papers. In those cases where the author has been an author or co-author of these

papers, quotations are not indicated as such, but are ssimply referenced.



CHAPTER TWO: INERTIAL SENSORS AND THEIR ERROR SOURCES

The operation principles as well as the technologies used in the current market of both
gyro and accelerometer are introduced in this chapter. Then the maor error sources of
inertial sensors are discussed. Finally, the general methods used to eliminate or minimize

these errors are presented.

2.1 INERTIAL NAVIGATION PRINCIPLE

The objective of modeling motion in space is to describe the motion of objects on the
earth’s surface or close to it. These objects are affected by the earth’s gravitational
attraction due to the Earth’s gravity field and rotation. The general motion of arigid body
in space can be described by six parameters. They are typically identified as three
position and three orientation parameters. Determining the position and orientation of the
rigid body in 3D space is, in principle, a problem of trgectory determination. This
necessitates measuring systems with the capability to sense six independent quantities
from which these parameters can be derived. The motion of any point of a rigid body in
space can be described as the sum of two vectors. the position vector of the center of
mass of the body with respect to the earth fixed coordinate frame and the vector between

the center of mass and another point on the body (EI-Sheimy 1996).

Position, velocity and attitude, when presented as a time variable function, are called

navigation states because they contain al necessary navigation information to

georeference a moving object at a specific moment of time (El-Sheimy 2003). A



combination of sensors capable of determining all navigation states makes up a
navigation system. Obviously, different sensors can be used to determine the same
subvector of the navigation states, such as position state or attitude state. Navigation
comprises the methods and technologies to determine the time varying position and

attitude of a moving object by measurement.

An equivalent process may be conducted using inertial sensors-gyroscopes and
accelerometers, which are the two categories of inertial sensor -to sense rotational and
trandational motion with respect to an inertia reference frame. In order to navigate with
respect to the inertial reference frame, it is necessary to keep track of the direction in
which the accelerometers are pointing. Rotational motion of the body with respect to the
inertial reference frame may be sensed using gyroscopic sensas and used to determine
the orientation of the accelerometers at all times. Given this information, it is possible to
resolve the accelerations into the reference frame before the integration process takes
place. Double integration of the accelerations provides the position according to the

inertial reference frame. This is known as inertial navigation.

The principle of inertial navigation is based on Newton’s first law of motion: every body
continues in its state of rest or uniform motion in straight line, unless it is compelled to
change that state by forces imposed on it. The full meaning of Newton’s first law is not
easily visualized in the Earth’s reference frame. To apply Newton’s laws, the body must
be in an inertid reference frame (non-rotating frame in which there are no inherent

forces, such as gravity). Newton's second law of motion, acceleration is proportional to
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the resultant force and is in the same direction as this force, shares importance with his
first law in inertial navigation. The physical quantity in which inertial navigation system
is interested is acceleration since velocity and displacement can be derived from
acceleration by integration. An inertial navigation system is an integrated system
consisting of a detector and an integrator. It first detects acceleration and then integrates
it to derive the velocity. Then integrates velocity to derive the displacement (Schwarz and

El-Sheimy, 1999).

Measuring the vehicle acceleration in an inertial frame of reference and transforming it to
the navigation frame and integrating it with respect to time, velocity, attitude and position
differences in the navigation frame can be obtained. In this mode of operation, an Inertia
Navigation System (INS) can be considered as a highly sophisticated akadreckoning

system.

2.2 INERTIAL SENSORS

Many types of inertial instruments have been invented in the past, are currently being
invented, and will continue to be invented as the market for guidance, navigation, and
control continues to expand. Based on the technologies used, which decide the size, cost,
and performance, some of the inertial instruments have found a niche in current
applications, while some did not progress much beyond the laboratory/prototype stage.

This will be true to the future developmert of inertial sensors (Barbour et a. 1992).

11



2.2.1 INERTIAL ROTATION SENSORS

In this section some of the most important gyroscopic rotation sensors that have been in

use will be discussed.

2.2.1.1 PRINCIPLE OF OPERATION

The typica quantities to be measured by inertial rotation sensors are the vehicle attitude
Euler anglesF, Q, and Y, which are defined with respect to the local level frame and the
inertial vehicular angular rates P, Q, R These quantities are depicted in Figure (2.1). The
transformation of any vector from the Earth’s axes Xe, Ye, Ze to the INS body axes Xy, Yo,
2z is performed by the Euler transformation [E]= F][Q][Y], formulated in detail in

(Merhav 1996).

Figure 2.1 Rotation of body axes and Earth axes (after Merhav 1996).



It is important to realize that the inertial angular rates P, Q, R are not identical to the
Euler angular rates F,Q,Y . The former triplet represents the projections of the total
inertial angular rate vector W on the vehicle body axes Xy, Yo, Zo While the latter triplet

represents the Euler angular rates F,Q,Y around the axes OM, ON and Z respectively.

The kinematic relationships between P, Q, Rand F,Q,Y are known as the Euler
differential equations presented in, among others, McRuer et al. (1973), Blakelock (1991)

and El-Sheimy (2003). They are repeated here for the sake of completeness.

P=F-YsnQ (2.1)
Q=QcosF - Y cosQsnF (2.2)
R=-QsnF +Y cosQcosF (23)

Alternatively, solving for F,Q,Y interms of P, Q, Ryidds

F =P+QsnF tanQ+ RcosF tan Q 24
Q =QcosF - RanF (2.9)
v =q3nF  gosF 2.6)

cosQ cosQ

Equations (2.4) to (2.6) are of particular important technique because they permit the
computation of the Euler anglesF, Q, Y given their initial value F o, Qo, Yo by alignment

and using the measurements P, Q, R provided by the triad of rate gyros.

Q=Q, +{Quit (27)



F=F,+QFdt (28)

Y =Y, + éY dt 2.9)

Thus, the Euler angles can be derived smultaneously from the measured inertial angular
rate components P, Q, R and the computational agorithm based on Equation (2.4) to
(2.9). However, the measured angular rates P, Q, R invariably incorporate errors known
as drift rates. Therefore, the integrations of Equation (2.7) to (2.9) will accumulate these
errors, which will cause the angular output diverge with time. For this reason, the method
based on the integration of the Euler equations is applicable only in either high-precision
and costly inertial guidance technology or in very short-term guidance applications

(Merhav 1996).

2.2.1.2 CATEGORY AND APPLICATIONS

This section begins by describing the different gyroscope technologies that dominate the
current market and explains, in terms of grformance and technology being used, why
they have been successful. Since accuracy requirements can be attained by existing
technologies, the competition is driven by the desire for low cost, small size, and low

production cost (Barbour et al. 1992).

The spinning mass gyroscope first found a home around 1920 in the single-degree-of-
freedom rate gyro used as a basic turn indicator for instrument flying (Smith and

Meyraugh 1990). After continuous evolution and improvement it was later used to
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provide lead angle data for aircraft fire control sights, and later still for aircraft and
missile flight control systems. The basic configuration of a rate gyro is a ball bearing
rotor housed in a gimba whose gyroscopic precession in response to an angular rate is
restrained by a mechanica spring, making it relatively inexpensive, very rugged, and
reliable. Rate gyros dominate the 10 deg/h gyro drift rate and applications such as flight

control, stability augmentation, autopilots, etc (Barbour et al. 1992).

With the need for better performance, such as in aircraft navigation, it was logical to
improve the rate gyro. When it was identified that the rate gyro's performance was
limited by its spring (Smith and Meyraugh 1990) (i.e., the very mechanism that alows it
to function also limits its capability), the performance requirements were mastered by the
development of the single-degree-of-freedom, rate-integrating gyroscopes. The
integrating gyro is basicaly a rate gyro in which the primary restraining torque on the
gyro gimbal is a damping reaction with a servo loop to maintain the gimbal at null. The
floated integrating gyro progressed from revolutionizing aircraft navigation in the 50s to
enabling strategic missile guidance, autonomous submarine navigation, and space flight

in the 60s, 70s and 80s (Smith and Meyraugh 1990).

The gas bearing was a significant part of the floated gyro evolution, leading to better
stability, and a self-aligning capability for strategic missiles, a capability that no other
instrument to date provides (Barbour et a. 1992). Another benefit of the gas bearing is

the reduction of the angle noise of the floated instrument, so that it is used in satellite



navigation and control; its most recent application is in the Hubble telescope (Barbour et

a. 1992).

Floated integrating gyros have a relatively high cost, are labor intensive, and have long
warm-up (reaction) times (Barbour et a. 1992). Clearly, if a suitable alternate technology
could be found, it would take advantage of these perceived problems-- and thisis exactly

what happened.

The free rotor gyroscope, which is basically a ball bearing rotated spinning mass that is
unrestrained about the gyroscope precession axes, was another early development (Smith
and Meyraugh 1990). The use of one or two gimbals allows these instruments to be used
as directional gyros for directional references and cockpit displays such as the
gyrocompass, artificial horizon, etc. These are very low-accuracy instrument, but they

have maintained their role in the market place (Smith and Meyraugh 1990).

Another early instrument that offered potential advantages over the floated gyro was the
two-degree- of-freedom, gasfilm supported, free rotor gyroscopes. However, it was not
until the mid-50s that this instrument became viable when the rotor time constant
problem was solved (Smith and Meyraugh 1990). This type of instrument has fast
reaction times and results in lower costs because of its two degrees of freedom, but it

cannot match the best performing floated gyros.
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The free rotor gyro can be regarded as a precursor to the two-degree-of-freedom
electrostatic gyro (ESG). The ESG only became viable when machining techniques
became available to generate the very precise finishes and geometry required. The ESG
has much lower drift than the best floated gyros and is smal; unfortunately, its
applications are limited to relatively benign environments since it has low g capability
(Barbour et a. 1992). ESGs are being replaced by lower cost technologies that are better

suited for strapdown applications.

In the early 60s, the dynamically tuned free rotor gyroscope (DTG) was invented (Smith
and Meyraugh 1990). The DTG is a two-degree-of-freedom instrument whose rotor is
suspended by a universal hinge of zero stiffness at the turned speed and rotated by a ball
bearing. Because of their relatively low cost, fast reaction time, small size and
ruggedness, DTGs have dominated the market compared to other mechanical instruments

in most areas where performance is comparable (Barbour et a. 1992).

At the same time that the DTG was being invented, the principle of detecting rotation by
the Sagnac effect was first demonstrated (1963) in a ring laser gyroscope (RLG). The
RLG operates by setting up clockwise and count clockwise resonant light beams reflected
around a closed cavity by mirrors and detecting phase shifts between these beams due to
a rotation. The laser is inside the cavity, which contains the lasing medium; hence, the
RLG istermed an active device (Barbour et al. 1992). The RLG isan excellent strapdown
device because of good scale-factor (SF) linearity and SF stability in the tens of parts per

billion compared with tens of parts per million for mechanical sensors, and amost
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negligible g sengitivity (Merhav 1996). The RLG has other attractive features such as
digital output, very fast reaction times, excellent dormancy characteristics, lower cost,
and the absence of moving parts. RLG technology is still advancing, but is at the practical

limit for today’ s technology (Barbour et d. 1992).

The fiber-optic gyroscope (FOG) is implemented using an integrated optics chip
congtructed in lithium niobate, and fiber-optic sensing coil, diode light source, and photo
detectors (Smith and Meyraugh 1990). This configuration is expected to ke supplemented
eventually by quantum well technology, such as gallium arsenide, which will then allow
integration of most of the above components into a single substrate, increasing reliability,
and reducing costs even further (Smith and Meyraugh 1990). The most recent emerging
technology is the interferometric fiber-optic gyro (IFOG). It provides the closed optical
path by a multi-turn optical fiber coil wound on a coil. It is more compact and potentially

of lower cost than the RLG (Smith and Meyraugh 1990).

The growing need for highly rugged miniature angular rate sensors has initiated a number
of studies and prototype product development programs. These products are potentially
suitable for medium to low accuracy applications. One principle approach is the Coriolis
angular rate sensor. The underlying idea is to put an accelerometer in motion that is
relative to the rotating vehicle body. The development of the basic concept is given in
Merhav (1982), where the redlization and analysis are provided, particularly, for rotating
accelerometers. An alternative mechanization is through vibrating accelerometers, and is

also presented in Merhav (1982). The leading idea is that these accelerometers are
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potentially much cheaper, smaller, and more rugged than gyroscopic devices.

Micromechanical gyroscopes are primarily Coriolis force sensors.

2.2.2 INERTIAL FORCE SENSORS - ACCELEROMETERS

This section introduces specific force sensors, or, as traditionally known in the technical
literature, accelerometers. They range from traditional spring-mass devices to modern

vibrating beam quartz or silicon technologies.

2.2.2.1 PRINCIPLE OF OPERATION

A fundamental requirement in navigation system design and operation is the
measurement of vehicular acceleration with respect to inertial space Sensors commonly
known as accelerometers provide these measurements. Often they are called force sensor
or specific force sensors (SFS). Specific force, denoted by the vector a, implies the total

Newtonian force F acting on the vehicle divided by itsmass M, i.e.
-F e (2.10)
M

a is commonly resolved along the body-axes of the vehicle x, y, and z, so that
aD[aX,ay,aZJT, where T denotes the transpose. Since SFS's are single input-axis

devices, each axis requires the dedication of at least one SFS.

The term SFS is used because this sensor does not actually measure acceleration. This is

best verified by considering a vehicle in free fall equipped with an SFS. While the vehicle
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clearly accelerates at g = 9.8 m/'s, the SFS reading is zero. The reason, of course, is that
the gravitational pull acts equally on each mass particle of the SFS so that no relative
displacement takes place between the proof mass m and the SFS casing (Merhav 1996).
Specific force and acceleration are only identical in a gravitation-free environment that,
strictly speaking, does not exist in our planetary system, or for that matter in the universe.
Thus, in every situation, in order to establish the reading of an SFS, one has to identify
inertial (Newtonian) farces only, disregarding gravitational forces or their projections

caused by the tilting of the vehicle with respect to the local horizon (Merhav 1996).

2.2.2.2 SPECIFIC FORCE READING ON MOVING PLATFORMS

Consider the vehicle as a rigid body with a mass M, which moves with the inertia

velocity V and angular velocity W. From Newton’s second law,

dmv)=My v (2.11)
dt dt dt

F=
Assuming that M = congt, so that the first term is zero. Thus, F is determined by the
second term only, namely (Merhav 1996),

F=Md—V=IVM d_V+|v|(0'v) (212
dt dt

where 1,D(i, j,k)" is the unit vector with its components i, j, k along the , y, z body-
axes. Dividing through by M, the acceleration vector is

a=|v‘1i_\t/+0' v 2.13)



The first term represents the tangential acceleration. The second term, often termed the
Coriolis acceleration, is actually the centripetal acceleration resulting from the angular
velocity W of the velocity vector V in the inertial space. Thus,
VDiU + jV +kW (2.14)
ODiP+ jQ+kR (2.15)

With these notations, we have

LY G+ v kw (2.16)
dt
and
i ] ok
0" V=P Q R|=i(QW- RV)+j(RU- PW)+k(PV- QU) (2.17)
u v w
We denote
F=iF, +jF, +kF, (2.18)

Combining Equation (2.12) with Equation (2.16) and (2.17) and dividing through by M,

the Newtonian sensed reading a" of the SFS's are

é;U & +QW- RVU
@0G=a/+RU - PW 5 (2.19)
e ,

They consist of the linear acceleration components and the components of centripetal
acceleration due to the curved path of the vehicle. The earth is initially assumed to be flat

and non-rotating (Merhav 1996).
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A case of specia interest, is a vehicle with the resultant net local vertical force F, + W =
0, namely, F,=-W, and one which determines the projections of the specific force a, =
F./M = -gonthe X, vy, z body axes by means of the Euler transformation previously

defined in Figure (2.1) (Merhav 1996):

eagu &  cYcQ sYcQ -sQK0d é gR
éayu e(chQsF SYCF) (sYsQsF +cYcF) CQSF£O ﬂ:g gCQsFH (2.20)
gchQcF +SYsF) (SYSQCF - cYsF) cQcF i@ gff & 9goQdF

where s( )Qs'n ( ) and c(- )Qcos(- )

Combining (2.19) and (2.20), the total specific force vector is expressed as (Merhav

1996).
éa.u €l élu éJ+QW- RVu é gsQ U
é u_€,nu, e 4u G
&4~ 0t ey 1= g\/’fRU PW i+ & goQsF i (2.21)
B8 S SUH BV+PV-QUE & goQcFd

It is important to realize that the readings of on-board SFS's are, in general, not identica

to the vehicular acceleration as seen by an outside observer.

2.2.2.3 CATEGORY AND APPLICATIONS

New technologies continue to be developed to meet the SFS market needs. However,
since accuracy requirements can be attained by existing technology, and since the new
and emerging technologies offer little in any performance improvement, the decision to
insert or develop them will depend on low life-cycle cost, small size, and low production
cost (Barbour et al. 1992). While severa of the new technologies are described herein, it

is expected that only two or three will impact the market in a significant way.



The majority of electromechanical accelerometers are the restrained mass or force
rebalance types, in which a proof mass is supported in a plane perpendicular to the input
(sense) axis by a flexure, torsion bar, or pivot and jewel (Norling 1990). The motion of
this proof mass under changes of acceleration is detected by a pickoff. A rebalance force
may be generated through a servo feedback loop to restore the proof mass to its null
position. The force rebalance type of accelerometer has been successful not only because
it is relatively small, simple, very rugged, and reliable, but aso because it can be
designed to meet different performance and application requirements by careful selection
of the flexure and mass configuration, electromagnetic pickoffs and forces, servo
electronics, fluid and damping, ad materials (Savage 1978). Force rebalance
accelerometers can operate in strapdown or gimbaled modes. The output needs to be

digitized (Barbour et. al. 1992).

The highest performance accelerometer available is the Pendulous Integrating Gyro
Accelerometer (PIGA), which is used for strategic missile guidance (Barbour et al. 1992).
The PIG part of the PIGA is identical to the floated single-degree-freedom, integrating
gyro with the addition of a pendulous mass located on the spin axis. The PIGA is a very
stable, linear device, with very high resolution over a wide dynamic range. PIGAs are
relatively complex and perceived to have high life-cycle costs due to the three rotating
mechanisms (gas bearing, servo-driven member (SDM), and dlip ring) (Barbour et al.

1992).



Another type of accelerometer is the resonator or openloop type such as the vibrating

string accelerometer. This device has low shock tolerance (Barbour et a. 1992).

Angular accelerometers were initially used in the 50s for dynamic compensation of AC
(alternating current) servomechanisms. The basic configuration is a fluid-filled ring with
a vane extending into it. Under rotational motion of the ring, the vane is restrained by a
torquer, whose current indicates the angular displacement (Norling 1990). Such devices
are used in applications requiring high bandwidth (2000Hz), small magnitude
stabilization, or jitter compensation. However, angular displacement sensors are not as
accurate as floated gyros or DTGs below about 20Hz, but the high cost of these gyros

restricts their use (Barbour et a. 1992).

In less than 20 years, MEMS (micro electro-mechanical systems) technology has gone
from an interesting academic exercise to an integral part of many common products
(Weinberg 2004). Silicon micromechanical instruments can be made by bulk
micromachining (chemical etching) single crystal silicon or by surface micromachining
layers of polysilicon (Yun and Howe 1991). Many manufactures are developing gyros
and accelerometers using this technology. Their extremely small size combined with the
strength of silicon makes them ideal for very high acceleration applications. Silicon
sensors provide many advantages over other materials, such as quartz or metal, for micre
sized rate sensor development. These advantages include excellent scale factor matching
and stability, long life, bias stability, virtually no degradation, and the ability to handle

larger stress levels (Yun and Howe 1991).
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2.2.3 SUMMARY

An excellent survey on the state of the art of rotation and force sensors and their potential
applications is provided in Barbour et al. (1992) along with the better-known mechanical
and optical gyros. Figures (2.2) and (2.3) describe performance contours of current sensor
technologies for gyros and accelerometers and their applications as related to ppm of
scale factor (i.e., how well the gyroscope or accelerometer reproduces the sensed rate or
acceleration) and ng or deg/h of inherent bias stability (i.e., the error independent of
inertial rate or acceleration). While these performance factors are not the only ones that
influence sensor selection, they are useful for comparison purposes. The closed contours
are mapped in terms of bias and scale factor uncertainties. The various applications are
indicated within these contours. Thus, one can see the association between current

technologies and their operational utilization at a glance.
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Figure 2.2 Current Gyro Technology Applications (After Merhav 1996)
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Figure 2.3 Current Accelerometer Technology Applications (After Merhav 1996)

The utilization of solid-state inertial sensors like those described above have potentially
significant cost, size, and weight advantages over conventional instruments, which will

result in a rethinking of the options for which such devices can be used in systems
(Barbour et al. 1992). Micromechanical inertial sensors are currently dominating the low-
performance end of the application spectrum. These instruments will continue to evolve
into the middle-performance ground. The commerciad market for micromechanical
inertial sensors is orders of magnitude larger than any contemplated military market. The
application of micromechanical gyro technology to the automobile industry is one case.
Products designed for this industry must be inexpensive and reliable, both characteristics
of solid-state technology. Many other micromechanical inertial sensor applications exist
for automobiles such as airbags, braking, leveling, and augmentation to Global
Positioning System (GPS) navigation systems. Additional commercial applications can
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be found in products such as camcorders, factory automation, general aviation, medical
electronics, and perhaps one of the largest areas of al, children’s toys and games. If the
cost can be brought down low enough, one could expect to see an IMU in every home

(Barbour et a. 1992).

2.3 INERTIAL SENSOR ERRORS

The performance characteristics of inertial sensors (either gyroscopes or accelerometers)
are affected by a variety of errors. Most errors can be categorised into sensor bias, scale

factor, axes misalignment, and noise. In the following section, these errors will be

discussed briefly.

2.3.1 BIAS

2.3.1.1 DEFINITION

The bias for gyro/accelerometer is the average over a specified time of
accelerometer/gyro output measured at specified operating conditions that have no
correlation with input acceleration or rotation. The gyro bias is typicaly expressed in
degree per hour (°/h) or radian per second (rad/s) and the accelerometer bias is expressed
in meter per second square [m/S® or g]. Bias generaly consists of two parts a
deterministic part called bias offset and a random part. The bias offset, which refers to
the offset in the measurement provided by the inertial sensor, is deterministic in nature
and can be determined by calibration. The random part is called bias drift, which refers to
the rate at which the error in an inertial sensor accumulates with time. The bias drift and

the sensor output uncertainty are random in nature and they should be modeled as a
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stochastic process. Bias errors can be reduced from the reference vaues, but the specific

amount is range and type dependent (EI-Sheimy 2003).

In addition to the above, there are another two characteristics used to describe the sensor
bias. The first is the bias asymmetry (for gyro or accelerometer), which is the difference
between the bias for positive and negative inputs, typically expressed in degree per hour
(°/h) or meter per second square [m/s’, g]. The second is the bias instability (for gyro or
accelerometer), which is the random variation in the bias as computed over specified
finite sample time and averaging time intervals. This non-stationary (evolutionary)
process is characterized by a 1/f power spectral density. It istypicaly expressed in degree

per hour (°/h) or meter per second square [m/s?, g], respectively.

2.3.2 SCALE FACTOR

Scale factor is the ratio of a change in the input intended to be measured. Scale factor is
generally evaluated as the dope of the straight line that can be fit by the method of least
squares to input-output data. The scale factor error is deterministic in nature and can be
determined by calibration. Scale factor asymmetry (for gyro or accelerometer) is the
difference between the scale factor measured with positive input and that measured with
negative input, specified as a fraction of the scale factor measured over the input range.
Scale factor asymmetry implies that the dlope of the input-output function is
discontinuous at zero input. It must be distinguished from other nonlinearities (El-Sheimy

2003).
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Scale factor stability, which is the capability of the inertial sensor to accurately sense
angular velocity (or acceleration) at different angular rates (or at different accelerations),
can also be used to describe scale factor. Scale factor stability is presumed to mean the
variation of scale factor with temperature and its repeatability, which is expressed as part

per million (ppm). Deviations from the theoretical scale are due to system imperfections.

2.3.3 MISALIGNMENT

Axes misalignment is the error resulting from the imperfection of mounting the sensors.

It usualy results in a non-orthogonality of the axes defining the INS body frame. As a

result, each axis is affected by the measurements of the other two axes in the body frame.
Axes misalignment can, in general, be compensated or modeled in the INS error equation

(EI-Sheimy 2003).

2.3.4 NOISE

Noise is an additional signal resulting from the sensor itself or other electronic equipment
that interfere with the output signals trying to measure. Noise is in general non-systematic
and therefore cannot be removed from the data using deterministic models. It can only be

modeled by stochastic process.



2.3.5 SENSORS GENERAL MEASUREMENT MODEL

2.3.5.1 GYROS MEASUREMENT MODEL

Gyroscope is an angular rate sensor providing either angular rate in case of rate sensing
type or attitude in the case of the rate integrating type. The following model represents
most of the errors contained in a single gyroscope measurement of the angular rate:
2,=? +b, +S? +N? +ew) (2.22)

where |, is the vector of measurements in (deg/hr), ? is the vector of true angular
velocities (the theoretically desired measurement) (deg/hr), b, is the vector of gyroscope
instrument bias (deg/hr), S is the gyro scde factor in matrix form, N is the matrix
representing the non-orthogonality of the gyro triad and €?) is the vector of the gyro

sensor noise (deg/hr). These errors are, in principle, minimized by estimation techniques.

2.3.5.2 ACCELEROMETER MEASUREMENT ERRORS

The accelerometer error sources are quite similar to those of gyroscopes except for the
scale factor, which contains two components (linear and non-linear). The following
specific force model represents the errors contained in a single accelerometer
measurement:

2, =f+b, +Sf +S,f + Nf +dg+¢(f) (2.23)
where I¢ is the vector of measurements in (m/s%), f is the vector of true specific forces
(m/S), by is the vector of accelerometer instrument biases (m/s?), S is the linear scale

factor in matrix form, & is the non-linear scale factor in matrix form, N is the matrix

representing the non-orthogonality, dy is the anomalous gravity vector (deviation from
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the theoretical gravity value) (m/s’) and g(f) is the vector representing the accelerometer

sensor noise (M/s?). These errors are, in principle, minimized by estimation techniques.

2.3.6 SENSOR ERRORS ELIMINATION/MINIMIZATION TECHNIQUES

In order to minimize the effect from bias and scale factor, the sensor errors elimination
methods are necessary. The estimation and differencing are introduced only for the bias
elimination process in accelerometer measurements,; however, the principle for the gyro

is the same. The calibration method is more generally used in inertial sensor bias and

scale factor elimination.

2.3.6.1 ESTIMATION

The mathematical model of accelerometer measuremert, if it can be perfectly aigned
with gravity, can be simplified as:
I, =f+b, +e (2.29)

wheref, by, and e represent acceleration, bias and noise.

By aigning the accelerometer with the local gravity, the accelerometer measurement can

be expressed as
I, =-g+b, te (2.25)
Then the bias can be estimated as

b, =(I, +g)+e (2.26)
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Clearly, the estimated value for the bias depends on the accuracy of estimating local
gravity, g. Also, the noise component is assumed to be small. Repesating tests at the same

point and averaging the measurement can improve the accuracy of estimation.

2.3.6.2 DIFFERENCING

If there are two known local gravity test points, by aligning the same accelerometer with

each local gravity, the accelerometer measuremert can be expressed as

Iy, =-0,+b, +e (2.27)

Iy, =-0, +b; +&, (2.28)
Then the bias is eliminated by the measurement procedure:

I, -1, =(g,- 9,)+De (2.29)
Here, the sensor axis is also assumed to align perfectly with the local gravity. Thus the

measurement can be expressed as Equation (2.25).

2.3.6.3 CALIBRATION

Cdlibration is defined as the process of comparing instrument outputs with known
reference information and determining coefficients that force the output to agree with the
reference information over a range of output values. The calibration parameters to be
determined can change according to the specific technology in an inertial measurement
unit (IMU). The calibration usually takes place in alab environment in which the inertial
system is mounted on a level table with each sensitive axis pointing aternatively up and

down (six positions). Therefore, it is possible to extract estimates of the accelerometer



bias and scale factor by summing and differencing combinations of the inertia system

measurements.

I, =b, - (1+S)g (2.30)

up

(. =b +(1+S)g (2.31)

where b, S, and g represent bias, scale factor and gravity, respectively. The bias and scale

factor of the Zaxis accelerometer can be calculated from these measurements as

b =1, +1, )2 (2.32)

s=(, - I - 2g)/ 2g (2.33)
Similarly for the gyros, placing the sensor in static mode with the axis being calibrated

pointing vertically upward and using the average of 10 to1l5 minutes measurements,

lw,, =B, +(1+8, v, sinf (234)
where by, Sy, f ad we represent bias, scale factor, latitude of the gyro location and
Earth’'s rotation rate, respectively. Rotate the sensor 180° such that the same axis is

pointing vertically downward and get the average measurement,

=b, - L+S, W, dnf (2.35)

Wdown

The bias and scale factor of the gyro under calibration can be calculated from these

measurements as,
b, =l w |de)/2 (2.36)
S =, - I, - 2w.snf)/(2w,snf) (2.37)



As described above, the noise is ignored during the calibration process. However, the
value of the bias and scale factor is still contaminated by residual noise after calibration.

As aresult, further techniques are needed to estimate noise in navigation algorithm.

2.3.7 IMPACT OF SENSOR BIAS

An uncompensated accelerometer bias error will introduce an error proportiona to time,

t, in the velocity and an error proportional to t* in the position.
v=_p,dt=bt U p=cydt=cp,tdt :%bftz (2.38)

From Equation (2.38), an accelerometer bias introduces first order errors in velocity and
second ader errors in the postion. If there is a 100ny level accelerometer bias, the error

in postion after 10 seconds is 0.05m and that after 1000 seconds is 500m (assume

g=10m/sY).

An uncompensated gyro bias in the X or Y gyro error will introduce an angle (in roll or

pitch) error proportional to time t,

dg = (p,dt =h,t (2.39)
This small angle will cause misaignment of the INS, and therefore the acceleration

vector will be projected wrong. This, in turn, will introduce acceleration in one of the

horizontal channels with avalue a = gsn(dg) » gdg » gh,t (Merhav 1996).

V= p, otdt =%bwgt2 U p=¢ydt= (‘%mgtzdt :%qNgﬁ (2.40)



Therefore, a gyro bias introduces second order errors in velocity and third order errors in
the position. If there is a 0.2 deg/h level axis gyro drift, the error in position due to gyro
drift is 0.0016m after 10 seconds and 1600m after 1000seconds (assume g=10m/s?). That
means gyro drift is a significant error source. For more details about the effect of inertia
sensor errors on the derived navigation quantities, it is advised to consult with EI-Sheimy

(2003).

2.3.8 IMPACT OF SCALE FACTOR

According to Equation (2.22), if only the scale factor error is considered, then

l, = Sw+ Sw (2.41)
where Sy is the true scale facto and S is the scale factor error. Clearly, the scale factor
error worked as a gyro bias, and the value is proportional to the angular rate. Based on

the previous analysis, gyro drift is a significant error source and a gyro bias introduces

second order errors in velocity and third or der errors in the position.

Similarly, the effect of accelerometer scale factor error, according to Equation (2.23), can

be expressed, if only linear scale factor is considered, as
I, =S f,+S.1, (242)
Clearly, the scale factor error worked as an accelerometer bias, and the value is

proportional to the acceleration. Based on the previous analysis, accelerometer bias

introduces first order errorsin velocity and second order errors in the position.



2.3.9 IMPACT OF INS MISALIGNMENT

Initial alignment includes two steps. accelerometer leveling and gyro compassing.
Accelerometer leveling is aligning the z-axis of the accelerometer triad Z°to the z-axis of
the navigation frame by driving the output of the horizontal accelerometers to zero level
surface. The assumption for a triad error-free accelerometers, with the accelerometers
measurements fy and fy described the tilt in the x and y directions of the vertical

accelerometer with respect to the vertical direction, resultsin:
f =gdng, ®q, =sn"*(f,/qg) (2.43)
f, =gdng, ®q, =s'n'1(fy/g) (2.44)
where gy and g, are the tilt in the x and y directions respectively (usually called roll and

pitch). This clearly indicates that the roll and pitch accuracy are dependent on the
accelerometer accuracy, which is mainly governed by the accelerometer bias. For small

roll and pitch angles, the accuracy of roll and pitch angles will be given by:
dg, =b; /g (2.45)
dqy = bfy /g (2.46)
where b, is the xaxis accelerometer bias and bfy is the y-axis accelerometer bias. By

driving fy and fy, to zero (mathematically in the case of a strapdown system or
mechanically in the case of a gimballed system), the true vertical is established and

therefore the X and y® accelerometers are located in alevel plane.

Gyro compassing makes use of the fact that the gyro with its sensitive axis in the

horizontal plane (i.e. after accelerometer levelling) at an arbitrary point on the surface of
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the Earth, will sense a component of the Earth rotation. This component will be at a

maximum when the sensitive axis points North and zero when it points East (El-Sheimy

2003).

After accelerometer levelling has been established, that is x° and y° accelerometers are
located in a level plane, the x° and y® accelerometers will be arbitrarily rotated with an
angle, the azimuth (A), with respect to the east and north directions. The X-axis gyro
measurement will be given by:

w? =-w,cosf gn A (2.47)
The Y-axis gyro measurement will be given by:

w, =-w,cosf cosA (2.48)
Therefore, the azimuth can be obtained through:

tanA=-w; /wy (2.49)
It should be noted that the latitude of the INS does not need to be known in order to

accomplish gyro compassing.

Consider the case of small azimuth angles, e.g. A approaching zero, therefore sin A =A
and cos A=1. Then the Xand Y gyro measurements will be given by:
w? =-w,cosf sn A=- Aw, cosf (2.50)

w, =-w,cosf cosA=w,cosf (Independent with A) (2.52)

This means that the accuracy of the azimuth will mainly depend on the x-axis gyro

accuracy, which is mainly governed by the gyro bias,
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b, .
dA= —= (2.52)
w,, cosf

In addition to the alignment errors produced by the gyro drift, errorsin azimuth also arise
as a result of gyro random noise (defined by the gyro angle random walk (ARW): the
angular error build-up with time that is due to white noise in angular rate). Gyro noise
gives rise to an RMS azimuth alignment error, which is inversely proportiona to the

square root of the alignment time (Ty) (El-Sheimy 2003),

2

ARW 0O

ARW &
A=W @ AW D
w,, cosf JTa a gwe cosf dA g

(2.53)

This means that, for a given gyro ARW, we can achieve different azimuth accuracies

with different alignment time.

2.3.10 SUMMARY

Based on the above discussion, the gyro and accelerometer sensor errors of a strapdown
inertial navigation system can be divided into two parts. a constant (or deterministic) part
and a stochastic (or random) part. The deterministic part includes bias and scale factor,
which can be determined by calibration and therefore can be removed from the raw
measurements. The random part includes, for example, bias drift, axis misalignment, and
random noise. These errors can be modeled in stochastic model and included the Kalman

filter state vector.

Table (2.1) summarizes the characteristics of different inertial sensors error sources as

well as the procedures to remove or minimize them.
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Table 2.1 Summary of Inertial Sensor Errors

Characteristic Procedures to Remove/Minimize
Errors Stochastic
Deterministic | Random | Calibration | Compensation .
Modeling
Bias Offset Y \%
Bias Drift \Y
Scale Factor \Y; \%
Misalignment \% \% \%
Noise v




CHAPTER THREE: REVIEW OF STOCHASTIC MODELING TECHNIQUES

In this chapter, the algorithm of discrete Kalman filter is introduced. Then, the generd
stochastic modeling methods are reviewed and examples are provided. In addition, the
useful techniques in stochastic modeling, such as fast Fourier transform and wavelet de-

nosing method, are introduced.

3.1 INTRODUCTION

The general non-linear problem was posed by Norbert Wiener during the early 1940s
(Wiener 1961): given the yet to be analyzed system, which he defined as a black box,
Wiener identified and characterized the system in terms of bodies of known structures, or

what he caled white boxes.

Based on that concept, the solution to the linear problem uses various time and frequency
domain techniques to find an operationa equivalent of the black box, which may then be
constructed by combining certain canonical forms of these white boxes. Although the
model structure may be different from the true structure, the input-output properties are to

be equivalent.

The foundation of modeling goes back to approximately 1800 with Gauss's method of
least square estimation (Gelb 1974). Current methods of determining the steady-state

input-output characteristics of a variety of devices are based on this approach.



By 1960, Kalman conceived a time domain approach to optimal recursive filter design
(Kaman 1960 and Gelb 1974). By 1963, Signal ldentification (Gelb 1974) and
frequency domain Time Series Analysis (TSA) (Van Trees 1968 and Gelb 1974) methods
were developed. In 1965 Tukey and Cooly published their famous paper on the fast
Fourier transform (FFT) (Gelb 1974). In 1966 David Allan proposed a ssmple variance
analysis method for the study of oscillator stability (Allan 1966). Parameter Identification
methods were known by 1968 (Gelb 1974 and Brogan 1974). During the decades that
followed, time domain and frequency domain characterization of sensors gained

importance.

All these methods are important for modeling inertial sensor noise and the next few
sections will review some of these important methods including the autocorrelation
method and power spectral density method. In addition, examples are provided to show

how they will be used in modeling inertial sensors errors.

3.2 THE DISCRETE KALMAN FILTER

In 1960, Kaman published his famous paper describing a recursive solution to the
discrete data linear filtering problem (Kalman 1960). Since that time, due in large part to
advances in digital computing; the Kaman filter has been the subject of extensive
research and application, particularly in the area of autonomous or assisted navigation. A
very “friendly” introduction to the general idea of the Kaman filter can be found in
(Maybeck 1979), while a more complete introductory discussion can be found in

(Sorenson  1970), which adso contains some interesting historical narrative. More
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extensive references include Gelb (1974), Brown (1983), Lewis (1986), Grewal (1993),

and Welch and Bishop (2004).

The Kaman filter is a set of mathematical equations that provides an efficient
computational (recursive) solution of the least-square method. The filter is very powerful
in several aspects: it supports estimations of past, present, and even future states, and it
can do that even when the precise nature of the modeled system is unknown (Welch and
Bishop 2004). The following discussion is based mainly on Brown (1983) and Welch and

Bishop (2004).

3.21 THE PROCESS TO BE ESTIMATED

The Kalman filter addresses the general problem of estimating the state xi R of a
discrete time controlled process that is governed by the linear stochastic difference
equation (Welch and Bishop 2004).

X, =AX,, +Bu, +w, (3.1
with a measurement zZI R" that is

z, =HXx, +v, (3.2
The random variables wy and vk represent the process and measurement noise,

respectively. They are assumed to be independent (of each other), white, and with normal

probability distributions
p(w)~ N(0.Q) (33)

p(v)~N(,R) (3.4)
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In practice, the process noise covariance Q and measurement noise covariance R
matrices might change with each time step or measurement, however, here we assume

they are constant.

The n" n matrix A in the difference equation (3.1) relates the state at the previous time
step k-1 to the state at the current step k, in the absence of ether a driving function or
process noise. Note that in practice A might change with each time step, but here we
assume it is constant. The n” 1 matrix B relates the optional control input Ul R to the
date x. The m n matrix H in the measurement equation (3.2) relates the state to the
measurement z. In practice H might change with each time step or measurement, but

here we assume it is constant.

3.2.2 THE COMPUTATIONAL ORIGINS OF KALMAN FILTER

Define X, 1 R"to be apriori state etimate at step k given knowledge of the process prior
to step k, and X, .1 R" to be a posteriori state estimate at step k given measurement z.
Define the a priori and the a posteriori estimate errors as (Welch and Bishop 2004)

e ° X, - X, (35

e % X, - X, (3.6)
The a priori estimate error covariance is

P, = Ele.e] (3.7)

and the a posteriori estimate error covariance is



P, =Ele.e] (3.8)
In deriving the equations for the Kalman filter, begin with the goa of finding an equation
that computes an a posteriori state X, as alinear combination of an a priori estimate and
a weighted difference between an actual measurement z, and a measurement prediction

HX, as shown below in Equation (3.9) (Welch and Bishop 2004).
X :>‘<'k+Kk(zk— H>‘<;() (3.9
The difference (z - HX}) in Equation (3.9) is caled the measurement innovation, or the

residual. The residua reflects the discrepancy between the predicted measurement HX,

and the actual measurement z. A residua of zero means that the two are in complete

agreement.

The n” mmatrix Kk in Equation (3.9) is chosen to be the gain or blending factor that
minimizes the a posteriori error covariance, Equation (3.8). This minimization can be
accomplished by first substituting Equation (3.9) into the above definition for ey,
substituting that into Equation (3.8), performing the indicated expectations. Then by
taking the derivative of the trace of the result with respect to Ky, setting that result equal
to zero, and then the K can be determined. One form of the resulting K that minimizes
Equation (3.8) is given by

P.HT

L 3.10
HP,H™ +R (310

K, =P H (HP,HT +R) " =

Looking at Equation (3.10), as the measurement error covariance R approaches zero, the

gain Ky weights the residual more heavily. Specificaly,
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lim K, =H™* (3.11)

R®0
On the other hand, as the a priori estimate error covariance P, approaches zero, the gain

Kk weights the residual less heavily. Specifically,

ImK, =0 (3.12)

R ®0
Another way of thinking about the weighting by Ky is that as the measurement error

covariance R approaches zro, the actual measurement z is trusted more and more, while

the predicted measurement HX, istrusted less and less. On the other hand, as the a priori
estimate error covariance P, approaches zero the actua measurement % is trusted less

and less, while the predicted measurement HX, is trusted more and more (Welch and

Bishop 2004).

3.2.3 THE DISCRETE KALMAN FILTER ALGORITHM

The Kaman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward (in time) the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement update
equations are responsible for the feedback, i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate (Welch and Bishop

2004).



The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector agorithm for solving

numerical problems.

The specific equations for the time and measurement updates are presented below in

Table (3.1) and Table (3.2).

Table 3.1 Discrete Kalman filter time update equations

X, =AX,, +Bu, (3.13)

P; =AP,AT+Q (3.14)

Again notice how the time update equations in Table (3.1) project the state and
covariance estimates forward from time step k-1 to step k. A and B are from Equation
(3.1), while Q is from Equation (3.3). Initial conditions for the filter are discussed in the

earlier references.

Table 3.2 Discrete Kalman filter measurement update equations

K,=P,HT(HP;HT +R)" (3.15)
%, =% +K, [z, - H%; ) (3.16)
P =(-KMH)P; (3.17)

The first task during the measurement update is to compute the Kalman gain, K. Notice

that the equation given here as Equation (3.15) is the same as Equation (3.10). The next
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step is to actually measure the process to obtain z,, and then to generate an a posteriori
state estimated by incorporating the measurement as in Equation (3.16). Again Equation
(3.16) is ssimply Equation (3.9) repeated here for completeness. The final step is to obtain

an aposteriori error covariance estimate via Equation (3.17).

After each time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates. This recursive
nature is one of the very appealing features of the Kalman filter—it makes practica
implementations much more feasible than, for example, an implementation of a Wiener
filter (Brown 1983), which is designed to operate on al of the data directly for each
estimate. The Kalman filter instead recursively conditions the current estimate on all of
the past measurements. Figure (3.1) below offers a complete picture of the operation of

thefilter (Welch and Bishop 2004).

Measure Update (“Correct™)
Time Update (“Predict”) {13 Compute the Ealman gain
(1) Project the state ahead K, =FHT(HPHT + R
i = AR, + Buy {2 Update estimate with measurement zy,
{2) Project the error covariance ahead AT gt E, (Z,f = Hﬁ;]
A AP&_IAT + {31 Update the error covariance

T B=U-EH)EF

Initial estimates for x,_; and 54

Figure 3.1 A complete picture of the operation of the Kalman filter (after Welch and
Bishop 2004)
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3.24 FILTER PARAMETERS AND TUNING

In the actual implementation of the filter, the measurement noise covariance R is usualy
measured prior to operation of the filter. Measuring the measurement error covariance R
is generaly practica (possible) because we need to be able to measure the process
regardless (while operating the filter) thus we are generally able to take some off-time

sample measurements in order to determine the variance of the measurement noise.

The determination of the process noise covariance Q is generally more difficult as we
typically do not have the ability to directly observe the process we are estimating.
Sometimes a relative simple (poor) process model can produce acceptable results if one
“injects’ enough uncertainty into the process via the selection of Q. Certainly in this case

one would hope that the process measurements are reliable.

In either case, whether or not we have arational basis for choosing the parameters, often
times superior filter peformance (statistically speaking) can be obtained by tuning the
filter parameters Q and R. The tuning is usualy performed off-line, frequently with the
help of another (distinct) Kalman filter in a process generally referred to as system

identification (Welch and Bishop 2004).

In closing we note that under conditions where Q and R are constant, both the estimation

error covariance B and Kaman filter gain Ky will stabilize quickly and then remain
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constant (see the filter update equations in Figure (3.1)). If this is the case, these
parameters can be pre-computed by either running the filter off-line or, for example, by

determining the steady-state value of Py as described in Grewal (1993).

3.3 DIGITAL SIGNAL PROCESSING TOOLS

The subject of digital signal processing has received considerable attention in the past
few decades, and this has occured concurrently with the advancement of computer
technology (Brown 1983). In spectral analysis, Fourier transform is a powerful tool to
identify or distinguish the different frequency sinusoids and their respective amplitudes
(Brigham 1988). The fast Fourier transform is a discrete Fourier transform agorithm that
reduces the number of computations needed. Wavelet analysis, in contrast to Fourier
analysis, uses approximating functions that are localized in both time and frequency
space. This unique characteristic makes wavelets particularly useful, for example, in

approximating data with sharp discontinuities (Mallat 1989).

3.3.1 FAST FOURIER TRANSFORMS

In 1965 Cooly and Turkey described a computationally efficient algorithm for obtaining
Fourier coefficients (Gelb 1974). The fast Fourier transform (FFT) is a method for
computing the discrete Fourier transform (DFT) of atime series of discrete data samples.
Such time series result when digital analysis techniques are used for analyzing a
continuous waveform. It takes advantage of the fact that many computations are repeated
in the DFT due to the periodic nature of the discrete Fourier kernel: €12P*™. The form of

the DFT is (Embree and Danieli 1999)
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X(k)= & x(n)e 1@ (3.18)

=0

>

By letting W™= &72*"N 'Equation (3.18) is rewritten as

N-1

X(k)=q x(nwn (3.19)

=0

>

Now, WMNE™N) — Wk for gl q, r, which are integers due to the periodicity of the

Fourier kernd.

Break the DFT into two parts (Embree and Danieli 1999):

N/2-1 N/2-1
X(k)= & x@nWwW2™ + § x(2n+1w ok (3.20)
n=0 n=0

Where the subscript N on the Fourier kernel represents the size of the sequence. If we
represent the even elements of the sequence x(n) by Xe, and the odd elements by Xoq, then

the equation can be rewritten

N62-l K ‘ N62-l K
X(k) = a XeWin TWyn a XeaWairs (3.21)

n=0 n=0

We now have two expressions in the form of DFTs so we can write
X(K) = X, (n) + Wi, X o4 (1) (322)
Notice that only DFTs of N/2 points need to be calculated to find the value of X(k). Since

theindex k must goto N-1, however, the periodic property of the even and odd DFTs is

used. In other words:

ev

Xe (k) = X0 K-

Nz

0 for N EKEN-1 (3.23)
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For the original DFT, the number of multiplications required is of the order N°. This can
easlly get out of hand, especialy in “online’ applications. Fortunately, in an FFT
algorithm, the number of required multiplications is of the order of NlogN. The
computational saving is spectacular for large N. For example let N be 2°=1024, which is
a modest number of time saples for many applications (Brown 1983). Then N* would
be about 10°, whereas Nlog; N is only about 10°. This represents a saving of about a factor
of 100 and impacts directly on the time required for the transformation. Because of its
efficiency, the FFT is used amost universally in both on-line and off-line spectral

analysis applications (Brown 1983).

The FFT has applicability in the generation of statistical error models from series of test
data. The agorithm can be modified to compute the autocorrelation function of a one-
dimensional real sequence or the cross-correlation function and convolution of two one-
dimensional real sequences. It can also be used to estimate the power spectral density of a
one-dimensional real continuous waveform from a sequence of evenly spaced samples.
The considerable efficiency of the FFT, relative to conventional analysis techniques, and
the availability of the outputs from which statistical error models are readily obtained,
suggest that the FFT will be of considerable utility in practical applications of linear

system techniques.

Figures 3.2 and 3.3 show examples of FFT results for two hours static x-gyro data of the
CIMU and the MotionPak Il strapdown inertial systems. The first system is a navigation

grade Ring Laser Gyro systems while the 2" system is a tactical grade MEM S-based
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system. The spectrum information can be obtained from the plots. The power at the zero
frequency is much higher than the rest, so the yaxis value is limited to 4 to make the
power spectrum clear. For static data, the high frequency info can be considered as noise.
For CIMU gyro, the mgjor noise gathers close to the range around 100Hz, which means
that the noise part can easily be removed with a low pass filter. On the other hand, the
noise for MotionPak 11 gyro distributes over amost al of the whole frequency ranges,

which means that it is difficult to remove al the noise to obtain the true signal.

Power {unitz}

0 ] | [EWRA N ARRTI jllll.lli.. L || AL TSUT Wee Y g
0 10 20 30 40 a0 G0 70 a0 a0 100

Frequency (Hz)

Figure 3.2 Two Hours CIMU X-axis Gyro FFT Result
4 T T T T T T T T T

Power (unitz}
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a o 10 15 20 25 30 35 40 45 a0
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Figure 3.3 Two Hours MotionPak |1 X-axisGyro FFT Result
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3.3.2 WAVELET ANALYSIS

Wavelets, as a mathematical tool, have received extensive attention in the engineering
professon during the last two decades. Wavelet analysis is a powerful method for
decomposing and representing signals that has proven useful in a broad range of fields
(Mallat 1989). Wavelet transforms are somewhat similar to Fourier transforms, in that
they expose a function’s frequency content. Fourier analysis begins with a waveform; a
sequence of values indexed by time, and transforms this waveform into a sequence of
coefficients, which are indexed by frequency. In a similar manner, wavelet techniques
can also be used to analyze a time-indexed function and represent it as a group of
frequency components. Wavelet techniques are based on analyzing a signa through
signal windowing but with variable window size. This gives an advantage to wavelets
over other signal processing techniques as it is capable of performing loca analysis, i.e.
analyzing a localized portion of a large signa (Nassar 2003). This is possible since
wavelets allow the use of narrow windows (short time intervals) if high frequency
information is needed and wide windows (long time intervals) if low frequency

information is required.

The continuous wavelet transform (CWT), Xab, Of a continuous-time domain signal x(t) is

defined as the inner product of x(t) with afamily of functionsy 5, (t) as (Nassar 2003):

Xap = (X(t)y o () (3.24)



The family y a1, (t) is defined by continuous scaling (dilation or compression) parameters,
a, and trandation parameters, b, of asingle analyzing function y (t), which can be written

asfollows

& a g

Since we are dealing with discrete time signals, the Discrete Wavelet Transform (DWT)

a>0 (3.25)

is implemented instead of the CWT. In this case, the basis functions are obtained by
discretizing (sampling) the continuous parameters a and b. In the DWT, the sampling of a

and b is based on powers of some constant humber a, and the coefficient computations

will be performed & specific scales and locations. Hence, the sampling of a and b in the

DWT takes the form (Nassar 2003):
a=a" (3.269)
b=ma" (3.26h)
where n and m are integer numbers representing the discrete dilation and translation

indices. Moreover, from the practical aspects of the wavelet theory analysis, it has been

found that the most efficient way of determining a and b is the “dyadic” one, i.e. to take

the value of a to be 2 (Nassar 2003). Then the basis function is given by

y m,n(t) = —\/2—ny gz_n_ m-= (327)

For many signals, the low frequency component of the signal is the one of interest since it
gives the signal its identity. On the other hand, the high frequency component usually
congtitutes the signal noise. In wavelet terminology, the low frequency component of a

signa is called the “approximation part” while the high frequency component is called
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the “detail part”. Therefore, to obtain finer resolution frequency components of a specific
signal, the signal is broken down nto many lower-resolution components by repeating
the DWT decomposition procedure with successive decompositions of the obtained

approximation parts. This procedure is called wavelet multi-resolution analysis.

In theory, the decomposition process can be continued indefinitely, but in redlity it can be
performed only until the individual details consist of a single sample. Practically, an
appropriate Level of Decomposition (LOD) is chosen based on the nature of the signal or

on a specific criterion (Misiti 2000).

For static inertial data, the sensor output contains the following signals: the Earth gravity
components, the Earth rotation rate components and the sensors long-term errors (Nassar
2003). These signals have a very low frequency, and hence, they can be separated easily
from the high frequency noise components by the wavelet multi-resolution analysis. To
select an appropriate LOD in this case, several decomposition levels are applied and the
raw data was decomposed into low and high frequency components. At each level, the
mean of the high frequency component was computed as shown in Figure (3.4) and
Figure (3.5) for CIMU and MotionPak Il gyro data, respectively. Since noise is assumed
to be zero mean, the wavelet decomposition level at which the mean becomes non-zero
should be used for decomposition, since further decomposition would mean that actua
trends in the data are being interpreted as noise (Lachapelle, et a. 2003). Therefore, the
LOD for CIMU gyrosis 15 for X and Z-axis and 18 for Y-axis while that for MotionPak

Ilis14.
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Figure (3.6) shows the original data of CIMU Gyro X before (Figure 3.6a) and that after

15" level decomposition (Figure 3.6b).

1 T T T T T T T T T

045

GYRO X (deg/s)

-1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 B 7 8 g 0% 10°
CIMU GYRQO X Qriginal Data

Figure 3.6a CIMU X-Axis Gyro Measurements

GYRO X (deg/s)

05 5

0 1 2 3 4 5 B 7 E 9 10x10°
CIMU GYRO X Data After Decomposation

Figure 3.6b CIMU X-Axis Gyro Measurements After Decomposition

3.4 STOCHASTIC MODELING

Some of the important applications of modeling occur in simulation studies, performance
evaluation, and Kaman filter design (Britting 1971). The basic difference between

dynamic and stochastic modeling is as follows: in dynamic modeling, given one or more
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inputs (input vector) and one or more outputs (output vector), it is desired to determine
the input/output relationships from both time series. Applications include those where

random noise is summing at the output (IEEE Std 952 1997).

In stochastic modeling, on the other hand, there may be no direct access to an input. A
model is hypothesized which, as though excited by white noise, has the same output
characteristics as the unit under test. Such models are not generally unique, so certain
canonical forms are chosen (IEEE Std 952 1997). The next section will describe the

general application of several methods in investigation of stochastic models.

3.4.1 AUTOCORRELATION FUNCTION

3.4.1.1 DEFINITION AND PROPERTY

The correlation function of a stochastic process with itself is called its autocorrelation
function and is defined as (Brown 1983)

R, (t,.t,) = E[X(t,)X(t, )] (3.28)
where t; and t, are arbitrary sampling times. The units of a correlation function are equal
to the product of the units of the signas of interest. The autocorrelation function of a
stochastic process is essentially a measure of the dependence of the value of the process

at one time with its value at other times.

A stochastic process is called stationary if its probability density functions are invariant

with time (Brown 1983). The autocorrelation function of such a process depends only on



the time difference t = t;-t;. Thus R; reduces to a function of just the time difference
variablet, that is,

R(t)=E[X{)X(t+t )] (3.29)
where t; is now denoted as tand t, is (t+t). Stationary assures that the expectation is not

dependent on t and the autocorrelation function is even (Brown 1983).

3.4.1.2 APPLICATION

A stationary Gaussian process X(t) that has an exponential autocorrelation is caled a
Gauss-Markov process. The autocorrelation function for this process is then of the form
(Brown 1983)

Rt )=s 2e"" (3.30)
The function is sketched in Figure (3.7). The noise variance value and time constant for
the process are given by the s and 1/b parameters, respectively. The correlation at time
Ub=tis

R )=s%'=s2/e=0.3678s 2 (3.31)

2
:

iz - 1/8 o ]-l.[}
Figure 3.7 Autocorrelation Function
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The exponential autocorrelation function indicates that sample values of the process
gradually become less and less correlated as the time separation between samples
increases. The autocorrelation function approaches zero ast ® ¥, and thus the mean value

of the process must be zero.

The Gauss-Markov process is an important process in applied work because it seems to
fit a large number of physical processes with reasonable accuracy, and it has a relatively
simple mathematical description. As in the case of all stationary Gaussian processes,
specification of the process autocorrelation function completely defines the process. This
means that any desired higher-order probability density function for the process may be

written out explicitly, given the autocorrelation function (Brown 1983).

Since this is a matter of statistical interference, there will always remain some statistical
uncertainty in the result. For a Gaussian process, the variance of an experimentally

determined autocorrelation function satisfies the inequality (Brown 1983)
4 ¥
Var |V, (t )| £ =R (t )at 3.32
M blEFat) (332

where it is assumed that a single sample realization of the process is being analyzed, and
= Tisthe time length of the experimental record
=  R(t) isthe autocorrelation function of the Gaussian process under consideration
= V(t) is the autocorrelation function determined from a finite record of

experimental data.



The above equation can help to estimate the needed amount of data to reach a certain

desired accuracy. Thus, for the Gaussian-Makov process (Brown 1983),

4 ookl 2
var[V, (t )]£Tg£s e )dt =T (3.33)

The accuracy is then defined as the ratio of the standard deviation of Vy (t) to the

variance of the process, R((t), as:
4/Var|v it )| 2
accuracy = ~———>"——£ [— (3.34)
y s? \I bT

Here is the autocorrelation function plot of Xaxis gyro of CIMU two hours static data
after 15 levels decomposition as shown in Chapter 3.3.2. In order to show clearly, only
the center part of the plot is presented.

it CIMU Gyro X Autocorrelation Function

Autocorrelation (c:heg;"h)2

-4
500 400 -300 200 -100 0 100 200 300 400 500
Time Tag (Sec)

Figure 3.8 CIMU Gyro X Autocorrelation Function
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Similar results can be obtained from other axes gyros. The estimated parameters are listed
in Table (3.3). The same performance is applied on the data of MotionPak Il gyros and

the estimated parameters are listed in Table (33) aswell.

Table 3.3 Gauss-M arkov Autocorrelation Parameters

s? (ded/h?) 1/b (sec) Accuracy (%)
CIMU Gyro X 1.22° 103 58 12.69
CIMU Gyro Y 7.05 10° 72 14.14
CIMU Gyro Z 5.70" 103 33 9.57
MP2 Gyro X 545.05 355 31.40
MP2 Gyro Y 235.11 512 37.71
MP2 Gyro Z 749.58 690 43.78

The accuracy values are obtained by using Equation (3.34) with the obtained parameters
(T=2 hours). These numbers indicate that it is very difficult to obtain accurate
autocorrelation parameters from experimental data, especialy for high-grade IMU

SENSors.

3.4.2 POWER SPECTRAL DENSITY

The frequency domain approach of using the power spectral density to estimate transfer
functions is straightforward but difficult for non-system analysts to understand. The
Power Spectral Density (PSD) is the most commonly used representation of the spectral

decomposition of a time series. It is a powerful tool for analyzing or characterizing data,
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and stochastic modeling. The PSD, or spectrum analysis, is also better suited to analyzing

periodic or non-periodic signals than other methods (IEEE Std 952 1997).

The basic relationship for stationary processes between the two sided PSD, S(w), and the

covariance, K(t), which are Fourier transform pairs, is expressed by (IEEE Std 952

1997):
S) = &g " K ot (3.35)

It can be shown that for non-stationary processes, the average covariance K(t) and

average power spectrum S(w) are related in the same way (Papoulis 1965).

It is most common for data to be taken at discrete times using a digital computer.

Consider N samples of the sensor output with sample time IX. Thus, the length of the time

ensembles is T=N:£x. In the following computations, the one-sided PSD estimate is given

by (IEEE Std1293-1998):
1 1 2
S(f):?|x(f} (3.36)

where X(f) is the Fourier transform of the measured time series x(t) and the superscript 1
in S'(f) to differentiate the one sided PSD. The discrete Fourier transform approximates
the continuous Fourier transform at discrete frequencies f; by (IEEE Std1293-1998)

X(f,) @Dt (3.37)

with



f=—t =y (3.39)
N:Dt T

Thus, the estimate from a finite span of sampled data of the one-sided PSD at frequency f;

is (IEEE Std1293-1998):

(3.39)

3.4.2.1 USEFUL PROPERTIES

For linear systems, the output PSD is the product of the input PSD and the magnitude
squared of the system transfer function. If state space methods are used, the PSD matrices

of the input and output are related to the system transfer function matrix by (IEEE Std

952 1997) ;
Soutput(W) =H (JW)S nput (W)H N (JW) (3.40)
where H is the system transfer function matrix
HT is the complex conjugate transpose of H
Soutput is the output PSD
Sinput isthe input PSD

Thus, for the special case of white noise input (Snput 1S €qual to some constant value, i.e.
N?), the output PSD directly gives the system transfer function. The transfer function
form of the stochastic model may be estimated directly from the PSD of the output data

(on the assumption of an equivalent white noise driving function).



The idea of applying white noise and constructing the transfer function in this manner is
important to stochastic modeling. In stochastic modeling, there may be no direct access to
an input. A model is hypothesized which, as though excited by white noise, has the same
output characteristics as the unit under test. The reason fa that is, if the input is white
noise, you can estimate the transfer function of a linear, minimum phase, time invariant
system simply from the power spectrum of the output. Instead of getting the cross power
spectral density (PSD) between input and output, the transfer function can be estimated
from the power spectrum of the output alone. The phase information is uniquely
determined from the magnitude response. Thus, for a linear time-invariant system, by
having knowledge of the output only, and assuming white noise input, it is possible to
characterize the unknown model. Such models are not generally unique, so certain

canonical forms are usualy used (IEEE Std952-1997).

For a process to have finite power, its PSD must eventually terminate in a negative slope
at high frequencies. This property must be produced to satisfy the Nyquist sampling
criterion for sampled data. Likewise, a PSD cannot continue to rise (without limit) toward
zero frequency (over afinite timeinterval). In practice, the finite lengh of the time series

limits this (IEEE Std9521997).

3.4.2.2 APPLICATION

Normally, the PSD of a random process is expected to exhibit even order log-log slopes,
indicating even powers of frequencies. Thus, the different types of noise imposed on the

measurement are represented in the PSD by straight lines with different slopes. The
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expressions of noise are shown together with Allan variance expressions in Chapter Four.
The typical characteristic slopes are shown in Figure (3.9), where the actual units and
frequerncy range are hypothetical. With real data, gradual transitions would exist between
the different PSD dopes (IEEE Std1293-1998), rather than the sharp transitions in Figure
(3.9); and the dopes might be different than —2, -1, O, and +2 values in Figure (39). A
certain amount of noise or hash would exist in the plot curve due to the uncertainty of the

measured PSD.
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Figure 3.9 Hypothetical Gyro in Single-sided PSD Form (after |EEE Std952-1997)

3.4.2.3 TEST RESULTS

The same data sets used in section 3.3.2 are used here for power spectral density analysis.
Applying the PSD method described previoudly, the PSD result on log-log plot is shown
in Figure (3.10) for CIMU Xaxis gyro data. Because of the bunching of the high
frequency data points in the log-log plot, it is difficult to identify noise terms and obtain

parameters in such conditions. Hence, the frequency averaging technique (IEEE Std
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1293-1998) is used to reduce the number of points in the PSD result and make the noise

term identification easier.

10 10 10 107 10" 10 10’ 10
Frequency (Hz)

Figure 3.10 CIMU X-Gyro PSD Results

The frequency averaging technique is used to calculate a single PSD for, as an example,
N = 32 768 measurements, and then average the adjacent frequency values according to
the scheme in Table (3.4). That is to keep the first R frequency data points. And then, at
each average level (N), obtain 16 averaged frequency data points from 2" frequency data
points. As a result, the low frequency part of the PSD plot has high uncertainty, but still
conveys some information. The high frequency part of the PSD plot has the uncertainty

obtained by ensemble averaging and is conveniently plotted with the low frequency data
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because the frequency averaging prevents bunching of the high frequency data points in

the log-log plot.

Table 3.4 Logarithmic Frequency Averaging of 32768 Points
(after IEEE Std1293-1998)

Frequency Data Total Data Number of Points Number of Average
PointsIndex | Points Covered per Averaging Points to Plot Level (N)
1-32 32 1 32
3364 32 2 16 1
65-128 64 4 16 2
129-256 128 8 16 3
257-512 256 16 16 4
513-1024 512 32 16 5
1025-2048 1024 64 16 6
2049-4096 2048 128 16 7
4097-8192 4096 256 16 8
8193-16384 8192 512 16 9
16385-32768 16384 1024 16 10

The PSD results with the frequency averaging technique are shown in Rgure (3.11) for

CIMU X-axis gyro data and Figure (3.12) for MotionPak 11 X-axis gyro data.
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Figure 3.11 CIMU X-Gyro PSD Results with Frequency Averaging Technique
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Figure 3.12 MationPak 11 X-Gyro PSD Results with Frequency Averaging
Technique



From Figure (3.11), the slopes of the curve include —2, 0, and +2, which indicate that the
CIMU X-axis gyro data contains rate random walk, angle random walk, and quantization
noise, respectively. The acquisition of parameters for noise terms from PSD result plot is
complex. So here only the calculation of angle random walk parameter Q is discussed.

According to IEEE Std 952 1997,

1 & 6
°/4/h)=— - 3.
Q(°/4/h) 50 \/2 PS:)%Q /HZS (3.41)

The estimated results are listed in Table (3.5).

Table 3.5 PSD Estimation Results for the CIMU
and the MotionPak |1 X-axis Gyro

Sample Rate Random Walk
(H2) (deg/h’?)
CIMU X Gyro 200 0.0015
MP2 X Gyro 100 0.5

From Figure (3.12), the slopes of the curve include —1 and O, which indicate MotionPak
[l X-axis gyro data contains bias instability and angle random walk, respectively.
According to Equation (3.41), the estimated angle random walk coefficient, Q, islisted in
Table (3.5). These results shown in Table (3.5) will compare with Allan variance results

later in Chapter Five.

3.4.3 VARIANCE TECHNIQUES

Another class of time domain methods, specifically several variance techniques, have
been devised for stochastic modeling. They are basically very similar, and primarily

differ in that various signal processing, by way of weighting functions, window
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functions, etc., is incorporated into the analysis algorithms in order to achieve a particular
desired result of improving the model characterizations (IEEE Std952-1997). The

simplest is the Allan variance, which will be discussed in Chapter Four.

3.44 ADAPTIVE (SELF-LEARNING) KALMAN FILTER

The adaptive Kaman filter is another means of system identification (Gelb 1974). The
noise covariance and dynamics may be estimated if the form of the model is known. This
may be combined with a model adjustment or learning model approach for more

flexibility.

In the conventional Kalman filter, all the process parameters are assumed to be known.
They may vary with time but, if so, the nature of the variation is assumed to be known
(Chapter 3.2). In physical problems this is often a quick assumption. There may be large
uncertainty in some parameters because of inadequate prior test data about the process.
Or, some parameters might be expected to change sowly with time, but the exact nature
of the change is not predictable. In such cases, it is highly desirable to design the filter to
be self-learning, so that it can sdlf-adapt itself to the sSituation at hand, whatever that

might be (Brown 1983).

Now thisis the solution first presented by D.T. Magill (Sinha and Kuszta 1983) to put the
whole adaptive filter system in perspective. Qualitatively, the adaptation proceeds as
follows. Prior to receiving any measurements, the system must set the weight factors

equal to the a priori probabilities. It has no better information about the unknown
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parameter, e.g. a, as of this point in time. Then, as measurements are accumulated, each
elemental Kalman filter sums its weighted squared residuals and uses this sum as the
negative exponent in its Gaussian density computation. As time proceeds, the correct
filter's resduas work out to be smaller (on the average) than the others, and thus its
probability density is the largest and it is given the most weight in the blending of the
elemental estimates. The measurement residuals are summed, with the effect being
cumulative; and, in the limit, a weight factor of unity for the correct filter (and zero for
others) is approached. In effect, the system “learns’ which is the correct a; and then

assigns al of the weight to this filter’s estimate (Brown 1983).

The adaptive scheme due to Magill is important because it is optimal (within the
Gaussian assumption), and it serves as a point of departure for other less rigorous
approaches (Brown 1983). After al, the system only has to implement the various
options and choose the one with the smallest average residuals. Simpler intuitive
algorithms might not converge quite as rapidly as the optimal scheme, but they might

well be considerably easier to implement.

3.45 SUMMARY

This chapter summarizes different techniques fa the stochastic modeling of inertia
sensors errors. The selection of method is depends on the application requirements. From
the discussion of different stochastic modeling methods, the benefits and limitations of

each method are summarized in Table (3.6).
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Table 3.6 Comparing with Different Stochastic M odeling M ethods

Autocorrelation Power Spectra Variance Adaptive Kalman
Function Density Technique Filter
= Suitable for Suitable for » Detailed = Ability to track
periodic and non- periodic and non understanding of high-frequency
periodic signals periodic signals adataset intime information in
analysis anaysis domain the signal
Benefits | = Fourier transform Fourier transform | = Easy to interpret | = Self-adapted to
pairs with power pairs with and extract the situation at
spectral density autocorrelation useful hand
parameters
pertaining to the
different erras
» De-noise method Frequency » Results depend = Add-on
should be applied averaging upon the computational
first. technique is understanding of complexity
= L ong-term signal needed the physics of the | Possible
Limitations | isnheeded for Parameters Process existence of
acceptable abstraction is » L ong-term data blunders limits
solution complex is needed for the applicability
= Very model improv! ng of the algorithm
sensitive estimation
accuracy
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CHAPTER FOUR: ALLAN VARIANCE DEFINITION AND PROPERTIES

This chapter introduces the definition and properties of Allan variance as a tool for

modeling inertial sensor errors.

4.1 LITERATURE REVIEW

In 1966, David Allan proposed a simple variance analysis method for the study of
oscillator stability (Allan 1966), that is the Allan variance method. After its introduction,
this method was widely adopted by the time and frequency standards community for the
characterization of phase and frequency instability of precision oscillators. Because of the
close analogies to inertia sensors, the method has been adapted to random drift
characterization of a variety of devices (IEEE Std952-1997). The 1980s witnessed the
first paper related Allan variance with inertial sensors (Kochakian 1980). In 1983, M.
Tehrani gave out the detailed deviation about the Allan variance noise terms expression
from their rate noise power spectral density for the ring laser gyro (Tehrani 1983). This
method has since been applied to gyro drift analysis. In 1998, IEEE (Institute of
Electrical and Electronics Engineers, Inc.) standard introduced Allan variance method as
a noise identification method for linear, single, non-gyroscopic accelerometer anaysis
(IEEE Std1293-1998). In 2003, the Allan variance method was first applied in Micro

Electrica Mechanica Sensor (MEMS) noise identification (Hou and El-Sheimy 2003).

From the discussion in previous chapter, although computations of the autocorrelation

function or the power spectral density distribution do contain a complete description of
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the error sources, these results are difficult to interpret or extract. Allan variance is atime
domain analysis technique originally developed to study the frequency stability of
oscillators. It can be wsed to determine the character of the underlying random processes
that give rise to the data noise. As such, it helps identify the source of a given noise term
in the data. The source may be inherent in the instrument, but in the absence of a
plausible mechanism within the instrument, its origin should be sought in the test set up.
The Allan variance method adopted in this thesis may be used as a stand-al one method of
data analysis or to complement any of the frequency domain analysis techniques
mentioned in Chapter Three. It should be mentioned that the technique could be applied
to the noise study of any instrument. Its value, however, depends upon the degree of
understanding of the physics of the instrument. In the Allan variance method of data
analysis, the uncertainty in the data is assumed to be generated by noise sources of
specific character. The magnitude of each noise source covariance is then estimated from
the data. The definition of the Allan variance and a discussion of its use in frequency and
time metrology are presented in Allan (1966) and IEEE (Std1139-1988). The key
attribute of the method is that it allows for a finer, easier characterization and
identification of error sources and their contribution to the overall noise statistics

(Lawrerce and Darryll 1997).

In this thesis, Allan’s definition and results are related to seven noise terms and are

expressed in a notation appropriate for inertial sensor data reduction. The five basic noise

terms are angle random walk, rate random walk, bias instability, quantization noise, and
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drift rate ramp. In addition, the sinusoidal noise and exponentially correlated (Markov)

noise can aso be identified through the Allan variance method.

42 METHODOLOGY

Assume there are N consecutive data points, each having a sample time of to. Forming a
group of n consecutive data points (with n<N/2), each member of the group is a cluster,

as shown in Figure (4.1).

Figure 4.1 Schematic of the Data Structure used in the Derivation of Allan Variance

Associated with each cluster isatime, T, which is equal to ntp. If the instantaneous output
rate of inertial sensor is W(t), the cluster averageis defined as.

W(M)=2 g W @)

where W (t) represents the cluster average of the output rate for a cluster which starts

from the k™ data point and contains n data points. The definition of the subsequent cluster

averageis.
et
W (T)==0," Wbt (4.2)

where t1 = tet+ T.
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Performing the average operation for each two adjoining clusters and form the

differences

Xicosse = Wheo (T)- Wi (T) (43)
For each cluster time T, the ensemble of x defined by Equation (4.3) forms a set of

random variables. The quantity of interest is the variance of xs over all the clusters of the

same size that can be formed from entire data.

Thus, the Allan variance of length T is defined as (IEEE Std952-1997):
o\ _ 1 /fx - 2
s *(1)=5 (W (M- W) @4

The brackets in Equation (4.4) denote the averaging operation over the ensemble of

clusters. Thus, above equation can be rewritten as.

) : 1 N62n _ v 2
s (T)_m el[w”m (T)- W, (1)] (4.5)

Clearly, for any finite number of data points (N), a finite number of clusters of a fixed
length (T) can be formed. Hence, Equation (4.5) represents an estimation of the quantity
s2(T) whose quality of estimate depends on the number of independent clusters of a fixed

length that can be formed.

The Allan variance can also be defined in terms of the output angle or velocity as (IEEE

Std952-1997)



t
a(t)=¢ Wt (46)
The lower integration limit is not specified, as only angle or velocity differences are
employed in the definitions. Angle or velocity measurements are made at discrete times
givenby t = kto, k = 1,2,3,%4, N. Accordingly, the notation is simplified by writing g« =

g(ktp). Equations (4.1) and (4.2) can, then, be redefined by

V_Vk (T) = qk*”T—_qk (4_7)

and

W, (7)=detnden @9

According to Equation (4.5), Allan variance is estimated as follows:

N-2n
[¢}

1 2
s 2(T) :m 21( cwan ™ Lien T, ) (4.9

The Allan variance is a measure of the stability of sensor output. As such it must be
related to the statistical properties of the intrinsic random processes, which affect the

sensor performance.

There is a unique relationship that exists between s?(T) and the power spectral density of

the intrinsic random processes. This relationship is (IEEE Std952-1997)

s /(T)=4g) of x%(f)x%f)f]) @19

where Si(f) is the power spectral density of the random process W(T). In following, the

derivation of above relationship is given.
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Equation (4.4) can be expanded to give
S (1) =3 (Whee (1)) # 5 (WE(T)) - (Wheon(T WL (T) (4.11)
From Equation (4.1), we can write

<W§ (T )> = Tiz d "t Q” (Wit Wtd)cte (4.12)

where R(t,t')=<Wt) Wt')> is the rate correlation function. In what follows, we assume

that the random processes W(T) are al stationary in time. Therefore,
R(t,t) = R(t(- t) © R{t) (4.13)

The rate power spectral density is the Fourier transform of the R(t). Thus,

su(f)= g, Rt Je "t (4.14)
or, inversely
Rt )= c‘i Syl f)e®™ df (4.15)

Substitution of Equation (4.15) in Equation (4.12) yields

t +T

(Wh(r))= =0, Sult e )

dtey PR (4.16)

where we have changed the order of integration. The double integral over time is readily

calculated to give
NSl LT i an 2 pr
dty” e Yate==_"" 41
Q Q (pf )2 (4.17)

The use of Equation (4.17) in Equation (4.16) gives
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<WE(T)> =, Sulf ELLLPY (4.19)

Since <Wk (T)> does not depend on t, the same expression holds for <Whe« (T)>. Thus,

(Wee (7)) = & Su(1) S&;‘ff)” df (420)

We now calculate e (T) W(T)>. From Equation (4.1) we can write

(oo (T (7)) = Ti o gy (Wew(d)cre

1 (4.22)
¥ ST 2T
=0, S, f )df q g, e ¢t ¢
Straightforward integration of the double integral over time yields
T at dk+2T Pt (01) 4t g PP sin’ pfT 4.22)
Q k+T (pf )2
From this
_ _ ¥ ir 9N ZpfT
Woee (T Wik (T >: e I P o 423
(o (7)) = &, S 1 )" 42
Substituting Equations (4.19), (4.20), and (4.23) in Equation (4.11) gives
i 2
_ ¥ r\9n “pfT
s?(T)= f)l1- e® df
( ) Q Sw( )( ) (pr)z
(4.29)

dn?pfT sn 2ofT
(pfT )

The fact is that a real function requires that the second integral in Equation (4.24) be

=20, (1) ey o -1 Sul1)

identically zero. This is satisfied if Sp(f) is an even function of f, which is the same



requirement for the reality of correlation function (Tehrani 1983). Therefore, Equation

(4.24) can be written as

s 2(1)=ag) S\N(f)s’i(r;;_&o;ﬁdf @25)

Equation (4.25) is same as Equation (4.10), which is the desired relation.

In the derivation of Equation (4.25), it is assumed that the random process W(T) is
stationary in time (Tehrani 1983). For non-stationary processes, such as flicker noise, the

time average power spectral density should be used.

Equation (4.25) states that the Allan variance is proportional to the total power output of
the random process when passed through a filter with the transfer function of the form
sin*(x)/(x)?. This particular transfer function is the result of the method used to create and

operate on the clusters.

Equation (4.25) is the foca point of the Allan variance method. This equation will be
used to calculate the Allan variance from the rate noise PSD. The power spectral density
of any physically meaningful random process can be substituted in the integral, and an
expression for the Allan variance s*(T) as a function of cluster length is identified.
Conversely, since s%(T) is a measurable quantity, a log-log plot of s(T) versus T provides
a direct indication of the types of random processes, which exist in the inertial sensor

data. The corresponding Allan variance of a stochastic process may be uniquely derived
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from its power spectral density; however, there is no general inversion formula because

there is no one-to-onerelation (Tehrani 1983).

It is evident from Equation (4.25) and the above interpretation that the filter bandwidth
dependson T. This suggests that different types of random processes can be examined by
adjusting the filter bandwidth, namely by varying T. Thus, the Allan variance method
provides a means of identifying and quantifying various noise terms that exist in the data.
It is normally plotted as the square root of the Allan variance versus T, [s(T)], on alog
log plot. To estimate the amplitude of different noise components, it is convenient to let n

=2,1=0,1,2va(Allan, 1987).

4.3 REPRESENTATION OF NOISE TERMS IN ALLAN VARIANCE

The following sub-sections will show the integral solution for a number of specific noise
terms, which are either known to exist in the inertial sensor or are suspected to influence
the data. The definition is defined in Allan (1966) and Keshner (1982), and the detail
derivations are given in Tehrani (1983). The physica origin of each noise source term

will be discussed.
4.3.1 QUANTIZATION NOISE

Quantization noise is one of the types of error introduced into an analog signal that

results from encoding it in digital form. Quantization noise is caused by the small



differences between the actual amplitudes of the points being sampled and the bit

resolution of the analog-to-digital converter (Savage 2002).

The angle PSD for such a process, given in Papoulis (1991) is:

,38in 2 pr

)0 _ 1
5 (f)= Qé o) rj)TZQZ

f <— 4.26
o7 (4.26)

z

where Q; is the quantization noise coefficient

T, is the sample interval

The theoretical limit for Q, is equal to §12Y2 where Siis the gyro-scaling coefficient, for
tests with fixed and uniform sampling times. The rate PSD is related to the angle PSD

through the equation:

Sw(2of )=(2pf )" s, (20f ) 4.27)

and is (IEEE 952 1997)

Sul f ):A'_I_&si n? (pfT, )»(2pf FT,Q,2 f<— (4.29)

z z

Substituting Equation (4.28) in Equation (4.25) and performing the integration yields:

2(r)=32 29

s 2(1) = (4.29)
Thus

s (T)=Qz§ (4.30)



This indicates that the quantization noise is represented by a dope of —1 in alog-log plot
of s(T) versus T, as shown in Figure (4.2). The magnitude of this noise can be read off

thedopelineat T =3"2.

100 Q=

100=

10=

o(T)
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Figure4.2 s(T) Plot for Quantization Noise (after |EEE 952 1997)

It should be noted that there are other noise terms with different spectral characteristics,
such as flicker angle noise and white angle noise, that lead to the same Allan variance T
dependence. Also, it should be noted that quantization noise has a short correlation time
or equivalent a wide bandwidth. Wideband noise can usualy be filtered out because of
low bandwidth of the vehicle motion in many applications; it is not a magjor source of

error (Lawrence and Darryll 1997).
4.3.2 ANGLE (VELOCITY) RANDOM WALK

High frequency noise terms that have correlation time much shorter than the sample time
can contribute to the gyro angle (or accelerometer velocity) random walk. However, most

of these sources can be eliminated by design (IEEE 952 1997). These noise terms are al
&4



characterized by a white noise spectrum on the gyro (or accelerometer) rate output. Angle
random walk, if not modeled accurately, can be a major source of error that limits the

performance of an attitude control system (Lawrence and Darryll 1997).

The associated rate noise PSD is represented by (IEEE 952 1997):

Sw( f ):Q2 (4.31)

where Q is the angle (velocity) random walk coefficient.

Substituting Equation (4.31) in Equation (4.25) and performing the integration yields:

, 9N pr

4.32
s /(1)=4Q @ Tof b (432)
If the variable of integration is changed to u=pfT, it gives
Sz(—,—):i\¥stin4u J 433
rO% |
which can be simplified to
i AQ ¥sintu
s *(T)=—Q 7wau (4.34)

pT < (uf

The value of the integral in Equation (4.34) is given in Gradshteyn and Ryzhik (1980) as

- 4
¥sin‘u, _p
The Allan variance for angle (velocity) random walk becomes

s 2(T ):% (4.36)

Then,



sﬁjzfl- (4.37)

As shown in Figure (4.3), Equation (4.37) indicates that a log-log plot of s(T) versus T

has a dope of —1/2. Furthermore, the numerical value of Q can be obtained directly by

reading the dopelineat T= 1

M -

a(T)
§

arg
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Figure 4.3 s(T) plot for angle (velocity) random walk (after IEEE 952 1997)

4.3.3 BIAS INSTABILITY

The origin of this noise is the electronics, or other components susceptible to random
flickering (Keshner 1982). Because of its low-frequency nature it shows as the bias

fluctuations in the data. The rate PSD associated with this noiseis (IEEE 952 1997):

—;

2B ?2
2p

|-O:

% f £ f,

Q.|.

—

s, ()= (4.38)

0 f > f,

— — —

where B is the bias instability coefficient



fo isthe cutoff frequency

Substitution of Equation (4.38) in Equation (4.25) and according to Equation (4.33):

2B% o, Sn‘u
2(1\= P 4.39
S (T) o Q N (4.39)
Now, consider the integra
asin*u
I(a)= ¢ ——du (4.40)
u

According to Gradshteyn and Ryzhik (1980),

- 4 . 2
(sina+4acosa)- 8¢) S0 Ygu+ 6Q) SN Y4y (4.42)
u u

sin‘a
1(a) =-
(a) 2a’®

Also, from Gradshteyn and Ryzhik (1980), we can write

: 4
(‘)wdu =3 u+1Ci(4u)- 1Ci(2u) (4.42)
u 8 8 2
and
02
O Zdu :%In u- %Ci(Zu) (4.43)
u

where G is the cosine-integral function, defined as

Gi(x)= g et (4.44)

Substituting Equations (4.42) and (4.43) in Equation (4.41) gives

a3

sinfa
I(a):- 2a?

(sina+ 4acosa) +Ci(2a)- Ci(4a)- IXi®rB{Ci (2x)- Ci(ax)] (445

The last term in Equation (4.45) can be calculated from the expansion of G (X)
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2k

¥
Ci(x)=C+inx+3 (- 1= 4.46
i(x)=C+ nx+ka:_1( ) 22K (4.46)
where C is the Euler constant. Using Equation (4.46), we can write
im|[Ci(24)- Ci(ax)]= lim&h 2X%= - In2 (4.47)

X® Oe 4Xg
To complete the derivation, substitute Equation (4.41), (4.45), and (4.47) in Equation

(4.39), which gives

2 z - 3 N
s 2(T)=22gn2- 30 X(dn x+axcosx)+ Ci(2x)- Ci(ax)g  (449)
p & 2X a
where x is pfoT.
From Equation (4.48), it is shown
2 1
s*(T)® 0 for T<<— (4.49)
0
and
2
s?(T)® B 2 for Ts>L (4.50)
p fy
Equation (4.50) can be simplified as
s(Te /% B=0664B  forT >>fi (4.51)
p 0

Figure (4.4) represents a log-log plot of square root of Equation (4.48). It is seen that
Allan standard deviation begins with a slope of +1 for fp << /T and reaches the

asymptotic value of 0.664B for T much longer than the inverse cut-off frequency. Thus



the flat region of the plot can be examined to estimate the limit of the bias instability. Of
course, such behaviour, particularly the rising part of the curve, may be overshadowed by

the influence of other noise terms (IEEE 952 1997).

18 T
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Figure4.4s(T) plot for biasinstability (for fo=1) (after IEEE 952 1997).

4.3.4 RATE RANDOM WALK
This is a random process of uncertain origin, possibly a limiting case of an exponentially

correlated noise with a very long correlation time. The rate PSD associated with this

noiseis (IEEE 952 1997):

2K o 1
§)=&R 9 452
slf)=gos 1 (452)

where K is the rate random walk coefficient.

Substituting Equation (4.52) in Equation (4.25) and performing the integration yields:



s 2(T)= KT (4.53)
Thus
s (T)=K,|= (4.54)

This indicates that rate random walk is represented by a dope of +1/2 on alog-log plot of
s(T) versus T, as shown in Figure (4.5). The magnitude of this noise, K can be read off

thedopelineat T = 3.

10K
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Figure4.5s(T) plot for rate random walk (after |EEE 952 1997)

435 DRIFT RATE RAMP

The error terms considered thus far are of random character. It is, however, useful to
determine the behaviour of s(T) under systematic (deterministic) errors. One such eror is
the drift rate ramp defined as (IEEE 952 1997):

W= Rt (4.55)

where Ris the drift rate ramp coefficient



By forming and operating on the clusters of data containing an input given by Equation

(4.55), we obtain:

s 2(T)= R°T* (4.56)
2
Thus,
T
T)=R—
s (T) N (4.57)

This indicates that the drift rate ramp noise has a slope of +1 in the log-log plot of s(T)
versus T, as shown in Figure (4.6). The amplitude of drift rate ramp R can be obtained

from the slopelineat T = 22,

Figure 4.6 s(T) plot for drift rate ramp (after |EEE 952 1997)
The rate PSD associated with this noise is (IEEE 952 1997):

Su(f)= (4.58)
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It should be noted that there might be a flicker acceleration noise with 1/f 3 PSD that

leads to the same Allan variance T dependence.

4.3.6 EXPONENTIALLY CORRELATED (MARKOV) NOISE

This noise is characterized by an exponential decaying function with a finite correlation

time. The rate PSD for such a process (IEEE 952 1997) :

_ (qT)
Sulf)= 1+ (pfT.F (4.59)

where q. is the noise amplitude

Tc is the corrdation time

Substitution of Equation (4.59) in Equation (4.25) and performing the integration yields:

26 e I A

s2r)= 0l G T & 4Ty (4.60
T g 2T e
g “Te &

Figure (4.7) shows a log-log plot of sjuare root of Equation (4.60). It is instructive to
examine various limits of this equation. For T much longer than the correlation time, it is

found that:

2
s 2(T)p @ T>>T, (4.61)

which is the Allan variance for angle (velocity) random walk where Q = g_T, isthe angle
(velocity) random walk coefficient. For T much smaller than the correlation time,

Equation (4.60) reduces to:
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s?(T)p MT T <<T, (4.62)

which is the Allan variance for rate random walk.
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Figure4.7 s(T) plot for correlated noise (after IEEE 952 1997)

4.3.7 SINUSOIDAL NOISE

The PSD of this noise is characterized by one or more distinct frequencies. A low-
frequency source could be the sow motion of the test platform due to periodic
environmental changes. A representation of the PSD of this noise containing a single

frequency is given as (IEEE 952 1997):
Su(1)= Wl (1 - fo)+a (1 + 1) (4569

where W is the amplitude



fo isthe frequency

d(x) is the Dirac delta function

Multiplefrequency sinusoidal errors can be similarly represented by a sum of terms such
as Equation (4.63) at their respective frequencies and amplitudes. Substitution of
Equation (4.63) in Equation (4.25) and performing the integration yields:

f o .2
é pfT g

(4.64)

Figure (4.8) shows a log-log plot of square root of Equation (4.64). Thus, the root Allan
variance of a sinusoid when plotted in log-log scale would indicate sinusoidal behaviour
with successive peaks attenuated at a slope of —1. Identification and estimation of this
noise in data requires the observation of several peaks. As is seen however, the
amplitudes of consecutive peaks fall off rapidly and may be masked by higher order

peaks of other frequencies making observation difficult. This is one case where a

conventional PSD plot is superior in identifying the sinusoidal components (Lawrence

and Darryll 1997).
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Figure4.8s(T) plot for sinusoidal error (after IEEE 952 1997)

4.4 SAMPLE PLOT OF ALLAN VARIANCE

In general, any number of the random process discussed above (as well as others) can be
present in the data. Thus, atypical Allan variance plot looks like the one shown in Figure

(4.9). Experience shows that in most cases, different noise terms appear in different

regions of T. this alows easy identification of various random processes that exist in the

data.
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Figure 4.9 Sample plot of Allan variance analysisresults (after |IEEE 952 1997)

With real data, gradual transitions would exist between the different Allan standard
deviation slopes. A certain amount of noise or hash would exist in the plot curve due to

the uncertainty of the measured Allan variance (IEEE Std 1293 1998).

45 ESTIMATION QUALITY OF ALLAN VARIANCE
In practice, estimation of the Allan variance is based on a finite number of independent
clusters that can be formed from any finite length of data. The Allan variance of any

noise terms is estimated using the total number of clusters of a given length that can be
created. The confidence of the estimation improves as the number of independent clusters

is increased.

Defining the parameters day as the percentage error in estimating the Allan standard
deviation of the cluster due to the finiteness of the number of clusters gives (IEEE 952

1997)



(4.65)

where s(T,M) denotes the estimate of the Allan standard deviation obtained from M
independent clusters, s(T,M) approaches its theoretical vaue, s(T), in the limit of M
approaching infinity. A lengthy and straightforward calculation (Papoulis 1991) shows

the percentage error is equal to

1
sd,)=—
) AN o (4.66)
2(;'_- 1T
en %}

where N is the total number of data points in the entire data set, and n is the number of

data points contained in the cluster.

Equation (4.66) shows that the estimation errors in the region of short (long) T are small
(large) as the number of independent clusters in these regions is large (small). For
example, if there are 20,000 data points and cluster sizes of 5,000 points are used, the
percentage error in estimating s (T) is approximately 40%. On the other hand, for cluster

containing only 100 points, the percentage error is about 5%.

46 SUMMARY

This chapter introduces the definition and properties of Allan variance as a tool for
modeling inertial sensor errors. If the total data points and sample rate are known, it is
easy to obtain Allan variance solution with Equation (4.5) or (4.9). According to the log
log plot of Allan standard deviation versus cluster length, different noise terms can be

easily identified and extracted. The noise coefficients abstraction is discussed in Section
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4.3. The method used to determine the estimation accuracy is discussed in Section 4.5.
From above discussion, it is convenient to identify the existing noise terms and estimate
the coefficients for a given data set. The application of Allan variance method for inertial

sensors will be given in detail in next chapter.



CHAPTER FIVE: TEST AND RESULT

The purpose of the tests conducted in this chapter is to identify noise terms existing in
different grade IMU sensors. The tests are conducted using the Allan variance technique
presented in Chapter Four, which is expected to provide better understanding of the

inertial sensors performance and noise sources.

5.1 TEST ENVIRONMENT

Three different grade IMUs were involved in evaluating the use of Allan Variance in
modeling inertial sensor noise. The IMUs include the Honeywell CIMU navigation grade
IMU, the Honeywell HG1700 tactical grade IMU and the Systron Donner MotionPak |-
3g consumer grade MEMS based IMU. The test was held at room temperature for seven
days a the Mobile Multi-Sensor System (MMS) research group Inertia Lab, in the
Geomatics Engineering department of The University of Calgary. The test layout and the
equipment used in this test are shown in Figure (5.1). All of the analysis presented in this
chapter was conducted using the MMS research group Allan Variance (AV) Tool Box.
The AV Tool Box was developed by the author, and was implemented under the
Matlab® environment (http://www.mathworks.com/). The following sections provide the

details and the characteristics of the tested IMUs and the data acquisition system.

5.1.1 CIMU TERRAMATICS BOX

The Commercia Inertial Measurement System (CIMU) (Figure (5.1B)) is a relatively

smal (i.e. a cube 13.4cm high with 19.3cm length and 16.9cm width) navigation grade
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IMU manufactured by Honeywell International Inc. (http://www.honeywell.com/). The
gyro-in-run bias is about 0.0022°/h and random walk is about 0.0022 °/hY2. The
accelerometer in run bias is about 25 pg and noise is about 0.00076 m/s'h? (0.0025

FPS/h2).

5.1.2 HGI1700 TERRAMATICS BOX

The Honeywell HG1700 (Figure (5.1B)) is alightweight cylinder 7.6 cm high and 9.4 cm
in diameter, and is equipped with a low-cost tactical grade IMU that utilizes 3 GG1308
miniature ring laser gyros (RLGs) along with 3 Honeywell RBA-500 resonant beam
digital accelerometers to measure angular rate and linear acceleration, respectively. This
IMU has a gyro bias repeatability of better than 3°/h, gyro scale-factor accuracy of better
than 150 ppm, and a gyro random-walk PSD level of less than 0.15 °/h2. The
accelerometer residual bias 5 less than 1000 ug, scale factor stability is 300 ppm, and

linearity is 500 ppm.

The Terramatics Data Acquisition Board Box (Terramatics Inc., Calgary, Canada) was
used to perform data acquisition for the CIMU and HG1700 units as well as time tagging
of the inertial measurement unit. The inertial sensor output data are decoded at 200Hz
data rate for the CIMU and 100Hz data rate for the HG1700. The output of gyro datais
the delta angle with units in radians, and that of accelerometer is the delta velocity with

units in m/s.
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Figure 5.1 Test Environment Setup
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5.1.3 MOTIONPAK I ANALOG OUTPUT

The MotionPak® is a solid-state six Degree-of - Freedom inertial sensing system used for
measuring linear accelerations and angular rates in instrumentation ard control
applications. It uses three orthogonally mounted solid-state micro-machined quartz
angular rate sensors, and mounted in a compact, rugged package are three high
performance linear servo accelerometers with internal power regulation and signal
conditioning electronics. Maximum bias error is +5°/s for gyro and £200mg for
accelerometers.  The bandwidth is larger than 30Hz for gyro and 250Hz for

accelerometers (http://www.systron.com/).

For this unit the data was collected using the National Instruments (http://www.ni.com/)
DAQCard"™-6036E, which has 16 Inputs/2 Outputs, 200kS/s, 16-bit Multifunction 1/O.
The software used for acquiring and storing data is the National Instrument LabVIEW

7.0. The connection flow is shown asin Figure (5.2).

E L Qohis Tede s ‘See Bl =
T e e == =2 | 7= [l |

MotionPak || DAQCard™ 6036E LabVIEW 7.0

Figure 5.2 MotionPak 11 Data Acquiring System
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5.1.4 ALLAN VARIANCE (AV) TOOL BOX

The Allan Variance (AV) Tool Box is developed by the author under the Matlab

environment according to the methodology described in Chapter Four.

The input data of the AV Tool Box should be transformed into the unit as deg/h for gyros
and m/g/h for accelerometers. Three-axis sensor data can be loaded at the same time. In
addition, the input parameters include the number of total data points, sample rate, and
the IMU type. Then the AV Tool Box will output the Allan variance result plot and the

identified noise coefficients.

The AV Tool Box has been successfully applied in the following test data analysis. The

corresponding results and explanation are provided.

5.2 TEST RESULTS

5.2.1 CIMU ALLAN VARIANCE ANALYSIS

Two-hour static data were collected from the CIMU IMU at room temperature. The entire
data was then analysed using the AV Tool Box. A log-log plot of CIMU three axis gyros

Allan standard deviation versus cluster time is shown in Figure (5.3).

103



....................

Allan Stancdard Deviation (deg/h)

HE HHH HE | HI I HE HHH T
10 10 10 10° 10" 10 10
Cluster Time (sec)

Figure 5.3 CIMU Gyro Allan variance results
Figure (5.3) clearly indicates that the quantization noise is the dominant noise for short

cluster times. Figure 54 shows an example of how to obtain quantization noise
coefficient from the Allan variance result in a log-log plot for CIMU Zaxis gyro. A
straight line with sope of —1 (refer to the dashed line in the figure), fitted to the
beginning of the plot meets T = 32 hour line (see Section 4.3.1) at avalue of 1.60 ~ 10
deg (Point A in Figure 5.4), which is equal to 0.5770 arc seconds. Since the estimation of
quantization noise is based on very short cluster times, the number of independent
clusters is very large and the quality of estimation is very good. In fact, even for cluster
time as long as T=100 sec, according to Equation (4.66), the percentage error is only
7.58%. In fact, the estimation percentage error can be reduced to 2.7%, making the line

with slope of —1 to cover only the region from T=0.05 sec till T=10sec. The value of
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percentage error is equa to 0.5770 © 2.7% = 0.0155 arc seconds. Thus the quantization
coefficient for CIMU Z-axis gyro is estimated as:

Q, =(05770£0.0155arcsec (5.0)

| 8o e APl 3 o BT e R e L o7 O R e L 1 P

.| [— CIMU Z-axis Gyro

Allan Standard Deviation {deg/h)
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10 10 10" 10 10’ 10 10°
Cluster Time (sec)

Figure 5.4 CIMU Z-axis Gyro Allan variance result with slopes of -1 and -1/2

Table (5.1) lists the estimated quantization noise coefficients for seven days tests for al
three axes gyros. It is clear that the standard deviation of the seven days tests is smaller
than the estimation percentage error as shown in Table (5.2), which means that the CIMU
sensor random processes have very good repeatability. In conclusion, each individual test

result of CIMU can be used for system prediction and analysis.
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Table5.1 CIMU Gyro Quantization Noise Estimation Results
Gyro X (arcsec) Gyro Y (arcsec) Gyro Z (arcsec)
Dayl 0.9732 0.5174 0.5770
Day2 0.9601 0.5357 0.6023
Day3 0.9193 0.5059 0.5745
Day4 0.9472 0.4982 0.5693
Day5 0.9577 0.4992 0.5592
Day6 0.9589 0.5065 0.5624
Day7 0.9450 0.5068 0.5785
STD 0.0170 0.0129 0.0141

In Figure (5.3) there is also a clear indication that the angle random walk is the dominant
noise term for long cluster times. There is an example in Figure (5.4) to show how to
obtain the random walk coefficients from the Allan variance log-log plot result. A
straight line with dope of —1/2 (the dotted line) is fitted to the long cluster time part of the
plot and meets the T=1 hour line (see Section 4.3.2) at a value of 0.0018 (Point B in
Figure 5.4). The unit of angle random walk is deg/h¥?. Inspection of the curve shows that
the estimation percentage error in this region can reach to 33.36% according to Equation
(4.66). The value of the percentage error is calculated as 0.0018 = 33.36% = 0.0006
deg/hV?. Thus the angle random walk coefficient for CIMU Z-axis gyro is estimated as:

Q =(0.0018 + 0.0006)deg/ /h (5.2
For two hours of static CIMU accelerometer data, the Allan variance results are shown in

Figure (5.5). The figure clearly indicates that the quantization noise is the prominent

noise term in short cluster times while the drift rate ramp noise term in long cluster times.
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Figure5.5 CIMU Accelerometer Allan varianceresults
In Figure (5.6), there is an example shown for how to obtain drift rate ramp noise

coefficient from the Allan variance log-log plot. A straight line with dope of +1 (the
dashed line) is fitted to the long cluster time part of the plot and meets T = 22 hour line
(see Section 4.3.5) a a value of 0.3915. The unit for velocity drift rate ramp is m/s/t?.
Inspection of the curve shows that the estimation percentage error in this region can reach
33.36% according to Equation (4.66). The value of the percentage error is equal to 0.3915
© 33.36% = 0.1309 m/s/i. Thus the drift rate ramp coefficient for CIMU Z-axis

accelerometer is estimated as:

R=(0.3915£0.1309 m/s/h? (5.3)
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Figure 5.6 CIMU Z-axisAccderometer Allan varianceresult with dopesof —1and +1
Table (5.2) lists all the identified noise coefficients for the CIMU two-hour static data.

Table5.2 Identified Noise Coefficients for CIMU

Quantization | Random Walk Quantization Rate Ramp
(arcsec) (deg/Oh) (m/h) (m/s/1f)
Gyro X | 0.9732+0.0738 | 0.0015+0.0005| Accl X | 1.6801+0.1275 | 2.6364+0.8795
GyroY | 0.5174+0.0197 | 0.0019+0.0006 | Accl Y | 1.2980+0.0985 | 0.8915+0.2974
Gyro Z | 0.5770+0.0155 | 0.0018+0.0006 | Accl Z | 0.8785+0.0666 | 0.3915+0.1309

5.2.2 HGI1700 ALLAN VARIANCE ANALYSIS

Two-hour static data from HG1700 were collected at room temperature. Applying the

Allan variance method to the whole data set, a log-log plot of HG1700 three axis gyros

Allan standard deviation versus cluster time is shown in Figure (5.7).
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From the Allan variance result, for two hours of static HG1700 gyro data, it is clear that
the quantization noise is the dominant noise for short cluster times while the angle
random walk is the dominant noise for long cluster times. The methodology for obtaining
noise coefficients has been discussed in the previous section. Table (5.3) lists the
estimated quantization noise coefficients for seven days tests for all three axes HG1700
gyros. The results clearly indicate that the standard deviation for the seven days of tests is
close to the estimation percentage error as listed in Table (5.4). That means that the
HG1700 sensor random processes have relatively good repeatability. To conclude, each

individual test result of HG1700 can be used as system prediction and analysis.
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Figure 5.7 HG1700 Gyro Allan variance results
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Table 5.3 HG1700 Gyro Quantization Noise Estimation Results
Gyro X (arcsec) Gyro Y (arcsec) Gyro Z (arcsec)
Dayl 51154 1.2742 1.2316
Day2 5.1117 1.2842 1.2025
Day3 5.1113 1.2801 1.2227
Day4 5.1239 1.3065 1.2256
Day5 5.0312 1.2864 1.2193
Day6 5.1051 1.3054 1.2065
Day7 5.0487 1.2954 1.2226
STD 0.0366 0.0124 0.0104

For two hours of static HG1700 accelerometer data, the Allan variance results are shown
in Figure (5.8). It is seen that the quantization noise is the prominent noise term in short
cluster times while the rate random walk noise term in long cluster times. There is an
example to show how to obtain the rate random walk coefficient in Figure (5.9). For
HG1700 Z-axis accelerometer Allan variance result plot, Figure (5.9), a straight line with
dope of +1/2, the dashed line, fitted to the long cluster time part of the plot and meets T =
3 hour line (see Section 4.3.4) at a value of 3.3514. The unit of the velocity rate random
walk is m/sh/h2. Inspection of the curve shows that the estimation percentage error in
this region can reach 33.36% according to Equation (4.66). The vaue of the percentage
error is equal to 3.3514° 33.36%=1.1180 m/s’h/h’?. Thus the rate random walk

coefficient for HG1700 z-axis accelerometer is estimated as;

K =(3.3514+1.1180) m/s/ h/</h (54)
Table (5.4) listed dl the identified noise coefficients for HG1700 two hours static data

Set.
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Table5.4 |dentified Noise Coefficientsfor HG1700

Quantization
(arcsec)

Random Walk
(deg/Oh)

Quantization
(m/h)

Rate Random
Wak
(m/s/h/On)

Gyro X

5.1154+0.0683

0.0936+0.0312

Accl X

2.1188+0.0673

0.7637+0.2548

GyroY

1.2742+0.0032

0.0883+0.0295

Accl Y

2.1988+0.1176

1.1572+0.3860

Gyro Z

1.2316+0.0028

0.0753+0.0251

Accl Z

2.1845+0.0583

3.3514+1.1180

Allan Standard Deviation (m/s/h)

D.

Sogiibizcizoziozooifoocl

- Accelerometer X
—— Accelerometer Y

Accelerometer Z

Cluster Time (sec)

Figure 5.8 HG1700 Accelerometer Allan variance results
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Figure5.9 HG1700 Z-axis Acceerometer Allan varianceresult with dopesof —1 and +1/2

5.2.3 MOTIONPAK Il ALLAN VARIANCE ANALYSIS

Since data integration is used in the Allan variance analysis (Equation (4.6)), when
collecting data through A/D card, the sample rate will affect the Allan variance result. In
order to check the datasampling rate effect on the Allan variance result and the fact that
the MotionPak 1l provides analog data, different sampling rate data sets were collected

for the system through the A/D card.

Using the A/D card with the National Instrument LabVIEW 7.0 software, 10 minutes
data sets at different sampling rates (10Hz, 50Hz, 100Hz, 500Hz, 1000Hz, and 2000HZ)
were collected separately. Applying the Allan variance method to all the data sets, the
Allan variance results are shown in Figure (5.10).
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Figure5.10 MotionPak Il Gyro X Allan Variance Sample Rate Test Result

Figure (5.10) clearly shows similar results for data rates higher than 100Hz sampling rate.
The attenuation in the high frequency part (i.e. T < 0.01 sec) is the embodiment of the
sensors bandwidth. From the data sheet of MotionPak 11, the bandwidth of gyros is larger
than 30Hz. Therefore; the sampling rate should reach three to five times the bandwidth to
meet the requirement for reliable sensor performance analysis, which also meets the
requirement of Nyquist theorem. Therefore, the sample rate for the MotionPak 11 gyro is

set as 100Hz while that for accelerometer is set as 1000Hz.

Two-hour static data from MotionPak |1 was collected at room temperature at the above
recommended data rate. Applying the Allan variance method to the whole data set, a log-

log plot of MotionPak Il three axis gyros Allan standard deviation versus cluster time is
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shown in Figure (5.11). From the Allan variance result, for two hours static MotionPak 11
gyro data, it is clear that the angle random walk noise is the dominant noise in short
cluster times while the bias instability noise term is the dominant noise term in long

cluster times.

What follow is an example of how to obtain the bias instability noise coefficient from the
Allan variance results. For the MotionPak 11 Zaxis gyro Allan variance result plot in
Figure (5.12), the dmost flat part of the curve of long cluster part is indicative of the low-
frequency noise, which determines the bias variations of the run The dashed line, a zero
dope line, which is fitted to the bottom of the curve determines the upper limit of bias
instabilities. Such a line meets the ordinate axis at a value of 11.1488 and dividing this by
0.664 (see Section 4.3.3) yields the maximum bias instability value of 16.79 deg/h.
Analysis of the curve indicates that the estimation percentage error in this region is
approximately 10% according to Equation (4.66). The value of the percentage error is
equal to 16.79 ~ 10% = 1.68 deg/h. Thus the bias instability coefficient for MotionPak 11
Z-axis gyro is estimated as.
B =(16.79+1.68)deg/ h (5.5)

The method described above can be used to acquire the bias instability coefficient from

Allan variance result plot.

Figure (5.13) shows the Allan variance results for two hours of static MotionPak Il three
axes accelerometer data collected at the above recommended data rate. The results clearly

indicates that, for the MotionPak Il accelerometers, the velocity random walk is the
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dominant noise term in the short clustering time while the bias instability noise term is
the dominant noise in the long clustering time. The identified noise coefficients for

MotionPak 1l are listed in Table (5.5).

Table 5.5 Identified Noise Coefficientsfor M otionPak 11

Bias Bias

100Hz Random Walk . 1000Hz  Random Wak o
2 Instability 12 Instability

Data (deg/h¥?) (deg/h) Data (m/s/h??) (mish)

Gyro X 0.5121+0.0068 | 13.58+1.36 | Accl X 0.01664+0.00003 4.36+0.04

GyroY 0.4859+0.0065 | 11.69+1.17 | Accl Y 0.01593+0.00003| 4.09+0.08
Gyro Z 0.4891+0.0065 | 16.79+1.68 | Accl Z 0.01612+0.00003 | 4.36+0.08

Allan Standard Deviation (deg/h)

1° 10’
Cluster Time (sec)

Figure 5.11 MotionPak || Gyro Allan Variance Test Results
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Figure5.13 MotionPak 11 Accelerometer Allan Variance Results
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5.3 SUMMARY

The Allan variance method presented has proven to be able to identify the
characterization of various random errors contained in the output data of inertial sensors.
By performing a simple operation on the entire length of data, a charaderistic curve is
obtained whose inspection facilitates the determination of the different types and

magnitude of noise terms existing in inertial sensors.

The identified noise terms for two-hour static data from gyros and accelerometers of

different grades of IMUs are listed in Table (5.6).

Table 5.6 Summary of Identified Noise Terms

Quanti zati rl:nrégcl); Bias r;gtoem Drift rate
on walk instability walk ramp
CIMU o) o)
Gyro HG1700 o) O
MP2 O o)
Quanti zati Veloaity Bias Rete Drift rate
on random instability random ramp
walk walk
CIMU o) O
Accelero ” "
meter HG1700 O O
MP2 o o

It should be noted that the noise terms, which haven’t been identified, may need long

term test data to prove whether or not they exist.
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By comparing the estimated noise coefficients obtained from power spectral density,
listed in Table (3.5) with Allan variance method, Table (5.2) for CIMU and Table (5.5)
for Motion Pak 11, the noise coefficient is identical for same noise term. Consequently,

the Allan variance method performed in this thesis work is correct.

In addition, the noise coefficients can be read off directly from the Allan variance result
plot. For power spectral density method, the frequency averaging technigue should be
applied first to make the slopes of the curve distinguishable. Then, further calculation is
needed to obtain the coefficients. Thus, the procedure of parameter abstraction for Allan
variance is much simpler than that for power spectral density. As a conclusion, Allan

variance method is more suitable for inertial system performance analysis and prediction.
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Compared to the stochastic modeling methods discussed in Chapter Three, Allan variance

has many advantages in inertial sensor noise term analysis and modeling.

The autocorrelation method is useful in modeling Gauss-Markov processes. But, in order
to revea the parameters, test data needs to be de-noised first. In addition, autocorrelation
methods need very long term static data to produce results within an acceptable range,
especialy for the sensors in the high grade IMU’s. From experience, the correlation time

is very long for high grade IMUSs; the test can even take a few weeks.

The power spectral density method is straightforward but the computation is complex and
difficult for non-system analysts to understand. After the calculations are performed, the
results need to be smplified through the frequency averaging technique. Even after that,

it is complex to extract the parameters of the identified noise terms from the result plot.

On the other hand, the Allan variance method is a finer, easier characterization and

identification of error sources and their contribution to the overall noise statistics.

Seven-day dtatic data from CIMU, HG1700, and MotionPak 11-3g IMUs were

investigated. Approximately 80% of results are close to the manufacture claimed
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performance characteristics of these units, which prove the reliability of the Allan

Variance method. Overall, the results obtained from the data analysis indicate that:

" The quantization noise is the dominant noise term in short cluster times while the
angle random wak noise term is the dominant noise in long cluster times for the
gyros used in the CIMU and HG1700 IMUs. For the accelerometers, the quantization
noise is the dominant noise term in short cluster times while the rate random walk and
drift rate ramp is the dominant noise in long cluster times for HG1700 and CIMU,

respectively.

" The results of the MotionPak Il sensors clearly indicate that random walk is the
dominant noise term in the short clustering time while the bias instability noise terms

are the dominant noise in the long clustering time.

" When colleting data through the A/D card, the Nyquist theorem should be
uilized. The recommended sampling frequency should be three to five times of

sensor bandwidth to meet the requirement for reliable sensor performance anaysis.

Based on the above analysis, the Allan variance method is helpful in IMU analysis and
modeling for both manufacturers and users. Manufacturers can improve sensor
performance based on the identified noise terms. Users can better model sensor

performance according to the existing noise terms within the sensor output.
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Consequently, the author expects that Allan variance will attract more and more attention

in the field of INS sensors analysis and modeling.

6.2 RECOMMENDATIONS

Identification and modeling the noise terms within the inertial sensors was the main
objective of thisthesis. Thereis till along road ahead to improve the navigation solution
with all these results. What follows are a few recommendations from the author’ s point of

view in the application of the results and the potentia for further research work:

Quantization noise, which has been identified in CIMU and HG1700 gyro and
accelerometer sensors, is strictly due to the digital nature of the sensor output.
Inertial sensor quantization error generaly is a minor contributor to attitude/
velocity/ position and initial heading determination inaccuracy in a strapdown
INS. However, mismodeling of quantization error effects can result in

erroneously large estimates of their impact on INS performance (Savage 2002). In
future work, it is necessary to add the quantization noise into the stochastic

mode!.

Random walk is an important noise term and can be used to evaluate the sensor
noise intensity. In the Kaman filter design, the amplitude of random walk
coefficients can be directly used in the process noise covariance matrix with

respect to the appropriate sensor.
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The standard definition of bias instability used by inertial sensor manufacturers is
the minimum point on the Allan variance curve. This is the best stability one
could achieve with a fully modeled sensor and active bias estimation (Stockwell
2004). Thus, in future work, the minimum point on the Allan variance curve can

be used in the inertial sensor bias instability estimation.

Since the rate random walk and rate ramp have been identified by Allan variance

method, in future work, these two noise terms should be considered in system

modeling.
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