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ABSTRACT

The image formation process by a remote sensor is modeled, highlighting restrictions on spatial resolution
and image formation artifacts. The super-resolution problem is introduced, describing the aim of overcoming
the resolution and image quality limits imposed by the sensor optics and sampling. Problems with model
inversion and conventional image restoration techniques are discussed.

The focus of this thesis is a Super-Resolution technique in which image geometry is used to guide the
resampling. The dynamics considered are those of curvature flow, in which image restoration – including
Fourier mode synthesis, noise-supression, and anti-aliasing – is achieved my minimzing the mean curvature
of an image. Following a discussion of the curvature flow switch introduced by Malladi and Sethian, we cast
their work into the neural regime, identifying a similarity to the work of Tatem et al.

The performance of the switch is compared to the performance of polynomial interpolation. Testing
revealed excellent performance: the super-resolved images are sharp with high signal to noise ratio relative to
polynomial-interpolated images. The peak signal-to-noise ratio is typically greater than that of polynomial-
interpolated images by ten to thirty percent. The advantage in many spatial frequency bands – often the
highest frequency bands – reaches several hundred percent.
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Chapter 1

Introduction

The ability to detect very small objects with a remote camera has been the goal of many organizations and
a source of fascination to the general public. With such an ability, intelligence agencies, academic research
programmes, and commercial organizations have the capacity to gather vital information for their purposes.

The governments and intelligence community is primarily interested in locations and identities of objects
in the field of view. The available information, determined in part by image quality, is essential to assessment
of military threats, studying land use, etc.

The academic community in various disciplines – environmental science, robotics, astronomy and astro-
physics – rely on remotely sensed imagery to conduct their research. The quality of the imagery is often a
severe restriction on their experimental precision.

Remotely-sensed imagery plays an important role in industry, for example, in locating mineral deposits,
in urban planning and land management, in cartography, and in agriculture. In these disciplines, too, image
quality imposes restrictions upon the scope and detail of a project.

The dependence on quality imagery is the common thread in these disciplines and fuels the development
of improved image acquisition and enhancement techniques.

The quality of the recorded image depends on hardware characteristics: for example, the quality of
the sensor optics, and the platform distance and velocity relative to the subject. Improvements to any of
these characteristics typically come with large financial expense. In addition, image quality depends upon
environmental conditions such as the atmosphere’s coefficient of transmission, its activity, etc. Improving
these conditions is typically impossible.

As an alternative, software image restoration is not only possible, it is relatively cheap. The image
restoration problem is not altogether simple, however. The complications are consequences of the image
formation process. In this thesis we discuss several restoration techniques in order to restore salient features
in the sensor’s instantaneous field of view. In this chapter we provide a brief outline of the content of the
thesis, beginning with image formation.

1.1 Image Formation

In recording an image, a sensor collects light incident upon an aperture – the object signal – and focuses the
light onto the image plane where it is sampled. These processes introduce distortions into the object signal,
including blurring by diffraction and lensing, decimation and aliasing from sampling, and noise from optics
and electronics. Most notably, decimation is a consequence of sampling a continuous function to discrete
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2 CHAPTER 1. INTRODUCTION

data, whereby information is typically lost. A feature smaller than the sample spacing is not discernible in
the image; it is averaged with the backgound and aliased into lower frequencies. Thus, the image formation
process is especially severe in the highest frequencies. In Chapter 2 we will discuss these processes in detail.

1.2 Image Restoration

Given a digital image, our goal is to devise a means of restoring the object signal. We aim to reverse
decimation effects to recover features not represented in the digital image. Our biggest problem is the recovery
of high Fourier modes – image details – lost in the image formation process. Also, we aim to clarify existing
image features by correcting blurring, aliasing, and noise. In Chapter 3 we describe various restoration
techniques in detail. We focus our attention on energy minimization – a framework for implementing robust
and novel restoration techniques. We discuss interpretations of the dynamics we derive and find that they
bear strong resemblance to the diffusion of a gas, the dynamics of a soap bubble, and the propagation of
signals in a neural network.

With a well-defined image formation model, we might begin our restoration attempt by inverting the
model. The image formation process takes a continuous function and samples it to a discrete set of data;
the inverse process, if it exists, does the reverse. However, one can fit an infinite set of functions to a finite
collection of data: the inverse does not exist. The inversion problem, and consequently the restoration
problem, is ill-defined.

1.2.1 Underdetermination

Wherever the image formation model has zeros, the model may not be meaningfully inverted at these
frequencies: the zeros diverge to infinity. This is the infinite family of functions which one may fit to the
data; it implies that any member of an infinite family may have given rise to the digital image.

The restoration problem becomes a problem of selecting an appropriate member of the infinite family of
solutions; an appropriate member of the family is an image that resembles the object signal. The family
members from which we have to choose differ in the highest frequencies – the precise locations of edges, for
example. The underdetermination of the high frequencies is apparent in digital images: cars may not be
visible on roads; trees may not be distinguished. To select an appropriate member of the infinite family, we
need a mechanism for synthesizing high spatial frequencies.

High spatial frequencies may be synthesized by supplying additional information. The additional in-
formation is a set of assumptions about the object signal, such as ‘the object signal is smooth’, or ‘edges
appear as gradients’, or ‘the object signal is well-approximated by polynomial at scale z.’ This additional
information is often referred to as a priori information or simply as priors.

1.2.2 Resampling

Conventional resampling techniques synthesize Fourier modes by fitting a function to the data; the basis
functions are the prior information. Low resolution data are used to set the coefficients or parameters of the
functions. The high Fourier modes are generated by evaluating the function at fine mesh points.

Instead of casting geometric quantities appearing in an image into function-analytic terms, these quanti-
ties might serve as direct guides for resampling. To guide the resampling by geometry, we take an iterative
approach: we adjust pixel values according to an assessment of local image geometry. For example, we might
make the adjustment to a pixel proportional to the local image gradient. With a shape-based approach, the
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geometry evolves; the data direct themselves toward a final configuration. The dynamics are governed by a
differential equation and are analogous to physical systems like water freezing or a soap bubble collapsing.

Recovery of Fourier modes is not the entire restoration problem: it should involve the correction of
blurring, aliasing, and noise. To correct these artifacts, the source data must be adjusted while restoring
high frequency content. We distinguish super-resolution techniques from interpolation techniques on the basis
of the treatment of source data. Interpolation techniques do not allow the correction of image formation
artifacts while restoring Fourier modes; super-resolution techniques adjust the source data while inferring
decimated Fourier modes. That is, in a super-resolution technique all data may be subject to evolution.

1.2.3 Energy Minimization

Correction of image formation artifacts and the employment of image geometry to guide resampling may be
difficult to implement with function-fitting methods. As an alternative, energy minimization techniques may
be implemented. In these techniques, the prior information is encoded in an energy functional; the minimum
of the functional corresponds to the satisfaction of the prior criteria. Thus, the energy may be the difference
between the priors and the current state of the image.

With energy minimization we have a means of employing non-trivial priors and of establishing a com-
promise among competing priors; the implementation of shape-based methods is straightforward. However,
convergence, speed, and stability are issues whenever the minimization technique is iterative.

1.2.4 Switches

Complications arise in assessing image geometry: a black circle on a white background has the same ge-
ometry as a white circle on a black background. Assessing the geometry by making gradient or curvature
measurements yields a relative negative sign. The result is opposite dynamics. Thus, a näıve assessment of
image geometry may lead to mis-directed flow.

To encourage geometrically equivalent shapes to evolve identically, Malladi and Sethian (1) have intro-
duced a switch. We have noticed that improvements may be made to their switch by casting it in a neural
framework; our contribution is the generalization of Malladi and Sethian’s switch to a neural regime. There,
we have found a similarity between the work of Malladi and Sethian and of Tatem et al (2).

1.3 Testing

We have tested the performance of the generalized switch by resampling remotely sensed imagery; we have
compared it with the performance of a polynomial interpolant. Our testing was conducted on a variety of
images, including reflectance images and material abundance images derived from hyperspectral imagery. In
Chapter 4 we outline the testing procedure and the measures of performance.

We have found encouraging results, presented in Chapter 5: the generalized switch exhibits excellent
performance in the majority of tests. In particular, the fuzzy switch reliably produces images with 10%
to 30% higher peak signal-to-noise ratio than polynomial resampling. The highest spatial frequencies are
effectively restored, implying that the switch is excellent at resolving fine image details.



Chapter 2

Image Formation

In this chapter we describe, in detail, the image formation process by a digital system. We highlight the
spatial distortions introduced by various components of the system: in particular, we discuss blurring by
impulse response convolution, decimation and aliasing by sampling, and noise from sensor optics and and
electronics.

2.1 The Sensor Reflectance

A remotely-sensed image is formed by recording light which has been reflected from the earth’s surface. The
amount of light illuminating the surface depends on the sun’s radiant flux, the distance of the surface from
the sun, atmospheric attenuation, and the orientation of the surface relative to the wavevector (3) (Figure
2.1). In this section we introduce a model of the digital image formation process.

Figure 2.1: The sensor radiance

Suppose the surface of the earth is illuminated by a radiance Le(x, y, λ). The amount of reflected light
– the pixel-leaving radiance Lp(x, y, λ) – is determined by the earth’s reflectance rp(x, y, λ), defined by

rp(x, y, λ) =
Lp(x, y, λ)
Le(x, y, λ)

(2.1)

4



2.2. IMPULSE RESPONSE 5

which implies
Lp(x, y, λ) = rp(x, y, λ)Le(x, y, λ). (2.2)

The pixel-leaving radiance propagates through the atmosphere and arrives at the sensor; at this point it
is called the sensor radiance Ls,

Ls(x, y, λ) = c(λ)Lp(x, y, λ) + na(x, y, λ). (2.3)

We’ve modeled atmospheric effects to linear order, where c and na describe multiplicative and additive
distortions to the pixel-leaving radiance; see Appendix A for a justification.

Dividing equation 2.3 by Le gives

Ls(x, y, λ)
Le(x, y, λ)

= c(λ)rp(x, y, λ) +
ns(x, y, λ)
Le(x, y, λ)

(2.4)

We define the apparent reflectance by

rs =
Ls
Le

(2.5)

and we treat ns/Le as rescaled noise,
ns =

n1

Le
(2.6)

giving
rs(x, y, λ) = c(λ)rp(x, y, λ) + ns(x, y, λ) (2.7)

We assume that the reflectance, rp, is a superposition of the reflectance of the materials at that point,

rp(x, y, λ) =
∑
i

mi(λ)αpi(x, y) (2.8)

which implies
rs(x, y, λ) = c(λ)

∑
i

mi(λ)αpi(x, y) + ns(x, y, λ) (2.9)

We set
msi(λ) = c(λ)mi(λ) (2.10)

which gives
rs(x, y, λ) =

∑
i

msi(λ)αpi(x, y) + ns(x, y, λ) (2.11)

Before proceeding, we note that the abundance of each pixel should be normalized:

∑
i

αi = |α(x, y)| = 1; (2.12)

For example, a pixel cannot be merely 20% grass and 30% asphalt; it must be 100% something; the remaining
50% must be other materials. This constraint will be imposed when resampling abundance imagery.

2.2 Impulse Response

The sensor radiance is incident upon an aperture (Figure 2.2) and lens which collect and focus the sensor
reflectance (the object signal), rs onto the image plane as the image signal, rI . This process is described by
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the impulse response.

Figure 2.2: Digital image formation

To characterize the sensor impulse response, h1, we note that each point of the image signal, treated as
a function rI , is the sum of the infinitesimal contributions from all points of the sensor radiance rs:

rI(x, y, λ) =
∫ ∞

−∞

∫ ∞

−∞
h1(x′, y′, x, y; rs(x, y, λ))dxdy (2.13)

where (x, y) is a point in the object plane and where (x′, y′) is a point in the image plane. We have
assumed that the impulse response is independent of color – we assume chromatic aberration is absent,
h1 = h1(x, y;Ls).

Following Jiang (4) we note that if the image formation system is linear, i.e. if h1(x′, y′, x, y; rs(x, y, λ)) =
h1(x′, y′, x, y) · rs(x, y, λ), and if h1 acts uniformly across the object plane (the value of h1 depends only on
the separations x′ − x and y′ − y),

h1(x′, y′, x, y) = h1(x′ − x, y′ − y),

then image formation is a convolution:

rI(x′, y′, λ) =
∫ ∞

−∞

∫ ∞

−∞
h1(x′ − x, y′ − y)rs(x, y, λ)dxdy.

2.3 Impulse Response Effects

The impulse response, h1, is a composition of functions; its form is peculiar to each sensor. However, spatial
resolution is diffraction limited at the very least, a feature common to all high quality sensors (3), (5). The
diffraction limit is imposed by the size of the sensor aperture and the magnification of the focusing lens(es);
additional optical components such as prisms and gratings may be included for dispersion in spectrometers.
A characteristic impulse response convolution effect is the blurring of edges as in Figure 2.3.

Our model for the impulse response in the spatial domain is a Gaussian (Figure 2.4),

h1(x, y) =
1

σ
√

2π
e−

1
2σ (x2+y2) (2.14)
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Figure 2.3: Edge blurring due to impulse response convolution

Because its Fourier transform is also a Gaussian, all Fourier modes of the object signal appear in the image
signal: the image signal is not bandlimited.

Figure 2.4: Scaled Gaussian at various standard deviations

Although high-frequency object signal modes are not lost in the convolution, to ensure that objects
may be distinguished from one another, diffraction limits resolution by restricting their separation (Figure
2.5). Consider two point sources in one dimension, δ(x1 − x) and δ(x2 − x). The sensor reflectance is
rs(x) = δ(x1 − x) + δ(x2 − x) and their image is

rI(x) = h1 ◦ [δ(x1 − x) + δ(x2 − x)] = h1(x1 − x) + h1(x2 − x). (2.15)
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To distinguish the point sources we require that the amplitude at the midpoint must not exceed some fraction
of the Gaussian amplitude. That is, to resolve the sources we require

rI((x1 + x2)/2) ≤ a

σ
√

2π
(2.16)

for a suitable choice of a ∈ (0, 1). Then, our limit is

a

σ
√

2π
=

1
σ
√

2π

[
e

(x1−x)2

2σ2 + e
(x2−x)2

2σ2

]∣∣∣∣
x=

x1+x2
2

(2.17)

which implies

a = e
(x1−x2)2

8σ2 + e
(x2−x1)2

8σ2 (2.18)

and

x2 − x1 =
√

8σ2 ln
a

2
. (2.19)

Thus, if we enforce our criterion for distinguishing two point sources, then their separation in the object
plane must exceed

√
8σ2 ln a

2 . This resolution limit is a consequence of the finite breadth of the impulse
response, rather than a (nonexistent) bandlimit.

Figure 2.5: Resolvable point-sources (panel 1), just-resolvable point sources (panel 2), and not-resolvable
point sources (panel 3)

Therefore, the resolution of diffraction limited optics is determined by the sensor geometry and the
quality of the optics. The sampling process, however, imposes an additional restriction on the resolution of
the digital image. Its restriction is a consequence of its Fourier domain bandlimiting.

2.4 Data Sampling

Crochiere et al (6) note that from a continuous function, rI(x, y, λ), we can define a set of samples r(x, y)1

specified by sampling processes
λi = o(x) xi = p(x) yj = q(y).

The sampling is uniform (periodic) if

o(λ) = δλ+λ0 mod Λ p(x) = δ(x+x0) mod X q(y) = δ(y+y0) mod Y

1We treat the samples r as a continuous function, nonzero only at sample points
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for arbitrary offsets λ0, x0, and y0 where

δs mod S =

{
1, ifs mod S = 0
0, otherwise

for sampling periods Λ, X, and Y . The sampling rates conjugate to Λ, X, and Y are

λs =
1
Λ

us =
1
X

vs =
1
Y
. (2.20)

The image recorded by this process is

r(x, y) = δλ mod Λδx mod Xδy mod Y rI(x, y, λ) (2.21)

where we have set the offsets to zero.

The sampling aperture, however, is finite; we convolve the infinitesimal aperture, δλ mod Λδx mod Xδy mod Y

with a boxcar function:

δλ mod Λδx mod Xδy mod Y → δλ mod Λδx mod Xδy mod Y ∗ h2 = h3 (2.22)

where

h2(x, y, λ) =

{
1 if x, y, λ < a

0 otherwise
(2.23)

where 2a is the width of the charge-coupled device (CCD). The image signal is

r(x, y) = h3(x, y, λ)rI(x, y, λ)
= h3(x, y, λ)h1(x, y) ∗ rs(x, y, λ)
≡ h(x, y, λ) ∗ rs(x, y, λ)

where we have defined the image formation function, h = h3h1.

2.5 Sampling Effects

The Shannon Sampling Theorem assures us that any bandlimited signal can be represented by a discrete
sequence of its samples without loss of information, provided the sampling rate meets or exceeds the signal’s
Nyquist frequency (7). Thus, we can record all the information of rr in digital form if we sample it at or
above the Nyquist frequency.

The digital image Fourier domain of support is bounded by zero and half the sampling frequency in
each dimension. On the other hand, the image signal is not bandlimited. As a result, the digital image is
inequivalent to the image signal.

The Fourier transform, R(u, v), of r(x, y) is

R(u, v) = H(u, v, λ)Rs(u, v, λ) (2.24)

where H and Rs are the Fourier transforms of h and rs.

If H is nonzero on a finite domain, then R is bandlimited (8). We will assume that R is bandlimited by
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uN and vN . Formally,

max{u : ||R(u, v)|| �= 0} = max{u : ||H(u, v, λ)R(u, v, λ)|| �= 0} (2.25)

and similarly for v. We assume that the object signal is not bandlimited so that

max{u : ||R(u, v)|| �= 0} = max{u : ||H(u, v, λ)|| �= 0}. (2.26)

Because H(u, v, λ) = H1(u, v, λ)H2(u, v, λ) we have

max{u : ||R(u, v)|| �= 0} = max{u : ||H1(u, v, λ) ∗H2(u, v, λ)|| �= 0}. (2.27)

and because the impulse response is not bandlimited,

max{u : ||R(u, v)|| �= 0} = max{u : ||H2(u, v, λ)|| �= 0}. (2.28)

The maximum frequency of the sampling function is half the sampling rate:

max{u : ||H2(u, v, λ)|| �= 0} = us/2 (2.29)

so
max{u : ||R(u, v)|| �= 0} = us/2. (2.30)

Therefore, the digital image is bandlimited by half the sampling rate.

Sub-pixel image features are not distinguishable and, in fact, all image signal modes above the bandlimits
are not properly represented. Fourier modes outside the sampling bandlimits, however, are not truncated:
they are aliased. At large sample spacing, the sampling frequency is large; thus the convolution in the fre-
quency domain results overlapping waveforms. This overlapping is aliasing: it is the illegitimate contribution
by high signal frequencies to lower frequencies upon sampling.

As an example of aliasing, consider a narcoleptic cop on a stake-out. His assignment is to monitor – from
a window across the street – a mob-boss’ activity. In fact, the cop’s only responsibility is to record how
frequently the mobster leaves his apartment. In actual fact, the mobster leaves his apartment three times
daily: once at 8:00am for breakfast, once at 4:00pm for an update from his colleagues on his crime syndicate,
and once at midnight for a hit, a frequency of 3 times per day. The cop’s narcolepsy is severe and regular,
however. During each spell he sleeps for twelve hours which is followed by six hours of wakefulness. Thus,
the cop begins his assignment Monday morning at 6:00am, binoculars in hand. At 8:00 he sees the boss
leave for breakfast, though at 11:00am he suffers a narcoleptic attack and sleeps until 11:00pm, during which
the mob boss meets with his colleagues. At midnight when the cop is awake, he sights the mob boss leaving
his apartment for a hit, though at 5:00am Tuesday morning the cop falls back to sleep, missing the mobster
leaving at 8:00am for his breakfast. In this way the cop’s beat progresses, and he misses the boss on Tuesday
altogether. His next sighting is Wednesday afternoon at 4:00, followed by Thursday at 8:00am, Saturday at
4:00pm, Sunday at 8:00am, and so on. Throughout a two week period, the cop makes only 9 sightings of the
boss leaving his apartment – a paltry 0.64 times per day on average. The mob boss’ 3.47× 10−5Hz activity
is aliased as 6.43 × 10−6Hz activity.

An undersampled image can be recognized by the appearance of analogous distortions in space as illus-
trated in Figure 2.6. On a discrete mesh smooth curves, for example, cannot be adequately represented and
appear jagged: some Fourier modes of curves exceed any sampling rate.



2.5. SAMPLING EFFECTS 11

Figure 2.6: Aliasing in digital images; diagonals and curves appear jagged

Suppose the image signal, rI(x, y, λ), is not bandlimited. Then, image signal frequencies above us/2 and
vs/2 are aliased as frequency components on the domain 0 ≤ u ≤ us/2, 0 ≤ v ≤ vs/2. For example, the
component of RI(u, v, λ) at us/2 + ∆u is aliased as a component at us/2−∆u in the digital image R(u, v).

The illegitimate contribution of RI(us/2+∆u,v, λ) to R(us/2−∆u, v, λ) is inseparable from the legitimate
component contributed by RI(us/2−∆u, v, λ) without prior knowledge of the image signal. Though filtering
the image signal before sampling can eliminate aliasing effects, we are not in a position to apply such a filter
in software restoration of a digital image.

Elimination with software from R(us/2 − ∆u, v, λ) of RI(us/2 + ∆u, v, λ) masquerading as RI(us/2 −
∆u, v, λ), comes with the risk of eliminating legitimate RI(us/2−∆u, v, λ) contributions with the illegitimate
RI(us/2 + ∆u, v, λ) contribution.

The severity of aliasing artifacts depends on the amplitude of image signal modes above half the sampling
rate. For example, let us suppose that aliasing artifacts are negligible if the sampling rate us is greater the
frequency at which the amplitude of the Gaussian is one-tenth its maximum. This imposes a restriction
on the Gaussian standard deviation, for the image signal amplitude is bounded by the impulse response
amplitude. In one dimension the Fourier transform of equation 2.14 is

H(u) =
1√
2π

e−
σ2u2

2 (2.31)

Our aliasing restriction is
1

10
√

2π
=

1√
2π

e−
σ2u2

s
2 (2.32)

which implies
σ = 2.14us (2.33)

Thus, as the sample spacing decreases (the sampling frequency increases) the standard deviation must
increase to maintain negligible aliasing.

We note two difficulties with a large standard deviation. First, a large standard deviation implies a lot
of blurring: in equation 2.15 we see that the breadth of the image of each point source increases with the
impulse response standard deviation. Second, a broad impulse response implies a poor signal-to-noise ratio
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(Fig 2.7): consider the one dimensional signal rs = δ(x1 − x). Its image is

rI(x) =
1

σ
√

2π
e

(x1−x)2

2σ2 . (2.34)

The signal at the charged-coupled device (CCD) is

r(0) =
1

σ
√

2π

∫ w/2

−w/2
dx e

(x1−x)2

2σ2 = erf
(
x1 − x

σ
√

2

)
(2.35)

where w is the width of the chip, centered at x = 0. The function erf(x) is the error function, monotonically
increasing with x. If n is the noise, then the signal to noise ratio is

SNR =
erf

(
x1−x
σ
√

2

)
n

. (2.36)

Thus, if the standard deviation increases, the signal-to-noise ratio decreases. Therefore, reduced aliasing
artifacts come at the cost of a reduced signal-to-noise ratio.

Figure 2.7: CCD SNR
The trade-off among signal-noise ratio, blurring, and aliasing: when the impulse response is broad, aliasing

is low but the signal SNR is low also.

We can recognize aliasing artifacts as distortions of smooth curves. Just as the narcoleptic cop observed
(illegitimate) 6.43 × 10−6Hz frequencies, we observe (illegitimate) spatial frequencies when the sampling
rate is insufficient. The human visual system is able to recognize these illegitimate contributions because
we have prior experience with smooth curves and their representation on a finite mesh. When we observe
a jagged line in an image we may recognize it as the representation of a diagonal or as a circle. Encoding
similar prior information into a computer program to make similar judgments is part of our goal.

We should augment the image formation described above with a noise term to represent errors in the
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data from sensor noise, etc. The image formed is

r(x, y) = h(x, y, λ) ∗ rs(x, y, λ) + n2(x, y). (2.37)

2.6 Reflectance and Abundance Domain Distortions

Note that h can be separated into two pieces, hxy(x, y) which blurs and samples in physical space (x and
y coordinates), and hλ(λ) which samples in wavelength space (λ coordinate): h(x, y, λ) = hxy(x, y) ∗ hλ(λ).
The image is

r(x, y) = hxy(x, y) ∗ hλ(λ) ∗ rs(x, y, λ) + n2(x, y). (2.38)

which, with the expansion 2.11

r(x, y) = hxy(x, y) ∗ hλ(λ)) ∗
[∑

i

msi(λ)αpi(x, y) + ns(x, y)

]
+ n2(x, y). (2.39)

hλ converts the msi from functions to vectors msi, while hxy converts the αi from functions to discrete
samples in space. Ergo

r(x, y) = hxy(x, y) ∗
[∑

i

msi(λ)αpi(x, y) + ns(x, y)

]
+ n2(x, y). (2.40)

and setting
αi(x, y) = hxy(x, y) ∗ αsi(x, y) (2.41)

we have
r(x, y) =

∑
i

msi(λ)αi(x, y) + n(x, y) (2.42)

where hxy(x, y) ∗ ns(x, y) + n2(x, y) = n(x, y). We note that hxy is responsible for spatial blurring and
aliasing; these artifacts thus appear in the abundance domain as well as in the reflectance domain. In the
spatial domain the image formation processes, equations 2.37 and 2.41, and thus their distortive effects,
differ only in noise.

2.7 Problem Statement

The sensor radiance samples are significantly distorted in the spatial domain: object signal features are
blurred by the impulse response and the resulting image signal is bandlimited and aliased by sampling.
Brightness edges, for example, appear as discretized gradients, and curves and diagonals are aliased.

Our primary requirement is an estimate of the object signal on a finer grid to distinguish signal details.
This implies the requirement to generate an image with the following characteristics:

I-1 location of edges and discrete features are refined: blurring, aliasing, and noise are reduced (Figure
2.8)

I-2 the Fourier domain of support is extended to [0, zuN ], [0, zvM ] for z > 1, and

The degree to which these requirements are met should be appropriately quantified and compared with the
results of an existing technique.
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Figure 2.8: Resampled reflectance imagery

In addition, information-significant features of the object signal should be highlighted with supplementary
images. Information-significant features may include such features as

II-1 boundaries between objects or materials (Figure 2.8),

II-2 the relative abundance of specified materials in each pixel, and

Figure 2.9: Resampled material abundance imagery: the building is highlighted in this image



Chapter 3

Model Inversion and Image

Reconstruction

Frequency content restoration is required wherever H(u, v)Rs(u, v) � R(u, v). With a well-defined image
formation model, restoration may be attempted by sensor model inversions. This approach, however, proves
problematic: at worst, the inverse impulse response is singular over the image frequency bands we aim to
restore; most often the impulse response is nearly zero over those bands, making its inverse sensitive to
aliasing and the quality of the noise model. The sampling function is always singular; if a zero sits on bands
that we want to restore, the restoration is impossible by inversion.

3.1 Spectral Unmixing

If a resolution cell contains n materials, then we assume the mean reflectance is a linear combination of their
individual reflectances

r(x, y) = r1α1(x, y) + r2α2(x, y) + . . . rnαn(x, y) (3.1)

or in matrix notation
r(x, y) = mα(x, y). (3.2)

If the reflectivity spectrum ri of each of the materials is known, then the abundance of each material may
be estimated by inverting equation 3.2. That is materials may be detected and identified based upon their
diagnostic spectral responses (9). The inversion, called unmixing, is a valuable means of displaying image
data (10), while reducing the volume of data.

From the data r(x, y) we can recover abundance maps:

α(x, y) = m−1(r(x, y) − n(x, y)) (3.3)

This treatment is merely schematic because m may not be invertible.

With pseudo-inversion formalism we can estimate the abundance maps:

r(x, y) = mα(x, y) + n(x, y) ⇒ mT r(x, y) = mTmα(x, y) + mTn(x, y) (3.4)

15
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The matrix mTm is invertible so we have

mTmα(x, y) = mT (r(x, y) − n(x, y)) (3.5)

⇒ α(x, y) = (mTm)−1mT (r(x, y) − n(x, y)). (3.6)

To improve unmixing performance, we may generalize the unmixing operator by using the Mahalanomis
distance, dm, to rescale length in λ-space:

d2 = (ri) − r̄i)TV−1
ij (rj − r̄j) (3.7)

where Vij is the covariance between the ith and jth bands and where r̄i is the mean in the ith band. With
this metric, distances are short when the covariance is large. Thus, pixels which previously may have been
identified as one material are now identified as another whose covariance is larger. The corresponding
unmixing matrix is replaced:

(mTm)−1mTm → G = (mTV−1m)−1mTV−1 (3.8)

We estimate the abundances by computing

α(x, y) = G(r(x, y) − n(x, y)). (3.9)

Spectral unmixing separates various regions of an image into different bands. This process identifies
targets which may have previously been hidden in various reflectance bands (Figure 3.1). By identifying these
targets, however, edges are introduced. Edges, as always, are the source of difficulty in image resampling.

Note that equations 2.38 and 2.41 imply that the spatial distortions induced into the reflectance domain
by the image formation process are similar to those induced into the abudnace domain; they differ only in
noise. As a result, the techniques we develop for one will be applicable to the other. The interpolants and
energy functionals associated with one will be suitable for the other. Therefore, we designate samples ψ(x, y)
and develop our techniques with this notation. Both r and α are vectors, and so, ψ is a vector.

In analogy with equations 2.38 and 2.41, the samples are derived from their corresponding signal, in the
obvious way:

ψs(x, y) = h(x, y) ∗ ψ(x, y) + n(x, y) (3.10)

with the auxiliary condition
|ψ| = 1 if ψ = α. (3.11)

The Fourier domain representation is

Ψ(u, v) = H(u, v)Ψs(u, v) + N(u, v). (3.12)

3.2 Model Inversion and Underdetermination

When the imaging system is bandlimiting, object signal reconstruction is underdetermined; the image signal
frequency content is restricted to 0 ≤ u ≤ us/2, 0 ≤ v ≤ vs/2. These restrictions are imposed by the
convolution of the object signal with the impulse response and by the sampling function. Restoration of the
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Figure 3.1: From a reflectance image (top) abundance images may be derived (bottom three panels). The
distribution of water in the scene is depicted in panel 2; brightness of each pixel indicates the abundance of
the water in that area

object signal may be attempted by inverting the image formation model, 3.12.

Ψs(u, v) = H−1(u, v)[Ψ(u, v) −N(u, v)]. (3.13)

If H is zero for any frequency we wish to construct, equation 3.13 implies a division by zero. As a result,
some authors claim that signal reconstruction from bandlimited systems is impossible (11).

Alternatively, we can interpret the consequences of equation 3.13 differently: we recognize that equation
3.13 supports an infinite family of solutions beyond the bandlimits – we need only pick the right one! The
non-invertability of the image formation function does not imply that ψs does not exist beyond the passband;
it implies that we cannot invert H to find the solution. As an alternative, we seek a solution by using the
information below the cutoff frequency and with a priori information.

Hunt (12) notes, however, that “the statement that division by zero prevents inferring information about
[Ψs] is equivalent to restricting the solution for [Ψs] in terms of linear systems that can be implemented as
Fourier filters. However, there are many rationales for the estimation of [Ψs] that do not have a Fourier
implementation... there is another facet to success in the recovery of information beyond the diffraction limit
cut-off, namely the presence of information below the diffraction limit cut-off that is directly related to the
information above the cutoff”.

Before proceeding to Fourier mode restoration, we note that the impulse response may be inverted: we
may attempt to de-blur the image before restoring its Fourier modes. The mathematical ability to apply
deblurring effects is afforded by the existence of the inverse impulse response at all frequencies. We will see,
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however, that there are practical obstacles which interefere with deblurring methods.

3.3 Impulse Response Deconvolution

In response to requirement I-1, impulse response deconvolution may be attempted first by specifying a noise
model n̂ and subtracting it from the digital image (equation 3.10),

ψ(x, y) − n̂(x, y) = h3(x, y, λ)h1(x, y) ∗ ψs(x, y, λ) + n(x, y) − n̂(x, y). (3.14)

If n̂ is a very good noise model then

n(x, y) − n̂(x, y) ≈ 0 ∀(x, y), (3.15)

so we have
ψ(x, y) − n̂(x, y) = h3(x, y, λ)h1(x, y) ∗ ψs(x, y, λ). (3.16)

Now, operating on the left side of equation 3.16, by h−1
1

h−1
1 (x, y) ∗ [ψ(x, y) − n̂(x, y)] = h−1

1 (x, y) ∗ h3(x, y, λ)h1(x, y) ∗ ψs(x, y, λ). (3.17)

In the absence of noise and aliasing artifacts h3(x, y, λ) and h1(x, y)∗ commute,

h3(x, y, λ)h1(x, y)∗ ≈ h1(x, y) ∗ h3(x, y, λ) (3.18)

which implies
h−1

1 (x, y) ∗ [ψ(x, y) − n̂(x, y)] = h3(x, y, λ)ψs(x, y, λ). (3.19)

Equation 3.19 is an estimate of the object signal satisfying requirement I-1, pending the legitimacy of
approximations 3.15 and 3.18.

The approximations presented above, however, are often poor: the noise model may be globally good
but locally poor; where noise or aliasing appears h1∗ and h3 do not commute. These errors are compounded
by the sensitivity of the inverse impulse response: wherever h1 is small, its inverse is large, as in the highest
frequency bands. If the difference r(x, y)− n̂(x, y) is large and if the difference r(x, y)−n(x, y) is small, then
this error is amplified. Similarly, aliasing artifacts are amplified by the inverse impulse response.

Maximum entropy is a famous approach to image deconvolution. In this technique, the solution is sought
by extracting much information from an image as is justified by its signal–to–noise ratio. In doing so, targets
which have have been blurred by the impulse response are restored to their original compact versions. Errors
in the noise model and aliasing artifacts receive the same treatment, however, and are restored as legitimate
signal features.

3.4 Image Resampling

Image resampling is a means of rendering the model inversion problem well-defined by specifying additional
prior information. The role of this information is synthesis of Fourier modes beyond the passband of the
imaging system; additionally this information may encode means of reducing aliasing, blurring and noise.
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The reciprocity between a signal’s sample spacing, X and its sampling frequency, us,

Xus ∝ 1, (3.20)

implies that as we extend its frequency content, we confine its position estimate. Formally, data resampling
is the process of transforming a collection of data ψ0 with sample spacings X0 and Y 0 to a collection of data
ψ with sample spacings X = X0/z and Y = Y 0/z. If 0 < z < 1, then the process is called decimation; if
z > 1 and if the source data are fixed,

ψ(xi, yi) = ψ0(xi, yi) (3.21)

at all low-resolution grid points (xi, yi), then the process is called interpolation. We refer to equation 3.21 as
the interpolation constraint. When we interpolate an image, then, we make no attempt to correct the source
data ψ located at the grid points: we use them as fixed reference points to determine the coefficients in an
interpolating function. We label those techniques in which z > 1 and in which the interpolation constraint
is not enforced super-resolution techniques.

In what follows, we identify the source data – the digital image – with a superscript, ψ0; resampled data
are denoted by ψ.

3.4.1 Conservation

We postulate a conservation rule: ∑
R

ψ(x, y) =
∑
R

ψ0(x, y) (3.22)

This condition stipulates that the radiance or abundance of a region must be conserved during the resampling
process, where ψ is an estimate of ψs. For example, if a low-resolution pixel in band i, α0

i (x, y) = 0.4 is split
into four, αi(x + 1

2z , y + 1
2z ), αi(x− 1

2z , y + 1
2z ), αi(x + 1

2z , y − 1
2z ), and αi(x− 1

2z , y − 1
2z ), then we require

αi(x +
1
2z

, y +
1
2z

) + αi(x− 1
2z

, y +
1
2z

)

+αi(x +
1
2z

, y − 1
2z

) + αi(x− 1
2z

, y − 1
2z

) = 0.4 (3.23)

The conservation of ψ may be required to ensure that the final image resembles the source data.

3.4.2 Interpolation

Conventional approaches to the image resampling problem are interpolation techniques. From the source
data ψ0, interpolation estimates ψ as approximations of ψs at non-grid points by assuming a functional
relationship among the data. As an example, consider a polynomial approximation of one band, ψ0

j , of ψ0

at (x, y):
ψj(x, y) ≈ a00 + a01x + a10y + a11xy + . . . amnx

myn

The coefficients aij are computed with ψ0
j . After establishing values for the coefficients, ψj(x+ ∆x, y + ∆y)

can be evaluated.

By imposing a functional relationship among the data, sufficient prior information has been supplied to
render the image restoration problem well-defined. This does not grantee that this formulation is an adequate
representation of the inverse sampling function. Moreover, interpolation makes no attempt to address noise,
aliasing artifacts, and blurring: interpolation treats these as negligible effects.
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Optimal Linear Interpolation

When the data sampling rate meets or exceeds the Nyquist criterion, the image signal is determined by its
samples. According to E. T. Whittaker (13), (7) in one dimension the image signal is

ψ(x) =
∞∑

n=−∞
ψ0(x)

sinπ/X(x− nX)
π/X(x− nX)

(3.24)

Optimal linear interpolation gives us a means of recovering the image signal h1 ∗ ψs = ψI because
it simulates h−1

3 for critically sampled or oversampled signals. The signal ψs is yet undetermined. For
undersamped signals, optimal linear interpolation is of little use. As we have seen, the impulse response is
not bandlimited and so the image signal is undersampled. We consider other interpolants in the following.

Bilinear Interpolation

We might assume that the spatial variation of a scene’s reflectivity is sufficiently small that the apparent
reflectivity at one point is linearly related to the measured data. In this case, we approximate ψs(x+∆x, y+
∆y) by a linear function of the samples ψ0(x, y).

Given gridded data ψ0(xi, yj), ψ0(xi+1, yj), ψ0(xi+1, yj+1), and ψ0(xi, yj+1), we may estimate data at
nongrid points: we make the following assignments:

x = xi + ∆x ψ1 = ψ0(xi, yj)
y = yj + ∆y ψ2 = ψ0(xi+1, yj)
t = x−xi

xi+1−xi
ψ3 = ψ0(xi+1, yj+1)

u = y−yj

yj+1−yj
ψ4 = ψ0(xi, yj+1)

The linearly interpolated value is

ψ(x + ∆x, y + ∆y) = (1 − t)(1 − u)ψ1 + t(1 − u)ψ2 + tuψ3 + (1 − t)uψ4.

Because the high frequency power of the bilinear interpolation kernel is meager, it has limited success in
restoring high frequency image content. To improve this approach we can augment the interpolatory function
from linear to polynomial, whose high frequency kernel power depends on the polynomial order.

Polynomial Interpolation

A polynomial interpolatory kernel offers an arbitrarily high power spectrum. Noting that a polynomial of
degree N requires N +1 points in the neighborhood of ψ0(x, y) to set the coefficients Press et al (14) author
a polynomial of the form

P (ψ)(x) =
(x− x2)(x− x3) . . . (x− xN+1)

(x1 − x2)(x1 − x3) . . . (x1 − xN+1)
ψ1 +

(x− x1)(x− x2) . . . (x− xN+1)
(x2 − x1)(x2 − x3) . . . (x2 − xN+1)

ψ2

+ . . .
(x− x1)(x− x2) . . . (x− xN )

(xN+1)(xN+1 − x2) . . . (xN+1 − xN )
ψN (3.25)

in one dimension. To interpolate with this polynomial in two dimensions one could interpolate along rows,
then along columns.

While polynomial interpolation may supply arbitrarily high power over any frequency band (provided
we’re willing to implement a polynomial interpolant of arbitrarily high order), it does not adequately treat
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image degradation by the imaging system. Moreover, interpolation does not address the constraints, equa-
tions 2.12 and 3.22.

To properly treat image degradation by the imaging system, we need to relieve the interpolation con-
straint, equation 3.21, and re-estimate the source data. We will, however, require an alternate constraint.

3.4.3 Super-Resolution

Among the alternate approaches to resampling is Bayesian inference. In this regime, the conditional proba-
bilities of two states, ψs and ψ are related by Bayes’ Theorem,

P (ψ0|ψs)P (ψs) = P (ψs|ψ0)P (ψ0) (3.26)

Thus, we can estimate the probability of an image signal ψs, given sample ψ0:

P (ψs|ψ0) =
P (ψ0|ψs)P (ψ0)

P (ψs)
(3.27)

To evaluate this probability, we require a model of the probabilities P (ψs) and P (ψ0) and an assessment of
P (ψ0|ψs). With these models we can calculate the most likely state ψs giving rise to ψ0 by maximizing 3.27.

Yet another approach to the resampling problem is energy minimization. We suppose that ψ0 and ψs are
the initial and final states, respectively, of a system, ψ. Associated with the system is an energy E which is
minimized in seeking the final state given the initial conditions. We have the differential equation

∂E

∂ψ
= −dψ

dt
with ψ(t = 0) = ψ0 and ψ(t → ∞) = ψs (3.28)

The restoration problem is reduced to formulating an appropriate energy functional of the system. Data
evolution according to equation 3.28 is called gradient descent.

We deliberately use the ambiguous term ‘system’ because we treat energy minimization as dynamics which
can be assumed by a variety of physical systems. We will explore several physical systems that provide insight
into the dynamics we employ. We will find that at various stages of development our dynamics resemble
diffusion of gas in a room, data propagation in a neural network, or the evolution of soap bubble.

Shape-based Methods

Interpolation techniques such as polynomial interpolation, outlined above, are described by Morse and
Schwartzwald (15) as “fitting the function” methods. As an alternative, “fitting the geometry” methods
have been proposed. In these techniques, low resolution image geometry is measured and used as a guide
for the resampling. The essential feature of these techniques, claim Morse and Schwartzwald, is the use of
“visually-significant geometric properties, not function-analytic properties of the image”.

The approach of Alleback and Wong (16) is to estimate sub-pixel edge locations, then to use these
estimates to guide a modified bilinear interpolation scheme. They estimate sub-pixel edge locations by first
calculating an edge map with a centre-on surround-off filter. To determine the edge map on the fine mesh
they linearly interpolate the filter output between points on the low resolution mesh. Using this map, they
determine which pixel centers are separated by an edge. If two pixels are separated by an edge then they
resample the image with one of these pixels values adjusted, rather than with the recorded pixel value. They
have found that artifacts appear during their process which they mitigate by imposing auxiliary constraints
on the resampling process.
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To employ image geometry for resampling Carrato et al (17) introduce an interpolant based on a non-
linear mean of a pixel’s neighbourhood. As opposed to Allebach and Wong’s approach, Carrato’s technique
incorporates edge estimates directly into the interpolant. Both techniques, however, introduce a nonlinearity
into a conventional linear interpolant.

We note that the methods of Allebach and Wong and of Carrato et al treat the restoration problem as
an interpolation problem, whereby the source data are not corrected.

Perhaps a natural means of exploiting image geometry is to evolve all data by a differential equation.
Doing so, we can subject all data to evolution, guided by intensity gradient measurements. In particular we
may evolve an image ψ(x, y) according to

∂ψ

∂t
= ∇2ψ. (3.29)

This is the diffusion equation. It minimizes the difference between pixel values, and thus smoothes an image
(Figures 3.2 and 3.3).

Figure 3.2: Time sequence of data diffusion: image defects are diffused away. If diffusion continues, then all
image features are lost

If, for example, ψ(−2X) = 0.75, ψ(−X) = 0.75, ψ(x) = 0, ψ(X) = 0.25, and ψ(2X) = 0.25, are values
of pixels at time t, we compute ∇2ψ(x = 0) by discretizing the derivative,

∇ψ(x) =
ψ(x + X) − ψ(x−X)

2X
x̂ (3.30)

where x̂ is the normal in the x-direction. Then

∇2ψ(x) =
∇ψ(x + X) −∇ψ(x− ∆X)

∆X
x̂ · x̂ (3.31)

and we have

∇2ψ(x) =
ψ(x+2X)−ψ(x)

2X − ψ(x)−ψ(x−2X)
2X

2X
(3.32)

with X = 1 this implies

∇2ψ(x) =
1
4
[ψ(x + 2X) − 2ψ(x) + ψ(x− 2X)] (3.33)
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and in this case,

∇2ψ(0) =
1
4
[0.25 − 2 × 0 + 0.75] = 1.0. (3.34)

Now, discretizing the time derivative in equation 3.29,

dψ

dt
≈ ∆ψ

∆t
(3.35)

We have
∆ψ(x) = ∇2ψ(x)∆t (3.36)

If ∆t = 0.1, then with result 3.34 we have
∆ψ(0) = 0.1 (3.37)

and therefore ψ(x) is incremented from 0 to 0.1. It will continue to be incremented until it reaches 0.5;
if it exceeds 0.5 then ∆ψ will be negative and it will return toward 0.5. The outcome of this resampling
resembles bilinear interpolation, except that noise is suppressed.

Figure 3.3: Object signal (panel 1), digital image (panel 2), polynomial resampled digital image (panel 3),
diffusion resampled image (panel 4). Note that noise and aliasing are mitigated by diffusion, in contrast
with interpolation

We find benefit in data diffusion when we subject all data, including the source data, to equation 3.29.
Doing this, we have the opportunity to correct noise and other image formation artifacts. Noise, for example,
is smoothed and deleted.

To see why we’ve selected the Laplacian rather than the gradient, consider a noisy pixel at location
(x, y) on an otherwise flat background. Presumably, the pixel should be set to the background value by
the evolution scheme we pick. However, the intensity gradient at (x, y) is zero, and in fact, would remain
zero if the right hand side of equation 3.29 read |∇ψ|. To see this, note that the four adjacent pixels have
nonzero, equal gradients. Each of these pixel values would be equally increased toward the value of the noisy



24 CHAPTER 3. MODEL INVERSION AND IMAGE RECONSTRUCTION

pixel; with this symmetric increase, the gradient at (x,y) remains zero. In contrast, the Laplacian at (x, y)
is nonzero and the noisy pixel is adjusted toward the background value under diffusion.

To fully justify the diffusion equation we begin by relating the image energy to its smoothness

E1 =
1
2

∑
(x,y)∈I

[
(ψi(x + X, y) − ψi(x, y))

2 + (ψi(x, y + Y ) − ψi(x, y))
2
]
, (3.38)

In addition, we will need energy functional terms to halt the evolution

E2 =
1
2

∑
(x,y)∈I


1 −

∑
j

ψj(x, y)




2

, (3.39)

and conservation,

E3 =
1
2

∑
R∈I


 ∑

(x,y)∈R
ψ0
i (x, y) −

∑
(x,y)∈R

ψi(x, y)




2

(3.40)

where I refers to the image spatial domain, and where R is a subset of the image domain. We have denoted
the source data by ψ0.

Each energy term is a measure of the state of the image: the first term, equation 3.38, is a measure of
image smoothness. The second term, equation 3.39, measures the departure of a pixel from unit norm. The
third term, equation 3.40, measures the degree to which reflectance or abundance is locally conserved. The
region R is the area assigned to a low-resolution pixel. Because unit normalization is a requirement only of
abundance image pixels, the coefficient a2 should be nonzero only when the image is an abundance image.

As an example of a conservation energy measurement, consider the abundance band, α0
i (x, y), of the ith

material. Suppose the abundance in this band obtains the value 0.4 on the course grid. Resampling to a
finer grid is the process of splitting this pixel into several pixels, say four, αi(x−X, y−Y ), αi(x+X, y−Y ),
αi(x − X, y + Y ), αi(x + X, y + Y ), We’ll call the original pixel the parent pixel and the new pixels the
children. If at some point during the resampling process the children have the values αi(x−X, y−Y ) = 0.2,
αi(x+X, y−Y ) = 0.1, αi(x−X, y +Y ) = 0.1, and αi(x+X, y +Y ) = 0.2, then conservation energy in this
band is

E3 = [α0
i (x, y) − αi(x−X, y − Y ) − αi(x + X, y − Y )

−αi(x−X, y + Y ) − αi(x + X, y + Y )]2

= [0.4 − 0.2 − 0.1 − 0.1 − 0.2]2

= 0.04

(3.41)

which is not a minimum. The minimum of this energy term is 0, which is achieved when the sum of the
children equals the parent pixel.

To proceed, we move to the continuous model, noting that the difference ψ(xi, y)−ψ(xi+1, y) in equation
3.38 is the discrete form of the derivative of ψ in the x−direction, with X = 1:

ψi(x + X, y) − ψi(x, y) =
∂ψ

∂x
(3.42)

ψi(x, y + Y ) − ψi(x, y) =
∂ψ

∂y
. (3.43)
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Then,

E1 =
1
2

∑
(x,y)∈I

[(
∂ψ

∂x

)2

+
(
∂ψ

∂y

)2
]

(3.44)

We replace the sums by integrals, ∑
I

→
∫ ∫

I

(3.45)

Thus, we direct the flow by evaluating the Energy gradient, equation 3.28.

3.4.4 Diffusion

Our energy terms are

E1 =
1
2

∫ ∫
I

dxdy

[(
∂ψ

∂x

)2

+
(
∂ψ

∂y

)2
]

(3.46)

E2 =
1
2

∫ ∫
I

dxdy


1 −

∑
j

ψj




2

(3.47)

E3 =
1
2

∑
R∈I


∫ ∫

R

dxdyψ0 −
∫ ∫

R

dxdyψ




2

(3.48)

With this model, the energy of the image at any time during the reconstruction is

E[ψ] = a1E1[ψ] + a2E2[ψ] + a3E3[ψ]. (3.49)

The coefficients a1, a2, and a3 determine the relative priority of the smoothness, normalization, and con-
servation terms. The compromise among smoothness, normalization, and conservation is directed by these
coefficients. To super-resolve reflectivity images, we set a2 = 0; to super-resolve abundance images we ensure
0 < a2 < 1.

Differentiating our smoothness term with respect to ψ according to 3.28 we have

∂Es[ψ]
∂α

=
1
2

∫ ∫
D

dxdy

[
∂

∂ψ̃

(
∂ψ

∂x

)2

+
∂

∂ψ

(
∂ψ

∂y

)2
]

(3.50)

=
∫ ∫

D

dxdy

[
∂2ψ

∂x2
+

∂2ψ

∂y2

]
(3.51)

where we’ve treated the derivatives as follows:

∂

∂ψ

(
∂ψ

∂x

∂ψ

∂x

)
= 2

∂2ψ

∂x2
(3.52)

The derivative operator,
∂2

∂x2
+

∂

∂y2

is the Laplacian operator, ∇2.
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Differentiating the normalization term gives

∂E2

∂ψ
=

∫ ∫
I


1 −

∑
j

ψ


 ≡ −∆nψ (3.53)

where
∑

j = 1. Finally, differentiating the conservation term gives

∂E3

∂ψ
= −

∑
R∈I


∫ ∫

R

dxdyψ −
∫ ∫

R

dxdyψ


 ∫ ∫

R

dxdy ≡ −∆3ψ (3.54)

We have set the high resolution pixel size to 1: the region R is the area occupied by a single low-resolution
pixel, whose area is

∫ ∫
R dxdy = z2.

Thus, we have the differential equation for each pixel

∂ψ

∂t
= a1∇2ψ + a2∆2ψ + a3∆3ψ (3.55)

Equation 3.55 is an the diffusion equation where the abundance constraints operate as a source. If the
coefficients a2 and a3 are zero then the data evolve analogously to the gas in a room or the temperature on
a conducting plate. If a2 and a3 are nonzero then the dynamics resemble a plate with points maintained at
constant temperature.

3.4.5 Diffusion in Nature

Consider a collection of gas molecules in a room (18). Let us suppose that the gas is not in equilibrium so
that the number of molecules per unit volume, ψ, is not constant, ψ = ψ(x). The molecules will diffuse until
they reach an equilibrium state where ψ is constant. The flux J of molecules through a surface is defined as
the number of molecules passing through that surface per unit area per unit time (Figure 3.4). We expect
that the flux should be proportional to the concentration gradient:

J = −a1∇ψ(x) (3.56)

J(x) J(x+dx)

Figure 3.4: Diffusion of a gas. The rate of diffusion of molecules through a side of the enclosure depends on
the concentration gradient.
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In particular, consider a square in two dimensions aligned with coordinates x and y The face aligned
perpendicular to the x-axis has thickness dx and length L. The number of molecules contained in that face
is nLdx where n is the number of molecules per unit area; the rate of change of this number is the total flux
through the surface at x minus the flux through the surface at x + dx:

∂

∂t
(ψnLdx) = nLJx(x) − nLJx(x + dx) (3.57)

We Taylor expand the second term on the right side to first order:

Jx(x + dx) ≈ Jx(x) +
∂Jx
∂x

dx (3.58)

giving
∂

∂t
(nLdx) = nLJx(x) − nLJx + nL

∂Jx
∂x

dx = nL
∂Jx
∂x

dx (3.59)

with the x-component of equation 3.56,

Jx = −a1
∂ψ

∂x
, (3.60)

equation 3.59 implies
∂

∂t
(ψdx) = −a1

∂2ψ

∂x2
. (3.61)

In general,
∂ψ

∂t
= −a1∇2ψ. (3.62)

Equation 3.62 is called the diffusion equation; the coefficient a1 is called the coefficient of self-diffusion.

3.4.6 Curvature Flow

Edges are not well preserved in the diffusion of data by application of equation 3.55. As a solution we include
a coefficient to inhibit diffusion across edges. The equation of motion is

∂ψ

∂t
= a1∇ · (s∇ψ) + a2∆nψ + a3∆cψ (3.63)

where

s(x, y) =

{
1 if |∇ψ| < φ

0 otherwise
(3.64)

for some appropriate choice of φ. We note that if the gradient is sufficiently high, then s is 0; when the
gradient is low the coefficient is 1. That is, only features of magnitude φ guide the diffusion (19).

To guide the diffusion by all features in the image we replace s with the inverted gradient magnitude.
The super-resolution will be directed by the gradient at each point in the image. Equation 3.63 becomes

∂ψ

∂t
= a1∇ ·

( ∇ψ

|∇ψ|

)
+ a2∆nψ + a3∆cψ (3.65)

We explicitly compute the derivatives below:

∇ ·
( ∇ψ

|∇ψ|

)
=

∇ · ∇ψ|∇ψ| − ∇ψ · ∇|∇ψ|
|∇ψ|2 (3.66)
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In 2D Cartesian coordinates with the abbreviations

∂ψ

∂x
= ψx

∂ψ

∂y
= ψy (3.67)

∂2ψ

∂x2
= ψxx

∂2ψ

∂y2
= ψyy (3.68)

we have
∇ψ = ψxx̂ + ψy ŷ, (3.69)

∇ · ∇ψ = ψxx + ψyy, (3.70)

|∇ψ| =
[
ψ2
x + ψ2

y

] 1
2 , (3.71)

and
∇|∇ψ| =

[
ψ2
x + ψ2

y

]− 1
2 [(ψxψxx + ψyψxy)x̂ + (ψxψxy + ψyψyy)ŷ] , (3.72)

with
ψxy = ψyx.

Equations 3.69 - 3.72 imply

∇ψ · ∇|∇ψ| =
[
ψ2
x + ψ2

y

]− 1
2

[
ψ2
xψxx + 2ψxψyψxy + ψ2

yψyy
]

(3.73)

and
∇2ψ|∇ψ| = [ψxx + ψyy]

[
ψ2
x + ψ2

y

] 1
2 .. (3.74)

We rewrite equation 3.74 as

∇2ψ|∇ψ| = [ψxx + ψyy]
[
ψ2
x + ψ2

y

]
.
[
ψ2
x + ψ2

y

]− 1
2 .. (3.75)

Substituting equations 3.73 and 3.75 into equation 3.66 we have

∇ ·
( ∇ψ

|∇ψ|

)
=

ψxxψ
2
y − 2ψxψyψxy + ψyyψ

2
x[

ψ2
x + ψ2

y

] 3
2

≡ κ. (3.76)

κ is called the curvature of ψ (Figure 3.5). We have, then,

dα̃

dt
= a1κ + a2∆2ψ + a3∆3ψ (3.77)

A surface evolving according to equation 3.77 is said to be undergoing (constrained) curvature flow1. A
white square subject to curvature flow is depicted in Figure 3.6. If we set ∆2ψ(x, y) = ∆3ψ(x, y) = 0, the
evolution is unconstrained curvature flow

3.4.7 Curvature Flow in Nature

If we model the interaction potential between molecules in an ensemble by the Morse potential,

U(x) = a[1 − e−bx]2 (3.78)

1The expression for curvature in (15), appearing there as equation 2, is incorrect. It should read as equation 3.76
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digital image image gradient curvature image

Figure 3.5: Geometric quantities – gradient and curvature

Figure 3.6: Time series of curvature flow: the shape collapses as time proceeds

then the force between molecules is attractive at large distances and repulsive at short distances. As a
result, molecules on the boundary of the ensemble experience a net force directed to the interior. Until the
net force acting on a molecule is zero, it will continue to move, resulting in a depopulation of molecules on
the boundary; the molecules on the surface experience surface tension because their average separation is
increased.

Parameterize the surface of the ensemble by ψ; the pressure on the surface is proportional to the surface
tension and the curvature of the surface κ,

P (ψ(x)) = γκ(ψ(x)). (3.79)

The pressure is also the force per unit area:

P (ψ(x)) = f(ψ(x))/A (3.80)

Equations 3.79 and 3.80 imply
f(ψ(x))/A = γκ(ψ(x)). (3.81)



30 CHAPTER 3. MODEL INVERSION AND IMAGE RECONSTRUCTION

According to Newton, the total force is the mass m times the acceleration,

f(ψ(x)) = ma
∂2ψ(x)
∂t2

(3.82)

The mass of an element of the surface is the area mass density ρ times the area

m = ρA (3.83)

so we have
f(ψ(x)) = ρA

∂2ψ(x)
∂t2

. (3.84)

Equations 3.81 and 3.84 imply
ρa(ψ(x)) = γκ(ψ(x)) (3.85)

which implies
∂2ψ(x)
∂t2

=
γκ(ψ(x))

ρ
. (3.86)

The velocity is the anti-derivative,

∂ψ(x)
∂t

=
da(ψ(x))

dt
=

∫
γκ(ψ(x))

ρ
+ C. (3.87)

For short times, the surface tension, curvature, and mass are approximately constant giving

dψ(x)
dt

=
γκ(ψ(x))

ρ
∆t (3.88)

where we’ve set the constant C to zero because we start with a system at rest. Equation 3.88 is curvature
flow with a1 = γ∆t/ρ. Curvature flow is the dynamics of a volume of fluid with surface tension, such as a
raindrop or a soap bubble.

Curvature flow is exhibited by a variety of physical systems: for example, grain growth in metal is directed
by curvature. There, molecules on the boundary of a grain have higher potential energy than those on the
interior (20) (21). With higher potential energy on the surface, the grain has a surface tension and is subject
to curvature flow as it grows.

3.4.8 Curvature Flow Phenomenology

The curvature flow evolution described by equation 3.77 is designed to inhibit smoothing where edges may
appear. That is, diffusion is low where the gradient is high. With these dynamics, diffusion on either side of
an edge may take place, while the edge, itself, is sharpened. To see how an edge may be enhanced, consider
a straight edge cutting across an image (Figure 3.7). On one side of the gradient, call it side 0, where the
value is low the diffusion is influenced, for the most part, by the data on side 0. Those pixels at the low end
of the gradient are reduced in value to the mean of side 0. The pixels on the other side of the gradient, call
it side 1, where the values are, high have little influence on the diffusion taking place in side 0 on account of
the factor of 1/|∇ψ| in the definition of curvature. This edge enhancement, then, resembles deblurring.

To see this in another way, note that the curvature κ is a measure of the flux density of a vector field
B = ∇ψ. Now, reconsider the edge discussed above. In particular, consider a point x0 at the midpoint of
the gradient: to calculate the flux of B, i.e. the curvature at x0, center an infinitesimal Gaussian box on
x0. The flux through the faces perpendicular to B are equal and opposite; the flux through each remaining
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side is zero. The mean flux through the surface of the box – zero – is the curvature at x0. The flux density
of B at points not on the midpoint of the gradient is nonzero. Consider a second point located not at the
midpoint of the gradient: the flux through the face of the Gaussian box nearest the midpoint of the gradient
is greater than the flux through the farthest face. Only when the mean value on the two faces is equal and
opposite does the diffusion halt.

Figure 3.7: Curvature calculation; see section 3.4.8 for description

We find additional benefit in the curvature flow dynamics. Consider a point a the center of curved edge,
that is, a point in a non-uniform vector field B. The flux density through sides of the Gaussian box oriented
perpendicular to B are unequal; the flux through each remaining side is zero. Therefore, the curvature
at that point is nonzero; the result is that the gradient sharpens and migrates. Until the edge is locally
straight, i.e. until B is locally uniform, diffusion takes place. Therefore, aliasing artifacts on a straight
edge are minimized, as the vector field nears uniformity. If the curve is closed, B is never uniform so the
curve collapses under its own curvature. In this way, noise is removed. However, all image features are
deleted unless auxiliary constraints are imposed. The auxiliary constraints balance the curvature flow force
to make shape representation as geometrically economical as possible. This phenomenology is summarized by
Grayson’s Theorem(22): any non-convex curve will collapse to a circular point under unconstrained curvature
flow. The equilibrium surface resulting from constrained curvature flow is one of minimum curvature. Feature
representation is, then, as achieved with the least possible perimeter; for example a curve would be as non-
jagged as possible.

By inhibiting diffusion across high gradients, the resampling process is guided by the geometry supplied
by the image signal samples. With these cues the image is pulled up by its own bootstraps: the prior
information is, in part, extracted from the data, so the resampling is adaptive.

We find one difficulty with curvature flow. Suppose the image is a disk with the value 0 on the disk
and 1 elsewhere. Then, the normal on the boundary of the disk points outward and the curvature on the
boundary is positive. Therefore, the boundary will move inward. On the other hand, if the interior of the
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Figure 3.8: Correction of aliasing by curvature flow

disk is 1 and the exterior is zero, then the disk will grow (Figure 3.9).

Figure 3.9: Geometrically equivalent features may undergo opposite dynamics

This has been treated by Malladi and Sethian by the introduction of a switch. In contrast with the
auxiliary constraints employed by Allebach and Wong, for example, we will see that the introduction of the
switch is natural: it leads us to a neural network interpretation of the dynamics.

3.4.9 Curvature Flow Switching

Curvature flow data evolution suffers a deficiency: the direction of curvature flow depends on intensity. For
instance, suppose we have only two materials in the scene. A region of abundance 1 in one of the abundance
maps corresponds to a region of abundance 0 in the other map. This region in each map should collapse
to the same shape. Under curvature flow, however, the shape will evolve in one direction in one map, and
in another direction in the other map. The opposite dynamics are a consequence of the sign (positive or
negative) of the curvature measurement. Where it is positive in one map, it may be negative in the other.
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To encourage geometrically equivalent shapes to evolve in the same direction, regardless of intensity,
Malladi and Sethian introduce a curvature flow switch as follows: if µr(x, y) denotes the average of pixel
values in a neighborhood or radius r centered on pixel (x, y) then we replace the first term on the right side
of equation 3.77 by the following:

Fκ(κ, µr, φ) =

{
min(κ, 0)∇ψ ifµr(x, y) < φ

max(κ, 0)∇ψ otherwise
(3.89)

for some choice of φ. We note the inclusion of the gradient-dependent velocity factor ∇ψ. With this inclusion,
pixel adjustments are largest when the gradient is high, and directed according to the sign of the gradient.
However, adjustments are made independently of the difference µr(x, y) − φ.

By incorporating a dependence on the difference µr(x, y)−φ we might encourage the system to focus on
a solution when the difference is minimized. That is, when the difference is small, adjustments should be
small, when the difference is large, adjustments may be large.

If we generalize Malladi and Sethian’s curvature flow switch we will recover neural network-esque dy-
namics. Our contribution is this generalization: first we note that we can use the step function S to rewrite
the switch. Note

a if p < q

b otherwise

}
= S(q − p)a + S(p− q)b (3.90)

where

S(x) =

{
1 if x > 0
0 otherwise

(3.91)

so we have

Fκ(κ, µr, φ) =

{
min(κ, 0)∇ψ if µr(x, y) < φ

max(κ, 0)∇ψ otherwise
= S(φ− µr(x, y)) min(κ, 0)∇ψ + S(µr(x, y) − φ) max(κ, 0)∇ψ

(3.92)

Note that the step function is the limit of the sigmoid S:

lim
β→∞

S(β, x) = lim
β→∞

1
1 + e−2βx

= S(x) (3.93)

Denoting the sigmoid by S(β, u), the finite temperature switch is

Fκ(κ, µr, φ, β) = S(β, µr − φ) max(κ, 0)∇ψ + S(β, φ− µr) min(κ, 0)∇ψ. (3.94)

With finite β, the switch is fuzzy and the dynamics are

dψ

dt
= a1Fκ(ψ, µr, φ, β) + a2∆nψ + a3∆cψ (3.95)

These are the dynamics of a modified Hopfield Neural Network (23). The value of φ determines the degree
to which a pixel’s neighborhood influences its evolution. When φ is near zero, the neighborhood dictates, in
part, the magnitude of the adjustment to a pixel.
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3.4.10 Neighborhood Switch

Tatem et al have designed an energy functional term for abundance image resampling. Their switch adjusts
the value of a pixel by measuring the average abundance in its neighborhood: if the average is high, then
the adjustment is positive, if the average is low then the adjustment is negative. They have demonstrated
its effectiveness in reconstructing discrete targets in abundance imagery.

In addition the generalization of Malladi and Sethian’s we find a similarity between their work and
Tantem’s. In what follows we illustrate this similarity, and suggest modifications to their approach.

Instead of the first term in equation 3.95, Tatem et al use

Fα(α̃, µr, β) =
1
2

[1 + tanhβ(µr − 0.5)] [α(x, y) − 1] +
1
2

[1 − tanhβµr]α(x, y). (3.96)

We can express this in terms of the sigmoid:

tanh(x) =
ex − e−x

ex + e−x
(3.97)

so that
1
2
(1 + tanh(x)) =

ex

ex + e−x
= S(x) (3.98)

and
1
2
(1 − tanh(x)) =

e−x

ex + e−x
= S(−x) (3.99)

Then
Fα(α, µr, β) = S(β, µr − 0.5)(α− 1) + S(β,−µr)α (3.100)

In analogy to the curvature flow switch, we introduce the gradient dependent velocity factor ∇α to
improve the convergence rate:

Fα(α, µr, β) = S(β, µr − 0.5)(α− 1)∇α + S(β,−µr)α∇α (3.101)

We now have two resampling techniques, the curvature flow switch and the neighborhood switch. The
first was derived from a smoothness energy term. We saw that this smoothness energy implied dynamics
governed by the diffusion equation. This was modified by inhibiting diffusion across regions of high gradient,
yielding the dynamics of curvature flow. In making this modification, the resampling was now guided by
known image geometry; the prior information was extracted from the image so the system was, in this sense,
adaptive. Two further modifications ensued: the first was the inclusion of a switch to direct the evolution
according to shape, rather than intensity; the second was a generalization of the switch designed to allow
finer adjustments to pixel values when a solution was near, while retaining coarse adjustments far from
a solution. This generalization was equivalent to casting the dynamics into a neural network in which a
neuron’s response is the fuzzy switch.

3.4.11 Neural Interpretation

Energy minimization may be interpreted as the dynamics of a Hopfield Neural Network (24), (25). Artificial
neural networks are arrangements of processing units (neurons) connected to their neighbours. Artificial
neural networks2 are structures designed to harness the information processing capabilities of biological
neural networks (26).

2‘artificial neural network’ is commonly abbreviated to ‘neural network’
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Each neuron receives input from one or more of its neighbors. The total input, pi, to a neuron is a linear
combination of the input, ψj from each of its neighbours:

pi = Ti1ψ1 + Ti2ψ2 + . . . Tipψp (3.102)

where there are p neurons and where the matrix T is symmetric and with Tii = 0. The output, ψi of the ith

neuron is a function of its input. In early models of neural activity this function was the step function,

ψi = S(pi) =

{
1 if pi > φ

0 otherwise
(3.103)

for an appropriately chosen φ. In later models the sigmoid was chosen,

ψi = S(hi) =
1

1 + e−2βhi
(3.104)

where β is called the pseudotemperature of the neuron. The step function is the infinite pseudotemperature
limit of the sigmoid (Figure 3.10).

Figure 3.10: Sigmoid at various pseudotemperatures: when the psuedotemperature is infinite, the sigmoid
is identical to the step function

A neuron at position xi, initialized to ψ0 is updated to S(pi) upon receiving total input pi from all other
neurons:

ψ0 → S(pi) (3.105)

Instead of computing the new neural value S(pi) by summing all weighted neural inputs a là equation 3.102
we assume

S(pi) = ψ0 +
dψ0

dt
. (3.106)

We calculate the derivative with the use of an energy functional.
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Figure 3.11: Traditional Hopfield Neural Network (panel 1) and the neural interpretation of the fuzzy switch,
equation 3.94 (panel 2).

Hopfield introduces an energy, E, associated with the network

E = −1
2

∑
i,j

Tijψiψj + E∆(ψ) (3.107)

where E∆ is an energy associated with a conserved “charge” on the network. With an energy function of
this form he demonstrates that the energy decreases in time toward a stable state: “the convergence of the
neuronal state of the continuous, deterministic model to its stable state is based on the existence of an energy
function that directs the flow in state space” (25). By specifying an energy functional, we set the network
weight matrix Tij (equation 3.107) and we can be certain that the network will evolve toward a minimum
of the energy functional.

According to Hopfield,
dψ

dt
= −∂E

∂ψ
. (3.108)

According to equation 3.106, then, a neuron is updated to

S(pi) = ψ0 − ∂E

∂ψ
. (3.109)

Thus, the process of passing data among neurons is the process of computation in a neural network: “Useful
computations in this system involve the change of state of the system with time.”

Further, Hopfield notes a dependence on the transfer function S, “When the response is less steep, the
continuous-response model can have fewer stable states.” Thus, when the transfer function is mild, the
number of spurious minima is reduced. We expect an advantage, then, when the finite temperature sigmoid
is used rather than the step function.

We make two observations: first, the step-neural response S is reminiscent of the curvature flow switch.
Second, the replacement of the step function with the sigmoid lead to fewer spurious minima in the neural
network energy function. This suggests that replacing the curvature flow switch with a sigmoid could lead
to improvements in the curvature flow performance.

When we don’t know the network weight matrix T we need a means of calculating it. Often networks
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are trained on collections of data in order to set the elements of the matrix. Various techniques have been
proposed for the training regime, such as back-propagation (23). Our super-resolution technique uses a
hard-wired network; i.e. we know the connection matrix and it doesn’t change. The connection strengths
are the coefficients in the discretized curvature calculation.



Chapter 4

Tests and Methods

To evaluate the performance of the neural network resampling techniques presented in Chapter 3 we have
used a testing procedure designed to measure the network performance relative to a conventional resampling
technique.

Our choice of a representative from the group of conventional techniques is directed by two issues. First,
in most cases of interest the image signal has not been sampled at the Nyquist rate. Also, we aim to restore
Fourier content which has been damped by impulse response convolution. For these reasons, optimal linear
interpolation is inapproprate. Second, we select a standard resampling technique with a track-record of good
performance for most applications, polynomial interpolation.

In this chapter we describe the tests we used to characterize the performance of the super-resolution
techniques presented in Chapter 3. We describe network operational modes, test, and standards of evaluation.

We adopt the following testing procedure:

A Select object signal

B Prepare image samples

C Select resampling technique, set parameters, and resample image signal data

D Measure network preformance

The object signal has been simulated by a collection of data with sample spacings X and Y . The image
samples have been created by subjecting the object signal to a simulated sensor response; the image signal
then had sample spacing zX and zY . The resampling technique may be either a conventional interpolation
technique or a neural resampling technique; the paramters are set as appropriate. The resampled image signal
has sample spacings X and Y . Our measures of performance will be comparisons between the resampled
image signal and the object signal. In what follows we discuss each of the steps in this testing procedure.

4.1 Object Signal

Our object signal may be a reflectance signal or an abundance signal, where |;α| = 1. In each case we test
artificial and sensor-derived imagery. The object signal options are

A-1 Artificial reflectivity object signal, ψ = r (Figure 4.1, panel 1)

A-2 Sensor-derived reflectivity object signal, ψ = r, (Figure 4.2, panel 1)

38
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A-3 Artificial abundance object signal, ψ = α, (Figure 4.1, panels 2 and 3)

A-4 Sensor-derived abundance object signal, ψ = α. (Figure 4.2, panels 2, 3, and 4)

Figure 4.1: Arificial reflectance image (panel 1) and abundance images (panels 2 and 3).

Figure 4.2: Sensor-derived reflectance image (top) and abundance images (panels 2,3, and 4).
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4.1.1 Image Signal Samples

The image signal samples are derived from the object signal by simulating a sensor response. Our model for
the impuse response is a Gaussian,

h1(x, y) = N exp
(
− x2

2σ2
x

− y2

2σ2
y

)
. (4.1)

where N is chosen so that the Gaussian is normalized to 1. We parametrize the noise as

n = kn̂ (4.2)

where n̂ is a random number between 0 and 1, and k is a constant between 0 and 1.
We will test resampling performance with z = 3 by varying the parameters σy and k independently. We

index the stage of testing by the number n = 1, . . . 10; the sensor model options are

B-1 σx = 0.5, σy = n/5, k = 0.10

B-2 σx = 0.5, σy = 0.5, k = n/20

We select these ranges because they span the range of reasonable impulse response standard deviation and
noise ranges: the impulse response standard deviation cannot be zero and rarely exceeds twice the ground
sample spacing; noise cannot be negative, and rarely exceeds 50%. In method B-1, then, the standard
deviation in the x-direction is fixed at 0.5, the noise coefficient is fixed at 0.10, while the standard deveiation
in the y-direction varies from 0.0 to 2.0. Similarly, in method B-2 the standard deviations are fixed at 0.5
while the noise varies from 0.05 to 0.5. Now, we specify which resampling technique is to be used.

4.2 Resampling Techniques

Resampling may be carried out by conventional interpolation techniques or by the neural techniques. We
identify each of these possibilities as steps in the testing procedure.

The general data evolution model is

dψ

dt
= a1Fκ(ψ, µr, φ, β) + a2∆nψ + a3∆cψ. (4.3)

We have the luxury of selecting the remaining parameter values, a1, a2, a3, φ, and β. We require that
a1 + a2 + a3 = 1. Also, we select a2 �= 0 only when we resample abundance data. As above, we parameterize
the tests by n. For reflectivity signals we must set a2 to zero for abundance signals we tested the role of the
normalization cofficient a2:

C-1 polynomial interpolation, with polynomial order 3

C-2 a1 = n/10, a2 = 0, a3 = 1 − a1, φ = 0.5, β = 5.0

C-3 a1 = 0.4, a2 = 0.6n, a3 = 0.6 − a2, φ = 0.5, β = 5.0

C-4 a1 = 0.4, a2 = 0, a3 = 0.6, φ = 0.1n, β = 5.0

C-5 a1 = 0.4, a2 = 0, a3 = 0.6, φ = 0.5, β = n

Tests C − 4 and C − 5 have been conducted to assess the roles of β and φ



4.3. PERFORMANCE MEASURES 41

4.3 Performance Measures

In this section we introduce the quantities which have been measured in evaluating the algorithm perfor-
mance.

The mean-squared error is a measure of the confidence that a resampled image accurately represents the
object signal. The peak signal-to-noise ratio is a means of assessing the quality of an image independent
of its intensity: a restored image may appear very dim relative to its object signal, yeilding a high mean-
squared error. The peak signal-to-noise accounts for the scale of the image intensity to provide a meaningful
assessment of the image information content.

Mean-squared error and peak signal-to-noise ratio do not accurately characterize the quality of edge
restoration. Image sharpness is a description of the quality with which edges are represented; it is most
easily measured in the spatial frequency domain where a measure of the signal-to-noise ratio at any frequency
can be made. A signal to noise ratio measurement at a frequency u characterizes the quality with which
1/u-wavelength features have been restored across the entire image.

4.3.1 Spatial Domain Assessment

We measured the mean-squared error of the restored image ψ(x, y) relative to the object signal ψs,

e =
1

MN

N−1∑
n=0

M−1∑
M=0

[ψs(x, y) − ψ(x, y)]2 (4.4)

where the image has M rows and N columns. The mean-squared error depends on the image intensity scale;
the Peak Signal-To-Noise Ratio is a standard characterization of the image quality, independen of intensity.

In the Frequency (Fourier) Domain we may characterize the performance of the fuzzy switch at any
specified frequency. Thus we, we have a means of assessing the performance of the switch in restoring fine
image details by measuring the signal-to-noise ratio in the highest spatial frequencies.

D1-1 Peak Signal-to-Noise Ratio avoids the dependence of the measure of image quality on intensity
range by scaling the measure according to the maximum datum, s:

PSNR = −10 log10

ems
s2

. (4.5)

D1-2 Frequency Domain Signal-to-Noise Ratio: Let d be the difference image, d(x, y) = ψs(x, y) −
ψ(x, y) and let D be the Fourier Transform of d. The power of d on the annulus in the frequency
domain, Ri ≡ ri ≤

√
u2 + v2 < ri+1, is

Pd(Ri) =
1

π(r2
i+1 − r2

i )

∫ ri+1

ri

∫ 2π

0

r2drdθ|D(r, θ)|2. (4.6)

Similarly,

Pψ(Ri) =
1

π(r2
i+1 − r2

i )

∫ ri+1

ri

∫ 2π

0

r2drdθ|Ψ(r, θ)|2. (4.7)

The signal-to-noise ratio over Ri is

SNRRi =
Pψ(Ri)
Pd(Ri)

. (4.8)

where r and θ are polar coordinates in the Fourier Domain.
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Note that the frequency domain signal to noise ratio is not a logarithmic scale: because it is a quotient
the frequncy domain signal to noise ratios may achieve very large values when the difference image intensiy
is small. We should expect, therefore, to see large values on occasion. The frequency domain signal to noise
ratio is a quotient of powers and is, therefore, unitless.

4.3.2 Additional Measurements

Additional observations were made to characterize the neural network. We take not of the following:

D2-1 Final State is the the state of the network - the image - when the absolute values of the difference
between successive measurements of the mean-squared error is less than a tolerance, ε.

D2-2 Convergence is achieved if the system reaches a final state

D2-3 Stablility is achieved if the system converges and if the convergence is monotonic.

4.4 Performance Standards

We define the terms ‘excellent’, ‘good’,‘satisfactory’, and ‘poor’ as follows: if the PSNR (or frequency domain
SNR) of a Hopfield–resampled image is a, and if the PSNR (frequency domain SNR) of a polynomial–
resampled image is b then define the quotient

r =
a

b
.

This quotient characterize the relative performance of the Hopfield network:

excellent good satisfactory poor
r > 1.0 [0.8,1.0) [0.8,0.6] <0.6

Table 4.1: Image reampling measures of peformance. For example, if the network PSNR is 1.0 times
polynomial PSNR, or higher, then the performance is excellent
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Results

Testing has been carried out in order to assess the performance of various of network configurations under
reasonable variations in the sensor model. With the results we can anticipate and network performance
when sensor model details are unknown. In this chapter we summarize the results of the testing sequences.
At the end of the chapter several resampled images are displayed (Figures 5.7 and 5.8).

The figures which follow depict the fuzzy switch-to-polynomial performance ratio versus impulse response
standard deviation, noise, normalized spatial frequency, time, and various neural parameters, The alternating
grey and white bands denote regions of performance standards; the uppermost white band in each figure,
for instance, represents excellent performance.

5.1 Sensor Model Variation Response

5.1.1 Reflectance Imagery

Impulse Response Width Variation

In artificial imagery we observed a decrease in performance ratio with an increase in the impulse response
width, illustrated in Figure 5.1a. This implies that as aliasing decreases and blurring increases, relative
performance decreases; that is, as aliasing increases, the advantage of the switch increases. The performance
is excellent even at its lowest point where σy = 2.0.

Fourier domain measurements indicate excellent performance in most bands when resampling artificial
imagery. The trend at low standard deviation (σy = 0.2, Figure 5.1c) is repeated at moderate (σy = 1.0,
e) and high standard deviation (σy = 2.0, g): most frequency bands receive excellent treatment; the upper-
mid frequency bands (normalized wavelength range of 12 - 15) have consistently lower performance ratio.
These measurements indicate that broad features and fine details of the artificial image have been restored
effectively. Only features on the order of 10 pixels in breadth are not treated adequately.

The decrease in performance ratio as impulse response breadth increases is repeated in sensor-derived
imagery (b). The magnitude of the decrease is, again, on the order of 0.015. We note that the performance
ratio obtains about the same values in artificial and sensor-derived imagery.

The frequency domain trend in sensor derived imagery at low standard deviation (d), is repeated in
moderate (f), and high (h) standard deviations: nearly all features are recovered well. The performance
ratio is much greater than 1.0 in many bands; only in mid-upper bands have we observed less-than-excellent
performance. Spikes consistently appear among the performance ratio troughs in the mid-frequency bands.

43
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Figure 5.1: Impulse response width dependence: reflectance imagery

As observed in the artificial imagery, the performance ratio decreases as the impulse response breadth
increases, consistent with the measurements indicated in graph (b).
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We attribute the low performance ratio in the upper-mid frequencies to the regularization effects of
diffusion: when the gradient is low, diffusion dominates. When the variations are on the order of 10 pixels,
the diffusion is sufficiently strong to penetrate the gradient; those regions are illegitimately regularized. In
contrast the only gradient in low-frequency regions is noise, and regularization by diffusion is appropriate.
In high frequency regions, the gradient is sufficiently high to inhibit diffusion.

Noise Variation

As depicted in Figure 5.2a, the performance ratio when resampling artificial reflectance imagery increases
as noise increases. The increase is on the order of 0.03. This suggests that noise removal by curvature flow
is effective. The advantage of the fuzzy switch over polynomial resampling increases with increasing noise.

We have observed excellent artificial image Fourier mode restoration except in upper-mid frequencies;
there the performance is poor. This trend, indicated in Figure 5.2c, is repeated as the noise level increases
(graphs (e) and (g)). This trend implies that fine image details are effectively restored; features roughly of
size 10 pixels are not well-restored. In addition, large features are restored well, as indicated by the lowest
modes.

A monotonic increase in performance ratio as noise increases was observed when resampling sensor-derived
imagery (Figure 5.2 (b)). As with artificial imagery, this indicates that the fuzzy switch offers increasing
advantage as noise increases.

This increase in the performance ratio is echoed in the Fourier domain measurements of graphs d, f, and
h. At only a few modes is the performance ratio below one; at most mode the ratio is in the neighborhood
of three. The greatest advantage was observed in the highest bands, implying that fine details are restored
well (relatively) amidst high noise.

5.1.2 Abundance Imagery

Impulse Response Width Variation

As indicated in Figure 5.3a, performance is consistently excellent in PSNR performance ratio measurements.:
there is an advantage over polynomial resampling as indicated by the peak signal-to-noise ratio – a global
image quality measurement. The monotonic decrease with increasing impulse response width implies greatest
advantage is observed at high aliasing and low blurring. This advantage decreases by 0.04 as the width
increases from 0.2 to 2.0.

The Fourier domain measurements exhibit an enormous advantage in many bands, most notably in the
highest frequencies. This implies that fine detail reconstruction is superb.

A similar trend in PSNR performance ratio measurements is observed in sensor-derived abundance im-
agery resampling: the performance is always excellent, with a monotonic decrease in the performance ratio
as aliasing decreases and blurring increases. The change in the performance ratio is about 0.1.

Fourier domain measurements made on the sensor-derived abundance images as impulse response width
increases (Figure 5.3d, f, and h) indicate that the fuzzy switch offers advantage over polynomial resampling
in all bands except the zero mode. This advantage persist as with width increases; the greatest advantage
is observed in the highest Fourier modes. Again, this implies that the fuzzy switch is excellent at restoring
fine image details.
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Figure 5.2: Noise dependence: reflectance imagery

Noise Variation

Measurements on artificial abundance imagery (Figure 5.4a) indicate that the performance was consistently
excellent; the performance ratio increased by about 0.02 as noise increased. Though this indicates consistently
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Figure 5.3: Impulse response width dependence: abundance imagery

excellent performance, the trend as noise increases is somewhat irradic.

Artificial abundance image Fourier domain measurements indicate excellent performance in majority of
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bands (Figure 5.4c, e, g). We observe the greatest performance ratio in the highest bands, indicating excellent
detail restoration. The performance ratio in low and moderate frequency modes is lower. We observe this
trend as blurring increases/aliasing decreases, though the advantage in each Fourier band decreases as
blurring increases. We note, also, that the performance in the mid-bands is somewhat irradic.

In contrast with other noise tests, we have observed a decrease in the performance ratio with increasing
noise When resampling sensor-derived abundance imagery. The decrease amounts to about 0.03, though
this decrease is irradic. We attribute this behaviour to irregular image geometry: as curvature is not well-
corellated spatially, it does not serve as an adequate guide for resampling.

Fourier domain measurements indicate that the performance ratio is excellent in all bands except the
zero mode. Again, this indicates that fine details are restored well by the fuzzy switch. This trend persists
as noise increases (graphs d, f, and h).

5.2 Neural Characterization

5.2.1 Reflectance Imagery

Figure 5.5, graphs a and b depict the increasing performance ratio versus time when resampling artificial
and sensor-derived reflectance imagery. The increase in performance ratio with time indicates an increasing
PSNR and decreasing mean-squared error. The time series is monotonic on the range [0,30] iterations, with
a final state typically reached after about 40 iterations. On occasion, instability occurred in preliminary tests
when the time step was set very large. In addition, the conservation term played a role in creating instability
by conflicting with the fuzzy switch; the conflict occasionally induced oscillations until the stepsize or a3 was
decreased.

Graphs c and d depict the dependence on the coefficient of self-diffusion a1. Both indicate a maximum
near a1 = 0.4, suggesting that conservation plays a role in improving performance. This improvement in
performance, we note, is achieved when the time step is sufficiently small (0.1). The role of the conservation
term and its influence on instability deserves further study.

Graphs e and f indicate dependence on the global neural bias φ. The dependence is weak with no clear
trend: observations e indicate greater values of φ give higher performance ratio while observations f indicate
lower values of φ give higher performance ratio. We make no conclusions and direct the reader to variable
neural bias, as discussed by Malladi and Sethian, for further development options.

Graphs g and h indicate dependence on neural pseudotemperature; here, too, the dependence is modest
with no clear trend. The absence of significant dependence on pseudotemperature indicates little advantage
in replacing step function with sigmoid. That is, we observe little performance advantage in moving to
a neural regime. The neural regime, however, has highlighted a relationship between Malladi’s work and
Tatem’s work.

5.2.2 Abundance Imagery

We have observed excellent performance throughout the entire time series when resampling artificial and
sensor-derived abundance imagery. The time series we have observed are monotonic in the vast majority of
cases, as indicated in Figure 5.6a and b. A final state is typically reached within 45 iterations, such as in
graph b. Instability occurred when the time step was large: the fuzzy switch conflicted with conservation
and normalization terms, inducing oscillations
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Figure 5.4: Noise dependence: abundance imagery

Graphs c and d indicate maximum performance ratio is achieved when the normalization term is in
the neighborhood of 0.1. Normalization thus appears to be an important constraint in evolving abundance
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Figure 5.5: Neural characterization: reflectance imagery

imagery. However, very strong normalization conflicts with fuzzy-switch: oscillations we have observed in
the time series led to growing errors.
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Graphs e and f indicate a weak dependence on global bias, with no clear trend in improved performance.
The variable neural bias suggested by Malladi and Sethian may be investigated as a possible improvement
to the technique,

Graphs g and h indicate very weak dependence on pseudotemperature. Little performance benefit ob-
served on 0 < β ≤ 10. Therefore, the neural regime offers little performance increase. That is when the
sigmoid is smooth, we see no consistent improvement in the performance ratio.
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Figure 5.6: Neural characterization: abundance imagery
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Figure 5.7: Rome

Figure 5.8: Vienna



Chapter 6

Discussion

6.1 Summary

We summarize the main components of the fuzzy switch resampling technique:

• Image geometry guides resampling by measuring image curvature. In curvature flow, the adjust-
ment to a pixel depends on the local image curvature; image curvature, in turn, is computed by making
gradient measurements. Curvature, however, is insufficient to guide the resampling

• The curvature flow switch directs the flow because image geometry is not properly assessed by
curvature measurements. The direction of curvature flow depends on the sign of the curvature; thus,
geometrically equivalent shapes may evolve in opposite directions.

• The fuzzy switch is the curvature flow switch cast into the neural regime. In an attempt
to avoid spurious minima, we promoted the step function in the curvature flow switch to the sigmoid
– a model of the neural response. Doing so, we found a similarity between the work of Malladi and
Sethian and of Tatem et al.

We have seen that the image reconstruction problem is underdetermined as a result of the singular
sampling function. Image formation artifacts such as blurring, aliasing, and noise complicate the problem.
To render the resampling/restoration problem well-defined, we need to supply prior information. Prior
information in convention techniques is a functional relationship imposed on the data: in many conventional
techniques, we describe the recorded data by function fitting, and resample the image by evaluating the
function at the fine mesh points.

An alternative method, adopted in this thesis, is to employ image geometry to guide the resampling. Early
models guided the resampling by the image gradient. In those cases, adjustments to a pixel we proportional
to the Laplacian of the image intensity; this approach was equivalent to simulating data diffusion. Noise
and aliasing were treated as defects in the image gradient and were diffused away; the diffusion was halted
by employing auxiliary constraints.

Later models emerged when diffusion was inhibited across regions of high gradient, where an edge was
suspected. In doing so, the diffusion was anisotropic – the curvature flow dynamics. Curvature flow tech-
niques were promising for resampling and restoration for several reasons: Fourier modes were synthesized as
diffusion took place on either side of a gradient, while the gradient sharpened as a result of mean curvature
minimization; blurring was treated by Grayson’s theorem – regions collapse to their minimum area allowed
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by the auxiliary constraints; local diffusion treated noise; and aliasing was treated as planar mean curvature
was minimized.

Curvature flow suffers at least one problem: geometrically equivalent shapes may evolve in opposite
directions. The direction of the flow depends on the sign of the gradients. Malladi and Sethian have
introduced a switch to encourage geometrically equivalent shapes to evolve identically. We found that we
can make sense of their technique by casting the switch into a neural framework with the use of the sigmoid.
In doing so, we found that their switch resembles the work of Tatem et al. The similarity between these
techniques suggests future improvements and courses of research.

We have tested the fuzzy curvature flow switch to evaluate its performance relative to polynomial resam-
pling. Because polynomial interpolation is common with adequate performance, it has served as a suitable
standard of comparison. We have found that the performance of the fuzzy switch is consistently excellent
relative to polynomial resampling.

• Global image quality is excellent in all tests. It was assessed by measuring the peak signal-to-noise
ratio of fuzzy switch resampled and polynomial resampled images. The advantage of the fuzzy switch
it typically a minimum of 10% over polynomial resampling in PSNR.

• Image details are restored as indicated by image quality measurements in the highest Fourier bands.
The greatest advantage of the fuzzy switch was frequently observed in the highest Fourier modes. This
implies that edged and discrete features are effectively restored by the fuzzy switch.

• Convergence toward a final state is rapid, usually on the order of 45 iterations. In comparison,
Tatem et al quote several thousand iterations required to reach a final state. Instabilities may occur
in any iterative technique: when the time step is too large, the system may not reach a minimum
and oscillate. We have observed such oscillations in this programme; the auxiliary constraints have
occasionally induced oscillations in the system.

• Artifact are effectively treated: we observed that the fuzzy switch offers greatest advantage when
image formation artifacts are severe. We conclude that the phenomenolgy of curvature flow plays an
important role in restoring images.

6.2 Recommendations

Future work may be directed in at least one of at least two directions: one may further study the performance
of the switch as presented in this thesis, or one may investigate improvements to the switch. Performance
studies may include the following:

• the results in this thesis may be supported by other tests,

• the range of parameter (β, φ, neighborhood size) testing may be extended or studied in finer detail,

• the role of the conservation and normalization terms in inducing oscillations,

• a detailed performance comparison between the fuzzy switch and Tatem’s switch,

• the role of the switch in halting the evolution, and

• different iterative and non-iterative implementations of the technique

Further research and development may include
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• devising a generalized switch, thereby establishing a concrete relationship between Malladi’s work and
Tatem’s work,

• improvements to the fuzzy switch or the neighborhood switch, such as symmetrization, variable neural
bias, gradient-dependent velocity factors, etc., and

• implementing learning regimes.



Appendix A

Sensor Radiance Model

The radiant intensity of the sun is its flux Φ per unit solid angle ω (3)

I =
dΦ
dω

. (A.1)

If the sun emits light equally in all directions, then the radiant intensity is constant on the surface of any
sphere enclosing the sun. The radiant intensity is independent of the distance between the sun and the
surface of the sphere. The flux per unit area, the irradiance,

E =
Φ
A

(A.2)

where A is the area of the sphere, depends on the distance between the sun and the sphere. Noting that
r2dω = dA we have

dΦ
dω

= r2 dΦ
dA

(A.3)

and
I = r2E. (A.4)

I.e. the radiant intensity is the angular density of radiation, while the irradiance is the angular density scaled
by the distance separating the distance to the surface.

The radiance L describes the radiant intensity per unit are on the sphere; it depends on the brightness
of the sun and the separation between the sun and the surface of the sphere. It is defined by

L⊥ =
dI

dA
(A.5)

In general, the radiance on a surface oriented at an angle θ1 relative to the wavevector is

L =
dI

dA cos θ1
(A.6)

The signal recorded by the sensor is the radiance from the sun reflected off the earth and subject to
extinction by the atmosphere. The total extinction depends on the optical thickness, τ , of the atmosphere
and the pathlength through the atmosphere. If the atmosphere is uniform with a thickness t then the direct
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radiance at the earth’s surface is

Le(x, y, λ) = LT (x, y, λ)e−τ(λ)t sec θ1 . (A.7)

The reflectivity of the surface is defined as the ratio of the reflected (pixel-leaving) radiance to the incident
radiance

r(x, y, λ) =
Lp(x, y, λ)
Le(x, y, λ)

(A.8)

This implies that the contribution L1 of this direct reflection to the sensor radiance is

L1(x, y, λ) = r(x, y, λ)Le(x, y, λ)e−taut(λ) sec θ2 (A.9)

where θ2 is the zenith angle of the satellite.

In addition, the environmental surrounding on the surface contribute the sensor radiance. The sensor
radiance is modeled at the contributions of eight components(27):

1 The direct solar radiation reflected from the pixel,

L1(x, y, λ) = r(x, y, λ)Le(x, y, λ)e−τ(λ)t sec θ2 (A.10)

2 The solar radiation scattered downward and reflected from the pixel

L2(x, y, λ) = r(x, y, λ)F (x, y, λ)Ld(x, y, λ)e−τ(λ)t sec θ2 (A.11)

where Ld is the downwelling radiance onto the pixel from skylight and where F is the fractional size
of the sky

3 solar radiation scattered upward into the sensor aperture

L3(x, y, λ) = Lu(x, y, λ) (A.12)

4 emitted radiation from the pixel at an emissivity of εp,

L4(x, y, λ) = Lbb(x, y, λ)εp(x, y, λ)e−τ(θ)t sec θ2 (A.13)

where Lbb(x, y, λ) is the blackbody radiance at wavelength λ

5 radiation emitted by the atmosphere downward and reflected upward contributes an amount
proportional to the solid angular size of the sky and the reflectivity of the earth,

L5(x, y, λ) = r(x, y, λ)FLd(x, y, λ)e−tau(λ)t sec θ2 (A.14)

6 radiaton emitted by the atmosphere upward into the sensor aperture,

L6(x, y, λ) = Lbb(x, y, λ)εa(x, y, λ) (A.15)

where εa is the emissivity of the atmosphere
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7 solar radiation reflected from the background into the pixel,

L7(x, y, λ) = (1 − F )Lb(x, y, λ)e−τ(λ)t sec θ2 (A.16)

8 radiation emitted by the background and reflected from the pixel

L8 = (1 − F )ε(x, y, λ)rLbbλe−τ(λ)t sec θ2 (A.17)

Altogether, the sensor radiance is

Ls = rLee
−τt sec θ2 + rFLde

−τt sec θ2 + Lu + Lbbεpe
−τt sec θ2

+rFLde
−τt sec θ2 + Lbb(Ta)εa + (1 − F )Lbe−τt sec θ2 + (1 − F )εrLbb(Tb)e−τt sec θ2 (A.18)

This equation is linear in Le; we abbreviate it as

Ls(x, y, λ) = c(λ)rp(x, y, λ)Le(x, y, λ) + n1(x, y, λ) (A.19)
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