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Abstract
The objective of this thesis is to study the cdmition of the monthly satellite gravity
data from the GRACE twin-satellite mission to thedy of Glacial Isostatic Adjustment
(GIA) in North America. The GRACE data set of mdgtglobal gravity fields improves
knowledge of this GIA especially in areas whereesrial measurements are sparse,
such as northern Canada.

Specifically, the following questions are reseadclar the study area of North
America: (i) What is the uncertainty in long-termagty rates estimated from GRACE
data? (ii) Which of the global ice models fits béstthe GRACE data? iii) Can a
rheology which includes a non-linear flow law expléhe GRACE observed maximum
geoid rate?

It is found that straight forward filtering of thieend estimated from GRACE data
removes more GIA signal than it removes errorstefioee recommendations are made
for tuning an available filter. After filtering, rsurement errors are small and can be
represented by calibrated standard deviations oe$iguals after estimation of a trend in
the presence of annual and inter-annual signalgveder, changes in continental water
storage are a larger than expected error sourtedhanot be mitigated. In addition, large
unexplained inter-annual variability exists in tihragnitude and in the patterns of the
gravity rate estimated from up to 5 years of GRA(ZA.

The presence of two domes in the GRACE-derivedityraate pattern as reported
before occurs for a variety of processing techrsqaied is a stable result. However, the
largest maximum gravity rate is found at the lamawf the Labrador ice dome instead of
at the Keewatin ice dome. As a result, a bettesfabtained with the older ICE-3G and
ICE-4G models than the more recent ICE-5Gv1.2 nodi@l all reasonable viscosity
profiles and for all amounts of smoothing appliedthe GRACE data. This finding
should motivate improvement or testing of a futioe model in North America using
GRACE data.

Laboratory experiments show that linear and noedin flow laws occur
simultaneously in mantle rocks. GIA modelling insthhesis that incorporates this is

found to explain historic sea level data almosival as purely non-linear rheology, and



is able to bring the maximum geoid rate in betgmeament with the GRACE observed
value than purely non-linear rheology. This is mportant finding which can bring GIA
modeling in better agreement with laboratory meamants for rock deformation. A
small delay in the ICE-4G glaciation further impesvthe fit in geoid rate while keeping
a good fit to global historic sea level data. lasiag ice thickness also improves the
geoid rate fit, but worsens the fit with sea legtata. Thus, it is better to delay the onset
of melting than to increase ice thickness when fyodj global ice models for an earth

model with composite rheology.
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Chapter One: Introduction
1.1 Background

Glacial Isostatic Adjustment (GIA) is the respoisdhe solid Earth to the growing and
melting of ice sheets. At the Last Glacial Maxim(io®&M), approximately 21,000 years
ago (Peltier, 2004), all of Canada was covered withick ice sheet, the weight of which
caused subsidence of the Earth’s crust. The renafvle ice sheets initiated relaxation
that is still ongoing and measures over a centengér year in the Hudson Bay area.

The study of GIA has found many useful applicatiqesy. in the fields of
geodesy, geodynamics, solid Earth geophysics, atapt, oceanography, climatology,
astronomy, archaeology, geography, etc.) but hestlly it is used for the following
purposes:

1) to provide predictions for removing the effect ofAGrom observations so that
other phenomena can be observed (e.g., correctibdleogauges to study the sea
level change due to global warming; see Peltierughingham, 1989; Davis and
Mitrovica, 1996);

2) to study the rheology and flow properties in thatlEa mantle (e.g. Cathles,
1975; Karato and Wu, 1993) which can benefit thalptof mantle convection
and subduction; and

3) to provide information on past ice thicknesses hadce past climate (Peltier,
1998), which is important knowledge to put curretiimate changes in
perspective.

This thesis aims to contribute to purposes 2 aray3nvestigating the contributions of
the satellite gravity data set derived from the soeements of the Gravity Recovery and
Climate Experiment (GRACE) twin-satellite missiteninched in March 2002. The study
area is North America, but global historic sea ledega are used as well. First, a short
overview is given of the current knowledge and opeoblems related to purposes 2
(rheology) and 3 (Pleistocene ice sheets). ThenGRACE data set and its use in GIA
studies is discussed. Finally, the objectiveshf thesis are presented and an outline of

the thesis is given.



1.1.1Rheology of the Earth’s mantle

One of the objectives of GIA research is to comstraaterial properties in the mantle,
albeit “the smoothest” version of the rheology tbamh explain GIA data (Ranalli, 2001).
Early studies put a constraint on the average sigcof the entire mantle, the so-called
Haskell constraint (see Mitrovica, 1996, for disian). Later studies try to constrain the
average viscosity of different layers within thentia (see Peltier, 1998, for review) but
debate regarding the viscosity contrast betweenugyger and lower mantle is still
ongoing (Kaufmann and Lambeck, 2002; Peltier, 2004jf et al., 2006). Recently, it
was shown that trade-off effects between viscasiiedifferent layers prevent one from
unambiguously inferring viscosity for three or mdegers (Paulson et al., 2007a).
GRACE data have already been used in an inversiindifferent data types for a two-
layer viscosity profile in the mantle (Paulson let 2007b).

Most Glacial Isostatic Adjustment (GIA) models oftemploy a linear rheology
in which the strain rate is linearly dependent be stress through the Newtonian
viscosity. However, laboratory experiments showt #tdeast two different deformation
mechanisms exist: diffusion creep, which leads timear stress-strain rate relationship,
and dislocation creep (or power-law creep), whegddk to a non-linear relation between
stress and strain rate (Hirth and Kohlstedt, 2@&halli, 1995; Karato, 2008). The type
of deformation (diffusion vs. dislocation creepndaave a significant effect on mantle
flow and hence the dynamics of the lithosphere #edasthenosphere and associated
phenomena such as continental rifting and contalecdllision (Yuen and Schubert,
1976). Thus, determining the flow type is importémtimprove our understanding of
these areas. More specifically, determining the tgbmantle flow can open the door to
the use of seismic anisotropy to constrain asth@ma® viscosity (Karato and Wu 1993,
Podolefsky et al., 2004). A power-law relation beén stress and strain rate has received
some attention in GIA modelling (Sabadini et a@8&; Wu, 1992; Gasperini et al., 1992;
Karato and Wu, 1993; Wu, 1995, Wu, 1999; Wu 2001; &kid Wang, 2008).

Because diffusion and dislocation creep operatbeasame time, the total strain
rate is the sum of the strain rates from both meisih@s. Such a composite rheology is a

more realistic description of slow deformation e tEarth than a rheology with only one
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of the mechanisms. In this thesis it will be invgsted whether a combined linear and
non-linear rheology can also explain GRACE andonistsea level data. Previous studies
of composite rheology made simplifying assumptisash as a flat Earth, and neglected
self-gravitational effects, or used simplified ib@ads (Gasperini et al. 1992; 2004;
Giunchi and Spada, 2000; Dal Forno et al., 2006)further assess the performance of
composite rheology it is necessary to use morasteaspherical earth models with self-
gravitation, in combination with realistic ice laadand to compare predictions with more
data sets. Specifically, the effect of composiwotbgy on gravity rate and uplift rate has
not been studied, while a well known problem witiman-linear rheology is the small
present-day uplift rate and gravity rate it presli¢¢Vu, 1999; Wu and Wang, 2008).
Presently, it is not clear if the small uplift agdavity rates are biased by the fact that
global ice loading histories are constructed byiassg linear rheology, or if they are the
result of failure of non-linear or composite rheptoto accurately describe mantle

deformation.

1.1.2Constraints of past ice thicknesses

Geological evidence in the form of (terminal) moes can be used to reconstruct the
extent of the past ice sheet (Dyke et al., 2008)cdnstrain the thickness of a past ice
sheet, time series of historic sea level changesrast valuable (Peltier, 1998). Areas
lacking such sea level data are the interior oftiNé&merica. Inference of past ice sheet
thicknesses is seriously hindered there (Tarasal Reltier, 2004), although some
information in pro-glacial lakes is available (Watl; 1972). Global ice histories have
been successfully reconstructed by combining thesipk of the rebound process with
relative sea level (RSL), land uplift and absolgtavity data (Peltier, 2004). However,
due to the slow response of the Earth the ice dhmetiry constructed from RSL data
cannot resolve rapid surges and retreats due tpablimate changes (Hughes, 1998).
GPS and absolute gravity data provide observatainge uplift process that
could be used to constrain ice thicknesses. Howebeise data are also sparse in
northern Canada. The appearance of two domes witygnate pattern derived from

Gravity Recovery and Climate Experiment (GRACE)eB&¢ data (Tamisiea et al.,
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2007) supports a multi-dome Laurentide ice distidou as in, e.g., Dyke and Prest
(1987). However, as argued in the next sectionatteiracy of GRACE data makes it
worthwhile to revisit the issue of the ice domed #re location of maximum ice heights.
Finally, ice models currently used by GIA researshae all coupled to a linear
Earth rheology despite the evidence for power-le@eg; see the previous section 1.1.1.
Non-linear rheology requires more ice or delayedtnd/u and Wang, 2008), but
currently it is not clear how the ice history shibldle modified for Earth models with

composite rheology.

1.1.3GRACE data

Geodetic data to constrain the GIA process in NArtterica are sparse and sensitive to
local effects. Repeated absolute gravimetry measemes are only performed at a few
selected sites (Lambert et al., 2001, 2006). R&lagravimetry measurements are more
widespread and go back further in time, but cleauffer from local non-GIA effects; see
the figures in Pagiatakis and Salib (2003). Sa¢ellaser Ranging (SLR) measurements
yield information on zonal components only, whicleans that the rebound process in
North America and Fennoscandia and present-daymielt in Greenland can not be
separated (Velicogna and Wahr, 2002). Also, witietwork of continuously operating
GPS receivers supplemented with campaign measutsp@npointing the exact center
of maximum uplift is not possible due to the sparstvork (Henton et al., 2006; Sella et
al., 2007). Other present-day uplift rates are megkby satellite radar altimetry in an
area close to Hudson Bay (Lee et al., 2008), anddoybining tide-gauges and satellite
altimetry in the Great Lakes area (Kuo et al., 30@8combination of more terrestrial
datasets can overcome some of the weaknesses linoéathe individual data sets
(Rangelova, 2007).

The launch of the GRACE satellites in March of 2082ealed the time-variable
gravity field of the Earth at monthly resolutiontvihomogeneous coverage (Tapley et
al., 2004). Prior to their launch, simulations skdwthat GRACE would be able to
constrain upper mantle/transition zone and lowemtteaviscosity within 30-40%
(Velicogna and Wahr, 2002). However, the error l@f€&sRACE satellites is higher than
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the target accuracy level (Wahr et al., 2004), aotth-south stripe errors dominate
unfiltered gravity field products (Chen et al., 80). Despite the larger than expected
errors, GRACE data has been used successfullynumn@ber of studies related to GIA.
The contribution of GIA to static gravity anomalieser North America has been
established (Tamisiea et al., 2007); a two-layscasity profile is inferred from GRACE
data in combination with sea level data angh @ariations (Paulson et al., 2007b).
GRACE data compared well with absolute gravity dat&ennoscandia (Steffen et al.,
2009).

However, these studies either used a single stdnacessing technique (Paulson et al.,
2007b), or did not give details of their process(igmisiea et al., 2007), or did not
guantify the effect of post-processing techniquass@gnal and noise (Steffen et al.,
2008a). With the abundance of post-processing odstipresented in the GRACE
literature (see Klees et al., 2008, for an overyiévis not clear what the effect of these
post-processing techniques are, and how to apm thpecifically for the purpose of
GIA studies. Moreover, it was found that previotigdges underestimated the effect of
continental water storage variations (Van der Walle 2008a). Some conclusions have
been made in the literature about the ice loadistphes to the GRACE data. Paulson et
al. (2007b) used two different ice models and ctadrthat ICE-5G fits best. Tamisiea et
al. (2007) concluded that ICE-5G provides a goodHpbwever, these findings can be
undermined by the short time series used and thertainty in continental water storage
variations.

In short, the uncertainty in the gravity rates asted from GRACE for the
purpose of constraining GIA models is currently nl#ar. For some purposes, such as
the contribution of GRACE to the static gravity Ifie(Tamisiea et al., 2007), the
uncertainty is not critical for the conclusionsaked, but the inference of the detailed ice

loading history requires knowledge of the uncettain GRACE data when.



1.2 Thesis objectives

The purpose of this thesis is to study the contiaims of GRACE data to GIA modeling.
In particular, the following issues should be rgedl with regards to using the GRACE
data for GIA studies:
- How do various filters that can be applied to GRA@#a affect the GIA signal
in the GRACE data?
- Are there significant secular and inter-annual @A- effects that influence the
secular gravity rate derived from GRACE?
With regard to the mantle rheology, this thesisuk®s on a composite rheology which
combines linear and non-linear flow laws. In patiéc the following questions are
formulated:
- Can composite rheology explain RSL data and the GRAlerived maximum
geoid rate at the same time?
- What is the composite rheology that best fits R&tacand the GRACE-derived
maximum geoid rate?
The homogeneous distribution of GRACE data make®\GR data seem particularly
useful for inferring the thickness of past ice $hedhis thesis aims to answer the
following questions about such an inference:
- Can GRACE contribute information about past icect$fe
- Can GRACE data resolve the difference between Godets with two different
ice models?
- Which ice model provides a best fit to the GRACEa8a
- How should ice models be modified for compositeotbgy such that predictions
agree with RSL observations and the GRACE-derivagimum geoid rate?

1.3 Thesis outline

Chapter 2 outlines the normal mode method thatseduo compute the solid Earth
response to surface loading and the sea-level iequahat computes the water
redistribution following build-up and melt of icheets. Global ice models ICE-3G, ICE-
4G and ICE-5G, which are used as input for the kKtians, are also discussed.
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Predictions of the simulations in this chapter ased in simulations to support post-
processing of the GRACE data and comparisons Wwe&f3ZRACE data.

Chapter 3 presents the equations and their bourodaditions for glacial loading
that are solved using the finite element progranA®BIS. Evidence from laboratory and
micro-physical studies on non-linear deformationchaisms is reviewed and the
implementation of composite rheology in ABAQUS igpkined.

Chapter 4 presents the Level-2 GRACE data andrtnaty field functionals that
can be computed from it. Post-processing technicaed measurement errors are
addressed in detalil.

Chapter 5 is the first of the results chapterse&€hmportant non-GIA effects are
investigated: continental water storage, glacielt,naed lake level variations. Different
methods are compared for estimating measuremeasrsenr GRACE. The effect of filters
is assessed, and one of the filters is tuned taawgpthe extraction of the GIA signal
from GRACE. Finally, estimates of the GIA inducedayty and geoid rates are
presented for use in inferences of the best-fittagposite rheology (Chapter 6) and the
best-fitting ice model (Chapter 7).

Chapter 6 investigates composite rheology. The tigisig composite rheology
parameters are found based on RSL misfit compagiddext, it is shown that composite
rheology produces higher uplift and geoid rate thgsurely non-linear rheology, which
is more in agreement with observations. Finally,idt demonstrated that simple
modifications to the ice history can improve RSlaind geoid rates simultaneously.

Chapter 7 uses GRACE data to constrain the iceirgadistory. First, the
sensitivity to gravity rate with respected to seglof ice thicknesses in a small region is
investigated. Simulations are performed to addtlessguestion whether uncertainty in
hydrology effects can mask differences in ice logdiistories. Finally, real GRACE data
are used to find the location of maximum ice thiesses and to find the best fitting ice
model.

Chapter 8 summarizes the main findings of thisithasd gives recommendations
on the use of GRACE data for GIA studies, and @nitifierence of ice models based on

linear or composite rheology.
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In Appendix A expressions are derived for the fagegravity and sea level
change as a function of an impulse and Heavisidéas load. In Appendix B
predictions of sea-level codes used in this thasescompared to published results from
Spada and Stocchi (2005) and Paulson et al. (208ppendix C derives the tensor form
of power law creep. Appendix D discusses the implaiation of time-dependent loading
in relation to accuracy and computer time issuggehdix E lists and plots the RSL sites
used in Chapter 6.



Chapter Two: Normal Mode and Pseudo-Spectral Sea Level Methodrf&urface
Loading Response

This chapter discusses the computation of the resspof the Earth to loading by an ice
sheet and complementary ocean by semi-analytichhtques. This computation can be
divided into two parts: (i) computation of the sbkarth’s response to a generic surface
load; and (ii) computation of the self-consistead sevel response to the melting of the
ice sheets and the solid Earth deformation.

The normal mode theory will be used for part (idas briefly described in
section 2.1. The self-consistent sea level is obthby iterative solution of the so-called
sea level equation (Farrell and Clark, 1976). Tée level equation and the steps in the
numerical algorithm to solve it are described iotie® 2.2. The global ice histories of
Peltier and co-workers are used in this thesis,ehanCE-3G, ICE-4G and ICE-5G. A
comparison of the uplift rates computed with thethnds described in this chapter and
published results from other groups is providedppendix B. Two models that will be
used in the testing of post-processing filters ®MAGE data are presented in section 2.4.

A chapter summary is given in section 2.5.

2.1 Normal mode method for surface loading

The normal mode theory is developed by Peltier 41.9Wu (1978) and Wu and Peltier
(1982), with important elements of the theory pnese the works of Farrell (1972) and
Longman (1962). Modifications of the method for midyer Earth models were made
by Sabadini et al. (1982) and Vermeersen and Saib@d97). Here the implementation
of the latter is used, with a code kindly providsdDr. Bert Vermeersen of TU Delft.

The starting point is the linearized equation ofnrmatum (Cathles, 1975; Wu,
2004; Sabadini and Vermeersen, 2004, eq. 1.10):

DEF—D(U Q?ogor)‘plgé -pH@.=0, (2.1)
where ¢ is the stress tensouis displacementy is the densityr is a unit vector in
radial direction,gis the gravitational acceleration, agdis the gravitational potential.

Subscript 0 refers to the unperturbed state andcsiyh 1 refers to a perturbation from

this state.
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The first term in equation (3.10) is the divergentestress; the second term is
the advection of pre-stress; the third term reprssthe effects of compressibility, and
the last term is the effect of the change in gedMahal potential due to the perturbation.
This term includes the effect of the load itselflanass redistribution of the load and all
Earth masses. Inertial forces are neglected becalusiege slow movement of mantle
material involved in GIA.

The effect of compressibility will be neglectedfranow on. The solution for a
homogeneous compressible Earth in the Laplace domsaknown (Wu and Peltier,
1982), but, for a multi-layered spherical Earthimgaitation is not trivial. Moreover, the
semi-analytical normal mode theory yields only gpraximation to a compressible
Earth (Riva and Sabadini, 2009). The differenceuplift rate between elastically
compressible and elastically incompressible rheplsgsmall (Mitrovica et al. 1994,
figure 2). In table 2 of Paulson et al. (2007b)ist shown that the inclusion of
compressibility in a spectral model has a smakafi(< 0.2) on the misfit values for
gravity rates with respect to GRACE-derived gravétes. Such effect is small compared
to the differences in misfit that results from uglifferent ice models, thus not including
compressibility is not expected to have a largeeatffon the conclusions regarding
different ice models.

The gravitational potential for an incompressiblarte model satisfies the
Laplace equation:

O0°g =0. (2.2)

If no tangential stress is applied to the surfacéhe Earth, and if the Earth is laterally
homogeneous, toroidal motions are zero. That meahsspheroidal displacements are
considered, which depend only on radial distancesguherical angle with respect to the
load (Peltier, 1974; Wu and Peltier, 1982). Fumhare, isotropic material is assumed,
for which the elastic parameters reduce to the t@mmé parameterst and 4 (or
alternatively Young’s modulus and Poisson’s ratibie stress-strain relation reads in

index notation:

3
g; = A9, Z‘%k +2ug; (2.3)
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wheredand 4 are the Lamé parameters, aogl and &, are elements of the stress

tensor and strain tensor. Not surprisingly, theutsoh only depends on one material

parametery , because only deviatoric stresses and strainsetgeant. For the case of

loading an incompressible material, hydrostaticspuee of arbitrary magnitude can be
added to the solution (this leads to a problenm&RE solution, see section 3.4).

Until now, only elastic behaviour was consideredhsy stress-strain relation (2.3)
, but for GIA we need time-dependent deformatioiffelent time-dependent behaviour
can be distinguished (see Figure 2.1). After eladéiformation, the Earth’s mantle will

go through transient creep and steady-state creep.

strain
A

steady-state

transient

elastic

» time

Figure 2.1. Schematic strain-time diagram denothastic, transient and steady-state

creep regimes (after Ranalli 1995, Figure 4.5)

Elastic deformation is completely recoverable & thad is removed. The deformation in
steady-state creep is permanent (Ranalli, 19980)pwhich means that after removal of
the load there is no recovery of the steady staepcdeformation. This should not be
confused with the reversal of deformation that escafter removal of the ice load.

Buoyancy forces cause the reversal of deformatiod aot ‘reversible’ material
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behaviour such as occurs for an elastic materiah-icoverable flow is called plastic
flow, which occurs when the stress in the matexxaeeds the yield stress.

For high temperature and after a long time thedstssate part of the strain rate is
much more important than the transient term (Rah885, p. 80). This is the assumption
made in most GIA studies and also in this thedistification of this assumption is
indirect: there is some agreement between visc@sdfiles constrained by static geoid
anomalies cause by dynamic topography changes.trengrofile derived from GIA
studies. The agreement over such a long timeshalessthat transient creep can not play
an important role (Peltier et al., 1980; RanalliD2). However, some results indicate that
transient rheology can cause a difference in Gli@rned viscosity from the true steady
state viscosity up to a factor of 10 (Karato, 2088330).

When neglecting transient creep, the material madeGlIA modeling should
describe both elastic and steady-state creep bmlvavihis can be modeled by a so-
called Maxwell element in which a purely elastieraknt is connected in series to a
purely viscous element such that the strain ratesadded. The viscous element in the
Maxwell model represents steady state-creep whodurs below the yield strength. In
tensor form the Maxwell element is (Peltier, 19Cathles 1975, p. 25):

. 1.3 . S
g +£(07j -39 Zoukj=2ﬂ% +AG 2 4 (24)
,7 3 k=1 k=1

where 9, is the Kronecker delta anglis the dynamic viscosity. Laplace transforming

this equation gives (Cathles 1975, p. 25):
3
g, =A(s)q 2 & +2u(9)5 . (2.5)

where the overbar denotes the Laplace transforne [Taplace transformed Lamé

parameters are given by:

/18+£K

)I(s)z—'L andy(s) = HS (2.6)

s+& s+#

4 4
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whereK = A +§,u is the bulk modulus. Noting that equation (2.5Jhe same as the

elastic constitutive equation in the time-domain3)2the solution to the viscoelastic
problem can be obtained by solving the elastic lerobin the Laplace domain (Peltier,
1974; Cathles, 1975, p. 25).

The momentum equation and the Laplace equation fosystem of three partial
differential equations of second order, which canriiegrated numerically to obtain the
required solution. However, in the normal mode rodtthe equations are rewritten to a
system of six first-order ordinary differential egwns for which the solution can be
obtained almost entirely analytically. The advaetay the numerical solution is that
properties are allowed to vary continuously withpttle and compressibility can be
included (Wu and Peltier, 1982). In the analyticatmal mode method depth variations
have to be approximated with a finite number oklay and compressibility can only be
approximated (Riva and Sabadini, 2009). On therdihad, an analytical solution offers
additional insight and checks (Sabadini and Verswer 2004, p. 8). Because of
availability of computer codes for the semi-analgtinormal mode codes of Vermeersen
and Sabadini (1997) this method is used in thisishe

After applying boundary conditions at the surfacel aat each interval (see
Sabadini and Vermeersen, 2004, p. 18), the solutiorthe homogeneous problem
consists of the roots of the so-called secular rdeteant (eq. 1.106, Sabadini and
Vermeersen, 2004). These roots are inverse retaxdtmes, also called relaxation
modes, and they arise from the discontinuitieh@Barth model. Thus, characteristics of
the relaxation process in terms of material progertan be deduced from them. There
are modes for the Earth-surface transition, thetl@dithosphere transition and the fluid
core-mantle transition. Furthermore, each denstytrast introduces a buoyancy mode

and an interface between two layers of differgrifz introduces a pair of modes (Wu

and Ni, 1996; Sabadini and Vermeersen, 2004, p. 22)

It is also necessary to find the relaxation modelsrder to transform the solution
from the Laplace domain to the time domain. Findihg modes is usually done
numerically. In the code of Vermeersen and Sabdd®®7) that is used in this thesis a

bisection algorithm is used. A method to obtain slodution in the time domain was
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developed by Wu (1978). The form of the time domsatution is (Sabadini and
Vermeersen, 2004, p. 34):

M

K@)+ 3K (a) 67 @7

p=1

[UI V| _W]T

where [UI V —¢,7]T are the Legendre coefficients of degreeof the radial and
tangential displacement and the gravitational gagnrespectively;a,is the average
radius of the Earthy(t)is the Dirac-delta functior¥l is the number of modes;, is the

p-th mode; and is time. FurthermoreK , , are the vector residuesst s,, andKF (a,)

Lp
denotes the elastic limits(- «); see Sabadini and Vermeersen, (2004) p. 34. ifnhe t
domain solutions (2.7) are usually written in dirsienless form as follows (Wu and
Peltier, 1982, equation 12):

. M M M. |
II — eUI e _ e
h L K] LE . aeg)q)}

, (2.8)

3t

3t

where h, |, and k are the surface load Love numbers for radial desptzgent, tangential

displacement and gravitational potential pertudrgtrespectively, antle is the mass of
the Earth. The Love numbers (the elastic as wethasviscous parts in (2.7)), and the
modess form the output of the normal mode codes used. [idre time-domain form of
the free-air gravity and the geoid, which are cambons of these, are derived in

Appendix A.

2.1.1Implementation issues and input

In the normal mode method, it is important that Mlimodes are found by the root-
finding algorithm. A simple check whether all thedes are found for a particular degree
is to plot the fluidk-Love number versus harmonic degree. The fluid Loaweaber can be
computed by setting=0in equation (55) of Wu and Peltier (1982):

ur

K =k,+> - (2.9)

i=1 Sj |
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When important modes are missed in the root-findangliscontinuity will appear in
the plot and the root-finding should be repeatetth wifiner step size. All models used in
this thesis have been checked accordingly.

The input required to compute the fundamental matriare elastic material
parameters for the Earth (densityand rigidity u) and layer boundaries for each of the
layers in the spherical Earth model (see Sabadidi \dermeersen, 2004). Most GIA
models, e.g., Peltier (2004), Kaufmann and Lami{@6k?2), Tamisiea et al. (2007), use
elastic parameters taken from the Preliminary Refee Earth Model (PREM)
(Dziewonski and Anderson, 1981).

In the semi-analytical normal mode method usedhis thesis, an increase in the
number of layers greatly increases the number afes@nd consequently the chance that
modes are missed in the root-finding procedureméerrsen and Sabadini (1997) showed
that it is better to use an approximation to PRE ase all the modes than to use many
layers and miss some important modes. Furtherntioeg, found that a 5-layer volume-
average model is close to results with a model wighny layers. Here, the major seismic
discontinuities at the following depths are used dlose to these depths as the exact
depth is debated and varies across the Earth):64@and 1180 km to arrive at a 6-layer
model (see Table 2.1). The elastic parameters ieTa.1 are obtained by volume-
averaging from corresponding layers in PREM. Thesdg profile was further modified

to match a surface gravity of 9.81 f/s

2.2 Sea level equation

The original complete formulation of the sea legquation is given in Farrell and Clark
(1976). An efficient method to solve the equatisngiven by Mitrovica and Peltier
(1991). Subsequent improvements include the impheaten of time-dependent
continent margins (Johnston, 1993) and rotatioeatiback (Milne and Mitrovica, 1998;
Peltier, 1998). Here the description of Kendallakt (2005) is followed closely, but
rotational feedback is not implemented.
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Table 2.1: Elastic parameters for the Earth modetwvith the normal mode method.

layer depth densityp | rigidity u
[km] [kg/m* | [x10™ Pa]

1 0-115 3192 0.60

2 115-400 3442 0.73

3 400-670 3882 1.10

4 670-1171 4527 1.81

5 1171-2891 | 5084 241

6 2891-6371 | 10925.0f O

Coding of the sea level equation started duringatidor's MSc thesis at the TU Delft.
The self-consistent sea level and time-dependesdromargins were implemented after
that. The code makes use of a spherical harmoansfiorm by Dr. Pieter Visser, which
uses a Fast Fourier Transform routine by Dr. EBt$trama, both of TU Delft.

This section reviews some of the concepts and smsaneeded to compute a
self-consistent sea level, given the surface laadquibed by global ice histories and the
solid Earth response computed with the normal mibdery. It is assumed that the
reference Earth is a spherical Earth with radusrhe reference equipotential surface is
the surface of this sphere. After loading and udilog, the geoidal and solid surface
deviate from the spherical surface by an amaM@tand AR, respectively. The sea level
difference is defined as the difference betweersah@mounts (Mitrovica and Peltier,
1991):

ASL=AG-AR (2.10)
The A symbol denotes change, which is defined here fésreince between the epoch
under considerationt & tj)) and the start of glaciationt € tg). 6 denotes a difference
between two quantities at subsequent time stepghwhill be called ‘increment’. The
words ‘sea level' are used in this section when dhabal field is meant, and ‘ocean
depth’ when the change in water height over theldi®ioceans is meant, which is the

projection of equation (2.10) on the ocean surface.



17

The continent-ocean margins are not constant timmuwiga glacial cycle but
depend on the topography and the reference equipatesurface. Since topography
before the ice age is not well known, one hasad stith the present-day topography
and work backwards to find the initial topography
T, =T, +ASL . (2.11)
Given initial topography, the topography at titnéllows from the initial topography in
combination with sea level from equation (2.10)efihthe ocean area at tirjecan be
defined as areas of negative topography takingastmunt the presence of ice in ocean
areas and checking whether the ice is groundedtoiMilne, 2002).

To avoid clutter, the latitude and longitude deparmt of spatial quantities is not
made explicit. Time steps are indicated by subsyjpwith j running fromj = O (at the
start of glaciation) tp = N (at present). It is implicitly assumed that thisr@o remaining
effect at the end of the glacial cycle that preseithe last one. This is clearly not true if
one assumes that the preceding cycles are the kamgth as the last one, because
otherwise there would be no gravity anomaly anddsBarth displacement remaining at
present from the last ice sheet. However, for gyandte the existence of glacial cycles
before the last one are less relevant (Tamisiea,e2007).

It is useful to split the sea level change intgat®lly varying part and a spatially
uniform part:

ASL =As S, +%¢j, (2.12)

where A® is the average global shift (uniform) in potentiaat occurs when water is

added to or removed from the oceans. The sphdraratonic coefficients of the spatially

varying part of the sea level change are giverfioyr( appendix A.2):

) N-1 .
ASE, =08, AR, = T{ L E=> ol.B% (A1), (2.13)
j=0
_4ma? a, o :
where T, IV and the surface load can be specified as theoduoe and ocean

height increments:
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L = 28, +prSﬁm,j’ and

(2.14)
Ol =P Ol +P,0S, (2.15)
A spectral form of the uniform shift in potential (Kendall et al., 2005, equation 78)
AD. 1 0,
—+= {__lAI 00j ~©L00iCogy +T 00,((@ 09, € oo,))j' (2.16)
g @Oo,j w

It is clear that sea level itself is necessarydmpute the terms in equation (2.12). Thus
iteration is necessary. For that purpose, it isebéd compute the sea level increment, for

which can be derived in spectral form as (Kendadlle 2005, equation 72)

Im, j~m, j

0S.  =-AS +ASE @ +£Ele - (e —@ ) 2.17
Sm,j %n,j j g Im,j -Ilr—n,O Im ,j Im,0/ ( - )

where AS, ;is the change in ocean height from the start difauntil timet;; ¢ ;is 1
for ocean and floating ice and O for land or greethdce, andT is the initial

topography.

Iteration proceeds by computing a first guess lier gea level increment gtand
then computing the quantities in equation (2.12)giequations (2.13) and (2.16). The
next iteration of the sea level increment can bmmaed by equation (2.17). The initial
topography is only known from equation (2.11) attee sea level is known at all time
steps. Therefore, another iteration is needed tiveentire glacial cycle. Convergence on
thei-loop is defined by a test on the spherical harmaoiefficients of the ocean height
increment. Convergence of tkdoop is governed by the sum of differences of siché
harmonic coefficients of the initial topography fi¢all et al., 2005, equations 83 and
86).

In section (2.4), the uniform ocean height appration is used. In this case, the

ocean height at each step is computed by equa2id)(and (2.16) withAs €, , and

Cm.i ~Cmo €qual to zero:

m,j -

_Cnia P j
JS, . = L1, |- 2.18
Sm,, (300,1—1( Ly ' ( )
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2.2.1Assumptions: rotation and geocenter motion

Rotational feedback can be included in the soluobthe sea level equation (Milne and
Mitrovica, 1998; Peltier, 1998), but this is notglemented here. Rotational feedback
leads to a degree 2 order 1 pattern, which hassthée of the entire North America
(Tamisiea et al., 2002). In terms of geoid rates thagnitude of the signal in North
America is less than 0.1 mm/year (Peltier, 199ufa 13). For testing post-processing
filters on GIA simulations (section 5.3), the lowgiee parameters are not important,
since they are not at all or hardly affected by fiter. For comparisons of the detailed
shape of the gravity rate and inferences relategatst ice sheets (section 7.5.2), the
magnitude of the rotational pattern is likely alsot important. In the viscosity
inferences of section (7.6), the neglect of rotaideedback is probably absorbed by the
lower mantle viscosity.

Finally, GRACE-derived values for,¢and $; are found to be in reasonable
agreement with values derived from other technighasthe level of noise is still much
larger than the formal error suggests. Thus, inpmamsons with GRACE, the accurate
treatment of rotational theory is rendered lessartgnt by the level of noise in the

Stokes coefficients in which the rotational feedbammnifests.

The center of mass of the Earth remains fixed éendibit around the Sun unless external
forces act on it. However, if a surface load isrfed of which the center of mass does not
coincide with the center of mass of the Earth,diveter of mass of Earth plus load moves
with respect to a coordinate system that is fixedhe Earth by geometrical means.
Observations such as GPS are defined with respeant Earth-fixed coordinate system,
such as the International Terrestrial ReferencenEr@d TRF). Thus, geocenter motion
caused by GIA has to be accounted for by addingogpiate degree 1 coefficients
(Farrell, 1972) when comparing results of surfamadl models to such observations. In
the case of GIA, geocenter motion is induced bydpart of mantle material from lower
latitude to former glaciated areas at higher ldétuHowever, degree 1 coefficients are
set to zero in GRACE processing (see section 4dl,)jn the comparison between GIA

models and GRACE, the degree one coefficients shoat be included in the model.
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Moreover, the degree one coefficients are not phthe gravity anomaly because of
the (-1) term in equation (A.4). In the comparison beaw&IA models and GPS data in
section (7.5.2), geocenter motion should be aceaufdr. This is not done in this thesis,
thus lower mantle viscosity will probably be bias&y not including degree 1 terms in
the computation, also the coupling between degrderhs and higher degree terms

during the glaciation cycle (Paulson, 2006) is retgd.

2.2.2Implementation issues

This section describes the spatial grid that islusehe implementation of the sea-level
equation and the validation of the computer codes ime steps are determined by the
global ice load histories which are described mrikxt section.

The maximum spherical harmonic degreethat is used is 256. Following
Mitrovica and Peltier (1991), spherical harmonansforms were implemented based on
Gaussian quadrature. This leads to an exact sphécmonic transform for maximum
spherical harmonic degrde if the latitudinal nodes are determined by theogeof a
Legendre polynomial of degrae+ 1. In that case the minimum number of paraliels
the spatial field required to be able to obtainespdal harmonic coefficients up to degree
LisL + 1 (Sneeuw, 1994). The longitudinal incremenés ar/ L . Thus, the advantage of
the exactness of the SH transform comes at the pfibaving to interpolate all inputs on
a Gaussian grid.

The implementation of the sea level equation foraxmsymmetric model is
compared with a FE model in Wu and Van der Wal &0Qvhere the excellent
agreement between both methods was used as a bamkckon the FE model in that
paper, but simultaneously serves as validationtlier spectral sea level equation with
uniform ocean height approximation. Partial valiolatof the 3D spectral model is
offered by the good (but not perfect) agreementvbeh the spectral method and the 3D
FE model in section 3.5. Furthermore, sphericalmoanric analysis and synthesis
computer codes in FORTRAN are tested with routindd ATLAB. Results of the codes

developed based on the algorithms in this chapteused, amongst others, in Van der
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Wal et al. (2004) and Braun et al. (2008). Notea tha normal mode code is already
validated (Vermeersen and Sabadini, 1997).

Small parts of the sea level equation, i.e., thplementation of the ice loading
history and the implementation of the time-depemdeontinent margin, were not
benchmarked before. Thus, a comparison is undertaké results from other numerical
codes presented in the literature; see AppendBdBchmarking with computer codes of
other groups is hindered by the public availabibfycomputer codes (currently only the
code of Spada and Stocchi (2005) is made publigbil@ble) and the differences in
implementation of the sea level equation betweeffierént groups. Therefore, a
comparison of results illuminates the differencesmplementation as much as it does

possible bugs in programming.

2.3 Global ice models

Details about implementation of the ice loadingtdngs ICE-3G (Tushingham and
Peltier, 1991), ICE-4G (Peltier, 1994) and ICE-5Reltier, 2004) are given in this
section. The ICE-3G and ICE-4G models are sharedngnmmesearchers. The ICE-5G
version 1.2 model is available on the special huwref@r loading website
(http://www.sbl.statkart.no/projects/pgs/ice_modeddiier ICE-5G_v1.3/ and used
here. ICE-5Gv1.2 is meant whenever ICE-5G is writie this thesis. Note that this

version is different from the version for which uéts are presented in Peltier (2004); see
discussion in section 7.7. For reading and intepmh of the ICE-5G model, use was
made of Fortran routines from Dr. Hugo Schotman.

Ice-height increments for ICE-3G and ICE-4G are potad as the difference
between ice thicknesses at the current step an@reéhwous step. In the ICE-3G model
the difference between ice thicknesses given atdwmsecutive heights is assumed to
melt instantaneously at the beginning of the stéqe glaciation of ICE-3G and ICE-4G
is assumed to be the reverse of the deglaciatiowibii time steps of 7 ka. To obtain the
total ice thickness used in equation (2.14) thehégkness of the present day is removed.
Even though ICE-3G was based on the non-calibr@tdd time scale, the time steps are
not calibrated in this thesis, to stay close toahginal model used in many publications.
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ICE-3G is a finite-disc model, i.e., the coordirsaté the center of the disc and
the radius are given. When the ice thicknesseséggolated on a grid, holes appear in
the ice heights. To remove these holes, an intatipol routine was written to fill the
holes with the average of the ice thicknesses artlm holes.

ICE-5G also prescribes glaciation. The ice thickessat the start of glaciation are
subtracted from all ice thicknesses (Peltier, pgasgommunication 2007) which means
that it is assumed that the Earth with ice thickessat the start of glaciation is the
reference state. Since a thick pack of ice is dirgaesent in Greenland and Antarctica at
the start of glaciation, this reference state mrfices the comparison with ICE-3G and
ICE-4G where ice thickness in those regions is gigvinearly from zero. For checking
for marine based ice (n equation (52) of Kendall et al., 2005) the ora ice thickness
given in ICE-5G should be used, but for equatiohdq) and (2.13) the sum of the

increments should be used.

2.4 Models used for testing GRACE filtering

In Chapter 4 GIA models are used to investigateefifiect of post-processing filters on
the GRACE-derived gravity data. The GIA models #u&t used for those simulations are
discussed below. It was felt necessary to use tWor@dels with distinct differences in
gravity rate pattern but with a magnitude clos¢htt found in GRACE data. ICE-3G and
ICE-5G were used as loading history and the uppartie and lower mantle viscosities
were selected after trial and error to obtain &kpgavity rate in the models that is close
to that of GRACE, which is found to be 1.59 yuGadtym Figure 5.28a:
- i3_8_60 ICE-3G history, upper mantle viscosity of 8 x¥*4@as, Lower mantle
viscosity of 6 x 18" Pas, peak gravity rate 1.55 pGallyear;
- i5_2 60 ICE-5G history, upper mantle viscosity of 2 x*4@as, Lower mantle
viscosity of 6 x 18" Pas, peak gravity rate 1.56 pGal/year;
The gravity rate for both models is shown in FigRr2, after smoothing with a Gaussian
filter (see section 4.2.3.1) and cut-off at spledricarmonic degree 60. Note that the

largest gravity rate for the model with the ICE-B@ding history is southwest of Hudson
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Bay, while for the other model it is west of HudsBay. Furthermore, the smaller
upper mantle viscosity in model i5_2 60 leads $3 Igpatial detail in the gravity rate.
The gravity rate computed with solving the seadleaguation with fully time-
dependent ocean margins is shown in Figure 2.3. figimum gravity rate is 1.63
pGallyear, compared to 1.60 pGallyear in Figure Ptizs difference is small compared

to uncertainties in the model. Therefore, for miséimparisons the uniform ocean height

level approximation is used.

Figure 2.2: Gravity rate from two GIA models af@aussian filtering with a 400 km
halfwidth Gaussian filter (see section 4.2.3.1):i8a8-60 and (b) i5_2-60.

Figure 2.3: Gravity rate for model i3_8-60 with grmdependent ocean margins after

Gaussian filtering with a 400 km halfwidth. Maximwgravity rate is 1.63 pGallyear.
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2.5Summary

A GIA model consists of a mathematical model f@p@nse of the solid Earth to surface
loads and a theory for computing the ice-waterstedbution on the deformable Earth as
a function of a (global) ice load history. The thedor both components is briefly
reviewed in this chapter. Compressibility, rotati@amd geocenter motion are not
implemented, as explained in sections 2.1 and Ph2. implementation of the theory
summarized in this chapter is mainly validated bynparisons with an FE model, as
discussed in section 3.5.

A time-dependent ocean-continent margin is implaednbut its effect on the
gravity rate is shown to be small enough that tdependent ocean margins can safely be
neglected for misfit comparisons with GIA modeldhwarying viscosity or ice models.
Therefore, results in Chapter 5 and Chapter 7 bge uniform ocean height level
approximation.

In the following, the term ‘GIA model’ refers toglrcombination of an ice loading
history and viscosity profile. The results of suchdels are used extensively in Chapter 7
because the spectral methods with uniform oceaghhepproximation allow quick

computation of GIA observables for a range of visies.
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Chapter Three: Non-linear rheology in a finite element model of GA

As stated in section 1.1.1 and in the objectivest{sn 1.2), the predictions of a GIA
model with composite rheology is investigated instlthesis. In this chapter, the
implementation of composite rheology in a finiteraent model is described. Results are
presented in Chapter 6. A composite rheology ctsisisa flow law in which the strain
rates of diffusion and dislocation creep are addéds, both a linear and non-linear flow
law are part of such a composite rheology.

The super-position principle does not hold for a4linear constitutive relation, as
different modes are coupled (Wu, 2002b). Specteethods rely on the superposition of
different harmonics, therefore they generally dowork for problems with a non-linear
rheology. However, perturbation solutions have beenstructed based on spectral
approaches to problems with a weakly non-linear iorad(D’Agostino et al., 1997;
Kaufmann and Wolf, 1999; Tromp and Mitrovica, 200@) this thesis an existing Finite
Element (FE) model of Wu (2004) is used, in whicloren complicated material
behaviour can easily be implemented. However, sgalsimulations require the use of
large numbers of elements and several iterationshwhake computations slow.

Non-trivial problems in the implementation of GlA ithe FE model are the
implementation of buoyancy forces and the coupliofy displacement and the
gravitational potential in the boundary conditiofifiese problems and their solution by
Wu (2004) are explained in section 3.1. Sectionidt@duces diffusion and dislocation
creep laws along with their numerical and experitalebasis. Section 3.3 describes the
implementation of composite rheology in the FE mio8ection 3.4 lists input parameters
used for the FE model. Section 3.5 presents a cosapabetween the FE and the
spectral model of the previous chapter.

For most computations with ABAQUS the Lattice charston the Westgrid
network (see: ww.westgrid.ca) was used. At a latage, a switch was made to the
Terminus cluster at the High Performance Compui@entre of the University of

Calgary. Parallel computation could potentiallyeghegp ABAQUS computations, but the
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number of processing nodes is limited by the numdbiedicenses available for

ABAQUS users thus limited or no gain can be expkftem parallel processing.

3.1 GIA modeling with the finite element method

A review of the use of the FE method for modeliatetal viscosity variations can be
found in Steffen et al. (2006). The earliest usérofe element method in GIA appears to
be Sabadini et al. (1986), who modified a code (TE®Q) that was developed for
subduction. An overview of studies that used thédielement method for visco-elastic
relaxation is given in Table 3.1 along with someaite improvements in each of the
studies. A more recently developed model is th&&mdda et al. (2006). In addition to the
FE method, there exist other numerical and pertimbanethods for GIA computations

with lateral variations in viscosity, see the lisMartinec (2000).

Table 3.1: FE modeling in GIA literature.

Sabadini et al. axially uniform sea Wu 3D self-
(1986) symmetric level (2002b, spherical  gravitation
cylindrical 2004)
Gasperini & axially buoyancy Zhonget 3D built from
Sabadini symmetric using al. (2003) spherical mantle
(1990) cylindrical horizontal convection
integration code
Wu (1992) halfspace commercial | Latychev finite compressiblg
finite element | (2005) volume (in the short-
package: term limit)
ABAQUS
Wu et al. 3D flat Earth Paulson et rotational
(1998) al. (2005) feedback,
but constant
elastic
properties
Martinec 3D spherical  FE-spectral
(2000)
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3.1.1Formulation of the elastic loading problem

The starting point for the elastic loading problerthe balance of forces, which states
that the stresses acting on the surface of the bqdgl the forces acting on the inside of
the body (e.g. Cathles, 1975):

cMdS=[bdv, (3.1)
[otnas=]

where e is the stress tenso§ is the surface of the bodw,is the normal to the surface,
bis a body force per unit volume, aM is the volume of the body. After applying the
divergence theorem it follows that

O —-b=0. (3.2)
Equation (3.1) represents force equilibrium, simila equation (2.1) where the body
forces are separated in different terms. Momenilibgum is satisfied if the stress tensor
is symmetric so that there are only 6 elementshefdtress tensor at each point in the
three-dimensional body. In FE programs, force éguilm for every particle in the body
is replaced by the requirement that force equiliforiholds for a finite number of
subdivisions (the elements) of the structure.

A weak form of the differential equations can beivkd by multiplying equation

(3.2) with a test functiomu’ = (Ju ov va) and integrating over the whole domain:

[ouT (0 +b)=0. (3.3)

After partial integration and rearranging this damwritten as a scalar equation for the
entire body. This is the so-called Virtual Workiiple which states that the work done
by the internal stresses (or the internal potewrtigrgy) is equal to the work done by the
surface and body forces. In ABAQUS and in FE meshimdgeneral, the Virtual Work
Principle is used to find approximate solutions ethsatisfy equilibrium in some average
sense:

K. +f =0. (3.4)

1]

The stiffness matriX ; is given by

K, =ZjBiDBjaj dv, (3.5)
=1
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D contains the elastic moduli (here: Young's modiend Poisson’s ratio ):

(1-v) o 0 0 0 0 |
o (1-v) o© 0 0 0
_ 0 0 (1-v) 0 0 0
°= (1+|/)I(El— )| o 0 0 (r2z)/2 0 o |G9
0 0 0 0 (- 2)/ 2 0
0 0 0 0 0 (+ 2)/ 2

and B=SN, in which Scontains partial derivatives with respect to thebgl

coordinates:

9 9 o 92 9
0X dy O0x
ST=| 0 i 0 i 0 i , (3.7)
ay 0x ay
0 0 2 o 9 9
L 0z 0z 02z]

and N contains shape functions which approximate thelatgpent along an element:

U

du=Not=> N;| v (3.8)
i=1
W.

1
where dlis the virtual displacement at the nodes of thenel®; nn is the number of
nodes in the element; ard are the so-called shape functions. A simple exaropla

linear shape function Nor a triangular element withn = 3 is given in Figure 3.1.

Figure 3.1: Linear shape function (thick solid 8he\; for the triangular element 123
(after Figure 2.2 of Zienkiewicz et al., 2005).
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In equation (3.4)f is the load matrix:

==Y [Nbdv+) [Nitds, (3.9)

k=ly, k=1g,
where t are surface tractions. The above formulation alst<hif instead of virtual
velocity field oVis introduced instead of virtual displacemedts, in equation (3.8), and
if stress and strain are to be replaced by stratgs and strain rate (ABAQUS Theory
Manual, Section 2.1.1).

3.1.2Equations of motion

Equation (3.2) is the form of the loading problémat is solved by FE methods. Thus,
the equation of motion as it applies to geophygicablems has to be cast in the form of
(3.4). From equation (2.1) is obtained for an inpoessible model (Cathles, 1975; Wu,
2004):

D6 -0(ulp,g. ) - p.0@ =0, (3.10)
The gravitational potential perturbation has tes$athe Laplace equation, equation (2.2)
Comparing equation (3.10) to equation (3.4) shoet the second and third term in
equation (3.10) should be included either in tteglmatrixf or in the stiffness matrik.
Gasperini and Sabadini (1990) wrote the buoyancgefas a volume integral times
displacement so that a term can be added to tfieests matrix. Wu (2004) applied a

stress transformation (his equation 11):

t=0-(0gU *+ o)l (3.11)

so that equation (3.10) reduces to

O=0.

This is equivalent to equation (3.2) with body mero. Thus, from the load matrix (3.9)
the first term disappears, but the tractions renaad are to be introduced as boundary

conditions; see the next section.
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3.1.3Boundary conditions

Traction, displacement and potential need to beqoged on all boundaries (surface,
Core-Mantle Boundary (CMB) and internal boundarie&ijter stress transformation
(3.11), the traction boundary conditions are (W@04£ Wu and Wang, 2006)

- Surfacet, +0,0,4 =-00,~ P (3.12)
- Internal boundaries (continuity of stresft)]” =Ap(g,u +@); (3.13)
- CMB: [t, ] =(o - o.)9u ~ (0, - pn) @; (3.14)

Where[ ]t denotes the quantity in square brackets abovédhadary, minus the same
quantity below the boundary. Terms witgg,u, are equivalent to an elastic spring with

spring constanjp,d,. Therefore, they can be inserted as Winkler fotindgWu, 2004).
In ABAQUS, the option FOUNDATION is available whieckquires as input the element

number and the spring constant per unit area (AB&Cdalysis user manual sections
2.2.2 and 14.1.3). Gasperini and Sabadini (1996)aitiorizontal integration over the
elements instead of Winkler foundation, whereasdgpet al. (2006) also use a Winkler

foundation. Other terms involving and g are inputted as distributed load in ABAQUS.

Displacement should be continuous at internal batiad but is allowed to vary
at the surface and the CMB, so that the boundamngitons are

- surface of the Earthu, =ur ;
- internal boundariegu]’ =0; and
- CMB: [u] =0.
The gravitational potential is continuous at alllfaues:q[ =0. The potential gradient

obeys (Cathles, 1975, p. 190@+4nGp,u | =4nGo. Therefore, the following
boundary conditions can be derived:

- Surface:[Og] @ +41G[p,| u, = 4nGo .

- Internal boundaried0lg +4n1Gp,u | =0;
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- CMB: [Og+41Gpy ]’ =0.

To form boundary conditions (3.12) to (3.14), tleemtial perturbation must be known
at each boundary. Thus, the Laplace equation ipleduo the FE program through the

boundary conditions. Firsig is transformed into spherical harmonics so thatrtdial

dependence of the potential is separated from #netpat depends on the latitude and
longitude of the sphere. It is necessary to asstimaethe Earth model is made up of
shells of constant density. Starting with the doha at the CMB, one can propagate the
solution upwards. The integration constants cansbeed for because the surface

boundary condition is known. Thus, the sphericahfumic coefficients ofg are known

at each interface, as required for the boundargitions, equations (3.12) to (3.14). The
steps are outlined in Figure 3.2, together with steps required to solve the sea level

eguation; see next section.

3.1.4Combination with the sea level equation

The sea level equation, given in spectral formgoation (2.17), is an integral equation
that requires an iterative solution. Convenienitigration required to obtained the self-
gravitation term and iteration required for the deael equation can be performed
together (Wu, 2004). The schematic computatiomasvs in Figure 3.2. As a first guess,
the ice-equivalent sea level is computed, afterctvhihe displacement at all boundaries
can be computed with the FE program. Using the imgiropagation method the
potential perturbation can be computed at all fatss. Then, the sea level change can be
computed according to equation (2.12). The ocearction is taken to be time-
dependent, as in section. However, for the FE prognot the ‘full’ time-dependent
continent margin is included, but only ocean inflawHudson Bay and the Gulf of
Bothnia as ice leaves the ocean area is accounmtéd/fing et al., 2006)

To save computation time, it is useful to see tleximum number of iterations
that are needed. Wu (2004) found that 4 to 5 rmmatare sufficient in general. Table 3.2
shows the misfit with respect to 30 RSL observatjdar three different rheologies with
the ICE-5G model. Misfit is the statistic used tompare models with data in this thesis,
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see section 6.4. It demonstrates that after itara?, differences with the final
(iteration 4) number are small, so that when th&t bésolute misfit is not the goal, the
computation can be stopped after the iterationtzs i the case for the investigation of
modifications in the ice thickness (section 6.6pn(putation with 3D models with the
original ICE-5G model are done with 4 iterationscdngse a best fitting model is

searched.

3.2 Constitutive relations

As stated in section 1.1.1, evidence for a nonalirbeology comes from micro-physical
studies and laboratory studies experiments thaergbsdislocation creep in mantle
materials under simulated mantle loading conditidrtss section reviews some of that

evidence and discusses how the creep laws arenmepted in the FE model.

3.2.1Steady-state creep from microphysics

This thesis assumes that GIA is governed by stetate- creep (section 2.1). However,
within steady-state creep many creep mechanisnss bBased on micro-physical theory
(Ranallli, 1995, p. 314). For different reasons albstresses are relevant for geodynamic
processes and the most common and most relevaes typ creep are diffusion and
dislocation creep (Ranalli, 1995, p. 374).
The one-dimensional diffusion creep law can betemias (Ranalli, 1995, p. 321)
s=aD‘“ﬁ—‘€2A(fj, (3.15)
kTd Y7
where g is a proportionality constanDg is the diffusion coefficienty is the rigidity;

Qa is the atomic volumek is Bolzmann’s constant; is temperature; andlis the average
grain size (diameter). The diffusion coefficidis can be split in a part due to diffusion
through the crystal lattice (Nabarro-Herring creepd a part due to grain boundary

diffusion (Coble creep).
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Compute ice-equivalent
ocean height (equation

(2.18)) 3S(8, 4.ty 0na)

Compute radial =i+l
displacement with FEM

programu, (r,H,A 1, :md)

A

A

Transformu, (r,6,1,t)
into spherical harmonic
coefficientsU,, (r,t)

v

Compute®, (r,t)

\ 4

Transform to spatial
domain t to obtain:

Q(r’H’A ’tj:lend)

v

Compute self-consistent sea
level ASL(6, 2, ;)
if convergence: STOP

v

Form surface mass load
(8.2t 21na)

A4 A4 ¢

Update boundary conditions
Equations (3.12) to (3.14)

Figure 3.2: Flowchart of the steps required to cotais1A observables with the coupled
Laplace FE method and the self-consistent sea keyehtion (Wu, 2004). Subscript
denotes the time-step, subscript p denotes thalraterface in the Earth model, anc

an iteration counter.
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Table 3.2: Misfit between prediction and RLS obs@inns at 30 sites, for different

iterations of the coupled FEM-Laplace method.

iteration| 1 2 3 4

n3A34s | 47.7Q 47.61| 47.55 | 47.55
n3A35s | 52.46 53.81| 53.84 | 53.80
n3A36s | 57.84 59.73| 59.70 | 59.61

If we assume that grain-boundary diffusion is dasmnin(which it likely is, see Hirth and
Kohlstedt, 2003) the diffusion coefficient is

70
Dt = d Des » (3.16)

where dis the grain boundary width (more precisely theudiion path, which can be

larger than the average grain sidg and Dggis the diffusion coefficient for grain

boundary diffusion. Then equation (3.15) becomes

kTd Y7
The one-dimensional dislocation creep law can btemras
€= Pyq Dotlh| & exp(— Shi ij’ (3.18)
KT (u RT

whereAygis is a proportionality constant; afbds the inter-atomic spacing. From equations
(3.17) and (3.18) it is clear that dislocation greminates at high stress and coarse

grain size, while diffusion creep dominates at kivess and small grain size.

3.2.2Steady-state creep from experiments
Material tests are performed mostly in uni-axiamgoession, in which a stress is
applied to a specimen (see Figure 3.3) and thegponding strain rate in the horizontal

direction is&; measured.
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Figure 3.3: Uni-axial compression test on specimih unit length.

If the load is held constant and deformation is sneed, the test is a creep test (Ranalli,
1995, p. 306). Such tests find general stressastedations of the following form (Hirth
and Kohlstedt, 2003):

£=A,0"d " fH,0" exp(ay) exr{— E ;_:_)Vj , (3.19)

whereA, is a dimensionality constant) is the stress exponenp; is the grain size

exponentfH,O is the water content;is the water content exponemt;s a constant; and

@ is the melt fraction. This equation is based dootatory results, it does not address all

sensitivities found in the real Earth such as dettpreferred orientation and phase

transition.

3.2.3Implementation

Following Gasperini and co-workers, only the strdgpendence of diffusion and
dislocation creep is modelled, while it is assurtieat all other material parameters are
constant in the mantle. Thus, equation (3.19)ngkfied to:

E=A0". (3.20)

All parameters in the creep rate equation (3.18)@mce the final strain rate. However,
from these parameters only stress and grain sifleence the two deformation
mechanisms in different ways. Diffusion creep ibaced by low stress and small grain
size (Karato and Wu, 1993). Since the grain sizmegnt is 2 or 3 (Ranalli 1995, p. 321)
while the stress exponent can be 3 to 4, the siees®mewhat more important in

deciding which of the two deformation mechanismgdgninant. Moreover, stress is
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derived from the glacial surface loading, whichalseady input to a GIA model.
Therefore, it seems more natural to start by exmgithe stress-dependence of GIA
relaxation rather than the grain-size dependence.

For a long time, the belief was held that in thespnce of a large background
stress the postglacial stress-strain rate reldtipnsan be linear (Turcotte and Schubert,
2002 and Karato, 1998). However, such analysigaseth on a simple scalar treatment of
non-linear rheology. Schmeling (1987) already shibtirat in a tensor description glacial
rebound sees an approximately linear rheology ovitgen glacially induced stress is
much smaller than tectonic stress, which is not case in formally glaciated areas.
Therefore, non-linear rheology is expected to mdiskechange the glacial isostatic
response and has in fact been shown to do so (\@Q5, Wu, 2001). Moreover, the
concentration of stress around the edges of theheet causes a low effective viscosity
which can affect the depth sensitivity of GIA obsdles compared to a purely linear
rheology.

In the following, a short review will be given onmme experimental results from
which a value of A can be deduced. For all labagatesults it is important to realize that
experiments do not take place under exact mantiditons. Scaling relations have to be
applied to transform the findings to realistic mMartonditions. The largest extrapolation
is in stress conditions (Hirth and Kohlstedt, 2008yt also extrapolation to higher
pressure conditions of the mantle (Karato and V93] and the more diverse chemical
environment in the mantle (Ranalli, 1995, p. 37@n ccause differences between
laboratory results and mantle rheology. Moreoveipegimental results also have to
account for the presence of water and single dsystsus polycrystals.

For the value of the stress exponaridirth and Kohlstedt (2003) conclude that
3.5 +/- 0.3 is a likely value for both wet and dgnditions. Ranalli (1995) p. 328 finds
= 3.0 +/- 1.0. For the model computations in Chafteghe stress exponent is taken to be
n = 3 and is not varied, because RSL data cannotrdismweem = 3 andn = 4 (Wu,
2002a; Wu and Wang, 2008).

Values for the remaining parameters of equatioh9)3for dislocation creep are

given in table 1 of Hirth and Kohlstedt (2003). $ya@res and temperatures at a depth of
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200 and 400 km are read from Ranalli (1995) Figuge A typical grain size is a few
mm; here a value of 1 cm is used, in agreement Miittn and Kohlstedt (2003) table 1.
With these assumptions, the valueg\dfor dislocation creep) ang(for diffusion creep)
in
Table3.3 are computed. It is clear from
Table 3.3 that the experimentally determined parametersgumgon (3.19) can not pin
down the pre-stress exponent to an order of magmitlt is here that GIA studies can
play a role to provide a constraint for a pre-sresponent averaged over the mantle.

Wu and Wang (2008)’s computations lead to a vafud between 10° Pa’s?
and 10* Pa’s’. Moreover, values of A from 10 to 10°* Pa’s* agree with effective
viscosities of 4 x 1 to 4 x 16° Pas if the stress is taken to be 3 to 30 MPa. &hes
viscosity values are also found with linear rhegldgee e.g. Mitrovica, 1996; Peltier,
1998; Kaufmann and Lambeck, 2002) and compositelolyg (Gasperini et al., 2004;
Dal Forno and Gasperini, 2007). Thus, in Chaptaénéll be varied between four values:
3.3 x [10%, x 10%*, x 10*°, x 10°% Pa’s? and the Newtonian viscosity will be varied
from [1,3,9] x 16" Pas.

Table 3.3:Values of the pre-stress exponent for dislocati@e and diffusion creep for

two depths and a range of temperatures

Depth | P T A [PEsT] n [Pas]

[km] | [GPa] | [K] dry wet dry wet

200 6 1200-1800| 2x16- [2x10"- |7 x10°Pas|5x 1G°—
2x10%  |gx10% |~7X10° |5, g0

400 13 1550-1800| 1x1H- [4x10¥- |2x10°- |6x10%-
2 x 10% 3x10% 1x 108 3 x 162
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3.2.4Diffusion or dislocation creep in the mantle?

This section reports on evidence about the presehd#fusion and dislocation in the

upper and lower mantle.

3.2.4.1Upper mantle

Dislocation creep likely gives larger strain ratean diffusion creep at a depth starting
below the lithosphere up to 200-300 km depth (Kamtd Wu, 1993). The depth at
which the transition for dislocation to diffusioreep occurs is most sensitive to values of
the activation volume and grain size (Hirth and kstgdt, 2003). Grain size changes can
be accomplished by different mechanisms, one otlvig dynamic recrystallization. It is
observed that dynamic recrystallization tends tiosacthat the strain rates of diffusion
and dislocation creep approximately balance (desdgneet al., 1998). Thus, grain size
reduction might not be as important for stimulatidgfusion creep, or an entirely
different mechanism must be responsible for gr&e shanges, independent from the
deformation mechanism. Ranalli (1995), p. 376 alsserves that for stresses 1-10 MPa
and grain size of 10-1000 um, both creep mechaniarascompetitive. Finally, a
geodynamics study by Van Hunen et al. (2005) fidddocation creep in the upper
mantle below the Pacific up to a depth of 410 km.

3.2.4.2Lower mantle

Literature cited by Ranalli (1995), p. 379, on roiphysical models favours non-
Newtonian rheology in the lower mantle, althouglperiments on the most abundant
lower mantle material (perovskite) show both diifuisand dislocation creep. Stresses
below 1 MPa and grain size smaller than 1 mm shaesdlt in diffusion creep (Ranalli
1995, p. 380-381). Figure 3.4, copied from Ran@llP95) Figure 12.7b, shows
predominantly dislocation creep in the lower mantle
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3.2.5Tensor form of dislocation creep

In order for equation (3.20) to be useful for a Gtfodel, it should be reworked into
tensor form. Derivation of the tensor formulatiaslldwing Ranalli (1995) is given in
Appendix C from which the result is equation (C.8):

: 3 e
g —EAQ 'S, (3.21)

where E,] is an element of the deviatoric strain tensor dgrees with the definition of
Mises equivalent stress (see equation (C.5));is an element of the deviatoric stress

tensor; andjis the Mises equivalent stress (see equation (M&¥)ning the viscosity as

S
= 3.22
neff 25“ ( )
it follows that the effective viscosity is equal to
1
= - 3.23
,7eff 3Aqn—1 ( )

500 i
1000 :
1500 *'
2000 |-

2500

Figure 3.4 (Figure 12.7b from Ranalli (1995): Solides denote dislocation creep,
dashed lines denote diffusion creep. TBL1 and Bk @vo different temperature
profiles, C and NH denote two different diffusioechanisms.
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Note that theA used here is that used in ABAQUS, i.e. the pressticonstant
determined from a uni-axial stress experiment (8oha, 2008). IfAg, from a shear
stress experiment is available, the uni-akigkan be computed as

2

Previous studies have also used the uni-axi@lVu, 1995; 2001; 2002; Wu and Wang,
2008).

Power-law creep can be implemented in a time hamdeand stress hardening
form as simple uni-axial law. Since hardening aoitesiing are assumed to be in balance
place for steady-state creep, the hardening fumality is not necessary and the simpler

of the two (time-hardening) can be used:
£=Ag't", (3.25)
wheret is time. The accuracy of integration of the crdaw (3.25) influences the

computation time. This is explained in more detal\ppendix D.

3.3 Composite rheology in the finite element model

GIA Studies with power-law creep have mostly assipe@wer-law creep and diffusion
creep to be mutually exclusive and restricted toage layers (e.g. Wang and Wu, 2008).
However, diffusion creep and dislocation creep emacurrent, and their strains are
additive (Ranalli 1995, p. 326). Therefore, a cosif@ rheology might be a better
approximation of deformation in the real Earth (Rl&in2001; Korenaga and Karato,
2008). In this thesis a simple model of compoditeotogy is implemented in the GIA
model discussed in the previous sections. The nmmgedims to contribute to the
following fundamental questions:

i) Can composite rheology better explain available @G#a? If so, predictions
of existing GIA models based on linear rheology magd to be revised.

i) What constraints does GIA modelling offer if theudr rheology is of
composite type?
A model in which creep rates from diffusion andlatstion creep are added can be
found in Bird et al. (1960) where it is called s model. Parmentier et al. (1976) used
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this model in mantle convection and a similar madelised by Van den Berg et al.
(1993). Gasperini et al. (1992) have introduced fingt application of composite
rheology in GIA modeling. This study is followed Basperini et al. (2004), Dal Forno
et al. (2005), and Dal Forno and Gasperini (200Rgcent geodynamic studies not
focused on GIA that use composite rheology inclBddolefsky et al. (2004) and Becker
(2006).

Composite rheology is defined as
gij =%+%Aq”‘1§ :(ﬂ{u—i Aﬂ‘lj S, (3.26)
where equation (3.23) is usedis the Newtonian viscosity which is related&q1 by:
= 1/(3An=1) , and other quantities are as defined before. fohaulation is the same as
Gasperini et al. (1992) and Giunchi and Spada (RG&ept that here it is preferred to
keep the creep paramet@ras input parameter instead of the transition str@fe
transition stress is the value of the effectivesdrwhere the strain rate from diffusion
creep and dislocation creep are equal (Dal Formab.,€2005):

1
A, :2’7*—0?_1’ (3.27)
and the uni-axial A can be computed with equat®4).

As stated in section 3.1.2, a transformation assty equation (3.11), is necessary
to be able to treat the Earth loading problem icommercial FE program. Thus, the
stresses that are computed with ABAQUS are thestoamed stresses, but the
implementation of the uni-axial creep laws needstthe stresses. Therefore, we would
need to take the stress computed in ABAQUS, tramsfwith equation (3.11) and take
the deviatoric part. However, since the second ternequation (3.11) contains only
elements on the diagonal, they will not enter tegiatoric stress and the Mises stress
computed by ABAQUS can be used directly in the priesv.

Power-law creep and linear creep law can be impiedeusing the standard
CREEP command in the main ABAQUS input file. Foc@mposite rheology, user-

subroutine CREEP can be used to specify a stregs-selationship other than the ones
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that are built in. Thus, the uni-axial compositealogy in the user subroutine is
specified as follows:

£=AT+ AL (3.28)

From equation (3.28) and equation (3.23) it carst@wn that, fom =3, the transition

stress at which the strain rate from linear andinear rheology are equal, is

1
- = 3.29
Ok e ( )

The use of the subroutine is further tested byi§peg a purely linear and purely non-
linear law and compare the output with the standamlementation of power-law creep
using the CREEP, LAW=TIME command. Figure 3.5 shatvat they are almost
identical.

a) Linear b) Non-linear
60 40;
— Abaqus
Vo] Y | B Subroutine
‘ =
20¢ =
C
[}
0 5
[&]
©
o
7]
a
L 1 _60 L ]
0 2000 4000 6000 0 2000 4000 6000
Element number Element number

Figure 3.5: Comparison of displacement computech vatibroutine and ABAQUS
internal routine for (a) linear rheology (b) nondar rheology. The blue line is shifted
upward by 1 m to make it visible.

The subroutine is implemented in the 3-D self-gating spherical Earth (Wu, 2004;
Wang and Wu, 2006; Wang et al., 2006). Becauséatige humber of elements makes
computation long and visualization cumbersome attisymmetric model of Wu and Van
der Wal (2003) is also used for visualizing theessr distribution and for studying the
effect of ambient stress.
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3.3.1Background stress

Gasperini et al. (1992), Giunchi and Spada (20D@),Forno et al. (2005) and Dal Forno
and Gasperini (2007) include background stressalars. However, background stress is
a tensor and can both increase and decrease twi\adfviscosity of power-law creep
and hence the scalar sum of the background stnestha rebound stress only simulates
the special case where the directions of the sass$parallel and of the same order of
magnitude. Schmeling (1987) showed that the eféédvackground stress on rebound
stress depends on direction. His argument will &geated here, using Mises stress
instead of the second invariant of the stress terasal with rebound stress being the
primary (p) stress and convective stress beingéeendary (s) stress.
Effective viscosity is given in equation (3.23) as

1 1
2A0 " 3AQTH

Nt = (3.30)

Therefore, for constam, the effective viscosity is proportional ¢d". When a primary

and secondary stress co-exist, the Mises stressriputed as follows:

q =\/22(0u" +a3f (3.31)

i

where superscripp denotes the primary and superscriptthe secondary stress.

Schmeling (1987) distinguishes three cases:
1). Stresses are parallel and have the same sigrexBmple:o;, = ;. Substituting this
in equation (3.31) yields

q= g(zo—fl)2 =2q,. (3.32)

It follows from equation (3.30) that the effectiviscosity is reduced by a facft™ or

Y, forn = 3. Similarly, for orthogonal stressegz= x/qu, and for stresses parallel but
with opposite sign:q :%qp. Thus, a simplification as in Gasperini et al.92p where

stress from rebound and convection are simply addédilluminates one of the possible
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scenarios where the primary and secondary stremsesn the same direction and

approximately of equal magnitude.

3.4 Details of the model

The FE model consists of 12 layers, i.e., 2 layersach layering in the Earth model.
The grid is 2 x 2°, with mesh refinement under the ice sheet. Foreleeents at the
north and south pole of the FE model a 6-node tingangular prism (hybrid with
constant pressure). All other elements are eigbenimear bricks. These elements are of
second order, which means that the shape functiefised in equation (3.8) are of
second order. Hybrid elements are used to rem@uegalarity that occurs because of the
incompressibility of the material.

3.4.1Elastic parameters

A 6-layer Earth model is used with elastic paramsetgven in Table 3.4. It is identical to
the model used in Wu and Wang (2008) except thEiakm thick lithosphere is used
here instead of 115 km, and the model here is ipcessible (see next section). Note that
the density in the core and the lower part of theer mantle differ from those in Table

2.1 but these differences are small.

3.4.2Poisson ratio and compressibility

In the finite element model used in this thesig Boisson’s ratio is taken to be 0.5,
which corresponds to the theoretical limit of artampressible fluid (Turcotte and
Schubert, 2002, p. 107). Seismic wave velocitiegady yield much lower Poisson ratios
(0.28-0.50, see Turcotte and Schubert, 2002, Agrpdfd However, these lower ratios
imply a compressible material, which is harder rtgplement fully in the surface load
theory (Wu, 2004). Compressibility consists of mialecompressibility and the effect of
compressibility on internal buoyancy (Klemann ef 2003). Although these effects can
not be separated in the real world, one can emal®pisson ratio smaller than 0.5 to

include material compressibility, but neglect thHte@& of compressibility on buoyancy
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forces to avoid the instabilities associated wiiis effect (Klemann et al., 2003). This
is indeed the approach followed by Wu and Wang 820&ho use a Poisson ratio in the
order of 0.28, see their table 1. The instabilines described in the ABAQUS Analysis
User Manual as: “a very small change in displacamesduces extremely large changes
in pressure. Therefore, a purely displacement-baskdion is too sensitive to be useful

numerically”. The selection of hybrid elements guties the sensitivity.

Table 3.4: Elastic constants used for ABAQUS 3D eisd

Layer |r (km) | p(kg/n®) | go(m/s) | E(x10"Pa) | u (x10"Pa) | v
Lith [6371 3192 9.815 | 1.55 0.52 0.50
UM [6221 3442 9.866 | 1.89 0.63 0.50
TZ [5971 3882 0.969 | 2.83 0.94 0.50
LM1 [5701 4527 10.014] 4.60 1.53 0.50
LM2 [5200 5074 9.947 | 6.24 2.08 0.50
Core | 3480 10987 10.683 0 0 0

3.4.31ce models

The original ICE-4G model is used for deglaciatinterpolated at the®2 2° grid. Ice
increase is modeled as a linear ramp. For ICE-B@polation to the 2x 2° grid is
performed by thgrdtrack routine in GMT (Wessel and Smith, 1991). The itekness

at present is removed from all ice heights. Glammais modeled as a linear ice increase
up to the LGM at 26 ka BP. Increments are set k&2 ka and 18 ka BP, and from
there on every 1 ka up to present. Smaller incréatien between 26 ka and 18 ka does
not have a large impact on results.

3.5 Comparison with the spectral model

The axisymmetric FE model was benchmarked in Wu \dad der Wal (2003) where
agreement was found to be excellent. In this gecthe 3-D FE method of this chapter

is compared with the spectral method of the previohapter for the ICE-5G model.
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Differences in the implementation of both methods(@xcept for different methods to
solve the differential equations) are:

- Glaciation: In ABAQUS a ramp is assumed from thedi@t the beginning of the
step to the end of the step. In the spectral caeBevidide increments are used.

- The ocean function is partly time-dependent in EHie method. In the spectral
method the ocean function can be fully time-depanhder ice-equivalent
meltwater can be used at all time steps.

The Earth model used is given in Table 3.4. Thamabrmode codes use the shear
modulus, which can be calculated from Young’'s madw@nd Poisson’s ratio by

E

iro) (3.33)

/’I:

The spatial grid of the spectral sea level equatimies was changed to th&x22° polar
grid that ABAQUS uses. The’2 2° grid of the spectral method still starts at alate of
89 degree while the grid of ABAQUS starts at 9@eipolation from one to the other grid
was found to have negligible influence. The maximdegree in spherical harmonic
expansions is 90. The difference between the fadl Isvel equation and the melt water
equivalent sea level is not important for the congmam (not shown). ICE-5G files are
interpolated from the same ICE-5G files as themualel used in ABAQUS, using the
same interpolation method.

The differences in uplift rates between the FEM apdctral computation are
shown in Figure 3.6. Interpolation is done by grdtrack routine of GMT (Wessel and
Smith, 1991), which uses bi-cubic interpolationcdin be seen that the differences are
below 1 mm/year everywhere except for Baffin Islamtdese values are similar to the
comparison in Wang et al. (2006).

Factors that could explain the difference couldtihe integration between ice
increments in ABAQUS. ABAQUS applies a linear chanigjom one increment to
another, while in the spectral method a Heavisidel lis assumed (Wang et al., 2006). It
is also possible that increasing the number of efgmin the 3-D model beneath the ice
load decreases the difference. Relative sea leweks of the two methods match well;
see Figure 4 of Wang et al. (2006).
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Figure 3.6: Uplift rate ABAQUS minus spectral withaximum spherical harmonic

degree 90.

3.6 Summary

From microphysical studies and experiments, twonngi@formation mechanisms
can be distinguished. In diffusion creep the viggas independent of stress, whereas for
dislocation creep (power-law creep) the effectivecosity depends on stress. From
earlier studies, dislocation creep is expected douo in the upper part of the upper
mantle, and a transition to diffusion creep is etpé at depths of a few hundred km. In
the lower mantle dislocation creep is expectedagalbminant. For studying a rheology
with power-law creep, the finite element (FE) meths used, because mode-coupling
prevents the successful application of spectralhodd. The commercial program
ABAQUS is used with buoyancy forces, coupled Laplaquation and self-consistent sea
level equation implemented as in Wu (2004). Congbégy and degree 1 are not
implemented. The presence of background tectonésstcan both increase or decrease
the effective viscosity, depending on the directairthe background stress, but is not
included in the model. The model is shown to agveh a spectral model discussed in

Chapter Two: to within 1 mm/year present day upéte.
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The constitutive equation that is implemented csissof the summation of

dislocation and diffusion creep rates, a so-catl@uposite rheology. In a simplified form
of the dislocation creep law, the strain rate degeon the stress exponamtand pre-
stress exponer&. In Chapter 6 values @ between 3.3 x I8 and 3.3 x 18° Pa’s™ are
used and a stress exponennaf 3 to investigate whether composite rheology impsov
fit with GIA observations. These values are basedearlier studies with purely non-
linear rheology which found reasonable sea levelesiand uplift rates for these values

of A. The Newtonian viscosity will be varied between [1,3,9] x 10Pas.
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Chapter Four: GRACE-derived gravity rate for GIA studies - Theory

This chapter deals with the gravity field functimthat are computed from the GRACE
Level-2 products and their errors. In the firstte®yt the Level-2 products provided by
different processing centers are presented. Thendesection presents post-processing
methods for the Level-2 products available from @RACE literature and focuses on
the methods that are used in this thesis. The 8eafion discusses measurement errors
and three different approaches to compute themateatused in this thesis. The final
section addresses leakage, which is useful to staiet the effect of upward
continuation and filtering on the mass changeshensurface of the Earth and in the
Earth’s interior. In this chapter, MATLAB code froBr. Nico Sneeuw and Dr. Matthias
Weigelt is used with small modifications to do apherical harmonic synthesis and

analysis computations.

4.1 GRACE Level-2 Products

Level-2 products consist of coefficients (and th&imndard deviations) of a spherical
harmonic expansion of a global gravity field at ridy or longer intervals. ‘Official
GRACE solutions are provided by three processimgers:

- Center for Space Research (CSR), University of $éBattadpur, 2007b);

- GeoForschungZentrum (GFZ), Potsdam (Flechtner, 2007

- Jet Propulsion Laboratory, Pasadena (validationtisois) (Watkins, 2007).
More recently, several other groups have proce€d@fCE data and have come up with
their own solutions:

- Centre Nationale d’Etudes Spatiales

(http://bgi.cnes.fr:8110/geoid-variations/README. hfm
- University of Bonn (Mayer-Gurr et al., 2007);
- Department of Earth Observation and Space Systeins2008).

Results for the different official solutions areighly comparable” (Schmidt et al., 2008)
because background models are standardized iatés Felease (4) compared to the first
releases of Level-2 products. In this thesis, tf®RCdata with maximum spherical
harmonic degree 60 is mostly used; comparing tfierdnt solutions and analyzing their
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differences is not a goal in this work. For a mdegailed comparison of solutions from
different processing centers in terms of seculavity rates in Fennoscandia, see Steffen
et al. (2008), who concluded that GFZ solutionsdpoe the largest maximum secular
gravity rate with location closest to that expedtedn uplift rate data in Fennoscandia.

The Level-2 solutions use an a-priori static gravi¢ld in the processing, and it
is in this field that there are important differeedn solutions from different processing
centers. CSR solutions use a combination of GRACER Qelease 2 solutions in
combination with EGM96 for the higher degrees (8dpur, 2007a). GFZ release 4
solutions use the EIGEN_GLO04C static gravity fiefidechtner, 2007). Dynamic parts of
the a-priori gravity field include ocean tides,iddtarth tides and atmospheric and ocean
variability.

In all solutions, linear trends in the following efticients are removed:

C,0,C5,Cu0.C,1,S,,. Since these coefficients partly contain GIA sigrtae secular

change has to be added back to the respectiveigests when studying GIA (or any

other secular process). This can be done, e.ghéoG coefficient as follows:
Coonenl(t) =Cypio(t) + Czo (t _to) ' (4.1)
wheret is the epoch of interedt; is an arbitrary reference epoch a@g) is the provided

secular trend in th€y, coefficient. For timé, the midpoint of the data span (usually one
month) can be used (Bettadpur, 2007b).

The final product provided by the data processiegters are spherical harmonic
coefficients of the geopotential (Stokes coeffits@8,,, S, defined in the following
expansion of the Earth’s exterior geopotential.(6Bgttadpur, 2007b) at point P:

L L
v(r,e,A,t)=§+rﬂ;(%j > R (co9)(C,, cosmh+ §, sinni). (4.2)
wherer is the radius of point R is the colatitude of point P} is the longitude of point
P; uis the gravitational parameters of the Earth, 06898415 1& m’s% V is the

gravitational potential; and, is the mean equatorial radius, which is seleatelet the
value of the Topex/Poseidon reference ellipsoi@78136300 x 10m (6.378136460 x
10° m for GFZ fields). For all applications this valoan be assumed to correspond to the
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Earth’s surface. I5|m= fully normalized associated Legendre polynomiale
normalization of the associated Legendre polynasnadrees with the usual geodetic
definition (e.g., Heiskanen and Moritz, 1967)
_ -m)
N, = \/ (2= 34, (2 +2)(1 - m) 4.3)

(I +m) '

where 9, is the Kronecker delta function.

The Gy coefficients derived from GRACE are still noisigran those derived
from SLR (Bettadpur, 2008), therefore, in this thess in many other references, thg C
coefficient in GRACE solutions is replaced by thieRSderived value. It is shown in
Figure 5.27 that the effect of thedZoefficient on the maximum gravity rate is small.

In GRACE data processing, the origin of the refeeeframe is selected to be at
the instantaneous center of mass of the Earth g&etr, 2007a). Therefore, the
summation in equation (4.2) starts at degree 2ngém in the location of the center of
mass of the Earth cannot be obtained from GRACE. (gde Figure 11 of Van der Wal et
al. (2008a) and Lee et al. (2008) to get an impoassf the possible effect of shift in
geocenter on the geoid rate derived from GRACIS likely that the neglect of such an
effect in the geoid rate does not reduce the semgitof GRACE with respect to
parameters in the GIA model such as the ice loadlistpry. As can be seen from

equation (4.8), degree 1 terms are zero in thatgramomaly because of theX) term.

4.1.1Computation of gravity field functionals

From the Stokes coefficients, a gravity field fuaotl F can be computed by:
L |
F(r.0.A1)=X,+Y. X Y. R, (cosd)(G, (1) cosm + §,( } sinm), (4.4)
1=2 =0

whereL is the maximum degree in the spherical harmonpaesgion of the solution; and

X, =a, for the geoid;

for free-air gravity anomaly;
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(I+1)GMm

—_ e

| 2

a,
(see e.g., Heiskanen and Moritz, 1967, p. 88/83% taken to be the Earth’s surface. The

for free-air gravity disturbance.

degree zero ternkg) is zero for GRACE data processing by convention.

Free-air gravity anomaly (rate) is what is meanewlgravity (rate) is written in
this thesis. There is no theoretical reason togragity anomaly as opposed to gravity
disturbance. Gravity disturbance is the radial \@dgive of the disturbing potential
(Heiskanen and Moritz, 1967, p. 85), but gravitpraly is used here to be consistent
with earlier GIA modelling in which gravity anomalyas used. Note that Paulson (2006)
and Paulson et al. (2007b) use a definition fovigyarate that corresponds to gravity
disturbance. In general, that definition resultemhanced spatial detail and noise, and a
slightly higher maximum secular gravity rate.

For geophysical interpretation, only variationshwmespect to some mean field
(C,.. S,,) are interesting, therefore, a mean of severalrsyed monthly Stokes
coefficients is removed from the coefficients paed in the data files:
Cn(t)=C,, -C,
Im( ) _ Im , (4-5)
S (t) = S~ S

to give the coefficients that can be used in equg#.4).

Im

It is useful to define the transformation betweearefticients in a spherical
harmonic expansion of a surface mass load (in etgnt water height with units of
meter) to Stokes coefficients for simulations oégent-day ice melt and continental
water storage changes in 5.1.1. Water heights gimem grid can be expanded in terms of

spherical harmonics as follows:

h(6.4)=Y R, (cosd)(G, cofmi)+§, sif m)). (4.6)

1=0 m=0
Note that theCA;m and ém have units of meters if the water height is giwermeters.

Here, Cyp is assumed to be zero, or mass conservation caentoeced by adding a
uniform layer to the ocean to make Bg coefficient zero. Degree 1 coefficients are set
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to zero. The transformation of coefficierif% and ém to the coefficients of equation
(4.4)is

1+k,
aepave 8,0, (21+1)

where p,, is the density of water 1000 kgintthe load is to be defined in ‘equivalent

Cn () = G (1), (4.7)

water thickness’);p,.is the average density of the Earth, 5517 Rg/amd k. is the

elastic load Love number of degrée Equation (4.7) accounts for the change in
gravitational potential due to elastic displacemehthe solid Earth. The elastic Love
numbers used in this thesis are interpolated frioosd in Wahr et al. (1998). Equation
(4.7) is the same as equation (12) in Wahr et18198) except foae because surface
mass density is used in that paper instead of atpnv water height. Implicit in this
formula is the assumption that all mass changesiroicc a thin layer at the Earth’s
surface. This is valid for continental water st@atpanges, glacier melting and sea level
changes.

In computer code, equation (4.7) can simply be aoatbwith the X, of equation

(4.4) so that the same spherical harmonic subrewan be used to compute all gravity
functionals as well as water height coefficientse Bpherical harmonic synthesis will be
explicitly given for gravity anomaly computed frospherical harmonic coefficients of a

surface load in meter water height

3 3
8g(0.4) == 5 + 0

ey Pl co8)(C, com+ 5, sim)

m=0

(4.8)

For global spherical harmonic analysis, equatiol)(4visual inspection found that the
‘approximate quadrature’ method (Sneeuw, 1994)ltegun the smallest differences
between a hydrology model on a grid, and the samoeleinthat is analyzed and
synthesized subsequently. Thus, this method wastsel to perform global spherical

harmonic analysis.
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4.1.2Degree and order variances

For analysing the magnitude of GRACE data and tleors in the spectral domain it is
useful to plot the ‘information’ per degree or ard€he quantities that are used in the
next chapter are the degree variances, defined as

2 1 l 2 2
g =2|+1;)(qm+sm)- (4.9)

Note that this is different from e.g. equation (22)Wahr et al. (1998), where the term
1/(21+1) is not included. The units of the degree vamaag are the same as the units of

the coefficients. Cumulative degree variances efmed as
|
Otem = (2k+1) 07, (4.10)
k=0

where g/ are computed with equation (4.9). Finally, orderiances are defined

equivalently to degree variances:
1 L
ol =———> (C2+S%), 4.11
m 2(|+1_m);( Im Sm) ( )

in which§,, = 0 form= 0.

4.2 Post-processing GRACE data

Gravity measurements contain a multitude of oveilag signals from mass change
processes on or below the Earth’s surface, atrdiitdength and time scales. Therefore,
to isolate signals from GRACE data, inevitably, reop knowledge is used about the
signals’ location and temporal behaviour. For ex@n@IA behaves linearly over the
GRACE time period. This knowledge leads to the i@pgibn of least-squares estimation
of a trend in the presences of seasonal signaishvididescribed in section 4.2.1.

It can be expected that after filtering the GRACGHad the signal explains most of
the filtered data and that in particular GIA is @midhe strongest signals in GRACE data.
This leads to the technique of Principal Comporferdlysis (PCA), discussed in section
4.2.2, which looks for orthogonal spatial pattetimst explain most of the variance of the
signal (Jolliffe, 2002, Rangelova et al., 2007).
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Other methods that rely more heavily on a-priotiadeould also be used, but
such methods defy the idea of GRACE providing alependent data set for constraining
GIA models. For the purpose of interpolating GlAifip stated in the introduction, such
a hybrid approach would be acceptable, and indelegsi been developed by Davis et al.
(2006). Based on the idea that neither data norefsoare perfect, they developed a
Kalman filter approach to combine data and modalsai statistical optimal way.
Rangelova (2007) combined GRACE with GPS and teraégravity data using a least-
squares collocation approach. This section dissudske least-squares approach to
estimate a secular trend, followed by principal poment analysis. The last section
presents a classification of filtering techniquesl aliscusses the three filters that are
investigated in this thesis.

4.2.1L east-squares estimation of trend

Since GIA is a secular process, it is sensiblestorate a linear trend in the coefficients
and plot the magnitude of this trend on a spat@bnTo avoid corruption of the trend by
periodic signals, seasonal signals that dominatgela&cale mass transport should be
estimated jointly (see e.g., Wahr et al., 2004sefi-annual period can be included as
well, so that the estimation for the gravity anoyial each grid point of a spatial map

becomes

Ag(t) =k +k2005(2?ﬂl]‘-j+ kssir(z?”}}
“ C"Ez?”%]"s S‘E'Z—T”t—;}v(n)

wheret; is time epoch (unit of monthsJ;is 12 months per yeak; is magnitude of the

(4.12)

trend;k, andks are the magnitude of the cosine and sine annumaponent, respectively;
ks andks are the magnitude of the cosine and sine semiasrmmmponent, respectively;
andv(t) is the residuals (they may still contain geophgissignal).

For GRACE, the midpoint of the first and last dagd for each monthly solution
is used as the time of tpgh epoch. In some cases the 161 day tidal aligséngd of the

S, tidal component is jointly estimated, howeversthight no longer be necessary with
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the improvement of tidal models in Release 4 datapugh Gy was found to contain
significant energy at the 161 day frequency (Chaoh Wilson, 2008). It was found here
that estimation of signal at a 161 day frequency daegligible effect on the maximum
geoid rate (change of 1.2%).

Weighted least-squares can be used, where a waigtiix P is populated with
the inverse of the variances for each coefficientr@ diagonal. The variances are simply
the squares of the calibrated standard deviatibat dre provided by the processing
centers. The advantage of such an approach woulthbé takes into account the change
in accuracy from one month to another, e.g., cabgedroundtrack changes, but this is

not investigated.

4.2.2Principal Component Analysis

Principal component analysis (PCA) is a techniquéréduce the dimensionality of a
data set while retaining as much as possible ofvHretion present in the data set”
(Jolliffe, 2002). The general idea of the method gisen here, after which the
implementation of PCA for GRACE data is discussédr more details, refer to
Rangelova (2007), whose software was used for PIGBRACE data in this thesis. PCA
has also been employed for GRACE data processingdiyama et al. (2007) and
Wouters and Schrama (2007) among others.

Assuming that a full signal covariance matdix of the datasex is known, the

aim is to find a linear combinatiomx for which the quadratic forna,Xa, is maximized
with the length ofa, equal to 1. It follows thatn, is the eigenvector oz with
eigenvalue/,. For GRACE, the population signal covariance maisinot known and

the sample covariance matfxs used instead:

S:i X'X, (4.13)
n-1

where X is the data matrix ordered asows byp columns, where is the number of
observations (GRACE epochs) gmnes the number of variables (the grid points).
A singular value decomposition of the data matrixsXuseful for computation purposes

and for visualizing the components:
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X=ULAT,

(4.14)
whereU is ann x r matrix that contains the time seriésjs anr x p matrix that contains
the spatial patterns, amdis anr x r diagonal matrix with eigenvalues on the diagonal.

r = rank ofX; in case of full rank this will be, or the number of grid points for GRACE
analysis. The columns dfL contain the time series, and the columnsAofre the
eigenvectors, which in GRACE data analysis are dpatial patterns of the signal of
interest.

PCA uses a-priori information in that it searcli@sorthogonal spatial patterns
and orders these according to their variance. oAigih there is no outright reason to
believe that GIA and other processes and noiseaaepaicely in orthogonal modes, it is
hoped that PCA can help in separating secular frder-annual signals as PCA does not
prescribe the time behaviour in contrast to legstages. Moreover, 80% of the variance
in a global hydrology model is the annual cycleftsat a spatial pattern with an annual or
near-annual cycle will be likely found in the fifgw modes. A generalization of the
method is multi-channel singular spectrum analysigestigated for GRACE by

Rangelova et al. (2008).

4.2.3Filtering of GRACE Level-2 products

GRACE data contain spurious north-south stripese(Cht al. 2005b), which are an
artefact of the measurements or the estimatiohefjtavity-field or the post-processing.
The exact cause of the stripe errors is still umkmoalthough the north-south oriented
orbit of GRACE definitely plays a role. Other pddsi partial causes for the stripes are
aliasing (see Figure 2 in Han et al.,, 2004) ancbrirect accelerometer scale and bias
parameters needed in the orbit determination pso¢€shrama et al., 2007). With
improved background models in the release 4 modethyced magnitude stripes are
observed. Post-processing is generally done byyeggpisotropic or non-isotropic filters
to the Stokes coefficients before producing masmates.

Following Klees et al. (2008), filters can be deftlin statistical and deterministic

ones. Deterministic filters include Gaussian smimgth\Wahr et al., 1998), the non-
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isotropic Gaussian filter of Han et al. (2005), ahe empirical filter designed by
Swenson and Wahr (2006). Deterministic filters bancharacterized according to their
use of outside information. For example, Swensah \Mahr (2002) use the knowledge
of the area of a river basin which is assumed t@mbe as one system to form an average
mass change of the GRACE solutions over this thaein.

Statistical filters include using standard deviasimf the coefficients as weights
(Chen et al., 2006); filtering using empirical @tjonal functions (Rangelova et al. 2007,
Wouters and Schrama 2007); Wiener filtering (Sasgeal., 2007), and filtering based on
statistical testing of the coefficients (Davis &t 2008). Kusche (2007) and Klees et al.
(2008) both relied on a synthetic error covariamegrix and a signal covariance matrix.

A deterministic filter can be easily applied to gpherical harmonic coefficients,
and also to geophysical models to allow fair congoer between GRACE data and
model results. At the time this work was conductib@, empirical Swenson and Wahr
(2006) filter was the most widely used for removitite stripes. Synthetic noise
covariance matrices needed for the Kusche (200 Kdees et al. (2008) methods were
not available during the course of this work. Tuk moise covariance matrix provided by
CSR is shown to not describe the correlated emelk(see section 5.2.1). Therefore, this
covariance matrix can not be used for the filtemmgthods of Kusche (2007) and Klees
et al. (2008) and hence these filters are not e@ph this work. The Swenson and Wahr
(2006) filter is suitable for GIA because it carsiBabe applied to and tuned for GIA
models. It is important to keep in mind that insthway the filter only influences the
differences between competing GIA models. In otherds, if the filter would affect all
competing GIA models in the same way, the resolpioger of the filtered GRACE data
with respect to the GIA models is not reduced.

To counteract the effect of the increased noisé w#creasing wavelengths in
GRACE observations and to further reduce the €ripmoothing is applied to equation
(4.4). Smoothing can be written in a general fomftéan et al., 2005, equation 4):

F(6,4) =ij (6,4 W (8,4,8'4)do ", (4.15)
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WhereW(H,)l,é?',)l ) is an averaging function that depends on the ilmestof the two

points with coordinates(é,4) and (6',1'). DecomposingF and W in spherical

harmonics yields (Han et al., 2005, equation 5)

53 (WEG, + WD S, ) cos m +

ﬁ(9’/‘)=i|ZF~?m(0089) mom=0 , (4.16)
ZZ(W.;;“ G+ WiI® S, )sin

where W' ™¢is the coefficient corresponding to th@smA cosm A term, W'™° the

Imc Ims
coefficient corresponding to thesinmdcosmA , etc. Equation (4.16) without
simplification leads to filters based on a full eoxance matrix (such as in Kusche, 2007
and Klees et al., 2008). Usually, simplificationscls as isotropy are made about the
properties of W, which leads to application of thaussian filter discussed in the next
section.

4.2.3.1Gaussian filter

The Gaussian filter was developed by Jekeli (1981ig introduced to GRACE data
processing by Wahr et al. (1998). It is a simpdifion of equation (4.16) where the filter

is assumed to depend only on the angular distagtveelen the point§d, 1) and(6',1") .

In the spectral domain, the filter downweighs higinequencies which are expected to be
more corrupted by noise. In the spatial domain, fther forms a spatial average by
convolution with a Gaussian kernel. The weightkefficoefficientsW) are given by the

following recursion (Wahr et al., 1998):

_ 1
° om
1(1+e® 1
Wl zﬁ[l-e—% ‘?J ’ @0

21 +1
VV|+1 :_TW+ W—l

where:
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pb=— N2 (4.18)

I
1-cos >

r, is the halfwidth, or the spatial distance where fitter weight is reduced to one half.

Directly programming this equation leads to inditibs, therefore small modifications

have to be made to the recursion of (4.17). Heieeghosen to change the last line of the

recursion toWw,,, = —ZIT_lw +W,,.

4.2.3.2Non-isotropic Gaussian filter
Han et al. (GJI, 2005) devised a filter where titterf weights depend on degréand

order m, but they are still independent of locations, sticht W of equation (4.16)

becomes
W ['=I m'=m

Wit © =Woa =1 477 , (4.19)
0

and all other coefficients are zero. In that cag@ation (4.16) reduces to

[— * I ~

F(6.1)=>.> R, (cosdW,, (G, cosmi + G, sinm), (4.20)

1=0 m=0

so that the filter can be implemented as elemerglegnent multiplication of matrixVv
with the coefficient matrix in the same format. Thleer coefficients are computed as

follows:
W, = W( [/2( n‘))

o (M) =2 g

m

whereW are the Gaussian filter weights of equation (4.X¢)is the smoothing radius

(4.21)

for zonal componentsh = 0, andr,, is the smoothing radius fon = my. rys determines

the smoothing in latitude direction, angy together withm, determines the amount of

smoothing in longitude direction. Thus there ame¢hparameters in total. Because of the
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decreased sensitivity of GRACE in east-west dioegtirgy is generally larger;

Therefore, more smoothing is applied in the dimgtin which GRACE is least sensitive.

4.2.3.3Destriping filter of Swenson and Wahr (2006)

Swenson and Wahr (2006) noted that the stripes reddein the GRACE maps
correspond to a correlation in the spectral donieEtween even and odd degrees for
Stokes coefficients of a particular order. Thetetita low order polynomial to a limited
interval of coefficients of odd or even degree t&satibe this correlation. Since this
correlation is not expected for natural phenomérsghould be removed from the Stokes
coefficients by removing that part of the coeffid® that is fit by the polynomial. Some
variations to the method exist. For example, wavalgproximation can be used to
describe the correlation (Rangelova et al., 200he window length and unchanged
portion of the Stokes coefficients can be variedeblaon the order and on the error
pattern (Duan et al., 2009). Here the unpublistesdilt for window length of Dr. Sean
Swenson and Dr. John Wabhr is used, which was kipdlyided for this research by Dr.
John Wahr and for publication in Duan et al. (2069xered coefficients were compared
with filtered coefficients produced by Dr. John Wahith the routine of Dr. Sean
Swenson. Differences without any additional smowhare small, see Figure 4.1,
considering that the original amplitude of thepss is in the order of centimetres.

In this thesis, the effect of the degree and otmlow which coefficients are
unchanged (cut-off degree and order) is investthdteshould be stressed that for each
combination of cut-off degree and order, the caoedfits that are used for the polynomial
fit can be different, because the window size \sanéh order, and because the window
size might not be symmetric around the coefficiéir example, the {31, coefficient

might be filtered differently depending on whetktee cut-off degree is 4 or 10.

4.3 Measurement errors

The term measurement errors as it is used inhlisig includes noise in the observations

(accelerometers, star cameras, K-band ranging reysterrors in processing and
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deficiencies in de-aliasing models (atmosphericguwes, ocean model), and omission
errors (Gunter et al., 2006). Velicogna and Wall0g) investigated the de-aliasing error
by using two difference atmospheric pressure fieldey found this error to be relatively
small compared to other sources. Using simulatiGusiter et al. (2006) found that errors
in the reference gravity field give noticeable esrdout they expect this error source to
decrease with increasing GRACE data span. Han €@04) showed that errors in some
tidal components in the ocean tide dealiasing modelcause errors that are three times
larger than the measurement error. All theses eswarces can probably lead to errors
that are random in time and space, errors that@®ned to a specific location, or to the

north-south stripes introduced in section 4.2.3.
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Figure 4.1: Differences in geoid height in [m] far single month

between Stokes coefficients filtered by Dr. Johnhwand after

of GRACE data

filtering with a

MATLAB routine written by the author. No additionsinoothing is applied.

Calibrated standard deviations for all coefficieat® made available by the
processing centers (see section 4.1). Howevergtios that cause stripes arise from

correlation between coefficients (Swenson and W2006), which obviously can not be
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expressed by standard deviations alone. A full tamae matrix would ideally
describe all such errors, but it is questionabletvr full noise covariance matrices can
describe the real causes for stripes becauseds tako account white observation noise
and the measurement geometry, at least the onaiggddby CSR Texas (Ries, pers.
communication). It can be concluded that the sitedlacovariance matrices used by
Kusche (2007) are able to describe the stripesgedine filter based on this covariance
matrix seems to be successful in removing them.

Thus, since calibrated standard deviations anchdiee covariance matrices have
expected shortcomings, different methods to quamifors have been applied in this
thesis. Advantages and disadvantages of each mathatiscussed below.

Wahr et al. (2004) start from the assumption tha part of the Stokes
coefficients which exhibits annual, semi-annualsecular time behaviour is a physical
signal. The remainder of the signal can then bamasd to be noise. In the extreme case
where no filtering is applied, stripes with annoalsemi-annual periods can be seen in
estimated physical patterns. The method of Walal.e2004) would incorrectly label
these errors as signals. Conversely, a real gewmgalhysignal can have inter-annual
periods, and be classified as error. Wahr et 802 elaborate on this method and scale
the standard deviations to fit the magnitude ofrémduals so that the error structure of
the standard deviations is maintained, but the madm of residuals is obtained.

A similar idea is to use principal component aniglys the space domain
(Rangelova et al., 2007) or frequency domain (Wasuét al., 2007) and reconstruct the
signal with the significant modes only, becausehigher modes in the spectrum of the
signal covariance matrix are believed to represense. This suffers from the same
drawbacks as the method of Wahr et al. (2004) lsscauthe case of no filtering being
applied, stripes are a part of, or dominate, thengest modes.

Tamisiea et al. (2007) applied a method specificdtr glacial isostatic
adjustment studies, whereby they scaled standar@totns of the spherical harmonic
coefficients by the reduction in misfit that is amhed after filtering. If filtering is
successful, the GRACE estimate for the secularityraate is in theory closer to a GIA
model so that a small misfit remains and the stahdi@viation for the coefficient is
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scaled by a small number. Possible criticism isfodeb the effect of the filter on both
GIA and non-GIA signals can both increase or desgeidne misfit, which does not
indicate successful performance of the filter. ety the success of the filter is based
on a particular GIA model, which makes filter impeonent biased.

Considering the above review, in this thesis acsiele was made of three
methods to quantify measurement errors in the spac®in:
1) full noise covariance matrix;
2) calibrated standard deviations;
3) residuals after estimation of a trend, annual axisnnual signal (Wahr et al.,
2004).
These are discussed in the following section.

4 .3.1Full covariance matrix

In the following, the term Variance Covariance NMa{vCM) will be used even though
in some cases covariances may be assumed zer®.(Mas propagated for the selected
filter by covariance propagation (Vaek and Krakiwsky, 1986, p. 197):

C'=MCM "’ (4.22)
WhereC denotes a VCMM denotes a matrix that represents the filter, abtte filtered
coefficients ordered in a vectdf, ., are obtained from the original coefficietts, as

K, =MK . (4.23)
Haagmans and Van Gelderen (1991) give the errar@wes between two points P and
Q. Therefore, to obtain point error variances,rtpeints P and Q are the same and their

equation 1la becomes
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Coefficients S

nm?’

S, do not exist fom = 0.

4.3.2Calibrated standard deviations

For calibrated standard deviations, the same emuédi.22) is used as for the full VCM
but off-diagonal terms in the VCM are set to zeedobe propagating through the filter.
Although the correlation between odd and even deggtbat is related to the striping
problem is obviously not described by the stand#dations alone, this case can still

serve as a benchmark to compare the performante other methods against.

4.3.3Residuals

Residuals are obtained after least-squares estimatfia trend, annual and semi-annual
signal; see equation (4.12). Physical processésathgoresumably annual, such as snow
fall and melt in the mountains, typically do notveahe same amplitude for every year
and do not always have the same phase, thereferantfual cycle is estimated using a
moving window of 2 years.

Even if the time series would consist purely ofseoin the form of normally
distributed random numbers, estimating a trend amtual cycle will remove some of
this noise. This reduction of variance is compuigditting a trend and annual cycle to a
random time series of length equal to the GRACEetsmries. The thus obtained variance
reduction for the number of epochs used in thisighes typically 15%, and the GRACE

residuals are multiplied by a factor approximatsdyal to 1.15. The root-mean-square of
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the errors in the spatial domain is computed from riesiduals in the coefficients by
(Wahr et al., 2006, equation 4)

A:\/Z(Hlm{i%} |Im{zn“5—S‘iD, (4.25)

I, m i=1 n i=1 n

where A is the RMS of the errordd, and I, are factors that relate the spherical

harmonic coefficients to the spatially averaged snelsange at a certain geographic
location, as in equation (4.4) the combination Rfand X, ; dCm and 6Sn, are the
residual coefficients, amalis the number of months.

In equation (4.25), it is assumed that errors areorrelated from one month to

another so that thesIRMS errors for the geoid rate can be computed floenRMS of
the mass errors computed in equation (4.25) byi¢ggha and Wahr, 2002)

12
e, ~ L2 e 4.26
Nerace i \/(N _1) N( N+1) Nerack i ( )
where gy, is the error in an individual month, agg is the error in the trend. For

59 months, the factor that multiplies the errotha individual month in equation (4.26)
turns out to be approximately 0.09. In reality,oesrcan be time-dependent, such as tidal
aliasing errors arising from mismodelling the Set{(Ray and Luthcke, 2006), but this is

neglected here.

4.4 eakage, signal mixing and resolution

Gravity data, either static or time-variable, suffem non-uniqueness (e.g., Turcotte and
Schubert, p. 195). The same gravity data set caimdheced by different 3-D mass
distributions. Before analyzing the GRACE data @mnts of GIA in the following
chapter, it is useful to review some issues reléedon-uniqueness: (i) Non-uniqueness
in vertical direction; (ii) Non-uniqueness in harigal direction, and (iii) Leakage of
signals from outside the area of interest due toathing.

The non-uniqueness in depth that exists for ineersif the static gravity field

(e.g., in exploration geophysics) is removed in MBRACE studies by assuming that
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mass transport exists in a thin shell on the Earslrface. However, GIA takes place
deep in the Earth’s interior, thus such approxiorats not possible. GIA can be masked
by water storage changes on the surface, and uhat but to be a problem for GIA
inference from GRACE (see section 5.1.2).

For satellite gravity measurement, there is lang@n-uniqueness in horizontal
direction than for surface gravity measurementsabse of the fact that the satellite is
separated from the mass change processes by thledlying altitude. This is illustrated
by equation (1-88) in Heiskanen and Moritz, whigdmputes the potential at satellite

altitude Vs, from the potential known everywhere at the Eardflipsoidal surface:

V., (1.6, :4if f V(a,.0'1) |:2(2n+])( j I?(cos(/)} sif B i, (4.27)

It can be seen that the potential at satelliteualé is a weighted sum of potentials at the

Earth’s surface. The factor between square bradetesmines how much of the signal at

8',A" is used for the potential 4t,8,4). Simons and Dahlen (2006) call this the ‘point

spreading factor’. For increasimghis factor is increasingly globally supported,iletior
Ir = & it becomes the delta function.

Since smoothing is an averaging operation in ttadiajpdomain, the influence of
mass changes far away from the point of interestegses. This is referred to by
Swenson and Wahr (2002) as ‘leakage’ and can teatttease or decrease of the signal
of interest. Smoothing and the point spreadingofadecrease the resolution, which leads
to ambiguity between a narrow but strong mass chamgl a smaller mass change that
exists over a wider area.

Item 3 receives the most attention in the litemtlrecause the change in signal
due to smoothing can be partly reversed. It isulgef keep in mind that resolution of
satellite gravity data is inherently limited, amét influence of a strong signal (e.g., show
fall in the Rocky mountains) will overprint a nelguring small signal (e.g., water level
variations in river basins adjacent to the Rockyultains), irrespective of whether
filtering is applied or not. In addition to thederde items, signals are also averaged
because the inter-satellite range results in a ngpaverage over the distance between the

satellites, approximately 200 km.
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Items i) and ii) are studied in more detail in gextions 5.1.1 and 5.1.2. Iltem
iii) also implicitly enters into those sections base the magnitude of the signal at a
certain location is computed after filtering.

4.5 Summary

In this thesis the GRACE derived monthly gravisidis provided by CSR Texas are used
in most cases, and in some cases those provid€aFZyPotsdam. Two techniques are
explained for obtaining a secular signal from tipdesical harmonic coefficients: (i)
linear estimation of a trend in the presence ofigoés signals, and (ii) principal
component analysis (PCA). Of those, the trend edion will be mainly used in the
results of Chapter 5, and PCA will be used in sech.4.1.2. Many filtering methods for
GRACE data appear in the literature. In this chaptee Gaussian filter (Wahr et al.,
1998), the non-isotropic Gaussian filter (Han et 2005) and the destriping filter of
Swenson and Wahr (2006) are introduced and thelybgilcompared in section 5.3.
Different methods exist to estimate measuremenorerfor GRACE. Because of
disadvantages for each of the methods, severalogetivere discussed in more detail in
this chapter: covariance propagation with a fulltnma and with calibrated standard
deviations only, and residuals after estimatingesad, annual and semi-annual period

simultaneously. These methods will be comparecaticn 5.2.
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Chapter Five: GRACE-derived gravity rate for GIA studies - Resuls

The aim of this chapter is to study the uncertaintthe GRACE data, and to process the
GRACE data for comparisons with GIA models. A cleoicas made to focus on analysis
in the spatial domain, for the Laurentide glaciationly. Some previous studies
performed a global inversion of GRACE data. Formepke, the simulation study of
Velicogna and Wahr (2002) showed that retrievdbafer mantle viscosity to within 30-
40% was possible. However, this could be too ogtimibecause measurement errors in
GRACE turned out to be larger than expected (Walal.e2006). Recently, Barletta et
al. (2009) fitted localized mass sources to thailsecsignal in GRACE, and manually
remove the sources that were believed not to repteSIA, to arrive at a GIA-only
secular gravity. However, such a technique canseparate secular signals acting in the
same area. The technique is also affected by ttk@own ice history in places like
Antarctica and Greenland.

The first sections investigate the secular graratg of continental water storage,
present-day ice melt, and variations in open watel sea level changes. Following this,
the magnitude of measurement errors is computethéomethods introduced in section
4.3. Some of the filters presented in section 4&ecompared in terms of how much
they reduce noise and affect the GIA signal. Finall gravity rate and a geoid rate
pattern from GRACE are presented that can be ume@IA studies. This chapter mostly
follows the results in Van der Wal et al. (2008a)f an additional filter is investigated,

data and simulations are updated and lake levéti@rs are included herein.

5.1 Non-GIA processes

5.1.1Present-day ice melt

Rapid melting has been observed in areas in Al@B&misiea et al., 2005; Luthcke et al.,
2008) and Greenland (Velicogna and Wahr, 2006)a Imap of the GRACE-derived

secular gravity rate, the areas of ice melt ararbfleseparated from the GIA area.
However, the point spreading factor (see sectioh), daliasing and leakage due to
smoothing can lead to gravity rates in the GIA dtest are influenced by the ice mass
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loss outside this area, even though this can nefctlly be observed in the spatial
domain. To investigate this, present-day ice mdltlve simulated for the areas depicted
in Figure 5.1. An estimate from Lutchke et al. (BP®f 84 Gt/year ice mass loss is
assumed to occur in uniform melting in Alaska aévan der Wal, 2008b). The center of
the ice sheet is selected to be 60° N and 140°0m frisual inspection of the area in
Figure 1 of Tamisiea et al. (2005). The peak gyarate found with this simulation is -
2.1 pGallyear (filtering described as in sectidh¥), which is approximately the same as
the peak found in GRACE-derived secular gravitg @ter the same region.

For Greenland, estimates not based on GRACE dataawailable from, e.g.,
satellite altimetry, but they are hindered by pooverage near the coast where most of
the melting takes place and only give the geometgnge of the ice sheet, which does
not necessarily translate directly into mass lossahse of snow compaction. The
GRACE estimates for Greenland ice mass loss omttier hand still depend somewhat
on the technique used. The average of the estinfiaes Luthcke (154 Gt/year), who
used the mascon technique, and Velicogna (211 &dlyeho used spherical harmonics

and an averaging kernel, as reported in Witze (R08&ised here.

Figure 5.1: Area used for simulation of glacier mal Alaska and Greenland. Ice is
melting in the dark areas; inside the dark are@rn@enland it is accumulating (from: Van
der Wal et al., 2008).

Spherical harmonic analysis is performed up to eée@nd order 120. The gravity
rate after synthesis up to degree 60 is showngarEi5.2 after smoothing with a 400 km
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Gaussian filter. Small non-zero gravity rate extemdross the northern hemisphere.
Such long-wavelength signal likely does not chatige gravity rate pattern in the
Hudson Bay area much, but it could be argued tieide melt should be removed from
the GRACE data. However, the hydrology models dised in the next section contain
negative secular signal over Alaska and removagjlatier melt on top of removing
hydrology distorts the gravity rate pattern ovee tBIA area as judged by visual
inspection. Thus it is decided to not remove glaoreelt simulations from the final
gravity rate which is used in comparisons with Ghadels. The glacier melt simulations
are used to find the pixels where the GIA signaiisch stronger than the glacier melt

signal in section 5.3.
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Figure 5.2: Gravity rate from ice melt simulations Alaska and Greenland after
smoothing with a 400 km halfwidth Gaussian filter.

5.1.2Continental water storage variations

Water storage in the form of liquid water and snasies mostly according to a seasonal
cycle, but droughts or heavy rain in one or sewggals can result in inter-annual
changes in water storage. In fact, areas in tlegiortof Canada and the U.S. are one of
the few regions in the world singled out in Figéref Dol et al. (2003) as having large
inter-annual variations. Such variations when mesabsby GRACE can affect the
estimated secular trend interpreted to be GIA. duack of measurements of water
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storage changes on a continental scale, a-priinration will have to come from
global or continental scale hydrology models. Fglobal hydrology models that are
available to the scientific community are investeghin this thesis. They are discussed
briefly below, and some of their characteristios summarized in
Table 5.1.

CPC

The CPC model of Fan and van den Dool (2004) Usesd-called ‘leaky bucket’ model:
ground is modeled as a bucket which can hold aiceamount of water (76 cm) until it
overflows. This depth and four other empirical paeters are tuned to streams in
Oklahoma. Input for the model are monthly globaqgppitation data from the Climate
Prediction Center (CPC) and the CDAS reanalysi®wiperature data. Comparison with
in-situ data shows that the model can accuratglyesent inter-annual variability (Fan
and van den Dool, 2004). However, snow that liestlm® ground is not explicitly
accounted for in the model, which could lead taypure removal of snow in the model.

LaD

The Land Dynamics model of Milly and Shmakin (20@&jes input from near-surface
state of the atmosphere and radiation fluxes frioenlternational Satellite Land Surface
Climatology Project on a globaP ¥ 1° grid with 6-hour temporal resolution. The land
surface is characterized by eight parameters whérhain constant in time. Water
balance and energy equations are solved to conquifrit in the form of snow, root-

zone and groundwater. In comparisons with dischabgervations, the model is found to
explain 67% of the variance of annual runoff ratioomalies. Here, the LadWorld-
Gascoyne version, which is the latest one availablesed up to July 2007.

GLDAS

The Global Land Data Assimilation System (GLDAS)Rxddell et al. (2004) uses data
from multiple sources in a data assimilation prazed Compared to the other models,
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surface parameters such as vegetation classificat® allowed to vary in time and are
derived from higher resolution datasets. MODIS IBt&edata is used to correct snow
cover in grid cells. Output is provided at: [ftpgdisc.gsfc.nasa.gov/data/s4pa/
GLDAS/GLDAS_NOAH10_M/2007] as soil moisture in kdfiior four layers and snow.
Here, the version with the Noah 2.7 land surfacel@h¢Chen et al., 1996) is used. Berg
et al. (2005) found good correlation between theleh@nd observations in lllinois and

lowa after a seasonal cycle was removed.

WGHM

The WaterGAP Global Hydrology Model (WGHM) of D@t al. (2003) differs from
previous models in two aspects that are not indudeTable 5.1: (i) wetlands and lakes
are part of the model and human water consumptsoidluded; (i) Compared to
GLDAS, temporal resolution of the computationsawér (1 day vs. 6 hours) and spatial

data is of lower resolution.

Table 5.1:Comparison of characteristics of versions of sotoba) hydrology models.

CPC LaD GLDAS WGHM
input CPC, ISLSCP ECMWEF, Climatic
CDAS NCAR,NOAA, Research
Reanalysis AGRMET Unit
land surface 5 8 parameters NOAH IMAGE 2.1
parameters
wetlands/lakes no no no yes
temporal daily 6 hours 6 houts 1 day
resolution
snow on ground no yes yes yes
soil layers 1 layer snow pack snow pack snow
rootzone 4 layers 1 layer
groundwater canopy canopy
resolution 1°x 1° 1°x 1° 1°x 1° 0.5x0.5
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Hydrology models do not give meaningful results rogpermanently glaciated
grid cells, because glaciers simulations are noluded. To mitigate the influence of
glacier cell in the hydrology model grids, the géaadatabase of the National Snow and
Ice Data Center (NSIDC, 1999) was used to locatgecdocations of glaciers that have
an area greater than 25 krRixels that are within 0°0f the centers of these glaciers, see

Figure 5.3, were masked out. Greenland was magkiegintirely.
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Figure 5.3: Locations of pixels within 0.7 degrdetee center locations of glaciers with

area larger than 25 Km

If hydrology models are to be used to ‘correct’ GRAdata for GIA studies, the
guestion is how well hydrology model output simatatarge scale interannual variations,
considering that GRACE was meant to improve prégigemse estimates. Regarding this
guestion, the following defects in hydrology modeds be identified:

1) Input forcing consists of fluxes (e.g., precipibatj river run-off) that can change
quickly over time. A small bias in any of thesex#s or insufficient temporal
sampling of the input forcing can result in a latgas or random error in the
interannual variation (Shmakin et al., 2002). Hoerewevapotransporation and
river run-off are negative feedback terms, themf@n error in these quantities

can no cause a run-away bias in soil moisture.



75
2) Models are tuned, which “does not necessarily im@rahe dynamical
behaviour of the Global Hydrology Model” (Dol elt,a2003). In particular, soil
moisture is no longer consistent with (tuned) disgle. In many snow dominated
regions in large parts of Canada, run-off is tuaad also discharge is corrected
in WGHM, and as a result run-off is probably undéreated (D6l et al., 2003).

3) Input data area faulty. For example, snow fall nglerestimated by precipitation
gauges (Doll et al., 2003).

4) Modeling can be inadequate. An example is thatr nvater which is diverted to
other basins is not included in WGHM (Dadll et a003).

5) Due to the sampling of GRACE (when the satelliteally pass over the area)
the satellites can sense continental water stonduyeh is different from a simple
average of daily or sub-daily output. According ttan et al. (2004), this

systematic error can be as large as the GRACE mezasat error.

This list does not exactly give confidence that thedel output can be of any use.
However, defects can be minor on the coarse terhpadhaspatial resolution of monthly

gravity fields. For example, Van der Wal et al. @88) found that interannual changes
between GRACE and three models agree quite wglurgi5.4 and Figure 5.5 are figures
taken from that paper. Figure 5.4 shows the secwritlird principal component, which

show a positive water storage signal southwestuafddn Bay. Figure 5.5 shows that the
signal is a three year increase in water storagdirgg in the summer of 2003. The
increase can be explained by abnormal dryness faritie summer of 2003. The increase
in water storage is then the return to a normaksé soil moisture content (M. Rodell,

pers. comm., 2007). Some of the signal in GRACI dafFigure 5.4 could also be due to

errors in the GIA model, e.g., the decrease webtunfson Bay.



76

240° 260° 240° 260°

Figure 5.4: Spatial pattern of the second princgmathponent for GRACE (after removal
of ICE-5G/VM2 GIA model) and the hydrology model&[BAS and CPC, and the third
principal component for LaD, for the period Janu2093 - September 2006. The spatial
pattern is to be multiplied with the time series kigure 5.5 to get spatiotemporal

patterns.

Finally, to asses the performance of the hydrologygels on the scale of a mid-
size river basin, the Nelson River basin (showrrigure 5.6a in black) is selected for
comparison between the hydrology models and GRA@&del output in the form of
spherical harmonic coefficients and GRACE data wetered with a destriping filter
applied at degree and order 5 and a Gaussianwiltar400 km halfwidth. Thus obtained
water levels are averaged over the basin in theasmkbmain and plotted in Figure 5.7.
The analysis was performed in the frame of Valeale{2007) and extended here to

include recent data.
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Figure 5.5:Time series corresponding to principal componemfsigure 5.4 Increase in water
storage starting in the summer of 2003 is visilleall hydrology models as well as in the
GRACE data.

GRACE is corrected for GIA with the ICE-5G VM2 maddPeltier, 2004) which
seems to overcorrect as there is a small positer&ltin the hydrology models which is
absent in the GIA-corrected GRACE results. It cansben that the hydrology models
GLDAS, WGHM and LaD compare well with GRACE, but CPerforms worse. Root
mean square differences in Table 5.2 confirm tBIkDAS performs best in this area,
which supports the use of this model as a corredioo the continental water storage
changes in GRACE in section 5.4. All models areegalty one or two months ahead of
GRACE, which is also observed elsewhere (e.g., @hah, 2005a).
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Figure 5.6: Nelson River basin in black (from: \(akt al., 2007).
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Figure 5.7: Basin averaged water levels for thesbielRiver basin for GRACE and four

hydrology models, after destriping filtering andaathing with a 400 km Gaussian filter.

Table 5.2: Root mean square difference betweenolygly model output and GRACE

for the basin averages shown in Figure 5.7.

GLDAS WGHM LaD CPC
RMS [mm] 148 219 175 245
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5.1.3Lake level variations

Variations in large lakes such as the Great Lakpsesent sizable mass variations that
could distort the estimated GlA-induced secularvigyarate from GRACE. Fleitout
(2007) suggested that declining lake levels in $akéinnipeg and Winnipegosis from
2003 to 2005 had a significant influence on thevigyarate from GRACE, but did not
guantify this in the abstract. Observations of wdéwel variations in large lakes in
North-America are available from tide gauges artélls® altimetry thus an attempt is
made here to quantify the effect of water levelatesns on the GRACE-derived gravity
rate. First, the different signals in the tide gesigneasurement are discussed, and then
the gravity rates.

Differences in water level between water levelseobsd simultaneously by tide
gauges on one lake are small compared to thert@as variation of the lake as a whole,
therefore it is not necessary to use satellitanaitiy data to obtain water levels away
from the coast (Van der Wal et al., 2006). Tideggmumeasure the combined effect of
water level changes that result from GIA, thernféas, and in- and out-flow into the
basin:

Sie = St St Sows (5.1)
where $denotes sea level rate, and subscripts denote Béknal effects, and in- and
out-flow of the lake, respectively. The in- and -floiv are assumed to also include
precipitation and evaporation. Note that for thenfolation of this equation it is
irrelevant whether the in- and outflow is caused rmtural variations or artificial
regulation of the water level.

The sea level change caused by GIA at a tide gaagebe decomposed into a
change in the solid Earth displaceménand a change in the geoid heidfit (Mitrovica
and Peltier, 1991):

Soiate = NTG_ e (5.2)
f,c can be obtained from GPS stations collocated witle gauges. The mass

conservation term is neglected, which is allowadHie computation of present-day rates.

Because the GPS heights refer to a fixed vertiatdrd, the rise of the datum at the tide



80
gauge, N;, should also be taken into accouht,,can be estimated from terrestrial
data (Rangelova, 2007).

Gravity changes measured by GRACE over the lake mm@ardecomposed as
follows:
Jorace = omt 9 now™ Gsainy (5.3)
Because we want to knog,,, 9g,,and 9., need to be removed from the GRACE
data. g, IS neglected in the following because of lack ofadabut g, can be
quantified by isolatings,,, in equation (5.1) and converting it to gravity cba by
equation (4.8). Following this approach, equati¢n$) and (5.2) are combined to yield
Stow = 86~ Nig = Tre) = S (5.4)
after which equation (4.8) can be applied to ggg, , assumings,,,to be constant over

the lake area. GIA models predict water in- andflmyt due to solid Earth displacement

and geoid height changé,; in equation (5.4) represents the extra water énldke by a

change in height of the lake bottomN,  represents the inflow or outflow that

accompanies a change in the equipotential. Sintle these terms are included in the
most detailed treatment of the sea level equatidiGIA models, they are rightfully
included in (5.4). However, the uplift rates in Beeat Lakes are within +5 mm/year and
-5 mm/year (Braun et al., 2008, Figure 2) and uptdtes at Lakes Winnipeg,
Winnipegosis and Great Slave Lake are in the asfiBrmm/year (not shown). The effect

of a layer of water of 5 mm/year is negligible tbe surface of the lakes considered here,

except for the Hudson Bay. Thus, the tenipsand N, are neglected.
In the following, §,, will be computed from surface temperature dataew®if the

effect should be included or can be neglected. Saerand Wahr (2007) used surface
temperature data for the lake and an averaged qixiepth to calculate thermal
expansion using a constant thermal expansion fattowever, such approximation is
likely not valid for the Great Lakes. From Figuré5it is clear that the mixing depth,
defined as the depth where a high temperature-dgpttient occurs, varies considerably

from 10m to 35 m. Moreover, the temperature vafiem just above 0 to close to 25
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degrees. Over such a range, the thermal expanseifiaient is not constant, as can be
seen in Figure 5.9. Thus, a different approach @dign, 1975) will be used herein to
compute the increase or decrease in water leved foumber of large lakes in North

America.

CENTRAL BASIN (T°C) EASTERN BASIN (T°C)
0 5 10 15 20 25 0 5 10 15 20 25
U 1 1 1 i I D 1 1 1 L ]
1 2 L rz !3
5T B| 54 B| [
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i 15- 15 /
(=]
20- / 20-
25- E 25+ /
z
SURVEY PERIODS (1979) E
35+
1 APRIL 24 - 26
2 MAY 15 - 18 40+
3 JUNE 10 - 14
45
4 JuLY 3 -6
5 JuULY 23 - 27 50+
& AUGUST 22 - 26
7 SEPTEMBER 24 - 28 551
8 OCTOBER 15 - 18 &0

Figure 5.8 (fig. 7 of Schertzer et al., 1987): Temgture profiles at various dates in 1979,
in the eastern and central part of Lake Erie.
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Figure 5.9: Thermal expansion for water as a famctf temperature, derivative of

equation (2) in Meredith (1975) with respect to pemature.

5.1.3.1Great Lakes

The temperature profiles compiled by Meredith ()988em to be the most recent
temperature profiles that area available for althef Great Lakes. The profiles are made
dimensionless by dividing the temperature at eagterl by the surface temperature.
‘New’ temperature profiles are computed by multipty the dimensionless profile with
the actual measured surface temperature. Measuréacs temperatures are obtained
from the Great Lakes Surface Environmental Analf&8&SEA, 2008). Temperature
values at the beginning and middle of the month abained by averaging over one
month of daily values. From the temperatures atlibginning of the month, a new
volume is computed for each layer by means of thegon for water thermal expansion
(Meredith 1975):

V* =V, (1-6.427010°T+ 8.5058) 10 T°~ 6.79 10T°), (5.5)

whereV * is the new volumeY,is the reference volume, afidis the temperature of the

volume of water in °C. The change in volume is catag between the first days of two
consecutive months. From these changes, cumulatikene changes are formed over

the time period January 2002 - December 2007.fduad that the seasonal cycle has an
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amplitude of up to 2.5 ki but the trend is only 0.0044 Rfyear (0.075 mm/year
water level change).

The water level changes for the Great Lakes condpui¢h equation (5.4) are
added in the space domain on a 0.1 x 0.1 degrdeagd converted to gravity rates. The
results are shown in Figure 5.10a. Thermal chaitgesater level, when converted to
mass changes by multiplying with the density ofevatnd converted to gravity rates as
described above, are shown to be negligible in réigul0b. Thus, most of the water
level changes recorded by the tide gauges in teatGrakes represent real mass changes
(and uplift and geoid rates which were neglectedvap The negative trend in Figure
5.10 mostly results from decrease in water levelake Superior from 2005 onwards.
Mass changes in the Great Lakes water levels shtvend which is important for GIA

studies due to the magnitude (maximum of 0.2 p@allyand the fact that they are on

the edge of the former ice sheet.

f ' ¥ ; ; ¥ ] pGallyear ! " ; T ] ] ] pGalfyear
-0.20 -0.16 012 -0.08 -0.04 0.00 0.04 -0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04

Figure 5.10: (a) Estimated gravity rate from wdésmel change in the Great Lakes, from
January 2002 — November 2007 after filtering with0® km halfwidth Gaussian filter.
All volume change is assumed to be caused by miagsges. (b) Effect of thermal

volume change converted to equivalent mass e#gpressed ipnGal/year.

5.1.3.2Lakes Winnipeg, Great Bear Lake and Great Slaves Lak

Water levels for Lake Winnipeg are available fromnvEEonment Canada

(http://www.wsc.ec.gc.ca/hydat/H20/index_e.cfm?craman_e.cfm). Monthly water

levels for all seven stations on Lake Winnipeg @areraged to obtain one value for the
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lake (the maximum standard deviation is 12 cm). ffeed amounts to 7.5 mm water
level change per year over a period from Januaf? 20 December 2007. The effect of
GIA height changes in equation (5.1) is not tak&o account. A plot of the gravity rate
from water level variations in Lake Winnipeg is sho in Figure 5.11. Lake
Winnipegosis is not considered here, as its areaesfifth of Lake Winnipeg’s.

The Great Slave Lake has a considerable area: @%@6) but a small trend in
water level: 0.136 kityear (0.04 mm/year water level change) from Jan@@02 to
December 2007 and is therefore neglected. Thegadee in the Great Bear Lake at the
Hornby Bay station shows a trend of 0.64°krear (1.7 cm/year). The maximum water
temperature as measured in 1965 was 5.22 °C (aagiled by International Lake

Environment Committee, seeéehttp://www.ilec.or.jp/database/nam/nam-30.htnand

references therein), thus thermal expansion idikelly to play a major role. The trend in
gravity turns out to be 0.015 pGallyear which is tmall to consider. Thus from the
other lakes only Lake Winnipeg has a trend largaugh to consider.

WGHM models lakes by allowing precipitation and gewation from lake grid
cells, as well as in and out flow through the riveating network (Dr. Kristina Fiedler,
pers. comm., 2008). GLDAS and CPC do not model oypster variations. Therefore, the
water level variations from the Great Lakes andd_#kinnipeg computed in the previous
sections are incorporated into the spatial mapgadér height variations of those models.

5.1.3.3Hudson Bay

Hudson Bay is, by shoreline, the largest bay inwheld but presently counts
only one working tide gauge at Churchill. Monthlyeam water levels at this tide gauge
are provided by the Marine Environmental Data Ssrvup to centimetre precision
(http://www.meds-sdmm.dfo-
mpo.gc.ca/meds/Databases/TWL/Products/Monthly Mdahsr). The one tide gauge

at Churchill can not be expected to describe theeewater surface of the Hudson Bay
as, for example, slow (5 cm/s) circulation patteans in place that transport discharge
from James Bay to western Hudson Bay (Gough et28D5). Preliminary analysis of

satellite altimetry data in Hudson Bay was donetfis thesis using altimetry data from

the Jason satellite mission with standard corrastiout the obtained trends were entirely
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dependent on the type of interpolation and the tpaeod over which the data were
average. Also, temperature profile studies in HadBay are not available and further
uncertainty is added by a reported decrease imaige from North American rivers into
Hudson Bay which leads to increasing salinity ardde increase in overall mass (Déry
et al., 2005).

In view of the above mentioned uncertainties aifielcts, it is necessary to assume
that the tide gauge at Churchill represents thigeemater surface of Hudson Bay. Fitting
a trend through the tide gauges times series ipithgence of an annual cycle yields a 0.2
mm/year sea level drop for the period August 20QRik 2007. However, the estimated
trend in the tide gauges data in Churchill depegrdsitly on the time period over which
the trend is estimated (not shown), even when analrcycle is jointly estimated.

When the 11.4 mm/year land uplift of Churchill (Wet al., 2006) is subtracted
from the measured 0.2 mm/year sea level drop aocuprb equation (5.2), an 11.2
mm/year sea level rise remains, which seems aralisiteally high number. When the
long-term tide gauge estimate of 9.65 mml/year Jilscassumed instead, sea level rise of
1.75 mmlyear is found, which is close to the tidetge sole estimate for global sea level
rise (Miller and Douglas, 2006). The effect in terof gravity rate of 1.75 mm/year sea
level rise in Hudson Bay is shown in Figure 5.1The maximum value is less than 3%
of the maximum gravity rate estimated from GRACEhe same region (Figure 5.28),
which agrees with prior findings (Dickey et al. 9I® p. 55).

In the following, this estimate will be used to regent mass changes from sea
level changes in Hudson Bay. The trend estimatenh fthe Churchill tide gauge from
August 2002 — October 2008 (8.0 mm/year) is assumée the maximum value, so that
the difference with respect to the long-term vadti®Vvolf et al. (2006) (9.65 mm/year) is

a measure for the error (1.65 mm/year).
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Figure 5.11: (a) Gravity rate estimated in Lake Wfeg (Jan. 2002- Dec. 2007) based
on tide gauge data, after smoothing with a 400 lkangSian filter. (b) Same but for water
level changes in Hudson Bay from a constant trdrid#b mm/year water level rise (Jan.
2002- Dec. 2007).

5.2 Measurement errors

The previous section investigated the secular gaedulting from non-GIA signals in
North America. This section aims to shows the mtagie of measurement errors in
GRACE data, computed with the methods presenteskation 4.3. Of interest is the
method that gives the largest and most conservating estimates. Furthermore, it will
be studied whether the fully-populated GRACE cace matrix used in this research is
representative of the stripe errors. The filtert isaused in this section is the destriping

filter of Swenson and Wahr (2006), the reason fbictv is explained in section 5.3.

5.2.1Full covariance matrix

Full variance-covariance matrices (VCM) were kingisovided for the CSR release 4
solutions by Dr. Byron Tapley and Dr. John Riesu (2008, p. 140) computed errors
after destriping by rescaling the SH coefficientsdd on the power before and after
destriping. Here the matrix with filter coefficienfM) will be computed for error
propagation of the full VCM. Swenson and Wahr (20@Guation 4 gives the filter
coefficients that make up!, however implementation is easier to understanaguthe

schematic drawings in Figure 5.12. The coeffictertbe filtered is of order 20 and degree
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24. A window of 5 degrees is formed (black dotsetbgr with red dot) of coefficients
of the same order and the same parity degree. ynpoilial fit is produced (for example
with the functioncoeffunin MATLAB) which gives the value denoted by theiblarrow,
as a function of the value of the coefficients. Tgmynomial coefficients are to be
entered in the 5 elements in the matkik see the drawing in Figure 5.13. The 5
coefficients are multiplied with the 5 elementshe vectorK, to give the value of the

coefficient obtained with the polynomial fit (blaerow in Figure 5.12).

—p Value of original coefficient

—p Value of coefficient obtained
with polynomial fit

> value of filtered coefficient

L o—o—¢' o=

20 22 24 26 28 degree

Figure 5.12: Schematic drawing of the principle tbé Swenson and Wahr (2006)

destriping filter for a fictitious coefficient ofrder 20 and degree 24.

Submatrix of Msmooth Subvector of Kin,

EEEEN
even

B

Figure 5.13: Schematic drawing of submatrix of fiier matrix M for order 20 and

subvector of the element vector.
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Because the filtered coefficient (red arrow) is thginal coefficient (black
arrow) minus the smoothed coefficient (blue arrothi destriping filter matrix can be
obtained by
M =1-M_ . (5.6)

whereM smoothCONtains the polynomial coefficients.

The effect of the destriping filter on the standdeViations is shown in Figure
5.14. It is clear that the destriping filter doest 8imply downweight coefficients with
higher degree. The peak at degree 15 (likely calisedtripes) is greatly reduced. A
slight jump can be seen at degree 50. This is Isecthe coefficients are not filtered for
orders higher than 52 because a minimum windowtteafy5 coefficients is necessary to

be able to reasonably fit a polynomial.

x 10

—before filtering
- - -after filtering

degree variance [-]
|_\
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degree
Figure 5.14: Degree variances, computed by equéi®), of the monthly gravity field

for December 2006 before and after destripingrfilge

Point variances in the spatial domain are compuredn the propagated
covariance matrix, according to equation (4.24)di@g of this equation was based on
MATLAB code of Balaji Devaraju, from the Universitf Stuttgart. According to Wahr
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et al. (2006), the inclusion of off-diagonal elerteedoes not have much effect on the
RMS of the mass error for GRACE gravity fields. trig 5.15, which represents the
gravity rate measurement error computed with a daldl diagonal VC matrix, mostly
confirms this: there is only slightly more variation the longitudinal direction with
errors being slightly smaller in Figure 5.15b. he tfollowing, the VCM off-diagonal
terms will be included; the extra computation tilm@ot significant.

Omitted in the comparison are the standard dewviatfor theC,, coefficient. The
standard deviations for degree 2 coefficients arerder of magnitude higher than other
coefficients so that a plot of the errors in thategd domain is dominated by th&,
pattern. Standard deviation from SLR-derived valiseprovided and can be used here,
but the correlation with other coefficients is uolkm, therefore degree 2 error

coefficients are left out in the comparison.

Figure 5.15: Gravity rate measurement error [u@alfy for December 2006 computed

with (a) off-diagonal in the covariance matrix terzero (b) off-diagonal terms included.

5.2.2Comparison of methods for determination of measurem errors

The three methods are compared in terms of cumalakgree variances (see equation
(4.10) in Figure 5.16. Destriping filtering is ajga on all coefficients with degree and

order above 4. Interestingly, the full covariancatmx gives larger error estimates up to
degree 15, but calibrated standard deviations samyer error estimates for the complete

signal. This could be due to the fact that onlydbeariance matrix for December 2006 is
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used, while standard deviations are different fachemonth. Standard deviation is

adversely affected by the decreased spatial cogedagng the fall of 2004, when the
repeat period was small and the distance betwegened groundtracks large (Wagner et
al., 2006). The GRACE errors can be seen to bé betbw the cumulative degree
variance of the GIA model i3_8-60 (see section.Z[4)at means that the measurement
errors are not a limiting factor for extracting {B&A signal.

A comparison in the spatial domain is shown in Fegb.17. The full covariance
matrix shows more longitudinal variation (Figurd%h) and larger errors. Both increase
southwards, as a result of the decreasing grouwidtdensity. The residuals show
decreasing errors with latitude followed by an @age. The reason for this could be that
the destriping filter performs better at higheitlates above 45° (Swenson and Wabhr,
2006). The method of residuals produces a slighatiger error estimates in the studied

GlA-affected area and, therefore, this method exdus produce the final error estimate.
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Figure 5.16: Cumulative degree variances (see mquét.10)) for GIA model i3_8-60

and errors computed with residuals, calibrateddstech deviations and a full covariance
matrix.
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Figure 5.17: Measurement errors of the gravity fateuGal/year] computed with (a)

calibrated standard deviations and (b) residuals.

5.3 Filters Performance Comparison

The filter performance should be assessed basdédwmuch noise is removed and how
much signal is retained. Ideally, the filter shoutddt depend on any prior GIA
information. Steffen et al. (2008) investigated #féect of the Han (2005) filter, the
Swenson and Wahr (2006) filter, and the Gaussiter bn the estimated gravity rate in
Fennoscandia. Based on a visual comparison, tbhegluded that the Gaussian filter
gives a result that agrees best with the upliftgpatderived from GPS observations in
Fennoscandia.

North America does not have dense GPS observatidahe areas with the model
GIA peaks (2007). Therefore, comparisons with GR& dnay not lead to decisive
results. In this chapter, an attempt is made to,tlie first time, study the effect of
different filters on synthetic gravity rate datd, sehere the ratio of signal and noise is to
be maximized. The signal component is assumed thd&IA models i3_8-60 or i5_2-
60 of section (2.4). If no mention is made of thedel, model i3_8-60 is used. The noise
component is created using non-GIA signals repteseny the continental water storage
and glacier melting simulations summarized in Tab& The time period is August 2002
— July 2007. It is assumed that the conclusionshenfilters for a simulation over this
period remain valid when the time period is extehde

The signal to noise ratio (SNR) is computed as
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n

SNR= }z Yo, ) (5.7)
: 2
ni= \/( gWGHM,i - gGLDAS i)2 + (JQRACE\)

where O is the measurement errors computed according tihade3 (equation

(4.25) in section 4.3.3)g is the estimated secular gravity rate, and the number of

points in the study area. The pixels in the colduesa of Figure 5.18 are used here.

The purpose of the SNR is to provide a single &adr that takes into account
both the removal of the signal and the reductionas$e by the filter. The SNR depends
on the input models for GIA and continental waterage. Some results will be shown
for alternative models (simulation 2 in Table 578). a specific filter, the parameters that
maximize the SNR provide the best filter performandowever, because measurement
errors are small compared to the signal (see Fidgudé), a small reduction in
measurement errors can greatly increase the SN&efidne, the SNR is used only as a
first step, to see if filter performance can be mmazed by adjusting the parameters of a
specific filter. In the next step, the reductiorsignal amplitude is investigated.

Unlike Tamisiea et al. (2007) and Paulson et @0{), the uncertainty in the
hydrology models is taken into account in this iheSince the accuracy of the hydrology
model is not provided with the model output, thé&edence between two models in
equation (5.7) is one way to infer the uncertaiotyhe hydrology correction. Note that
this uncertainty also takes into account the diifiee between open water variations
modeled in WGHM and implemented in GLDAS and LalBading to section 5.1.3.

Figure 5.18 shows the gravity rate in pixels whéne gravity rate mostly
represents GIA. This is decided as follows. Theukgcgravity rate from GRACE was
determined for the period August 2002 — July 200th whe hydrology model GLDAS
removed. Filtering was performed as described ati@e 5 of that paper. Pixels where
the gravity rate from Alaska and Greenland ice mmgltis larger than 25% of the
GRACE-derived gravity rate, or where the gravitierss smaller than 0.5 pGall/year, are

set to zero, leaving 554 pixels in the colouredare
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Table 5.3: Synthetic gravity models used to inyggg# filter performance.

sim 1 sim 2 errors 1 errors2
Hydrology WGHM GLDAS/LaD/CPC
Lake levels included based on tide gauges
Alaska 84 Gt 102 Gt \/(siml— simz)z \/(siml— simz)2
Greenland 183 Gt 211 Gt
Hudson Bay | 1.75 3.4 mm/year
mm/year
Measurement Residuals calibrated standard
errors deviations

! whenever LaD is used, the time period is Aug 2002ly 2007.

— 7 " I ] nGalia
0.4 0.6 0.8 1.0 1.2 1.4

Figure 5.18: Figure 7a from Van der Wal et al. @8)Q see description in text.

5.3.1Gaussian filter

Gaussian smoothing has become a standard agaiit$t mibre sophisticated methods of
filtering are compared. Some filtering methodsl séhuire smoothing in a second step,
such as the destriping filter. Paulson (2006); Taeai et al. (2007), and Paulson et al.
(2007b) also applied Gaussian filtering after dpstg to GRACE data to extract the
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GIA signal over North America but they did not istigate the effect of different
halfwidths in a systematic way.
The effect of the Gaussian filter on the SNR inagpn (5.7) is shown in Figure
5.19. SNR increases slightly for halfwidths betwéghand 200 km; then it increases
sharply until 1000 km when the SNR reaches a maximGloser inspection of the
magnitude of the terms in equation (5.7) revealt thetween 200 and 900 km the

increase in SNR results from a decrease in theréifice in the hydrology models.
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Figure 5.19: Simulated signal-to-noise ratio asiracfion of Gaussian smoothing radius
for different GIA models: (a) ICE-3G with a loweramtle viscosity of 6 x 10 Pas; (b)
ICE-5G with a lower mantle viscosity of 6 x4 Pas.

As smoothing increases beyond 1000 km halfwidthRSMcreases. This can be
explained by the large power that GIA displayshie low degrees. When the halfwidth is
increased so that even the low degrees are smqdbiee8NR is reduced while the errors
are already small. The maximum SNR is obtaine&fd200 km halfwidth for the models
with the ICE-3G history or 1000 km for the ICE-5Gstbry. Figure 5.20 shows the
maximum gravity rate for GIA models with varyingpgy mantle viscosity. It is clear
that for a 1000 km halfwidth the gravity rates greatly reduced. Thus, at maximum

SNR the data can not distinguish well between tiarnia of different GIA models. The
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SNR and reduction in gravity rate are thereforesusticient to determine the optimal
Gaussian filter halfwidth.

It can be expected that different amounts of smiogthresult in different
sensitivity of the model with respect to ice shieistory and mantle viscosity. Therefore,
for simulations in section 7.4.3 and misfit comparis in section 7.5.2, the Gaussian
filter halfwidth is varied. When only one gravitgte is discussed, 400 km Gaussian filter
halfwidth is used as is common in the literaturgy.(&teffen et al., 2008, and Swenson
and Wahr, 2008) and because it gives a strip-fraeity rate pattern while still showing

two domes.

a) ICE-3G v, = 6 x 10*! Pas b) ICE-5G v, = 6 10%! Pas
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Figure 5.20: Maximum gravity rate as a functiontled Gaussian smoothing radius for
different GIA models: (a) ICE-3G with a lower mantliscosity of 6 x 18 Pas; (b) ICE-
5G with a lower mantle viscosity of 6 x 2(Pas.

5.3.2Non-isotropic Gaussian filter

MATLAB code to compute the filter weights for thiétdr of Han et al. (2005) from Dr.
Holger Steffen was used. The non-isotropic Gaushliien of Han et a. (2005) contains
three filter parameters (see equation (4.21))a (ipdius for zonal componentsd), (ii)
the ordermy for which the second radius holds, and (iii) tleeand filter radiusrgw).

Filter radii in north-south and east-west directame varied between 100 and 2000 km
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and the SNR is plotted in Figure 5.19 for two diéiet choices ofn, and GIA model
i3 _8-60.m; = 15 is preferred by Han et al. (2005). The cha@tey is seen to have a
small influence on the pattern of the maximum sigonaoise: SNR generally reduces for
an increase in m The filter halfwidths where SNR is maximum aré4hd 1800 km for
rns and rgyw respectively. Interestingly, the 400 km is whatcemmonly used as
halfwidth for the Gaussian filter (see e.g. Stefe&gral., 2008, and Swenson and Wabhr,
2008).

a)m1:15 b)m =20
20007 20007
12
1500+ 10 __ 15001
IS
=,
8 2
1000¢ < 1000¢
=]
6 2
c
<
500F 4 500¢
2
0 : ‘ : ‘ 0
0 500 1000 1500 2000 0 1500 2000
halfwidth EW [km] haIfW|dth EW [km]

Figure 5.21: SNR of Han et al. (2005) filter vslfivadths in north-south and east-west
direction., for (a)m of equation (4.21) equal to 15, and )= 20.

The effect of the filtering on the maximum gravigte is shown in Figure 5.22
for the two different GIA models i3_8-60 and i5_Q-@\s expected the maximum gravity
rate decreases with increasing halfwidth. Howetres,figure shows that the decrease is
sharper with increased smoothing in north-souttedtion than in east-west direction.
This is probably due to the shape of the GIA upb#ittern which is more east-west
oriented. Thus, a larger smoothing radius in nedhth direction includes more grid cells
with zero or small gravity rate values. In Figt@2Db, it can be seen that the model with
ICE-5G shows that the maximum is reduced more witheasing smoothing radius in
east-west direction, compared to ICE-3G. Thiskislli due to the particular shape of the

pattern; the conclusion might not hold true fonadicosity profiles of ICE-5G.
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5.3.3Destriping filter

Here a modification is investigated for the choiake parameters for the ‘original’
destriping filter of Swenson and Wahr (2006). Thedew size and the order of the
polynomial can be adjusted as in Chambers (200@w Nnh this research is the
investigation of the effect of the spherical harmodegree and order above which
coefficients are filtered with the destriping filtecut-off degree and cut-off order) on the
SNR and on the maximum gravity rate. Tamisiea.g28l07) specified which degree and
order they used as cut-off but did not show a t@ffleSNR was used by Van der Wal
(2008a) who found a maximum SNR for degree 19 anéro3. The analysis therein is
repeated here with the datasets described in thequs sections.

a) ICE-3G 8-60 b) ICE-5G 2-60
1.8 1.8
1.6 1.6
1.4 1.4
1.2 1.2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
200
0.2 0.2
500 1000 1500 2000 500 1000 1500 2000
halfwidth EW [km] halfwidth EW [km]

Figure 5.22: Maximum gravity rate of two GIA modélgered with the Han et al. (2005)
filter. (a) 1I3_8-60, (b) i5_2-60.

Figure 5.23 shows that the SNR for the same two @lddels as used in the
previous sections peaks at degree 10 and ordeo®ever, at those cut-offs, the part of
the GIA signal that is filtered out is quite larges can be seen in Figure 5.24, which
shows the RMS difference between two models befndeafter filtering. It is noteworthy

that the RMS does not decrease monotonically wharoff degree and order are
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increased, i.e., filtering more coefficients of ttmodel can result in a smaller RMS.
This can be the result of the location of the ssithat are artificially induced by the filter
with respect to the 554 pixels.

To ensure that the GIA signal is not too much aéfédy the destriping filter, it is
required that the RMS difference be not too lafgm. visual aid a black box is drawn in
both Figure 5.23 and Figure 5.24, which roughlytaors the orders for which RMS is up
to 0.05 pGallyear for the ICE-3G 8-6 model. The H&E 2-6 model has smaller

differences.

a) i3-8-60 SNR b) i5-2-60 SNR
25 25 9
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Figure 5.23: SNR ratio for two GIA models, i3_8-80d i5 2-60 for varying cut-off

degree and cut-off order.

To investigate the sensitivity with respect to plagticular choices in the simulation, the
order of the polynomial used to fit the correlatlmetween coefficients (see Figure 5.12)
was increased to 3 (results not shown). As expetiieddestriping filter affects the signal
slightly more. The % order polynomial provides higher SNR which makesbetter
choice. The SNR is plotted once more in Figure 52% now with LaD and CPC models
instead of GLDAS. The high SNR to the right of tiiack box is shifted in comparison
with Figure 5.23, which indicates that these higlues are due to the choice of

hydrology models.
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Figure 5.24: RMS difference between two GIA modatfore and after destriping: (a)

i38-60: (b) i5_2-60.
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Figure 5.25: SNR vs cut-off degree and order indéstriping filter. (a) LaD hydrology
model; (b) CPC hydrology model in simulation 2 (3edble 5.3).

Figure 5.26 plots the SNR with measurement erdoesanly error sources. We

can now look for a combination of cut-off paramstésr which RMS is low in Figure
5.24, and SNR is high in Figure 5.23 and Figuré 5Qut-off order 8 and cut-off degree

21 seems to fulfill these requirements and is deshatith a blue circle in all these

figures. Visual inspection of the effect of destip filter with these parameters on the
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model, as well as the effect on the estimated tfemwh GRACE data shows this
indeed to be a good compromise.

The sharp changes in RMS with increasing cut-offieorseem odd for a
phenomenon as smooth as GIA. Inspecting the ordeance, computed with equation
(4.11), in Figure 5.26b confirms the presence odlsjumps in the orders 6, 8 and 10. A
cut-off at degree 8 or below results in significamddification of the model, as shown by
the green dashed line. A cut-off at order 8 andr@®@1 results in minor decay of the
signal at orders 10 and 15 (red dotted line).

a) SNR with meas. error only 5X 10°° | b) Order Yanances
17 . —ICE-3G 8-6
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Figure 5.26 (a): SNR with measurement errors offly.Order variance for GIA models
before destriping filtering is applied (black solide), after destriping filtering is applied
with cut-off degree 4 and order 2 (green dashes) liand cut-off degree 21 and order 8
(red dotted line).

5.3.4Summary

Performance of the Gaussian filter (Wahr et al98)9non-isotropic Gaussian filter (Han
et al., 2005) and Swenson and Wahr (2006) filtersampared for two different GIA
models and three different combinations of hydrglogodels. New in this research is
that the filters are compared in terms of perforoeaparameters such as the SNR and
RMS in signal reduction. It is shown that the maxmSNR for the first two filters is
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reached for large smoothing radii, which is notiddde because the maximum
gravity rate is greatly reduced in that case. StheeSwenson and Wahr (2006) filter acts
mostly to remove stripes, the effect of the filber GIA models is limited and this effect
does not monotonically increase with filtering mooefficients (Figure 5.23).

Thus, it is possible to find a cut-off degree amdeo where the SNR is high and
the maximum gravity rate is not too much affectBae compromise was found to be cut-
off degree 21 and cut-off order 8 based on visnapeéction of plots of SNR, RMS
reduction and order variance. The RMS reduction tloese parameters is 0.028
pGallyear. The fact that such a compromise is ptessnakes the destriping filter
suitable for extracting GIA signal from GRACE. Aftelestriping filtering, isotropic
Gaussian filtering should still be applied but aafier radius can be used than without the
destriping filter (Swenson and Wahr, 2006).

Other filters are available (Chen et al., 2006;g8aset al., 2007; Kusche, 2007,
Klees et al., 2008), see section 4.2.3, whose paence for GIA is not investigated here.
Out of those, the Chen et al. (2006) filter wasniduo artificially enhance east-west

features (Rangelova 2007, p. 131).

5.4 GRACE estimated gravity rate

This section investigates the influence of the thngf the GRACE time series on the
maximum gravity rate estimated from the same tieres. After that, gravity rates are
presented for least-squares estimation of a treuitth, the destriping filter parameters
selected in section 5.3.3. Gravity rates are afsmwe for a least-squares estimate with
GFZ data even though the effect of filtering onsthelata is not investigated. However,
the gravity rate derived from the GFZ solutions atirengthen the conclusion of the
location and of the maximum gravity rate. For thens reason a PCA based estimate is
presented in section 5.4.1.2.

The gravity rate patterns presented in this secton used in Chapter 7 to
constrain the mantle viscosity and to infer theatamn of maximum ice thickness.

Because geoid rates were computed with GIA modgls s@mposite rheology, the geoid
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rate pattern is presented in section 5.5 and us@dcanstraint for composite rheology

in section 6.5.

5.4.1.1Least-squares

In Van der Wal et al. (2008a), it was shown thatravity trend estimated from three or
four years of GRACE data depends strongly on time-series segment chosen. Figure
5.27 shows that even the maximum of a gravity taed estimated from five years of
data (squares) varies between 1.35 and 1.52 p@alMete that this difference is larger
than the effect of the GRACE measurement errofSignre 5.17. The variation can be
due to interannual changes in continental wateragea However, removing GLDAS
(circles) or WGHM (triangles) results in the samariation therefore the interannual
variation has another cause, unless the true mteed water storage signal is not
captured by both hydrology models. The interanmhanges could be due to aliasing of
K1 and K2 tidal signal. Particularly the degreec2fticients in GRACE solutions are of
low quality. However, removing low degree coeffitie Go, C1, S does not have an
effect on the variation in the maximum gravity ratethe figure, thus errors in these
coefficients are also not causing the variatiomaximum gravity rate.

Figure 5.27 shows that the estimated secular gramie that starts at April or
May of 2002 results in the lowest maximum trendo3értwo months will be excluded

from the final estimate, also because data wasaitdcted during the complete month.
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Figure 5.27: (a) Gravity rate estimated from 5 geair GRACE data. The first data point
corresponds to time period April 2002 — March 200ig, last data point corresponds to
August 2003 — July 2008. (b): Gravity rate estirddit®m 5 years of GRACE data with

low degree coefficients removed.

Because of the longer time series and the gooceaget between GRACE and
GLDAS in Table 5.2, the GLDAS model is preferred@émove continental water storage
variations. Lake level data are included in the GiIdmodel. The gravity rate estimated
for the longest time series available at the tirhéhis work is shown in Figure 5.28 for
CSR and GFZ fields. GFZ does not provide solutifimsthe months September 2002,
December 2002, January 2003, June 2003, Januady Z8@ agreement between Figure
5.28a and b is very good in the area of the maxinguawity rate southeast of Hudson
Bay, corresponding to the location of the Labraider dome. Note that also Lee et al.
(2008), Figure 7, and Peltier and Drummond (20@8yure 2, show the maximum
gravity rate in this area. However, the second psaftiminished in the GFZ-derived
gravity rate, compared to the gravity rate deriftedn CSR. This is contrary to what is
observed in Fennoscandia where GFZ solutions ezbsuht gravity rate with higher

maximum and closer to the center of uplift (Steféeml., 2008a).
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Figure 5.28: GRACE-derived gravity rate [uGal/yessfimated from (a) CSR fields and
(b) GFZ fields. Time period is Aug 2002 — July 204&1 the GLDAS model is removed.

In order to be able to give uncertainty estimatestarms of differences in
hydrology model, the time period is limited by theailability of a second hydrology
model. Since LaD is only available up to July 2@d CPC clearly performs the worst
in the comparison with GRACE in Table 5.2, WGHMsmlected for this purpose, with
output available from August 2002 up to NovembeOZ220It was found that the
difference between the WGHM and GLDAS model is éarthan the maximum secular
gravity rate found in GLDAS alone. It can thus ligued that it is better to not remove
hydrological signal in GRACE, because doing so antyoduces more errors. However,
the good agreement between GLDAS and GRACE in Eigur and Figure 5.5 suggests
that GLDAS successfully simulates a good part & thterannual hydrology signal.
Thus, the choice is made here to use GLDAS to renmgdrologic signal in GRACE and
to use the differences between models as an ingteviey to account for uncertainty.

5.4.1.2Principal Component Analysis

Principal component analysis (PCA) is applied te tBRACE data after filtering as
described in section 5.3.3. The grid resolutionlisx 1% smaller resolution has a
negligible influence on the spatial patterns amaetiseries. In the time series in Figure
5.30a it can be seen that the first component, vharounts for 60 % of the variance,

contains a trend with a small annual signal. Theoisd component accounts for 20% of
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the variance and mostly consists of annual signéd & small trend superimposed.
The presence of the GIA signal in different prirdipomponents makes it hard to isolate
the GIA signal from other signals using PCA alone.

When the first two principal components are added a trend is estimated, the
pattern in Figure 5.30b is obtained. This pattermeary similar to that obtained with least-
squares, but the contour lines are bulging soutstwaad, which might be due to residual
hydrology signal. Also, the maximum gravity ratelo#3 yuGal/year is lower than in the
least-squares pattern. The existence two domesigmed, with the dome south-east of
Hudson Bay the larger one. The location of thatimaxn agrees better with the location
of the Labrador ice dome (Dyke and Prest, 1987) tha trends in Figure 5.28.

PCA has the possible advantage that more noiségeetl out by removing the
third and higher principal components. Howeverséhigher components can contain
part of the GIA signal (although the trend in thisnsmall). Also the PCA spatial patterns
depend on the size of the area that is used irP@A. One solution to remove such
dependence and get a more robust pattern is tg apiation of principal components as

in Rangelova (2007), but this is not pursued here.

Figure 5.29: (a) Gravity rate [uGal/year] from A2§02 — Nov 2007 with GLDAS
removed. The maximum gravity rate is 1.58 pGallyglay Uncertainty in the gravity
rate, consisting of the difference between GLDAS lékes) and WGHM, and

measurement errors.
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Figure 5.30: (a) Time series of the first and sécpnncipal components. (b) The spatial
pattern of the trend is estimated from the comlmnaof the first and second principal

components.

5.5 Geoid rate from GRACE

Until now, the observations of GRACE have been istlidh terms of gravity rate. It is
useful to look at the GRACE observations in terrhgeoid rate because the sea level
code that was used for the FEM computations prevptesent-day geoid rate as output.
Also, the geoid is planned to become the vertielrence surface for heights in Canada.
The accuracy of this surface has reached a leverevtime-dependent effects become
significant and GRACE data can be used to provide@och update to the geoid-based
vertical datum.

Results for a GRACE-derived geoid rate will be présd here, using the
methods, data sets and non-GIA models describékeirprevious sections. The results
reported here are those of Van der Wal et al. (BR08s explained there, the continental
water storage changes and present-day ice meteareved from the GRACE data for

the purpose of providing a vertical datum update.
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5.5.1Methodology

The procedure described herein is that followed/bg der Wal et al. (2008b). The data
span and parameters are:

- CSRrelease 4, Aug 2002 — July 2007;

- Cy is replaced with SLR derived values. This replagetmwvas found to have
little effect on the spatial pattern, but increadkd secular geoid rate by 0.33
mm/year.

- Greenland ice melt: 183 Gt/year, Alaska ice meltR/year (see section 5.1.1).

Errors sources are combined in a vector sum aswell

: ; 5
JN =J(NLaD’i - NWGHM’i) +(JNGRACEi )2 +(0-Ng\ac|ersvi )2 (58)
Wherel\'lLaDyi is the secular geoid rate for grid poinfrom the LaD hydrology model

(Milly and Shmakin, 2002); am¥,e.is the geoid rate from the WGHM model.

Measurement errors computed by standard deviatindgesiduals after trend estimation
are close, with slightly higher numbers for thaedeals in the GIA area.

Tuning the destriping filter is not as important tbhe geoid rate as it is for the
gravity rate, because of the diminished short-wawvgih power in the geoid rate
compared to the gravity rate. However, applying fitter at low degrees would still
greatly affect GIA, therefore it is still a goodea to look at the SNR to find the cut-off
parameters. Note that the analysis of Van der Wal.€2008b) only looked at SNR for
the cut-off parameters, and this is the procedalievied here. Signal-to-noise contours
are presented in Figure 5.31 for different cut-péframeters. The maximum SNR is
obtained for cut-off degree 23 and order 5 (usia linstead of GLDAS to remove the
effect of hydrology yields degree 23 and order$e of an ICE-5G GIA model does not
change the SNR much).
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Figure 5.31: Contours of signal-to-noise ratiotfog minimum spherical harmonic degree
and order that is used in the destriping filte): ¢alibrated standard deviations used to

compute random errors, (b): residuals used to ceemaundom errors.

In section (5.3.1) it is shown that the Gaussi#terfinfluences the sensitivity of
the gravity rate with respect to viscosity at ataerdepth. For the dynamic geoid, such
sensitivity is not relevant, and a choice for srhaaj the geoid rate will have to be made
based on different aspects. Some smoothing seemiebased on visual inspection of
the geoid rate which contains north-south stripes ismoothing is applied.

Here, the effect of the 400 km halfwidth Gaussidterf on cumulative degree
variances is shown in Figure 5.32. The GIA modalhsve the total uncertainty (note the
semi-log scale of the graphs). The most obviouscefdf smoothing is the reduction of

measurements errors (residuals) above degree 40.
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Figure 5.32: Cumulative error degree variances ¢sgmtion (4.10)) for the GIA model,
glacier melting uncertainty, hydrology model unaerty, random errors and the sum of

all uncertainty. (a): no Gaussian smoothing, (B0 #m Gaussian filter halfwidth.

5.5.2Results: geoid rate and its uncertainty

The geoid rate with the filtering parameters disealsabove is presented in Figure 5.33a,
with uncertainties in Figure 5.33b. The uncertairgflects unknown glacier melting in

Alaska, and differences in hydrology models soustved Hudson Bay and in the Great

Lakes area. These large differences raise the iqonesthether it is not better to not
remove a hydrology model, since using a model migtntbduce more uncertainty than

the secular continental water storage present ilR@Rdata. This problem is mitigated

in Rangelova (2007) by combining the spatially hgemmeous dataset of GRACE with

the long-time record of terrestrial gravity.
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Figure 5.33 (a): Geoid rate computed from GRACEhwWGHM and Alaska and
Greenland glaciers subtracted, after the destripiitgy (applied to coefficients with
degree greater than 22 and order greater thand4{sanssian smoothing with a 400 km
halfwidth. The maximum is 1.33 mm/year. (b): unagrty of the geoid rate computed by
equation (5.8) with random errors computed with hodt 3. The maximum is 0.33

mm/year.

5.5.3Results: geoid rate for composite rheology

In this section the maximum geoid rate from GRAC&adis presented which will be
used in Chapter Six: as constraint for GIA modeth womposite rheology. For the GIA
model with composite rheology, coefficients arecusg to degree 90. The Gaussian
smoothing that is performed on the spherical haimooefficients can not be ‘reversed’,
but for the purpose of constraining composite rbgglit is sufficient to get a rough
estimate of the reduction in maximum geoid rate tiesults from application of the
Gaussian filter. Reduction in maximum geoid ratprissented in Table 5.4 for a number
of GIA models. Two models (in bold) give a maximgeoid rate close to that in Figure
5.33. The average reduction after applying the Gandilter for the two models is 5.5%,
thus the maximum geoid rate of Figure 5.33 is mlidd by 1.055 to get an ‘unfiltered’
maximum geoid rate of 1.40 mm/year. This numberused in section 6.5 as a

comparison for the models with composite rheoldgynce the objective is only to see
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which modifications in ice history and which compesheology parameters give an

acceptable geoid rate, misfit computation withdkeid rate pattern is not useful.

Table 5.4: Maximum geoid rate and reduction in nmmaxn geoid rate due to the
application of a 400 km halfwidth Gaussian filterdadestriping, for GIA models with

varying upper and lower mantle viscosity and ICE-3G

upper mantle viscosity [Pas]

lower mantle 1x 107 2 x 107 4 x 10" 8 x 107
viscosity [Pas]
6 x 16* max. geoid rate | 1.41 1.79 2.00 2.12
[mm/year]
reduction [%] | 4.2 6.0 6.4 7
3x 1% max. geoid rate | 0.93 1.18 1.36 1.54
[mm/year]
reduction [%0] 3.8 5.7 6.7 9.0
5.6 Summary

This chapter dealt with the post-processing of GRAfata and the uncertainty when the

post-processed data are used for studying GIA irtiNamerica. The main results are:

1. Three deterministic filters are investigated: theu€sian filter (Wahr et al. 1998),

the non-isotropic filter (Han et al. 2005) and thestriping filter (Swenson and
Wabhr, 2006). Of those, the combination of the deisiy filter with Gaussian

filtering is most practical for GIA studies becausenoval of stripe errors can be

done separately from smoothing the data, which @aWe affects the GIA signal.

2. The number of coefficients that are filtered by tiestriping filter are changed to

improve a signal-to-noise ratio based on simulaiamd to reduce the RMS

reduction of certain GIA models. Filtering coeféats with degree above 20 and
order above 7 resulted in a high SNR and small0@-pGal/year) RMS reduction
of the GIA models.
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Water level changes in Lake Superior and Lake Wiegi and simulated
glacier melting in Alaska and Greenland all reguléecular gravity rate values in
the GIA area above or at the measurement errot. [#vie suggested to include
water level changes measured by tide gauges irgltiieal hydrology models
GLDAS, CPC and LaD since these models do not adctamsurface water
variations. It was decided not to remove presentida melt based on visual
inspection of the resulting gravity rate map.
Three methods to estimating GRACE measurement enrderms of secular
gravity rate were investigated: (i) propagatinghrated standard deviations, (ii)
propagating a fully populated covariance matrix,d afii) residuals after
estimation of a trend, annual and semi-annual genio the monthly Stokes
coefficients. All methods resulted in measuremerdrs of similar magnitude and
a small (~0.0uGal/year) magnitude.
Smoothing of the GRACE data by Gaussian filteringhvan increasingly large
halfwidth reduces the sensitivity of the GRACE ded gravity rate to the upper
mantle viscosity.
The uncertainty in continental water storage chanigethe largest source of
uncertainty for the secular gravity rate derivednir GRACE for GIA studies.
Increase in water storage was shown to be largedeet the summer of 2003 and
the summer of 2006 in an area south-west of Hu@son
The maximum gravity rate and the gravity rate mapneated from GRACE
depend on the length of the GRACE time series. ;Tons should be aware that
previous and current gravity rates estimated froRAGE are influenced by this

effect.

The results of this chapter are used at differéattgs in this thesis:

The maximum geoid rate derived in section 5.5.3used in section 6.5 in
comparison with prediction of GIA models with consfie rheology.
The gravity rates in Figure 5.28 and Figure 5.28 ased to draw conclusions

about the ice sheet history in Chapter 7.
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Chapter Six: Composite Rheology in GIA modeling

This chapter studies how GIA models behave if BotBar and non-linear rheology are
active in the Earth’s mantle, cf. section (1.1.This rheology is dubbed composite
rheology and was first studied in the context oAGly Gasperini et al. (1992). The
effects of such a composite rheology on relative lesels, uplift rate and gravity rate
will be investigated in this chapter.

Since Gasperini et al. (1992), composite rheology been studied by Gasperini
et al. (1992, 2004), Giunchi and Spada (2000),F2aho et al. (2005) and Dal Forno and
Gasperini (2007). These studies take the appro&atsing a simplified flat 3D model
which requires only a relatively short computatione, to search many parameters. Here
the more realistic spherical 3D model of Wu (2004) used, at the expense of
computation time. Both approaches are complementary

A short review of literature on composite rheologyGIA modelling is followed
by an analysis of stress distribution in the axisygtric model. Results will be presented
for composite rheology in the 2D and 3D models bhfter 3. Relative sea level data
will be used to find the best fitting composite olegy and sea level curves are presented
and analyzed for some best fitting models. Afteat thplift rate and geoid rates of the
model will be compared with maximum observed upldte and maximum GRACE
observed geoid rate of section 5.5.3. Uplift ratd geoid rate are found to be too low for
models with a considerable non-linear componenérdiore, section 6.6 investigates the
effect of two simple modifications to the ICE-4Gstary: delay in ice history and scaling
of ice height. Most of the material in this chaptertaken from (Van der Wal et al.,
submitted) but simulation results are added foisaosity of 9 x 18' Pas. Dr. Hansheng

Wang coded the sea level equation which was ugdtiifochapter.

6.1 Previous studies with non-linear or composite rheolgy
6.1.1Literature review on non-linear rheology

The most recent study of non-linear rheology inrtgaf) the mantle is by Wu and Wang
(2007). They reviewed earlier findings, a short mary of which will be given below.
Schmeling (1987) finds that the creep law seen iy &pears to be a linear one even if
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mantle rheology is actually non-linear. However, A995) demonstrated in a
simple study that this is true only near the centeebound; the RSL curves near the ice
margin are sensitive to whether mantle rheologlnisar or non-linear. This was later
confirmed for a more realistic ice history and atézading (Wu, 2001). Thus, non-linear
rheology, which is expected to occur at mantle donts based on laboratory
experiments, influence GIA model predictions and #hould be taken into account in a
realistic description of the mantle rheology.

The current ice models are constructed with limbaplogies (e.g., Peltier, 2004).
It was found that ice thickness should increaseifiggntly if a good fit with relative sea
level data, uplift rate and gravity rate is to d#amned with non-linear rheology (Wu,
1998; 1999). Another option to obtain good ovetitlis to delay the entire deglaciation
by about 2 ka (Wu and Wang, 2008) as non-lineaoldyy generally leads to faster
relaxation near the end of deglaciation and lowese@nt day uplift rates. Best fit to RSL
data is obtained if power-law rheology is restiicte the lower mantle (Wu, 2002a; Wu
and Wang, 2008).

6.1.2Composite rheology

Composite rheology can be seen as a way to reeoGdi observations with findings
from laboratory experiments and microphysics thatigate that both diffusion and
dislocation creep can operate at realistic marghaitions. The first study of composite
rheology in GIA by Gasperini et al. (1992) demoat#d that the Earth’s response with
Newtonian rheology could be mimicked by a compodinlogy. It was concluded that
the effective viscosity directly beneath the icadaat the end of deglaciation is critical
for the postglacial uplift. More recent results (({@chi and Spada 2000; Gasperini et al.,
2004; Dal Forno et al., 2005; Dal Forno and Gasper2007) have introduced
refinements in the reproduction of a 3D ice modekdlat grid, and a statistically more
rigorous analysis of the improvement in misfit. Wretudies found that the best fit could

be obtained with a composite rheology, see Talle 6.



115
Table 6.1: Summary of previous works on compoditeology in GIA modeling.
G2004: Gasperini et al. (2004), DF2005: Dal Forhale(2005), DF2007: Dal Forno and
Gasperini (2007). All of these study the Laurentiea sheetA andy are the pre-stress
exponent and Newtonian viscosity of equation (3.28)s the (scalar) background stress

in the implementation of equation (6.1).

domain ice model best fitting model
G2004 | flat parabolic (same | g,=1.6
axisymmetric | volume as ICE- 5
40x82 elements 3G) A=27x10
n=8.3x16
DF2005 | 3D flat, ICE-3G 0,=1.6
20x10x20 (stereographically
elements projected) A=3.4x10"
n=43x16
DF2007 | 3D flat ICE-1G (zonal 0,=0.0
axisymmetric | harmonic A
40x82 elementg expansion) A=22x10
n=16x16
ICE-3G (zonal | g,=0.2
harmonic 5
expansion) A=82x10
n=27x16

These studies are all based on a flat Earth gegmetnile the influence of
sphericity can be notable for a large ice sheet file Laurentide one (Wu et al., 2005).
Also, the effect of self-gravitation in the Eartihhdain the sea-level equation is not
included in these studies. Dal Forno and Gasp€2idd7) found only a small difference
between models with and without self-gravitatiom aninimize this difference by using
only the last 6 ka of the deglaciation. However,tla@ edge of the ice sheet, the
gravitation of the ice attracts large amounts ofewalt is known that linear and non-
linear rheology behave differently there (Wu, 1996)d that the viscosity directly
beneath the ice is important for the relaxationcpss. Thus, the introduction of self-
gravitation through the sea-level equation carothice differences in the response of the
linear and non-linear rheologies. In this thedig éffects of Earth sphericity and self-
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gravitation will be included in our study of compesrheology. These effects were
already present in the model of Wang and Wu (2006).

With the exception of figure 5 in Dal Forno et &005), the behaviour of
composite rheology for individual RSL sites is sbbwn in previous studies. However,
the RSL behaviour at a specific location can beymistic of a linear and non-linear
rheology (e.g. Wu, 1995). Now it is unknown at whatation and what epoch purely
linear/non-linear rheologies differ from compositeeology and how the value of the
creep parametek affects this. Misfit gives a global number for nebdomparison, but it
will be shown in section 6.4 that misfit can depestibngly on individual sites. More
detailed comparisons of the RSL behaviour of déiferrheologies can help to relate
studies with non-linear rheology (Wu, 2002a, Wu amang, 2008) to studies of
composite rheology.

Uplift rates computed with non-linear rheology &mown to be too low (Wu,
1999). This could mean that non-linear rheologysdoet reflect the true deformation
mechanism, or that ice models based on linear oggoheed to be modified. To
investigate the second point, simple modificatidrvea/e been studied for non-linear
rheology in the past. An increase in ice thicknegsroves fit with RSL data within the
Laurentide ice sheet margin (Wu, 1999). Delayinglaaation of ICE-4G by 2 ka
increased uplift rates and gravity rates and im@doWRSL fit in the center of the
Laurentide ice sheet (Wu and Wang, 2008). Howepsggyious studies of composite
rheology only compare observations and predictmnRSL, but not land uplift rate or
gravity rate.

For most of the results in this chapter, backgrostréss is omitted for the
following reasons. Firstly, the locations of conwec cells are not well known.
Secondly, if the locations are known, the magnitofléehe stress can only be derived
indirectly through the use of material parametenat tare uncertain. Thirdly, a
microphysical argument is given by Karato (1998jais rate resulting from GIA is
orders of magnitude smaller than tectonics. Theeefilne average density of dislocations
does not change much due to tectonics, over thedotrat GIA acts. As a result, little

interaction can be expected between ambient texd@md GIA. Finally, introduction of
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background stress introduces an extra parameteratoer many extra parameters)
which increase computational burden and obscurectimeparison between rheologies.
Note that the Gasperini et al. (1992, 2004) and FEaho et al. (2005), Dal Forno and
Gasperini (2007) include background stress in tlewing way:

; =i{1+(m] ) } - 6.0)
27 o,

Whereog is the equivalent stressg is the background stress ang is the transition
stress. In this formulation background stress ady imcrease the effective stress. Indeed
Gasperini et al. (1992) state that an increaseatkdround stress reduces the effective
viscosity. However, the tensorial nature of stresgguires that stresses in all directions
are added before the effective or Mises stressnspated. Therefore, depending on the
direction of the ambient tectonic stress the eifectiscosity can be reduced or increased
(Schmeling, 1987, and section 3.3).

6.2 Model summary

The model used here is the coupled Laplace fingment method (Wu 2004 and Wang
and Wu, 2006) described in Chapter 3, which sofeesdeformation on a spherically
stratified self-gravitating incompressible Earth tlwi self-gravitating oceans. The
axisymmetric model benchmarked in Wu and Van ded {2803) is used as well,
because of its fast computation time and simpli@tyisualization.

For the linear case, the Newtonian viscosity & tr 9 x 16" Pas, respectively
is varied between 3.3 x TPa’s?, 3.3 x 10* Pa®s?, 3.3 x 10® Pa’s* and 3.3 x 18°
Pa3st as already stated in section 3.2.3. The combinatfothe Newtonian viscosities
with the 4 values oA gives a total of twelve composite theologies ingaded in this
thesis.

6.2.11ce model

For ice models, we choose to use ICE-4G (Peltig®4)] and ICE-5G model (Peltier,
2004). The global ice models developed by Peltiet eolleagues are tied to a linear
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rheology for the Earth model that is used in teealiive inference of ice heights. This
led Dal Forno and Gasperini (2007) to revert todlder ice models (ICE-1G and ICE-
3G). However, the choice here is for the global ncedels that are widely used. The
glaciation phase of ICE-5G is assumed to increiasaidly from the start of glaciation to
the last glacial maximum (LGM) which, in ICE-5G,as 26 ka before present (BP). For
the axisymmetric model, the LGM is at 20 ka BP, enioraccord with the ICE-4G model
(Peltier, 1994).

6.3 Stress distribution

Equation (3.23) shows that with non-linear rheolalg effective viscosity becomes a
function of the Mises (or effective) stress, whitdelf depends on location and time of
the deglaciation process. In order to see whetheat or non-linear rheology dominates,
it is necessary to know the stress at differenatioons and epochs. Therefore, in Figure
6.1 the Mises stress distribution is plotted far #xisymmetric model with a Newtonian
viscosity of 3 x 16" Pas andA = 3.3 x 10** Pa’s™. This model is found to be the best
fitting model fory = 3 x 16" Pas, in Figure 6.6a. Other models might have ght$ji
lower misfit, but this model has a large non-lineamponent which is useful to illustrate
where non-linear deformation can dominate.

Another composite rheology was investigated in Whise rheology used was
purely linear (non-linear) if the Mises stress watow (above) the transition stress. This
rheology is labelled ‘case 2’. Such rheology wasnfib to give sea level curves close to
the composite rheology formulation of Gasperinakt(1992) (not shown). That means
that we can simplify the plot and visualize thealogy as simple on-off shading. The
dark grey coloured areas in Figure 6.1 show thensgthat are deformed by power-law
creep according to case 2. Note that only the reasitplotted; the lithosphere is taken to
be effectively elastic, but still supports a lapggat of the 37 MPa ice load. Stresses there
are about 40 times higher. Thus, lithosphere wirickaken to be visco-elastic could

influence predictions, but this is not investigakeale.
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a) 20 ka BP b) 11 ka BP c) 6 ka BP
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Figure 6.1: Area below the lithosphere layers & &xisymmetric model where linear
rheology (light grey) or non-linear rheology (dagtey) dominates for composite
rheology with a Newtonian viscosity of 3 x 2@Pas andA = 3.3 x 10** Pa’™. The
epochs shown are 20 ka BP or LGM, 11 ka BP or émdedting, and 6 ka BP. The solid
radial line at a 15° angle to the vertical dendbeslocation of the edge of the ice sheet.

The region in which non-linear creep occurs is $@ialGM, just below the edge
of the ice sheet. This region increases until thet @& melting and then quickly decreases
within a few kyears of the disappearance of the Man-linear creep according to case 2
does not occur anymore after 5 ka BP. The larga afenon-linear creep at the end of
deglaciation agrees with Figure 4 of Gasperinile{1092), which shows the smallest
horizontally averaged effective viscosity at thel e deglaciation. These results suggest
that modeling lateral variations at the ice sheatgim might be important in future work,
as these variations can have strong impact on inea# rheology through the low
effective viscosity there. Note that the highees$rthat exists in the uppermost layers of
the mantle during most of the deglaciation impbk&sincrease in viscosity with depth.
Therefore, non-linear rheology can recreate a ddpgiendence that is found by most
GIA inversion studies (e.g., Peltier 2004; Kaufmama Lambeck, 2002).
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The transition stress (equation (3.29)) dependtherselected linear viscosity

andA. In Figure 6.2 the transition Mises stress is tplbtfor four different viscosities
with n = 3, versus logy(A). If the Mises stress is above these curves, m@ai rheology
will dominate (see also Gasperini et al., 2004)n€dering that the peak Mises stress in
the mantle is generally of the order of a few MPigure 6.2 can be used to see find out
for which combination ofA and# non-linear behaviour can be expected and which
composite rheology models will behave effectivehear. Increasing the linear viscosity
reduces the transition stress and effectively malkesehaviour of composite rheology
closer to that of nonlinear rheology. ConverselggrdasingA leads to higher transition

stress, which makes composite behave as linealodneo
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Figure 6.2: Transition Mises Stregsversus logy(A) for four typical values of; in the

mantle andn = 3. For a given Newtonian viscosity, if the Misdsess at a certain

location in the Earth is higher than given by tlheve, non-linear creep is dominant at

that location.
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To show the temporal evolution in more detail thagure 6.1, Figure 6.3
plots the Mises stress at 4 locatiofs=(0.25, 10.25°, 15.25° and 30.25 from the centre
of the load) just below the lithosphere. Note tti&# Mises stress is computed from

deviatoric stresses.

A=22x10"3 Pa_3s_1, n=3x 10%! Pas

. —0=0.25
Lo Tt i g=10.25"]]
S K ---9=1525 |
, - - 0=30.25
14f 1 -
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Mises stress (MPa)
'_\

o
o)

o
~

0.2F
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Figure 6.3: Time evolution of Mises stregst four locations just below the lithosphere
(atr = 6220 km) in the axisymmetric model of Fig. 1.eTlorizontal thick line indicates

the transition stress level (see Fig. 3), aboveckvtiie dominant creep is non-linear.

For A= 3.3 x 10°* Pa®s* andy = 3 x 16" Pas the transition stress is 0.58 MPa
and is indicated in Figure 6.3 as the solid horiabline. According to case 2, non-linear
creep dominates when the Mises stress (coloured)linses above the transition stress
(solid black line). Figure 6.3 shows that at thatee of the load and far away from the
ice (8= 30.25), the Mises stress is not high enough to allow-ime@ar creep, thus linear
creep dominates. The highest stresses occur artenite margin § = 15.25), where

non-linear rheology becomes dominant after 19 kaaB®& until 8 ka BP. Closer to the
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center of the ice sheef € 10.25) power-law creep is the dominant flow mechanism
only from 18 ka to 15 ka BP.

The spatial evolution in Figure 6.1, the temponradletion in Figure 6.3, and the
level of transition stress in Figure 6.2 help taderstand the behaviour of the more

complicated 3-D model in the following sections.

6.4 Comparison with RSL observations

The previous sections supply the ‘tools’ to underdthow the state of stress, through the
transition stress, decides which of the two rhee®gcontributes more to the total
relaxation. In this and the following sections, tmesdictions of the GIA model with
composite rheology and parameters listed in se@i@nare compared to data. To judge
the performance of a GIA model, RSL data are arlyudie most important data set.
Therefore this section is concerned with RSL diataéhe form of global misfit in section

6.4.1 and curves for individual sites in sectiof.B.

6.4.1Global Misfit

The 30 RSL observations from Tushingham and Pe(fié@1) that are used here are
listed and plotted in Appendix E. They aré4(age calibrated according to Fairbanks et
al. (2005). Misfit with respect to globally spre&5L observations is widely used to
compare model performance, but can be sensitiviarge misfit values at individual
sites. The sensitivity of global misfit to RSL dasanvestigated in Figure 6.4, where the
misfit is plotted for individual sites. It can been that stations 16 (McMurdo) 22
(Onsala) have large peaks. Note that these areuili¢rs because of the bad quality of
data; the large values are caused by a combinafidrad fit and small errors in the
observations (only the height errors in the RSLeobastions are used, not the time
errors). This is shown in Figure 6.5, where thelsgal curves for these two stations are
plotted. Station McMurdo has inconsistent obseoretithat are likely impossible to fit
with any model, while in Onsala the data lie onmaoeth curve, but the models do not
provide a good fit. Therefore, McMurdo will be leftit of comparison in the following

but Onsala is included.
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Figure 6.4: Misfit per site for all 30 sites of Agudix E for a linear, composite and non-

linear rheology with one or both of the followingrameters:A = 3.3 x 10%® Pa’s?, 5 =

3 x 10! Pas.
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Figure 6.5: Relative sea level predictions for teme models as Figure 5.1 and

observations (black vertical lines) for stationsNModo and Onsala.

The question is what is the effect on the misfiugaof leaving out some sites?
Figure 6.6 plots the misfit for different sitestlefut. It can be seen that one or two

stations can make a large difference in the redgperformance of linear and non-linear
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rheology. From Figure 6.6a it can be concluded that best fitting composite
rheology model has = 3.3 x 10** Pa®s?, while from Figure 6.6c the best-fitting model
hasA = 3.3 x 10* Pa’s™. From Figure 6.6c it can be concluded that contpasieology
and non-linear rheology perform equally well, whffem Figure 6.6a it seems as if
composite rheology performs much worse. In Figufsbh @t can be seen that data for
station McMurdo is inconsistent with an exponensie& level curve therefore it can be
concluded that the data is bad or the ice modael exror. However, for station Onsala
this can not be concluded. Therefore it can nottgried that the Onsala site should
simply be removed. One way to limit the influendeercessive misfit values is to use a
more robust statistic instead of the chi-squaresfimirhe absolute value of the weighted
differences (or L1-norm) is a more robust statigig. Press et al. 1992, section 15.7). It
is defined as

n

x=2
ne| o

u‘ , (6.2)

where the vertical lines denote the absolute value.

The L1-misfit is demonstrated in Figure 6.7 for theme composite rheology
model as in Figure 6.4. Leaving out one site chartbe L1-misfit value of composite
rheology so that is actually becomes lower thanfitvanon-linear rheology. However, in
both Figure 6.7a and Figure 6.7b, the best fittagposite rheology model is the same,
which is reassuring. Because the conclusions onfibisg rheology based on L1-misfit
seem to be more robust, L1-misfit will be usedhis tchapter in addition to L2-misfit,
although conclusions about best fitting models Wwél based on L2-misfit, in line with
previous GIA studies.

The misfit for linear, non-linear and composite rabid plotted in Figure 6.8a for
four different values oA and a Newtonian viscosity of 1 x 4@Pas. The lowest misfit is
found for non-linear rheology with = 3.3 x 10°°® Pa’s™ (the same value as found in
Wu, 1999). The misfit for composite rheologies|sse to that of non-linear rheology for

large value ofA and transitions to that of linear rheology formaadl value ofA, with a
minimum (11.8) forA = 3.3 x 10> Pa®s™. The model with this combination & andy

will be labelled ‘model I’ for future use. In Figei6.8b the L1-misfit shows the minimum
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misfit is still reached by non-linear rheology with= 3.3 x 10 Pas*. However,

there is no clear minimum for composite rheologydele anymore.

a) All Stations

40 -
—Linear
---Non-linear
30 ) -« Compositef
<20 H ;;;;—‘
10f e
—%6 -35 -34 -33 -32
Logl0 A
¢) Without McMurdo and Onsala
40 . . .
35f
30}
25¢
[QV]
=<
20f -
10} .“'“u,,\ e
—%6 -35 -34 -33 -32

Logl0 A

40

b) Without McMurdo

35
30f
25f
20t
15¢
10¢

Figure 6.6: RSL misfit for a composite rheologylwNewtonian viscosity of 3 x tbPas

and three different values fé, for three cases: (a) all station; (b) McMurdde& out,

and ¢) McMurdo and Onsala are left out.
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Figure 6.8: L2-misfit and L1-misfit for models witlewtonian viscosity of 1 x éPas.

The presence of dislocation creep in addition féuslion creep probably means
that the best fit Newtonian viscosity is largerrthhe value of 1 x 10 Pas that provides
a good fit for purely linear rheology (Mitrovica996) because the dislocation creep
provides an additional relaxation mechanism. Fangxde, Dal Forno and Gasperini
(2007) find a Newtonian viscosity of 2.7 x 20Pas for the best-fitting composite
rheology. The misfit curve for composite rheology Figure 6.6b = 3 x 1G* Pas)
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follows the misfit curve of non-linear rheology wp smaller values oA than in
Figure 6.8. This can be explained by the transistress in Figure 6.2, which for a
Newtonian viscosity of 3 x & Pas (dotted curve) is below that for a Newtonian
viscosity of 1 x 18" Pas. Assuming that an element is under the saessstt will have a
larger non-linear deformation component in caseNaetonian viscosity is raised to 3 x
10*'Pas.

The best fitting composite rheology fpr= 3 x 1¢* Pas is found to ba = 3.3 x

103 pa®s? for L2-misfit (with Onsala but without McMurdo, seFigure 6.6b ), while

the model with L1-misfit ha# = 3.3 x 10°> Pa®s* and misfit close to that of non-linear
rheology. It was shown before that the misfit cukeeps its shape if L1-misfit is
computed, while the shape is sensitive to removaludliers’ under L2-misfit. However,
the best fitting model of Figure 6.6b is acceptedrfow as the best fitting model and is
labelled ‘model II'. The value oA of model Il is an order of magnitude larger thhatt
found by Dal Forno and Gasperini (2007) who oladithe best fit for a model with
transition stress of 1.5 MPa, which from Figureb6 This translates to ahof 1.8 x 10%
Pa’s'. However, the 0.2 MPa background stress in thedt it model acts to slightly
decrease the effective viscosity.

Increasing the viscosity once more by a factorhoée yields the misfit curves in
Figure 6.9. The best fitting rheology is still then-linear rheology in all cases. However,
the best fitting model in Figure 6.9 has a smalléhan model II: 3.3 x 1%° Pa®s™. The
best fitting model for the L2 and L1-misfit has th@me value oA as in Figure 6.8, with
the misfit value for the L1-misfit almost the saras in Figure 6.7b. This model is
labelled ‘model I1I".

In this section it is concluded that station McMari$ left out of RSL misfit
computations. Based on L2-misfif( analysis, best fitting models for three valueshef
Newtonian viscosity are selected. Model | and Bttbhave a value ok equal to 3.3 x
10% Pa®sT, while model Il has a value & equal to 3.3 x 18* Pas™. L1-misfit was

shown to be less sensitive to individual statiamg svill be used alongside L2-misfit.
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6.4.2RSL curves

Global misfit provides one number for model comgani, which is easy for visualizing
results, but detailed features are not reflectethisynumber. Therefore, here a few sites
are selected (see Figure 6.10) for which the seal leurves for linear, non-linear and
composite rheology are compared. The sites aregtiioto be representative for the
center of the ice sheet, the ice sheet margin efLifmrentian and Fennoscandian ice
sheets, and the far-field; see Table 6.2.
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Figure 6.9: (a) L2-misfit and (b) L1-misfit for mel$ with Newtonian viscosity of 9 x
10?'Pas.

Relative sea level curves for model £ 3.3 x 10°° Pa®s! andy = 1 x 16! Pas)

are shown in Figure 6.11. For this model the ftarsstress is as high as 3.17 MPa (see
Figure 6.2), which means that the Mises streshiénnhantle rises above the transition
stress only for sites close to the ice margin, Bigere 6.3. At these sites the stress is
higher and effective viscosity is lower, which |eai® faster relaxation. The sea level
curves confirm this: the composite rheology curseclose to the curves for the linear
rheology for most sites at early times with theeptmon of Brigantine and Kong Karls

Land, which deviate from linear rheology and becoahese to nonlinear rheology

probably because they are closer to the ice mavhjere larger stresses occur.

-32
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Figure 6.10: Location of the 12 RSL sites usedHigure 6.11 to Figure 6.13.

Table 6.2: Classification of RSL sites in Figur&@.

Laurentide

Fennoscandia

far-field / other

(323), Recife (508),
McMurdo (570)

center margin

Richmond (101), Boston
Churchill (104), NW Brigantine (333)
Newfoundland (309)

Bjugn (209), Onsala (228)
Angermanland (233),

Helsinki (235), Kong

Karlsland (282)

! Because the RSL curves of Angermanland (233),ikel6235), Kong Karlsland (282)

show uplift they are classified as close to the@eaof the ice sheet.
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Figure 6.11: RSL predictions from models with thditferent rheologies: linear, non-
linear and composite rheology, for the twelve R3$fessof Figure 6.10. The stress
exponenn = 3,A = 3.3 x 10°°> Pa’™" andy = 1 x 1G* Pas.

Figure 6.12 shows sea level curves for modehlE(3.3 x 10** Pa®s?t, 5 = 3 x

107! Pas) and linear and non-linear rheology modelss fifodel has a transition stress of
only 0.58 MPa, so that the RSL curves for compas$ie®logy are closer to the curves for
non-linear rheology. There are a few exception® ohwhich is Antarctica, where it
seems that stress is too low to trigger large mogal deformation at the LGM. Looking
at stress evolution in Figure 6.3, the interpretatan be that stress increases underneath
Antarctica until 12 ka BP when the non-linear perthe creep rate becomes significant
enough to drive fast relaxation and deviate fromlthear RSL curve. Other sites where
the early part of the curve for composite rheolapviates from that of non-linear
rheology are at the margin of the Laurentide iceesi{Newfoundland, Boston) or the
center and margin of the Fennoscandian ice shejigiiB Onsala, Angermanland,
Helsinki). The composite rheology has attainedrgdavertical deformation at LGM and

drops faster than non-linear rheology. Apparentiyedr deformation contributes
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somewhat to relaxation at these sites just aftert&M. Note in Figure 6.1 that

below the center of the ice sheet the stress sthean at the margin, thus linear creep

rates can contribute more in the center of thesiteet, as is indeed the case for the

Laurentide ice sheet.
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Figure 6.12: As Figure 6.11, but with= 3, A= 3.3 x 10** Pa’s" andy = 3 x 16" Pas.

Finally, Figure 6.13 shows model lIn(= 3.3 x 10°° Pa’s?, n = 9 x 16" Pas).

The linear relaxation in this Figure is clearly rmusmaller than in Figure 6.11, e.g.

compare the ~600 m vertical displacement at Chliiahrigure 6.11, with the ~400 m in

Figure 6.13. The transition stress of 1 MPa ersum@stly non-linear deformation.

However, the same exceptions hold true as in Figut2: significant contribution from

linear rheology in the margin (Laurentide ice sheeid center / margin (Fennoscandian)

ice sheet, and mostly linear deformation in Antaect



132

101. RICHMOND GULF QUE. 104 CHURCHILL MAN. 309 NW. NEWFOUNDLAND 323 BOSTON MA.
600 125
C 6001} 1, 20
400 ~ I\’, I~ N, 100 N \l, —u—u/—/\
\3 400 75t ,\I, o \/}’J Rt
! 50f \J vyl
200 N 200 ’ -20 v
W % ' 40
N7 j Ay, -
0 — 0 0 :
333 BRIGANTINE NJ. 228 ONSALA SWE. 233 ANGERMANLAND SWE
e sl
-20 Sl 200 120 300
; 160, 250,
-60 N 120 N L[ 80 200~ = <,
R - , )
7 80 1} “ry, 150 < |
-100 , ’ 420N 100 N
—I P4 40 \/-AI&\ - — oy 1 .
T 50 "
-140 A
235 HELSINKI FIN. 282 KONG KARLS LAND SPITS. 508 RECIFE BRASIL 570 McMURDO S. ANTARCTICA
200 200 0
160 160 |
" - -40
20t 120f
80 = = \]/ﬁl 80 \'// I -80
. <
40 40 W -120
-60
-18-15-12 -9 -6 -3 0 -18-15-12 -9 -6 -3 0 -18-15-12 -9 -6 -3 0 -18-15-12 -9 -6 -3 0
——linear - - - non-linear ' composite

Figure 6.13: As Figure 6.11, but with= 3, A = 3.3 x 10 Pa’s™* andy = 9 x 16* Pas

6.4.3Discussion

For model I, the transition stress level of 3.2 MRases the sea level curves to behave
mostly linear, except for sites near the ice martjir is increased to 3.3 x TOPa’s?,

not shown here, the transition Mises stress is A Bl sea level curves are close to non-
linear rheology. For model I, the transition sgas as low as 0.6 MPa and sea level
curves follow non-linear sea level curves. For wdp value ofA (3.3 x 10°° Pa’s?,
transition stress level of 1.8 MPa) linear rheold@gg a stronger contribution. For model
Il, the transition stress is 1.05 MPa, and muchsmae behaviour is found as for model
Il. In section 3.2.4.1 the possibility was mentidnéhat dynamic recrystallization
balances diffusion and dislocation creep. It igi@sting to note that it is found here that
the best fit to RSL data is obtained for valuesAoénd s for which dislocation and

diffusion creep are of the same order of magnitude.
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It should be noted that Figure 6.7b (L1-misfit)wadty suggests that the best
fitting model with viscosity of 3 x 18 Pas, ha# = 3.3 x 10 Pa’s* as opposed tA =
3.3 x 10* Pa’s! in model II. Figure 6.9 even shows a slightly loweisfit value for
model Il than the best fitting model in Figure B.@ased on the ambiguity that results
from the selection of RSL sites, and the misfituesl that are close (for model Il and
model Ill), a best fitting model can not be basedRSL data alone for the models
investigated here. In future work a more detailadation in viscosity an@d should be
achieved. However, it is also possible to use exfi@mation in the form of uplift rates
and gravity rates to constrain models, as is dorsection 6.5.

Does the conclusion hold that non-linear rheologgvigles the best fit? This
seems to be justified based on Figures Figure®@Egure 6.9. However, removing the
site with the largest misfit value from the compiata results in a different picture, see
Figure 6.14. The L2-misfit for the best-fitting cposite rheology is only slightly higher
than the best-fitting non-linear rheology. For the-misfit, the composite rheology is
even smaller than the non-linear rheology. Thus,case conclude that straightforward
analysis of misfit (with no outliers removed) dosst support the conclusion reached
before that composite rheology has a significamtelo misfit than purely non-linear
models (Gasperini et al. 2004, Dal Forno and Gasip&007). However, the converse
can also not be claimed yet, due to the sensitiintythe misfit to specific sites,
demonstrated here by the comparison of Figure 6viiftb Figure 6.7b, and due to the
limited parameter spacing in Previous studies (e.g. Wu and Wang, 2008) wittelgu
non-linear rheology can still be valid for two reas: i) the best fitting composite
rheology looks like a non-linear rheology (e.g. ralod); and ii) the best fitting model is
one with purely non-linear rheology.

Note that Wu and Wang'’s (2008) preferred Earth rhadi a non-linear lower
mantle and linear upper mantle still provides lowsasfits than any of the composite
rheology models used here (although their modetatos an extra degree of freedom in

the form of an extra layer in the mantle).
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Figure 6.14: (a) L2-misfit and (b) L1-misfit for dels with Newtonian viscosity of 3 x

10°* Pas. Onsala is left out of the misfit computation.

Composite rheology has an extra paramefeaiid ) compared to purely non-
linear rheology (onlyh). Therefore, should it not always have the smalaisfit, when
the entire parameter space is sampled? This isexw#ssarily the case, as bgtandA
are coupled through the state of stress. For exgngoinsider the composite rheology
models withA = 3.3 x 10°® Pa®s* andy = 1 x 16" Pas which has sea level curves that
are closer to linear rheology (see Figure 6.119rdasing the viscosity to 3 x 4(Pas
makes the sea level curves closer to that of nwwtfi rheology, but the misfit is still
larger than that of non-linear rheology (Figure)617 seems that the misfit can only be
decreased for the same valueAgfby increasing the viscosity, which makes the rhode
effectively non-linear. Therefore, the extra partanéviscosity) that composite rheology
has compared to purely non-linear rheology, dodsneoessary help to decrease misfit

for this value ofA.

6.5 Uplift rate and geoid rate constraints

The previous section showed that the model thdtflisRSL data has purely non-linear
rheology in the mantle. A known problem with a punmeon-linear rheology is the low
uplift rates that are the result of the faster xateon (e.g. Wu, 1999). Note that the
present day uplift rate is approximately the tineeihtive of the curves at t = 0 in Figure
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6.11 to Figure 6.13 which indeed looks to be smétienon-linear models. Although
sea level records are most important for GIA infiees because they extend back in
time, an uplift rate that is too low does indicatproblem in either Earth rheology or ice
history. Since composite rheology includes a lineamponent in the rheology which
tends to stabilize the non-linear relaxation (Gaspeet al., 2004), it can possibly
combine a good fit with sea level data with reasbmaplift rates.

The spatial pattern of uplift rate or, to a lessetent the geoid rate, for the most
part reflect the past ice sheet cover. Therefar¢idge whether composite rheology can
attain reasonable uplift and geoid rate the maxinwoiift and geoid rate will be used.
The maximum uplift rate found by Sella et al. (2p&7one GPS station is 13.8 mm/year.
Based on a number of sources, Wu and Wang (2088)ttee maximum uplift rate to be
11 +/- 2 mm/year. The maximum geoid rate was detexdhin section 5.5.3 to be 1.4
mm/year. Rangelova (2007, p. 154) obtained a maximaf 1.5 mm/year with a
combination of GPS, terrestrial gravity and GP&dat

Maximum uplift and geoid rates plotted in Figurd%.for composite rheology
with = 1 x 16" Pas andy = 3 x 13" Pas are above that for non-linear rheology,
demonstrating that indeed composite rheology cdrarmece uplift rates. At first sight, it
might not be clear how it is possible that an extedormation mechanism (Newtonian
creep) slows down relaxation compared to a singferchation mechanism (power-law
creep). The answer lies in the relative importaat¢he mechanisms, as discussed in
relation to the sea level curves. Models Witk 3.3 x 10°® Pa’s™ and consequently high
transition stress behave in a linear way so thatNewtonian viscosity determines the
uplift rate to a large extent. Increasing (decmeg)sithe Newtonian viscosity of such
models leads to slower (faster) relaxation at ttesgnt which results in a larger (smaller)
uplift rate. For model Il the Newtonian viscositgdhlittle influence on the present day
uplift rate, because most of the relaxation is teshéby power-law creep. For this model,
Figure 6.1 does show a small region of linear dae&dgion directly below the lithosphere,
underneath the center of the ice sheet, but thgtttnble due to the boundary conditions of
the axisymmetric model. Moreover, the lower partt@ upper mantle and lower mantle

in that figure are still dominated by non-lineafatenation.
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The maximum geoid rate in Figure 6.15b shows thmesdehaviour: for

models with smaller value @4, increasing the viscosity increases the maximuoidge
rate. Interestingly, the increase is not the samaiplift rate as in geoid rate. The
maximum uplift rate curves for = 3 x 16" Pas and; = 9 x 16* Pas are almost on top of
each other, while the maximum geoid rate curve;fer9 x 1G* Pas is clearly above that
of # = 3 x 1¢* Pas. This points to a different sensitivity of ifiplate and geoid rate in
terms of the relaxation process in the mantle. Ties should be further explored in
future work. Note that a value 8f~ 10°® Pa’s* gives uplift and geoid rate close to what
is expected, but RSL fit is somewhat degraded Fsgere 6.6b and Figure 6.7b).

a) Maximum Uplift Rate b) Maximum Geoid Rate

= =-comp. r]:1x1021
“comp. n=3x10?*
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v Model Il
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Figure 6.15: (a) Maximum uplift rate in North Ameai and (b) maximum geoid rate in
North America, for non-linear and composite rhe@sgor ICE-5G and different values
of A. Dashed liney = 1 x 16" Pas, Dotted liney = 3 x 16" Pas, dashed-dotted: = 9 x
10?* Pas.

Model I, 1l and Il have small uplift rates of 5.8.2 and 7.5 mml/year,
respectively, which is considerably lower than thleservational constraints of 11
mm/year. The geoid rates for the same models ad, .36 and 1.0 mm/year,
respectively, again smaller than the observed B4rmim/year. On the positive side,

composite rheology model Ill manages to increasth heplift rate and geoid rate
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compared to the best fitting non-linear rheologyiler model Il increases only the
maximum uplift rate. Both models have an RSL migfitich is slightly larger than the
best-fitting non-linear rheology, but still much aler than purely linear rheology
(Figure 6.12 and Figure 6.13). It can be conclutthed composite rheology can increase
uplift rates and geoid rate, at the expense of aldntrease in RSL misfit. Furthermore,
recall that the model Il was obtained from L2-ntisfith sea level data, while L-1 misfit
allowed a best-fit model with = 3.3 x 10°° Pa®s™* andy = 3 x 16* Pas, which fit even
better than non-linear rheology if one outlier islatwas removed (see Figure 6.14b).
Therefore, it is not ruled out that model Il caroypde better fit to sea level data and
increase uplift rate. Finally, sub-dividing the @areter space of Newtonian viscosity
could result in an optimal fit model with increasseh level fit and increased uplift rates
and geoid rates.

With the current results, sea level data selectedemll and model Ill as equally
plausible, uplift rates favours a value Adfof close toA = 3.3 x 10°° Pa’s? or smaller,
geoid rate favours a viscosity of= 9 x 1G* Pas. This is a higher viscosity than that
found in Dal Forno et al. (2005) and Dal Forno &wakperini (2007), but close to that of
Gasperini et al. (2004), see Table 6.1. Misfit iste sensitive to value of Newtonian
viscosity, see e.g. Figure 5 of Dal Forno et a00&), but differences can be expected
because the more realistic model of Wang and WOGR® used here as well as the ICE-
5G model, which has larger ice thicknesses at LG eonsequently larger maximum
uplift and geoid rates than ICE-4G. The fact thathbice histories were obtained with a
linear rheology still leaves room for modificatiaf the ice history that will increase
uplift rates and geoid rates.

6.6 Modifications to the ice history

The effects of two types of modifications in the ukentide ice history will be
investigated:
i) Delay in the glaciation, which increase uplift sai@s can be deduced from the

sea level curves in Figure 6.11 to Figure 6.13.

i) Increase in ice height, suggested by Wu and Wab@8(2
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Because of the long computation time of the 3-D Fi@bUdel, only a handful

of cases is investigated. They merely serve astibrefor the development of ice models
based on composite rheology; it is not claimed that delay and scaling of the ice
history are allowed by geological constraints on ¢i& GIA constraints other than the
ones considered here. The predicted uplift rates) fflCE-5G generally fit worse than
ICE-4G (Braun et al., 2008, Fig. 4 and section .¢))5as they are too high and the
maximum is west of Hudson Bay instead of south-eEstrefore, the ICE-4G model is
used in this section instead of the ICE-5G modehtestigate RSL misfit, RSL curves,
uplift rates and geoid rate. Newtonian viscosityaiken to be 1 x & Pas and 3 x £
PasA is varied between 3.3 x ThPa’s"! and 3.3 x 18° Pa’s™.

6.6.1Delay in glaciation

Figure 6.16 shows the maximum uplift rate and geaid with the parameters mentioned
at the end of the previous section for the ICE-4€ohy and with delay applied to the
glaciation. Indeed, the delay in glaciation ince=sathe uplift rate and geoid rate for all
models, but less so for models with a larger valu& that tend to have a flatter sea level
curve at present. It is interesting to note thainarease in viscosity from = 1 x 16* Pas

to n = 3 x 16* Pas has a greater effect on the geoid rate thathemplift rate. The
guestion is now whether a delay in glaciation wossthe RSL fit or not.

Because only the glaciation in Laurentide is medifi the RSL fit will be
computed for stations in North America only. Theges are depicted in Figure 6.17 and
the misfit curves are shown in Figure 6.18. Thererie site with large misfit values (326,
Clinton), therefore results are also shown for Lisfinsince L1-misfit was shown to
provide more robust conclusions about best fittihgology in the presence of large
misfit values for individual sites. It becomes cléam the figure that a 1 ka delay in
glaciation actually improves RSL L1-misfit for A3:3 x 10** Pa®s™, but delay by 2 ka
worsens the fit for all models.
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Figure 6.16: Maximum uplift rate (a) and geoid rdby in North America for six

composite rheologies with (delayed versions of) -k

Misfit for models withy = 3 x 1G* Pas is shown in Figure 6.19 for both L2 and
L1-misfit. The type of misfit does not affect thieape of the curves much (not shown).
However, removing sites with large misfit valuesdars the misfit for 2 ka delay (not
shown). A 1 ka delay leads to a lower misfit fo= 3.3 x 10** Pa®s* and similar misfit
for A = 3.3 x 10°® Pa®™. 2 ka delay greatly increases misfit (L1 and L&) A < 3.3 x
10°* pa’s?, but can lead to lower L1-misfit fok = 3.3 x 10** Pa’s™. The best fitting

model is forA = 3.3 x 10*° Pa®s’; the same as the best-fitting model as in Figure 6

AN o'AAA%G

JANT

Figure 6.17: Location of the North American RSlesiused for misfit computations with
modified ICE-4G history.
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Figure 6.18: RSL Misfit of GIA models with = 1 x 16" Pas, w.r.t the 12 sites of Figure
6.17 for (a) L2-misfit (b) L1-misfit.
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Figure 6.19: RSL Misfit of GIA models with = 3 x 16" Pas, with respect to the 12 sites
of Figure 6.17 for: (a) L2-misfit; (b) L1-misfit.

In order to analyze at the detailed spatial respossa level curves are plotted for the

best fitting models of Figure 6.19. It is cleartthalelay in glaciation provides a better fit
to many of the sites: Richmond, Churchill, Southtongdsland, East Axel Heiberg Island
and Brigantine. The worse fit at Clinton, in corndtion with the small RSL errors there,

causes the large misfit in Figure 6.19 for the acdszka delay.
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Figure 6.20: RSL predictions for the 12 North Amsan sites in Fig. 9, using the ICE-4G
model with delayed ice heighta,= 3.3 x 10* Pa’s™ andy = 3 x 16" Pas.

6.6.2Increased ice heights

Ice heights in Laurentide at all time steps aretipligd by 1.5 and 2.0 to investigate the
effect of an increase in ice thicknesses (Wu, 1999,and Wang, 2008). The maximum
uplift rate with these scaled versions of ICE-4Gpistted in Figure 6.21 and the
maximum geoid rate in Figure 6.22. Model | and tk adenoted by upward and
downward triangles in Figure 6.21a and Figure 6.2ddpectively. The uplift rate of

model | increases by 3.3 mm/year upon doublinghefite heights. Model Il behaves
more like non-linear rheology and the effectivecessity is lowered upon increasing the
stress level. Therefore, total solid Earth disptaeet at LGM is larger as a result of the
higher ice, but relaxation proceeds faster dudéoldwer viscosity. Thus the maximum
geoid rate also shows little increase for modeds behave mostly in a purely non-linear

way. Figure 6.22a in combination with Figure 6.16es out a viscosity of 1 x $bPas
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for a composite rheology because even with larger thicknesses or delay in
glaciation the maximum geoid rate is only arourisir@m/year, compared to 1.4 mm/year
observational constraint. Note that the maximumfugdte in Figure 6.21a is close to 8

mm/year which is relatively closer to the obsertédmm/year.

a)n =1x10% Pas b)n = 3 x 10%! Pas
8 14¢
—ICE-4G x 1.0 —ICE-4G x 1.0
---ICE-4G x 1.5 ol ---ICE-4G x 1.5
6l o, . ICE-4G x 2.0 . ICE-4G x 2.0
A Model | 10b e v Model II

[mm/a]

_$£5 35 345 34 335 33 _$5 35 345 34 -335 33
Log10 A L0g10 A

Figure 6.21: Maximum uplift rate for four compositeeologies with (scaled versions) of

ICE-4G for (a)n = 1 x 1¢* Pas and (b} = 3 x 1G* Pas.

a) geoid rate n = 1 X 10% Pas b) geoid rate n = 3 x 10%! Pas
0.5p. 2
—ICE-4G x 1.0 —ICE-4G x 1.0
e, ---ICE-4G x 1.5 ---ICE-4G x 1.5
0.4} ~ICE-4G x 2.0 1.5f . ~ICE-4G x 2.0
. A Model | o v Model Il
E 1
£
0.5¢
0% 5 35 345 —34 335 33 55 35 345 34 335 33
Logl0 A Log10 A

Figure 6.22: Maximum geoid rate for four compositeologies with (scaled versions) of

ICE-4G for (a)n = 1 x 16" Pas and (b} = 3 x 1G* Pas.
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Clearly worse misfit is obtained in Figure 6.23br fonceases in ice

thicknesses, both for L2 and L1-misfit. Howevertlieus in RSL data strongly influence
the misfit increases as will be shown in the dethisea level history. The same
conclusions hold fory= 3 x 1¢* Pas, for which misfits are a little lower. For aadel
with A = 3.3 x 10*° Pa’s™* andy = 3 x 1G* Pas, the maximum geoid rate increases from
0.62 to 0.71 to 0.78 mm/year for multiplying thee ithicknesses by 1.0, 1.5 and 2.0
respectively (see Figure 6.22b).

a) L2-misfitn = 1 x 10% b) L2-misfit = 3 x 102
40¢ 40r
—x 1.0 . |—x1.0
35} ---x 15 35} “]---x 1.5 M
X 2.0 o ©x2.0
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e e e e e mm .. / ~.="
10¢ 10t \/
5— . : y : 5— ; : ; :
=355 -35 -34.5 -34 -335 -35.5 -35 -34.5 -34 -33.5
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e 21
¢) L1-misfitn =1 x 102 . d) L1-misfitn =3 x 10
4r — 10 —x 1.0 v
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Logl0 A
Figure 6.23: RSL misfit for the 12 sites of Fig@&d7. (a)y = 1 x 1G* Pas and (by = 3
x 107! Pas, c) L1-misfity = 1 x 16" Pas, d) L1-misfity = 3 x 16" Pas.
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It is interesting that the best fitting models withscaled ice thicknesses in Figure 6.23a
and Figure 6.23b are found for a valuefoEmaller than that in model | and Il which
were best fitting models determined with ICE-5GisTtould be the result of the larger
ice mass in ICE-5G which agrees with a rheology thanore non-linear. Figure 6.24
shows the individual sea level curves for the Wgghg model in Figure 6.23b. The
worse fit of the scaled ice models is not suppoltgall of the curves. For example, fit
for e.g. Ottawa Island and East Axel Heiberg Islanchther good, which agrees with the
finding of Wu (1999). On the other hand, the fipsor in Newfoundland, and the data at
the peripheral bulge are indifferent except for BBaswhich does not permit a large
increase in ICE-4G height. Comparing Figure 6.2€hviHigure 6.24 one can conclude
that the shape of the sea level curves better matitte observations when the ice history
is delayed as opposed to increased. This is maableoin the first row of both figures,
which are the sites in the center of the ice sheet.

The model with lowest RSL misfit among those inigeged with a modified
ICE-4G ice history hag = 3.3 x 10°° Pa®s™* andy = 3 x 1G* Pas, with 0 (or 1 ka) delay
in glaciation, depending on whether L1 or L2-mis$itused. However, this model still
has a low uplift rate of 5.3 mm/year (or betweeB &d 7.5 mm/year for 1 ka delay).
Note that this model increases the uplift rate (mttthe geoid rate) compared to a purely

non-linear rheology model, as shown in Figure 6at3CE-5G.
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Figure 6.24: RSL predictions for the 12 North Angan sites in Fig. 9, using the ICE-4G
model with increased ice heights= 3.3 x 10 Pa’s* andy = 3 x 16* Pas.

6.7 Summary of RLS and uplift rate constraints

The best RSL fit with a GIA model based on ICE-5@&hwcomposite rheology is
obtained for a model with = 3.3 x 10°° Pa’s* andy = 9 x 13" Pas, see Table 6.3.
Although this model has a larger misfit value ththe best-fitting purely non-linear
rheology (L1-misfit value: 2.2), the model doesregase uplift rate and geoid rate with
respect to the purely non-linear rheology modelthvdi value ofA smaller than 3.3 x 10
% pa’st it seems possible to have an acceptable upliftgeuid rate at the expense of a
slightly worse RSL fit. There is also a possibilityat the RSL misfit for composite
rheology decreases below that of a purely non-tineaology model if more viscosities
are investigated, particularly between 3 ¥'1Pas and 9 x 6 Pas or higher than 9 x

10°* Pas. However, since higher values of the Newtowiscosity are not investigated in
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this thesis due to time constraints, it is possibi@ a better fitting model can be

obtained with higher values of the Newtonian vistyos

Table 6.3: L2-misfit/L1-misfit with respect to siten Appendix E for all models with
ICE-5G. The second row in each cell gives the tipife/geoid rate.

mantle viscosity
A [Pa’sT] 1 x 16 Pas 3 x 16" Pas 9 x 16' Pas
3.3x10% 19.0/3.5 18.8/3.6 18.9/3.6
1.46/0.11 1.22/0.13 1.24/0.15
3.3x10™ 11.7/3.0 13.3/2.8 11.9/2.8
2.36/0.17 3.17/0.36 3.24/0.42
3.3x10% 12.1/2.7 11.82.3 10.8/2.3
5.04/0.34 7.40/0.85 7.45/1.00
3.3x10%° 21.7/2.7 13.6/3.0 14.3/2.7
7.87/0.52 14.10/1.64 14.35/2.05

From Table 6.4 it follows that the best fitting nebavith ICE-4G is found foA =
3.3 x 10 Pa®st andy = 3 x 13" Pas. Higher viscosities are not investigated duénte
constraints. L1-misfit gives an even lower misfihem 1 ka delay is applied to the ice
history, which also increases uplift rate from %7somewhere in between 5.7 and 7.5
mm/year. Moreover, Figure 6.20 tells that a bdfitas obtained for sites in the center of
the ice sheet when 2 ka delay is applied. Suchydetzuld increase the uplift to 7.5
mm/year.

Increasing the ice thickness does not lead to ibéttevith RSL data (see Table
6.5) and leads to marginal increase in uplift aedid rate (see discussion of Figure
6.21). Although Figure 6.24 shows that smaller inisdlues are obtained for sites in the
center of the ice sheet margin, the shape of tineesudoes not match the shape of the
observations very well, with the exception of EAsel Heiberg Island. Misfit values for
both an increase of ice thickness and delay iniafiac increases are not shown here, but

the misfit values increase for all models.
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Table 6.4: L2-misfit/L1-misfit with respect to ssten Figure 6.17 for all models with
ICE-4G with 0, 1, and 2 ka delay.

0 ka 1 ka 2 ka
A [Pa’s] 1x10" [3x10" |[1x10" |[3x16" |[1x10" |[3x 16t
3.3x10* 14.7/3.3 | 12.2/3.0| 12.1/2.9] 9.6/25| 14.5/2]8 1140/2.
3.3x10% 10.1/2.6 |7.5/2.2 [9.9/25 | 8.42.1 |[18.5/29 | 16.2/2.7
3.3x10%® 9.7/26 | 9.7/26 | 11.9/26] 11.9/2.6 25.1/32 25.1/3.2

Table 6.5: Same as Table 6.4 for 1, 1.5, and 2 @hickness scaling.

x 1.0 x 1.5 x 2.0
A [Pa’s] 1x10" |[3x10" |[1x10" |[3x10" |[1x10" |[3x 16t
3.3x 10 14.7/3.3 | 12.2/3.0| 20.1/3.5| 18.6/3.3 37.0/4]0 3587/3
3.3x10% 10.1/2.6 |7.5/2.2 [12.2/2.7 | 12.7/2.4| 24.0/3.3] 26.6/2.9
3.3x10%® 9.7/26 | 9.7/2.6 | 13.1/2.7] 23.4/2.9 26.6/3/4 19.9/2.8
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Chapter Seven:GRACE constraints on the ice loading history

The spatial distribution of uplift and gravity ratavithin the ice margin mainly reflects
the distribution and height of the ice sheet (&M, 2002a). Therefore, GRACE data can
be expected to offer constraints on the past is&ildution especially in areas where GPS
and terrestrial gravity measurements are absent.

Tamisiea et al. (2007) stated that “Our resultersfly support the multi-domal
Laurentide ice geometry advocated by Dyke and Rredtallow us to reject the mono-
domal model.” Indeed the two domes that were fownthat paper seem to be a robust
feature in the GRACE data (see Figure 5.28, andrEi§.29 in this thesis). The ICE-3G
and ICE-4G histories are characterized in that papemainly mono-domal Laurentide
ice sheets, and the ICE-5G as multi-domal. Theltesaf Tamisiea clearly favour a
multi-domal structure put forward by Dyke and Préi287). Therefore, the results of
Tamisiea et al. (2007) appear to favour ICE-5Gr(pea multi-domal model) over ICE-
3G or ICE-4G (being mainly mono-domal). Howevergufe 2.2 confirms that the
maximum gravity rate based on ICE-3G can show &kviwa-domal structure and can
thus potentially fit well to the GRACE data.

The trend estimated from 4 years of data was showause large changes in the
location of the maximum depending on whether anlyear ‘late’ four year period was
selected, probably caused by a strong increasaierwtorage from the summer of 2003
until the summer of 2006 (Van der Wal et al., 28081oreover, it is shown in section
5.4 that April and May 2002 have a big impact oa éstimated trend. In fact, it is even
claimed that GRACE monthly gravity fields from befoFebruary 2003 are of less
quality and perform worse in comparisons with inelegent data (Frank Flechtner,
personal communication, 2009). Thus, the visuatagent between the GRACE-derived
geoid rate (Figure 1 of Tamisiea et al., 2007) #rel gravity rate from a GIA model
based on the ICE-5G loading history can therefery well be a result of the short time
series, the use of the older release 1 data angsthef data of lesser quality for April and
May 2002.

Paulson et al. (2007b) also found a better agreemas found with ICE-5G than
with ICE-3G. However, their conclusion relies oreithclaims that the hydrology
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correction is only 10%, which understates the higdyp contribution expected from
the investigation of hydrology models (Van der Vealal., 2008a). Even the maximum
gravity rate in the trend estimated from 5 yearsdafa (which is more than used in
Paulson et al. 2007b) is shown in section 5.4 tosbieject to large changes in the
maximum gravity rate. Based on these argumentsjsheof GRACE data as a constraint
on ice loading history in North America needs ferthstudy, if only because the
constraint on ice loading history in North Amerieas not the objective from the
previous papers, but rather a secondary result.

In this chapter, the GRACE data discussed in chhaptell be used to answer the
guestion if GRACE data with the current time spam offer a constraint on the ice
history and which ice loading history is preferreéirst, GRACE data are validated with
GPS data and terrestrial gravity data. Followirtgg sensitivity of gravity rates to
changes in ice thicknesses is discussed. Then GRddid& are compared to uplift rate
and gravity rate in North America. Simulations grerformed to show whether the
difference in the ice loading histories of ICE-3IGE-4G and ICE-5G are resolvable.
Misfit between modeled gravity rate and GRACE-dedi\gravity rate for varying mantle

viscosity and varying Gaussian smoothing radihisven.

7.1 Comparison between GRACE and GPS data

Wabhr et al. (2000) found a relation that approxesatell the relation between spherical

harmonic coefficients of uplift and spherical hamw coefficients of the geoid rate

(Stokes coefficient€,, and S,,,) for GIA:

UIm :M CIm (7 1)
Vi 2 (S '

where U, and v,, are the coefficients in the spherical harmonic espan of the uplift
rate. In Figure 7.1 it is verified how good thispagximation is for model i3_8-60. The
uplift rates computed directly from the model aitlel smaller than the uplift rates

computed with equation (7.1)
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Figure 7.1: (a) Uplift rate for model i3_8_60. (Wplift rate computed from geoid rate

coefficient according to equation (7.1).

As in Rangelova (2007), this relation is now applie compute uplift rates from
the GRACE results in section 5.4. Differences betwthe observed uplift rates and the
uplift rates converted from GRACE (the results eft®on 5.4.1.1 are shown in Figure
7.3.

Figure 7.2: GRACE-derived gravity rates (Figure8).2onverted to uplift rate according
to equation (7.1). The Lambert et al. (2006) alisodpavity sites are indicated with stars.
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To obtain the GRACE-derived uplift rates at the GI&ations in Figure 7.3, the
grdtrack routine in GMT (Wessel and Smith, 1991) is usedjiciw uses bicubic
interpolation. Note that the Stokes coefficientanirGRACE are filtered while the GPS
data are not. There is very good agreement betlwetindata sets around Hudson Bay,
where the two peak gravity rates are located, afhdGPS observations are few and far
apart there. The site with the largest differerinethe Canadian Prairies, could be an
outlier or a strong local effect. However, theraisonsistent difference west and north-
west of the Great Lakes which is too large to bglaared by the effect of filtering. Here
an increase in water storage in this area (suckeas in Figure 5.4) is a possible
explanation for the larger uplift rates in GRACE.

Figure 7.3: Observations at the continuous GP®atabf Sella et al. (2007) minus uplift
rate from GRACE interpolated at the same statidis length of the green arrow
corresponds to a difference 10 mm/year. Stars éghetLambert et al. (2006) sites.

7.2 Comparison between GRACE- and absolute gravity data

Terrestrial gravity data in North America is of hignough quality and long enough time
span to be useful for GIA studies (Lambert et 2001). Therefore, to allow a second
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assessment of the GRACE results they are comparedwith results from terrestrial
gravity data from Lambert et al. (2001, 2006). Tbeations of the measurements are
plotted in Figure 7.2. In the next section a congmar will be made with the map of
gravity rates derived from the Canadian Gravityn8tadization Network (CGSN)
(Pagiatakis and Salib, 2003). Terrestrial gravisyadare mostly sensitive to local effects
(see section 4.4). This can be both an advantagaube the large scale hydrology
behaviour does not need to be known, or a disadganbecause the local water and
snow distribution needs to be known, among others.

Lambert et al. (2001) present measurements witA dihd FG5 absolute gravity
measurements across the southern margin of theehtde ice sheet. It was shown that
ICE-3G in combination with viscosities of 1 x4®as and 2 x & Pas in the upper and
lower mantle, respectively, under predict the gsameasurements at some sites. This
finding was one of the reasons that motivated &e(#004) to add extra mass in the ICE-
5G model, in the form of a large Keewatin ice damthe Yellowknife region. However,
later a large inter-annual term in the data wasidoand corrected for (Lambert et al.,
2006). The more recent data set is used here.

To compare the gravity rates measured at the dafgrraurface with those
obtained with GRACE, both GRACE-derived and temaktgravity rates will be
converted to uplift rate. For terrestrial gravitges caused by GIA it is observed that the
gravity to height ratio is close to that of theeeff of free-air correction in combination
with a Bouguer reduction with density equal to tbhthe upper mantle (see review in
Rangelova, 2007). Here a ratio of -0.18 pGal/mnRahgelova (2007), Figure 2.9, is
used, which is derived from gravity rates from tRagiatakis and Salib (2003) and
Canadian Base Network (CBN) GPS observations (Hestoal., 2006) that are within
100 km of the CGSN sites. It is preferred to use namber for the whole GIA area, as
opposed to using an individual gravity-to heighiador each point. Such a procedure,
used e.g. in Steffen et al. (2009), might be proméocal effects in either the GPS or
gravity measurements and is sensitive to uplifegabr gravity rates with a small

magnitude.
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Errors in the uplift rate are obtained by propagatine errors in the gravity
rates from Lambert et al. (2006) and the errohim gravity-to-height ratio of Rangelova
(2007), as follows:

N N\ 2
(i) () 7
Where r and subscriptr refer to the gravity to height ratio, ardis the standard
deviation.

The GRACE-derived gravity in Figure 5.28a is comedrto uplift rate with
equation (7.1). To account for loss of signal tlglodiltering of the GRACE data, the
same filtering that is applied to GRACE data i®applied to datasets or model outputs
if these are compared to GRACE data. However, hiigl to apply the GRACE filters to
scattered point data in a straight forward wayrdfare an attempt is made to recover the
signal that is lost by the filtering of the GRACHtd (similar to section 5.5.3) and correct
the GRACE data for this loss. The spherical harmenpansion of GIA model i3_8 60
is truncated to degree 60 and subsequently GauSkered with a 400 km halfwidth.
This truncation and smoothing results in a chanfgsignal at each of the locations in
Table 7.1. The relative change can be used to atoiine GRACE data by applying the
inverse change. For example, if the Gaussian ifilgeteads to a reduction in signal of
5%, then the GRACE-derived gravity rate for thataon is multiplied with 1.05 to get
the ‘unfiltered’ gravity rate. This correction isther crude, but sufficient for this
comparison in which we only want to identify difé@ices much larger than the error bars.

Uplift rates derived or taken from Lambert et &0Q6) data, Sella et al. (2007)
and Pagiatakis and Salib (2003) are shown in T@ble Note that the Lambert et al.
(2006) data agree with the GPS data in Churchdl Ein Flon, which indicates that the
removal of the interannual signal in the absolutavigy data made the data more
consistent with GPS measurements. The GRACE-dertipéfl rates agree with the uplift
rates derived from the absolute gravity measuresneiithin the errors bars, with the
exception of the measurements in Flin Flon. GRAG$0 das larger uplift rates at

Pinawa and International Falls. This could againelzplained by a larger remaining
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hydrology signal in GRACE. However, local effects the terrestrial gravity data

could also play a role, and violations of the agstiom of a constant gravity to height
ratio.

Table 7.1: Uplift rates from three sources: (i) Alse gravity rate (Lambert et al., 20086,
L2006) converted to uplift rate with the gravity eight ratio of Rangelova (2007), p.
41; (i) Gravity rate (Pagiatakis and Salib, 20@8jhverted to uplift rate with the same
ratio; (iii) uplift rate from Sella et al. (20073¢ee Figure 7.3; (iv) uplift rate from GRACE
(Figure 5.28a), converted with equation (7.1).

L2006 PS2003 S2007 GRACE
Churchill 10.49 +/- 1.4 9.27 10.7 +/- 0[6 9.05
Flin Flon 2.80+/-1.51| 5.26 1.7+/-0.0 7.43
Pinawa 2.77 +/-1.03| -2.13 | -0.2+/-0{8.85
International Falls| 2.55 +/-0.79] -2.41| -- 2.79
Wausau 1.94 +/-1.38| -- -- 0.27
lowa City 0.44 +/-1.43 | -- -- -0.31

" uplift rate for the nearby site Lac DuBonnet igdis

7.3 Comparison between GRACE and CGSN data

Pagatakis and Salib (2003) performed a readjustn@ntthe Canadian Gravity
Standardization Network (CGSN) using as constraheggravity measurements and their
rates of change derived from absolute gravity mesgmseants. The dataset spans a period
of 40 years, longer than the absolute gravity messants from Lambert et al. (2006)
and the GPS uplift data.

The difference between the gravity rates from Ragia and Salib (2003) and
GRACE data is shown in Figure 7.4. GRACE has smaliift rates over the south-west
portion of Hudson Bay, but more signal west andmarest of the Great Lakes. This is
the same region where also GPS data show smaliéisypompare Figure 7.3. Note that

in this area also the uplift rate disagrees wita GRACE-derived gravity rates (see
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Figure 7.3). As is concluded in the discussionhait ffigure, the disagreement could
be due to effect of remaining continental waterage changes (which are not described
by GLDAS) in this area, which is picked up by th&®A&CE satellites but not by the
terrestrial measurements because of their longasarement span or because they are

corrected for hydrologic effects.

Figure 7.4: Uplift rate derived from Pagiatakis éalib (2003) minus uplift rate derived
from GRACE data, in mm/year.

Summarizing the conclusions from this and the mnevisections: GRACE-
derived uplift rates around Hudson Bay are sligigipaller than uplift rates from
Pagiatakis and Salib (2003) and Sella et al. (200#)the other hand, more signal is seen
in GRACE compared to the three terrestrial datanmarea west and north-west of the
Great Lakes region. Remaining hydrology signal amed in the GRACE data could

account for this mismatch.

7.4 GRACE and ice model: simulations

Before conclusions are drawn about the past iceilalision it is necessary to see how

past ice distribution relates to present day gyandte. Increase in ice thickness is linearly
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related to an increase in present-day gravity bateause of the linear rheology. A
small sensitivity study is described in section.¥.4vhich investigates the relation
between change in ice thickness and change intgnate for different viscosities.

7.4.1Sensitivity of gravity with respect to ice heights

In the original ICE-4G model, ice thicknesses gpecsied for blocks with a certain
length and width. Here, the block which has thegdat ice thickness at LGM is used for
the sensitivity study. Ice heights at this block &l time steps are multiplied by a factor
of 1.1 to 2.0 in steps of 0.1. Other modificatimuaild be selected, such as changing the
time of LGM or changing the rate of decay, but tisahot pursued here. The viscosity
profile used is the one that provides best fiti® GRACE data in combination with ICE-
4G (see section 7.6), with upper mantle viscositydax 1G° Pas and lower mantle
viscosity of 128 x 1€ Pas. Variations of the upper and lower mantle osig with
respect to this model are also investigated.

Figure 7.5 and Figure 7.6 show the change in graw@rsus the scale factor
applied to a block that has the highest ice thiskna the original ICE-4G ice model. The
relation between increase in ice thickness, andirtbeease in gravity is indeed linear.
That means that an increase in gravity translateslocal increase in past ice thickness
independent of the local ice thickness itself. Ttibe differences between the GRACE-
derived gravity rate and the gravity rate from samael can be used to improve the ice
model, provided the scale factor is known. It beesrnglear that a low upper mantle
viscosity can almost nullify the effect of incredsee thickness. However, such a low
upper mantle viscosity would probably also leadupdift and gravity rates that are too
low. A change in lower mantle viscosity has mudsleffect on the slope, because of the
small horizontal size of the blocks. Since the éxascosity profiles is of course
unknown, that scale factor can be used that leadseasonable total melt water
predictions. However, such improvement of the ic&let is left to future work.
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Figure 7.5: Relation between scale factor for liekiness and increase in gravity rate, for
a block at location of maximum ice thickness soedist of Hudson Bay (see Figure 7.9)
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Figure 7.6: Same as Figure 7.5 for GIA models wilying upper mantle viscosity.

7.4.2Simulations with known spatial patterns

Presence of continental water storage changesatikahot corrected for can mask the
influence of the ice loading history. To investigab what extent this can happen a

simulation is performed with observations consgstof the sum of a GIA model, the
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secular trend in a hydrology model and errorss Hgsumed that the spatial pattern of
GIA and the spatial pattern of hydrology are knowuat, these patterns can be multiplied
with unknown factorsx andp, respectively. This is a strong assumption whiglonly
useful to get a first idea of the mixing of the hyldgy and GIA signal. The question is,
in the presence of this unknown factor, do we petdmallest misfit for the GIA model
that is used in the simulated observations, irrethpe of the errors and the hydrology
pattern?

We determine the factors andf by a least-squares procedure in which these
parameters are to be estimated. The observaticatiequs
|=Ax +o, (7.2)

wherel is a vector that contains the simulated gravitg @servationsx contains the

a .
scale factorsx andp: x:{ﬂ} A contains the (assumed know8)JA patterna and

hydrology patterrb: A :[a b], and e is a vector that contains the errors as in section

4.3.3. The objective is to find the valuesoohndg that minimize the difference between
observations and scaled GIA and hydrology modebs east-squares sense. In this way
it is possible to account for some uncertainty im knowledge of GIA and hydrology.
Because of correlation between the GIA patternthedchydrology pattern, some features
in the observation can be fitted either by scalihg GIA pattern or by scaling the
hydrology pattern.

In this simulation, the observations are formedabgombination of the i3_8-60
model and any of the hydrology models: GLDAS, WGHBRC. The vectoa consists
of a GIA model (i3_8-60 or i5_2-60) divided by itseaximum value, antl consists of the
trend in one of the hydrology models divided byntaximum value. For the errors, trend
residuals are used, as described in section /B grid for the simulation is formed by
the 554 pixels of Figure 5.18 and the time perimdited by the availability of hydrology
models and lake water levels, is August 2002 — N 2007. The Gaussian filter
halfwidth is 400 km.

As an example of the minimization procedure, wheimg model i5_3 20 foa

and WGHM ad, the maximum gravity rate values are 0.72 and @egpectively. In this
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case, the values ef andp for which the least-squares residuals of equaffod) are
minimized are 1.71 and 0.62 respectively. Thus, nhiaization procedure leads to
magnitudes that are quite different than the moftels which the patterna andb are
derived. In the following, only the fit between thgnthetic data and the ‘model’ with the
optimal parametera andg are discussed. The values in Figure 7.7 show themzed

misfit between the observations and the ‘modeffindel as:

i—i L, (7.3)

wheren is the number of pixels for the simulated datatiNGIA model i3_8-60 and
hydrology model GLDAS used as observations, thefitsigor a and b for different
hydrology models, are shown in Figure 7.7. Of ceuthe smallest misfit occurs when
i3_8-60 and GLDAS are also used as vectoandb respectively. The good news is that
for all hydrology models, the smallest misfit istaibed with the correct GIA model.
However, the misfits for model i5_3 20 with WGHMeaalmost as small as WGHM
with i3_8-60.
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Figure 7.7: Misfit (defined in equation (7.3)) foases when different GIA models are

used for vectoa, for different hydrology models.
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Thus, in the optimistic case that both GIA and loyolyy patterns are known, the
imperfect knowledge of hydrology or the viscositpide can have as large an effect on
misfit, as the difference between GIA models withotdifferent ice models. This
simulation with the optimistic scenario that bothAGnd hydrology patterns are known
should caution that uncertainty in hydrology andcuesity possibly prevents the

difference in ice models to be resolved throughigfitcomparison.

7.4.3Simulations with known spatial patterns and changjrGaussian filter halfwidth

The previous section led to the conclusion thatewainty in hydrology is almost as
important for misfit, as uncertainty in the ice neted However, the simulation in the
previous section was done for a constant Gaussiantalfwidth. Possibly, by adjusting
the filtering, use can be made of the differentctaé signatures of the GIA model and
the hydrology model (Figure 5.16): GIA degree atople peaks at lower wavelengths
than continental water storage. Therefore, moreasimog can potentially bring out the

GIA signal relative to the hydrology signal.
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Figure 7.8: Misfit for the simulation described time text, for varying Gaussian filter
halfwidths.
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This is investigated in Figure 7.8 for the sameutations as the previous section. As
is expected, for large halfwidths the curves f& shhme GIA models converge so that the
GIA models determine the difference in misfit. Haee the difference in misfit value is

small; it is unlikely that such a small differenzan be discerned in practice.

7.5 GRACE and ice model: results

The simulations from the previous section show thafit can not be expected to clearly
discriminate between GIA models in the presencenakrtainty in the hydrology model.

However, the real GRACE data should be investigadeske if very different ice models

can explain the GRACE data as the simulations sigdd#ere, the first subsection

investigates the variation of the location of theximum gravity rate, since the location
is less sensitive to smoothing than the magnitudthe@ maximum gravity rate. In the

second and third section, misfit is computed betweedels and the GRACE and GPS
data, respectively.

7.5.1Location of maximum with no scaling in hydrology ndel

It is shown in section (5.4.1.1) that the magnitedeéhe maximum in the gravity rate
estimated from GRACE data varies with the lengtlthef GRACE time series. Here, the
location of the peak magnitude as a function of tthree series will be investigated as
follows. The GRACE data are synthesized on a 1dedree grid. The pixel in this grid
which has the largest gravity rate is plotted igufe 7.9a and Figure 7.9b for gravity rate
trends estimated from 4 and 5 years of GRACE datspectively (April and May of
2002 are not used). Different hydrology modelsrareoved, of which GLDAS and CPC
include water level variations in large lakes (seetion 5.1.3). The location of the
maximum ice thickness and the second maximum inthigkness as determined by
visual inspection of the maps of Dyke and Pres87)%nd the locations of the two
maxima in ice thickness for the ICE-3G, ICE-4G #@#-5G models are also indicated.
The scatter of the location for different four yéiane periods is small, indicating
that the location of the maximum is fairly robusthwrespect to different 4 or 5-year time

series being used. Moreover, it can be seen thabvviemg GLDAS or WGHM leads to
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the location of the maximum that agrees with a mmaxn ice thickness at the

Labrador ice dome (except one four year periodVit@&HM). Only removing the CPC
model leads to a maximum gravity rate coincidinghvtine Keewatin ice dome. The same
observations can be made for the 5-year trendgargi7.9b. Since GLDAS and WGHM
seem to be the more advanced models (although lo&d perform better than WGHM
over the Nelson River basin, see Table 5.2), tlvation of the largest ice thickness
coinciding with the Labrador ice dome is more lkélased on GRACE data. This also
agrees with the findings of Dyke and Prest (198Wte also that the location of the
maximum derived from GRACE agrees better with theation found in the ICE-4G
model and the ICE-3G model which in turn agreedvetthan the ICE-5G model. The
location of the secondary dome in GRACE agreesbetith ICE-5G (not shown here)
as ICE-3G and ICE-4G predict a weak secondary darttee center of Hudson Bay.

a) 4-year trend b) 5-year trend
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Figure 7.9: Location of the maximum estimated aftemoving different hydrology
models. (a) trend estimated for a 4-year windowtr@nd estimated for a 5-year window.
The location of maximum ice thicknesses at LGMha tCE-3G, ICE-4G and ICE-5G

models and the location of the domes in Dyke arestP{1987) (determined by visual
inspection) are also indicated.
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7.5.2Model misfit with respect to GRACE data

The simulations in sections 7.4.2 and 7.4.3 shotked it is unlikely that misfit from
GRACE data can distinguish between different icadet® in the GIA modeling, in the
presence of uncertainty in continental water steramd if uncertainty in the GIA model
and hydrology models is accounted for by scalingwklver, based on the excellent
agreement between GRACE and the study of Dyke aedt 1987) in the previous
section, it can be concluded that the uncertaintizyidrology models is not as large as
assumed in the simulations of section 7.4. Theegfae proceed now by assuming that
the influence of hydrology can be reasonably weBatibed by one of the global models
used in this thesis and we compute misfit betweBAGE data and GIA models with the
different global ice histories used in this thesI€E-3G, ICE-4G and ICE-5G.
Uncertainty in GIA models is now introduced by vargy the mantle viscosity. The
amount of smoothing is varied by changing the Gausglter halfwidth, following the
results in section 7.4.3 which show that for ineexh halfwidth, the effect of the
hydrology model on misfit decreases with respec¢héd of the GIA model.

Since GIA data can likely only constrain two layensa global GIA model
(Paulson et al. 2007a), only the viscosities of tipper and lower mantle are varied.
Furthermore, the relaxation is sensitive to theatdgm of the viscosity (e.g. Paulson at
al. 2007a), so the viscosity is incremented byaofaof two, starting at a value of 1 x
10°°Pas up to 256 x tBPas. The influence of lateral variations or nowedir rheology is
not investigated here, but deserves attentionturdéuvork on this topic.

To study whether the misfit numbers are the resélthe particular spatial
patterns in the hydrology models, the minimum nigfe. the lowest misfit value among
all the models with upper and lower mantle visgosit the range mentioned in the
previous paragraph) is plotted for different Gaasdilter halfwidths in Figure 7.10. The
minimum misfit is not always found for the samecasity profile, but the focus is on the
ice loading history. The monotonic decrease ofigect5.3.1) does not appear in this
figure, which could indicate that there is consatee signal in the GRACE data which is
not included in the simulations of section 7.4.3.iA section (5.3.1), the misfit decreases
when the Gaussian filter halfwidth is increasedrrb00 km to 1000 km. Clearly, the
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ICE-3G and ICE-4G loading history have the lowessfin for all halfwidths.
Especially the larger misfit of ICE-5G for largelfsadths (>700 km) suggests that the
basic shape of ICE-5G (with maximum ice thicknessstwof Hudson Bay) does not
match the GRACE-derived pattern. Using GFZ insteB€ SR data (not shown) gives
similar results, but for CPC removed (Figure 7.1tbigre is a sharp increase in misfit, the

reason for which might be related to the deficiea@f the CPC model.

a) GLDAS b) CSR-CPC
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Figure 7.10: Minimum misfit out of the range of net&l with upper and lower mantle
viscosity varied in the range of 1-256 x*4®as for varying Gaussian filter halfwidths,
for GIA models with three different ice loading tuses. (a) GLDAS is removed; (b)

CPC is removed.

7.5.3Model misfit with respect to GPS uplift rate data

Compared to GRACE data, GPS uplift rate data hdne advantage of being less
sensitive to large scale continental water stoxdgages and having longer time series.
Misfit between GIA models and uplift rate data frddella et al. (2007) is shown in
Figure 7.11 and Figure 7.12 for ice models ICE-BIE-4G and ICE-5G. The best fitting
viscosities are the same for ICE-3G and ICE-4G:enppantle viscosity of 8 x £BPas,
and lower mantle viscosity of 32 x #@Pas, while for ICE-5G the upper mantle viscosity

is a factor of two lower. The best fitting viscgsialues obtained with ICE-5G are
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reasonably close to a two-layer approximation of2/Model of Peltier (2004), with
upper mantle viscosity of 9 x {bPas, and lower mantle viscosity of 32 ¥1Bas (see
Paulson et al. 2007b) but note that the GPS datseté et al. (2007) are not used for
constraining ICE-5G. Table 7.2 shows the misfitueal for the best fitting models.
Similarly to what was found for the GRACE misfitajsfit values for ICE-3G and ICE-
4G are considerably lower than for the best-fittingdel of ICE-5G.
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Figure 7.11: Minimum misfit with respect to uplifite data of Sella et al. (2007) out of
the range of models with upper and lower mantleosity between 1-256 x 19 for GIA
models with (a) the ICE-3G model (b) the ICE-4G mlodThe minimum misfit is

denoted with a circle.

What about the terrestrial gravity data sets? FBéiieg gravity from the CGSN
and uplift rates from the CBN compare well with tli&E-3G model (Pagiatakis and
Salib, 2003, Henton et al., 2006,). The uplift satesulting from the combination of these
datasets in Rangelova (2007), fig. 4.16, gives tepathat resembles more the ICE-
3G/ICE-4G history than the ICE-5G loading histolty.Rangelova (2007) Figure 5.16,
there is still a reasonable match between GRACHE@rgravity rate (from a shorter
GRACE time period than used here) and ICE5G-VM2weNer, the solution which

combines GRACE data with terrestrial data does stmiw the large signal west of
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Hudson Bay that is present in the ICE-5G/VM2 modeid shorter time series of
GRACE data are used there.
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Figure 7.12: Same as Figure 7.11 but for the ICEvigdel.

Table 7.2: Viscosities and misfit of best fittingodels for the three global ice loading

histories.

ICE-3G ICE-4G ICE-5G

num [x 107° Pas] 8 8 4
nu [x 10°Pas] 32 32 32
v 1.86 1.98 2.83

7.6 Best fitting viscosity

A robust viscosity profile can not be inferred frgresent-day uplift or gravity rate data
alone; RSL data are a necessary data set becaegettend in time. However, it is
interesting to compare the viscosity profile thast fits GRACE data with other
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estimates in the literature. If agreement exis$tat would strengthen the conclusions
about the fit of different ice histories shown pirevious section.

The minimum misfit for ICE-4G with smoothing varidcbm 200 to 500 km
Gaussian filter is found for upper mantle viscosify4 x 13° Pas and lower mantle
viscosity of 1.28 x 1% Pas. The same model provides a best fit whenGEe3G model
is used, for a range of halfwidths from 200 to &@. This is close to the values found
with ice models ICE-1, ICE-3G and ICE-4G in othaurdses, see the overview in Table
7.3. An exception is the VM1 model of Tushinghand &eltier (1991) which has a much
smaller viscosity contrast. Results are also soraewdifferent from Paulson et al.
(2007b) where ICE-5G is used, but it is noted thbet a more ductile upper mantle and
stronger lower mantle also has a small misfit wehkpect to the data sets employed in
that paper. More reasons for the discrepancy &reiske of ice models that are biased by
the viscosity profile used in the inversion of R&ata (Kaufmann and Lambeck, 2002)
and possible trade-off effects between differepeta (Paulson et al., 2007a).

As noted before, the best fitting model is not veelhstrained by uplift rate alone.
However, such a model can be useful as interpokidace of the uplift rates. Such an
interpolation offers advantages compared to sttdigiward interpolation of the uplift
rates: (i) it is less sensitive to local effects;if introduces extra information (ice loading
history, elastic behaviour of the Earth, relaxatiohthe Earth) which can help to
interpolate uplift rate across regions that are wetl sampled by GPS observations.
Thus, the uplift rate from a GIA model which beg$ IGPS data can be interpolated at
desired locations in the GIA area, so that estim&de glacial isostatic uplift rates can be
included in geomorphological models or local stsdian der Wal et al., submitted).
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Table 7.3: Best fitting viscosity profiles from eeted studies on GIA in North
America: P2007 = Paulson et al. (2007b), W2006 =Ifvéo al. (2006). KL2002 =
Kaufmann and Lambeck (2002). MF2002 = Mitrovica &uwdte (2002).

num [107° Pas] v [107 Pas] ice model data used
P2007 53 23 ICE-5G selected RSL,
GRACE
W2006 3.2 160 ICE-3G RSL, uplift,

gravity and tide
gauges rates at

Churchill

KL2002 7 200 ICE-P RSL, True Polar
Wander,C,,,
gravity and uplift
rates in
Fennoscandia

MF2002"  3.9-0.43 65-110 ICE-3G RSL, mantle
convection

TP1991 10 20 ICE-3G RSL

GRACE 4 64 ICE-3G gravity rates

this thesis (GRACE)

GRACE 4 128 ICE-4G gravity rates

this thesis (GRACE)

GPS 8 32 ICE-3G/ICE-4G  uplift rates

this thesis

Y as cited in Wolf et al. (2006).
2 for ice sheets other than the Laurentide ice shibetr ice models are used.

7.7 Discussion on the Laurentide ice history

The newer ICE-5G ice loading history representingmmrovement compared to the older
ICE-4G and ICE-3G model in many ways (Peltier, 206%r example, while ICE-4G ice

thicknesses in the interior of North America weomstrained solely by relative sea level
histories and the ice margin chronology of Dyke @rest (1987), ICE-5G includes
newer ice margin chronologies and a 3D thermo-m@chhice sheet model of Tarasov
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and Peltier (2003). Furthermore, ICE-5G containpromements to other ice sheets
which are not discussed here, because the focessen North America.

Based on newer RSL observations at Sunda ShelfaBdnaparte Gulf, it was
found that ICE-4G contains too little ice. The nmgsice was placed on the Keewatin ice
dome in North America based on two geodetic dgtagyare invoked by Peltier (2004):
Very Long Baseline Interferometry (VLBI) data froArgus et al. (1999), and absolute
gravity data from Lambert et al. (2001). Uplift agichvity rates presented in those papers
were underpredicted by the ICE-4G model. Using ipleltruns of the Tarasov and
Peltier (2003) thermomechanical ice sheet modelthicknesses were fitted to the new
ice margin chronology and the gravity rate and Vidata, which presumably resulted in
the ice thicknesses shown in Figure 7.13.

A critical look at the VLBI and gravity data sets warranted. VLBI data at
Yellowknife, is 8 mm/year +/- 5.5 mm/year (of Arget al., 1999, p. 29,086). An
estimate with such large errors bar can be matahdGIA models with a great variety
in ice thickness. Tarasov and Peltier (2004) dieeYLBI estimate as 8 mm/year +/- 1.5
mm/year, possibly as a result of an extension ef W.BI time series that was not
published elsewhere. As mentioned before, thelaeguavity rates of Lambert et al.
(2001) were corrected for an interannual signaLambert et al. (2006) such that the
ICE-5G/VM2 model overpredicts the gravity ratessigure 9 of Lambert et al. (2006). A
better fit with the gravity rates is obtained byaafjusted version of the ICE-3G model.

One of the results of the inclusion of the ice dyiial model is the occurrence of
fast ice flow in Hudson Bay, which results in aioggof local minimum ice thicknesses
over Hudson Bay. ICE-3G and ICE-4G have a local imam right in the center of
Hudson Bay (see Figure 7.9). GRACE seems to cortfieriocal minimum, because the
maximum gravity rates are located on the Labraddrikeewatin ice dome. GRACE data
in fact confirms the multi-domal nature of ICE-5Gtlwa Keewatin and Labrador ice
dome, as already concluded by Tamisiea et al. (20@Gwever, ICE-5G contains such
thick ice extending from the Keewatin ice dome bkeast-ward, see Figure 7.13a, that
for any viscosity profile the maximum uplift andagity rate will be located west of

Hudson Bay; see Figure 7.13b. Such a maximum is@enn in the GRACE data (Figure



170

5.28). The bulge extending over Lake Winnipeg cah lme seen in the GRACE-
derived gravity rate when gravity rate from anytloé hydrology models is subtracted.
This difference in patterns manifests in the highesfits for ICE-5G as in Figure 7.11.

Note that Figure 21 in Peltier (2004) shows maximupiift rate below 14
mm/year for ICE-5G/VM2 (which is likely ICE-5G veos 1). The same plot is shown in
Tarasov and Peltier (2004) for one of their be#infy models. However, the ICE-
5Gv1.2/VM2 results published on the Special Bureail.oading website which are used
throughout this thesis have a much larger maximuntifturate of 17.4 mm/year, see
Figure 7.13b.

Figure 7.13 (a): Ice height prescribed by the IG&+5.2 model at LGM, 26 ka BP, (b):
uplift rates of the ICE-5Gv1.2/VM2 model.

Is there evidence in the literature for or agathst large ice thicknesses at the
Keewatin dome as specified in ICE-5G? Firstly, Dyled Prest (1987) state on page
255: “Crustal depression remained much larger adjato western Labrador Ice than
adjacent to Keewatin Ice at 8 ka because muchefdhovery from the Keewatin load
had been achieved before 8 ka. Recovery from theddmr load was comparatively
delayed.” The fact recovery from the Labrador wad was delayed does not support the
larger ice thicknesses in Figure 7.13a.

A comparison of two thermomechanical models witfloav law that fits the

observations in Greenland and Antarctica resulted maximum ice sheet thickness of



171
3805 for a model by Tarasov and Peltier and 422fbma model by Marshall and
Clarke, (Marshall et al., 2000). In the Marshallda@larke model a single dome is
centered on the south of Hudson Bay. Thick ice 283 is found also by Tarasov and
Peltier (1999) if they tune their model to fit Gnéend ice. However, in that case,
complete deglaciation is not achieved in the situteand the margin of the ice does not
extend far enough south.

Tarasov and Peltier (2004) impose the gravity rateLambert (2001) as
constraint, but are not able to achieve a perfettim because that would require higher
ice thickness. That is not likely, as the authdates given the tendency for fast ice flow
and the requirement of thin ice on Hudson Bay tisfyasea level requirements. They
state that the VLBI observation in Yellowknife re@s ice to have been between 3.3 and
4.3 km thick. Interestingly, one of the best fittfimodels of Tarasov and Peltier (2004)
(nn2059) was incorporated in the ICE-5G model dfi€&e(2004), but ice thicknesses in
the ICE-5Gv1.2 model are markedly increased to 6860 m.

From this short review it can not be concluded that thick ice (>5500 m) in
ICE-5G is not supported by studies discussed hdnehnfocus explicitly on the ice
history in North America. Also, thick ice is appatly not a ‘natural’ feature in thermo-
mechanical ice models. Thus, the too large icekttgsses in ICE-5Gv1.2 which cause a
worse fit with GRACE data do not appear necessHngn in future work on improving
ice models, it seems sensible to decrease icentsses in the ICE-5G model. GRACE

data can help in constraining the ice heights.

7.8 Summary

In this chapter, a simulation was performed to wiether GRACE data can discern
between difference ice models in GIA modeling baseadnisfit. It was shown that, when
scaling is allowed for the GIA model and the hydgy models, the uncertainty in
hydrology models (represented by the differencevben different hydrology models)
has as large an effect on gravity rate misfit valas do different ice histories. Therefore,
insofar as the simulation is realistic, it is likehat differences in ice models can not be
discerned in the GRACE data based on misfit.
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However, the location of the two maxima in the &dapattern of the
GRACE-derived gravity rate lie closely to the cestof the ice domes at LGM in maps
constructed based on geomorphological data by RykePrest (1987). This is the case
for different hydrological corrections and for @ifént time periods of the GRACE data.
The agreement between GRACE data and a geomorpbalogtudy confirms that
GRACE data can provide meaningful constraints enptst ice distribution.

ICE-3G and ICE-4G model gives smaller misfits te BRACE data than the
ICE-5G model, for all Gaussian filter halfwidthsdafor a wide range of upper and lower
mantle viscosities. The same is found when modelscampared with GPS uplift rate
data. This is due to the large ice thickness (3 Wwest and south-west of Hudson Bay
in the ICE-5G model. Such large ice thicknessesatse not supported by studies that
consider ice dynamics.

Thus, an improved ice loading history should hawarnaller ice thickness at the
Keewatin dome than the ICE-5G model. Since GRACHEa dae shown to contain
valuable information about the past ice sheet iligtion, it seems sensible to use
GRACE data to test or constrain future versionsPtHistocene ice models in North-

America.
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Chapter Eight: Concluding Remarks

This chapter summarizes the conclusions relatinghto research questions posed in
section 1.2 and gives recommendations for futuseaech directions. The main findings
of this thesis are the following:

i) The uncertainty in GRACE data when it is used foA Gtudies is larger than
previously thought;

i) GRACE data shows two peaks in the spatial pattéthe gravity rate, with the
largest peak corresponding to the maximum ice hdighhe Quebec-Labrador
region;

i) Composite rheology, while providing a fit to relai sea-level data almost as
good as non-linear rheology, can increase uplifé rompared to non-linear
rheology.

More detailed conclusions are presented in se@i@nand recommendations for future

research are given in section 8.2.

8.1 Conclusions

GRACE data exhibits significant north-south oriehtgrors, which can be removed by
post-processing the data. The question is how rposh-processing should be applied to
extract the GIA signal from the GRACE monthly gtsvfields. Even though visual
improvement in the secular gravity rate patterniveéer from GRACE is achieved by
filtering, GIA has power at long wavelengths thabgld not be removed by a filter. In
this thesis it is shown that, by varying the spteriharmonics coefficients that are
filtered by the Swenson and Wabhr (2006) filterradé-off is achieved between removal
of GIA signal and removal of errors. Other filtersed in this thesis are shown to smooth
or remove signal which reduces the sensitivityhaf tata with respect to upper mantle
viscosity. If one wishes to use more recently depedl filters which are not used in this
thesis, these filters should be applied on simdldgga first to assess how much signal is
removed by their application.

A map of the gravity rate pattern derived from GRA@ppears to reflect the

location of past ice masses. However, it has bhewss in this thesis that the uncertainty
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in GRACE data, when used for study of GIA, is laren previously thought. For
example, hydrology appears as inter-annual signarincipal component analysis and
likely causes differences between the GRACE-deriuptift rate and the uplift rate
derived from terrestrial data.

Measurement errors in the secular gravity ratevédrirom GRACE can equally
well be described by propagated calibrated standbadations or point variances
constructed from the propagated full variance-ciewere matrix, or by the residuals after
estimation of a trend, annual and semi-annual gdenothe time series of spherical
harmonic coefficients of the monthly gravity fieltem GRACE. All of these methods
results in a small remaining error of.0 0Gal/year after applying the tuned filter.

Using simulated GRACE data it is shown that, in pinesence of uncertainty in
hydrology, ICE-5Gv1.2 is able to fit the simulatéata that is constructed using ICE-3G
almost as well as ICE-3G models. Therefore, if utadety in hydrology models is
represented by the differences between modelsjfasthling of the hydrology models
and GIA models is allowed, it can not be expechted misfit to GRACE data can discern
difference between GIA models with different icedats.

Despite the conservative results from simulatidnsas been observed previously
that the GRACE-derived gravity rate pattern corddwwo domes in North America, in
agreement with earlier geomorphological studiesweier, results in this thesis show
how earlier estimates of the gravity rate from GHA®@ere sensitive to the short (<5
years) time span and the inclusion of lesser qual#ta in 2002. Still, the two peaks
appear to be a robust feature. It is shown inttiesis that the location of the maximum
gravity rate is close to the center of Keewatin &atirador ice domes inferred in Dyke
and Prest (1987) from clues in the North Americamdscape. The existing ice models
ICE-3G/ICE-4G/ICE-5GV1.2 did not match the geomaiphical data of Dyke and Prest
(1987) as well. This clearly shows the potentiaG&RACE for improving ice models.

The observation that the GRACE-derived gravity tse two domes should lead
to a better fit with the multi-domal ICE-5Gv1.2 iceodel than with the more mono-
domal ICE-3G and ICE-4G. Also the location of mauim gravity rates better matches

the location of maximum ice thicknesses in ICE-5@whan the other models. However,
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it is observed that ICE-3G and ICE-4G have smaiisfit values for all realistic
values of Gaussian smoothing. This indicates ttathicknesses in ICE-5Gv1.2 west of
Hudson Bay (Keewatin ice dome) and southwards filoene, are too large. A literature
search found that published ice dynamic models disonot require such large ice
heights.

A completely new ice model based on non-linear Iidggois going to be a multi-
disciplinary effort. Some steps towards such a rhade made in this thesis. First, it is
necessary to get a handle on the non-linear rhgghagameters that fit well available
GIA data. It was selected to use composite rheglegych adds the creep rate from
linear rheology and non-linear flow laws. Such aalbgy is a more realistic description
of laboratory experiments which show both diffuseomd dislocation creep operating at
mantle conditions. Since the gravity rate spatettgyn is mostly determined by the ice
heights, it is sufficient to use the maximum gravite (or geoid rate as is done in this
thesis) to provide constraints on composite rheplogddition to RSL data.

With respect to a selection of 30 RSL sites, cortposheology provides a
slightly worse misfit than non-linear rheology, amdnuch better fit than linear rheology.
However, it is shown that the fit is sensitive togte stations with large misfit values. A
slightly better fit for composite rheology can als®obtained if some stations are left out,
which is a reason to not focus exclusively on rhisficomparisons with RSL data.

It is found that individual RSL curves can sometsnbe close to purely non-linear
rheology for larger values of the pre-stress expbAgfor large values of the Newtonian
viscosity, or both. The question is whether deviatstress is large enough to excite a
strong non-linear component in the deformation.geadeviatoric stresses are found
around the end of melting, and for some sites. Tfi® second reason to look at
individual RSL curves when comparing the perfornearaf linear, non-linear and
composite rheology, in addition to global misfit.

The model that best fits RSL data in combinatiothWCE-5G hasA = 3.3 x 10*°
Pa3st andy = 9 x 1G* Pas, but it is possible that better fit can beited with a higher
Newtonian viscosity, or with a viscosity betweer 30** Pas and 9 x ¥ Pas, which is

not investigated here. RSL curves for the besnfjtmodel are close to those of purely
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non-linear rheology. A contribution of linear rhegy in sea level curves for this
model is found at the beginning of deglaciatiom,dites at the margin of the Laurentide
ice history and at the center and margin of thenBscandian ice sheet. Surprisingly, for
this model, uplift and geoid rate are closer toueal observed by GPS and GRACE,
respectively, than those predicted by a model witinely non-linear rheology. This
represents an important argument in support of asitg rheology, as GIA models with
a non-linear rheology always suffered from very Ipresent-day uplift rates. This has
implications for future improvements in ice loadimigtory, as it means that less dramatic
changes to the ice loading history are requiredet@ble to fit GIA observations with a
composite rheology compared to a purely non-limkaology.

To see if fit with RSL data and geoid rate can bgroved, two simple
modifications of the ICE-4G ice loading history wenade: increasing ice thickness and
delaying the entire glaciation. Increasing thicleve$ the Laurentide ice sheet for the
model that best fits RSL data hardly increasedtuglie, and worsens the RSL fit. A 1 ka
delay in glaciation improves both RSL fit and thewal match with observations for RSL
curves at some stations, and increases uplift Tdterefore, future ice models based on
composite rheology should start by melting morelater in time, within limits allowed

by other constraints on the past ice sheets.

8.2 Outlook

Since the gravity rate estimated from GRACE montiigvity fields has been shown to
provide constraints on the ice model, it is recomdesl that GRACE data is used to
improve or at least test a future ice model in N&itnerica. However, improvements are
needed in our knowledge of continental water strelganges and inter-annual signals
that appear in GRACE data over North America.

Current global hydrology models do not perform well areas of permanent
snow, thus improvements can come from using dadeetdescribe snow and ice cover
changes. Also, extreme events such as droughtsoer storms will be less significant in

the GRACE-derived gravity rate estimated from langee spans.
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The interannual variations in the spatial patterd magnitude of the gravity
rate derived from GRACE time series with differéagths need to be understood. Also
here, increased length of GRACE data span cantbe$§eparate signals and to resolve
some ocean tidal components with long aliasingopisti A technique such as principal
component analysis or its extensions might be batike to separate the different signals
in GRACE data and in that way remove inter-annuad-GIA signals, if the time series
are longer.

For development of an ice model with non-linearotbgy, it is important to focus
on specific areas with good quality GIA data anéree& and field data. Sensitivity
studies should be done to show if rheological patans can be extracted from GIA
studies in the presence of uncertainty in otheamaters. Furthermore, the finite element
model used here should be improved by adding teabsckground stress arising from
plate motion and mantle convection. Stress conagair occurs close to the edge of the
ice sheet. Therefore, it should also be checkedhenehe finite element mesh is fine
enough at such locations.
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APPENDIX A: TIME FOMAIN SOLUTION FOR FREE-AIR GRAVITY,
GEOID AND SEA LEVEL
The first section of this appendix derives the Bofufor free-air gravity or sea level as a
function of an impulse surface load. In the secsection the expressions are given for a

load consisting of Heaviside increments.

A.l. Time-domain expressions

For a general surface Ioald(é?,/l,t)with units of mass per area, the respoR&eis a

convolution of the load with the Greens functi@k that is valid for that particular

response:

RE(6,1,1)

j [&Ue.21t) GFy = 1) @ "dt, (A.1)

where@ is colatitude; is longitude;Q is the volume of the spherical Earth ands the
spherical angle from the load to the point where tRsponse is to be computed.

Expanding the load in spherical harmonics:

LB =33 L (D (60.4), (A.2)

00
1=0 m=0

and expanding the Greens function in Legendre polyals:

00

GF(y,t-t)=> GF(t-t) P(cowy),

1=0
whereP, is the Legendre polynomial of harmonic degkeand using the orthogonality
property:

jv* Y Q=419

I'm" ‘Im "™~mm'
Q

equation (A.1) becomes (Mitrovica et al., 1994, aon 33)

RE(6,1, 1) =i lz(;—flj GR(t=t) L, (t) dt'jx Y, - (A.3)

=0 m=-1|

Since we want to compute the gravity rates, we rtedohd the Legendre coefficient of

the Greens function for the free-air gravity anomdlhe Legendre coefficient of the
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Laplace transformed free-air gravity anomaly isegivby (Mitrovica and Peltier,
1989, equation 5)
Ag () =3 (1+2-(1-
9, () =5, (1+2-(1-9k(9). (A.4)

e

To check the units, note that the k-Love numbedsae be multiplied witha,g,/ M to
give it the dimension of potential. To go from putal to gravity multiply withl/a,.

Then the left hand side has the units of gravitati@cceleration for a unit load of 1 kg.
Note that in the derivation of this equation in Mitica and Peltier (1989), a free-air
correction is applied to the distance from the yoéed surface to the geoid (which is a
reference sphere in the simulations). When graatomaly is computed from
observations, the observations are downward cosdina the ‘real’ geoid, as opposed to
the ‘simulated’ geoid which is a sphere in a GlAdab However, it does not matter for
the gravity rates or uplift rates whether the geasi@ spherical reference surface as for
geophysical simulations, or the real geoid, wh&h more complex surface.

Transform equation (A.4) to the time domain:
Ag, (1) :M%(' +z)5(t)—MiE(| 1)k, (1), (A.5)

with the time-domain form of the k-Love number givey
M

k(1) =k, +> 5, exp(s,1), (A.6)
p=1

wherek . is the third component dKF(ae)from equation (2.7) made dimensionless, and

rl"pis the third component oIK,’p(aE) from equation (2.7) made dimensionless. Both

are output from the computer codes. Substitutinggumation (A.5) yields:
M
Ag (t) = (1+2-ke (1-2)3(t) -2~ (1 =) Dr/, exis, t). (A7)
M E M E p=1

ReplacingGFK (t—t') with the coefficients for the gravity anomaly, etjoa (A.1) yields:
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ba(6.)= % 85 S {1, 01+ 2k (1-9]

e =0 m=-|

~( —1);“;] ij,m ) exils , (t—t )]t }x\(m

(A.8)
A similar expression as equation (A.7) for the gdmight change is:

AN, (1) =|\%(1+ lqe(l—l))d(t)+Mi 1, exe(s, ). (A.9)

E p=L

A.2. Heaviside loading

Because the ice load on the Earth’s surface ineseas decreases only slowly in time,
modeling the load as a series of Heaviside incrésnisnappropriate. Assuming that the
surface load is a series of Heaviside incrementsgisivalent to taking the spherical

harmonic coefficients of the load to be Heavisitgeéments:

L. (t) = ZN:JLme (t-t,), (A.10)
=

wherej denotes the time steps from 0 (start of loading),tand the Heaviside function

is defined as

H (t—tn):{l i_ft>t”. (A.11)

0 ift<t,

Substituting (A.10) into the time integral from eqon (A.8) yields

t N |

:[o(t')exp[stp (t-t )] dt'= JZ:;JL;m l:_S_,;)+$_,,3 exr( $,(t= ];))} , (A.12)

Thus, the spherical harmonic coefficients of thavgy anomaly in equation (A.8)

become

Agi (t) = ;ff‘:l,v,%(hm(t) B —25 LB (At)], (A13)

where

E® =[1+2-k*(1-1)]; (A.14)
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B (at)=(l —1)ir"—’p[—1+ exp(sq,pAt)} :

p=13p
(A.15)
and At =t -t,.The Earth model parameters enter the equationlystieough the

parametersE™ and 3% (At) which contain the elastic and viscous Love numiteas

are outputted from the normal mode code.

The relative sea level change (spatially varying)pa defined as
NS 8, (6,4,t) =48, (6.4.1)-L8R(6,4,1), (A.16)
where AS,, is the spatially varying part of the geoid changeg ARis the change in

solid earth displacement. Similar to equation (AiL8an be derived that:

47Tl =S

£sS, (6,A1) = z—ﬂil\%[ﬁhm (t) EX —; SU B (At) |, (A.17)
P r -

whereE** :[ k- kﬂ, andB™* (At) = ZM[—H exp(svat)] ; 1,is the h-
p=1 p

Love number residue (first element Kf | (ae) from equation (2.7)) and . is the elastic

h-Love number (first element &€ (a,) from equation (2.7).
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APPENDIX B: COMPARISON OF SEA LEVEL CODE PREDICTIONS
A comparison of predicted uplift rates is undertakdgth results of Dr. Giorgio Spada
and Dr. Paolo Stocchi (Spada and Stocchi, 200%)lighed at the website of the Special
Bureau for Loading Hhitp://www.sbl.statkart.no/projects/pgs/authorséspatocchy.

Factors that are treated differently in the implatagon of Spada and Stocchi (2005)
compared to the implementation discussed in thapter are the following:
- The sea level equation is solved using a finiterelet scheme, which requires the
ice loads to be discretized accordingly.
- The sea level equation is self-consistent but duomsinclude time-dependent
ocean margins.

The uplift rate is plotted in Figure B.1, along lwihe uplift rate computed with
the model described in Chapter 2, for the sametielasd viscous Earth model
parameters. It can be seen that the uplift ratieais similar in both plots. However, the
magnitude of the uplift rate is higher for the Spaohd Stocchi model. Note that a local
maximum over Hudson Bay in Figure B.la is not wisaexpected in an uplift rate
pattern with ICE-3G.

‘ , f ' ' ¥ ; ; ; ; . - } mm/year
immiyear g 4 2 0 2 4 6 8 10 12 14

& 4 2 0 2 4 6 & 10 12 14
Figure B.1: (a) Uplift rate from Spada and Stog@t05) and (b) uplift rate reproduced
with the spectral model of Chapter Two:.
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A comparison with Figure 3 of Paulson et al. (200ifbterms of gravity
disturbance rate is shown in Figure B.2, after yipgl Gaussian filtering with a 400 km
halfwidth. The magnitude of Paulson et al. (2008Hdarger, which can be caused by the
inclusion of rotational feedback, differences iydadepths and elastic constants, and
implementation of the ice growth phase.

The comparisons in this appendix show that the @#del in this chapter gives
results in terms of rate of change which are baghdr and lower than other models used
in the literature. It is possible that the spreadeasults comes from different modeling

and implementation.

Figure B.2: (a) Gravity disturbance rate copiedrfrbigure 3 of Paulson et al. (2007b).

(b) Gravity disturbance rate computed with ICE-3@per mantle viscosity of 1 x 0
Pas and lower mantle viscosity of 2 X*iPas (the VM1 model; see Peltier, 2004), after
400 km filtering.
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APPENDIX C: TENSOR FORM OF THE STRESS-STRAIN RELATION
In this appendix a tensor form of the stress-strata relationship is derived starting at

the experimental results, equation (3.20). The seadress invariant, and the second

strain rate invariang, can be rewritten as (Ranalli, 1995, p. 76)

l, ZESIj Si
2 (C.1)

- _ 1,

Ez ‘qu‘ QJ

where g, is the deviatoric strain rate, defined as

P

€ =& TS (C.2)
3

and §; is the deviatoric stress, defined as
1

S =0; _éakk' (C.3)

The square root of the quantitiesand E, is denoted as the effective shear stress and the

effective shear strain, respectively. However, hbee uni-axial equivalent Mises stress

will be used because it is the stress invariantemented in ABAQUS:

qz\/gsj $7* =\/g( 88t 3t 2B 58 SIS 3332 (C'4)

and the corresponding uni-axial equivalent strate r

.2,
£=1346 - (C.5)

The postulate is that the relation between stregiss&rain rate measured in a uni-axial
experiment (see Figure 3.3) also gives a relat&iween the effective stress and effective
strain, and hence also between Mises stress amesponding strain rate (see Ranalli,
1995, p. 76):

E=AY". (C.6)

To show that from this more general law the simpbgoerimental law follows, consider

the case of the experiment of a tensile stegsapplied so that for an incompressible
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: 2 1 :
material: 011=:—30T andazzzaggz—éaT. For the mean stress (or hydrostatic

pressurep) it follows that p:%(gm —:—130} —:—]?;O'Tj=0, so that the Mises stress is

q :\/gs,j S =\/g(gaﬁ +éUT2 +éa$j =0, , and the strain rates are:

&,=& andé,, = &,,= —EET. So clearly the mean stress is zero. The Mises/algnt

strain  rate is‘“:‘/%&jé” :\/—g(er +—i$r +_j,£rj =&, . Substituting the above

expressions for the Mises stress and Mises equivaleain rate in the invariant creep

law, equation (C.6), we get the uni-axial law= Ac;".
To obtain a tensor form of the power-law creep &qoa assume that the

components of the strain rate at any point are gtamal to the corresponding

components of the stress deviator, as in Ran&Bf)1p. 76:

& =4S (C.7)
Substituting this in the expression for the Misgsiealent strain rate (C.5) we get

£ :g/ﬁ, o) that:%A = AG"". And finally, the required tensor form of the pawaw

creep

3
& —EAq 'S, . (C.8)
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APPENDIX D: TIME-DEPENDENT LOADING IN ABAQUS

In ABAQUS a loading history is divided into stepasch of which are treated as static
loading situation in order to solve problems wittmare complex loading history. For
GIA modeling, the loading input is provided by ae model. In that case, the increments
in the ice model determine the steps denoted witls&iptj in Figure 3.2. Within a step,
strain is calculated in ABAQUS by integration ofethstress-strain rate relation.
Considerable deformation can take place withinreetstep of the ice model, therefore a
step is further divided in increments.

There are two main types of algorithms for integigtthe creep law in a FE
program: implicit (backward Euler) and explicit ffcard Euler). The explicit integration
is simply written as
AE =& [t (D.1)
where £ is given by the constitutive equation (3.25). Telicit integration is

NE=E,, [Dt. (D.2)

The accuracy of the integration scheme dependb@site of the increment. The length
of these increments can be user-specified, or mamegeniently, automatically decided in
the software based on a given error tolerance.riltuthe smaller the number of steps,
the less computations are required, and the smédlkennput and output files in the
program. An extra reason to limit the number ofpstes that at each step ABAQUS
checks if the definition of the force is the samsetlzat for the same node or node set in
the previous step, which is a costly operation. d&jault, increment size is selected
automatically based on the Creep Error Tolerand€T(@L) parameter. This parameter

should be set so that stresses are computed withiesot accuracy. CETOL is defined

as: (éﬁm —ft)At. In the ABAQUS Analysis User Manual, section 14,2t is stated that

the creep strain increment must be much smaller tha elastic strain increment. Here
an empirical relation (determined by Dr. Patrick Wi used to determine the value of
CETOL so that it is less than 0.5% of the maximueep strain increment for a typical

ice sheet and for a given step size length. Aviest performed to see the effect on RSL
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curves of large CETOL values that were acciderdfy ih the code (see Table D.1).
The values in Table D.1 were used to plot the auméd=igure D.2. It can be seen that no
visible difference arises from the difference in T@H values. Since this is not
conclusive evidence, the CETOL values determinecbraing to the empirical rule

described above were used for all results in Chdpte

Table D.1: CETOL values (unitless) used in a testlie effect of the CETOL parameter

on relative sea level history.

increment 90 kyear 4 kyear 1 kyear
2 2
Large CETOL | 1x 10 4 x 10 1x10
5 (§] 7
Small CETOL | 2x 10 1x10 3x10
101. RICHMOND GULF QUE. 104 CHURCHILL MAN. 309 NW. NEWFOUNDLAND 323 BOSTON MA.
600 125 20
600 100 .
400 400 75 —\/_
200 200 50 20
25 -40
0 0 0
333 BRIGANTINE NJ. 209 BJUGN NOR. 228 ONSALA SWE. 233 ANGERMANLAND SWE
-20 200 120 300
160 250
-60 120 80 200
150
-100 80 40 100
40 50
-140
235 HELSINKI FIN. 282 KONG KARLS LAND SPITS. 508 RECIFE BRASIL 570 MCMURDO S. ANTARCTICA
200 200 0
160 160 ~40 20
120 120 o /\
-80
80 80 -20
40 40 -120 -40
-160 -60
-18-15-12 -9 -6 -3 0 -18-15-12 -9 -6 -3 0 -18-15-12 -9 -6 -3 O -18-15-12 -9 -6 -3 0
Large CETOL - - --Small CETOL

Figure D.1: RSL curve for non-linear GIA model with= 3, A = 3.3 x 10** Pa’s* for
the large and small CETOL values from Table D.ferdbur iterations.
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101
104
106
107
113
136
147
155
202
209
228
233
235
239
282
309
323
326
333
342
350
358
508
512
570
657

Lat
57
58
59.8
64.5
62.8
74
80
82.6
70
63.7
57.3
63
60.2
57.5
79
51.5
42.8
41.2
39.5
33
27.5
32

-39.6
-77.7
-35.9
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APPENDIX E: RSL SITES

# obs Name

Lon
-77 10
94 7
-80.3 10
84 7
-65.5 8
-93.7
-88 9
-72.8 10
29 8
96 11
12 9
18 7
249 10
105 12
28 7
-56.5 12
-70.8 8
=725 7
-745 6
-80 7
-96 8
-65 10
35 7
-62.1 9
163.4 8
150 10

RICHMOND GULF QUE.
CHURCHILL MAN.
OTTAWA IS. NWT.
SOUTHAMPTON IS. NWT.
WARWICK SOUND BAF.

N. SOMERSET IS.

E. AXEL HEIBERG IS.
THORES R. ELL.
VARANGER FJORD NOR.
BJUGN NOR.

ONSALA SWE.
ANGERMANLAND SWE.
HELSINKI FIN.
FREDERIKSHAVN DEN.
KONG KARLS LAND SPITS.
NW. NEWFOUNDLAND
BOSTON MA.

CLINTON CT.

BRIGANTINE NJ.
CHARLESTON SC.

NW. GULF OF MEXICO
BERMUDA

RECIFE BRAZIL

BAHIA BLANCA ARGENTINA
McMURDO SOUND ANTARCTICA
MORUYA NSW.
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Figure E.1: Location of RSL sites.
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