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Abstract

Since the usage of high performance inertial navigation systems (INSs) is limited by their high

price and the regulation by the government, low cost INSs are used for general application

areas. However, low cost INSs can experience large positioning errors in very short time due

to the low quality of the inertial measuring unit (IMU). To overcome the limitations of low

cost INSs, several techniques were developed and tested using the NovAtel Black Diamond

System (BDSTM).

A new field calibration method was developed and tested successfully. It is not needed to

align the IMU to the local level frame with the method. Furthermore, the bias estimation

of the calibration method is not affected by the reference gravity error. Almost half of the

positioning error could be removed with the accelerometer calibration information.

The mechanization and navigation Kalman filter were implemented based on the navigation

frame to test the velocity matching alignment and non-holonomic constraints. The veloc-

ity matching alignment technique was tested for the IMUs to which stationary alignment

technique cannot be applied. All attitude components converged within three minutes with

RMS 0.03◦. Non-holonomic constraints dramatically reduced the horizontal positioning er-

ror, within 40 m for 20 minutes operation. Therefore, low cost INSs can be used as a

stand-alone positioning system during the GPS outages of over 10 minutes.
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(c) The coordinate frames that are involved in the vector transformation are denoted

as subscript and superscript. For instance, Cn
b is the direction cosine matrix from

the body frame to the navigation frame. For the angular rate vector subscript

denotes the reference and target frame, and superscript denotes the projected or

realized frame. For example, ωn
ib represents the angular rate vector of the body

frame with respect to the inertial frame projected to the navigation frame.
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Chapter 1

Introduction

1.1 Background and Objective

The integration of a navigation-grade inertial navigation system (INS) with the global posi-

tioning system (GPS) has been done for the application areas in which attitude information

is indispensable and rapid collection of geographic information is required. In practice, in-

tegration is necessary for navigation in urban areas where the signal from the satellites is

susceptible to blocking by many obstacles (such as skyscrapers, trees, etc.). However, there

are two restrictions in using high performance INSs. One is their price, over US$100,000,

and the other is a regulation by the government. Hence, a high performance INS is usually

used in military applications and commercial airliners, and is not suitable for general pur-
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CHAPTER 1. INTRODUCTION 2

pose application areas such as car navigation or general aviation (Gebre-Egziabher et al.,

2001). Therefore, recent research efforts have been focused on using low cost inertial mea-

suring units (IMUs), for instance see Zhang (1995), Škaloud et al. (1997), Wolf et al. (1997),

Salychev et al. (2000), and Sukkarieh (2000).

Zhang (1995), Wolf et al. (1997), and Salychev et al. (2000) discussed the integration of a

Systron Donner’s MotionpakTM IMU with one or more GPS antennas. Salychev et al. (2000)

used external heading information to align the IMU. Sukkarieh (2000) proposed the use of

non-holonomic constraints, which describe the characteristics of the motion of land vehicles.

Motion of a wheeled vehicle on a surface is governed by two non-holonomic constraints

(Sukkarieh, 2000, p. 94), i.e. vehicles do not move upward/downward direction, and lateral

velocity is almost zero.

Low cost IMUs are peculiar in their weak stand-alone accuracy and poor run-to-run stability

(Salychev et al., 2000), which can result in large errors over short time intervals if their errors

are not compensated. The IMU itself costs, roughly speaking, under US$10,000 and the price

is decreasing continuously with the development of Micro Electrical Mechanical Systems

(MEMS) technology. Table 1.1 compares the performance of IMUs from the navigation-

grade to consumer-grade.

For example, the biases of the accelerometers of a Crossbow DMU-FOG IMU is usually up

to 1,000 mGal (0.01 m/s2) and they drift with the change of temperature. Also, the level
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Table 1.1: INS performance (Schwarz and El-Sheimy, 1999; Greenspan, 1995; Gebre-

Egziabher et al., 2001)

Grade Navigation Tactical Automotive Consumer

Position error 1.9 (km/hr) 19-38 (km/hr) ≈2 (km/min) ≈3 (km/min)

bias (deg/hr) 0.005-0.01 1-10 180 360

Gyro scale factor (ppm) 5-50 200-500

noise (deg/hr/
√

Hz) 0.002-0.005 0.2-0.5

bias (µg) 5-10 200-500 1200 2400

Accel scale factor (ppm) 10-20 400-1000

noise (µg/hr/
√

Hz) 5-10 200-400

of the bias and noise of the gyroscopes is very high. For instance, as analyzed in Section

4.2.1, the gyroscope bias level of a Honeywell HG1700 IMU is rated at 1 ◦/hr, which can

cause a 6◦ initial heading error in mid-latitude areas. The gyroscope bias and noise level of

the Crossbow DMU-FOG IMUs are higher than the magnitude of the Earth’s rotation rate

signal, and therefore, the attitude initialization with gyro-compassing is impossible.

Hence, the estimation of gyroscope biases plays a significant role for tactical-grade IMUs,

and the augmentation with other sensors, for instance multi-GPS antennas and magnetic

sensors, is needed to initialize the attitude of automotive-grade or consumer-grade IMUs.
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A new calibration technique was developed by Shin and El-Sheimy (2002), which does not

require the IMU to be aligned with respect to the local-level frame and therefore it is easy

to use in the field. In case there is only one GPS antenna, the attitude of an IMU can be

initialized by the GPS velocity aiding, see for instance Titterton and Weston (1997, p. 276)

and Farrell and Barth (1998, p. 233). Since heading is susceptible to drift when the vehicle’s

velocity is zero due to the low quality of the gyroscopes, a technique to limit the attitude

error growth is needed for the time when the host vehicle is not moving, such as waiting for

a traffic signal.

The objective of the thesis is to improve the accuracy of low cost INS systems so that they

can be used as a stand-alone navigation system during long GPS outages for general ground

vehicle navigation. To accomplish this objective, the following techniques will be developed

and tested:

• field calibration methods: estimates the biases and scale factors of the IMU in the

field

• velocity matching alignment: initializes the attitude of an IMU using GPS velocity

information

• using the non-holonomic constraints: reduces stand-alone positioning accuracy

For testing the velocity matching alignment and non-holonomic constraints, an INS mecha-
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nization and a navigation Kalman filter have been developed.

1.2 Thesis Outline

Chapter 2 derives the navigation frame inertial navigation equations. The navigation frame

is chosen because the elements of the state vector, derived in Chapter 3, carry physical

meanings which are easy to visualize. After defining various reference frames, the inertial

navigation equations will be derived. The discrete time mechanization equations are given in

the final section. The error equations shall be derived based on these navigation equations.

Chapter 3 derives the error dynamics equations, for use in the Kalman filter, based on the

perturbation analysis for position, velocity and attitude errors. Then, various issues, which

have to be considered in the implementation of the INS/GPS integration Kalman filter, will

be discussed such as the lever-arm correction, resolving the time difference between the IMU

and GPS measurements, and the feedback of the estimated states.

Chapter 4 discusses various techniques to improve the accuracy of low cost INS/GPS systems.

A new calibration method will be introduced to estimate the biases and scale factors in the

field. The sensitivity of the method in using erroneous reference gravity values is discussed

as well. The velocity matching alignment method will be described using a five-state Kalman

filter. The equations to use the non-holonomic constraints in the navigation Kalman filter
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will be derived based on the perturbation analysis. Finally, the methods to limit attitude

error growth will be discussed.

Chapter 5 holds the test results using the NovAtel Black Diamond System (BDSTM), which

integrates a NovAtel OEM4 GPS receiver and a Honeywell HG1700 IMU (NovAtel, Inc.,

2001). The new calibration method is applied in the field and the effect of the calibration

on the positioning accuracy is also discussed. The performance of the newly developed

navigation frame INS mechanization is compared to that of the KINGSPADTM software.

The errors of the velocity matching alignment method and the non-holonomic constraints

were analyzed.

Finally, Chapter 6 will conclude the thesis as well as will give some recommendations for

future work.



Chapter 2

Terrestrial Inertial Navigation

Mechanization

Over 20 years of worldwide developments in strapdown inertial navigation algorithms were

summarized by Savage (1998a,b) and recently new approaches to accommodate modern

computer technologies were started by Litmanovich et al. (2000). However, these efforts

are mainly for high performance inertial navigation systems (strategic-grade or navigation-

grade). This chapter will provide the INS mechanization equations which can be applied to

both navigation-grade or lower grade IMUs. In the first section, various coordinate frames

will be defined and the transformation between them will be given. The navigation equations

are developed on the basis of the navigation frame, which are widely used in the navigation

7



CHAPTER 2. TERRESTRIAL INERTIAL NAVIGATION MECHANIZATION 8

society. Finally, the discrete time INS mechanization will be given.

2.1 Reference Frames and Transformations

The inertial frame (i -frame) has its origin at the centre of the Earth and axes which

are non-rotating with respect to the fixed stars with its z-axis parallel to the spin axis of

the Earth, x-axis pointing towards the mean vernal equinox, and y-axis completing a right-

handed orthogonal frame as shown in Figure 2.1. The vernal equinox is the ascending node

between the celestial equator and the ecliptic. So, the right ascension system is used as the

inertial frame in practice, since it closely approximates an inertial frame (Schwarz, 1999,

p. 114).

Celestial
Equator

Vernal equinox

Xi

Zi ||Ze
Ecliptic

Yi

Figure 2.1: The inertial frame
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The Earth frame (e-frame) has its origin at the centre of mass of the Earth and axes

which are fixed with respect to the Earth. Its x-axis points towards the mean meridian of

Greenwich, z-axis is parallel to the mean spin axis of the Earth, and y-axis completes a

right-handed orthogonal frame.

The navigation frame (n-frame) is a local geodetic frame which has its origin coinciding

with that of the sensor frame, and axes with x-axis pointing towards geodetic north, z-axis

orthogonal to the reference ellipsoid pointing down, and y-axis completing a right-handed

orthogonal frame, i.e. the north-east-down (NED) system as shown in Figure 2.2. The

benefit of the east-north-up (ENU) system is that altitude increases in the upward. The

advantages of NED system are that the direction of a right turn is in the positive direction

with respect to a downward axis, and the axes coincide with vehicle-fixed roll-pitch-heading

coordinates when the vehicle is level and headed north (Grewal et al., 2001, p. 338). Further,

NED system is prevalent and therefore more research results can be found and incorporated

into one’s own directly.

The body frame (b-frame) is an orthogonal axis set which is aligned with the roll, pitch

and heading axes of a vehicle, i.e. forward-transversal-down as shown in Figure 2.3.
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ye

xn
yn

zn

ze

xe

Figure 2.2: The Earth frame and the navigation frame

xb
zb

yb

Figure 2.3: The body frame
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The direction cosine matrix (DCM) from the e-frame to the n-frame can be expressed as:

Cn
e = Ry(−ϕ− π/2)Rz(λ)

=



− sinϕ cosλ − sinϕ sinλ cosϕ

− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ


(2.1)

where, ϕ is latitude, λ is longitude, Ry and Rz denote rotation of coordinate systems about

y-axis and z-axis, respectively. Then, the DCM from the n-frame to the e-frame can be

obtained using the orthogonality as:

Ce
n = (Cn

e )T =



− sinϕ cosλ − sinλ − cosϕ cosλ

− sinϕ sinλ cosλ − cosϕ sinλ

cosϕ 0 − sinϕ


(2.2)

The definition for the DCM from the n-frame to the b-frame is given as (Titterton and

Weston, 1997, p.44):

Cb
n = Rx(φ)Ry(θ)Rz(ψ) (2.3)

where, φ, θ, and ψ are the three components of the Euler angles roll, pitch, and heading,

respectively. Hence, the DCM from the b–frame to the n–frame is obtained again using the
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orthogonality:

Cn
b =

(
Cb

n

)T
= Rz(−ψ)Ry(−θ)Rx(−φ)

=



cosψ − sinψ 0

sinψ cosψ 0

0 0 1





cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ





1 0 0

0 cosφ − sinφ

0 sinφ cosφ



=



cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ


(2.4)

where sin and cos are denoted as s and c, respectively.

The Euler angles can also be determined from the DCM Cn
b by the following equations

(Farrell and Barth, 1998, p.46):

θ = − tan−1

(
c31√

1− c231

)
(2.5)

φ = atan2(c32, c33) (2.6)

ψ = atan2(c21, c11) (2.7)

where, cij’s, 1 ≤ i, j ≤ 3 are the (i,j)-th elements of the DCM Cn
b and atan2 is a four

quadrant inverse tangent function.
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The rotation rate vector of the e-frame with respect to the i -frame projected to the e–frame

is given as:

ωe
ie = ( 0 0 ωe

)T (2.8)

where, ωe is the magnitude of the rotation rate of the Earth and has the value 7.2921158

rad/s. Projecting the vector to the n-frame using Eq. (2.1) makes

ωn
ie = Cn

e ω
e
ie = ( ωe cosϕ 0 −ωe sinϕ )T . (2.9)

The transport rate represents the turn rate of the n-frame with respect to the e-frame and is

expressed in terms of the rate of change of latitude and longitude as (Titterton and Weston,

1997, p. 52):

ωn
en = ( λ̇ cosϕ −ϕ̇ −λ̇ sinϕ )T (2.10)

Writing ϕ̇ = vN/(M + h) and λ̇ = vE/(N + h) cosϕ,

ωn
en =



vE/(N + h)

−vN/(M + h)

−vE tanϕ/(N + h)


(2.11)

where vN , vE are velocities in the north and east direction, respectively. h is ellipsoidal

height and M , N are radii of curvature in the meridian and prime vertical given by Schwarz
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and Wei (2000, p. 25):

N =
a

(1− e2 sin2 ϕ)1/2 (2.12)

M =
a(1− e2)

(1− e2 sin2 ϕ)3/2 (2.13)

where a and e are the semi-major axis and linear eccentricity of the reference ellipsoid,

respectively

The equation for ωn
in can be obtained by adding equations (2.9) and (2.11)

ωn
in = ωn

ie + ωn
en

=



ωe cosϕ+ vE/(N + h)

−vN/(M + h)

−ωe sinϕ− vE tanϕ/(N + h)


(2.14)

shown as functions of the positions and velocities.

2.2 Inertial Navigation Equations

The position in the n-frame is expressed by curvilinear coordinates:

rn = ( ϕ λ h )T (2.15)
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and the velocities in the n–frame are defined by

vn =



vN

vE

vD


=



(M + h) 0 0

0 (N + h) cosϕ 0

0 0 −1





ϕ̇

λ̇

ḣ


(2.16)

Hence, the time derivative of the coordinates can be written as

ṙn =



ϕ̇

λ̇

ḣ


=



1
M + h

0 0

0
1

(N + h) cosϕ
0

0 0 −1





vN

vE

vD


(2.17)

To get the velocity dynamics equations, we start with

vn = Cn
e ṙ

e (2.18)

Substituting ṙe = Ce
i (ṙ

i − Ωi
ier

i) into the above equation yields

vn = Cn
i (ṙi − Ωi

ier
i) (2.19)

Hence, the velocity dynamics can be obtained as follows:

v̇n = Cn
i Ωi

ni(ṙ
i − Ωi

ier
i) + Cn

i (r̈i − Ωi
ieṙ

i)

= Cn
i r̈

i + Cn
i (Ωi

ni − Ωi
ie)ṙ

i − Cn
i Ωi

niΩ
i
ier

i (2.20)
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where the Earth’s rotation rate, Ωi
ie, is considered as a constant. Substituting ṙi = Ci

e(ṙ
e +

Ωe
ier

e) and I = Ci
nC

n
i into the above equation yields

v̇n = Cn
i r̈

i + Cn
i (Ωi

ni − Ωi
ie)C

i
nC

n
i C

i
e(ṙ

e + Ωe
ier

e)− Cn
i Ωi

niΩ
i
ier

i

= Cn
i r̈

i + (Ωn
ni − Ωn

ie)C
n
e ṙ

e + (Ωn
ni − Ωn

ie)C
n
e Ωe

ier
e − Cn

i Ωi
niΩ

i
ier

i

= Cn
i r̈

i + (Ωn
ni − Ωn

ie)C
n
e ṙ

e + Ωn
niC

n
e Ωe

ier
e − Ωn

ieC
n
e Ωe

ier
e − Cn

i Ωi
niΩ

i
ier

i (2.21)

Using

Ωn
niC

n
e Ωe

ier
e = Cn

i C
i
nΩn

niC
n
i C

i
nC

n
e Ωe

ieC
e
iC

i
er

e

= Cn
i Ωi

niΩ
i
ier

i

and Eq. (2.18) the velocity dynamics can be reduced to

v̇n = Cn
i r̈

i + (Ωn
ni − Ωn

ie)v
n − Ωn

ieC
n
e Ωe

ier
e

= Cn
i r̈

i − (2Ωn
ie + Ωn

en)vn − Cn
e Ωe

ieΩ
e
ier

e (2.22)

Substituting r̈i = f i + ḡi into the upper equation yields

v̇n = Cn
i (f i + ḡi)− (2Ωn

ie + Ωn
en)vn − Cn

e Ωe
ieΩ

e
ier

e

= Cn
i f

i − (2Ωn
ie + Ωn

en)vn + Cn
e (ḡe − Ωe

ieΩ
e
ier

e)

= Cn
b f

b − (2Ωn
ie + Ωn

en)vn + gn (2.23)
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where f is the specific force vector defined as the difference between the true acceleration in

space and the acceleration due to gravity (Titterton and Weston, 1997, p. 10) and ḡ is the

gravitational acceleration and g is the gravity vector. Eq. (2.23) can also be expressed as

v̇n = Cn
b f

b − (2ωn
ie + ωn

en)× vn + gn (2.24)

Similar derivations can be found in Rogers (2000, p. 73).

The attitude dynamics are defined by Schwarz and Wei (2000, p. 38)

Ċn
b = Cn

b Ωb
nb = Cn

b (Ωb
ib − Ωb

in) (2.25)

or by Rogers (2000, p. 74)

Ċn
b = −Ωn

bnC
n
b (2.26)

where Ω represents the skew symmetric matrix form of the vector ω and Ωb
ib is the outputs

of the strapdown gyroscopes. Ωn
bn is obtained by

ωn
bn = ωn

in − Cn
b ω

b
ib (2.27)

For the case where the quality of the gyroscope is so crude that we can disregard the Earth’s

rotation rate, ωn
in may be approximated by ωn

en.
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Usually quaternion implementation is preferred in updating the attitude as the linearity

of the quaternion differential equations, the lack of trigonometric functions, and the small

number of parameters allow efficient implementation (Farrell and Barth, 1998, p. 41). The

quaternion attitude representation is a four-parameter representation based on the idea that

a transformation from one coordinate frame to another may be effected by a single rotation

about a vector µ (Titterton and Weston, 1997, p. 46). A quaternion is a four–element vector

q =



q1

q2

q3

q4


=



(µx/µ) sin(µ/2)

(µy/µ) sin(µ/2)

(µz/µ) sin(µ/2)

cos(µ/2)


, (2.28)

where µx, µy, µz are components of the rotation angle vector µ, and µ = (µ2
x + µ2

y + µ2
z)

1/2.

The quaternions should satisfy the following normality condition

q2
1 + q2

2 + q2
3 + q2

4 = 1. (2.29)

When this condition is not fulfilled, the normalization of the quaternion can be applied

q̂ = q/
√
qT q. (2.30)

However, the normalization cannot correct for errors that have occurred in the previous

computation cycle. In fact, an error arising in a single element of the quaternion can be
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spread amongst all of the elements (Titterton and Weston, 1997, p. 310).

The differential equations for the quaternion parameters is given by (Schwarz and Wei, 2000,

p. 46)

q̇ =
1
2



0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


q, (2.31)

where ω = ( ωx ωy ωz
)T is the angular velocity of the body rotation.

The transformations between the quaternion and the DCM Cn
b are accomplished by

Cn
b =



(q2
1 − q2

2 − q2
3 + q2

4) 2(q1q2 − q3q4) 2(q1q3 − q2q4)

2(q1q2 + q3q4) (q2
2 − q2

1 − q2
3 + q2

4) 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) (q2
3 − q2

1 − q2
2 + q2

4)


, (2.32)

and

q =



q1

q2

q3

q4


=



0.25(c32 − c23)/0.5
√

1 + c11 + c22 + c33

0.25(c13 − c31)/0.5
√

1 + c11 + c22 + c33

0.25(c21 − c12)/0.5
√

1 + c11 + c22 + c33

0.5
√

1 + c11 + c22 + c33


(2.33)
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where cij’s, 1 ≤ i, j ≤ 3 are the (i,j)-th elements of the DCM Cn
b . An efficient algorithm with

built-in normalization for the calculation of the DCM from the quaternion can be found in

Farrell and Barth (1998, p.41).

In summary, using Eq. (2.17), (2.24) and (2.25), the navigation frame inertial navigation

equations can be described as



ṙn

v̇n

Ċn
b


=



D−1vn

Cn
b f

b − (2ωn
ie + ωn

en)× vn + gn

Cn
b (Ωb

ib − Ωb
in)


(2.34)

where

D−1 =



1
M + h

0 0

0
1

(N + h) cosϕ
0

0 0 −1



2.3 INS Mechanization

Strapdown IMUs work in discrete form and they usually output angle and velocity increments

in the body frame, i.e. ∆θ̃
b

ib and ∆ṽb
f . Therefore, discrete integration algorithms are usually

applied to transform these measurements into navigation quantities.
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2.3.1 Error Compensation

The gyroscope and accelerometer outputs will be corrected using the bias model and the

bias and scale factor model, respectively. Section 4.1 describes the estimation of the biases

and scale factors in detail.

∆θb
ib = ∆θ̃

b

ib − bω∆t (2.35)

∆vf =



1/(1 + sgx) 0 0

0 1/(1 + sgy) 0

0 0 1/(1 + sgz)


(∆ṽf − bg∆t) (2.36)

where ∆θb
ib and ∆vf are the corrected outputs of the gyroscopes and accelerometers, respec-

tively. bω and bg are the vectors of the gyroscope and accelerometer biases, respectively.

sgx, sgy, and sgz are the scale factors of the accelerometers. ∆t = tk+1 − tk is the time

increment for the time interval (tk, tk+1). The sampling rate is usually denoted with the unit

Hz = 1/∆t. As shown in Figure 2.4, the nominal sampling rate of the HG1700 IMU is 100

Hz, but actually it is fluctuating within ±1% range. So, ∆t is treated as a variable.
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Figure 2.4: Sampling rate of HG1700 IMU

2.3.2 Attitude Integration

The body angular increment with respect to the navigation frame are obtained by

∆θb
nb = ( ∆θx ∆θy ∆θz

)T

= ∆θb
ib − Cb

n(ωn
ie + ωn

en)∆t (2.37)

and the magnitude of the angular increment is calculated

∆θ =
√

∆θ2
x + ∆θ2

y + ∆θ2
z (2.38)

The angular increments obtained in Eq. (2.37) and (2.38) are used to update the quaternion
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(Schwarz and Wei, 2000, p. 53):

q
k+1

= q
k
+ 0.5



c s∆θz −s∆θy s∆θx

−s∆θz c s∆θx s∆θy

s∆θy −s∆θx c s∆θz

−s∆θx −s∆θy −s∆θb
z c


q

k
(2.39)

where

s =
2

∆θ
sin

∆θ
2

= 1− ∆θ2

24
+

∆θ4

1920
+ · · ·

c = 2(cos
∆θ
2

− 1) = − ∆θ2

4
+

∆θ4

192
+ · · ·

Finally the DCM Cn
b is updated using Eq. (2.32).

2.3.3 Velocity and Position Integration

The body frame velocity increment due to the specific force is transformed to the navigation

frame through (Schwarz and Wei, 2000, p. 55):

∆vn
f = Cn

b



1 0.5∆θz −0.5∆θy

−0.5∆θz 1 0.5∆θx

0.5∆θy −0.5∆θx 1


∆vb

f (2.40)
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where the first order sculling correction is applied. Then, the velocity increment is obtained

by applying the Coriolis and gravity correction:

∆vn = ∆vn
f − (2ωn

ie + ωn
en)× vn∆t+ γn∆t (2.41)

where γn = ( 0 0 γ )T , and γ is the normal gravity at the geodetic latitude ϕ and ellip-

soidal height h (Schwarz and Wei, 2000, p. 30)

γ = a1(1 + a2 sin2 ϕ+ a3 sin4 ϕ) + (a4 + a5 sin2 ϕ)h+ a6h
2 (2.42)

a1 = 9.7803267715 a4 = -0.0000030876910891

a2 = 0.0052790414 a5 = 0.0000000043977311

a3 = 0.0000232718 a6 = 0.0000000000007211

The velocity integration can be performed as

vn
k+1 = vn

k + ∆vn
k+1 (2.43)

and the positions are integrated using the second order Runge-Kutta method:

rn
k+1 = rn

k + 0.5



1
M + h

0 0

0
1

(N + h) cosϕ
0

0 0 −1


(vn

k + vn
k+1)∆t (2.44)
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where M and N are the radii of curvature in the meridian and prime vertical, respectively.

Figure 2.5 summarizes the overall navigation frame INS mechanization described in this

section.
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Figure 2.5: The navigation frame INS mechanization



Chapter 3

Development of INS/GPS Integration

Kalman Filter

In this chapter the error dynamics equations of inertial navigation systems will be derived

based on perturbation analysis. The nine-state INS/GPS integration Kalman filter will then

be built using the error dynamics equations. Several issues in implementing the Kalman

filter are also discussed in detail, such as correcting the lever-arm effect, resolving the GPS

and IMU measurement time difference, and the feedback/feedforward method.

26
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3.1 Perturbation Analysis

The error analysis utilizes perturbation methods to linearize the nonlinear system differential

equations (Britting, 1971, p. 20). For example, the perturbation of the position, velocity,

attitude DCM, and gravity can be expressed as

r̂n = rn + δrn (3.1)

v̂n = vn + δvn (3.2)

Ĉn
b = (I − En)Cn

b (3.3)

γn = gn + δgn (3.4)

where γ denotes the normal gravity vector and En is the skew symmetric (or cross product)

form of the attitude errors

En = (εn×) =



0 −εD εE

εD 0 −εN

−εE εN 0


(3.5)

and ˆ and δ denote computed values and errors, respectively. The derivation of Eq. (3.3)

is dealt with in Britting (1971, p. 21) as a transformation with an explicit orthogonality

constraint.
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3.2 Position Error Dynamics

The linearized position error dynamics can be obtained by perturbing Eq. (2.17), the dynam-

ics equations for the geodetic positions. Since the position dynamics equations are functions

of position and velocity, the position error dynamics equations can be obtained using the

partial derivatives:

δṙn = Frrδr
n + Frvδv

n (3.6)

where

Frr =



∂ϕ̇
∂ϕ

∂ϕ̇
∂λ

∂ϕ̇
∂h

∂λ̇
∂ϕ

∂λ̇
∂λ

∂λ̇
∂h

∂ḣ
∂ϕ

∂ḣ
∂λ

∂ḣ
∂h


=



0 0
−vN

(M + h)2

vE sinϕ
(N + h) cos2 ϕ

0
−vE

(N + h)2 cosϕ

0 0 0



Frv =



∂ϕ̇
∂vN

∂ϕ̇
∂vE

∂ϕ̇
∂vD

∂λ̇
∂vN

∂λ̇
∂vE

∂λ̇
∂vD

∂ḣ
∂vN

∂ḣ
∂vE

∂ḣ
∂vD


=



1
M + h

0 0

0
1

(N + h) cosϕ
0

0 0 −1



and M , N are radii of curvature in the meridian and prime vertical, and are considered as

constants.
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3.3 Velocity Error Dynamics

Referring to Eq. (2.24), the computed version of the velocity dynamics equation can be

expressed as

ˆ̇v
n

= Ĉn
b f̃

b − (2ω̂n
ie + ω̂n

en)× v̂n + γn (3.7)

Perturbing the above equation yields

v̇n + δv̇n = (I − En)Cn
b (f b + δf b)

−(2ωn
ie + ωn

en + 2δωn
ie + δωn

en)× (vn + δvn) + gn + δgn (3.8)

Collecting the first order terms, the above equation can be reduced to

δv̇n = −(2δωn
ie + δωn

en)× vn + δgn

−(2ωn
ie + ωn

en)× δvn − εn × fn + Cn
b δf

b

= vn × (2δωn
ie + δωn

en) + δgn

−(2ωn
ie + ωn

en)× δvn + fn × εn + Cn
b δf

b (3.9)
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where the first and second terms on the right hand side can be developed into functions of

position and velocity errors. Referring to Eq. (2.14),

2ωn
ie + ωn

en =



2ωe cosϕ+
vE

N + h

−vN

M + h

−2ωe sinϕ− vE tanϕ
N + h


. (3.10)

Perturbing the above equation yields

2δωn
ie + δωn

en = δΩrδr
n + δΩvδv

n (3.11)

where

δΩr =



−2ωe sinϕ 0
−vE

(N + h)2

0 0
vN

(M + h)2

−2ωe cosϕ− vE

(N + h) cos2 ϕ
0

vE tanϕ
(N + h)2


(3.12)

and

δΩv =



0
1

N + h
0

−1
M + h

0 0

0
− tanϕ
N + h

0


. (3.13)
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Using Eq. (3.11), the first term on the right hand side of Eq. (3.9) can be developed into

the functions of the position and velocity errors

vn × (2δωn
ie + δωn

en) = (vn×)(δΩrδr
n + δΩvδv

n)

= (vn×)δΩrδr
n + (vn×)δΩvδv

n (3.14)

Completing the algebra, we can get

(vn×)δΩr =



−2vEωe cosϕ

− v2
E

(N + h) cos2 ϕ
0

−vNvD

(M + h)2 +
v2

E tanϕ
(N + h)2

2ωe(vN cosϕ− vD sinϕ)

+
vEvN

(N + h) cos2 ϕ
0

−vEvD

(N + h)2 − vNvE tanϕ
(N + h)2

2vEωe sinϕ 0
v2

E

(N + h)2 +
v2

N

(M + h)2


(3.15)

(vn×)δΩv =



vD

M + h
−vE tanϕ
N + h

0

0
vD

N + h
+

vN tanϕ
N + h

0

−vN

M + h
−vE

N + h
0


(3.16)

The gravity vector in the navigation frame, gn, is approximated by the normal gravity vector

( 0 0 γ )T , and γ varies with altitude. Let us assume a spherical Earth model and the

following simplified inverse square gravity model (Rogers, 2000, p. 70)

γ = γ0

(
R

R + h

)2

, (3.17)
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where γ0 is the normal gravity at h = 0, and R =
√
MN . Perturbing the upper equation

yields

δγ = −2

(
γ

R + h

)
δh (3.18)

Using Eq. (3.10) ∼ (3.18), the velocity error dynamics equation Eq. (3.9) can be rewritten

as

δv̇n = Fvrδr
n + Fvvδv

n + (fn×)εn + Cn
b δf

b (3.19)

where

Fvr =



−2vEωe cosϕ

− v2
E

(N + h) cos2 ϕ
0

−vNvD

(M + h)2 +
v2

E tanϕ
(N + h)2

2ωe(vN cosϕ− vD sinϕ)

+
vEvN

(N + h) cos2 ϕ
0

−vEvD

(N + h)2 − vNvE tanϕ
(N + h)2

2vEωe sinϕ 0
v2

E

(N + h)2 +
v2

N

(M + h)2

−2γ/(R + h)


(3.20)

Fvv =



vD

M + h

−2ωe sinϕ

−2
vE tanϕ
N + h

vN

M + h

2ωe sinϕ

+
vE tanϕ
N + h

vD + vN tanϕ
N + h

2ωe cosϕ+
vE

N + h

−2
vN

M + h

−2ωe cosϕ

−2
vE

N + h
0


(3.21)
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3.4 Attitude Error Dynamics

The computed version, i.e. the output from the INS mechanization, of Eq. (2.25) can be

expressed as

˙̂
C

n

b = Ĉn
b (Ω̂b

ib − Ω̂b
in). (3.22)

Equating the derivative of Eq. (3.3) to Eq. (3.22) gives

−ĖnCn
b + (I − En)Ċn

b = (I − En)Cn
b (Ωb

ib − Ωb
in + δΩb

ib − δΩb
in)

= (I − En)Cn
b (Ωb

ib − Ωb
in) + (I − En)Cn

b (δΩb
ib − δΩb

in)

= (I − En)Cn
b Ωb

nb + (I − En)Cn
b (δΩb

ib − δΩb
in)

Hence, the above equation can be reduced to

− ĖnCn
b = (I − En)Cn

b (δΩb
ib − δΩb

in). (3.23)

Collecting the first order terms, Eq. (3.23) can be rewritten as

Ėn = −Cn
b (δΩb

ib − δΩb
in)Cb

n, (3.24)

or in vector form

ε̇n = −Cn
b (δωb

ib − δωb
in) (3.25)
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To get the error equation for δωb
in, let us start with ω̂b

in = Ĉb
nω̂

n
in, which can be expanded

into

ωb
in + δωb

in = Cb
n(I + En)(ωn

in + δωn
in).

Writing to the first order terms,

δωb
in = Cb

n(δωn
in + Enωn

in) = Cb
n [δωn

in + (εn×)ωn
in] (3.26)

Substituting Eq. (3.26) into Eq. (3.25),

ε̇n = δωn
in + (εn×)ωn

in − Cn
b δω

b
ib

= δωn
in − (ωn

in×)εn − Cn
b δω

b
ib. (3.27)

The next procedure to follow is expanding the first term on the right hand side into the

position and velocity error terms explicitly. Referring to Eq. (2.14) and (3.11), the attitude

error dynamics equations can be rewritten as

ε̇n = Ferδr
n + Fevδv

n − (ωn
in×)εn − Cn

b δω
b
ib, (3.28)
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where

Fer =



−ωe sinϕ 0
−vE

(N + h)2

0 0
vN

(M + h)2

−ωe cosϕ− vE

(N + h) cos2 ϕ
0

vE tanϕ
(N + h)2


(3.29)

Fev =



0
1

N + h
0

−1
M + h

0 0

0
− tanϕ
N + h

0


(3.30)

3.5 Implementation of the INS/GPS Kalman Filter

A continuous system equations can be constructed by augmenting Eq. (3.6), (3.19), and

(3.28) as follows:

ẋ = Fx+Gu, (3.31)

where F is the dynamics matrix, x is the state vector, G is a design matrix, u is the forcing

vector function:

F =



Frr Frv 0

Fvr Fvv (fn×)

Fer Fev −(ωn
in×)


x =



δrn

δvn

εn


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G =



0 0

Cn
b 0

0 −Cn
b


u =

 δf b

δωb
ib



The elements of u are white noise whose covariance matrix is given by

E[u(t)u(τ)T ] = Q(t)δ(t− τ) (3.32)

where the operator δ denotes the Dirac delta function whose unit is 1/time (Gelb et al.,

1974, p. 74–75). Q is called the spectral density matrix and has the form

Q = diag( σ2
ax σ2

ay σ2
az σ2

ωx σ2
ωy σ2

ωz
) (3.33)

where σa and σω are standard deviations of accelerometers and gyroscopes, respectively.

Because strapdown inertial systems are usually implemented with high-rate sampled data,

Eq. (3.31) is transformed to its discrete time form:

x(tk+1) = Φ(tk+1, tk)x(tk) +
∫ tk+1

tk

Φ(tk+1, τ)G(τ)u(τ)dτ (3.34)

or in abbreviated notation

xk+1 = Φkxk + wk (3.35)
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where Φk is the state transition matrix, and wk is the driven response at tk+1 due to the

presence of the input white noise during the time interval (tk, tk+1) (Brown and Hwang,

1992, p. 220). Because a white sequence is a sequence of zero–mean random variables that

are uncorrelated timewise, the covariance matrix associated with wk is (Brown and Hwang,

1992, p. 219)

E[wkw
T
i ] =


Qk, i = k

0, i 6= k

(3.36)

The analytical method to find the state transition matrix is

Φk = L−1
[
(sI − F )−1

]
(3.37)

where L−1 represents the inverse Laplace transform and s is the Laplace transform parameter.

However, for the implementation of INS, because the sampling time interval ∆t = tk+1 − tk

is very small, following simple numerical approximation is preferred:

Φk = exp(F∆t) ≈ I + F∆t (3.38)

The equation for Qk has the following form (Brown and Hwang, 1992, p. 220):

Qk = E[wkw
T
k ]
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= E

{[∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)u(ξ)dξ
] [∫ tk+1

tk

Φ(tk+1, η)G(η)u(η)dη
]T}

=
∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)E[u(ξ)uT (η)]GT (η)ΦT (tk+1, η)dξdη (3.39)

A common approximate solution to Eq. (3.39) is given as

Qk ≈ GQGT ∆t (3.40)

This approximation does not account for any of the correlations between the components of

the driving noise wk that develop over the course of a sampling period because of the inte-

gration of the continuous-time driving noise through the state dynamics (Farrell and Barth,

1998, p. 85). Therefore, in this research Qk is calculated using the first order approximation

of the transition matrix, i.e. Eq. (3.38), as

Qk ≈ ΦkGQG
T ΦT

k ∆t (3.41)

If the norm of Qk is larger than the real one, the Kalman filter trusts the measurements more

than the system. Then, the resulting estimates will be noisy due to the free passage of the

measurement noise. However, the estimate does not have time lag (Salychev, 1998, p. 198).

If the norm of Qk is smaller than the real one, the time lag will show up. When the norm

of Qk is much smaller than the real one, the filter diverges, which may result in numerical

instabilities. Hence, for low cost inertial systems, Qk must be selected pessimistically so

that the trajectory can follow that of GPS; especially, the elements corresponding to δfz
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should be large enough so that they can account for the uncertainties in gravity as well as

sensor imperfection. In this thesis, the elements of Qk were increased until the filter was

stabilized and the trajectory could follow that of the GPS. Adaptive calculation methods

can be applied to help in the tuning of Qk, for more detail see for instance Salychev (1998)

and Mohamed (1999).

The derivation of the Kalman filter – a recursive, unbiased and minimum-variance estimator

– starts from the random process model, i.e. Eq. (3.35), and the following observation

equations

zk = Hkxk + ek, (3.42)

which express the vector measurement, zk, at time tk as a linear combination of the state

vector, xk, plus a random measurement error, ek (Gelb et al., 1974; Brown and Hwang,

1992). The covariance matrices for the wk and ek are given by

E[eke
T
i ] =


Rk, i = k

0, i 6= k

(3.43)

E[wke
T
i ] = 0, ∀i, k (3.44)

The implementation of the Kalman filter can be divided into two stages, the update and

prediction. In the former, the Kalman gain, Kk, is computed first, and then the state and
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the error covariance are updated using the prior estimate, x̂−k , and its error covariance, P−
k :

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 (3.45)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (3.46)

Pk = (I −KkHk)P
−
k (3.47)

In the prediction stage, the estimate and its error covariance are projected ahead:

x̂−k+1 = Φkx̂k (3.48)

P−
k+1 = ΦkPkΦ

T
k +Qk (3.49)

The position and velocity from GPS can be considered as measurements. The straightforward

formulation of the measurement equation can be written as

zk =

 rn
INS − rn

GPS

vn
INS − vn

GPS

 =



ϕINS − ϕGPS

λINS − λGPS

hINS − hGPS

vn
INS − vn

GPS


Hk =

 I3×3 03×3 03×3

03×3 I3×3 03×3

 (3.50)

However, this approach causes numerical instabilities in calculating (HkP
−
k H

T
k + Rk)

−1 for

the Kalman gain, Kk, because ϕ and λ are in radians and therefore they are very small



CHAPTER 3. DEVELOPMENT OF INS/GPS INTEGRATION KALMAN FILTER 41

values. This problem can be resolved if the first and second rows are multiplied by (M + h)

and (N + h) cosϕ, respectively. Hence, the measurement equation will take the form:

zk =



(M + h)(ϕINS − ϕGPS)

(N + h) cosϕ(λINS − λGPS)

hINS − hGPS

vn
INS − vn

GPS



Hk =



(M + h) 0 0

0 (N + h) cosϕ 0

0 0 1

03×3 03×3

03×3 I3×3 03×3


(3.51)

and the following measurement noise matrix will be used

Rk = diag( σ2
ϕ σ2

λ σ2
h σ2

vn σ2
ve σ2

vd
) (3.52)

which can be obtained from GPS processing.

To start a Kalman filter, the initial estimation uncertainty standard deviations must be given

first. If an IMU is initialized in stationary mode, the position uncertainty will be that of the

GPS solution and the velocity uncertainty will be almost zero. The attitude uncertainty is

totally dependent on the accelerometer and gyroscope biases. If the biases can be estimated,



CHAPTER 3. DEVELOPMENT OF INS/GPS INTEGRATION KALMAN FILTER 42

the attitude uncertainty can also be reduce. If the biases are not estimated, the attitude

uncertainty can be obtained using equations (4.49), (4.50), and (4.51).

As shown in Figure 3.1, the GPS and IMU measurements are usually made in different time.

So, the IMU’s position and velocity can be interpolated using the data before and after the

GPS measurement is made to compose the vector zk. Let’s assume that IMU measurements

are made at tk−1 and tk, and the GPS measurement is mate at tGPS. Then, following linear

interpolation equations can be applied to get the position and veocity of IMU at the GPS

measurement time:

rn(tGPS) = rn(tk−1) +
rn(tk)− rn(tk−1)

tk − tk−1
(tGPS − tk−1)

=
tk − tGPS

tk − tk−1
rn(tk−1) +

tGPS − tk−1

tk − tk−1
rn(tk) (3.53)

vn(tGPS) =
tk − tGPS

tk − tk−1
vn(tk−1) +

tGPS − tk−1

tk − tk−1
vn(tk) (3.54)

GPSIMU

t

tGPS
tk-1tk-2 tk

Figure 3.1: GPS and IMU measurement time

For high dynamic applications, higher order interpolation is needed. For example, the La-
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grange interpolation equation can be used:(Conte and de Boor, 1980, p. 38)

rn(tGPS) =
k+m∑

i=k−m−1

rn(ti)
k+m∏

j=k−m−1
j 6=i

tGPS − tj
ti − tj

(3.55)

vn(tGPS) =
k+m∑

i=k−m−1

vn(ti)
k+m∏

j=k−m−1
j 6=i

tGPS − tj
ti − tj

(3.56)

where 2m+ 1 is the order of interpolation. When m = 0, Eq. (3.55) and (3.56) are identical

to Eq. (3.53) and (3.54), respectively.

Since both sensors cannot be installed at the same place in the host vehicle as shown in

Figure 3.2, the position and velocity of the IMU are different from those of the GPS. This

is called the lever-arm effect. The lever-arm correction for the position and velocity can be

written as:

rn
IMU = rn

GPS −



1
M + h

0 0

0
1

(N + h) cosϕ
0

0 0 −1


Cn

b ∆rb (3.57)

vn
IMU = vn

GPS − Cn
b Ωb

nb∆r
b

= vn
GPS − Cn

b (Ωb
ni + Ωb

ib)∆r
b

= vn
GPS + Cn

b Ωb
in∆rb − Cn

b Ωb
ib∆r

b

= vn
GPS + Cn

b Ωb
inC

b
nC

n
b ∆rb − Cn

b Ωb
ib∆r

b

= vn
GPS + (Ωn

ie + Ωn
en)Cn

b ∆rb − Cn
b Ωb

ib∆r
b, (3.58)
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where ∆rb is the offset vector of the GPS antenna from the centre of the IMU in the body

frame.

GPS

IMU

br∆

Figure 3.2: Lever–arm effect

The estimated errors in the navigation components are fed back to the mechanization, see

Figure 3.4, or fed forward to the output, see Figure 3.3. In the feedforward method, the

inertial system operates as if there was no aiding: it is unaware of the existence of the filter

or the external data (Maybeck, 1994, p. 296). The disadvantage of the feedforward method

is that the mechanization can experience unbounded error growth, which makes unbounded

error observations delivered to the Kalman filter. This causes a problem to the linear filter

since only small errors are allowed due to the linearization process (Sukkarieh, 2000, p. 21).

Therefore, the feedback method is optimal for low cost INSs.
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n n n
IMU IMU br , v ,C

+
n n
GPS GPSr , v

Mechani-
zation

GPS Kalman 
Filter-

n n nˆ ˆˆr , v ,δ δ ε
-

+

Figure 3.3: The feedforward method

n n nˆ ˆˆr , v ,δ δ ε
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+
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Figure 3.4: The feedback method
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The feedback of the position and velocity vectors can be easily obtained from Eq. (3.1) and

Eq. (3.2)

rn = r̂n − δrn, (3.59)

vn = v̂n − δvn. (3.60)

The following characteristic holds to the first order attitude errors (Farrell and Barth, 1998,

p. 200):

(I − En)−1 = (I + En) (3.61)

Hence, Eq. (3.3) can be manipulated to yield the DCM attitude feedback:

Cn
b = (I + En)Ĉn

b (3.62)

After feedback is done the error state vector should be set to zero. Because, for the nine-state

INS/GPS integration Kalman filter, the state vector is zero until the next measurements are

made, if feedback is made every time measurements take place, the state prediction, Eq.

(3.48), does not need to be implemented at all and Eq. (3.46) reduces to

x̂k = Kkzk. (3.63)



Chapter 4

Accuracy Improvement of Low Cost

INS/GPS

In this chapter, various ways to improve the accuracy of low cost inertial systems will be

discussed. After discussing some characteristics that a field calibration method should have,

a special calibration method developed by Shin and El-Sheimy (2002) and its implication

will be analyzed. Then, the velocity matching alignment technique, with which the IMU

can be aligned while moving, will be introduced. The use of non-holonomic constraints as

measurements in the Kalman filter will be developed. Finally, the way to deal with the zero

velocity measurements for low cost inertial systems will be discussed.

47
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4.1 Field Calibration Methods

Calibration of inertial instruments is needed because the outputs of the instruments are

corrupted by errors. Chatfield (1997, p. 79) defined calibration as the process of comparing

instrument outputs with known reference information and determining coefficients that force

the output to agree with the reference information over a range of output values. Calibration

parameters to be determined can change according to the specific technology applied to the

IMU. To accurately determine all parameters special calibration devices such as three-axial

turn tables and estimation techniques are necessary.

Biases and scale factors are changing from switch-on to switch-on. Furthermore, for low

cost IMUs, the variation ranges of the calibration parameters are much larger than those

of the high performance ones. So, what lab calibration methods can do is very limited.

Instead field calibration method should be applied for low cost IMUs. The following are

some characteristics that a field calibration method should have: First, it should not take a

long time for the calibration. Because biases of low cost IMUs can drift, the biases at the

start of the calibration will be much different from those at the end of the calibration, if

the calibration time gets too long. So, the field calibration should be applied even during

a mission, if the mission lasts for long time. Second, the method should be easy to use in

the field environment. So it should not be dependent on the attitude of the IMU. In other

words, the calibration can also be done without aligning the IMU to the local level frame.
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If rotations should be made, an automatic rotational frame would make the calibration

procedure convenient.

For automotive-grade and consumer-grade IMUs, the stationary outputs of gyroscopes them-

selves can be considered as biases (Sukkarieh, 2000, p. 65). However, for the accelerometer

calibration of all IMUs and for the gyroscope calibration of tactical-grade IMUs in the field, a

different calibration method is needed. A new calibration method, which does not require the

use of any laboratory facilities and therefore can be used as a field method, was introduced

by Shin and El-Sheimy (2002). At first, the general bias, scale factor, and nonorthogonality

model will be derived. Then, because it is hard to determine the nonorthogonalities in the

field, the bias and scale factor model will be derived from the general model. The accelerom-

eter calibration method is dependent on the reference gravity value. However, we can only

use normal gravity values sometimes, especially for the calibration during a mission. There-

fore, the sensitivity of the method to the reference gravity error will be analyzed. Since, the

Earth’s rotation rate is a very weak signal, only biases will be considered as the parameters

for the gyroscope calibration.

4.1.1 Consideration of Nonorthogonality

All vectors in R3 space can be expressed as a linear combinations of the following three

orthonormal vectors that correspond to the three orthogonal axes of accelerometers or gyro-
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scopes of an IMU:

x : ( 1 0 0 )T , y : ( 0 1 0 )T , z : ( 0 0 1 )T . (4.1)

The values sensed by each of these axes can be expressed using the inner products of the

measurement vector and the orthonormal vectors. For instance, the components of the

gravity vector, g : ( gx gy gz
)T , can be expressed as

gx = < g, x >= ‖g‖ cosα (4.2)

gy = < g, y >= ‖g‖ cos β (4.3)

gz = < g, z >= ‖g‖ cos γ (4.4)

where, <,> denotes the inner product and α, β, γ are, as shown in Figure 4.1, the angles

between the gravity vector and the x, y, z axis, respectively. Then, the following characteristic

holds regardless of the misalignment to the local-level frame and plays a fundamental role

in this derivation:

g2
x + g2

y + g2
z = ‖g‖(cos2 α+ cos2 β + cos2 γ) = ‖g‖ (4.5)

In reality, the three axes of the accelerometers or gyroscopes of an IMU may not be perfectly

orthogonal to each other. As shown in Figure 4.2, when the y-axis is rotated by the angle
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Local-level plane

g

X

Z

Y

α
β

γ

Figure 4.1: Misalignment to the local level frame

θyz, this rotated axis can be represented as following unit vector:

y
1

: ( − sin θyz cos θyz 0 )T = Rz(θyz)y, (4.6)

where Rz is the rotation matrix for a vector around z-axis

Rz(θyz) =



cos θyz − sin θyz 0

sin θyz cos θyz 0

0 0 1


.

x

y1
yzθ

Figure 4.2: Nonorthogonality between x and y

In R3 space, the nonorthogonality of the z-axis, for example, can be expressed by successive

two rotations, i.e. a rotation with respect to the x-axis by the angle, θzx, and a rotation



CHAPTER 4. ACCURACY IMPROVEMENT OF LOW COST INS/GPS 52

about the y-axis by the angle, θzy. This nonorthogonal z-axis can again be represented using

the following unit vector

z1 : ( sin θzy − sin θzx cos θzy cos θzx cos θzy
)T = Rx(θzx)Ry(θzy)z. (4.7)

where Rx and Ry are rotation matrices for a vector with respect to the x-axis and y-axis,

respectively, and defined by

Rx(θzx) =



1 0 0

0 cos θzx − sin θzx

0 sin θzx cos θzx


, Ry(θzy) =



cos θzy 0 sin θzy

0 1 0

− sin θzy 0 cos θzy



x

y

z1

zxθ

zyθ

Figure 4.3: Nonorthogonality of z-axis to xy plane

Hence, considering nonorthogonalities of θyz, θzx, and θzy, all vectors in R3 space can be

expressed as linear combinations of the following three vectors that correspond to three

nonorthogonal axes of the accelerometers or gyroscopes of an IMU:

x1 : ( 1 0 0 )T , (4.8)
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y
1

: ( − sin θyz cos θyz 0 )T , (4.9)

z1 : ( sin θzy − sin θzx cos θzy cos θzx cos θzy
)T . (4.10)

The values to be sensed by each of these nonorthogonal axes can be expressed using again

the inner product, for instance for the gravity vector g : (gx, gy, gz),

gx1 = < g, x1 >= gx, (4.11)

gy1 = < g, y
1
>= −gx sin θgyz + gy cos θgyz, (4.12)

gz1 = < g, z1 >= gx sin θgzy − gy sin θgzx cos θgzy + gz cos θgzx cos θgzy. (4.13)

4.1.2 A New Calibration Method

The new calibration method makes use of the fact that regardless of the direction that the

IMU axes are pointing, the total values sensed by the accelerometers and the gyroscopes

in static mode should be equal to the gravity and the Earth’s rotation rate, respectively.

Taking biases, scale factors, and nonorthogonalities into account, the values to be measured

by each of the axes as a result of the gravity vector g can be written as:

`gx = bgx + (1 + sgx)gx, (4.14)

`gy = bgy + (1 + sgy)(−gx sin θgyz + gy cos θgyz), (4.15)

`gz = bgz + (1 + sgz)(gx sin θgzy
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−gy sin θgzx cos θgzy + gz cos θgzx cos θgzy) (4.16)

where b and s represent bias and scale factor, respectively. Rearranging the upper equations

we can obtain the true values for the gravity vector components:

gx =
`gx − bgx

1 + sgx
(4.17)

gy = tan θgyz

(
`gx − bgx

1 + sgx

)
+

(
1

cos θgyz

)(
`gy − bgy

1 + sgy

)
(4.18)

gz =

(
tan θgzx tan θgyz −

tan θgzy

cos θgzx

)(
`gx − bgx

1 + sgx

)

+

(
tan θgzx

cos θgyz

)(
`gy − bgy

1 + sgy

)
+

(
1

cos θgzx cos θgzy

)(
`gz − bgz

1 + sgz

)
. (4.19)

Since scale factors and nonorthogonalities cannot be calibrated with stationary measurements

for gyroscopes, equations for gyroscopes will be

ωx = `ωx − bωx (4.20)

ωy = `ωy − bωy (4.21)

ωy = `ωz − bωz (4.22)

Using Eq. (4.17) ∼ (4.22), we can define a general mathematical model for the calibration

of a triad of accelerometers by

fg = g2
x + g2

y + g2
z − ‖g‖2 = 0 (4.23)
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and for a triad of gyroscopes by

fω = ω2
x + ω2

y + ω2
z − ‖ωie‖2 = 0 (4.24)

By substituting Eq. (4.17) ∼ (4.19) into (4.23) and (4.20) ∼ (4.22) into (4.24), following

mathematical models can be obtained:

fg =

[
`gx − bgx

1 + sgx

]2

+

[
tan θgyz

(
`gx − bgx

1 + sgx

)
+

(
1

cos θgyz

)(
`gy − bgy

1 + sgy

)]2

+

[(
tan θgzx tan θgyz −

tan θgzy

cos θgzx

)(
`gx − bgx

1 + sgx

)

+

(
tan θgzx

cos θgyz

)(
`gy − bgy

1 + sgy

)

+

(
1

cos θgzx cos θgzy

)(
`gz − bgz

1 + sgz

)]2

− ‖g‖2 = 0 (4.25)

fω = (`ωx − bωx)
2 + (`ωy − bωy)

2 + (`ωz − bωz)
2 − ‖ωie‖2 = 0 (4.26)

Because it is hard to calibrate nonorthogonalities in the field, the bias and scale factor only

model can be considered for accelerometers:

fg =

(
`gx − bgx

1 + sgx

)2

+

(
`gy − bgy

1 + sgy

)2

+

(
`gz − bgz

1 + sgz

)2

− ‖g‖2 = 0 (4.27)

4.1.3 Adjustment Computation

The implicit mathematical models, Eq. (4.25) ∼ (4.27), are implemented in adjustment

procedures using the combined case least squares method with weighted parameters, for
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details refer to Krakiwsky (1990):

Aδ̂ +Br̂ + w = 0; x̂ = x+ δ̂; ˆ̀= `+ r̂ (4.28)

For the bias, scale factor, and nonorthogonality model of accelerometers, the design matrices

A and B are given by

A =



· · · · · · · · · · · · · · · · · · · · · · · · · · ·

∂fg

∂bgx

∂fg

∂bgy

∂fg

∂bgz

∂fg

∂sgx

∂fg

∂sgy

∂fg

∂sgz

∂fg

∂θgyx

∂fg

∂θgzx

∂fg

∂θgzy

· · · · · · · · · · · · · · · · · · · · · · · · · · ·



B =



· · · · · · · · · 0 0 0 0 0 0

0 0 0
∂fg

∂`gx

∂fg

∂`gy

∂fg

∂`gz
0 0 0

0 0 0 0 0 0 · · · · · · · · ·


where

∂fg

∂bgx

= −2
gx + gy tan θgyz + gz (tan θgzx tan θgyz − tan θgzy/ cos θgzx)

1 + sgx

∂fg

∂bgy

= −2
gy + gz tan θgzx

(1 + sgy) cos θgyz

∂fg

∂bgz

= −2
gz

(1 + sgz) cos θgzx cos θgzy

∂fg

∂sgx

= −2(`gx − bgx)
gx + gy tan θgyz + gz (tan θgzx tan θgyz − tan θgzy/ cos θgzx)

(1 + sgx)2

∂fg

∂sgy

= −2(`gy − bgy)
gy + gz tan θgzx

(1 + sgy)2 cos θgyz
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∂fg

∂sgz

= −2(`gz − bgz)
gz

(1 + sgz)2 cos θgzx cos θgzy

∂fg

∂θgyz

= 2(gy + gz tan θgzx)

[
`gx − bgx

(1 + sgx) cos2 θgyz

+
(`gy − bgy) tan θgyz

1 + sgy

]

∂fg

∂θgzx

= 2gx

[(
tan θgyz

cos2 θgzx

− tan θgzx tan θgzy

)(
`gx − bgx

1 + sgx

)

+
`gy − bgy

cos2 θgzx cos θgyz(1 + sgy)
+

tan θgzx(`gz − bgz)

cos θgzy(1 + sgz)

]

∂fg

∂θgzy

= 2gz

[
−(`gx − bgx)

cos θgzx cos2 θgzy(1 + sgx)
+

tan θgzy(`gz − bgz)

cos θgzx(1 + sgz)

]

∂fg

∂`gx

= 2
gx + gy tan θgyz + gz (tan θgzx tan θgyz − tan θgzy/ cos θgzx)

1 + sgx

∂fg

∂`gy

= 2
gy + gz tan θgzx

cos θgyz(1 + sgy)

∂fg

∂`gz

= 2
gz

cos θgzx cos θgzy(1 + sgy)

` is the vector of observations

` = ( · · · · · · · · · `gx `gy `gz · · · · · · · · · )T

δ̂ is the correction vector

δ̂ = ( δbgx δbgy δbgz δsgx δsgy δsgz δθgyz δθgzx δθgzy
)T

r̂ is the vector of residuals

r̂ = ( · · · · · · · · · rgx rgy rgz · · · · · · · · · )T
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and w is the misclosure vector

w = ( · · · fg(x, `) · · · )T

For the bias and scale factor model of accelerometers, the differences are

A =



· · · · · · · · · · · · · · · · · ·

∂fg

∂bgx

∂fg

∂bgy

∂fg

∂bgz

∂fg

∂sgx

∂fg

∂sgy

∂fg

∂sgz

· · · · · · · · · · · · · · · · · ·



δ̂ = ( δbgx δbgy δbgz δsgx δsgy δsgz
)T

where

∂fg

∂bgx

=
−2(`gx − bgx)

(1 + sgx)2

∂fg

∂bgy

=
−2(`gy − bgy)

(1 + sgy)2

∂fg

∂bgz

=
−2(`gz − bgz)

(1 + sgz)2

∂fg

∂sgx

=
−2(`gx − bgx)

2

(1 + sgx)3

∂fg

∂sgy

=
−2(`gy − bgy)

2

(1 + sgy)3

∂fg

∂sgz

=
−2(`gz − bgz)

2

(1 + sgz)3

∂fg

∂`gx

=
2(`gx − bgx)

(1 + sgx)2

∂fg

∂`gy

=
2(`gy − bgy)

(1 + sgy)2

∂fg

∂`gz

=
2(`gz − bgz)

(1 + sgz)2
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For gyroscopes,

A =



· · · · · · · · ·

∂fω

∂bωx

∂fω

∂bωy

∂fω

∂bωz

· · · · · · · · ·



B =



· · · · · · · · · 0 0 0 0 0 0

0 0 0
∂fω

∂`ωx

∂fω

∂`ωy

∂fω

∂`ωz
0 0 0

0 0 0 0 0 0 · · · · · · · · ·


δ̂ = ( δbωx δbωy δbωz

)T

` = ( · · · · · · · · · `ωx `ωy `ωz · · · · · · · · · )T

r̂ = ( · · · · · · · · · rωx rωy rωz · · · · · · · · · )T

w = ( · · · fω(x, `) · · · )T

where

∂fω

∂bωx

= −2(`ωx − bωx)
∂fω

∂bωy

= −2(`ωy − bωy)

∂fω

∂bωz

= −2(`ωz − bωz)
∂fω

∂`ωx

= 2(`ωx − bωx)

∂fω

∂`ωy

= 2(`ωy − bωy)
∂fω

∂`ωz

= 2(`ωz − bωz)
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The solution of this system of equations is given by

δ̂ = −N−1u

= −
[
AT

(
BC`B

T
)−1

A+ C−1
x

]−1

AT
(
BC`B

T
)−1

w (4.29)

Cx̂ = N−1 =
[
AT

(
BC`B

T
)−1

A+ C−1
x

]−1

(4.30)

where N is the coefficient matrix of the normal equations. Since the correlation among

three axes are not known, it is assumed that the measurements are uncorrelated. So, C`

and (BC`B
T )−1 will be diagonal. Then, the i -th diagonal element, corresponding to the i -th

gravity measurement, can be expressed as

M−1
ii =

(
BC`B

T
)−1

ii

=

σ2
`gx

(
∂fg

∂`gx

)2

+ σ2
`gy

(
∂fg

∂`gy

)2

+ σ2
`gz

(
∂fg

∂`gz

)2
−1

i

(4.31)

Hence, the normal matrix will be symmetric and the coefficient matrix of the normal equation

can be composed directly without generating intermediate matrices, i.e. A and B, as follows:

Nij =
∑
k

AkiM
−1
kk Akj +

(
C−1

x

)
ij
, i = 1, 2, · · · ,m j = i, · · · ,m (4.32)

ui =
∑
k

AkiM
−1
ii wi, i = 1, 2, · · · ,m (4.33)

where m is the number of parameters. Using these equations and the widely used numeri-

cal algorithm such as Cholesky’s decomposition, we can significantly reduce the amount of

memory required for storing the matrices.
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4.1.4 Calibration Methodology

Although this method does not require the IMU axes to be aligned to the local-level frame,

to avoid a singularity in the calculation of the inverse of the normal matrix for the bias, scale

factor, and nonorthogonality model, at least nine different attitudes should be measured.

Similarly, for the bias and scale factor model, six or more attitude measurements are needed.

As shown in Figure 4.4, possible attitudes would be each face down, each side down and

each corner down, which make for six, twelve, and eight different attitude measurements,

respectively.

Down

Up
Xn

Yn

Figure 4.4: IMU measurement attitudes

For a triad of accelerometers, the attitudes of each face down should be enough for the

determination of the bias and scale factor. Because the attitudes of each side down and each

corner down correspond to the relationship between the two axes and three axes in an IMU,

they contribute to the determination of the nonorthogonalities. For a triad of gyroscopes,

the number of axes that have values significantly larger than zero can change according to
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the latitude and the heading of an IMU. In mid-latitude areas, when one of the three axes

points to east or west, the number can be two for the attitudes of each face down, one for

those of each side down, and two for those of each corner down. Figure 4.5 shows an example

of rotation schemes for eighteen different measurements, which can be implemented using

two-degree-of-freedom rotational frames.

X
Y

Z

Z
X

Y

Z
XY

Y

X
Z

Z

XY

Z
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Y Z
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Y
Y
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Z
X

Y
Z

X

Y

Z
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Y

X

Z Y
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Z
X

Y
Z

X
Y

Z

Figure 4.5: An example of IMU rotation scheme

In the case that the IMU is strapped down in a vehicle without using a rotational frame, if

it is in mid-latitude area the calibration of gyroscopes can be accomplished with horizontal

measurements only, as shown in Figure 4.6. If the vehicle is on a tilted surface or can be

tilted, the method works for the areas near the equator or poles of the Earth as well.
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Figure 4.6: Calibration with horizontal measurements

However, for accelerometer calibration, if the vehicle is on the level surface, the calculation

would generate numerical problems. For the test of the accelerometer calibration, a dataset

was simulated for 15◦ tilted area with the true parameter values given in Table 4.1. For

gyroscope calibration, the dataset was generated for a level surface in the latitude 50◦. Table

4.1 shows that the gyroscope calibration works well with only horizontal measurements. The

accelerometer calibration works perfectly for x and y biases. Z-bias has an error about 30

mGal and all scale factors are not so reliable. Least squares estimation splits the total error

between two mutually unobservable states per initial uncertainty.

4.1.5 Sensitivity of the Method

The Earth’s rotation rate does not change with the position. However, the normal gravity is

not the same as the actual gravity, and the difference between them, i.e. the gravity anomaly,

is dependent on position. So, it is necessary to analyze the sensitivity of the method to the

reference gravity error. Table 4.2, obtained by applying the new calibration method to
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Table 4.1: Calibration with horizontal measurements

Accelerometer (tilt=15◦) Gyroscope (tilt=0◦)

Bias (mGal) Scale factor (ppm) Bias (deg/hr)

X 500.0000 0.0000 1.0000

True Y 600.0000 0.0000 2.0000

Z 700.0000 0.0000 3.0000

X 500.0004 -192.4012 0.9997

Calib. Y 600.0005 -192.4012 1.9994

Z 730.2500 45.7485 3.0022

an error-free dataset generated assuming that the reference gravity is 9.8 m/s2, shows the

estimation errors of the calibration parameters according to the given reference gravity errors.

It can be seen that the errors are transferred not to the biases and nonorthogonalities but

to the scale factors. Further, as shown in Figure 4.7, the scale factor errors are reciprocally

proportional to the reference gravity errors.

Let’s analyze the sensitivity of the simple calibration method that needs to align each ac-

celerometer channel of the IMU to the direction of the gravity vector. When one channel

is aligned to the gravity vector, the specific force measurement will be g and −g for the up
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Table 4.2: Sensitivity of the new calibration method to the reference gravity errors

Gravity (mGal) -150 -100 -50 0 50 100 150

bgx (mGal) 2.5E-09 7.2E-10 6.7E-11 -4.4E-11 -1.4E-10 -7.9E-10 -2.5E-09

bgy (mGal) -2.4E-09 -6.9E-10 -6.4E-11 -4.4E-11 1.3E-10 7.7E-10 2.5E-09

bgz (mGal) -2.1E-10 -5.9E-11 -1.6E-11 4.4E-11 4.4E-11 8.9E-11 2.5E-10

sgx (ppm) 153 102 51 -5.5E-11 -51 -102 -153

sgy (ppm) 153 102 51 -5.5E-11 -51 -102 -153

sgz (ppm) 153 102 51 -5.5E-11 -51 -102 -153

θgyz (arc sec) 7.6E-09 2.3E-09 3.4E-10 1.3E-11 -3.0E-10 -2.3E-09 -7.6E-09

θgzx (arc sec) -1.5E-09 -4.4E-10 -6.3E-11 -1.3E-11 5.4E-11 4.3E-10 1.4E-09

θgzy (arc sec) -1.5E-09 -4.5E-10 -6.5E-11 -1.3E-11 5.6E-11 4.5E-10 1.5E-09

and down direction, respectively:

`up = b+ (1 + s)g (4.34)

`down = b− (1 + s)g (4.35)

where b and s are the bias and scale factor of the channel and g is the magnitude of the
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Figure 4.7: Scale Factor Error Sensitivity

gravity vector. The bias and scale factor are calculated as:

b = (`up + `down)/2 (4.36)

s = (`up − `down − 2g)/2g (4.37)

Hence, the bias is not affected by the error in the reference gravity value. However, the

reference gravity error does influence the scale factor calculation. To calculate the effect of the

reference gravity error on the estimation of scale factor, we assume error-free measurements,

`up − `down = 2g and use g + δg instead of g in Eq. (4.37). Then, the scale factor error from

the reference gravity error will be

δs =
−δg
g + δg

. (4.38)

If we use g = 9.8 m/s2 and calculate δs for some values of δg, the scale factor sensitivity

can be obtained as shown in Table 4.3.
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Table 4.3: Scale factor sensitivity of the simplest calibration method

δg (mGal) -150 -100 -50 0 50 100 150

δs (ppm) 153 102 51 0 -51 -102 -153

The comparison of Table 4.2 and 4.3 shows that both methods have the same sensitivity to

the reference gravity error and therefore the new calibration method works physically in the

same manner as the simplest method in the determination of the bias and scale factor.

4.2 Alignment

The alignment of an IMU is the determination of the DCM Cn
b , and is accomplished by two

steps, leveling and gyrocompassing. Leveling refers to obtaining the roll and pitch using the

accelerometer outputs and gyrocompassing refers to obtaining the heading information using

the gyroscope outputs. For the IMUs whose bias and noise levels are smaller than the value

of the Earth’s rotation rate, such as navigation-grade and high-end tactical grade IMUs, the

analytic coarse alignment method followed by the fine alignment can be applied to estimate

the IMU’s attitude information. The coarse alignment can be calculated using the averaged

data for two or three minutes in stationary mode. So, the analytical coarse alignment yields

averaged attitude. Since the instantaneous attitude of an IMU is continuously changing by
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outer disturbances, the fine alignment technique is needed. The fine alignment is to estimate

the attitude of an IMU with higher accuracy in time, and in commercial aircrafts is used to

detect small attitude changes caused by wind gusts, loading of passengers and cargo, fuel

ingestion and so on (Britting, 1971, p. 209). For low-end tactical-grade, automotive-grade,

and consumer-grade IMUs, the external heading measurements using magnetic compasses

or velocity matching alignment technique are usually used.

4.2.1 Analytic Coarse Alignment

If ν is defined as the vector orthogonal to the specific force vector, f , and the angular rate

vector, ωib, at the same time, i.e. ν = f × ωib, we can have (Britting, 1971, p. 199)



f b

ωb
ib

νb


= Cb

n



fn

ωn
ib

νn


(4.39)

Transposition of the upper equation yields



(f b)T

(ωb
ib)

T

(νb)T


=



(fn)T

(ωn
ib)

T

(νn)T


Cn

b . (4.40)
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Then, the alignment matrix is obtained by

Cn
b =



(fn)T

(ωn
ib)

T

(νn)T



−1

(f b)T

(ωb
ib)

T

(νb)T


(4.41)

The solution of Eq. (4.41) exists except for the case that the IMU is at the Earth’s poles,

where the gravity vector is parallel to the Earth’s rotation rate vector and therefore ν = 0.

Since fn = −gn = ( 0 0 −γ )T and ωn
ib = ωn

ie = ( ωe cosϕ 0 −ωe sinϕ )T in stationary

mode,



(fn)T

(ωn
ib)

T

(νn)T



−1

=



0 0 −γ

ωe cosϕ 0 −ωe sinϕ

0 −γωe cosϕ 0



−1

=



− tanϕ
γ

1
ωe cosϕ

0

0 0
−1

γωe cosϕ

−1
γ

0 0


(4.42)

The DCM Cn
b calculated by Eq. (4.41) usually does not satisfy the orthogonality and nor-

mality condition. This problem can be resolved if we transform the DCM into the Euler

angles using Eq. (2.5) ∼ (2.7), and then transform the Euler angles again into the DCM

using Eq. (2.4).
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To investigate the errors of this method, perturbing Eq. (4.41) with

f̃
b

= −gb + δf b (4.43)

ω̃b
ib = ωb

ie + δωb (4.44)

ν̃b = νb + δνb (4.45)

results in

− EnCn
b =



− tanϕ
γ

1
ωe cosϕ

0

0 0
−1

γωe cosϕ

−1
γ

0 0





(δf b)T

(δωb)T

(δνb)T


(4.46)

where ˜ denotes measurements. To simplify the situation, assume that the IMU is aligned

to the navigation frame, i.e. Cn
b = I. Then, δνb can be written to the first order as

δνb = ( δνx δνy δνz
)T

= δf b × ωn
ie − gn × δωb

=



−δfyωe sinϕ+ γδωy

δfxωe sinϕ+ δfzωe cosϕ− γδωx

δfyωe cosϕ


(4.47)
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Using the above equation and setting Cn
b = I, Eq. (4.46) can be rewritten as



0 εD −εE

−εD 0 εN

εE −εN 0


=



− tanϕ
γ

1
ωe cosϕ

0

0 0
−1

γωe cosϕ

−1
γ

0 0





δfx δfy δfz

δωx δωy δωz

δνx δνy δνz



=



− δfx tanϕ
γ

+
δωx

ωe cosϕ

− δfy tanϕ
γ

+
δωy

ωe cosϕ

− δfz tanϕ
γ

+
δωz

ωe cosϕ

− δνx

γωe cosϕ
− δνy

γωe cosϕ
− δνz

γωe cosϕ

− δfx

γ
− δfy

γ
− δfz

γ


(4.48)

Since each of εN , εE, εD appears twice in the left hand side of the above equation, averaging

them using Eq. (4.47) yields

εN =
δfy

γ
, (4.49)

εE =
1
2

(
− δfx

γ
+

δfz

γ
tanϕ− δωz

ωe
secϕ

)
, (4.50)

εD = − δfy

γ
tanϕ+

δωy

ωe
secϕ. (4.51)

Figure 4.8 shows the value of the second term on the right hand side of Eq. (4.51) for some

gyroscope bias values at latitude 50◦. The heading error would be about 6 ∼ 30◦, if the

gyroscope bias was 1 ∼ 5◦/hr. If the bias is not estimated correctly in the fine alignment

Kalman filter, the heading error would still remain even after filtering.
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Figure 4.8: Coarse Alignment Error

4.2.2 Fine Alignment

The fine alignment phase uses the established DCM from either the coarse alignment tech-

nique or initialization data from stored heading or best available true heading (Rogers, 2000,

p. 208). The initial estimate for the Cn
b is then refined using a Kalman filter. Although low-

pass filter approach, which is simple and requires low number of computations, can also be

applied, the Kalman filter approach has advantages in that both the accelerometer-based lev-

eling and gyro-based heading alignment can occur simultaneously and in that the approach

correctly accounts for all measurement errors (Farrell and Barth, 1998, p. 231).

The east channel gyro measurements are used for the heading refinement. Two types of

measurements can be considered for the leveling, i.e. the north and east channel specific force

measurements or the north and east channel velocity measurements. The former approach
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can be found in Farrell and Barth (1998), and the latter in Rogers (2000), and both methods

are depicted in figures 4.10 and 4.9. While the former directly uses the specific force error

measurements in the Kalman filter, the latter integrates them once to obtain velocity errors.

Feedback
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Figure 4.9: Fine alignment with the specific force measurements
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Figure 4.10: Fine alignment with the velocity measurements

The navigation frame specific force error measurement is described by

δfn = Ĉn
b f̃

b − fn

= (I − En)Cn
b (f b + δf b)− fn
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≈ Cn
b f

b − EnCn
b f

b + Cn
b δf

b − fn

= −EnCn
b f

b + Cn
b δf

b

= (fn×)εn + Cn
b δf

b, (4.52)

and similarly for the gyro measurement

δωn = Ĉn
b ω̃

b − ωn

= (I − En)Cn
b (ωb + δωb)− ωn

≈ Cn
b ω

b − EnCn
b ω

b + Cn
b δω

b − ωn

= −EnCn
b ω

b + Cn
b δω

b

= (ωn×)εn + Cn
b δω

b. (4.53)

Since fn = ( 0 0 −γ )T and ωn = ( ωe cosϕ 0 −ωe sinϕ )T during the alignment, the

measurement matrices for the first approach can be constructed from the first and second

rows of Eq. (4.52) and from the second row of Eq. (4.53) as

zk =



δfN

δfE

δωE


, Hk =


03×3 03×3

0 γ 0

−γ 0 0

−ωe sinϕ 0 −ωe cosϕ


(4.54)
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For the second approach the measurement matrices are described by

zk =



δvN

δvE

δωE


, Hk =


03×3

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

−ωe sinϕ 0 −ωe cosϕ


. (4.55)

4.2.3 Velocity Matching Alignment

When the IMU’s performance is so poor that the bias and noise level are much greater than

the Earth’s rotation rate, the roll and pitch can be obtained with stationary accelerometer

measurements, however, the heading can not be determined. Although magnetic sensors can

be used to get the initial heading information, the errors of the sensors are hard to model.

In this case the velocity information from the GPS can be used to align the IMU while in

motion.

The position and velocity of the IMU can be initialized by copying those of the GPS after

applying the lever-arm correction. On a level surface the roll and pitch are almost zeros,

and the approximate heading can be calculated using the navigation frame velocity:

ψ = tan−1(vE/vN) (4.56)
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Figure 4.11: Initial Heading

Therefore, the attitude of the IMU can be initialized by substituting these Euler angles into

Eq.(2.4). Then, the attitude is refined with a Kalman filter by the velocity measurements as

shown in Figure 4.12. The position of the IMU is reset with that of GPS every time GPS

measurement comes.

Mechanization

GPS Lever-Arm
Correction 

vn

+

-

Feedback

vn

Kalman
Filter rn

rn, vn

Figure 4.12: Velocity Matching Alignment

Assuming that the position is accurately known during the initialization process, the error
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dynamics of the reduced-state model incorporating north and east velocity errors and atti-

tude errors can be obtained by removing the columns and rows related to the position and

down-velocity in Eq. (3.31) (Farrell and Barth, 1998, p.233):

ẋ =

 F11 F12

F21 F22

x+Gu, (4.57)

where

x = ( δvN δvD εN εE εD )T ,

F11 =



vD

M + h

−2ωe sinϕ

−2
vE tanϕ
N + h

2ωe sinϕ

+
vE tanϕ
N + h

vD + vN tanϕ
N + h


, F12 =

 0 −fD fE

fD 0 −fN

 ,

F21 =



0
1

N + h

−1
M + h

0

0
− tanϕ
N + h


,
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F22 =



0
−ωe sinϕ

− vE tanϕ
N + h

vN

M + h

ωe sinϕ

+
vE tanϕ
N + h

0
ωe cosϕ

+
vE

N + h

−vN

M + h

−ωe cosϕ

− vE

N + h
0


,

G =



c11 c12 c13

c21 c22 c23

0 0 0

0 0 0

03×3 −Cn
b


, u =

 δf b

δωb
ib



and cij’s, 1 ≤ i, j ≤ 3, are (i, j)-th elements of the DCM Cn
b . The measurement matrices are

zk =

 δvN

δvE

 , Hk =

 1 0 0 0 0

0 1 0 0 0

 . (4.58)

After the velocity matching alignment is finished, the filter is switched to the nine-state or

fifteen-state navigation Kalman filter.

4.3 Using Non-Holonomic Constraints

Non-holonomic constraints refer to the fact that unless the vehicle jumps off the ground or

slides on the ground, the velocity of the vehicle in the plane perpendicular to the forward

direction (x-axis) is almost zero (Sukkarieh, 2000). So, two non-holonomic constraints can
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be considered as measurement updates to the navigation Kalman filter

vb
y ≈ 0 (4.59)

vb
z ≈ 0. (4.60)

The computed velocity in the body frame can be expressed as:

v̂b = Ĉb
nv̂

n =
(
Ĉn

b

)T
v̂n. (4.61)

Perturbing the upper equation gives

vb + δvb = [(I − En)Cn
b ]T (vn + δvn)

= Cb
n(I + En)(vn + δvn). (4.62)

Collecting terms to the first order ,

δvb = Cb
nδv

n + Cb
nE

nvn

= Cb
nδv

n − Cb
n(vn×)εn. (4.63)

From the second and third rows, the measurement equations can be constructed as:

zk =

(
δvb

y δvb
z

)T

, (4.64)
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Hk =


0 0 0 C12 C22 C32

−vDC22

+vEC32

vDC12

−vNC32

−vEC12

+vNC22

0 0 0 C13 C23 C33
−vDC23

+vEC33

vDC13

−vNC33

−vEC13

+vNC23

 , (4.65)

where Cij’s, 1 ≤ i, j ≤ 3, are the (i, j)-th elements of the DCM Cn
b .

As shown in Figure 4.13, the velocity output of the INS mechanization, vn, is pre-multiplied

by Cb
n to yield the body frame velocity, vb. The second and third elements of vb themselves

are used as the measurements in the Kalman filter. The estimated errors are fed back to the

mechanization.

Mechanization Cn
bvn vb

Kalman Filter

Feedback

Figure 4.13: Implementation of the non-holonomic constraints

4.4 Limiting Attitude Error Growth

When the vehicle’s velocity is zero, for the navigation-grade or high-end tactical-grade IMUs,

the fine alignment can be applied to correct the attitude errors if the GPS position is avail-

able. However, for the low-end tactical-grade, automotive-grade, and consumer-grade IMUs,

the heading is susceptible to meandering because the gyrocompassing cannot be applied.
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Since it is hard to model magnetic sensor errors, the heading error equations for general

external heading measurements shall be derived in the sequel. From Eq. (2.7) and (3.3), the

heading can be expressed as

ψ̂ = tan−1

(
ĉ21
ĉ11

)

= tan−1

(
c11εD + c21 − c31εN
c11 − c21εD + c31εE

)
, (4.66)

where Cij’s, 1 ≤ i, j ≤ 3, are the (i, j)-th elements of the DCM Cn
b . Hence, the error equation

can be expressed as

δψ =
∂ψ̂
∂εN

εN +
∂ψ̂
∂εE

εE +
∂ψ̂
∂εD

εD, (4.67)

where

∂ψ̂
∂εN

=
−c31ĉ11

ĉ211 + ĉ221

≈ −ĉ31ĉ11
ĉ211 + ĉ221

,

∂ψ̂
∂εE

=
−c31ĉ21

ĉ211 + ĉ221

≈ −ĉ31ĉ21

ĉ211 + ĉ221
,

∂ψ̂
∂εD

=
c11ĉ11 + c21ĉ21

ĉ211 + ĉ221

≈ 1.
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The heading measurement together with the zero velocity measurements would give the

following measurement matrices:

zk =



δvN

δvE

δψ


, Hk =


03×3

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

∂ψ̂
∂εN

∂ψ̂
∂εE

∂ψ̂
∂εD


(4.68)

In the case where there is no external heading measurement, instead of proceeding with the

INS mechanization, we can take the DCM at the time right before the vehicle’s velocity

becomes zero and only perform the leveling using the specific force measurements. This will

prevent the heading from meandering. The measurement matrices in this case will be

zk =

 δfN

δfE

 , Hk =

 0 0 0 0 0 0 0 γ 0

0 0 0 0 0 0 −γ 0 0

 . (4.69)



Chapter 5

Tests and Results

This chapter describes the tests and analysis for the methods proposed in the previous

chapters. Two tests were conducted using the NovAtel BDSTM system on September 2 and

November 11, 2001. The tests took place at one of the University of Calgary’s parking lots.

The GPS master station was set up on the roof of the Geomatics Engineering building where

a number of very precise control pillars can be used.

5.1 System Configuration

The NovAtel Black Diamond System (BDSTM) and other commercial software were used

in the thesis. As shown in Figure 5.1, the BDSTM system is a tightly integrated GPS/INS

83



CHAPTER 5. TESTS AND RESULTS 84

system consisting of (NovAtel, Inc., 2001):

• BDSTM Controller: the controller is a high performance, high accuracy, NovAtel

OEM4 GPS receiver with a PC card slot for raw GPS/INS data logging. All data

including GPS, IMU, and External trigger, are passed through the controller. So the

controller time-tags all non-GPS data with the GPS time,

• BDSTM Sensor: BDSTM uses a Honeywell HG1700 IMU containing a triad of ac-

celerometers and a triad of miniature, low cost tactical-grade ring laser gyroscopes, see

Table 5.1 for the specification of the HG1700 unit,

• BDSTM Software: a post processing software which processes the master GPS and

rover GPS/INS files.

The antenna (NovAtel GPS-600) and the IMU were mounted on top of a passenger vehicle

using a rack mount as shown in Figure 5.2. The whole system was powered by 12V output

through the cigarette jack of the vehicle. After the initialization process of the system,

the controller logs the raw GPS and IMU measurements into a compact flash memory card

through the PC card adapter.

To check the performance of the newly developed navigation frame INS mechanization and

the results of velocity matching alignment software, the University of Calgary’s GPS/INS

integration software package the KINGSPADTM (KINematic Geodetic System for Posi-
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Figure 5.1: The BDSTM system, Courtesy of NovAtel Inc., Canada

Figure 5.2: Instrument setup
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Table 5.1: The specification of HG1700 IMU (Honeywell, Inc.)

Specification Value

Gyro Input Range ±1,000 deg/sec

Gyro Rate Scale Factor 100 ppm

Gyro Rate Bias 1.0 deg/hr to 10 deg/hr

Angular Random Walk 0.125 deg/
√

hr to 0.3 deg/
√

hr

Accelerometer Range ±50 g

Accelerometer Linearity 500 ppm

Accelerometer Scale Factor 300 ppm

Accelerometer Bias 1.0 mg (980 mGal)

tions and Attitude Determination) software was used (Schwarz and El-Sheimy, 2000). The

KINGSPADTM software implements a de-centralized Kalman filter which runs two Kalman

filters in parallel, the INS filter being the master and the GPS filter being the local. The

INS master filter includes 15 states, 3 for position, 3 for velocity, 3 for misalignment, 3 for

gyro drifts, and 3 for accelerometer biases. The GPS filter includes 6 basic states – 3 states

for position (re) and 3 states for velocity (ve) – and n − 1 states for bias terms related to

the double difference phase ambiguities (∇∆N), where n is the number of satellites used

in the computation. The Waypoint GrafNav software was also used as a second reference

especially for generating the reference GPS trajectory.
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5.2 Test Dataset

The data collection started, for both datasets, after about a 30 minutes warming-up period

for the system. Each test dataset is composed of three parts as shown in Figure 5.3, the field

calibration, stationary alignment, and motion tests to assess the velocity matching alignment

and the non-holonomic constraints.

Field 
Calibration

Stationary 
Alignment

VMA and 

Non-Holonomic

Figure 5.3: Test dataset

For the field calibration part, only up/down measurements were made for the first test and

additional two tilt measurements were made for the second test. The measurement time

for each attitude was about 2 minutes for the first test and 3 minutes for the second test.

The stationary alignment period lasted for about fifteen minutes in which analytic coarse

alignment and fine alignment techniques were applied. Then, for the first test, the vehicle was

driven for about 20 minutes at the speed of about 30 km/hr with frequent turns to collect

data for the testing of the velocity matching alignment and the non-holonomic constraints.

For the second test, the vehicle was accelerated such that the speed could vary from 20 to
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70 km/hr and the test time, for the testing of the velocity matching alignment and the

non-holonomic constraints, lasted about 30 minutes.

5.3 Data Processing

The BDSTM controller stores GPS and IMU data in one file. Two conversion modules

(SCALE HG and NOV2KPD) were developed as shown in Figure 5.4 to extract the IMU

data. SCALE HG module scales the raw IMU measurements into double format and NOV2KPD

module extracts the raw IMU measurements and stores them in their native format, i.e. long

int format except for the time data (double). The graphic user interface and data reading

GPS

IMU

rn, vn

rn, vn

rn, vn

Cb
n

Cb
n

Rover

BDS™

Master

Station
GrafNav

GrafNav
Converter

KINGSPAD™

NOV2KPD
Non-Holonomic

Constraints
Test

SCALE_HG

Calibration VMA
Cb

n

Figure 5.4: Data processing
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modules of the KINGSPADTM software were modified to accept the HG1700 IMU data.

The scaled file was used in the calibration, velocity matching alignment, and non-holonomic

constraints test modules. The calibration results were passed to the KINGSPADTM software

and other modules. The velocity matching alignment and non-holonomic constraints test

modules use the navigation frame INS mechanization developed by the author.

The master station and rover GPS files are converted into GPB format (the GPS binary

format used in the Waypoint and KINGSPADTM software) using the conversion module in

the Waypoint software (Waypoint Consulting, Inc., 2000) so that they can be used in the

KINGSPADTM and the GrafNav software. GPS data was collected at 1 Hz and processed

to get the position and velocity in the navigation frame using the GrafNav software and the

trajectories of the first and second datasets are shown in Figure 5.5. The GPS velocities from

the GrafNav software were used in the velocity matching alignment and position information

was used as a reference for all comparisons.
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(a) The first dataset (b) The second dataset

Figure 5.5: The reference GPS trajectories

5.4 Field Calibration Method

The first dataset included six different attitude measurements to calibrate the IMU. The

measurement time lasted for about two minutes for each attitude. For the second dataset,

however, the measurement time was extended to three minutes and eight different attitude

measurements were made including additional two tilt measurements. The standard devia-

tions of the measurements for both datasets are listed in Tables 5.2 and 5.3.
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Table 5.2: Statistics of the first calibration observations

Accel (m/s2) Gyro (deg/hr)

X Y Z X Y Z

Mean 9.79329 0.43312 -0.27051 11.12 -0.43 10.62

X-Up
STD 0.00111 0.00097 0.00090 2.07 3.28 5.55

Mean -9.80901 -0.04618 -0.13010 -13.25 5.75 5.11

X-Down
STD 0.00102 0.00090 0.00087 2.46 13.12 7.55

Mean 0.13775 9.77903 -0.80093 -5.51 12.26 5.51

Y-Up
STD 0.00121 0.00103 0.00097 2.15 1.97 5.84

Mean 0.26497 -9.80174 0.12796 10.92 -9.95 9.85

Y-Down
STD 0.00113 0.00098 0.00092 3.44 1.92 5.75

Mean 0.15963 -0.21825 9.81073 9.50 -0.11 11.81

Z-Up
STD 0.00072 0.00062 0.00057 1.28 1.86 3.42

Mean -0.01031 -0.21687 -9.80065 3.94 -33.80 -8.33

Z-Down
STD 0.00125 0.00104 0.00099 5.49 17.06 5.99
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Table 5.3: Statistics of the second calibration observations

Accel (m/s2) Gyro (deg/hr)

X Y Z X Y Z

Mean 9.79590 0.04935 -0.39474 12.19 15.86 0.15

X-Up
STD 0.00062 0.00058 0.00058 1.75 1.57 4.39

Mean -9.79650 -0.03323 -0.58406 -11.78 -9.11 -0.35

X-Down
STD 0.00064 0.00059 0.00060 1.71 1.25 4.52

Mean 0.04615 9.78761 -0.55393 -10.63 11.37 -3.06

Y-Up
STD 0.00054 0.00051 0.00051 1.45 1.08 3.92

Mean 0.19833 -9.80909 -0.13671 7.75 -11.90 1.15

Y-Down
STD 0.00083 0.00076 0.00077 2.54 1.76 5.85

Mean 0.29056 -0.03159 9.81156 2.44 7.89 12.53

Z-Up
STD 0.00065 0.00059 0.00060 1.84 1.22 4.52

Mean 0.27111 0.28437 -9.79355 1.94 -8.27 -11.51

Z-Down
STD 0.00063 0.00057 0.00058 2.25 1.54 4.42

Mean 6.04270 -0.31311 7.72498 14.64 -0.62 3.54

Tilt 1
STD 0.00063 0.00060 0.00059 1.71 1.34 4.48

Mean -0.28006 -5.84316 7.88373 -1.15 -14.76 3.96

Tilt 2
STD 0.00063 0.00058 0.00059 1.67 1.24 4.51



CHAPTER 5. TESTS AND RESULTS 93

The standard deviations of the first dataset are larger than those of the second dataset.

Especially, when the IMU’s attitude was x-down or z-down, the standard deviations of the

y-gyroscopes measurements are much higher than the others, over 10 deg/hr. For the second

dataset, although the standard deviations of other gyroscope channels are reduced, the z-

gyroscope’s standard deviations are still high. However, they are more regularly distributed

than those of the first dataset.

The accelerometer calibration was done using the bias and scale factor model, Eq. (4.27).

Table 5.4 lists the calibration results of the first and second datasets. Since the calibration of

the first dataset was performed with only six different attitude measurements, all standard

deviations of the calibrated parameters are, as expected, higher than those estimated in the

calibration of the second dataset. The calibration results for the second dataset are much

different than the first one; especially, the y-accelerometer bias changed by about 780 mGal

and y-gyroscope bias also changed by about 4.6 deg/hr. However, the biases and scale

factors of the accelerometers are smaller than those specified by the manufacturer, and the

gyroscope biases are in the order of ±1 ∼ 2.5 deg/hr level.

To check the effect of the calibration results on the positioning performance of the INS mecha-

nization, the calibration results were used in the initial configuration file of the KINGSPADTM

software. The software was executed in three different initial conditions in free inertial nav-

igation mode – the first run without using any calibration results, the second run with the
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Table 5.4: Calibration results

Accelerometer Gyroscope

Bias (mGal) Scale factor (ppm) Bias (deg/hr)

Value STD Value STD Value STD

X -174 4.3 5 4.5 -1.37 0.50

Sep. 02 Y 356 4.1 143 4.1 -2.44 0.32

Z 571 3.3 58 3.4 2.30 0.68

X -487 2.4 118 2.6 0.69 0.07

Nov. 11 Y -417 2.4 -30 2.5 1.44 0.06

Z 734 2.0 72 2.2 0.15 0.17

accelerometer calibration results only, and the third run with both gyroscope and accelerom-

eter calibration results. Figure 5.6 shows the processing results for the first dataset.

The reference trajectories for this and all other figures in the thesis, were obtained using

the double-differenced GPS measurements. Their accuracy is, therefore, good to centimetre

to decimetre level. As shown in the figure, without using any calibration information, the

horizontal positioning error is about 5 km in 20 minutes. When the accelerometer calibration

results were used, the error is reduced to 3 km in 20 minutes. Therefore, these results clearly

indicate that the accelerometer calibration with only six different attitude measurements
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Figure 5.6: Effect of calibration on positioning (Test #1)

each of which were measured for two minutes works very well. However, when the gyroscope

calibration results were used together with the accelerometer calibration results, the error

increases rapidly and reaches 35 km in 20 minutes which corresponds to the error in one

hour for a tactical-grade IMU. One reason for this large positioning error is the short time of

each attitude measurement of the calibration and this leads to over-estimating the gyroscope

biases, which in turn resulted in wrong heading initialization and accumulation of the heading

error. On the other hand, the fifteen-state Kalman filter of the KINGSPADTM software

tries to estimate the accelerometer and gyroscope biases during the fine alignment period.

However, it could not estimate the biases successfully, which is expected because the biases
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are weakly observable components. Therefore, the bias estimation power of the fifteen-state

Kalman is very weak and the estimation of the biases should be done separately.

For the second dataset, the measurement time for each calibration attitude has been increased

to three minutes. Figures 5.7 and 5.8 show the same test results for the second dataset.

Without using any calibration information, the horizontal positioning error reached about

3 6 9 12 15
0

1

2

3

4

5

6

Time (minute)

H
or

izo
nt

al
 P

os
itio

n 
E

rr
or

 (k
m

)

KINGSPAD Only
KINGSPAD w ith Accel Calib
KINGSPAD w ith Accel, Gyro Calib

Figure 5.7: Effect of calibration on positioning (Test #2, 15 minutes)

5.8 km in 15 minutes, see Figure 5.7. The accelerometer calibration reduced the positioning

error to 4 km (about 1.8 km reduction) in 15 minutes and together with the gyroscope

calibration information the improvement in position is about 3.3 km in 15 minutes. Hence,

when the calibration measurement time was increased to about 3 minutes, gyroscope noise
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could be removed significantly, which resulted in better estimation of biases.
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Figure 5.8: Effect of calibration on positioning (Test #2)

However, as shown in Figure 5.8, after 18 minutes free inertial navigation the positioning

error starts to grow rapidly, if the accelerometer and gyroscope calibration results were used

together. This indicates that there are small amount of over-estimated gyroscope biases still

remaining, and this causes accumulation of the heading error, which results in unbounded

positioning error, in the integration process of the INS mechanization. This can be clearly

identified from the fact that the standard deviation of the estimated z-gyroscope bias is

about 0.17 deg/hr, which is larger by 0.1 deg/hr than those of the other channels, see Table

5.4. Therefore, for a long free inertial operation, longer measurement time for each attitude
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is needed, at least 5 minutes. The figure also shows that when the accelerometer calibration

results only were used, the error was about 6 km in 30 minutes. However, when no calibration

information was applied, the error reached about 14 km in 30 minutes. Hence, accelerometer

calibration removed over half of the positioning error.

5.5 INS Mechanization Performance

To check the performance of the INS mechanization developed in this thesis, the results of the

mechanization in free inertial navigation mode, was compared with those of the KINGSPAD

TM software. In this comparison, both mechanizations use the same initial position and

attitude information, with only applying the bias compensation using the calibration results

given in Table 5.4. The only difference between the two INS mechanizations, except for

the calculation frame, is that the navigation frame mechanization considers the variation in

sampling rate discussed in Section 2.3. Figures 5.9 and 5.10 show the horizontal position

error of both INS mechanizations for the first and second test, respectively.

Recall that the first test was conducted with almost constant velocity about 30 km/hr, while

the second test with higher acceleration and velocity range 20∼70 km/hr. In the first test,

see Figure 5.9, the navigation frame mechanization shows better results (1.6 km horizontal

positioning error in 20 minutes) than the KINGSPADTM software (3.4 km horizontal posi-
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Figure 5.9: Mechanization performance (Test #1)

tioning error in 20 minutes). In the second test, see Figure 5.10, both mechanizations show

similar performance. If both tests were extended to one hour, the positioning error for both

mechanizations would reach about 30 ∼ 40 km, which is almost the expected performance

of the tactical-grade IMUs.
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Figure 5.10: Mechanization performance (Test #2)

5.6 Velocity Matching Alignment

As mentioned in Section 4.2.3, the velocity matching alignment uses external velocity in-

formation to align the IMU while in motion, in this case GPS derived velocities. The GPS

velocity measurement noise and PDOP during the velocity matching alignment calculation,

obtained from the GrafNav software, are shown in Figures 5.11 and 5.12, respectively.

The standard deviation of the velocity looks high, because 0.25 m/s Doppler measurement

standard deviation was used to prevent the position from being corrupted by erroneous

Doppler measurements. Although Doppler measurements can be much more accurate, even
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Figure 5.11: GPS velocity measurement noise
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Figure 5.12: PDOP during the velocity matching alignment
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during the best of times there can be spikes as satellites rise or there are cycle slips (Cosandier,

D. 2001, private communication). The variations in the velocity standard deviation look

similar to those of the PDOP. Therefore, the GPS velocity solution depends on the geometry

of the satellites.

Figure 5.13 and Table 5.5 show the attitude corrections applied to the navigator during

the velocity matching alignment for both datasets. It can be clearly identified that all the

attitude components converged within three minutes and the level of RMS after convergence

is about 0.03◦.

Table 5.5: Attitude corrections after 5 minutes

1st dataset 2nd dataset

Roll Pitch Heading Roll Pitch Heading

Mean (◦) 0.0006 -0.0073 0.0003 0.0140 -0.0173 0.0003

STD (◦) 0.0262 0.0089 0.0292 0.0347 0.0271 0.0354

RMS (◦) 0.0262 0.0115 0.0292 0.0374 0.0321 0.0355

Figure 5.14 and Table 5.6 show the residuals during the velocity matching alignment for

both datasets. The level of RMS is under 1 m/s and the maximum is within ±2 m/s (7.2

km/hr). This indicates the minimum velocity of the host vehicle for the velocity matching

alignment. Therefore, the host vehicle can be driven slowly in an open area for three minutes
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Figure 5.13: Attitude corrections

to align low cost IMUs. However, for lower grade IMUs, the minimum speed will be larger,

because the residual will increase due the low quality of the sensors.
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Figure 5.14: Velocity matching alignment residuals

Table 5.6: Velocity matching alignment residuals after 5 minutes

1st dataset 2nd dataset

vn ve vn ve

Mean (m/s) -0.0112 -0.0119 -0.0348 0.0022

STD (m/s) 0.4920 0.5293 0.8409 0.6612

RMS (m/s) 0.4921 0.5294 0.8416 0.6612
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5.7 Test of Non-Holonomic Constraints

Non-holonomic constraints were tested with the accelerometer calibration results only. Since

lateral and up/down direction velocities cannot be zero in all operational conditions, the

velocity measurement noise should be defined for realistic results. As shown in Figure 5.15,

the misalignment of the IMU with respect to the vehicle forward direction causes v sin θ

velocity measurements for the lateral and up/down axes, where v is the vehicle velocity

and θ is the misalignment angle. For a vehicle moving with a velocity of 60 km/hr and a

misalignment angle of 10◦, the lateral and up/down velocity measurements will be about

2.9 m/s. Therefore, velocity measurement noise of 1, 5, and 10 m/s will be used for the

non-holonomic constraints in the Kalman filter.

V

xb

yb V

vsinθ

θ
vsin− θ

θ
xb

zb

Figure 5.15: Misalignment of IMU to the vehicle forward direction

Figure 5.16 shows the horizontal positioning error for the first dataset when non-holonomic

constraints were used as measurements in the Kalman filter. Similar to all other figures in

the thesis, the reference trajectories were computed using the double-differenced GPS mea-
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Figure 5.16: Test of nonholonomic constraints for the first dataset

surements. Two types of errors can be identified for all three conditions, i.e. the long-term

linear trend and the short-term sinusoidal parts. The long-term linear parts are mainly from

the vehicle’s forward direction movement error due to the fact that the forward direction’s

velocity is not controlled by the non-holonomic constraints. The short-term sinusoidal errors

are mainly due to the misalignment between the IMU and the vehicle’s forward direction.

But, the latter errors can also be generated due to the turning motion if the IMU is not

installed at the vehicle’s rotational centre. As shown in the figure, the horizontal positioning

error reaches 120 m, 40 m, and 30 m after 20 minutes for the 10 m/s, 5 m/s, and 1 m/s ve-

locity measurement noise, respectively. However, a large error spike (50 m) can be identified
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at the beginning of the first dataset when 1 m/s velocity noise was used. This could be due

to the fact that, if the velocity measurement noise gets too small, the navigation Kalman

filter considers real movement of the vehicle as errors.

Similar error patterns can be observed for the second dataset, see Figure 5.17. The horizontal
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Figure 5.17: Test of nonholonomic constraints for the second dataset

positioning error reaches 130 m, 60 m, and 60 m after 30 minutes for the 10 m/s, 5 m/s,

1 m/s velocity measurement noise, respectively. However, an error spike is identified for all

cases at the beginning of the test. The magnitude of this spike decreases as the velocity

measurement noise increases. This is possibly due the specific manouevre of the vehicle at

the beginning of the test. As shown in Figure 5.5, the vehicle was driven along the diagonal
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direction of the parking lot to get higher acceleration. If the vehicle was driven faster in one

direction (from upper-right to lower-left) and slower in the other direction (from lower-left

to upper-right), then the positioning error from the over-constraining can be accumulated

in one way. Furthermore, when 1 m/s velocity measurement noise was used, the positioning

error decreased after the spike, which is quite unrealistic. Hence, 5 m/s measurement noise

looks reasonable for this dataset. The results obtained from applying the non-holonomic

constraints indicate that low cost inertial systems with similar performance as the Honeywell

HG1700 can be used as a stand-alone positioning system during long GPS outages of up to

10 minutes while maintaining positional accuracy of about 10-20 m, which is similar to GPS

single point positioning accuracy.



Chapter 6

Conclusions and Recommendations

6.1 Summary

The major objectives of this research was to develop and test various methods to improve

the navigation accuracy of low cost INS/GPS systems. The research led to the following

major contributions:

• The development of a new calibration method, which can be used to calibrate strap-

down IMUs either in the lab or in the field right before starting a mission

• The development of a navigation frame INS mechanization and the INS/GPS integra-

tion Kalman filter; A nine-state Kalman filter was used by removing biases from the
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state vector, as they can be estimated by the new calibration method.

• The development of the velocity matching alignment technique and the use of non-

holonomic constraints as measurements in the Kalman filter.

The following are the conclusions and recommendation drawn from the developments and

tests conducted in this thesis.

6.2 Conclusions

1. The new calibration method:

(a) A rotation scheme, which can be attainable using a two-degree-of-freedom rota-

tional frame, was provided for the eighteen different attitude measurements. In

the case that the IMU was strapped down without using a rotational frame, the

accelerometer bias can be determined with tilt measurements, but the vertical

channel accelerometer bias and all scale factors are not so reliably estimated.

The gyroscope bias can be calibrated with only horizontal measurements in mid-

latitude areas.

(b) Although the method can include the non-orthogonality of the IMU axes as pa-

rameters, it is disregarded in the field calibration, because more varied attitude



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 111

measurements with longer time are needed and therefore it will take long time to

calibrate a system.

(c) It is shown that the accelerometer bias can be dealt with deterministically using

the new field calibration method even when the reference gravity value is not

exactly known, since all the errors are transferred to the scale factors. Further-

more the new calibration method works the same way as the simple up/down

measurement method in the determination of bias and scale factors.

(d) The accelerometer calibration can be done in the field with six or more differ-

ent attitude measurements each of which takes about 2∼3 minutes. However,

the measurement time of each attitude for gyroscope calibration should be in-

creased to 5 minutes. The accelerometer calibration reduces almost half of the

positioning error. The gyroscope bias calibration can minimize the initial heading

determination error.

2. The INS mechanization and navigation Kalman filter:

(a) A navigation frame INS mechanization was developed, which provides similar

accuracy to that of the KINGSPADTM software .

(b) Many issues, which have to be considered in the implementation of the INS/GPS

Kalman filter, were discussed in details including the lever-arm effect, resolving

time difference between the IMU and GPS measurements, and the feedback of



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 112

the estimated errors.

(c) Based on these developments, the velocity matching alignment technique and the

non-holonomic constraints have been developed and tested.

3. Velocity matching alignment:

(a) If the expected gyroscope biases are larger than 2 deg/hr, for example low-end

tactical IMUs, and the field calibration is failed or not done, the velocity matching

alignment would provide better attitude information than the stationary align-

ment technique.

(b) The tests of the velocity matching alignment technique show that all the attitude

components converge within three minutes with an RMS of 0.03◦.

4. The use of non-holonomic constraints:

(a) The measurement equations for non-holonomic constraints were developed strictly

based on the perturbation analysis.

(b) The stand-alone INS positioning accuracy can be dramatically improved without

augmenting any other sensors.

(c) Low cost IMUs can be used as a stand-alone positioning tool during GPS outages

of over 10 minutes using the non-holonomic constraints. Within this time, the

attainable accuracy is similar to what GPS single point positioning can provide

(10∼20 m).
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(d) To minimize the error in applying the non-holonomic constraint, the IMU should

be installed as close as possible to the vehicle’s rotational centre and it should be

closely aligned to the forward direction.

6.3 Recommendations

1. For those IMUs whose biases vary with temperature changes such as the Crossbow

DMU-FOG IMU, it is recommended to use the new calibration method frequently

during the survey mission to trace the change of biases.

2. Among various sensors to be augmented to the INS/GPS systems, odometers and

speedometers are promising. Since almost all ground vehicles are equipped with these

sensors already, it can be augmented without spending much extra efforts or expenses.

In addition, these sensors can reduce significant amount of the forward motion errors

still remaining after applying the non-holonomic constraints. These sensors can also

be used to trigger the zero velocity updates.

3. Together with the odometers or speedometers, digital maps can aid low cost IMUs dur-

ing long GPS outages, and therefore, without using any heading sensor, dead reckoning

navigation is possible.

4. For the calibration of gyroscopes, other approaches, such as the Kalman filter formula-
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tion of the new calibration method, can be investigated to reduce the estimation time

in noisy environment.

5. For automotive-grade or consumer-grade IMUs, the method to limit the attitude error

growth when the vehicle is not moving, was proposed in Section 4.4. However, it could

not be tested due to the lack of instruments, especially the time tagging board. This

method is highly recommended for future research and further testing.
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