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Abstract 

A frequency lock loop (FLL) and a phase lock loop (PLL) are used to track the carrier in 

a GNSS receiver. In order to meet the most stringent positioning and navigation 

requirements, several receiver architectures have been proposed for global navigation 

satellite system (GNSS) including stand-alone receivers or GNSS receivers integrated 

with inertial navigation systems (INS). Basically, there are four receiver architectures, 

namely, standard receivers, estimator-based receivers, vector-based receivers, and ultra-

tight receivers. 

 

The objective of this work is to reduce the carrier phase reacquisition time using 

advanced receiver architectures. This paper looks at how different receiver architectures 

can be used or modified to more rapidly reacquire carrier phase tracking, thus providing 

more measurements that can be used for high-accuracy positioning applications. This 

contrasts with other work which has focused more on reacquiring range capability.  

 

Specifically, a piece-wise control method and a phase prediction architecture are 

proposed. The piece-wise method takes advantage of different parameters in the control 

system to produce different transition performance within the tracking loop. With this in 

mind, the approach divides the reacquisition process into separate periods each with 

different control system parameters in order to achieve a faster transition process. In the 

phase prediction architecture, carrier phase measurements are predicted for satellites that 

have lost lock by integrating the estimated Doppler computed from the navigation 

solution. Predicted phase quality is evaluated in both empirical and theoretical ways. All 
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algorithms are tested using real data collected under mild to moderate operational 

conditions. 
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CHAPTER ONE: INTRODUCTION 

The use of carrier phase techniques in Global Navigation Satellite Systems (GNSS) to 

reach centimetre-level positioning accuracy has gained increasing research interest in 

recent years. The reason for widely used carrier phase techniques is that the carrier phase 

measurements can provide better position information than code phase measurements due 

to its multipath and noise characteristics (Ronald et al 2006). Generally, phase error is 

less than 4 degrees (2 millimetres) in the high carrier to noise ratio (C/N0) scenarios. 

Furthermore, the maximum multipath error is limited to a quarter of a wavelength 

(Lachapelle 2008).  

 

Unfortunately, tracking requirements for the carrier phase are much more stringent than 

those for pseudorange or carrier Doppler, and loss of phase lock is likely when the 

received GNSS signals are weaker than normal (Petovello et al 2007), such as under 

bridges or dense-foliage, the receiver cannot provide phase measurements during loss of 

lock periods. With this in mind, how to reduce the carrier phase reacquisition time is the 

main concern of this thesis. More specifically, the objective is to reduce the carrier phase 

reacquisition time using advanced receiver architectures, with special focus on how 

different receiver architectures can be used or modified. Advanced receiver architectures 

include the estimator-based receiver, the vector-based receiver, and the GNSS integrated 

with inertial navigation systems (INS). Such approaches would provide more 

measurements that can be used for high-accuracy positioning applications. 
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1.1 Background and Motivation 

1.1.1 Carrier Phase Introduction 

Carrier phase measurements are obtained by taking the difference between the generated 

signal phases at receiver reception time and satellite transmission time respectively 

(Odijk 2002). Phase measurements are related to the geometric distance between the 

receiver and satellite. In the GNSS receiver, only the fractional part of carrier phase can 

be measured by integrating the Doppler offset in the phase lock loop, and results in an 

extremely accurate phase measurement between time epochs. The carrier phase noises 

include correlated and uncorrelated components (Gebre-Egziabher et al 2003). 

Uncorrelated noise could be considered as wide-band noise, most of which will be 

filtered out by the receiver (Ward et al 2006). Correlated phase errors on the other hand, 

include the stochastic errors in the satellite clock, the local oscillator errors when 

generating the NCO local replica, platform vibration, and dynamic stress due to platform 

motion. 

 

1.1.2 Standard Tracking Loops Introduction 

A frequency lock loop (FLL) and a phase lock loop (PLL) are used to track the carrier 

Doppler and carrier phase respectively in a GNSS receiver. The basic method of carrier 

tracking is to build a loop filter and use it to follow the input signal. The frequency (phase) 

differences between input and local replica are compared through a frequency (phase) 

discriminators, and then passed through the loop filter. A FLL-assisted-PLL scheme is 

used to improve the pull-in ability of the loop filter, as well as reduce the locking time 

(Ward et al 2006). In a standard receiver architecture, generally speaking, the carrier loop 
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starts with acquisition, then transitions to a FLL, then to a FLL-assisted-PLL, and finally 

to a PLL. This is because the FLL is more robust to noise than PLL. Moreover, a FLL 

can tolerate higher receiver dynamics (Jwo 2001, Chiou 2004). 

 

For a tracking loop, it is desirable that the transition process (transient response) to be 

sufficiently fast and damped (Ogata 1997). In GNSS tracking loops, the most widely used 

loop filters are second-order or third-order filters. For a second-order loop, the transition 

process is determined by the loop’s damping ratio and natural frequency. There is always 

a trade-off in the design procedure of the damping ratio and natural frequency. A 

relatively small natural frequency will provide excellent noise performance but will be 

unable to track dynamics induced on the signal, and also the transition time will be large. 

In contrast, a relatively large natural frequency will reduce the transition time but will 

have poor noise performance (Chiou 2004, Gebre-Egziabher et al 2003). 

 

Usually tracking loops use fixed natural frequency and damping ratio loop filters. The 

typical values for natural frequency and damping ratio in the FLL are 10 Hz and 0.707 

respectively, and for PLL they are 15 Hz and 0.707 (Petovello et al 2007). An adaptive 

filter is employed in Sun (2010), Chiou et al (2007), Petovello et al (2007), and Gebre-

Egziabher et al (2005), whereas the natural frequency is changed according to the 

receiver dynamics and signal power, and better frequency and phase tracking qualities are 

obtained. 
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1.1.3 Estimator-Based Architecture 

In the estimator-based tracking loop, the discriminators and loop filters of the FLL and 

PLL are replaced by a single Kalman filter (Psiaki et al 2007, Petovello et al 2006). The 

goal of the Kalman filter is to improve the carrier tracking accuracy. The first advantage 

of an estimator-based tracking loop is that the observation noise is changed in the filter 

according to the C/N0. In so doing, the natural frequency is adaptively adjusted 

(O’Driscoll et al 2009, Zarchan 2005), the natural frequency of an estimator-based 

tracking loop will be derived in this work. The second advantage is that a model is used 

to describe phase dynamics, whereas this link is indirect in a traditional tracking loop. 

The third advantage is that an estimator-based tracking loop has the capability to 

feedback both phase error and frequency error to the NCO, which enables shorter 

transition times in the tracking loop (Thomas 1989). Kalman filter theory is well 

documented in Gelb (1974), Brown et al (2002), Zarchan (2005), and Simon (2006) and 

will not be repeated here. In the GSNRxTM software receiver, a five-state adaptive gain 

Kalman filter is employed to track the carrier (O’Driscoll et al 2009). In so doing, the 

natural frequency of the Kalman filter is adjusted in order to make a better estimation. 

 

1.1.4 Vector-Based Architecture 

The vector-based scheme combines the tracking of different satellites into a single 

algorithm by using a navigation filter. The outputs of the navigation filter are used to 

drive the code and frequency numerically controlled oscillators (NCO) (Gardner 2005). 

The primary advantages of vector-based tracking are noise is reduced in all channels 
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making them less likely to enter the non-linear tracking regions, and it can operate with 

momentary blockage of one or more satellites (Petovello 2006, Spilker 1995).  

 

There are several vector-based schemes, such as the vector delay lock loop (VDLL) (Van 

Dierendonck 1996), the vector frequency lock loop (VFLL) (Kiesel et al 2008, Lashley et 

al 2007), and the vector delay/frequency lock loop (VDFLL) (Petovello et al 2006, Bevly 

et al 2008). VDLL employs the user position and satellite position to predict the phases of 

the received pseudorandom noise (PRN) sequences. VFLL operates on a simple principle 

that the carrier Doppler of the received signal is based on the position and velocity of the 

user and satellite, as well as user clock drift. VDFLL is used to control both code NCO 

and carrier NCO, however, the carrier phase estimation is not available in the VDFLL 

architecture until an additional phase tracking loop is employed to track the carrier phase 

(Bevly et al 2008). 

 

To this end, it is possible to reacquire satellites faster than the standard receivers in the 

vector-based architecture. Since the predicted Doppler is available from the navigation 

filter after the signal is received again, the tracking loop can be started with more 

accurate Doppler than the standard procedure. The ability to reacquire one satellite 

rapidly is shown in some previous works by employing the VFLL architecture (Bevly et 

al 2008); however, the work only concentrated on the initial frequency but not the phase. 

This thesis focuses on the carrier phase. 
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1.1.5 Integrated Navigation System Introduction 

Inertial navigation systems have been used in a wide variety of navigation applications in 

the fields of marine, aerospace, and spacecraft technology (Bar-Itzhack 1988, Savage 

2000, Rogers 2003, Soloviev 2004, Titterton and Weston 2004). The motivation of 

GNSS/INS integrated navigation is to take advantage of complementary operational 

characteristics of satellite navigation systems and inertial navigation systems. The 

estimation of INS error parameters allows GNSS/INS navigation with substantially 

smaller errors than could be achieved with either a stand-alone inertial navigation system 

or GNSS navigation system (Wendel et al 2004). The advantages of GNSS/INS 

integration include continued navigation during periods of GNSS signal outage, and 

possibly faster reacquire satellites as they come into view again or strong enough to 

acquire after loss of lock (Petovello et al 2006, Bevly et al 2008). And during highly 

dynamic maneuvers, INS velocity provides the GNSS tracking loops with additional 

information which is not available to a stand-alone GNSS receiver. 

 

Loosely or tightly coupled GNSS/INS systems are defined depending on what kinds of 

Kalman filters are employed (Jekeli 2000, Wendel et al 2004, Farrell 1998). In a loosely-

coupled GNSS/INS system, position and velocity from GNSS receiver are used as the 

measurements in the Kalman filter. In a tightly-coupled GNSS/INS system, the raw 

measurements, such as pseudorange and carrier Doppler, are employed directly in the 

Kalman filter as the measurements. Both loosely and tightly coupled schemes provide 

users with limited immunity against momentary signal outages (Alban et al 2003). The 

third scheme of integration, namely, ultra-tight coupled GNSS/INS, uses inertial sensors 
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to aid the GNSS phase/frequency and code tracking loops directly (Wendel et al 2004, 

Alban et al 2003). The external Doppler information is employed to cancel the effect of 

dynamic stress in the ultra-tight receiver, and reduce the Doppler and carrier phase noise 

in the tracking loops (Wendel et al 2004, Petovello et al 2006, Alban et al 2003). 

 

1.1.6 Software Receiver Introduction 

The GSNRxTM software receiver is employed in this work to process the GNSS signals. 

GSNRxTM is a C++ based GNSS software receiver developed in the Position, Location 

And Navigation (PLAN) group at the University of Calgary (Petovello et al 2008, 

O’Driscoll 2009). GNSS software receivers replace the core components of the hardware 

receivers with software-based signal processing techniques. Software receivers have 

achieved a high level of maturity. The flexibility of software implementations allows 

rapid modifications of the receiver functions and parameters, which is not possible in the 

hardware implementations (Borre et al 2006). As a part of the research, the tracking 

functions in GSNRxTM were modified to implement the proposed fast reacquisition 

scheme. 

 

1.2 Previous Research Limitations 

Different architectures of tracking loops were proposed and analyzed in the previous 

works (Thomas 1989, Spilker 1996, Best 2004, Ward et al 2006, Gardner 2005, 

O'Driscoll et al 2008). Regarding the reacquisition after loss of lock, most previous works 

concentrated on the code phase and carrier frequency reacquisition (Soloviev et al 2004, 

O'Driscoll et al 2008, Bevly et al 2008). Specifically, the aiding information was 
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employed to reduce the size of the search space and therefore reduce the time taken to 

reacquire the signals. However, the carrier phase reacquisition strategy has not been 

analyzed yet, which is the main concern of this work. 

 

The relationship between natural frequency, damping ratio, overshoot, and rise time has 

not been investigated in the previous work during the reacquisition process. In the general 

receiver tracking loop design, the fixed natural frequency and damping ratio are used in 

the loop filter. As mentioned in 1.1.2, a large natural frequency reduces the rise time and 

a large damping ratio will result in a small overshoot, as well as a small rise time (Ogata 

1997). Moreover, the adaptive method in the previous works is only used to reduce the 

tracking noises, however, the special focus of this work is on the transition time. 

 

As mentioned in section 1.1.4, the carrier signal reacquisition of the vector-based scheme 

in previous work (Bevly et al 2008) was considered in the scenarios where only one or 

two satellites lose lock, and the works only concentrated on the initial frequency in the 

FLL, not the phase. However, the essence of carrier phase is completely ignored, which is 

the integration of carrier Doppler from the tracking loop. Specifically, the Doppler for a 

satellite can be estimated by projecting the computed receiver velocity onto the satellite 

line of sight after loss of lock, and this, in turn, can be integrated to predict carrier phase 

measurements. In so doing, when the satellite signal becomes available again or at least 

strong enough to acquire, the phase of the signal is already predicted. 
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1.3 Objectives and Contributions 

Given the lack of research towards the carrier phase acquisition, this work expands upon 

the work described in the previous section to reduce the carrier phase reacquisition time 

using advanced receiver architectures. To this end, the following tasks are arranged in 

this thesis. 

1. Piece-wise control method assessment. Develop an adaptive scheme (piece-wise 

control method) for the phase reacquisition. The transition time for different 

natural frequencies and damping ratios will be assessed, specifically, to select a 

proper loop filter parameter set of interest in this work. Furthermore, can the 

piece-wise method be used in both FLL and PLL? Moreover, how to implement 

the piece-wise method in the third-order or higher order tracking loop systems is 

also a task of this work.  

2. Kalman filter transition process. The transition process of estimator-based 

tracking loop will be assessed in this work. Can the Kalman filter be used to 

correct both frequency error and phase error scheme reduce the phase transition 

time? In order to make a fair comparison with the standard tracking loop, the 

natural frequency of Kalman filter will be derived in this work. 

3. Phase prediction method assessment. Develop a phase prediction scheme during 

the loss of lock period. The phase prediction accuracy will be assessed under the 

different signal scenarios, such as partially dense-foliage scenario, dense-foliage 

scenario, and under passing the bridge scenario (with INS aiding). The relation 

between the predicted phase accuracy and receiver velocity performance will also 
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be considered in this work. Specifically, the phase reacquisition performance in 

the phase prediction architecture is of interest. 

4. Software receiver implementation. In order to implement the piece-wise control 

method and phase prediction method, a manually induced loss of lock is created 

in the software receiver, and the carrier frequency and carrier phase are also reset 

manually for the local replica signal. 

In realizing the above objectives, several contributions are made in this work and are 

summarized as follows: 

1. Proposed the piece-wise control methods to reduce the carrier phase reacquisition 

time, which include a piece-wise FLL followed by a piece-wise PLL method, and 

a directly piece-wise PLL method. The performance of each approach was 

assessed using data collected on a vehicle under mild to moderate operational 

conditions. For the piece-wise method, the transition time was shown to be 

reduced by a factor of approximately three for the frequency pull-in period and by 

a factor of about four for phase pull-in period. 

2. Kalman filter natural frequency for different process noise and observation noise 

is derived in this work, and a comparison between standard tracking loop and 

estimator-based tracking loop is conducted. 

3. Phase prediction method is proposed and evaluated in this work, wherein 

continuous carrier phase measurements are effectively provided if the loss of lock 

period is small. In this situation, the reacquisition process could theoretically start 

with a small initial phase (and frequency) error, thus resulting in a faster carrier 

phase reacquisition. 



 

 

11

1.4 Thesis Outlines 

This thesis contains six chapters and three appendices which are organized as described 

below. 

 

Chapter One presents the motivation, objectives and contributions of this work to 

improve the carrier phase reacquisition time. Results and limitations of previous work are 

shown.  

 

In Chapter Two an overview of receiver tracking loops is provided. Standard tracking 

loops, estimator-based tracking loops, vector-based tracking loops, and ultra-tight 

tracking loops are introduced in this chapter. 

 

Chapter Three presents the INS introduction and various strategies for GNSS/INS 

integration. For inertial navigation system, the coordinate system, coordinate 

transformation, and mechanization equations are presented. 

 

In Chapter Four the piece-wise control method is discussed, the parameter tuning process 

is presented, and the performance of piece-wise FLL followed by a piece-wise PLL 

method, and a directly piece-wise PLL method, are shown in this chapter. 

 

Chapter Five presents the phase prediction method, which is conducted in both vector-

based receiver and ultra-tight receiver. The phase prediction performances under different 
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signal power scenarios are considered. Specifically, partially dense-foliage, dense-foliage, 

and passing under bridges are considered. 

 

In Chapter Six the summary and recommendations for future work are presented. 

 

The appendices contain various detailed information relevant the thesis. 
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CHAPTER TWO: TRACKING LOOP OVERVIEW 

This chapter describes the theory behind tracking loop design. Standard tracking loops, 

estimator-based tracking loops, and vector-based tracking loops are introduced in this 

chapter. Generally, a GNSS receiver contains a code tracking loop and a carrier tracking 

loop (Ward et al 2006). The code tracking loop is used to get the pseudorange from the 

satellite to the receiver; on the other hand, the carrier tracking loop is used to get the 

carrier Doppler and carrier phase. The pseudorange is used to compute the user position 

and the carrier Doppler is used to compute the user velocity (Spilker 1996). 

 

Tracking loops continuously follow the dynamic of the incoming signal. Carrier tracking 

loops in GNSS receivers include frequency tracking and phase tracking, which can be 

performed by frequency lock loops (FLLs) and phase lock loops (PLLs) respectively 

(Ward et al 2006). PLL also tracks carrier frequencies; however, the tracking requirement 

is more stringent than FLL. It is very hard to directly track the carrier phase in a GNSS 

receiver due to the poor frequency pull-in ability of phase tracking loop. The general 

acquisition procedure is to start from carrier frequency tracking to reduce the Doppler 

uncertainty and then transition to carrier phase tracking. If the receiver loses track of a 

satellite, an acquisition process must be performed again to reacquire the satellite 

(Gardner 2005). Most GNSS receivers track carrier phases to get high accuracy phase 

measurement (Spilker 1996). 

 

 



 

 

14

2.1 Standard Receiver 

Generally, a frequency lock loop and a phase lock loop are employed in the GNSS 

receiver to track the carrier frequency and carrier phase respectively. Figure 2.1 shows 

the structure of a basic second-order tracking loop.  

1 S ∑+
+

2 nξω

2
nω

 

Figure 2.1: Basic Second-Order Tracking Loop 

A tracking loop is a feedback system that tracks the frequency or phase of a received 

signal. The basic purpose of a FLL (PLL) is to generate a signal whose frequency 

(frequency and phase) approximates the frequency (frequency and phase) of the received 

signal (Best 2004). The tracking loop contains three essential elements: a discriminator, a 

loop filter, and a numerically controlled oscillator (NCO) (Gardner 2005). The signal 

enters the tracking loop after down-conversion and sampling. After the PRN code and 

carrier frequency are correlated with a local signal (over a pre-defined integration 

interval), the in-phase (I) and quadra-phase (Q) correlator outputs are passed to the 

discriminators (Borre et al 2006). A discriminator defines the type of tracking loop, for a 

FLL, the discriminator is used to obtain the frequency difference between the received 

signal and the local replica; for a PLL, the discriminator is used to get the phase error 

estimate (Ward et al 2006). The phase error is defined as the average phase error over the 

integration interval. Several types of frequency detector and phase detector are introduced 
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in Ward et al (2006), an arctangent-type discriminator is used in this work for carrier 

phase tracking. The errors from the discriminators are then fed to the loop filter, which 

then delivers a suitable control signal to the NCO to generate a local replica. Of these 

three elements, the loop filter is most relevant in the context of this thesis. As such, the 

functions of the loop filter are discussed in Section 2.1.1. 

 

2.1.1 Loop Filter Introduction 

The loop filter has three main functions. The first function is to track the signal dynamic 

induced by the user and satellite motion. The second function is to filter out unwanted 

portions of the signal. Since the lower frequency signals are of interest, the loop filter 

must be a low-pass filter (Best 2004). The third function is to reduce the initial errors 

caused by the frequency or phase mismatch between the received signal and the local 

replica. For a FLL, the initial frequency error is reduced during the tracking process; for a 

PLL, both the initial frequency error and initial phase error are reduced during the 

tracking process.  

 

The loop filter is characterized by its sensitivity to dynamic errors, and its transition 

performance in the presence of discontinuities. The transition process is defined in 

Section 2.1.2. The dynamic analysis of a loop filter is normally performed on its transfer 

function, ( )H s , which relates the system input and output signals. The typical closed-

loop transfer functions during the tracking process are given by the following equations 

for first, second and third-order loops respectively (Best 2004). 
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where   s   : Laplace variable 

nω  : Natural frequency 

ξ  : Damping ratio 

Strictly speaking, the damping ratio only applies to the second-order control system. For 

the first-order and third-order systems, the performance is only decided by the natural 

frequency, as shown in Equations (2.1) and (2.3). The loop filter natural frequency must 

be set to reject most of the noise. As discussed in Ogata (1997) and Gardner (2005), a 

narrow natural frequency loop filter is capable of rejecting the incoming noise but has 

degraded performance to track the signal dynamic. On the other hand, wide natural 

frequency loop filter can track both satellite and receiver dynamics, but the drawback is 

that more noise is introduced in the tracking loop. As discussed above, the loop filter 

natural frequency must be sufficiently large to track the signal dynamics and also be 

sufficiently small to minimise the signal noise. Generally, noise bandwidth is used to 

describe the loop filter noise mitigation behaviour, the relation between noise bandwidth 

and natural frequency is given by (Ward et al 2006). 
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Table 2-1: Relation between Natural Frequency and Noise Bandwidth 

Loop Order Noise Bandwidth as a Function of nω  

First 0.25n nB ω=  

Second 0.53n nB ω=  

Third 0.7845n nB ω=  

 

where nB  is noise bandwidth.  

 

Figure 2.2 shows the frequency tracking performance with different FLL natural 

frequencies. As shown in this figure, a larger natural frequency introduces more noise in 

the loop filter. 
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Figure 2.2: Frequency Tracking Performance of a Second-Order Loop with 

Different Natural Frequencies 
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The damping ratio controls how much overshoot the filter can have and also controls how 

fast the filter reaches its steady-state (Borre et al 2006). The choice of the damping ratio 

is a trade-off between the overshoot and the transition time. Generally, the value of 0.707 

is preferred since a filter with this specified damping ratio converges reasonably fast and 

the overshoot is not high (Ogata 1997). 

 

The tracking errors of GNSS receivers include two major components: the error caused 

by the thermal noise, and the steady-state error caused by the vehicle dynamics (Jwo 

2001). A small steady-state error is usually desired for GNSS signal tracking. In control 

systems, the steady-state error is defined as the deviation of the output signal from the 

input after the transition process has died out (Ogata 1997). Different loop orders have 

different dynamic tracking performance, as shown in Table 2-2 (Ward et al 2006). 

Table 2-2: Steady-State Tracking Loop Errors (from Ward et al 2006) 

Loop Order Steady-State Error Characteristics 

First e
n

fϕ
ω
Δ

=  
Sensitive 

 to velocity stress 

Second 2e
n

fϕ
ω
Δ

=
&

 
Sensitive 

 to acceleration stress 

Third 3e
n

fϕ
ω
Δ

=
&&

 Sensitive to jerk stress 

 

where fΔ  is the phase rate. 
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Third-order loop filters have better dynamic tracking performance than first-order and 

second-order loop filters; however, third-order loop filters are unstable in some scenarios 

(Gardner 2005). Second-order loop filters are preferred in the low dynamic scenarios, 

since second-order loop filters are unconditionally stable with any parameters (Gardner 

2005). The loop filter design methods are well documented in the literature, e.g. Best 

(2004), Gardner (2005), and Borre et al (2006). 

 

2.1.2 Loop Filter Transition Process Analysis 

The tracking loop goes through the transition process when subject to a discontinuous 

input in order to reduce both the frequency error and the phase error to near zero. The 

transition process of a control system usually exhibits damped oscillatory behaviour 

before reaching steady-state (Ogata 1997). Common specifications of a transition process 

are rise time, peak time, settling time, and maximum overshoot, as shown in Figure 2.3. 

In this figure, y is the filter response; pM  is maximum overshoot, which defined as the 

maximum peak value of the response curve from unity; rt  is rise time, which defined as 

the time required for the filter response to rise from zero to its final value (unity); pt  is 

peak time, which defined as the time required to reach the first peak of overshoot; st  is 

settling time, which defined as the time required for the response curve to reach and stay 

with a predefined final value (usually 5% of the final value). For faster carrier phase 

reacquisition, a tracking loop with acceptable settling time and overshoot is needed. In 

this work, the settling time is defined as the transition time. 
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Figure 2.3: Illustration of Tracking Loop Transition Process 

Before the carrier phase reacquisition analysis, the performance of a standard receiver 

after a loss of lock must be assessed first. The carrier loop starts with acquisition after a 

loss of lock and then consecutively transitions to a FLL, a FLL-assisted-PLL, and finally 

a PLL. This can be a time consuming process. Below, the effect of different natural 

frequencies and damping ratios on the transition time is assessed for a general second-

order control system, where the nonlinear behaviour of discriminator is not considered. 

 

Figure 2.4 shows the transition process of a general second-order loop using different 

damping ratios with a fixed 10 Hz natural frequency, which is generally used in the 

frequency tracking loop (O'Driscoll 2008). The system in the figure is excited by a unit 

step signal. As can be seen in the figure, loop filters with smaller damping ratios have 

larger overshoot in the transition process. In contrast, a larger damping ratio results in a 

smaller overshoot and also a shorter transition time. 
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Figure 2.4: Transient Response for Different Loop Damping Ratios with Fixed 10 

Hz Natural Frequency 

Considering the natural frequency, Figure 2.5 shows the transition process of a second-

order loop using different natural frequencies with a fixed damping ratio of 0.707. In this 

case, a larger natural frequency results in a shorter transition time. 
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Figure 2.5: Transient Response for Different Loop Natural frequencies with Fixed 

0.707 Damping Ratio 
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Figure 2.4 and Figure 2.5 suggest that if the damping ratio and natural frequency are 

increased during the reacquisition process, a faster transition process is expected. Figure 

2.6 shows the performance of a second-order tracking loop with a large natural frequency 

and a large damping ratio (15 Hz natural frequency and 2.1 damping ratio), also, the 

performance with typical parameters (10 Hz natural frequency and 0.707 damping ratio) 

is shown. 
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Figure 2.6: Transient Response Comparison between Large Natural frequency and 

Damping Ratio and Typical Natural Frequency and Damping Ratio 

The filters with a large natural frequency and damping ratio loop converge faster and 

have smaller overshoot than the filters with the general parameter values; however, high 

damping ratios and wide natural frequencies are not always ideal. Specifically, higher 

damping ratios cause slower reactions to the user dynamics, and wider natural 

frequencies introduce more noise in the tracking loop. Correspondingly, a better method 
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is introduced in Chapter 4 to take advantage of the tracking loops with high damping 

ratios and wide natural frequencies. 

 

For carrier phase reacquisition, the transition process of different initial errors should be 

evaluated first. Before the initial frequency error analysis, the definition of the loss of 

lock should be clarified first. Two types of loss of lock are defined in this work, namely, 

loss of phase lock and loss of signal lock. Loss of phase lock occurs when the phase error 

is larger than a pre-decided phase threshold in the PLL. In the GSNRxTM software 

receiver, a loss of phase lock is declared when the phase lock indicator (PLI) is smaller 

than 0.5 (30 degrees phase error), when this happens, the receiver transitions to a FLL 

(O'Driscoll 2008). However, one thing should be noted, in the loss of phase lock case, the 

frequency tracking loop still works well. Loss of signal lock means the receiver does not 

track this satellite anymore, every time this happens, the receiver restarts the signal 

acquisition procedure.  

 

With this in mind, the initial frequency error assessment is only necessary in the loss of 

signal lock case. The frequency error is mainly due to the vehicle dynamics, satellite 

movement and receiver clock drift after the loss of signal lock. For the frequency error 

due to the satellite component, the maximum Doppler drift rate is on the order of 0.9 Hz 

per second (Watson 2005). Assuming a 30 second interval in which the signal is 

unavailable or too weak to acquire and track (the “loss of lock time”; 30 s is quite long). 

The Doppler uncertainty due to satellite motion in this case is 27 Hz. For vehicle motion, 

assuming the line of sight velocity changes by 30 m/s (100 km/h, which is the general 
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case in a ground-based vehicle scenario) over 30 seconds, the Doppler change is 

approximately 150 Hz for the GPS L1 signal. Finally, for even relatively poor oscillators, 

the frequency stability over 30 seconds is negligible compared to the previous two effects. 

As such, the total Doppler uncertainty after 30 s is approximately 200 Hz. 

 

Figure 2.7 shows the transition process of different initial frequency errors (manually 

induced in the software receiver) in a FLL. The lower plots in the figures show the errors 

with a magnified y-axis scale. Selected frequency errors are 10 Hz, 20 Hz, 30 Hz, 50 Hz, 

100 Hz, and 200 Hz, thus encompassing the full range of values assumed above. The FLL 

natural frequency is 10 Hz, the coherent integration time is 1 ms. As might be expected, 

the transition time for larger initial frequency error is longer than smaller initial 

frequency error. 
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Figure 2.7: Transition Process of Second-Order FLL with Different Initial 

Frequency Errors (bottom plot is a zoomed in version of the top plot) 

Figure 2.8 shows the transition process for different initial phase errors (manually 

induced in the software receiver) in a PLL with zero initial frequency error for a loop 
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natural frequency of 15 Hz, similarly, smaller initial phase errors have faster transition 

processes in a PLL. 
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Figure 2.8: Transition Process of Second-Order PLL with Different Initial Phase 

Errors (bottom plot is a zoomed in version of the top plot) 

Notice that the phase error is “zero” after reaching steady-state, this is due to the phase 

reference is obtained from the same tracking loop without manually induced loss of phase 

lock, as such, they have the same steady-state behaviours. In the real situation, the phase 

error is characterized by the phase jitter. Figure 2.7 and Figure 2.8 suggest that having 

smaller initial errors in the tracking loop can improve the reacquisition performance. 

 

Since the damping ratio concept does not apply to the higher order loop filters, instead of 

increasing the damping ratio and natural frequency separately in the second-order system, 

the gain of the loop filter can be directly increased to reduce the transition time and 

overshoot. The structure of a second-order tracking loop with a filter gain is shown in 

Figure 2.9. 
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Figure 2.9: Second-Order Tracking Loop with Large Filter Gain 

The open-loop transfer function for second-order loop filter with gain K  is given by: 

( )
2

2

2 n nsG s K
s

ξω ω+
=   (2.4) 

If let: 

2K a=   (2.5) 

Then, substitute Equation (2.5) in Equation(2.4) gives: 

( ) ( )( ) ( )2

2

2 n na a s a
G s

s
ξ ω ω+

=   (2.6) 

Equation (2.6) shows that a filter amplified by a large gain of 2a  has the same transfer 

function as a filter with the natural frequency and damping ratio increased by a factor of 

a . 

 

For the third-order loop filter, the transfer function is solely decided by the natural 

frequency, as shown in the Equation (2.3). The relation between gain and natural 

frequency is not as obvious as second-order system shown in Equation (2.6), however, 

large gain can also reduce the overshoot and transition time for the third-order loop filter, 

as shown in Figure 2.10, where the natural frequency is 6 Hz. 
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Figure 2.10: Transient Response Comparison between Large Gain and General 

Parameter Values for a Third-Order Loop 

It is shown that the filters with a large filter gain converge faster and have smaller 

overshoot than the filters with the general parameter values. 

 

2.1.3 Discrete Loop Filter 

In the previous sections, the discussions were based on analog systems. In order to 

process the digitized data in software receivers, the analog signals must be converted into 

discrete signals (Tsui 2004). Generally, FLLs and PLLs are designed by using the analog 

methods in the continuous time domain. The digital tracking loops are then derived from 

the analog tracking loops. Several techniques can be employed to design the loop filter in 

the digital domain; however, the most commonly used method is based on transformation 

methods, where the discrete form is obtained by means of mapping functions from the 

analog domain. The step invariant mapping method is employed in GSNRxTM software 
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receiver to convert a continuous loop filter to a digital loop filter, which is given by 

(Borio and O’Driscoll 2009): 

( )1

c

z
s

T z
−

→   (2.7) 

where   z  : z-domain parameter representing a step in time (Jury 1964) 

cT  : Sampling interval time (i.e., integration time) 

Note that the transformation methods are effective only when 1n cB T << , where nB  is the 

filter noise bandwidth (Ward et al 2006). 

 

The following is an example showing how to get the discrete form second-order PLL 

loop filter. The continuous open-loop second-order loop filter transfer function is given 

by (Ward et al 2006): 

( )
( )

22 n nY s s
X s s

ξω ω+
=   (2.8) 

Substituting Equation (2.7) into Equation (2.8) gives: 

( )
( )

( )2 1

1

2 2
1

n n c nT zY z
X z z

ξω ω ξω −

−

+ −
=

−
  (2.9) 

By using the z  inverse transformation, the discrete form loop filter is given by (Tsui 

2004): 

( )2
1 12 2k k n n c k n ky y T x xξω ω ξω− −= + + −   (2.10) 

where   1ky −   : Filter output at the last epoch 
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1kx − , kx  : Filter inputs at the last epoch and the current epoch 

respectively 

2.2 Estimator-Based Receiver 

In estimator-based receivers, the traditional discriminators and loop filters in the PLL are 

replaced by a local Kalman filter (Petovello et al 2006, Psiaki et al 2007). The goal of the 

Kalman filter is to improve the carrier tracking accuracy. Kalman filter theory is well 

documented in Gelb (1974), Brown et al (2002), Zarchan (2005), and Simon (2006), and 

will not be repeated here.  

 

Three-state Kalman-based tracking loop is shown in Appendix B, where the states 

included are the code phase error, the carrier frequency error, and carrier acceleration 

error. The equivalence between third-order standard tracking loop and Kalman filter is 

shown there. However, the combined DLL and PLL approach is employed in the 

software receiver (Petovello et al 2006), where a five-state Kalman filter is used to track 

the errors in the predicted signals. The states estimated in this case are the amplitude of 

signal, the code phase error, the carrier phase error, the frequency error and the carrier 

acceleration error. More details about local five-state Kalman filter will be shown in 

Chapter 5. 

 

The transition process for the standard tracking loop was already shown in the section 

2.1.2. Recall that the transition time is decided by the loop filter natural frequency and 

damping ratio (for second-order loop filter). One thing should be noted in the standard 
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tracking loop that only frequency is corrected during the tracking process. However, in 

the estimator-based architecture, both frequency error and phase error are corrected 

during the tracking process, which means that the transition process should be different 

from the standard tracking loops. In this section, the transition process for the estimator-

based tracking loop is assessed. The parameters used in the local Kalman filter are shown 

in Table 2-3. 

Table 2-3: Local Kalman Filter Parameters 

States 5 

C/N0 50 dB/Hz 

Observation Noise 0.005 

Line of Sight Spectral Density 4 2/ /m s Hz  

Integration Time 1 ms 

As shown in Appendix C, for 50 dB/Hz C/N0 and 4 2/ /m s Hz  line of sight spectral 

density, the equivalent natural frequency is around 5 Hz. 

 

As with the standard FLL assessment, a manual frequency offset was induced in the 

software receiver to evaluate the transition process for estimator-based tracking loop. 

Figure 2.11 shows the transition process for third-order standard FLL (5 Hz natural 

frequency) and estimator-based tracking loop, the initial frequency error is 20 Hz. 

Generally, it is not common to use a third-order FLL, however, in order to have a direct 

comparison with the estimator-based approach, a third-order standard FLL is used here. 

Moreover, a second-order standard FLL can also be compared with a two-state Kalman 
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filter, where the carrier acceleration error is removed from the state vector, however, a 

shorter transition time for the two-state estimator-based receiver is expected. 
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Figure 2.11: Carrier Frequency Transition Process for Third-Order Standard FLL 

and Estimator-Based Tracking of 5 Hz Natural Frequency with 20 Hz Initial 

Frequency Error 

Obviously, the estimator-based tracking loop has faster transition process than standard 

FLL, however, it is also observed that the overshoot for estimator-based tracking loop is 

slightly larger than the standard FLL. 

 

The same as the standard PLL assessment, a manual phase offset was induced in the 

software receiver to evaluate the transition process for estimator-based tracking loop. 

Figure 2.12 shows the phase transition process for 0.2 cycles initial phase error 

(frequency error is zero), the natural frequency for the standard PLL is 5 Hz. 
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Figure 2.12: Carrier Phase Transition Process for Third-Order Standard PLL and 

Estimator-Based Tracking of 5 Hz Natural Frequency with 0.2 Cycles Initial Phase 

Error 

Figure 2.11 and Figure 2.12 suggest that for the carrier phase reacquisition, estimator-

based receiver can provide faster transition process than standard PLL. 

 

2.3 Vector-Based Architecture 

The vector-based tracking concept was initially introduced by Spilker (1994). Different 

from conventional GNSS receivers, a vector-based receiver combines the tracking of all 

the visible satellites through a composite filter. In a standard receiver and estimator-based 

receiver, signal tracking is done on a satellite-by-satellite basis, which means all satellites 

are tracked separately and no information is shared between channels. The advantage of 

this kind of architecture is that it is more robust and one satellite will not corrupt another. 

However, in the vector-based architecture, it operates on a simple principle that the code 
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phase, code Doppler, and carrier Doppler of the received signal are based on the position 

and velocity of the user and satellite. In this way, the navigation solution is used to drive 

the code and frequency NCO values in the receiver.  

 

The primary advantage of vector-based architectures is that noise is reduced in all 

channels, and the receiver is less likely to enter the non-linear tracking regions, which in 

turn, should improve the signal tracking ability under weak signal scenarios (Petovello 

2006). Another advantage is possibly reacquiring satellites faster than the standard 

receivers. Since the predicted Doppler is available from the navigation filter after the 

signal is received again, the tracking loop can be started with more accurate Doppler than 

the standard procedure. The ability to reacquire one satellite rapidly is shown in some 

previous works by employing the vector-based FLL (VFLL) architecture (Bevly et al 

2008); however, the work only concentrated on the initial frequency but not the phase. 

This thesis focuses on the carrier phase.  

 

In the vector-based architecture, a separate phase tracking loop should be employed to 

track the carrier; otherwise, the phase measurements cannot be obtained (Bevly et al 

2008). Usually, a cascaded approach is employed in the vector-based architecture (Kim et 

al 2003, Jovancevic et al 2004, Petovello et al 2007, 2008). In this case, each channel 

employs a local loop to track the carrier.  
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Figure 2.13 shows the structure of the vector-based receiver employed in the GSNRxTM 

software receiver. Two different Kalman filters are employed in this case to track both 

frequency and carrier phase, namely, the navigation filter and the local filter. 

 
 

Figure 2.13: Vector-Based Phase Tracking Strategy 

The estimator-based PLL discussed in Section 2.2 is employed as the local filter in the 

vector-based architecture. The navigation filter is employed to close the tracking loop and 

control the NCOs. Position error, velocity error, and clock error are estimated in the 

navigation filter (Petovello et al 2008, Bevly et al 2008). The measurements used to 

update the navigation filter are the pseudorange and carrier Doppler from each channel. 

In some other implementations, the error estimates from the local filters could be used 

directly to update the navigation filter. With the known position and velocity of the user 

in the navigation filter, the feedback to the local signal generators are obtained from the 

predicted range and Doppler to each satellite. Details will be shown in Chapter 5. 
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CHAPTER THREE: OVERVIEW OF GNSS/INS INTEGRATION 

This chapter describes the theory behind integrated navigation systems using GNSS and 

inertial data. The inertial navigation systems (INS) are self-contained systems, which do 

not rely on external information. INS provides position, velocity and attitude information 

based on the sensor outputs; accelerometers provide acceleration information of the 

vehicle, and gyroscopes provide orientation information (Savage 2000). Therefore, INS is 

essentially immune to the external interference. However, the accuracy of an INS is 

limited by the sensor accuracy, which introduces position and velocity errors that 

increase with time. In addition, INS requires an initial alignment process, which can be 

challenging with low-cost sensors. 

 

In contrast, the estimated accuracy of GNSS remains at the roughly same level over time 

assuming the signal environment remains approximately the same. The advantages of 

GNSS include no external input for initialization, and both position and velocity 

estimates are bounded. The disadvantage of GNSS is the signal is easily to be interrupted 

by the surrounding objects causing multipath errors, and loss of lock over short time 

periods is possible due to the signal blockage, interference, or jamming (Farrell 1998). 

Also, the output rate is relatively lower compared to an INS. 

 

GNSS/INS integrated navigation systems take advantage of the complementary 

characteristics of different systems. The combined system offers a significant gain in 

performance in terms of accuracy and robustness compared to the standalone usage of 
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either system (Wendel et al 2004). The growth of INS navigation errors with time is 

reduced by using aiding information from GNSS receivers. 

 

This chapter starts with a review of inertial navigation systems and then moves to 

loosely-coupled, tightly-coupled, and ultra-tight GNSS/INS integration strategies. 

 

3.1 Inertial Navigation System Overview 

An Inertial Navigation System (INS) is used for autonomously determining position 

using inertial angular rate sensors, acceleration sensors, and a data processing computer 

(Savage 2000). The original applications of inertial navigation system used stable 

platform techniques. In these systems, the inertial measurement unit (IMU) is mounted on 

a stable (gimballed) platform and, most importantly, it is mechanically isolated from the 

rotation of the vehicle relative to the navigation frame. Modern INS systems have 

removed most of the mechanical platform, however, in particular applications where very 

high accuracy is required, gimballed platform systems are still commonly used, such as 

missile and submarine systems. Instead, modern systems rigidly attach the inertial 

sensors to the body of the host vehicle, forming what is called a strapdown system. In the 

strapdown system, the physical platform is replaced by the mathematical platform which 

represented by Euler angles. The potential benefits of this method are lower cost and 

greater reliability compared to the equivalent platform systems. However, the 

computational load for strapdown system is increased (Titterton and Weston 2004). The 

principal functions executed in the computer are angular rate integration and specific 

force transformation (Savage 1998), which collectively represent the “mechanization”. In 
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the mechanization process, the platform angles are obtained in the angular rate 

integration process. At the same time, acceleration is obtained after removing the 

acceleration due to gravity, and the single and double integration of acceleration allows 

for the estimation of the velocity and position of the vehicle respectively. This section 

begins with the coordinate systems review, and then the INS mechanization equations, 

which include attitude update, velocity, and position update. 

 

3.1.1 Coordinate Systems 

Coordinate reference frames need to be defined before processing inertial data. To this 

end, the inertial frame, Earth-Centred-Earth-Fixed (ECEF) frame, navigation frame, and 

body frame are defined in this section. Each frame is an orthogonal, right-handed 

coordinate system. 

 

An inertial frame (i-frame) is a reference frame in which Newton’s laws of motion apply, 

therefore it is not accelerating, but may be in uniform linear motion (Farrell 2008). The 

origin of inertial frame is the centre of the Earth, three axes are fixed with respect to the 

stars, as shown in Figure 3.1. ix , iy  and iz  axes are defined in this figure, with ix - axis 

pointing towards the mean vernal equinox, iz - axis coincident with the Earth’s polar axis, 

and iy - axis is decided by the right-handed coordinate system. 
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Figure 3.1: Illustration of Inertial Frame and ECEF Frame 

The origin of ECEF frame (e-frame) is also the centre of the Earth, however, the axes are 

fixed with respect to the Earth compared to the inertial frame. ex , ey  and ez  are defined 

in Figure 3.1, with ex - axis pointing towards the intersection of the plane of the 

Greenwich meridian with the Earth’s equatorial plane, ez - axis coincident with the 

Earth’s spin axis, and ey - axis is decided by the right-handed coordinate system. The 

rotation rate of ECEF frame is 57.292115 /ie e rad sω −=  respect to the inertial frame for 

the WGS84 reference system (Savage 2000). 

 

The navigation frame (n-frame) is a local geographic frame, also called local level frame. 

The origin of the navigation frame is the location of the navigation system, and the axes 

are aligned with the directions of north, east, and down. In this work, nx - axis pointing 
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towards the true north, ny - axis pointing towards the east, and nz - axis is decided by the 

right-handed coordinate system. 

 

The body frame is defined by the orientation of the IMU axes. The origin of body frame 

is the centre of IMU, with bx - axis pointing towards the right of the vehicle, by - axis 

pointing towards the front of the vehicle, and bz - axis is decided by the right-handed 

coordinate system. 

 

3.1.2 Coordinates Transformation 

Coordinates transformation is used to transform a vector from one frame to another frame 

(Rogers 2003). Every vector has a distinct coordinate representation relative to a 

predefined reference frame and the vector’s components described in one frame can be 

presented in another frame of arbitrary orientation with respect to the original frame by a 

transformation matrix. For example, a velocity vector can be represented by nv  or bv , 

where the superscripts define the reference frames in which the vectors are represented, 

here, the navigation frame and body frame respectively. The representations of some 

special quantities also use subscripts to indicate the physical standing, for example, b
nbω  

indicates the angular velocity from body frame to navigation frame expressed in the body 

frame. Mathematically, the coordinate transformation is accomplished by sequential 

rotations from the original frame’s axes to specific frame, which will be shown later. A 

transformation matrix is defined as C  with a superscript indicating the destination frame 

and a subscript origin frame in this work. For example, b
nC  represents the rotation from 
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n  frame to b  frame, in so doing, the velocity vectors in navigation frame and body frame 

shown above are related as 

b b n
nv C v=   (3.1) 

The most commonly used coordinate transformation (the transformation between ECEF 

frame and navigation frame) in navigation systems is introduced in this section. Some 

other transformations can be derived in the same way as this below. 

 

The transformation between the ECEF and navigation frame can be performed by three 

consecutive rotations as shown in Figure 3.2, which are given by Equations (3.2), (3.3), 

and (3.4), respectively, where λ  is vehicle longitude, L  is vehicle latitude. 
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Figure 3.2: Illustration of Transformation from ECEF Frame to Navigation Frame  

Step 1: Rotate by λ  about ez  axis, from e e ex y z  frame to 1 1 1x y z  frame 
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1

cos sin 0
sin cos 0
0 0 1

eC
λ λ
λ λ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (3.2) 

Step 2: Rotate by L  about 1y  axis, from 1 1 1x y z  frame to up-east-north frame (defined as 

2) 

2
1

cos 0 sin
0 1 0

sin 0 cos

L L
C

L L

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

  (3.3) 

Step 3: Rotate by 90°−  about east axis, from up-east-north frame to north-east-down 

frame (defined as n in this work, navigation frame) 

2

0 0 1
0 1 0
1 0 0

nC
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

  (3.4) 

And finally get the transformation matrix n
eC  between ECEF frame and navigation frame 

as 

2 1
2 1

sin cos sin sin cos
sin cos 0

cos cos cos sin sin

n n
e e

L L L
C C C C

L L L

λ λ
λ λ

λ λ

− −⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 (3.5) 

3.1.3 Mechanization 

The mechanization equations are used to get the position, velocity, and attitude 

increments of the vehicle from the IMU data. Mechanization can be conducted in any 

coordinate system, but in this work the navigation frame is used due to convenience. The 

attitude update, velocity update, and position update are each discussed in detail below. 
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Attitude update 

The orientation of a body with respect to a reference frame is known as attitude (Titterton 

and Weston 2004), which is usually presented by the Euler angles, direction cosine 

matrix (DCM), or quaternions. A strapdown INS computes the orientation that is used to 

project the accelerations from the body frame to the navigation frame. After this, the 

velocity and position of the vehicle can be obtained. However, the initial values of 

attitude presents must be determined before the mechanization can be performed. 

 

The quaternion approach is often preferred in the INS mechanization due to the linearity 

of quaternion differential equations, and the lack of singularities. Quaternion method 

takes advantage of the fact that Euler states can be represented as a single rotation about a 

single fixed vector, which is given by (Titterton and Weston 2004) 

[ ]0 1 2 3
TQ q q q q=   (3.6) 

And the complex form is 

0 1 2 3Q q q i q j q k= + + +   (3.7) 

There are four parameters in the quaternion vector, however, only three degree of 

freedom exists. More details about quaternion method are available in Kuipers (1998), 

Savage (2000), Farrell (2008). Quaternion update equation is given by 

0 0
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2 2

3 3
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n b b b
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 (3.8) 
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where  b
nbω  : Angular velocity from body frame to navigation frame  

expressed in the body frame 

Conversion from quaternion to DCM is 

( ) ( )
( ) ( )
( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2
2 2
2 2

n
b

q q q q q q q q q q q q
C q q q q q q q q q q q q

q q q q q q q q q q q q

⎛ ⎞+ − − + −
⎜ ⎟

= − − + − +⎜ ⎟
⎜ ⎟+ − − − +⎝ ⎠

 (3.9) 

 

Velocity update 

Before the velocity update, the specific force is introduced first. As discussed above, 

inertial navigation systems rely on the accelerometer outputs which can be integrated to 

provide the change of velocity and position (Titterton and Weston 2004). The navigation 

frame is usually used in navigation applications since it is more convenient than other 

frames. The specific force under the navigation frame is given by Equation (3.10) 

(Savage 2000), which includes the real acceleration in the navigation frame, the Earth 

gravity, and the Coriolis acceleration caused by the rotation of navigation frame and 

Earth. 

(2 )n n n n n n
ie enf v v gω ω= + + × +   (3.10) 

where   nv  : Vehicle velocity with respect to the navigation frame 

n
ieω  : Earth rotation rate with respect to the navigation frame 

n
enω  : Angular velocity between navigation frame and Earth   

    frame with respect to the navigation frame 

ng  :  Gravity with respect to the navigation frame 
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×  : Vector cross product 

Rewrite Equation (3.10) and substitute n n b
bf C f=  to get 

( )2n n b n n n n
ep b ie ep epV C f V gω ω= − + × +   (3.11) 

Integrating Equation (3.11) returns the velocity update under navigation frame. 

 

Position update 

Position is the integration of the velocity, the position update is given by 

n

N

vL
R h

=
+

&   (3.12) 

( ) cos
e

M

v
R h L

λ =
+

&   (3.13) 

dh v= −&   (3.14) 

where   L  : Vehicle latitude 

λ  : Vehicle longitude 

h  : Vehicle height 

The velocities shown above are in the navigation frame. NR  and MR  are radii of 

curvature along lines of constant latitude and constant longitude respectively, which are 

given by 

( )1/ 22 21 sin
N

aR
e L

=
−

  (3.15) 

where   a  : Equatorial radius of Earth, which is 6378137 m under   

     WGS84 coordinate system 
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e  : Earth eccentricity, which is 0.081819 under WGS84   

    coordinate system 

( )
( )

2

3/ 22 2

1

1 sin
M

a e
R

e L

−
=

−
  (3.16) 

As discussed above, ten differential equations are used to describe the time evolution of 

navigation parameters in the INS, which include 4 quaternions, 3 velocities, and 3 

positions. These differential equations can be numerically integrated separately. The 

Euler integration method and Runge-Kutta method can be employed to get the integration 

of the navigation parameters. Generally, for low dynamic applications, the Euler 

integration method is preferred due to the low computational load; however, in the high 

accuracy applications, a fourth-order Runge-Kutta integration is preferred to obtain the 

navigation solutions (Rosales and Colomina 2005). 

 

Initialization 

As stated above, inertial navigation systems require the initialization of the position, 

velocity, and attitude parameters (Farrell 2008). Three topics are of interest for 

initialization, including calibration, initialization, and alignment.  

 

The calibration process is used to determine various inertial measurement errors, such as 

biases, scale factor errors, and axis non-orthogonalities. Before being used, the 

accelerometers and gyroscopes are initially calibrated in the laboratory or using a 

separate field test. The initialization process is used to determine the initial position and 

velocity of vehicle. Alignment is used to determine the orientation of the axes with 
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respect to the reference axis system (Titterton and Weston 2004). There are two 

fundamental types of alignment: self-alignment and the alignment of a secondary system 

with the aid of a primary reference (Titterton and Weston 2004). This section is 

concerned with the self-alignment technique. A self-alignment is carried out based solely 

on the IMU outputs, and can be divided into coarse alignment and fine alignment. During 

the alignment process, the most difficult objective is to establish the initial azimuth. 

 

The basic concept of coarse alignment is quite simple and straightforward. Coarse 

alignment takes advantage of the fact that Earth’s gravity and rotation rate are constant 

and can be predicted at the given position (Rogers 2003). The angular velocity and 

specific force from inertial sensors are then compared to the theoretical values, and yield 

a reasonable estimate of initial attitude. Usually coarse alignment is conducted in the 

static scenario. In the static scenario, the gravity vector is used to determine the pitch and 

roll as given by (Farrell 2008) 

( )
( )2 2

arctan 2 ,

arctan 2 ,

y z

x y z

f f

f f f

φ
θ

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥⎣ ⎦

  (3.17) 

where f  is under the body frame. 

After the coarse levelling, the estimated azimuth is given by 

1tan
b
ibx
b
iby

ωψ
ω

−
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

  (3.18) 
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However, the sensor accuracy requirement behind this method is that the gyroscope 

accuracy must be accurate enough to sense the rotation of Earth, which cannot be 

accomplished by commercial micro electro-mechanical systems (MEMS) sensors. 

 

The fine alignment process is used to refine the attitude obtained in the coarse alignment 

process, which is based on the INS error propagation equation (see Appendix A) and 

extended Kalman filter estimate. Fine alignment process will be discussed in the 

GNSS/INS integration section. The misalignment is estimated during the fine alignment 

process, and also some IMU errors. 

 

3.2 Integration Strategies Overview 

GNSS/INS integrated navigation systems take advantage of the complementary 

characteristics of the two different systems. The combined system offers a significantly 

increased performance in terms of accuracy and robustness compared to the standalone 

usage of either system (Wendel et al 2004). GNSS/INS integration strategies are based on 

the optimal estimation theory. Kalman filters are widely employed to merge the data of 

the navigation sensors. The differences between the INS and GNSS are processed in the 

Kalman filter to estimate the growing position and velocity errors over time in the INS. 

Generally, there are three strategies employed to integrate GNSS and INS data together, 

which are normally classified as loosely-coupled, tightly-coupled, and ultra-tightly-

coupled (Petovello et al 2003). Usually a feedback Kalman filter is used to improve the 

integration performance. In this approach, the estimated errors are used to reset the GNSS 
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and INS parameters. Continuous correction (over time) assures the long-term accuracy of 

INS system, as well as calibrates the IMU errors. 

 

In the GNSS/INS integration system used in this work, the IMU is rigidly mounted to the 

vehicle and the offset to the GNSS antenna, namely, the lever-arm, should be measured 

before the mission. Figure 3.3 shows the lever-arm between the GNSS antenna and IMU. 

The required lever-arm accuracy should be better than 1 cm (Petovello 2003). 

IMUx

IMUy

IMUz

GNSSx

GNSSy
GNSSz

 

Figure 3.3: Illustration of Lever-Arm (Modified from NovAtel) 

3.2.1 Loosely-Coupled Integration 

GNSS and INS operate independently in the loosely-coupled strategy, which is relatively 

easy to implement compared to the other strategies discussed below. In the loosely-

coupled strategy, position and velocity from GNSS and INS are used as measurements to 

a Kalman filter to aid the INS (Petovello 2003). In so doing, the position and velocity 

from GNSS are directly compared to the INS outputs, as shown in Figure 3.4. 
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Figure 3.4: Loosely-Coupled Integration 

GNSS position and velocity are obtained by least-squares or Kalman filtering. The INS 

error model shown in Appendix A is used in the integration filter to estimate the errors 

that occur in the mechanization. Generally, the system model for the loosely-coupled 

integration consists of nine error states which include three position errors, three velocity 

errors, and three attitude errors. However, due to the IMU sensor errors and clock errors 

in the GNSS system, the number of states is expanded in the integration filter. In the fine 

alignment process, the same strategy is used to estimate the orientation errors. 

 

The advantages of loosely-coupled integration is that it is relatively easy to implement, 

and GNSS and INS operate independently which means that one system cannot be 

corrupted by the other. However, the drawback is that, if a Kalman filter is employed in 

the GNSS receiver, the position and velocity measurements are time-correlated which can 

cause performance degradation in the integration Kalman filter (Godha 2006). And in the 

incomplete constellation cases, for example, if the number of available satellites is not 
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sufficient to get the position and velocity measurements, the GNSS information has to be 

ignored completely in the loosely-coupled system, in this situation, the navigation errors 

of INS grow unbounded. 

 

3.2.2 Tightly-Coupled Integration 

In the tightly-coupled integration system, the pseudorange and carrier Doppler from the 

GNSS tracking loop are used directly in the Kalman filter, as shown in Figure 3.5. 

,f ω
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+

−

, ,INS INSP V A ˆˆ, ,INS INSP V A
)

, , , ,INS INS a gP V A b bδ δ δ

,INS INSDopplerρ

,GNSS GNSSDopplerρ

, Dopplerδρ δ

 

Figure 3.5: Tightly-Coupled Integration 

Tightly-coupled integration uses the same state model as loosely-coupled integration, the 

difference is the Kalman filter measurements. Unlike for a loosely-coupled system which 

requires that at least four satellites be tracked in order to get the GNSS position and 

velocity solution, the number of tracked satellites is not important in the tight integration 

case. The major drawback of tightly-coupled system is that the computational load 

increases. 
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3.3 Ultra-Tight Integration 

For a GNSS-only receiver, a traditional PLL estimates the Doppler and clock errors of 

the incoming signal during the tracking process (Alban et al 2003). However, the 

performance of the tracking loop is degraded under dynamic scenarios. If these 

parameters can be estimated externally, such as from inertial sensors, they can be used to 

aid the tracking loop. A conventional ultra-tight system uses separate tracking loops for 

each satellite channel as shown in Figure 3.6, and the INS outputs provide the dynamic 

reference for the GNSS signal integration inside the receiver correlators. Correspondingly, 

the local replicas are adjusted for dynamic changes using the inertial aiding (Soloviev et 

al 2004). Ultra-tight receiver offers numerous advantages in terms of robustness, under 

high dynamic, as well as carrier tracking performance.  

∑+

+

fΔ

 

Figure 3.6: Standard Ultra-Tight Integration 

In the standard PLL, the output of the loop filter is the estimated carrier Doppler, as 

shown in Chapter 2. However, in the ultra-tight receiver, with the aiding of the external 

INS, the output of loop filter is the Doppler error between the true carrier Doppler and the 

INS predicted Doppler. The ultra-tight configuration shown above offers advantages over 

the traditional structure in term of noise suppression and tracking bandwidth. The signal 
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dynamics are tracked with the bandwidth provided by the INS, which means that the loop 

filter bandwidth used to track the Doppler error can be reduced. Loop filter bandwidth 

depends on the Doppler error from external aiding. To this end, the Doppler accuracy 

depends on the IMU quality and different kinds of IMU can provide different aiding 

performance. 

 

A vector-based ultra-tight scheme is preferred in the receiver used in this work (Petovello 

2003). In the vector-based receiver, the NCO is controlled by the navigation filter, and 

solely determined on the basis of position, clock, and line-of-sight (LOS) estimation, 

which means that the standard loop filter shown in Figure 3.6 does not exist anymore. 

The benefits of vector-based receiver are already shown in Chapter 2. Table 3-1 shows 

the specification of the tactical grade IMU (HG1700) used in this work (Godha 2006). 

Table 3-1: HG1700 Specifications 

 Accelerometers Gyroscope 

In run bias 1 mg 1 deg/h 

Scale factor 300 ppm 150 ppm 

Random walk 2.16 e-6 /g Hz  7.5 deg/ /h Hz  

 

The details of ultra-tight Kalman filter will be provided in the Chapter 5. 
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CHAPTER FOUR: PIECE-WISE CONTROL METHOD 

This chapter looks at the performance of the piece-wise control method proposed in this 

work. The motivation of piece-wise control is to reduce the transition time during the 

carrier phase reacquisition process, thereby providing more phase measurements for 

high-accuracy positioning applications. In a standard receiver architecture, generally 

speaking, the carrier loop starts with acquisition, then transitions to a FLL, then to a FLL-

assisted-PLL, and finally to a PLL. During the reacquisition process, this procedure is 

restarted, albeit often with smaller search spaces.  

 

However, given the reduced search space, other approaches may be used to provide a 

more rapid transition to carrier phase tracking. For example, the relationship between rise 

time, overshoot, natural frequency, and damping ratio has not been investigated in 

previous work during the reacquisition process. In the GNSS tracking loop, a large 

damping ratio can reduce the overshoot of the transition process, and a large natural 

frequency will result in a smaller rise time. Therefore, if the damping ratio and natural 

frequency are increased in the loop filters during the carrier phase reacquisition process, a 

smaller convergence time and overshoot is expected. With this in mind, a piece-wise 

control approach has been proposed in this work. The approach divides the reacquisition 

and tracking process into separate periods each with different natural frequencies and 

damping ratios. It is noted that the differences among a FLL and a PLL are filter orders 

and specific loop filter parameters; in other words, the same types of loop filter are 

employed in both frequency tracking and phase tracking, which means that the piece-
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wise method can be used both in the frequency tracking process and the phase tracking 

process. 

 

4.1 Proposed Metrics 

Before presenting the new method, the metrics used to evaluate the algorithm is first 

presented. Generally, frequency lock indicator (FLI) and phase lock indictor (PLI) can be 

used to evaluate the performance of frequency tracking and phase tracking quality 

respectively. FLI (Mongredien et al 2006) and PLI (Van Dierendonck 1995) are the 

function of frequency error, phase error, and integration time. The FLI is given by 

( )cos 4 cFLI πδfT=   (4.1) 

where   cT  : Integration time 

δf  : Frequency error in the tracking loop 

For example, for a 20 ms integration time, 0.9FLI =  means that the frequency error in 

the frequency tracking loop is 1.8 Hz. The PLI is given by 

( )cos 2PLI δφ=   (4.2) 

where   δφ  :  Phase error in the tracking loop 

For example, 0.9PLI =  indicates the phase error in the phase tracking loop is 13 degrees. 

 

Generally, the transitions between a FLL and a PLL are based on the FLI and PLI values. 

For example, a loss of phase lock is declared if PLI is smaller than 0.5 (O’Driscoll et al 

2009), which means that the phase error in the PLL is larger than 30 degrees. At this 

point, the receiver transitions from a PLL to a FLL. In the carrier phase reacquisition 
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process, the Doppler and carrier phase transition time have been of particular interests. 

As mentioned above, FLI and PLI can be used to evaluate the tracking errors. However, 

usually a filter is used in the PLAN group GSNRxTM software receiver to obtain the FLI 

and PLI. In so doing, a delay is introduced. Therefore, the use of FLI and PLI is not 

effective to evaluating the transition time. In order to avoid the delay phenomenon in the 

transition time evaluation process, the primary metrics used in this work are Doppler 

jitter (Borio et al 2009) and phase jitter (Gebre-Egziabher et al 2003). 

 

The evaluation process for the frequency transition time is conducted by the following 

two steps, polynomial fitting and Doppler jitter calculation. During the first step, a 

polynomial fitting is employed to obtain the interpolation of the tracking results. The 

polynomial fitting equation is given by 

1
0 1 1

n n
k k n k n ky p p t p t p t−

−= + + + +   (4.3) 

where   n  : Polynomial order  

ip  : Polynomial coefficients, from 0p  to np  

Essentially, the coefficients of a polynomial are determined in a least-squares sense. 

Generally a first-order (linear) polynomial is employed in this work because the Doppler 

change during the transition process (usually less than 1 s) is small, which means that a 

first-order fit is accurate enough and will be shown later. However, a second-order 

polynomial would be preferred for a longer transition process. The tracking errors and 

Doppler jitter are calculated in the second step, tracking errors are given by 

k k kz yε = −   (4.4) 
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where   z  : Observed tracking results 

  y  : Polynomial results 

Doppler jitter is a function of signal power, loop filter noise bandwidth, and integration 

time, and is given mathematically by (Borio et al 2009) 

0 0

1 11
/ 2 /

n
f

c c

B
T C N T C N

σ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

  (4.5) 

where   nB  : Loop filter noise bandwidth 

cT  : Integration time 

C/N0 : Carrier to noise density 

However, a more practical way is used in this work to obtain the Doppler jitter, which is 

given by 

1

1

n

k
k

f n

ε
σ ==

−

∑
  (4.6) 

where   kε  : Tracking error 

  n  : Number of samples 

Different from the frequency transition time assessment, the polynomial fitting does not 

apply to the phase transition time analysis. The reason for this is that generally the carrier 

phase increments over integration time (1 ms for example) are in the order of several 

cycles. Because of this, high accuracy polynomial fitting cannot be obtained. Fortunately, 

since the loss of phase lock is manually induced in the phase tracking loop, the carrier 

phase outputs without a manually induced loss of phase lock can be used as a reference. 

In so doing, the phase errors can be obtained. Moreover, the relationship between the 
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C/N0 and loop filter bandwidth is shown in Gebre-Egziabher (2003), which can be used 

as the threshold to determine the phase transition time. 

 

To this end, the transition time is herein defined as the time required for the Doppler error 

(phase error) to become smaller than the 3σ Doppler jitter (phase jitter) over the span of 

100 continuous epochs. This approach was selected empirically and seemed like a 

reasonable value based on the results shown later. More specifically, the time of first 

epoch after the 100 continuous epochs mentioned above (relative to when the signal 

reacquisition process stared) is the transition time. 

 

In order to get the baseline performance for the piece-wise control method, a simulation 

is introduced in this work where a manual loss of signal lock is created in the software 

receiver, and the carrier frequency and carrier phase are also reset manually for the local 

replica signal. In so doing, the transition process assessments for different initial 

frequency errors and different initial phase errors are possible. 

 

4.2 Piece-wise FLL Assessment 

Piece-wise FLL is used to reduce the frequency transition time in the reacquisition 

process, and enable a PLL start with a small initial frequency error. The transition 

processes for different initial frequency errors are already shown in the Chapter 2, as well 

as the tracking loop performances of different natural frequencies and damping ratios. In 

this section, the performance of piece-wise FLL is assessed with a maximum initial 

frequency error of 200 Hz, which is assumed in the Chapter 2. The approach divides the 
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tracking process into separate periods each with different natural frequencies and 

damping ratios. The performance of such an approach is evaluated in terms of the time 

required to attain specified frequency tracking qualities (Doppler jitters). 

 

This section will discuss the method of frequency polynomial fitting, followed by 

parameter tuning of the piece-wise tracking loop, and finally the performance assessment 

of the piece-wise FLL method for different scenarios. 

 

4.2.1 Polynomial Fitting 

Polynomial fitting is employed here to evaluate the FLL transition process, the definition 

of transition time is already shown in the proposed metrics section. Without loss of 

general, different satellites with different received signal power have been assessed. Here 

take PRN 31 (C/N0 is 51 dB/Hz) for example to illustrate how to obtain the Doppler jitter 

and the frequency tracking transition time, the given natural frequency is 10 Hz, damping 

ratio is 0.707, and a second-order loop filter is employed. Generally, the Doppler outputs 

without manually induced loss of signal lock can be used to obtain the polynomial fitting 

results. However, the FLL reaches the steady-state after 1 s; to this end, the tracking 

results thereafter can also be used to obtain the polynomial fitting for the FLL outputs, as 

well as the Doppler jitter. As discussed earlier, a first-order polynomial fitting is 

sufficient to fit the FLL results after reaching steady-state in this case, which is given by 

0 1k kf p p t= +   (4.7) 

where   0p , 1p   : Polynomial coefficients 
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The red curve in Figure 4.1 shows the transition process after loss of signal lock, with an 

initial frequency error of 200 Hz. The green curve represents the polynomial fitting of the 

tracking results, the differences between the FLL outputs and polynomial fitting are 

defined as the tracking errors ε , which is shown in Equation (4.4). 
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Figure 4.1: Polynomial Fitting for the FLL Transition Process 

The Doppler jitter is then given by Equation (4.6) which returns 0.19 Hz in this case. 

Notice that only the tracking errors after reaching steady-state are used in Equation (4.6). 

Figure 4.2 shows the same results as Figure 4.1 but with the scale of y-axis is from -1 Hz 

to 1 Hz in order to show the transition time more clearly.  The 3σ  Doppler jitter used as 

the threshold to determine the FLL transition time (blue line) is also shown. 
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Figure 4.2: Frequency Errors during the FLL Transition Process  

for the PRN 31 

It is observed that for a 200 Hz initial frequency error, the transition time is 0.6 s (green 

line). 

 

4.2.2 Parameters Tuning 

Different natural frequencies and damping ratios have different transition processes and 

are already shown in Chapter 2. From this, a problem arises in finding tracking loop 

parameter values during the reacquisition process in order to meet the fast carrier phase 

reacquisition requirement. Also, how best to control the transitions between different 

loop filter parameters are of interest in this section. Generally, two types of logic can be 

employed in the piece-wise method to control the parameter transitions, the first one is 

time-based logic, and the second one is FLI-based (PLI-based) logic. In the time-based 

logic, a fix period is used to control the transition between the piece-wise method and 
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general tracking loop (i.e. 10 Hz natural frequency and 0.707 damping ratio for standard 

FLL). In the FLI-based (PLI-based) logic, the transition is controlled by the FLI (PLI) 

value since the FLI (PLI) is a function of frequency (phase) error. However, as shown in 

the proposed metrics section, FLI (PLI) is not effective to evaluate the transition time, to 

this end, the time-based logic is used in this work. 

 

Different tracking loop parameters were assessed during the tuning process. Specifically, 

the natural frequency range was from 8 Hz to 80 Hz with a step of 4 Hz, and the damping 

ratio range was from 0.707 to 8.4 with a step of 0.707. Furthermore, since a time-based 

logic was ultimately adopted, different piece-wise intervals (i.e., intervals with constant 

parameters) were ranged from 10 ms to 80 ms with a step of 10 ms. Table 4-1 shows the 

specific parameter sets of interest, as they give an idea of how to conduct the parameters 

tuning. The first parameter set is used to show the performance of increased natural 

frequency compared to the general parameter set; the second parameter set is used to 

show the performance of larger damping ratio and longer piece-wise control period; the 

third and forth parameter sets are used to show the performance of even larger natural 

frequencies and damping ratios. 
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Table 4-1: Different Parameter Sets for the Piece-Wise FLL Parameters Turning 

Parameter Sets Natural Frequency Damping Ratio Piece-Wise Epochs 

1 30 Hznω =  0.707ξ =  20 ms 

2 30 Hznω =  1.414ξ =  80 ms 

3 60 Hznω =  5.6ξ =  20 ms 

4 80 Hznω =  8.4ξ =  20 ms 

 

Figure 4.3 shows the transition process for the first parameter set of 200 Hz initial 

frequency error. Comparing Figure 4.2 and Figure 4.3 shows that the rise time is reduced 

by the larger natural frequency while holding damping ratio the same as the general 

values. 
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Figure 4.3: Frequency Transition Process Zoomed in  

for the First Parameter Set of 200 Hz Initial Frequency Error 
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The same threshold (Doppler jitter) is employed in all cases as shown in Figure 4.2, this 

is due to the fact that they have the same steady-state behaviours. The transition time for 

200 Hz initial frequency error is 0.32 s and is shown in this figure (green line). However, 

Figure 4.3 also shows that the overshoot is still relatively large after 20 epochs of the 

piece-wise period. This should be reduced by further increasing the piece-wise parameter 

values in the tracking loop. Figure 4.4 shows the performance of the second parameter set, 

where the damping ratio is increased to 1.414, and piece-wise period is increased to 80 

epochs.  
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Figure 4.4: Frequency Transition Process and Polynomial Fitting for the Second 

Parameter Set 

The drawback of the piece-wise method with longer piece-wise control period however is 

that the tracking noise during the piece-wise period is obviously larger than the general 

tracking loop, as shown in Figure 4.4. This suggests that it is better to reduce the 

overshoot as soon as possible by using an even larger natural frequency and (or) damping 



 

 

64

ratio, but not longer piece-wise period. Figure 4.5 shows the performance of the third 

parameter set. 

0 0.02 0.04 0.06 0.08 0.1

1750

1800

1850

1900

1950

Time - s

D
op

pl
er

 - 
H

z

 

 
Tracking Results
Polynomial Fitting

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
op

pl
er

 E
rr

or
 - 

H
z

 

 
Tracking Errors
Threshold

  

Figure 4.5: Frequency Transition Process and Zoomed in for the Third Parameter 

Set 

Figure 4.5 shows a better transition process compared to the first two parameter sets, the 

remaining frequency error at the last piece-wise epoch is smaller than 2 Hz (green line, 

left-hand figure). After that, the standard natural frequency and damping ratio tracking 

loop reduces the tracking noise. The green line in the right-hand figure shows the 

transition time (0.16 s). Notice that the scale of the x-axis in the left-hand figure is 

different from the right-hand figure. 

 

The first three parameter sets show that the transition times are reduced by increasing the 

parameter values, which are as expected since larger natural frequency and damping ratio 

will reduce the rise time and overshoot of the control system. However, given the metric 

in this section, further increasing the parameter values did not yield any additional 
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benefits, since larger parameter values also increase the noise in the tracking loop. The 

performance of the forth parameter set is shown in Figure 4.6. 
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Figure 4.6: Frequency Transition Process and Zoomed in for the Forth Parameter 

Set 

Figure 4.6 shows that the frequency error after the piece-wise period is larger than the 

third parameter set, the remaining frequency error of the forth parameter set is 15 Hz. 

This is because the tracking noise is increased by the large natural frequency and 

damping ratio values. The right-hand figure shows that the transition time is 0.22 s. 

 

The simulation results show that a trade-off between transition time and tracking noise 

should be made for the piece-wise control method. To this end, the third parameter set is 

chosen as the proper parameter set. After the proper natural frequency and damping ratio 

are obtained, the piece-wise method performance is assessed with different initial 

frequency errors. Figure 4.7 shows the performance of the standard architecture, which is 

already shown in Chapter 2. Figure 4.8 shows the transition process of the piece-wise 
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architecture, where the time-based logic is employed. In order to observe the transition 

process more clearly, the bottom plot shows the zoomed in version of each plot. 
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Figure 4.7: Transition Processes of Different Frequency Errors in the Standard FLL 

Architecture (bottom plot is a zoomed in version of the top plot) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-200

-150

-100

-50

0

D
op

pl
er

 E
rr

or
 - 

H
z

 

 

Initial Frequency Error = 10 Hz
Initial Frequency Error = 20 Hz
Initial Frequency Error = 30 Hz
Initial Frequency Error = 50 Hz
Initial Frequency Error = 100 Hz
Initial Frequency Error = 200 Hz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

-0.5

0

0.5

1

Time - s

 

Figure 4.8: Transition Processes of Different Frequency Errors in the Piece-Wise 

FLL Architecture (bottom plot is a zoomed in version of the top plot) 

As should be obvious, a smaller transition process is obtained by using the piece-wise 

FLL architecture as shown in Figure 4.8. Table 4-2 summarizes the transition times for 
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different initial frequency errors using the standard and piece-wise architectures 

respectively. In nearly all cases, the piece-wise method produces a two- to three-fold 

improvement in transition time. 

Table 4-2: Standard FLL and Piece-Wise FLL Comparison 

Initial Frequency Error 
Transition Time for 

Standard FLL 

Transition Time for 

Piece-Wise FLL 

10 Hz 0.24 s 0.12 s 

20 Hz 0.27 s 0.13 s 

30 Hz 0.31 s 0.13 s 

50 Hz 0.35 s 0.18 s 

100 Hz 0.51 s 0.19 s 

200 Hz 0.59 s 0.24 s 

 

Nine other open-sky loss of signal lock scenarios were also conducted to evaluate the 

performance of piece-wise FLL method. The loss of locks were manually set at every 5 

seconds, and the C/N0 ranged from 49 dB/Hz to 51 dB/Hz among all the cases. Figure 4.9 

shows the transition process of 200 Hz initial frequency error for these ten simulations. 
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Figure 4.9: Transition Process of 200 Hz Initial Frequency Errors for Ten Different 

Loss of Signal Lock Scenarios (each line corresponds to a different loss of lock) 

Figure 4.10 shows the transition times for all these ten simulations, the mean value and 

standard deviation are 0.21 s and 0.05 s, respectively.  
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Figure 4.10: Transition Time Summary for Ten Different Loss of Signal Lock 

Scenarios 
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The drawback of time-basic logic is also shown in this plot, it is observed that the 

transition time for the forth scenario is 0.32 s, which is much larger than the mean value 

(0.21 s). The reason for this is due to the fact that a 20 ms piece-wise period is not long 

enough to reduce the initial frequency error. After the 20 ms period the standard PLL 

starts with a relatively larger frequency error. Table 4-3 shows the transition time 

summary for different initial frequency errors, the same as the 200 Hz initial frequency 

error case, 10 simulations are conducted for each initial frequency error. 

Table 4-3: Piece-Wise FLL Method Transition Time Summary for 10 Simulations 

Initial Frequency Error Mean of Transition Time STD of Transition Time 

10 Hz 0.09 s 0.02 s 

20 Hz 0.11 s 0.04 s 

30 Hz 0.12 s 0.03 s 

50 Hz 0.17 s 0.03 s 

100 Hz 0.19 s 0.05 s 

200 Hz 0.21 s 0.05 s 

 

After the piece-wise FLL assessment in the open-sky scenario, PRN 14 is selected to 

evaluate the transition process under the weak signal scenario. The C/N0 of the received 

signal is 40 dB/Hz. Figure 4.11 show the standard FLL performance for a 100 Hz initial 

frequency error under the weak signal scenario. It is noted that the frequency tracking 

noise is increased after reaching steady-state. The reason for this is due to the degraded 

signal power for PRN 14, this means that the threshold used to define the transition time 
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is also increased. By using Equation (4.6), the threshold obtained for PRN 14 found to be 

1.8 Hz. 
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Figure 4.11: Frequency Transition Process and Polynomial Fitting for PRN 14 with 

100 Hz Initial Frequency Error 

Figure 4.12 shows the piece-wise FLL performance.  
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Figure 4.12: Piece-Wise FLL Transition Process Zoomed in for PRN 14 
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It is shown that the transition time for the weak signal satellite (0.17 s) is almost the same 

as the strong signal satellite (PRN 31, 0.19 s). These results suggest that the transition 

time is only a function of the loop filter parameter values. 

 

4.3 Piece-wise PLL 

The piece-wise FLL performance shown above suggests that the piece-wise method can 

reduce the frequency transition time during the reacquisition process. To this end, the 

proper parameter set obtained from the piece-wise FLL section can also be used in the 

second-order piece-wise PLL (since FLL and PLL use the same type of loop filter). 

Figure 4.13 and Figure 4.14 show the transition process of different initial phase errors 

for the standard PLL and piece-wise PLL respectively. 
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Figure 4.13: Transition Process of Different Phase Errors for the Standard PLL 

(bottom plot is a zoomed in version of the top plot) 
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The phase jitter from Gebre-Egziabher (2003) is used as the threshold to determine the 

phase transition time where the total phase jitter is smaller than 2 degrees for a signal 

with a C/N0 of 50 dB-Hz scenario. 
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Figure 4.14: Transition Process of Different Phase Errors for the Piece-Wise PLL 

(bottom plot is a zoomed in version of the top plot) 

The comparison between standard PLL and piece-wise PLL is summarized in Table 4-4, 

again, the improvement with the piece-wise approach is noticeable with a four- to five-

fold improvement in all cases. 

Table 4-4 Standard and Piece-Wise PLL Comparison 

Initial Phase Error Transition Time Standard Transition Time Piece-Wise

10 degrees 0.21 s 0.04 s 

30 degrees 0.24 s 0.04 s 

60 degrees 0.29 s 0.04 s 

90 degrees 0.32 s 0.05 s 
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Given the above, a piece-wise FLL followed by a piece-wise PLL is recommended to 

reacquire the GNSS signal more quickly. In this way, the piece-wise FLL is used to 

reduce the frequency error in the tracking loop, and then the carrier phase error is reduced 

by the piece-wise PLL. For a 200 Hz initial frequency error and 90 degrees initial phase 

error case, the transition time is reduced from 0.91 s (0.59 s for FLL and 0.32 s for PLL) 

to 0.25 s (0.21 s for piece-wise FLL and 0.04 s for piece-wise PLL), which means that 

more carrier phase observations are available after employing piece-wise control methods. 

 

The same as piece-wise FLL method, nine other open-sky loss of signal lock scenarios 

are also conducted to evaluate the performance of piece-wise PLL method by employing 

the same proper loop filter parameters, the loss of locks are manually set at every 5 

seconds. 

Table 4-5 Piece-Wise PLL Method Transition Time Summary 

Initial Phase Error Mean of Transition Time STD of Transition Time 

10 degrees 0.03 s 0.01 s 

30 degrees 0.04 s 0.01 s 

60 degrees 0.03 s 0.01 s 

90 degrees 0.04 s 0.01 s 

 

4.4 Directly Piece-Wise PLL  

Section 4.2 and section 4.3 show the performance of piece-wise approach, the approach 

above combines the piece-wise FLL and piece-wise PLL together, in so doing, a smaller 
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transition process is achieved compared to the standard PLL. However, remember that 

the transition process in the PLL is used to reduce both frequency error and phase error in 

the phase tracking loop, an interesting question arises if a PLL can be used directly 

during the reacquisition process.  

 

The pull-in ability of a standard PLL is assessed in this section. Key parameters of 

interests are the loop filter pull-in range and pull-in time. Based on the initial frequency 

analysis section, the maximum frequency uncertainty after loss of signal lock can reach 

200 Hz. The definitions of pull-in range and pull-in time are shown in Best (2004). A 

pull-in range is defined as the range where a PLL will always become locked, but the 

pull-in process can be rather slow. The pull-in time is the time a PLL needs to become 

phase locked during the pull-in process. The PLL’s pull-in range is an important 

parameter in practical applications. In the analog applications, the PLL pull-in range is a 

function of filter natural frequency and damping ratio. The ability depends on the types of 

phase detector and loop filters used in the PLL (Best 2004). The PLL has a wider pull-in 

range for a larger natural frequency; similarly, larger damping ratio can also increase the 

pull-in range. 

 

For an active proportional-integration (PI) loop filter, which is the case in the software 

receiver (Best 2004), the pull-in range is given by 

Pω ≈ ∞   (4.8) 

It is shown that the pull-in range is infinity for this type of loop filter, which means that 

the PLL pulls in under any conditions. The pull-in time is given by 
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2
0

2 3

1
P

n

T ω
π ξω

Δ
≈   (4.9) 

where   0ωΔ  : Initial frequency error 

nω  : Loop filter natural frequency 

ξ  : Loop filter damping ratio 

However, generally this is not the case in the software-based PLL, the reason for this is 

due to the integration process being employed in the software receiver. The pull-in ability 

is changed by the averaging process. For a small natural frequency and damping ratio 

loop filter, a large initial frequency error cannot be pulled in. In this section, the pull-in 

ability is assessed by processing the real data. 

 

Best (2004) shows that different natural frequencies and different damping ratios have 

different pull-in performance. The pull-in abilities of different parameters are evaluated 

through the simulation in this section. Table 4-6 shows the parameter sets of interests, the 

natural frequency range from 15 Hz to 50 Hz with a step of 5 Hz, and the damping ratio 

range from 0.707 to 5.6 with a step of 0.707. 

Table 4-6: Parameter Sets for Pull-in Ability Assessment of Directly PLL Method 

Parameters Natural frequency Damping Ratio 

1 15 Hznω =  0.707ξ =  

2 30 Hznω =  0.707ξ =  

3 50 Hznω =  0.707ξ =  
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4 50 Hznω =  2.121ξ =  

5 50 Hznω =  5.656ξ =  

The pull-in process of different initial frequency errors using a 30 Hz natural frequency 

and 0.707 damping ratio are shown in Figure 4.15, the initial frequency errors are 20 Hz, 

40 Hz, and 60 Hz, respectively. 
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Figure 4.15: Pull-in Processes of Different Initial Errors for the First Parameter Set 

The pull-in processes of different initial frequency errors are shown in this figure. For a 

20 Hz initial frequency error, the pull-in time is less than 0.5 s, however, for a 60 Hz 

initial error, the pull-in time is around 4 s. It should be noted that the frequency error 

larger than 60 Hz cannot be pulled-in in this case. Figure 4.16 shows the pull-in ability of 

the 50 Hz natural frequency and 0.707 damping ratio. 
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Figure 4.16: Pull-in Processes of Different Initial Errors for the Third Parameter 

Set 

Similarly, both smaller initial frequency errors and larger natural frequency can reduce 

the pull-in time, these results agree with the analog results shown in Best (2004). The 

pull-in time for 60 Hz initial frequency is reduced from 4 s to 0.7 s compared to the 30 

Hz natural frequency case. The pull-in ability is also improved since the natural 

frequency is increased. The maximum pull-in frequency error is 80 Hz in this case. These 

results show an improved performance by increasing the natural frequency of loop filter. 

In case 3, 4, and 5, the damping ratio is increased while holding the natural frequency 

constant. Figure 4.17 shows the performance of a natural frequency of 50 Hz and a 

damping ratio of 2.1. 
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Figure 4.17: Pull-in Processes of Different Initial Errors for the Forth Parameter 

Set 

As expected, larger damping ratio can further reduce the pull-in time of a PLL. Also, the 

pull-in ability is improved since a 100 Hz initial frequency error can be easily pull-in by 

this parameter set. This figure also suggests that for a 60 Hz initial frequency error, the 

PLL can be used directly to track the frequency and phase, since the pull-in time for 60 

Hz frequency error is reduced to 50 ms. However, for the 200 Hz initial frequency error, 

which is the largest frequency uncertainty assumed in Chapter 2, it is very hard to be 

pulled-in by directly PLL method even larger parameter values are applied. To this end, 

for the directly PLL case, only the initial frequency error smaller than 100 Hz is 

considered.  

 

It is noted that the one-step piece-wise logic used in section 4.3 is not a good choice for 

directly piece-wise PLL method as shown in Figure 4.18, a slow pull-in process is clearly 
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shown in this figure after the piece-wise period. This is due to the large frequency noise 

during the piece-wise period and the initial frequency error is still large for the standard 

parameters. This means that standard PLL needs a long time to pull-in the frequency 

error. 
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Figure 4.18: Directly Piece-Wise PLL Performance with an Initial Frequency Error 

of 100 Hz for One-Step Logic 

To this end, a two-step piece-wise PLL method is employed in the directly piece-wise 

PLL architecture, as shown in Table 4-7. The same procedure is applied to obtain the 

proper tracking loop parameters as shown in the piece-wise FLL section. 

Table 4-7 Logic for Piece-Wise PLL Directly 

 Natural Frequency Damping Ratio Piece-Wise Epochs

First step 50 Hz 5.6 50 ms 

Second step 30 Hz 2.1 20 ms 
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Figure 4.19 and Figure 4.20 show the performance of two-step piece-wise control method. 
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Figure 4.19: Frequency Transition Process of Directly Piece-Wise PLL Method with 

an Initial Frequency Error of 100 Hz for Two-Step Logic 

At the first step, large natural frequency and damping ratio are used, as shown in Figure 

4.19; from this, a 100 Hz initial frequency error can be easily pull in by this parameter set. 

The second step is used to reduce the remaining frequency error after the first step. After 

this, the standard parameters are used for the carrier phase tracking. Figure 4.20 shows 

the carrier phase transition process. 
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Figure 4.20: Phase Error Transition Process of Directly Piece-Wise PLL 

Performance with an Initial Frequency Error of 100 Hz 

It is shown that the carrier phase transition process for two-step piece-wise PLL method 

is 0.25 s. However, compared to the piece-wise FLL followed by the piece-wise PLL 

scheme, they have almost the same transition times. 

 

The results shown in this section suggest that for smaller initial frequency errors, a PLL 

can be used directly to track the frequency and carrier phase (after reaching steady-state, 

both frequency and carrier phase are locked). However, for larger initial frequency errors, 

using a directly PLL method is not preferred since it will take a long time to converge. 

Furthermore, a PLL may diverge due to the pull-in ability constraint. To this end, the 

piece-wise FLL followed by the piece-wise PLL scheme is recommended in this work. 
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4.5 Conclusion 

Piece-wise approaches are proposed in this chapter, these include a piece-wise FLL 

followed by a piece-wise PLL method, and a direct piece-wise PLL method. The 

performance of each approach was assessed using data collected on a vehicle under mild 

to moderate operational conditions. For the piece-wise method, the transition time was 

shown to be reduced by a factor of approximately three for the frequency pull-in period 

and by a factor of about four for phase pull-in period. Finally, piece-wise FLL followed 

by piece-wise PLL scheme is recommended to reduce the reacquisition time during the 

carrier phase reacquisition process. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

83

CHAPTER FIVE: PHASE PREDICTION METHOD 

This chapter looks at the performance of a phase prediction method proposed in this work. 

The motivation of the phase prediction method comes from the standard phase tracking 

loop, which says the carrier phase is essentially the integration of carrier Doppler. 

However, the Doppler for a satellite can be estimated by projecting the computed receiver 

velocity onto the satellite line of sight, and this, in turn, can be integrated to predict 

carrier phase measurements. In so doing, if continuous velocity estimates are available 

with acceptable accuracy, effectively carrier phase measurements can be predicted by 

integrating the Doppler computed from vector-based navigation filter, and thus reduce the 

carrier phase reacquisition process. Details will be provided in the following sections. 

 

5.1 Vector-Based Architecture Introduction 

Before the phase prediction introduction, the detailed Kalman-based tracking loop 

structure used in the GSNRx™ software receiver is explained, including the dynamic 

model, measurement model, process noise, and observation noise. Figure (2.13) shows 

the structure of the vector-based receiver used in GSNRx™ (Petovello et al 2006). A 

cascaded approach is employed in the vector-based architecture, meaning each channel 

employs a local loop to track the carrier phase (but not frequency). Two different types of 

Kalman filter are employed in this architecture, namely, local Kalman filter and 

navigation filter.  

 

Local Kalman filter is used to track the carrier phase. To this end, frequency error and 

phase error are estimated during the tracking process. The navigation filter is used to 
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close the tracking loop, the position error, velocity error, and clock errors are estimated in 

the navigation filter (Petovello et al 2008, Bevly et al 2008). In this way, the navigation 

solution is used to drive the code and frequency NCO in the receiver. Each of the two 

Kalman filters will be discussed in the thesis. The Kalman filter generally consists of two 

models, namely, the dynamic model and measurement model, more details are available 

in Brown (1998), Zarchan (2004), Gelb (1974). 

 

5.1.1 Local Kalman Filter 

Dynamic model 

In the Kalman filter based PLL, traditional discriminators and loop filters in the PLL are 

replaced by a Kalman filter (Petovello et al 2006, Psiaki et al 2007). Three-state Kalman-

based tracking loop is already shown in Appendix B, where the states included the code 

phase error, the carrier frequency error, and carrier acceleration error. The equivalence 

between standard PLL and Kalman filter is shown there. However, the combined DLL 

and PLL approach is employed in the software receiver (Petovello et al 2006), where a 

five-state Kalman filter is used to track the errors in the predicted signals. The states to be 

estimated in the Kalman-based tracking loop are the amplitude of signal, the code phase 

error, the carrier phase error, the frequency error and the carrier acceleration error, which 

is given by 

[ ]Tx A δτ δφ δf δa=   (5.1) 

where   A  : Signal amplitude 

  δτ  : Code phase error in chips 
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  δφ  : Carrier phase error in radians 

  δf  : Carrier frequency error in /rad s  

  δa  : Carrier acceleration error in 2/rad s  

Kalman filter state model is given by (Petovello et al 2006) 

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 2 0 0
0 0 0 1 0 0 0 2 0 0
0 0 0 0 1 0 0 0 2 0
0 0 0 0 0 0 0 0 0 2

A

δτ

b

d

a

ωAA
ωβ δτ β πfδτ
ωδφ πfδφ
ωδf πfδf
ωδa π λδa

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ + ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&

&
&

&

 (5.2) 

where    β   :  Converts from units of radians to chips 

Aω   : Driving noise of the amplitude 

δτω  :  Driving noise of code phase error 

  bω  : Driving noise of clock bias 

  dω  : Driving noise of clock drift 

aω  : Driving noise to account for line-of-sight acceleration 

The main tuning parameter taken into consideration in this work is the spectral density of 

the line of sight acceleration driving noise aω , which is related to the receiver dynamics, 

and in turn, decides the natural frequency for the Kalman filter, which is shown in the 

Appendix C. 
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Measurement model 

Before discussing the measurement model in detail, first consider the form of the 

correlator outputs. The in-phase (I) and quadra-phase (Q) correlator outputs can be 

written as (Petovello and Lachapelle 2006) 

( ) ( ) ( )sin
Δ cosc

c

π δf T
I A N R δτ δφ

π δf T
⋅ ⋅

= ⋅ ⋅ − ⋅ ⋅
⋅ ⋅

 (5.3) 

and 

( ) ( ) ( )sin
Δ sinc

c

π δf T
Q A N R δτ δφ

π δf T
⋅ ⋅

= ⋅ ⋅ − ⋅ ⋅
⋅ ⋅

 (5.4) 

where   N  : Number of samples in the correlator 

R  : Auto-correlation function 

Δ  : Correlators offset (e.g., for the early or late correlators),  

0.5±  chips in this case 

cT  : Integration time 

δφ   : Average local phase error during the integration interval 

The average phase error is given by (Petovello et al 2006) 

2

0 0 02 6
c cT Tδφ δφ δf δa= + ⋅ + ⋅   (5.5) 

where  0δφ  : Phase error at the start epoch of the integration interval 

  0δf  : Frequency error at the start epoch of the integration interval 

0δa  : Carrier acceleration error at the start epoch of the   

   integration interval 
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The measurements come from the correlators outputs available from each channel. Since 

the code error is estimated in the Kalman filter, the correlator outputs from early, prompt, 

and late replica codes are also included in the observations. The observation vector z  is 

then given by 

[ ]TE E P P L Lz I Q I Q I Q=   (5.6) 

where E , P , and L  indicate the correlators output at early, prompt, and late replica 

codes, respectively. The design matrix can be obtained by expanding the observation 

equation in a Taylor series as given by 

   

i
i

i i i i i

zH
x
z z z z z
A δτ δφ δf δa

∂
=
∂
⎡ ⎤∂ ∂ ∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

  (5.7) 

Measurement variance is given by (Van Dierendonck 1995) 

0

2 2 2
0.1 /

1
2 10I Q C N

c

σ σ σ
T⋅= = =

⋅ ⋅
  (5.8) 

where  0/C N   : Signal to noise ratio 

For 50 dB/Hz C/N0 and 1 ms integration time, the observation noise is 2 0.005σ = . 

Notice that the observations for the different replica codes are correlated with each other, 

this returns the observation noise matrix (Salem 2010) 

2

1 0 0.5 0 0 0
0 1 0 0.5 0 0

0.5 0 1 0 0.5 0
0 0.5 0 1 0 0.5
0 0 0.5 0 1 0
0 0 0 0.5 0 1

R σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (5.9) 
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Equation (5.8) also suggests that longer integration time will improve the tracking 

performance. 

 

5.1.2 Navigation Filter 

Dynamic model 

Navigation filter is used to close the tracking loop in the vector-based architecture, and is 

assumed to have the following system model (Petovello et al 2006) 
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3 1
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 (5.10) 

where subscripts indicate the dimension of the quantity 

  p  : Vehicle position vector 

  v  : Vehicle velocity vector 

  b , d  : Clock bias and drift, respectively 

  I , 0  : Identity matrix and zero matrix, respectively 

  vω  : Velocity uncertainty 

  bω  : Clock bias uncertainty 

  dω  : Clock drift uncertainty 

This model assumes the velocity is a random walk process, however, higher order models 

may be selected for other applications. 
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Measurement model 

The pseudorange and Doppler errors are used as the measurements in the navigation filter. 

The pseudorange is given by 

i ip p c bρ = − + ⋅   (5.11) 

where  ip  : Satellite position vector 

c  : Speed of light 

The Doppler is given by 

( )( )i i
i

i

v v p p
f c d

p pλ
− −

= + ⋅
−

  (5.12) 

where  iv  :  Satellite velocity 

λ  :  Signal wavelength in meters 

Equation (5.12) is also used to generate local carrier replica frequency to control the 

NCO. The same as the local Kalman filter case, the design matrix can be obtained by 

expanding the observation Equations (5.11) and (5.12) in a Taylor series as given by 

2 1 2,i i
i i

z zH H
p v−

∂ ∂
= =
∂ ∂

  (5.13) 

where i  from 1 to m  (the LOS satellites number). 

 

5.2 Phase Tracking 

As mentioned in Chapter 2, carrier phase is essentially the integration of Doppler in the 

phase tracking loop. However, in the vector-based tracking loop, the NCO is controlled 

by the navigation filter. In so doing, the carrier phase is the integration of predicted 

Doppler plus phase corrections from the local Kalman filter. One can therefore write 
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1

1
k

k

t

k k t
fdtϕ ϕ ϕ+

+ = + + Δ∫   (5.14) 

where     1kϕ + , kϕ  : Carrier phase at the 1k +  and k  epoch, respectively 

f  : Carrier Doppler from the navigation filter  

ϕΔ  : Predicted phase error from the local Kalman filter 

Figure 5.1 shows an example for the predicted phase error during 3 seconds interval 

under the open-sky scenario. Generally, ϕΔ  indicates the phase error induced by the 

imperfect velocity estimation from the navigation filter, the signal noise, and multipath 

error, which is estimated by the local Kalman filter and should be corrected at every 

epoch, otherwise the phase error will accumulate with time. 
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Figure 5.1: Predicted Phase Error during 3 Seconds Open-Sky Period 

5.3 Phase Prediction Method 

Given the above, a phase prediction architecture is proposed in this work to predict 

carrier phase during periods of loss of lock. Obviously, the tracking loop cannot provide 
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continuous carrier phase measurements during loss of signal lock periods. However, in 

the vector-based architecture, if continuous velocity estimates are available with 

acceptable accuracy, carrier phase measurements can effectively be predicted by 

integrating the Doppler computed from vector-based navigation filter. This is given 

mathematically by 

1

1
k

k

t

k k t
fdtϕ ϕ +

+ = + ∫   (5.15) 

Notice that here the predicted phase error from the Kalman filter is not available 

compared to Equation (5.14) since the signal is not being tracked, which means that the 

phase error will accumulate with time during phase prediction process. The idea is to start 

the phase prediction a few epochs before the loss of phase lock epoch, and terminate 

when the signal is reacquired. Practically, this can be implemented as shown in Figure 

5.2, for example. 

1

1
k

k

t

k k t
fdtϕ ϕ +

+ = + ∫
 

Figure 5.2: Phase Prediction Schedule for the Loss of Phase Lock Case 

Position and velocity buffers are used to predict the Doppler during the phase prediction 

process, since the phase error at the loss of phase lock epoch is larger than the predefined 

threshold, as such, the phase prediction process is started when the phase error is small 

(check the PLI). The potential benefits of this approach include the continuous carrier 
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phase observations are effectively provided during loss of the lock period, and cycle slips 

are automatically compensated if the phase error (over the loss of lock period) is smaller 

than a quarter-cycle. Another advantage is that the reacquisition process can be started 

with small phase and frequency error thus allowing a PLL to be used directly. By 

extension, the benefit of a small initial phase error is shown in the Chapter 4. 

 

Equation (5.15) also suggests that the carrier phase prediction strategy can be used in any 

architecture where the predicted Doppler is available, not only in the vector-based 

receiver. Figure 5.3 shows the general phase prediction strategy, which can be used in the 

standard receiver. 

 

Figure 5.3: General Phase Prediction Strategy 

In so doing, when the satellite signal becomes available again or at least strong enough to 

acquire, the phase of the signal is already predicted. However, the question arises as to 

the quality of predicted carrier phase.  

 

To get an idea of the expected performance of the proposed approach, it is assumed that 

the velocity error is white noise. This is reasonable in most cases since the velocity is 

computed from the Doppler measurements and the systematic error rates due to the 
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satellite errors and atmospheric effects are much lower than the Doppler measurement 

noise. Recall that the equation for the predicted Doppler was shown in (5.12). Assuming 

the east-north-up vehicle velocity uncertainties respectively denoted as 
Evσ , 

Nvσ , and 

Uvσ , are independent of each other, using variance propagation (Gao 2008), the Doppler 

accuracy is given by (oscillator error is not considered here, although it is assumed the 

change in clock drift will be minimal over short data outage durations): 

[ ]

2

2 2
2

2

0 0 cos sin
1 cos sin cos cos sin 0 0 cos cos

sin0 0

E

i N
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v i i

f i i i i i v i i

iv

σ α ψ
σ α ψ α ψ α σ α ψ
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ασ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (5.16) 

where  α , ψ  :  Satellite elevation and azimuth respectively 

Further assuming the velocity standard deviations in the north and east directions are the 

same, and denoting them as Hσ , then  

( )2 2 2 2 2
2

1 cos sin
if H i U iσ σ α σ α

λ
= +   (5.17) 

where   2
Hσ  :  Vehicle horizontal velocity variance 

2
Uσ  :  Vehicle vertical velocity variance 

Generally, 2 2
U Hσ σ>  due to satellite geometry. This is written as 2 2 2

U Hσ σ σ= + Δ  where 

2σΔ  represents an increase in the vertical variance relative to the horizontal variance. 

Substituting this into equation (5.17) gives 

( )( ) ( )2 2 2 2 2 2 2 2 2
2 2

1 1cos sin sin
if H i H i H iσ σ α σ σ α σ σ α

λ λ
= + + Δ = + Δ  (5.18) 
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This equation shows that higher elevation satellites will have larger predicted Doppler 

error. This makes sense because the largest velocity uncertainty is in the vertical direction. 

 

Returning again to the assumption of white velocity errors, the variance of the predicted 

carrier phase, in units of cycles squared, is given by 

( ) ( ) ( )

( ) ( )

( ) ( )
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Θ −

Θ

∫ ∫

∫ ∫
∫ ∫

  (5.19) 

where   ( )δ λ ζ−  : Dirac delta function 

  [ ]E   : Expectation function 

fΘ   : Spectrum density of a white rate noise process  

which yields 

( ) 2var , ft t tϕ = Θ   (5.20) 

Notice that the unit of fΘ  is cycle s Hz , which is given by 

/ 1/f f cTσΘ =   (5.21) 

From Equation (5.20), the predicted carrier phase is a random walk process with an 

accuracy given as a function of loss of lock duration time t  and predicted Doppler 

accuracy fΘ .  
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To confirm the above, the phase prediction performances under different velocity 

accuracy scenarios and different receiver architectures are assessed below. Section 5.4 

shows the performance for vector-based architecture in the open-sky scenario, partially 

dense-foliage scenario, and dense-foliage scenario. Section 5.5 shows the performance 

for ultra-tight receiver in the dense-foliage scenario and simulated passing under bridge 

scenario. 

5.4 Predicted Phase Accuracy Assessment for Vector-Based Architecture 

5.4.1 Open-Sky Scenario 

The open-sky static test data was first used to obtain a baseline performance for phase 

prediction under ideal operating conditions. Specifically, loss of signal lock was 

manually induced on a single satellite every three seconds for a duration of two seconds. 

A total of 150 losses of lock were simulated. The velocity error for the first 200 seconds 

in this benign scenario is shown in Figure 5.4: 
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Figure 5.4: Static Open-Sky Scenario Velocity Error 
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The standard deviation of north, east and vertical errors are 0.02 m/s, 0.02 m/s, and 0.03 

m/s respectively, and the velocity update rate is 20 Hz. Using Equations (5.17) and (5.21), 

for PRN 22 (21 degrees elevation angle with a C/N0 of 42 dB-Hz), this gives a predicted 

Doppler spectral density of 0.025cycle s Hz . Figure 5.5 shows the error of the 

predicted carrier phase during the 150 losses of lock simulated in the data set. 
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Figure 5.5: Error of Predicted Phase for PRN 22 under the Static Open-Sky 

Scenario over Two Seconds 

Figure 5.6 shows the phase prediction standard deviation for PRN 22.  
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Figure 5.6: Phase Prediction Error Standard Deviation under Static Open-Sky 

Scenario for PRN 22 

The predicted phase error is only 0.05 cycles after 2 seconds, which agrees well with the 

theoretical value computed using Equation (5.20). Given the strong performance of the 

proposed method in the static scenario, the open-sky portions of the test were used to 

assess the quality of predicted carrier phase in more realistic conditions. Figure 5.7 shows 

the open-sky test trajectory. 



 

 

98

 

Figure 5.7: Open-Sky Test Scenario Trajectory (red line shows the trajectory, from 

GoogleTM ) 

The horizontal velocity accuracy during this test was 0.07 m/s, and the vertical velocity 

accuracy was 0.12 m/s, where NovAtel’s Inertial Explorer software was employed to 

obtain the velocity reference trajectory. The three dimension velocity accuracy for 

Inertial Explorer software is 0.03 m/s within 120 seconds (NovAtel 2010). For PRN 31 

(65 degrees elevation angle with a C/N0 of 49 dB/Hz), the predicted Doppler spectral 

density is 0.09cycle s Hz  from Equation (5.17). Similar to the static data processing, 

loss of signal lock was artificially induced every five seconds for a duration of three 

seconds. Figure 5.8 shows the error of the predicted carrier phase during the 180 losses of 

lock simulated in the data set. 
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Figure 5.8: Error of Predicted Phase for PRN 31 under Open-Sky Scenario over 

Three Seconds 

Figure 5.9 shows the standard deviation over three seconds.  
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Figure 5.9: Phase Prediction Error Standard Deviation under Open-Sky Scenario 

for PRN 31 

The theoretical predicted carrier phase accuracy is 0.13 cycles if loss of signal lock 

duration time is 1 second, and 0.25 cycles phase error after 3 seconds. Furthermore, for 
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the time interval considered, the actual and theoretical errors are in close agreement, 

although the trend suggests this may not be the case for longer loss of lock times. Table 

5-1 shows the phase prediction performance for five different satellites assuming loss of 

signal lock on only one satellite at a time.  

Table 5-1: Summary of Predicted Carrier Phase Performance for Five Satellites 

under Open-Sky Scenario for Three Second Period 

PRN 
Elevation 

(degrees) 

C/N0 

(dB/Hz) 

Theoretical 

ϕσ  (cycles) 

Actual 

ϕσ  (cycles) 

16 33 44 0.16 0.42 

20 62 49 0.22 0.18 

23 47 49 0.20 0.31 

31 65 50 0.22 0.29 

32 52 50 0.21 0.22 

 

Although the actual error standard deviations do not match the theoretical values exactly, 

the agreement suggests the theoretical value is generally a reasonable approximation over 

a period of a few seconds at least. That said, the disagreement is obviously larger for 

PRN 16. The most likely reason for this is the implicit assumption made when predicting 

carrier phase, namely, that the Doppler is constant value during each navigation solution 

update interval (50 ms in this case). However, this is not true in all cases, especially 

during dynamic periods. Furthermore, PRN 16 is the lowest elevation satellite in the table, 
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and will thus be subject to the most signal dynamics since the vehicle is moving almost 

entirely in the horizontal plane. 

 

5.4.2 Partially Dense-foliage Scenario 

As an assessment of the algorithm in degraded signal scenarios, data from a short, 

partially dense-foliage section of the test was used to evaluate the carrier phase prediction 

performance in the low signal power scenarios. Figure 5.10 shows part of the test 

trajectory containing partially dense-foliage (red curve in the figure). The signal from 

PRN 22 was blocked by the trees to the south, as the elevation of this satellite was 21 

degrees, and azimuth was 118 degrees. In this scenario, a 0.6 seconds loss of signal lock 

was experienced “naturally” (i.e., not manually induced). In the standard and vector-

based receiver (without phase prediction), carrier phase measurements were not available 

during this loss of lock period. 

 

Figure 5.10: Partially Dense-foliage Scenario (red line indicates the trajectory, from 

GoogleTM) 

Figure 5.11 shows the front-view of partially dense-foliage scenario. 
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Figure 5.11: Partially Dense-foliage Scenario (Front View) 

Figure 5.12 shows the velocity error of the vector-based receiver during the partially 

dense-foliage period, the navigation filter update interval is 50 ms for vector-based 

receiver. 
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Figure 5.12: Velocity Performance during Partially Dense-foliage Scenario over 

Three Seconds (blue lines denote partially dense-foliage period)  
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It is observed that the velocity errors are increased during the partially dense-foliage 

period, as shown in the region within blue lines. This is due to the multipath and change 

of satellite geometry which increases the PDOP from 2.6 (8 satellites were used in the 

navigation filter) to 3.8 (5 satellites were used in the navigation filter). The region within 

the blue lines in Figure 5.13 shows the predicted Doppler performance in vector-based 

navigation filter during the partially dense-foliage scenario. Carrier Doppler and carrier 

phase outputs from ultra-tight receiver are considered as reference here. In the ultra-tight 

receiver, the signal for PRN 22 was tracked well since the aiding information from INS is 

available. As can be seen, the predicted Doppler error increased significantly during the 

loss of lock period.  
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Figure 5.13: Doppler vs Time (blue lines denote loss of lock period) 

Similarly, Figure 5.14 shows the error of the predicted carrier phase during this same 

period. Predicted carrier phase measurements were given by the proposed phase 

prediction method with acceptable error, namely less than 0.17 cycles during 0.6 s loss of 

lock period. 
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Figure 5.14: Performance of Predicted Phase during Partial Dense-foliage Period 

(indicated by blue lines) 

It is noted, however, that the vector-based tracking is still initialized using scalar 

algorithms in the general vector-based architecture. Figure 5.15 shows the carrier phase 

transition process after reacquiring the signal, where a standard PLL is used.  
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Figure 5.15: Phase Transition Process after Reacquiring the Signal Again 
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The transition time is less than 100 ms since the initial phase error is smaller than 0.05 

cycles. This, in turn, demonstrates the benefit of the predicted carrier phase method. 

Specifically, the receiver can be started with small frequency error and small phase error. 

The following subsection analyzes the quality of predicted carrier phase in more stringent 

scenarios, namely, dense-foliage scenario. In so doing, a comparison is made for the 

phase prediction performance in the different velocity accuracy conditions. In the dense-

foliage scenario, at least four satellites can be observed in the vector-based receiver, 

which is the case in the simulation shown later, otherwise the velocity cannot be obtained. 

 

5.4.3 Dense-foliage Scenario 

The phase prediction performance under dense-foliage scenario is assessed in this section. 

First of all, a simulated dense-foliage scenario is applied, where an outage on several 

satellites is simulated. This approach closely approximates a real dense-foliage scenario 

but provides the opportunity to generate a reference solution. In the second part, a real 

dense-foliage data is used to verify the simulation results. 

 

A dense-foliage scenario is simulated first, the data was collected in an open-sky scenario 

as shown in Figure 5.16, however, an elevation constraint is applied in the receiver for 10 

seconds. Specifically, during the simulated dense-foliage period, any satellite whose 

elevation angle was less than 40 degrees was (intentionally) not tracked by the receiver. 

In so doing, the GNSS constellation is similar to the dense-foliage scenario where there is 

still a view of the sky above 40 degrees.  
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Figure 5.16: Open-Sky Scenario (Front View)  

Figure 5.17 shows the satellite constellation in the open-sky scenario, which provides 

very good GNSS satellite visibility. It is observed that 4 satellites whose elevations are 

greater than 40 degrees. 
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Figure 5.17: Sky-Plot of Open-Sky Scenario (satellites indicated in green/red are 

above/below 40 degrees elevation) 
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The benefit of this approach is that the carrier phase reference can be obtained in the 

open-sky condition. This is superior to the real dense-foliage scenario where it is very 

hard to obtain the phase reference for low elevation satellite. PRNs 14, 17, 31, and 32 are 

tracked by the receiver and thus used to update the navigation solution. Figure 5.18 

shows the velocity performance for the vector-based architecture during the simulated 

dense-foliage period. 
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Figure 5.18: Velocity Performance of Vector-Based Receiver under Simulated 

Dense-Foliage Scenario 

The standard deviation of north, east and vertical errors of the first 7 seconds are 0.05 m/s, 

0.08 m/s, and 0.10 m/s respectively and the velocity update rate is 20 Hz. It is noted that 

the north velocity error increased substantially after 7 s. Figure 5.19 shows the error of 

the predicted carrier phase for the satellites whose elevations are smaller than 40 degrees. 

In this case, the truth trajectories are obtained by processing the data using all available 
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satellites, since the PLLs work well for the satellites whose elevation angles were less 

than 40 degrees during this period. 
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Figure 5.19: Phase Error for Vector-Based Receiver in the Simulated Dense-Foliage 

Scenario 

It is observed that after 5 seconds, the phase error is smaller than half-cycle for PRNs 5, 

11, and 30, however, the apparent increase starting at approximately 7 s is due to the 

north velocity error increase shown in Figure 5.18. Two other simulated dense-foliage 

scenarios are also simulated at different times for a duration of 10 seconds to show the 

vector-based receiver performance case. Figure 5.20 summaries the maximum phase 

errors within 5 seconds among these three scenarios. 
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Figure 5.20: Maximum Phase Errors within 5 Seconds  

for Vector-Based Receiver among 3 Simulated Dense-Foliage Scenarios  

These results suggest that in the dense-foliage scenario, the higher elevation satellites can 

be used to generate receiver velocity, then predicted phase for low elevation satellites can 

be obtained with reasonable accuracy by integrating the predicted Doppler. However, in 

the scenario if the constellation is less than 4 satellites, phase prediction method cannot 

be applied. 

 

However, the drawbacks of simulated dense-foliage are two-fold. First, in the real dense-

foliage scenario, the high elevation satellite could also be affected by the surroundings, 

which is not the case in the simulated dense-foliage scenario. Second, the 40 degrees 

elevation threshold may be too optimistic in the simulated scenario. Therefore, following 

the simulated case, a real dense-foliage evaluation is conducted to verify the predicted 
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phase performance. Figure 5.21 shows the dense-foliage test scenario, the red line 

indicates the vehicle trajectory for 20-second traverse. 

 

Figure 5.21: Real Dense-Foliage Scenario (red line indicates the trajectory, from 

GoogleTM) 

Figure 5.22 shows the front view of the real dense-foliage scenario. 

 

Figure 5.22: Dense-Foliage Scenario (Front View) 

It is important to note that the 40 degrees elevation threshold is not satisfied in this case, 

fortunately, the signal for PRN 12 can be tracked since the azimuth is 179 degrees, then 
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the full constellation for the GNSS-alone receiver includes PRNs 12, 14, 31, and 32. 

Since it is very hard to find a phase reference trajectory during the dense-foliage scenario 

for the low elevation satellites, the performance of predicted carrier phase is analyzed 

using PLI. Figure 5.23 shows the phase prediction performance for vector-based receiver, 

whereas the phase error is obtained by the Equation (4.2) shown in the Chapter 4. 
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Figure 5.23: Phase Error for Vector-Based Architecture under Real Dense-Foliage 

Scenario over Two Seconds 

Figure 5.23 only shows the first 2 seconds for the vector-based receiver, this is because 

the PLI is not a good metric when the phase error is larger than 45 degrees (PLI is 0 in 

this case). Compared to Figure 5.19, vector-based architecture has the same level of 

performance as the simulated dense-foliage, the phase error is smaller than 0.2 cycles 

after 2 seconds. 

 

Section 5.4 assessed the performance of vector-based architecture in the open-sky 

scenario, partially dense-foliage scenario, and dense-foliage scenario. In the open-sky 

scenario, the predicted phase error is less than a quarter-cycle after two seconds. In the 
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partially dense-foliage scenario, the carrier phase measurements are effectively provided 

during the 0.6 s loss of signal period, and the tracking loop can be started with small 

frequency error and small phase error after the signal is available again. In the dense-

foliage scenario, the higher elevation satellites were used to generate receiver velocity, 

then obtain the predicted phase for low elevation satellites. The phase error was found to 

be smaller than half-cycle within 4 s. 

 

5.5 Predicted Phase Accuracy Assessment for Ultra-Tight Receiver 

The above analysis focused on the GNSS-only processing in a vector-based architecture 

and showed promising results. However, as noted in the Chapter 3, an ultra-tight receiver 

has better positioning performance than a GNSS-only receiver, and so it follows that the 

phase prediction concept can be applied to the ultra-tight receiver architectures with 

better performance. In the ultra-tight case, the receiver has the added benefit of using the 

inertial sensors to improve the navigation solution. In the context of this work, the 

improved navigation solution should yield better phase prediction accuracies than the 

GNSS-only case. Similar to the vector-based case, the simulated dense-foliage and real 

dense-foliage scenarios are also applied to the ultra-tight receiver. Moreover, a scenario 

where the receiver passes under a bridge is introduced assess the phase prediction 

performance under a more stringent signal scenario.  

 

5.5.1 Dense-Foliage Scenario 

This section is intended to show the improved performance of the phase prediction 

approach obtained with the aiding from INS under the dense-foliage scenario, where a 
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high accuracy IMU (HG1700) is employed. Also, similar to the vector-based architecture, 

three simulated dense-foliage scenarios and a real dense-foliage scenario are applied. The 

data collected from the open-sky scenario as shown in section 5.4.3 is used to simulate 

the dense-foliage condition for 15 seconds. Figure 5.24 shows the improved velocity 

performance for the first simulated dense-foliage scenario. These results can be directly 

compared to the vector-based receiver results shown in Figure 5.18. 
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Figure 5.24: Ultra-Tight Receiver Velocity Performance under Simulated Dense-

Foliage Scenario  

It is noted that the velocity error is not white noise anymore, apparently a bias exists on 

the horizontal velocity. This is due to the uncompensated IMU errors in the navigation 

filter. Nevertheless, the overall errors are still smaller than in the vector-based case. 

Given their better velocity performance, better phase prediction can be obtained, this 

being the case as shown in Figure 5.25. 
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Figure 5.25: Predicted Phase Error for Ultra-Tight Receiver under the Simulated 

Dense-Foliage Scenario 

As expected, the phase prediction performances for the ultra-tight receiver are better than 

the vector-based receiver. The error of the predicted phase is smaller than 0.5 cycles after 

15 seconds as shown in Figure 5.25. More importantly, this is quite promising for carrier 

phase applications, since there are many scenarios where the receiver cannot track the 

signal very well. Such situations arise in dense-foliage and urban canyons, and in these 

situations the stand-alone GNSS receiver may not able to obtain the carrier phase 

measurements. Conversely, in the ultra-tight receiver, the continuous predicted phase is 

still available with reasonable accuracy. However, caution should be exercised when 

trying to incorporate such measurements in the navigation filter, since even a half cycle 

error can introduce relatively large position errors. Figure 5.26 summarizes the maximum 

phase errors for the three different dense-foliage scenarios over 5 seconds and 15 seconds. 
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Figure 5.26: Phase Error Summary for Ultra-Tight Receiver under the Simulated 

Dense-Foliage Scenario over 5 s and 15 s 

Compared to the vector-based receiver performance as shown in Figure 5.20, a better 

phase prediction performance is achieved by ultra-tight receiver. Figure 5.27 shows the 

ultra-tight performance in the real dense-foliage scenario, similar to the vector-based 

section, PLI is employed to obtain the phase errors. 
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Figure 5.27: Phase Error for Ultra-Tight Receiver under Real Dense-Foliage 

Scenario over Two Seconds 
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Compared to Figure 5.26, ultra-tight architecture also has the same level of performance 

as the simulated dense-foliage. 

 

5.5.2 Passing under the Bridge Scenario 

The previous scenarios assumed the receiver performed in the degraded signal conditions, 

whereas some higher elevation satellites can be tracked. In this section, a more stringent 

scenario is assessed, namely, passing under the bridge scenario. In this case, the satellite 

signals are blocked by a simulated bridge, in so doing, the ultra-tight receiver relies solely 

on the INS, where no aiding information from GNSS is available, which means that the 

INS error will grow with time. For the GNSS-alone receiver, the carrier phase 

observations are not available when passing under the bridge since the receiver cannot 

track the signals. However, in the ultra-tight receiver, the velocity can be obtained by the 

INS, which in turn, can be used to predict the carrier phase. Herein, it is assumed that the 

length of a bridge is less than 100 metres, and the vehicle velocity is 20 m/s (72 km/h). In 

this case, a five-second period with no satellites is simulated.  

 

Five bridge scenarios are simulated under open-sky conditions. Figure 5.28 shows the 

velocity performance of ultra-tight receiver during one of the scenarios, however, other 

scenarios have similar results except scenario 2, where the velocity error is slightly larger 

than the other four scenarios.  
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Figure 5.28: Velocity Performance for the Ultra-Tight Receiver over 5 Seconds 

during the First Bridge Scenario 

Figure 5.29 shows the predicted carrier phase performance. 
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Figure 5.29: Predicted Phase Performance for Ultra-Tight Receiver over 5 Seconds 

during the First Bridge Scenario 
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As expected, a degraded phase prediction performance is obtained compared to the 

dense-foliage scenario. This is straightforward since without the updating of the GNSS 

observations, the INS-alone velocity error will grow unbound. Figure 5.30 summarizes 

the performance of five different scenarios. 
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Figure 5.30: Phase Performance Summary for Ultra-Tight Receiver over 5 Seconds 

for Passing under Bridge Scenarios 

It is noted that in the second scenario, the phase errors are much larger than in the other 

scenarios, this is due to the velocity error as mentioned before. For the other four 

scenarios, the maximum phase error is 0.72 cycles after 5 seconds. The benefit for the 

ultra-tight receiver with the phase prediction method is that, when the satellite signal 

becomes available again or at least becomes strong enough to acquire, the phase of the 

signal is already available from the INS, which means that the tracking loop can be 

started with relatively small initial phase and frequency errors 
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The work then ongoing to the PLL convergence behaviours assessment with different 

initial phase errors. Figure 5.31 shows the transition process for different initial carrier 

phase errors after reacquiring the signal. Four specific phase errors are of interest, which 

are 0.23 cycles, 0.46 cycles, 0.68 cycles, and 0.79 cycles, respectively. The general 

conclusion is that if the phase error is smaller than 90 degrees, it will converge to zero 

phase error (mathematically, however, a noise will be introduced in the PLL in practice); 

if the initial phase error is between 90 degrees and 270 degrees, it will converge to 180 

degrees phase error; and finally, for errors larger than 270 degrees, it will converge to 

360 degrees (1 cycle) phase error. Figure 5.31 shows the transition processes for different 

initial phase errors. 
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Figure 5.31: Transition Process for Different Initial Phase Errors 

It is observed that for 0.23 cycles initial phase error, the phase error will be reduced by 

the transition process, however, for 0.46 cycles and 0.68 cycles initial phase errors, the 

phase errors are 0.5 cycles after reaching steady-state. At epoch 515891.9 s (4.87 s in the 

plot), the half-cycle lock is detected on this satellite, and then the phase errors become 

one cycle after half-cycle phase error correction. For 0.79 cycles initial phase error, the 
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phase error after reaching steady-state is one cycle, in which case one needs to fix 

ambiguity again. 

 

5.6 Conclusion 

This chapter introduced a phase prediction method and assessed its performance in a 

GNSS-only receiver and an ultra-tight receiver in different scenarios. Specifically, 

partially dense-foliage, dense-foliage, and passing under bridges were considered. The 

phase prediction performance is highly correlated to the receiver velocity performance, a 

higher velocity quality will result in a better phase prediction performance. After 

employing the phase prediction method, the reacquisition process could possibly start 

with a small initial phase (and frequency) error, thus resulting in a faster carrier phase 

reacquisition. 
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CHAPTER SIX: CONCLUSIONS AND FUTURE WORKS 

This thesis presented a thorough assessment for reducing carrier phase reacquisition time 

using advanced receiver architectures. This chapter discusses the main conclusions 

derived from the thesis, followed by recommendations for future work that can 

complement its work. 

 

6.1 Conclusions 

All of the objectives listed in Chapter 1 were achieved. First, a piece-wise control method 

was developed and evaluated. Second, the Kalman filter natural frequency was derived, 

and the transition process of the estimator-based tracking loop was assessed. Finally, a 

phase prediction method was proposed and employed in the vector-based receiver and 

ultra-tight receiver. Conclusions from each are expanded below. 

 

6.1.1 Piece-Wise Control Method Assessment 

Piece-wise control methods have been proposed in this work, a piece-wise FLL followed 

by a piece-wise PLL method was recommended. Different loop filter parameter values 

were assessed in order to achieve fast carrier phase reacquisition. The following 

conclusions can be drawn 

1. Piece-wise FLL is used to reduce the frequency transition time in the reacquisition 

process, and enable a PLL start with a small initial frequency error. The transition 

processes of different natural frequencies and damping ratios were evaluated, as 

well as the logic of how to control the transitions between different loop filter 

parameter sets. Generally the piece-wise FLL control divides the reacquisition 
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and tracking process into separate periods each with different natural frequencies 

and damping ratios. Proper parameter sets have been obtained during the 

parameter tuning process.  At the first period, the natural frequency and damping 

ratio are 60 Hz and 5.6 respectively and the piece-wise period is 20 ms. After the 

piece-wise method, general tracking loop parameters are used. In so doing, the 

piece-wise method produces a three-fold improvement in transition time. For 

example, the frequency transition is reduced from 0.59 s to 0.26 s for 200 Hz 

initial frequency error.  

2. The same tracking loop parameters have been employed by the piece-wise PLL, 

whereas the improvement with the piece-wise approach is noticeable with a four- 

to five-fold improvement in all initial phase errors. To this end, for a 200 Hz 

initial frequency error and 90 degrees initial phase error case, the transition time is 

reduced from 0.91 s to 0.25 s, which means that more carrier phase observations 

are available after employing piece-wise control methods. 

3. The drawback of piece-wise control method is however those larger damping 

ratios have slow reactions to user dynamics, and larger bandwidths introduce 

more noise in the tracking loop piece-wise period. Moreover, the time-based logic 

used in this work sometimes is not long enough to reduce the initial frequency 

error. 
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6.1.2 Kalman Filter Tracking Loop Assessment 

The equivalence between the Kalman filter and standard tracking loops was shown in this 

work, and a faster transition process was obtained by using Kalman filter tracking loop in 

the software receiver. The following conclusions can be drawn 

1. The natural frequency of estimator-based tracking loop has been derived for a 

three-state Kalman filter and a five-state Kalman filter. Different signal powers 

and process noises produce different Kalman filter natural frequencies.  For a 50 

dB/Hz C/N0 and 4 2/ /m s Hz  line of sight spectral density (process noise), the 

natural frequency is around 5 Hz. 

2. Faster frequency and phase transition times were obtained in the estimator-based 

tracking loop. This is attributed to the fact that both the phase and frequency are 

updated by the filter, instead of just the frequency in a standard loop. However, 

the overshoot for the estimator-based tracking loop is slightly larger than the 

standard tracking loop. 

 

6.1.3 Phase Prediction Method Assessment 

Phase prediction method has been proposed and assessed by the vector-based receiver 

and ultra-tight receiver respectively. The phase prediction performance is highly 

correlated to the receiver velocity performance, which has been shown mathematically in 

the thesis. A higher velocity quality will result in a better phase prediction performance.  

1. Open-sky, partially dense-foliage, and dense-foliage scenarios were assessed in 

the vector-based receiver. In the open-sky scenario, the predicted phase is a 

random walk process, since the receiver velocity output is white noise. A real data 
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assessment was shown in the partially dense-foliage scenario, the carrier phase for 

loss of lock satellites was predicted over 0.6 s with a maximum 0.17 cycles phase 

error.  In turn, the tracking loop can be started with small frequency error and 

small phase error after the signal is available again. For the dense-foliage 

assessment, simulated dense-foliage scenarios were first used to obtain a baseline 

performance of the vector-based receiver.  Next, real dense-foliage scenarios were 

assessed. In the dense-foliage scenario, the higher elevation satellites can be used 

to generate receiver velocity, then predicted phase for low elevation satellites can 

be obtained. It is shown that the phase error is smaller than half-cycle after 5 

seconds. 

2. Dense-foliage and passing under bridge scenarios were assessed in the ultra-tight 

receiver.  Better phase prediction performance than the vector-based receiver was 

shown with the predicted phase error being smaller than 0.5 cycles after 15 

seconds in the dense-foliage scenario. In the under pass scenario, the GNSS signal 

cannot be tracked in the GNSS-alone receivers, however, with the aiding 

information from the INS, effective carrier phase can be predicted with a 

maximum error of 0.72 cycles after 5 seconds, which was shown in the simulated 

scenario. 

 

6.2 Recommendations for Future Works 

Following these conclusions, this section lists the recommendations for the future work. 

1. Implement the piece-wise method in the estimator-based architecture. Faster 

frequency and phase transition times were obtained in the estimator-based 
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receiver and these improvements are expected in a piece-wise estimator-based 

architecture. 

2. Investigate the phase prediction performance with different vehicle velocity and 

acceleration scenarios, as well as different navigation filter orders (e.g., with or 

without acceleration state in the Kalman filter state vector) 

3. Investigate the ultra-tight receiver performance with the aiding information from 

the commercial inertial measurement unit, such as MEMS. Since the predicted 

phase quality depends on the receiver velocity performance, the ultra-tight 

receiver with low quality IMU is of interest.  

4. Investigate the possibility of using predicted carrier phase in carrier phase 

applications such as RTK, especially, after passing under bridges or through 

heavy foliage. Effectively, this would test the phase prediction architecture’s 

ability to provide continuous RTK results. 

5. The simulations shown in the piece-wise method and phase prediction method 

were limited to vehicle dynamics and the maximum frequency error is assumed to 

be 200 Hz. Testing the developed algorithm on the higher order dynamics is 

necessary. 
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APPENDIX A:  

INS ERROR PROPOGATION EQUATIONS 

Navigation error arises due to errors in the initial states and the accumulation of 

instrumentation errors through the integration process (Farrell 2008). Consequently, error 

analysis is of utmost importance in the design and operation of INS. Error analysis 

enables the estimation of the INS sensor accuracy and initial conditions before the 

mission. The purpose of this section is to give the error propagation equation of the INS.  

 

Many models have been developed to describe the error propagation behaviour of INS 

errors in the literature (Bar-Itzark 1988, Savage 2000, Farrell 1998), the two most 

important models are Phi-angle error model and Psi-angle error model. Phi-angle method 

is employed in this work. For the Phi-angle method, error models are derived by 

perturbing the differential equations used in the mechanization process, where the 

navigation parameters are perturbed with respect to the true navigation frame. The full 

derivation of error model can be found in Schwarz (1999), Bar-Itzhack (1988), Farrell 

(2008), which will not be derived here. Instead, the final results are shown in this section, 

the error model has the form as shown below: 

0 0
0

0

pp pv pε b
n

vp vv vε b b
n ib

εp εv εε b

δp F F F δp
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The error vector is defined as [ ]Tδx δp δv ε= , where 

[ ]Tp hδ δφ δλ δ=   (A.2) 

[ ]Tn e dδv δv δv δv=   (A.3) 

[ ]Tn e dε ε ε ε=   (A.4) 

where             v  : Vehicle velocity 

  p  : Vehicle position 

ε   : Attitude error 

bδf  : Accelerometer error 

b
ibδω  : Gyroscope error 

n , e , d : North, East, and Down directions 

The position error system model is given by 

pp pv pεδp F δp F δv F ε= + +&   (A.5) 

where  
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  (A.8) 

where  NR  : Radii of curvature along lines of constant latitude 

MR  : Radii of curvature along lines of constant longitude 

φ  : Vehicle latitude 

h  : Vehicle height 

The velocity error is given by 

n b
vp vv vε bδv F δp F δv F ε R δf= + + −&   (A.9) 

where 
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Equation (A.9) also shows the relationship between accelerometer error and velocity 

error, the accelerometer error will be projected into the navigation frame, which then 

increases the velocity error. 

 

The attitude error is given by 

n b
εp εv εε b ibε F δp F δv F ε R δω= + + +&   (A.13) 
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Equation (A.13) also shows the relationship between gyroscope error and attitude error.  

The gyroscope error will be projected to the navigation frame, and then increases the 

attitude error. 

 

The vertical error channels are unstable and must be compensated by negative feedback.  

Also, the vertical channel has a weak affect on other states, so usually vertical channel 

are removed from the error model (Bar-Itzhack 1981, Savage 2000, Farrell 2008). 

Reduced-order error models are also used in some specific applications due to the 

stringent requirements of the onboard computer or Kalman filter observability 

consideration. 
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APPENDIX B:  

THREE-STATE KALMAN FILTER NATURAL FREQUENCY 

Appendix B derives the natural frequency for the three-state Kalman filter. Theoretically, 

an estimator-based tracking loop is essentially a standard tracking loop after Kalman 

filter reaching steady-state (Zarchan 2005). The Kalman filter can be simplified to 

become equivalent to a standard control system, which means that the natural frequency 

concept can also be applied in the Kalman filter. The following is an example 

demonstrating how to get the equivalent natural frequency of a three-state estimator-

based tracking loop ( Zarchan 2005). 

The state vector is given by (Psiaki et al 2007) 

[ ]TX f aδϕ δ δ=   (B.1) 

where   δφ  : Phase tracking error 

   δf  : Frequency tracking error 

   δa  : Frequency error rate 

The system model is given by 

0 1 0
0 0 1
0 0 0

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (B.2) 

For simplicity, the phase error from the discriminator is taken as a measurement in the 

Kalman filter; however, in the general architecture, the I and Q correlations are used as 

measurements directly. The observation matrix is thus given by: 
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[ ]1 0 0H =   (B.3) 

If only the frequency rate error uncertainty is modeled stochastically, the corresponding 

process noise is given by: 

0 0 0
0 0 0
0 0 a

Q
ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (B.4) 

where   aω  : Driving noise to account for line-of-sight acceleration 

And observation noise is given by: 

R φω=   (B.5) 

where   φω  : Phase noise from discriminator 

In order to get the natural frequency of the Kalman filter, the steady-state filter gain 

should be derived first (Zarchan 2005). Specially, the filter gain is a constant matrix after 

reaching steady-state, and the continuous Kalman filter can be simplified as: 

( )CX FX K z HX= + −&   (B.6) 

where   CK   : Continuous filter gain, which denoted as [ ]1 2 3
TK K K  

   z   : Measurement from the phase discriminator    

The discrete Kalman filter is given by: 

( )1 1/ 1 1/k k k D k k kX AX K z HX+ + + += + −   (B.7) 

where   A  : Discrete form of the system model 

   DK  : Discrete form of filter gain 
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The continuous filter gain, CK , and discrete filter gain, DK , are related according to: 

D C SK K T= ⋅   (B.8) 

where   ST  : Kalman filter time interval 

A transfer function for the Kalman filter can also be developed in the steady-state 

Kalman filter. Note that Equation (B.6) can be expanded as: 

( )1K zδϕ δϕ δϕ= + −&   (B.9) 

( )2f f K z fδ δ δ= + −&   (B.10) 

( )3a a K z aδ δ δ= + −&   (B.11) 

After some algebraic manipulation and taking the Laplace transform (Ogata 2005), 

Kalman filter transfer function was obtained from the state estimates to the measurements 

as (Zarchan 2005): 

2
3 2 1

2 3
3 2 1

K sK s K
z K sK s K s
δϕ + +

=
+ + +

  (B.12) 

It is observed that Equation (B.12) is quite closed to Equation (2.3) in Chapter 2. Now, 

the problem turns out to be how to obtain the constant filter gain. 

The steady-state equation for the Kalman filter is derived by noting that steady-state is 

reached when the covariance matrix no longer changes. To this end, the continuous 

Riccati equation is employed to get the steady-state filter gain, CK , as well as the steady-

state covariance matrix, P  (Zarchan 2005, O’Driscoll 2009). The continuous Riccati 

equations are given by: 
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1T TP PH R HP PF FP Q−= − + + +&   (B.13) 

1T
CK PH R−=   (B.14) 

where   P  : Steady-state filter covariance matrix 

By solving this equation, the continuous steady-state gain vector is given as (Zarchan 

2005): 

1 1 1
6 3 2

2 2

T

a a a
CK

φ φ φ

ω ω ω
ω ω ω

⎡ ⎤
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

  (B.15) 

However, it is important to note that this equation is only satisfied when the filter interval 

time is small. 

If 

1
6

a

φ

ω
ω
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠  

is defined as the natural frequency, nω , Equation (B.15) can be rewrite as: 

2 32 2
T

C n n nK ω ω ω⎡ ⎤= ⎣ ⎦   (B.16) 

Equation (B.12) can be expressed as: 

2 2 3

3 2 2 3

2 2
2 2
n n n

n n n

s s
z s s s

ω ω ωδϕ
ω ω ω

+ +
=

+ + +
  (B.17) 

Compared to Equation (2.3) in Chapter 2, the three-state Kalman filter has the same 

close-loop transfer function as the standard third-order PLL, which means that the 

estimator-based tracking loop is essentially a standard PLL after reaching steady-state. 

Note that the natural frequency is a function of process noise and observation noise, the 

natural frequency will be increased if the process noise increases or the observation noise 
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decreases. This is straightforward since, if the observation noise increases, the natural 

frequency should be reduced in order to reject the noise. Conversely, if the process noise 

is increased, which means that the dynamic model is no longer accurate, then the natural 

frequency should be increased to track the change in dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

142

APPENDIX C:  

FIVE-STATE KALMAN FILTER NATURAL FREQUENCY 

The equivalence between the three-state Kalman and third-order PLL was already shown 

in Appendix B, in Appendix C, a method to derive the Kalman filter equivalent natural 

frequency is presented. As shown in Appendix B, the steady-state Kalman filter gain is 

given by 

2 32 2
T

C n n nK ω ω ω⎡ ⎤= ⎣ ⎦   (C.1) 

where   CK  : Continuous filter gain 

nω  : Natural frequency 

Specially, filter gain CK  indicates the Kalman filter natural frequency. Mathematically, 

the steady-state filter gain is related to the observation noise and process noise as shown 

in Appendix B, however, in this section, the filter gain is obtained through practical way, 

since the steady-state filter gain can be output by the software receiver. 

 

A five-state Kalman filter is employed in the software receiver whereas the signal 

amplitude and code phase error are considered in the system, as well as oscillator noises, 

which is different from the three-state Kalman filter assessed in Chapter 2. The natural 

frequency assessment in this section is based on the three-state Kalman filter, in order to 

compare the Kalman filter and standard PLL in a fairer manner, oscillator noises are 

removed from the process noise matrix. The parameters used in the Kalman filter are 

given by 
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Table C-1: Kalman Filter Parameters 

States 5 

C/N0 50 dB/Hz 

Observation Noise 0.005 

Line of Sight Spectral Density 4 2/ /m s Hz  

Integration Time 1 ms 

 

Table C-2 shows the steady-state gain of the Kalman filter. 

Table C-2: Steady-State Filter Gain 

 K(:,1) IE K(:,2) QE K(:,3) IP K(:,4) QP K(:,5) IL K(:,6) QL

K(1,:) A  9.42e-5 0 0.2248 2.43e-6 0 0 

K(2,:) δτ  0.0002 0 0.001 7.15e-6 0 0 

K(3,:) δφ  1.45e-5 0 1.75e-5 0.07 0 0 

K(4,:) δf  0.0004 0 0.001 2.06 0 0 

K(5,:) δa  0.006 0 0.003 30.76 0 0 

 

It is observed that the steady-state filter gains for the phase, frequency and frequency rate 

states corresponding to the early and late observations, and also the prompt I, are much 

smaller than the gain corresponding to the prompt Q, which suggests that the six-

observation Kalman filter can be simplified as one-observation Kalman filter. In the 

further analysis, only ( )3, 4K , ( )4, 4K , and ( )5, 4K  are assessed. The steady-state gain 

is given by 
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[ ]0.07 2.06 30.76 T
DK =  

Rewrite the Equation (B.8) related the discrete gain and the continuous gain in Appendix 

B: 

D C SK K T= ⋅  1

where   DK  : Discrete steady-state gain 

  CK  : Continuous steady-state gain 

  ST  : Kalman filter time interval 

Notice that this equation is only satisfied when 1n STω << , which is true in this case since 

ST  is 0.001 s. Notice that ( ) 33C nK ω= , the equivalent natural frequency is then given by 

3 30.76 / 0.001 4.98 
2n Hzω
π

= =  

After getting the equivalent natural frequency for the Kalman filter, the next step is to 

evaluate how it compares to the standard PLL case. Herein, an empirical approach is used 

to compare the Kalman filter tracking with the equivalent standard PLL. More 

specifically, a strong signal under a static scenario is tracked, with a C/N0 of 50 dB/Hz, is 

used. Figure C.1 shows the carrier frequency tracking performance of the estimator-based 

tracking loop and standard third-order PLL, the natural frequency of standard PLL is 5 

Hz. 
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Figure C.1: Carrier Frequency Tracking Performance for Estimator-Based 

Tracking Loop and Standard PLL 

Figure C.1 shows the results from both estimator-based tracking loop and standard PLL, 

it is observed that the two tracking methods give the same standard deviations for carrier 

frequency tracking, which are 0.16 Hz and 0.14 Hz respectively. This result suggests that 

the comparison procedure shown above returns a reasonable comparison of Kalman filter 

and standard PLL, which in turn, can be used to calculate the natural frequency of the 

five-state Kalman filter. 

 

The natural frequency of Kalman filters with different process noises are summarized in 

Table C-3, assuming the observation noise is 0.005. 
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Table C-3: Equivalent Natural Frequency for Different Dynamics 

 10 2/ /m s Hz  20 2/ /m s Hz  30 2/ /m s Hz  

( )3, 4K  0.09 0.13 0.14 

( )4, 4K  4.95 9.14 10.44 

( )5, 4K  129.47 320.11 382.18 

nω  8.1 Hz 10.8 Hz 11.5 Hz 

 

Table C-4 shows the equivalent natural frequency with different C/N0, assuming the 

vehicle dynamic are white noise with a spectral density of 4 2/ /m s Hz . It is shown that 

a weaker signal power results in a smaller natural frequency, as should be expected. 

Table C-4: Equivalent Natural Frequency for Different Observation Noises 

 52 dB/Hz 44 dB/Hz 37 dB/Hz 

( )3, 4K  0.09 0.07 0.06 

( )4, 4K  3.44 2.05 2.03 

( )5, 4K  72.06 32.86 27.07 

nω  6.6 Hz 5.1 Hz 4.8 Hz 
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