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Abstract 

The objective of this thesis is to study the contribution of the monthly satellite gravity 

data from the GRACE twin-satellite mission to the study of Glacial Isostatic Adjustment 

(GIA) in North America. The GRACE data set of monthly global gravity fields improves 

knowledge of this GIA especially in areas where terrestrial measurements are sparse, 

such as northern Canada. 

Specifically, the following questions are researched for the study area of North 

America: (i) What is the uncertainty in long-term gravity rates estimated from GRACE 

data? (ii) Which of the global ice models fits best to the GRACE data? iii) Can a 

rheology which includes a non-linear flow law explain the GRACE observed maximum 

geoid rate? 

It is found that straight forward filtering of the trend estimated from GRACE data 

removes more GIA signal than it removes errors, therefore recommendations are made 

for tuning an available filter. After filtering, measurement errors are small and can be 

represented by calibrated standard deviations or by residuals after estimation of a trend in 

the presence of annual and inter-annual signals. However, changes in continental water 

storage are a larger than expected error source that can not be mitigated. In addition, large 

unexplained inter-annual variability exists in the magnitude and in the patterns of the 

gravity rate estimated from up to 5 years of GRACE data.  

The presence of two domes in the GRACE-derived gravity rate pattern as reported 

before occurs for a variety of processing techniques and is a stable result. However, the 

largest maximum gravity rate is found at the location of the Labrador ice dome instead of 

at the Keewatin ice dome. As a result, a better fit is obtained with the older ICE-3G and 

ICE-4G models than the more recent ICE-5Gv1.2 models for all reasonable viscosity 

profiles and for all amounts of smoothing applied to the GRACE data. This finding 

should motivate improvement or testing of a future ice model in North America using 

GRACE data.  

Laboratory experiments show that linear and non-linear flow laws occur 

simultaneously in mantle rocks. GIA modelling in this thesis that incorporates this is 

found to explain historic sea level data almost as well as purely non-linear rheology, and 
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is able to bring the maximum geoid rate in better agreement with the GRACE observed 

value than purely non-linear rheology. This is an important finding which can bring GIA 

modeling in better agreement with laboratory measurements for rock deformation. A 

small delay in the ICE-4G glaciation further improves the fit in geoid rate while keeping 

a good fit to global historic sea level data. Increasing ice thickness also improves the 

geoid rate fit, but worsens the fit with sea level data. Thus, it is better to delay the onset 

of melting than to increase ice thickness when modifying global ice models for an earth 

model with composite rheology.  
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Chapter One: Introduction 

1.1 Background 

Glacial Isostatic Adjustment (GIA) is the response of the solid Earth to the growing and 

melting of ice sheets. At the Last Glacial Maximum (LGM), approximately 21,000 years 

ago (Peltier, 2004), all of Canada was covered with a thick ice sheet, the weight of which 

caused subsidence of the Earth’s crust. The removal of the ice sheets initiated relaxation 

that is still ongoing and measures over a centimetre per year in the Hudson Bay area.  

The study of GIA has found many useful applications (e.g. in the fields of 

geodesy, geodynamics, solid Earth geophysics, glaciology, oceanography, climatology, 

astronomy, archaeology, geography, etc.) but historically it is used for the following 

purposes:  

1) to provide predictions for removing the effect of GIA from observations so that 

other phenomena can be observed (e.g., correction of tide gauges to study the sea 

level change due to global warming; see Peltier and Tushingham, 1989; Davis and 

Mitrovica, 1996);  

2) to study the rheology and flow properties in the Earth’s mantle (e.g. Cathles, 

1975; Karato and Wu, 1993) which can benefit the study of mantle convection 

and subduction; and 

3) to provide information on past ice thicknesses and hence past climate (Peltier, 

1998), which is important knowledge to put current climate changes in 

perspective.  

This thesis aims to contribute to purposes 2 and 3, by investigating the contributions of 

the satellite gravity data set derived from the measurements of the Gravity Recovery and 

Climate Experiment (GRACE) twin-satellite mission, launched in March 2002. The study 

area is North America, but global historic sea level data are used as well. First, a short 

overview is given of the current knowledge and open problems related to purposes 2 

(rheology) and 3 (Pleistocene ice sheets). Then, the GRACE data set and its use in GIA 

studies is discussed.  Finally, the objectives of this thesis are presented and an outline of 

the thesis is given.  
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1.1.1 Rheology of the Earth’s mantle 

One of the objectives of GIA research is to constrain material properties in the mantle, 

albeit “the smoothest” version of the rheology that can explain GIA data (Ranalli, 2001). 

Early studies put a constraint on the average viscosity of the entire mantle, the so-called 

Haskell constraint (see Mitrovica, 1996, for discussion). Later studies try to constrain the 

average viscosity of different layers within the mantle (see Peltier, 1998, for review) but 

debate regarding the viscosity contrast between the upper and lower mantle is still 

ongoing (Kaufmann and Lambeck, 2002; Peltier, 2004; Wolf et al., 2006). Recently, it 

was shown that trade-off effects between viscosities of different layers prevent one from 

unambiguously inferring viscosity for three or more layers (Paulson et al., 2007a). 

GRACE data have already been used in an inversion with different data types for a two-

layer viscosity profile in the mantle (Paulson et al., 2007b). 

Most Glacial Isostatic Adjustment (GIA) models often employ a linear rheology 

in which the strain rate is linearly dependent on the stress through the Newtonian 

viscosity. However, laboratory experiments show that at least two different deformation 

mechanisms exist: diffusion creep, which leads to a linear stress-strain rate relationship, 

and dislocation creep (or power-law creep), which leads to a non-linear relation between 

stress and strain rate (Hirth and Kohlstedt, 2003; Ranalli, 1995; Karato, 2008). The type 

of deformation (diffusion vs. dislocation creep) can have a significant effect on mantle 

flow and hence the dynamics of the lithosphere and the asthenosphere and associated 

phenomena such as continental rifting and continental collision (Yuen and Schubert, 

1976). Thus, determining the flow type is important to improve our understanding of 

these areas. More specifically, determining the type of mantle flow can open the door to 

the use of seismic anisotropy to constrain asthenospheric viscosity (Karato and Wu 1993, 

Podolefsky et al., 2004). A power-law relation between stress and strain rate has received 

some attention in GIA modelling (Sabadini et al., 1986; Wu, 1992; Gasperini et al., 1992; 

Karato and Wu, 1993; Wu, 1995, Wu, 1999; Wu 2001; Wu and Wang, 2008). 

Because diffusion and dislocation creep operate at the same time, the total strain 

rate is the sum of the strain rates from both mechanisms. Such a composite rheology is a 

more realistic description of slow deformation in the Earth than a rheology with only one 
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of the mechanisms. In this thesis it will be investigated whether a combined linear and 

non-linear rheology can also explain GRACE and historic sea level data. Previous studies 

of composite rheology made simplifying assumptions such as a flat Earth, and neglected 

self-gravitational effects, or used simplified ice loads (Gasperini et al. 1992; 2004; 

Giunchi and Spada, 2000; Dal Forno et al., 2005). To further assess the performance of 

composite rheology it is necessary to use more realistic spherical earth models with self-

gravitation, in combination with realistic ice loads, and to compare predictions with more 

data sets. Specifically, the effect of composite rheology on gravity rate and uplift rate has 

not been studied, while a well known problem with a non-linear rheology is the small 

present-day uplift rate and gravity rate it predicts (Wu, 1999; Wu and Wang, 2008). 

Presently, it is not clear if the small uplift and gravity rates are biased by the fact that 

global ice loading histories are constructed by assuming linear rheology, or if they are the 

result of failure of non-linear or composite rheology to accurately describe mantle 

deformation.  

 

1.1.2 Constraints of past ice thicknesses  

Geological evidence in the form of (terminal) moraines can be used to reconstruct the 

extent of the past ice sheet (Dyke et al., 2002). To constrain the thickness of a past ice 

sheet, time series of historic sea level changes are most valuable (Peltier, 1998). Areas 

lacking such sea level data are the interior of North America. Inference of past ice sheet 

thicknesses is seriously hindered there (Tarasov and Peltier, 2004), although some 

information in pro-glacial lakes is available (Walcott, 1972). Global ice histories have 

been successfully reconstructed by combining the physics of the rebound process with 

relative sea level (RSL), land uplift and absolute gravity data (Peltier, 2004). However, 

due to the slow response of the Earth the ice sheet history constructed from RSL data 

cannot resolve rapid surges and retreats due to abrupt climate changes (Hughes, 1998).  

GPS and absolute gravity data provide observations of the uplift process that 

could be used to constrain ice thicknesses. However, these data are also sparse in 

northern Canada. The appearance of two domes in gravity rate pattern derived from 

Gravity Recovery and Climate Experiment (GRACE) satellite data (Tamisiea et al., 
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2007) supports a multi-dome Laurentide ice distribution as in, e.g., Dyke and Prest 

(1987). However, as argued in the next section, the accuracy of GRACE data makes it 

worthwhile to revisit the issue of the ice domes and the location of maximum ice heights.  

Finally, ice models currently used by GIA researchers are all coupled to a linear 

Earth rheology despite the evidence for power-law creep; see the previous section 1.1.1. 

Non-linear rheology requires more ice or delayed melt (Wu and Wang, 2008), but 

currently it is not clear how the ice history should be modified for Earth models with 

composite rheology.  

 

1.1.3 GRACE data 

Geodetic data to constrain the GIA process in North-America are sparse and sensitive to 

local effects. Repeated absolute gravimetry measurements are only performed at a few 

selected sites (Lambert et al., 2001, 2006). Relative gravimetry measurements are more 

widespread and go back further in time, but clearly suffer from local non-GIA effects; see 

the figures in Pagiatakis and Salib (2003). Satellite Laser Ranging (SLR) measurements 

yield information on zonal components only, which means that the rebound process in 

North America and Fennoscandia and present-day ice melt in Greenland can not be 

separated (Velicogna and Wahr, 2002). Also, with a network of continuously operating 

GPS receivers supplemented with campaign measurements, pinpointing the exact center 

of maximum uplift is not possible due to the sparse network (Henton et al., 2006; Sella et 

al., 2007). Other present-day uplift rates are measured by satellite radar altimetry in an 

area close to Hudson Bay (Lee et al., 2008), and by combining tide-gauges and satellite 

altimetry in the Great Lakes area (Kuo et al., 2008). A combination of more terrestrial 

datasets can overcome some of the weaknesses in each of the individual data sets 

(Rangelova, 2007). 

The launch of the GRACE satellites in March of 2002 revealed the time-variable 

gravity field of the Earth at monthly resolution with homogeneous coverage (Tapley et 

al., 2004). Prior to their launch, simulations showed that GRACE would be able to 

constrain upper mantle/transition zone and lower mantle viscosity within 30-40% 

(Velicogna and Wahr, 2002). However, the error level of GRACE satellites is higher than 



 

 

5 

 

the target accuracy level (Wahr et al., 2004), and north-south stripe errors dominate 

unfiltered gravity field products (Chen et al., 2005b). Despite the larger than expected 

errors, GRACE data has been used successfully in a number of studies related to GIA.  

The contribution of GIA to static gravity anomalies over North America has been 

established (Tamisiea et al., 2007); a two-layer viscosity profile is inferred from GRACE 

data in combination with sea level data and C20 variations (Paulson et al., 2007b). 

GRACE data compared well with absolute gravity data in Fennoscandia (Steffen et al., 

2009). 

However, these studies either used a single standard processing technique (Paulson et al., 

2007b), or did not give details of their processing (Tamisiea et al., 2007), or did not 

quantify the effect of post-processing techniques on signal and noise (Steffen et al., 

2008a). With the  abundance of post-processing methods presented in the GRACE 

literature (see Klees et al., 2008, for an overview) it is not clear what the effect of these 

post-processing techniques are, and how to apply them specifically for the purpose of 

GIA studies. Moreover, it was found that previous studies underestimated the effect of 

continental water storage variations (Van der Wal et al., 2008a). Some conclusions have 

been made in the literature about the ice loading histories to the GRACE data. Paulson et 

al. (2007b) used two different ice models and claimed that ICE-5G fits best. Tamisiea et 

al. (2007) concluded that ICE-5G provides a good fit. However, these findings can be 

undermined by the short time series used and the uncertainty in continental water storage 

variations.  

In short, the uncertainty in the gravity rates extracted from GRACE for the 

purpose of constraining GIA models is currently not clear. For some purposes, such as 

the contribution of GRACE to the static gravity field (Tamisiea et al., 2007), the 

uncertainty is not critical for the conclusions reached, but the inference of the detailed ice 

loading history requires knowledge of the uncertainty in GRACE data when.  
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1.2 Thesis objectives 

The purpose of this thesis is to study the contributions of GRACE data to GIA modeling. 

In particular, the following issues should be resolved with regards to using the GRACE 

data for GIA studies: 

- How do various filters that can be applied to GRACE data affect the GIA signal 

in the GRACE data? 

- Are there significant secular and inter-annual non-GIA effects that influence the 

secular gravity rate derived from GRACE?  

With regard to the mantle rheology, this thesis focuses on a composite rheology which 

combines linear and non-linear flow laws. In particular the following questions are 

formulated: 

- Can composite rheology explain RSL data and the GRACE-derived maximum 

geoid rate at the same time? 

- What is the composite rheology that best fits RSL data and the GRACE-derived 

maximum geoid rate? 

The homogeneous distribution of GRACE data makes GRACE data seem particularly 

useful for inferring the thickness of past ice sheets. This thesis aims to answer the 

following questions about such an inference: 

- Can GRACE contribute information about past ice sheets? 

- Can GRACE data resolve the difference between GIA models with two different 

ice models? 

- Which ice model provides a best fit to the GRACE data? 

- How should ice models be modified for composite rheology such that predictions 

agree with RSL observations and the GRACE-derived maximum geoid rate? 

 

1.3 Thesis outline 

Chapter 2 outlines the normal mode method that is used to compute the solid Earth 

response to surface loading and the sea-level equation that computes the water 

redistribution following build-up and melt of ice sheets. Global ice models ICE-3G, ICE-

4G and ICE-5G, which are used as input for the simulations, are also discussed. 
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Predictions of the simulations in this chapter are used in simulations to support post-

processing of the GRACE data and comparisons with the GRACE data.  

Chapter 3 presents the equations and their boundary conditions for glacial loading 

that are solved using the finite element program ABAQUS. Evidence from laboratory and 

micro-physical studies on non-linear deformation mechanisms is reviewed and the 

implementation of composite rheology in ABAQUS is explained.  

Chapter 4 presents the Level-2 GRACE data and the gravity field functionals that 

can be computed from it. Post-processing techniques and measurement errors are 

addressed in detail. 

Chapter 5 is the first of the results chapters. Three important non-GIA effects are 

investigated: continental water storage, glacier melt, and lake level variations. Different 

methods are compared for estimating measurement errors in GRACE. The effect of filters 

is assessed, and one of the filters is tuned to improve the extraction of the GIA signal 

from GRACE. Finally, estimates of the GIA induced gravity and geoid rates are 

presented for use in inferences of the best-fitting composite rheology (Chapter 6) and the 

best-fitting ice model (Chapter 7). 

Chapter 6 investigates composite rheology. The best fitting composite rheology 

parameters are found based on RSL misfit comparisons. Next, it is shown that composite 

rheology produces higher uplift and geoid rate than a purely non-linear rheology, which 

is more in agreement with observations. Finally, it is demonstrated that simple 

modifications to the ice history can improve RSL fit and geoid rates simultaneously.  

Chapter 7 uses GRACE data to constrain the ice loading history. First, the 

sensitivity to gravity rate with respected to scaling of ice thicknesses in a small region is 

investigated. Simulations are performed to address the question whether uncertainty in 

hydrology effects can mask differences in ice loading histories. Finally, real GRACE data 

are used to find the location of maximum ice thicknesses and to find the best fitting ice 

model.  

Chapter 8 summarizes the main findings of this thesis and gives recommendations 

on the use of GRACE data for GIA studies, and on the inference of ice models based on 

linear or composite rheology.  
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In Appendix A expressions are derived for the free-air gravity and sea level 

change as a function of an impulse and Heaviside surface load. In Appendix B 

predictions of sea-level codes used in this thesis are compared to published results from 

Spada and Stocchi (2005) and Paulson et al. (2007b). Appendix C derives the tensor form 

of power law creep. Appendix D discusses the implementation of time-dependent loading 

in relation to accuracy and computer time issues. Appendix E lists and plots the RSL sites 

used in Chapter 6. 
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Chapter Two: Normal Mode and Pseudo-Spectral Sea Level Method for Surface 
Loading Response 

This chapter discusses the computation of the response of the Earth to loading by an ice 

sheet and complementary ocean by semi-analytical techniques. This computation can be 

divided into two parts: (i) computation of the solid Earth’s response to a generic surface 

load; and (ii) computation of the self-consistent sea level response to the melting of the 

ice sheets and the solid Earth deformation.  

The normal mode theory will be used for part (i) and is briefly described in 

section 2.1. The self-consistent sea level is obtained by iterative solution of the so-called 

sea level equation (Farrell and Clark, 1976). The sea level equation and the steps in the 

numerical algorithm to solve it are described in section 2.2. The global ice histories of 

Peltier and co-workers are used in this thesis, namely ICE-3G, ICE-4G and ICE-5G. A 

comparison of the uplift rates computed with the methods described in this chapter and 

published results from other groups is provided in Appendix B. Two models that will be 

used in the testing of post-processing filters on GRACE data are presented in section 2.4. 

A chapter summary is given in section 2.5. 

 

2.1 Normal mode method for surface loading  

The normal mode theory is developed by Peltier (1974), Wu (1978) and Wu and Peltier 

(1982), with important elements of the theory present in the works of Farrell (1972) and 

Longman (1962). Modifications of the method for multi-layer Earth models were made 

by Sabadini et al. (1982) and Vermeersen and Sabadini (1997). Here the implementation 

of the latter is used, with a code kindly provided by Dr. Bert Vermeersen of TU Delft.  

The starting point is the linearized equation of momentum (Cathles, 1975; Wu, 

2004; Sabadini and Vermeersen, 2004, eq. 1.10): 

 ( )0 0 1 0 0 1 0g gρ ρ ρ φ∇ ⋅ − ∇ ⋅ − − ∇ =σ u r r ,      (2.1) 

where σ  is the stress tensor, u is displacement, ρ is the density, r  is a unit vector in 

radial direction, g is the gravitational acceleration, and φ  is the gravitational potential. 

Subscript 0 refers to the unperturbed state and subscript 1 refers to a perturbation from 

this state.  
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The first term in equation (3.10) is the divergence of stress; the second term is 

the advection of pre-stress; the third term represents the effects of compressibility, and 

the last term is the effect of the change in gravitational potential due to the perturbation. 

This term includes the effect of the load itself and mass redistribution of the load and all 

Earth masses. Inertial forces are neglected because of the slow movement of mantle 

material involved in GIA.  

The effect of compressibility will be neglected from now on. The solution for a 

homogeneous compressible Earth in the Laplace domain is known (Wu and Peltier, 

1982), but, for a multi-layered spherical Earth, computation is not trivial. Moreover, the 

semi-analytical normal mode theory yields only an approximation to a compressible 

Earth (Riva and Sabadini, 2009). The difference in uplift rate between elastically 

compressible and elastically incompressible rheology is small (Mitrovica et al. 1994, 

figure 2). In table 2 of Paulson et al. (2007b) it is shown that the inclusion of 

compressibility in a spectral model has a small effect (< 0.2) on the misfit values for 

gravity rates with respect to GRACE-derived gravity rates. Such effect is small compared 

to the differences in misfit that results from using different ice models, thus not including 

compressibility is not expected to have a large effect on the conclusions regarding 

different ice models.  

The gravitational potential for an incompressible Earth model satisfies the 

Laplace equation: 

2
1 0φ∇ = .          (2.2) 

If no tangential stress is applied to the surface of the Earth, and if the Earth is laterally 

homogeneous, toroidal motions are zero. That means only spheroidal displacements are 

considered, which depend only on radial distance and spherical angle with respect to the 

load (Peltier, 1974; Wu and Peltier, 1982). Furthermore, isotropic material is assumed, 

for which the elastic parameters reduce to the two Lamé parameters µ and λ (or 

alternatively Young’s modulus and Poisson’s ratio). The stress-strain relation reads in 

index notation:  

3

1

2ij ij kk ij
k

σ λδ ε µε
=

= +∑ ,        (2.3) 
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whereλ and µ  are the Lamé parameters, and ijσ  and ijε  are elements of the stress 

tensor and strain tensor. Not surprisingly, the solution only depends on one material 

parameter,µ , because only deviatoric stresses and strains are relevant. For the case of 

loading an incompressible material, hydrostatic pressure of arbitrary magnitude can be 

added to the solution (this leads to a problem in the FE solution, see section 3.4).  

Until now, only elastic behaviour was considered by the stress-strain relation (2.3)

, but for GIA we need time-dependent deformation. Different time-dependent behaviour 

can be distinguished (see Figure 2.1). After elastic deformation, the Earth’s mantle will 

go through transient creep and steady-state creep.  

 

 

Figure 2.1: Schematic strain-time diagram denoting elastic, transient and steady-state 

creep regimes (after Ranalli 1995, Figure 4.5) 

 

Elastic deformation is completely recoverable if the load is removed. The deformation in 

steady-state creep is permanent (Ranalli, 1995, p. 80) which means that after removal of 

the load there is no recovery of the steady state creep deformation.  This should not be 

confused with the reversal of deformation that occurs after removal of the ice load. 

Buoyancy forces cause the reversal of deformation and not ‘reversible’ material 

time 

strain 

steady-state 

transient 

elastic 
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behaviour such as occurs for an elastic material. Non-recoverable flow is called plastic 

flow, which occurs when the stress in the material exceeds the yield stress.  

For high temperature and after a long time the steady-state part of the strain rate is 

much more important than the transient term (Ranalli 1995, p. 80). This is the assumption 

made in most GIA studies and also in this thesis. Justification of this assumption is 

indirect: there is some agreement between viscosity profiles constrained by static geoid 

anomalies cause by dynamic topography changes, and the profile derived from GIA 

studies. The agreement over such a long timescale shows that transient creep can not play 

an important role (Peltier et al., 1980; Ranalli, 2001). However, some results indicate that 

transient rheology can cause a difference in GIA inferred viscosity from the true steady 

state viscosity up to a factor of 10 (Karato, 2008, p. 330).  

When neglecting transient creep, the material model in GIA modeling should 

describe both elastic and steady-state creep behaviour. This can be modeled by a so-

called Maxwell element in which a purely elastic element is connected in series to a 

purely viscous element such that the strain rates are added. The viscous element in the 

Maxwell model represents steady state-creep which occurs below the yield strength. In 

tensor form the Maxwell element is (Peltier, 1974; Cathles 1975, p. 25): 

3 3

1 1

1
2

3ij ij ij kk ij ij kk
k k

µσ σ δ σ µε λδ ε
η = =

 + − = + 
 

∑ ∑ɺ ɺɺ ,     (2.4) 

where ijδ  is the Kronecker delta and η is the dynamic viscosity. Laplace transforming 

this equation gives (Cathles 1975, p. 25): 

( ) ( )
3

1

2ij ij kk ij
k

s sσ λ δ ε µ ε
=

= +∑ ,       (2.5) 

where the overbar denotes the Laplace transform. The Laplace transformed Lamé 

parameters are given by: 

( ) ( ) and 
s K

s
s s

s s

µλ
µηλ µµ µ

η η

+
= =

+ +
,       (2.6) 
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where
2

3
K λ µ= +  is the bulk modulus. Noting that equation (2.5) is the same as the 

elastic constitutive equation in the time-domain (2.3), the solution to the viscoelastic 

problem can be obtained by solving the elastic problem in the Laplace domain (Peltier, 

1974; Cathles, 1975, p. 25).  

The momentum equation and the Laplace equation form a system of three partial 

differential equations of second order, which can be integrated numerically to obtain the 

required solution. However, in the normal mode method the equations are rewritten to a 

system of six first-order ordinary differential equations for which the solution can be 

obtained almost entirely analytically. The advantage of the numerical solution is that 

properties are allowed to vary continuously with depth, and compressibility can be 

included (Wu and Peltier, 1982). In the analytical normal mode method depth variations 

have to be approximated with a finite number of layers, and compressibility can only be 

approximated (Riva and Sabadini, 2009). On the other hand, an analytical solution offers 

additional insight and checks (Sabadini and Vermeersen, 2004, p. 8). Because of 

availability of computer codes for the semi-analytical normal mode codes of Vermeersen 

and Sabadini (1997) this method is used in this thesis. 

After applying boundary conditions at the surface and at each interval (see 

Sabadini and Vermeersen, 2004, p. 18), the solution to the homogeneous problem 

consists of the roots of the so-called secular determinant (eq. 1.106, Sabadini and 

Vermeersen, 2004). These roots are inverse relaxation times, also called relaxation 

modes, and they arise from the discontinuities in the Earth model. Thus, characteristics of 

the relaxation process in terms of material properties can be deduced from them. There 

are modes for the Earth-surface transition, the mantle-lithosphere transition and the fluid 

core-mantle transition. Furthermore, each density contrast introduces a buoyancy mode 

and an interface between two layers of different /η µ  introduces a pair of modes (Wu 

and Ni, 1996; Sabadini and Vermeersen, 2004, p. 22).  

It is also necessary to find the relaxation models in order to transform the solution 

from the Laplace domain to the time domain. Finding the modes is usually done 

numerically. In the code of Vermeersen and Sabadini (1997) that is used in this thesis a 

bisection algorithm is used. A method to obtain the solution in the time domain was 
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developed by Wu (1978). The form of the time domain solution is (Sabadini and 

Vermeersen, 2004, p. 34): 

[ ] ( ) ( ) ( ) ,

,
, 1

l p

l
e

M
T s te

l l l e l p e
a t p

U V a t a eφ δ
=

− = +∑K K ,    (2.7) 

where [ ]T

l l lU V φ− are the Legendre coefficients of degree l of the radial and 

tangential displacement and the gravitational potential, respectively; ea is the average 

radius of the Earth; ( )tδ is the Dirac-delta function; M is the number of modes; sp,l is the 

p-th mode; and t is time. Furthermore, ,l pK  are the vector residues at s = sp, and ( )e
l eaK  

denotes the elastic limit (s→ ∞ ); see Sabadini and Vermeersen, (2004) p. 34. The time 

domain solutions (2.7) are usually written in dimensionless form as follows (Wu and 

Peltier, 1982, equation 12): 

[ ]
,

0
,

e

e

T
T e e e

l l l l l l
a t

e e e
a t

M M M
h l k U V

a a a g
φ

 
= − 
 

,     (2.8) 

where lh , ll and lk are the surface load Love numbers for radial displacement, tangential 

displacement and gravitational potential perturbation, respectively, and Me is the mass of 

the Earth. The Love numbers (the elastic as well as the viscous parts in (2.7)), and the 

modes sl form the output of the normal mode codes used here. The time-domain form of 

the free-air gravity and the geoid, which are combinations of these, are derived in 

Appendix A. 

 

2.1.1 Implementation issues and input 

In the normal mode method, it is important that all M modes are found by the root-

finding algorithm. A simple check whether all the modes are found for a particular degree 

is to plot the fluid k-Love number versus harmonic degree. The fluid Love number can be 

computed by setting 0s = in equation (55) of Wu and Peltier (1982): 

,
, ,

1 ,

M
j l

l f l e
j j l

r
k k

s=

= +∑ .         (2.9) 
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When important modes are missed in the root-finding, a discontinuity will appear in 

the plot and the root-finding should be repeated with a finer step size. All models used in 

this thesis have been checked accordingly. 

The input required to compute the fundamental matrix Y are elastic material 

parameters for the Earth (density ρ and rigidity µ) and layer boundaries for each of the 

layers in the spherical Earth model (see Sabadini and Vermeersen, 2004). Most GIA 

models, e.g., Peltier (2004), Kaufmann and Lambeck (2002), Tamisiea et al. (2007), use 

elastic parameters taken from the Preliminary Reference Earth Model (PREM) 

(Dziewonski and Anderson, 1981).  

In the semi-analytical normal mode method used in this thesis, an increase in the 

number of layers greatly increases the number of modes and consequently the chance that 

modes are missed in the root-finding procedure. Vermeersen and Sabadini (1997) showed 

that it is better to use an approximation to PREM and use all the modes than to use many 

layers and miss some important modes. Furthermore, they found that a 5-layer volume-

average model is close to results with a model with many layers. Here, the major seismic 

discontinuities at the following depths are used (or close to these depths as the exact 

depth is debated and varies across the Earth): 400, 670 and 1180 km to arrive at a 6-layer 

model (see Table 2.1). The elastic parameters in Table 2.1 are obtained by volume-

averaging from corresponding layers in PREM. The density profile was further modified 

to match a surface gravity of 9.81 m/s2.  

 

2.2 Sea level equation 

The original complete formulation of the sea level equation is given in Farrell and Clark 

(1976). An efficient method to solve the equation is given by Mitrovica and Peltier 

(1991). Subsequent improvements include the implementation of time-dependent 

continent margins (Johnston, 1993) and rotational feedback (Milne and Mitrovica, 1998; 

Peltier, 1998). Here the description of Kendall et al. (2005) is followed closely, but 

rotational feedback is not implemented.  
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Table 2.1: Elastic parameters for the Earth model used with the normal mode method.  

layer depth 

[km] 

density ρ 

[kg/m3] 

rigidity µ  

[x1011 Pa] 

1 0-115 3192 0.60 

2 115-400 3442 0.73 

3 400-670 3882 1.10 

4 670-1171 4527 1.81 

5 1171-2891 5084 2.41 

6 2891-6371 10925.0 0 

 

Coding of the sea level equation started during the author’s MSc thesis at the TU Delft. 

The self-consistent sea level and time-dependent ocean margins were implemented after 

that. The code makes use of a spherical harmonic transform by Dr. Pieter Visser, which 

uses a Fast Fourier Transform routine by Dr. Ernst Schrama, both of TU Delft. 

This section reviews some of the concepts and equations needed to compute a 

self-consistent sea level, given the surface load prescribed by global ice histories and the 

solid Earth response computed with the normal mode theory. It is assumed that the 

reference Earth is a spherical Earth with radius ae. The reference equipotential surface is 

the surface of this sphere. After loading and unloading, the geoidal and solid surface 

deviate from the spherical surface by an amount G∆  and R∆ , respectively. The sea level 

difference is defined as the difference between these amounts (Mitrovica and Peltier, 

1991): 

SL G R∆ = ∆ − ∆ .         (2.10) 

The ∆ symbol denotes change, which is defined here as difference between the epoch 

under consideration (t = tj) and the start of glaciation (t = t0). δ denotes a difference 

between two quantities at subsequent time steps, which will be called ‘increment’. The 

words ‘sea level’ are used in this section when the global field is meant, and ‘ocean 

depth’ when the change in water height over the world’s oceans is meant, which is the 

projection of equation (2.10) on the ocean surface.  
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The continent-ocean margins are not constant throughout a glacial cycle but 

depend on the topography and the reference equipotential surface. Since topography 

before the ice age is not well known, one has to start with the present-day topography Tp 

and work backwards to find the initial topography T0: 

0 p pT T SL= + ∆  .                  (2.11) 

Given initial topography, the topography at time tj follows from the initial topography in 

combination with sea level from equation (2.10). Then, the ocean area at time tj can be 

defined as areas of negative topography taking into account the presence of ice in ocean 

areas and checking whether the ice is grounded or not (Milne, 2002).   

To avoid clutter, the latitude and longitude dependence of spatial quantities is not 

made explicit. Time steps are indicated by subscripts j, with j running from j = 0 (at the 

start of glaciation) to j = N (at present). It is implicitly assumed that there is no remaining 

effect at the end of the glacial cycle that precedes the last one. This is clearly not true if 

one assumes that the preceding cycles are the same length as the last one, because 

otherwise there would be no gravity anomaly and solid Earth displacement remaining at 

present from the last ice sheet. However, for gravity rate the existence of glacial cycles 

before the last one are less relevant (Tamisiea et al., 2007). 

It is useful to split the sea level change into a spatially varying part and a spatially 

uniform part: 

j
j jSL

g

∆Φ
∆ = ∆ +SL ,         (2.12) 

where j∆Φ is the average global shift (uniform) in potential that occurs when water is 

added to or removed from the oceans. The spherical harmonic coefficients of the spatially 

varying part of the sea level change are given by (from appendix A.2): 

( )
1

, , ,
0

N
j g j

lm j lm j lm j l lm l lm l
j

R T L E L tδ β
−

∆ ∆

=

 
∆ = ∆ − ∆ = − ∆ 

 
∑ SL

SL G ,    (2.13) 

where 
24

2 1
e e

l
e

a a
T

l M

π=
+

, and the surface load can be specified as the sum of ice and ocean 

height increments: 
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, , ,lm j I lm j w lm jL I Sρ ρ= ∆ + ∆ , and      

 (2.14) 

, , ,lm j I lm j w lm jL I Sδ ρ δ ρ δ= + .        (2.15) 

A spectral form of the uniform shift in potential is (Kendall et al., 2005, equation 78) 

( )00, 00, 00, 00,0 00, 00,0
00,

1j I
j j j j

j w

I T
g

ρ
ρ

∆Φ  
= − ∆ − + − 

 
SL C C C

C
,               (2.16) 

It is clear that sea level itself is necessary to compute the terms in equation (2.12). Thus 

iteration is necessary. For that purpose, it is better to compute the sea level increment, for 

which can be derived in spectral form as (Kendall et al., 2005, equation 72) 

( ), , , , , ,0 , ,0
j

lm j lm j lm j lm j lm j lm lm j lmS S T
g

δ
∆Φ

= −∆ + ∆ + − −SL C C C C ,   (2.17) 

where ,lm jS∆ is the change in ocean height from the start of loading until time jt ; ,lm jC is 1 

for ocean and floating ice and 0 for land or grounded ice, and ,0lmT is the initial 

topography. 

Iteration proceeds by computing a first guess for the sea level increment at tj and 

then computing the quantities in equation (2.12) using equations (2.13) and (2.16). The 

next iteration of the sea level increment can be computed by equation (2.17). The initial 

topography is only known from equation (2.11) after the sea level is known at all time 

steps. Therefore, another iteration is needed over the entire glacial cycle. Convergence on 

the i-loop is defined by a test on the spherical harmonic coefficients of the ocean height 

increment. Convergence of the k-loop is governed by the sum of differences of spherical 

harmonic coefficients of the initial topography (Kendall et al., 2005, equations 83 and 

86). 

In section (2.4), the uniform ocean height approximation is used. In this case, the 

ocean height at each step is computed by equation (2.17) and (2.16) with ,lm j∆SL  and  

, ,0lm j lm−C C  equal to zero:  

, 1
, 00,

00, 1

lm j I
lm j j

j w

S I
ρδ δ
ρ

−

−

 
= − 

 

C

C
.        (2.18) 
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2.2.1 Assumptions: rotation and geocenter motion 

Rotational feedback can be included in the solution of the sea level equation (Milne and 

Mitrovica, 1998; Peltier, 1998), but this is not implemented here. Rotational feedback 

leads to a degree 2 order 1 pattern, which has the scale of the entire North America 

(Tamisiea et al., 2002). In terms of geoid rate, the magnitude of the signal in North 

America is less than 0.1 mm/year (Peltier, 1999, Figure 13). For testing post-processing 

filters on GIA simulations (section 5.3), the low degree parameters are not important, 

since they are not at all or hardly affected by the filter. For comparisons of the detailed 

shape of the gravity rate and inferences related to past ice sheets (section 7.5.2), the 

magnitude of the rotational pattern is likely also not important.  In the viscosity 

inferences of section (7.6), the neglect of rotational feedback is probably absorbed by the 

lower mantle viscosity.   

Finally, GRACE-derived values for C21 and S21 are found to be in reasonable 

agreement with values derived from other techniques, but the level of noise is still much 

larger than the formal error suggests. Thus, in comparisons with GRACE, the accurate 

treatment of rotational theory is rendered less important by the level of noise in the 

Stokes coefficients in which the rotational feedback manifests. 

 

The center of mass of the Earth remains fixed in the orbit around the Sun unless external 

forces act on it. However, if a surface load is formed of which the center of mass does not 

coincide with the center of mass of the Earth, the center of mass of Earth plus load moves 

with respect to a coordinate system that is fixed to the Earth by geometrical means. 

Observations such as GPS are defined with respect to an Earth-fixed coordinate system, 

such as the International Terrestrial Reference Frame (ITRF). Thus, geocenter motion 

caused by GIA has to be accounted for by adding appropriate degree 1 coefficients 

(Farrell, 1972) when comparing results of surface load models to such observations. In 

the case of GIA, geocenter motion is induced by transport of mantle material from lower 

latitude to former glaciated areas at higher latitude. However, degree 1 coefficients are 

set to zero in GRACE processing (see section 4.1), so, in the comparison between GIA 

models and GRACE, the degree one coefficients should not be included in the model. 



 

 

20 

 

Moreover, the degree one coefficients are not part of the gravity anomaly because of 

the (l-1) term in equation (A.4). In the comparison between GIA models and GPS data in 

section (7.5.2), geocenter motion should be accounted for. This is not done in this thesis, 

thus lower mantle viscosity will probably be biased. By not including degree 1 terms in 

the computation, also the coupling between degree 1 terms and higher degree terms 

during the glaciation cycle (Paulson, 2006) is neglected.  

 

2.2.2 Implementation issues  

This section describes the spatial grid that is used in the implementation of the sea-level 

equation and the validation of the computer code. The time steps are determined by the 

global ice load histories which are described in the next section. 

The maximum spherical harmonic degree L that is used is 256. Following 

Mitrovica and Peltier (1991), spherical harmonic transforms were implemented based on 

Gaussian quadrature. This leads to an exact spherical harmonic transform for maximum 

spherical harmonic degree L if the latitudinal nodes are determined by the zeros of a 

Legendre polynomial of degree L + 1. In that case the minimum number of parallels in 

the spatial field required to be able to obtain spherical harmonic coefficients up to degree 

L is L + 1 (Sneeuw, 1994). The longitudinal increments are: / Lπ . Thus, the advantage of 

the exactness of the SH transform comes at the price of having to interpolate all inputs on 

a Gaussian grid.  

The implementation of the sea level equation for an axisymmetric model is 

compared with a FE model in Wu and Van der Wal (2003), where the excellent 

agreement between both methods was used as a benchmark for the FE model in that 

paper, but simultaneously serves as validation for the spectral sea level equation with 

uniform ocean height approximation. Partial validation of the 3D spectral model is 

offered by the good (but not perfect) agreement between the spectral method and the 3D 

FE model in section 3.5. Furthermore, spherical harmonic analysis and synthesis 

computer codes in FORTRAN are tested with routines in MATLAB. Results of the codes 

developed based on the algorithms in this chapter are used, amongst others, in Van der 
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Wal et al. (2004) and Braun et al. (2008). Note that the normal mode code is already 

validated (Vermeersen and Sabadini, 1997). 

Small parts of the sea level equation, i.e., the implementation of the ice loading 

history and the implementation of the time-dependent continent margin, were not 

benchmarked before. Thus, a comparison is undertaken with results from other numerical 

codes presented in the literature; see Appendix B. Benchmarking with computer codes of 

other groups is hindered by the public availability of computer codes (currently only the 

code of Spada and Stocchi (2005) is made publicly available) and the differences in 

implementation of the sea level equation between different groups. Therefore, a 

comparison of results illuminates the differences in implementation as much as it does 

possible bugs in programming.  

 

2.3 Global ice models 

Details about implementation of the ice loading histories ICE-3G (Tushingham and 

Peltier, 1991), ICE-4G (Peltier, 1994) and ICE-5G (Peltier, 2004) are given in this 

section. The ICE-3G and ICE-4G models are shared among researchers. The ICE-5G 

version 1.2 model is available on the special bureau for loading website 

(http://www.sbl.statkart.no/projects/pgs/ice_models/Peltier_ICE-5G_v1.2/) and used 

here. ICE-5Gv1.2 is meant whenever ICE-5G is written in this thesis. Note that this 

version is different from the version for which results are presented in Peltier (2004); see 

discussion in section 7.7. For reading and interpolation of the ICE-5G model, use was 

made of Fortran routines from Dr. Hugo Schotman.  

Ice-height increments for ICE-3G and ICE-4G are computed as the difference 

between ice thicknesses at the current step and the previous step. In the ICE-3G model 

the difference between ice thicknesses given at two consecutive heights is assumed to 

melt instantaneously at the beginning of the step. The glaciation of ICE-3G and ICE-4G 

is assumed to be the reverse of the deglaciation but with time steps of 7 ka. To obtain the 

total ice thickness used in equation (2.14) the ice thickness of the present day is removed. 

Even though ICE-3G was based on the non-calibrated C-14 time scale, the time steps are 

not calibrated in this thesis, to stay close to the original model used in many publications.  
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ICE-3G is a finite-disc model, i.e., the coordinates of the center of the disc and 

the radius are given. When the ice thicknesses are interpolated on a grid, holes appear in 

the ice heights. To remove these holes, an interpolation routine was written to fill the 

holes with the average of the ice thicknesses around the holes.  

ICE-5G also prescribes glaciation. The ice thicknesses at the start of glaciation are 

subtracted from all ice thicknesses (Peltier, personal communication 2007) which means 

that it is assumed that the Earth with ice thicknesses at the start of glaciation is the 

reference state. Since a thick pack of ice is already present in Greenland and Antarctica at 

the start of glaciation, this reference state influences the comparison with ICE-3G and 

ICE-4G where ice thickness in those regions is growing linearly from zero. For checking 

for marine based ice (β in equation (52) of Kendall et al., 2005) the original ice thickness 

given in ICE-5G should be used, but for equations (2.16) and (2.13) the sum of the 

increments should be used.  

 

2.4 Models used for testing GRACE filtering 

In Chapter 4 GIA models are used to investigate the effect of post-processing filters on 

the GRACE-derived gravity data. The GIA models that are used for those simulations are 

discussed below. It was felt necessary to use two GIA models with distinct differences in 

gravity rate pattern but with a magnitude close to that found in GRACE data. ICE-3G and 

ICE-5G were used as loading history and the upper mantle and lower mantle viscosities 

were selected after trial and error to obtain a peak gravity rate in the models that is close 

to that of GRACE, which is found to be 1.59 µGal/year in Figure 5.28a: 

- i3_8_60: ICE-3G history, upper mantle viscosity of 8 x 1020 Pas, Lower mantle 

viscosity of 6 x 1021 Pas, peak gravity rate 1.55 µGal/year; 

- i5_2_60: ICE-5G history, upper mantle viscosity of 2 x 1020 Pas, Lower mantle 

viscosity of 6 x 1021 Pas, peak gravity rate 1.56 µGal/year; 

The gravity rate for both models is shown in Figure 2.2, after smoothing with a Gaussian 

filter (see section 4.2.3.1) and cut-off at spherical harmonic degree 60. Note that the 

largest gravity rate for the model with the ICE-3G loading history is southwest of Hudson 



 

 

23 

 

Bay, while for the other model it is west of Hudson Bay. Furthermore, the smaller 

upper mantle viscosity in model i5_2_60 leads to less spatial detail in the gravity rate. 

The gravity rate computed with solving the sea-level equation with fully time-

dependent ocean margins is shown in Figure 2.3. The maximum gravity rate is 1.63 

µGal/year, compared to 1.60 µGal/year in Figure 2.2. This difference is small compared 

to uncertainties in the model. Therefore, for misfit comparisons the uniform ocean height 

level approximation is used.  

 

 

Figure 2.2: Gravity rate from two GIA models after Gaussian filtering with a 400 km 

halfwidth Gaussian filter (see section 4.2.3.1): (a) i3_8-60 and (b) i5_2-60.  

 

 

Figure 2.3: Gravity rate for model i3_8-60 with time-dependent ocean margins after 

Gaussian filtering with a 400 km halfwidth. Maximum gravity rate is 1.63 µGal/year. 
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2.5 Summary 

A GIA model consists of a mathematical model for response of the solid Earth to surface 

loads and a theory for computing the ice-water redistribution on the deformable Earth as 

a function of a (global) ice load history. The theory for both components is briefly 

reviewed in this chapter. Compressibility, rotation and geocenter motion are not 

implemented, as explained in sections 2.1 and 2.2. The implementation of the theory 

summarized in this chapter is mainly validated by comparisons with an FE model, as 

discussed in section 3.5.  

A time-dependent ocean-continent margin is implemented, but its effect on the 

gravity rate is shown to be small enough that time-dependent ocean margins can safely be 

neglected for misfit comparisons with GIA models with varying viscosity or ice models. 

Therefore, results in Chapter 5 and Chapter 7 use the uniform ocean height level 

approximation.   

In the following, the term ‘GIA model’ refers to the combination of an ice loading 

history and viscosity profile. The results of such models are used extensively in Chapter 7 

because the spectral methods with uniform ocean height approximation allow quick 

computation of GIA observables for a range of viscosities.  
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Chapter Three: Non-linear rheology in a finite element model of GIA 

As stated in section 1.1.1 and in the objectives (section 1.2), the predictions of a GIA 

model with composite rheology is investigated in this thesis. In this chapter, the 

implementation of composite rheology in a finite element model is described. Results are 

presented in Chapter 6. A composite rheology consists of a flow law in which the strain 

rates of diffusion and dislocation creep are added. Thus, both a linear and non-linear flow 

law are part of such a composite rheology.  

The super-position principle does not hold for a non-linear constitutive relation, as 

different modes are coupled (Wu, 2002b). Spectral methods rely on the superposition of 

different harmonics, therefore they generally do not work for problems with a non-linear 

rheology. However, perturbation solutions have been constructed based on spectral 

approaches to problems with a weakly non-linear medium (D’Agostino et al., 1997; 

Kaufmann and Wolf, 1999; Tromp and Mitrovica, 2000). In this thesis an existing Finite 

Element (FE) model of Wu (2004) is used, in which more complicated material 

behaviour can easily be implemented. However, realistic simulations require the use of 

large numbers of elements and several iterations which make computations slow.  

Non-trivial problems in the implementation of GIA in the FE model are the 

implementation of buoyancy forces and the coupling of displacement and the 

gravitational potential in the boundary conditions. These problems and their solution by 

Wu (2004) are explained in section 3.1. Section 3.2 introduces diffusion and dislocation 

creep laws along with their numerical and experimental basis. Section 3.3 describes the 

implementation of composite rheology in the FE model. Section 3.4 lists input parameters 

used for the FE model. Section 3.5 presents a comparison between the FE and the 

spectral model of the previous chapter.  

For most computations with ABAQUS the Lattice cluster on the Westgrid 

network (see: ww.westgrid.ca) was used. At a later stage, a switch was made to the 

Terminus cluster at the High Performance Computing Centre of the University of 

Calgary. Parallel computation could potentially speedup ABAQUS computations, but the 
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number of processing nodes is limited by the number of licenses available for 

ABAQUS users thus limited or no gain can be expected from parallel processing. 

 

3.1 GIA modeling with the finite element method 

A review of the use of the FE method for modeling lateral viscosity variations can be 

found in Steffen et al. (2006). The earliest use of finite element method in GIA appears to 

be Sabadini et al. (1986), who modified a code (TECTON) that was developed for 

subduction. An overview of studies that used the finite element method for visco-elastic 

relaxation is given in Table 3.1 along with some notable improvements in each of the 

studies. A more recently developed model is that of Spada et al. (2006). In addition to the 

FE method, there exist other numerical and perturbation methods for GIA computations 

with lateral variations in viscosity, see the list in Martinec (2000). 

 

Table 3.1: FE modeling in GIA literature. 

Sabadini et al. 
(1986) 

axially 
symmetric 
cylindrical 

uniform sea 
level 

Wu 
(2002b, 
2004) 

3D 
spherical  

self-
gravitation 

Gasperini & 
Sabadini 
(1990) 

axially 
symmetric 
cylindrical  

buoyancy 
using 
horizontal 
integration 

Zhong et 
al. (2003) 

3D 
spherical 

built from 
mantle 
convection 
code 

Wu (1992)  halfspace commercial 
finite element 
package: 
ABAQUS 

Latychev 
(2005) 

finite 
volume 

compressible 
(in the short-
term limit) 

Wu et al. 
(1998)  

3D flat Earth   Paulson et 
al. (2005) 

 rotational 
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3.1.1 Formulation of the elastic loading problem 

The starting point for the elastic loading problem is the balance of forces, which states 

that the stresses acting on the surface of the body equal the forces acting on the inside of 

the body (e.g. Cathles, 1975): 

S V

dS dV⋅ =∫ ∫σ n b ,         (3.1) 

where σ is the stress tensor, S  is the surface of the body, n is the normal to the surface, 

b is a body force per unit volume, and V  is the volume of the body. After applying the 

divergence theorem it follows that 

0∇ ⋅ − =σ b .          (3.2) 

Equation (3.1) represents force equilibrium, similar to equation (2.1) where the body 

forces are separated in different terms. Moment equilibrium is satisfied if the stress tensor 

is symmetric so that there are only 6 elements of the stress tensor at each point in the 

three-dimensional body. In FE programs, force equilibrium for every particle in the body 

is replaced by the requirement that force equilibrium holds for a finite number of 

subdivisions (the elements) of the structure.  

A weak form of the differential equations can be derived by multiplying equation 

(3.2) with a test function ( )T u v wδ δ δ δ=u and integrating over the whole domain: 

( ) 0T

V

δ ∇ ⋅ + =∫ u σ b .         (3.3) 

After partial integration and rearranging this can be written as a scalar equation for the 

entire body. This is the so-called Virtual Work Principle which states that the work done 

by the internal stresses (or the internal potential energy) is equal to the work done by the 

surface and body forces. In ABAQUS and in FE methods in general, the Virtual Work 

Principle is used to find approximate solutions which satisfy equilibrium in some average 

sense:  

0ij j i+ =K u fɶ .          (3.4) 

The stiffness matrix ijK is given by 

1
k

e

ij i j j
k V

dV
=

=∑ ∫K B DB uɶ ,        (3.5) 
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D  contains the elastic moduli (here: Young’s modulus E and Poisson’s ratio ν ):  

( )( )

( )
( )

( )
( )

( )
( )

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 2 2 0 01 1 2

0 0 0 0 1 2 2 0

0 0 0 0 0 1 2 2

E

ν
ν

ν
νν ν

ν
ν

 −
 − 
 −

=  
−+ −  

 −
 

−  

D (3.6) 

and =B SN, in which Scontains partial derivatives with respect to the global 

coordinates: 

0 0 0

0 0 0

0 0 0

T

x y x

y x y

z z z

∂ ∂ ∂ 
 ∂ ∂ ∂
 

∂ ∂ ∂ =  ∂ ∂ ∂
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

S ,       (3.7) 

and N contains shape functions which approximate the displacement along an element: 

1

N
inn

i i
i

i

u

v

w

δ δ
=

 
 ≈ =  
 
 

∑u N uɶ         (3.8) 

where δuɶ is the virtual displacement at the nodes of the element; nn is the number of 

nodes in the element; and N  are the so-called shape functions. A simple example of a 

linear shape function N3 for a triangular element with nn = 3 is given in Figure 3.1. 

 

 

Figure 3.1: Linear shape function (thick solid lines) N3 for the triangular element 123 

(after Figure 2.2 of Zienkiewicz et al., 2005). 
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In equation  (3.4), f is the load matrix: 

1 1
k k

e e

i i i
k kV S

dV dS
= =

= − +∑ ∑∫ ∫f N b N t ,       (3.9) 

where t are surface tractions. The above formulation also holds if instead of virtual 

velocity field δ vɶ is introduced instead of virtual displacements δuɶ , in equation (3.8), and 

if stress and strain are to be replaced by stress rate and strain rate (ABAQUS Theory 

Manual, Section 2.1.1).  

 

3.1.2 Equations of motion 

Equation  (3.2) is the form of the loading problem that is solved by FE methods. Thus, 

the equation of motion as it applies to geophysical problems has to be cast in the form of 

(3.4). From equation (2.1) is obtained for an incompressible model (Cathles, 1975; Wu, 

2004):  

( )0 0 1 0ogρ ρ φ∇ ⋅ − ∇ ⋅ − ∇ =σ u r ,       (3.10) 

The gravitational potential perturbation has to satisfy the Laplace equation, equation (2.2)

Comparing equation (3.10) to equation (3.4) shows that the second and third term in 

equation (3.10) should be included either in the load matrix f or in the stiffness matrix K.  

Gasperini and Sabadini (1990) wrote the buoyancy force as a volume integral times 

displacement so that a term can be added to the stiffness matrix. Wu (2004) applied a 

stress transformation (his equation 11):  

( )0 0 0 1rg uρ ρ φ= − +t σ I ,        (3.11)

so that equation (3.10) reduces to 

0∇ ⋅ =t . 

This is equivalent to equation (3.2) with body force zero. Thus, from the load matrix (3.9) 

the first term disappears, but the tractions remain and are to be introduced as boundary 

conditions; see the next section.  
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3.1.3 Boundary conditions 

Traction, displacement and potential need to be prescribed on all boundaries (surface, 

Core-Mantle Boundary (CMB) and internal boundaries). After stress transformation 

(3.11), the traction boundary conditions are (Wu, 2004; Wu and Wang, 2006) 

- Surface: 0 0 0 0 1rr rt g u gρ σ ρ φ+ = − − ;      (3.12) 

- Internal boundaries (continuity of stress): [ ] ( )0 1rr rt g uρ φ+

−
= ∆ + ;  (3.13) 

- CMB: [ ] ( ) ( )0 1rr c m r c mt g uρ ρ ρ ρ φ+ = − − − ;     (3.14) 

where [ ]+

−
 denotes the quantity in square brackets above the boundary, minus the same 

quantity below the boundary. Terms with 0 0 rg uρ  are equivalent to an elastic spring with 

spring constant 0 0gρ . Therefore, they can be inserted as Winkler foundation (Wu, 2004). 

In ABAQUS, the option FOUNDATION is available which requires as input the element 

number and the spring constant per unit area (ABAQUS analysis user manual sections 

2.2.2 and 14.1.3). Gasperini and Sabadini (1990) use a horizontal integration over the 

elements instead of Winkler foundation, whereas Spada et al. (2006) also use a Winkler 

foundation. Other terms involving σ  and 1φ  are inputted as distributed load in ABAQUS.  

Displacement should be continuous at internal boundaries but is allowed to vary 

at the surface and the CMB, so that the boundary conditions are 

- surface of the Earth: ˆru = ur ; 

- internal boundaries: [ ] 0
+

−
=u ; and 

- CMB: [ ] 0
+

−
=u . 

The gravitational potential is continuous at all surfaces: 1 0φ +

−
= . The potential gradient 

obeys (Cathles, 1975, p. 19) [ ]1 04 4rG u Gφ π ρ π σ+

−
∇ + = . Therefore, the following 

boundary conditions can be derived: 

- Surface: [ ] [ ]1 0ˆ 4 4rG u Gφ π ρ π σ+ +

−
∇ ⋅ + =r .  

- Internal boundaries: [ ]1 04 0rG uφ π ρ +

−
∇ + = ; 
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- CMB: [ ]1 04 0rG uφ π ρ +

−
∇ + = . 

To form boundary conditions (3.12) to (3.14), the potential perturbation must be known 

at each boundary. Thus, the Laplace equation is coupled to the FE program through the 

boundary conditions. First, 1φ  is transformed into spherical harmonics so that the radial 

dependence of the potential is separated from the part that depends on the latitude and 

longitude of the sphere. It is necessary to assume that the Earth model is made up of 

shells of constant density. Starting with the solutions at the CMB, one can propagate the 

solution upwards. The integration constants can be solved for because the surface 

boundary condition is known. Thus, the spherical harmonic coefficients of 1φ  are known 

at each interface, as required for the boundary conditions, equations (3.12) to (3.14). The 

steps are outlined in Figure 3.2, together with the steps required to solve the sea level 

equation; see next section.  

 

3.1.4 Combination with the sea level equation 

The sea level equation, given in spectral form in equation (2.17), is an integral equation 

that requires an iterative solution. Conveniently, iteration required to obtained the self-

gravitation term and iteration required for the sea level equation can be performed 

together (Wu, 2004). The schematic computation is shown in Figure 3.2. As a first guess, 

the ice-equivalent sea level is computed, after which the displacement at all boundaries 

can be computed with the FE program. Using the matrix propagation method the 

potential perturbation can be computed at all interfaces. Then, the sea level change can be 

computed according to equation (2.12). The ocean function is taken to be time-

dependent, as in section. However, for the FE program not the ‘full’ time-dependent 

continent margin is included, but only ocean inflow in Hudson Bay and the Gulf of 

Bothnia as ice leaves the ocean area is accounted for (Wang et al., 2006) 

To save computation time, it is useful to see the maximum number of iterations 

that are needed. Wu (2004) found that 4 to 5 iterations are sufficient in general. Table 3.2 

shows the misfit with respect to 30 RSL observations, for three different rheologies with 

the ICE-5G model. Misfit is the statistic used to compare models with data in this thesis, 
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see section 6.4. It demonstrates that after iteration 2, differences with the final 

(iteration 4) number are small, so that when the best absolute misfit is not the goal, the 

computation can be stopped after the iteration 2. This is the case for the investigation of 

modifications in the ice thickness (section 6.6). Computation with 3D models with the 

original ICE-5G model are done with 4 iterations because a best fitting model is 

searched.  

 

3.2 Constitutive relations 

As stated in section 1.1.1, evidence for a non-linear rheology comes from micro-physical 

studies and laboratory studies experiments that observe dislocation creep in mantle 

materials under simulated mantle loading conditions. This section reviews some of that 

evidence and discusses how the creep laws are implemented in the FE model. 

 

3.2.1 Steady-state creep from microphysics 

This thesis assumes that GIA is governed by steady-state creep (section 2.1). However, 

within steady-state creep many creep mechanisms exist based on micro-physical theory 

(Ranallli, 1995, p. 314). For different reasons not all stresses are relevant for geodynamic 

processes and the most common and most relevant types of creep are diffusion and 

dislocation creep (Ranalli, 1995, p. 374).  

The one-dimensional diffusion creep law can be written as (Ranalli, 1995, p. 321) 

2

diff AD

kTd

µ σε α
µ

Ω  =  
 

ɺ ,         (3.15) 

where α is a proportionality constant; Ddiff is the diffusion coefficient; µ  is the rigidity; 

ΩA is the atomic volume; k is Bolzmann’s constant; T is temperature; and d is the average 

grain size (diameter). The diffusion coefficient Ddiff can be split in a part due to diffusion 

through the crystal lattice (Nabarro-Herring creep) and a part due to grain boundary 

diffusion (Coble creep). 
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Figure 3.2: Flowchart of the steps required to compute GIA observables with the coupled 

Laplace FE method and the self-consistent sea level equation (Wu, 2004). Subscript j 

denotes the time-step, subscript p denotes the radial interface in the Earth model, and i is 

an iteration counter.  

Compute ice-equivalent 
ocean height (equation 

(2.18)) ( )1,, , j endS tδ θ λ =  

Compute radial 
displacement with FEM 

program ( )1,, , ,r j endu r tθ λ =  

Transform ( ), , ,ru r tθ λ  

into spherical harmonic 
coefficients ( ),lmU r t  

Compute ( ),lm r tΦ  

Transform to spatial 
domain t to obtain: 

( )1 1,, , , j endr tφ θ λ =
  

Compute self-consistent sea 

level ( )1,, , j endSL tθ λ =∆  

if convergence: STOP 

Form surface mass load 

( )1,, , j endtσ θ λ =  

Update boundary conditions  
Equations (3.12) to (3.14) 

i = i+1 
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Table 3.2: Misfit between prediction and RLS observations at 30 sites, for different 

iterations of the coupled FEM-Laplace method. 

iteration 1 2 3 4 

n3A34s 47.70 47.61 47.55 47.55 

n3A35s 52.46 53.81 53.84 53.80 

n3A36s 57.84 59.73 59.70 59.61 

 

If we assume that grain-boundary diffusion is dominant (which it likely is, see Hirth and 

Kohlstedt, 2003) the diffusion coefficient is 

diff GBD D
d

πδ= ,         (3.16) 

where δ is the grain boundary width (more precisely the diffusion path, which can be 

larger than the average grain size d); and GBD is the diffusion coefficient for grain 

boundary diffusion. Then equation (3.15) becomes  

3
GBD

kTd

µδ σε α
µ

 Ω=  
 

ɺ .         (3.17) 

The one-dimensional dislocation creep law can be written as  

0 exp
n

dis

D b E pV
A

kT RT

µ σε
µ

  + = −   
  

ɺ ,       (3.18) 

where Adis is a proportionality constant; and b is the inter-atomic spacing. From equations 

(3.17) and (3.18) it is clear that dislocation creep dominates at high stress and coarse 

grain size, while diffusion creep dominates at low stress and small grain size.  

 

3.2.2 Steady-state creep from experiments 

Material tests are performed mostly in uni-axial compression, in which a stress σT is 

applied to a specimen (see Figure 3.3) and the corresponding strain rate in the horizontal 

direction is Tεɺ measured. 
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Figure 3.3: Uni-axial compression test on specimen with unit length. 

 

If the load is held constant and deformation is measured, the test is a creep test (Ranalli, 

1995, p. 306). Such tests find general stress-strain relations of the following form (Hirth 

and Kohlstedt, 2003): 

( )2 exp expn p r
D

E pV
A d fH O

RT
ε σ αφ− + = − 

 
ɺ ,     (3.19) 

where DA is a dimensionality constant; n is the stress exponent; p is the grain size 

exponent; fH2O is the water content; r is the water content exponent; α is a constant; and 

φ  is the melt fraction. This equation is based on laboratory results, it does not address all 

sensitivities found in the real Earth such as lattice preferred orientation and phase 

transition.  

 

3.2.3 Implementation 

Following Gasperini and co-workers, only the stress-dependence of diffusion and 

dislocation creep is modelled, while it is assumed that all other material parameters are 

constant in the mantle. Thus, equation (3.19) is simplified to: 

nAε σ=ɺ .          (3.20) 

All parameters in the creep rate equation (3.19) influence the final strain rate. However, 

from these parameters only stress and grain size influence the two deformation 

mechanisms in different ways. Diffusion creep is enhanced by low stress and small grain 

size (Karato and Wu, 1993). Since the grain size exponent is 2 or 3 (Ranalli 1995, p. 321) 

while the stress exponent can be 3 to 4, the stress is somewhat more important in 

deciding which of the two deformation mechanisms is dominant. Moreover, stress is 

σT 

Tεɺ  

σT 
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derived from the glacial surface loading, which is already input to a GIA model. 

Therefore, it seems more natural to start by examining the stress-dependence of GIA 

relaxation rather than the grain-size dependence.  

For a long time, the belief was held that in the presence of a large background 

stress the postglacial stress-strain rate relationship can be linear (Turcotte and Schubert, 

2002 and Karato, 1998). However, such analysis is based on a simple scalar treatment of 

non-linear rheology. Schmeling (1987) already showed that in a tensor description glacial 

rebound sees an approximately linear rheology only when glacially induced stress is 

much smaller than tectonic stress, which is not the case in formally glaciated areas. 

Therefore, non-linear rheology is expected to markedly change the glacial isostatic 

response and has in fact been shown to do so (Wu, 1995, Wu, 2001). Moreover, the 

concentration of stress around the edges of the ice sheet causes a low effective viscosity 

which can affect the depth sensitivity of GIA observables compared to a purely linear 

rheology.  

In the following, a short review will be given on some experimental results from 

which a value of A can be deduced. For all laboratory results it is important to realize that 

experiments do not take place under exact mantle conditions. Scaling relations have to be 

applied to transform the findings to realistic mantle conditions. The largest extrapolation 

is in stress conditions (Hirth and Kohlstedt, 2003), but also extrapolation to higher 

pressure conditions of the mantle (Karato and Wu, 1993) and the more diverse chemical 

environment in the mantle (Ranalli, 1995, p. 376) can cause differences between 

laboratory results and mantle rheology. Moreover, experimental results also have to 

account for the presence of water and single crystals versus polycrystals.  

For the value of the stress exponent n Hirth and Kohlstedt (2003) conclude that 

3.5 +/- 0.3 is a likely value for both wet and dry conditions. Ranalli (1995) p. 328 finds n 

=  3.0 +/- 1.0. For the model computations in Chapter 6, the stress exponent is taken to be 

n = 3 and is not varied, because RSL data cannot discern between n = 3 and n = 4 (Wu, 

2002a; Wu and Wang, 2008). 

Values for the remaining parameters of equation (3.19) for dislocation creep are 

given in table 1 of Hirth and Kohlstedt (2003). Pressures and temperatures at a depth of 
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200 and 400 km are read from Ranalli (1995) Figure 7.9. A typical grain size is a few 

mm; here a value of 1 cm is used, in agreement with Hirth and Kohlstedt (2003) table 1. 

With these assumptions, the values of A (for dislocation creep) and η (for diffusion creep) 

in  

Table 3.3 are computed. It is clear from  

Table 3.3 that the experimentally determined parameters in equation (3.19) can not pin 

down the pre-stress exponent to an order of magnitude. It is here that GIA studies can 

play a role to provide a constraint for a pre-stress exponent averaged over the mantle. 

Wu and Wang (2008)’s computations lead to a value of A between 10-35 Pa-3s-1 

and 10-36 Pa-3s-1. Moreover, values of A from 10-36 to 10-34 Pa-3s-1 agree with  effective 

viscosities of 4 x 1018 to 4 x 1022 Pas if the stress is taken to be 3 to 30 MPa. These 

viscosity values are also found with linear rheology (see e.g. Mitrovica, 1996; Peltier, 

1998; Kaufmann and Lambeck, 2002) and composite rheology (Gasperini et al., 2004; 

Dal Forno and Gasperini, 2007). Thus, in Chapter 6 A will be varied between four values: 

3.3 x [10-33, x 10-34, x 10-35, x 10-36] Pa-3s-1 and the Newtonian viscosity will be varied 

from [1,3,9] x 1021 Pas.   

 

Table 3.3: Values of the pre-stress exponent for dislocation creep and diffusion creep for 

two depths and a range of temperatures. 

Depth P T A [Pa-3s-1] η [Pas] 

[km] [GPa] [K] dry  wet dry  wet 

200 6 1200-1800 2 x 10-40 –  

2 x 10-31  
2 x 10-40 – 

8 x 10-31 

7 x 1022 Pas 
– 7 x 1016 

5 x 1026 –  

2 x 1020 

400 13 1550-1800 1 x 10-37 –  

2 x 10-34 

4 x 10-39 –  

3 x 10-35  

2 x 1020 –  

1 x 1018 

6 x 1024 –  

3 x 1022 
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3.2.4 Diffusion or dislocation creep in the mantle? 

This section reports on evidence about the presence of diffusion and dislocation in the 

upper and lower mantle.   

 

3.2.4.1 Upper mantle 

Dislocation creep likely gives larger strain rates than diffusion creep at a depth starting 

below the lithosphere up to 200-300 km depth (Karato and Wu, 1993). The depth at 

which the transition for dislocation to diffusion creep occurs is most sensitive to values of 

the activation volume and grain size (Hirth and Kohlstedt, 2003). Grain size changes can 

be accomplished by different mechanisms, one of which is dynamic recrystallization. It is 

observed that dynamic recrystallization tends to act so that the strain rates of diffusion 

and dislocation creep approximately balance (de Bresser et al., 1998). Thus, grain size 

reduction might not be as important for stimulating diffusion creep, or an entirely 

different mechanism must be responsible for grain size changes, independent from the 

deformation mechanism. Ranalli (1995), p. 376 also observes that for stresses 1-10 MPa 

and grain size of 10-1000 µm, both creep mechanisms are competitive. Finally, a 

geodynamics study by Van Hunen et al. (2005) finds dislocation creep in the upper 

mantle below the Pacific up to a depth of 410 km.  

 

3.2.4.2 Lower mantle 

Literature cited by Ranalli (1995), p. 379, on micro-physical models favours non-

Newtonian rheology in the lower mantle, although experiments on the most abundant 

lower mantle material (perovskite) show both diffusion and dislocation creep. Stresses 

below 1 MPa and grain size smaller than 1 mm should result in diffusion creep (Ranalli 

1995, p. 380-381). Figure 3.4, copied from Ranalli (1995) Figure 12.7b, shows 

predominantly dislocation creep in the lower mantle. 
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3.2.5 Tensor form of dislocation creep 

In order for equation (3.20) to be useful for a GIA model, it should be reworked into 

tensor form. Derivation of the tensor formulation following Ranalli (1995) is given in 

Appendix C from which the result is equation (C.8): 

13

2
n

ij ijAq Sε −=ɺɶ ɶ ,                      (3.21) 

where ijεɺɶ is an element of the deviatoric strain tensor that agrees with the definition of 

Mises equivalent stress (see equation (C.5)); ijS  is an element of the deviatoric stress 

tensor; and qɶ is the Mises equivalent stress (see equation (C.4)). Defining the viscosity as  

2
ij

eff
ij

S
η

ε
=
ɺɶ

          (3.22) 

it follows that the effective viscosity is equal to 

1

1

3eff nAq
η −=

ɶ
.          (3.23) 

 

 

Figure 3.4 (Figure 12.7b from Ranalli (1995): Solid lines denote dislocation creep, 

dashed lines denote diffusion creep. TBL1 and BL2 are two different temperature 

profiles, C and NH denote two different diffusion mechanisms. 
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Note that the A used here is that used in ABAQUS, i.e. the pre-stress constant 

determined from a uni-axial stress experiment (Schotman, 2008). If Ash from a shear 

stress experiment is available, the uni-axial A can be computed as 

( )1 2

2

3 n SHA A
+

= .          (3.24) 

Previous studies have also used the uni-axial A (Wu, 1995; 2001; 2002; Wu and Wang, 

2008).  

Power-law creep can be implemented in a time hardening and stress hardening 

form as simple uni-axial law. Since hardening and softening are assumed to be in balance 

place for steady-state creep, the hardening functionality is not necessary and the simpler 

of the two (time-hardening) can be used:  

n mAq tε =ɺɶ ɶ ,          (3.25) 

where t is time. The accuracy of integration of the creep law (3.25) influences the 

computation time. This is explained in more detail in Appendix D. 

 

3.3 Composite rheology in the finite element model 

GIA Studies with power-law creep have mostly assumed power-law creep and diffusion 

creep to be mutually exclusive and restricted to certain layers (e.g. Wang and Wu, 2008). 

However, diffusion creep and dislocation creep are concurrent, and their strains are 

additive (Ranalli 1995, p. 326). Therefore, a composite rheology might be a better 

approximation of deformation in the real Earth (Ranalli, 2001; Korenaga and Karato, 

2008). In this thesis a simple model of composite rheology is implemented in the GIA 

model discussed in the previous sections. The modeling aims to contribute to the 

following fundamental questions: 

i) Can composite rheology better explain available GIA data? If so, predictions 

of existing GIA models based on linear rheology may need to be revised. 

ii)  What constraints does GIA modelling offer if the true rheology is of 

composite type? 

A model in which creep rates from diffusion and dislocation creep are added can be 

found in Bird et al. (1960) where it is called the Ellis model. Parmentier et al. (1976) used 
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this model in mantle convection and a similar model is used by Van den Berg et al. 

(1993). Gasperini et al. (1992) have introduced the first application of composite 

rheology in GIA modeling. This study is followed by Gasperini et al. (2004), Dal Forno 

et al. (2005), and Dal Forno and Gasperini (2007). Recent geodynamic studies not 

focused on GIA that use composite rheology include Podolefsky et al. (2004) and Becker 

(2006).  

Composite rheology is defined as 

1 1133 3

2 2 2 2
ij n nn

ij ij ij

S A
Aq S Aq Sε

η
− −= = + = + 

 
ɺɶ ɶ ɶ ,      (3.26) 

where equation (3.23) is used. η is the Newtonian viscosity which is related to An=1 by: η 

= 1/(3An=1) , and other quantities are as defined before. The formulation is the same as 

Gasperini et al. (1992) and Giunchi and Spada (2000), except that here it is preferred to 

keep the creep parameter A as input parameter instead of the transition stress. The 

transition stress is the value of the effective stress where the strain rate from diffusion 

creep and dislocation creep are equal (Dal Forno et al., 2005): 

1

1

2 *SH n
T

A
η σ −= ,         (3.27) 

and the uni-axial A can be computed with equation (3.24).  

As stated in section 3.1.2, a transformation of stress, equation (3.11), is necessary 

to be able to treat the Earth loading problem in a commercial FE program. Thus, the 

stresses that are computed with ABAQUS are the transformed stresses, but the 

implementation of the uni-axial creep laws needs the true stresses. Therefore, we would 

need to take the stress computed in ABAQUS, transform with equation (3.11) and take 

the deviatoric part. However, since the second term in equation (3.11) contains only 

elements on the diagonal, they will not enter the deviatoric stress and the Mises stress 

computed by ABAQUS can be used directly in the creep law.  

Power-law creep and linear creep law can be implemented using the standard 

CREEP command in the main ABAQUS input file. For a composite rheology, user-

subroutine CREEP can be used to specify a stress-strain relationship other than the ones 
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that are built in. Thus, the uni-axial composite rheology in the user subroutine is 

specified as follows: 

1
n

nAq A qε == +ɺ ɶ ɶ .         (3.28) 

From equation (3.28) and equation (3.23) it can be shown that, for n =3, the transition 

stress at which the strain rate from linear and nonlinear rheology are equal, is 

qt = 1

3ηA
          (3.29) 

The use of the subroutine is further tested by specifying a purely linear and purely non-

linear law and compare the output with the standard implementation of power-law creep 

using the CREEP, LAW=TIME command. Figure 3.5 shows that they are almost 

identical.    

 

 

Figure 3.5: Comparison of displacement computed with subroutine and ABAQUS 

internal routine for (a) linear rheology (b) non-linear rheology. The blue line is shifted 

upward by 1 m to make it visible. 

 

The subroutine is implemented in the 3-D self-gravitating spherical Earth (Wu, 2004; 

Wang and Wu, 2006; Wang et al., 2006). Because the large number of elements makes 

computation long and visualization cumbersome, the axisymmetric model of Wu and Van 

der Wal (2003) is also used for visualizing the stress distribution and for studying the 

effect of ambient stress. 
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3.3.1 Background stress  

Gasperini et al. (1992), Giunchi and Spada (2000), Dal Forno et al. (2005) and Dal Forno 

and Gasperini (2007) include background stress as scalars. However, background stress is 

a tensor and can both increase and decrease the effective viscosity of power-law creep 

and hence the scalar sum of the background stress and the rebound stress only simulates 

the special case where the directions of the stress are parallel and of the same order of 

magnitude. Schmeling (1987) showed that the effect of background stress on rebound 

stress depends on direction. His argument will be repeated here, using Mises stress 

instead of the second invariant of the stress tensor, and with rebound stress being the 

primary (p) stress and convective stress being the secondary (s) stress. 

Effective viscosity is given in equation (3.23) as 

1 1

1 1

2 ' 3
E

eff n nA Aq
η

σ − −= = .        (3.30) 

Therefore, for constant A, the effective viscosity is proportional to q1-n. When a primary 

and secondary stress co-exist, the Mises stress is computed as follows: 

( )∑ +=
ji

s
ij

p
ijq

,

2

2

3 σσ  ,        (3.31) 

where superscript p denotes the primary and superscript s the secondary stress.  

Schmeling (1987) distinguishes three cases: 

1). Stresses are parallel and have the same sign. For example: ps
1111 σσ = . Substituting this 

in equation (3.31) yields 

( ) p
p qq 22

2

3 2

11 == σ .         (3.32) 

It follows from equation (3.30) that the effective viscosity is reduced by a factor( )n−12  or 

¼  for n = 3. Similarly, for orthogonal stresses, 2 pq q= , and for stresses parallel but 

with opposite sign: 
1

3 pq q= . Thus, a simplification as in Gasperini et al. (1992) where 

stress from rebound and convection are simply added only illuminates one of the possible 
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scenarios where the primary and secondary stresses are in the same direction and 

approximately of equal magnitude.  

 

3.4 Details of the model  

The FE model consists of 12 layers, i.e., 2 layers for each layering in the Earth model. 

The grid is 2o × 2o, with mesh refinement under the ice sheet. For the elements at the 

north and south pole of the FE model a 6-node linear triangular prism (hybrid with 

constant pressure). All other elements are eight-node linear bricks. These elements are of 

second order, which means that the shape functions defined in equation (3.8) are of 

second order. Hybrid elements are used to remove a singularity that occurs because of the 

incompressibility of the material.  

 

3.4.1 Elastic parameters 

A 6-layer Earth model is used with elastic parameters given in Table 3.4. It is identical to 

the model used in Wu and Wang (2008) except that a 150 km thick lithosphere is used 

here instead of 115 km, and the model here is incompressible (see next section). Note that 

the density in the core and the lower part of the lower mantle differ from those in Table 

2.1 but these differences are small.  

 

3.4.2 Poisson ratio and compressibility  

In the finite element model used in this thesis, the Poisson’s ratio is taken to be 0.5, 

which corresponds to the theoretical limit of an incompressible fluid (Turcotte and 

Schubert, 2002, p. 107). Seismic wave velocities actually yield much lower Poisson ratios 

(0.28-0.50, see Turcotte and Schubert, 2002, Appendix F). However, these lower ratios 

imply a compressible material, which is harder to implement fully in the surface load 

theory (Wu, 2004). Compressibility consists of material compressibility and the effect of 

compressibility on internal buoyancy (Klemann et al., 2003). Although these effects can 

not be separated in the real world, one can employ a Poisson ratio smaller than 0.5 to 

include material compressibility, but neglect the effect of compressibility on buoyancy 
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forces to avoid the instabilities associated with this effect (Klemann et al., 2003). This 

is indeed the approach followed by Wu and Wang (2008), who use a Poisson ratio in the 

order of 0.28, see their table 1. The instabilities are described in the ABAQUS Analysis 

User Manual as: “a very small change in displacement produces extremely large changes 

in pressure. Therefore, a purely displacement-based solution is too sensitive to be useful 

numerically”. The selection of hybrid elements mitigates the sensitivity. 

 

Table 3.4: Elastic constants used for ABAQUS 3D models. 

Layer r (km) ρ (kg/m3) g0 (m/s2) E (x1011Pa) µ (x1011Pa) ν 

Lith 6371 3192 9.815 1.55 0.52 0.50 

UM 6221 3442 9.866 1.89 0.63 0.50 

TZ 5971 3882 9.969 2.83 0.94 0.50 

LM1 5701 4527 10.014 4.60 1.53 0.50 

LM2 5200 5074 9.947 6.24 2.08 0.50 

Core 3480 10987 10.683 0 0 0 

 

3.4.3 Ice models 

The original ICE-4G model is used for deglaciation interpolated at the 2o × 2o grid. Ice 

increase is modeled as a linear ramp. For ICE-5G, interpolation to the 2o × 2o grid is 

performed by the grdtrack routine in GMT (Wessel and Smith, 1991). The ice thickness 

at present is removed from all ice heights. Glaciation is modeled as a linear ice increase 

up to the LGM at 26 ka BP. Increments are set at 26 ka, 22 ka and 18 ka BP, and from 

there on every 1 ka up to present. Smaller incrementation between 26 ka and 18 ka does 

not have a large impact on results. 

 

3.5 Comparison with the spectral model 

The axisymmetric FE model was benchmarked in Wu and Van der Wal (2003) where 

agreement was found to be excellent.  In this section, the 3-D FE method of this chapter 

is compared with the spectral method of the previous chapter for the ICE-5G model. 
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Differences in the implementation of both methods are (except for different methods to 

solve the differential equations) are:  

- Glaciation: In ABAQUS a ramp is assumed from the load at the beginning of the 

step to the end of the step. In the spectral code Heaviside increments are used.   

- The ocean function is partly time-dependent in the FE method. In the spectral 

method the ocean function can be fully time-dependent or ice-equivalent 

meltwater can be used at all time steps. 

The Earth model used is given in Table 3.4. The normal mode codes use the shear 

modulus, which can be calculated from Young’s modulus and Poisson’s ratio by 

( )υ
µ

+
=

12

E
.          (3.33) 

The spatial grid of the spectral sea level equation codes was changed to the 2o × 2o polar 

grid that ABAQUS uses. The 2o × 2o grid of the spectral method still starts at a latitude of 

89 degree while the grid of ABAQUS starts at 90. Interpolation from one to the other grid 

was found to have negligible influence. The maximum degree in spherical harmonic 

expansions is 90. The difference between the full sea level equation and the melt water 

equivalent sea level is not important for the comparison (not shown). ICE-5G files are 

interpolated from the same ICE-5G files as the ice model used in ABAQUS, using the 

same interpolation method.  

The differences in uplift rates between the FEM and spectral computation are 

shown in Figure 3.6. Interpolation is done by the grdtrack routine of GMT (Wessel and 

Smith, 1991), which uses bi-cubic interpolation. It can be seen that the differences are 

below 1 mm/year everywhere except for Baffin Island. These values are similar to the 

comparison in Wang et al. (2006).  

Factors that could explain the difference could be the integration between ice 

increments in ABAQUS. ABAQUS applies a linear change from one increment to 

another, while in the spectral method a Heaviside load is assumed (Wang et al., 2006). It 

is also possible that increasing the number of elements in the 3-D model beneath the ice 

load decreases the difference. Relative sea level curves of the two methods match well; 

see Figure 4 of Wang et al. (2006). 
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Figure 3.6: Uplift rate ABAQUS minus spectral with maximum spherical harmonic 

degree 90.  

 

3.6 Summary 

From microphysical studies and experiments, two main deformation mechanisms 

can be distinguished. In diffusion creep the viscosity is independent of stress, whereas for 

dislocation creep (power-law creep) the effective viscosity depends on stress. From 

earlier studies, dislocation creep is expected to occur in the upper part of the upper 

mantle, and a transition to diffusion creep is expected at depths of a few hundred km. In 

the lower mantle dislocation creep is expected to be dominant. For studying a rheology 

with power-law creep, the finite element (FE) method is used, because mode-coupling 

prevents the successful application of spectral methods. The commercial program 

ABAQUS is used with buoyancy forces, coupled Laplace equation and self-consistent sea 

level equation implemented as in Wu (2004). Compressibility and degree 1 are not 

implemented. The presence of background tectonic stress can both increase or decrease 

the effective viscosity, depending on the direction of the background stress, but is not 

included in the model. The model is shown to agree with a spectral model discussed in 

Chapter Two: to within 1 mm/year present day uplift rate. 
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The constitutive equation that is implemented consists of the summation of 

dislocation and diffusion creep rates, a so-called composite rheology. In a simplified form 

of the dislocation creep law, the strain rate depends on the stress exponent n and pre-

stress exponent A. In Chapter 6 values of A between 3.3 x 10-33 and 3.3 x 10-36 Pa-3s-1 are 

used and a stress exponent of n = 3 to investigate whether composite rheology improves 

fit with GIA observations. These values are based on earlier studies with purely non-

linear rheology which found reasonable sea level curves and uplift rates for these values 

of A. The Newtonian viscosity η will be varied between [1,3,9] x 1021 Pas. 
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Chapter Four:  GRACE-derived gravity rate for GIA studies - Theory 

This chapter deals with the gravity field functionals that are computed from the GRACE 

Level-2 products and their errors. In the first section, the Level-2 products provided by 

different processing centers are presented. The second section presents post-processing 

methods for the Level-2 products available from the GRACE literature and focuses on 

the methods that are used in this thesis. The third section discusses measurement errors 

and three different approaches to compute them that are used in this thesis. The final 

section addresses leakage, which is useful to understand the effect of upward 

continuation and filtering on the mass changes on the surface of the Earth and in the 

Earth’s interior. In this chapter, MATLAB code from Dr. Nico Sneeuw and Dr. Matthias 

Weigelt is used with small modifications to do all spherical harmonic synthesis and 

analysis computations. 

 

4.1 GRACE Level-2 Products 

Level-2 products consist of coefficients (and their standard deviations) of a spherical 

harmonic expansion of a global gravity field at monthly or longer intervals. ‘Official’ 

GRACE solutions are provided by three processing centers: 

- Center for Space Research (CSR), University of Texas (Bettadpur, 2007b);  

- GeoForschungZentrum (GFZ), Potsdam (Flechtner, 2007); 

- Jet Propulsion Laboratory, Pasadena (validation solutions) (Watkins, 2007).  

More recently, several other groups have processed GRACE data and have come up with 

their own solutions: 

- Centre Nationale d’Études Spatiales  

(http://bgi.cnes.fr:8110/geoid-variations/README.html); 

- University of Bonn (Mayer-Gürr et al., 2007); 

- Department of Earth Observation and Space Systems (Liu, 2008). 

Results for the different official solutions are “highly comparable” (Schmidt et al., 2008) 

because background models are standardized in the latest release (4) compared to the first 

releases of Level-2 products. In this thesis, the CSR data with maximum spherical 

harmonic degree 60 is mostly used; comparing the different solutions and analyzing their 
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differences is not a goal in this work. For a more detailed comparison of solutions from 

different processing centers in terms of secular gravity rates in Fennoscandia, see Steffen 

et al. (2008), who concluded that GFZ solutions produce the largest maximum secular 

gravity rate with location closest to that expected from uplift rate data in Fennoscandia.  

The Level-2 solutions use an a-priori static gravity field in the processing, and it 

is in this field that there are important differences in solutions from different processing 

centers. CSR solutions use a combination of GRACE CSR release 2 solutions in 

combination with EGM96 for the higher degrees (Bettadpur, 2007a). GFZ release 4 

solutions use the EIGEN_GL04C static gravity field (Flechtner, 2007). Dynamic parts of 

the a-priori gravity field include ocean tides, solid Earth tides and atmospheric and ocean 

variability.  

In all solutions, linear trends in the following coefficients are removed: 

2121403020 ,,,, SCCCC . Since these coefficients partly contain GIA signal, the secular 

change has to be added back to the respective coefficients when studying GIA (or any 

other secular process). This can be done, e.g., for the C20 coefficient as follows: 

( )02020,20 )()( ttCtCtC new −+= ɺ ,       (4.1)

where t is the epoch of interest; t0 is an arbitrary reference epoch and 20Cɺ  is the provided 

secular trend in the C20 coefficient. For time t, the midpoint of the data span (usually one 

month) can be used (Bettadpur, 2007b).  

The final product provided by the data processing centers are spherical harmonic 

coefficients of the geopotential (Stokes coefficients) lmC , lmS , defined in the following 

expansion of the Earth’s exterior geopotential (e.g., Bettadpur, 2007b) at point P: 

( ) ( )( )
2 0

, , , cos cos sin
lL l

e
lm lm lm

l m

a
V r t P C m S m

r r r

µ µθ λ θ λ λ
= =

 = + + 
 

∑ ∑ ɶ ,  (4.2) 

where r  is the radius of point P; θ  is the colatitude of point P; λ  is the longitude of point 

P; µ is the gravitational parameters of the Earth, 0.3986004415 1015 m3s-2; V is the 

gravitational potential; and ae is the mean equatorial radius, which is selected to be the 

value of the Topex/Poseidon reference ellipsoid: 6.378136300 x 106 m (6.378136460 x 

106 m for GFZ fields). For all applications this value can be assumed to correspond to the 
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Earth’s surface. lmP
~

= fully normalized associated Legendre polynomials. The 

normalization of the associated Legendre polynomials agrees with the usual geodetic 

definition (e.g., Heiskanen and Moritz, 1967)  

( )( )( )
( )!

!122 0

ml

mll
N m

lm +
−+−

=
δ

,       (4.3)

where m0δ is the Kronecker delta function. 

The C20 coefficients derived from GRACE are still noisier than those derived 

from SLR (Bettadpur, 2008), therefore, in this thesis as in many other references, the C20 

coefficient in GRACE solutions is replaced by the SLR-derived value. It is shown in 

Figure 5.27 that the effect of the C20 coefficient on the maximum gravity rate is small.  

In GRACE data processing, the origin of the reference frame is selected to be at 

the instantaneous center of mass of the Earth (Bettadpur, 2007a). Therefore, the 

summation in equation (4.2) starts at degree 2; changes in the location of the center of 

mass of the Earth cannot be obtained from GRACE data. See Figure 11 of Van der Wal et 

al. (2008a) and Lee et al. (2008) to get an impression of the possible effect of shift in 

geocenter on the geoid rate derived from GRACE. It is likely that the neglect of such an 

effect in the geoid rate does not reduce the sensitivity of GRACE with respect to 

parameters in the GIA model such as the ice loading history. As can be seen from 

equation (4.8), degree 1 terms are zero in the gravity anomaly because of the (l-1) term.  

 

4.1.1 Computation of gravity field functionals 

From the Stokes coefficients, a gravity field functional F can be computed by: 

( ) ( ) ( ) ( )( )0
2 0

, , , cos cos sin
L l

l lm lm lm
l m

F r t X X P C t m S t mθ λ θ λ λ
= =

= + +∑ ∑ ɶ ,  (4.4) 

where L is the maximum degree in the spherical harmonic expansion of the solution; and 

el aX =   for the geoid; 

( )
2

1 e
l

e

l GM
X

a

−
=   for free-air gravity anomaly; 
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( )
2

1 e
l

e

l GM
X

a

+
=  for free-air gravity disturbance. 

(see e.g., Heiskanen and Moritz, 1967, p. 88/89). ea is taken to be the Earth’s surface. The 

degree zero term (X0) is zero for GRACE data processing by convention. 

Free-air gravity anomaly (rate) is what is meant when gravity (rate) is written in 

this thesis. There is no theoretical reason to use gravity anomaly as opposed to gravity 

disturbance. Gravity disturbance is the radial derivative of the disturbing potential 

(Heiskanen and Moritz, 1967, p. 85), but gravity anomaly is used here to be consistent 

with earlier GIA modelling in which gravity anomaly was used. Note that Paulson (2006) 

and Paulson et al. (2007b) use a definition for gravity rate that corresponds to gravity 

disturbance. In general, that definition results in enhanced spatial detail and noise, and a 

slightly higher maximum secular gravity rate. 

For geophysical interpretation, only variations with respect to some mean field 

( lmC , lmS ) are interesting, therefore, a mean of several years of monthly Stokes 

coefficients is removed from the coefficients provided in the data files:  

( )
( ) lmlmlm

lmlmlm

SStS

CCtC

−=

−=
,         (4.5) 

to give the coefficients that can be used  in equation (4.4).  

It is useful to define the transformation between coefficients in a spherical 

harmonic expansion of a surface mass load (in equivalent water height with units of 

meter) to Stokes coefficients for simulations of present-day ice melt and continental 

water storage changes in 5.1.1. Water heights given on a grid can be expanded in terms of 

spherical harmonics as follows: 

( ) ( ) ( ) ( )( )
0 0

ˆ ˆ, cos cos sin
l

lm lm lm
l m

h P C m S mθ λ θ λ λ
∞

= =

= +∑∑ ɶ .    (4.6) 

Note that the ˆlmC and ˆ
lmS  have units of meters if the water height is given in meters. 

Here, C00 is assumed to be zero, or mass conservation can be enforced by adding a 

uniform layer to the ocean to make the C00 coefficient zero. Degree 1 coefficients are set 
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to zero. The transformation of coefficients ˆ
lmC and ˆ

lmS   to the coefficients of equation 

(4.4) is 

( ) ( ) ( ),13 ˆ
2 1

l ew
lm lm

e ave

k
C t C t

a l

ρ
ρ

+
=

+
,       (4.7) 

where wρ  is the density of water 1000 kg/m3 (the load is to be defined in ‘equivalent 

water thickness’); aveρ is the average density of the Earth, 5517 kg/m3; and kl,e is the 

elastic load Love number of degree l. Equation (4.7) accounts for the change in 

gravitational potential due to elastic displacement of the solid Earth. The elastic Love 

numbers used in this thesis are interpolated from those in Wahr et al. (1998).  Equation 

(4.7) is the same as equation (12) in Wahr et al. (1998) except for ae because surface 

mass density is used in that paper instead of equivalent water height. Implicit in this 

formula is the assumption that all mass changes occur in a thin layer at the Earth’s 

surface. This is valid for continental water storage changes, glacier melting and sea level 

changes.  

In computer code, equation (4.7) can simply be combined with the lX  of equation 

(4.4) so that the same spherical harmonic subroutine can be used to compute all gravity 

functionals as well as water height coefficients. The spherical harmonic synthesis will be 

explicitly given for gravity anomaly computed from spherical harmonic coefficients of a 

surface load in meter water height 

( )

( ) ( ) ( )( )
3 3

2 0

3 3
,

1 ˆ ˆ                 1 cos cos sin
2 1

w w

e ave e ave

L l
l

lm lm lm
l m

g
a a

k
l P C m S m

l

ρ µ ρ µθ λ
ρ ρ

θ λ λ
= =

∆ = − + ⋅

+⋅ − +
+∑ ∑ ɶ

.  (4.8) 

For global spherical harmonic analysis, equation (4.6), visual inspection found that the 

‘approximate quadrature’ method (Sneeuw, 1994) resulted in the smallest differences 

between a hydrology model on a grid, and the same model that is analyzed and 

synthesized subsequently. Thus, this method was selected to perform global spherical 

harmonic analysis.  
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4.1.2 Degree and order variances 

For analysing the magnitude of GRACE data and their errors in the spectral domain it is 

useful to plot the ‘information’ per degree or order. The quantities that are used in the 

next chapter are the degree variances, defined as 

( )2 2 2

0

1

2 1

l

l lm lm
m

C S
l

σ
=

= +
+ ∑ .        (4.9) 

Note that this is different from e.g. equation (22) in Wahr et al. (1998), where the term 

1/(2l+1) is not included. The units of the degree variance 2
lσ  are the same as the units of 

the coefficients. Cumulative degree variances are defined as 

( )2 2
,

0

2 1
l

l cum k
k

kσ σ
=

= +∑  ,        (4.10) 

where 2
kσ  are computed with equation (4.9). Finally, order variances are defined 

equivalently to degree variances: 

( ) ( )2 2 21

2 1

L

m lm lm
l m

C S
l m

σ
=

= +
+ − ∑ ,       (4.11) 

in which Slm = 0 for m = 0. 

 

4.2 Post-processing GRACE data  

Gravity measurements contain a multitude of overlapping signals from mass change 

processes on or below the Earth’s surface, at different length and time scales. Therefore, 

to isolate signals from GRACE data, inevitably, a-priori knowledge is used about the 

signals’ location and temporal behaviour. For example, GIA behaves linearly over the 

GRACE time period. This knowledge leads to the application of least-squares estimation 

of a trend in the presences of seasonal signals, which is described in section 4.2.1.  

It can be expected that after filtering the GRACE data, the signal explains most of 

the filtered data and that in particular GIA is one of the strongest signals in GRACE data. 

This leads to the technique of Principal Component Analysis (PCA), discussed in section 

4.2.2, which looks for orthogonal spatial patterns that explain most of the variance of the 

signal (Jolliffe, 2002, Rangelova et al., 2007).  
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Other methods that rely more heavily on a-priori data could also be used, but 

such methods defy the idea of GRACE providing an independent data set for constraining 

GIA models. For the purpose of interpolating GIA uplifts stated in the introduction, such 

a hybrid approach would be acceptable, and indeed it has been developed by Davis et al. 

(2006). Based on the idea that neither data nor models are perfect, they developed a 

Kalman filter approach to combine data and models in a statistical optimal way. 

Rangelova (2007) combined GRACE with GPS and terrestrial gravity data using a least-

squares collocation approach. This section discusses the least-squares approach to 

estimate a secular trend, followed by principal component analysis. The last section 

presents a classification of filtering techniques and discusses the three filters that are 

investigated in this thesis.  

 

4.2.1 Least-squares estimation of trend 

Since GIA is a secular process, it is sensible to estimate a linear trend in the coefficients 

and plot the magnitude of this trend on a spatial map. To avoid corruption of the trend by 

periodic signals, seasonal signals that dominate large scale mass transport should be 

estimated jointly (see e.g., Wahr et al., 2004). A semi-annual period can be included as 

well, so that the estimation for the gravity anomaly in each grid point of a spatial map 

becomes 
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2 2
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j j j j
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   

     (4.12) 

where tj is time epoch (unit of months); T is 12 months per year; k1 is magnitude of the 

trend; k2 and k3 are the magnitude of the cosine and sine annual component, respectively; 

k4 and k5 are the magnitude of the cosine and sine semi-annual component, respectively; 

and v(tj) is the residuals (they may still contain geophysical signal).  

For GRACE, the midpoint of the first and last day used for each monthly solution 

is used as the time of the j-th epoch. In some cases the 161 day tidal aliasing period of the 

S2 tidal component is jointly estimated, however, this might no longer be necessary with 
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the improvement of tidal models in Release 4 data, although C20 was found to contain 

significant energy at the 161 day frequency (Chen and Wilson, 2008). It was found here 

that estimation of signal at a 161 day frequency has a negligible effect on the maximum 

geoid rate (change of 1.2%).   

Weighted least-squares can be used, where a weight matrix P is populated with 

the inverse of the variances for each coefficient on the diagonal. The variances are simply 

the squares of the calibrated standard deviations that are provided by the processing 

centers. The advantage of such an approach would be that it takes into account the change 

in accuracy from one month to another, e.g., caused by groundtrack changes, but this is 

not investigated.  

 

4.2.2 Principal Component Analysis 

Principal component analysis (PCA) is a technique to “reduce the dimensionality of a 

data set while retaining as much as possible of the variation present in the data set” 

(Jolliffe, 2002). The general idea of the method is given here, after which the 

implementation of PCA for GRACE data is discussed. For more details, refer to 

Rangelova (2007), whose software was used for PCA of GRACE data in this thesis. PCA 

has also been employed for GRACE data processing by Schrama et al. (2007) and 

Wouters and Schrama (2007) among others.  

Assuming that a full signal covariance matrix Σ  of the dataset x is known, the 

aim is to find a linear combination 1α x  for which the quadratic form '1 1α Σα  is maximized 

with the length of 1α  equal to 1. It follows that 1α  is the eigenvector of Σ  with 

eigenvalue 1λ . For GRACE, the population signal covariance matrix is not known and 

the sample covariance matrix S is used instead: 

1
'

1n
=

−
S X X ,         (4.13) 

where X is the data matrix ordered as n rows by p columns, where n is the number of 

observations (GRACE epochs) and p is the number of variables (the grid points).  

A singular value decomposition of the data matrix X is useful for computation purposes 

and for visualizing the components: 
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T=X ULA ,         

 (4.14) 

where U is an n x r matrix that contains the time series; A is an r x p matrix that contains 

the spatial patterns, and L  is an r x r diagonal matrix with eigenvalues on the diagonal.  

r = rank of X; in case of full rank this will be p, or the number of grid points for GRACE 

analysis. The columns of UL  contain the time series, and the columns of A are the 

eigenvectors, which in GRACE data analysis are the spatial patterns of the signal of 

interest.  

 PCA uses a-priori information in that it searches for orthogonal spatial patterns 

and orders these according to their variance.  Although there is no outright reason to 

believe that GIA and other processes and noise separate nicely in orthogonal modes, it is 

hoped that PCA can help in separating secular from inter-annual signals as PCA does not 

prescribe the time behaviour in contrast to least-squares. Moreover, 80% of the variance 

in a global hydrology model is the annual cycle, so that a spatial pattern with an annual or 

near-annual cycle will be likely found in the first few modes. A generalization of the 

method is multi-channel singular spectrum analysis investigated for GRACE by 

Rangelova et al. (2008).   

  

4.2.3 Filtering of GRACE Level-2 products 

GRACE data contain spurious north-south stripes (Chen et al. 2005b), which are an 

artefact of the measurements or the estimation of the gravity-field or the post-processing. 

The exact cause of the stripe errors is still unknown, although the north-south oriented 

orbit of GRACE definitely plays a role. Other possible partial causes for the stripes are 

aliasing (see Figure 2 in Han et al., 2004) and incorrect accelerometer scale and bias 

parameters needed in the orbit determination process (Schrama et al., 2007). With 

improved background models in the release 4 models, reduced magnitude stripes are 

observed. Post-processing is generally done by applying isotropic or non-isotropic filters 

to the Stokes coefficients before producing mass estimates.  

Following Klees et al. (2008), filters can be divided in statistical and deterministic 

ones. Deterministic filters include Gaussian smoothing (Wahr et al., 1998), the non-
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isotropic Gaussian filter of Han et al. (2005), and the empirical filter designed by 

Swenson and Wahr (2006). Deterministic filters can be characterized according to their 

use of outside information. For example, Swenson and Wahr (2002) use the knowledge 

of the area of a river basin which is assumed to behave as one system to form an average 

mass change of the GRACE solutions over this river basin.  

Statistical filters include using standard deviations of the coefficients as weights 

(Chen et al., 2006); filtering using empirical orthogonal functions (Rangelova et al. 2007, 

Wouters and Schrama 2007); Wiener filtering (Sasgen et al., 2007), and filtering based on 

statistical testing of the coefficients (Davis et al., 2008). Kusche (2007) and Klees et al. 

(2008) both relied on a synthetic error covariance matrix and a signal covariance matrix.  

A deterministic filter can be easily applied to the spherical harmonic coefficients, 

and also to geophysical models to allow fair comparison between GRACE data and 

model results. At the time this work was conducted, the empirical Swenson and Wahr 

(2006) filter was the most widely used for removing the stripes. Synthetic noise 

covariance matrices needed for the Kusche (2007) and Klees et al. (2008) methods were 

not available during the course of this work. The full noise covariance matrix provided by 

CSR is shown to not describe the correlated errors well (see section 5.2.1). Therefore, this 

covariance matrix can not be used for the filtering methods of Kusche (2007) and Klees 

et al. (2008) and hence these filters are not applied in this work. The Swenson and Wahr 

(2006) filter is suitable for GIA because it can easily be applied to and tuned for GIA 

models. It is important to keep in mind that in this way the filter only influences the 

differences between competing GIA models. In other words, if the filter would affect all 

competing GIA models in the same way, the resolving power of the filtered GRACE data 

with respect to the GIA models is not reduced. 

To counteract the effect of the increased noise with decreasing wavelengths in 

GRACE observations and to further reduce the stripes, smoothing is applied to equation 

(4.4). Smoothing can be written in a general form as (Han et al., 2005, equation 4): 

( ) ( ) ( )
'

, ', ' , , ', ' 'F F W d
σ

θ λ θ λ θ λ θ λ σ= ∫∫ ,      (4.15) 
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where ( ), , ', 'W θ λ θ λ  is an averaging function that depends on the locations of the two 

points with coordinates ( ),θ λ  and ( )', 'θ λ . Decomposing F and W in spherical 

harmonics yields (Han et al., 2005, equation 5) 
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where ' 'l m c
lmcW is the coefficient corresponding to the cos cos ' 'm mλ λ term, ' 'l m c

lmsW  the 

coefficient corresponding to the sin cos ' 'm mλ λ , etc. Equation (4.16) without 

simplification leads to filters based on a full covariance matrix (such as in Kusche, 2007 

and Klees et al., 2008). Usually, simplifications such as isotropy are made about the 

properties of W, which leads to application of the Gaussian filter discussed in the next 

section. 

 

4.2.3.1 Gaussian filter 

The Gaussian filter was developed by Jekeli (1981) and introduced to GRACE data 

processing by Wahr et al. (1998). It is a simplification of equation (4.16) where the filter 

is assumed to depend only on the angular distance between the points ( ),θ λ  and ( )', 'θ λ . 

In the spectral domain, the filter downweighs higher frequencies which are expected to be 

more corrupted by noise. In the spatial domain, the filter forms a spatial average by 

convolution with a Gaussian kernel. The weights (filter coefficients W) are given by the 

following recursion (Wahr et al., 1998): 
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where: 
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1
2

ln 2

1 cos
E

b
r

R

=
−

  (4.18) 

1
2

r  is the halfwidth, or the spatial distance where the filter weight is reduced to one half. 

Directly programming this equation leads to instabilities, therefore small modifications 

have to be made to the recursion of (4.17). Here it is chosen to change the last line of the 

recursion to: 1 1

2 1
l l l

l
W W W

b+ −
−= − + .  

 

4.2.3.2 Non-isotropic Gaussian filter  

Han et al. (GJI, 2005) devised a filter where the filter weights depend on degree l and 

order m, but they are still independent of locations, such that W of equation (4.16) 

becomes 

' ' ' '      ' , '
4
0

lm
l m c l m s

lmc lms

W
l l m m

W W π
 = == = 


,      (4.19) 

and all other coefficients are zero. In that case, equation (4.16) reduces to 

( ) ( ) ( )
0 0

, cos cos sin
l

lm lm lm lm
l m

F P W C m S mθ λ θ λ λ
∞

= =

= +∑∑ ɶ ,    (4.20) 

so that the filter can be implemented as element by element multiplication of matrix W 

with the coefficient matrix in the same format. The filter coefficients are computed as 

follows: 

( )( )
( )

1/2

1/2
1

lm l

EW NS
NS

W W r m

r r
r m m r

m

=

−= +
,        (4.21) 

where Wl are the Gaussian filter weights of equation (4.17); NSr is the smoothing radius 

for zonal components m = 0, and EWr  is the smoothing radius for m = m1. rNS determines 

the smoothing in latitude direction, and rEW together with m1 determines the amount of 

smoothing in longitude direction. Thus there are three parameters in total. Because of the 
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decreased sensitivity of GRACE in east-west direction, rEW is generally larger; 

Therefore, more smoothing is applied in the direction in which GRACE is least sensitive.  

 

4.2.3.3 Destriping filter of Swenson and Wahr (2006) 

Swenson and Wahr (2006) noted that the stripes observed in the GRACE maps 

correspond to a correlation in the spectral domain between even and odd degrees for 

Stokes coefficients of a particular order. They fitted a low order polynomial to a limited 

interval of coefficients of odd or even degree to describe this correlation. Since this 

correlation is not expected for natural phenomena, it should be removed from the Stokes 

coefficients by removing that part of the coefficients that is fit by the polynomial. Some 

variations to the method exist. For example, wavelet approximation can be used to 

describe the correlation (Rangelova et al., 2007). The window length and unchanged 

portion of the Stokes coefficients can be varied based on the order and on the error 

pattern (Duan et al., 2009). Here the unpublished result for window length of Dr. Sean 

Swenson and Dr. John Wahr is used, which was kindly provided for this research by Dr. 

John Wahr and for publication in Duan et al. (2009). Filtered coefficients were compared 

with filtered coefficients produced by Dr. John Wahr with the routine of Dr. Sean 

Swenson. Differences without any additional smoothing are small, see Figure 4.1, 

considering that the original amplitude of the stripes is in the order of centimetres.  

In this thesis, the effect of the degree and order below which coefficients are 

unchanged (cut-off degree and order) is investigated. It should be stressed that for each 

combination of cut-off degree and order, the coefficients that are used for the polynomial 

fit can be different, because the window size varies with order, and because the window 

size might not be symmetric around the coefficient. For example, the C12,12 coefficient 

might be filtered differently depending on whether the cut-off degree is 4 or 10.  

 

4.3 Measurement errors  

The term measurement errors as it is used in this thesis includes noise in the observations 

(accelerometers, star cameras, K-band ranging system), errors in processing and 
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deficiencies in de-aliasing models (atmospheric pressure, ocean model), and omission 

errors (Gunter et al., 2006). Velicogna and Wahr (2002) investigated the de-aliasing error 

by using two difference atmospheric pressure fields. They found this error to be relatively 

small compared to other sources. Using simulations, Gunter et al. (2006) found that errors 

in the reference gravity field give noticeable errors, but they expect this error source to 

decrease with increasing GRACE data span. Han et al. (2004) showed that errors in some 

tidal components in the ocean tide dealiasing model can cause errors that are three times 

larger than the measurement error. All theses error sources can probably lead to errors 

that are random in time and space, errors that are confined to a specific location, or to the 

north-south stripes introduced in section 4.2.3.  

 

Differences in geoid height [m]
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Figure 4.1: Differences in geoid height in [m] for a single month of GRACE data 

between Stokes coefficients filtered by Dr. John Wahr and after filtering with a 

MATLAB routine written by the author. No additional smoothing is applied.  

 

Calibrated standard deviations for all coefficients are made available by the 

processing centers (see section 4.1). However, the errors that cause stripes arise from 

correlation between coefficients (Swenson and Wahr, 2006), which obviously can not be 
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expressed by standard deviations alone. A full covariance matrix would ideally 

describe all such errors, but it is questionable whether full noise covariance matrices can 

describe the real causes for stripes because it takes into account white observation noise 

and the measurement geometry, at least the one produced by CSR Texas (Ries, pers. 

communication). It can be concluded that the simulated covariance matrices used by 

Kusche (2007) are able to describe the stripes, since the filter based on this covariance 

matrix seems to be successful in removing them.  

Thus, since calibrated standard deviations and the noise covariance matrices have 

expected shortcomings, different methods to quantify errors have been applied in this 

thesis. Advantages and disadvantages of each method are discussed below.  

Wahr et al. (2004) start from the assumption that the part of the Stokes 

coefficients which exhibits annual, semi-annual, or secular time behaviour is a physical 

signal. The remainder of the signal can then be assumed to be noise. In the extreme case 

where no filtering is applied, stripes with annual or semi-annual periods can be seen in 

estimated physical patterns. The method of Wahr et al. (2004) would incorrectly label 

these errors as signals. Conversely, a real geophysical signal can have inter-annual 

periods, and be classified as error. Wahr et al. (2006) elaborate on this method and scale 

the standard deviations to fit the magnitude of the residuals so that the error structure of 

the standard deviations is maintained, but the magnitude of residuals is obtained.  

A similar idea is to use principal component analysis in the space domain 

(Rangelova et al., 2007) or frequency domain (Wouters et al., 2007) and reconstruct the 

signal with the significant modes only, because the higher modes in the spectrum of the 

signal covariance matrix are believed to represent noise. This suffers from the same 

drawbacks as the method of Wahr et al. (2004) because in the case of no filtering being 

applied, stripes are a part of, or dominate, the strongest modes.  

Tamisiea et al. (2007) applied a method specifically for glacial isostatic 

adjustment studies, whereby they scaled standard deviations of the spherical harmonic 

coefficients by the reduction in misfit that is achieved after filtering. If filtering is 

successful, the GRACE estimate for the secular gravity rate is in theory closer to a GIA 

model so that a small misfit remains and the standard deviation for the coefficient is 
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scaled by a small number. Possible criticism is twofold: the effect of the filter on both 

GIA and non-GIA signals can both increase or decrease the misfit, which does not 

indicate successful performance of the filter. Secondly, the success of the filter is based 

on a particular GIA model, which makes filter improvement biased.  

Considering the above review, in this thesis a selection was made of three 

methods to quantify measurement errors in the space domain: 

1) full noise covariance matrix; 

2) calibrated standard deviations; 

3) residuals after estimation of a trend, annual and semi-annual signal (Wahr et al., 

2004). 

These are discussed in the following section. 

 

4.3.1 Full covariance matrix 

In the following, the term Variance Covariance Matrix (VCM) will be used even though 

in some cases covariances may be assumed zero. The VCM is propagated for the selected 

filter by covariance propagation (Vaníček and Krakiwsky, 1986, p. 197): 

' T=C MCM           (4.22) 

Where C denotes a VCM, M  denotes a matrix that represents the filter, so that the filtered 

coefficients ordered in a vector, K’ lm, are obtained from the original coefficients K lm as 

lm lm='K MK .          (4.23) 

Haagmans and Van Gelderen (1991) give the error covariances between two points P and 

Q. Therefore, to obtain point error variances, their points P and Q are the same and their 

equation 1a becomes 

 



 

 

65 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

∑∑

∑∑

∑∑

∑∑

∑∑

= =

= =

= =

= =

= =










+








+








+








=
L

m

L

k

L

mn
Plk

L

kl
Pnmlknm

L

mn
Plk

L

kl
Pnmlknm

L

mn
Plk

L

kl
Pnmlknm

L

mn
Plk

L

kl
Pnmlknm

kmPPSSCov

kmPPSCCov

kmPPCSCov

kmPPCCCov

PVar
0 0

sinsincoscos,

sincoscoscos,

cossincoscos,

coscoscoscos,

)(

λλθθ

λλθθ

λλθθ

λλθθ

 (4.24) 

Coefficients lknm SS , do not exist for m = 0.  

 

4.3.2 Calibrated standard deviations 

For calibrated standard deviations, the same equation (4.22) is used as for the full VCM 

but off-diagonal terms in the VCM are set to zero before propagating through the filter. 

Although the correlation between odd and even degrees that is related to the striping 

problem is obviously not described by the standard deviations alone, this case can still 

serve as a benchmark to compare the performance of the other methods against.  

 

4.3.3 Residuals 

Residuals are obtained after least-squares estimation of a trend, annual and semi-annual 

signal; see equation (4.12). Physical processes that are presumably annual, such as snow 

fall and melt in the mountains, typically do not have the same amplitude for every year 

and do not always have the same phase, therefore the annual cycle is estimated using a 

moving window of 2 years.  

Even if the time series would consist purely of noise in the form of normally 

distributed random numbers, estimating a trend and annual cycle will remove some of 

this noise. This reduction of variance is computed by fitting a trend and annual cycle to a 

random time series of length equal to the GRACE time series. The thus obtained variance 

reduction for the number of epochs used in this thesis is typically 15%, and the GRACE 

residuals are multiplied by a factor approximately equal to 1.15. The root-mean-square of 
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the errors in the spatial domain is computed from the residuals in the coefficients by 

(Wahr et al., 2006, equation 4) 

2 2
2 2

, 1 1

n n
lm lm

lm lm
l m i i

C S
H I

n n

δ δ
= =

    
∆ = +     

    
∑ ∑ ∑ ,      (4.25)  

where ∆ is the RMS of the errors; Hlm and I lm are factors that relate the spherical 

harmonic coefficients to the spatially averaged mass change at a certain geographic 

location, as in equation (4.4) the combination of lmPɶ and lX ; δClm and δSlm are the 

residual coefficients, and n is the number of months.  

In equation (4.25), it is assumed that errors are uncorrelated from one month to 

another so that the 1σ RMS errors for the geoid rate can be computed from the RMS of 

the mass errors computed in equation (4.25) by (Velicogna and Wahr, 2002) 

( ) ( ) ,,

12
12

1 1 GRACE iGRACE i NN N N N
σ σ=

− +ɺ
,      (4.26) 

where 
,GRACE iNσ is the error in an individual month, and

,GRACE iN
σ ɺ is the error in the trend. For 

59 months, the factor that multiplies the error in the individual month in equation (4.26) 

turns out to be approximately 0.09. In reality, errors can be time-dependent, such as tidal 

aliasing errors arising from mismodelling the S2 tide (Ray and Luthcke, 2006), but this is 

neglected here.  

 

4.4 Leakage, signal mixing and resolution 

Gravity data, either static or time-variable, suffer from non-uniqueness (e.g., Turcotte and 

Schubert, p. 195). The same gravity data set can be induced by different 3-D mass 

distributions. Before analyzing the GRACE data in terms of GIA in the following 

chapter, it is useful to review some issues related to non-uniqueness: (i) Non-uniqueness 

in vertical direction; (ii) Non-uniqueness in horizontal direction, and (iii) Leakage of 

signals from outside the area of interest due to smoothing. 

The non-uniqueness in depth that exists for inversion of the static gravity field 

(e.g., in exploration geophysics) is removed in most GRACE studies by assuming that 
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mass transport exists in a thin shell on the Earth’s surface. However, GIA takes place 

deep in the Earth’s interior, thus such approximation is not possible. GIA can be masked 

by water storage changes on the surface, and that turns out to be a problem for GIA 

inference from GRACE (see section 5.1.2).  

For satellite gravity measurement, there is larger non-uniqueness in horizontal 

direction than for surface gravity measurements, because of the fact that the satellite is 

separated from the mass change processes by at least the flying altitude. This is illustrated 

by equation (1-88) in Heiskanen and Moritz, which computes the potential at satellite 

altitude Vsat from the potential known everywhere at the Earth’s ellipsoidal surface: 
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It can be seen that the potential at satellite altitude is a weighted sum of potentials at the 

Earth’s surface. The factor between square brackets determines how much of the signal at 

', 'θ λ  is used for the potential at ( ), ,r θ λ . Simons and Dahlen (2006) call this the ‘point 

spreading factor’. For increasing r this factor is increasingly globally supported, while for 

r = ae it becomes the delta function.  

Since smoothing is an averaging operation in the spatial domain, the influence of 

mass changes far away from the point of interest increases. This is referred to by 

Swenson and Wahr (2002) as ‘leakage’ and can lead to increase or decrease of the signal 

of interest. Smoothing and the point spreading factor decrease the resolution, which leads 

to ambiguity between a narrow but strong mass change and a smaller mass change that 

exists over a wider area. 

Item 3 receives the most attention in the literature, because the change in signal 

due to smoothing can be partly reversed. It is useful to keep in mind that resolution of 

satellite gravity data is inherently limited, and that influence of a strong signal (e.g., snow 

fall in the Rocky mountains) will overprint a neighbouring small signal (e.g., water level 

variations in river basins adjacent to the Rocky Mountains), irrespective of whether 

filtering is applied or not. In addition to these three items, signals are also averaged 

because the inter-satellite range results in a moving average over the distance between the 

satellites, approximately 200 km. 
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Items i) and ii) are studied in more detail in the sections 5.1.1 and 5.1.2. Item 

iii) also implicitly enters into those sections because the magnitude of the signal at a 

certain location is computed after filtering.  

 

4.5 Summary 

In this thesis the GRACE derived monthly gravity fields provided by CSR Texas are used 

in most cases, and in some cases those provided by GFZ Potsdam. Two techniques are 

explained for obtaining a secular signal from the spherical harmonic coefficients: (i) 

linear estimation of a trend in the presence of periodic signals, and (ii) principal 

component analysis (PCA). Of those, the trend estimation will be mainly used in the 

results of Chapter 5, and PCA will be used in section 5.4.1.2. Many filtering methods for 

GRACE data appear in the literature. In this chapter, the Gaussian filter (Wahr et al., 

1998), the non-isotropic Gaussian filter (Han et al., 2005) and the destriping filter of 

Swenson and Wahr (2006) are introduced and they will be compared in section 5.3. 

Different methods exist to estimate measurement errors for GRACE. Because of 

disadvantages for each of the methods, several methods were discussed in more detail in 

this chapter: covariance propagation with a full matrix, and with calibrated standard 

deviations only, and residuals after estimating a trend, annual and semi-annual period 

simultaneously. These methods will be compared in section 5.2. 
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Chapter Five: GRACE-derived gravity rate for GIA studies - Results 

The aim of this chapter is to study the uncertainty in the GRACE data, and to process the 

GRACE data for comparisons with GIA models. A choice was made to focus on analysis 

in the spatial domain, for the Laurentide glaciation only. Some previous studies 

performed a global inversion of GRACE data. For example, the simulation study of 

Velicogna and Wahr (2002) showed that retrieval of lower mantle viscosity to within 30-

40% was possible. However, this could be too optimistic because measurement errors in 

GRACE turned out to be larger than expected (Wahr et al., 2006). Recently, Barletta et 

al. (2009) fitted localized mass sources to the secular signal in GRACE, and manually 

remove the sources that were believed not to represent GIA, to arrive at a GIA-only 

secular gravity. However, such a technique can not separate secular signals acting in the 

same area. The technique is also affected by the unknown ice history in places like 

Antarctica and Greenland.  

The first sections investigate the secular gravity rate of continental water storage, 

present-day ice melt, and variations in open water and sea level changes. Following this, 

the magnitude of measurement errors is computed for the methods introduced in section 

4.3. Some of the filters presented in section 4.2.3 are compared in terms of how much 

they reduce noise and affect the GIA signal. Finally, a gravity rate and a geoid rate 

pattern from GRACE are presented that can be used for GIA studies. This chapter mostly 

follows the results in Van der Wal et al. (2008a), but an additional filter is investigated, 

data and simulations are updated and lake level variations are included herein. 

 

5.1 Non-GIA processes 

5.1.1 Present-day ice melt 

Rapid melting has been observed in areas in Alaska (Tamisiea et al., 2005; Luthcke et al., 

2008) and Greenland (Velicogna and Wahr, 2006). In a map of the GRACE-derived 

secular gravity rate, the areas of ice melt are clearly separated from the GIA area. 

However, the point spreading factor (see section 4.4), aliasing and leakage due to 

smoothing can lead to gravity rates in the GIA area that are influenced by the ice mass 
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loss outside this area, even though this can not directly be observed in the spatial 

domain. To investigate this, present-day ice melt will be simulated for the areas depicted 

in Figure 5.1. An estimate from Lutchke et al. (2008) of 84 Gt/year ice mass loss is 

assumed to occur in uniform melting in Alaska as in (Van der Wal, 2008b). The center of 

the ice sheet is selected to be 60º N and 140º W from visual inspection of the area in 

Figure 1 of Tamisiea et al. (2005). The peak gravity rate found with this simulation is -

2.1 µGal/year (filtering described as in section 5.3.3), which is approximately the same as 

the peak found in GRACE-derived secular gravity rate over the same region.  

For Greenland, estimates not based on GRACE data are available from, e.g., 

satellite altimetry, but they are hindered by poor coverage near the coast where most of 

the melting takes place and only give the geometry change of the ice sheet, which does 

not necessarily translate directly into mass loss because of snow compaction. The 

GRACE estimates for Greenland ice mass loss on the other hand still depend somewhat 

on the technique used. The average of the estimates from Luthcke (154 Gt/year), who 

used the mascon technique, and Velicogna (211 Gt/year), who used spherical harmonics 

and an averaging kernel, as reported in Witze (2008), is used here.  

 

 

Figure 5.1: Area used for simulation of glacier melt in Alaska and Greenland. Ice is 

melting in the dark areas; inside the dark area in Greenland it is accumulating (from: Van 

der Wal et al., 2008).  

Spherical harmonic analysis is performed up to degree and order 120. The gravity 

rate after synthesis up to degree 60 is shown in Figure 5.2 after smoothing with a 400 km 
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Gaussian filter. Small non-zero gravity rate extends across the northern hemisphere. 

Such long-wavelength signal likely does not change the gravity rate pattern in the 

Hudson Bay area much, but it could be argued that the ice melt should be removed from 

the GRACE data. However, the hydrology models discussed in the next section contain 

negative secular signal over Alaska and removal of glacier melt on top of removing 

hydrology distorts the gravity rate pattern over the GIA area as judged by visual 

inspection. Thus it is decided to not remove glacier melt simulations from the final 

gravity rate which is used in comparisons with GIA models. The glacier melt simulations 

are used to find the pixels where the GIA signal is much stronger than the glacier melt 

signal in section 5.3. 

 

 

Figure 5.2: Gravity rate from ice melt simulations in Alaska and Greenland after 

smoothing with a 400 km halfwidth Gaussian filter.  

 

5.1.2 Continental water storage variations  

Water storage in the form of liquid water and snow varies mostly according to a seasonal 

cycle, but droughts or heavy rain in one or several years can result in inter-annual 

changes in water storage. In fact, areas in the interior of Canada and the U.S. are one of 

the few regions in the world singled out in Figure 6 of Döll et al. (2003) as having large 

inter-annual variations. Such variations when measured by GRACE can affect the 

estimated secular trend interpreted to be GIA. Due to lack of measurements of water 
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storage changes on a continental scale, a-priori information will have to come from 

global or continental scale hydrology models. Four global hydrology models that are 

available to the scientific community are investigated in this thesis. They are discussed 

briefly below, and some of their characteristics are summarized in  

Table 5.1. 

 

CPC 

The CPC model of Fan and van den Dool (2004) uses the so-called ‘leaky bucket’ model: 

ground is modeled as a bucket which can hold a certain amount of water (76 cm) until it 

overflows. This depth and four other empirical parameters are tuned to streams in 

Oklahoma. Input for the model are monthly global precipitation data from the Climate 

Prediction Center (CPC) and the CDAS reanalysis of temperature data. Comparison with 

in-situ data shows that the model can accurately represent inter-annual variability (Fan 

and van den Dool, 2004). However, snow that lies on the ground is not explicitly 

accounted for in the model, which could lead to premature removal of snow in the model.  

 

LaD 

The Land Dynamics model of Milly and Shmakin (2002) takes input from near-surface 

state of the atmosphere and radiation fluxes from the International Satellite Land Surface 

Climatology Project on a global 1o × 1o grid with 6-hour temporal resolution. The land 

surface is characterized by eight parameters which remain constant in time. Water 

balance and energy equations are solved to compute output in the form of snow, root-

zone and groundwater. In comparisons with discharge observations, the model is found to 

explain 67% of the variance of annual runoff ratio anomalies. Here, the LadWorld-

Gascoyne version, which is the latest one available, is used up to July 2007.  

 

GLDAS 

The Global Land Data Assimilation System (GLDAS) of Rodell et al. (2004) uses data 

from multiple sources in a data assimilation procedure. Compared to the other models, 
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surface parameters such as vegetation classification are allowed to vary in time and are 

derived from higher resolution datasets. MODIS satellite data is used to correct snow 

cover in grid cells. Output is provided at: [ftp://agdisc.gsfc.nasa.gov/data/s4pa/ 

GLDAS/GLDAS_NOAH10_M/2007] as soil moisture in kg/m2 for four layers and snow. 

Here, the version with the Noah 2.7 land surface model (Chen et al., 1996) is used. Berg 

et al. (2005) found good correlation between the model and observations in Illinois and 

Iowa after a seasonal cycle was removed.  

 

WGHM 

The WaterGAP Global Hydrology Model (WGHM) of Döll et al. (2003) differs from 

previous models in two aspects that are not included in Table 5.1: (i) wetlands and lakes 

are part of the model and human water consumption is included; (ii) Compared to 

GLDAS, temporal resolution of the computations is lower (1 day vs. 6 hours) and spatial 

data is of lower resolution.  

 

Table 5.1: Comparison of characteristics of versions of some global hydrology models. 

 CPC LaD GLDAS WGHM 

input CPC, 
CDAS 
Reanalysis 

ISLSCP ECMWF, 
NCAR,NOAA, 
AGRMET 

Climatic 
Research 
Unit 

land surface 5 
parameters 

8 parameters NOAH IMAGE 2.1 

wetlands/lakes no no no yes 

temporal 
resolution 

daily 6 hours 6 hours1) 1 day 

snow on ground no  yes yes yes 

soil layers 1 layer snow pack 

rootzone 

groundwater 

snow pack  

4 layers 

canopy 

snow 

1 layer 

canopy 

resolution 1o × 1o 1o × 1o 1o × 1o 0.5o × 0.5o 
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Hydrology models do not give meaningful results over permanently glaciated 

grid cells, because glaciers simulations are not included. To mitigate the influence of 

glacier cell in the hydrology model grids, the glacier database of the National Snow and 

Ice Data Center (NSIDC, 1999) was used to locate center locations of glaciers that have 

an area greater than 25 km2. Pixels that are within 0.7o of the centers of these glaciers, see 

Figure 5.3, were masked out. Greenland was masked out entirely.  

 

 

Figure 5.3: Locations of pixels within 0.7 degree of the center locations of glaciers with 

area larger than 25 km2.  

 

If hydrology models are to be used to ‘correct’ GRACE data for GIA studies, the 

question is how well hydrology model output simulates large scale interannual variations, 

considering that GRACE was meant to improve precisely those estimates. Regarding this 

question, the following defects in hydrology models can be identified: 

1) Input forcing consists of fluxes (e.g., precipitation, river run-off) that can change 

quickly over time. A small bias in any of these fluxes or insufficient temporal 

sampling of the input forcing can result in a large bias or random error in the 

interannual variation (Shmakin et al., 2002). However, evapotransporation and 

river run-off are negative feedback terms, therefore, an error in these quantities 

can no cause a run-away bias in soil moisture.  
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2) Models are tuned, which “does not necessarily improve the dynamical 

behaviour of the Global Hydrology Model” (Döll et al., 2003). In particular, soil 

moisture is no longer consistent with (tuned) discharge. In many snow dominated 

regions in large parts of Canada, run-off is tuned and also discharge is corrected 

in WGHM, and as a result run-off is probably underestimated (Döll et al., 2003). 

3) Input data area faulty. For example, snow fall is underestimated by precipitation 

gauges (Döll et al., 2003).  

4) Modeling can be inadequate. An example is that river water which is diverted to 

other basins is not included in WGHM (Döll et al. 2003). 

5) Due to the sampling of GRACE (when the satellites actually pass over the area) 

the satellites can sense continental water storage which is different from a simple 

average of daily or sub-daily output. According to Han et al. (2004), this 

systematic error can be as large as the GRACE measurement error.  

This list does not exactly give confidence that the model output can be of any use. 

However, defects can be minor on the coarse temporal and spatial resolution of monthly 

gravity fields. For example, Van der Wal et al. (2008a) found that interannual changes 

between GRACE and three models agree quite well. Figure 5.4 and Figure 5.5 are figures 

taken from that paper. Figure 5.4 shows the second or third principal component, which 

show a positive water storage signal southwest of Hudson Bay. Figure 5.5 shows that the 

signal is a three year increase in water storage starting in the summer of 2003. The 

increase can be explained by abnormal dryness prior to the summer of 2003. The increase 

in water storage is then the return to a normal state of soil moisture content (M. Rodell, 

pers. comm., 2007). Some of the signal in GRACE data in Figure 5.4 could also be due to 

errors in the GIA model, e.g., the decrease west of Hudson Bay.  

 



 

 

76 

 

 

 

Figure 5.4: Spatial pattern of the second principal component for GRACE (after removal 

of ICE-5G/VM2 GIA model) and the hydrology models GLDAS and CPC, and the third 

principal component for LaD, for the period January 2003 - September 2006.  The spatial 

pattern is to be multiplied with the time series in Figure 5.5 to get spatiotemporal 

patterns.  

 

Finally, to asses the performance of the hydrology models on the scale of a mid-

size river basin, the Nelson River basin (shown in Figure 5.6a in black) is selected for 

comparison between the hydrology models and GRACE. Model output in the form of 

spherical harmonic coefficients and GRACE data were filtered with a destriping filter 

applied at degree and order 5 and a Gaussian filter with 400 km halfwidth. Thus obtained 

water levels are averaged over the basin in the spatial domain and plotted in Figure 5.7. 

The analysis was performed in the frame of Valeo et al. (2007) and extended here to 

include recent data.  
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Figure 5.5: Time series corresponding to principal components in Figure 5.4. Increase in water 

storage starting in the summer of 2003 is visible in all hydrology models as well as in the 

GRACE data. 

 

GRACE is corrected for GIA with the ICE-5G VM2 model (Peltier, 2004) which 

seems to overcorrect as there is a small positive trend in the hydrology models which is 

absent in the GIA-corrected GRACE results. It can be seen that the hydrology models 

GLDAS, WGHM and LaD compare well with GRACE, but CPC performs worse. Root 

mean square differences in Table 5.2 confirm this. GLDAS performs best in this area, 

which supports the use of this model as a correction for the continental water storage 

changes in GRACE in section 5.4. All models are generally one or two months ahead of 

GRACE, which is also observed elsewhere (e.g., Chen et al., 2005a).  
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Figure 5.6: Nelson River basin in black (from: Valeo et al., 2007).  

 

 

Figure 5.7: Basin averaged water levels for the Nelson River basin for GRACE and four 

hydrology models, after destriping filtering and smoothing with a 400 km Gaussian filter.  

 

Table 5.2: Root mean square difference between hydrology model output and GRACE 

for the basin averages shown in Figure 5.7.  

 GLDAS WGHM LaD CPC 

RMS [mm] 148 219 175 245 
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5.1.3 Lake level variations 

Variations in large lakes such as the Great Lakes represent sizable mass variations that 

could distort the estimated GIA-induced secular gravity rate from GRACE. Fleitout 

(2007) suggested that declining lake levels in lakes Winnipeg and Winnipegosis from 

2003 to 2005 had a significant influence on the gravity rate from GRACE, but did not 

quantify this in the abstract. Observations of water level variations in large lakes in 

North-America are available from tide gauges and satellite altimetry thus an attempt is 

made here to quantify the effect of water level variations on the GRACE-derived gravity 

rate. First, the different signals in the tide gauges measurement are discussed, and then 

the gravity rates. 

Differences in water level between water levels observed simultaneously by tide 

gauges on one lake are small compared to the total mass variation of the lake as a whole, 

therefore it is not necessary to use satellite altimetry data to obtain water levels away 

from the coast (Van der Wal et al., 2006). Tide gauges measure the combined effect of 

water level changes that result from GIA, thermal effects, and in- and out-flow into the 

basin:  

TG GIA th flows s s s= + +ɺ ɺ ɺ ɺ ,         (5.1) 

where sɺ denotes sea level rate, and subscripts denote GIA, thermal effects, and in- and 

out-flow of the lake, respectively. The in- and out-flow are assumed to also include 

precipitation and evaporation. Note that for the formulation of this equation it is 

irrelevant whether the in- and outflow is caused by natural variations or artificial 

regulation of the water level.  

The sea level change caused by GIA at a tide gauge can be decomposed into a 

change in the solid Earth displacement rɺ  and a change in the geoid height Nɺ  (Mitrovica 

and Peltier, 1991): 

,GIA TG TG TGs N r= −ɺɺ ɺ          (5.2) 

TGrɺ  can be obtained from GPS stations collocated with tide gauges. The mass 

conservation term is neglected, which is allowed for the computation of present-day rates. 

Because the GPS heights refer to a fixed vertical datum, the rise of the datum at the tide 
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gauge, TGNɺ , should also be taken into account. TGNɺ can be estimated from terrestrial 

data (Rangelova, 2007).  

Gravity changes measured by GRACE over the lake can be decomposed as 

follows: 

GRACE GIA flow salinityg g g g= + +ɺ ɺ ɺ ɺ         (5.3) 

Because we want to know GIAgɺ , flowgɺ and salinitygɺ  need to be removed from the GRACE 

data. salinitygɺ is neglected in the following because of lack of data, but flowgɺ  can be 

quantified by isolating flowsɺ  in equation (5.1) and converting it to gravity change by 

equation (4.8). Following this approach, equations (5.1) and (5.2) are combined to yield 

( )flow TG TG TG ths s N r s= − − −ɺɺ ɺ ɺ ɺ ,        (5.4) 

after which equation (4.8) can be applied to give flowgɺ , assuming flowsɺ to be constant over 

the lake area. GIA models predict water in- and out-flow due to solid Earth displacement 

and geoid height change. TGrɺ  in equation (5.4) represents the extra water in the lake by a 

change in height of the lake bottom. TGNɺ represents the inflow or outflow that 

accompanies a change in the equipotential. Since both these terms are included in the 

most detailed treatment of the sea level equation in GIA models, they are rightfully 

included in (5.4). However, the uplift rates in the Great Lakes are within +5 mm/year and 

-5 mm/year (Braun et al., 2008, Figure 2) and uplift rates at Lakes Winnipeg, 

Winnipegosis and Great Slave Lake are in the order of 5 mm/year (not shown). The effect 

of a layer of water of 5 mm/year is negligible for the surface of the lakes considered here, 

except for the Hudson Bay. Thus, the terms TGrɺ  and TGNɺ  are neglected. 

In the following, thsɺ  will be computed from surface temperature data, to see if the 

effect should be included or can be neglected. Swenson and Wahr (2007) used surface 

temperature data for the lake and an averaged mixing depth to calculate thermal 

expansion using a constant thermal expansion factor. However, such approximation is 

likely not valid for the Great Lakes. From Figure 5.8, it is clear that the mixing depth, 

defined as the depth where a high temperature-depth gradient occurs, varies considerably 

from 10m to 35 m. Moreover, the temperature varies from just above 0 to close to 25 
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degrees. Over such a range, the thermal expansion coefficient is not constant, as can be 

seen in Figure 5.9. Thus, a different approach (Meredith, 1975) will be used herein to 

compute the increase or decrease in water level for a number of large lakes in North 

America. 

 

 

Figure 5.8 (fig. 7 of Schertzer et al., 1987): Temperature profiles at various dates in 1979, 

in the eastern and central part of Lake Erie.  
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Figure 5.9: Thermal expansion for water as a function of temperature, derivative of 

equation (2) in Meredith (1975) with respect to temperature.  

 

5.1.3.1 Great Lakes 

The temperature profiles compiled by Meredith (1975) seem to be the most recent 

temperature profiles that area available for all of the Great Lakes. The profiles are made 

dimensionless by dividing the temperature at each layer by the surface temperature. 

‘New’ temperature profiles are computed by multiplying the dimensionless profile with 

the actual measured surface temperature. Measured surface temperatures are obtained 

from the Great Lakes Surface Environmental Analysis (GLSEA, 2008). Temperature 

values at the beginning and middle of the month are obtained by averaging over one 

month of daily values. From the temperatures at the beginning of the month, a new 

volume is computed for each layer by means of the equation for water thermal expansion 

(Meredith 1975): 

( )5 6 2 8 3
0* 1 6.427 10 8.5053 10 6.79 10V V T T T− − −= − ⋅ + ⋅ − ⋅ ,    (5.5) 

where *V  is the new volume; 0V is the reference volume, andT  is the temperature of the 

volume of water in ºC. The change in volume is computed between the first days of two 

consecutive months. From these changes, cumulative volume changes are formed over 

the time period January 2002 - December 2007. It is found that the seasonal cycle has an 
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amplitude of up to 2.5 km3, but the trend is only 0.0044 km3/year (0.075 mm/year 

water level change).  

The water level changes for the Great Lakes computed with equation (5.4) are 

added in the space domain on a 0.1 x 0.1 degree grid and converted to gravity rates. The 

results are shown in Figure 5.10a. Thermal changes in water level, when converted to 

mass changes by multiplying with the density of water and converted to gravity rates as 

described above, are shown to be negligible in Figure 5.10b. Thus, most of the water 

level changes recorded by the tide gauges in the Great Lakes represent real mass changes 

(and uplift and geoid rates which were neglected above). The negative trend in Figure 

5.10 mostly results from decrease in water level in Lake Superior from 2005 onwards. 

Mass changes in the Great Lakes water levels show a trend which is important for GIA 

studies due to the magnitude (maximum of 0.2 µGal/year) and the fact that they are on 

the edge of the former ice sheet.  

 

 

Figure 5.10: (a) Estimated gravity rate from water level change in the Great Lakes, from 

January 2002 – November 2007 after filtering with a 400 km halfwidth Gaussian filter. 

All volume change is assumed to be caused by mass changes. (b) Effect of thermal 

volume change converted to equivalent mass effect, expressed in µGal/year.  

5.1.3.2 Lakes Winnipeg, Great Bear Lake and Great Slave Lake 

Water levels for Lake Winnipeg are available from Environment Canada 

(http://www.wsc.ec.gc.ca/hydat/H2O/index_e.cfm?cname=main_e.cfm). Monthly water 

levels for all seven stations on Lake Winnipeg are averaged to obtain one value for the 
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lake (the maximum standard deviation is 12 cm). The trend amounts to 7.5 mm water 

level change per year over a period from January 2002 to December 2007. The effect of 

GIA height changes in equation (5.1) is not taken into account. A plot of the gravity rate 

from water level variations in Lake Winnipeg is shown in Figure 5.11. Lake 

Winnipegosis is not considered here, as its area is one fifth of Lake Winnipeg’s. 

The Great Slave Lake has a considerable area: 28,400 km2, but a small trend in 

water level: 0.136 km3/year (0.04 mm/year water level change) from January 2002 to 

December 2007 and is therefore neglected. The tide gauge in the Great Bear Lake at the 

Hornby Bay station shows a trend of 0.64 km3/year (1.7 cm/year). The maximum water 

temperature as measured in 1965 was 5.22 ºC (data compiled by International Lake 

Environment Committee, see http://www.ilec.or.jp/database/nam/nam-30.html and 

references therein), thus thermal expansion is not likely to play a major role. The trend in 

gravity turns out to be 0.015 µGal/year which is too small to consider. Thus from the 

other lakes only Lake Winnipeg has a trend large enough to consider.  

WGHM models lakes by allowing precipitation and evaporation from lake grid 

cells, as well as in and out flow through the river routing network (Dr. Kristina Fiedler, 

pers. comm., 2008). GLDAS and CPC do not model open water variations. Therefore, the 

water level variations from the Great Lakes and Lake Winnipeg computed in the previous 

sections are incorporated into the spatial maps of water height variations of those models.  

5.1.3.3 Hudson Bay 

Hudson Bay is, by shoreline, the largest bay in the world but presently counts 

only one working tide gauge at Churchill. Monthly mean water levels at this tide gauge 

are provided by the Marine Environmental Data Service up to centimetre precision 

(http://www.meds-sdmm.dfo-

mpo.gc.ca/meds/Databases/TWL/Products/Monthly_Means_b.htm). The one tide gauge 

at Churchill can not be expected to describe the entire water surface of the Hudson Bay 

as, for example, slow (5 cm/s) circulation patterns are in place that transport discharge 

from James Bay to western Hudson Bay (Gough et al., 2005). Preliminary analysis of 

satellite altimetry data in Hudson Bay was done for this thesis using altimetry data from 

the Jason satellite mission with standard corrections but the obtained trends were entirely 
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dependent on the type of interpolation and the time period over which the data were 

average. Also, temperature profile studies in Hudson Bay are not available and further 

uncertainty is added by a reported decrease in discharge from North American rivers into 

Hudson Bay which leads to increasing salinity and hence increase in overall mass (Déry 

et al., 2005).  

In view of the above mentioned uncertainties and effects, it is necessary to assume 

that the tide gauge at Churchill represents the entire water surface of Hudson Bay. Fitting 

a trend through the tide gauges times series in the presence of an annual cycle yields a 0.2 

mm/year sea level drop for the period August 2002 – July 2007. However, the estimated 

trend in the tide gauges data in Churchill depends greatly on the time period over which 

the trend is estimated (not shown), even when an annual cycle is jointly estimated.  

When the 11.4 mm/year land uplift of Churchill (Wolf et al., 2006) is subtracted 

from the measured 0.2 mm/year sea level drop according to equation (5.2), an 11.2 

mm/year sea level rise remains, which seems an unrealistically high number. When the 

long-term tide gauge estimate of 9.65 mm/year (ibid) is assumed instead, sea level rise of 

1.75 mm/year is found, which is close to the tide-gauge sole estimate for global sea level 

rise (Miller and Douglas, 2006). The effect in terms of gravity rate of 1.75 mm/year sea 

level rise in Hudson Bay is shown in Figure 5.11b. The maximum value is less than 3% 

of the maximum gravity rate estimated from GRACE in the same region (Figure 5.28), 

which agrees with prior findings (Dickey et al., 1997, p. 55). 

In the following, this estimate will be used to represent mass changes from sea 

level changes in Hudson Bay. The trend estimated from the Churchill tide gauge from 

August 2002 – October 2008 (8.0 mm/year) is assumed to be the maximum value, so that 

the difference with respect to the long-term value of Wolf et al. (2006) (9.65 mm/year) is 

a measure for the error (1.65 mm/year).  
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Figure 5.11: (a) Gravity rate estimated in Lake Winnipeg (Jan. 2002- Dec. 2007) based 

on tide gauge data, after smoothing with a 400 km Gaussian filter. (b) Same but for water 

level changes in Hudson Bay from a constant trend of 1.75 mm/year water level rise (Jan. 

2002- Dec. 2007). 

 

5.2 Measurement errors 

The previous section investigated the secular trends resulting from non-GIA signals in 

North America. This section aims to shows the magnitude of measurement errors in 

GRACE data, computed with the methods presented in section 4.3. Of interest is the 

method that gives the largest and most conservative error estimates. Furthermore, it will 

be studied whether the fully-populated GRACE covariance matrix used in this research is 

representative of the stripe errors. The filter that is used in this section is the destriping 

filter of Swenson and Wahr (2006), the reason for which is explained in section 5.3. 

5.2.1 Full covariance matrix  

Full variance-covariance matrices (VCM) were kindly provided for the CSR release 4 

solutions by Dr. Byron Tapley and Dr. John Ries. Liu (2008, p. 140) computed errors 

after destriping by rescaling the SH coefficients based on the power before and after 

destriping. Here the matrix with filter coefficients (M ) will be computed for error 

propagation of the full VCM. Swenson and Wahr (2006) equation 4 gives the filter 

coefficients that make up M , however implementation is easier to understand using the 

schematic drawings in Figure 5.12. The coefficient to be filtered is of order 20 and degree 
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24. A window of 5 degrees is formed (black dots together with red dot) of coefficients 

of the same order and the same parity degree. A polynomial fit is produced (for example 

with the function coeffun in MATLAB) which gives the value denoted by the blue arrow, 

as a function of the value of the coefficients. The polynomial coefficients are to be 

entered in the 5 elements in the matrix M ; see the drawing in Figure 5.13. The 5 

coefficients are multiplied with the 5 elements in the vector K lm to give the value of the 

coefficient obtained with the polynomial fit (blue arrow in Figure 5.12).  

 

 

Figure 5.12: Schematic drawing of the principle of the Swenson and Wahr (2006) 

destriping filter for a fictitious coefficient of order 20 and degree 24. 

 

 

Figure 5.13: Schematic drawing of submatrix of the filter matrix M for order 20 and 

subvector of the element vector. 

odd 

even 

Submatrix of Msmooth Subvector of Klm 

20 28 22 24 26 degree 
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Because the filtered coefficient (red arrow) is the original coefficient (black 

arrow) minus the smoothed coefficient (blue arrow), the destriping filter matrix can be 

obtained by  

smooth  = −M I M           (5.6) 

where M smooth contains the polynomial coefficients.  

The effect of the destriping filter on the standard deviations is shown in Figure 

5.14. It is clear that the destriping filter does not simply downweight coefficients with 

higher degree. The peak at degree 15 (likely caused by stripes) is greatly reduced. A 

slight jump can be seen at degree 50. This is because the coefficients are not filtered for 

orders higher than 52 because a minimum window length of 5 coefficients is necessary to 

be able to reasonably fit a polynomial.  
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Figure 5.14: Degree variances, computed by equation (4.9), of the monthly gravity field 

for December 2006 before and after destriping filtering.  

 

Point variances in the spatial domain are computed from the propagated 

covariance matrix, according to equation (4.24). Coding of this equation was based on 

MATLAB code of Balaji Devaraju, from the University of Stuttgart. According to Wahr 
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et al. (2006), the inclusion of off-diagonal elements does not have much effect on the 

RMS of the mass error for GRACE gravity fields. Figure 5.15, which represents the 

gravity rate measurement error computed with a full and diagonal VC matrix, mostly 

confirms this: there is only slightly more variation in the longitudinal direction with 

errors being slightly smaller in Figure 5.15b. In the following, the VCM off-diagonal 

terms will be included; the extra computation time is not significant.  

Omitted in the comparison are the standard deviations for the C20 coefficient. The 

standard deviations for degree 2 coefficients are an order of magnitude higher than other 

coefficients so that a plot of the errors in the spatial domain is dominated by the C20 

pattern. Standard deviation from SLR-derived values is provided and can be used here, 

but the correlation with other coefficients is unknown, therefore degree 2 error 

coefficients are left out in the comparison.  

 

 

 

Figure 5.15: Gravity rate measurement error [µGal/year] for December 2006 computed 

with (a) off-diagonal in the covariance matrix terms zero (b) off-diagonal terms included. 

 

5.2.2 Comparison of methods for determination of measurement errors  

The three methods are compared in terms of cumulative degree variances (see equation 

(4.10) in Figure 5.16. Destriping filtering is applied on all coefficients with degree and 

order above 4. Interestingly, the full covariance matrix gives larger error estimates up to 

degree 15, but calibrated standard deviations show larger error estimates for the complete 

signal. This could be due to the fact that only the covariance matrix for December 2006 is 
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used, while standard deviations are different for each month. Standard deviation is 

adversely affected by the decreased spatial coverage during the fall of 2004, when the 

repeat period was small and the distance between adjacent groundtracks large (Wagner et 

al., 2006).  The GRACE errors can be seen to be well below the cumulative degree 

variance of the GIA model i3_8-60 (see section 2.4). That means that the measurement 

errors are not a limiting factor for extracting the GIA signal.  

A comparison in the spatial domain is shown in Figure 5.17. The full covariance 

matrix shows more longitudinal variation (Figure 5.15b) and larger errors. Both increase 

southwards, as a result of the decreasing groundtrack density. The residuals show 

decreasing errors with latitude followed by an increase. The reason for this could be that 

the destriping filter performs better at higher latitudes above 45º (Swenson and Wahr, 

2006). The method of residuals produces a slightly larger error estimates in the studied 

GIA-affected area and, therefore, this method is used to produce the final error estimate.  
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Figure 5.16: Cumulative degree variances (see equation (4.10)) for GIA model i3_8-60 

and errors computed with residuals, calibrated standard deviations and a full covariance 

matrix.  
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Figure 5.17: Measurement errors of the gravity rate [in µGal/year] computed with (a) 

calibrated standard deviations and (b) residuals.  

5.3 Filters Performance Comparison 

The filter performance should be assessed based on how much noise is removed and how 

much signal is retained. Ideally, the filter should not depend on any prior GIA 

information. Steffen et al. (2008) investigated the effect of the Han (2005) filter, the 

Swenson and Wahr (2006) filter, and the Gaussian filter on the estimated gravity rate in 

Fennoscandia.  Based on a visual comparison, they concluded that the Gaussian filter 

gives a result that agrees best with the uplift pattern derived from GPS observations in 

Fennoscandia.  

North America does not have dense GPS observations in the areas with the model 

GIA peaks (2007). Therefore, comparisons with GPS data may not lead to decisive 

results. In this chapter, an attempt is made to, for the first time, study the effect of 

different filters on synthetic gravity rate data set, where the ratio of signal and noise is to 

be maximized. The signal component is assumed to be the GIA models i3_8-60 or i5_2-

60 of section (2.4). If no mention is made of the model, model i3_8-60 is used. The noise 

component is created using non-GIA signals represented by the continental water storage 

and glacier melting simulations summarized in Table 5.3. The time period is August 2002 

– July 2007. It is assumed that the conclusions on the filters for a simulation over this 

period remain valid when the time period is extended.  

The signal to noise ratio (SNR) is computed as 



 

 

92 

 

( ) ( ),

,

221
, ,

1

GRACE i

n
GIA i

i
WGHM i GLDAS i g

g
SNR

n
g g σ=

=
− +

∑
ɺ

ɺ

ɺ ɺ

,      (5.7) 

where 
,GRACE igσ

ɺ
 is the measurement errors computed according to method 3 (equation 

(4.25) in section 4.3.3); gɺ  is the estimated secular gravity rate, and n is the number of 

points in the study area. The pixels in the coloured area of Figure 5.18 are used here.  

The purpose of the SNR is to provide a single cost factor that takes into account 

both the removal of the signal and the reduction of noise by the filter. The SNR depends 

on the input models for GIA and continental water storage. Some results will be shown 

for alternative models (simulation 2 in Table 5.3).For a specific filter, the parameters that 

maximize the SNR provide the best filter performance. However, because measurement 

errors are small compared to the signal (see Figure 5.16), a small reduction in 

measurement errors can greatly increase the SNR. Therefore, the SNR is used only as a 

first step, to see if filter performance can be maximized by adjusting the parameters of a 

specific filter. In the next step, the reduction in signal amplitude is investigated. 

Unlike Tamisiea et al. (2007) and Paulson et al. (2007b), the uncertainty in the 

hydrology models is taken into account in this thesis. Since the accuracy of the hydrology 

model is not provided with the model output, the difference between two models in 

equation (5.7) is one way to infer the uncertainty of the hydrology correction. Note that 

this uncertainty also takes into account the difference between open water variations 

modeled in WGHM and implemented in GLDAS and LaD according to section 5.1.3.  

Figure 5.18 shows the gravity rate in pixels where the gravity rate mostly 

represents GIA. This is decided as follows. The secular gravity rate from GRACE was 

determined for the period August 2002 – July 2007 with the hydrology model GLDAS 

removed. Filtering was performed as described in section 5 of that paper. Pixels where 

the gravity rate from Alaska and Greenland ice melting is larger than 25% of the 

GRACE-derived gravity rate, or where the gravity rate is smaller than 0.5 µGal/year, are 

set to zero, leaving 554 pixels in the coloured area. 
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Table 5.3: Synthetic gravity models used to investigate filter performance.  

 sim 1 sim 2 errors 1 errors2 

Hydrology WGHM GLDAS/LaD1/CPC 

Lake levels included based on tide gauges 

Alaska  84 Gt 102 Gt 

Greenland 183 Gt 211 Gt 

Hudson Bay 1.75 
mm/year 

3.4 mm/year 

 

 

( )2
1 2sim sim−  

 

 

( )2
1 2sim sim−  

Measurement 
errors 

  Residuals calibrated standard 
deviations 

1 whenever LaD is used, the time period is Aug 2002 – July 2007.  

 

 

Figure 5.18: Figure 7a from Van der Wal et al. (2008a); see description in text. 

 

5.3.1 Gaussian filter 

Gaussian smoothing has become a standard against which more sophisticated methods of 

filtering are compared. Some filtering methods still require smoothing in a second step, 

such as the destriping filter. Paulson (2006); Tamisiea et al. (2007), and Paulson et al. 

(2007b) also applied Gaussian filtering after destriping to GRACE data to extract the 
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GIA signal over North America but they did not investigate the effect of different 

halfwidths in a systematic way. 

The effect of the Gaussian filter on the SNR in equation (5.7) is shown in Figure 

5.19. SNR increases slightly for halfwidths between 50 and 200 km; then it increases 

sharply until 1000 km when the SNR reaches a maximum. Closer inspection of the 

magnitude of the terms in equation (5.7) reveals that between 200 and 900 km the 

increase in SNR results from a decrease in the difference in the hydrology models.  
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Figure 5.19: Simulated signal-to-noise ratio as a function of Gaussian smoothing radius 

for different GIA models: (a) ICE-3G with a lower mantle viscosity of 6 x 1021 Pas; (b) 

ICE-5G with a lower mantle viscosity of 6 x 1021 Pas.  

 

As smoothing increases beyond 1000 km halfwidth, SNR decreases. This can be 

explained by the large power that GIA displays in the low degrees. When the halfwidth is 

increased so that even the low degrees are smoothed, the SNR is reduced while the errors 

are already small. The maximum SNR is obtained for a 1200 km halfwidth for the models 

with the ICE-3G history or 1000 km for the ICE-5G history. Figure 5.20 shows the 

maximum gravity rate for GIA models with varying upper mantle viscosity. It is clear 

that for a 1000 km halfwidth the gravity rates are greatly reduced. Thus, at maximum 

SNR the data can not distinguish well between variations of different GIA models. The 
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SNR and reduction in gravity rate are therefore not sufficient to determine the optimal 

Gaussian filter halfwidth.  

It can be expected that different amounts of smoothing result in different 

sensitivity of the model with respect to ice sheet history and mantle viscosity. Therefore, 

for simulations in section 7.4.3 and misfit comparisons in section 7.5.2, the Gaussian 

filter halfwidth is varied. When only one gravity rate is discussed, 400 km Gaussian filter 

halfwidth is used as is common in the literature (e.g. Steffen et al., 2008, and Swenson 

and Wahr, 2008) and because it gives a strip-free gravity rate pattern while still showing 

two domes. 
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Figure 5.20: Maximum gravity rate as a function of the Gaussian smoothing radius for 

different GIA models: (a) ICE-3G with a lower mantle viscosity of 6 x 1021 Pas; (b) ICE-

5G with a lower mantle viscosity of 6 x 1021 Pas. 

 

5.3.2 Non-isotropic Gaussian filter  

MATLAB code to compute the filter weights for the filter of Han et al. (2005) from Dr. 

Holger Steffen was used. The non-isotropic Gaussian filter of Han et a. (2005) contains 

three filter parameters (see equation (4.21)): (i) a radius for zonal components (rNS), (ii) 

the order m1 for which the second radius holds, and (iii) the second filter radius (rEW). 

Filter radii in north-south and east-west direction are varied between 100 and 2000 km 
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and the SNR is plotted in Figure 5.19 for two different choices of m1
 and GIA model 

i3_8-60. m1 = 15 is preferred by Han et al. (2005). The choice of m1 is seen to have a 

small influence on the pattern of the maximum signal to noise: SNR generally reduces for 

an increase in m1. The filter halfwidths where SNR is maximum are 400 and 1800 km for 

rNS and rEW respectively. Interestingly, the 400 km is what is commonly used as 

halfwidth for the Gaussian filter (see e.g. Steffen et al., 2008, and Swenson and Wahr, 

2008).  
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Figure 5.21: SNR of Han et al. (2005) filter vs. halfwidths in north-south and east-west 

direction., for (a) m1 of equation (4.21) equal to 15, and (b) m1 = 20. 

 

The effect of the filtering on the maximum gravity rate is shown in Figure 5.22 

for the two different GIA models i3_8-60 and i5_2-60. As expected the maximum gravity 

rate decreases with increasing halfwidth. However, the figure shows that the decrease is 

sharper with increased smoothing in north-south direction than in east-west direction. 

This is probably due to the shape of the GIA uplift pattern which is more east-west 

oriented. Thus, a larger smoothing radius in north-south direction includes more grid cells 

with zero or small gravity rate values.  In Figure 5.22b, it can be seen that the model with 

ICE-5G shows that the maximum is reduced more with increasing smoothing radius in 

east-west direction, compared to ICE-3G. This is likely due to the particular shape of the 

pattern; the conclusion might not hold true for all viscosity profiles of ICE-5G.  
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5.3.3 Destriping filter  

Here a modification is investigated for the choice of parameters for the ‘original’ 

destriping filter of Swenson and Wahr (2006). The window size and the order of the 

polynomial can be adjusted as in Chambers (2006). New in this research is the 

investigation of the effect of the spherical harmonic degree and order above which 

coefficients are filtered with the destriping filter (cut-off degree and cut-off order) on the 

SNR and on the maximum gravity rate. Tamisiea et al. (2007) specified which degree and 

order they used as cut-off but did not show a trade-off. SNR was used by Van der Wal 

(2008a) who found a maximum SNR for degree 19 and order 8. The analysis therein is 

repeated here with the datasets described in the previous sections.   
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Figure 5.22: Maximum gravity rate of two GIA models filtered with the Han et al. (2005) 

filter. (a) i3_8-60, (b) i5_2-60. 

 

Figure 5.23 shows that the SNR for the same two GIA models as used in the 

previous sections peaks at degree 10 and order 2. However, at those cut-offs, the part of 

the GIA signal that is filtered out is quite large, as can be seen in Figure 5.24, which 

shows the RMS difference between two models before and after filtering. It is noteworthy 

that the RMS does not decrease monotonically when cut-off degree and order are 
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increased, i.e., filtering more coefficients of the model can result in a smaller RMS. 

This can be the result of the location of the stripes that are artificially induced by the filter 

with respect to the 554 pixels.   

To ensure that the GIA signal is not too much affected by the destriping filter, it is 

required that the RMS difference be not too large. For visual aid a black box is drawn in 

both Figure 5.23 and Figure 5.24, which roughly contains the orders for which RMS is up 

to 0.05 µGal/year for the ICE-3G 8-6 model. The ICE-5G 2-6 model has smaller 

differences.  
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Figure 5.23: SNR ratio for two GIA models, i3_8-60 and i5_2-60 for varying cut-off 

degree and cut-off order.  

 

To investigate the sensitivity with respect to the particular choices in the simulation, the 

order of the polynomial used to fit the correlation between coefficients (see Figure 5.12) 

was increased to 3 (results not shown). As expected, the destriping filter affects the signal 

slightly more. The 2nd order polynomial provides higher SNR which makes it a better 

choice. The SNR is plotted once more in Figure 5.25, but now with LaD and CPC models 

instead of GLDAS. The high SNR to the right of the black box is shifted in comparison 

with Figure 5.23, which indicates that these high values are due to the choice of 

hydrology models. 
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Figure 5.24: RMS difference between two GIA models before and after destriping: (a) 

i3_8-60; (b) i5_2-60. 
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Figure 5.25: SNR vs cut-off degree and order in the destriping filter. (a) LaD hydrology 

model; (b) CPC hydrology model in simulation 2 (see Table 5.3). 

 

Figure 5.26 plots the SNR with measurement errors the only error sources. We 

can now look for a combination of cut-off parameters for which RMS is low in Figure 

5.24, and SNR is high in Figure 5.23 and Figure 5.25. Cut-off order 8 and cut-off degree 

21 seems to fulfill these requirements and is denoted with a blue circle in all these 

figures. Visual inspection of the effect of destriping filter with these parameters on the 
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model, as well as the effect on the estimated trend from GRACE data shows this 

indeed to be a good compromise.   

The sharp changes in RMS with increasing cut-off order seem odd for a 

phenomenon as smooth as GIA. Inspecting the order variance, computed with equation 

(4.11), in Figure 5.26b confirms the presence of small jumps in the orders 6, 8 and 10. A 

cut-off at degree 8 or below results in significant modification of the model, as shown by 

the green dashed line. A cut-off at order 8 and degree 21 results in minor decay of the 

signal at orders 10 and 15 (red dotted line).  
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Figure 5.26 (a): SNR with measurement errors only. (b) Order variance for GIA models 

before destriping filtering is applied (black solid line), after destriping filtering is applied 

with cut-off degree 4 and order 2 (green dashed line), and cut-off degree 21 and order 8 

(red dotted line).  

 

5.3.4 Summary 

Performance of the Gaussian filter (Wahr et al., 1998), non-isotropic Gaussian filter (Han 

et al., 2005) and Swenson and Wahr (2006) filters is compared for two different GIA 

models and three different combinations of hydrology models. New in this research is 

that the filters are compared in terms of performance parameters such as the SNR and 
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reached for large smoothing radii, which is not desirable because the maximum 

gravity rate is greatly reduced in that case. Since the Swenson and Wahr (2006) filter acts 

mostly to remove stripes, the effect of the filter on GIA models is limited and this effect 

does not monotonically increase with filtering more coefficients (Figure 5.23).  

Thus, it is possible to find a cut-off degree and order where the SNR is high and 

the maximum gravity rate is not too much affected. The compromise was found to be cut-

off degree 21 and cut-off order 8 based on visual inspection of plots of SNR, RMS 

reduction and order variance. The RMS reduction for these parameters is 0.028 

µGal/year. The fact that such a compromise is possible makes the destriping filter 

suitable for extracting GIA signal from GRACE. After destriping filtering, isotropic 

Gaussian filtering should still be applied but a smaller radius can be used than without the 

destriping filter (Swenson and Wahr, 2006).   

Other filters are available (Chen et al., 2006; Sasgen et al., 2007; Kusche, 2007; 

Klees et al., 2008), see section 4.2.3, whose performance for GIA is not investigated here. 

Out of those, the Chen et al. (2006) filter was found to artificially enhance east-west 

features (Rangelova 2007, p. 131).  

 

5.4 GRACE estimated gravity rate  

This section investigates the influence of the length of the GRACE time series on the 

maximum gravity rate estimated from the same time series. After that, gravity rates are 

presented for least-squares estimation of a trend, with the destriping filter parameters 

selected in section 5.3.3. Gravity rates are also shown for a least-squares estimate with 

GFZ data even though the effect of filtering on these data is not investigated. However, 

the gravity rate derived from the GFZ solutions can strengthen the conclusion of the 

location and of the maximum gravity rate. For the same reason a PCA based estimate is 

presented in section 5.4.1.2. 

The gravity rate patterns presented in this section are used in Chapter 7 to 

constrain the mantle viscosity and to infer the location of maximum ice thickness. 

Because geoid rates were computed with GIA models with composite rheology, the geoid 
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rate pattern is presented in section 5.5 and used as a constraint for composite rheology 

in section 6.5. 

 

5.4.1.1 Least-squares 

In Van der Wal et al. (2008a), it was shown that a gravity trend estimated from three or 

four years of GRACE data depends strongly on the time-series segment chosen. Figure 

5.27 shows that even the maximum of a gravity rate trend estimated from five years of 

data (squares) varies between 1.35 and 1.52 µGal/year. Note that this difference is larger 

than the effect of the GRACE measurement errors in Figure 5.17. The variation can be 

due to interannual changes in continental water storage. However, removing GLDAS 

(circles) or WGHM (triangles) results in the same variation therefore the interannual 

variation has another cause, unless the true interannual water storage signal is not 

captured by both hydrology models. The interannual changes could be due to aliasing of 

K1 and K2 tidal signal. Particularly the degree 2 coefficients in GRACE solutions are of 

low quality. However, removing low degree coefficients C20, C21, S21 does not have an 

effect on the variation in the maximum gravity rate in the figure, thus errors in these 

coefficients are also not causing the variation in maximum gravity rate.  

Figure 5.27 shows that the estimated secular gravity rate that starts at April or 

May of 2002 results in the lowest maximum trend. Those two months will be excluded 

from the final estimate, also because data was not collected during the complete month.   
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Figure 5.27: (a) Gravity rate estimated from 5 years of GRACE data. The first data point 

corresponds to time period April 2002 – March 2007, the last data point corresponds to 

August 2003 – July 2008. (b): Gravity rate estimated from 5 years of GRACE data with 

low degree coefficients removed.  

 

Because of the longer time series and the good agreement between GRACE and 

GLDAS in Table 5.2, the GLDAS model is preferred to remove continental water storage 

variations. Lake level data are included in the GLDAS model. The gravity rate estimated 

for the longest time series available at the time of this work is shown in Figure 5.28 for 

CSR and GFZ fields. GFZ does not provide solutions for the months September 2002, 

December 2002, January 2003, June 2003, January 2004. The agreement between Figure 

5.28a and b is very good in the area of the maximum gravity rate southeast of Hudson 

Bay, corresponding to the location of the Labrador ice dome. Note that also Lee et al. 

(2008), Figure 7, and Peltier and Drummond (2008), Figure 2, show the maximum 

gravity rate in this area. However, the second peak is diminished in the GFZ-derived 

gravity rate, compared to the gravity rate derived from CSR. This is contrary to what is 

observed in Fennoscandia where GFZ solutions resulted in gravity rate with higher 

maximum and closer to the center of uplift (Steffen et al., 2008a).  

 

0402−0307 0902−0807 0203−0108 0703−0608
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Epochs

T
re

nd
 M

ax
im

um
 [µ

G
al

/y
ea

r]
a)

 

 

GRACE GRACE−GLDAS GRACE−WGHM



 

 

104 

 

 

Figure 5.28: GRACE-derived gravity rate [µGal/year] estimated from (a) CSR fields and 

(b) GFZ fields. Time period is Aug 2002 – July 2008 and the GLDAS model is removed. 

 

In order to be able to give uncertainty estimates in terms of differences in 

hydrology model, the time period is limited by the availability of a second hydrology 

model. Since LaD is only available up to July 2007 and CPC clearly performs the worst 

in the comparison with GRACE in Table 5.2, WGHM is selected for this purpose, with 

output available from August 2002 up to November 2007. It was found that the 

difference between the WGHM and GLDAS model is larger than the maximum secular 

gravity rate found in GLDAS alone. It can thus be argued that it is better to not remove 

hydrological signal in GRACE, because doing so only introduces more errors. However, 

the good agreement between GLDAS and GRACE in Figure 5.7 and Figure 5.5 suggests 

that GLDAS successfully simulates a good part of the interannual hydrology signal. 

Thus, the choice is made here to use GLDAS to remove hydrologic signal in GRACE and 

to use the differences between models as an imperfect way to account for uncertainty.  

  

5.4.1.2 Principal Component Analysis 

Principal component analysis (PCA) is applied to the GRACE data after filtering as 

described in section 5.3.3. The grid resolution is 1o × 1o; smaller resolution has a 

negligible influence on the spatial patterns and time series. In the time series in Figure 

5.30a it can be seen that the first component, which accounts for 60 % of the variance, 

contains a trend with a small annual signal. The second component accounts for 20% of 
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the variance and mostly consists of annual signal with a small trend superimposed. 

The presence of the GIA signal in different principal components makes it hard to isolate 

the GIA signal from other signals using PCA alone.  

When the first two principal components are added and a trend is estimated, the 

pattern in Figure 5.30b is obtained. This pattern is very similar to that obtained with least-

squares, but the contour lines are bulging south-westward, which might be due to residual 

hydrology signal. Also, the maximum gravity rate of 1.43 µGal/year is lower than in the 

least-squares pattern. The existence two domes is confirmed, with the dome south-east of 

Hudson Bay the larger one. The location of that maximum agrees better with the location 

of the Labrador ice dome (Dyke and Prest, 1987) than the trends in Figure 5.28.  

PCA has the possible advantage that more noise is filtered out by removing the 

third and higher principal components. However, these higher components can contain 

part of the GIA signal (although the trend in them is small). Also the PCA spatial patterns 

depend on the size of the area that is used in the PCA. One solution to remove such 

dependence and get a more robust pattern is to apply rotation of principal components as 

in Rangelova (2007), but this is not pursued here.  

 

 

Figure 5.29: (a) Gravity rate [µGal/year] from Aug 2002 – Nov 2007 with GLDAS 

removed. The maximum gravity rate is 1.58 µGal/year. (b) Uncertainty in the gravity 

rate, consisting of the difference between GLDAS (+ lakes) and WGHM, and 

measurement errors.  
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Figure 5.30: (a) Time series of the first and second principal components. (b) The spatial 

pattern of the trend is estimated from the combination of the first and second principal 

components.  

 

5.5 Geoid rate from GRACE 

Until now, the observations of GRACE have been studied in terms of gravity rate. It is 

useful to look at the GRACE observations in terms of geoid rate because the sea level 

code that was used for the FEM computations provides present-day geoid rate as output. 

Also, the geoid is planned to become the vertical reference surface for heights in Canada. 

The accuracy of this surface has reached a level where time-dependent effects become 

significant and GRACE data can be used to provide an epoch update to the geoid-based 

vertical datum.  

Results for a GRACE-derived geoid rate will be presented here, using the 

methods, data sets and non-GIA models described in the previous sections. The results 

reported here are those of Van der Wal et al. (2008b). As explained there, the continental 

water storage changes and present-day ice melt are removed from the GRACE data for 

the purpose of providing a vertical datum update. 
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5.5.1 Methodology 

The procedure described herein is that followed by Van der Wal et al. (2008b). The data 

span and parameters are: 

- CSR release 4, Aug 2002 – July 2007; 

- C20 is replaced with SLR derived values. This replacement was found to have 

little effect on the spatial pattern, but increased the secular geoid rate by 0.33 

mm/year.  

- Greenland ice melt: 183 Gt/year, Alaska ice melt: 84 Gt/year (see section 5.1.1).  

Errors sources are combined in a vector sum as follows: 

( ) ( ) ( )2

,

2

,

2

,, iNiNiWGHMiLaDN glaciersGRACE
NN ɺɺɺ
ɺɺ σσσ ++−=      (5.8) 

where iLaDN ,
ɺ is the secular geoid rate for grid point i from the LaD hydrology model 

(Milly and Shmakin, 2002); and iWGHMN ,
ɺ is the geoid rate from the WGHM model. 

Measurement errors computed by standard deviations and residuals after trend estimation 

are close, with slightly higher numbers for the residuals in the GIA area. 

Tuning the destriping filter is not as important for the geoid rate as it is for the 

gravity rate, because of the diminished short-wavelength power in the geoid rate 

compared to the gravity rate. However, applying the filter at low degrees would still 

greatly affect GIA, therefore it is still a good idea to look at the SNR to find the cut-off 

parameters. Note that the analysis of Van der Wal et al. (2008b) only looked at SNR for 

the cut-off parameters, and this is the procedure followed here. Signal-to-noise contours 

are presented in Figure 5.31 for different cut-off parameters. The maximum SNR is 

obtained for cut-off degree 23 and order 5 (using LaD instead of GLDAS to remove the 

effect of hydrology yields degree 23 and order 6; use of an ICE-5G GIA model does not 

change the SNR much). 
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Figure 5.31: Contours of signal-to-noise ratio for the minimum spherical harmonic degree 

and order that is used in the destriping filter. (a): calibrated standard deviations used to 

compute random errors, (b): residuals used to compute random errors. 

 

In section (5.3.1) it is shown that the Gaussian filter influences the sensitivity of 

the gravity rate with respect to viscosity at a certain depth. For the dynamic geoid, such 

sensitivity is not relevant, and a choice for smoothing the geoid rate will have to be made 

based on different aspects. Some smoothing seems sensible based on visual inspection of 

the geoid rate which contains north-south stripes if no smoothing is applied.  

Here, the effect of the 400 km halfwidth Gaussian filter on cumulative degree 

variances is shown in Figure 5.32. The GIA model is above the total uncertainty (note the 

semi-log scale of the graphs). The most obvious effect of smoothing is the reduction of 

measurements errors (residuals) above degree 40.  
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Figure 5.32: Cumulative error degree variances (see equation (4.10)) for the GIA model, 

glacier melting uncertainty, hydrology model uncertainty, random errors and the sum of 

all uncertainty. (a): no Gaussian smoothing, (b): 400 km Gaussian filter halfwidth. 

 

5.5.2 Results: geoid rate and its uncertainty 

The geoid rate with the filtering parameters discussed above is presented in Figure 5.33a, 

with uncertainties in Figure 5.33b. The uncertainty reflects unknown glacier melting in 

Alaska, and differences in hydrology models southwest of Hudson Bay and in the Great 

Lakes area. These large differences raise the question whether it is not better to not 

remove a hydrology model, since using a model might introduce more uncertainty than 

the secular continental water storage present in GRACE data. This problem is mitigated 

in Rangelova (2007) by combining the spatially homogeneous dataset of GRACE with 

the long-time record of terrestrial gravity.  
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Figure 5.33 (a): Geoid rate computed from GRACE with WGHM and Alaska and 

Greenland glaciers subtracted, after the destriping filter (applied to coefficients with 

degree greater than 22 and order greater than 4) and Gaussian smoothing with a 400 km 

halfwidth. The maximum is 1.33 mm/year. (b): uncertainty of the geoid rate computed by 

equation (5.8) with random errors computed with method 3. The maximum is 0.33 

mm/year. 

 

5.5.3 Results: geoid rate for composite rheology 

In this section the maximum geoid rate from GRACE data is presented which will be 

used in Chapter Six: as constraint for GIA models with composite rheology. For the GIA 

model with composite rheology, coefficients are used up to degree 90. The Gaussian 

smoothing that is performed on the spherical harmonic coefficients can not be ‘reversed’, 

but for the purpose of constraining composite rheology it is sufficient to get a rough 

estimate of the reduction in maximum geoid rate that results from application of the 

Gaussian filter. Reduction in maximum geoid rate is presented in Table 5.4 for a number 

of GIA models. Two models (in bold) give a maximum geoid rate close to that in Figure 

5.33. The average reduction after applying the Gaussian filter for the two models is 5.5%, 

thus the maximum geoid rate of Figure 5.33 is multiplied by 1.055 to get an ‘unfiltered’ 

maximum geoid rate of 1.40 mm/year. This number is used in section 6.5 as a 

comparison for the models with composite rheology. Since the objective is only to see 
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which modifications in ice history and which composite rheology parameters give an 

acceptable geoid rate, misfit computation with the geoid rate pattern is not useful.   

 

Table 5.4: Maximum geoid rate and reduction in maximum geoid rate due to the 

application of a 400 km halfwidth Gaussian filter and destriping, for GIA models with 

varying upper and lower mantle viscosity and ICE-3G. 

 upper mantle viscosity [Pas] 

lower mantle 

viscosity [Pas] 

 1 x 1021 2 x 1021 4 x 1021 8 x 1021 

max. geoid rate 

[mm/year] 

1.41 1.79 2.00 2.12 6 x 1021 

reduction [%] 4.2 6.0 6.4 7 

max. geoid rate 

[mm/year] 

0.93 1.18 1.36 1.54 3 x 1021 

reduction [%] 3.8 5.7 6.7 9.0 

 

 

5.6 Summary 

This chapter dealt with the post-processing of GRACE data and the uncertainty when the 

post-processed data are used for studying GIA in North-America. The main results are: 

1. Three deterministic filters are investigated: the Gaussian filter (Wahr et al. 1998), 

the non-isotropic filter (Han et al. 2005) and the destriping filter (Swenson and 

Wahr, 2006). Of those, the combination of the destriping filter with Gaussian 

filtering is most practical for GIA studies because removal of stripe errors can be 

done separately from smoothing the data, which adversely affects the GIA signal. 

2. The number of coefficients that are filtered by the destriping filter are changed to 

improve a signal-to-noise ratio based on simulations and to reduce the RMS 

reduction of certain GIA models. Filtering coefficients with degree above 20 and 

order above 7 resulted in a high SNR and small (~0.03 µGal/year) RMS reduction 

of the GIA models. 
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3. Water level changes in Lake Superior and Lake Winnipeg, and simulated 

glacier melting in Alaska and Greenland all result in secular gravity rate values in 

the GIA area above or at the measurement error level. It is suggested to include 

water level changes measured by tide gauges in the global hydrology models 

GLDAS, CPC and LaD since these models do not account for surface water 

variations. It was decided not to remove present day ice melt based on visual 

inspection of the resulting gravity rate map. 

4. Three methods to estimating GRACE measurement error in terms of secular 

gravity rate were investigated: (i) propagating calibrated standard deviations, (ii) 

propagating a fully populated covariance matrix, and (iii) residuals after 

estimation of a trend, annual and semi-annual period in the monthly Stokes 

coefficients. All methods resulted in measurement errors of similar magnitude and 

a small (~0.05 µGal/year) magnitude.   

5. Smoothing of the GRACE data by Gaussian filtering with an increasingly large 

halfwidth reduces the sensitivity of the GRACE derived gravity rate to the upper 

mantle viscosity.  

6. The uncertainty in continental water storage changes is the largest source of 

uncertainty for the secular gravity rate derived from GRACE for GIA studies. 

Increase in water storage was shown to be large between the summer of 2003 and 

the summer of 2006 in an area south-west of Hudson Bay. 

7. The maximum gravity rate and the gravity rate map estimated from GRACE 

depend on the length of the GRACE time series. Thus, one should be aware that 

previous and current gravity rates estimated from GRACE are influenced by this 

effect.  

 

The results of this chapter are used at different places in this thesis: 

- The maximum geoid rate derived in section 5.5.3 is used in section 6.5 in 

comparison with prediction of GIA models with composite rheology.  

- The gravity rates in Figure 5.28 and Figure 5.29 are used to draw conclusions 

about the ice sheet history in Chapter 7. 
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Chapter Six: Composite Rheology in GIA modeling 

This chapter studies how GIA models behave if both linear and non-linear rheology are 

active in the Earth’s mantle, cf. section (1.1.1). This rheology is dubbed composite 

rheology and was first studied in the context of GIA by Gasperini et al. (1992). The 

effects of such a composite rheology on relative sea levels, uplift rate and gravity rate 

will be investigated in this chapter. 

Since Gasperini et al. (1992), composite rheology has been studied by Gasperini 

et al. (1992, 2004), Giunchi and Spada (2000), Dal Forno et al. (2005) and Dal Forno and 

Gasperini (2007). These studies take the approach of using a simplified flat 3D model 

which requires only a relatively short computation time, to search many parameters. Here 

the more realistic spherical 3D model of Wu (2004) is used, at the expense of 

computation time. Both approaches are complementary.  

A short review of literature on composite rheology in GIA modelling is followed 

by an analysis of stress distribution in the axisymmetric model. Results will be presented 

for composite rheology in the 2D and 3D models of Chapter 3. Relative sea level data 

will be used to find the best fitting composite rheology and sea level curves are presented 

and analyzed for some best fitting models. After that uplift rate and geoid rates of the 

model will be compared with maximum observed uplift rate and maximum GRACE 

observed geoid rate of section 5.5.3. Uplift rate and geoid rate are found to be too low for 

models with a considerable non-linear component. Therefore, section 6.6 investigates the 

effect of two simple modifications to the ICE-4G history: delay in ice history and scaling 

of ice height. Most of the material in this chapter is taken from (Van der Wal et al., 

submitted) but simulation results are added for a viscosity of 9 x 1021 Pas. Dr. Hansheng 

Wang coded the sea level equation which was used for this chapter.  

 

6.1 Previous studies with non-linear or composite rheology 

6.1.1 Literature review on non-linear rheology 

The most recent study of non-linear rheology in (parts of) the mantle is by Wu and Wang 

(2007). They reviewed earlier findings, a short summary of which will be given below. 

Schmeling (1987) finds that the creep law seen by GIA appears to be a linear one even if 
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mantle rheology is actually non-linear. However, Wu (1995) demonstrated in a 

simple study that this is true only near the center of rebound; the RSL curves near the ice 

margin are sensitive to whether mantle rheology is linear or non-linear. This was later 

confirmed for a more realistic ice history and ocean loading (Wu, 2001). Thus, non-linear 

rheology, which is expected to occur at mantle conditions based on laboratory 

experiments, influence GIA model predictions and this should be taken into account in a 

realistic description of the mantle rheology. 

The current ice models are constructed with linear rheologies (e.g., Peltier, 2004). 

It was found that ice thickness should increase significantly if a good fit with relative sea 

level data, uplift rate and gravity rate is to be obtained with non-linear rheology (Wu, 

1998; 1999).  Another option to obtain good overall fit is to delay the entire deglaciation 

by about 2 ka (Wu and Wang, 2008) as non-linear rheology generally leads to faster 

relaxation near the end of deglaciation and lower present day uplift rates. Best fit to RSL 

data is obtained if power-law rheology is restricted to the lower mantle (Wu, 2002a; Wu 

and Wang, 2008).   

 

6.1.2 Composite rheology 

Composite rheology can be seen as a way to reconcile GIA observations with findings 

from laboratory experiments and microphysics that indicate that both diffusion and 

dislocation creep can operate at realistic mantle conditions. The first study of composite 

rheology in GIA by Gasperini et al. (1992) demonstrated that the Earth’s response with 

Newtonian rheology could be mimicked by a composite rheology. It was concluded that 

the effective viscosity directly beneath the ice load at the end of deglaciation is critical 

for the postglacial uplift. More recent results (Giunchi and Spada 2000; Gasperini et al., 

2004; Dal Forno et al., 2005; Dal Forno and Gasperini, 2007) have introduced 

refinements in the reproduction of a 3D ice model on a flat grid, and a statistically more 

rigorous analysis of the improvement in misfit. Their studies found that the best fit could 

be obtained with a composite rheology, see Table 6.1.  
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Table 6.1: Summary of previous works on composite rheology in GIA modeling. 

G2004: Gasperini et al. (2004), DF2005: Dal Forno et al. (2005), DF2007: Dal Forno and 

Gasperini (2007). All of these study the Laurentian ice sheet. A and η are the pre-stress 

exponent and Newtonian viscosity of equation (3.26), σB  is the (scalar) background stress 

in the implementation of equation (6.1). 

 domain ice model best fitting model 

G2004 flat 
axisymmetric 
40x82 elements 

parabolic (same 
volume as ICE-
3G) 

Bσ =1.6 

A = 2.7 x 10-35 

η = 8.3 x 1021  

DF2005 3D flat, 
20x10x20 
elements 

ICE-3G 
(stereographically 
projected) 

Bσ =1.6  

A = 3.4 x 10-35 

η = 4.3 x 1021 

DF2007 3D flat 
axisymmetric 
40x82 elements 

ICE-1G (zonal 
harmonic 
expansion) 

Bσ =0.0  

A = 2.2 x 10-34 

η = 1.6 x 1021 

  ICE-3G (zonal 
harmonic 
expansion) 

Bσ =0.2  

A = 8.2 x 10-35 

η = 2.7 x 1021 

 

These studies are all based on a flat Earth geometry, while the influence of 

sphericity can be notable for a large ice sheet like the Laurentide one (Wu et al., 2005). 

Also, the effect of self-gravitation in the Earth and in the sea-level equation is not 

included in these studies. Dal Forno and Gasperini (2007) found only a small difference 

between models with and without self-gravitation and minimize this difference by using 

only the last 6 ka of the deglaciation. However, at the edge of the ice sheet, the 

gravitation of the ice attracts large amounts of water. It is known that linear and non-

linear rheology behave differently there (Wu, 1995) and that the viscosity directly 

beneath the ice is important for the relaxation process. Thus, the introduction of self-

gravitation through the sea-level equation can introduce differences in the response of the 

linear and non-linear rheologies. In this thesis, the effects of Earth sphericity and self-
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gravitation will be included in our study of composite rheology. These effects were 

already present in the model of Wang and Wu (2006).  

With the exception of figure 5 in Dal Forno et al. (2005), the behaviour of 

composite rheology for individual RSL sites is not shown in previous studies. However, 

the RSL behaviour at a specific location can be diagnostic of a linear and non-linear 

rheology (e.g. Wu, 1995). Now it is unknown at what location and what epoch purely 

linear/non-linear rheologies differ from composite rheology and how the value of the 

creep parameter A affects this. Misfit gives a global number for model comparison, but it 

will be shown in section 6.4 that misfit can depend strongly on individual sites. More 

detailed comparisons of the RSL behaviour of different rheologies can help to relate 

studies with non-linear rheology (Wu, 2002a, Wu and Wang, 2008) to studies of 

composite rheology. 

Uplift rates computed with non-linear rheology are known to be too low (Wu, 

1999). This could mean that non-linear rheology does not reflect the true deformation 

mechanism, or that ice models based on linear rheology need to be modified. To 

investigate the second point, simple modifications have been studied for non-linear 

rheology in the past. An increase in ice thickness improves fit with RSL data within the 

Laurentide ice sheet margin (Wu, 1999). Delaying deglaciation of ICE-4G by 2 ka 

increased uplift rates and gravity rates and improved RSL fit in the center of the 

Laurentide ice sheet (Wu and Wang, 2008). However, previous studies of composite 

rheology only compare observations and predictions of RSL, but not land uplift rate or 

gravity rate. 

For most of the results in this chapter, background stress is omitted for the 

following reasons. Firstly, the locations of convection cells are not well known. 

Secondly, if the locations are known, the magnitude of the stress can only be derived 

indirectly through the use of material parameters that are uncertain. Thirdly, a 

microphysical argument is given by Karato (1998): strain rate resulting from GIA is 

orders of magnitude smaller than tectonics. Therefore, the average density of dislocations 

does not change much due to tectonics, over the period that GIA acts. As a result, little 

interaction can be expected between ambient tectonics and GIA. Finally, introduction of 
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background stress introduces an extra parameter (or rather many extra parameters) 

which increase computational burden and obscure the comparison between rheologies. 

Note that the Gasperini et al. (1992, 2004) and Dal Forno et al. (2005), Dal Forno and 

Gasperini (2007) include background stress in the following way: 

1
1

1
2

n

E B
ij ij

T

σ σε σ
η σ

−  +
 = +  
   

ɺ ,      (6.1) 

Where σE is the equivalent stress, σB is the background stress and σT  is the transition 

stress. In this formulation background stress can only increase the effective stress. Indeed 

Gasperini et al. (1992) state that an increase in background stress reduces the effective 

viscosity. However, the tensorial nature of stresses requires that stresses in all directions 

are added before the effective or Mises stress is computed. Therefore, depending on the 

direction of the ambient tectonic stress the effective viscosity can be reduced or increased 

(Schmeling, 1987, and section 3.3). 

 

6.2 Model summary 

The model used here is the coupled Laplace finite element method (Wu 2004 and Wang 

and Wu, 2006) described in Chapter 3, which solves for deformation on a spherically 

stratified self-gravitating incompressible Earth with self-gravitating oceans. The 

axisymmetric model benchmarked in Wu and Van der Wal (2003) is used as well, 

because of its fast computation time and simplicity for visualization.  

For the linear case, the Newtonian viscosity of 1, 3 or 9 x 1021 Pas, respectively. A 

is varied between 3.3 x 10-33 Pa-3s-1, 3.3 x 10-34 Pa-3s-1, 3.3 x 10-35 Pa-3s-1 and 3.3 x 10-36 

Pa-3s-1 as already stated in section 3.2.3. The combination of the Newtonian viscosities 

with the 4 values of A gives a total of twelve composite theologies investigated in this 

thesis.  

 

6.2.1 Ice model 

For ice models, we choose to use ICE-4G (Peltier, 1994) and ICE-5G model (Peltier, 

2004). The global ice models developed by Peltier and colleagues are tied to a linear 
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rheology for the Earth model that is used in the iterative inference of ice heights. This 

led Dal Forno and Gasperini (2007) to revert to the older ice models (ICE-1G and ICE-

3G). However, the choice here is for the global ice models that are widely used. The 

glaciation phase of ICE-5G is assumed to increase linearly from the start of glaciation to 

the last glacial maximum (LGM) which, in ICE-5G, is at 26 ka before present (BP). For 

the axisymmetric model, the LGM is at 20 ka BP, more in accord with the ICE-4G model 

(Peltier, 1994).  

 

6.3 Stress distribution 

Equation (3.23) shows that with non-linear rheology the effective viscosity becomes a 

function of the Mises (or effective) stress, which itself depends on location and time of 

the deglaciation process. In order to see whether linear or non-linear rheology dominates, 

it is necessary to know the stress at different locations and epochs. Therefore, in Figure 

6.1 the Mises stress distribution is plotted for the axisymmetric model with a Newtonian 

viscosity of 3 x 1021 Pas and A = 3.3 x 10-34 Pa-3s-1. This model is found to be the best 

fitting model for η = 3 x 1021 Pas, in Figure 6.6a. Other models might have a slightly 

lower misfit, but this model has a large non-linear component which is useful to illustrate 

where non-linear deformation can dominate.  

Another composite rheology was investigated in which the rheology used was 

purely linear (non-linear) if the Mises stress was below (above) the transition stress. This 

rheology is labelled ‘case 2’. Such rheology was found to give sea level curves close to 

the composite rheology formulation of Gasperini et al. (1992) (not shown). That means 

that we can simplify the plot and visualize the rheology as simple on-off shading. The 

dark grey coloured areas in Figure 6.1 show the regions that are deformed by power-law 

creep according to case 2. Note that only the mantle is plotted; the lithosphere is taken to 

be effectively elastic, but still supports a large part of the 37 MPa ice load. Stresses there 

are about 40 times higher. Thus, lithosphere which is taken to be visco-elastic could 

influence predictions, but this is not investigated here.  
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Figure 6.1: Area below the lithosphere layers of the axisymmetric model where linear 

rheology (light grey) or non-linear rheology (dark grey) dominates for composite 

rheology with a Newtonian viscosity of 3 x 1021 Pas and A = 3.3 x 10-34 Pa-3s-1. The 

epochs shown are 20 ka BP or LGM, 11 ka BP or end of melting, and 6 ka BP. The solid 

radial line at a 15˚ angle to the vertical denotes the location of the edge of the ice sheet. 

 

The region in which non-linear creep occurs is small at LGM, just below the edge 

of the ice sheet. This region increases until the end of melting and then quickly decreases 

within a few kyears of the disappearance of the ice. Non-linear creep according to case 2 

does not occur anymore after 5 ka BP. The large area of non-linear creep at the end of 

deglaciation agrees with Figure 4 of Gasperini et al. (1992), which shows the smallest 

horizontally averaged effective viscosity at the end of deglaciation. These results suggest 

that modeling lateral variations at the ice sheet margin might be important in future work, 

as these variations can have strong impact on non-linear rheology through the low 

effective viscosity there. Note that the higher stress that exists in the uppermost layers of 

the mantle during most of the deglaciation implies an increase in viscosity with depth. 

Therefore, non-linear rheology can recreate a depth-dependence that is found by most 

GIA inversion studies (e.g., Peltier 2004; Kaufmann and Lambeck, 2002).  
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The transition stress (equation (3.29)) depends on the selected linear viscosity 

and A. In Figure 6.2 the transition Mises stress is plotted for four different viscosities 

with n = 3, versus log10(A). If the Mises stress is above these curves, non-linear rheology 

will dominate (see also Gasperini et al., 2004). Considering that the peak Mises stress in 

the mantle is generally of the order of a few MPa, Figure 6.2 can be used to see find out 

for which combination of A and η non-linear behaviour can be expected and which 

composite rheology models will behave effectively linear. Increasing the linear viscosity 

reduces the transition stress and effectively makes the behaviour of composite rheology 

closer to that of nonlinear rheology. Conversely, decreasing A leads to higher transition 

stress, which makes composite behave as linear rheology.  
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Figure 6.2: Transition Mises Stress qt versus log10(A) for four typical values of η in the 

mantle and n = 3. For a given Newtonian viscosity, if the Mises stress at a certain 

location in the Earth is higher than given by the curve, non-linear creep is dominant at 

that location. 
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To show the temporal evolution in more detail than Figure 6.1, Figure 6.3 

plots the Mises stress at 4 locations (θ = 0.25o, 10.25 o, 15.25 o and 30.25 o from the centre 

of the load) just below the lithosphere. Note that the Mises stress is computed from 

deviatoric stresses.  
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Figure 6.3: Time evolution of Mises stress q at four locations just below the lithosphere 

(at r = 6220 km) in the axisymmetric model of Fig. 1. The horizontal thick line indicates 

the transition stress level (see Fig. 3), above which the dominant creep is non-linear. 

 

For A= 3.3 x 10-34 Pa-3s-1 and η = 3 x 1021 Pas the transition stress is 0.58 MPa 

and is indicated in Figure 6.3 as the solid horizontal line. According to case 2, non-linear 

creep dominates when the Mises stress (coloured lines) rises above the transition stress 

(solid black line). Figure 6.3 shows that at the center of the load and far away from the 

ice (θ = 30.25o), the Mises stress is not high enough to allow non-linear creep, thus linear 

creep dominates. The highest stresses occur around the ice margin (θ = 15.25o), where 

non-linear rheology becomes dominant after 19 ka BP and until 8 ka BP. Closer to the 
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center of the ice sheet (θ = 10.25o) power-law creep is the dominant flow mechanism 

only from 18 ka to 15 ka BP.  

The spatial evolution in Figure 6.1, the temporal evolution in Figure 6.3, and the 

level of transition stress in Figure 6.2 help to understand the behaviour of the more 

complicated 3-D model in the following sections. 

 

6.4 Comparison with RSL observations 

The previous sections supply the ‘tools’ to understand how the state of stress, through the 

transition stress, decides which of the two rheologies contributes more to the total 

relaxation. In this and the following sections, the predictions of the GIA model with 

composite rheology and parameters listed in section 6.2 are compared to data. To judge 

the performance of a GIA model, RSL data are arguably the most important data set. 

Therefore this section is concerned with RSL data, in the form of global misfit in section 

6.4.1 and curves for individual sites in section 6.4.2. 

 

6.4.1 Global Misfit 

The 30 RSL observations from Tushingham and Peltier (1991) that are used here are 

listed and plotted in Appendix E. They are C14 age calibrated according to Fairbanks et 

al. (2005). Misfit with respect to globally spread RSL observations is widely used to 

compare model performance, but can be sensitive to large misfit values at individual 

sites. The sensitivity of global misfit to RSL data is investigated in Figure 6.4, where the 

misfit is plotted for individual sites. It can be seen that stations 16 (McMurdo) 22 

(Onsala) have large peaks. Note that these are not outliers because of the bad quality of 

data; the large values are caused by a combination of bad fit and small errors in the 

observations (only the height errors in the RSL observations are used, not the time 

errors). This is shown in Figure 6.5, where the sea level curves for these two stations are 

plotted. Station McMurdo has inconsistent observations that are likely impossible to fit 

with any model, while in Onsala the data lie on a smooth curve, but the models do not 

provide a good fit. Therefore, McMurdo will be left out of comparison in the following 

but Onsala is included. 
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Figure 6.4: Misfit per site for all 30 sites of Appendix E for a linear, composite and non-

linear rheology with one or both of the following parameters:  A = 3.3 x 10-35 Pa-3s-1, η = 

3 x 1021 Pas.  
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Figure 6.5: Relative sea level predictions for the same models as Figure 5.1 and 

observations (black vertical lines) for stations McMurdo and Onsala.  

 

The question is what is the effect on the misfit value of leaving out some sites? 

Figure 6.6 plots the misfit for different sites left out. It can be seen that one or two 

stations can make a large difference in the relative performance of linear and non-linear 
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rheology. From Figure 6.6a it can be concluded that the best fitting composite 

rheology model has A = 3.3 x 10-34 Pa-3s-1, while from Figure 6.6c the best-fitting model 

has A = 3.3 x 10-35 Pa-3s-1. From Figure 6.6c it can be concluded that composite rheology 

and non-linear rheology perform equally well, while from Figure 6.6a it seems as if 

composite rheology performs much worse. In Figure 6.5b it can be seen that data for 

station McMurdo is inconsistent with an exponential sea level curve therefore it can be 

concluded that the data is bad or the ice model is in error. However, for station Onsala 

this can not be concluded. Therefore it can not be argued that the Onsala site should 

simply be removed. One way to limit the influence of excessive misfit values is to use a 

more robust statistic instead of the chi-squared misfit. The absolute value of the weighted 

differences (or L1-norm) is a more robust statistic (e.g. Press et al. 1992, section 15.7). It 

is defined as 

∑
=

−
=

n

i oi

ii po

n 1

2 1

σ
χ ,         (6.2) 

where the vertical lines denote the absolute value.  

The L1-misfit is demonstrated in Figure 6.7 for the same composite rheology 

model as in Figure 6.4. Leaving out one site changes the L1-misfit value of composite 

rheology so that is actually becomes lower than that for non-linear rheology. However, in 

both Figure 6.7a and Figure 6.7b, the best fitting composite rheology model is the same, 

which is reassuring. Because the conclusions on best fitting rheology based on L1-misfit 

seem to be more robust, L1-misfit will be used in this chapter in addition to L2-misfit, 

although conclusions about best fitting models will be based on L2-misfit, in line with 

previous GIA studies. 

The misfit for linear, non-linear and composite model is plotted in Figure 6.8a for 

four different values of A and a Newtonian viscosity of 1 x 1021 Pas. The lowest misfit is 

found for non-linear rheology with A = 3.3 x 10-35 Pa-3s-1 (the same value as found in 

Wu, 1999). The misfit for composite rheologies is close to that of non-linear rheology for 

large value of A and transitions to that of linear rheology for a small value of A, with a 

minimum (11.8) for A = 3.3 x 10-35 Pa-3s-1. The model with this combination of A and η 

will be labelled ‘model I’ for future use. In Figure 6.8b the L1-misfit shows the minimum 
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misfit is still reached by non-linear rheology with A = 3.3 x 10-35 Pa-3s-1. However, 

there is no clear minimum for composite rheology models anymore.  
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Figure 6.6: RSL misfit for a composite rheology with Newtonian viscosity of 3 x 1021 Pas 

and three different values for A, for three cases: (a) all station; (b) McMurdo is left out, 

and c) McMurdo and Onsala are left out.  
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Figure 6.7: L1-norm misfit for model with η = 3 x 1021 Pas and varying A for two cases: 

(a) all stations; (b) Without McMurdo.  
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Figure 6.8: L2-misfit and L1-misfit for models with Newtonian viscosity of 1 x 1021Pas.  

 

The presence of dislocation creep in addition to diffusion creep probably means 

that the best fit Newtonian viscosity is larger than the value of 1 x 1021 Pas that provides 

a good fit for purely linear rheology (Mitrovica, 1996) because the dislocation creep 

provides an additional relaxation mechanism. For example, Dal Forno and Gasperini 

(2007) find a Newtonian viscosity of 2.7 x 1021 Pas for the best-fitting composite 

rheology. The misfit curve for composite rheology in Figure 6.6b (η = 3 x 1021 Pas) 
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follows the misfit curve of non-linear rheology up to smaller values of A than in 

Figure 6.8. This can be explained by the transition stress in Figure 6.2, which for a 

Newtonian viscosity of 3 x 1021 Pas (dotted curve) is below that for a Newtonian 

viscosity of 1 x 1021 Pas. Assuming that an element is under the same stress, it will have a 

larger non-linear deformation component in case the Newtonian viscosity is raised to 3 x 

1021Pas.   

The best fitting composite rheology for η = 3 x 1021 Pas is found to be A = 3.3 x 

10-34 Pa-3s-1 for L2-misfit (with Onsala but without McMurdo, see Figure 6.6b ), while 

the model with L1-misfit has A = 3.3 x 10-35 Pa-3s-1 and misfit close to that of non-linear 

rheology. It was shown before that the misfit curve keeps its shape if L1-misfit is 

computed, while the shape is sensitive to removal of ‘outliers’ under L2-misfit. However, 

the best fitting model of Figure 6.6b is accepted for now as the best fitting model and is 

labelled ‘model II’. The value of A of model II is an order of magnitude larger than that 

found by Dal Forno and Gasperini (2007)  who obtained the best fit for a model with 

transition stress of 1.5 MPa, which from Figure 6.7b. This translates to an A of 1.8 x 10-35 

Pa-3s-1. However, the 0.2 MPa background stress in their best fit model acts to slightly 

decrease the effective viscosity.  

Increasing the viscosity once more by a factor of three yields the misfit curves in 

Figure 6.9. The best fitting rheology is still the non-linear rheology in all cases. However, 

the best fitting model in Figure 6.9 has a smaller A than model II: 3.3 x 10-35 Pa-3s-1. The 

best fitting model for the L2 and L1-misfit has the same value of A as in Figure 6.8, with 

the misfit value for the L1-misfit almost the same as in Figure 6.7b. This model is 

labelled ‘model III’. 

In this section it is concluded that station McMurdo is left out of RSL misfit 

computations. Based on L2-misfit (χ2) analysis, best fitting models for three values of the 

Newtonian viscosity are selected. Model I and III both have a value of A equal to 3.3 x 

10-35 Pa-3s-1, while model II has a value of A equal to 3.3 x 10-34 Pa-3s-1. L1-misfit was 

shown to be less sensitive to individual stations so it will be used alongside L2-misfit.  
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6.4.2 RSL curves 

Global misfit provides one number for model comparison, which is easy for visualizing 

results, but detailed features are not reflected by this number. Therefore, here a few sites 

are selected (see Figure 6.10) for which the sea level curves for linear, non-linear and 

composite rheology are compared. The sites are thought to be representative for the 

center of the ice sheet, the ice sheet margin of the Laurentian and Fennoscandian ice 

sheets, and the far-field; see Table 6.2. 
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Figure 6.9: (a) L2-misfit and (b) L1-misfit for models with Newtonian viscosity of 9 x 

1021Pas.  

 

Relative sea level curves for model I (A = 3.3 x 10-35 Pa-3s-1 and η = 1 x 1021 Pas) 

are shown in Figure 6.11.  For this model the transition stress is as high as 3.17 MPa (see 

Figure 6.2), which means that the Mises stress in the mantle rises above the transition 

stress only for sites close to the ice margin, see Figure 6.3. At these sites the stress is 

higher and effective viscosity is lower, which leads to faster relaxation. The sea level 

curves confirm this: the composite rheology curve is close to the curves for the linear 

rheology for most sites at early times with the exception of Brigantine and Kong Karls 

Land, which deviate from linear rheology and become close to nonlinear rheology 

probably because they are closer to the ice margin where larger stresses occur.  
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Figure 6.10: Location of the 12 RSL sites used for Figure 6.11 to Figure 6.13. 

 

Table 6.2: Classification of RSL sites in Figure 6.10.  

 center margin far-field / other 

Laurentide Richmond (101), 
Churchill (104), NW 
Newfoundland (309) 

Boston (323), 
Brigantine (333) 

Fennoscandia1 Bjugn (209), 
Ångermanland (233), 
Helsinki (235), Kong 
Karlsland (282) 

Onsala (228) 

Recife (508), 
McMurdo (570) 

1 Because the RSL curves of Ångermanland (233), Helsinki (235), Kong Karlsland (282) 

show uplift they are classified as close to the center of the ice sheet.  
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Figure 6.11: RSL predictions from models with three different rheologies: linear, non-

linear and composite rheology, for the twelve RSL sites of Figure 6.10. The stress 

exponent n = 3, A = 3.3 x 10-35 Pa-3s-1 and η = 1 x 1021 Pas. 

 

Figure 6.12 shows sea level curves for model II (A = 3.3 x 10-34 Pa-3s-1, η = 3 x 

1021 Pas) and linear and non-linear rheology models. This model has a transition stress of 

only 0.58 MPa, so that the RSL curves for composite rheology are closer to the curves for 

non-linear rheology. There are a few exceptions, one of which is Antarctica, where it 

seems that stress is too low to trigger large non-linear deformation at the LGM. Looking 

at stress evolution in Figure 6.3, the interpretation can be that stress increases underneath 

Antarctica until 12 ka BP when the non-linear part of the creep rate becomes significant 

enough to drive fast relaxation and deviate from the linear RSL curve. Other sites where 

the early part of the curve for composite rheology deviates from that of non-linear 

rheology are at the margin of the Laurentide ice sheet (Newfoundland, Boston) or the 

center and margin of the Fennoscandian ice sheet (Bjugn, Onsala, Ångermanland, 

Helsinki). The composite rheology has attained a larger vertical deformation at LGM and 

drops faster than non-linear rheology. Apparently linear deformation contributes 
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somewhat to relaxation at these sites just after the LGM. Note in Figure 6.1 that 

below the center of the ice sheet the stress is less than at the margin, thus linear creep 

rates can contribute more in the center of the ice sheet, as is indeed the case for the 

Laurentide ice sheet.   

 

Figure 6.12: As Figure 6.11, but with n = 3, A = 3.3 x 10-34 Pa-3s-1 and η = 3 x 1021 Pas. 

 

Finally, Figure 6.13 shows model III (A = 3.3 x 10-35 Pa-3s-1, η = 9 x 1021 Pas). 

The linear relaxation in this Figure is clearly much smaller than in Figure 6.11, e.g. 

compare the ~600 m vertical displacement at Churchill in Figure 6.11, with the ~400 m in 

Figure 6.13.  The transition stress of 1 MPa ensures mostly non-linear deformation. 

However, the same exceptions hold true as in Figure 6.12: significant contribution from 

linear rheology in the margin (Laurentide ice sheet) and center / margin (Fennoscandian) 

ice sheet, and mostly linear deformation in Antarctica.  
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Figure 6.13: As Figure 6.11, but with n = 3, A = 3.3 x 10-35 Pa-3s-1 and η = 9 x 1021 Pas 

 

6.4.3 Discussion 

For model I, the transition stress level of 3.2 MPa causes the sea level curves to behave 

mostly linear, except for sites near the ice margin. If A is increased to 3.3 x 10-34 Pa-3s-1, 

not shown here, the transition Mises stress is 1 MPa and sea level curves are close to non-

linear rheology. For model II, the transition stress is as low as 0.6 MPa and sea level 

curves follow non-linear sea level curves. For a lower value of A (3.3 x 10-35 Pa-3s-1, 

transition stress level of 1.8 MPa) linear rheology has a stronger contribution. For model 

II, the transition stress is 1.05 MPa, and much the same behaviour is found as for model 

II. In section 3.2.4.1 the possibility was mentioned that dynamic recrystallization 

balances diffusion and dislocation creep. It is interesting to note that it is found here that 

the best fit to RSL data is obtained for values of A and η for which dislocation and 

diffusion creep are of the same order of magnitude. 
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It should be noted that Figure 6.7b (L1-misfit) actually suggests that the best 

fitting model with viscosity of 3 x 1021 Pas, has A = 3.3 x 10-35 Pa-3s-1 as opposed to A = 

3.3 x 10-34 Pa-3s-1 in model II. Figure 6.9 even shows a slightly lower misfit value for 

model III than the best fitting model in Figure 6.6b. Based on the ambiguity that results 

from the selection of RSL sites, and the misfit values that are close (for model II and 

model III), a best fitting model can not be based on RSL data alone for the models 

investigated here. In future work a more detailed variation in viscosity and A should be 

achieved. However, it is also possible to use extra information in the form of uplift rates 

and gravity rates to constrain models, as is done in section 6.5.  

Does the conclusion hold that non-linear rheology provides the best fit? This 

seems to be justified based on Figures Figure 6.6 to Figure 6.9. However, removing the 

site with the largest misfit value from the computation results in a different picture, see 

Figure 6.14. The L2-misfit for the best-fitting composite rheology is only slightly higher 

than the best-fitting non-linear rheology. For the L1-misfit, the composite rheology is 

even smaller than the non-linear rheology. Thus, we can conclude that straightforward 

analysis of misfit (with no outliers removed) does not support the conclusion reached 

before that composite rheology has a significant lower misfit than purely non-linear 

models (Gasperini et al. 2004, Dal Forno and Gasperini, 2007). However, the converse 

can also not be claimed yet, due to the sensitivity in the misfit to specific sites, 

demonstrated here by the comparison of Figure 6.14b with Figure 6.7b, and due to the 

limited parameter spacing in η. Previous studies (e.g. Wu and Wang, 2008) with purely 

non-linear rheology can still be valid for two reasons: i) the best fitting composite 

rheology looks like a non-linear rheology (e.g. model II); and ii) the best fitting model is 

one with purely non-linear rheology. 

Note that Wu and Wang’s (2008) preferred Earth model with a non-linear lower 

mantle and linear upper mantle still provides lower misfits than any of the composite 

rheology models used here (although their model contains an extra degree of freedom in 

the form of an extra layer in the mantle). 
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Figure 6.14: (a) L2-misfit and (b) L1-misfit for models with Newtonian viscosity of 3 x 

1021 Pas. Onsala is left out of the misfit computation.  

 

Composite rheology has an extra parameter (A and η) compared to purely non-

linear rheology (only A). Therefore, should it not always have the smallest misfit, when 

the entire parameter space is sampled? This is not necessarily the case, as both η and A 

are coupled through the state of stress. For example, consider the composite rheology 

models with A = 3.3 x 10-35 Pa-3s-1 and η = 1 x 1021 Pas which has sea level curves that 

are closer to linear rheology (see Figure 6.11). Increasing the viscosity to 3 x 1021 Pas 

makes the sea level curves closer to that of non-linear rheology, but the misfit is still 

larger than that of non-linear rheology (Figure 6.7). It seems that the misfit can only be 

decreased for the same value of A, by increasing the viscosity, which makes the model 

effectively non-linear. Therefore, the extra parameter (viscosity) that composite rheology 

has compared to purely non-linear rheology, does not necessary help to decrease misfit 

for this value of A.  

 

6.5 Uplift rate and geoid rate constraints 

The previous section showed that the model that best fits RSL data has purely non-linear 

rheology in the mantle. A known problem with a purely non-linear rheology is the low 

uplift rates that are the result of the faster relaxation (e.g. Wu, 1999). Note that the 

present day uplift rate is approximately the time derivative of the curves at t = 0 in Figure 
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6.11 to Figure 6.13 which indeed looks to be smaller for non-linear models. Although 

sea level records are most important for GIA inferences because they extend back in 

time, an uplift rate that is too low does indicate a problem in either Earth rheology or ice 

history. Since composite rheology includes a linear component in the rheology which 

tends to stabilize the non-linear relaxation (Gasperini et al., 2004), it can possibly 

combine a good fit with sea level data with reasonable uplift rates.  

The spatial pattern of uplift rate or, to a lesser extent the geoid rate, for the most 

part reflect the past ice sheet cover. Therefore, to judge whether composite rheology can 

attain reasonable uplift and geoid rate the maximum uplift and geoid rate will be used. 

The maximum uplift rate found by Sella et al. (2007) at one GPS station is 13.8 mm/year. 

Based on a number of sources, Wu and Wang (2008) take the maximum uplift rate to be 

11 +/- 2 mm/year. The maximum geoid rate was determined in section 5.5.3 to be 1.4 

mm/year. Rangelova (2007, p. 154) obtained a maximum of 1.5 mm/year with a 

combination of GPS, terrestrial gravity and GPS data.  

Maximum uplift and geoid rates plotted in Figure 6.15 for composite rheology 

with η = 1 x 1021 Pas and η = 3 x 1021 Pas are above that for non-linear rheology, 

demonstrating that indeed composite rheology can enhance uplift rates. At first sight, it 

might not be clear how it is possible that an extra deformation mechanism (Newtonian 

creep) slows down relaxation compared to a single deformation mechanism (power-law 

creep). The answer lies in the relative importance of the mechanisms, as discussed in 

relation to the sea level curves. Models with A = 3.3 x 10-36 Pa-3s-1 and consequently high 

transition stress behave in a linear way so that the Newtonian viscosity determines the 

uplift rate to a large extent. Increasing (decreasing) the Newtonian viscosity of such 

models leads to slower (faster) relaxation at the present which results in a larger (smaller) 

uplift rate. For model II the Newtonian viscosity has little influence on the present day 

uplift rate, because most of the relaxation is handled by power-law creep. For this model, 

Figure 6.1 does show a small region of linear deformation directly below the lithosphere, 

underneath the center of the ice sheet, but that might be due to the boundary conditions of 

the axisymmetric model. Moreover, the lower part of the upper mantle and lower mantle 

in that figure are still dominated by non-linear deformation.  
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The maximum geoid rate in Figure 6.15b shows the same behaviour: for 

models with smaller value of A, increasing the viscosity increases the maximum geoid 

rate. Interestingly, the increase is not the same in uplift rate as in geoid rate. The 

maximum uplift rate curves for η = 3 x 1021 Pas and η = 9 x 1021 Pas are almost on top of 

each other, while the maximum geoid rate curve for η = 9 x 1021 Pas is clearly above that 

of η = 3 x 1021 Pas. This points to a different sensitivity of uplift rate and geoid rate in 

terms of the relaxation process in the mantle. This idea should be further explored in 

future work. Note that a value of A ~ 10-36 Pa-3s-1 gives uplift and geoid rate close to what 

is expected, but RSL fit is somewhat degraded (see Figure 6.6b and Figure 6.7b).  
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Figure 6.15: (a) Maximum uplift rate in North America and (b) maximum geoid rate in 

North America, for non-linear and composite rheologies for ICE-5G and different values 

of A. Dashed line: η = 1 x 1021 Pas, Dotted line: η = 3 x 1021 Pas, dashed-dotted:  η = 9 x 

1021 Pas. 

 

Model I, II and III have small uplift rates of 5.0, 3.2 and 7.5 mm/year, 

respectively, which is considerably lower than the observational constraints of 11 

mm/year. The geoid rates for the same models are 0.34, 0.36 and 1.0 mm/year, 

respectively, again smaller than the observed 1.4-1.5 mm/year. On the positive side, 

composite rheology model III manages to increase both uplift rate and geoid rate 

−35.5 −35 −34.5 −34 −33.5 −33 −32.5 −32
0

5

10

15

Log10 A

[m
m

/a
]

a) Maximum Uplift Rate

 

 

nonlin.

comp. η=1x1021

comp. η=3x1021

comp. η=9x1021

Model I
Model II
Model III



 

 

137 

 

compared to the best fitting non-linear rheology, while model II increases only the 

maximum uplift rate. Both models have an RSL misfit which is slightly larger than the 

best-fitting non-linear rheology, but still much smaller than purely linear rheology 

(Figure 6.12 and Figure 6.13). It can be concluded that composite rheology can increase 

uplift rates and geoid rate, at the expense of a small increase in RSL misfit. Furthermore, 

recall that the model II was obtained from L2-misfit with sea level data, while L-1 misfit 

allowed a best-fit model with A = 3.3 x 10-36 Pa-3s-1 and η = 3 x 1021 Pas, which fit even 

better than non-linear rheology if one outlier station was removed (see Figure 6.14b). 

Therefore, it is not ruled out that model II can provide better fit to sea level data and 

increase uplift rate. Finally, sub-dividing the parameter space of Newtonian viscosity 

could result in an optimal fit model with increased sea level fit and increased uplift rates 

and geoid rates.  

With the current results, sea level data selected model II and model III as equally 

plausible, uplift rates favours a value of A of close to A = 3.3 x 10-35 Pa-3s-1 or smaller, 

geoid rate favours a viscosity of η = 9 x 1021 Pas. This is a higher viscosity than that 

found in Dal Forno et al. (2005) and Dal Forno and Gasperini (2007), but close to that of 

Gasperini et al. (2004), see Table 6.1. Misfit is quite sensitive to value of Newtonian 

viscosity, see e.g. Figure 5 of Dal Forno et al. (2005), but differences can be expected 

because the more realistic model of Wang and Wu (2006) is used here as well as the ICE-

5G model, which has larger ice thicknesses at LGM and consequently larger maximum 

uplift and geoid rates than ICE-4G. The fact that both ice histories were obtained with a 

linear rheology still leaves room for modification of the ice history that will increase 

uplift rates and geoid rates.   

 

6.6 Modifications to the ice history 

The effects of two types of modifications in the Laurentide ice history will be 

investigated: 

i) Delay in the glaciation, which increase uplift rates as can be deduced from the 

sea level curves in Figure 6.11 to Figure 6.13. 

ii)  Increase in ice height, suggested by Wu and Wang (2008).  
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Because of the long computation time of the 3-D FEM model, only a handful 

of cases is investigated. They merely serve as direction for the development of ice models 

based on composite rheology; it is not claimed that the delay and scaling of the ice 

history are allowed by geological constraints or can fit GIA constraints other than the 

ones considered here. The predicted uplift rates from ICE-5G generally fit worse than 

ICE-4G (Braun et al., 2008, Fig. 4 and section (7.5.2)) as they are too high and the 

maximum is west of Hudson Bay instead of south-east. Therefore, the ICE-4G model is 

used in this section instead of the ICE-5G model to investigate RSL misfit, RSL curves, 

uplift rates and geoid rate. Newtonian viscosity is taken to be 1 x 1021 Pas and 3 x 1021 

Pas, A is varied between 3.3 x 10-34 Pa-3s-1 and 3.3 x 10-36 Pa-3s-1.  

 

6.6.1 Delay in glaciation 

Figure 6.16 shows the maximum uplift rate and geoid rate with the parameters mentioned 

at the end of the previous section for the ICE-4G history and with delay applied to the 

glaciation. Indeed, the delay in glaciation increases the uplift rate and geoid rate for all 

models, but less so for models with a larger value of A that tend to have a flatter sea level 

curve at present. It is interesting to note that an increase in viscosity from η = 1 x 1021 Pas 

to η = 3 x 1021 Pas has a greater effect on the geoid rate than on the uplift rate. The 

question is now whether a delay in glaciation worsens the RSL fit or not.   

Because only the glaciation in Laurentide is modified, the RSL fit will be 

computed for stations in North America only. These sites are depicted in Figure 6.17 and 

the misfit curves are shown in Figure 6.18. There is one site with large misfit values (326, 

Clinton), therefore results are also shown for L1-misfit since L1-misfit was shown to 

provide more robust conclusions about best fitting rheology in the presence of large 

misfit values for individual sites. It becomes clear from the figure that a 1 ka delay in 

glaciation actually improves RSL L1-misfit for A > 3.3 x 10-34 Pa-3s-1, but delay by 2 ka 

worsens the fit for all models.  

 



 

 

139 

 

−35.5 −35 −34.5 −34 −33.5
0

0.5

1

1.5

Log10 A

[m
m

/a
]

b) Max. Geoid Rate North−America

 

Figure 6.16: Maximum uplift rate (a) and geoid rate (b) in North America for six 

composite rheologies with (delayed versions of) ICE-4G.  

 

Misfit for models with η = 3 x 1021 Pas is shown in Figure 6.19 for both L2 and 

L1-misfit. The type of misfit does not affect the shape of the curves much (not shown). 

However, removing sites with large misfit values favours the misfit for 2 ka delay (not 

shown). A 1 ka delay leads to a lower misfit for A = 3.3 x 10-34 Pa-3s-1 and similar misfit 

for A = 3.3 x 10-35 Pa-3s-1. 2 ka delay greatly increases misfit (L1 and L2) for A < 3.3 x 

10-34 Pa-3s-1, but can lead to lower L1-misfit for A = 3.3 x 10-34 Pa-3s-1. The best fitting 

model is for A = 3.3 x 10-35 Pa-3s-1; the same as the best-fitting model as in Figure 6.7. 

 

 

Figure 6.17: Location of the North American RSL sites used for misfit computations with 

modified ICE-4G history.  
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Figure 6.18: RSL Misfit of GIA models with η = 1 x 1021 Pas, w.r.t the 12 sites of Figure 

6.17 for (a) L2-misfit (b) L1-misfit.  
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Figure 6.19: RSL Misfit of GIA models with η = 3 x 1021 Pas, with respect to the 12 sites 

of Figure 6.17 for: (a) L2-misfit; (b) L1-misfit.  

 

In order to analyze at the detailed spatial response, sea level curves are plotted for the 

best fitting models of Figure 6.19. It is clear that a delay in glaciation provides a better fit 

to many of the sites: Richmond, Churchill, Southampton Island, East Axel Heiberg Island 

and Brigantine. The worse fit at Clinton, in combination with the small RSL errors there, 

causes the large misfit in Figure 6.19 for the case of 2 ka delay. 
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Figure 6.20: RSL predictions for the 12 North American sites in Fig. 9, using the ICE-4G 

model with delayed ice heights, A = 3.3 x 10-35 Pa-3s-1 and η = 3 x 1021 Pas. 

 

6.6.2 Increased ice heights 

Ice heights in Laurentide at all time steps are multiplied by 1.5 and 2.0 to investigate the 

effect of an increase in ice thicknesses (Wu, 1999, Wu and Wang, 2008). The maximum 

uplift rate with these scaled versions of ICE-4G is plotted in Figure 6.21 and the 

maximum geoid rate in Figure 6.22. Model I and II are denoted by upward and 

downward triangles in Figure 6.21a and Figure 6.21b respectively. The uplift rate of 

model I increases by 3.3 mm/year upon doubling of the ice heights. Model II behaves 

more like non-linear rheology and the effective viscosity is lowered upon increasing the 

stress level. Therefore, total solid Earth displacement at LGM is larger as a result of the 

higher ice, but relaxation proceeds faster due to the lower viscosity. Thus the maximum 

geoid rate also shows little increase for models that behave mostly in a purely non-linear 

way. Figure 6.22a in combination with Figure 6.16 rules out a viscosity of 1 x 1021 Pas 
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for a composite rheology because even with larger ice thicknesses or delay in 

glaciation the maximum geoid rate is only around 0.5 mm/year, compared to 1.4 mm/year 

observational constraint. Note that the maximum uplift rate in Figure 6.21a is close to 8 

mm/year which is relatively closer to the observed 11 mm/year.  
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Figure 6.21: Maximum uplift rate for four composite rheologies with (scaled versions) of 

ICE-4G for (a) η = 1 x 1021 Pas and (b) η = 3 x 1021 Pas. 
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Figure 6.22: Maximum geoid rate for four composite rheologies with (scaled versions) of 

ICE-4G for (a) η = 1 x 1021 Pas and (b) η = 3 x 1021 Pas. 
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Clearly worse misfit is obtained in Figure 6.23b for inceases in ice 

thicknesses, both for L2 and L1-misfit. However, outliers in RSL data strongly influence 

the misfit increases as will be shown in the detailed sea level history. The same 

conclusions hold for η = 3 x 1021 Pas, for which misfits are a little lower. For a model 

with A = 3.3 x 10-35 Pa-3s-1 and η = 3 x 1021 Pas, the maximum geoid rate increases from 

0.62 to 0.71 to 0.78 mm/year for multiplying the ice thicknesses by 1.0, 1.5 and 2.0 

respectively (see Figure 6.22b).  
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Figure 6.23: RSL misfit for the 12 sites of Figure 6.17. (a) η = 1 x 1021 Pas and (b) η = 3 

x 1021 Pas, c) L1-misfit, η = 1 x 1021 Pas, d) L1-misfit, η = 3 x 1021 Pas.  
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It is interesting that the best fitting models with unscaled ice thicknesses in Figure 6.23a 

and Figure 6.23b are found for a value of A smaller than that in model I and II which 

were best fitting models determined with ICE-5G. This could be the result of the larger 

ice mass in ICE-5G which agrees with a rheology that is more non-linear. Figure 6.24 

shows the individual sea level curves for the best fitting model in Figure 6.23b. The 

worse fit of the scaled ice models is not supported by all of the curves. For example, fit 

for e.g. Ottawa Island and East Axel Heiberg Island is rather good, which agrees with the 

finding of Wu (1999). On the other hand, the fit is poor in Newfoundland, and the data at 

the peripheral bulge are indifferent except for Boston which does not permit a large 

increase in ICE-4G height. Comparing Figure 6.20 with Figure 6.24 one can conclude 

that the shape of the sea level curves better matches the observations when the ice history 

is delayed as opposed to increased. This is most notable in the first row of both figures, 

which are the sites in the center of the ice sheet.  

The model with lowest RSL misfit among those investigated with a modified 

ICE-4G ice history has A = 3.3 x 10-35 Pa-3s-1 and η = 3 x 1021 Pas, with 0 (or 1 ka) delay 

in glaciation, depending on whether L1 or L2-misfit is used. However, this model still 

has a low uplift rate of 5.3 mm/year (or between 5.3 and 7.5 mm/year for 1 ka delay). 

Note that this model increases the uplift rate (but not the geoid rate) compared to a purely 

non-linear rheology model, as shown in Figure 6.15 for ICE-5G.  
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Figure 6.24: RSL predictions for the 12 North American sites in Fig. 9, using the ICE-4G 

model with increased ice heights, A = 3.3 x 10-35 Pa-3s-1 and η = 3 x 1021 Pas. 

 

6.7 Summary of RLS and uplift rate constraints 

The best RSL fit with a GIA model based on ICE-5G with composite rheology is 

obtained for a model with A = 3.3 x 10-35 Pa-3s-1 and η = 9 x 1021 Pas, see Table 6.3. 

Although this model has a larger misfit value than the best-fitting purely non-linear 

rheology (L1-misfit value: 2.2), the model does increase uplift rate and geoid rate with 

respect to the purely non-linear rheology model. With a value of A smaller than 3.3 x 10-

35 Pa-3s-1 it seems possible to have an acceptable uplift and geoid rate at the expense of a 

slightly worse RSL fit. There is also a possibility that the RSL misfit for composite 

rheology decreases below that of a purely non-linear rheology model if more viscosities 

are investigated, particularly between 3 x 1021 Pas and 9 x 1021 Pas or higher than 9 x 

1021 Pas. However, since higher values of the Newtonian viscosity are not investigated in 
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this thesis due to time constraints, it is possible that a better fitting model can be 

obtained with higher values of the Newtonian viscosity. 

 

Table 6.3: L2-misfit/L1-misfit with respect to sites in Appendix E for all models with 

ICE-5G. The second row in each cell gives the uplift rate/geoid rate. 

 mantle viscosity 

A [Pa-3s-1] 1 x 1021 Pas 3 x 1021 Pas 9 x 1021 Pas 

3.3 x 10-33  19.0/3.5  

1.46/0.11 

18.8/3.6 

1.22/0.13 

18.9/3.6 

1.24/0.15 

3.3 x 10-34 11.7/3.0 

2.36/0.17 

13.3/2.8 

3.17/0.36 

11.9/2.8 

3.24/0.42 

3.3 x 10-35 12.1/2.7 

5.04/0.34 

11.8/2.3 

7.40/0.85 

10.8/2.3 

7.45/1.00 

3.3 x 10-36 21.7/2.7 

7.87/0.52 

13.6/3.0 

14.10/1.64 

14.3/2.7 

14.35/2.05 

 

From Table 6.4 it follows that the best fitting model with ICE-4G is found for A = 

3.3 x 10-35 Pa-3s-1 and η = 3 x 1021 Pas. Higher viscosities are not investigated due to time 

constraints. L1-misfit gives an even lower misfit when 1 ka delay is applied to the ice 

history, which also increases uplift rate from 5.7 to somewhere in between 5.7 and 7.5 

mm/year. Moreover, Figure 6.20 tells that a better fit is obtained for sites in the center of 

the ice sheet when 2 ka delay is applied. Such delay would increase the uplift to 7.5 

mm/year.  

Increasing the ice thickness does not lead to better fit with RSL data (see Table 

6.5) and leads to marginal increase in uplift and geoid rate (see discussion of Figure 

6.21). Although Figure 6.24 shows that smaller misfit values are obtained for sites in the 

center of the ice sheet margin, the shape of the curves does not match the shape of the 

observations very well, with the exception of East Axel Heiberg Island. Misfit values for 

both an increase of ice thickness and delay in glaciation increases are not shown here, but 

the misfit values increase for all models.  
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Table 6.4: L2-misfit/L1-misfit with respect to sites in Figure 6.17 for all models with 

ICE-4G with 0, 1, and 2 ka delay. 

 0 ka 1 ka 2 ka 

A [Pa-3s-1] 1 x 1021  3 x 1021  1 x 1021  3 x 1021 1 x 1021  3 x 1021 

3.3 x 10-34 14.7/3.3 12.2/3.0 12.1/2.9 9.6/2.5 14.5/2.8 11.0/2.4 

3.3 x 10-35 10.1/2.6 7.5/2.2 9.9/2.5 8.4/2.1 18.5/2.9 16.2/2.7 

3.3 x 10-36 9.7/2.6 9.7/2.6 11.9/2.6 11.9/2.6 25.1/3.2 25.1/3.2 

 

Table 6.5: Same as Table 6.4 for 1, 1.5, and 2.0 ice thickness scaling. 

 x 1.0 x 1.5 x 2.0 

A [Pa-3s-1] 1 x 1021  3 x 1021  1 x 1021  3 x 1021 1 x 1021  3 x 1021 

3.3 x 10-34 14.7/3.3 12.2/3.0 20.1/3.5 18.6/3.3 37.0/4.0 35.7/3.8 

3.3 x 10-35 10.1/2.6 7.5/2.2 12.2/2.7 12.7/2.4 24.0/3.3 26.6/2.9 

3.3 x 10-36 9.7/2.6 9.7/2.6 13.1/2.7 23.4/2.9 26.6/3.4 19.9/2.8 
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Chapter Seven: GRACE constraints on the ice loading history 

The spatial distribution of uplift and gravity rates within the ice margin mainly reflects 

the distribution and height of the ice sheet (e.g., Wu, 2002a). Therefore, GRACE data can 

be expected to offer constraints on the past ice distribution especially in areas where GPS 

and terrestrial gravity measurements are absent.  

Tamisiea et al. (2007) stated that “Our results strongly support the multi-domal 

Laurentide ice geometry advocated by Dyke and Prest and allow us to reject the mono-

domal model.” Indeed the two domes that were found in that paper seem to be a robust 

feature in the GRACE data (see Figure 5.28, and Figure 5.29 in this thesis). The ICE-3G 

and ICE-4G histories are characterized in that paper as mainly mono-domal Laurentide 

ice sheets, and the ICE-5G as multi-domal. The results of Tamisiea clearly favour a 

multi-domal structure put forward by Dyke and Prest (1987). Therefore, the results of 

Tamisiea et al. (2007) appear to favour ICE-5G (being a multi-domal model) over ICE-

3G or ICE-4G (being mainly mono-domal). However, Figure 2.2 confirms that the 

maximum gravity rate based on ICE-3G can show a weak two-domal structure and can 

thus potentially fit well to the GRACE data.  

The trend estimated from 4 years of data was shown to cause large changes in the 

location of the maximum depending on whether an ‘early’ or ‘late’ four year period was 

selected, probably caused by a strong increase in water storage from the summer of 2003 

until the summer of 2006  (Van der Wal et al., 2008a). Moreover, it is shown in section 

5.4 that April and May 2002 have a big impact on the estimated trend. In fact, it is even 

claimed that GRACE monthly gravity fields from before February 2003 are of less 

quality and perform worse in comparisons with independent data (Frank Flechtner, 

personal communication, 2009). Thus, the visual agreement between the GRACE-derived 

geoid rate (Figure 1 of Tamisiea et al., 2007) and the gravity rate from a GIA model 

based on the ICE-5G loading history can therefore very well be a result of the short time 

series, the use of the older release 1 data and the use of data of lesser quality for April and 

May 2002.  

Paulson et al. (2007b) also found a better agreement was found with ICE-5G than 

with ICE-3G. However, their conclusion relies on their claims that the hydrology 
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correction is only 10%, which understates the hydrology contribution expected from 

the investigation of hydrology models (Van der Wal et al., 2008a). Even the maximum 

gravity rate in the trend estimated from 5 years of data (which is more than used in 

Paulson et al. 2007b) is shown in section 5.4 to be subject to large changes in the 

maximum gravity rate. Based on these arguments, the use of GRACE data as a constraint 

on ice loading history in North America needs further study, if only because the 

constraint on ice loading history in North America was not the objective from the 

previous papers, but rather a secondary result.  

In this chapter, the GRACE data discussed in chapter 4 will be used to answer the 

question if GRACE data with the current time span can offer a constraint on the ice 

history and which ice loading history is preferred.  First, GRACE data are validated with 

GPS data and terrestrial gravity data. Following, the sensitivity of gravity rates to 

changes in ice thicknesses is discussed. Then GRACE data are compared to uplift rate 

and gravity rate in North America. Simulations are performed to show whether the 

difference in the ice loading histories of ICE-3G, ICE-4G and ICE-5G are resolvable. 

Misfit between modeled gravity rate and GRACE-derived gravity rate for varying mantle 

viscosity and varying Gaussian smoothing radii is shown.  

 

7.1 Comparison between GRACE and GPS data 

Wahr et al. (2000) found a relation that approximates well the relation between spherical 

harmonic coefficients of uplift and spherical harmonic coefficients of the geoid rate 

(Stokes coefficients lmC  and lmS ) for GIA: 

2 1

2
lm lm

lm lm

U Cl

V S

   +=   
   

         (7.1) 

where lmU and lmV are the coefficients in the spherical harmonic expansion of the uplift 

rate. In Figure 7.1 it is verified how good this approximation is for model i3_8-60. The 

uplift rates computed directly from the model are little smaller than the uplift rates 

computed with equation (7.1) 
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Figure 7.1: (a) Uplift rate for model i3_8_60. (b) Uplift rate computed from geoid rate 

coefficient according to equation (7.1). 

 

As in Rangelova (2007), this relation is now applied to compute uplift rates from 

the GRACE results in section 5.4. Differences between the observed uplift rates and the 

uplift rates converted from GRACE (the results of section 5.4.1.1_ are shown in Figure 

7.3.  

 

 

Figure 7.2: GRACE-derived gravity rates (Figure 5.28) converted to uplift rate according 

to equation (7.1). The Lambert et al. (2006) absolute gravity sites are indicated with stars.  
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To obtain the GRACE-derived uplift rates at the GPS locations in Figure 7.3, the 

grdtrack routine in GMT (Wessel and Smith, 1991) is used, which uses bicubic 

interpolation. Note that the Stokes coefficients from GRACE are filtered while the GPS 

data are not. There is very good agreement between both data sets around Hudson Bay, 

where the two peak gravity rates are located, although GPS observations are few and far 

apart there. The site with the largest difference, in the Canadian Prairies, could be an 

outlier or a strong local effect. However, there is a consistent difference west and north-

west of the Great Lakes which is too large to be explained by the effect of filtering. Here 

an increase in water storage in this area (such as seen in Figure 5.4) is a possible 

explanation for the larger uplift rates in GRACE.  

 

 

Figure 7.3: Observations at the continuous GPS stations of Sella et al. (2007) minus uplift 

rate from GRACE interpolated at the same stations. The length of the green arrow 

corresponds to a difference 10 mm/year. Stars denote the Lambert et al. (2006) sites. 

 

7.2 Comparison between GRACE- and absolute gravity data 

Terrestrial gravity data in North America is of high enough quality and long enough time 

span to be useful for GIA studies (Lambert et al., 2001). Therefore, to allow a second 
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assessment of the GRACE results they are compared here with results from terrestrial 

gravity data from Lambert et al. (2001, 2006). The locations of the measurements are 

plotted in Figure 7.2. In the next section a comparison will be made with the map of 

gravity rates derived from the Canadian Gravity Standardization Network (CGSN) 

(Pagiatakis and Salib, 2003). Terrestrial gravity data are mostly sensitive to local effects 

(see section 4.4). This can be both an advantage because the large scale hydrology 

behaviour does not need to be known, or a disadvantage because the local water and 

snow distribution needs to be known, among others. 

Lambert et al. (2001) present measurements with JILA and FG5 absolute gravity 

measurements across the southern margin of the Laurentide ice sheet. It was shown that 

ICE-3G in combination with viscosities of 1 x 1021 Pas and 2 x 1021 Pas in the upper and 

lower mantle, respectively, under predict the gravity measurements at some sites. This 

finding was one of the reasons that motivated Peltier (2004) to add extra mass in the ICE-

5G model, in the form of a large Keewatin ice dome in the Yellowknife region. However, 

later a large inter-annual term in the data was found and corrected for (Lambert et al., 

2006). The more recent data set is used here. 

To compare the gravity rates measured at the deforming surface with those 

obtained with GRACE, both GRACE-derived and terrestrial gravity rates will be 

converted to uplift rate. For terrestrial gravity rates caused by GIA it is observed that the 

gravity to height ratio is close to that of the effect of free-air correction in combination 

with a Bouguer reduction with density equal to that of the upper mantle (see review in 

Rangelova, 2007). Here a ratio of -0.18 µGal/mm of Rangelova (2007), Figure 2.9, is 

used, which is derived from gravity rates from the Pagiatakis and Salib (2003) and 

Canadian Base Network (CBN) GPS observations (Henton et al., 2006) that are within 

100 km of the CGSN sites. It is preferred to use one number for the whole GIA area, as 

opposed to using an individual gravity-to height ratio for each point. Such a procedure, 

used e.g. in Steffen et al. (2009), might be prone to local effects in either the GPS or 

gravity measurements and is sensitive to uplift rates or gravity rates with a small 

magnitude.  
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Errors in the uplift rate are obtained by propagating the errors in the gravity 

rates from Lambert et al. (2006) and the error in the gravity-to-height ratio of Rangelova 

(2007), as follows: 

2 2

2 2 2
g rh

h h

g r
σ σ σ

   ∂ ∂= +   ∂ ∂   
ɺ ɺ

ɺ ɺ

ɺ
 

Where  r and subscript r refer to the gravity to height ratio, and σ is the standard 

deviation. 

The GRACE-derived gravity in Figure 5.28a is converted to uplift rate with 

equation (7.1). To account for loss of signal through filtering of the GRACE data, the 

same filtering that is applied to GRACE data is also applied to datasets or model outputs 

if these are compared to GRACE data. However, it is hard to apply the GRACE filters to 

scattered point data in a straight forward way, therefore an attempt is made to recover the 

signal that is lost by the filtering of the GRACE data (similar to section 5.5.3) and correct 

the GRACE data for this loss. The spherical harmonic expansion of GIA model i3_8_60 

is truncated to degree 60 and subsequently Gaussian filtered with a 400 km halfwidth. 

This truncation and smoothing results in a change of signal at each of the locations in 

Table 7.1. The relative change can be used to correct the GRACE data by applying the 

inverse change. For example, if the Gaussian filtering leads to a reduction in signal of 

5%, then the GRACE-derived gravity rate for that location is multiplied with 1.05 to get 

the ‘unfiltered’ gravity rate. This correction is rather crude, but sufficient for this 

comparison in which we only want to identify differences much larger than the error bars. 

Uplift rates derived or taken from Lambert et al. (2006) data, Sella et al. (2007) 

and Pagiatakis and Salib (2003) are shown in Table 7.1. Note that the Lambert et al. 

(2006) data agree with the GPS data in Churchill and Flin Flon, which indicates that the 

removal of the interannual signal in the absolute gravity data made the data more 

consistent with GPS measurements. The GRACE-derived uplift rates agree with the uplift 

rates derived from the absolute gravity measurements within the errors bars, with the 

exception of the measurements in Flin Flon. GRACE also has larger uplift rates at 

Pinawa and International Falls. This could again be explained by a larger remaining 
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hydrology signal in GRACE. However, local effects in the terrestrial gravity data 

could also play a role, and violations of the assumption of a constant gravity to height 

ratio. 

 

Table 7.1: Uplift rates from three sources: (i) Absolute gravity rate (Lambert et al., 2006, 

L2006) converted to uplift rate with the gravity to height ratio of Rangelova (2007), p. 

41;  (ii) Gravity rate (Pagiatakis and Salib, 2003) converted to uplift rate with the same 

ratio; (iii) uplift rate from Sella et al. (2007), see Figure 7.3; (iv) uplift rate from GRACE 

(Figure 5.28a), converted with equation (7.1).  

 L2006 PS2003 S2007 GRACE 

Churchill 10.49 +/- 1.48 9.27 10.7 +/- 0.6 9.05 

Flin Flon 2.80 +/- 1.51 5.26 1.7 +/- 0.7 7.43 

Pinawa 2.77 +/- 1.03 -2.13 -0.2 +/- 0.8* 3.85 

International Falls 2.55 +/- 0.79 -2.41 -- 2.79 

Wausau 1.94 +/- 1.38 -- -- 0.27 

Iowa City 0.44 +/- 1.43 -- -- -0.31 

* uplift rate for the nearby site Lac DuBonnet is used. 

 

7.3 Comparison between GRACE and CGSN data 

Pagatakis and Salib (2003) performed a readjustment of the Canadian Gravity 

Standardization Network (CGSN) using as constraints the gravity measurements and their 

rates of change derived from absolute gravity measurements. The dataset spans a period 

of 40 years, longer than the absolute gravity measurements from Lambert et al. (2006) 

and the GPS uplift data.  

The difference between the gravity rates from Pagiatakis and Salib (2003) and 

GRACE data is shown in Figure 7.4. GRACE has smaller uplift rates over the south-west 

portion of Hudson Bay, but more signal west and north-west of the Great Lakes. This is 

the same region where also GPS data show smaller uplifts, compare Figure 7.3. Note that 

in this area also the uplift rate disagrees with the GRACE-derived gravity rates (see 
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Figure 7.3). As is concluded in the discussion of that figure, the disagreement could 

be due to effect of remaining continental water storage changes (which are not described 

by GLDAS) in this area, which is picked up by the GRACE satellites but not by the 

terrestrial measurements because of their longer measurement span or because they are 

corrected for hydrologic effects. 

 

 

 

Figure 7.4: Uplift rate derived from Pagiatakis and Salib (2003) minus uplift rate derived 

from GRACE data, in mm/year.  

 

Summarizing the conclusions from this and the previous sections: GRACE-

derived uplift rates around Hudson Bay are slightly smaller than uplift rates from 

Pagiatakis and Salib (2003) and Sella et al. (2007). On the other hand, more signal is seen 

in GRACE compared to the three terrestrial data in an area west and north-west of the 

Great Lakes region. Remaining hydrology signal contained in the GRACE data could 

account for this mismatch.  

 

7.4 GRACE and ice model: simulations 

Before conclusions are drawn about the past ice distribution it is necessary to see how 

past ice distribution relates to present day gravity rate. Increase in ice thickness is linearly 
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related to an increase in present-day gravity rate because of the linear rheology. A 

small sensitivity study is described in section 7.4.1 which investigates the relation 

between change in ice thickness and change in gravity rate for different viscosities.  

 

7.4.1 Sensitivity of gravity with respect to ice heights 

In the original ICE-4G model, ice thicknesses are specified for blocks with a certain 

length and width. Here, the block which has the largest ice thickness at LGM is used for 

the sensitivity study. Ice heights at this block for all time steps are multiplied by a factor 

of 1.1 to 2.0 in steps of 0.1. Other modifications could be selected, such as changing the 

time of LGM or changing the rate of decay, but that is not pursued here. The viscosity 

profile used is the one that provides best fit to the GRACE data in combination with ICE-

4G (see section 7.6), with upper mantle viscosity of 4 x 1020 Pas and lower mantle 

viscosity of 128 x 1020 Pas. Variations of the upper and lower mantle viscosity with 

respect to this model are also investigated.  

Figure 7.5 and Figure 7.6 show the change in gravity versus the scale factor 

applied to a block that has the highest ice thickness in the original ICE-4G ice model. The 

relation between increase in ice thickness, and the increase in gravity is indeed linear. 

That means that an increase in gravity translates in a local increase in past ice thickness 

independent of the local ice thickness itself. Thus, the differences between the GRACE-

derived gravity rate and the gravity rate from some model can be used to improve the ice 

model, provided the scale factor is known. It becomes clear that a low upper mantle 

viscosity can almost nullify the effect of increased ice thickness. However, such a low 

upper mantle viscosity would probably also lead to uplift and gravity rates that are too 

low. A change in lower mantle viscosity has much less effect on the slope, because of the 

small horizontal size of the blocks. Since the exact viscosity profiles is of course 

unknown, that scale factor can be used that leads to reasonable total melt water 

predictions. However, such improvement of the ice model is left to future work.  
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Figure 7.5: Relation between scale factor for ice thickness and increase in gravity rate, for 

a block at location of maximum ice thickness south-east of Hudson Bay (see Figure 7.9) 

with ∆θ = 1.55º and ∆λ = 1.25º.  
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Figure 7.6: Same as Figure 7.5 for GIA models with varying upper mantle viscosity.  

 

7.4.2 Simulations with known spatial patterns 

Presence of continental water storage changes that are not corrected for can mask the 

influence of the ice loading history. To investigate to what extent this can happen a 

simulation is performed with observations consisting of the sum of a GIA model, the 
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secular trend in a hydrology model and errors. It is assumed that the spatial pattern of 

GIA and the spatial pattern of hydrology are known, but these patterns can be multiplied 

with unknown factors α and β, respectively. This is a strong assumption which is only 

useful to get a first idea of the mixing of the hydrology and GIA signal. The question is, 

in the presence of this unknown factor, do we get the smallest misfit for the GIA model 

that is used in the simulated observations, irrespective of the errors and the hydrology 

pattern?  

We determine the factors α and β by a least-squares procedure in which these 

parameters are to be estimated. The observation equation is 

= +l Ax σ ,                      (7.2) 

where l is a vector that contains the simulated gravity rate observations; x contains the 

scale factors α and β: 
α
β
 

=  
 

x ; A contains the (assumed known) GIA pattern a and 

hydrology pattern b: [ ]=A a b , and σ  is a vector that contains the errors as in section 

4.3.3. The objective is to find the values of α and β that minimize the difference between 

observations and scaled GIA and hydrology models in a least-squares sense. In this way 

it is possible to account for some uncertainty in our knowledge of GIA and hydrology. 

Because of correlation between the GIA pattern and the hydrology pattern, some features 

in the observation can be fitted either by scaling the GIA pattern or by scaling the 

hydrology pattern. 

In this simulation, the observations are formed by a combination of the i3_8-60 

model and any of the hydrology models: GLDAS, WGHM, CPC. The vector a consists 

of a GIA model (i3_8-60 or i5_2-60) divided by its maximum value, and b consists of the 

trend in one of the hydrology models divided by its maximum value. For the errors, trend 

residuals are used, as described in section 4.3.3. The grid for the simulation is formed by 

the 554 pixels of Figure 5.18 and the time period, limited by the availability of hydrology 

models and lake water levels, is August 2002 – November 2007. The Gaussian filter 

halfwidth is 400 km.  

As an example of the minimization procedure, when using model i5_3_20 for a 

and WGHM as b, the maximum gravity rate values are 0.72 and 0.76 respectively. In this 



 

 

159 

 

case, the values of α and β for which the least-squares residuals of equation (7.2) are 

minimized are 1.71 and 0.62 respectively. Thus, the minization procedure leads to  

magnitudes that are quite different than the models from which the patterns a and b are 

derived. In the following, only the fit between the synthetic data and the ‘model’ with the 

optimal parameters α and β are discussed. The values in Figure 7.7 show the minimized 

misfit between the observations and the ‘model’, defined as: 

( )2

1

1 n
i i

i i

l x

n
χ

σ=

−
= ∑

A
 ,         (7.3) 

where n is the number of pixels for the simulated data. With GIA model i3_8-60 and 

hydrology model GLDAS used as observations, the misfits for a and b for different 

hydrology models, are shown in Figure 7.7. Of course, the smallest misfit occurs when 

i3_8-60 and GLDAS are also used as vectors a and b respectively. The good news is that 

for all hydrology models, the smallest misfit is obtained with the correct GIA model. 

However, the misfits for model i5_3_20 with WGHM are almost as small as WGHM 

with i3_8-60.  
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Figure 7.7: Misfit (defined in equation (7.3)) for cases when different GIA models  are 

used for vector a, for different hydrology models. 
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Thus, in the optimistic case that both GIA and hydrology patterns are known, the 

imperfect knowledge of hydrology or the viscosity profile can have as large an effect on 

misfit, as the difference between GIA models with two different ice models. This 

simulation with the optimistic scenario that both GIA and hydrology patterns are known 

should caution that uncertainty in hydrology and viscosity possibly prevents the 

difference in ice models to be resolved through a misfit comparison. 

 

7.4.3 Simulations with known spatial patterns and changing Gaussian filter halfwidth 

The previous section led to the conclusion that uncertainty in hydrology is almost as 

important for misfit, as uncertainty in the ice models. However, the simulation in the 

previous section was done for a constant Gaussian filter halfwidth. Possibly, by adjusting 

the filtering, use can be made of the different spectral signatures of the GIA model and 

the hydrology model (Figure 5.16): GIA degree amplitude peaks at lower wavelengths 

than continental water storage. Therefore, more smoothing can potentially bring out the 

GIA signal relative to the hydrology signal.  
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Figure 7.8: Misfit for the simulation described in the text, for varying Gaussian filter 

halfwidths.  
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This is investigated in Figure 7.8 for the same simulations as the previous section. As 

is expected, for large halfwidths the curves for the same GIA models converge so that the 

GIA models determine the difference in misfit. However, the difference in misfit value is 

small; it is unlikely that such a small difference can be discerned in practice.  

 

7.5 GRACE and ice model: results 

The simulations from the previous section show that misfit can not be expected to clearly 

discriminate between GIA models in the presence of uncertainty in the hydrology model. 

However, the real GRACE data should be investigated to see if very different ice models 

can explain the GRACE data as the simulations suggest. Here, the first subsection 

investigates the variation of the location of the maximum gravity rate, since the location 

is less sensitive to smoothing than the magnitude of the maximum gravity rate. In the 

second and third section, misfit is computed between models and the GRACE and GPS 

data, respectively. 

 

7.5.1 Location of maximum with no scaling in hydrology model 

It is shown in section (5.4.1.1) that the magnitude of the maximum in the gravity rate 

estimated from GRACE data varies with the length of the GRACE time series. Here, the 

location of the peak magnitude as a function of the time series will be investigated as 

follows. The GRACE data are synthesized on a 1 x 1 degree grid. The pixel in this grid 

which has the largest gravity rate is plotted in Figure 7.9a and Figure 7.9b for gravity rate 

trends estimated from 4 and 5 years of GRACE data, respectively (April and May of 

2002 are not used). Different hydrology models are removed, of which GLDAS and CPC 

include water level variations in large lakes (see section 5.1.3). The location of the 

maximum ice thickness and the second maximum in ice thickness as determined by 

visual inspection of the maps of Dyke and Prest (1987) and the locations of the two 

maxima in ice thickness for the ICE-3G, ICE-4G and ICE-5G models are also indicated.  

The scatter of the location for different four year time periods is small, indicating 

that the location of the maximum is fairly robust with respect to different 4 or 5-year time 

series being used. Moreover, it can be seen that removing GLDAS or WGHM leads to 
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the location of the maximum that agrees with a maximum ice thickness at the 

Labrador ice dome (except one four year period for WGHM). Only removing the CPC 

model leads to a maximum gravity rate coinciding with the Keewatin ice dome. The same 

observations can be made for the 5-year trend in Figure 7.9b. Since GLDAS and WGHM 

seem to be the more advanced models (although LaD does perform better than WGHM 

over the Nelson River basin, see Table 5.2), the location of the largest ice thickness 

coinciding with the Labrador ice dome is more likely based on GRACE data. This also 

agrees with the findings of Dyke and Prest (1987). Note also that the location of the 

maximum derived from GRACE agrees better with the location found in the ICE-4G 

model and the ICE-3G model which in turn agree better than the ICE-5G model. The 

location of the secondary dome in GRACE agrees better with ICE-5G (not shown here) 

as ICE-3G and ICE-4G predict a weak secondary dome in the center of Hudson Bay.  

 

 

−110 −100 −90 −80 −70

50

55

60

65

longitude [deg]

la
tit

ud
e 

[d
eg

]

b) 5−year trend

 

 

GLDAS
WGHM
CPC
ICE−3G
ICE−4G
ICE−5G
DP87

 

Figure 7.9: Location of the maximum estimated after removing different hydrology 

models. (a) trend estimated for a 4-year window (b) trend estimated for a 5-year window. 

The location of maximum ice thicknesses at LGM in the ICE-3G, ICE-4G and ICE-5G 

models and the location of the domes in Dyke and Prest (1987) (determined by visual 

inspection) are also indicated.  
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7.5.2 Model misfit with respect to GRACE data  

The simulations in sections 7.4.2 and 7.4.3 showed that it is unlikely that misfit from 

GRACE data can distinguish between different ice models in the GIA modeling, in the 

presence of uncertainty in continental water storage, and if uncertainty in the GIA model 

and hydrology models is accounted for by scaling. However, based on the excellent 

agreement between GRACE and the study of Dyke and Prest (1987) in the previous 

section, it can be concluded that the uncertainty in hydrology models is not as large as 

assumed in the simulations of section 7.4. Therefore, we proceed now by assuming that 

the influence of hydrology can be reasonably well described by one of the global models 

used in this thesis and we compute misfit between GRACE data and GIA models with the 

different global ice histories used in this thesis: ICE-3G, ICE-4G and ICE-5G. 

Uncertainty in GIA models is now introduced by varying the mantle viscosity. The 

amount of smoothing is varied by changing the Gaussian filter halfwidth, following the 

results in section 7.4.3 which show that for increased halfwidth, the effect of the 

hydrology model on misfit decreases with respect to that of the GIA model.  

Since GIA data can likely only constrain two layers in a global GIA model 

(Paulson et al. 2007a), only the viscosities of the upper and lower mantle are varied. 

Furthermore, the relaxation is sensitive to the logarithm of the viscosity (e.g. Paulson at 

al. 2007a), so the viscosity is incremented by a factor of two, starting at a value of 1 x 

1020 Pas up to 256 x 1020 Pas. The influence of lateral variations or non-linear rheology is 

not investigated here, but deserves attention in future work on this topic. 

To study whether the misfit numbers are the result of the particular spatial 

patterns in the hydrology models, the minimum misfit (i.e. the lowest misfit value among 

all the models with upper and lower mantle viscosity in the range mentioned in the 

previous paragraph) is plotted for different Gaussian filter halfwidths in Figure 7.10. The 

minimum misfit is not always found for the same viscosity profile, but the focus is on the 

ice loading history. The monotonic decrease of section (5.3.1) does not appear in this 

figure, which could indicate that there is considerable signal in the GRACE data which is 

not included in the simulations of section 7.4.3. As in section (5.3.1), the misfit decreases 

when the Gaussian filter halfwidth is increased from 500 km to 1000 km. Clearly, the 
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ICE-3G and ICE-4G loading history have the lowest misfit for all halfwidths. 

Especially the larger misfit of ICE-5G for large halfwidths (>700 km) suggests that the 

basic shape of ICE-5G (with maximum ice thickness west of Hudson Bay) does not 

match the GRACE-derived pattern. Using GFZ instead of CSR data (not shown) gives 

similar results, but for CPC removed (Figure 7.10b) there is a sharp increase in misfit, the 

reason for which might be related to the deficiencies of the CPC model. 
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Figure 7.10: Minimum misfit out of the range of models with upper and lower mantle 

viscosity varied in the range of 1-256 x 1020 Pas for varying Gaussian filter halfwidths, 

for GIA models with three different ice loading histories. (a) GLDAS is removed; (b) 

CPC is removed. 

 

7.5.3 Model misfit with respect to GPS uplift rate data  

Compared to GRACE data, GPS uplift rate data have the advantage of being less 

sensitive to large scale continental water storage changes and having longer time series. 

Misfit between GIA models and uplift rate data from Sella et al. (2007) is shown in 

Figure 7.11 and Figure 7.12 for ice models ICE-3G, ICE-4G and ICE-5G. The best fitting 

viscosities are the same for ICE-3G and ICE-4G: upper mantle viscosity of 8 x 1020 Pas, 

and lower mantle viscosity of 32 x 1020 Pas, while for ICE-5G the upper mantle viscosity 

is a factor of two lower. The best fitting viscosity values obtained with ICE-5G are 
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reasonably close to a two-layer approximation of VM2 model of Peltier (2004), with 

upper mantle viscosity of 9 x 1020 Pas, and lower mantle viscosity of 32 x 1020 Pas (see 

Paulson et al. 2007b) but note that the GPS data of Sella et al. (2007) are not used for 

constraining ICE-5G. Table 7.2 shows the misfit values for the best fitting models. 

Similarly to what was found for the GRACE misfits, misfit values for ICE-3G and ICE-

4G are considerably lower than for the best-fitting model of ICE-5G.  
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Figure 7.11: Minimum misfit with respect to uplift rate data of Sella et al. (2007) out of 

the range of models with upper and lower mantle viscosity between 1-256 x 1020, for GIA 

models with (a) the ICE-3G model (b) the ICE-4G model. The minimum misfit is 

denoted with a circle. 

What about the terrestrial gravity data sets? Terrestrial gravity from the CGSN 

and uplift rates from the CBN compare well with the ICE-3G model (Pagiatakis and 

Salib, 2003, Henton et al., 2006,). The uplift rates resulting from the combination of these 

datasets in Rangelova (2007), fig. 4.16, gives a pattern that resembles more the ICE-

3G/ICE-4G history than the ICE-5G loading history. In Rangelova (2007) Figure 5.16, 

there is still a reasonable match between GRACE-derived gravity rate (from a shorter 

GRACE time period than used here) and ICE5G-VM2. However, the solution which 

combines GRACE data with terrestrial data does not show the large signal west of 
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Hudson Bay that is present in the ICE-5G/VM2 model, and shorter time series of 

GRACE data are used there.  
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Figure 7.12: Same as Figure 7.11 but for the ICE-5G model.  

 

Table 7.2: Viscosities and misfit of best fitting models for the three global ice loading 

histories. 

 ICE-3G ICE-4G ICE-5G 

ηUM [x 1020 Pas] 8 8 4 

η LM [x 1020 Pas] 32 32 32 

χ
2 1.86 1.98 2.83 

 

 

7.6 Best fitting viscosity 

A robust viscosity profile can not be inferred from present-day uplift or gravity rate data 

alone; RSL data are a necessary data set because they extend in time. However, it is 

interesting to compare the viscosity profile that best fits GRACE data with other 
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estimates in the literature. If agreement exists, that would strengthen the conclusions 

about the fit of different ice histories shown the previous section.  

The minimum misfit for ICE-4G with smoothing varied from 200 to 500 km 

Gaussian filter is found for upper mantle viscosity of 4 x 1020 Pas and lower mantle 

viscosity of 1.28 x 1022 Pas. The same model provides a best fit when the ICE-3G model 

is used, for a range of halfwidths from 200 to 600 km. This is close to the values found 

with ice models ICE-1, ICE-3G and ICE-4G in other studies, see the overview in Table 

7.3. An exception is the VM1 model of Tushingham and Peltier (1991) which has a much 

smaller viscosity contrast. Results are also somewhat different from Paulson et al. 

(2007b) where ICE-5G is used, but it is noted there that a more ductile upper mantle and 

stronger lower mantle also has a small misfit with respect to the data sets employed in 

that paper. More reasons for the discrepancy are the use of ice models that are biased by 

the viscosity profile used in the inversion of RSL data (Kaufmann and Lambeck, 2002) 

and possible trade-off effects between different layers (Paulson et al., 2007a).  

As noted before, the best fitting model is not well constrained by uplift rate alone. 

However, such a model can be useful as interpolator surface of the uplift rates. Such an 

interpolation offers advantages compared to straight forward interpolation of the uplift 

rates: (i) it is less sensitive to local effects; (ii) it introduces extra information (ice loading 

history, elastic behaviour of the Earth, relaxation of the Earth) which can help to 

interpolate uplift rate across regions that are not well sampled by GPS observations. 

Thus, the uplift rate from a GIA model which best fits GPS data can be interpolated at 

desired locations in the GIA area, so that estimates for glacial isostatic uplift rates can be 

included in geomorphological models or local studies (Van der Wal et al., submitted). 
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Table 7.3: Best fitting viscosity profiles from selected studies on GIA in North 

America: P2007 = Paulson et al. (2007b), W2006 = Wolf et al. (2006). KL2002 = 

Kaufmann and Lambeck (2002). MF2002 = Mitrovica and Forte (2002).  

 ηUM [1020 Pas] ηLM  [1021 Pas] ice model data used 

P2007 5.3  23 ICE-5G selected RSL, 
GRACE 

W2006 3.2 160 ICE-3G RSL, uplift, 
gravity and tide 
gauges rates at 
Churchill 

KL2002 7 200 ICE-12) RSL, True Polar 
Wander, 20Cɺ , 

gravity and uplift 
rates in 
Fennoscandia 

MF20021) 3.9-0.43 65-110 ICE-3G RSL, mantle 
convection 

TP1991 10 20 ICE-3G RSL 

GRACE 

this thesis  

4 64 ICE-3G gravity rates 
(GRACE) 

GRACE 

this thesis 

4 128 ICE-4G gravity rates 
(GRACE) 

GPS 

this thesis 

8 32 ICE-3G/ICE-4G uplift rates 

1) as cited in Wolf et al. (2006). 

2) for ice sheets other than the Laurentide ice sheet other ice models are used. 

 

 

7.7 Discussion on the Laurentide ice history 

The newer ICE-5G ice loading history represents an improvement compared to the older 

ICE-4G and ICE-3G model in many ways (Peltier, 2004). For example, while ICE-4G ice 

thicknesses in the interior of North America were constrained solely by relative sea level 

histories and the ice margin chronology of Dyke and Prest (1987), ICE-5G includes 

newer ice margin chronologies and a 3D thermo-mechanical ice sheet model of Tarasov 
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and Peltier (2003). Furthermore, ICE-5G contains improvements to other ice sheets 

which are not discussed here, because the focus here is on North America. 

Based on newer RSL observations at Sunda Shelf and J. Bonaparte Gulf, it was 

found that ICE-4G contains too little ice. The missing ice was placed on the Keewatin ice 

dome in North America based on two geodetic data types are invoked by Peltier (2004): 

Very Long Baseline Interferometry (VLBI) data from Argus et al. (1999), and absolute 

gravity data from Lambert et al. (2001). Uplift and gravity rates presented in those papers 

were underpredicted by the ICE-4G model. Using multiple runs of the Tarasov and 

Peltier (2003) thermomechanical ice sheet model, ice thicknesses were fitted to the new 

ice margin chronology and the gravity rate and VLBI data, which presumably resulted in 

the ice thicknesses shown in Figure 7.13.  

A critical look at the VLBI and gravity data sets is warranted. VLBI data at 

Yellowknife, is 8 mm/year +/- 5.5 mm/year (of Argus et al., 1999, p. 29,086). An 

estimate with such large errors bar can be matched with GIA models with a great variety 

in ice thickness. Tarasov and Peltier (2004) cite the VLBI estimate as 8 mm/year +/- 1.5 

mm/year, possibly as a result of an extension of the VLBI time series that was not 

published elsewhere.  As mentioned before, the secular gravity rates of Lambert et al. 

(2001) were corrected for an interannual signal in Lambert et al. (2006) such that the 

ICE-5G/VM2 model overpredicts the gravity rates in Figure 9 of Lambert et al. (2006). A 

better fit with the gravity rates is obtained by an adjusted version of the ICE-3G model.  

One of the results of the inclusion of the ice dynamical model is the occurrence of 

fast ice flow in Hudson Bay, which results in a region of local minimum ice thicknesses 

over Hudson Bay. ICE-3G and ICE-4G have a local maximum right in the center of 

Hudson Bay (see Figure 7.9). GRACE seems to confirm the local minimum, because the 

maximum gravity rates are located on the Labrador and Keewatin ice dome. GRACE data 

in fact confirms the multi-domal nature of ICE-5G with a Keewatin and Labrador ice 

dome, as already concluded by Tamisiea et al. (2007). However, ICE-5G contains such 

thick ice extending from the Keewatin ice dome southeast-ward, see Figure 7.13a, that 

for any viscosity profile the maximum uplift and gravity rate will be located west of 

Hudson Bay; see Figure 7.13b. Such a maximum is not seen in the GRACE data (Figure 
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5.28). The bulge extending over Lake Winnipeg can not be seen in the GRACE-

derived gravity rate when gravity rate from any of the hydrology models is subtracted. 

This difference in patterns manifests in the higher misfits for ICE-5G as in Figure 7.11. 

Note that Figure 21 in Peltier (2004) shows maximum uplift rate below 14 

mm/year for ICE-5G/VM2 (which is likely ICE-5G version 1). The same plot is shown in 

Tarasov and Peltier (2004) for one of their best fitting models. However, the ICE-

5Gv1.2/VM2 results published on the Special Bureau for Loading website which are used 

throughout this thesis have a much larger maximum uplift rate of 17.4 mm/year, see 

Figure 7.13b.  

 

 

Figure 7.13 (a): Ice height prescribed by the ICE-5Gv1.2 model at LGM, 26 ka BP, (b): 

uplift rates of the ICE-5Gv1.2/VM2 model. 

 

Is there evidence in the literature for or against the large ice thicknesses at the 

Keewatin dome as specified in ICE-5G? Firstly, Dyke and Prest (1987) state on page 

255: “Crustal depression remained much larger adjacent to western Labrador Ice than 

adjacent to Keewatin Ice at 8 ka because much of the recovery from the Keewatin load 

had been achieved before 8 ka. Recovery from the Labrador load was comparatively 

delayed.” The fact recovery from the Labrador ice load was delayed does not support the 

larger ice thicknesses in Figure 7.13a.  

A comparison of two thermomechanical models with a flow law that fits the 

observations in Greenland and Antarctica resulted in a maximum ice sheet thickness of 
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3805 for a model by Tarasov and Peltier and 4221 m for a model by Marshall and 

Clarke, (Marshall et al., 2000). In the Marshall and Clarke model a single dome is 

centered on the south of Hudson Bay. Thick ice (4239 m) is found also by Tarasov and 

Peltier (1999) if they tune their model to fit Greenland ice. However, in that case, 

complete deglaciation is not achieved in the simulation and the margin of the ice does not 

extend far enough south.  

Tarasov and Peltier (2004) impose the gravity rate of Lambert (2001) as 

constraint, but are not able to achieve a perfect match, because that would require higher 

ice thickness. That is not likely, as the authors state, given the tendency for fast ice flow 

and the requirement of thin ice on Hudson Bay to satisfy sea level requirements. They 

state that the VLBI observation in Yellowknife requires ice to have been between 3.3 and 

4.3 km thick. Interestingly, one of the best fitting models of Tarasov and Peltier (2004) 

(nn2059) was incorporated in the ICE-5G model of Peltier (2004), but ice thicknesses in 

the ICE-5Gv1.2 model are markedly increased to over 5500 m.  

From this short review it can not be concluded that the thick ice (>5500 m) in 

ICE-5G is not supported by studies discussed here which focus explicitly on the ice 

history in North America. Also, thick ice is apparently not a ‘natural’ feature in thermo-

mechanical ice models. Thus, the too large ice thicknesses in ICE-5Gv1.2 which cause a 

worse fit with GRACE data do not appear necessary. Then in future work on improving 

ice models, it seems sensible to decrease ice thicknesses in the ICE-5G model. GRACE 

data can help in constraining the ice heights.  

 

7.8 Summary 

In this chapter, a simulation was performed to see whether GRACE data can discern 

between difference ice models in GIA modeling based on misfit. It was shown that, when 

scaling is allowed for the GIA model and the hydrology models, the uncertainty in 

hydrology models (represented by the difference between different hydrology models) 

has as large an effect on gravity rate misfit values as do different ice histories. Therefore, 

insofar as the simulation is realistic, it is likely that differences in ice models can not be 

discerned in the GRACE data based on misfit.  
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However, the location of the two maxima in the spatial pattern of the 

GRACE-derived gravity rate lie closely to the centres of the ice domes at LGM in maps 

constructed based on geomorphological data by Dyke and Prest (1987). This is the case 

for different hydrological corrections and for different time periods of the GRACE data. 

The agreement between GRACE data and a geomorphological study confirms that 

GRACE data can provide meaningful constraints on the past ice distribution. 

ICE-3G and ICE-4G model gives smaller misfits to the GRACE data than the 

ICE-5G model, for all Gaussian filter halfwidths and for a wide range of upper and lower 

mantle viscosities. The same is found when models are compared with GPS uplift rate 

data. This is due to the large ice thickness (> 5 km) west and south-west of Hudson Bay 

in the ICE-5G model. Such large ice thicknesses are also not supported by studies that 

consider ice dynamics. 

Thus, an improved ice loading history should have a smaller ice thickness at the 

Keewatin dome than the ICE-5G model. Since GRACE data are shown to contain 

valuable information about the past ice sheet distribution, it seems sensible to use 

GRACE data to test or constrain future versions of Pleistocene ice models in North-

America.  
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Chapter Eight: Concluding Remarks 

This chapter summarizes the conclusions relating to the research questions posed in 

section 1.2 and gives recommendations for future research directions. The main findings 

of this thesis are the following: 

i) The uncertainty in GRACE data when it is used for GIA studies is larger than 

previously thought; 

ii)  GRACE data shows two peaks in the spatial pattern of the gravity rate, with the 

largest peak corresponding to the maximum ice height in the Quebec-Labrador 

region; 

iii)  Composite rheology, while providing a fit to relative sea-level data almost as 

good as non-linear rheology, can increase uplift rate compared to non-linear 

rheology. 

More detailed conclusions are presented in section 8.1, and recommendations for future 

research are given in section 8.2. 

 

8.1 Conclusions 

GRACE data exhibits significant north-south oriented errors, which can be removed by 

post-processing the data. The question is how much post-processing should be applied to 

extract the GIA signal from the GRACE monthly gravity fields. Even though visual 

improvement in the secular gravity rate pattern derived from GRACE is achieved by 

filtering, GIA has power at long wavelengths that should not be removed by a filter. In 

this thesis it is shown that, by varying the spherical harmonics coefficients that are 

filtered by the Swenson and Wahr (2006) filter, a trade-off is achieved between removal 

of GIA signal and removal of errors. Other filters used in this thesis are shown to smooth 

or remove signal which reduces the sensitivity of the data with respect to upper mantle 

viscosity. If one wishes to use more recently developed filters which are not used in this 

thesis, these filters should be applied on simulated data first to assess how much signal is 

removed by their application. 

A map of the gravity rate pattern derived from GRACE appears to reflect the 

location of past ice masses. However, it has been shown in this thesis that the uncertainty 
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in GRACE data, when used for study of GIA, is larger than previously thought. For 

example, hydrology appears as inter-annual signal in principal component analysis and 

likely causes differences between the GRACE-derived uplift rate and the uplift rate 

derived from terrestrial data.  

Measurement errors in the secular gravity rate derived from GRACE can equally 

well be described by propagated calibrated standard deviations or point variances 

constructed from the propagated full variance-covariance matrix, or by the residuals after 

estimation of a trend, annual and semi-annual period in the time series of spherical 

harmonic coefficients of the monthly gravity fields from GRACE. All of these methods 

results in a small remaining error of.0.05 µGal/year after applying the tuned filter.  

Using simulated GRACE data it is shown that, in the presence of uncertainty in 

hydrology, ICE-5Gv1.2 is able to fit the simulated data that is constructed using ICE-3G 

almost as well as ICE-3G models. Therefore, if uncertainty in hydrology models is 

represented by the differences between models, and if scaling of the hydrology models 

and GIA models is allowed, it can not be expected that misfit to GRACE data can discern 

difference between GIA models with different ice models.  

Despite the conservative results from simulations, it has been observed previously 

that the GRACE-derived gravity rate pattern contains two domes in North America, in 

agreement with earlier geomorphological studies. However, results in this thesis show 

how earlier estimates of the gravity rate from GRACE were sensitive to the short (<5 

years) time span and the inclusion of lesser quality data in 2002. Still, the two peaks 

appear to be a robust feature. It is shown in this thesis that the location of the maximum 

gravity rate is close to the center of Keewatin and Labrador ice domes inferred in Dyke 

and Prest (1987) from clues in the North American landscape. The existing ice models 

ICE-3G/ICE-4G/ICE-5Gv1.2 did not match the geomorphological data of Dyke and Prest 

(1987) as well. This clearly shows the potential of GRACE for improving ice models.  

The observation that the GRACE-derived gravity rate has two domes should lead 

to a better fit with the multi-domal ICE-5Gv1.2 ice model than with the more mono-

domal ICE-3G and ICE-4G. Also the location of maximum gravity rates better matches 

the location of maximum ice thicknesses in ICE-5Gv1.2 than the other models. However, 
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it is observed that ICE-3G and ICE-4G have smaller misfit values for all realistic 

values of Gaussian smoothing. This indicates that ice thicknesses in ICE-5Gv1.2 west of 

Hudson Bay (Keewatin ice dome) and southwards from there, are too large. A literature 

search found that published ice dynamic models also do not require such large ice 

heights.  

A completely new ice model based on non-linear rheology is going to be a multi-

disciplinary effort. Some steps towards such a model are made in this thesis. First, it is 

necessary to get a handle on the non-linear rheology parameters that fit well available 

GIA data. It was selected to use composite rheology, which adds the creep rate from 

linear rheology and non-linear flow laws. Such a rheology is a more realistic description 

of laboratory experiments which show both diffusion and dislocation creep operating at 

mantle conditions. Since the gravity rate spatial pattern is mostly determined by the ice 

heights, it is sufficient to use the maximum gravity rate (or geoid rate as is done in this 

thesis) to provide constraints on composite rheology in addition to RSL data.  

With respect to a selection of 30 RSL sites, composite rheology provides a 

slightly worse misfit than non-linear rheology, and a much better fit than linear rheology. 

However, it is shown that the fit is sensitive to single stations with large misfit values. A 

slightly better fit for composite rheology can also be obtained if some stations are left out, 

which is a reason to not focus exclusively on misfit in comparisons with RSL data.  

It is found that individual RSL curves can sometimes be close to purely non-linear 

rheology for larger values of the pre-stress exponent A, for large values of the Newtonian 

viscosity, or both. The question is whether deviatoric stress is large enough to excite a 

strong non-linear component in the deformation. Large deviatoric stresses are found 

around the end of melting, and for some sites. This is a second reason to look at 

individual RSL curves when comparing the performance of linear, non-linear and 

composite rheology, in addition to global misfit. 

The model that best fits RSL data in combination with ICE-5G has A = 3.3 x 10-35 

Pa-3s-1 and η = 9 x 1021 Pas, but it is possible that better fit can be obtained with a higher 

Newtonian viscosity, or with a viscosity between 3 x 1021 Pas and 9 x 1021 Pas, which  is 

not investigated here. RSL curves for the best fitting model are close to those of purely 
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non-linear rheology. A contribution of linear rheology in sea level curves for this 

model is found at the beginning of deglaciation, for sites at the margin of the Laurentide 

ice history and at the center and margin of the Fennoscandian ice sheet. Surprisingly, for 

this model, uplift and geoid rate are closer to values observed by GPS and GRACE, 

respectively, than those predicted by a model with purely non-linear rheology. This 

represents an important argument in support of composite rheology, as GIA models with 

a non-linear rheology always suffered from very low present-day uplift rates. This has 

implications for future improvements in ice loading history, as it means that less dramatic 

changes to the ice loading history are required to be able to fit GIA observations with a 

composite rheology compared to a purely non-linear rheology. 

To see if fit with RSL data and geoid rate can be improved, two simple 

modifications of the ICE-4G ice loading history were made: increasing ice thickness and 

delaying the entire glaciation. Increasing thickness of the Laurentide ice sheet for the 

model that best fits RSL data hardly increases uplift rate, and worsens the RSL fit. A 1 ka 

delay in glaciation improves both RSL fit and the visual match with observations for RSL 

curves at some stations, and increases uplift rate. Therefore, future ice models based on 

composite rheology should start by melting more ice later in time, within limits allowed 

by other constraints on the past ice sheets.  

 

8.2 Outlook 

Since the gravity rate estimated from GRACE monthly gravity fields has been shown to 

provide constraints on the ice model, it is recommended that GRACE data is used to 

improve or at least test a future ice model in North America. However, improvements are 

needed in our knowledge of continental water storage changes and inter-annual signals 

that appear in GRACE data over North America.  

Current global hydrology models do not perform well in areas of permanent 

snow, thus improvements can come from using datasets to describe snow and ice cover 

changes. Also, extreme events such as droughts or snow storms will be less significant in 

the GRACE-derived gravity rate estimated from longer time spans.  
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The interannual variations in the spatial pattern and magnitude of the gravity 

rate derived from GRACE time series with different lengths need to be understood. Also 

here, increased length of GRACE data span can help to separate signals and to resolve 

some ocean tidal components with long aliasing periods. A technique such as principal 

component analysis or its extensions might be better able to separate the different signals 

in GRACE data and in that way remove inter-annual non-GIA signals, if the time series 

are longer. 

For development of an ice model with non-linear rheology, it is important to focus 

on specific areas with good quality GIA data and seismic and field data. Sensitivity 

studies should be done to show if rheological parameters can be extracted from GIA 

studies in the presence of uncertainty in other parameters. Furthermore, the finite element 

model used here should be improved by adding realistic background stress arising from 

plate motion and mantle convection. Stress concentration occurs close to the edge of the 

ice sheet. Therefore, it should also be checked whether the finite element mesh is fine 

enough at such locations. 
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APPENDIX A:  TIME FOMAIN SOLUTION FOR FREE-AIR GRAVITY, 

GEOID AND SEA LEVEL 

The first section of this appendix derives the solution for free-air gravity or sea level as a 

function of an impulse surface load. In the second section the expressions are given for a 

load consisting of  Heaviside increments.  

 

A.1. Time-domain expressions 

For a general surface load ( ), ,L tθ λ with units of mass per area, the response RE is a 

convolution of the load with the Greens function GF that is valid for that particular 

response: 

( ) ( ) ( )2, , ', ', '  , ' ' '
t

eRE t a L t GF t t d dtθ λ θ λ ψ
−∞ Ω

= − Ω∫ ∫∫ ,    (A.1) 

where θ is colatitude; λ is longitude; Ω is the volume of the spherical Earth and ψ is the 

spherical angle from the load to the point where the response is to be computed. 

Expanding the load in spherical harmonics: 

( ) ( ) ( )
0 0

, , ,
l

lm lm
l m

L t L t Yθ λ θ λ
∞

= =
=∑∑ ,       (A.2) 

and expanding the Greens function in Legendre polynomials: 

( ) ( ) ( )
0

, ' ' cosl l
l

GF t t GF t t Pψ ψ
∞

=
− = −∑ , 

where Pl is the Legendre polynomial of harmonic degree l, and using the orthogonality 

property: 

*
' ' ' '4l m lm ll mmY Y d πδ δ

Ω

Ω =∫∫ , 

equation (A.1) becomes (Mitrovica et al., 1994, equation 33) 

( ) ( ) ( )
0

4
, , ' ' '

2 1

tl

l lm lm
l m l

RE t GF t t L t dt Y
l

πθ λ
∞

= =− −∞

 
= − × + 
∑∑ ∫ .    (A.3) 

Since we want to compute the gravity rates, we need to find the Legendre coefficient of 

the Greens function for the free-air gravity anomaly. The Legendre coefficient of the 
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Laplace transformed free-air gravity anomaly is given by (Mitrovica and Peltier, 

1989, equation 5) 

( ) ( ) ( )( )2 1l l
e

g
g s l l k s

M
∆ = + − − .       (A.4) 

To check the units, note that the k-Love number needs to be multiplied with 0 /e ea g M to 

give it the dimension of potential. To go from potential to gravity multiply with 1/ ea . 

Then the left hand side has the units of gravitational acceleration for a unit load of 1 kg. 

Note that in the derivation of this equation in Mitrovica and Peltier (1989), a free-air 

correction is applied to the distance from the perturbed surface to the geoid (which is a 

reference sphere in the simulations). When gravity anomaly is computed from 

observations, the observations are downward continued to the ‘real’ geoid, as opposed to 

the ‘simulated’ geoid which is a sphere in a GIA model. However, it does not matter for 

the gravity rates or uplift rates whether the geoid is a spherical reference surface as for 

geophysical simulations, or the real geoid, which is a more complex surface.  

Transform equation (A.4) to the time domain: 

( ) ( ) ( ) ( ) ( )2 1l l
E E

g g
g t l t l k t

M M
δ∆ = + − − ,      (A.5) 

with the time-domain form of the k-Love number given by 

( ) ( )'
, , ,

1

exp
M

l l e l p l p
p

k t k r s t
=

= +∑ ,        (A.6) 

where ,l ek is the third component of ( )e
l eaK from equation (2.7) made dimensionless, and 

'
,l pr is the third component of ( ),l p eaK  from equation (2.7) made dimensionless.  Both 

are output from the computer codes. Substituting in equation (A.5) yields: 

( ) ( )( ) ( ) ( ) ( )'
, ,

1

2 1 1 exp
M

e
l l l p l p

pE E

g g
g t l k l t l r s t

M M
δ

=

∆ = + − − − − ∑ .   (A.7) 

Replacing ( )'lGF t t− with the coefficients for the gravity anomaly, equation (A.1) yields: 
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( ) ( ) ( ){
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1
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, , 2 1
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l
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.   

 (A.8) 

A similar expression as equation (A.7) for the geoid height change is: 

( ) ( )( ) ( ) ( )'
, ,

1

1 1 exp
M

ee e
l l l p l p

pE E

a a
N t k l t r s t

M M
δ

=

∆ = + − + ∑ .    (A.9) 

 

A.2. Heaviside loading  

Because the ice load on the Earth’s surface increases or decreases only slowly in time, 

modeling the load as a series of Heaviside increments is appropriate. Assuming that the 

surface load is a series of Heaviside increments is equivalent to taking the spherical 

harmonic coefficients of the load to be Heaviside increments: 

( ) ( )
1

N
j

lm lm j
j

L t L H t tδ
=

= −∑ ,        (A.10) 

where j denotes the time steps from 0 (start of loading) to N, and the Heaviside function 

is defined as 

( ) 1   if 

0   if 
n

n
n

t t
H t t

t t

>
− =  <

.        (A.11) 

Substituting (A.10) into the time integral from equation (A.8) yields 

( ) ( ) ( )( ), ,
1 , ,

1 1
' exp ' ' exp

t N
j

l p lm l p n
j l p l p

t s t t dt L s t t
s s

δ
=−∞

 
 − = − + −  

  
∑∫ ,   (A.12) 

Thus, the spherical harmonic coefficients of the gravity anomaly in equation (A.8) 

become 

( ) ( ) ( )
2 1

1

4

2 1

N
g j ge

lm lm l lm l
je

a g
g t L t E L t

l M

π δ β
−

∆ ∆

=

 
∆ = − ∆ +  

∑ ,     (A.13) 

where 

( )2 1g e
l lE l k l∆  = + − −  ;        (A.14) 
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( ) ( ) ( )
'
,

,
1 ,

1 1 exp
M

l pg
l l p

p l p

r
t l s t

s
β ∆

=

 ∆ = − − + ∆ ∑ ,     

 (A.15) 

and n jt t t∆ = − .The Earth model parameters enter the equation solely through the 

parameters g
lE∆ and ( )g

l tβ ∆ ∆  which contain the elastic and viscous Love numbers that 

are outputted from the normal mode code.  

The relative sea level change (spatially varying part) is defined as 

( ) ( ) ( ), , , , , ,lm lmt t R tθ λ θ λ θ λ∆ = ∆ − ∆SL G ,       (A.16) 

where lm∆G  is the spatially varying part of the geoid change, and R∆ is the change in 

solid earth displacement. Similar to equation (A.13) it can be derived that: 

( ) ( ) ( )
2 1
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2 1
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je e

lm lm l lm l
je
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πθ λ δ β
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 
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∑SL SL
SL ,   (A.17) 

where 1 e e
l l lE k h∆  = + − 
SL , and ( ) ( )

'
, ,

,
1 ,

1 exp
P

l p l p
l l p

p l p

r r
t s t

s
β ∆

=

−
 ∆ = − + ∆ ∑SL ; ,l pr is the h-

Love number residue (first element of ( ),l p eaK  from equation (2.7)) and ,l eh is the elastic 

h-Love number (first element of ( )e
l eaK  from equation (2.7).  
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APPENDIX B:  COMPARISON OF SEA LEVEL CODE PREDICTIONS 

A comparison of predicted uplift rates is undertaken with results of Dr. Giorgio Spada 

and Dr. Paolo Stocchi (Spada and Stocchi, 2005), published at the website of the Special 

Bureau for Loading (http://www.sbl.statkart.no/projects/pgs/authors/spada_stocchi/). 

Factors that are treated differently in the implementation of Spada and Stocchi (2005) 

compared to the implementation discussed in this chapter are the following: 

- The sea level equation is solved using a finite-element scheme, which requires the 

ice loads to be discretized accordingly. 

- The sea level equation is self-consistent but does not include time-dependent 

ocean margins. 

The uplift rate is plotted in Figure B.1, along with the uplift rate computed with 

the model described in Chapter 2, for the same elastic and viscous Earth model 

parameters. It can be seen that the uplift rate pattern is similar in both plots. However, the 

magnitude of the uplift rate is higher for the Spada and Stocchi model. Note that a local 

maximum over Hudson Bay in Figure B.1a is not what is expected in an uplift rate 

pattern with ICE-3G. 

 

 

Figure B.1: (a) Uplift rate from Spada and Stocchi (2005) and (b) uplift rate reproduced 

with the spectral model of Chapter Two:. 
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A comparison with Figure 3 of Paulson et al. (2007b) in terms of gravity 

disturbance rate is shown in Figure B.2, after applying Gaussian filtering with a 400 km 

halfwidth. The magnitude of Paulson et al. (2007b) is larger, which can be caused by the 

inclusion of rotational feedback, differences in layer depths and elastic constants, and 

implementation of the ice growth phase.  

The comparisons in this appendix show that the GIA model in this chapter gives 

results in terms of rate of change which are both higher and lower than other models used 

in the literature. It is possible that the spread in results comes from different modeling 

and implementation.    

 

 

Figure B.2: (a) Gravity disturbance rate copied from Figure 3 of Paulson et al. (2007b). 

(b) Gravity disturbance rate computed with ICE-3G, upper mantle viscosity of 1 x 1021 

Pas and lower mantle viscosity of 2 x 1021 Pas (the VM1 model; see Peltier, 2004), after 

400 km filtering.  
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APPENDIX C:  TENSOR FORM OF THE STRESS-STRAIN RELATION 

In this appendix a tensor form of the stress-strain rate relationship is derived starting at 

the experimental results, equation (3.20). The second stress invariant 2I and the second 

strain rate invariant 2Eɺ can be rewritten as (Ranalli, 1995, p. 76) 

ijij

ijij

eeE

SSI

ɺɺɺ

2

1
2

1

2

2

=

=
          (C.1) 

where ijeɺ is the deviatoric strain rate, defined as 

kkijije εε ɺɺɺ

3

1−= ,         (C.2) 

and ijS  is the deviatoric stress, defined as 

kkijijS σσ
3

1−= .         (C.3) 

The square root of the quantities 2I and 2Eɺ  is denoted as the effective shear stress and the 

effective shear strain, respectively. However, here the uni-axial equivalent Mises stress 

will be used because it is the stress invariant implemented in ABAQUS: 

( )11 22 11 33 22 11 22 33 33 11 33 22

3 3

2 2ij ijq S S S S S S S S S S S S S S= = + + + + +ɶ     (C.4) 

and the corresponding uni-axial equivalent strain rate 

2

3 ij ije eε =ɺɶ ɺ ɺ .          (C.5) 

The postulate is that the relation between stress and strain rate measured in a uni-axial 

experiment (see Figure 3.3) also gives a relation between the effective stress and effective 

strain, and hence also between Mises stress and corresponding strain rate (see Ranalli, 

1995, p. 76): 

nAqε =ɺɶ ɶ .          (C.6) 

To show that from this more general law the simpler experimental law follows, consider 

the case of the experiment of a tensile stress σT applied so that for an incompressible 
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material: 11 22 33

2 1
 and 

3 3T Tσ σ σ σ σ= = = − . For the mean stress (or hydrostatic 

pressure p) it follows that 0
3

1

3

1

3

2

3

1 =






 −−= TTTp σσσ , so that the Mises stress is 

TTTTijij SSq σσσσ =






 ++== 222

9

1

9

1

9

4

2

3

2

3~ , and the strain rates are: 

11 22 33

1
 and 

2T Tε ε ε ε ε= = = −ɺ ɺ ɺ ɺ ɺ . So clearly the mean stress is zero. The Mises equivalent 

strain rate is
2 2 1 1

3 3 4 4ij ij T T T Tε ε ε ε ε ε ε = = + + = 
 

ɺɶ ɺ ɺ ɺ ɺ ɺ ɺ . Substituting the above 

expressions for the Mises stress and Mises equivalent strain rate in the invariant creep 

law, equation (C.6), we get the uni-axial law n
TT Aσε =ɺ . 

To obtain a tensor form of the power-law creep equation, assume that the 

components of the strain rate at any point are proportional to the corresponding 

components of the stress deviator, as in Ranalli (1995) p. 76:  

ijij Sλε =ɺ .          (C.7) 

Substituting this in the expression for the Mises equivalent strain rate (C.5) we get 

q~
3

2λε =ɺ , so that: 1~
3

2 −= nqAλ . And finally, the required tensor form of the power law 

creep 

ij
n

ij SqA 1~
2

3 −=εɺ .         (C.8) 
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APPENDIX D:  TIME-DEPENDENT LOADING IN ABAQUS 

In ABAQUS a loading history is divided into steps each of which are treated as static 

loading situation in order to solve problems with a more complex loading history. For 

GIA modeling, the loading input is provided by an ice model. In that case, the increments 

in the ice model determine the steps denoted with subscript j in Figure 3.2. Within a step, 

strain is calculated in ABAQUS by integration of the stress-strain rate relation. 

Considerable deformation can take place within a time step of the ice model, therefore a 

step is further divided in increments.  

There are two main types of algorithms for integrating the creep law in a FE 

program: implicit (backward Euler) and explicit (forward Euler). The explicit integration 

is simply written as 

t tε ε∆ = ⋅∆ɺɶ ɶ ,          (D.1) 

where εɺ  is given by the constitutive equation (3.25). The implicit integration is 

t t tε ε +∆∆ = ⋅∆ɺɶ ɶ .          (D.2) 

The accuracy of the integration scheme depends on the size of the increment. The length 

of these increments can be user-specified, or more conveniently, automatically decided in 

the software based on a given error tolerance. Naturally, the smaller the number of steps, 

the less computations are required, and the smaller the input and output files in the 

program. An extra reason to limit the number of steps is that at each step ABAQUS 

checks if the definition of the force is the same as that for the same node or node set in 

the previous step, which is a costly operation. By default, increment size is selected 

automatically based on the Creep Error Tolerance (CETOL) parameter. This parameter 

should be set so that stresses are computed with sufficient accuracy. CETOL is defined 

as: ( )t t t tε ε+∆ − ∆ɺ ɺɶ ɶ . In the ABAQUS Analysis User Manual, section 11.2.4, it is stated that 

the creep strain increment must be much smaller than the elastic strain increment. Here 

an empirical relation (determined by Dr. Patrick Wu) is used to determine the value of 

CETOL so that it is less than 0.5% of the maximum creep strain increment for a typical 

ice sheet and for a given step size length. A test was performed to see the effect on RSL 
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curves of large CETOL values that were accidently left in the code (see Table D.1). 

The values in Table D.1 were used to plot the curves in Figure D.2. It can be seen that no 

visible difference arises from the difference in CETOL values. Since this is not 

conclusive evidence, the CETOL values determined according to the empirical rule 

described above were used for all results in Chapter 6. 

 

Table D.1: CETOL values (unitless) used in a test for the effect of the CETOL parameter 

on relative sea level history. 

increment 90 kyear 4 kyear 1 kyear 

Large CETOL 1 x 10-1 4 x 10-2 1 x 10-2 

Small CETOL 2 x 10-5 1 x 10-6 3 x 10-7 
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Figure D.1: RSL curve for non-linear GIA model with n = 3, A = 3.3 x 10-34 Pa-3s-1 for 

the large and small CETOL values from Table D.1, after four iterations.  
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APPENDIX E:  RSL SITES 

ID Lat Lon # obs Name 

101 57 -77 10 RICHMOND GULF QUE. 

104 58 -94 7 CHURCHILL MAN. 

106 59.8 -80.3 10 OTTAWA IS. NWT. 

107 64.5 -84 7 SOUTHAMPTON IS. NWT. 

113 62.8 -65.5 8 WARWICK SOUND BAF. 

136 74 -93.7 9 N. SOMERSET IS. 

147 80 -88 9 E. AXEL HEIBERG IS. 

155 82.6 -72.8 10 THORES R. ELL. 

202 70 29 8 VARANGER FJORD NOR. 

209 63.7 9.6 11 BJUGN NOR. 

228 57.3 12 9 ONSALA SWE. 

233 63 18 7 ANGERMANLAND SWE. 

235 60.2 24.9 10 HELSINKI FIN. 

239 57.5 10.5 12 FREDERIKSHAVN DEN. 

282 79 28 7 KONG KARLS LAND SPITS. 

309 51.5 -56.5 12 NW. NEWFOUNDLAND 

323 42.8 -70.8 8 BOSTON MA. 

326 41.2 -72.5 7 CLINTON CT. 

333 39.5 -74.5 6 BRIGANTINE NJ. 

342 33 -80 7 CHARLESTON SC. 

350 27.5 -96 8 NW. GULF OF MEXICO 

358 32 -65 10 BERMUDA 

508 -8 -35 7 RECIFE BRAZIL 

512 -39.6 -62.1 9 BAHIA BLANCA ARGENTINA 

570 -77.7 163.4 8 McMURDO SOUND ANTARCTICA 

657 -35.9 150 10 MORUYA NSW.      



 

 

189 

 

 

Figure E.1: Location of RSL sites. 
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