
 
 

  

 
 
 

UCGE Reports 
Number 20250 

 
 
 

Department of Geomatics Engineering 
 
 
 

Wavelet Representation of Geodetic Operators 
(URL:http://www.geomatics.ucalgary.ca/research/publications/GradTheses.html) 

 
 
 
 
 

by 
 
 

Mohamed Mamdouh Elhabiby 
 
 

January 2007 
 
 
 
 
 
 
 

 



UNIVERSITY OF CALGARY 

 

 

Wavelet Representation of Geodetic Operators 

 

by 

 

 

Mohamed Mamdouh Elhabiby 

 

 

 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

 

 

DEPARTMENT OF GEOMATICS ENGINEERING 

CALGARY, ALBERTA 

JANUARY, 2007 

 

 

 

 

 

© MOHAMED MAMDOUH ELHABIBY 2007 



iii 

Abstract 

 

The main objective of this research is to introduce an alternative to the FFT 

computational scheme using the wavelet transform for the numerical evaluation of 

different geodetic operators. The new wavelet representation is built on orthogonal 

wavelet base functions. Eight geodetic operators are evaluated in this thesis: they are 

classified into direct geodetic integrals, inverse geodetic integrals, and the inversion of 

integrals. The direct geodetic integrals are the Stokes, the Vening Meinesz, the Poisson 

(upward continuation), and the terrain correction integrals. The inverse geodetic integrals 

are the inverse Vening Meinesz integral and the deflection-geoid formula. The Stokes 

and Poisson (downward continuation) integrals are inverted in the wavelet domain by a 

conjugate gradient method. 

In each case, the role of the kernel’s singularity in the wavelet multi-resolution analysis is 

studied. The integrals are approximated in finite multi-resolution analysis subspaces. A 

new implementation is introduced to decrease the computational effort.  The full solution 

with all equations requires a large computer memory. Multi-resolution properties of the 

wavelet transform are used to divide the full solution into parts. Each part represents a 

level of wavelet detail coefficients or the approximation coefficients. Hard thresholding is 

used for the compression of the kernels’ wavelet detail coefficients.  Global fixed 

thresholding and level/direction-wise thresholding is tested for different kernels. High 

compression levels are achieved with an acceptable accuracy, which leads to large 

savings in computer memory and storage space required for allocating the matrices, and 

also the ability to work with sparse matrices. In the case of the inversion of the integrals, 

a set of equations is formed and solved using an iterative gradient method. Soft 

thresholding is used for de-noising stationary and non-stationary noise because of its 

smoothing properties. Conclusions and recommendations are given with respect to the 

suitability, accuracy, and efficiency of these methods. 
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1 

 

 

Chapter One: Introduction 

 

In recent years, the amount of data available for the solution of the boundary 

value problem has increased significantly. This availability demands the introduction of 

efficient numerical solutions for different types of geodetic problems. For a long time, the 

fast Fourier transform (FFT) has efficiently provided these numerical solutions and has 

become the main signal processing tool in the geodetic arsenal. In this research, an 

alternative approach is introduced for the solution of different boundary value problems 

and the evaluation of different geodetic operators; this technique is the wavelet transform. 

 

1.1 Background and motivation 

The first wavelet was derived from the Haar base function found around 1910 by 

Haar [Keller, 2004]. Morlet and Grossman created a large revolution in the wavelet world 

in the beginning of the 1980’s when they introduced what is called the continuous 

wavelet transform. Their development was followed by the successful construction of an 

orthogonal wavelet with compact support by Daubechies [Daubechies, 1990]. This was 

combined by Mallat into a multi-resolution representation to introduce a solid system to 

be used in signal analysis [Mallat, 1989]. Since then, the wavelet has been used in a wide 

range and variety of scientific applications. 

The wavelet transform evaluation of geodetic operators in planar approximation 

was studied by Salamonowicz [2000], Gilbert and Keller [2000], and Liu and Sideris 

[2003]. Salamonowicz [2000] used the wavelet transform for global representation of the 

gravity field. The Earth gravitation model (EGM) was represented on a wavelet basis. 

The motivation was to provide EGM coefficients that can be updated easily when new 

regional data is available. A geoid undulation map was produced, and a local update of 

these maps was introduced where new gravity anomalies became available. Gilbert and 

Keller [2000] introduced a combined wavelet-vaguelette technique for the evaluation of 
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convolution problems. The main disadvantage of this algorithm is that it depends on the 

length of the wavelet filters used, which is not global as in the case of FFT.   

Liu and Sideris [2003] introduced a three-dimensional wavelet transform for the 

evaluation of Stokes and Vening Meinesz integrals. This approach allowed the evaluation 

of the integrals on a meridian-by-meridian basis. The paper concludes that, with Stokes 

integral, a geoid with millimetre, centimeter, and decimetre accuracy can be computed 

using compression levels of 70%, 74%, and 78%, respectively. In the case of the Veining 

Meinesz integral, deflections of the vertical with sub-arc-second, 1 arc-second, and 2 arc-

second accuracy can be obtained using compression levels of 91%, 97% and 99%, 

respectively. The time required for the computations mentioned above, for a 64 × 64 grid, 

was around 2.5 seconds with a 99% kernel compression level.  

The spherical wavelet theory and algorithms were initially developed by the 

Geomathematics Group at the University of Kaiserslautern [Freeden, 1999]. Harmonic 

wavelets representation algorithms were developed for recovering the external gravity 

potential of the Earth from discrete (spaceborne) data. Different solutions were 

introduced for different satellite missions’ types such as satellite-to-satellite tracking and 

satellite gravity gradiometry. 

Schaffrin et al. [2003] studied the advantages of 2-D planar wavelets for the 

representation of scalar-value signals on the sphere. The study focused on the division of 

the sphere surfaces into regional patches. A Mercator map projection system at the 

equator was combined with pseudo-wavelets in order to capture regional phenomena. The 

proposed algorithm can be used with any type of planar wavelets for geodetic 

applications on the sphere. Schmidt et al. [2006] applied a spherical wavelet technique 

for the regional spatiotemporal gravity field determination over the Amazon region, using 

GRACE measurements. In this study, the Amazon hydrological signals were represented 

in a form of time series of level dependent detailed signals. The spherical wavelet 

solution was compared to different hydrology models and a promising agreement was 

achieved.  
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Soltanpour et al. [2006] used the second generation of the wavelet transform to 

combine the gravimetric model with GPS leveling for non-gridded data. The main target 

was to provide a better transformation of GPS ellipsoidal heights to normal heights. A 

lifting scheme, which does not require regularly spaced data, was used. The paper 

showed that the second generation wavelet method is better than the least squares 

collocation (LSC) because there is no need for removing the trend from the data and the 

assumption of stationarity of LSC is not required. The differences between the second 

generation wavelet solutions and the LSC solution in standard deviation were a few 

millimeters, but the wavelet was better in decreasing the maximum and minimum 

differences than the LSC in comparison with reference data. 

From the previous discussion, it can be recognized that the research done on the 

evaluation of geodetic operators using wavelet transform requires further and more 

detailed investigation. The properties of the wavelet transform, such as having compact 

support, space and frequency localization, a wide variety of base functions (some of them 

with orthogonality properties), de-noising and thresholding, and multi-resolution 

analysis, are the main motivations for testing the wavelet transform as an alternative to 

the FFT in the planar approximation. These properties were always mentioned in the 

previous studies but was not fully implemented or tested. More specifically, the 

motivations behind the use of the wavelet transform in the representation of different 

geodetic operators are the following: 

 

Orthogonality, localization, and compact support properties: Most geodetic kernels, such 

as Stokes, Vening Meinesz, etc., are singular and are decaying fast away from their 

origin. Due to the localization properties of the wavelet transform in the space and 

frequency domains, the location of the peaks can be efficiently determined in both 

domains. Moreover, many of the wavelet coefficients of the kernels are negligibly small. 

This will lead to sparse matrices in the evaluation of different geodetic operators, 

especially when using wavelet base functions with a number of vanishing moments. 
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Thresholding and compression of matrices: Because the location of the small wavelet 

coefficients is known in the frequency domain, these wavelet coefficients of the kernels 

of the geodetic operators can be significantly compressed using wavelet thresholding 

techniques. The thresholding value is estimated through an efficient system of equations 

that motivates testing the level of compression that can be reached with an acceptable 

accuracy of results. 

 

Wavelet multiresolution analysis and de-noising of signals with non-stationary noise: The 

wavelet multiresolution analysis into independent levels of decomposition can help probe 

inside the data and separate the noise from the signals. Consequently, this leads to a 

detailed analysis and interpretation of the signal. The main disadvantage of the FFT 

technique is its assumption that the signal to be processed has invariant statistical 

proprieties (stationarity). Conversely, most of the data and applications deviate from this 

assumption and have a non-stationary behavior. Wavelet analysis can be used in 

detecting this behavior and the removal of non-stationary noise. 

 

All these motivations support the use of wavelets as an alternative to FFT in many 

applications in different fields that require the analysis of non-stationary processes 

containing multi-scale features, singularities, transient phenomena, and signal 

compression. 

 

1.2  Thesis objectives 

The overall objective of the thesis is to introduce an efficient representation of the 

different geodetic operators on wavelet bases. More specifically, direct and inverse 

geodetic integrals will be evaluated, in addition to the numerical inversion of direct 

geodetic integrals. The following sub-objectives are addressed:  

- Implementation of a new wavelet algorithm, requiring less 

computational effort than standard implementations, for the solution of 
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direct and inverse geodetic integrals and testing its accuracy and 

efficiency in comparison to FFT and numerical integration. 

- Investigation of the effects of the kernel properties on the wavelet 

compression technique used in the evaluation of different geodetic 

operators. Also, testing the adaptability of the suggested thresholding 

algorithm to a number of kernels with different properties. 

- Development of a new thresholding technique to optimize the wavelet 

compression level to an acceptable accuracy in the wavelet evaluation of 

geodetic operators.  

- Assessment of the performance of the wavelet soft thresholding 

technique as a regularization tool for de-noising stationary and non-

stationary noise and its impact on the inversion of the geodetic integrals. 

 

1.3 Thesis outline 

In Chapter Two, a general overview of the important geodetic integrals used in 

the thesis is given in planar approximation, with an explicit definition of the kernel 

relevant to each integral. 

Chapter Three starts with a brief overview of the FFT technique.  The 

fundamentals of the wavelet transform and the multi-resolution analysis are then 

introduced. The properties of the wavelet multi-resolution analysis are listed. Soft and 

hard thresholding techniques are also discussed. An automated algorithm for the 

estimation of the thresholding value for both de-noising and compression applications is 

given.  Standard and non-standard wavelet representations of operators are discussed. 

The wavelet algorithm developed for the representation of different geodetic operators is 

illustrated in detail. 

Chapter Four gives the procedure for the selection of base wavelets. Practical 

examples of the analysis and localization properties of the wavelet transform are given in 

one-dimensional (airborne gravimetry data) and two-dimensional (Stokes’s kernel and 

non-stationary noise) applications. Examples of hard thresholding compression of 
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different kernels are introduced. Two different techniques for applying the thresholding 

values are described. Examples of soft thresholding in one and two dimensions are also 

given. 

Chapter Five contains the results of the wavelet evaluation of four direct geodetic 

integrals: the Stokes, the Vening Meinesz, the Poisson (upward continuation), and the 

terrain correction integrals. For each integral, the wavelet solutions are compared to the 

FFT and the numerical integration solutions. Hard thresholding is applied for the 

compression of the wavelet coefficients of the kernels of the four geodetic integrals. Two 

different compression procedures are tested. 

Chapter Six provides an evaluation of the inverse geodetic problems. Two 

different kinds of problems are studied. The first one is inverse geodetic integrals, namely 

the inverse Vening Meinesz integral and the deflection-geoid formula. Hard thresholding 

is again applied for the compression of the kernels’ wavelet coefficients. The second is 

the numerical inversion of direct integrals, namely the inversion of the Stokes and the 

Poisson integral (downward continuation). The solution is done with noise-free data, and 

then the solution is repeated afterwards with the addition first of stationary and then non-

stationary noise. The solution is repeated after de-noising, and results are compared. 

Finally, Chapter Seven summarizes the work done in this research and draws 

conclusions. It also gives recommendations for further developments.  
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Chapter Two: Overview of important geodetic integrals 

 

Gravity measurements are commonly used for solving problems in physical 

geodesy. Data describing the gravity field of the Earth, such as geoid undulations, 

deflection of the vertical, gravity anomalies, and gravity disturbances, are the information 

sources used in different geophysical studies. Gravity measurements are taken at discrete 

points on the surface of the Earth. The modeling, continuation, and transformation of 

these data from one form to another is the main focus in this chapter. The main geodetic 

integrals used for this purposed are briefly introduced.  

The chapter is divided into three main parts. The first part is about regional geoid 

and deflection modeling through the Stokes, Vening Meinesz, and terrain correction 

integrals. The second gives the Poisson integral for upward and downward continuation 

in airborne or spaceborne gravimetry. The third discusses the inverse problems that are 

most used in satellite altimetry applications; the inverse Veining Meinesz integral, the 

deflection-geoid formula, and the inversion of the Stokes integral are introduced. All 

representations are given in planar approximation. A literature review about the different 

techniques used for solving all these models is included. 

 

2.1 Regional geoid and deflection modeling 

In this section, the equations for the solution of the classical boundary value 

problem are presented. The Stokes, Vening Meinesz, and terrain correction integrals are 

given in planar approximation.  

 

2.1.1 The Stokes integral 

The disturbing potential T at a point P on the surface of a sphere can be 

represented in spherical approximation, using free-air gravity anomalies gΔ , as follows: 
2

0 0

( ) ( , ) ( ) sin
4
RT P g S d d

π π

α ψ

ψ α ψ ψ ψ α
π = =

= Δ∫ ∫      (2.1)  
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where 

)]
2

(sin
2

[sinln)cos(51)2/sin(6
)2/sin(

1)(S 2 ψψψψ
ψ

ψ +−+−=   (2.2)  

andψ α  are spherical distance and azimuth. From Bruns’ theorem [Moritz, 1980], the 

geoidal undulation N can be computed from T by the following formula: 

γ
)P(T)P(N =          (2.3) 

In limited areas, as is the case in this thesis, the spherical surface can be approximated by 

the plane tangent at point P; therefore, ψ  is small and the Stokes function is 

approximated as follows: 

s
R22

2/
1

)2/sin(
1)(S ≈≈≈≈

ψψψ
ψ       (2.4) 

where s is the planar distance (and forms a coordinate system with α ), and R is the mean 

radius of the Earth. 

In the new coordinate system, the differential area αψψσ ddsind =  becomes 

ασ ddss
R
1d 2=          (2.5) 

Therefore, Stokes’ formula takes the following form in planar approximation: 

∫ ∫==
= =

maxs

0s

2

0
ddss

s
),s(g

2
1)P(T)P(N

π

α
ααΔ

πγγ
     (2.6) 

By transforming the polar coordinates to rectangular coordinates to describe a limited 

area E, Equation (2.6) takes the following form: 

2 2 1/ 21( , ) ( , ) [( ) ( ) ]
2p p p p

E
N x y g x y x x y y dxdy

πγ
−= Δ − + −∫∫    (2.7) 

The error from planar approximation is negligible for small areas [Sideris, 1987]. 

For gridded data of equal spacing ( andx yΔ Δ ), which is the case in this research study, 

the elements of the kernel are as follows [Schwarz et al., 1990]: 
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2 2 1/ 2[( ) ( ) ] , or
2

1 , and

p p p p

N

p p

x y x x y y x x y y
K

x y x x y y

πγ

γ π

−Δ Δ⎧ − + − ≠ ≠⎪⎪= ⎨
Δ Δ⎪ = =⎪⎩

   (2.8) 

The second value compensates for the singularity of KN at the computational point. The 

relative error of the approximation of the singularity ranges between 1% to 2% for an 

inner zone of radius between 10 km and 20 km [Heiskanen and Moritz, 1967]. It is 

actually much smaller when residual gΔ are used. 

The Stokes integral has been evaluated successfully by fast Fourier transform 

(FFT) techniques; a detailed representation of the integral in the Fourier domain can be 

found in Schwarz et al. [1990], Strang van Hees [1990], and Sideris [2005]. Evaluation is 

possible in the planar and spherical approximation. Fast evaluation of the Stokes integral 

by the one-dimensional FFT was developed by Haagmans et al. [1993]. Sideris and Li 

[1993] showed how to solve the integral as a convolution using FFT without windowing 

and edge effects. Salamonowicz [2000] introduced a wavelet representation of the global 

gravity field through the evaluation of the Stokes integral. Liu and Sideris [2003] 

evaluated the Stokes integral by a three-dimensional wavelet transform algorithm. 

 

2.1.2 The Vening Meinesz integral 

The Vening Meinesz integral is used to determine the two components of the 

deflection of the vertical. The integral is derived by the differentiation of Equation (2.7) 

in the x and y directions, as follows: 

( , )
( , ) p p

p p
p

N x y
x y

y
ξ

∂
= −

∂
        (2.9) 

( , )
( , ) p p

p p
p

N x y
x y

x
η

∂
= −

∂
        (2.10) 

By using Equation (2.7) in Equations (2.9) and (2.10), 
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2 2 3/ 21( , ) ( , ) [( ) ( ) ] ( )
2p p p p p

E
x y g x y x x y y y y dxdyξ

πγ
−= Δ − + − −∫∫   (2.11) 

2 2 3/ 21( , ) ( , ) [( ) ( ) ] ( )
2p p p p p

E
x y g x y x x y y x x dxdyη

πγ
−= Δ − + − −∫∫   (2.12) 

For gridded data with equal spacing ( andx yΔ Δ ), which is the case in this 

research study, the elements of the kernels are as follows [Heiskanen and Moritz, 1967]: 

2 2 3/ 2[( ) ( ) ] ( ) , or
2

( , )1 , and
2 ( , )

p p p p p

x
p p

x y x x y y y y x x y y
K

g x yx y x x y y
g x y

ξ
πγ

γ π

−Δ Δ⎧ − + − − ≠ ≠⎪
⎪= ⎨

Δ Δ⎪ − = =⎪ Δ⎩

  (2.13) 

2 2 3/ 2[( ) ( ) ] ( ) , or
2

( , )1 , and
2 ( , )

p p p p p

y
p p

x y x x y y x x x x y y
K

g x yx y x x y y
g x y

η
πγ

γ π

−Δ Δ⎧ − + − − ≠ ≠⎪
⎪= ⎨

Δ Δ⎪ − = =⎪ Δ⎩

  (2.14) 

where ( , )xg x y  and ( , )yg x y  are the first derivatives of the gravity anomaly ( , )g x yΔ  at 

the computation point in the x and y direction, respectively.  The second value, in both 

Equations (2.13) and (2.14), compensates for the singularity at the computational point 

[Li, 1993]. 

The Vening Meinesz integral has been evaluated by two–dimensional FFT in both 

planar [Schwarz et al., 1990; Sideris, 2005] and spherical approximation [Liu et al., 

1997]. Liu and Sideris [2003] evaluated the Vening Meinesz integral by a three-

dimensional wavelet transform algorithm. 

 

2.1.3 Terrain corrections integral 

In rough terrain, topography represents the short-wavelength part of the gravity 

field variation. The terrain effects can be modeled by assuming a known topographic 

density ρ  (for example, the mean density of the topographic masses is assumed equal to 

2.67 g cm-3), leading to a smoother residual field for gravity modeling. After the 
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estimation of terrain-reduced gravity field quantities, the terrain effects must be added 

back to obtain the final quantity. This remove-restore technique is essential when 

working with gravity field modeling in rough topography because the resolution of the 

gravity data used cannot usually represent the short wavelengths of the gravity field.  

Two main cases can be distinguished for the computation of the terrain effects. 

The first one is the computation of the terrain effects at a level surface above the terrain 

at height 0 maxz h> , where maxh is the highest topographic elevation in the area E. The 

topographic effect on gravity at P0, hgΔ   is computed as follows [Forsberg, 1985]:  

2 2 2 3/ 2
0 0 0( , , ) [( ) ( ) ( ) ] ( )h p p P P

E h
g x y z G x x y y z z z z dxdydzρ −Δ = − − + − + − −∫∫ ∫  (2.15) 

The integral in Equation (2.15) is expanded using the so-called multipole expansion 

about z=0 as follows [Schwarz et al., 1990]: 
2 2

0 0 0 0
2 2 2 3/ 2 3 5

0 0 0

3 ...,
[( ) ( ) ( ) ]P P

z z z r z z
x x y y z z r r

− −
= − + +

− + − + −
   (2.16) 

where 
22 2 1/ 2

0 0[( ) ( ) ]P Pr x x y y z= − + − +        (2.17) 

Integrating Equation (2.15) with respect to z, hgΔ  is represented as a sum of 

convolutions as follows: 
2 2

20 0
3 5

( 3 )[( ) ( ) ...]
2

h
z r zg G h h
r r

ρ −
Δ = ∗ + − ∗ +       (2.18)  

 The second case is the computation of the terrain effects at the physical surface 

of the Earth. The total gravity topographic effect at a certain point P can be split into a 

Bouguer plate effect and the terrain correction c, as follows: 

,2 chGgh −=Δ ρπ          (2.19) 

2 2 2 3/ 2( , ) [( ) ( ) ( ) ] ( )p p P P P P
E h

c x y G x x y y h z z h dxdydzρ −= − + − + − −∫∫ ∫   (2.20) 
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By expanding Equation (2.20) using Equation (2.16) about Phz = , ignoring the second 

term and higher, and performing the z integration, the following equation is obtained 

[Sideris, 1984]: 

2 2 2 3/ 2( , ) ( ) [( ) ( ) ]
2p p P p p

E

Gc x y h h x x y y dxdyρ −≈ − − + −∫∫    (2.21) 

Equation (2.21) is the linear approximation of the terrain correction integral. 

Equation (2.21) is divided into three parts and each part is a discrete convolution: 

1 2 3( , ) [ ]
2p p

Gc x y c c cρ
= + +         (2.22) 

where 
2 2 2 3/ 2

1( , ) ( , ) [( ) ( ) ]p p p pc x y h x y x x y y dx dy−= − + −∫∫     (2.23)  

2 2 3/ 2
2( , ) 2 ( , ) ( , ) [( ) ( ) ]p p p p p pc x y h x y h x y x x y y dxdy−= − − + −∫∫   (2.24)  

2 2 2 3/ 2
3( , ) ( , ) [( ) ( ) ]p p p p p pc x y h x y x x y y dx dy−= − + −∫∫     (2.25) 

Equations (2.23), (2.24), and (2.25) are evaluated as direct convolution problems. The 

convolution in Equation (2.25) is done between a unit grid (has a value of 1 for the all the 

grid points) and the kernel. The kernel used in the evaluation of the three equations is 

defined as follows: 

2 2 3/ 2( ) [( ) ( ) ] , or

0 , and
p p p p

T
p p

x y x x y y x x y y
K

x x y y

−⎧ Δ Δ − + − ≠ ≠⎪= ⎨
= =⎪⎩

   (2.26) 

The zero value compensates for the singularity at the computational point [Sideris, 1984]. 

The output from the three equations are added together to get the terrain corrections at the 

computational point.    

The terrain correction integral has been solved and evaluated by two-dimensional 

FFT by Sideris [1984] and [1990].  
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2.2 The Poisson integral for airborne gravimetry 

The Poisson integral is used for the upward continuation problem and is inverted 

for the downward continuation problem. It is based on the first boundary value problem 

of physical geodesy, Dirichlet’s problem. The Poisson integral is applied in this thesis to 

the harmonic continuation of the gravity disturbance as follows [Heiskanen and Mortiz, 

1967]: 
2 2

3
( ) 1( , ) ( , )

4
p

u p p D
p

R r R
g R g d

r l
δ ϕ λ δ ϕ λ σ

π
−

= ∫∫      (2.27) 

where R is the radius of the sphere, r is the radial distance from point outside the sphere 

to the center of the sphere, dσ  the surface element on the sphere and l is the spatial 

distance between a point on the sphere and a point outside the sphere. Equation (2.27) is 

presented in the planar approximation as follows [Bláha et al., 1996]: 
2 2

0 0( ) ( ) ( ) 2 ,r R r R r R z r R z R− = − + = + ≈      (2.28) 

22 2 1/ 2
0[( ) ( ) ] ,p pl x x y y z= − + − +  and      (2.29) 

2
1d dx dy

R
σ =          (2.30) 

22 2 3/ 2
0 0 0

1( , , ) [( ) ( ) ] ( , ,0)
2u p p p p D

E
g x y z z x x y y z g x y dxdyδ δ

π
−= − + − +∫∫  (2.31) 

where ugδ  is the upward continued gravity disturbances at 0h z=  , Dgδ  is the gravity 

disturbances at level zero, and 0z  is the flight elevation. 

The downward continuation is evaluated through the inversion of Equation (2.31), 

where Dgδ  will be the unknown and ugδ  will be given. The inversion of the Poisson 

integral will be through an optimization procedure (gradient method). The Poisson kernel 

will be the input of the design matrix to be used in the optimization procedure. For 

gridded data with equal spacing ( andx yΔ Δ ), which is the case in this research study, the 

kernel of the upward and downward continuation is as follows: 
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22 2 3/ 20
0( ) [( ) ( ) ]

2P p p
zK x y x x y y z
π

−= Δ Δ − + − +      (2.32) 

The Poisson integral for downward and upward continuation is evaluated by two-

dimensional FFT by Bláha et al. [1996] and Wu [1996]. Forsberg [2002] tested different 

operational methods based on collocation and FFT and applied these to downward 

continuation of surface data merging of airborne surveys over Greenland and Svalbard. 

Keller [1995] introduced a theoretical harmonic downward continuation technique using 

a Haar Wavelet. 

 

2.3 Satellite altimetry integrals 

Two main formulae are used in the determination of geoid undulations and 

gravity anomalies from satellite altimetry: the inverse Vening Meinesz integral and the 

deflection-geoid formula. These two integrals are presented in planar approximation 

[Hwang, 1998; Hwang et al., 2002]. 

 

2.3.1 Inverse Vening Meinesz’ integral 

The key in deriving the inverse Vening Meinesz formula is to find a suitable 

kernel for converting deflection of the vertical components to gravity anomalies. The 

derivation is mainly based on the approach of Meissl [1971]. The formula is 

approximated on the plane as follows [Hwang, 1998]: 

3

2 2 3/ 2

2 2 3/ 2

2( , ) [ ( , )( cos ) ( , )( sin )]
4

( )[( ) ( ) ] ( , )

2 ( )[( ) ( ) ] ( , )

p p
E

p p p
E

p p p
E

g x y x y s x y s dxdy
s

y y x x y y x y dxdy

x x x x y y x y dxdy

γ ξ α η α
π

ξ
γ
π η

−

−

−
Δ = +

⎧ ⎫− − + − +
⎪ ⎪− ⎪ ⎪= ⎨ ⎬

− − + −⎪ ⎪
⎪ ⎪⎩ ⎭

∫∫

∫∫

∫∫

  (2.33) 

For gridded data with equal spacing ( andx yΔ Δ ), which is the case in this 

research study, the elements of the kernels are as follows: 
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2 2 3/ 2( )[( ) ( ) ] ( ) , or
2

( , )
, and

2 ( , )

p p p p p

y
p p

x y x x y y y y x x y y
K x yx y x x y y

x y

ξ

γ
π

ξγ
π ξ

−−⎧ Δ Δ − + − − ≠ ≠⎪⎪= ⎨ Δ Δ⎪ = =
⎪⎩

 (2.34) 

2 2 3/ 2( )[( ) ( ) ] ( ) , or
2

( , ) , and
2 ( , )

p p p p p

x
p p

x y x x y y x x x x y y
K

x yx y x x y y
x y

η

γ
π

ηγ
π η

−−⎧ Δ Δ − + − − ≠ ≠⎪⎪= ⎨ Δ Δ⎪ = =
⎪⎩

 (2.35) 

The second value in Equations (2.34) and (2.35) are to compensate for the singularity at 

the computational point, where ( , ) and ( , )y xx y x yξ η are the first derivatives of the two 

components of the deflection of the vertical. 

Hwang [1998] used the inverse Vening Meinesz formula, which converts the 

deflections of the vertical to gravity anomalies, and evaluated it by the two-dimensional 

FFT method. Sandwell and Smith [1997] computed gravity anomalies from a dense 

network of satellite altimetry profiles of geoid heights and a grid of the two components 

of the deflection of the vertical also by using two-dimensional FFT. The previously 

mentioned approaches rely on stationary noise assumptions. 

 

2.3.2 Deflection-geoid formula 

The planar approximation of the deflection-geoid formula based on the approach 

of Meissl [1971] is the following [Hwang, 1998]: 

2

2 2 1

2 2 1

1 2( , ) [ ( , )( cos ) ( , )( sin )]
4

( ) [( ) ( ) ] ( , )
1

2 ( ) [( ) ( ) ] ( , )

p p
E

p p p
E

p p p
E

N x y x y s x y s dxdy
s

y y x x y y x y dxdy

x x x x y y x y dxdy

ξ α η α
π

ξ

π η

−

−

−
= +

⎧ ⎫− − + − +
⎪ ⎪− ⎪ ⎪= ⎨ ⎬

− − + −⎪ ⎪
⎪ ⎪⎩ ⎭

∫∫

∫∫

∫∫

  (2.36) 

For gridded data with equal spacing ( andx yΔ Δ ), which is the case in this 

research study, the elements of the kernels are as follows: 
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2 2 11 ( )[( ) ( ) ] ( ) , or
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 (2.37) 
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x y x x y y x x x x y y
K

x yx y x x y y
x y

η
π

η
π η

−−⎧ Δ Δ − + − − ≠ ≠⎪⎪= ⎨ Δ Δ⎪ = =
⎪⎩

 (2.38) 

The second value in Equations (2.37) and (2.38) is to compensate for the singularity at 

the computational point. 

Hwang [1998] and Hwang et al. [2002] evaluated the deflection geoid formula by 

two-dimensional FFT for satellite altimetry applications. 

 

2.3.3 Inverting the Stokes integral 

Equation (2.7) for the Stokes integral in planar approximation is inverted by an 

optimization procedure. In this case, the gravity anomalies are unknown and the geoid 

undulations are given. The Stokes kernel, Equation (2.8), forms the design matrices used 

in the optimization procedure for determining the gravity anomalies. More details of the 

algorithm and the implementation will be given in Chapter Three.  

Rauhut [1992] tested different regularization methods for the solution of the 

inverse Stokes’ problem using simulated and observed data. 

 

2.4 Summary 

In this chapter, seven different operators were presented. The operators are 

Stokes’, Vening Meinesz’, terrain corrections, Poisson’, inverse Vening Meinesz’, 

deflection-geoid formula, and the inversion of the Stokes integral. For many years, the 

classical approach used for the efficient evaluation of geodetic operators has been based 

on the fast Fourier transform (FFT). This approach is well established and is now a 

standard tool in the geodetic arsenal. With the same gridded data as inputs, the FFT 
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evaluation accuracy is identical to that of numerical integration. The main advantage of 

the FFT approach is its speed. Concerning the wavelet domain, few evaluations have 

been introduced. Only the Stokes and the Vening Meinesz operators have been evaluated 

by three-dimensional wavelet transform [Liu and Sideris, 2003]. Salamonowicz [2000] 

introduced a wavelet-based gravity model through the evaluation of the Stokes’ integral. 
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Chapter Three: Fundamentals of wavelet transform and multi-resolution analysis  

 

For many years, digital signal processing has been governed by the theory of 

Fourier transform and its numerical implementation. The main disadvantage of Fourier 

theory is the underlying assumption that the signals have time-wise or space-wise 

invariant statistical properties. In many applications, the deviation from a stationary 

behavior is precisely the information to be extracted from the signals. Wavelets were 

developed to serve the purpose of analyzing such non-stationary signals; see Keller 

[2004]. 

Signal processing was and still is a very important tool for data analysis in 

geodetic applications, especially Physical Geodesy. The Fourier transform has been used 

as a reliable tool in signal analysis for many years. Invented in the early 1800s by Jean 

Fourier, the fast Fourier transform (FFT) has become a cornerstone of modern signal 

analysis. The FFT has proven incredibly versatile in a wide range of geodetic 

applications. Nevertheless, it suffers from certain limitations related to the assumption 

that the environment is stationary, which is not always the case. Recently, another type of 

transform, the wavelet transform, has been shown to be as powerful and versatile as the 

FFT, yet without some of its limitations. 

Wavelets, as a mathematical tool, have been extensively used in research in the 

last two decades. From the mid 1980s until now, wavelet techniques have been used in 

many applications that involve signal processing, such as image processing, medical 

diagnostics, geophysical signal processing, pattern recognition, electromagnetic wave 

scattering, boundary value problems, and so on [Goswami and Chan, 1999]. 

The wavelet transform is the result of the work of a number of researchers. 

Initially, a French geophysicist, Jean Morlet, in 1985, came up with a method to model 

the process of sound waves traveling through the Earth’s crust. Unlike Fourier analysis, 

he did not use sine or cosine base functions, but different ones, that he called wavelets. 

Yves Meyer, a mathematician, recognized this work to be part of the field of harmonic 

analysis and came up with a family of wavelets that he proved were most efficient for 
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modeling complex phenomena [Meyer, 1992]. This work was improved by two 

American researchers, Stephane Mallat of New York University [Mallat, 1998] and 

Ingrid Daubechies of Bell Labs [Daubechies, 1992]. Since 1998, there has been extensive 

activity in this area, as engineers and researchers have applied the wavelet transform to 

applications like signal analysis, detection of signal jumps, de-noising, image 

compression, and fingerprint analysis. 

The starting point for the discussion of the wavelet transform and its properties is 

an overview to the Fourier analysis methods. In particular, the overview illustrates the 

advantages of using the former over the latter in the analysis of transient signals and also 

highlights its drawbacks. This chapter gives an overview of the Fourier transform and its 

properties. In addition, continuous and discrete wavelet transform in one and two 

dimensions are illustrated, and two wavelet thresholding techniques are discussed. The 

non-standard wavelet implementation for solving geodetic problems is described. Finally, 

the methodology of investigation used in the evaluation of geodetic integrals is 

introduced. 

 

3.1 Overview of the Fourier transform and its convolution property 

Traditionally, Fourier transform has been used extensively in the signal 

processing field for the analysis of stationary signals. It can be used to decompose a 

function in terms of a set of base functions. A set of complex sinusoids forms the set of 

base functions used in the Fourier transform. 

The one-dimensional continuous Fourier transform is defined by [Brigham, 

1988]: 

2( ) ( ) i fxQ f q x e dxπ
∞

−

−∞

= ∫         (3.1) 

f  is the frequency, ( )q x  is the function in the space domain and ( )Q f  is its 

transformation in the frequency domain. 
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The inverse continuous Fourier transform determines a function from its Fourier 

transform as follows: 

2( ) ( ) i fxq x Q f e dfπ
∞

−∞

= ∫         (3.2) 

Since all the geodetic problems introduced in Chapter Two are two-dimensional 

problems, the definition of the two-dimensional continuous Fourier transform is essential 

and modeled as follows: 

2 ( )( , ) ( , ) x yi f x f y
x yQ f f q x y e dxdyπ

∞ ∞
− +

−∞ −∞

= ∫ ∫       (3.3) 

and the two-dimensional inverse continuous Fourier transform is  

2 ( )( , ) ( , ) x yi f x f y
x y x yq x y Q f f e df dfπ

∞ ∞
+

−∞ −∞

= ∫ ∫      (3.4) 

where ( , )x yQ f f  is the spectrum of the function ( , )q x y , and ,x yf f are the frequencies 

corresponding to the x and y spatial coordinates, respectively. 

The discrete Fourier transform produces a sequence of complex values at discrete 

frequencies; because the transform is the result of a sum over the whole signal length, the 

resultant coefficients cannot indicate at what location in the signal the frequency existed. 

The Fourier transform provides perfect frequency resolution, but no space resolution 

[Keller, 2004]. In two-dimensional discrete Fourier transform, the function is given by 

x yM M discrete values on a grid in x and y directions, where 

, 0,1, 2,........., 1
, 0,1, 2,........., 1

x

y

x k x k M
y l y l M
= Δ = −
= Δ = −

       (3.5) 

and for periods andx yT T  the intervals are 
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M
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M

Δ =

Δ =
          (3.6) 

In the frequency domain, the frequencies andx yf f  are expressed as follows: 

, 0,1, 2,........., 1
, 0,1, 2,........., 1

x x x

y y y

f j f j M
f m f m M
= Δ = −
= Δ = −

       (3.7) 

The frequency intervals ( , )x yf fΔ Δ are related to the space periods , )( x yT T  by 

1

1

x
x

y
y

f
T

f
T

Δ =

Δ =
          (3.8) 

Thus, Equations (3.3) and (3.4) can be discretized as follows: 

{ }
1 2 ( )1

2
0 0

( , ) ( , ) ( , )
yx

x y

jk mlM iMx y M M

x y k l

T TQ j m q k l e F q k l
M M

π− − +−

= =
= =∑ ∑    (3.9) 

{ }
1 2 ( )1

1
2

0 0

1 1( , ) ( , ) ( , )
yx

x y

jk mlM iM
M M

x y j m
q k l Q j m e F Q j m

T T

π− +−
−

= =
= =∑ ∑    (3.10) 

where 2F  is the two-dimensional Fourier operator. The detailed properties of the two-

dimensional Fourier transform [Bracewell, 1986; Nawab and Quatieri, 1988; Brigham, 

1988] and its implementation for the evaluation of different geodetic problems can be 

found in Sideris [1984], Sideris and Schwarz [1986], Sideris and Tziavos [1988], 

Schwarz et al. [1990], and Sideris and Li [1993]. 

More sophisticated Fourier-based transforms have been developed to reduce the 

effect of non-stationary signals on the discrete Fourier transform. One of these methods is 

the windowed discrete Fourier transform (WDFT). The difficulty of analyzing a non-

stationary signal lies in determining at what location in space a given transient occurred 
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[Osman, 2003; Keller, 2004]. Because the frequencies in a non-stationary signal do not 

exist for every location throughout the signal, this space localization is important. If it is 

possible to divide the non-stationary signal into a number of smaller, stationary signals, 

then the Fourier transform of each sub-division is accomplished by applying a window 

function, ( )w x , to the input signal before computing the Fourier transform [Harris, 1978]. 

If the window function ( )w x is translated in space by 0x , which is called the delay 

parameter, the WDFT is defined to be 

2
0( ) [ ( ) ( )] i fx

WDFTQ f q x w x x e dxπ
∞

−

−∞

= −∫       (3.11) 

Essentially, the Fourier transform is equivalent to the WDFT with a box window 

function of finite support. Figure 3.1 shows a WDFT, where the window is simply a 

square wave. The square wave window truncates the sine or cosine function to fit a 

window of a particular width. Because a single window is used for all frequencies in the 

WDFT, the resolution of the analysis is the same at all locations in the space frequency 

plane.  

In Figure 3.1, the WDFT of a signal is represented in a two-dimensional grid 

where the divisions in the horizontal direction represent the extent for each 

window 0( )w x x− , the divisions in the vertical direction represent the frequencies f, and 

the shade of each rectangle is proportional to the corresponding frequency. As the width 

or support of the window function decreases, a smaller portion of the input signal is 

considered, guaranteeing greater space localization of frequency components in the 

signal. As the support of the window function increases, more accurate information about 

frequencies within the window is obtained, but the ability to determine at what location 

those transients occur within the input signal is lost [Chui, 1992]. Accordingly, it can be 

said that the major problem of WDFT is that the window width is fixed. This problem 

shows that a fine space resolution for short duration and high frequency signals, and fine 

frequency resolution for long duration and lower frequency signals, are needed. The 
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combination of different windows in one representation is one of the motivations for the 

move to the wavelet domain. 

 

 
Figure 3.1: Windowed Fourier transforms [after Robertson et al., 1996]  
 

The double integrals introduced in Chapter Two are solved by convolution “∗ ”. 

Convolution is defined as the operation of filtering one of the functions by the other, as 

follows [Sideris, 1984]: 

11

0 0
( , ) ( , ) ( , ) ( , ) ( , )

yx
MM

i j
g k l h k l q k l h i j q k i l j x y

−−

= =
= ∗ = − − Δ Δ∑ ∑    (3.12) 

One of the main properties of the DFT is that convolution in the space domain is 

equivalent to multiplication in the Fourier (frequency domain) and use of inverse Fourier 

transform. Consequently, equation (3.12) is solved by two direct and one inverse Fourier 

transforms as follows [Sideris, 2005]: 

{ } { }{ }1
2 2 2( , ) ( , ) ( , )g k l F F h k l F q k l−=       (3.13) 
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3.2 The wavelet transform 

Wavelets are of interest in signal processing because of their localization 

properties. The use of the wavelet transform to decompose and reconstruct a one-

dimensional signal requires the evaluation of single and double integrals, respectively. 

Wavelets have to fulfill a number of properties: e.g., have zero average, be normalized, 

oscillate, decay, and tend to zero with the increase of distance [Keller, 2004]. 

 

3.2.1 Continuous wavelet transform 

In Section 3.1, the analyzing function was sinusoidal for the WDFT. The main 

drawback is its fixed envelope in the space and the frequency domain. This raises the 

interest in the wavelet transform and its localization properties. In the case of the 

continuous wavelet transform, the analyzing function is filled with oscillation, but the big 

difference from WDFT is the change of the envelope shape with the change of the scale. 

The shorter the scale, the more compressed is the envelope and the higher the frequency 

to be detected. The wavelets have a high space resolution for high frequencies and a low 

space resolution for low frequencies. 

The continuous Wavelet Transform (CWT) of a signal ( )q x  is defined as the 

inner product of the signal sequence with the family (analyzing) 

functions ( )xψ [Goswami and Chan,1999] , as 

1( , ) ( ) n
W n

x xQ m x q x dx
mm

ψ
∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫       (3.14) 

and the inverse CWT is as follows: 

2
1 1( ) ( , ) n

W n n
x x dmq x Q m x dx

C mm mψ
ψ

∞ ∞

−∞ −∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫      (3.15) 

where m is the scale that determines the oscillating behaviour of a particular daughter 

wavelet, nx is the shifting of the mother wavelet or the daughter wavelet (important for 

having space localization information of the original signal), Cψ  is the admissibility 
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constant, and ψ  is the complex conjugate of ψ . The analyzing function ( )xψ  is not 

limited to the complex exponential as is the case of the Fourier transform. In fact, the 

only restriction on ( )xψ is that it must be short and oscillatory to guarantee the 

localization properties. This restriction ensures that the integral is finite and leads to the 

wavelet transform, and ( )xψ  is named the mother wavelet. This mother wavelet dilates 

(or compresses) and translates simply as wavelets or daughter wavelets [Mallat, 1989]. 

The definition of the CWT shows that the wavelet analysis is a measure of the 

similarity between the basis function (wavelets) and the signal itself. The calculated 

coefficients refer to the closeness of the signal to the wavelet of the current scale. The 

determination of the CWT coefficients of a signal starts by using the most compressed 

wavelet that can detect the highest frequencies existing in that signal. This starts by 

choosing a scale value that represents the original signal. Then, the wavelet is shifted by 

nx  along the space axis until the end of the signal. The next step is to increase the scale 

m by some amount (thus expanding the wavelet window to detect lower frequencies) and 

repeat the shifting procedure. The whole procedure is repeated for each value of m until 

some “maximum” desired value of m is reached [Strang, 1989; Daubechies, 1990]. 

In a practical implementation of the CWT, there will be redundant information, 

because the wavelet coefficients are calculated for every possible scale, which will, of 

course, lead to a large amount of work and yield a lot of redundancy. It also presents 

difficulties in its practical application. For ease of computer implementation, the discrete 

wavelet transform (DWT) is implemented, which will be discussed in the next 

subsection. 

 

3.2.2 Discrete wavelet transform 

For the wavelet transform numerical implementation, a discrete procedure is 

required. The dyadic wavelets developed by Daubechies [1992] are the core of this 

implementation. A family of wavelet functions (daughter wavelets) is generated from a 

single prototype wavelet (mother wavelet). Although two-dimensional wavelets are used 
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in the evaluation of geodetic integrals, their implementation is based on the one-

dimensional wavelet transform in two directions. 

 

 

 
Figure 3.2: Discrete wavelet Transform [after Griffiths et al., 1997].  

 

Every one-dimensional signal q  can be represented using wavelet base functions 

as follows [Heil and Walnut, 1989; Chan, 1995; Torrence and Compo, 1998]: 

0 0( , )
,( ) ( )xm

n m n
m Z n Z

q x d xλψ
∈ ∈

= ∑ ∑         (3.16) 

where 

0 0 0 0( , ) ( , )
, ,( ), ( ) ( )x xm

n m n m n
n

d q x q x xλ λψ ψ= =∑       (3.17) 

0 0( , ) / 2
, 0 0 0( ) ( )x m m

m n x x nxλψ λ ψ λ− −= −        (3.18) 

m
nd  are detailing coefficients, n,mψ  is the wavelet function generated from the original 

mother wavelet function )(L2 ℜ∈ψ , 0λ  is the scale space parameter, 0x  is the 

translation space parameter, m is the scale or level of decomposition integer, and n is the 

shifting or translation integer. 
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The scale and translation parameters form a wavelet frame, where the signal is 

completely represented by its spectrum (Figure 3.2). The representation is on a dense grid 

for small scales and on a wide grid for large scales. For practical reasons, a dyadic frame 

is used here with 20 =λ  and 0 1x = . As mentioned before, the main drawback of the 

traditional decomposition of the CWT is the redundancy. The dyadic frame reduces this 

redundancy effectively. The coefficients for the scale m are recursively computed from 

scale m-1, which is the core of Mallat’s algorithm [Mallat, 1998].  

 

3.2.3 Multi-resolution analysis on wavelet basis 

The concept of multi-resolution analysis (MRA) is introduced for the construction 

of orthogonal wavelet bases and for the fast decomposition of a signal into independent 

frequency bands through a nested sequence, as follows (Figure 3.3) [Keller, 2004]: 

)(L...VVVV...0 21012 ℜ⊂⊂⊂⊂⊂⊂⊂ −       (3.19) 

where 

)(LV 2
m

m ℜ=
∈
∪
Ζ

         (3.20) 

{ }0V
m

m =
∈
∩
Ζ

          (3.21)  

0( ) (2 )m
mq V q V• ∈ ⇔ • ∈         (3.22)  

and the scaling function )(L2n,m ℜ∈ϕ  with 

{ }Ζϕ ∈−•= k)k(spanV0         (3.23)  

 

     
Figure 3.3: Multi-resolution analysis using nested sequence 
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Equation (3.19) and Figure 3.3 illustrate that all spaces of the MRA are a scaled 

version of the original space 1V− , which is spanned by a shifted version of the scaling 

function n,mϕ  into other V spaces (approximation) and the wavelet function n,mψ  into W  

spaces (detailing). Consequently, in addition to Equation (3.16), another inner product is 

used for the decomposition of the signal  q  using scaling functions n,mϕ  as 

, ,, ( ) ( )m
n m n m n

n
c q q x xϕ ϕ= =∑        (3.24) 

where m
nc  are the approximation coefficients.  

From Equations (3.16) and (3.24), which form the wavelet frame, it can be seen that the 

signal is always represented by an approximation m
nc  and a detailed m

nd  part. 

 

 
Figure 3.4: Low and high pass wavelet filters 

 

 

A number of scaling coefficients (lowpass filter) nh  represent the scaling 

function, which is the base of space 0V . That is,  

( ) 2 (2 )n
n Z

x h x nϕ ϕ
∈

= −∑         (3.25) 
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The base of 0W is represented by the detailing functionψ , where 

( ) 2 (2 )n
n Z

x g x nψ ϕ
∈

= −∑         (3.26) 

ψ  is the wavelet function that is generated from the original mother wavelet function, 

and ng  are the detailed coefficients (highpass filter). Both filters are illustrated in Figure 

3.4.  

The relation between the scaling coefficients and detailed coefficients is 

1( 1)n
n ng h −= −          (3.27) 

The wavelet procedure used is based on the Mallat algorithm, which consists of 

the following two equations [Mallat, 1998; Keller, 2004]: 
( 1)

, 1,2 2, , mm
n m n l m n l l n l

l z l z
c f h f h cϕ ϕ −

− + −
∈ ∈

= = =∑ ∑     (3.28) 

( 1)
, 1,2 2, , mm

n m n l m n l l n l
l z l z

d f g f g cψ ϕ −
− + −

∈ ∈
= = =∑ ∑     (3.29) 

These two equations help in the fast computations of the wavelet coefficients of a given 

signal q that belong to 1V− ; the scheme is shown in Figure 3.5. 

 

Figure 3.5: Block diagram of the one-dimensional wavelet decomposition 
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For the two-dimensional wavelet transform, the Mallat algorithm will go through 

a tensor product of two different directional one-dimensional wavelet transforms. 

Consequently, the two-dimensional wavelet transform can be derived from its one-

dimensional counterparts [Chui et al., 1994; Mallat, 1998] as follows: 

( , ) ( ) ( )x y x yϕ ϕ ϕ=          (3.30) 

( , ) ( ) ( )H x y x yψ ψ ϕ=         (3.31) 

( , ) ( ) ( )V x y x yψ ϕ ψ=         (3.32) 

( , ) ( ) ( )D x y x yψ ψ ψ=         (3.33) 

Thus, the two-dimensional Mallat algorithm is (Figure 3.6) 

 
( 1)

2 2x x y y

x y

mm
n l n l n l

l z l z
c h h c −

− −
∈ ∈

= ∑ ∑        (3.34) 

( 1)
2 2x x y y

x y

m mH
n l n l n l

l z l z
d g h c −

− −
∈ ∈

= ∑ ∑        (3.35) 

( 1)
2 2x x y y

x y

m mV
n l n l n l

l z l z
d h g c −

− −
∈ ∈

= ∑ ∑        (3.36) 

( 1)
2 2x x y y

x y

m mD
n l n l n l

l z l z
d g g c −

− −
∈ ∈

= ∑ ∑        (3.37) 

where 

( , ), ( , )x y x yl l l n n n= =         (3.38) 

The distribution of the four sets of coefficients (Equations (3.34) to (3.37)) is shown in 

the following figure. 
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Figure 3.6: One level of decomposition of the two-dimensional wavelet transform of 
a grid of data 

 

 

Figure 3.7: Block diagram of the two-dimensional wavelet decomposition algorithm 
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Figure 3.7 is a block diagram illustrating the two-dimensional wavelet transform. 

The highpass and lowpass filters are applied first in the x direction with down sampling 

(dyadic intervals). Then, through the tensor product, the highpass and lowpass filters are 

applied in the other direction (y direction). This leads to four sets of wavelet coefficients: 

high high (HH), high low (HL), low high (LH), and low low (LL). 

 

3.3 Wavelet thresholding 

 Thresholding is the most common processing tool in wavelet multi-resolution 

analysis. The wavelet thresholding technique was mainly developed for removing noise 

and outliers, compression, and pattern recognition of the signal before wavelet 

reconstruction. In this thesis, two thresholding methods are presented: hard thresholding 

and soft thresholding. The former is for matrix compression and the latter for de-noising 

signals. 

 

3.3.1 Hard thresholding compression 

Hard thresholding is like a gate. If a value is below a certain thresholding value, it 

is set to zero. The same algorithm is used for the compression of matrices. Wavelet 

coefficients (absolute) larger than a certain specified threshold δ  are the ones that should 

be included in the reconstruction. The reconstructed function can be expressed as [Ogden, 

1997]: 

{ } ,ˆ( ) m
n

m
n m nd

m n
q x I dδ ψ>=∑∑        (3.39) 

where { }m
ndI δ>  is the indicator function of this set. This function represents a keep or kill 

wavelet reconstruction; it assumes the value of one for the coefficients required in the 

reconstruction process (keep) and zero for the coefficients that should be removed (kill). 

 The hard thresholding is a kind of nonlinear operator on the wavelet coefficients’ 

vector and leads to a resultant vector of the estimated coefficients m
nd̂ , which can be 

involved in the reconstruction process, as follows [Barthelmes et al., 1994] 
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,ˆ
0 ,

m m
n nm

n
d if d

d
otherwise

δ⎧ ≥⎪= ⎨
⎪⎩

        (3.40) 

The graphical representation of the hard thresholding is shown in Figure 3.8. It can be 

seen that the graph is non-linear and discontinuous [Goswami and Chan, 1999]. 

 

 
Figure 3.8: Hard thresholding 

 

In making the decision, the problem is always about the thresholding value. In 

order to make this decision, one main parameter has to be taken into consideration: the 

wavelet coefficients of the first level of decomposition. Then, the estimated value of the 

median of the detailed wavelet coefficients can be used as a starting point for the 

compression of the matrices. Higher values than this estimated threshold can be used, 

depending on the degree of approximation required and the accuracy specification.  

Choosing the correct value of the threshold is a very important to avoid over smoothing 

or under smoothing. After testing different methods, such as the minimax method 

[Donoho and Johnstone, 1998], for the estimation of the thresholding value, the 

thresholding value is selected as follows [Donoho and Johnstone, 1994; Gao, 1997]: 

median( detailed wavelet coefficients at level one )δ =    (3.41) 

If this is equal to zero, then 

m
nd  

ˆm
nd  

δ−  

δ  
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1 * max( detailed wavelet coefficients at level one )
20

δ =    (3.42) 

The reason behind this choice is that this method achieved the best results in comparison 

to reference data in the compression and de-noising cases. The inversion of the Stokes 

integral will be evaluated numerically in Chapters Four and Six. Equations (3.41) and 

(3.42) assumes that for a piecewise smooth signal the noise will mainly be represented on 

the finest wavelet scale, the first wavelet decomposition detailed coefficients, leading to a 

simple method for the estimation of the thresholding values. This estimation will rely 

mainly on the median of the detailed coefficients of the finest wavelet decomposition 

[Donoho and Johnstone, 1994]. 

 

3.3.2 Soft thresholding de-noising 

Soft thresholding is defined as 

,

ˆ 0 ,

,

m m
n n

m m
n n

m m
n n

d if d

d if d

d if d

δ δ

δ

δ δ

⎧ ′ ′− ≥
⎪
⎪ ′= ≤⎨
⎪
⎪ ′ ′+ < −
⎩

       (3.43) 

From Figure 3.9, it can be seen that it is generally linear (straight line with slope to be 

determined). Soft thresholding is used in de-noising signals hidden in background noise. 

The main objective is to attenuate the noise while amplifying the signal. The 

determination of the thresholding value is as follows [Donoho, 1995]: 

1 22log(dim dim ) / 0.6745δ δ′ = ×        (3.44) 

where δ  is computed from Equations (3.41) or (3.42),  dim1 and dim2 are the two 

dimensions of the matrix, and 0.6745 is a value obtained from Gaussian calibration, 

assuming that the wavelet coefficients are normally distributed [Donoho and Johnstone, 

1994].  
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Figure 3.9 Soft thresholding 

 

3.4 Standard and non-standard wavelet representation of operators 

The wavelet bases in two-dimensional space can be constructed as a tensor 

product of the one-dimensional wavelet transform. Representing operators in such bases 

leads to the standard form [Beylkin et al., 1991]. Conversely, the non-standard 

representation is constructed using the scaling approximation function in addition to the 

wavelets’ detailing functions. Beylkin [1992] developed a numerical algorithm that 

depended on the non-standard representation for fast computations of operators.  

The algorithm is used for the representation of the integral operators of the form 

( ) ( , ) ( )p ps x K x x q x dx= ∫         (3.45) 

The algorithm requires the one-dimensional wavelet transform of the data ( )q x . The 

approximation part from the scaling coefficients is 

,( ), ( ) ( )m n mq
m q x q x h x dxcn ϕ= = ∫       (3.46) 

The detailed part is from the wavelet detailing coefficients: 

,( ), ( ) ( )m n mq
m q x q x g x dxdn ψ= = ∫       (3.47) 

The two-dimensional wavelet transform of the kernel is given by 

( , ) ( ) ( )m
p m p m pn K

K x x h x h x dx dxc = ∫∫       (3.48) 

m
nd  

ˆm
nd  

δ′−  

δ ′  
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( , ) ( ) ( )mH p m p m pn K
K x x h x g x dx dxd = ∫∫       (3.49) 

( , ) ( ) ( )mV p m p m pn K
K x x g x h x dx dxd = ∫∫       (3.50) 

( , ) ( ) ( )mD p m p m pn K
K x x g x g x dx dxd = ∫∫       (3.51) 

Equations (3.48) to (3.51) are combined to represent the kernel on wavelet bases 

( , ) ( ) ( ) ( ) ( ) ...

( ) ( ) ( ) ( )

H mm
p m p m n pn K K

V m D m
n p n pK K

K x x h x h x d h x g xc m m

d g x h x d g x g xm m m m

= +∑∑ ∑∑

+ +∑∑ ∑∑
   (3.52) 

Equation (3.52) is substituted in Equation (3.45) and yields 

( ) [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] ( )

H mm
p m p m n pn K K

V m D m
n p n pK K

s x h x h x d h x g xc m m

d g x h x d g x g x q x dxm m m m

= +∑∑ ∑∑

+ +∑∑ ∑∑

∫
  (3.53) 

Interchanging the integration and summation in Equation (3.53) and using Equations 

(3.46) and (3.47), Equation (3.45) is represented on a wavelet basis as 

]( ) [ ] [H m m V m D m mm m m
p n n m n n n mn n nK q qK q K K q

s x d d h d d d gc c c= + + +∑ ∑   (3.54) 

The implementation here is for one-dimensional integrals like Equation (3.45). 

One-dimensional wavelet transform is required for the signal (Equations (3.46) and 

(3.47)) and two-dimensional wavelet transform is required for the kernel (Equations 

(3.48) to (3.51)). All the geodetic problems introduced in Chapter Two are two-

dimensional integrals. The wavelet evaluation of these double integrals requires the 

extension of the Beylkin et al. [1991] algorithm to higher dimensions. Consequently, 

two-dimensional wavelet transform is required for the signal and four-dimensional 

wavelet transform for the kernel [Salamonowicz, 2000; Keller, 2002]. 

 

3.5 Implementation of the wavelet algorithm for geodetic integrals 

In this thesis, a new implementation of the Beylkin et al. [1991] algorithm is 

developed for the wavelet representation of two-dimensional geodetic integrals. 
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Orthogonal wavelets are used in this implementation. The direct geodetic integrals can be 

generally formulated as follows: 

( , ) ( , , , ) ( , )p p p p
E

s x y c K x y x y q x y dxdy= ∫∫      (3.55) 

where 

s  is the signal, K  is the kernel (depending on the application), , , ,p px y x y are the local 

Cartesian coordinates of the computational points  and the data points, q  is the gridded 

data, and c  is a constant (which changes according to the application). 

The procedure used to evaluate the geodetic integrals is a combination of 

Beylkin’s [1992] non-standard algorithm for fast wavelet computations of linear 

operators (Equations (3.45) to (3.54) and Mallat’s algorithm Equations (3.34) to (3.37). 

The procedure is described in the following steps: 

The first step is the wavelet transform of the gridded data q : 

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

q

H
q

V
q

D
q

c q x y x y dxdy

d q x y x y dxdy

d q x y x y dxdy

d q x y x y dxdy

ϕ ϕ

ϕ ψ

ψ ϕ

ψ ψ

=

=

=

=

∫∫
∫∫
∫∫
∫∫

       (3.56) 

The second step is the wavelet transform of the kernel: 

( , , , ) ( ) ( )

( , , , ) ( ) ( )

( , , , ) ( ) ( )

( , , , ) ( ) ( )

K p p

H
K p p

V
K p p

D
K p p

c K x y x y x y dxdy

d K x y x y x y dxdy

d K x y x y x y dxdy

d K x y x y x y dxdy

ϕ ϕ

ϕ ψ

ψ ϕ

ψ ψ

=

=

=

=

∫∫
∫∫
∫∫
∫∫

      (3.57) 

The kernel is represented on wavelet basis using the wavelet decomposition coefficients 

and the approximation and the detailing coefficients of Equation (3.57), as follows: 



38 

 

 

( ) ( ) ( ) ( ) ( ) ( )

....... ( ) ( )

H V
K K K

D
K

K c h x h y d h x g y d g x h y

d g x g y

= + + +∑∑ ∑∑ ∑∑

∑∑
   (3.58) 

The summation is over dyadic intervals to avoid redundancy and decrease the 

computational effort. This reconstructed kernel formula (Equation  (3.58)) is substituted 

in the general geodetic integral formula (Equation (3.55)) to yield the following equation: 

( , ) [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] ( , )

H
p p K K

V D
K K

s x y c c h x h y d h x g y

d g x h y d g x g y q x y dxdy

= +

+ +

∑∑ ∑∑∫∫

∑∑ ∑∑
    (3.59) 

where  

( , )p ps x y   is the solution at one computational point (signal). 

By interchanging the order of the integration and the summation and subsequently 

integrating, the solution takes the following form: 

( , ) ( )H H V V D D
p p K q K q K q K qs x y c c c d d d d d d= + + +∑∑ ∑∑ ∑∑ ∑∑   (3.60) 

This can be summarized as the element-by-element multiplication of the two-

dimensional wavelet transform coefficients of the kernel and the data. The product output 

matrix is then summed up to get the results (signal) directly at the computational points. 

It should be mentioned that because of the orthogonal wavelets used, the step of inverse 

wavelet transform is done implicitly; therefore, there is no need to do it in a separate step. 

Consequently, using this algorithm, which skips this inverse step, decreases the 

computational effort. In fact, it will save 30% of the computations required by the 

standard algorithms. 

Two different implementations of this procedure can be used. The first is the 

point-wise solution, where each unknown value ( , )p ps x y  can be computed by 

multiplying the two-dimensional wavelet coefficients matrix of the kernel corresponding 

to this computational point with the two-dimensional wavelet coefficients matrix of the 

data ( , )q x y  (known). Summing up the elements of the output matrix will lead directly to 
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the solution at one single point [Salamonowicz, 2000]. This procedure is extremely time 

consuming; however, it can be used successfully for evaluations over large areas on 

simple PCs. 

Another approach can be implemented to overcome the extensive mathematical 

effort and decrease the time required. The problem is reformulated in the form of the 

following equation: 

i ij jb A a=           (3.61) 

where 

ijA  is the design matrix containing the wavelet coefficients of the wavelet transform of 

the kernels ( , , , )p pK x y x y , ja  is a vector containing the wavelet coefficients of the data 

q ,  and ib  is a vector containing the unknown signal (results) s . In this approach, the 

design matrix A is first allocated in memory. Each row of this matrix contains the full 

coefficients of the kernel of one computational point as shown in Figure 3.10. The 

wavelet coefficients of the data are arranged in the column vector ja , as shown in Figure 

3.11. 

Reallocating the design matrix A in memory speeds up the time required for the 

computations in comparison with the point-wise solution. However, the problem is in the 

large memory requirement for solving the problem, even for a small grid. For example, 

an area consisting of a grid of 64 × 64 elements requires allocating a matrix of 4096 × 

4096 elements, which can be a problem for personal computers. Therefore, both 

approaches, the point-wise solution and the solution found by reallocating the design 

matrix in memory, yield unfavourable computation times compared to other spectral 

methods such as FFT. However, the numerous beneficial wavelet properties, like the 

localization properties and powerful capability to deal with non-stationary noise, 

prompted our effort to overcome the two previously mentioned problems (time and 

memory). 

The solution of these two problems is derived through the combination of the 

wavelet thresholding techniques (Section 3.3.1) and the reallocation of the design matrix 



40 

 

 

in the memory. This combination aims to decrease the memory required for the design 

matrix and speed up the computations by decreasing the number of multiplications 

required. 

The inversion of geodetic integrals is evaluated by the developed wavelet 

algorithm (Equation (3.61)) combined with an optimization procedure. In this case, the 

ja  vector will contain the unknown wavelet coefficients of the data q , ib  will be a 

vector containing the known signal. The problem is solved using the simple conjugate 

gradient method. The system of linear equations, Equation (3.61), has a nonsymmetric 

and possibly not positive definite coefficient matrix. It is obvious that the system has to 

be changed to a symmetric positive definite system. This is done by the formation of the 

normal equations as follows: 
T T
ij i ij ij jA b A A a=          (3.62) 

or 

j jj jM N a=           (3.63) 

where T
j ij iM A b=  and T

jj ij ijN A A= . 

The method starts with approximate values for the unknowns. It then proceeds by 

generating successive approximations to the solution, and the residuals corresponding to 

these iterations are computed. A linear search direction updates the iterations and the 

residuals. The iteration proceeds until the ratio between the .( )iter
j jj jnorm M N a−  and 

( )jnorm M  is less than the predefined tolerance value. More details about the conjugate 

gradient algorithm can be found in Barrett et al. [1994]. The solution vector ja  is the 

output from the conjugate gradient iterative method. Two-dimensional inverse wavelet 

transform is applied to ja  to obtain the required data.  

The combined wavelet-optimization algorithm for the inversion of the geodetic 

integrals is summarized in the following steps: 
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- The design matrix A is built by the two-dimensional wavelet transform 

of the kernels at all the computational points, as shown in Figure 3.10. 

- The signal (known) vector ib  is built. 

- The normal equations are formed and the solution ja  is obtained by the 

conjugate gradient method. 

- Two-dimensional inverse wavelet transform is applied to ja         

(Figure 3.11) after transforming it into a matrix to obtain the final data 

required at all the computational points. 

 

 

Figure 3.10: The structure of the row vector representing each kernel required for 
the design matrix A 

 

3.6 Methodology of investigation 

In the current study, the new implementation of the wavelet transform for solving 

the geodetic operators (Section 3.5) is tested. The geodetic operators are divided into 

direct geodetic integrals, inverse geodetic integrals, and the inversion of geodetic 

integrals. The efficiency of the wavelet evaluation methods is studied. The efficiency is 

determined through testing several testing parameters, such as the accuracy, speed, and 

memory required for allocating the matrices of the wavelet algorithm. Several wavelet 

thresholding cases are tested to reach the most efficient implementation for each integral. 

The wavelet full matrix solution is introduced first. Then, a number of global 

thresholding values are tested to reach the maximum compression level with an 

acceptable practical accuracy.  

Appr. Coefficients Hz. coefficients Diag. coefficients Vr. coefficients 

1 × (Total number of the wavelet coefficients per each kernel) 



42 

 

 

 

 

 

Figure 3.11: The structure of the column vector ja  representing the wavelet 
coefficients matrix of the data q  
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Figure 3.12: Methodology of investigation 
 

Finally, a level/direction-wise thresholding technique is used to optimize the 

compression level reached while maintaining the target accuracy of each application. The 

efficiency of the direct and inverse geodetic integrals wavelet solutions is evaluated 

through a comparison to the FFT and the numerical integration solutions. In addition, a 

comparison to the reference data will be done, where such data are available.  For the 

case of the inversion of geodetic integrals, the efficiency is tested through a comparison 

to the reference data. The three different wavelet implementations, mentioned before, will 

evaluate all integrals. The methodology of investigation is summarized in Figure 3.12. 

 

3.7 Summary 

The wavelet transform was introduced as an alternative spectral technique for the 

representations of geodetic operators. The main properties of the wavelet transform have 

Evaluation of geodetic operators

Direct integrals Inverse integrals Numerical inversion of integrals 

2-D wavelet 2-D wavelet 

Full matrix Automated global 
fixed thresholding 

Level/direction-wise 
thresholding 

Higher global fixed 
thresholding values 

Comparison to reference data 
and numerical integration 

Full matrix 

Comparison to reference data and 
full matrix solution 

Wavelet solution Wavelet solution 

Automated global 
fixed thresholding 

Higher global fixed 
thresholding values 

Iterative conjugate 
gradient method 
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been briefly summarized in this chapter. Since the Fourier transform is the main spectral 

technique that is extensively used in the representation of different geodetic operators, the 

chapter started with an overview of the Fourier transform with its properties. A new 

implementation of the Beylkin et al. [1991] algorithm is developed for the wavelet 

representation of two-dimensional geodetic integrals. The development is through the 

extension of the algorithm from one to two-dimensions. A hard thresholding technique is 

introduced for the matrix compression and soft thresholding for de-noising signals.  
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Chapter Four: Applications of wavelets as analysis, compression, and de-noising 
tools  

 

In this chapter, the numerical implementation of the wavelet theory presented in 

the previous chapter is introduced. The problem of the choice of the right wavelet family 

to suit the application and the implementation to be used are studied. Three main 

applications are presented: analysis and localization properties of wavelets, compression 

by hard thresholding, and de-noising by soft thresholding. The three applications are 

presented in one and two dimensions. 

 

4.1 Selection of compactly supported orthogonal wavelets 

One of the main points to be discussed is how to choose the wavelet from the 

large number of mother wavelets that are available now. As a preliminary choice, it can 

be said that the choice of the mother wavelet depends on the study of the previous trials 

done by different researchers and trying to find a way to a choice that satisfies a specific 

application. In other words, the researcher’s experience helps him or her make the correct 

choice of which mother wavelet should be used in analyzing certain data for a certain 

application. Also, testing different wavelets can help in finding the right one that will 

give minimum value for the coefficients (non-zero coefficients), which can help in the 

compression or improve the efficiency of de-noising. 

Most of the publications on wavelet bases exploit their ability to efficiently 

approximate a particular function that is used in particular applications with a few non-

zero wavelet coefficients (sparse matrices). This is important not only for data 

compression but also for noise removal and fast matrix computations. The choice of the 

mother wavelet must therefore be optimized to produce a maximum number of wavelet 

coefficients that are close to zero. Generally, most of the functions have small wavelet 

coefficients at fine scale (high resolution) decompositions. This depends mostly on the 

regularity of this function, the number of the mother wavelet’s vanishing moments, and 

the size of its support. 
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Figure 4.1: Daubechies wavelets (db): scaling function (red) and wavelet function 

(blue) 
 

The choice of the wavelet family in the current thesis will be from the properties 

required for the wavelet representation of geodetic operators. The Beylkin et al. [1991] 

algorithm introduced in Section 3.4 requires orthogonal wavelets.  Mallat’s algorithm for 

the multi-resolution analysis is useful only if the wavelet filters h and g are finite and 

compact support. The ideal choice for fulfilling the three properties—orthogonal, finite, 

and compact support—is the Daubechies wavelets. The method for constructing such 

wavelets is found in Daubechies [1988]. The construction algorithm generates the scaling 

coefficients h and consequently g (Equation (3.27)). The Mallat algorithm is used for the 
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reconstruction of different wavelets from their scaling coefficients. The construction 

theory is rather complicated and is beyond the scope of this thesis. The inverse Mallat 

algorithm allows the reconstruction of the signal from the corresponding wavelet 

coefficients [Mallat, 1998]. Detailed wavelet coefficients for Daubechies wavelets can be 

found in a numerous references, such as Daubechies [1992], Daubechies [1988], and 

Keller [2004]. Figure 4.1 shows part of Daubechies’ (db) wavelet family with vanishing 

moments from one to four. 

The Meyer wavelet is used in de-noising the gravity disturbance from an airborne 

gravimetry experiment. Both the scaling and the wavelet functions are defined in the 

frequency domain, starting with an auxiliary function [Meyer, 1992]. The Meyer family 

is orthogonal. Although the Meyer family does not have finite support, the wavelet 

function decreases dramatically to zero when the input goes to infinity, faster than many 

other functions; this leads to a compactly supported wavelet (Figure 4.2). 
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Figure 4.2: Meyer scaling function (red) and wavelet (blue). 
 

4.2 Examples of analysis and localization properties 

The main advantage of wavelet transform (Section 3.2) over the other spectral 

techniques, such as fast Fourier transforms, is its localization property [Daubechies, 

1990; Keller, 2004]. The analysis and localization properties of the wavelet transform are 

demonstrated in one and two dimensions in the following subsections. 
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4.2.1 One-dimensional analysis of airborne gravimetry data 

The one–dimensional wavelet analysis is applied to an airborne gravimetry 

application. The data used originates from a project collected by the University of 

Calgary on three days: September 9, 10, and 11, 1996. Only the data from the second day 

are tested in this thesis. The data was collected over the Rocky Mountains; the area 

covered was 100 km × 100 km [Glennie and Schwarz, 1997]. This area was covered by 

14 lines on the second day, as shown in Figure 4.3. The data analyzed is a gravity 

disturbance introduced as a sub-output from the KINGSPAD software [Glennie, 1999].  
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Figure 4.3: Flight pattern for the second day of the University of Calgary test over 
the Rocky Mountains 

 

The gravity disturbance (Figure 4.4) analysis starts with the spectrum of the signal 

using Fourier analysis. The FFT was used to visualize the different frequency contents of 

the signal. The spectrum in Figure 4.5 shows that there are different errors at different 

frequencies, but the problem is that it is difficult to localize where these errors are. 

The use of the continuous wavelet transform introduces time-frequency 

localization; this can be seen in Figure 4.6. Darker shades show large errors at a certain 

time and scale. For example, the takeoff and different manoeuvre periods between lines 
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can be easily identified in comparison to those in Figure 4.3. Each manoeuvre to turn 

from line to line can be easily recognized. In wavelet analysis, different types of errors 

can be tracked through the whole trajectory and interpreted in correspondence with 

different aircraft dynamics. Also, by the decomposition of the signal into several levels, 

stochastic errors and outliers can be detected and removed using a soft thresholding 

technique [Elhabiby and Sideris, 2006b]. This is discussed in Section 4.4.1. 
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Figure 4.4: Gravity disturbance with 1 Hz sampling rate 
 

Figure 4.5: FFT spectrum shows number of undesired frequencies 
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Figure 4.6: Time-frequency analysis and localization using continuous wavelet 

transform [after Elhabiby and Sideris, 2006b] 
 

4.2.2 Two-dimensional analysis of Stokes’s kernel and non-stationary noise 

The two-dimensional wavelet transform, Equations (3.34) to (3.37), is used for 

the evaluation of the geodetic integrals, as will be seen in the next chapter. The wavelet 

transform is applied to the kernel and data. In Equation (2.7), the kernel and gravity 

anomalies are taken as an example of the demonstration of the localization properties of 

the wavelet transform in the two-dimensional domain. 

The Stokes kernel at the midpoint of a 3΄×3΄ grid is shown in Figure 4.7. The two-

dimensional wavelet transform of the kernel by Daubechies wavelet with four vanishing 

moments (Figure 4.1), at four levels of decomposition, is shown in Figure 4.8. By 

comparing the two figures, it can be recognized that the same properties of the kernel 

(Figure 4.7), which has its peak at the centre and is dropping fast to zero in all directions, 
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are repeated at all the levels of decomposition: white spot at the centre (peak) and then 

turning dramatically to dark (dropping fast to very small values) and in all directions of 

decomposition at each level (Figure 4.8). 

 

 
Figure 4.7: Stokes kernel in the space domain 

 

Figure 4.8: Stokes kernel in the wavelet domain (db4) at four levels of 
decompositions 

 



52 

 

 

Another example is the wavelet decomposition of geoid undulations with 

simulated non-stationary noise with four different noise levels. Each noise level is used 

for a quarter of the undulations matrix (Figure 4.9).  
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Figure 4.9: Simulated non-stationary noise (left) and geoid undulation after the 
addition of the noise (right) 

 

Figure 4.10: Two-dimensional wavelet decomposition of the noisy geoid undulations 

 

Details of the data and the noise simulation and the effect of the noise on the 

inverse problem will be discussed in detail in Chapter Six. Wavelet localization 

properties are clearly seen in Figure 4.10. This figure shows one level of decomposition 

by db4 for the noisy geoid undulations. The pattern of the wavelet coefficients mirrors 
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the distribution of the non-stationary noise. In each wavelet coefficients’ set (horizontal, 

vertical, and diagonal), the different noise levels in the four quarters of the data are 

reflected. 

 

4.3 Examples of hard thresholding compression 

Four direct geodetic and four inverse geodetic problems are evaluated in this 

thesis: the Stokes, Vening Meinesz, terrain correction, upward continuation, downward 

continuation, inverse Vening Meinesz, deflection-geoid formula, and inversion of the 

Stokes integral. Four different kernels are involved in the evaluation of these problems. 

These kernels are tested in this subsection for compression; the solution of the different 

operators will be presented in Chapters Five and Six. The four kernels to be tested are the 

Stokes kernel 

2 2 1/ 2
1

[( ) ( ) ]p px x y y− + −
        (4.1)  

the deflection-geoid kernel 

2 2[( ) ( ) ]
p

p p

x x

x x y y

−

− + −
or 2 2[( ) ( ) ]

p

p p

y y

x x y y

−

− + −
     (4.2) 

the terrain correction kernel 

2 2 3/ 2
1

[( ) ( ) ]p px x y y− + −
        (4.3) 

and the Vening Meinesz kernel 

2 2 3/ 2[( ) ( ) ]
p

p p

x x

x x y y

−

− + −
 or 2 2 3/ 2[( ) ( ) ]

p

p p

y y

x x y y

−

− + −
    (4.4) 

The analysis for these equations shows that all the four kernels are decreasing 

rapidly away from the computational point ( , )p px y . Equation (4.1) has a denominator of 

distance to the power of ½; this increases to 1.0 in Equation (4.2); 1.5 in Equation (4.3) 
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and (4.4). The higher the power, the faster the kernel drops to zero from the computation 

point. These properties will be tested numerically in the following section. 

The testing procedure for the compression levels obtained by the hard 

thresholding wavelet technique, Equations (3.40) to (3.42), will be as follows: 

- Testing the relation between the compression levels achieved and how 

fast the kernels decay to zero. 

- Evaluation of the sensitivity of the automated thresholding value, 

estimated from Equation (3.41) or (3.42), to the grid size and spacing. 

 

4.3.1 Global fixed thresholding for kernel compression 

Different thresholding values are tested for the compression of the kernels of 

different operators. Twelve values between 1×10-12 and 1×10-1 are tested for all four 

kernels (Equations (4.1) to (4.4)). From Figure 4.11, it can be observed that the terrain 

correction, with the fastest dropping kernel, has the maximum compression level at all 

the thresholding values less than 1×10-4. The compression is equal to 78% at 1×10-8 

thresholding value. The Vening Meinesz kernel, with its slower dropping kernel, has 

smaller compression level percentages than the terrain correction. The compression is 

equal to 48% at 1×10-8.  

The Stokes and deflection-geoid kernels have almost identical behaviours. 

Although the deflection geoid denominator has a power equal to 1, which is higher than 

the Stokes kernel, its numerator (the distance in the y direction or x direction) reduces the 

rate of decrease of the kernel. Thus, the compression rate achieved by the deflection-

geoid kernel is practically the same as that of the Stokes kernel; at 1×10-8 threshold, the 

compression is almost 20%. These results show the role of the rate of the kernels’ 

decrease on the compression levels that can be achieved in the evaluation of geodetic 

integrals. 

The thresholding values in Figure 4.11 were chosen empirically. As mentioned 

earlier, an automated thresholding algorithm (hard thresholding) will be implemented in 

the evaluation of the geodetic operators (Equations (3.41) or (3.42)). These two equations 
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were applied to the four kernels (1 km × 1 km and 65 × 65 grid size) and the following 

values were obtained: 
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Figure 4.11: Global fixed thresholding for Stokes, deflection-geoid, terrain 

correction, and Vening Meinesz kernels 

 

Table 4.1: Estimated thresholding values (automated global fixed thresholding) 

Global fixed thresholding Thresholding value Compression level %
Stokes kernel 1×10-4 84% 

Deflection-geoid kernel 1×10-4 84% 
Vening Meinesz 1×10-6 82% 

Terrain correction kernel 1×10-8 78% 
 

Table 4.1 shows that Equations (3.41) or (3.42) lead to compression levels for all 

the kernels that are in the range of 78% to 84%. The adaptability of the thresholding 

technique can be seen from the change of the values according to the kernel properties, 

which emphasize the value of the wavelet coefficients to be thresholded. The algorithm 

that will be used in the evaluation of different geodetic operators will depend on the value 

estimated from Equations (3.41) or (3.42). This value is chosen as a reference value. 

Another four thresholding values higher in magnitude are tested. Each of these values 
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will be higher by one order of magnitude than the previous one, starting at the reference 

value (estimated). 

Different grid spacings are tested by the same procedure for the Stokes kernel. 

The grid spacing varied from 1 km to 25 km for a 1000 km × 1000 km area. Equation 

(3.41) or (3.42) is applied; very close thresholding values were obtained except for the 

first case but with different compression levels. From Table 4.2, it can be seen that the 

compression level decreases with the increase of the grid spacing for the same area. Also, 

different grids were tested ( 

Table 4.3) with the same spacing. The compression levels increased with the size 

of the grid because the wavelet coefficients that pass the threshold are almost the same at 

the centre while the rest are removed. For both cases, the accuracy will not be affected 

because the wavelet coefficients thesholded, using Equations (3.41) or (3.42), have an 

insignificant influence on the solution and consequently on the accuracy, as will be 

shown in Chapters Five and Six. 

 

Table 4.2: Estimated thresholding values (automated global fixed thresholding) for 
different gird spacings 

Grid spacing Thresholding value Compression level %
1 km 2×10-6 98.7% 
5 km 1×10-5 94.6% 
10 km 2×10-5 89.2% 
15 km 3×10-5 84.7% 
20 km 4×10-5 80.4% 
25 km 5×10-5 74.1% 

 

Table 4.3: Estimated thresholding values (automated global fixed thresholding) for 
different gird sizes 

Grid Size Thresholding value Compression level %
50 × 50 8×10-4 80.4% 

100 × 100 2×10-4 88.5% 
150 ×150 9×10-5 93% 
250 × 250 3×10-5 95.7% 
500 × 500 8×10-6 97.7% 

1000 × 1000 2×10-6 98.7% 
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4.3.2 Level/direction-wise thresholding 

Another technique of applying wavelet thresholding is introduced here. The two-

dimensional wavelet transform of the kernel and the signal divides the matrix into tiles 

(sub-matrices). In first level decomposition, the matrix is divided into four sub-matrices. 

Each sub-matrix is one quarter of the original matrix.  

The global thresholding introduced in the previous subsection is applied to all 

three detailed decompositions (vertical, horizontal and detail parts) with the same value. 

The modification introduced here comes after applying the global thresholding to all 

three parts; extra higher thresholding values are applied to each decomposition sub-

matrix individually.  

As mentioned in the previous sections, there are four higher thresholding values 

from the reference value (estimated). The four values increase the compression level; 

consequently, degradation in the accuracy occurs. Some of these accuracies are 

acceptable and some are not. The target of level/direction-wise thresholding is to choose 

the best thresholding values’ combination to optimize the maximum compression level 

with an acceptable accuracy. Different values can be introduced to the wavelet 

coefficients at each level of decomposition (level-wise). Also, at each level, different 

values can be introduced in each direction (direction-wise).  

Figure 4.12 shows that the approximation part is kept without any change. The 

starting value is always the reference-estimated value from Equations (3.41) or (3.42). 

The large thresholding values are at the diagonal decomposition in the first levels. Then, 

different values (smaller than the diagonal) are applied in the horizontal and vertical 

directions. The higher the level of decomposition, the smaller the thresholding value 

applied. The practical testing of this approach will be introduced numerically in Chapter 

Five. 
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Figure 4.12: level/direction-wise thresholding [Elhabiby and Sideris, 2006a] 

 

4.4 Examples of soft thresholding de-noising 

The soft thresholding algorithm illustrated in Section 3.3.2 is applied for de-

noising gravity disturbance in airborne gravimetry [Glennie, 1999] in one dimension. The 

algorithm is tested in two dimensions for de-noising the non-stationary simulated noise 

introduced in Section 4.2.2. 

 

4.4.1 One-dimensional de-noising of airborne gravity data 

The wavelets transform de-noising technique was used in the de-noising and the 

smoothing of the gravity disturbance, shown in Figure 4.4. The de-noising technique is 

compared to the outputs of the 90s and 120s low-pass filters. Figure 4.4 shows the 

presence of noise and outliers. The 90s and 120s low-pass filters are output from the 

KINGSPAD [Schwarz and El-Sheimy, 1998] and AGFILT software [Wei and Schwarz, 

1998], developed by the University of Calgary. The Meyer wavelet is used. The 
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difference between the wavelet de-noising and the reference data is shown in Figure 4.13, 

with RMS value equal to 25.5 mGal [Elhabiby and Sideris, 2006b]. The difference 

between the 90s and 120s low-pass filters and the reference data is of RMS values equal 

to 26.68 and 23.71 mGal (Figure 4.14 and Figure 4.15), respectively. It can be recognized 

that the outliers (very high frequencies) caused by manoeuvres have been removed 

successfully using the wavelet de-noising algorithm, and it is better than the 90s low-pass 

filter and with 1.8 mGal RMS higher than the 120s.  
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Figure 4.13: Difference between reference data and wavelet de-noising output 

[Elhabiby and Sideris, 2006b]. 
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Figure 4.14: Difference between reference data and 90s low pass filter output 
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Figure 4.15: Difference between reference data and 120s low pass filter output. 
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4.4.2 Two-dimensional de-noising of geoid undulations 

As mentioned before, all the geodetic operators evaluated in the current thesis are 

two-dimensional integrals. The de-noising algorithm is tested on stationary and non-

stationary simulated noise in two dimensions. A grid of geoid undulations is used in the 

evaluation of the effectiveness of the de-noising algorithm. The simulated noise added to 

the geoid undulations will later be used as an input in the inversion of the Stokes integral 

in Chapter Six. 

 

4.4.2.1 Stationary noise 

For testing purposes, random noise is simulated and superimposed on the grid of 

undulations introduced in Section 4.2.2. The noise level was chosen to be 50 cmσ = ± . 

The simulated random noise is shown in Figure 4.16.  

The contaminated geoid undulations are shown in Figure 4.17. The soft 

thresholding de-noising algorithm (Equations (3.43) and (3.44)) is applied with 

Daubechies wavelet with twelve vanishing moments and two levels of decomposition. 

The reason for the large number of vanishing moments is to smooth the signal and reduce 

the effect of the random noise. The de-noised geoid undulations are shown in Figure 

4.18.  
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Figure 4.16: Simulated stationary random noise 
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Figure 4.17: Contaminated geoid undulations by simulated stationary random noise 
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Figure 4.18: De-noised geoid undulations by soft thresholding 

 

The difference between the recovered geoid undulations and the original clean 

data has a RMS value of 17 cm (Figure 4.19). The soft thresholding de-noised the 

simulated random noise and recovered the geoid undulations with a 66% improvement. 

In Chapter Six, this improvement will have a great effect on the inversion of the Stokes 

integral using the wavelet transform. 
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Figure 4.19: Difference between de-noised geoid undulations and original data 

 

4.4.2.2 Non-stationary noise 

The simulated non-stationary noise introduced in Section 4.2.2 and Figure 4.9 is 

de-noised by the soft thresholding (Equations (3.43) and (3.44)), as shown the following 

figure:  
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Figure 4.20: Difference between recovered geoid undulations after de-noising and 

the reference data 
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The difference between the contaminated geoid undulations and the reference data 

has a RMS value of 31 cm. After the de-noising, the RMS of the difference between the 

recovered de-noised data and clean data is reduced to 13 cm (Figure 4.20); an 

improvement in accuracy of almost 60%. The effect on the solution of the inversion of 

the Stokes integral will be discussed in detail in Chapter Six. 

 

4.5 Summary 

In this chapter, the localization properties of the wavelet transform in one and two 

dimensions were illustrated. The Stokes, Vening Meinesz, deflection-geoid, and terrain 

correction integrals kernels were also analyzed in this chapter. The rate of the kernels’ 

decrease away from the computational point had a direct impact on the compression 

levels achieved at different thresholding values. Because the terrain correction kernel had 

the fastest dropping kernel, it achieved the highest compression level in comparison to 

the other kernels. On the other hand, both the Stokes and the deflection-geoid kernels 

with the slowest dropping kernels had the smallest compression level percentages 

achieved. The Vening Meinesz kernel compression levels were between the terrain 

correction and the Stokes percentages. An automated soft thresholding wavelet algorithm 

was introduced. The algorithm was tested in two dimensions with simulated stationary 

and non-stationary noise. The algorithm improved the data in both cases by almost 60%.  

The main outcomes of this chapter can be connected to a number of practical 

applications as follows: 

- Wavelet thresholding technique is very effective in the evaluation of 

different geodetic operators because of the geodetic operators’ fast 

decaying kernel. This can help in real-time applications.  

- The kernel can be pre-processed and compressed efficiently using the 

new wavelet technique. This compression, in addition to the new 

wavelet implementation that requires the use of the data set only once, 

will decrease the space required for the kernel and data storage. 
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- An example of these of applications is the terrain correction in case of 

airborne gravimetry applications. 

- Also, the new wavelet compression implementation can effectively help 

in decreasing the amount of the space required for the backup of all the 

operations (data and kernels) used in different projects (e.g., Satellite 

altimetry, regional geoid modelling, and airborne gravimetry) because 

the solution can be efficiently recovered from only 90% of the size of 

the original kernels’ matrices with an acceptable practical accuracy. 

- The wavelet de-noising technique is efficient in de-noising non-

stationary noise, which can be applied for the de-noising and the 

analysis of airborne gravimetry and satellite altimetry measurements, 

which have highly non-stationary properties. 
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Chapter Five: Wavelet evaluation of direct geodetic integrals  

 

For many years, the classical approach used for the efficient evaluation of 

geodetic integrals has been based on the fast Fourier Transform (FFT) [Sideris and 

Tziavos, 1988]. A wavelet approach is used in this chapter, however, as an alternative to 

the FFT in order to evaluate the different geodetic integrals. The wavelet transform is a 

very powerful tool for evaluating geodetic integrals with singular and fast dropping 

kernels because of its localization power in the space and frequency domain [Gilbert and 

Keller, 2000]. Kernels with singularity decay from the singular point rapidly and 

smoothly [Vanicek and Christou, 1994]. All the geodetic integrals tested in this chapter 

have such kernels; thus, the wavelet transform of such kernels leads to a significant 

number of small value coefficients, as shown in Section 4.3. Therefore, high compression 

levels of the kernels can be achieved. 

In this chapter, four geodetic problems will be evaluated using the new wavelet 

transform approach (Section 3.5): Stokes, Vening Meinesz, terrain correction, and the 

upward continuation integral. Their wavelet solutions will be compared to the FFT and 

the numerical integration approaches. This methodology of investigation will follow the 

flowchart shown in Figure 3.12. The advantages and disadvantages of the different 

wavelet approaches will also be examined. 

 

5.1 Evaluation of the Stokes integral 

The Stokes integral is evaluated using three different methods. First, the integral 

is evaluated using FFT and numerical integration. Then, the integral is evaluated using 

three wavelet algorithms shown in Figure 3.12: wavelet full matrix solution, wavelet 

global fixed thresholding, and wavelet level/direction-wise thresholding [Elhabiby and 

Sideris, 2006a].  
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5.1.1 Data and wavelet used 

The data used in the evaluation of the Stokes integral are synthetic gravity 

anomalies and geoid heights over Greece [Novak et al., 2001]. These are on a 3' by 3' 

grid in the area (18ºE-21.2ºE, 38.8ºN-42ºN), as shown in Figure 5.1. 
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Figure 5.1: Synthetic gravity anomalies and geoid undulations over Greece and Italy 
 

The Daubechies family of wavelet is chosen because of their orthogonality and 

compact support properties. Daubechies wavelets of order four are used; four vanishing 

moments (db4) lead to a significant number of coefficients with small values.  Different 

Daubechies (db) wavelets with different vanishing moments were tested. However, with 

more than four vanishing moments, the signal started to be over smoothed. 

 

5.1.2 Wavelet full matrix solution 

The algorithm mentioned in Section 3.5 is used for the evaluation of the Stokes 

integral. The following steps are taken:  

- First, the two-dimensional wavelet transform is applied to the gravity 

anomalies (Figure 5.2) after removing the long wavelengths using the 

EGM96 geopotential model (degree 360). The signal is decomposed into 

four levels of decomposition, then it is transformed to a column vector 

and the coefficients are arranged as shown in Figure 3.11. 
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Figure 5.2: The two-dimensional wavelet transform of the gravity anomalies using 
db4 with four levels of decomposition 

 

- Second, the two-dimensional wavelet transform with four levels of 

decomposition is applied to the kernels corresponding to all the 

computational points. An example of these kernels is the one 

corresponding to the midpoint of the grid; its corresponding two-

dimensional wavelet transform is shown in Figure 5.3. 

 

Figure 5.3: The two-dimensional wavelet transform of the centre point Stokes kernel 
of the gridded data using db4 with four levels of decomposition 
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- Third, the A design matrix is built using the wavelet coefficients 

corresponding to the geodetic integral kernels (Figure 3.10); each line 

corresponds to one kernel, as shown in Figure 5.4. 

 

Figure 5.4: Stokes kernels’ A design matrix (unitless) 
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Figure 5.5: Wavelet full matrix solution for the Stokes integral 
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- Fourth, the solution is achieved by multiplying the A matrix with ja  

vector (Equation (3.61)). The solution is illustrated in Figure 5.5. 

The zero-padded FFT and the numerical integration solutions of the Stokes 

problem are identical [Sideris and Li, 1993]. The difference between both solutions and 

the reference data has RMS accuracy of 20 cm (Figure 5.6). The RMSE of the difference 

between the wavelet full matrix solution and FFT solution is less than 1 cm, which means 

that the wavelet full matrix, FFT, and the numerical integration are almost identical, as 

shown in Figure 5.6 and Figure 5.7. In the sequel, the different wavelet solutions are 

compared only to the numerical integration solution.  

Figure 5.4 shows the Stokes kernels’ wavelet transform coefficients (A design 

matrix). It is clear that the A matrix is a dense full matrix, with no zero elements. This 

leads to the main drawback of this algorithm; that is, the allocation of the large design 

matrix in memory, which is significant compared with the FFT approach. The memory 

required for this matrix is 186 MB, which is huge compared to the FFT approach, for 

solving the same area with zero padding (130 × 130 elements). 
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Figure 5.6: FFT and wavelet full matrix solutions in comparison to reference data 
for the Stokes integral 
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Figure 5.7: Difference between wavelet full matrix solution and the numerical 

integration solution for the Stokes integral 

 

 

However, a significant number of elements are of very small values. This is 

mainly because of the fast decay of the kernel towards zero and the four vanishing 

moments of db4 (Section 4.3). If an efficient thresholding technique is applied, this will 

lead to a sparse matrix, as shown in the next sections. 

 

5.1.3 Wavelet global fixed thresholding solution 

First, the hard thresholding algorithm (Equations (3.41) and (3.42)) is used. For 

the Stokes integral with a 3' by 3' gridded kernel, the estimated threshold value is   

1.5×10-7.  When applying this threshold value to the A design matrix, the matrix will be 

sparse as shown in Figure 5.8. The number of non-zero elements is dropped from 

26,190,775 elements to 6,506,135 elements, with a compression level equal to 75% 

(Table 5.1), and with no loss of accuracy compared to the numerical integration solution 

(Figure 5.9). 
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Figure 5.8: Design matrix A with 1.5×10-7 global thresholding value; each blue spot 
represents a nonzero value in the Stokes kernel. 

 

Starting from the thresholding value obtained from Equation (3.41) or (3.42), four 

other larger values were tested for the Stokes kernel wavelet coefficients’ compression. 

From Table 5.1 and Figure 5.10, it can be seen how the A design matrices corresponding 

to each of the thresholding values became sparse. By increasing the thresholding values 

to 1.5×10-6, 1.5×10-5, 1.5×10-4, and 1.5×10-3, the A matrix becomes more sparse with 

83%, 93.5%, 97.6%, and 98.3% compression levels, respectively. Consequently, the 

storage requirement is reduced drastically. The sparse matrices are allocated in the 

memory by squeezing out all the zero elements and allocating only the non-zero elements 

with their indices.  

 

Table 5.1: Wavelet global thresholding versus wavelet full matrix solution for the 
Stokes integral 

Hard thresholding Full 
matrix 

Global Eq. 
(3.41) or 

(3.42) 
(a) (b) (c) (d) 

Thresholding value - 1.5×10-7 1.5×10-6 1.5×10-5 1.5×10-4 1.5×10-3 

Storage (MB) 186 50 36 16 8 6 

RMSE (m) - 0.0005 0.0005 0.0061 0.0604 0.3229 

No. of elements 26190775 6506135 4460519 1696296 629575 445852 

Comp% 0% 75% 83% 93.5% 97.6% 98.3% 
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Figure 5.9: Difference between the wavelet global thresholding (1.5×10-7) solution 

and the numerical integration solution for the Stokes integral 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.10: A matrix at four thresholding values (1.5×10-6, 1.5×10-5, 1.5×10-4, and 
1.5×10-3); each blue spot represents a nonzero value in the Stokes kernel. 
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Figure 5.11 : Wavelet global fixed thresholding solution in comparison to the 
numerical integration solution for the Stokes integral 

 

It can be seen in Table 5.1 that up to a 93.5% compression level, the error is less 

than 1 cm compared to the numerical integration solution. Although in the last two cases 

with thresholding values of 1.5×10-4 and 1.5×10-3 higher compression levels are 

achieved, there is a large degradation in the accuracy to 6 cm and 32 cm, respectively. 

The accuracy of the last two cases is not practically acceptable. Consequently, it can be 
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recognized that for this spacing using the global fixed thresholding, the maximum 

compression level to be achieved with the targeted accuracy required (1 cm) is 94%; see 

also Figure 5.11. This illustrates that the memory allocation problem can be overcome 

even on a personal computer. The computation CPU time required for obtaining the 

solution is almost the same for the four global thresholding cases—that is, less than one 

second. 

 

5.1.4 Level/direction-wise thresholding solution 

In this subsection, the level/direction-wise thresholding approach is introduced to 

increase the compression level while maintaining the required practical accuracy (Section 

4.3.2). Different combinations of the four thresholding values, introduced in Table 5.1, 

are used in this approach. These values depend on the degree of compression required 

and its relevant accuracy. The combinations in Tables 5.2 and  

 

Table 5.35.3 are examples of the choice of these values. The level/direction-wise 

approach is compared to the application of a single thresholding value. 

The level/direction-wise approach can be used in two different ways. The first one 

is used at very high compression levels like cases (c) and (d) in Table 5.1. For case (c), 

instead of using a single thresholding value, a set of different thresholding values is used 

at the different levels and directions, as shown in Table 5.2. The use of this combination 

of thresholding values improves the accuracy from 6 cm (Table 5.1) to 1.3 cm (Table 

5.2). This is a 77% improvement in the accuracy with only a 2.4% loss in the 

compression level. The same approach is repeated for the global thresholding case (d) 

(Table 5.1). Although the result is not as good as the targeted accuracy of 1 cm, this 

example is important for checking this algorithm’s efficiency. The thresholding values, 

shown in Table 5.3, dropped the compression level from 98.3% to 96.2% but with a 90% 

improvement in accuracy (from 32 cm to 3 cm).  

The second one is applied to the global cases (a) and (b); in this case, higher 

thresholding values are introduced to increase the compression percentage while 
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maintaining the accuracy in the acceptable range. From Figure 5.12, it can be seen that 

cases (a) and (b) reached higher compression levels (case (a) from 83% to 92.8% and 

case (b) from 93.5% to 94.8%), with no significant loss of accuracy. This finding 

illustrates that the level/direction-wise can be used efficiently for both cases. It is worth 

mentioning that the intersection of the two lines (Figure 5.12), the line for the global 

thresholding and the line for the level/direction-wise thresholding, is approximately equal 

to the optimum compression level for the required targeted accuracy. 

 

 

 

Table 5.2: Level/direction-wise for case (c) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 5.7×10-5 5.7×10-3 5.7×10-4 
Level 2 5.7×10-5 5.7×10-4 5.7×10-5 
Level 3 5.7×10-5 5.7×10-5 5.7×10-5 
Level 4 5.7×10-5 5.7×10-5 5.7×10-5 

RMSE(m) 0.013 
Comp. % 95.2% 

Storage (MB) 9.4 
 

 

 

 

Table 5.3: Level/direction-wise for case (d) global thresholding  

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 5.7×10-4 5.7×10-3 5.7×10-4 
Level 2 5.7×10-4 5.7×10-3 5.7×10-5 
Level 3 5.7×10-5 5.7×10-4 5.7×10-5 
Level 4 5.7×10-5 5.7×10-4 5.7×10-5 

RMSE(m) 0.03 
Comp. % 96.2% 

Storage (MB) 7 
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Figure 5.12: Global fixed thresholding versus level/direction-wise thresholding for 

the Stokes integral 
 

 

 

5.2 Evaluation of the Vening Meinesz integral 

The Vening Meinesz integral is evaluated by the methodology introduced in 

Section 3.6 using the wavelet full matrix solution, wavelet global thresholding, and 

level/direction-wise thresholding. 

 

5.2.1 Data and wavelet used 

The gravity anomaly data on a 3' by 3' grid, introduced in Subsection 5.1.1, is 

used in the evaluation of the Vening Meinesz integral. Figure 5.13 shows the reference 

data for the two components of the deflection of the vertical (horizontal and vertical 

components). The Daubechies wavelet with four vanishing moments is used in the 

evaluation of the Vening Meinesz integral. 
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Figure 5.13: Synthetic horizontal and vertical components of the deflection of the 

vertical over Greece and Italy 
 

5.2.2 Wavelet full matrix solution 

The two Vening Meinesz integrals (Equations (2.11) and (2.12)) are evaluated 

using the wavelet full matrix algorithm, FFT, and numerical integration. The wavelet 

approach introduced in Subsection 5.1.2 is applied in this evaluation. The A design 

matrix is shown in Figure 5.14. In comparison to Figure 5.4, it can be seen that the 

differences between the values of both kernels (A design matrices) are significant. The 

values in the case of the Vening Meinesz A matrix are significantly less than in the case 

of the Stokes kernel; this difference is because the kernel is dropping faster towards zero 

in the case of the Vening Meinesz kernel than in the case of the Stokes kernel (Section 

4.3). 

The difference between the wavelet full matrix solution and reference data is 

illustrated in Figure 5.15. It is clear that the gravity anomalies are more self consistent 

with the horizontal component of the deflection of the vertical (RMSE=2.2") than in the 

case of the vertical component (RMSE=17"). This means that an improvement to the 

vertical component simulation is required, but this is out of the scope of this thesis. The 

wavelet full matrix and the numerical integration solutions of the vertical and horizontal 

components of the deflection of the vertical are almost numerically identical, as shown in 

Figure 5.16. 
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Figure 5.14: Vening Meinesz kernels’ A design matrix (unitless) 
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Figure 5.16: Difference between wavelet full matrix solution and numerical 

integration solution for horizontal and vertical component of the deflection of the 
vertical 

 

5.2.3 Wavelet global fixed thresholding solution 

For the Vening Meinesz integral, the threshold value estimated from Equations 

(3.41) or (3.42)) is 7.2×10-13. The solution using this global thresholding value is shown 

in Figure 5.17. It is clear that with a 76% compression level, there is almost no loss of 

accuracy and the results are numerically identical to the numerical integration approach.  

From Figure 5.18 and Table 5.4, it can be seen that the design matrix A became 

sparser with the increase of the thresholding value (7.2×10-12, 7.2×10-11, 7.2×10-10, and 

7.2×10-9). From Table 5.4 and Figure 5.19, a compression level of 95.5% is achieved 

with an RMSE of 0.07 arc-second, which is an outstanding practical accuracy. For the 

last thresholding value, a higher compression level is achieved but with a huge 

degradation in the accuracy, almost half arc-second RMSE, which is still quite acceptable 

for many applications. The case of the horizontal component of the deflection of the 

vertical is identical to the case of the vertical component introduced here.  
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Figure 5.17: The difference between the global thresholding solution and numerical 
integration solution for the vertical component of the Vening Meinesz integral 

 

 

 
Figure 5.18: A matrix at four thresholding values (7.2×10-12, 7.2×10-11, 7.2×10-10, and 
7.2×10-9); each blue spot represents a nonzero value in the Vening Meinesz kernel. 
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Figure 5.19: Wavelet global fixed thresholding solution for the vertical component 
of the deflection of the vertical in comparison to the numerical integration solution 
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Table 5.4: Wavelet global fixed thresholding versus wavelet full matrix solution for 
the vertical component of the deflection of the vertical 

Hard thresholding Full 
matrix 

Global 
Eq. (3.41) 
or (3.42)

(a) (b) (c) (d) 

Thresholding value - 7.2×10-13 7.2×10-12 7.2×10-11 7.2×10-10 7.2×10-9 

Storage (MB) 186 46 40 21 12 8 

RMSE (arc-second) - 0.000 0.001 0.01 0.07 0.48 

No. of elements 26190775 6270318 4897127 2306605 1196875 686440 

Comp% 0% 76% 81.5% 91% 95.5% 97.5% 
 

 

 

5.2.4 Level/direction-wise thresholding solution 

The four cases, (a), (b), (c), and (d), which are shown in Table 5.4, are modified 

using a combination of different thresholding values in each direction and at each level. 

The main aim behind the level/direction-wise algorithm is to reach the maximum 

compression level with less than a 0.5 arc-second RMSE. For the first three cases (a), (b), 

and (c), combinations of different thresholding values are applied, as shown in Table 5.5, 

Table 5.6, and Table 5.7. The compression level of global thresholding case (a) is 

improved from 81.5% to 92.2% with an insignificant (0.005 arc-second RMSE) loss in 

accuracy (Table 5.5). The global thresholding case (b) compression level is improved 

from 91% to 95.5% with an RMSE equal to 0.03 arc-second (Table 5.6). 

 In the case of the global thresholding case (d), level/direction-wise thresholding 

is used to improve the accuracy while maintaining the same high compression level. A 

small improvement in the accuracy is achieved: the RMSE is decreased from 0.49 to 0.38 

arc-second (Table 5.8). The compression level is also slightly decreased from 97.5% to 

97.1%. Consequently, there is a 23% gain in the accuracy with a 0.4% loss in the 

compression level.  
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Table 5.5: Level/direction-wise for case (a) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 7.2×10-11 7.2×10-11 7.2×10-11 
Level 2 7.2×10-11 7.2×10-11 7.2×10-11 
Level 3 7.2×10-12 7.2×10-11 7.2×10-12 
Level 4 7.2×10-12 7.2×10-11 7.2×10-12 

RMSE (arc-second) 0.006 
Comp. % 92.2% 

Storage (MB) 9.4 
 

Table 5.6: Level/direction-wise for case (b) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 7.2×10-10 7.2×10-10 7.2×10-10 
Level 2 7.2×10-10 7.2×10-10 7.2×10-10 
Level 3 7.2×10-11 7.2×10-10 7.2×10-11 
Level 4 7.2×10-11 7.2×10-10 7.2×10-11 

RMSE (arc-second) 0.03 
Comp. % 95.5% 

Storage (MB) 9.4 
 

Table 5.7: Level/direction-wise for case (c) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 7.2×10-10 7.2×10-9 7.2×10-10 
Level 2 7.2×10-10 7.2×10-10 7.2×10-10 
Level 3 7.2×10-10 7.2×10-10 7.2×10-10 
Level 4 7.2×10-10 7.2×10-10 7.2×10-10 

RMSE (arc-second) 0.07 
Comp. % 96.4% 

Storage (MB) 9.4 
 

Table 5.8: Level/direction-wise for case (d) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 7.2×10-9 7.2×10-8 7.2×10-9 
Level 2 7.2×10-10 7.2×10-8 7.2×10-10 
Level 3 7.2×10-10 7.2×10-9 7.2×10-10 
Level 4 7.2×10-10 7.2×10-9 7.2×10-10 

RMSE (arc-second) 0.38 
Comp. % 97.1% 

Storage (MB) 9.4 
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Figure 5.20: Global fixed thresholding versus level/direction-wise thresholding for 

the Vening Meinesz integral (vertical component) 

 

The comparison between the global thresholding cases and level direction-wise 

thresholding are summarized in Figure 5.20. Again, it can be seen that the intersection 

between the two curves is close to the optimum compression level and accuracy. 

As a concluding remark, the high thresholding values can be applied to the first 

and second levels of decomposition at the diagonal direction. These values are five orders 

of magnitude higher than the value obtained from Equation (3.41) or (3.42). In the other 

directions and levels, the thresholding values are chosen with values equal to two or three 

higher orders of magnitude than the one obtained from the empirical equations.  

 

5.3 Evaluation of the terrain correction integral 

The terrain correction integral was also evaluated using wavelet techniques; 

Equations (2.22) to (2.25) are used in this study. The methodology of investigation 

introduced in Section 3.6 is followed to evaluate the integral by the wavelet full matrix 

solution, wavelet global thresholding, and level/direction-wise thresholding. 
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5.3.1 Data and wavelet used 

The data used is a set of point heights (Figure 5.21), on a 56×36 grid with 1 km × 

1 km spacing. The area is of very rough terrain; the statistics of the data heights are 

shown in Table 5.9. Again, the Daubechies wavelet with four vanishing moments is used.  
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Figure 5.21: Point heights (m) 
 

Table 5.9: Height statistics 

Max. (m) Min. (m) Mean (m) σ (m) 

3395 1204 2115.08 2143.91 

 

 

5.3.2 Wavelet full matrix solution 

The design matrix A is formed from the wavelet coefficients of the terrain 

correction kernels at different computational points. The wavelet solution is shown in 

Figure 5.22. The wavelet full matrix solution is compared with the numerical integration 

solution (Figure 5.23). These two solutions are practically identical with an RMSE equal 

to 0.000 mGal. 
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Figure 5.22: Wavelet full matrix solution of the terrain correction integral 
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5.3.3 Wavelet global fixed thresholding solution 

For the terrain correction integral with 1 km by 1 km spacing kernel, the threshold 

value estimated from Equations (3.41) or (3.42) is 6.7×10-7. The solution at 70% 

compression level is numerically identical to the numerical integration approach; see 

Figure 5.24. This value is used as reference for other larger thresholding values. Six other 

different thresholding values are globally tested to reach the maximum compression level 

with an acceptable RMSE in comparison to numerical integration: the target accuracy is 

0.1 mGal. 

In Table 5.10 and Figure 5.25, the design matrix A became sparser with the 

increase of the thresholding value by one order of magnitude (6.7×10-6, 6.7×10-5,    

6.7×10-4, 6.7×10-3, 6.7×10-2 and 6.7×10-1) until the maximum compression level was 

achieved. From Table 5.10 and Figure 5.26, the maximum compression level achieved by 

the global thresholding method within the range of the target accuracy is 93% with 

RMSE of 0.13 mGal (case (d)). For the thresholding values in cases (e) and (f), higher 

compression levels are achieved but with a huge degradation in the accuracy (1.42 and 

9.56 mGal). 

 

5.3.4 Level/direction-wise thresholding solution 

In this subsection, an improvement is made to the six global thresholding cases, 

which were introduced in Subsection 5.3.3. The improvement is for both the compression 

levels and the accuracy. Three examples illustrate the efficiency of this algorithm. Case 

(c) is an example of improving the compression level without a significant loss of 

accuracy. Cases (e) and (f) are examples of improving the accuracy with a small decrease 

in the compression level. 

For global thresholding case (c), the combination in Table 5.11 leads to a 3.4% 

gain in compression level with no significant loss in accuracy (0.09 mGal). The accuracy 

is still in the range of the target accuracy, which is 0.1 mGal RMS. For global 

thresholding cases (e) and (f), the target is to improve the accuracy by the level/direction-

wise thresholding technique. In case (e), the RMS accuracy improved from 1.42 mGal to 
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0.21 mGal (85% improvement) with a 1.5% loss in the compression level; see Table 5.12. 

Another example can be seen in Table 5.13; although the accuracy does not meet the 

target accuracy, the example illustrates the effectiveness of the level/direction-wise 

algorithm. For case (f), a combination of three values improved the accuracy from 9.56 

mGal to 1.35 mGal (85% improvement), with a 1.6% loss in the compression level 

(97.7% to 96.1%).  

 

Table 5.10: Wavelet global thresholding solutions versus wavelet full matrix solution 
for the terrain correction integral 

Hard 
thresholding 

Full 
matrix 

Global 
Eq. (3.41) 
or (3.42)

(a) (b) (c) (d) (e) (f) 

Thresholding 
value - 6.7×10-7 6.7×10-6 6.7×10-5 6.7×10-4 6.7×10-3 6.7×10-2 6.7×10-1

Storage (MB) 52 23.5 20.1 12.3 8.4 5.5 3.2 1.8 

RMSE (mGal) - 0.000 0.001 0.01 0.03 0.13 1.42 9.56 
No. of 

elements 6662425 2006028 1713534 1047865 714946 470781 269414 157303

Comp% 0% 70% 75% 84.3% 89.3% 93% 96% 97.7% 
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Figure 5.24: Difference between wavelet global thresholding and numerical 

integration solution for the terrain correction 
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Figure 5.25: A matrix at six thresholding values (6.7×10-6,  6.7×10-5,  6.7×10-4, 
6.7×10-3,  6.7×10-2 and 6.7×10-1); each blue spot represents a nonzero value in the 

terrain correction kernel. 
 



90 

 

 

Figure 5.27 shows a comparison among the six cases of the global thresholding 

and their modifications using level/direction-wise thresholding. The optimal case is 

almost at the intersection of the two approaches, with a 93% compression level and a 

0.13 mGal RMSE, which is very close to the target accuracy.  

 

Table 5.11: Level/direction-wise for case (c) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 6.7×10-3 6.7×10-3 6.7×10-3 
Level 2 6.7×10-3 6.7×10-3 6.7×10-3 
Level 3 6.7×10-4 6.7×10-3 6.7×10-4 
Level 4 6.7×10-4 6.7×10-3 6.7×10-4 

RMSE (mGal) 0.09 
Comp. % 92.7% 

Storage (MB) 7.2 
 

Table 5.12: Level/direction-wise for case (e) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 6.7×10-2 6.7×10-2 6.7×10-2 
Level 2 6.7×10-3 6.7×10-3 6.7×10-3 
Level 3 6.7×10-3 6.7×10-3 6.7×10-3 
Level 4 6.7×10-3 6.7×10-3 6.7×10-3 

RMSE (mGal) 0.21 
Comp. % 94.5% 

Storage (MB) 4.8 
 

Table 5.13: Level/direction-wise for case (f) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 6.7×10-1 6.7×10-1 6.7×10-1 
Level 2 6.7×10-2 6.7×10-1 6.7×10-2 
Level 3 6.7×10-3 6.7×10-2 6.7×10-3 
Level 4 6.7×10-3 6.7×10-3 6.7×10-3 

RMSE (mGal) 1.35 
Comp. % 96.1% 

Storage (MB) 3.8 
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Figure 5.26: Wavelet global thresholding fixed solution in comparison to numerical 

integration solution for the terrain correction integral 
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Figure 5.27: Global fixed thresholding versus level/direction-wise thresholding for 

the terrain correction integral 
 

5.4 Evaluation of the upward continuation integral 

The main aim of this section is the evaluation of the Poisson integral using the 

new developed wavelet algorithm (Section 3.5). The upward continuation integral is 

evaluated using the wavelet full matrix solution, FFT, and numerical integration. The 

methodology of investigation introduced in Section 3.6 is followed. 

 

5.4.1 Data and wavelet used 

The data are gravity disturbances created from upward continued data for the 

Kananaskis region [Glennie and Schwarz, 1997]. The data is created at two altitudes: 

4370 m and 7288 m. The two sets of data are shown in Figure 5.28. They are on the same 

grid with 30" spacing in the North-South direction and 60” spacing in the East-West 

direction. The data at the 4370 m altitude is upward continued to the 7288 m altitude 

using the Poisson integral. The data at 7288 m is used as reference data for the evaluation 

of the upward continuation integral. The Daubechies wavelet with four vanishing 

moments is used. 
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5.4.2 Wavelet full matrix solution 

The design matrix built from the two-dimensional wavelet transform of the kernel 

is shown in Figure 5.29. The wavelet full matrix solution is obtained using Equation 

(3.61); see Figure 5.30. The difference between the full matrix solution and the reference 

data, shown in Figure 5.31, has an RMSE of 8.525 mGal. The upward continuation 

integral is also solved by both the numerical integration and the FFT approaches. The 

wavelet full matrix, FFT, and the numerical integration solutions are identical; the 

difference between the numerical integration and the wavelet full matrix solution is 

shown in Figure 5.31, with an RMSE equal to zero mGal. 
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Figure 5.28: Gravity disturbances at the Kananaskis region at 4370 m (up) and 7288 

m (down) altitudes. 
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Figure 5.29: Poisson kernels’ A design matrix (unitless) 
 

5.4.3 Wavelet global fixed thresholding solution 

First, the global thresholding value is computed from the Equation (3.41) or 

(3.42). A compression level equal to 76% is achieved (Figure 5.32), with no loss of 

accuracy in comparison to the numerical integration solution (Figure 5.33). Starting with 

the reference thresholding value (6.3×10-8), it is increased four times by an order of 

magnitude (6.3×10-7, 6.3×10-6, 6.3×10-5, and 6.3×10-4); see Table 5.14. The use of higher 

thresholding values (four global cases) leads to a dramatic decrease in the size of the 

matrix, as shown in Figure 5.34. 

The first three cases have RMSE less than the target accuracy (0.1 mGal); see 

Figure 5.35. For case (d), a higher compression level is achieved but with a large 

degradation in the accuracy (0.308 mGal). The degradation occurs because part of the 

main energy of the A matrix is removed. 
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Figure 5.30: Wavelet full matrix solution for upward continuation (Poisson integral) 

from 4370 m to 7288 m 
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Figure 5.31: Wavelet full matrix solution differences from reference data (up) and 

numerical integration solution (down) 
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Figure 5.32: Design matrix A of the global thresholding values (6.3×10-8); each blue 
spot represents a nonzero value for the upward continuation integral 
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Figure 5.33: Global hard thresholding solution (up) and difference from numerical 

integration solution (down) for the upward continuation integral 
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Table 5.14: Wavelet global fixed thresholding versus wavelet full matrix solution for 
the evaluation of the upward continuation integral 

Hard thresholding Full 
matrix 

Global eq. 
(3.41) or 

(3.42) 
(a) (b) (c) (d) 

Thresholding value - 6.3×10-8 6.3×10-7 6.3×10-6 6.3×10-5 6.3×10-4 

Storage (MB) 186 72.6 60.41 30.94 16.5 9.14 

RMSE (mGal) - 0.000 0.001 0.018 0.098 0.308 

No. of elements 26190775 6349099 5276895 2702207 1441172 797085 

Comp% 0% 76% 79.8% 89.7% 94.5% 97% 
 

 

  
Figure 5.34: A matrix at different thresholding values (6.3×10-7, 6.3×10-6, 6.3×10-5, 

and 6.3×10-4); each blue spot represents a nonzero value in the Poisson kernel. 
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Figure 5.35: Global thresholding solutions at four compression levels in comparison 

to the numerical integration solution for the upward continuation integral 

 

5.4.4 Level/direction-wise thresholding solution 

Different combinations of the thresholding values for the improvement of the four 

global thresholding cases, (a), (b), (c), and (d), are tested. Two examples are illustrated in 

detail. The first combination is shown in Table 5.15 for the global thresholding case (a). 

This combination increases the compression level from 79.8% to 90.8%, with almost no 

loss of accuracy (RMSE is equal to 0.01 mGal). The achieved accuracy is better than the 

targeted practical one (0.1 mGal).  Cases (b) and (c) are similar to case (a), where the 

level direction-wise thresholding approach is used to increase the compression level and 

maintain the RMS accuracy. 
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For case (d), the target is to improve the RMS accuracy without a significant loss 

in the compression percentage; see Table 5.16. The level/direction-wise thresholding 

decreased the compression level by 0.3% (97% to 96.7%) with an RMSE equal to 0.18 

mGal instead of 0.308 mGal, which is still an acceptable practical accuracy. The 

comparison between the global fixed thresholding approach and the level/direction-wise 

thresholding is summarized in Figure 5.36. The red curve is almost horizontal between 

cases (c) and (d), which indicates that the optimum compression level with an acceptable 

accuracy is at the intersection of the two curves, with almost 96.5% compression level. 

 

Table 5.15 Level/direction-wise for case (a) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 6.3×10-6 6.3×10-6 6.3×10-6 
Level 2 6.3×10-6 6.3×10-6 6.3×10-6 
Level 3 6.3×10-7 6.3×10-6 6.3×10-7 
Level 4 6.3×10-7 6.3×10-6 6.3×10-7 

RMSE (mGal) 0.01 
Comp. % 90.8% 

Storage (MB) 29 
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Figure 5.36: Global fixed thresholding versus level/direction-wise thresholding for 
the evaluation of the upward continuation integral 
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Table 5.16: Level/direction-wise for case (d) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 6.3×10-4 6.3×10-3 6.3×10-4 

Level 2 6.3×10-4 6.3×10-3 6.3×10-4 

Level 3 6.3×10-4 6.3×10-4 6.3×10-4 

Level 4 6.3×10-5 6.3×10-5 6.3×10-5 

RMSE (mGal) 0.18 
Comp. % 96.7% 

Storage (MB) 11 
 

5.5 Summary 

New two-dimensional wavelet transform evaluations of several geodetic integrals 

were introduced. Three wavelet transform implementations were introduced: wavelet full 

matrix approach, wavelet global fixed thresholding, and level/direction-direction wise 

thresholding. The wavelet full matrix approach achieved identical results to the FFT and 

the numerical integration approaches when evaluating the Stokes, Vening Meinesz, 

terrain correction, and upward continuation integrals. The automated thresholding 

approach reached compression levels between 70% and 78% for all four integrals, with 

no loss in accuracy in comparison to the numerical integration solution. High 

compression levels were achieved using the global fixed thresholding approach. A 

significant loss in the accuracy occurred when the main energy of the kernel was 

thresholded. 

The level/direction-wise thresholding reached very high compression levels with 

an acceptable accuracy in all cases. The Stokes integral reached a 95.2% compression 

level with 1.3 cm RMSE. In the case of the Vening Meinesz integral, 96.4% were 

achieved with 0.07 arc-second RMS accuracy. The terrain correction integral achieved 

92.7% with 0.1 mGal RMSE. Finally, the upward continuation integral reached a 96.7% 

with 0.18 mGal RMS accuracy. The success of the new wavelet transform algorithm in 

achieving high compression levels with an acceptable accuracy for all the four integrals, 

which have different data sets, different grid size, and spacing, verifies its effectiveness in 

the evaluation of geodetic integrals in planar approximation.  
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From the previously mentioned results, the main outcomes of this chapter can be 

summarized as follows: 

- The level/direction-wise thresholding can achieve a maximum 

compression level with an acceptable practical accuracy, which can be 

used effectively in pre-processing the data and decreasing the amount of 

computer memory and storage required for allocating and saving the 

data and the kernels, respectively. This can open the door for field 

checks during the measuring phase of different projects.  

- As an example of these applications is the upward continuation integral 

and the terrain correction integral that can be used in airborne gravimetry 

applications and the computation of geoid undulations for GPS and 

levelling networks. Due to the high compression levels achieved, which 

are at least 90% for all cases, the corresponding kernels for each 

application can be pre-computed and stored for a large number of 

computational points and then applied whenever needed.  
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Chapter Six: Wavelet evaluation of inverse geodetic problems  

 

Modern observation methods increase the amount of data available for solving 

inverse geodetic problems. Previously, not a lot of attention was drawn to this kind of 

problem, but with the invention of the spaceborne and airborne techniques, such as 

satellite altimetry and airborne gravimetry, inverse problems became more important. In 

this chapter, the evaluation of the different inverse problems will be studied. The inverse 

Vening Meinesz integral, the deflection-geoid formula, the inversion of the Stokes 

integral, and the inversion of the Poisson integral (downward continuation) will be 

evaluated.  

The inverse Vening Meinesz integral and the deflection-geoid formula will be 

solved using wavelet full matrix, wavelet global thresholding, and wavelet 

level/direction-wise thresholding solutions. All these solutions will be compared to the 

reference data and the numerical integration solution. A new method for inverting the 

geodetic integrals will be tested on both the Stokes integral and the Poisson integral. 

Wavelet de-noising will be introduced as a regularization method for solving the noise 

amplification problem. The solution found by inverting the Stokes and the Poisson 

integrals will be compared with the reference data. Global fixed thresholding will be used 

to decrease the size of the matrices required for inverting the geodetic integrals. 

 

6.1 Evaluation of the inverse geodetic integrals 

In this section, the wavelet evaluation of inverse geodetic problems with modeled 

direction convolution formulae will be solved. Two integrals will be evaluated: the 

inverse Vening Meinesz integral and the deflection-geoid integral, using the methodology 

introduced in Section 3.6. The Daubechies wavelet with four vanishing moments will be 

used in both cases. 

 

6.1.1 Evaluation of the inverse Vening Meinesz integral 

The same data introduced in Sections 5.1.1 and 5.2.1 are used in the evaluation. 
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6.1.1.1 Wavelet full matrix solution  

The procedure mentioned in Section 3.5 is used for the evaluation of the inverse 

Vening Meinesz integral (Equation (2.33)).  First, the two-dimensional wavelet transform 

is applied to the vertical and horizontal components of the deflection of the vertical, after 

removing the long wavelength using the EGM96 geopotential model (degree 360). Each 

signal is decomposed into four levels of decomposition. Then, each of the two 

components’ wavelet coefficients is transformed to a column vector ( jaη  and jaξ ) and the 

coefficients are arranged as shown Figure 3.11. Second, the two-dimensional wavelet 

transform with four levels of decomposition is applied to both kernels of the two 

components of the deflection of the vertical corresponding to all the computational 

points.  The two design matrices ijAη  and ijAξ  are built using the wavelet coefficients of 

the geodetic integral kernels; each line corresponds to one kernel (Figure 3.10). The 

solution is achieved by applying Equation (3.61) twice and summing up, as follows: 

i ij j ij jg A a A aη η ξ ξΔ = +          (6.1) 
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Figure 6.1: Inverse Vening Meinesz kernels’ A design matrix (vertical component) 
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The comparison between Figure 6.1 and Figure 5.14 shows that there is an almost 

identical distribution of the values of the two-dimensional wavelet coefficients of the 

kernels. The main difference is the magnitude of these coefficients. As expected, the ratio 

between the values of the two color bars is of the order of 2γ . 

The wavelet full matrix solution is done by Equation (6.1) and the solution is 

shown in Figure 6.2. The difference of the wavelet full matrix solution from the reference 

data has an RMSE 36.78 mGal. As mentioned in Section 5.2.2, part of this difference is 

caused by the inconsistency of the gravity anomalies and the vertical component of the 

deflection of the vertical.  
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Figure 6.2: Wavelet full matrix solution of the inverse Vening Meinesz integral 

 

The inverse Vening Meinesz problem is also evaluated using both the FFT and 

the numerical integration algorithms; both solutions are numerically identical. Figure 6.3 

shows that the wavelet full matrix solution and the numerical integration approach are 

identical numerically with an RMSE equal to 0.00 mGal. This shows that the wavelet 

solution is accurate and at the same level of accuracy as the FFT and the numerical 

integration.  Again, the only drawback of the wavelet approach is the size of the design 

matrices ijAη  and ijAξ , which are equal to 372 MB.  
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RMSE = 36.78 mGal
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Figure 6.3: Wavelet full matrix solution differences from and the reference data 
(left) and the numerical integration solution (right) for the inverse Vening Meinesz 

integral 

 

 

6.1.1.2 Wavelet global fixed thresholding solution 

The global fixed thresholding approach, which is discussed in Section 4.3.1, is 

implemented in the wavelet evaluation of the inverse Vening Meinesz integral. As 

mentioned in Subsection 6.1.1.1, the difference between the design matrices A of the 

direct and the inverse Vening Meinesz integrals is mainly the magnitude of the two-

dimensional wavelet coefficients. These values are larger in the case of the inverse 

Vening Meinesz integral by a factor of 2γ . The thresholding value estimated from 

Equations (3.41) or (3.42) will increase by the same factor. The value is increased from 

7.2×10-13 to 3.2×10-1, which is roughly proportional to 2γ  in mGal. The solution 

corresponding to the estimated value is shown in Figure 6.4. 

 

 

 



106 

 

 

Longitude[deg]

La
tit

ud
e[

de
g]

18.5 19 19.5 20 20.5

39.5

40

40.5

41

41.5

RMSE(76%) = 0.00 mGal

Longitude[deg]

La
tit

ud
e[

de
g]

18.5 19 19.5 20 20.5

39.5

40

40.5

41

41.5

mGal
-150 -100 -50 0 50 100 150

Figure 6.4: The wavelet global fixed thresholding solution with 76% compression 
(left) and the difference from the numerical integration solution (right) for the 

inverse Vening Meinesz integral 

 

The same procedure is followed by increasing the thresholding values estimated 

from Equations (3.41) or (3.42) each time by one order of magnitude higher from the 

previous one. The memory size required for allocating the design matrices decreases 

dramatically with the increase of the thresholding values (Table 6.1). The target accuracy 

is 0.1 mGal RMS; this accuracy is satisfied until the global thresholding case (c) with an 

RMSE equal to 0.14 mGal and 94.4% compression level, as shown in Table 6.1 and 

Figure 6.4. For case (d), there is a dramatic degradation in the accuracy (RMSE of 1.23 

mGal) at a compression level of 96.8%. 

Although the two kernels of the inverse Vening Meinesz and the direct Vening 

Meinesz integrals are identical except for the constants outside the integral, the 

compression percentages in Table 6.1 and Table 5.4 are not identical. The difference is in 

the range of 1% and 3 as a result of the rounding error after multiplying with 2γ  (mGal).  
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Table 6.1: Wavelet global fixed thresholding versus wavelet full matrix solution for 
the inverse Vening Meinesz integral 

Hard thresholding Full 
matrix 

Global Eq. 
(3.41) or 

(3.42) 
(a) (b) (c) (d) 

Thresholding value - 0.32 3.2 32 320 3200 

Storage (MB) 372 102 96 52 29 19 

RMSE (mGal) - 0.000 0.00 0.01 0.14 1.23 

No. of elements 52381550 12516592 11763474 5941194 2931310 1656424 

Comp% 0% 76.1% 77.5% 88.7% 94.4% 96.8% 
 

6.1.1.3 Level/direction-wise thresholding solution 

The level/direction-wise thresholding effectiveness in improving the accuracy of 

the global fixed thresholding approach is tested. The level/direction-wise thresholding 

application to case (a) leads to a 13.4% increase in the compression level with no loss in 

the accuracy; see Table 6.2.  

 

Table 6.2: Level/direction-wise for case (a) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 32 32 32 
Level 2 32 32 32 
Level 3 3.2 32 3.2 
Level 4 3.2 32 3.2 

RMSE (mGal) 0.05 
Comp. % 90.9% 

Storage (MB) 43 
 

Another example is the application of the level/direction-wise thresholding to 

global thresholding case (d) by a combination of five different values (Table 6.3). 

Although the RMSE accuracy is higher than the target accuracy (0.1 mGal) and equal to 

0.22 mGal, the improvement from the global case (1.23mGal) is significant (82%). The 

equivalent loss in the compression level is small and equal to 2.1% (96.8% to 94.7%). 

The comparison between the global fixed case and level/direction-wise thresholding is 
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shown in Figure 6.6 for all four cases (a), (b), (c), and (d). Figure 6.6 shows that the 

maximum compression level is in the range of 94.5% for the target accuracy. 

 

 

RMSE (77.5%) = 0.00 mGal

Longitude[deg]

La
tit

ud
e[

de
g]

18.5 19 19.5 20 20.5

39.5

40

40.5

41

41.5

RMSE (88.7%)= 0.01 mGal

Longitude[deg]

La
tit

ud
e[

de
g]

18.5 19 19.5 20 20.5

39.5

40

40.5

41

41.5

 

RMSE (94.4%)= 0.14 mGal

Longitude[deg]

La
tit

ud
e[

de
g]

18.5 19 19.5 20 20.5

39.5

40

40.5

41

41.5

RMSE (96.8%)= 1.23 mGal

Longitude[deg]

La
tit

ud
e[

de
g]

18.5 19 19.5 20 20.5

39.5

40

40.5

41

41.5

mGal
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 6.5: The difference between the wavelet global fixed thresholding solutions 
and numerical integration solution for the inverse Vening Meinesz integral 
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Figure 6.6: Global fixed thresholding versus level/direction-wise thresholding for the 

evaluation of the inverse Vening Meinesz integral 

 

Table 6.3: Level/direction-wise for case (d) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 320 32000 320 
Level 2 160 3200 160 
Level 3 32 320 32 
Level 4 32 160 32 

RMSE (mGal) 0.22 
Comp. % 94.7% 

Storage (MB) 28 
 

6.1.2 Evaluation of the deflection-geoid formula 

The deflection-geoid formula (Equation (2.36)) is evaluated by the wavelet 

algorithm. The same two components of the deflection of the vertical introduced in 

Figure 5.13 are used. 

 

6.1.2.1 Wavelet full matrix solution  

The deflection-geoid formula design matrix A is shown in Figure 6.7. The 

wavelet full matrix solution is shown in Figure 6.8. The wavelet full matrix solution and 
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the numerical integration are almost identical numerically (Figure 6.9), with an RMSE 

equal to 0.00 m.  
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Figure 6.7: Deflection-geoid kernels’ A design matrix  
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Figure 6.8: Wavelet full matrix solution of the deflection-geoid formula 
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RMSE = 3.38 m
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Figure 6.9: Difference between wavelet full matrix solution and the reference data 
(left), and numerical integration solution (right) for the deflection-geoid formula 

 

The difference from the reference data (Figure 5.1) has an RMS accuracy of 3.38 

m, which is not acceptable. This difference was expected because of the problem in the 

vertical component of the deflection of the vertical used in this solution. The main 

problem again is the size of the two design matrices, which is equal to 372 MB. 

 

6.1.2.2 Wavelet global fixed thresholding solution 

First, the wavelet thresholding value is estimated from Equation (3.41) or (3.42). 

A compression level equal to 76.6% (Figure 6.10) is obtained with no loss of accuracy 

(RMSE equal to zero m) in comparison to the numerical integration solution; see Figure 

6.11. 

Other higher thresholding values are tested; the compression levels achieved and 

the distribution of the values left after the thresholding are shown in Figure 6.12 and  

Table 6.4. It can be recognized that the method used in all the previous cases 

(Stokes, Vening Meinesz, etc.) for increasing the thresholding value works only for case 

(a). For the rest of the cases, case (b), (c), and (d), the degradation in the accuracy is huge 
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and is far away from the target accuracy, which is one centimetre (Figure 6.13). The main 

reason for the sudden degradation in the accuracy, which reaches almost half a metre in 

case (d), is the removal of the main energy of the A matrix. For example, in case (d), all 

the detail wavelet coefficients of all the decomposition levels are removed and only the 

approximation coefficients are left.  

 

Figure 6.10: Design matrix A of the global fixed thresholding (0.12); each blue spot 
represents a nonzero value in the vertical component kernel (deflection-geoid) 
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Figure 6.11: Difference between wavelet global fixed solution and numerical 

integration solution for the deflection-geoid formula 
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Figure 6.12: A matrix at four different thresholding values (1.23, 12.3, 123.3, and 
1233.5); each blue spot represents a nonzero value in the vertical component kernel 
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Figure 6.13: The difference between the wavelet global fixed thresholding and 
numerical integration solutions for the deflection-geoid formula 
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Table 6.4: Wavelet global fixed thresholding versus wavelet full matrix solution for 
the deflection-geoid formula 

Hard thresholding Full matrix
Global Eq. 
(3.41) or 

(3.42) 
(a) (b) (c) (d) 

Thresholding value - 0.12 1.23 12.3 123.3 1233.5 

Storage (MB) 372 48.5 26.4 10.4 6.21 5.62 

RMSE (m) - 0.00 0.00 0.12 0.22 0.45 

No. of elements 52381550 12213178 6253244 1990748 963196 845004 

Comp% 0% 76.6% 88% 96.2% 98.2% 98.4% 
 

6.1.2.3 Level/direction-wise thresholding solution 

Four global thresholding cases are introduced in the previous section; cases (b), 

(c), and (d) require improvement in the accuracy. Global thresholding case (a) requires 

improvement in the compression level while maintaining an acceptable accuracy (RMSE 

equal to 1 cm). Two examples are illustrated in this section in detail. For global case (a), 

the compression level improved by 1% with an acceptable accuracy. The thresholding 

values combined for this improvement are given in Table 6.5. It is worth mentioning that 

the values are different from the values introduced in global cases (b), (c), and (d) 

because it is clear from  

Table 6.4 that these values are over threshold and cut part of the main energy of 

the design matrices A. 

Four thresholding values are implemented for improving global case (d). As seen 

in Table 6.6, the accuracy improved dramatically from 45 cm to 1.5 cm (96% 

improvement) with an 8.4% loss in the compression level (from 98.4% to 90%). 

Consequently, the level/direction-wise approach effectively improved the accuracy with a 

high compression level. From Figure 6.14, it is seen that the maximum compression level 

that can be achieved with acceptable accuracy (1 cm) is between 89% and 90%.  
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Table 6.5: Level/direction-wise for case (a) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 2.4 12 2.4 
Level 2 1.2 1.2 1.2 
Level 3 1.2 1.2 1.2 
Level 4 1.2 1.2 1.2 

RMSE (m) 0.01 
Comp. % 89.1% 

Storage (MB) 23 
 

Table 6.6: Level/direction-wise for case (d) global thresholding 

Level/direction-wise Horizontal Diagonal Vertical 
Level 1 3 12 3 
Level 2 1.2 12 1.2 
Level 3 1.2 12 1.2 
Level 4 1.2 1.2 1.2 

RMSE (m) 0.015 
Comp. % 90% 

Storage (MB) 20 
 

 

10-1 100 101 102 103 10410-4

10-3

10-2

10-1

100

 ← 76%

 ← 88%

 ← 96.2%

 ← 98.2%

 ← 98.4%

Threshold value

R
M

S
E

 (m
)

 

 

 ← 89.1%  ← 89.3%
 ← 89.4%

 ← 90%

Fixed global thresholding
Level direction-wise thresholding

 
Figure 6.14: Global fixed thresholding versus level/direction-wise thresholding for 

the deflection-geoid formula 
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6.2 Inversion of geodetic integrals 

In the previous sections, inverse geodetic integrals were evaluated. In this section, 

another approach is introduced for solving inverse geodetic problems. The solution will 

be through inverting the direct integrals introduced in Chapter Five. The solution is 

obtained by means of a combination of the two-dimensional wavelet evaluation based on 

Mallat’s algorithm and an optimization procedure. The Stokes and the Poisson integrals 

are inverted numerically by the combined wavelet-optimization algorithm. This algorithm 

is combined with the global thresholding technique.  

 

6.2.1 Wavelet inversion of the Stokes integral 

The Stokes integral, Equation (2.7), is inverted in the wavelet domain to obtain 

gravity anomalies from geoid undulations. The same synthetic data shown in Figure 5.1 

is reused. The Daubechies wavelet family with four vanishing moments is implemented 

for the wavelet evaluation. The Stokes integral is inverted in the wavelet domain by the 

wavelet full matrix approach and global fixed thresholding. The methodology of 

investigation summarized in Figure 3.12 is used. Finally, the wavelet transform is used as 

a regularization tool for de-noising stationary and non-stationary noise during the 

inversion of the Stokes integral. 

 

6.2.1.1 Wavelet full matrix solution  

The design matrix A shown in Figure 5.4 is used in the inversion of the Stokes 

integral. The wavelet full matrix solution has an RMSE equal to 4.03 mGal in 

comparison to the gravity anomaly reference data (Figure 5.1); see Figure 6.15. The 

tolerance value used is equal to 1×10-6. The solution converged after 101 iterations with 

relative residual equal to 9.3×10-7 (Table 6.7), but the main problem is the size of the 

design matrix A (186 MB). The solution CPU time on a PC was approximately 0.21 

second.  
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Figure 6.15: Wavelet full matrix solution for the inversion of the Stokes integral 
(left) and the difference from the reference data (right) 

 

6.2.1.2 Wavelet global fixed thresholding solution 

Global hard thresholding is applied to the design matrix. The matrix introduced in 

Section 5.1.3 and Figure 5.8 is used for the inversion of the Stokes integral. There is no 

loss of accuracy at a compression level equal to 75% (RMSE of 4.03 mGal) in 

comparison with the reference data and in comparison to the full matrix solution (RMSE 

equal to zero mGal); see Figure 6.16. 

The same thresholding values introduced in Section 5.1.3 and the corresponding 

four matrices shown in Figure 5.10 are tested for inverting the Stokes integral with the 

wavelet–optimization algorithm. As shown in Figure 6.17, the first two solutions (cases 

(a) and (b)) converged after 102 and 105 number of iterations, respectively. The third 

solution, case (c), converged but with more iterations (134 iterations) and 8.6×10-7 

relative residual. The fourth solution diverged and did not reach a solution even after 188 

iterations. The four cases are illustrated in Table 6.7. From Table 6.7 and Figure 6.18, it 

can be seen that cases (c) and (d) do not have acceptable accuracy in comparison to the 

full matrix case, with 7.7 and 24.72 mGal RMSE, respectively. For case (b) with a 93.5% 
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compression level, an RMSE of 0.12 mGal is achieved in comparison to the full matrix 

solution.  
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Figure 6.16: Global fixed thresholding wavelet solution (left) and difference from 
reference data (right) for the inversion of the Stokes integral 
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Figure 6.17: Conjugate gradient iterations versus relative residuals (inversion of the 
Stokes integral) 
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Figure 6.18: The difference between the wavelet global fixed thresholding and 
reference data for the inversion of the Stokes integral 
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Table 6.7: Global thresholding versus full matrix solution for the inversion of the 
Stokes integral 

Hard thresholding Full 
matrix 

Global 
Eq. (3.41) 
or (3.42)

(a) (b) (c) (d) 

Thresholding value - 1.5×10-7 1.5×10-6 1.5×10-5 1.5×10-4 1.5×10-3 

Storage (MB) 186 50 36 16 8 6 

RMS (mGal) 4.03 4.03 4.03 4.15 11.73 24.72 

No. of elements 26190775 6506135 4460519 1696296 629575 445852 

Comp% 0% 75% 83% 93.5% 97.6% 98.3% 

No. of iterations 101 101 102 105 134 188 

Relative residual 9.3×10-7 9.3×10-7 9.7×10-7 8.4×10-7 8.6×10-7 1×10-4 
 

 

6.2.1.3 Wavelet as a regularization tool 

The wavelet full matrix solution, Subsection (6.2.1.1), is repeated after adding 

stationary and non-stationary noise to the geoid undulations. The stationary random noise 

is simulated with a standard deviation equal to 50 cm as shown in Figure 4.16. The 

solution is obtained with the contaminated data and is shown in Figure 6.19. It can be 

recognized that there is a significant degradation in the accuracy of the solution from an 

RMSE of 4.03 mGal to an RMSE of 290 mGal. 

The soft thresholding technique is applied to the contaminated geoid undulations. 

The RMSE of the recovered geoid undulations is 17 cm in comparison to the clean data 

(Section 4.4.2). The solution is repeated with the de-noised geoid undulations and a 

significant improvement in the solution is obtained. The RMSE decreased from 290 

mGal to 25 mGal, a 90% improvement. This shows the effectiveness of the soft 

thresholding technique, Equations (3.43) and (3.44), in handling and de-noising 

stationary random noise. 
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Figure 6.19: Difference between the solution from the noisy geoid undulations 

(stationary) and the reference data for the inversion of the Stokes integral 
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Figure 6.20: Difference between the solution from the de-noised geoid undulations 

(stationary) and the reference data for the inversion of the Stokes integral 
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The non-stationary noise is simulated using four different noise levels (±5 cm, 

±15 cm, ±35 cm, and ±55 cm). Each noise level is used for a quarter of the clean 

undulations matrix. A bias of 10 cm is added to the first noise level and a bias of 5 cm is 

added to the second. The simulated non-stationary noise and the geoid undulation after 

the addition of the non-stationary noise are shown in Figure 4.9. With the non-stationary 

noisy data, a huge degradation occurs in the solution, with an RMSE equal to 221 mGal 

(Figure 6.21). 
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Figure 6.21: Inversion of the Stokes integral with non-stationary noise 
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Figure 6.22: Inversion of the Stokes integral after de-noising the non-stationary 

noise 
 

After applying the wavelet de-noising algorithm, Equations (3.43) and (3.44), the 

recovered undulations have an RMSE equal to 13 cm (Figure 4.20), and the solution 

improved to an RMSE equal to 20 mGal (Figure 6.22). The use of the wavelet soft 

thresholding filtering technique leads to a 90% improvement in the accuracy of the 

estimated gravity anomalies. This finding proves that the wavelet filtering technique is an 

efficient regularization method (de-noising) in solving inverse geodetic integrals.  

 

6.2.2 Wavelet inversion of the Poisson’s integral (downward continuation) 

The Poisson integral in Section 2.2 is used for downward continuation. Equation 

(2.31) is inverted by the combined optimization-wavelet algorithm introduced in Section 

3.5. The same data shown in Section 5.4.1 and Figure 5.28 is used. The data is downward 

continued from 7288 m to 4370 m altitude. 
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6.2.2.1 Wavelet full matrix solution  

The Poisson integral is inverted numerically with the full matrix without any 

thresholding. The iteration diverged with a tolerance value equal to 1×10-6. The 

difference between the diverged solution and the reference data (Figure 5.28) is shown in 

Figure 6.23.  
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Figure 6.23: The wavelet full matrix inversion of the Poisson integral (downward 

continuation) before regularization (up) and after regularization (down) 
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The condition number of the normal matrix was computed for the determination 

of the instability of the problem and was equal to 7.02×1028, which is huge. The singular 

value decomposition was done for the normal matrix. The L-curve between the residual 

and solution norms to determine the regularization parameter to be used in Tikhonov 

regularization is shown in Figure 6.24 [Hansen, 1998]. The regularization parameter from 

Figure 6.24 is added to the diagonal of the normal matrix, and the solution is repeated. 

The solution converged after the regularization with 28 steps. The difference between the 

regularized wavelet full matrix solution (Figure 6.25) and the reference data was shown 

in Figure 6.23, with an RMSE equal to 5.58 mGal. 
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Figure 6.24: L-curve of the normal matrix for the choice of the optimal 
regularization parameter 
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Figure 6.25: Wavelet full matrix regularized solution for the downward 

continuation operator 
 

 

6.2.2.2 Wavelet global fixed thresholding solution 

The design matrix shown in Figure 5.32 is used in the inversion of the Poisson 

integral. With a 76% compression level, there is almost no loss in accuracy in comparison 

to the full matrix regularized solution (same RMSE of 5.58 mGal); see Figure 6.26. 

The four global thresholding values with their corresponding matrices shown in 

Figure 5.34 are used for the inversion of the Poisson integral (downward continuation). 

The four cases converged after 28 iterations with a tolerance value equal to 1×10-6 

(Figure 6.27). The same regularization parameter was used in the four cases. The four 

solutions converged with RMSE 0.001, 0.01, 0.11, and 0.37 mGal for 79.9%, 89.7%, 

94.5%, and 97%, respectively; see Figure 6.28 and Table 6.8. The target accuracy is 0.1 

mGal and this is satisfied by cases (a), (b) and (c). For case (d), a sudden degradation in 

the accuracy occurred to 0.37 mGal. In contrast to the inversion of the Stokes integral 

case (d), Table 6.7, the downward continuation case (d) converged, which could be 

related to the regularization parameter used in this case.  
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Figure 6.26: Difference between regularized global fixed solution and reference data 

for the downward continuation operator 
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Figure 6.27: Conjugate gradient iterations versus relative residuals for the inversion 
of Poisson integral (downward continuation) 
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Figure 6.28 The difference between the regularized wavelet global fixed 

thresholding solutions and reference data for the downward continuation operator 
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Table 6.8: Wavelet global fixed thresholding versus wavelet full matrix solution for 
the evaluation of the downward continuation operator 

Hard thresholding Full 
matrix 

Global 
Eq. (3.41) 
or (3.42)

(a) (b) (c) (d) 

Thresholding value - 6.3×10-8 6.3×10-7 6.3×10-6 6.3×10-5 6.3×10-4 

Storage (MB) 186 72.6 60.41 30.94 16.5 9.14 

RMSE (mGal) - 0.000 0.001 0.01 0.11 0.37 

No. of elements 26190775 6349099 5276895 2702207 1441172 797085 

Comp% 0% 76% 79.8% 89.7% 94.5% 97% 

No. of iterations 27 27 28 28 28 28 

Relative residual 9.9×10-7 9.9×10-7 6.7×10-7 7.5×10-7 7.7×10-7 7.2×10-7

 

 

6.3 Summary 

In this chapter, the inverse geodetic problems were evaluated by the two-

dimensional wavelet transform algorithm. They were formulated in two different ways: 

first, as direct geodetic integrals, such as the inverse Vening Meinesz and the deflection-

geoid formula; and, second, as the numerical inversion of the Stokes integral and the 

Poisson integral (downward continuation).  

In the case of the inverse Vening Meinesz and the deflection-geoid formula, three 

wavelet transform implementations were introduced: the wavelet full matrix approach, 

wavelet global fixed thresholding, and level/direction-wise thresholding. The wavelet full 

matrix approach achieved identical results to the FFT and numerical integration. The 

automated thresholding approach reached a 76% compression level in both cases, with no 

loss in accuracy in comparison to the numerical integration solution. The level/direction-

wise thresholding achieved very high compression levels with an acceptable accuracy in 

both cases. The inverse Vening Meinesz reached a 94% compression level with 0.12 
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mGal RMSE. In the case of the deflection-geoid formula, 90% were achieved with   

0.015 m RMS accuracy. 

The new wavelet two-dimensional representation of the geodetic operators 

introduced in this thesis was combined with the conjugate gradient method for the 

inversion of the integrals. The Stokes and the Poisson integrals were numerically inverted 

by this combined wavelet-optimization algorithm. The main drawback of this approach is 

that it requires a large computer memory. 

The Stokes integral was inverted successfully with the wavelet full design matrix 

with an RMSE 4.03 mGal for the difference from the reference data. A compression level 

of 93.5% is achieved by the global fixed thresholding with RMSE equal to 0.13 mGal in 

comparison to the full matrix solution. Simulated noise was used to contaminate the 

geoid undulations. For this case study, the use of wavelet de-noising led to a 90% 

improvement in the accuracy of the estimated gravity anomalies. 

 The inversion of the Poisson integral failed: because the ill-condition of the 

normal matrix, the conjugate gradient solution diverged. A regularization parameter was 

determined from the L-curve of the normal matrix and was added to the diagonal of the 

normal matrix (Tikhonov regularization). The solution successfully converged with the 

regularized full matrix and reached a solution with RMSE equal to 5.5 mGal in 

comparison to the reference data. The global fixed thresholding algorithm achieved 0.11 

RMSE with a 94.5% compression level in comparison to the full matrix solution. 

The main findings of this chapter led to the following outcomes: 

- The success of the new wavelet transform algorithm to achieve high 

compression levels with an acceptable accuracy in the inversion of 

geodetic integrals that have different data sets, different grid sizes, and 

spacing verifies its effectiveness in the inversion of geodetic integrals in 

planar approximation. 

- The level/direction-wise thresholding method is very useful for geodetic 

operators with two integrals, such as the deflection-geoid formula and 

the inverse Vening Meinesz integral, because it decreases the computer 
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memory and storage required for allocating the design matrices 

significantly, which helps in the simple implementation of these types of 

operators on simple PC’s. 

- The power of wavelets to localize different features with different 

properties in the frequency domain and in the spatial domain, allows the 

effective determination of noisy data with different properties and noise 

levels. Consequently, this determination will help in more efficient 

handling and de-noising of these types of data with non-stationarity 

noise. These findings will open the door for using this wavelet technique 

in a number of applications with a very high non-stationarity 

environment, such as airborne gravimetry and satellite altimetry. 
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Chapter Seven: Conclusions and recommendations  

 

New developments in the application of the two-dimensional wavelet transform 

for the evaluation of geodetic operators have been presented. Eight geodetic operators 

have been evaluated by the wavelet algorithm. The algorithm accuracy is numerically 

identical to the well-established fast Fourier transform and the numerical integration. The 

main drawbacks of the algorithm, which are the size of the matrices and the memory 

required, are overcome by an automated adaptive thresholding algorithm. The 

localization and de-noising properties of the wavelet transform have been used efficiently 

as regularization tools for the inversion of geodetic integrals. 

 

7.1 Summary 

In this thesis, eight geodetic operators have been evaluated using the new wavelet 

algorithm implemented. The results obtained are summarized below: 

- The Stokes integral with the wavelet full matrix solution achieved 

identical results to the FFT and numerical integration. The target 

accuracy for this application was 1 cm. The modified fixed global 

thresholding achieved a 93.5% compression level with an acceptable 

accuracy of 6 mm, with a 1.5×10-5 thresholding value. The 

level/direction-wise thresholding technique improved the compression 

level to 95.2% with an RMSE equal to 1.3 cm. 

- The Vening Meinesz integral with the full matrix solution also achieved 

identical results as FFT and numerical integration. The global fixed 

thresholding yielded a 95.5% compression with a 0.07 arc-second 

RMSE. The level/direction-wise increased the compression level by an 

extra 1% with no loss in the accuracy. 

- The terrain correction integral wavelet solution was the same as the 

numerical integration and FFT. The target accuracy for this application 

was 0.1 mGal. A 93% compression level was reached by global fixed 
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thresholding with an RMSE of 0.13 mGal. The level/direction-wise 

approach optimized the compression level and the accuracy to 92.7% 

and 0.09 mGal, respectively. 

- The upward continuation integral evaluation gave similar results to the 

FFT and the numerical integration algorithm. The target accuracy for 

this application was 0.1 mGal. In the case of global fixed thresholding, 

94.5% compression was achieved with an RMSE of 0.09 mGal. The 

level/direction-wise thresholding increased the compression level by 

1.2% with an RMSE equal to 0.18 mGal.  

- The inverse geodetic operators were treated in two different ways. The 

inverse Vening Meinesz and deflection-geoid were treated as geodetic 

integrals. The inversions of the Stokes and Poisson integrals (downward 

continuation) were done numerically by combining the new wavelet 

algorithm implemented and the iterative conjugate gradient method.  

- The inverse Veining Meinesz evaluated with the full matrix solution 

achieved identical accuracies to the FFT and the numerical integration 

solution. The global fixed thresholding reached a 94.4% compression 

level with an RMSE of 0.14 mGal. The level/direction-wise 

modification improved the accuracy by 80% at high compression levels. 

- The deflection-geoid formula evaluation done by the wavelet full matrix 

had the same accuracy as FFT and numerical integration. An 88% 

compression was achieved with no loss of accuracy. The level/direction-

wise thresholding improved the compression level by an additional 2%, 

with an RMSE of 1.5 cm.  

- The Stokes’ integral was inverted successfully using the full wavelet 

matrix without regularization. The solution achieved an RMSE of 4.03 

mGal in comparison to the reference data. The solution with the 

conjugate gradient method converged after 101 iterations. The global 
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thresholding approach achieved a 93.5% compression level with 0.12 

mGal loss in accuracy in comparison to the full matrix solution.  

- The Poisson integral was inverted numerically. The solution diverged by 

using the wavelet full matrix approach. Tikhonov regularization was 

used, and the regularization parameter was chosen from the L-curve. 

The conjugate gradient method converged to the solution after 28 

iterations with an RMS accuracy equal to 5.5 mGal in comparison to the 

reference data. The global fixed thresholding led to a 94.5% 

compression level with 0.1 mGal loss in the accuracy in comparison to 

the full matrix solution. 

 

7.2 Conclusions 

A new implementation of two-dimensional wavelet transform for the evaluation 

of geodetic operators was developed. The five main accomplishments of this thesis can 

be summarized as follows: 

1. The direct and inverse geodetic integrals (Stokes, Vening Meinesz, 

upward continuation, terrain correction, inverse Vening Meinesz, and 

deflection-geoid formula) were efficiently evaluated by the new wavelet 

algorithm with an accuracy identical to the FFT and numerical integration 

solutions. The new wavelet algorithm requires a 30% less computational 

effort in comparison to the standard wavelet algorithm, because the step of 

inverse wavelet transform is done implicitly. 

2. A new combined wavelet-optimization technique is used for the inversion 

of geodetic integrals. Two integrals (Stokes and Poisson) were 

successfully inverted with an acceptable practical accuracy in comparison 

to reference data. 

3. Two new thresholding techniques, global fixed and level/direction-wise 

thresholding, were successfully applied and high compression levels of the 

matrices were achieved for the eight operators with no loss of accuracy.  
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4. Efficient filtering of stationary and non-stationary noise was implemented, 

with a 90% improvement in the inverse solutions accuracy. 

5. The thresholding value was estimated automatically from the set of 

equations introduced in this thesis for both compression and de-noising 

applications. 

As a general conclusion, the new wavelet algorithm developed in this thesis is an 

efficient algorithm for the evaluation of different geodetic operators with high accuracy, 

de-noising efficiency, and reduced computational effort. More detailed conclusions are 

summarized in the following paragraphs. 

The thresholding value for Stokes-type kernels (direct and inverse) and the 

deflection-geoid formula are 1×10-4; the direct and inverse Vening Meinesz integrals are 

1×10-6; for the terrain correction, upward and downward continuation are 1×10-8.  

The corresponding compression levels are in the range of 78% to 84% with no 

loss in accuracy depending on the operator. This finding shows that the hard thresholding 

technique is adaptive to the rate of decay of the kernel to zero.  

Two modifications were successfully implemented for the compression of the 

wavelet transform algorithm design matrices. In some cases, the first modification (global 

fixed thresholding) achieved a 90% compression with high accuracies.  The second 

modification (level/direction-wise) successfully reached compression levels in the range 

of 90% to 95% with no loss in accuracy depending on the operator. It can be concluded 

that these two modifications achieved maximum compression levels with an accepted 

accuracy. 

In the case study tested in this thesis, the soft thresholding de-nosing technique 

can be successfully applied to filtering of stationary and non-stationary noise. The de-

noising technique removed 60% of the data noise in both cases. This technique efficiently 

improved the solution of the inverted Stokes integral by 90%. 

As final conclusions, the wavelet transform algorithm will be efficient in handling 

geodetic problems with non-stationary environments. These types of problems will 

benefit from the analysis and de-noising effectiveness of the wavelet algorithm. 
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Examples of these applications are airborne gravimetry and satellite altimetry. Also, the 

new, efficiently developed wavelet representation algorithm of geodetic operators 

implemented and evaluated in this study will open the door for more applications and 

studies in the use of the wavelet transform in different geodetic problems. 

 

7.3 Recommendations and open problems 

The following is a list of some of the areas requiring future work and further 

investigation: 

- A small edge effect was detected in the wavelet solution of the geodetic 

integrals. This effect was amplified in the case of the inversion of these 

integrals. It was minimized by the application of zero padding, but 

further investigation is required to identify its cause and propose a way 

for treating it. 

- The Daubechies wavelet family was used in this study. The choice of 

this family relied on suggestions from the author’s experience, other 

studies, and the wavelet literature. It is recommended to test other 

orthogonal wavelets, especially since there are a large number of 

wavelet families available. 

- Although the thresholding value is automatically estimated in both the 

compression and de-noising cases, the decision on the number of levels 

of decomposition was made through trial and error. It will be very 

beneficial if further studies develop techniques to automate the 

estimation of the number of levels of decomposition. 

- Other thresholding techniques, such as penalized thresholding [Birge 

and Massart, 1997], should be tested for de-noising in order to improve 

the extraction of the signal from noise, more than the 60% achieved 

here. 

- The regularization method and the parameter estimation technique used 

for the stabilization of the inverse problems require more investigation 
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to ensure the choice of the most suitable method and optimal parameter, 

such as using the probabilistic method [Rauhut, 1992]. 

- The wavelet algorithm introduced in this thesis requires modifications 

for its application on irregular grids and testing non-stationary kernels 

and their effects; an example is the use of second generation wavelets 

[Soltanpour et al., 2006]. 

The introduced wavelet representations of different geodetic operators are in 

planar approximation. Further research is required for the implementation of the new 

wavelet algorithm on a sphere suitable for the representation of different geodetic 

operators. The main problem in this implementation is performing the convolution on a 

sphere. The following three methods are suggested for doing future research on this 

problem: 

- Gridding the data on an equidistant grid on the sphere in the local area 

of interest [Freeden et al., 1998].  

- Combining the wavelet algorithm with a least-squares procedure for the 

estimation of the wavelet coefficients point-wise [Schmidt et al., 2005]. 

- The combination of numerical integration in the meridian direction and 

wavelet transform in the parallel direction for the wavelet evaluation of 

the different geodetic operators on a sphere. 

Given the current state of technology of the new LEO missions dedicated to 

gravity field research, there is a new era in geodetic research offering many challenges 

and promising applications. The implementation of spherical wavelets and an efficient 

multi-resolution analysis with orthogonal properties and a fast computational scheme will 

produce computational tools for many applications, such as monitoring temporal 

variations of numerous global geophysical signals all over the globe. For example, the 

multi-resolution analysis of monthly gravitational field models derived from GRACE 

satellite observations provide temporal variations, such as from hydrological effects that 

can be observed clearly in certain wavelet scales [Fengler et al., 2006]. Therefore, 

temporal gravity field modeling, at scales from local to global, could benefit by the 
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analysis, de-noising, localization, and evaluation capabilities provided by wavelet-based 

methods both on the plane and sphere. 
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