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Abstract

Digital elevation models (dems) provide the basic information required to charac-

terise the topographic attributes of terrain. The primary derived topographic pa-

rameters associated with DEMs are slope and aspect. Slope and aspect can be

used to calculate other significant topographic parameters such as upslope area and

topographic index. The topographic index, in turn, can be used by distributed hy-

drological models, such as Topmodel, to characterise the spatial distribution of

terrain. Many algorithms have been developed to calculate slope, aspect and ups-

lope area from dems - specifically from gridded dems - but little work has gone into

determining the uncertainty in these parameters, or the effect of this uncertainty in

further applications. The accuracy of these parameters is dependent both on the

algorithm used to generate them, and on the errors associated with the dem itself.

Since it is almost impossible to model all the errors associated with a given slope,

aspect or upslope area algorithm, and since a dem is normally only provided with

a single rms error, simple error propagation is not adequate to determine the er-

ror associated with the derived topographic parameters. A more rigorous method

of determining the effect of dem errors on derived topographic parameters is with

statistical analysis using Monte Carlo simulation and error realisations of the dem.

In this research, a comparison of slope, aspect, upslope area, and topographic index

algorithms are presented along with an examination of how errors in dems effect the

reliability of the derived topographic parameters. The effect of errors in the derived

topographic parameters on the Topmodel hydrological model is also examined.
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Chapter 1

Introduction

Digital elevation models (dems) model the elevation of terrain as a function of geo-

graphic location. As such, they provide the basic information required to characterise

the topographic attributes of terrain. dems are typically represented in two formats:

contour maps, where the surface is represented by lines of constant elevation at

regular intervals; or point heights, where the surface elevation is sampled on a ei-

ther a regular or irregular basis. The choice of a dem format is dependent on the

application, ease of analysis and, of course, on the availability of data.

The main topographic parameters derived from dems are slope and aspect. Slope

and aspect represent the downhill surface, in the sense that they are the magnitude

and direction of the vector tangent to the downhill. While the definitions of slope

and aspect are fairly straightforward, the actual calculation of these variables is not.

Difficulties arise in trying to model a specific element of a terrain surface from a

model of a terrain surface. Because of the problems associated with deriving slope

and aspect from dems, many algorithms have been developed to estimate these
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surface descriptions.

Topographic information such as slope and aspect can be utilised by many ap-

plications. Since the spatial routing of water over terrain is strongly dependent on

the shape of the downhill surface, one such application is distributed hydrological

modelling. Hydrologically, slope is an indication of the amount of gravitational en-

ergy available to drive water flow, hence it influences the rate of water flow. Aspect,

which defines the slope direction, can be used to determine the direction of water

flow, which is the information required to determine other hydrologically significant

variables such as upslope area (Zevenbergen and Thorne, 1987). Upslope area, as

the name implies, delineates the total area upslope of a given location, which is an

indication of how much water can flow through the location. From a hydrological

standpoint, the effectiveness of a slope and especially an aspect calculation is de-

termined by how accurately upslope area can be resolved. Like slope and aspect,

there are different algorithms available for the calculation of upslope area, which are

essentially dependent on the choice of algorithm used to calculate slope and aspect.

The slope, along with the upslope area (A), can be used to calculate a parameter

known as the topographic index (ln(A/slope)). The topographic index reflects the

spatial distribution of soil moisture, surface saturation and runoff generation pro-

cesses, hence it is one of the parameters used in distributed hydrological modelling.

Topmodel is one such distributed hydrological model that uses surface topography,

in the form of the topographic index, along with soil properties to predict the distri-

bution of soil moisture and runoff (Beven and Kirkby, 1979). It uses the assumption

that the spatial distribution of the topographic index approximates the spatial dis-

tribution of the depth to the water table in a watershed. Hence any variations
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in the calculation of the topographic index will effect the outcome of the model’s

predictions.

Variations in the output of hydrological models that use parameters derived from

dems suffer from uncertainty not only in the models used to generate the dems

and the derived parameters, but also in the error associated with the original data

itself. dems are normally accompanied with an estimate of accuracy, usually in the

form of a root mean square (rms) error. This error should be taken into account

when deriving topographic parameters and when applying these parameters, but in

most cases it is not. There have been a few studies that have looked at the effect

of errors in dems on derived topographic parameters (Fisher, 1991b,a; Lee et al.,

1992; Veregin, 1997; Holmes et al., 2000), but generally, dems and their derived

topographic parameters are treated as exact values. This can be a very questionable

practice, since error can have a dramatic impact on expected results.

If all the sources of error associated with a dem and with the algorithms used

to derive the topographic parameters were known, the propagation of error through

topographic parameters and hydrological models could be done using analytical error

propagation. The difficulty arises in the errors associated with the assumptions

inherent to the algorithms of the topographic parameters. It is almost impossible

to model all the errors associated with a given algorithm, therefore a simple error

propagation is not adequate to represent the error of values derived from a dem

with associated error. The effect of error in a dem on its derived parameters is

best determined with statistical analysis using Monte Carlo stimulation and error

realisations of the dem (Veregin, 1997).
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1.1 Research Objectives

The primary objective of this research is to look at exactly how model and data

uncertainty affect topographic analysis and the output of distributed hydrological

models, namely Topmodel. The effect of gridded dem data error – in the form

of both correlated and uncorrelated error – will be investigated using Monte Carlo

methods. Uncorrelated error is seen as the worst case scenario, where the errors in

neighbouring cells are unrelated. The more realistic correlated error, on the other

hand, is smoother due to the high correlation between neighbouring error values. It

is hypothesised that compared to uncorrelated error, correlated error should produce

less variation in the topographic parameters and Topmodel output.

As mentioned above, many slope and aspect algorithms have been developed to

calculate these topographic parameters from dems, specifically from gridded dems.

These algorithms are generally based on neighbourhood operations. The primary

difference between the algorithms is the number of neighbours drawn on to complete

the calculation. Two to nine grid cells may be used. In order to investigate how

model uncertainty affects topographic analysis and hydrological models, nine slope

and aspect algorithms will be examined. This is in essence performing an error

sensitivity analysis on the various algorithms presented. The more neighbours used

the more constrained the algorithms become. Therefore, it is hypothesised that the

more neighbours utilised in the algorithm the less effect error will have on the derived

parameters and hence on applications that use the parameters.
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1.2 Thesis Outline

To accomplish the objectives presented, this thesis has been organised in the following

way:

� Chapter 2 presents a more detailed discussion of dems, and continues with an

examination of slope, aspect and upslope area algorithms.

� Chapter 3 focuses on the distributed hydrological model Topmodel, describ-

ing the input parameters required and how the model works.

� Chapter 4 describes the study area and data set used along with the calibration

of Topmodel.

� Chapter 5 deals with the experimental methodology and implementation.

� Chapter 6 presents the experimental results.

� Chapter 7 provides conclusions and recommendations.



Chapter 2

Slope, Aspect and Upslope Area

2.1 Surface Representation by Gridded Elevations

The starting point for any type of digital terrain analysis is the creation of an ac-

curate digital elevation model. A dem may be defined as any numeric or digital

representation of the terrain elevation given as a function of geographic location.

As mentioned in Chapter 1, the type of dem that is used in a given application

depends on the requirements of the application and on the availability of the dem.

With the extensive use of computers in modelling, dems that can be easily stored

and manipulated in digital form are preferable. Discrete dems sampled on a regular

interval, known as gridded dems, have these advantages, and hence are utilised in

most modelling processes. Actually, there are very few algorithms used to determine

topographic parameters that are based on any of the other types of terrain models

– including contours, tins or mix mode.

In gridded dems, elevations, z, are posted at regular intervals relative to some
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datum. These regular intervals can be orientated in any direction, but usually take

the form of an east-west, x, and north-south, y, representation. The distance between

two points is known as the grid spacing. Usually, this distance is the same for both

grid directions. The elevations in a dem normally represent the actual height of the

ground at the location where they are given. A gridded representation allows for

easy access and manipulation since the elevations can be stored as a simple matrix.

Another advantage to using gridded dems as opposed to other terrain models is that

they are normally easy to obtain in digital form for a given area without the need

of further manipulation. Because of their regularly gridded nature, gridded dems

suffer from sampling problems. Terrain is usually undersampled in rough areas and

oversampled in flat areas, and a balance must found between the sampling interval

and other requirements. The choice of grid spacing is not normally available to

the user of dems, therefore, when looking at dem uncertainty the issue of possible

undersampling should be considered.

Though gridded dems have their advantages, there are a few things that need

to be taken into account when using them. The data for gridded dems can be

gotten using a variety of techniques. These include measuring the terrain directly

using land-surveying or aerial photogrammetry, or interpolating from existing dems.

However, it is important to recognise that if a dem of one type is generated from

a dem of another type, instead of from direct measurements, it will suffer from

compounded modelling error. Regardless of how a dem is generated, it is important

to remember that what is being produced is a discrete representation of a continuous

surface. In other words, even the highest quality dem is just an approximation of

the surface and not an exact representation.
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Gridded dems are usually discussed in terms of their grid spacing. Another term

that is occasionally and incorrectly interchanged with grid spacing is resolution. This

terminology stems from such fields as image processing, where a grid value represents

an average of an area. Similarly, a gridded dem will only have a resolution if the

elevation values are grid cell averages. However, in gridded dems the elevation

values are almost always the actual point elevations, and consequently it is normally

incorrect to use resolution in place of grid spacing. It should be noted that even

though when the elevations in dems are point values, some topographic parameter

algorithms treat them as area averages.

2.2 Pit Removal

The generation of a dem invariably introduces a number of artificial topographic

features that need to be detected and corrected. Hydrologically, the most serious

of these features are pits (sink features) (O’Callaghan and Mark, 1984; Band, 1986;

Jenson and Dominque, 1988), and to a lesser extent, dam features (Quinn et al.,

1991). Dam features occur when the elevation values are artificially raised above the

actual elevation value, while pits occur at points that do not have any neighbours

with a lower elevation. While it is possible for pits to be found in topographic

surfaces, especially in recently glaciated areas or in limestone areas, most pits can

be considered errors since fluvial erosion processes will not normally produce such

features at the scale resolved by dems (Band, 1986). Pits generally appear in flatter

areas where even a one metre error in elevation can be enough to produce a closed

depression, while on steeper slopes a higher variation would be required. Serious
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errors can be produced by the existence of artificial pits in a dem for any algorithm

that depends on mapping hydrologically connected regions, such as in the calculation

of upslope area.

Because of the errors that pits can introduce, their removal is an important first

step when using dems for hydrological applications. The method used for pit removal

can influence the effectiveness of other algorithms applied to the dem. There are a

variety of techniques to perform pit removal – examples of their use can be found

in O’Callaghan and Mark (1984); Band (1986); Martz and de Jong (1988); Jenson

and Dominque (1988); Hutchinson (1989); Fairfield and Leymarie (1991); Freeman

(1991); Tribe (1992); Tarboton (1997). In the simplest method, the pits are removed

manually by flagging them in a preprocessing stage. Unfortunately, this process is

tedious and labour intensive, and consequently a more automated approach is pre-

ferred. The most straightforward method of automated pit removal is to numerically

smooth the terrain. This method reduces the number of pits, especially shallow ones,

but it also tends to oversmooth the topography, which may lead to a significant loss

of information. An alternative approach to pit-removal attempts to preserve flow

paths and drainage directions. These other methods primarily involve finding a pit’s

outflow point and directing flow out through this point. This can be accomplished

by raising the elevation of the pit to that of the outflow point, or by redirecting

flowlines to neighbouring cells that have defined flow directions that do not point

back into the pit itself.

Several of the pit removal techniques outlined above require knowledge of the

surface’s aspect, and, by extension, its slope. Additionally, the calculation of upslope

area also requires aspect. Like pit removal, there are several techniques to calculate
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these quantities. In the following section, several of these techniques are outlined.

2.3 Slope and Aspect Algorithms

Traditionally, slope and aspect were calculated manually through the use of contour

data. In this method a line tangent to the contours is drawn along with its corre-

sponding perpendicular bisector. The slope is found by dividing the difference in

height along the perpendicular bisector by the length of the perpendicular bisector.

Even though this method has been used to represent the ‘true’ slope and aspect val-

ues of a terrain (Skidmore, 1989), it is almost impossible to obtain the same values

for slope and aspect twice for any given location due to the manual calculation. It is

not surprising then that other methods have been developed that depend solely on

digital data and programmable algorithms.

There are many different ways in which slope and aspect can be determined from

gridded dems. Generally, their determination is based on neighbourhood operations

where calculations are made for a cell based on the values of the cells that are

spatially adjacent in the grid. Some methods are better than others in representing

the actual slope and aspect of the terrain, while others are more suited to hydrological

analysis. As mentioned previously, slope and aspect are just the magnitude and

direction of the vector tangent to the topographic surface. The goal then is to

define a localised topographic surface from which localised slope and aspect values

can be extracted. Differences in slope and aspect algorithms have to do with how

these localised surfaces are defined. These definitions are based on the number of

neighbouring points used, whether or not the centre point contributes, and whether
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or not the aspect calculation will be restricted to a finite number of directions (Guth,

1995). Neighbourhood slope and aspect algorithms using two to nine points in the

dem are presented in the following subsections. This is followed by a comparison

of the methods. In order to make some of the algorithms easier to understand, an

eight neighbourhood subgrid is defined in Figure 2.1. A symbolic representation

is presented in Figure 2.1(a), while a basis for numerical examples is presented in

Figure 2.1(b). Even though grid orientation should not change how the algorithms

are implemented, the top of the figures will be considered north. The nine points

utilised are selected from the central points at which the values are to be established,

zij, and its eight adjacent neighbours, as depicted in Figure 2.1.

Zi-1,j-1
Zi-1,j-1

Zi,j-1
Zi,j-1

Zi+1,j-1
Zi+1,j-1

Zi-1,j
Zi-1,j Zi-1,j+1

Zi-1,j+1

Zi,j
Zi,j Zi,j+1

Zi,j+1

Zi+1,j
Zi+1,j Zi+1,j+1

Zi+1,j+1

(a) Symbolic repre-
sentation with a grid
spacing of ∆d.

965965

953953

945945

957957 955955

950950 947947

942942 937937

(b) Numeric example
with a grid spacing of
25 m. Elevation val-
ues are expressed in
metres.

Figure 2.1: A 3×3 dem neighbourhood.

In all the algorithms presented, except those utilising the steepest neighbours,

some form of numerical differentiation is employed. This is understandable consid-

ering the basic definition of slope: the rise over the run. In terms of a topographic

surface, the rise is the elevation difference and the run is the ground distance (Eyton,
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1991). This definition is an example of differentiation using finite difference calculus,

where the first derivative of elevation describes the rate of change of elevation, which

is the slope (Eyton, 1991; Dozier and Strahler, 1983; Horn, 1981). Together, the

slope in the x direction and the slope in the y direction (the partial derivatives of

z with respect to the x and y directions), define the gradient vector of the surface.

The maximum slope can be determined by taking the norm of this vector,

slope =

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

. (2.1)

The aspect, which is the direction of the maximum slope, is the angle between the

slope defined in x and the slope defined in y, which is given by the relationship

aspect = tan−1

[
(∂z/∂x)

(∂z/∂y)

]
. (2.2)

The difference in the slope and aspect algorithms which use Equations 2.1 and 2.2

are related to how they determine the local slope in x (∂z/∂x) and y (∂z/∂y).

The determination of the local slope in x and y is dependent on one to eight of the

neighbouring grid points. As a consequence, consideration must be made for those

grid points that lie on the edge of the dem, which do not have eight neighbours.

In order to make the calculations consistent across the entire dem and to avoid

edge effects, the slope and aspect values are not normally calculated at the edges.

In essence, this creates slope and aspect maps that are slightly smaller then the

original dem. However, this is more preferable then the alternative of obtaining

grossly erroneous edge values. Therefore, all the algorithms presented are for the

grid points internal to the edge.



2 Slope, Aspect and Upslope Area 13

The following subsections outline basic slope and aspect algorithms. In order to

emphasise the differences between algorithms, graphical examples are presented for

the algorithms in Figures 2.2–2.9. In the local neighbourhoods illustrated, the cells

used in the calculation of slope and aspect are highlighted in light blue, while the

dark blue arrow depicts the resulting aspect (flow direction) from the centre cell. For

comparison, the numerical values for the slope and aspect are also provided.

2.3.1 Three Neighbours

Three Point Plane (TPP)

O’Neill and Mark (1987) defined a localised topographic surface using a three point

plane. This method defined a triangle using three grid points: the point for which

the slope and aspect value is to be calculated, and its neighbouring points to the

east and north. The choice of using the eastern and northern neighbouring grid

points is arbitrary, since the dem could be orientated in any direction. Therefore,

this method could be implemented using any two non-collinear neighbours. Using

the northern and eastern neighbours as depicted in Figure 2.1(a), the slope in x and

y can be calculated respectively as

∂z

∂x

∣∣∣∣
i,j

=
zi,j+1 − zi,j

∆d
(2.3a)

and

∂z

∂y

∣∣∣∣
i,j

=
zi−1,j − zi,j

∆d
. (2.3b)
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From these equations, and using Equations 2.1 and 2.2, the slope and aspect values

for a given grid point can be determined. A numeric illustration of this algorithm is

show in Figure 2.2

965965

953953

945945

957957 955955

950950 947947

942942 937937

slope = 0.305

aspect = 157 ◦

Figure 2.2: Example of the tpp method.

Four Contiguous Right Triangles

A variation of the three point plane method, in which four contiguous right triangles

are used, was implemented by Onorati et al. (1992). In this method, the dem

neighbourhood is partitioned into equal, partially overlapping right triangles that

are formed by connecting the centre grid point with its four nearest neighbours,

i.e. those points to the north, south, east and west. A slope and aspect value is

calculated for each of the four right triangles using the method described by a three

point plane. The slope and aspect values calculated are attributed to the subpixel

enclosed by their respective triangle. This method creates slope and aspect maps

that exhibit a grid size half of that of the initial dem. It is this rescaling effect

that brings into question the accuracy of this method, and its possible use in future

applications.
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2.3.2 Four Neighbours

Four Closest Neighbours (FCN)

One of the more common slope and aspect algorithms uses the four closest neigh-

bours, those to the north, south, east and west, representing a second order finite

difference relationship (Hoffer et al., 1979; Unwin, 1981; Sharpnack and Akin, 1969;

Ritter, 1987; Eyton, 1991; Dozier and Strahler, 1983; Skidmore, 1989; Guth, 1995;

Hodgson, 1995; Jones, 1998). The elevations at these four closest neighbours can be

used to define two orthogonal components of slope, the slope in x and y, which define

the steepness and downhill direction, but does not define a surface at the point of

interest(Guth, 1995). The orthogonal components can be calculated using the simple

‘rise over run’ definition of slope, which leads to the following generalised equations,

∂z

∂x

∣∣∣∣
i,j

=
zi,j+1 − zi,j−1

2∆d
(2.4a)

and

∂z

∂y

∣∣∣∣
i,j

=
zi+1,j − zi−1,j

2∆d
. (2.4b)

Applying these equations to Equations 2.1 and 2.2, results in the determination of

slope and aspect for the central point in the 3× 3 neighbourhood. An illustration of

the fcn algorithm is presented in Figure 2.3
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950950 947947

942942 937937

slope = 0.323

aspect = 158 ◦

Figure 2.3: Example of the fcn method.

Four Diagonal Neighbours (FDN)

A variation to the four closest neighbours algorithm is the four diagonal neighbours

algorithm (Jones, 1998). The difference in this algorithm is that the perpendicular

gradients are taken at an angle of 45◦ to the principal axis of the dem grid. By

using the diagonal neighbours, those points to the northwest, northeast, southwest

and southeast of the central point, along with a correction for the increased distance

to the diagonal neighbours, allows for investigation into the possible effects of grid

bias. The slope and aspect for a point can be found by solving for the slope in x and

y given by,

∂z

∂x

∣∣∣∣
i,j

=
zi+1,j+1 − zi−1,j−1

2
√

2∆d
(2.5a)

and

∂z

∂y

∣∣∣∣
i,j

=
zi−1,j+1 − zi+1,j−1

2
√

2∆d
. (2.5b)

Figure 2.4 shows an example of this method. By comparing the examples for the

fcn and fdn algorithms (Figures 2.3 and 2.4), it can be seen that the values for slope



2 Slope, Aspect and Upslope Area 17
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942942 937937

slope = 0.420

aspect = 155 ◦

Figure 2.4: Example of the fdn method.

and aspect are slightly different for the two methods. Therefore, for this example at

least, there is a slight grid bias.

2.3.3 Eight Neighbours

Eight Neighbours Unweighted (ENU)

When more than four grid points are used, it is possible to define a topographic

surface from which slope and aspect values can be determined. One such algorithm

uses the eight neighbouring grid points to calculate the slope and aspect, represent-

ing a third order finite difference algorithm (Sharpnack and Akin, 1969; Papo and

Gelbman, 1984). As will be discussed below, the slope and aspect values obtained

using this method are the same as those for a least squares linear trend surface fitted

to these eight neighbouring grid points. The local slope in x and y can be found

applying the relationships,

∂z

∂x

∣∣∣∣
i,j

=
(zi−1,j+1 − zi−1,j−1) + (zi,j+1 − zi,j−1) + (zi+1,j+1 − zi+1,j−1)

6∆d
(2.6a)
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and

∂z

∂y

∣∣∣∣
i,j

=
(zi+1,j−1 − zi−1,j−1) + (zi+1,j − zi−1,) + (zi+1,j+1 − zi−1,j+1)

6∆d
. (2.6b)

An example of this method is demonstrated in Figure 2.5.

965965
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945945

957957 955955

950950 947947

942942 937937

slope = 0.357

aspect = 171 ◦

Figure 2.5: Example of the enu method.

Multiple Linear Regression Models

If more than four elevation points are utilised in the determination of slope and

aspect, either a terrain surface of a higher order then a plane can be modelled, or

the additional points can be used to provide a least squares best fit solution (Guth,

1995). Examples of multiple linear regression models that can be used to model

topographic surfaces, from which slope and aspect values can be determined, are

provide by Evans (1980) and Zevenbergen and Thorne (1987). Their analysis of

slope and aspect uses the eight neighbours in the dem neighbourhood in relation to

the central point. The two methods differ in whether or not the surface is forced to

pass exactly through the grid points or whether a smoothing function is introduced.

From the linearly regressed surface, slope and aspect can be found based on the

calculations shown in Equations 2.1 and 2.2, given the values for the local slope in



2 Slope, Aspect and Upslope Area 19

x and y.

The linear regression model of Evans (1980) uses a full quadratic surface given

by the equation

Z = Ax2 + By2 + Cxy + Dx + Ey + F, (2.7)

where the nine elevations of the 3 × 3 submatrix are used to determine the six

parameters, A through F, using least squares. This results in a surface that will

not necessarily pass through the nine original elevations, hence introducing a slight

smoothing of the surface. This smoothing is deemed acceptable since it helps to deal

with minor data errors. Since the parameters are found using least squares, error

can be incorporated into the estimate of slope and aspect. Solving for the local slope

in x and y gives the following relationships,

∂z

∂x
= 2Ax + Cy + D (2.8a)

and

∂z

∂y
= 2By + Cx + E. (2.8b)

Zevenbergen and Thorne (1987) questioned whether the linear regression model

presented by Evans (1980) could represent the land surface accurately since his

model did not coincide with the nine elevations in the local neighbourhood. There-

fore, Zevenbergen and Thorne (1987) used a modified surface which exactly passed
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through the nine submatrix elements. The equation for such a surface is given by

Z = Ax2y2 + Bx2y + Cxy2 + Dx2 + Ey2 + Fxy + Gx + Hy + I, (2.9)

where the nine parameters can be determined from the nine elevations of the 3× 3

submatrix by Lagrange polynomials. This leads to the equations for the slopes in x

and y,

∂z

∂x
= 2Axy2 + 2Bxy + Cy2 + 2Dx + Fy + G (2.10a)

and

∂z

∂y
= 2Ax2y + Bx2 + 2Cxy + 2Ey + Fx + H. (2.10b)

It turns out that even though Zevenbergen and Thorne (1987) equation should

produce a surface that fits better then Evans (1980), the two methods give identical

values for slope and aspect of the central point (Skidmore, 1989; Guth, 1995). This

is because slope is only estimated at a single point, which, through a suitable coor-

dinate transform, can be given the coordinates (0,0). Each of the partial derivatives,

therefore, only needs a single coefficient from the higher order surface, D and E for

the six term quadratic polynomial and G and H for the nine term polynomial. This

makes a calculation done by least squares, using either six or nine term polynomials,

the same as a calculation done by applying a planar fit. It also turns out that the

coefficients from which the slope and aspect values are calculated do not actually
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depend on the central point for which the values are calculated. The results obtained

by applying surface modelling are comparable to those found using the eight neigh-

bours unweighted algorithm; however, the enu algorithm is more computationally

efficient (Hodgson, 1995).

Eight Neighbours Weighted

Numerical analysis suggests that an eight neighbour weighted algorithm will provide

a better estimate for the local slopes in x and y (Horn, 1981). By giving the car-

dinal directions more weight then the diagonal directions, eight neighbour weighted

algorithms lie between the four closest neighbour and eight neighbour unweighted

algorithms. In this manner, the grid points that are closer to the central grid point

are given a higher weight then the grid points farther away, hence they have a larger

influence on the calculated slope and aspect values. While there are many possible

weighting schemes, such as using one over the square of the distance (Jones, 1998),

or one over distance squared (Horn, 1981), only one method, one over the square of

the distance, is presented here. As with the methods discussed above, the only thing

differentiating various weighting schemes is in how the local slopes in x and y are

calculated, which is based on how much weight is given to the diagonal neighbours.

The larger the inverse exponent is the less effect the diagonal neighbours have on

the calculations at the central point. A squared inverse relationship with respect to

distance was selected since most physical relationships exhibit such an association.

One Over Distance Squared (OODS) Horn (1981) implemented a slope and

aspect algorithm in which grid point neighbours were weighted proportional to the

reciprocal of the square of the distance from the central point. This generated
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equations for local slopes in x and y given by

∂z

∂x

∣∣∣∣
i,j

=
(zi−1,j+1 − zi−1,j−1) + 2(zi,j+1 − zi,j−1) + (zi+1,j+1 − zi+1,j−1)

8∆d
(2.11a)

and

∂z

∂y

∣∣∣∣
i,j

=
(zi+1,j−1 − zi−1,j−1) + 2(zi+1,j − zi−1,) + (zi+1,j+1 − zi−1,j+1)

8∆d
. (2.11b)

The slope and aspect for the central point is solved by applying the above equations

to Equations 2.1 and 2.2 respectively. An example for this method is shown in Fig-

ure 2.6. The differences between the results presented in Figures 2.5 and 2.6, which
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slope = 0.347

aspect = 168 ◦

Figure 2.6: Example of the oods method.

demonstrate the enu and oods algorithms respectively, indicate that in this exam-

ple, the diagonal elements significantly influence the results of the enu algorithm.

2.3.4 Steepest Neighbour

Hydrologically, dems are useful in the extraction of drainage networks. When look-

ing at topographic parameters from a hydrological standpoint, it is not necessarily

important how accurate the individual parameters are, but how accurate derived
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characteristics such as drainage networks can be resolved. It is for this reason that

steepest neighbour algorithms have been developed. These algorithms are more

suited to finding parameters such as upslope area, discussed in Section 2.4.1, than

finding accurate slope and aspect values, since they are more concerned with track-

ing flow paths. The basic concept behind steepest neighbour algorithms is finding

the neighbour, out of the eight, which either has the smallest elevation value, or

has the largest difference, when compared to the central point. It has been said that

steepest neighbour algorithms are the only algorithms that actually use the elevation

of the central points and all eight of its nearest neighbours (Guth, 1995). However,

this statement might be a little misleading since though all eight neighbours are

considered, only one is used to calculate the slope and aspect.

Maximum Downhill Gradient (MDG)

A model introduced by O’Callaghan and Mark (1984), finds the steepest downhill

neighbour in order to determine topographic parameters such as slope, aspect, ups-

lope area and drainage networks (Band, 1986; Jenson and Dominque, 1988; Fairfield

and Leymarie, 1991). This method is based on an eight neighbour connectivity

where the drainage direction (aspect) of the central point is taken as the direction

to the neighbour with the maximum drop, i.e. the neighbour which is lower then

the central point and is the minimum value. Problems arise when more than one

neighbour fits the criteria simultaneously. There are, of course, different ways to deal

with this problem, some of the more popular include arbitrarily choosing the first

neighbour encountered when going through the neighbours clockwise from north, or

flagging the point for later inspection. As mentioned in Section 2.1, problems are
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encountered when the central point is a pit and no such minimum neighbour can be

found. Specific implementations of this algorithm vary in terms of how they handle

this special case. In this study, the first instance of the lowest neighbour was selected

when going through the neighbours clockwise from north.

The slope value for the central point using the steepest downhill neighbour al-

gorithm is calculated as the elevation difference between the neighbour with the

minimum elevation and the central point,

slope =
ZminNeighbor − Zcentral

∆d
. (2.12)

In order to compensate for the increased path length to diagonal neighbours (NE,

SE, SW, NW), the slope values for the diagonal neighbours are adjusted by a factor

of 1/
√

2,

slopediagonal =
ZminNeighbor − Zcentral√

2∆d
. (2.13)

In this method it is assumed that the contour length is equal to the grid interval.

The aspect for the central point is defined as the direction to the neighbour with

the minimum elevation. Based on the 8 neighbours defined in Figure 2.1, the aspect

for a given point can only be represented by one of the eight main compass directions

separated by 45◦ (N, E, S, W, NE, SE, SW, NW). Figure 2.7 illustrates an example

of this method.
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slope = 0.368

aspect = 135 ◦

Figure 2.7: Example of the mdg method.

Multiple Downhill Neighbours (MDN)

One of the main drawback of the steepest downhill neighbour algorithm is that it is

greatly effected by grid orientation bias. Truly accurate values for slope and aspect

are not obtained because of the need to follow the major points on the compass.

Multiple downhill neighbours methods (Quinn et al., 1991; Freeman, 1991; Quinn

et al., 1991; Wolock and McCable Jr., 1995) are a variation of the steepest downhill

neighbour algorithm which attempt to solve the limitations present when dealing

with a one dimensional representation of flow. This is accomplished by distributing

flow from a pixel among all of its lower elevation neighbour pixels. Slope and aspect

are calculated by taking the average of the all the downslope neighbours, i.e. the

average slope and aspect values. A numerical and pictorial example of this method

is shown in Figure 2.8. Slope and aspect in this example are found by averaging
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957957 955955

950950 947947

942942 937937

slope = 0.237

aspect = 158 ◦

Figure 2.8: Example of the mdn method.
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the slope and aspect values of all the downslope neighbours, which are highlighted

in light blue. Slope and aspect for each individual downslope neighbour is found by

applying the method outlined for the mdg(Equations 2.12 and 2.13).

Maximum Adjacent Gradient (MAG)

Another variation on the maximum downhill gradient algorithm is the maximum

adjacent gradient algorithm (Skidmore, 1989; Guth, 1995). In this algorithm, the

steepest slope is found among the eight neighbours, compensating for the distance

to the neighbour cell, and assigned to the slope value. If the slope is uphill, the

downhill aspect is considered to be in the directly opposite direction. This algorithm

uses the same equations applied in the mdg algorithm, and hence suffers from the

same limitations. Figure 2.9 illustrates and example of this method. In the example
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slope = 0.424

aspect = 135 ◦

Figure 2.9: Example of the mag method.

presented, the results of the mdg and mag methods are the same, even though they

are calculated using different neighbours. A result like this is dependent on the shape

of the terrain and will not always be the case.
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2.3.5 Comparison of Slope and Aspect Algorithms

Different slope and aspect algorithms will, of course, result in different slope and

aspect values. Guth (1995), found that the choice of algorithm can vary the average

slope by as much as 25%. Such a large variation emphasises the care that should be

taken in selecting an algorithm that will produce an accurate representation of the

terrain. The criteria for correctness needs to be based on the desired application.

Solving for basic drainage networks could effectively be done using the steepest

neighbour algorithms, but if something closer to the actual aspect value is required

then the eight neighbours unweighted algorithm might be more applicable, since it

provides results which more closely represent the terrain.

Comparing the “correctness” of slope and aspect algorithms can be done in a

variety of ways. One method is to compare results for a surface with known slope

and aspect values (Hodgson, 1995; Jones, 1998). The only way that known slope and

aspect maps can be generated is if the terrain surface used for comparison is synthetic,

i.e. it has been generated by a large term polynomial surface. Given the equation

for the surface, actual values for the slope and aspect can be determined. Another

method of comparison is to choose a method of determining slope and aspect that

is considered to produce the “true” value, such as hand derived values from contour

maps (Skidmore, 1989). If no truth values are available, the last alternative is to

do statistical comparisons of the results obtained by the differing algorithms (Guth,

1995). However, a statistical comparison between methods really only investigates

the variation between methods and cannot be used to compare estimates to ground

measurements.

Based on the various comparisons done on slope and aspect algorithms (Guth,
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1995; Skidmore, 1989; Hodgson, 1995; Jones, 1998), a few generalisations on the

algorithms can be made. Surprisingly, algorithms utilising only four neighbouring

cell values tend to be better at estimating slope and aspect values than algorithms

using eight neighbouring cell values. Algorithms that use only one to two of the

neighbouring cell values along with the centre value do not, in general, perform well.

These two to three point algorithms normally perform significantly worse than the

four closest neighbour algorithm, and should not be used when accurate slope and

aspect values are desired.

2.4 Upslope Area

Upslope area is an important parameter in determining hydrologically significant

terrain characteristics such as drainage networks. It represents not only the flow

direction of water, but the accumulated area draining through a point. As men-

tioned previously, the calculation of upslope area is dependent on the determination

of aspect. However, slope and aspect values can be determined using localised neigh-

bourhood operations, upslope area calculations are fundamentally dependent on the

entire dem. Fortunately, they can be determined through the use of modified neigh-

bourhood operations where values are passed down cell by cell.

For a gridded dem, the upslope area can be generalised as the number of cells

that drain into a specified cell multiplied by the area of a grid cell. For a given grid

cell, the upslope area can be expressed as,

upslope area = N ∗∆d2, (2.14)
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where N is the number of upslope cells and ∆d is the grid spacing. Based on this

relationship, a ridge point, i.e. a point that has no drainage inputs, would have a

nonexistent upslope area, while a pit could have a very high upslope area since it

can be drained into from all sides.

The determination of upslope area for each cell in a dem can be difficult since it

involves tracing flow paths through the entire dem. While there are different ways

this problem can be solved, one of the computationally simplest in terms of pro-

grammability is through the use of a recursive algorithm (Tarboton, 1997; Freeman,

1991). The first step in this process is, of course, to determine the two dimensional

flow direction of each cell in the dem. Besides the aspect grid, two other grids are

required, an inflow count grid and an upslope count grid. The cells in the inflow

count grid contain a count of the number of cells that flow into them, while the cells

in the upslope count grid contain a count of the number of upslope cells. To deter-

mine the inflow count grid, each cell is initialised to zero. Then, using the aspect

grid, the values of the cells in the inflow count grid are incremented for every cell

that drains into them, in other words, every time the flow is directed towards the

cell. In this way, the values of the inflow count grid can range from zero to eight

(none to all of the neighbours). For the upslope count grid, the cells are initialised

to one. The inflow count grid is then gone through until a zero value is found. This

indicates that a cell that has no upslope neighbours. The count of the upslope count

grid cell (or cells) that the zero valued cell flows into is then increased by adding the

zero cell’s upslope area (or portion of). This flow direction is determined using the

grid of aspect values. The inflow grid cells involved, including the zero valued cell,

all have their values decreased by one. This process is repeated, adding cell outflows
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iteratively to lower neighbours, until all the cells in the inflow count grid are nega-

tive. The values in the upslope count grid indicate how many cells are upslope of a

given cell. The upslope area for each cell is found by multiplying by the area of each

grid cell (Equation 2.14).

While the procedure outlined above is the general method used to determine

upslope area, the calculation of upslope area, like the calculation of slope and aspect,

can be determined in different ways. The main difference between these methods

is how they deal with flow divisions, i.e., flow can either be restricted to exactly

one downslope neighbour, or divided according to either the number of downslope

neighbours or the aspect direction. The choice of how to divide flow is based on how

the flow direction (aspect) is determined. Any of the methods described in Section

2.3 can be used to determine the flow direction of a cell, though some algorithms

are more suited to specific upslope area algorithms then others. Algorithms used

to determine upslope area are presented in the following sections along with the

aspect algorithms they best compliment. Also included are some of the algorithms’

strengths and weakness.

2.4.1 Single Flow - Steepest Downhill Neighbour

The steepest downhill neighbour upslope area algorithm (O’Callaghan and Mark,

1984) goes hand in hand with the mdg algorithm for determining slope and aspect,

although it can be used with the mag algorithm (Band, 1986; Jenson and Dominque,

1988; Fairfield and Leymarie, 1991). In this method flow can only be routed to one

downslope neighbour. The flow direction, as with the mdg and mag algorithms, is

restricted to one of the cardinal or diagonal directions. This allows flow to be traced
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with very little dispersion, hence making the determination of drainage networks

easier. Because of the simplicity of this method and the lack of dispersion, this is

generally the choice of upslope algorithms from a hydrological standpoint.

Despite the popularity of the steepest downhill neighbour upslope area algorithm,

many authors have drawn attention to its drawbacks (O’Callaghan and Mark, 1984;

Band, 1986; Fairfield and Leymarie, 1991; Costa-Cabral and Burges, 1994; Skid-

more, 1989; Guth, 1995; Tarboton, 1997; Wolock and McCable Jr., 1995). The main

problem with this method is that it suffers from grid orientation bias. This can

dramatically throw a drainage path off course by as much as 44◦. In the extraction

of drainage networks, this discretization can prevent stream formation due to the

generation of parallel flow lines especially in relatively flat areas. The rougher the

terrain, however, the less significant this problem is. The limitations of this method

have prompted the development of other algorithms.

2.4.2 Stochastic Method

Fairfield and Leymarie (1991) applied a stochastic version of steepest downhill neigh-

bour upslope area algorithm in which the drainage direction was chosen probabilis-

tically. Using their algorithm, flow direction is randomly assigned to one of the

downslope neighbours, with the probability proportional to slope. In this method

the greatest downhill slope is not always taken in order to more faithfully follow the

true aspect of the land. This algorithm attempts to alleviate some of the problems of

grid bias, where the flow path must follow one of the cardinal or diagonal direction

resulting arbitrarily from grid orientation. While this method does provide more ap-

propriate flow path directions, it introduces problems of its own (Costa-Cabral and
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Burges, 1994). Randomness does not ensure reproducible results, making it difficult

to get comparable values. There are also problems in flat areas where flow should be

parallel. In the stochastic method adjacent flow paths are not parallel but “wiggle”

randomly often converging laterally with one another. Once converged, flow paths

are nearly impossible to separate, hence flow becomes more and more concentrated

downslope.

2.4.3 Multiple Flow - Steepest Downhill Neighbours

The multiple downhill neighbours algorithm for slope and aspect (Section 2.3.4) is

utilised in multiple flow upslope area algorithms. In this method, flow directions are

still resticted to the cardinal or diagonal grid cells, but unlike the single flow method,

flow is partitioned to all the downslope neighbours. The amount of flow partitioned

to each downslope neighbour is based on the size of the slope. The larger the slope

the more of the flow that is partitioned to it. For a grid cell with an upslope area of

A and n downslope neighbours, the upslope area partitioned (Ap) to each downslope

cell i is given by,

Api = A ∗ slopei∑n
1 slopei

. (2.15)

From a drainage network perspective, the multiple flow upslope area algorithm

can significantly disperse the water flow depending on the type of terrain, which can

be problematic (Skidmore, 1989). The multiple direction method tends to perform

poorer in flat areas then the single direction approach, but can produce more realistic

flow palths in steeper terrain (Quinn et al., 1991). While it is possible to more
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accurately resolve the flow path in a dem using a multiple flow direction algorithm,

the significant dispersion introduced does not make this method a popular choice in

some terrain.

2.4.4 Plane Fitting

Plane fitting uses the aspect associated with each pixel to specify flow direction

(Tarboton, 1997), and is conducive to any of the slope and aspect algorithms in

which the aspect does not necessarily point directly to one of the eight neighbours

(including tpp, fcn, fdn, enu and oods). Flow is routed as though it were a ball

rolling on a plane released from the centre of each grid cell. Flow in this algorithm is

not restricted to the cardinal or diagonal directions. Therefore, this method has the

advantage of being able to, in a sense, specify flow continuously. If the aspect angle

does not lie directly on one of the cardinal or diagonal directions, flow is partitioned,

based on the angle, between two cells. Problems encountered with this method are

normally related to discontinuous representations of the surface at pixel edges that

lead to inconsistent or counter-intuitive flow.



Chapter 3

The Topographic Index and

TOPMODEL

Gridded dems usually cover rectangular regions. However, what is of interest hydro-

logically is not generally a rectangular piece of terrain but a watershed or catchment

area. Watersheds are geographical regions that do not receive inflow from outside the

region itself. Outflow from a watershed can be channeled through one or many out-

lets, but what is investigated here are watersheds with a single outlet. Because the

surface flow in a watershed is self-contained, it is possible to model the hydrological

interactions.

The hydrological model used in this research is called Topmodel (topopgraphic

model). Topmodel attempts to model, among other things, the discharge rate (Q)

from a watershed’s outlet as a result of rain events. An important parameter used

by Topmodel is the topographic index.
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3.1 The Topographic Index

The topographic index is used to represent the soil saturation (Beven and Kirkby,

1979; Wolock and McCable Jr., 1995; Quinn et al., 1995). It is an estimate of the

accumulated water flow at any point in a watershed. A high topographic index

indicates that the ground in a region has a higher potential to be saturated, while

a low topographic index indicates the ground is less likely to be saturated. Areas

of saturation are the source areas for overland flow. Generally, high values of the

topographic index occur in flat areas with little slope and/or in regions with a large

upslope area.

In Chapter 1, it was stated that the topographic index is equivalent to the natural

log of upslope area divided by the slope (ln(A/slope)). This is, however, somewhat of

an oversimplification. More specifically, it is the natural log of the specific catchment

area (a) divided by the slope,

topographic index = ln

(
a

tan β

)
. (3.1)

By convention, in the equation for the topographic index the slope is represented by

tan β, where β is the slope angle. The slope is used to approximate, under steady

state conditions, the local hydraulic gradient – i.e. the slope to the water table.

The specific catchment area is defined as the upslope area per contour length.

Expressly, it is given by

a =
A

l
, (3.2)
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where l is the contour length, and, as before, A is the upslope area. Another way

of describing the specific catchment area is to say that it is the area above a certain

contour length that contributes flow across the contour (Gallant and Wilson, 2000).

Figure 3.1 illustrates such an area. For gridded data, the contour length can be given

a value equivalent to the grid spacing.

l
A

Figure 3.1: Specific area (a): the upslope area per contour length (a = A/l).

The topographic index is calculated for each cell in a dem. To do this, the

slope, aspect and upslope area must first be calculated using, for example, one of

the algorithms discussed in Chapter 2. The tan β term is equivalent to the slope in

the aforementioned algorithms.

While the topographic index is calculated for each cell, it is computationally

easier to deal with a discretised distribution function, where the number of cells

with a given topographic index is plotted as a function of the topographic index. An

example of such a distribution function is shown in Figure 3.2. As will be discussed

in Section 3.2, a main assumption in the hydrological model used in this research

is that cells with the same topographic index are hydrologically similar, and that

the spatial distribution of the topographic index can be used to approximate the
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spatial distribution of the water table depth. Therefore, the generation of a spatially

distributed water table does not require calculations for each individual cell, but

rather a single calculation for each topographic index class.
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Figure 3.2: Topographic index distribution function. Values are binned at 0.5 intervals.

3.2 An Introduction to Topmodel

Topmodel is a distributed, or more specifically a semi-distributed, hydrological

model (Beven and Kirkby, 1979). A hydrological model attempts to predict the flow

of water across terrain in response to rain events. The output from these models is

summarised by a hydrograph, which is the discharge rate of flow at the watershed’s

outlet. The hydrographs generated by Topmodel include both the surface runoff

and the subsurface flow. A hydrological model is said to be distributed when it takes

into account the patterns of hydrological variables in a watershed, instead of using

single values for the entire area. Topmodel can be considered semi-distributed
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since it uses lumped or binned values of the topographic index to characterise the

saturated areas of a watershed, as opposed to values at every location on the surface.

Topmodel is based on a simplified physical model. This keeps the number

of input parameters to a minimum. Three primary assumptions are used in the

simplification. These are (Beven and Kirkby, 1979):

� The dynamics of the saturated zones can be approximated by successive steady

state representations

� The local hydraulic gradient of the saturated zones can be approximated by

the local ground slope (tan β) (Darcy’s Law)

� The distribution of downslope transmissivity with depth may be described by

an exponential function of storage deficit

These assumptions lead to the topographic index being used as the index of hydro-

logical similarity, as stated in the previous section.

The topographic index alone is not enough to characterise the hydrological be-

haviour of a watershed. Therefore, in addition to the topographic index, Topmodel

uses a number of other parameters that are uniquely determined for the entire water-

shed. As mentioned in the assumptions, the downslope transmissivity of the terrain

is required in order to determine subsurface flow. Thus, one parameter used by

Topmodel is the downslope transmissivity at soil saturation (To). One of the more

important parameters in Topmodel is the saturated zone, or recession parame-

ter m. This parameter is the coefficient of the exponential decrease of hydraulic

conductivity with depth. Two other parameters used by the model are the initial

and maximum storage deficits in the root zone, indicated by SRo and SRmax, re-
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spectively. Another parameter is the overland flow speed (RV ), which is used for

internal routing. Depending on how Topmodel is used, there may also be other

parameters required than those described above. However, in this research only this

set of parameters was used. While the parameters for Topmodel can be determined

through field measurements, they are generally optimised through model calibration

as is discussed in Section 3.3.

In addition to watershed-specific parameters, Topmodel also requires input data

for the rain event that is being studied. Topmodel is run for a given watershed,

over a specific time series, at a set time step (∆t). Therefore, for each time step,

Topmodel requires the precipitation (R(t)) and the potential evapotranspiration

(PE(t)). Additionally, the initial flow rate (Qo) of the outflow and channel routing

variables are needed. Channel routing describes how much of the cumulative area

of the catchment (ACH) is routed through a specific length of the mainstream (D).

To calculate how well the model predicted hydrograph represents reality, field values

of the discharge per time step are required (Q(t)). Given these values, Topmodel

can calculate statistics on how well the predicted hydrograph matches reality. These

statistics include an efficiency value (EE) and the rms difference.

The role of the topographic index in Topmodel is to determine the zones of

saturation. The local saturated zone deficit S for each topographic index class i is

calculated for each time step as

Si = S̄ −m

[
λ− ln

(
a

tan β i

)]
, (3.3)

where λ is the mean topographic index, and S̄ is the mean storage deficit. This

equation is used to determine the parts of the watershed that have no storage deficit
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and are in a saturated state (Si ≤ 0). Saturated areas are the regions that contribute

to overland flow, generating the predicted discharge flow rate.

In this research, Topmodel is implemented in a basic form. Only a brief de-

scription of Topmodel and how it uses the topographic index has been presented.

More detailed descriptions of the model, along with applications, can be found in a

variety of sources, including Beven and Kirkby (1979); Bruneau et al. (1995); Quinn

et al. (1995); Wolock and McCable Jr. (1995) and Franchini et al. (1996).

3.3 Calibration of Topmodel

Models, such as Topmodel are simplifications of physical processes. However, in the

natural environment, it is impossible to know or model all variables, and because of

this, models cannot reproduce the behaviour of a natural environment in all its detail.

Therefore, it is normally necessary to optimise model parameters in order to obtain

realistic results. Optimisation of a model’s parameters is termed the calibration

process – i.e. the model is calibrated to produce optimal (or, at the very least,

reasonable) output. In Topmodel’s calibration process, the parameters themselves

may be assigned values outside their physically realistic range, but this is done to

compensate for model deficiencies. Traditionally, models are calibrated for one time

series, and the calibrated parameters are then used to run the model for other events

in the same watershed. Optimisation can be done either by hand or with use of an

automated optimisation scheme. The starting point for calibration of the parameters

is generally an estimate of field values.
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3.4 Implications of the Shape of the Topographic

Index Distribution Function

The main objective of this research is to investigate the effect of errors in dems on

applications that use them. The only parameter used by Topmodel that has any

relation to a dem is the topographic index distribution. Therefore, presented here

are some of the characteristics of topographic index distributions and their possible

impact on Topmodel results.

The topographic index distribution function can be described by its mean, stan-

dard deviation and skewness. From Equation 3.3, it is apparent that the mean

topographic index plays an important role in determining saturated area, and as a

consequence the amount of overland flow. In Wolock and McCable Jr. (1995), it

was shown that an increase in the mean causes a decrease in the amount of subsur-

face flow, and as a consequence, an increase in the amount of overland flow. The

decrease in the subsurface flow, in turn, decreases the average depth to the water

table, which increases the possibility that saturated areas will develop, thus produc-

ing overland flow. An increase in the standard deviation of the topographic index

tends to increase the size of saturated areas, since it is an indication of the width of

the distribution and the amount of area that will become saturated. The skewness

gives an indication of the lopsidedness of the distribution curve. Since the size of the

saturated area is determined primarily by the area of the topographic distribution

that is greater than the mean, a large skewness in values greater then the mean

can have an impact on certain conditions. For example, under dry conditions, the

more skewed the distribution, the larger the possibility of saturation and hence, the



3 The Topographic Index and TOPMODEL 42

greater the amount of overland flow. This corresponds to an increase in the peak

discharge values. In contrast, under highly saturated conditions, the skewness might

not have a significant impact on the predicted hydrograph, since more of the area

will be saturated anyway.

The shape of the topographic index distribution function affects the runoff dy-

namics of Topmodel (Quinn et al., 1995). However, it is possible, through cali-

bration and re-optimisations of the calibrated parameters (described in Section 3.3),

to compensate for a poor distribution. This means that a parameter set can be

optimised using almost any topographic index distribution to produce an adequate

hydrograph, but at the cost of calibration parameters that are unrealistic even by

the fairly accommodating standards of Topmodel. It therefore stands to reason

that if a comparison of topographic distributions for a watershed is desired than the

model should be calibrated once, and the resulting hydrographs from the different

distributions compared.
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Study Area and Data Set

4.1 Terrain Data

The dem used in this study was taken from a series of gridded dems provided by the

province of Alberta, Canada. These dems have extents that coincide with provincial

1:20000 scale map sheets. Depending on the roughness of the terrain, the dems were

originally collected from aerial photographs at spacings of 25 m, 50 m, or 100 m.

They were then interpolated to 25 m grids by linear least squares prediction using

the SCOP program (Ackermann, 1992). For the northing and easting co-ordinates,

the resulting dems have a specified rms accuracy of ±10 m 90% of the time. The

elevations have a specified rms accuracy of ±3 m 90% of the time. The remaining

10% not within this bound has a specified accuracy of ±5 m 90% of the time. For

this study, the error in planimetry was ignored, while the rms error in the elevation

was taken to be 3 m.

From the available dems a watershed was extracted that served as the study area.
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The watershed selected, Marmot Creek main stem near Seebe, was drawn from the

dem that coincided with the provincial map sheet C82J14NE. The region covered

by this map sheet is located in the Kananaskis region of Alberta, in the front ranges

of the southern Canadian Rockies. The watershed, depicted in Figure 4.1, covers an

area of approximately 10 km2 (15484 grid cells). Elevations in the watershed dem

ranged between 1584.904 m and 2837.548 m. The stream outlet gauge, shown as a

blue dot in Figure 4.1, is located at UTM coordinates (5645700 N, 629825 E) and is

at an elevation of 1585 m. Extraction of the watershed from the dem was performed

using watershed selection tools available in the GIS software Arc/Info.

Figure 4.1: dem of the Marmot Creek Main Stem watershed in Kananaskis, Alberta. The blue
dot is the location of the stream outlet gauge.
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4.2 Precipitation and Stream Discharge

The hydrological analysis of a watershed requires a time series of precipitation and

stream discharge data for rain events. This data is used in Topmodel, for both

model calibration and analysis. However, the assumptions used in Topmodel re-

strict the type of rain events that should be used. In particular, Topmodel does

not take into account snow melt, and hence, rain events are restricted to periods

and locations when and where this does not occur. In the Kananaskis region, snow

can be found in some areas well into the summer, and it is only in August and early

September that the region can be considered snow-free. Another consideration that

must be made when selecting rain events for use in Topmodel is that the model was

originally designed for areas that were both humid and temperate. Unfortunately,

the Kananaskis is not normally humid. Consequently, the rain events for this area

should be chosen during as wet a period as possible.

The above restrictions, combined with a limited availability of precipitation and

rain gauge data, meant that the selection of rain events for the study area was

limited. The rain events chosen occurred during a 200 hour time period that began

at 01:00, August 1, and ended at 08:00 August 9, 2000. The total volume of rainfall

for this time period was 30.9 mm and the total observed overland flow was 6.2 mm.

There were two distinctive rain events during this period. These are visible in the

hydrograph depicted in Figure 4.2. Characteristics of the hydrograph and the two

rain events are provided in Table 4.1. The initial flow velocity of the stream at the

beginning of the time series (Qo) was 3.08×10−5 m/h. The time to peak indicated

in this table is the time between the rain event and the peak discharge.

Hourly precipitation data was provided by the University of Calgary’s Kananaskis
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Figure 4.2: Hydrograph of the rain event. The 200 hour time series is from 01:00, August 1, to
08:00 August 9, 2000.

Table 4.1: Observed hydrograph characteristics.

Time to Peak (h) Discharge of Peak (m/h)
1 2 1 2

4.1 3.5 4.39×10−5 4.76×10−5

Field Station, while hourly stream discharge data was obtained from the Water

Survey of Canada. Unfortunately, the precipitation data was not collected at the

location of the stream discharge gauge but at the Kananaskis Field Station located

at UTM coordinates (5654735 N, 637810 E) and an elevation of 1385 m. This

means that the collection of the stream discharge data occurred approximately 8 km

away and 200m higher than the precipitation data. In mountainous terrain, like the

Kananaskis, the weather conditions can be dramatically different from one valley to

the next and it is entirely possible that locations 8 km apart could experience different

weather conditions. Possible differences between the provided precipitation data and

the actual precipitation in the selected watershed can be seen in the hydrograph
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(Figure 4.2), and in Table 4.1.

In addition to the hourly precipitation data, University of Calgary’s Kananaskis

Field Station also provided hourly temperature data, wind speed and the number

of daily sunlight hours. This data was used to calculate the hourly potential evapo-

transpiration (PE) using the FAO Penamn-Monteith Method (Monteith, 1965).

4.3 Topmodel Calibration

Before Topmodel is used to predict discharge from a watershed it must first be

calibrated. In such a calibration the goal is to match a hydrograph calculated by the

model to an observed hydrograph. In this study calibration was done by trial-and-

error, where the calibration parameters were manually adjusted until the resulting

hydrograph had the best fit with the observed hydrograph. Described below are the

input parameters used to calibrate Topmodel and the results of calibration.

4.3.1 Input Parameters

In order to calibrate Topmodel for a particular watershed, data specific to the

watershed is required. Some of this data includes the hourly precipitation and dis-

charge data (Figure 4.2), along with the hourly potential evapotranspiration. Also

required by Topmodel is information on channel routing. Channel routing provides

the model with information on how much area of the watershed is routed through a

given length of the primary drainage route. For the purpose of channel routing in

this study, the watershed was divided as evenly as possible into two sections. The ac-

cumulated area and distance to the drainage outlet were determined using Arc/Info,
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and are shown in Table 4.2.

Table 4.2: Channel routing parameters.

Cumulative Catchment Area: ACH Distance from Outlet: D
(%) (m)

0.0 0.000
54.5 3411.701

100.0 5721.625

In addition to hydrological data, Topmodel also requires topographic data.

The topographic data required by Topmodel is the topographic index distribution.

Even though one of the objectives of this research is to compare different methods of

calculating the topographic index, the model first has to be calibrated using only one

of the methods. However, for later comparison of results, Topmodel was calibrated

twice using two different topographic distributions, mdg and enu. mdg is the

method traditionally used in hydrology, so it is the natural choice for calibration.

enu, on the other hand, was selected because it was the method predicted to be the

least sensitive to dem error. The two topographic distributions used for calibration

are shown in Figure 4.3. Topographic indices in these distributions were binned

in intervals of 0.5. The two distributions have distinctive differences. The mdg

topographic distribution has a slightly lower mean then the enu distribution, but its

skewness is larger (see Table 4.3). Because of the dry conditions of the watershed,

the large skewness of the mdg distribution will likely be important in the height of

the discharge peaks.
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Figure 4.3: Calibration topographic distributions.

Table 4.3: Characteristics of the calibration topographic index distributions.

MDG ENU
Characteristic Calibration Calibration

Mean 6.47 6.57
Standard Deviation 5.85 3.60
Skew 1.04 0.51

4.3.2 Calibration Parameters

In the calibration of Topmodel, four parameters – m, Ko, SRmax and RV – were

adjusted. Not mentioned before is Ko, which is the hydraulic conductivity of the soil.

It is used, along with m to determine To. Because the time series used occured after

a dry period, SRo was set equal to SRmax. The overland flow speed, RV , was set

to a constant value of 3800 m/h, but a scaling parameter, RFAC, was introduced,

and was the value calibrated. RV had to be scaled to compensate for the extended

time delay between the rain events and the discharge responses. During calibration,

these parameters were modified until the Nash-Sutcliffe Efficiency (EE) (Nash and
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Sutcliffe, 1970) of resulting hydrographs was close to 1.00 as possible. The EE value

was calculated as

EE = 1− σ2
E

σ2
Q

, (4.1)

where σ2
E is the variance between the estimated and observed hydrographs, and σ2

Q

is the variance in the observed hydrograph. The resulting calibrated hydrographs

are depicted in Figure 4.3.2, with the numerical characteristics outlined in Table 4.4.

Table 4.4: Calibrated hydrograph characteristics.

MDG ENU
Characteristic Observed Calibration Calibration

Time to Peak 1 (h) 4.1 6.1 6.1
Time to Peak 2 (h) 3.5 4.5 4.5
Discharge of Peak 1 (m/h) 4.39×10−5 4.71×10−5 4.75×10−5

Discharge of Peak 2 (m/h) 4.76×10−5 5.48×10−5 5.47×10−5

Total Overland Flow (m/h) n/a 4.07×10−3 2.97×10−3

Total Dishcharge (m/h) n/a 6.22×10−3 6.22×10−3

RMS Error n/a 3.05×10−6 3.04×10−6

Efficiency n/a 0.636 0.640

Percent Difference Between
Calibrated and Observed (%)

Time to Peak 1 48.8 48.8
Time to Peak 2 28.6 28.6
Discharge of Peak 1 7.29 8.20
Discharge of Peak 2 15.1 14.9

Even with the best fit possible, the resulting calibrated hydrographs do not match

the observed values very well. Since all that is of interest is an error sensitivity

analysis, the fact that the model hydrographs do not match reality is ignored. The

observed hydrograph is only used for calibration, and is not used further. Later
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model comparisons will be made to the appropriate calibrated hydrograph.

While the difference between the two calibrated hydrographs are very small, the

differences in the values of the calibrated parameters are more pronounced. These

values are provided in Table 4.5, along with estimates of their true value. By ex-

amining the results in this table, it appears that the enu method produces values

that are closer to the estimated true values. This indicates that, for Topmodel at

least, this method produces a topographic distribution that is more realistic for this

watershed. However, both methods produce parameter values that are significantly

different from those estimated, demonstrating that calibration is compensating for

model deficiencies.

Table 4.5: Calibrated parameters.

MDG ENU
Parameters Estimated Calibration Calibration

m (m) 0.02688 0.03527 0.03519
Ko (m/h) 13.2 18.7555 7.1000
SRo (m) 0.06 0.0190 0.0189
SRMAX (m) 0.04 0.0190 0.0189
RV (m/h) n/a 3800 3800
RFAC n/a 0.27 0.27



4 Study Area and Data Set 52

0 50 100 150 200
2

3

4

5

6
x 10

−5

Time Step (h)

D
is

ch
ar

g
e 

(m
/h

)

Observed       
MDG Calibration

(a) mdg

0 50 100 150 200
2

3

4

5

6
x 10

−5

Time Step (h)

D
is

ch
ar

g
e 

(m
/h

)

Observed       
ENU Calibration

(b) enu

Figure 4.4: Calibration hydrographs.



Chapter 5

Experimental Methodology and

Implementation

5.1 Propagation of Error

dems have errors in both planimetry and elevation. In the algorithms for slope and

aspect – the values upon which other topographic parameters are based – only the

grid spacing and elevation values are required. This means that as long as the grid

spacing is constant, any other errors in planimetry can safely be ignored. For any

dem that has been collected on a regular grid, or interpolated to one, the grid spacing

is virtually guaranteed to be constant. Errors in planimetry may still exist; however,

they would probably be in the form of a translation error, where the entire grid has

been shifted from its true location. There may also be a scale error, where the grid

interval is slightly smaller or less-than the specified interval, but this difference is

most likely insignificant and could be disregarded. In any case, errors in planimetry
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will manifest themselves as errors in elevation. Thus error analysis on parameters

derived from gridded dems can be based purely on elevation error.

There are a variety of methods that can be used to propagate error. These

methods include an analytical approach, Taylor series expansions, and Monte Carlo

simulation (Heuvelink, 1998). In the analytical approach, the mean and standard

deviation of a function is explicitly derived. This is dependent on knowing the

exact form of the function involved. In methods based on Taylor series expansions

the function is approximated by a truncated Taylor series from which the mean and

standard deviation are determined. Neither of these methods of error propagation are

suitable to the error analysis of this study. While it is possible to use these methods

to determine the error in some of the topographic parameters, they cannot be used for

all those investigated. Problems arise with the slope and aspect algorithms that are

based on the steepest neighbour principle (mdg, mag and mdn). These algorithms

are decision-based, involving the selection of neighbours based on specific properties.

Such algorithms do not have the functional form required by the analytical and Taylor

series approaches. Another limitation of these approaches is that they are restricted

to neighbourhood operations. They are not suitable for global operations, such as

the calculation of upslope area, and, by extension, the calculation of the topographic

index (Heuvelink, 1998). Also, because of complex model structure and dynamics,

these error propagation methods are difficult to implement for a hydrological model.

Therefore, the effect of error in a dem on its derived parameters and on hydrological

modelling is best determined with statistical analysis using Monte Carlo simulation

and error realisations of the dem (Veregin, 1997).
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5.1.1 Monte Carlo Method

In the Monte Carlo method of error analysis, a given algorithm is repeatedly applied

to sets of random input data. Each set of random input data is termed a realisation,

and all the realisations are generated from the same error distribution. The realisa-

tions represent possible error-free data sets, and not just a data set with an added

error component. Using the results from all the realisations, it is possible to calcu-

late a mean and standard deviation that correspond to the algorithm under analysis.

The mean is considered the ‘actual’ value that the algorithm would produce, while

the standard deviation is considered the error. Because the analysis of results from

a Monte Carlo simulation is done using statistical – and not analytical – quantities,

the method is said to use a stochastic approach to error propagation (Heuvelink,

1998).

A simple Monte Carlo simulation of dem error simulates values for each grid cell

independent of the rest of the surface. The error simulation process begins with the

generation of random error grids that have the same dimensions as the original dem.

The values in the error grids are generated from a normal probability distribution

that has a standard deviation (stdv) equal to the rms error of original demand a mean

of zero. The error grids are then added to the original dem, creating a realisation of

the original dem.

The Monte Carlo method of error propagation is advantageous for this study

because it is not affected by the exact formulation of the algorithms. Instead, it

simply treats the algorithms as ‘black boxes’ whose response to the error in input

is studied from the resulting outputs. Therefore, with Monte Carlo simulation it is

possible to determine the actual effect of error, regardless of global operations or a
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selection process in the algorithms.

The primary disadvantage of the Monte Carlo method is the computational re-

quirements. In order to produce statistically reliable results, a large number of

realisations should be run. Obviously, a difficulty with the approach is determining

exactly how many times an algorithm should be implemented in order to minimise

the computational load, while still insuring reliable results. A few studies have been

done where only a few runs have been used (20-50) (Fisher, 1991a; Holmes et al.,

2000), but other research has shown that this is not enough to produce reliable results

(Veregin, 1997).

5.1.2 Generation of Error realisations

In the literature, choosing the number of realisations that are used in Monte Carlo

error simulations often seems to be fairly arbitrary. In order to avoid a similarly

arbitrary selection in this research, a more substantial method was required. The

method used was based on the simple idea that realisations are only required if

they significantly effect results. For example, if using 500 realisations produces the

same result as using 200 realisations, then there is no need to us the additional

300 realisations. To apply this method, it is first necessary to generate realisations

using the same error distribution. As the number of error realisations is increased,

the standard deviation of each grid cell over all the realisations is determined, and

a grid of standard deviations is generated. The standard deviation of this grid of

standard deviations is found after the addition of each realisation, and this value

is compared with the previous value. If the change in the standard deviation is

not significant, then the addition of the realisation does not introduce any new
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information. Therefore, any realisations after this point would be redundant.

An example of this procedure is shown below in Figure 5.1. In this figure, the

standard deviations versus the number of realisations are plotted for error realisations

generated using a standard deviation of 3 m. After 500 realisations the curve begins

to level out, and adding additional realisations has little impact on the resulting

standard deviation. Consequently, a Monte Carlo simulation using 500 realisations

would be enough to produce statistically reliable results.
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Figure 5.1: The standard deviation of the standard deviation error matrix for uncorrelated
random error with a standard deviation of 3 m. The standard deviation of each grid cell is taken
over the number of realisations specified. The standard deviation is then taken of the standard

deviation matrix.

It should be noted that as long as the standard deviations of the error realisations

are the same, the size of the grid used does not matter since the resulting shape of

the curve does not change. The only change that can be seen is a slight vertical

displacement, where the smaller the grid the higher the standard deviations.
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5.1.3 Correlated Error

Up to this point it has been assumed that dem error is uncorrelated in nature.

However, this is, in effect, a worst case scenario, as in reality the error in dems

tend to be positivity correlated with distance. In other words, the closer points

are to each other, the more related their errors are. This has much to do with the

terrain characteristics and their effect on dem error. The rougher the terrain, i.e.

the steeper the slopes, the more difficult it is to measure elevation values. Elevation

values located in close proximity will have similar terrain characteristics, and hence

exhibit similar error properties.

While it is highly probable that errors in dems are correlated, information on

the correlation is normally lacking from the accuracy information provided with

the elevation data. The dem used in this study was no exception. To investigate

the effect of correlated error, a 21×21 kernel matrix consisting of values from a

folded normal distribution was convolved with the dem grid. The folded normal,

with a standard deviation of 5 m and a mean of 0, was centred in the matrix so

that the centre value had the largest weight, with cells farther away from having

smaller weights. This agrees with the assumption that the closer the points, the

more correlated the errors. The normal distribution is considered folded because it

uses the distance from the centre point (r2 = x2 + y2) as opposed to the x and y

components individually. A standard deviation of 5 m was chosen for the folded

normal since it created a distribution the fit the 21×21 kernel matrix well. However,

without any knowledge of the correlation, any standard deviation value could have

been used.

Convolution with a folded normal kernel successfully correlates the error; how-
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ever, it has the undesirable side-effect of reducing the standard deviation of the entire

matrix. Since the stated accuracy of the dem was ±3 m, the error realisations of

the dem need to have a standard deviation of 3 m, regardless of its correlation. In

order to maintain a standard deviation of 3 m after correlation, the initial uncorre-

lated matrices had to have a much higher standard deviation. The initial standard

deviation required in order to produce a resulting standard deviation of 3 m can be

determined by

σinitial =
σfinal√∑

W 2
, (5.1)

where σ is the standard deviation, and W are the weights of convolution matrix.

The weights of the convolution matrix are normalised to one (
∑

W = 1). Based on

Equation 5.1, the initial standard deviation of the uncorrelated error grids used so

that the standard deviation of the error grids after correlation was 3 was determined

to be 49.52.

In order to ensure that the convolution with a 21×21 folded normal did increase

the correlation of an error grid, the autocorrelation function of both the uncorre-

lated and correlated error grids were found. The autocorrelation function of the

uncorrelated error grid, as expected, only produced a spike at the centre of the dis-

tribution – confirming that the uncorrelated error grid is completely uncorrelated.

The autocorrelation function of the correlated error grid, on the other hand, had a

distinctive 2 dimensional bell shape curve. This indicated that the correlated error

is indeed correlated with distance. For comparison, a horizontal cross section of the

two autocorrelation functions is provided in Figure 5.2.

The method used to apply the Monte Carlo method of error propagation to cor-
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Figure 5.2: Horizontal cross section of the autocorrelation function (the correlation function is
radially symmetric). Distances are based on a 25 m grid spacing.

related error is the same as that used for the uncorrelated error. The only difference

is that the error grids need to be correlated before they are added to the original

dem. It should be noted that correlating the error does not effect the number of

realisations required. A plot of the standard deviation of the standard deviation for

correlated error is exactly the same as that shown in Figure 5.1. Therefore, as with

the uncorrelated error, 500 realisations of the correlated error were used to examine

the effect of correlated error on the calculation of topographic parameters.

5.2 Calculation of Topographic Parameters

Each of the 1000 error realisations – 500 uncorrelated and 500 correlated – was used

to calculate grids of four different topographic parameters: slope, aspect, upslope

area and the topographic index. Furthermore, eight different algorithms were used

to calculate slope and aspect, and, depending on these algorithms, three different
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algorithms were used to calculate upslope area. Outlined below are the specific

topographic parameters along with the algorithms that were used.

5.2.1 Slope and Aspect

The primary topographic parameters associated with a dem are slope and aspect.

Other topographic parameters generally require calculation of these values first.

Therefore, the method used to calculate the slope and aspect is important. In-

vestigated in this study is the effect of dem error on eight of the primary algorithms

used to calculate slope and aspect that were introduced in Chapter 2. The algorithms

include:

� Steepest Neighbour Algorithms

– Maximum Downhill Gradient (mdg)

– Maximum Adjacent Gradient (mag)

– Multiple Downhill Neighbours (mdn)

� Three Neighbour Algorithm

– Three Point Plane (tpp)

� Four Neighbour Algorithms

– Four Closest Neighbours (fcn)

– Four Diagonal Neighbours (fdn)

� Eight Neighbour Algorithms

– Eight Neighbours Unweighted (enu)

– One Over Distance Squared (oods)
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It should be recalled that the primary difference between these algorithms is the

number of neighbours applied in the calculation.

All of the slope and aspect algorithms require knowledge of a cell’s neighbours.

This means that all of these algorithms experience problems at the edges of a dem.

Cells on the edge, by definition, have at least one neighbour that is undefined, i.e.

outside the desired or known area. Therefore, it is impossible to perform any cal-

culation that is based on knowledge of all eight neighbour without introducing a

bias. Values at the edges can be found through modifications of the original algo-

rithms, but this can introduce an unknown uncertainty into the models themselves.

To avoid introducing additional model uncertainty, edge values in this study were ig-

nored. The edges were used to calculate slope and aspect values, but values were not

determined for the edges themselves. Ignoring the edges has the effect of ‘shrinking’

the watershed by one grid cell along its edge. Since all the information in the water-

shed was required for hydrological modelling, the watershed dem used to determine

the slope and aspect was expanded by one grid cell all around. By doing this, none

of the information available for the watershed itself was lost.

5.2.2 Upslope Area

Aspect values of the watershed are used to calculate the upslope area for each grid

cell in the watershed. The determination of upslope area essentially involves tracing

the flow paths of water through a watershed to the drainage outlet. The algorithms

available to calculate the upslope area compliment the algorithms used to calculate

the slope and aspect, and were described in Chapter 2. The following is a list of

the three upslope area algorithms used in this study along with the slope and aspect
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algorithms that are used with them:

� Single Flow

– mdg

– mag

� Multiple Flow

– mdn

� Plane Fitting

– tpp

– fcn

– fdn

– enu

– oods

An upslope area grid was determined for each realisation and for each slope and

aspect algorithm. Since the ultimate goal was to find the topographic index value

for each cell, and since the topographic index uses the upslope area in the form of

the specific catchment area, the results for upslope area were expressed in terms

of the specific catchment area (m instead of m2). The only difference between the

specific catchment area and the upslope area is that the specific catchment area is

the upslope area divided by the grid size (25 m in this study).

5.2.3 Pit Removal

In order to determine the topographic index for each grid cell in the watershed, both

the slope and upslope area must be defined everywhere. In addition, flow must be

routed out of the watershed and not accumulate in localised areas. Problems occur
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when the slope – and by extension the aspect – are undefined. This occurs in flat

areas and, depending on the slope and aspect algorithm used, at closed depressions

(pits). An undefined aspect becomes a problem when trying to calculate upslope

area because there is no knowledge on how to route water out of a cell. Therefore,

to get accurate values of upslope area, and to be able to create a topographic index

grid that can be applied to a hydrological model, areas of undefined slope and aspect

must be corrected.

In the watershed used in this study, there were only a few single cell pits. There-

fore, only the problem of single localised pits was dealt with, and not the more

complex problems associated with larger pits and flat areas. Because of the design

of the algorithms studied, the only algorithms that had problems with these pits

were those based on the steepest neighbour (mdg, mag and mdn). The problems of

pit removal in these algorithms could be further restricted to the problem of finding

a method to route water through a pit using the mdg method, since the other two

algorithms can be ultimately reduced to a form of this algorithm.

A simple way to handle pits is to manually remove them from the dem before the

calculation of topographic parameters. In this study this was not feasible because of

the many error realisations. Adding error grids to the original dems to create error

realisations had the effect of generating pits that were not present in the original

dem. Because of this, the pits had to removed after the creation of the aspect grids

for each error realisation and could not just be removed from the original dem.

The method employed to deal with pits essentially involved rerouting flow out of

the pit. This required the initial creation of an aspect grid. From the aspect grid,

those cells with undefined aspect values were selected. An example of a pit cell,
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depicted in red, is shown in Figure 5.3(a). Once a pit was found it was assigned an

aspect that corresponded to the direction to the neighbour with the lowest elevation.

The flow path from this neighbour was then traced to ensure that it flowed out of the

watershed. If the flow path did not leave the watershed, the aspect of the neighbour

was changed to the direction of its next lowest neighbour. This process was repeated

until a flow path was found that flowed out of the watershed. Reassignment of aspect

was restricted to cells that were not already being rerouted. Using this method, only

a few aspect values typically required modification. An example of a flow path

reroute is shown in Figure 5.3(b).

(a) Before pit correction. (b) After pit correction with the new
flow path marked in light blue.

Figure 5.3: Flow directions of cells using mdg before and after pit correction. Quiver lines
represent the aspect direction and the red dot is the location of the pit.

Once the problem of an undefined aspect for pits has been addressed, the only

problem remaining is that of an undefined slope. The slope for a flat area is, by

definition, zero. Pits can also be viewed as flat because before there can be any
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outflow from them, their water level must theoretically reach a height level with that

of their lowest neighbour. However, in either case the zero slope value would create

an undefined topographic index. Therefore, to avoid any undefined topographic

indices, all flat grid cells, and by extension all pits in the watershed were assigned a

very small value. This very small value was arbitrarily selected to be 0.000001.

5.2.4 The Topographic Index

Topographic index grids were calculated for each of the eight slope and aspect algo-

rithms and for every error realisation of the watershed. The value of the topographic

index for each cell in a realisation was found using the slope and corresponding

upslope area grids. The topographic index for each grid cell was then found using

Equation 3.1.

In order to conform to the input format required by the hydrological model Top-

model the topographic index grids were converted into topographic index distribu-

tions. This was done by first finding the lowest and highest topographic index values.

These values were used to determine the low and high limits of the distribution. The

lowest value was rounded down to a value divisible by 0.5, while the highest value

was rounded up. The grid values were then binned into 0.5 intervals between the

two limits. The choice of using 0.5 as the bin size was somewhat arbitrary. However,

care was taken so that the bin size did not result in either too many bins or bins that

were too coarse. Once binned the topographic index values were ready for input into

Topmodel.
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5.3 Topmodel Implementation

Using the topographic index distributions, Topmodel was implemented for all the

combinations of calibrated input, slope and aspect algorithms, and uncorrelated and

correlated error realisations. For the two calibration methods (mdg and enu), the

only difference in the input between realisations was the topographic index distri-

bution. All other input parameters remained the same for the comparisons between

calibration methods.

For all tests, the following output data was collected from Topmodel:

� Estimated Hydrograph

� Total overland flow

� Total discharge

� Efficiency (EE)

� RMS error

As with the observed hydrographs, the estimated hydrographs exhibited two distinc-

tive rain events. From the estimated hydrograph four values were extracted: the

time to the two peaks and their heights. The times to peak were measured as the

time delay, in hours, between the rain events and the discharge peaks.

5.4 Statistical Comparisons

Monte Carlo error simulation requires a statistical comparison of the results over all

the realisations for a given method in order to produce comparable results. Specifi-

cally, the mean and standard deviation are required. As described in Section 5.1.1,



5 Experimental Methodology and Implementation 68

the mean represents the ‘actual’ value and the standard deviation is an indication of

the variation or error in the value. For each type of gridded data (slope, aspect, ups-

lope area and topographic index), the mean and standard deviation were calculated

for each grid cell in the watershed over all the realisations of the different algorithms.

These gridded mean and standard deviation values were then mapped to provide a

visual representation of where the values have the most variation and over what

type of terrain. In order to determine the error over the entire watershed for each of

the topographic parameters, the mean and standard deviation over the mean grids

was determined. This provided both the mean standard deviation and the variation

in the standard deviation for each topographic parameter. These values were used

to determine the effect of dem errors on the topographic parameters. Comparison

between the different algorithms lead to conclusions on which algorithms are more

sensitive to error.

The realisation results from Topmodel can be analysed in a statistical fashion

similar to that used with the topographic parameter grids. The primary difference

in this case is that there are not any grids, just single values for each realisation.

Topmodel results can be compared not only between algorithms, but also between

calibration methods.



Chapter 6

Experimental Results

There are two primary objectives in this study: to investigate the effect of dem error

on four topographic parameters, and to investigate the effect of dem error on the

implementation of Topmodel. Therefore, the results of this study are divided into

two sections reflecting the two primary objectives.

6.1 Topographic Parameters

For the four topographic parameters – slope, aspect, upslope area and topographic

index – results were calculated using both uncorrelated and correlated dem error.

The results for each topographic parameter and algorithm are presented using over-

all error values along with error maps. The error maps are plots of the standard

deviation values over all realisations for every cell in the watershed. For comparison,

maps of the mean values at every grid cell are also provided. Overall error values are

calculated as the mean standard deviation of the standard deviation grids for each

slope and aspect algorithm and for both uncorrelated and correlated error. To show
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how the mean standard deviation varies over the watershed, the standard deviation

of the standard deviation maps is also given.

To avoid the presentation of an overwhelming number of plots, error maps are

only given for topographic parameters that are based on the mdg and enu slope

and aspect algorithms. These two methods can be seen as two extremes in the

investigated algorithms. mdg is based on a selection process that uses only one

neighbour to calculated slope and aspect, and is the method most often used in

hydrology. enu, in contrast, uses all eight neighbours in the calculation of slope

and aspect. This method has also been shown to produce slope and aspect values

that more closely approximate those of the terrain (Skidmore, 1989; Guth, 1995).

Furthermore, as will be shown in the results below, these two algorithms normally

exhibit the highest (mdg) and lowest (enu) error sensitivity, making them the logical

choice for comparison. Except for the topographic index, error maps were only

generated for the simulations performed using uncorrelated error. Correlating the

error basically smoothes the error, reducing its effect. Therefore, the correlated error

maps are similar to the uncorrelated error maps, and differ only in the magnitude of

the error and in the extent of high error regions. The error map based on correlated

error is, however, provided for topographic index because the calculation of it requires

all of the other topographic parameters determined in the study. Consequently, it

nicely summarises the cumulative effect of the error.

6.1.1 Slope

The overall effect of both uncorrelated and correlated dem error on the calculation of

slope is presented in Table 6.1. From these results a number of observations can be
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made not only between the eight algorithms but also between the two types of error.

All eight algorithms are, as expected, much less sensitive to correlated error than they

are to uncorrelated error. This is understandable since all the algorithms are based

on local neighbour operations, and correlating the error reduces the variation in local

neighbourhoods. In other words, the error in a local neighbourhood will be more of

an elevation bias and will hence will have less of an impact on the resulting slope

value. Another interesting observation regarding correlated error is that correlating

the error reduces the variation between algorithms. The mean standard deviation

for uncorrelated error ranges between 0.1495 and 0.0483, while for correlated error

the mean standard deviation only ranges between 0.0182 and 0.0164. Therefore, all

eight slope algorithms are about equally sensitive to correlated error. Again, the

reason is that the correlated error results in an elevation bias. Because none of the

slope algorithms use the absolute elevation values, this bias does not effect their

calculation.

While the errors in slope for the eight algorithms are fairly uniform for correlated

error, the differences between algorithms are much larger for uncorrelated error. A

general trend is that the more neighbours used in the calculation of slope, the less

sensitive the result is to uncorrelated error. The errors in the steepest neighbour

algorithms are, in general, larger then those of the four neighbour algorithms, which

are in turn larger then those of the eight neighbour algorithms. This relationship is

understandable since the more neighbours involved in the algorithm, the less likely

the slope values will be affected by one, or a few, highly erroneous elevation values

in neighbouring cells. Since the mdn algorithm calculates slope based on an average

of all downslope neighbours, it is also reasonable that it is less sensitive to error then
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Table 6.1: Mean and standard deviation of the standard deviation of slope for the entire
watershed.

Mean Standard Deviation of
Error Algorithm Standard Deviation Standard Deviation

Uncorrelated mdg 0.1325 0.0144
mag 0.1013 0.0110
mdn 0.0785 0.0105
tpp 0.1495 0.0250
fcn 0.0817 0.0053
fdn 0.0588 0.0030
enu 0.0483 0.0022
oods 0.0512 0.0024

Correlated mdg 0.0180 0.0008
mag 0.0179 0.0008
mdn 0.0164 0.0086
tpp 0.0182 0.0006
fcn 0.0176 0.0006
fdn 0.0174 0.0006
enu 0.0175 0.0006
oods 0.0175 0.0006

the other steepest neighbour algorithms and even the fcn algorithm.

An apparent variation to this trend is the tpp method, which had the largest

error of all the algorithms. However, this algorithm can be viewed as the algorithm

that uses the least number of neighbours, and the algorithm most sensitive to the

orientation of the grid. Even though the steepest neighbour algorithms only use one

(or more then one as is the case in mdn) neighbour to calculate slope, they do take

into account the other eight neighbours in the selection process. The tpp method,

on the other hand, only uses two specific neighbours, not taking into account the

other six in any way. This limitation can makes this method more vulnerable to

highly erroneous elevation values.
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Based on the significant differences in slope error between the fcn and fdn meth-

ods, along with the differences in slope error between the enu and oods methods, it

is assumed that this watershed suffers from a grid orientation bias. That is, over the

entire watershed, slopes are more dominant in the diagonal directions than they are

in the cardinal directions, and consequently, the diagonal direction is less sensitive

to error then the cardinal direction. This is evident by the error in the fdn slope

algorithm being smaller then the error in the fcn slope algorithm, and also in the

error in the enu algorithm being smaller than the error in the oods algorithm. In

the enu algorithm all eight neighbours are weighted the same, where as in the oods

algorithm the diagonal neighbours are weighted less then the cardinal neighbours.

This essentially results in, for this particular watershed, the more erroneous neigh-

bours having a more significant role in the determination of slope, resulting in a

higher error sensitivity. The significance of the differences between the overall error

in the fcn and fdn slope algorithms, as well as between the enu and oods slope

algorithms, was statistically confirmed using a student’s t-test.

While there has been little to no research into the error sensitivity of slope algo-

rithms, there has been some research into the ability of these algorithms to accurately

determine the ‘true’ values of slope (Guth, 1995; Jones, 1998; Skidmore, 1989; Vere-

gin, 1997; Quinn et al., 1991). Regardless, the results of these studies are similar to

the results found in this study – the more neighbours used in a slope algorithm the

more accurately the slope values agreed with the actual value of slope. The steepest

neighbour algorithms tended to produce the worse results, while the enu and fcn

algorithms tended to produce the best results.

To obtain an understanding of the structure of slope error in the watershed, error
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maps for the mdg and the enu methods using uncorrelated error were created and

are shown in Figure 6.1.1. In order to determine if the value of slope plays a role in

the amount of error, both mean slope maps (Figures 6.1(a) and 6.1(c)) and standard

deviation slope maps (Figures 6.1(b) and 6.1(d)) were generated. From the mean

slope maps it is apparent that the mdg method, on average, produces higher slope

values then the enu method. The mean value over the entire grid for the former was

0.446, while for the latter it was 0.406. This is a significant difference (confirmed

using a student’s t-test); however, similar results were obtained by Guth (1995),

who found that the mdg method, and by extension the mag method, tended to

give significantly steeper slopes, especially in steep terrain. Though the mean slope

values at each cell are different between the two methods, the overall slope pattern

is similar.

Although the mean slope maps are generally similar, the differences in the stan-

dard deviation maps are evident. The error in slope for the enu method is, for the

most part, uniform across the watershed. An exception is a small region near the

upper right hand edge of the watershed that is noticeably less sensitive to error.

This region has a particularly low slope, which leads to the conclusion that areas

of low slope are less sensitive to error. This confirms the research done by Veregin

(1997). For the mdg method it is evident that the terrain is reflected in the error

map. Hence, the error from this algorithm is more dependant upon the actual slope

value. Like the enu method, areas of low slope are less sensitive to error. However,

in general, the error sensitivity for the mdg method is much higher then the error

sensitivity for the enu method across the entire watershed. The observation that

areas of low slope are less sensitive to error is confirmed in Figure 6.2, which is a
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(a) Mean slope using mdg.
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(b) Standard deviation of slope using mdg.
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(c) Mean slope using enu.
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(d) Standard deviation of slope using enu.

Figure 6.1: Slope error maps for uncorrelated error. The mean and standard deviation are
determined for each cell over the 500 realisations.
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plot of the standard deviation of slope as a function of the mean slope.
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Figure 6.2: The standard deviation of slope as a function of the mean slope for each cell in the
watershed for uncorrelated dem error.

6.1.2 Aspect

The overall errors in aspect are presented in Table 6.2. These results exhibit rela-

tionships that are different to those observed for slope. Unlike the errors in slope, the

errors in aspect (reflected in the mean standard deviation) do not appear to improve

significantly when the dem error is correlated. In some instances, the error sensitiv-

ity of aspect with the correlated error is even higher then it is with the uncorrelated

error. In any case, however, the difference in error sensitivity between algorithms

or between uncorrelated or correlated dem error is almost always small. With the

exception of correlated mdn, all mean standard deviation values lie within two de-

grees of 45◦. While this might seem like a large amount of error, it only represents a

displacement of one grid cell. Therefore, from these results it can be concluded that

all eight algorithms are, essentially, equally sensitive to error, regardless of the form

of the error (i.e., whether or not the error is correlated or uncorrelated).
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Table 6.2: Mean and standard deviation of the standard deviation of aspect for the entire
watershed.

Mean Standard Deviation of
Error Algorithm Standard Deviation Standard Deviation

(degrees) (degrees)

Uncorrelated mdg 44.39 16.35
mag 44.47 16.35
mdn 43.67 16.25
tpp 44.89 20.12
fcn 44.05 30.07
fdn 43.64 34.02
enu 43.72 36.47
oods 43.76 35.90

Correlated mdg 43.70 65.98
mag 43.62 65.36
mdn 50.28 60.80
tpp 44.91 48.25
fcn 44.73 46.39
fdn 44.43 46.64
enu 44.52 46.40
oods 44.58 46.36
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Aspect error maps for the mdg and enu methods are presented in Figure 6.1.2.

From the mean aspect maps (Figures 6.3(a) and 6.3(c)), it can be seen that there is

little difference in the aspect values between the two algorithms. The only apparent

difference between them is that the enu plot is smoother. This is understandable

since the mdg method is restricted to aspect values that are in 45◦intervals, while the

aspect values for the enu method can be anything, resulting in smoother transitions.

The standard deviation maps for both algorithms (Figures 6.3(b) and 6.3(d)) are

similar to each other. This is not unexpected, because both algorithms have similar

overall error values. Error is fairly constant across the watershed for both algorithms.

Error tends to be a little higher for mdg then for enu in the lower slope areas and

along the drainage network, but this variation is not as large as that seen in slope

errors. For both algorithms the area of highest aspect error is located in the same

location as the area of lowest error for slope, i.e., the upper right hand edge. As

shown in Figure 6.1.1, this is a low slope area. It is understandable that areas of low

slope are also areas of high aspect error since a small error in slope can dramatically

affect the aspect. An important observation that can be made about the aspect error

is that its magnitude is not dependent on the aspect value itself, but is more related

to the value of slope. This can be seen by comparing Figures 6.4 and 6.5, which plot

the standard deviation of aspect as a function of the mean aspect and slope values

respectively. From these plots its is apparent that aspect error is correlated with

slope and not aspect.
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(c) Mean aspect using enu.
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(d) Absolute Standard deviation of aspect
using enu.

Figure 6.3: Aspect error maps for uncorrelated error. The mean and standard deviation are
determined for each cell over the 500 realisations. Aspect values are expressed in degrees.
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Figure 6.4: The standard deviation of aspect as a function of the mean aspect for each cell in
the watershed for uncorrelated dem error.
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Figure 6.5: The standard deviation of aspect as a function of the mean slope for each cell in the
watershed for uncorrelated dem error.
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6.1.3 Upslope Area

From the aspect values for each realisation, error type, and slope and aspect algo-

rithm, upslope area maps were generated. The overall errors in upslope slope area

are given in Table 6.3. From these results it is apparent that, as was found for slope

errors, all eight algorithms are less sensitive to correlated error then they are to un-

correlated error. The reasons for this are similar to those given for slope (Section

6.1.1). However, unlike the errors in slope, correlating the dem error does not reduce

the variation in error between the algorithms. This difference from the slope results

can be attributed to the difference between global and neighbourhood operations.

Slope, as calculated in this study, is restricted to neighbourhood operations, and,

hence, treats correlated error as a bias. Upslope area, on the other hand, is more of

a global operation, and hence is affected by values outside the region of correlation.

The overall error between the eight slope and aspect algorithms, for both uncor-

related and correlated dem error, appears to follow two patterns. These two patterns

correspond to the two distinctive types of algorithms: those based on the steepest

neighbour, and those that are not. For the algorithms based on the steepest neigh-

bour principle, it is apparent that the smaller the dependence on a single steepest

neighbour, the smaller the sensitivity to dem error. The mdg algorithm, which is

based entirely on a single steepest neighbour has the larger error, while the mdn algo-

rithm, which uses all downslope neighbours, has the lowest error. Based on the way

the upslope area is calculated for these two algorithms, this result is understandable.

The mdg algorithm only allows single cell flow – flow from one cell flows completely

into a single neighbouring cell. Since the flow is never divided, it is difficult for this

method to ‘recover’ from erroneous elevation values. If the flow is misdirected for a
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Table 6.3: Mean and standard deviation of the standard deviation of upslope area for the entire
watershed.

Mean Standard Deviation of
Error Algorithm Standard Deviation Standard Deviation

(m) (m)

Uncorrelated mdg 4314.49 18212.98
mag 797.12 1613.58
mdn 151.79 464.93
tpp 87.22 147.99
fcn 180.34 526.34
fdn 226.99 732.47
enu 253.50 741.65
oods 264.83 793.60

Correlated mdg 1099.26 8465.67
mag 615.43 2189.31
mdn 281.52 1391.18
tpp 98.85 369.43
fcn 133.28 689.04
fdn 175.00 774.27
enu 151.80 657.34
oods 143.80 667.55
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specific cell in a given realisation by even one grid cell, there is little to no chance

that the flow will follow the same path as that in another realisation. Since upslope

area of one grid cell is connected to the upslope area of the other cells in the water-

shed, errors compound downslope. For the mdn algorithm flow is divided between

all downslope neighbours. It is therefore possible for flow to diverge and converge as

it travels downslope. Because of this, the variation in upslope area for each grid cell

will be less then that observed using the mdg algorithm. The reason that the mag

algorithm is less sensitive to error than the mdg algorithm, even though it is also

based on a single neighbour, is that it finds the neighbour with the maximum slope,

not just the neighbour with the maximum downslope. Therefore, this method has a

greater ability to choose the ‘correct’ flow direction. However, the mag method is

still limited by the same factors affecting the mdg method, and therefore it has a

sensitivity to error that is larger than that of the mdn method.

The five remaining slope and aspect algorithms (tpp, fcn, fdn, enu and oods)

exhibit an error pattern that can be viewed as the opposite of that seen for the

steepest neighbour based algorithms. For these remaining algorithms, the error in

upslope area increases with an increase in the number of neighbours used in the

algorithm. All of these methods calculate upslope area in a similar manner using

plane fitting. Therefore, the only difference between the algorithms is the number of

neighbours used to determine aspect. None of these methods placed any restrictions

on aspect values, i.e., aspect was not limited to 45◦bins. Since the error in aspect was

found to be fairly constant between algorithms, and if anything was slightly larger

in algorithms that use fewer neighbours, the results obtained for upslope area are a

little baffling.
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Comparing the two mean upslope area plots (Figures 6.6(a) and 6.6(c)) it is

clear that the mdg method produces a visible drainage network with a definable

outflow location, while the enu method does not. The determination of upslope

area is normally done with the goal of extracting a drainage network. Except for

a few disconnected lines, the enu method does not appear to accomplish this goal.

Similar poor connectivity is observed in all the algorithms that are not based on

the steepest neighbour principle. Furthermore, as the number of neighbours used

in an algorithm decreases, the more disconnected the drainage network becomes.

Or, alternatively, the fewer neighbours used in an algorithm, the more uniform the

upslope area values are across the watershed. If the upslope area is relatively uniform

across the watershed, then it is less likely that there will be any variation in a single

cell’s value between realisations. If, on the other hand, there are distinctive features

that have widely different values, there is a greater opportunity for variation over

realisations. It is therefore understandable that, for slope and aspect algorithms

not based on the steepest neighbour, the overall error in upslope area will increase

with the number of neighbours involved. In other words, the fewer the neighbours,

the more uniform the upslope area, and the more uniform the upslope area, the

smaller the variation between realisations. For those algorithms not based upon the

steepest neighbour principle, this explains the observed rise in upslope area error as

the number of neighbours increased.

From the two standard deviation plots (Figures 6.6(b) and 6.6(d)), it can clearly

be seen that the greatest error in upslope area occurs along the drainage network.

The drainage network is the location of high upslope area values. Therefore, a large

error is associated with a large upslope area. This relationship is shown in Figure 6.7,
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(a) Mean upslope area using mdg.

0

5

10

15

x 10
4

624725 629825
5644950

5648450

Easting (m)
N

o
rt

h
in

g
 (

m
)

(b) Standard deviation of upslope area using
mdg.

0.5

1

1.5

2

x 10
4

624725 629825
5644950

5648450

Easting (m)

N
o

rt
h

in
g

 (
m

)

(c) Mean upslope area using enu.
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enu.

Figure 6.6: Upslope area error maps for uncorrelated error. The mean and standard deviation
are determined for each cell over the 500 realisations. Upslope area values are expressed in metres.
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where the standard deviation of upslope area for each cell in the watershed is plotted

as a function of the mean. As stated before, upslope area is an accumulation process

and errors will tend to compound as the size of the upslope area is increased. Since

the drainage networks represent locations of flow accumulation, it is reasonable to

expect these regions to be more susceptible to error. The largest error for the mdg

method is, as expected, at the drainage outlet. Upslope area errors are generally

larger for the mdg method as opposed to the enu method across the watershed, and

this is especially noticeable along the drainage networks.

An unusual phenomenon can be observed in Figure 6.7 for the upslope area

calculated using the mdg method. Three distinct curves are visible, each with a

different maximum error value. These different curves likely correspond to data from

different geographic locations in the watershed, i.e. along the different branches of

the drainage network. As observed before, flatter areas tend to be more sensitive to

error. It stands to reason therefore, that drainage networks from flatter areas will

in general experience less upslope area error sensitivity than drainage networks from

steeper areas. Since the upslope area errors for the enu method were so small, and

since the drainage network was not very well defined for this method, this method

did not exhibit the curve differences observed for the mdg method.

6.1.4 Topographic Index

The last topographic parameter investigated was the topographic index. The overall

effect of uncorrelated and correlated dem error on the eight algorithms used to

calculated the topographic index are presented in Table 6.4. The patterns observed

for errors in the topographic index between algorithms and between uncorrelated
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Figure 6.7: The standard deviation of upslope area as a function of the mean upslope area for
each cell in the watershed for uncorrelated dem error.

and correlated error are a combination of those observed for both slope and upslope

area. The differences in the overall topographic index errors between uncorrelated

and correlated dem error are similar to those exhibited by the upslope area. That

is, correlated dem error reduces the amount of error in the topographic index for

all eight algorithms, but it does not equalise the error sensitivity as it does for

slope. However, like slope, the topographic index error decreases with an increase in

the number of neighbours utilised in the algorithm. However, unlike for slope, the

steepest neighbour algorithms (mdg, mag and mdn) all suffer from a larger error

then the other algorithms. This observation includes the tpp method, which (again,

unlike slope) has a smaller error than all of the steepest neighbour algorithms. The

reason for this difference is related to the large error in upslope area found in the

steepest neighbour algorithms. Another similarity between slope and topographic

index error is the apparent grid orientation bias. The explanations for the observed

patterns in topographic index error are the same as those given for the errors in slope

and upslope area.
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Table 6.4: Mean and standard deviation of the standard deviation of topographic index for the
entire watershed.

Mean Standard Deviation of
Error Algorithm Standard Deviation Standard Deviation

Uncorrelated mdg 1.9297 1.1937
mag 1.2218 0.4562
mdn 1.2392 0.8833
tpp 0.7970 0.2647
fcn 0.7022 0.3602
fdn 0.5841 0.3909
enu 0.5783 0.4060
oods 0.6112 0.4129

Correlated mdg 0.4559 0.4658
mag 0.4774 0.4638
mdn 0.3975 0.4658
tpp 0.2883 0.3789
fcn 0.2551 0.3529
fdn 0.2330 0.3146
enu 0.2342 0.3294
oods 0.2360 0.3395
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Topographic index error maps for the mdg and enu methods are presented in

Figure 6.1.4. Like the overall error discussed above, the mean (Figures 6.8(a) and

6.8(c)) and standard deviation maps (Figures 6.8(b) and 6.8(d)) have attributes

similar to those seen in the error maps for slope and upslope area (Figures 6.1.1

and 6.1.3 respectively). By comparing the two mean topographic index maps it is

apparent that the mdg method, on average, produces higher values then the enu

method. While a drainage network is visible in the mean plots for both methods,

the one produced using the mdg method is more highly defined. These observations

were also made for the mean maps for slope and upslope area.

The standard deviation maps for the mdg and enu algorithms have appearances

that have already been described by the error maps of slope and upslope area. For

both algorithms, the drainage network is visible in the error maps, but is more

prominent for the mdg algorithm. Error for both methods is greatest along the

drainage network and in areas of low slope. Topographic error are, in general, larger

for the mdg method than the enu method across the entire watershed.

To compare the error maps generated using uncorrelated and correlated dem

error, the topographic index error maps resulting from correlated error were created

for the mdg and enu algorithms, and are shown in Figure 6.1.4. For both algorithms

there is very little difference visible between the mean plots for the uncorrelated

error and the mean plots for the correlated error. This is reflected in the small

average differences in the mean topographic index values between the two types of

error simulations. For the mdg algorithm the difference was 0.63, and for the enu

algorithm it was an even smaller 0.33. The difference between error types is, however,

much more significant when the standard deviations are examined. This is because
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(a) Mean topographic index using mdg.
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(c) Mean topographic index using enu.
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using enu.

Figure 6.8: Topographic index error maps for uncorrelated error. The mean and standard
deviation are determined for each cell over the 500 realisations.
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correlated error significantly reduces the error sensitivity of both algorithms. While

features visible in the topographic index error plots generated using uncorrelated

error are visible in the error plots generated using correlated error, correlated error

does tend to make the error more uniform across the watershed. Therefore, while

correlated dem error does not affect the value of topographic index, it does reduce

the error sensitivity.

The form of the topographic index required for input into Topmodel is a binned

distribution. The mean topographic distribution for the eight algorithms generated

using uncorrelated dem error are presented in Figure 6.1.4. For comparison, the

two distributions used to calibrate Topmodel are also included. All distribution

functions have been binned at 0.5 intervals. To emphasise the differences in the

prominent part of the distributions, the scale on the x-axis has been truncated at 15

for all plots. While most distributions terminate before a topographic index value of

15, there are a few that do not. Those include mdg Calibration (max = 27.5), mdg

(max = 22) and mdn (max = 20). From the mean topographic distribution plots it

can be seen that, as expected, similar algorithms produce similar distributions.

The mean, standard deviation and skewness for the topographic distributions are

provided in Table 6.5. Both the mean, and especially the skewness of the distribu-

tions, will play a significant role in describing the Topmodel results. From Table

6.5 it can be seen that correlated error tends to equalise the means of the distribu-

tions and reduce the skewness when compared to uncorrelated dem error. Between

algorithms it appears that those based on the steepest neighbour are more skewed

than those based on the other algorithms. Between the other algorithms it appears

that the more neighbours used in the determination of the slope and aspect the more
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(c) Mean topographic index using enu.
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Figure 6.9: Topographic index error maps for correlated error. The mean and standard
deviation are determined for each cell over the 500 realisations.
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(c) Eight Neighbour Algorithms

Figure 6.10: Mean topographic index distributions for the eight slope and aspect algorithms
using uncorrelated error. The two Topmodel calibration distributions are provided for

comparison.
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skewed the topographic distribution. These observations coincide with the ability of

an algorithm to resolve a drainage network.

Table 6.5: Characteristics of the mean topographic index distributions.

Standard
Error Algorithm Mean Deviation Skew

Uncorrelated mdg 6.04 4.54 1.17
mag 5.63 2.21 0.62
mdn 5.91 2.22 0.86
tpp 5.16 1.34 0.44
fcn 5.85 2.04 0.45
fdn 6.16 2.73 0.60
enu 6.28 2.83 0.59
oods 6.22 2.71 0.58

Correlated mdg 6.45 5.41 1.10
mag 6.33 3.95 0.53
mdn 6.45 4.09 0.80
tpp 6.32 2.86 0.29
fcn 6.50 3.20 0.43
fdn 6.61 3.37 0.46
enu 6.60 3.37 0.46
oods 6.59 3.37 0.46

6.2 Topmodel

The effect of dem error on the results of Topmodel was investigated for the eight

slope and aspect algorithms of the previous section. However, before Topmodel

could be used effectively it first required calibration. This, in turn, required a topo-

graphic index distribution generated using one of the eight algorithms. To eliminate

any bias towards the algorithm used for calibration, Topmodel was calibrated twice

with two different algorithms – mdg and enu. The results from these calibrations
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were then used in a Monte Carlo simulation for each of the eight slope and aspect

algorithms, and for both uncorrelated and correlated error. As for the previous tests,

each Monte Carlo simulation used 500 realisations.

Aside from generating a hydrograph for the desired time series, Topmodel also

provides statistics that compare its estimated hydrograph to the observed hydro-

graph. For this study, the hydrographs produced during calibration (one for mdg

calibration and one for enu calibration) were used as the observed hydrograph dur-

ing later testing. The two statistics presented include the efficiency (EE) and the

root mean square (rms) error. An efficiency value of 1.0 indicates a perfect fit, and

the closer the efficiency is to 1.0 the more the estimated hydrograph resembles the

observed. A small rms error value is also an indication of a good fit. The statistics

for the eight algorithms and the two types of dem error for both mdg and enu cali-

bration are provided in Tables 6.6 and 6.7 respectively. In these tables the statistics

are presented as the mean and standard deviation over all 500 realisations.

The statistics for the two types of calibration have some similar properties. For

both calibrations, the correlation of dem error tends to increase the average fit of

the estimated hydrograph to the calibrated hydrograph. Whether or not correlation

reduces the variance in the fit is dependent on the algorithm and calibration method.

However, the variation is, in general, fairly small. Not surprisingly, for each calibra-

tion method the algorithm that produced the best fit and had the least amount of

variation was the method initially used for the calibration. Additionally, algorithms

that more closely resembled those used for calibration also tended to perform better.

This is understandable since similar algorithms tend to produce similar topographic

distributions. Attention should be drawn to the very poor results from the tpp
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Table 6.6: Statistics comparing the Topmodel estimated hydrographs calibrated using the mdg
topographic distribution to the mdg calibrated hydrograph.

Efficiency RMS Error (10−6)
Standard Standard

Error Algorithm Mean Deviation Mean Deviation

Uncorrelated mdg 0.921 0.014 1.18 0.50
mag 0.598 0.058 2.67 1.01
mdn 0.566 0.080 2.78 1.19
tpp -0.050 0.011 4.32 0.45
fcn 0.157 0.060 3.87 1.03
fdn 0.490 0.066 3.01 1.08
enu 0.576 0.061 2.75 1.04
oods 0.535 0.070 2.88 1.11

Correlated mdg 0.996 0.004 0.27 0.26
mag 0.967 0.016 0.77 0.553
mdn 0.864 0.156 1.56 1.66
tpp 0.225 0.072 3.71 1.13
fcn 0.553 0.068 2.82 1.10
fdn 0.713 0.055 2.26 0.99
enu 0.709 0.055 2.28 0.99
oods 0.709 0.054 2.28 0.98
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Table 6.7: Statistics comparing the Topmodel estimated hydrographs calibrated using the enu
topographic distribution to the enu calibrated hydrograph.

Efficiency RMS Error (10−6)
Standard Standard

Error Algorithm Mean Deviation Mean Deviation

Uncorrelated mdg 0.332 0.050 3.45 0.95
mag 0.963 0.021 0.81 0.61
mdn 0.771 0.108 2.02 1.39
tpp 0.024 0.032 4.17 0.75
fcn 0.471 0.086 3.07 1.24
fdn 0.866 0.061 1.55 1.05
enu 0.940 0.044 1.03 0.89
oods 0.909 0.057 1.27 0.75

Correlated mdg 0.773 0.047 2.01 0.91
mag 0.854 0.043 1.61 0.88
mdn 0.891 0.165 1.39 1.71
tpp 0.718 0.093 2.24 1.29
fcn 0.951 0.044 0.93 0.88
fdn 0.991 0.013 0.41 0.49
enu 0.990 0.014 0.42 0.50
oods 0.990 0.015 0.41 0.49
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method. For the mdg calibration with uncorrelated error this method resulted in a

negative efficiency – indicating that even a straight line would have outperformed it.

The poor performance of the tpp method is most likely due to its poor definition

of drainage networks, and corresponding generation of strange topographic index

distributions.

In addition to a quantitative analysis based on the efficiency and rms, the ability

of Topmodel to produce realistic hydrographs can also be investigated qualitatively

by examining the output hydrographs. Figures 6.2 and 6.2 show the mean hydro-

graphs estimated by Topmodel for all eight algorithms using the mdg and enu

calibrations, respectively. These results are for the addition of uncorrelated error

to the dem. In comparing the two calibrations it can be seen that, in general, the

enu calibration produces hydrographs for the eight algorithms that are more similar.

This is because the topographic distribution used for enu calibration is more repre-

sentative of the topographic distributions created by the eight algorithms. This is,

however, not the same as saying that the enu calibration creates a distribution that

is more correct, as it has already been shown that the enu method does not produce

a very definable drainage network. It is, therefore, unlikely that the method – or

the others not based on the steepest neighbour principle – produces a topographic

distribution that accurately describes the watershed.

To avoid the presentation of an excess number of similar graphs, the hydrographs

for the correlated dem error are not provided. The only difference between the

hydrographs created using uncorrelated dem error and those created using correlated

dem error is that the correlated error hydrographs fit the calibrated hydrographs

better. As a result there is less of a difference between the algorithms’ hydrographs.
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(c) Eight Neighbour Algorithms

Figure 6.11: Mean Topmodel estimated hydrographs for the eight slope and aspect algorithms
using uncorrelated error and the mdg calibration. The calibrated stream hydrograph is provided

for comparison.
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Figure 6.12: Mean Topmodel estimated hydrographs for the eight slope and aspect algorithms
using uncorrelated error and the enu calibration. The calibrated stream hydrograph is provided

for comparison.



6 Experimental Results 101

Two of the more important characteristics of a hydrograph are the times to and

heights of the discharge peaks following rain events. In the 200 hour time series

studied here there were two rain events. The mean and standard deviation of the

peak values for mdg and enu are available in Tables 6.8 and 6.9,respectively. For

each calibration method there is little to no difference between the times to the

discharge peaks for most of the eight algorithms or error types. This is especially

true for enu calibration. There is however, one notable exception to this, the tpp

algorithm. This algorithm produces hydrographs that are almost completely flat,

making the determination of the peak location difficult at times. Again, this poor

result is because the tpp algorithm does not generate any sort of drainage network.

Therefore, the discharge produced by Topmodel for this algorithm is similar to the

discharge that would be produced from a relativey flat area. The difference in the

peak heights between algorithms can be seen in Figures 6.2 and 6.2.

Regardless of the algorithm, calibration method, or type of dem error, the stan-

dard deviations of the peak values are very small. This is particularly true for the

enu calibration, where, in some cases, the standard deviation is virtually zero. Even

the standard deviations for mdg calibration are, however, fairly insignificant. As

expected the smallest standard deviations occur for the algorithms used to calibrate

the model. From these results it appears that dem error does not have a significant

effect on Topmodel’s hydrograph estimation.

One thing that stands out when examining the results for Topmodel is the large

differences between hydrographs for different algorithms. The magnitude of these dif-

ferences is somewhat surprising considering all the data is for the same watershed

and rain event. For a given set of calibrated parameters the only difference in the
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input data for Topmodel is the topographic distribution. From the models perspec-

tive, using topographic distributions with different distribution statistics (min, max,

mean, standard deviation and skew) essentially describes different watersheds. With

this understanding, the apparent extreme differences between algorithms become

more understandable.

In a study done by Wolock and Price (1994), it was found that the hydrographs

predicted by Topmodel were very sensitive to the mean of the input topographic

distribution. The higher the mean, the greater the ground saturation and, hence ,the

greater the amount of overland flow during rain events. In this study, Topmodel

was found to be more sensitive to the right skewness of the topographic distribution

than the mean. The higher the skew produced by an algorithm, the higher the

peak discharge. The reason the skewness had more of an impact then the mean is

probably related to the dryness of the watershed. Since the watershed was fairly

dry, and, since the rain event was not very large, not much of the watershed was

ever saturated. Hence, it was the tail of the topographic index distribution that was

more significant in determining the amount of saturation. By comparing skew values

and hydrographs it can be seen that similar hydrographs are produced by algorithms

with similarly skewed topographic distributions.

The objective of this study was to examine the effect of uncorrelated and corre-

lated dem error on the output from Topmodel. Therefore, the standard deviations

in the results over the 500 realisations should be investigated, and not the differences

between the mean values of the eight algorithms. In any case, the difference between

algorithms can essentially be ‘calibrated out’ with a re-calibration of Topmodel.

Therefore, looking at the variations in results for each algorithm, especially those
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in the algorithms that were used for calibration, it appears that dem error – ei-

ther uncorrelated or correlated – has little impact on Topmodel’s results. That is,

the output from TOPMODEL does not appear to be sensitive to dem error for the

watershed investigated in this study.



Chapter 7

Conclusions

This research studied the effect of uncorrelated and correlated dem error on the

determination of four topographic parameters: slope, aspect, upslope area and to-

pographic index. In addition, the effect of dem error on the distributed hydrological

model Topmodel was also investigated. For both investigations the objective was

to determine which slope and aspect algorithms had the greatest sensitivity to dem

error.

Conclusions that can be made from the results presented in the previous chapter

are as follows:

� Correlated versus uncorrelated DEM error: The error in most topo-

graphic parameters was significantly smaller in the presence of correlated dem

error than in the presence of uncorrelated dem error. This was true for the

slope, upslope area and topographic index. The exception to this was the

aspect, where there was little difference in error between uncorrelated and cor-

related error.
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� Slope: The more neighbours used in a slope algorithm, the less sensitive the

algorithm is to dem error. This is true both for those algorithms based on the

steepest neighbour principle, and those algorithms that use a fixed number of

neighbours. Furthermore, the former category of algorithms was, in general,

more susceptible to error than the latter category. When the eight algorithms

are ranked from highest to lowest amount of error the result is as follows: tpp,

mdg, mag, fcn, mdn, fdn, oods and enu.

For the two algorithms studied in detail (enu and mdg), the sensitivity of the

slope error was smallest in regions of low slope. Outside of these regions the

enu algorithm had an error sensitivity that was fairly uniform. In contrast, the

error sensitivity of the mdg method was dependant upon the value of slope. It

is believed that such results are representative of the two different categories

of slope algorithms, and that, compared to those algorithms that use a fixed

number of neighbours, the error sensitivity of algorithms based on the steepest

neighbour principle is, in general, more dependant upon the slope value.

� Aspect: Aspect error is essentially equal for all eight slope and aspect algo-

rithms studied. This error has a value of approximately 45◦, which represents

an aspect displacement of one grid cell. The variation in the magnitude of

aspect error across the watershed is not dependent on the aspect value itself.

Rather, it is related to the value of slope. In particular, areas of low slope tend

to correspond to areas of high aspect error.

� Upslope area: For the upslope area derived from slope and aspect algorithms

based on the steepest neighbour principle, it was observed that the more per-
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missive the choice of neighbour (or neighbours), the less sensitive the upslope

area was to dem error. Or, equivalently, the smaller the dependance on a sin-

gle downhill neighbour, the smaller the error sensitivity. Conversely, for those

algorithms not based on the steepest neighbour, the error sensitivity of ups-

lope area increases with an increase in the number of neighbours used in the

algorithm.

The error sensitivity of the upslope area is greatest for those algorithms that

produce distinctly defined drainage networks. This is because it is along the

drainage networks that the largest upslope area errors occur. The steepest

neighbour algorithms are the most adept at producing well-defined networks,

and consequently have the greatest error sensitivity. The eight algorithms can

be ranked from highest to lowest amount of upslope area error as a result of

dem error as follows: mdg, mag, mdn, oods, enu, fdn, fcn and tpp.

� Topographic index: Errors in the topographic index are largest for the al-

gorithms based on the steepest neighbour principle. Within this category, a

similar error pattern is observed as was seen for both the slope and upslope

area: the more permissive the choice of neighbour (or neighbours), the smaller

the error sensitivity. The topographic index error pattern for the algorithms

that use a fixed number of neighbours is, again, similar to that observed for

slope: the more neighbours used in an algorithm, the less sensitive the result is

to dem error. Errors in topographic index are greatest along the drainage net-

work and in areas of low slope. As discussed previously, however, the steepest-

neighbour algorithms produce the most clearly defined drainage networks, and

consequently have a greater overall error. Thus, when the eight algorithms can
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be ranked from largest to smallest amounts of error, the steepest neighbour

algorithms come out on top: mdg, mdn, mag, tpp, fcn, oods, fdn and

enu.

� TOPMODEL: For the watershed investigated in this study, the output from

Topmodel does not appear to be sensitive to dem error. This is true for

any of the slope and aspect algorithms used to generate the topographic in-

dex distribution, and is reflected in the very low standard deviations in the

times-to-peak and peak discharge values. The values themselves are, however,

sensitive to the choice of algorithm – particularly the peak discharge. This is

because each slope and aspect algorithm calculates the topographic index in a

different way, and therefore the topographic index distributions are all slightly

different. From the model’s perspective, topographic distributions with differ-

ent statistics are, essentially, different watersheds altogether, and hence give

different discharge results.

Attention should be brought to the fact that this research was performed on

a single watershed with a specific amount of elevation error and error correlation.

While it is felt that the conclusions from this research are valid for a wide variety of

watersheds with a range of elevation error magnitudes and correlations, care should

be taken when applying these conclusions too strictly. Before these conclusions

can be globally applied, research should be done into the effects of increased and

decreased amounts of dem error, different types of error correlation, as well the

effects on watersheds from different types of terrain.
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