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ABSTRACT

This research investigates some problems on the refinements of the solutions of the

geodetic boundary value problems. The main results of this research are as below:

Supplements to the Runge theorems are developed, which provide important guarantees

for the approximate solutions of the gravity field, so that their guarantees are more

sufficient.

A new ellipsoidal correction formula has been derived, which makes Stokes’s formula

error decrease from O(e2) to O(e4). Compared to other relative formulas, the new formula

is very effective in evaluating the ellipsoidal correction from the known spherical geoidal

heights. A new ellipsoidal correction formula is also given for the inverse Stokes/Hotine

formulas.

The second geodetic boundary value problem (SGBVP) has been investigated, which will

play an important role in the determination of high accuracy geoid models in the age of

GPS. a generalized Hotine formula, the solution of the second spherical boundary value

problem, and the ellipsoidal Hotine formula, an approximate solution of the second

ellipsoidal boundary value problem, are obtained and applied to solve the SGBVP by the

Helmert condensation reduction method, the analytical continuation method and the

integral equation method.

Four models showing the local characters of the disturbing potential and other gravity

parameters have been established. Three of them show the relationships among the

disturbing density, the disturbing potential and the disturbing gravity. The fourth model

gives the “multi-resolution” single-layer density representation of the disturbing

potential. The important character of these models is that the kernel functions in these

models decrease fast, which guarantees that the integrals in the models can be evaluated

with high accuracy by using mainly the high-accuracy and high-resolution data in a local

area, and stable solutions with high resolution can be obtained when inverting the

integrals.
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0 Introduction

The main purposes of physical geodesy are the determination of the external gravity field

and the geoid. Traditionally, these tasks are handled by solving the third geodetic

boundary value problem in which the input data are gravity anomalies on the surface of

the Earth. With the advancement of the gravimetric techniques, some new types of

gravity data, such as the gravity disturbance data on the Earth’s surface, airborne gravity

data, satellite gravity data, etc., arise, and the accuracy and resolution of the data are

improved constantly. So it becomes very important to utilize all these data for

determining the high-resolution external gravity potential of the Earth. This research will

discuss some aspects of refining the solutions of the geodetic boundary value problems

(BVPs) to accommodate the developments of the gravimetric techniques.

In this chapter, we will briefly introduce the background of the research, the open

problems to be treated here and the outline of this thesis.

0.1 Background and literature review

Since the days of G.G. Stokes (Stokes, 1849), Stokes’s formula has been an important

tool in the determination of the geoid. Rigorously, Stokes’s formula is a solution of the

third spherical BVP. The input data, which must be given on the geoid, are the gravity

anomalies obtained from gravity and leveling observations. To apply Stokes’s formula

for the determination of the geoid, several schemes of transforming the disturbing

potential, such as Helmert’s condensation reduction and the analytical continuation

method, have been employed (Moritz, 1980; Wang and Rapp, 1990; Sideris and

Forsberg, 1991; Martinec and Vanièek, 1994; Vanièek and Martinec, 1994; Vanièek et

al., 1999).  To avoid the transformation of the disturbing potential, Molodensky et al.
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(1962) and Brovar (1964) proposed respectively the integral equation methods to directly

solve the third geodetic BVP. Similar to the analytical continuation method, the

approximate solutions of Molodensky’s and Brovar’s methods are also expressed by

Stokes’s formula plus correction terms. In the past 35 years, further advances in the

theory of the third geodetic BVP have been achieved. Some of these advances are the

achievements of Molodensky et al. (1962), Moritz (1980), Cruz (1986), Sona (1995),

Thông (1996), Yu and Cao (1996), Martinec and Grafarend (1997b), Martinec and

Matyska (1997), Martinec (1998), Ritter (1998), Fei and Sideris (2000), etc., on the

solution of the third ellipsoidal BVP. The resulting solutions of the third ellipsoidal BVP

make the errors of the order of the Earth’s flattening in the application of Stokes’s

formula decrease to the order of the square of the Earth’s flattening.

The third geodetic BVP is based on gravity anomalies which can be obtained from

gravity and leveling observations. A reason of employing the solution of the third

geodetic BVP in the determination of the disturbing potential is that, in the past, gravity

anomalies were the only disturbing gravity data that could be obtained accurately. M.

Hotine at the end of the 1960’s proposed a solution of the disturbing potential (Hotine’s

formula) which uses gravity disturbances as input data. The gravity disturbance is another

kind of disturbing gravity, which can be evaluated from the gravity and the geodetic

height of the observation point. Since the geodetic height could not be obtained directly

by conventional survey techniques, Hotine and other authors (see, e.g., Sjoberg and Nord,

1992; Vanicek et al., 1991) had to employ an approximate geoidal height to obtain the

gravity disturbance. Thanks to the advent of GPS techniques, the geodetic height can now

be easily observed with very high accuracy. Consequently, the gravity disturbance can be

easily obtained with a high accuracy. Therefore, for the second geodetic BVP, which is

based on gravity disturbances, research parallel to what has been done for the third

geodetic boundary value problem is very important in the era of GPS.

The third and second geodetic BVPs are all based on disturbing gravity data distributed

over the globe. However, the gravity data over the oceans are hard to be obtained via

conventional gravimetry. With the advent of satellite altimetry, the geoidal heights over
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the oceans can be measured with a high accuracy.  From these geoidal height data, the

disturbing potential outside the Earth’s surface can be evaluated via the Poisson formula,

the solution of the first spherical boundary value problem. Besides that, disturbing gravity

can also be recovered from these geoidal height data. To invert these data into the

disturbing gravity data, many methods have been proposed (Balmino et al., 1987; Zhang

and Blais, 1995; Hwang and Parsons, 1995; Olgiati et al., 1995; Sandwell and Smith,

1996; Kim, 1996; Li and Sideris, 1997). One of the methods is to employ the inverse

Hotine/Stokes formulas, which are directly derived from Poisson’s formula. Similar to

Stokes’s formula, the Poisson formula and the inverse Hotine/Stokes formulas are all

spherical approximation formulas. The application of these formulas will cause an error

of the order of the Earth’s flattening. To decrease the effect of the Earth’s flattening on

these formulas, Martinec and Grafarend (1997a) gave a solution of the first ellipsoidal

boundary value problem while Wang (1999) and Sideris et al. (1999) proposed to add an

ellipsoidal correction term to the spherical disturbing gravity recovered from altimetry

data via the inverse Hotine/Stokes formulas.

The three boundary value problems discussed above are the basic boundary value

problems. They only deal with a single type of gravity data (gravity anomalies, gravity

disturbances or geoidal heights). To deal with multi-type data at the same time, many

other geodetic BVPs, such as Bjerhammar’s problem (Bjerhammar, 1964; Bjerhammar

and Svensson, 1983; Hsu and Zhu, 1984), the mixed BVPs (Sanso and Stock, 1985;

Mainville, 1986; Yu and Wu, 1998), the overdetermined BVPs (Rummel, 1989) and the

two-boundary-value problem (Ardalan, 1999; Grafarend et al., 1999), etc., have been

proposed. Bjerhammar’s problem deals with the determination of a disturbing potential

harmonic outside a sphere, called Bjerhammar sphere, from gravity data on or outside the

Earth’s surface. This disturbing potential can be simply represented by Stokes’s formula

(Bjerhammar, 1964) or a single-layer potential formula (Hsu and Zhu, 1984). The model

parameters (the fictional gravity anomalies or the fictional single-layer densities) in these

representations of the disturbing potential are obtained by means of the inversion of the

gravity data.  A basic question in Bjerhammar’s problem is whether the disturbing
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potential, which is harmonic outside the Earth, can be approximated by the function

harmonic outside the Bjerhammar sphere. This question is perfectly answered by Runge’s

theorems in physical geodesy (Moritz, 1980): the Runge-Krarup theorem (Krarup, 1969;

Krarup, 1975) and the Keldysh-Lavrentiev theorem (Bjerhammar, 1975). Besides

Bjerhammar’s problem, the analytical continuation method for the geodetic boundary

value problems also needs the guarantee of the Runge theorems. However, the Runge

theorems only guarantee the disturbing potential can be approximated by the solution of

Bjerhammar’s problem. The derivatives of the disturbing potential are not involved in the

theorems. Therefore the guarantee provided by the Runge theorems is not sufficient for

the theory mentioned above since the geodetic problems usually involve the first-order

derivative of the disturbing potential. It is thus valuable to give supplements to the Runge

theorems so that they involve the derivatives of the disturbing potential.

Compared to satellite gravity data, the ground gravity data have better accuracy and

resolution. They depict in detail the character of the gravity field. However, dense ground

gravity data are only available in some local areas such as Europe and North America. In

other areas and especially on the oceans, the best gravity data are those obtained from

satellite measurements, which are globally producing gravity data with higher and higher

accuracy and resolution. To solve the incomplete global coverage of accurate gravity

measurements in the determination of the geoidal heights, Stokes’s formula is modified

so that the results can be evaluated from the input data in a local area (Vanicek and

Sjoberg, 1991; Sjoberg and Nord, 1992; Gilliland, 1994; Vanicek and Featherstone,

1998). The important character of the modified Stokes formulas is that their kernel

functions decay faster than the original Stokes function. The relationship models of the

quantities of the anomalous gravity field established by kernel functions decaying fast are

called the local relationship models (see Paul, 1991; Fei and Sideris, 1999). Another

significance of these local relationship models is that we can obtain stable solutions with

high resolution when we invert the integrals in the models. This property is very

important to determine the parameters of the anomalous gravity field with high resolution

by means of inversion of high-resolution gravity data.
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0.2 Outline of the thesis

In this thesis, we will discuss some refinements of the solutions of the geodetic boundary

value problems. The following is the outline of our work:

Chapter 1 is an introduction of some basic knowledge of the Earth’s gravity field theory,

which includes the definitions of the quantities of the gravity field, basic problems of the

gravity field theory and their solutions, and some open problems.

In chapter 2, we give supplements to Runge-Krarup’s theorem and Keldysh-Lavrentiev’s

theorem so that these two theorems involve the derivatives of the disturbing potential.

Chapter 3 discusses the ellipsoidal correction to Stokes’s formula. The discussion

includes a theoretical part from which a new ellipsoidal correction formula is developed,

and a numerical test of the new ellipsoidal correction formula.

Chapter 4 discusses the ellipsoidal corrections to the inverse Hotine/Stokes formulas.

In chapter 5, we propose several approximate methods for solving the second geodetic

boundary value problems. The work includes the generalized Hotine formula, the

ellipsoidal correction to Hotine’s formula and three methods for considering the effect of

topographic mass in the application of Hotine’s formula.

Finally, in chapter 6, we investigate the local character of the anomalous gravity field.

Four local relationship models are established. Three of which show the local

relationships among the disturbing potential, disturbing gravity and disturbing density.

The fourth model is a “multi-resolution” representation of the disturbing potential, which

is a generalization of the single-layer potential solution of Bjerhammar’s problem.

Chapter 7 lists the major conclusions of this research and recommendations for further

work.
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1 Theoretical Background and Open Problems

This preparatory chapter is intended mainly to introduce the basic background knowledge

of this research on the Earth’s gravity field. Sections 1 to 4 review the basic concepts of

the Earth’s gravity field, the problems of physical geodesy, the methods for determining

the Earth’s gravity field and Runge’s theorems in physical geodesy. Section 5 introduces

some open problems on the refinements needed for the determination of the Earth’s

gravity field.

Like in most publication in the geodetic literature, this thesis is restricted to what can be

called “classical physical geodesy”: both the figure of the Earth and its gravity field are

considered independent of time.

1.1 Basic concepts of the Earth’s gravity field

To simplify the mathematics, one decomposes the Earth’s gravity field into the sum of

the normal gravity field and the anomalous gravity field. This section reviews the basic

properties of the Earth’s normal gravity field and anomalous gravity field, and the

coordinate systems related to them.

1.1.1 The Earth’s gravity potential

First of all, we give the definition of the fundamental Earth-fixed rectangular

coordinate system XYZ: the origin OE is at the Earth’s centre of mass (the geocentre);

the Z-axis coincides with the mean axis of rotation and points to the north celestial pole;

the X-axis lies in the mean Greenwich meridian plane and is normal to the Z-axis; the Y-
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axis is normal to the XZ-plane and is directed so that the XYZ system is right-handed.

The rectangular coordinates and the spherical coordinates of a point P are denoted by

(XP, YP, ZP) and ),,r( PPP λθ , respectively.

A basic quantity that describes the Earth’s gravity field is the gravity potential W, which

is defined as follows

cPPP VVW += , (1.1.1)

where VP is the gravitational potential defined by

dQ
l

)Q(
GV

E PQ
P ∫

τ

ρ
= (1.1.2)

where Eτ  is the Earth’s body, PQl  is the distance between the computation point P and

the moving point Q, ρ(Q) is the mass density of the Earth at Q, G is the Newtonian

gravitational constant

G=6.672×10-11m3s-2kg-1,

and cPV  is the potential of the centrifugal force given by

)YX(
2

1
V 2

P
2
P

2
cP +ω= (1.1.3)

where ω is the angular velocity of the Earth’s rotation.

The gravity potential W satisfies the following relations:
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ω+ρπ−
ω

=∆
E

2
E

2

S inside2G4

S outside2
W , (1.1.4)

where SE is the topographic surface, the visible surface of the Earth, ω is the angular

velocity of the Earth and ∆ is the Laplacian operator.

The gravity vector g is the gradient of W:
















==

Z

Y

X

W

W

W

 Wgradg , (1.1.5)

which consists of the gravitational force grad V and the centrifugal force grad VcP.

The magnitude, or norm, of the gravity vector g  is the gravity g:

gg = ; (1.1.6)

the direction of g , expressed by the unit vector

ggn 1−= , (1.1.7)

is the direction of the vertical, or plumb line.

Both the gravity potential W and its first order derivative g are continuous in the space R3

while the second order derivatives of W are discontinuous on the surface SE.
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The surfaces W=Const. are called equipotential surfaces or level surfaces. They are

everywhere normal to the gravity vector. A particular one Sg of these surfaces,

W(X,Y,Z)=W0=Const.

which approximately forms an average surface of the oceans, is distinguished by calling

it the geoid.

The distance of a point to the geoid Sg along the plumb line is the orthometric height H.

P

P0

H

n

SE

Sg

Figure 1.1  The orthometric height H

The natural coordinates of a point outside the geoid is the triplet (Φ, Λ, H), where Φ is

the astronomic latitude defined as the angle between g  and the equatorial plane and Λ

the astronomic longitude defined as the angle between the local meridian plane and the

mean Greenwich meridian plane.

1.1.2 Normal gravity field

The normal gravity field, a first approximation of the actual gravity field, is generated by

an ellipsoid of revolution with its centre at the geocentre, called the reference ellipsoid.

There are several reference ellipsoids. The most widely used reference ellipsoid is the

WGS-84 ellipsoid, which is defined by the following parameters:
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Major semi-axis ae=6378137 m

Minor semi-axis be=6356752 m

Angular velocity ω=7292115×10-11 rad s-1

Theoretical gravity Potential of the reference ellipsoid

U0=62636860.8497 m2 s-2

Another important parameter is the first eccentricity e defined as

2

1

2
e

2
e )

a

b
1(e −= (1.1.8)

With the four quantities ae, be, ω, U0, the normal gravity potential U and the normal

gravity γ outside (or on) the reference ellipsoid can be evaluated uniquely from closed

formulas. For details, please see Heiskanen and Moritz (1967) and Guan and Ning

(1981). U satisfies:





ω+ρπ−
ω

=∆
e

2
N

e
2

S inside2G4

S outside2
U (1.1.9)

where Se is the surface of the reference ellipsoid and Nρ  is the normal density, which

can not be determined uniquely by the four parameters.

Similar to the gravity potential W, the normal gravity potential U and its first order

derivative γ are continuous in the space R3 while the second order derivatives of U are

discontinuous on the surface Se.

The surfaces U=Const. are called normal level surfaces and the direction of the normal

gravity vector γ  is called the direction of the normal vertical or the normal plumb line.

The distance h of a point P to the reference ellipsoid is called the geodetic height.
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Se
h

Q

P

OE

φ

Figure 1.2  The reference ellipsoid Se and the geodetic height h

The geodetic coordinates of a point is the triplet (φ, λ, h) where φ is the geodetic

latitude defined as the angle between γ  and the equator plane and λ is the geodetic

longitude, which equals to Λ.

The telluroid St, the first approximation of the topographic surface, is defined as a

surface, the points Q of which are in one to one correspondence with the points P of the

topographic surface satisfying either

(Φ, Λ, W)P=(φ, λ, U)Q, (1.1.10)

or

(Φ, Λ, H)P=(φ, λ, h)Q. (1.1.11)

The distance of a point on St to Se along the normal plumb is the normal height H*.
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1.1.3 Anomalous gravity field

The difference between the gravity potential W and the normal gravity potential U

T=W-U, (1.1.12)

is called the disturbing potential. It can be considered as being produced by a

disturbing density δρ ( Nρ−ρ≡ ) as follows:

dQ
)Q(

GT
E PQ

P ∫
τ

δρ
=

l
(1.1.13)

It can be proved that T satisfies the following conditions







∞→=

=∆

E

PPP

EP

S on and outside continuous are derivativeorder first  its and T

r                                   )r/1(OT

S outside is P                                           0T

(1.1.14)

where the first condition is called the harmonic condition of T, the second condition is

called the regularity condition of T and the third condition is called the continuation

condition of T.

The deflection of the vertical Θ is the angle between the directions of the vertical and

the normal vertical, which is very small.

The disturbing gravity, the difference between gravity and normal gravity, has two

different definitions: One is the gravity disturbance δg defined as

PPg)P(g γ−=δ ,        (1.1.15a)
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The other is the gravity anomaly ∆g defined as

QPg)P(g γ−=∆ , (1.1.15b)

where P and Q satisfy

(Φ, Λ, H)P=(φ, λ, h)Q. (1.1.16)

The above relation shows that if P is on the geoid, Q is on the reference ellipsoid and if P

is on the topographic surface, Q is on the telluroid.

The difference between the geoid and the reference ellipsoid can be expressed by the

geoidal height N, which is defined as the geodetic height of a point of the geoid.

P

h

S E

Sg

Se

N

H

P

h

SE

St

Se

H*

Q

ζ

Figure 1.3  The geoidal height N and the height anomaly ζζ

The difference between the topographic surface and the telluroid can be expressed by the

height anomaly ζ, which is defined as the distance between a point P of the topographic

surface and its corresponding point Q of the telluroid.

There exist the following approximate relations among the quantities of the anomalous

gravity field (Heiskanen and Moritz, 1967; Moritz, 1980):
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HhN −= (1.1.17)

*Hh −=ζ (1.1.18)

H
g

HHN *

γ
γ−

=−=ζ−=δζ (1.1.19)




ζ

=
γ

=
γ )S on is Q and S on is (P

)S on is Q and S on is P(NTT

tE

eg

Q

P

P

P (1.1.20)

g
h

T
δ−=

∂
∂

(1.1.21)

gT
h

1

h

T
∆−=

∂
γ∂

γ
−

∂
∂

          (1.1.22)

where 
h∂
∂

 means the derivative along the normal plumb line, g  is the mean value of g

along the plumb line, and γ  is the mean value of γ along the normal plumb line. Equation

(1.1.20) is called the Bruns formula and equation (1.1.22) is called the fundamental

equation of physical geodesy.

A spherical approximation of equation (1.1.22) is given as

gT
R

2

r

T
∆−=+

∂
∂

          (1.1.23)

where 
r∂

∂
 means the derivative along the radial vector, R is the mean radius of the Earth

defined as

3
e

2
ebaR = (1.1.24)
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1.2 Basic problems of physical geodesy

The main aims of physical geodesy are to determine the exterior gravity field and the

geoid. Since the normal gravity field can be directly evaluated from simple closed

formulas, the problems are converted to the determination of the disturbing potential T

and the geoidal height N or height anomaly ζ , which are relatively small. The input data

used are the quantities of the gravity field measured on the surface of the Earth or/and on

surfaces at airplane or satellite altitudes. Since N and ζ  can be directly evaluated from T

by means of the Bruns formula and T satisfies (1.1.14), the basic problem of physical

geodesy can be expressed by the geodetic boundary value problems and, if needed, the

analytical continuation of the data.

For simplifying the description of the problems, we give some definitions before

continuing the discussion:

Definition 1.1  For a closed surface S in the space R3, let H(S) be the set of functions f

satisfying:







∞→→

=∆

         P)r/1(Of

S outside is         P          0f

PP

P
(1.2.1)

where Pr  is the geocentric radius of P.

Definition 1.2  Let H[S] be the set of functions which belong to H(S) and have their first

derivatives continuous on and outside S. 

Definition 1.3  For a fixed point O in the space R3, let H(O) be the set of functions f

satisfying:



16







∞→→

≠=∆

         P)r/1(Of

O        P          0f

PP

P
(1.2.2)

Examples:

1. For a fixed O in R3, function OPP /1f l=  belongs to H(O);

2. For a closed smooth surface S in R3, the function

∫=
S PQ

P dQ
1

f
l

(1.2.3)

belongs to H[S] while the function

∫∫ ∂
∂

+=
S PQ

2
Q

2

S PQ
P dQ)

1
(

r
dQ

1
f

ll
(1.2.4)

belongs to H(S) but not to H[S];

3. According to (1.1.14), the disturbing potential T belongs to H[SE].

1.2.1 Geodetic boundary value problems

Geodetic boundary value problems deal with the determination of the gravity potential on

and outside the Earth’s surface from the ground gravity data. They can be defined

mathematically as finding the disturbing potential T satisfying:
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=

∈

S on is PfBT

]S[HT

PP

(1.2.5)

where the boundary surface S is the topographic surface SE outside which the mass

density is zero and on which the input data Pf  are given and B, which corresponds to Pf ,

is a zero or first order derivative operator or their combination. After a proper adjustment

for the disturbing potential T, S can be the telluroid St, the geoid Sg, the reference

ellipsoid Se or the mean sphere SM, where the mean sphere SM is a sphere centred at the

geocentre and with radius R.

According to the differences of the input data, there are various kinds of geodetic

boundary value problems. In this subsection, we will introduce some geodetic boundary

value problems that will be further investigated in the following chapters.

• The third geodetic boundary value problem

In this problem, the input data are the gravity potential W (or the orthometric height H or

the normal height H*) and the gravity g on SE, which can be obtained via gravimetry and

leveling, the output data are the topographic surface SE (or the geodetic heights h or the

geoidal height N) and the external gravity potential. Correspondingly, in (1.2.5), Pf  is the

gravity anomaly data g∆  on SE and B is a combination of the first and zero order

derivative operators. The regularity condition of the third geodetic BVP is below

∞→+=      P          )
r

1
(O

r

c
T 3

PP
P      (c is a constant) (1.2.5a)

This condition is stronger than the regularity condition of the disturbing potential (see

(1.1.14)). It can be satisfied when the centre of the reference ellipsoid coincides with the

geocentre (Heiskanen and Moritz, 1967). Furthermore, if the mass of the reference
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ellipsoid equals to the mass of the Earth, the constant c in (1.2.5a) equals to zero

(Heiskanen and Moritz, 1967). So the regularity condition becomes

∞→=      P          )
r

1
(OT 3

P
P           (1.2.5b)

In the following, we suppose that T in the third geodetic BVP satisfies the regularity

condition (1.2.5b). The mathematical expression of the third geodetic BVP is as follows















∆−=
∂
γ∂

γ
−

∂
∂

∞→=

∈

EP
P

P
P

3
P

P

E

S on is P          )P(gT
h

1
T

h

       P                              )
r

1
(OT

]S[HT

 (1.2.6)

where 
h∂
∂

 means the derivative along the normal plumb line.

Problem (1.2.6) is called Molodensky’s problem. Since the normal plumb line is not

normal to SE, Molodensky’s problem is an oblique derivative problem. After

transforming the disturbing potential T, the Molodensky’s problem can be converted into

the Stokes problem, a normal derivative problem in which the boundary surface is the

geoid.

• The second boundary value problem

In this case, the input data are the topographic surface of the Earth SE (the geodetic

heights h) and the gravity g on SE, which can be obtained via gravimetry and GPS

measurements, the output data are the gravity potential W on SE (or the orthometric

height H, the normal height H* or the geoidal height N) and the external gravity potential.
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Correspondingly, in (1.2.5), Pf  is the gravity disturbance data gδ  on SE and B is the first

order derivative operator. That is










δ−=
∂
∂

∈

EP

E

S on is P          )P(gT
h

]S[HT

(1.2.7)

When the boundary surface is the geoid, the second boundary value problem is called the

Hotine problem.

• The first boundary value problem

In this case, the input data are the topographic surface SE and the gravity potential W on

SE (or the geoidal height N), the output data are the external gravity potential and the

gravity on SE. Correspondingly, in (1.2.5), Pf  is the disturbing potential data T0 on SE,

which can be obtained by leveling and GPS measurement on land or satellite altimetry

over the ocean, and B is the identity operator. That is







=

∈

E0P

E

Son  is P          )P(TT

]S[HT
(1.2.8)

The above problem is also called Dirichlet’s problem. From the solution of above

problem, we can also obtain the gravity anomaly or gravity disturbance on SE (thus the

gravity on SE) via the following formulas:

 T
h

1
T

h
)P(g P

P

P
P ∂

γ∂
γ

+
∂
∂

−=∆ (1.2.8a)

PT
h

)P(g
∂
∂

−=δ (1.2.8b)
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The determination of the gravity anomaly/disturbance on the geoid from the disturbing

potential data on the geoid is called the inverse Stokes/Hotine problem.

1.2.2 Analytical downward continuation problems

Geodetic boundary value problems deal with data measured on the Earth’s surface. With

the advent of satellite and airborne gravity techniques, it becomes more and more

important to investigate the methods that use data at satellite and airborne altitudes to

determine the external disturbing potential. Since the input data are distributed on

surfaces above the ground, we can call this kind of problem the analytical downward

continuation problem.

The mathematical definition of the analytical downward continuation problems is to find

a function T satisfying:







=

∈

dataPP

E

Son  is PfBT

]S[HT
(1.2.9)

where SE is the topographic surface of the Earth, Sdata is the surface on which the input

data are given, and B, which corresponds to Pf , is a zero, first, or second order derivative

operator or their combination.

1.3  Runge’s theorems in physical geodesy

From its definition, we know that the disturbing potential T is harmonic only outside the

Earth. Since the topographic surface is very complicated, T is a very complex function.

To simplify the representation of the disturbing potential, we consider functions which
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are harmonic outside a spherical surface that lies completely inside the Earth. Can T be

approximated by these functions? The possibility of such an approximation is guaranteed

by Runge’s theorem.

In physical geodesy, Runge’s theorem has two forms (Moritz, 1980): the Runge-Krarup

theorem and the Keldysh-Lavrentiev theorem.

• Runge-Krarup’s theorem

Any function φ, harmonic and regular outside the Earth’s surface SE, may be uniformly

approximated by functions ψ, harmonic and regular outside an arbitrarily given sphere SB

inside the Earth, in the sense that for any given small number ε>0, the relation

|φ-ψ|<ε (1.3.1)

holds everywhere outside and on any closed surface S0 completely surrounding the

Earth’s surface.

S0

SB
SE

.
OE

Figure 1.4  The relations of the surfaces S0, SE and SB in Runge’s theorem
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• Keldysh-Lavrentiev’s theorem

If the Earth’s surface SE is sufficiently regular (e.g. continuously differentiable), then any

function φ, harmonic and regular outside SE and continuous outside and on SE, may be

uniformly approximated by functions ψ, harmonic and regular outside an arbitrarily

given sphere SB inside the Earth, in the sense that for any given ε>0, the relation

|φ-ψ|<ε (1.3.2)

holds everywhere outside and on SE.

1.4 Some classical approaches for representing the gravity
field

As we mentioned above, the determination of the gravity field of the Earth leads to the

determination of the disturbing potential function T outside and on the Earth’s surface. In

the past, many approaches have been employed to process the different data for the

determination of the disturbing potential. According to Moritz (1980), there are

essentially two possible approaches to the determination of the gravity field: the model

approach and the operational approach. Moritz (1980) wrote: “In the model approach,

one starts from a mathematical model or from a theory and then tries to fit this model to

reality, for instance by determining the parameters of the model from observation.” In

other words, in the model approach, we should first establish, from a theory, a model

representing the disturbing potential by a set of parameters, called the model parameters,

then determine the model parameters from observation, and finally evaluate the

disturbing potential by using these parameters.
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In this section, we will introduce some classical models for representing the gravity field.

According to the difference of the model parameters, we further divide the models into

direct parameter model and indirect parameter model.

1.4.1 Direct parameter model

In these approaches, the disturbing potential T is expressed directly as an analytic

function of the observed gravity. In other words, the model parameters of the Earth’s

gravity field are the data directly measured or simply calculated from the observations.

Usually, these gravity field models are directly obtained from solving the geodetic

boundary value problems.

• Stokes’s formula

The famous Stokes formula is an approximate solution of Stokes’s problem (Heiskanen

and Moritz, 1967), in which the mass density outside the geoid has been set to zero, and

the gravity anomaly ∆g on the geoid has already been evaluated by means of gravity

reductions such as the remove-restore technique.

Since the geoid is approximated by the reference ellipsoid, Stokes’s problem can be

expressed mathematically by the following third ellipsoidal boundary value problem:















∆−=
∂
γ∂

γ
−

∂
∂

∞→=

∈

eP
P

P
P

3
P

P

e

S on is P          )P(gT
h

1
T

h

        P                              )
r

1
(OT

]S[HT
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By neglecting the flattening of the ellipsoid Se, we can get the spherical approximation

solution of (1.4.1), the general Stokes formula, as follows

∫
σ

σ∆
π

= dg)Q,P(S
4

R
T QP (1.4.2)

where σ is the unit sphere, R is the mean radius of the Earth, and the kernel function

S(P,Q), the general Stokes function, is defined as

)
r2
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ln35(cos

r

R

r

R
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RR2
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PQPQP
PQ2
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PQ
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l

+ψ−
+ψ−−+= (1.4.3)

where Pr  is the radius of the computation point P, PQl  is the distance between P and the

moving point Q on SM, and PQψ  is the angle between the radius of P and Q.

Let Pr =R, we obtain the Stokes formula, which is the classical formula for computing

the geoidal height from the gravity anomaly, as follows

∫
σ

σ∆ψ
π

= dg)(S
4

R
T QPQP (1.4.4a)

∫
σ

σ∆ψ
πγ

= dg)(S
4

R
N QPQP (1.4.4b)

where the Stokes function )(S PQψ  is given as:

)]
2
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2

ln(sin35[cos
2

sin61]
2
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PQ1PQ
PQ
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ψ
+ψ−
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ψ
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• Brovar’s and Moritz’s solutions for Molodensky’s problem

In Molodensky’s problem, the gravity potential W (or the normal height H*) and the

gravity vector g  are given on the topographic surface. Since the topographic surface can

be approximated by the telluroid by properly linearizing, Molodensky’s problem can be

expressed mathematically by the following third boundary value problem (Moritz, 1980):
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 (1.4.6)

where St is the telluroid.

There are many methods for solving Molodensky’s problem to get the formula for

computing the disturbing potential on the telluroid from the gravity anomalies on the

telluroid. Moritz (1980) introduced three term-wise equivalents in planar approximation

series solutions: Molodensky’s solution, Brovar’s solution and Moritz’ solution. These

three solutions can be generally expressed as

∑
∞

=

=
0n

nTT   (1.4.7)

where T0 is given by

∫
σ

σ∆ψ
π

= gd)(S
4

R
T0  (1.4.8)
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Here, we will give respectively the terms Tn of the Brovar solution and the Moritz

solution.

Brovar’s solution is obtained by directly solving an integral equation derived from

equation (1.4.6). Its terms Tn (n>0) can be expressed as follows:

∫
σ

σψµ
π

= d)(S
4

R
T 11 (1.4.9a)
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 ……

where l0 is the distance of the projections onto SM of the moving point and the

computation point and β is the terrain inclination angle at the computation point.

Moritz’s solution is obtained by analytically continuing the gravity anomalies onto a

point level surface (a level surface through the computation point) and applying the

Stokes formula for these gravity anomalies. Its terms Tn (n>0) are as follows:

∫
σ

σψ
π

= d)(Sg
4

R
)P(T 11      (1.4.11a)
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∫
σ
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where the operator L is the vertical derivative operator defined as
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• Hotine’s formula

The Hotine formula is an approximate solution of Hotine’s problem, in which the mass

density outside the geoid has been set to zero and the gravity disturbance δg on the geoid

has already been evaluated by means of gravity reduction. Neglecting the small

difference between the geoid and the reference ellipsoid, Hotine’s problem can be

expressed mathematically by the following second ellipsoidal boundary value problem:
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   (1.4.13)

The Hotine formula, which computes the geoidal height from the gravity disturbance, is

as follows (Hotine, 1969):
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∫
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where the Hotine function )(H PQψ  is given as:
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• Inverse Stokes/Hotine formulas

Stokes’s (Hotine’s) formula is employed to evaluate the geoidal height from gravity

anomalies (gravity disturbances). However, gravity data are hard to measure directly in

ocean areas. With the advent of the satellite altimetry technique, geoidal heights can be

measured directly with a high accuracy in ocean areas. The following inverse

Stokes/Hotine formulas (Heiskanen and Moritz, 1967; Zhang,1993), which are the

approximate solutions of the inverse Stokes/Hotine problem, are employed to compute

the gravity in ocean areas from the geoidal height derived from satellite altimetry:
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where the Molodensky function )(M PQψ  is given by
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1.4.2 Indirect parameter approaches

In the direct parameter approaches, the disturbing potential can be directly computed

from the measurements. However, the measurements must be the gravity anomalies, the

gravity disturbances or the geoidal heights measured in the oceans. However, these data

are only a part of the gravity data that can be measured via the current measuring

techniques. We now have gravity gradiometer data, and gravity data measured at satellite

and airborne altitudes. The problem of processing these data is the analytical downward

continuation problem. In order to solve this problem, indirect parameter models are

proposed. In these models, the parameters are intermediate parameters other than the data

directly measured or simply calculated from the measurements, and may have no direct

physical meanings. Usually, to determine these model parameters from the observations,

one has to solve an integral equation of first kind or a normal equation. The advantage of

these approaches is that all kinds of gravity data can be employed to determine the model

parameters. Usually, in order to simplify the model so that the integral equation or the

normal equation is simple, the disturbing potential T is supposed to be a function

harmonic outside a spherical surface that lies completely inside the Earth. The validity of

this assumption is guaranteed by Runge’s theorem.

• Spherical harmonic representation

In this model, the model parameters are the set of spherical harmonic coefficients {Cmn,

Smn} (Moritz, 1980). The disturbing potential T is expressed as

]msinSmcosC)[(cosP
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with
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where }S ,C{ nmnm  are the coefficients used in the computation of the normal gravity field,

{Pnm} are the Legendre functions and M is the total mass of the Earth.

• Bjerhammar’s representation

In this model (Bjerhammar, 1964), the model parameters are the ‘fictitious’ gravity

anomalies *g∆  on the surface of Bjerhammar’s sphere SB that lies completely inside the

Earth. The disturbing potential is expressed as:

∫
σ

σ∆
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4

R
T *

Q
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where S(P,Q) is the general Stokes function, RB is the radius of SB.

• ‘Fictitious’ single layer density representation

The ‘fictitious’ single layer density representation of the disturbing potential, proposed by

Hsu and Zhu (1984), is equivalent to but simpler in form than Bjerhammar’s

representation. In this model, the model parameters are the ‘fictitious’ single layer

densities *ρ  on the surface of Bjerhammar’s sphere SB. The disturbing potential is

expressed as:
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1.5  Some open problems

In this section, we will introduce some open problems which require theoretical

refinements and will be further discussed in the following chapters.

1.5.1 Insufficiency of Runge’s theorem in physical geodesy

In the Moritz’s solution for Molodensky’s problem (section 1.4.1) and the approaches

mentioned in section 1.4.2, to employ Stokes’s formula or simplify the representation of

the disturbing potential T harmonic outside the Earth, a function T , harmonic down to a

point level surface or the Bjerhammar sphere completely embedded in the Earth, is

employed as an approximation of T. The validity of the approximation is justified by

Runge’s theorem (the Runge-Krarup theorem or the Keldysh-Lavrentiev theorem).

However, in the geodetic boundary value problems (1.2.5) and the downward

continuation problems (1.2.9), T satisfies not only the harmonicity condition (1.2.1) but

also the boundary condition

PP fBT = (P is on S) (1.5.1)

where S is the Earth’s surface or the surface at the satellite or airborne altitude. So there

is a need to prove that BT is approximated simultaneously by TB  on S. In other words, a

necessary condition under which the approaches mentioned in section 1.4.2 are valid is

that:

(I). For any given ε>0, there exists a function T , harmonic and regular outside the

Bjerhammar sphere, satisfying
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|T- T |<ε and |BT-B T |<ε (1.5.2)

everywhere outside and on the Earth’s surface.

By solving the equations (1.2.5) and (1.2.9), we can get a T  satisfying

| BT-B T |<ε (1.5.3)

When B is a zero-order derivative, Runge’s theorem guarantees the condition (I).

However, the data usually used in physical geodesy are gravity data (and even

gradiometer data). So B must contain first or second-order derivatives. In this case, it is

hard to get (I) directly from Runge’s theorem or from the proof given in Moritz (1980).

Indeed, when the geodetic boundary value problems (1.2.5) or the downward

continuation problems (1.2.9) are properly-posed, it can be proved that (I) holds by

means of Runge’s theorem. However, the properly-posed problem of (1.2.5) is very

complex and the problems (1.2.9) are improperly-posed. So for Moritz’s method

mentioned in section 1.4.1 and the methods mentioned in section 1.4.2, the guarantee

provided by Runge’s theorem is not sufficient.

In chapter 2, we will give supplements to the Runge-Krarup theorem and Keldysh-

Lavrentiev theorem, respectively, so that they contain (I), thus supply a more sufficient

guarantee to the methods mentioned.
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1.5.2 Ellipsoidal correction problems

Stokes’s formula is a classical formula in the theory of gravity field representation. At

present, it is still the basic tool for computing the geoid from gravity anomaly data.

Rigorously, Stokes’s formula is a spherical approximation formula which holds only on a

spherical reference surface, i.e. the input data (gravity anomalies) must be given on the

sphere. However, gravity anomalies can only be observed on the Earth’s topographic

surface. These anomalies can be reduced to the geoid or to a local level surface via

orthometric (or normal) heights. For example, in a remove-restore technique, the gravity

anomalies are reduced onto a level surface via terrain reduction, and in Moritz’s solution

(Moritz, 1980) the gravity anomalies are analytically continued to the geoid (or a point

level surface) via a Taylor series expansion. The geoid and the local level surface can be

approximated respectively by the reference ellipsoid and the local reference ellipsoid (on

which the normal potential equals the gravity potential of the local level surface). Since

the flattening of the ellipsoid is very small (about 0.003), in practical computation the

ellipsoid is treated as a sphere so that Stokes’s formula can be applied on it. The error

caused from neglecting the flattening of the ellipsoid is about 0.003N. This magnitude,

amounting up to several tens of centimeters, is quite considerable now. So, it becomes

very important to evaluate the effect of the flattening on the Stokes formula. In other

words, we should investigate more rigorously the third ellipsoidal geodetic boundary

value problem (1.4.1).

Similarly, the Hotine formula and the inverse Stokes/Hotine formula are also the

spherical approximation formulas. In the application of these formulas for geodetic

purposes, ellipsoidal corrections are needed to get results with higher accuracy.

In chapters 3, 4 and 5, we will give detailed investigations on the ellipsoidal corrections

to the Stokes formula, the inverse Stokes/Hotine formula and the Hotine formula

respectively.
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1.5.3 GPS leveling and the second geodetic boundary value problem

In this subsection, we will discuss the relation between GPS and the geodetic boundary

value problems.

• GPS leveling problem

The impact of the Global Positioning System (GPS) on control network surveying can

hardly be overstated. In a short span of time, differential GPS technology for horizontal

geodetic surveys has been adopted to completely replace conventional surveying

techniques. The superb length accuracy, coupled with greater efficiency and increased

productivity in the field, has revolutionized our field operations.

However, one sector of geodetic surveying has remained much the same. That is, the

vertical control surveying. GPS is a three-dimensional system, and certainly provides

height information. GPS data, whether collected and processed in a point position mode

or in a differential mode, yield three-dimensional positions. These positions are usually

expressed as Cartesian coordinates referred to the centre of the Earth. By means of a

mathematical transformation, positions expressed in Cartesian coordinates are converted

into geodetic latitude, longitude, and geodetic height. These heights are in a different

height system than orthometric heights historically obtained with geodetic leveling.

Topographic maps, not to mention the innumerable digital and analogue data sets, are

based on orthometric heights.

GPS leveling is using GPS and other geodetic techniques (other than leveling) to produce

the orthometric height so that GPS can completely replace spirit leveling. According to

(1.1.17), to relate GPS height h to orthometric height H requires a high-resolution geoidal
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height model of comparable accuracy. In other words, the key problem of GPS leveling is

to determine a high resolution and high accuracy geoid model.

• Deficiency of the third geodetic boundary value problems in GPS leveling

Stokes’s and Molodensky’s formulas are the classical methods for determining high-

resolution gravimetric geoid models. The Stokes theory and the Molodensky theory solve

the third geodetic boundary value problem. They produce respectively geoidal heights

and height anomalies from gravity anomaly data ∆g given on the geoid and the telluroid.

The gravity anomaly ∆g is defined as

QPP gg γ−=∆  (1.5.4)

where P is on the geoid (Stokes’s model) or on the topographic surface (Molodensky’s

model) and Q is the point corresponding to P on the reference ellipsoid or on the

telluroid. If P is on the geoid, Pg  (thus Pg∆ ) is obtained from the gravity observation via

a gravity reduction by employing orthometric height H

QBobservedP gH
H

g
gg γ−−

∂
∂

+=∆ (1.5.5)

where Bg  is the refined Bouguer correction of the gravity observation. If P is on the

topographic surface, Qγ  (thus Pg∆ ) is computed from the normal gravity formula by

employing the normal height H* of P

*
0PP H

h
gg

∂
γ∂

+γ−=∆ (1.5.6)
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where 0γ  is the related normal gravity on the reference ellipsoid.

Therefore, to get the gravity anomaly Pg∆ , we should know the gravity at P and the

orthometric height H (or normal height H*) at P. This means that the gravity anomalies

consist of gravity data and leveling data.

A reason for using gravity anomalies as the input data to determine the geoidal heights

was that before the advent of GPS, the gravity anomalies were the only disturbing gravity

data that could be obtained via conventional survey techniques. The geodetic height, a

basic parameter of the Earth’s figure, was very difficult to be observed directly. Actually,

in the past, determining the geodetic heights of points on the physical surface of the Earth

was an important goal of geodesy. On the other hand, the orthometric heights can be

measured with conventional geodetic leveling. So we can obtain the gravity anomaly

data. Then from the third geodetic boundary value problem, we can obtain the geoidal

height or height anomaly. Finally, the geodetic height can be simply approximated by the

sum of the leveling height H (or H*) and the geoidal height N (or ζ) obtained from the

third geodetic boundary value problems.

So in the third geodetic boundary value problem the input data are gravity data g and

leveling data H or H* while the output data are the geoidal heights N or the height

anomalies ζ and the geodetic heights h (h=N+H or h=ζ+H*). We can call this problem the

Gravity+Leveling problem. Obviously, using the geoidal heights or height anomalies

obtained from the third geodetic boundary value problem to determine the orthometric

heights or normal heights will encounter a logical problem.

In the practical application of Stokes’s theory or Molodensky’s theory, the orthometric

heights H and the normal heights H* are replaced approximately by the heights obtained

from digital topography models in order to avoid costly leveling observations. Obviously,
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the replacement will cause an error in the gravity anomalies. According to (1.5.5) and

(1.5.6), 1 m difference between these two height data will cause about 0.3mgal error on

the gravity anomaly (the effect on the Bouguer correction is not included). In this case we

cannot obtain the gravity anomalies with accuracy better than 0.3 mgal even if we can

now obtain the gravity observations with 0.01mgal accuracy. Furthermore, we have from

Stokes’s formula

≈σψ
πγ

≤σψδ
πγ

≤δ ∫∫
σσ

∆Ν d)(S
4

R3.0
d)(S

4

R
g 4.2m (1.5.7)

This means that the 1m error in the orthometric heights may cause theoretically about

4.2m system error in geoidal heights. So without high accuracy leveling measurements, it

is hard to obtain the geoidal heights with accuracy comparable to the accuracy of the

geodetic heights obtained via GPS.

From the discussion above, we can conclude that it is difficult to solve the GPS leveling

problem via the third geodetic boundary value problems.

• Second geodetic boundary value problem

Now we discuss the following second geodetic boundary value problem.









δ−=
∂
∂

∈

S on is P          gT
h

]S[HT

PP

     (1.5.8)

where the boundary surface S is the topographic surface SE of the Earth or the

reference ellipsoid Se. The input data gδ  is the gravity disturbance defined as:
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PPP gg γ−=δ (1.5.9)

When P is on the reference ellipsoid, Pgδ  can be obtained by replacing H by the

geodetic height h in the equation (1.5.5). When P is on the topographic surface, Pgδ

can be obtained by substituting H* by h in the equation (1.5.6). Above all, gδ  can be

obtained from the measurements of the gravity and the geodetic height on the

topographic surface.

So, in the second geodetic boundary value problem, the geodetic heights h of the

points on the topographic surface, which replace the position of H in the third

geodetic boundary value problem, are needed. However, in the past it was hard to

directly measure h. This means that we could not easily obtain gδ  in the past. This is

the reason why the second geodetic boundary value problem has not been fully

investigated.

With the advent of GPS, the positions (thus the geodetic heights) of points on the

topographic surface can be obtained. With gravity measurements on the topographic

surface, we can obtain the gravity disturbances gδ , another kind of disturbing

gravity. So it is very important to investigate the boundary value problem

corresponding to the gravity disturbances, the second geodetic boundary value

problem. We can also call this problem Gravity+GPS problem.

Besides its input data being easier to obtain than the input data of the third boundary

value problem, the second geodetic boundary value problem has two other advantages

over the third geodetic boundary value problem:
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• The second geodetic boundary value problem is in theory a fixed boundary

surface problem. The boundary surface is the known topographic surface

(obtained from GPS measurements). However, the third geodetic boundary value

problem is a free boundary surface problem. The boundary surfaces are the

topographic surface or the geoid, which are unknown and to be determined in the

problem. In practical applications, these surfaces are approximated respectively

by the telluroid (obtained from leveling measurements) and the reference

ellipsoid.

• The boundary condition in the second geodetic boundary value problem is simpler

than the boundary condition in the third geodetic boundary value problem which

is obtained approximately via linearization.

At present, among the geodetic height h, the orthometric height H (or the normal

height H*) and the geoidal height N (or the height anomaly ζ), N (or ζ) can not be

measured directly and the measurement of H (or H*) is more complicated than the

measure of h. N (or ζ) is a bridge between H (or H*) and h. The following table 1.1

compares three basic methods of determining N (or ζ):

Table 1.1  Comparison of the basic methods of evaluating N (or ζζ )

Method Input Data Mathematical Model Output Data

GPS+Leveling h and H (or H*) N (or ζ)=h-H (or H*) N (or ζ)

Gravity+Leveling g and H (or H*) Stokes’s model or
Molodensky’s model

N (or ζ)

Gravity+GPS g and h Second geodetic boundary
value problem

N (or ζ)
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From the above table, we see that the Gravity+GPS method is the unique basic

method determining the geoidal height without leveling. It is very suitable to be used

to solve the GPS leveling problem.

• Brief summary

• The GPS leveling problem is proposed for replacing the conventional spirit

leveling. The key problem is to determine a high resolution and high accuracy

geoid model without using dense leveling data.

• The third geodetic boundary value problem is not suitable for solving the GPS

leveling problem since it needs dense leveling data as input data.

• GPS surveying provides the important input data for the second geodetic

boundary value problem, which makes the investigation and application of this

problem possible. On the other hand, the second geodetic boundary problem also

provides the possibility for solving the GPS leveling problem.

• The second geodetic boundary problem is better than the third geodetic boundary

value problem in terms of the accuracy of models and input data. The detailed

investigation theoretically and practically of the second boundary value problem

is very necessary not only for solving the GPS leveling problem but for the

determination of a high accuracy and high-resolution gravity field model.

1.5.4 Local character of the gravimetric solutions

With the advance of the gravimetric techniques, the amount of global gravity data

obtained on the Earth's surface and at aircraft or satellite altitudes is increasing, and the

accuracy and resolution of the data are improved constantly. Compared to satellite
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gravity data, the ground gravity data have better accuracy and resolution. They depict in

detail the character of the gravity field. However, dense ground gravity data can only be

obtained in some local areas such as Europe and North America. In the other areas

especially on the oceans, the best gravity data are those obtained from satellite gravity

measurements, which are globally producing gravity data with higher and higher

accuracy and resolution. So it becomes very important to utilize all these data for

determining the high-resolution gravity potential outside the Earth and for researching the

distribution of the Earth's density.

In the previous sections, we have introduced some basic models showing the

relationships between the disturbing potential and the disturbing gravity data. These

traditional models essentially involve an integral formula of the form:

∫
σ

(Q)dQXQ)(P,K=(P)Y  ,                                               (1.5.10)

where X and Y respectively represent the input and output data; σ  is either the Earth's

surface, or the geoid, or the surface of the Bjerhammar sphere, etc.; and the kernel

Q)(P,K  satisfies the relationship

0
r

Q)/(P,Klim
1

PQ
PPQ

≠
∂
∂ −

∞→
l

l
,                   (1.5.11)

where PQl  is the distance between P and Q, and r P  is the radius vector of P.

Since 1
PQ

Pr
−

∂
∂

l  vanishes slowly as ∞→PQl , it follows from (1.5.11) that Q)(P,K  also

vanishes slowly as ∞→PQl . Therefore, we will encounter two problems in the

application of the relation (1.5.10):
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1. when computing Y from X in (1.5.10), the integral must be evaluated in a larger area,

thus making the collection of data difficult;

2. when computing X from Y in (1.5.10), besides the need for data in a larger area, the

stability of the solution X declines as its resolution increases, thus restricting the

resolution of the solution X  (Fei, 1994; Keller, 1995).

These two problems show that the model (1.5.10) doesn’t reflect the local character of the

input or output data. Here, the local character can be understood in that the value of

output data at some point can be determined mainly by the values of the input data in a

neighborhood of the point. From the following two examples, we can get further

understanding about the two problems.

• In the Stokes formula, the basic formula for determining the exterior gravity field and

the geoid from gravity anomalies, Y and X represent the disturbing potential T and

the gravity anomaly ∆g  respectively, σ  is the geoid, and Q)(P,K  is the Stokes

function S(ψ). Since S(ψ) decreases slowly when ψ increases, the gravity data at the

points far away from the computation point still have very important effects on the

evaluation. This means that we need a global gravity data set to compute the

disturbing potential at a single point. However, the incomplete global coverage of the

high accuracy and high-resolution ground gravity data precludes an exact evaluation

of the disturbing potential using Stokes’s formula. Instead, many modified formulas

are used in practice, where only gravity data in the area around the computation point

are needed in the integration. These modifications to Stokes’s formula are also

attractive due to the increase in computational efficiency that is offered by working

with a smaller integration area. One of the modified Stokes formulas is the

generalized Stokes scheme for geoid computation proposed by Vaníèek and Sjöberg

(1991). In this scheme, the low-frequency information of the gravity field, which can

be computed from a global geopotential model, is considered in the computation of

the normal gravity field model so that the disturbing gravity field (TM and ∆gM) does
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not contain the low frequency information.  The modified Stokes formula is written as

∫
σ

σ∆ψ
π

= dg)(S
4

R
T MMM (1.5.12)

where SM(ψ), the modified Stokes kernel function, has the series expansion

∑∑
∞

+==

ψ
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)(cosP

1n

1n2
)(S)(S (1.5.13)

From table 1.2 showing the behaviours of kernel functions S and SM, we see that SM

decreases faster than S when ψ increases, which guarantees the integration (1.5.12)

can be done by using the gravity anomalies in a local area surrounding the

computation point. It can be said that the modified Stokes formula (1.5.12) shows

more local relationship between the disturbing potential and the gravity anomalies

than Stokes’s formula (1.4.4a).

Table 1.2  Behaviour of the Stokes function and
the modified Stokes function (M=360)

ψψ 0 |SM(ψψ 0)/ SM(0.5)| |S(ψψ 0)/S(0.5)| ψψ 0 |SM(ψψ 0)/ SM(0.5)| |S(ψψ 0)/S(0.5)|
0.5 1 1 5.5 2.3229784E-02 0.1056424206

1.0 0.3436138195 0.5166225365 6.0 2.0149055E-02 9.7206253E-02

1.5 0.1824867893 0.3532196332 6.5 1.7660911E-02 8.9963646E-02

2.0 0.1162550062 0.2703797466 7.0 1.5618097E-02 8.3664776E-02

2.5 8.1841479E-02 0.2199814108 7.5 0.0139171792 7.8125693E-02

3.0 6.1363823E-02 0.1859101097 8.0 0.0124836118 7.3207879E-02

3.5 0.0480484992 0.1612288120 8.5 1.1262468E-02 6.8804986E-02

4.0 3.8830902E-02 0.1424538348 9.0 1.0212487E-02 0.0648339704

4.5 3.2145647E-02 0.1276414551 9.5 9.3021389E-03 6.1229013E-02
5.0 0.0271191438 0.1156204690 10 8.5069642E-03 5.7937256E-02
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• Now we discuss the problem of determining the model parameters of the ‘fictitious’

single layer density representation of the disturbing potential: determining *ρ  from

the known gravity disturbances on or above the physical surface of the Earth.

According to (1.4.22), the relation between the two kinds of data is as follows:

∫ −
∂
∂

ρ
π

=δ
BS PQP

*
P dS)

l

1
(

r
)Q(

4

G
g (P is on or above SE) (1.5.14)

Since SB is completely inside SE, the equation (1.5.14) is an integral equation of the

first kind, which is improperly posed. In practice, we divide SB into many blocks

according to the resolution of the gravity data and suppose that ρ* is constant in each

block. Then the unknown function ρ* becomes a vector {ρ*
i} with finite dimension

and can be estimated by the least squares technique from the known gravity data. In

more detail, we divide BS  into a set of grid elements {Si} by meridians and parallels.

The size of the grid elements is chosen according to the resolution of the data. Thus

equation (1.5.14) becomes

PiP
i

i
* gA δ=ρ∑                                                  (1.5.15)

with

i
PQP

iP S)
1

(
r

A
i

∆
∂
∂

−=
l

                 (1.5.16)

where iQ  is a point in Si and ∆Si is the area of Si. From (1.5.15), we can estimate

{ρ*
i} from { Pgδ } by the least squares technique. When the size of the grid elements

{Si} is small, however, AiP decreases slowly since 1
PQ

Pr
−

∂
∂

l  decreases slowly when the

distance between P and Si increases. Thus, the coefficient matrix of the normal
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equations is strongly correlated. This makes the least square solution unstable (see

Fei, 1994; Keller, 1995). So from the ‘fictitious’ single layer density model (1.4.22),

we can not obtain a stable high-resolution solution of the model parameters even if

we have high-resolution gravity data on the topographic surface.

From the discussion above, we see that the establishment of the local relationships

between the input data and the output data via fast decreasing kernel functions are very

important for solving the incomplete global coverage of accurate gravity measurements

and obtaining a stable high resolution solution of the gravity field model. In detail, the

local relationship has two significances: one is that we can evaluate with a high accuracy

the integrals in the models by using mainly high-accuracy and high-resolution data in a

local area; the other is that we can get a stable solution with high resolution when we

invert the integrals in the models because of the rapid decrease of the kernel function of

the integrals. In chapter 5 and 6, we will give more detailed investigations on the local

relationships.
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2 Supplements to Runge’s Theorems in Physical
Geodesy

In physical geodesy, the approximations of the Earth's gravity field by means of

Bjerhammar's representations and spherical harmonics series etc. all need the guarantee

of Runge’s theorem. Runge’s theorem has two forms in physical geodesy: the Runge-

Krarup theorem and Keldysh-Lavrentiev theorem. They guarantee that the disturbing

potential T  given in the approximating theories of physical geodesy can approximate

arbitrarily well the actual disturbing potential T. They do not, however, deal with the

problem of the radial derivative of T and T . The data usually used are the first-order and

second-order radial derivative of T, i.e. gravity data and gradiometer data. We need to

know whether the derivatives of T  can also approximate the derivatives of T

simultaneously. In this sense, the guarantee of Runge’s theorem for the approximation

theories concerned is not sufficient. In this chapter, we will prove that for a given non-

negative integer n and an arbitrary small positive constant ε, there exist T  so that the k-

order )nk0( ≤≤  radial derivatives of the difference between T  and T are less than ε

everywhere on and outside the Earth’s surface (in this case, n=1) or a smooth surface S

completely surrounding SE. The Runge-Krarup theorem and Keldysh-Lavrentiev theorem

(where k=0) are obviously special cases of the generalized theorems.

2.1 Preparations

In this subsection, we give some notations and some lemmas for the proofs of our final

conclusions.
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Definition 2.1  For a closed surface S in space R3, let

i(S) ≡ {P: P is inside S}, I(S) ≡ {P: P is inside or on S},

e(S) ≡ {P: P is outside S}, E(S) ≡ {P: P is outside or on S}.

Definition 2.2  For a given point O in space R3, a closed surface S is called a star-

shaped surface about O if O is inside S and there is only one intersection Q

between S and the line OQ for every Q on S. The set of all the star-shaped

surfaces about O is denoted by ℵ(O). i.e.

O}about  surfacestar  a is S:S{)O( ≡ℵ .

Example of star-shaped surface: In the following figure, the surface S is a star-shaped

surface about O2, but is not a star-shaped surface about O1.

Q

S

O1
O2

Figure 2.1  An example of star-shaped surface

Definition 2.3  For a given closed surface S, ℑ(S) is defined as the set of all the closed

smooth surfaces completely surrounding S, i.e.

'S:'S{)S( ≡ℑ  is a closed smooth surface completely surrounding S}.
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Definition 2.4  Suppose that S is a closed surface, N is a non-negative integer, ℜℜ  is the

space formed by all n-order ( Nn ≤ ) differentiable functions in E(S). Then the

norm 
N

S
 in the space ℜℜ  is defined as follows:

(P)f
v

supmaxˆf
n
P

n

V   v
E(S)P N,0n

N

S

PP

∂
∂

=
∈

∈=               ( ℜℜ∈∈f )                         (2.1.1)

where VP is the set of all the directions which pass through P.

Lemma 2.1. Suppose that S is a closed surface, O is in )S(i  and )S()O(S0 ℑ∩ℵ∈ . For

any given point Q0 on S0, take a point Q1 on the line OQ0 such that

2/d0OQOQ 01
−= ll (2.1.2)

where

S}Q ,S P:inf{d 0PQ0 ∈∈= l (2.1.3)

Qo

So

S 1

Q1

S

O

Figure 2.2 The relation among S, S1 and S0
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Then the surface S1 composed by all Q1 satisfies (see figure 2.2):

(i) )S()O(S1 ℑ∩ℵ∈ ,

(ii) )}I(SQ ),E(S P:inf{d 10PQ ∈∈≡ l >0,

(iii) )S(S 10 ℑ∈ .

Proof: (a). Since S0 )S(ℑ∈ , we know from (2.1.2) and (2.1.3) that S1 is a closed smooth

surface and d0>0. From (2.1.3), we know that for any given point Q on or inside S and a

point P on S0, 0PQ d≥l . So from (2.1.2), we know that S1 completely surrounds S. Thus

)S(S1 ℑ∈ . Now we prove that )O(S1 ℵ∈ . That is to prove that for any given point P on

S1, only P is on line OP and S1. If it is not true, then there must exist another point Q on

line OP and S1 such that

OPOQ ll ≠ (2.1.4)

So from the definition of S1, we know that there exist two points 'P  and 'Q  on S0 and

line 'OP  satisfying

2/d0OQ'OQ += ll  , 2/d0OP'OP += ll

From (2.1.4), we see that 'P  and 'Q  are not the same point. This is contrary to

)O(S0 ℵ∈ . So )O(S1 ℵ∈  and (i) holds.

(b). Since S1 and S0 are closed surfaces, if d=0, then there must exist an intersection P of

S1 and S0. Consider P as the point on S0; then from the definition of S1, we know that

there exists a point 1P  on S1 and the line OP such that PP1 ≠ . Since P is also on S1, there
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exist two different points 1P  and P on line OP and S1. This is contrary to )O(S1 ℵ∈ . So

(ii) holds.

(c). (iii) can be obtained directly from (ii) and (2.1.2)#

Lemma 2.2. Suppose that )S()O(S1 ℑ∩ℵ∈  and there exist three real positive numbers

a, b and c satisfying

1
a

infc
a

b
sup0

OQ

OQ

SQ
OQ

OQ

SQ 11

<
+

≤≤
+
−

<
∈∈ l

l

l

l
(2.1.5)

For every point Q1 on S1, take a set of points 1kkk }Q,Q{ ≥  on the line OQ1 so that

ac)1k(c 1k1k
OQOQ 1k

−− −+= ll ;     c
kk OQQO ll = (2.1.6)

For a fixed k, let kS  and kS  be the surfaces formed by all kQ  and kQ , respectively. Then

2S

2Q
1Q

O

Q2

S2

Q 1

S1

1S

Figure 2.3  Relations among Sk and kS

(i). )S(iQ 1k ∈  and ba
kkQQ +<l ( 1k ≥ );

(ii). kS  is a closed surface containing O and
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0infr
k

kk
QOSQ

k >≡
∈

l ; (2.1.7)

(iii). )S(S 1kk −ℑ∈  where SS0 ≡ ;

(iv). Let SB be the spherical surface with O as its centre and )inf
2

1
( r OQSQB

1

l
∈

≡  as its

radius. Then there exists an integer m such that )S(S mB ℑ∈ .

Proof: (1). From (2.1.6) and the right hand side of (2.1.5), we obtain

ac)2k(c)a(ac)1k(c 1k1k
OQ

1k1k
OQOQQO 11kk

−−−− −++=−+=< llll

11k1 OQOQ
2k2k

OQ ac)2k(c lll <<=−+<
−

−− L                   (2.1.8)

This means that kQ  and kQ  are on the line OQ1. So from )O(S1 ℵ∈ , we obtain

)S(iQ 1k ∈ . Furthermore, from the left side of (2.1.5), we have

a

ba
c1

1OQ +
+

≤−
l

(2.1.9)

It follows that

ba
a

ba
)c1(

1

1kkk

OQ
OQOQQQ +<

+
+

≤−=
l

lll . (2.1.10)

So (i) holds.

(2). Since O is an inner point of S, 0inf
1

11
OQ

SQ
>

∈
l . It follows from (2.1.6) and the definition

of kS  that (ii) holds.
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(3). It is easy to see from the definition of kS  that kS  is a closed smooth surface

containing O as an inner point. Now we prove that every 1kQ −  is inside kS . If this is not

true, then there exists a 1kQ −  which is on or outside kS . Since O is inside kS , there is an

intersection Q of kS  and the line 1kQO − . That is

1kQOOQ −
≤ ll (2.1.11)

However, from the definitions of kS  and 1kS − , we know that there exists 'Q  on 1S  such

that

ac)1k(c 1k1k
'OQOQ

−− −+= ll (2.1.12)

ac)2k(c 1k1k
'OQQO 1k

−− −+=
−

ll (2.1.13)

This is contrary to (2.1.11). So (iii) holds.

(4). From (2.1.6) and noting that c<1 and 1S  is bounded, it is easy to prove that there

exists an integer m such that

BQO
SQ

rsup
m

mm

<
∈

l (2.1.14)

It follows that (iv) holds#

Lemma 2.3. Suppose that S  is a closed surface and )S(S ℑ∈ . Then for any given

)S(HT ∈ , there exist two bounded function X and Y on S such that



53

Q

S PQQ
Q

S PQ

dS)
1

(
n

)Q(YdS
)Q(X

)P(T ∫∫ ∂
∂

−=
ll

( )S(eP ∈ ) (2.1.15)

where Qn  is the outer direction of the normal of S at Q. Furthermore, if S is a spherical

surface, then there exists a bounded function Z on S such that

Q

S PQ

dS
)Q(Z

)P(T ∫=
l

( )S(eP ∈ ) (2.1.16)

Proof: Since )S(HT ∈  and )S(S ℑ∈ , T and T
nQ∂
∂

 are continuous on S, thus bounded.

For SQ ∈ , let

)Q(T
n4

1
)Q(X

Q∂
∂

π
= ,      )Q(T

4

1
)Q(Y

π
= (2.1.17)

Then from Green’s formula

Q

S PQQ
Q

S QPQ

dS)
1

(
n

)Q(T
4

1
dS)Q(T

n

1

4

1
)P(T ∫∫ ∂

∂
π

−
∂

∂
π

=
ll

(2.1.18)

we see that (2.1.15) holds.

If S is a spherical surface, then

R2

R
)

1
(

n 3
PQ

22
PQ

2
P'O

PQQ l

ll

l

−−
=

∂
∂

(2.1.19)
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where 'O  and R are respectively the centre and the radius of S.  According to (1-89) in

Heiskanen and Moritz (1967), we have

Q

S
3
PQ

22
P'O dS

R

R
)Q(T

4

1
)P(T ∫

−
π

=
l

l
))S(eP( ∈ (2.1.20)

Multiplying (2.1.20) by -½ and adding the product to (2.1.8), we obtain from (2.1.19) that

Q

S PQQ

dS
1

]
R2

1
)Q(T)Q(T

n
[

4

1
)P(T

2

1
∫ +

∂
∂

π
=

l
(2.1.21)

Let

π
+

∂
∂

=
2

1
]

R2

1
)Q(T)Q(T

n
[)Q(Z

Q

(2.1.22)

then (2.1.16) holds#

Lemma 2.4. Let )t(Pn  be n-degree Legendre polynomial. Then for 1t ≤

(i).     1)t(Pn ≤ ;

(ii).    2'
n n)t(P ≤ ;

(iii).   4"
n n)t(P ≤ .

Proof: (1). (i) was stated in section 1.3 of Moritz (1990).

(2). From (1-86) of the appendix of Guan and Ling (1981), we have that for 1n ≥ ,

)t(P)1n2()t(P)t(P n
'

1n
'

1n +=− −+ (2.1.23)
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Noting that

 ;1)t(P    ;t)t(P    ;0)t(P    ;1)t(P '
11

'
00 ==== (2.1.24)

we obtain that

2
n

1k

n

1k

'
1k2

'
1k2

'
1

'
1n2 )1n2()1n2)(1n()1k4(1)]t(P)t(P[)t(P)t(P +≤++=++≤−+= ∑∑

==
−++          (2.1.25)

2
n

1k

n

1k

'
2k2

'
k2

'
0

'
n2 )n2(n)1n(2k4)]t(P)t(P[)t(P)t(P ≤+=≤−+= ∑∑

==
−         (2.1.26)

This means that (ii) holds.

(3). From (2.1.23), we obtain

)t(P)1n2()t(P)t(P '
n

''
1n

"
1n +=− −+

Then from the proof of (ii), we know that (iii) holds#

Lemma 2.5. Let O, P and Q be the three points in R3; vP and vQ be the two directions

through P and Q, respectively. For a constant c (0<c<1), take a point Q  on the line OQ

such that

OQQO cll = (2.1.27)

Then

(i). 1
v OQ

Q

≤
∂

∂
l
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(ii). 1
v QP

Q

≤
∂

∂
l ;   1

v QP
P

≤
∂
∂

l ;   PQQP
QP

N
vv

≤
∂

∂
∂
∂

l

(iii). PQQQP
Q

N2t
v

≤
∂

∂
;   PQQQP

P

N2t
v

≤
∂

∂
;   2

PQQQP
QP

N5t
vv

≤
∂

∂
∂

∂

where

QQPcost
QQP

∠= (2.1.28)

QOQP

PQ

11
N

ll
+= (2.1.29)

Proof: From the definition of the derivative and the knowledge of triangle functions, it

can be proved that for any given two points P0 and P1 in space and two directions 
0Pv  and

1Pv  respectively through P0 and P1 (see figure 2.4),

P0

P1

0Pv
1Pv

Figure 2.4 The directions 
1Pv  and 

0Pv

)v,PPcos(
v 110

1

P10PP
P

→
=

∂
∂

l (2.1.30)

10

1

0 PP
P10

P

1
)v,PPcos(

v l
≤

∂
∂ →

(2.1.31)

Take a point 'P  in the direction 
→

OP  (see figure 2.5) such that
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'OPOP cll = (2.1.32)

and let 
Q

v  be the direction through Q  and parallel to vQ. Then from (2.1.27) we obtain

Q'PQP cll =  and )v,QPcos()v,Q'Pcos(
QQ

→→
= (2.1.33)

'P

O

Qv
Qv

Pv
Q

P
Q

Figure 2.5  The relations between P' and P , and 
QQ  and vv

It follows from (2.1.30) and (2.1.31) that

)v,OQcos(
v QOQ

Q

→
=

∂
∂

l (2.1.34)

)v,OPcos(
v POP

P

→
=

∂
∂

l (2.1.35)

)v,QPcos(c)v,Q'Pcos(c
v QQQP

Q

→→
==

∂
∂

l (2.1.36)

)v,PQcos(c
v PQP

P

→

=
∂

∂
l (2.1.37)

QP
Q

P
QP

QP

c
)]v,QPcos(c[

vvv l
l ≤

∂
∂

=
∂

∂
∂
∂ →

(2.1.38)

Therefore (i) and (ii) hold. Furthermore, from the definition of 
QQP

t , we have
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QPOQ

2
QP

2
OQ

22
OP

QQP c2

c
t

ll

lll −−
= (2.1.39)

Finally from (2.1.34-38) and noting that

0
v OP

Q

=
∂

∂
l ,  0

v OQ
P

=
∂

∂
l ,  0

vv OQ
QP

=
∂

∂
∂

∂
l (2.1.40)

we see that (iii) holds#

2.2 Supplement to Runge-Krarup’s theorem

In this section, we will give a supplement to Runge-Krarup’s theorem. This is expressed

as the following theorems.

Theorem 2.1  Let T, OE and SE be the disturbing potential, the centre and the surface of

the Earth, respectively. Then for an arbitrary surface 0S ∈ )S()O( EE ℑ∩ℵ , an arbitrary

point O  inside S0, an arbitrary non-negative integer N and an arbitrary real number ε >0,

there exists )OH(T ∈  satisfying

S0

. O .
OE

SE

Figure 2.6  The relations between SE, S0, OE and O
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ε<−
N

S0

TT                                                      (2.2.1)

This theorem shows that for any positive integer N, the n-degree ( Nn0 ≤≤ ) derivatives

of the disturbing potential T can be approximated on and outside a smooth star-shaped

surface S0 completely surrounding the Earth’s surface by the n-degree derivatives of a

function T  which is harmonic everywhere except an inner point of S0. Obviously, this

gives a supplement to Runge-Krarup’s theorem so that the derivatives of the disturbing

potential are included. The following is a proof of the theorem.

Proof: Here we only prove the theorem in the case that N=1. For N>1, the proof is

similar. Our proof consists of two steps.

Step 1: we will prove that there exists )O(HT EB ∈  satisfying

2
TT

1

SB
0

ε
<− (2.2.2)

From Lemma 2.1, we know that for SE, S0 and OE, there exists a surface S1 satisfying the

conditions:

)S()O(S EE1 ℑ∩ℵ∈  and )S(S 10 ℑ∈ (2.2.3)

)}I(SQ ),E(S P:inf{d 10PQ ∈∈≡ l >0 (2.2.4)

Since S1 is a closed surface containing OE, the centre of the Earth, as its interior point, the

radius Qr  of the points on S1 satisfy

+∞<≤<
∈∈ Q

SQ
QSQ

rsuprinf0
1

1

(2.2.5)
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Take a, b satisfying

)rinf ,
2

d
min(b0 QSQ 1∈

<< ;  (2.2.6)

)
rsup

rinfb
 ,b

2

d
min(a0

Q
SQ

QSQ

1

1

∈

∈−<< (2.2.7)

Let

arsup

ba
1c

Q
SQ 1

+
+

−=

∈

(2.2.8)

Then it is easy to prove that

1
ar

r
infc

ar

br
sup0

Q

Q

SQ
Q

Q

SQ 11

<
+

≤≤
+
−

<
∈∈

(2.2.9)

2

d
ba <+           (2.2.10)

So according to Lemma 2.2, for S1, a, b and c given above, we can take a set of surfaces

{ }m

1kkk S ,S =  containing OE as their inner point, and a spherical surface SB with centre at OE

and radius )rinf
2

1
( r QSQB

1∈
=  so that they satisfy the conditions (i-iv) of Lemma 2.2. Since

))S(e(HT E∈ , )S(S E1 ℑ∈  and )S(S 10 ℑ∈ , it follows from Lemma 2.3 that there exist

bounded functions X1 and Y1 and a positive constant M1 such that

Q1

S PQQ
Q1

S PQ

dS)
1

(
n

)Q(YdS
)Q(X

)P(T
11

∫∫ ∂
∂

−=
ll

( )S(EP 0∈ ) (2.2.11)
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1Q1

S

Q1

S

MdS)Q(YdS)Q(X
11

<+ ∫∫ (2.2.12)

For any given 11 SQ ∈ , take a 1Q  on line 1OQ  such that

11 QQ
crr = (2.2.13)

From Lemma 2.2, we know that

11 SQ ∈ (2.2.14)

and

)S(iQ 11 ∈ (2.2.15)

0rinfrr
1

11
1 QSQ

1Q
>≡≥

∈
(2.2.16)

ba
11QQ +<l (2.2.17)

From (2.2.4) and (2.2.10), we know that for )S(EP 0∈ ,

d
1QP ≥l , 

2

d
11QQ <l (2.2.18)

Thus

2

1

1

11

QP

QQ <
l

l
(2.2.19)

+∞<≡+≤+= 1
1QQP

PQ N
r

1

d

1

r

11
N

11

1 l
(2.2.20)
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So according to Lemma 2.4, Lemma 2.5 and equation (1-81) of Heiskanen and Moritz

(1967), we obtain that for )S(EP 0∈  and 11 SQ ∈

+∞<≤= ∑∑
∞

=

∞

=
+ 1

n

0n
QQPn

0n
1n

QP

n
QQ

PQ

N)
2

1
()t(P

1
11

1

11

1
l

l

l
  (2.2.21)

+∞<+≤
∂

∂=
∂

∂ ∑∑
∞

=

∞

=
+

2
1

2n

0n
QQPn

0n
1n

QP

n
QQ

QPQQ

N)1n(2)
2

1
()]t(P[

n
)

1
(

n 11

1

11

1
l

l

l
  (2.2.22)

+∞<+≤
∂

∂=
∂
∂ ∑∑

∞

=

∞

=
+

2
1

2n

0n
QQPn

0n
1n

QP

n
QQ

PPQP

N)1n(2)
2

1
()]t(P[

v
)

1
(

v 11

1

11

1
l

l

l
  (2.2.23)

+∞<+≤
∂

∂
∂
∂=

∂
∂

∂
∂ ∑∑

∞

=

∞

=
+

3
1

4n

0n
QQPn

0n
1n

QP

n
QQ

QPPQQP

N)1n(4)
2

1
()]t(P[

nv
)

1
(

nv 11

1

11

1
l

l

l
   (2.2.24)

So the above four series are absolutely convergent when )S(EP 0∈  and 11 SQ ∈ . It

follows that for 
1

1 M)1m(2 +
ε

=ε , there exists a positive integer n1 such that

1QQPn

n

0n
1n

QP

n
QQ

j
Q

j

i
P

i

PQ
j
Q

j

i
P

i

SQ
)S(EP

)]t(P[
nv

)
1

(
nv

sup
11

1

1

11

1
11

0

ε≤
∂
∂

∂
∂

−
∂
∂

∂
∂ ∑

=
+

∈
∈ l

l

l
    (For 11 SQ ∈ )    (2.2.25)

where i, j=0 or 1. For 11 SQ ∈  and 1QP ≠ , let

)t(P)P(f
11

1

1

11

1 QQPn

n

0n
1n

QP

n
QQ

Q1 ∑
=

+=
l

l
 (2.2.26)

It can be proved that

)Q(Hf 1Q1 1
∈ (2.2.27)
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Furthermore for 1SP ∉ , let

Q

S

Q1
Q

1Q

S

Q111 dS)]P(f[
n

)Q(YdS)P(f)Q(X)P(T
1

1

11

1 ∫∫ ∂
∂

−= (2.2.28)

Then

)S(HT 11 ∈ (2.2.29)

and

111Q1
PQS

i
P

i

Vv
)S(EP1,0i

1

S1 dQ)Q(X)]P(f
1

[
v

supmaxTT
1

11
PP

0
0

−
∂
∂

=− ∫
∈

∈= l

                                         111Q1
PQQS

i
P

i

dQ)Q(Y)]P(f
1

[
nv 1

11

−
∂

∂
∂
∂− ∫ l

      
)1m(2

M]dQ)Q(YdQ)Q(X[ 111

S

111

S

111

11
+

ε
=ε≤+ε< ∫∫ (2.2.30)

For )S(S 12 ℑ∈ , repeating the above work by replacing SE, S1, 1S  and T by 1S , S2, 2S

and T1 respectively, we can obtain a )S(HT 22 ∈  such that

1

S21
0

TT − <
)1m(2 +

ε
(2.2.31)

Furthermore, for each k ( mk1 ≤≤ ), there exists a )S(HT kk ∈  such that

1

Sk1k
0

TT −− <
)1m(2 +

ε
( TT0 ≡ ) (2.2.32)
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So for )S(HT mm ∈ , we have

1

Sm
0

TT − <∑
=

− −
m

1k

1

Sk1k
0

TT <
)1m(2

m

+
ε

(2.2.33)

From )S(S mB ℑ∈  and Lemma 2.3, we know that there exists a function Z(Q) on SB and a

positive constant NB such that

mQ

S PQ
m dS

)Q(Z
)P(T

m

∫=
l

( )S(EP 0∈ ) (2.2.34)

BmQ

S

NdS)Q(Z
m

<∫ (2.2.35)

According to the definitions of SB and S0, we know that

'Q
S'Q

BQ rinf
2

1
rr

1∈
== (Q on SB) (2.2.36)

drinfr 'Q
S'Q

P
1

+≥
∈

( )S(EP 0∈ ) (2.2.37)

So for P∈E(S0) and Q on SB,

2

1

drinf

rinf
2

1

r

r

'QS'Q

'QS'Q

P

Q

1

1 <
+

≤
∈

∈
(2.2.38)

Let POQcost ∠=  and note that 
d

1

r

1

P

< , we have from Lemma 2.4 and (2.1.30) and

(2.1.31) that
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+∞<≤= ∑∑
∞

=

∞

= d

1
)

2

1
()t(P

r

1
)

r

r
(

1 n

0n
n

P

n

0n P

Q

PQl
(2.2.39)

+∞<+≤
∂

∂
=

∂
∂ ∑∑

∞

=

∞

=
2

2n

0n
n

P

n

0n P

Q

PPQP d

1
)1n()

2

1
()]t(P

r

1
)

r

r
[(

v
)

1
(

v l
(2.2.40)

So there exists a positive integer Bn  such that

B
n

P

n
n

0n P

Q
i
P

i

PQ
i
P

i

Vv
SQ

)S(EP N)1m(2
)]t(P

r

1
)

r

r
[(

v
)

1
(

v
sup

B

PP

11

0 +
ε

≤
∂
∂

−
∂
∂ ∑

=

∈
∈

∈ l
(2.2.41)

For EOP ≠ , let

)]t(P
r

1
)

r

r
[()P(f n

P

n
n

0n P

Q
BQ

B

∑
=

= (Q is on SB) (2.2.42)

BQ

S

BQB dS)P(f)Q(Z)P(T
B

∫= (2.2.43)

Obviously, )O(HT EB ∈ , and from (2.2.34-35) and (2.2.41-43) we obtain

1

SBm
0

TT − <
)1m(2

N
N)1m(2 B

B +
ε

=
+
ε

(2.2.44)

Thus from (2.2.33)

1

SBm

1

Sm

1

SB
000

TTTTTT −+−≤− <
2)1m(2)1m(2

m ε
=

+
ε

+
+

ε
(2.2.45)

Thus we have finished the work of the first step.
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Step 2: In the following, we will prove the conclusion of the theorem 2.1.

Since O  is inside S0 and )O(S E0 ℵ∈ , we know that there is no intersection between S0

and the line OOE . That is

0}OO line  theon is Q ,S P:inf{d E0PQ1 >∈≡ l (2.2.46)

Draw two closed surfaces 'S  and "S  satisfying respectively the following conditions:

2/d}OO line  theon is Q :inf{  ifonly  and if    'S'Q 1EQQ' =∈ l (2.2.47)

4/d}OO line  theon is Q :inf{  ifonly  and if   "S"Q 1EQQ" =∈ l (2.2.48)

Obviously, 'S  and "S  are smooth surfaces surrounding completely the line OOE  and

being surrounded completely by S0, and

)O()"S('S ℵ∩ℑ∈ (2.2.49)

Since )O(HT EB ∈  and OE is inside "S , we have

)"S(HTB ∈ (2.2.50)

Repeating the work done in the first step by using "S , 'S , TB and O  to replace

respectively SE, S0, T and OE, and noting (2.2.49) and (2.2.50), we can see that there

exists )O(HT ∈  satisfying

2
TT

1

'SB

ε
<− (2.2.51)
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Since 'S  is inside S0, it follows from (2.1.1) that

2
TTTT

1

'SB

1

SB
0

ε
<−≤− (2.2.52)

Therefore we obtain from (2.2.45) that

ε<−+−≤−
1

SB

1

SB

1

S 000

TTTTTT (2.2.53)

Thus we have finished the proof of the theorem 2.1#

2.3 Supplement to the Keldysh-Lavrentiev theorem

In the above section, we gave a supplement to the Runge-Krarup theorem so that it is also

valid for the derivatives of the disturbing potential. Now we will give a supplement to the

Keldysh-Lavrentiev theorem. This is expressed as the following theorem 2.2.

Theorem 2.2. Let T, OE and SE be the disturbing potential, the centre and the surface of

the Earth, respectively. If SE is smooth and )O(S EE ℵ∈ , then for an arbitrary point O

inside SE and an arbitrary real number ε >0, there exists )OH(T ∈  satisfying:

ε<−
1

SE

TT   (2.3.1)

This theorem shows that the n-degree (n=0,1) derivatives of the disturbing potential T can

be approximated on and outside the Earth’s surface SE by the n-degree derivatives of a

function T  which is harmonic outside an inner point of SE if SE is a smooth star-shaped
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surface. In this theorem, the degree of the derivative is less than 2. This is because the

second (or higher) degree derivatives of the disturbing potential are not continuous on the

Earth’s surface. Obviously, it gives a supplement to Keldysh-Lavrentiev’s theorem so

that the first order derivatives of the disturbing potential are included. The following is a

proof of the theorem.

Proof: According to (1.1.13), the disturbing potential can be expressed as

τ
δρ

= ∫
τ

d
)Q(

G)P(T
PQl

               (2.3.2)

where τ is the space surrounded by SE, δρ is the disturbing density function of the Earth

and G is the Newton gravitation constant.

Let

}Q :)Q(max{max τ∈ρ=ρ , (2.3.3)

}SQ :rmax{r EQmax ∈= , (2.3.4)

and

}
)1r(G8

 ,1min{d
2
maxmax

3 +ρπ
ε

= , (2.3.5)

3
34 )d(d = (2.3.6)

For every Q ) , ,r( QQQ λθ on SE, take a point Q  ) , ,r( QQQ
λθ satisfying the following

condition (see figure 2.7)

4QQ
drr −= (2.3.7)
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τ0

τ-τ0

d 4

SE

S

EOO

Q

Q

Figure 2.7 The relation between SE and S

Obviously, since )O(S EE ℵ∈ , the surface S  formed by all points Q  is completely

surrounded by SE. Thus )S(SE ℑ∈ . Let 0τ  be the space surrounded by S  and

01 τ−τ=τ . Then the volume of 1τ  is as follows:

    Q
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3
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r Q
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Q11 dcosd
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=λθ=τ=τ ∫ ∫∫ ∫ ∫∫
π ππ π
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  Q
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0 Q

2
QQQ

2
QQQ

dcosd
3

]rrrr][rr[
 λθ

++−
= ∫ ∫

π π

4
2
max

2 

0 

 

0 

2
max4 dr4dcosdrd π=λθ≤ ∫ ∫

π π
 (2.3.8)

For an arbitrary given point P on or outside SE ( )S(EP E∈ ), draw a sphere Pτ  with the

centre at P and a radius of d3. Let P12 τ∩τ=τ . Then from (2.3.2), we have for any given

PP Vv ∈  that
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τ
ρ

+τ
ρ

+τ
ρ

= ∫∫∫
ττ−ττ

d
)Q(

Gd
)Q(

Gd
)Q(

G)P(T
2210 PQPQPQ lll

      (2.3.9)

τ
∂
∂

ρ+τ
∂
∂

ρ+τ
∂
∂

ρ=
∂
∂

∫∫∫
ττ−ττ

d]
1

[
v

)Q(Gd]
1

[
v

)Q(Gd]
1

[
v

)Q(G)P(T
v

2210 PQPPQPPQPP lll
  (2.3.10)

Let

τ
ρ

= ∫
τ

d
)Q(

G)P(T
0 PQ

0 l
   (2.3.11)

Then from (2.3.9) and (2.3.10) and noting (2.1.30), we obtain that

}d
1

d
1

{Gd
)Q(

Gd
)Q(

G)P(T)P(T
221221

PQPQ
max

PQPQ
0 τ+τρ≤τ

ρ
+τ

ρ
≤− ∫∫∫∫

ττ−τττ−τ llll
    (2.3.12)

        τ
∂
∂

ρ+τ
∂

∂
ρ≤

∂
∂

−
∂
∂

∫∫
ττ−τ

d]
1

[
v

)Q(Gd]
1

[
v

)Q(G)P(T
v

)P(T
v

221
PQPPQP

0
PP ll

}d
1

d
1

{G
221

2
PQ

2
PQ

max τ+τρ≤ ∫∫
ττ−τ ll

  (2.3.13)

From the definition of 2τ , we know that

3PQ d≥l    for 21Q τ−τ∈ (2.3.14)

It follows from (2.3.6) and (2.3.8) that

2
3

2
max

3

4
2
max

1
33PQ

dr4
d

dr4
)(V

d

1
d

d

1
d

1

2121

π=
π

≤τ≤τ≤τ ∫∫
τ−ττ−τ l

(2.3.15)

3
2
max2

3

4
2
max

12
3

2
3

2
PQ

dr4
d

dr4
)(V

d

1
d

d

1
d

1

2121

π=
π

≤τ≤τ≤τ ∫∫
τ−ττ−τ l

(2.3.16)
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Since P2 τ⊂τ , we have

2
3

2 

0 

 

0 

d 

0 

2

PQPQ

d2dcosdrdr
r

1
 d

1
d

1 3

P2

π=λθ=τ≤τ ∫ ∫ ∫∫∫
π π

ττ ll
(2.3.17)
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2
22

PQ
2
PQ

d4dcosdrdr
r

1
 d

1
d

1 3

P2

π=λθ=τ≤τ ∫ ∫ ∫∫∫
π π

ττ ll
(2.3.18)

So from (2.3.12) and (2.3.13), we have

]d2dr4[G)P(T)P(T 2
3

2
3

2
maxmax0 π+πρ≤− (2.3.19)

]d4dr4[G)P(T
v

)P(T
v 33

2
maxmax0

PP

π+πρ≤
∂

∂
−

∂
∂

(2.3.20)

It follows from (2.3.5) that

2
]d4dr4[GTT 33

2
maxmax

1

S0
E

ε
<π+πρ≤− (2.3.21)

From the definition (2.3.11) of T0, we know that )S(HT0 ∈ . Substituting respectively T,

SE, S0, N and ε by T0, S , SE, 1 and 
2

ε
 in the theorem 2.1, we see that, for the O  inside

SE, there exists )OH(T ∈  satisfying

2
TT

1

S0
E

ε
<− (2.3.22)

It follows from (2.3.21) that

ε<−
1

SE

TT  (2.3.23)

Thus we have finished the proof of the theorem#
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2.4 Discussion

In the preceding sections, we gave two theorems (Theorem 2.1 and Theorem 2.2), which

deal with not only the disturbing potential but also with its derivatives. In the following,

we will discuss the conditions in the theorems and give an example on how the theorems

are applied.

2.4.1 Conditions in the theorems

In these two theorems, the smooth star-shaped surface (see the definition 2.2) plays a

very important role. In theorem 2.2, the Earth’s surface SE is supposed to be a smooth

star-shaped surface about the Earth’s centre OE. In theorem 2.1, the surface S0, on and

outside which the disturbing potential T or its up to n-degree derivatives are

approximated, is supposed to be a smooth star-shaped surface about OE. In other words,

SE (or S0) should be smooth, and for a point Q on SE (or S0), all the other points on the

line OEQ are inside SE (or S0). For physical geodesy purposes, it is acceptable to adjust

slightly the figure of the Earth so that its surface is a star-shaped surface about the

geocentre. In fact, in the application of physical geodesy theories, the surface SE is

supposed to be a plane, a spherical surface or a smooth fitting surface. Therefore, we will

always suppose that the Earth’s surface SE is a smooth star-shaped surface about the

geocentre. In this case, the condition of theorem 2.2 is satisfied and the surface S0 in the

theorem 2.1 can be taken as close to SE as we want. Furthermore, we can merge the two

theorems into the following theorem:

Theorem 2.3.  For a point O  inside SE, an arbitrary given positive integer N, a star-

shaped surface S0 completely surrounding SE and an arbitrary positive ε, there exists a

function T , harmonic everywhere except O , such that

ε<−
N

S0

TT     and     ε<−
1

SE

TT (2.4.1)
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2.4.2 An application in Moritz’s solution for Molodensky’s problem

In the following, we will give an example to show how theorem 2.3 is applied to the

solution of the geodetic BVP.

As we know Molodensky’s problem deals with the determination of the disturbing

potential from gravity anomalies on the surface of the Earth. Unlike a level surface,

which can be approximated by an ellipsoidal surface, the Earth’s surface is very complex.

Stokes’s formula can not be applied to the gravity anomalies on that surface. Therefore,

Moritz (1980) proposed the analytical continuation method, in which the disturbing

potential T and the gravity anomaly ∆g are analytically continued from SE onto a point

level surface SP (see figure 2.8).

−Q
z

−−
PQ

−−Q

++
PQ

++Q

−−
PS

++
PS

−−
ES

++
ES

P

SE

SP

Figure 2.8  The topographic surface SE and the point level surface SP

According to our theorems, for an arbitrarily small positive constant ε , an arbitrarily

large positive integer N and a surface S0 sufficiently close to SE, there exists a function T

satisfying that
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1. )O(HT ∈

2. ε<− QQ TT ( for Q on or outside SE)

3. ε<∆−∆ QQ gg ( for Q on or outside SE)

4. ε<∆
∂
∂

−∆
∂
∂

Qn

n

Qn

n

g
z

g
z

(for Nn0 ≤≤  and Q on or outside S0)

From the conditions 3 and 4, when the distance zQ of a point Q on SE to SP is small

enough, g∆  on PS  has the following relations with ∆g on SE:

)g(U)g(Ug
PP QQQQQ −−−−− ∆≈∆≈∆ (2.4.2)

)g(Ugg
PQQQQ ++++ ∆≈∆≈∆ (2.4.3)

where U is the continuation operator (see Moritz, 1980)

∑
= ∂

∂
=

N

0n
n
Q

n
n
QQ

z!n

1
zU  with PQQ HHz −= (2.4.4)

Here, the first relation of (2.4.2) and the second relation of (2.4.3) are obtained from a

Taylor expansion, the second relation of (2.4.2) is guaranteed by condition 4 and the first

relation of (2.4.3) is guaranteed by condition 3.

After we get g∆  from ∆g by resolving (2.4.2) and (2.4.3), we can use g∆  in the Stokes

formula to get PT  since T  satisfies the condition 1 and SP is a level surface. Finally,

from the condition 2, we know that PT  equals approximately to TP.
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2.5 Chapter summary

In this chapter, we proved theorem 2.1 and theorem 2.2 as supplements to the Runge-

Krarup theorem and the Keldysh-Lavrentiev theorem, respectively, so that they are valid

for the derivatives of the disturbing potential as well as the disturbing potential itself.

The conditions about the Earth’s surface in our theorems, which are a little bit different

than those in the Runge-Krarup theorem and the Keldysh-Lavrentiev theorem, are

acceptable for geodesy purposes.

Besides Moritz’s analytical continuation method for Molodensky’s theory, the indirect

parameter approaches introduced in subsection 1.4.2 all need the guarantee of theorem

2.1 or theorem 2.2 when they deal with gravity or gravity gradiometer data.
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3 A New Method for Computing the Ellipsoidal
Correction for Stokes’s Formula

In this chapter, we will discuss the ellipsoidal correction problem for Stokes’s formula

and derive a new solution.

Stokes’s formula, an approximate solution of the Stokes problem, has been playing a key

role in the determination of the geoid from gravity anomaly data. Rigorously, Stokes’s

problem is a geoidal boundary value problem. That is that gravity anomalies are given on

the geoid and the disturbing potential is supposed to be harmonic outside the geoid. Since

the difference between the geoid and the reference ellipsoid is very small, we can treat

Stokes’s problem as an ellipsoidal boundary value problem. In other words, the Stokes

problem can be described mathematically as determining a disturbing potential function

T satisfying (1.4.1)

Various approaches have been proposed to solve the above ellipsoidal boundary value

problem (Molodensky et al., 1962; Moritz, 1980; Cruz, 1986; Sona, 1995; Thông, 1996;

Yu and Cao, 1996; Martinec and Grafarend, 1997; Martinec and Matyska, 1997;

Martinec, 1998; Ritter, 1998). Usually, they can be divided into two main approaches:

One directly represents the disturbing potential T in terms of an ellipsoidal harmonic

series, which is rigorous but very complicated because it requires the introduction of

Legendre functions of the second kind (Sona, 1995). Another one regards Stokes’s

formula as the first approximation of the solution of (1.4.1) and pushes the approximation

up to the term of O(e2), where e is the first eccentricity of the ellipsoid. This term, called

the ellipsoidal correction, is expressed in terms of closed integral formulas, such as the

solutions described in Molodensky et al. (1962), Moritz (1980) and Martinec and

Grafarend (1997).
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In the following sections, we will give a new closed integral formula for computing the

ellipsoidal correction. A brief comparison of the ellipsoidal corrections given in

Molodensky et al. (1962), Moritz (1980), Martinec and Grafarend (1997) and this chapter

and a numerical test for the new formula will also be given.

3.1 Derivation of the ellipsoidal correction

In the following, to solve equation (1.4.1), we will (a) establish an integral equation, and

(b) solve the integral equation to get Stokes’s formula plus its ellipsoidal correction.

3.1.1 Establishment of the integral equation

According to Moritz (1980), for an arbitrary point P0 given inside Se, the generalized

Stokes function

]
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satisfies
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(3.1.2)

From Green’s second identity (Heiskanen and Moritz, 1962), we obtain that
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It follows from the third formula in (1.4.1) that
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In (1.4.1), letting P be the moving point Q on Se and differentiating the function S(Q, P0)

along the normal vertical at Q, we obtain
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Following Moritz (1980), when P0 goes to P (the projection of P0 on Se) from the inner of

Se, then
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So for any given point P on Se, we obtain by letting PP0 →  in (3.1.4) that
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Equation (3.1.11) is the integral equation that will be used for determining T on Se.

3.1.2 Determination of the geoidal height

Denoting the projection of the surface element eQdS  onto the unit sphere σ  by Qdσ , we

have

QQ
2

Qe dsecrdS σβ=        (3.1.13)
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where Qβ  is the angle between the radius vector of Q and the surface normal of the

surface Se at point Q. Then, for any given point P on Se, (3.1.11) becomes

QQ
2
QQQ

2
Q dsecr)P,Q(S)Q(gdsecr)P,Q(K)Q(T)P(T4 σβ∆=σβ−π ∫∫

σσ

(3.1.14)

With be the semiminor axis and e the first eccentricity of the reference ellipsoid, and Pθ

and Qθ  respectively the complements of the geocentric latitudes of P and Q, we have
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Furthermore, from Molodensky et al. (1962), we have
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It then follows from (3.1.1) that
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where )(S QPψ  is the Stokes function
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From (3.1.5), we obtain
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Therefore, from (3.1.12), (3.1.14), (3.1.17), (3.1.20) and (3.1.22), we obtain

       QPQQP3PQQP2
2

QQP d)],,(f),,(f)[Q(Ted)cos31)(Q(T)P(T4 σθθψ+θθψ−σψ+−π ∫∫
σσ

)e(Od),,(f)Q(gbed)(S)Q(gb 4
QPQQP1e

2
QQPe +σθθψ∆+σψ∆= ∫∫

σσ

                (3.1.24)

The second condition in (1.4.1) means that the disturbing potential T does not contain the

spherical harmonics of degrees one and zero. So we have
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0d)(cosP)Q(Td)Q(T QQP0Q =σψ=σ ∫∫
σσ

 (3.1.25)

0d)(cosP)Q(Tdcos)Q(T QQP1QQP =σψ=σψ ∫∫
σσ

  (3.1.26)

Thus (3.1.24) becomes

QPQQP1e
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σσ
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             (3.1.27)

Let

)e(O)P(Te)P(T)P(T 4
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2
0 ++=     (3.1.28)

Then from (3.1.27), we obtain
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where
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According to the Bruns formula, we obtain

)e(O)P(Ne)P(N)P(N 4
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0 +′+′=    (3.1.32)

with the spherical geoidal height
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P
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and its ellipsoidal correction
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where f1 is defined by (3.1.19) and f0 is obtained from (3.1.31), (3.1.21) and (3.1.23).

Now we further discuss the first term of 1N′ :

QPQQP1
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e
11 d),,(f)Q(g
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)P(N σθθψ∆

πγ
=′ ∫

σ

(3.1.35)

From (3.1.19), (3.1.33), (3.1.25) and (3.1.26), we have that
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  (3.1.36)

From sections 1-11 to 1-14 of Heiskanen and Moritz (1967), we can obtain that
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We now represent g∆  by the spherical harmonic expansion

)],(SK),(RJ[)1n(G)Q(g QQnmnmQQnm
2n

n

0m
nm λθδ+λθδ−=∆ ∑ ∑

∞

= =

(3.1.38)

where G is the mean gravity, nmnm K,J δδ  are the fully normalized geopotential

coefficients of the disturbing potential and ),(R QQnm λθ , ),(S QQnm λθ  are the fully
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normalized Legendre harmonics. Then from the orthogonality of the harmonics

),(R QQnm λθ  and ),(S QQnm λθ , we obtain
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So, finally, the ellipsoidal correction is expressed as

QPQQP00111 d),,(f)Q(N
4

1
)P(N)P(N σθθψ′

π
+′=′ ∫

σ

(3.1.40)

Equations (3.1.32), (3.1.33), (3.1.39), (3.1.40) and (3.1.31) are the formulas for

computing the ellipsoidal geoidal height with an accuracy of the order of O(e4).

Rigorously, equation (3.1.33) is not the same as the standard Stokes’s formula because

the semiminor axis be is used instead of the mean radius R. According to the definition of

R (see (1.1.24)),

))e(Oe
3

1
1(Rb 42

e +−=

Therefore from (3.1.32), (3.1.33), (3.1.39) and (3.1.40), we obtain
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)P(N)P(N)P(N 12111 += (3.1.43)
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where
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QPQQP0012 d),,(f)Q(N
4

1
)P(N σθθψ

π
= ∫

σ

            (3.1.45)

and f0 is still defined by (3.1.31).

Thus we finally obtain the formulas for computing the ellipsoidal geoidal height, which is

expressed as the standard Stokes formula (3.1.42) plus an ellipsoidal correction (3.1.43).

3.2 A brief comparison of Molodensky's method, Moritz’s
method, Martinec and Grafarend's method and the method
in this chapter

The following Tables 3.1, 3.2 and 3.3 show the differences of the solutions in

Molodensky et al. (1962), Moritz (1980), Martinec and Grafarend (1997) and our

development.

Notes:

(i) The method used in this chapter follows the method used in Molodensky et al.

(1962). The difference is that instead of using the general Stokes function S(P, P0)
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Table 3.1  Differences of the solutions in Molodensky et al. (1962), Moritz (1980),
Martinec and Grafarend (1997) and this work
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Kernel
functions

1Mf , 2Mf  and 3Mf  are

given in Table 3.3.

)(S QPψ is the Stokes

function.
MGf  is given in Table

3.3.
0f  is given by (3.1.31).
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Table 3.2  The definition of 1g∆  in Moritz (1980)
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   m,2nnmnmnmm,2nnmnm AAAG +− µ+λ+κ=

   m,2nnmnmnmm,2nnmnm BBBH +− µ+λ+κ=

where nmnm B,A  are the coefficients of the spherical harmonic expansion of the
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Table 3.3  The definitions of the kernel functions in
Molodensky et al. (1962) and Martinec and Grafarend (1997)
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(see (3.1.1)), Molodensky et al. (1962) used the function 
0PP/1 l  as the kernel

function of the equation (3.1.3).

(ii) The regularity condition used in Molodensky et al. (1962), Moritz (1980) and this

chapter is the same as that used in the derivation of Stokes’s formula (see

Heiskanen and Moritz, 1967). This condition is stronger than that used in

Martinec and Grafarend (1997).

From the derivations in section 2, we see that the regularity condition in (3.0.1) is

used to make (3.1.25) and (3.1.26) hold so that we can get (3.1.27) from (3.1.24).

However, if we substitute )P S(Q, 0  in (3.1.3) by  1/r-)PS(Q, Q0 , which is also

harmonic outside Se according to Moritz (1980), then the term ∫
σ

σQd)Q(T  will

disappear in an equation corresponding to (3.1.24). What we still need to do is to

make (3.1.26) hold. Obviously, this can be guaranteed by the more general

regularity condition used in Martinec and Grafarend (1997). The spherical geoidal

height will be given by the general Stokes formula (see Heiskanen and Moritz,

1967) and the ellipsoidal correction will be somewhat different than that given in

section 2.

At present time, the mass of the Earth can be estimated very accurately. By

properly selecting the normal gravity field, we can easily make the disturbing

potential T satisfy the regular condition in (3.0.1). So the difference between the

two regularity conditions is not a key problem.

(iii) The boundary condition used in Martinec and Grafarend (1997) is somewhat

different than the boundary condition used in Molodensky et al. (1962), Moritz

(1980) and this chapter. The difference is
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)]e(O2cose[
b

)Q(T 4
Q

2

e

+θ (3.2.1)

From the derivations in subsection 3.1, we see that the effect of this difference on

the ellipsoidal correction is

QQQP0 d2cos)(S)Q(N
4
1 σθψ
π ∫

σ

 (3.2.2)

Martinec (1998) has shown that the term above has a small impact on the

ellipsoidal correction because it is characterized by an integration kernel with a

logarithmic singularity at QPψ =0 and it can be neglected in cm geoid computation

if a higher-degree reference field is introduced as a reference potential according

to the numerical demonstration given by Cruz (1986).

(iv) All four solutions express the ellipsoidal geoidal height by the spherical geoidal

height N0 given by Stokes’s formula plus the ellipsoidal correction N1 given by

closed integral formulas. The relative errors of the solutions are O(e4).

(v) In Molodensky et al. (1962), to evaluate N1 at a single point from g∆ , we need

two auxiliary data sets T0 and χ. First we integrate g∆  to get auxiliary data set T0;

then we integrate T0 to get another auxiliary data set χ; finally, we obtain N1 from

integrating g∆ , T0 and χ. That is:

∆g T0 χ N1
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The auxiliary data sets T0 and χ, except for T0 at the computation point which can

be further used to compute the final ellipsoidal geoidal height, are useless after

computing N1. So the solution in Molodensky et al. (1962) is very computation-

intensive even through the kernel functions fM1, fM2 and fM3 are simple analytical

functions.

(vi) In Moritz (1980), only one auxiliary data set 1g∆  is needed and the kernel

function is also a simple analytical function, but 1g∆  is only expressed by an

infinite summation of the coefficients nmnm B,A  of the spherical harmonic

expansion of the disturbing potential T.

The coefficients nmnm B,A , however, are what we want to know. They are not the

coefficients nmnm K,J δδ  of the spherical harmonic expansion of the spherical

approximation disturbing potential T0 corresponding to N0, which can be

computed from the gravity data by means of the spherical approximation

formulas.

In the practical evaluation, 1g∆  is approximately computed using truncated

spherical harmonic coefficients maxn
2nnmnm }K,J{ =δδ .

(vii) In Martinec and Grafarend (1997), no auxiliary data set is needed. We can

directly integrate ∆g to obtain N1:

∆g           N1
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So this solution is much simpler than that in Molodensky et al. (1962) and Moritz

(1980). However, the simplicity is obtained by complicating the kernel function in

its solution. From table 3.3, we see that the kernel function fMG contains the series

of Legendre polynomials and their derivatives, so it is obviously more

complicated than the kernel functions in Molodensky et al. (1962) and Moritz

(1980).

(viii) In this chapter, one auxiliary data set N0 is needed to evaluate N1 from g∆ . We

first integrate g∆  to get N0, the 'auxiliary' data set; then we obtain N1 from N0 and

the first 3 degree harmonic coefficients plus an integral about N0. That is:

∆g N0 N1

Like in Molodensky et al. (1962), the kernel function in the integral of this

solution is a simple analytical function. So this solution is simpler than the

solution of Molodensky et al. (1962) in the sense that only one auxiliary data set

is needed for the evaluation of N1 from g∆ .

Because of the need of an auxiliary data set, it seems that this solution is more

complex than the solution in Martinec and Grafarend (1997). However, the

'auxiliary' data N0 are nothing else but the spherical geoidal heights, which are

already available in many areas of the world, such as in Europe and North

America. When we evaluate N1 in such areas, this solution is simpler than the

solution in Martinec and Grafarend (1997) in the sense that we can directly

evaluate N1 from N0 with a simple analytical function.

This solution is similar to the solution in Moritz (1980). They both need an

auxiliary data set. Their kernel functions are simple analytical functions and have

the same degree of singularity at the origin. However, the auxiliary data set N0 in
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this solution is much simpler than the auxiliary data set 1g∆  in Moritz (1980) in

the sense that:

(a) N0 can be computed directly from gravity anomaly data by means of Stokes’s

formula;

(b) N0 can also be computed approximately from the geopotential model

)],(SK),(RJ[R)P(N PPnmnmPPnm
2n

n

0m
nm0 λθδ+λθδ= ∑∑

∞

= =

               (3.2.3)

Obviously, this formula is simpler than that used for computing 1g∆  (see

Table 3.2) and N0 is less sensitive to high degree coefficients than 1g∆  is; and

(c) N0 is already available globally with resolutions of less than 1 degree and

locally with higher resolutions.

3.3 Practical computation of the ellipsoidal correction

In the above section, we obtained the Stokes formula (3.1.42) and its ellipsoidal

correction (3.1.43). The ellipsoidal correction term N1 consists of two components: N11

and N12. The component N11 is a simple analytical function about the spherical geoidal

height N0 and the first three degree spherical harmonic coefficients of the disturbing

potential. It is easy to be evaluated from equation (3.1.44).  The component N12, called

the integral term, is expressed by a closed integral formula (3.1.45). In this section, we

will further discuss the ellipsoidal correction formula (3.1.43).
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3.3.1 Singularity of the integral term in the ellipsoidal correction
formula

The kernel function f0 of the integral term is singular at QPψ =0 (see figure 3.1) because it

contains the factors

)
2

sin
2

ln(sin  ;

2
sin

1
  ;

2
sin

coscos
  ;

2
sin

)cos(cos QP2QP

QPQP2

PQ

QP3

2
PQ ψ

+
ψ

ψψ
θ−θ

ψ
θ−θ

    (3.3.1)

 

θ (degree) λ (degree)

Figure 3.1  Behavior of kernel function f0 of the ellipsoidal correction to Stokes’s
formula in the neighborhood of (θθP=300, λλP=2400)
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Figure 3.2  Spherical triangle

From the spherical triangle of figure 3.2, we have

QPPQPPQPQ cossinsincoscoscos αθψ+θψ=θ                (3.3.2)

So
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2

[cos
2
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PQ θ
ψ
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ψψ

=θ−θ     (3.3.3)

It then follows from (3.1.31) that

)1(   
cos2sin

2

3
)cos(sincos54

),,(f QP

QP

QPP
2

QPPP
2

PQQP0 <<ψ
ψ

αθ−αθ−θ−
≈θθψ    (3.3.4)
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This means that the kernel function f0 has the same degree of singularity at 0QP =ψ  as

the Stokes function )(S QPψ . So the integral component in (3.1.43) is a weakly singular

integral and the singularity can be treated by the method used for Stokes’s integral (see

Heiskanen and Moritz, 1967, or the following subsection).

3.3.2 Method for applying the ellipsoidal correction formula

In the ellipsoidal correction formula (3.1.43), the first term N11 is easy to compute from

N0 and the first 3-degree harmonic coefficients. The term )P(N12  is a global integral

formula. The input data is the “spherical” geoidal height data. Since the high-resolution

and high-accuracy “spherical” geoidal height data are only given in some local areas and

the kernel function has same degree of singularity at the computing point P as the Stokes

function, we will use the following well known method to evaluate the term )P(N12 .

From the definitions (3.1.31) of the kernel function f0 of )P(N12 , we know that, like the

Stokes function, f0 quickly decreases when QPψ  goes from 0 to π . Therefore, in practical

evaluation of the integral term, we divide σ  into two parts: nearσ  and farσ , where the area

nearσ  is usually a square area containing the computation point P as its centre. Since the

kernel function is larger over nearσ , the integral over nearσ  should be carefully computed

using a high resolution and high accuracy spherical geoid model obtained from the

ground gravity data by means of Stokes’s formula (3.1.42) if a high accuracy geoid is

required. The area farσ  is far from the computation point P, so the kernel function is

relatively small over farσ . Therefore, in the computation of the integral over farσ , we can

use the spherical geoidal height data N0 computed from a global geopotential model. In

detail, we express )P(N12  as
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=)P(N12 )P(N far + )P(Nnear (3.3.5)

where

)P(N far = QPQQP00

2

d),,(f)Q(N
4
e

far

σθθψ
π ∫

σ

 (3.3.6)

)P(Nnear = QPQQP00

2

d),,(f)Q(N
4
e

near

σθθψ
π ∫

σ

(3.3.7)

• The formula for computing )P(N far  from a global geoid model

The evaluation of )P(N far  is performed using a finite summation:

)P(N far = ∑ σ
π j,i

ij
0
ij

0
ij

2

fN
4
e

 (3.3.8)

where ijσ  are the surface elements bordered by meridians and parallels both separated by

c degrees and{ } farij σ=σ ; 0
ijN  is the mean value of the spherical geoidal height N0 for ijσ ;

0
ijf  is the mean value of the kernel function f0 for ijσ ; and

i
2

2

2

ij sinc
180

θ
π

=σ (3.3.9)

where iθ  is the mid-latitude of ijσ , and c, the side length (degree) of the grids in far-

zone, is related to the resolution of the global geoid model.
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• The formula for computing )P(Nnear  from a local geoid model

The evaluation of )P(Nnear  is also performed using a finite summation:

)P(Nnear = ∑ ∫
σ≠σ

σ

σθθψ
π

+σ
π

Pij
P

j,i    
QPQQP00

2

ij
0
ij

0
ij

2

d),,(f)Q(N
4

e
fN

4

e
 (3.3.10)

where ijσ  are the surface elements bordered by meridians and parallels both separated by

d degrees and{ } nearij σ=σ ; Pσ  is the surface element containing the computing point P

(the origin); 0
ijN  is the mean value of the spherical geoidal height N0 for ijσ ; 0

ijf  is the

mean value of the kernel function f0 for ijσ ; and

i
2

2

2

ij sind
180

θ
π

=σ (3.3.11)

where iθ  is the mid-latitude of ijσ , and d, the side length (degree) of the grids in near-

zone, is related to the resolution of the local geoid model.

According to (3.3.4), in a small neighborhood of the computing point P, the kernel

function f0 can be expressed as:

   
cos2sin

2

3
)cos(sincos2

),,(f
QP

QPP
2

QPPP
2

PQQP0 ψ

αθ−αθ−θ−
≈θθψ (3.3.12)
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So we can obtain

)P(N
360

d

4

)cos3(
d),,(f)Q(N

4

1
0

P
2

QPQQP00

P

πθ−
≈σθθψ

π ∫
σ

(3.3.13)

Thus (3.3.10) should be rewritten as

)P(Nnear = +σ
π ∑

σ≠σ Pij

ij
0
ij

0
ij

2

fN
4
e 2

0
P

2

e)P(N
360

d

4

)cos3( πθ−
          (3.3.14)

In nearσ , since the kernel function f0 is larger than in farσ , we have to use a high

resolution and high accuracy geoid model for the evaluation of the integral if the required

accuracy of the ellipsoidal correction is high.

3.3.3 A numerical test for the ellipsoidal correction formula

In this subsection, we will apply the ellipsoidal correction formula to the computation of

the US geoid.

• The input data

In the test for computing the ellipsoidal correction, a global geoid model and a high-

resolution and high-accuracy local geoid model are need.

The global geoid model used for computing Nfar is the geoidal height grid computed at 1

degree spacing with the EGM96 spherical harmonic potential coefficient set complete to
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degree and order 360 (for more information about EGM96, please see its official

webpage: http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html).

The local geoid model used for computing Nnear is the 2 arc minute geoidal height grid for

the conterminous United States (GEOID96) (Smith and Milbert, 1999), computed from

about 1.8 million terrestrial and marine gravity data.

• Results and discussion

• The size of the area nearσ

Figure 3.3 gives the relationship between the ellipsoidal correction N1 and the

side length of the square area nearσ . It shows that a global geoid model with a

resolution of 1 degree is sufficient for the computation of the integral if the

required accuracy is of the order of 1 cm.
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Figure 3.3  N1 (cm) at P(45N, 240E) with different side length of the area nearσ

N1 (cm)
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• The contributions of N11 and N12

Figure 3.4  The contribution (cm) of the term N11 in the ellipsoidal correction N1

Figure 3.5  The contribution (cm) of the term N12 in the ellipsoidal correction N1
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Figure 3.4 and Figure 3.5 are respectively the maps of the term N11 and the

integral term N12 in US (240-580N, 2300-3000E). In this area, N11 ranges from

–3.8cm to 5.6cm and N12 ranges from –28cm to -2cm. So both N11 and N12 are

important in the computation of N1.

• The contribution of the ellipsoidal correction

Figure 3.6  The contribution (cm) of the ellipsoidal correction

The above figure 3.6 is the map of the ellipsoidal correction in US. In this area, the

ellipsoidal correction ranges from –31 cm to –1 cm.
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3.4 Chapter summary

In this chapter, we investigated the ellipsoidal geodetic boundary value problem and gave

a solution for the ellipsoidal geoidal heights.

• The solution, as those already available, generalizes the Stokes formula from the

spherical boundary surface to the ellipsoidal boundary surface by adding an

ellipsoidal correction to the Stokes formula. It makes the error of geoidal height

decrease from O(e2) to O(e4), which can be neglected for most practical purposes.

• The ellipsoidal correction N1 involves the spherical geoidal height N0 and a kernel

function which is a simple analytical function that has the same degree of singularity

at the origin as the Stokes function.

• The solution is simpler than the solutions in Molodensky et al. (1962) and Moritz

(1980). It is also simpler than the solution in Martinec and Grafarend (1997) when

evaluating the ellipsoidal correction N1 in an area where the spherical geoidal height

N0 has already been evaluated.

• A numerical test for the ellipsoidal correction formula shows that:

• The effect of the flattening of the ellipsoid should be taken into account in the

computation of the geoid when the required accuracy is better than the decimetre

level.

• The new ellipsoidal correction formula, which uses the spherical geoidal height

data as its input data, is an effective formula.
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• For the computation of the ellipsoidal correction with accuracy of the order of

1cm, a global geoid model with a resolution of 1 degree is sufficient.

• For more accurate ellipsoidal correction computation, a detailed local ‘spherical’

geoid model in the computation area is needed for the computation in the near-

zone.

• The contribution of the ellipsoidal correction ranges from –31 cm to –1 cm in the

conterminous United States.
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4 Ellipsoidal Corrections to the Inverse
Hotine/Stokes Formulas

The satellite altimetry technique provides direct measurements of sea surface heights

with respect to the reference ellipsoid, the geometrical reference surface for elevations.

Since 1973, a series of altimetry satellites such as SKYLAB, GEOS-3, SEASAT,

GEOSAT, ERS-1, TOPEX, etc., have been launched and have collected data over the

oceans. Owing to instrument improvement, geophysical and environmental correction

improvement and radial orbit error reduction, the precision of satellite altimetry

measurements has improved from the 3-metre to the 2-centimetre level. The resolution of

satellite altimeter data along the tracks has also come down from 70 km to 20 km or less

(see Zhang, 1993). Tremendous amounts of satellite altimeter data with very high

precision have been collected since the advent of the satellite altimetry. After subtracting

the dynamic sea surface topography, satellite altimetry can provide an estimation of the

geoidal height N in ocean areas with a level of precision of about 10cm (Rummel and

Haagmans, 1990). These geoidal height data can be used to recover the gravity

disturbances and gravity anomalies over the oceans.

Papers reporting results on recovering the gravity information from satellite altimeter

data, and in some cases, a review of prior work, include those of Zhang and Blais (1995),

Hwang and Parsons (1995), Olgiati et al. (1995), Sandwell and Smith (1996) and Kim

(1997). The models employed for recovering the gravity information from the satellite

altimeter data are mainly the spherical harmonic expansion of the disturbing potential, the

Hotine/Stokes formulas and the inverse Hotine/Stokes formulas. The gravity

disturbances/anomalies obtained via these models may be called the spherical gravity

disturbances/anomalies since these models are valid under the spherical approximation.

In these models, the input and output data are supposed to be given on a sphere, the mean

sphere. The geoidal height N (disturbing potential T) from altimetry and the gravity
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disturbance/anomaly δg/∆g to be computed from N refer to the geoid which is very close

to the reference ellipsoid Se. They satisfy the following relations:

]S[HT e∈ (4.0.1)

)
r

1
O(T(P)

3
P

= (P is at infinite) (4.0.2)

)P(g)P(T
hP

δ−=
∂

∂
(P is on Se) (4.0.3)

P

P

P h

1
g(P)g(P)

∂
γ∂

γ
+δ=∆ (P is on Se) (4.0.4)

)P(N)P(T Pγ= (P is on Se) (4.0.5)

where rP is the radius of point P and 
Ph∂

∂
 is the derivative along the ellipsoidal normal

direction of P.

The maximum difference between Se and the geoid is about 100m, so we can treat the

data given on the geoid as data on the reference ellipsoid. The relative error caused by

doing so is about 10 4− . However, the relative error of substituting the reference ellipsoid

by the mean sphere surface is about 3103 −× . The effects of this error on the gravity

anomaly and gravity disturbance, which are also called the effects of the Earth’s

flattening, may reach about 0.3 mGal. When the aim of the satellite altimetry is to recover

the gravity information with accuracy less than 1 mGal, the effects of the Earth’s

flattening should be considered.

In order to reduce the effects of the Earth’s flattening on the gravity anomaly, Wang

(1999) proposed to add an ellipsoidal correction term to the spherical gravity anomaly

recovered from the altimetry data via the inverse Stokes formula. The ellipsoidal

correction is expressed by integral formulas and in series of spherical harmonic
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expansions. In the integral formulas, an auxiliary function χ is needed for computing the

ellipsoidal correction ∆g1 from the disturbing potential T, that is:

1integral  globalintegral  global gT ∆ →χ →

In this chapter, we will derive new ellipsoidal correction formulas to the spherical gravity

disturbances/anomalies respectively. These ellipsoidal correction formulas consist of two

parts: a simple function part and an integral part. The input data are the disturbing

potentials and the spherical gravity disturbances/anomalies, which are already computed

from altimetry data in some ocean areas with a high accuracy or are computed

approximately from the Earth geopotential.

4.1 Formulas of the ellipsoidal corrections to the spherical
gravity disturbance and the spherical gravity anomaly

In this section, we will

(a) establish an integral equation, which shows the relation between the geoidal heights

and the gravity disturbances on the reference ellipsoid;

(b) solve the integral equation to get the formula of the ellipsoidal correction to the

inverse Hotine formula (the spherical gravity disturbance); and

(c) derive the formula of the ellipsoidal correction to the inverse Stokes formula (the

spherical gravity anomaly) from the result of (b);
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4.1.1 Establishment of the integral equation

It can be proved that for an arbitrarily point P0 given inside Se, the function

)
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(
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rr
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000000
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≡  (4.1.1)

satisfies

]S[H)P,Q(F e0 ∈ (4.1.2)

According to Green’s second identity (Heiskanen and Moritz, 1962), we obtain that for

an arbitrary function ]S[HV e∈ ,

eQ

S

0
Q
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S Q

0 dS)P,Q(F)Q(V
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dS
h

)P,Q(F
)Q(V

ee
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=
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Let V in (4.1.3) be the disturbing potential T. Then we obtain from (4.0.3)

eQ

S

0eQ

S Q

0 dS)P,Q(F)Q(gdS
h

)P,Q(F
)Q(T

ee

∫∫ δ−=
∂

∂
(4.1.4)

We denote the ellipsoidal coordinates and the spherical coordinates of a point P by (uP,

βp, λP) and (rP, θP, λP) respectively. From section 1-20 of Heiskanen and Moritz (1967),

we know that
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b
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)
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u
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a ∈≡ (4.1.5)
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and for Q on Se,

Va(Q)=1 (4.1.6)

From sections 2-7, 2-8 and 2-9 of Heiskanen and Moritz (1967), we have
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So for Q on Se,
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and
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equation (4.1.10) can be rewritten as
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It then follows from (4.1.3), (4.1.5) and (4.1.6) that
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For a given P on Se, we obtain from (4.1.4) minus (4.1.14) multiplied by T(P) that
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According to the properties of the single-layer potential and note (4.1.1), we obtain by

letting P0→P in (4.1.15) and neglecting the quantities of the order of O(e4) that
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where
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The kernel functions M(Q,P) and F(Q,P)  are singular when Q→P. Their singularities for

Q→P will be discussed in section 4.2.1.

Equation (4.1.16) is the integral equation from which the inverse Hotine formula and its

ellipsoidal correction will be obtained.

4.1.2 Inverse Hotine formula and its ellipsoidal correction

Denoting the projection of the surface element eQdS  onto the unit sphere σ  by Qdσ , we

have

QQ
2

Qe dsecrdS σβ= (4.1.19)

where Qβ  is the angle between the radius vector of Q and the surface normal of the

surface Se at point Q. With R the mean radius and e the first eccentricity of the reference

ellipsoid, and Pθ  and Qθ  respectively the complements of the geocentric latitudes of  the

points P and Q on Se, we have
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Furthermore, from Molodensky et al. (1962), we have
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It then follows from (4.1.17) and (4.1.18) that
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Inserting (4.1.19), (4.1.22), (4.1.23) and (4.1.25) into (4.1.16) and neglecting the

quantities of order of O(e4), we obtain
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From (3.3.2), we have
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It follows from (4.1.24) and (4.1.26) that
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Formula (4.1.30) is the inverse Hotine formula, from which the spherical gravity

disturbance is computed, and (4.1.31) is the ellipsoidal correction for the inverse Hotine

formula.

4.1.3 Inverse Stokes formula and its ellipsoidal correction

According to (4.0.4) and noting (4.1.21c), (4.1.30) and (4.1.31), we have that
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Let

)e(Oe)P(g)P(g)P(g 4210 +∆+∆=∆          (4.1.33)
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  (4.1.35b)

The formula (4.1.34) is the inverse Stokes formula, from which the spherical gravity

anomaly is computed, and (4.1.35) is the ellipsoidal correction for the inverse Stokes

formula.

4.2 Practical considerations for the integrals in the formulas

In the above section, we obtained the closed formulas (4.1.31) and (4.1.35) of the

ellipsoidal corrections δg1 and ∆g1 respectively to the inverse Hotine formula (4.1.30)
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(the spherical gravity disturbance δg0) and the inverse Stokes formula (4.1.34) (the

spherical gravity anomaly ∆g0) from the basic integral equation (4.1.16). Formula

(4.1.31) (formula (4.1.35)) is expressed as a sum of a simple analytical function and an

integral about 0gδ  (∆g0 and T). Obviously, the first part of δg1 (∆g1) is easy to be

computed from δg0 (∆g0 and T). In the following, we will give detailed discussions on the

integral parts (4.1.31b) and (4.1.35b).

4.2.1 Singularities

θ (degree) λ (degree)

Figure 4.1  Behavior of kernel function M of the inverse Hotine/Stokes formulas in
the neighborhood of (θθP=450, λλP=2400)
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θ (degree) λ (degree)

Figure 4.2  Behavior of kernel function f of the ellipsoidal corrections to the inverse
Hotine/Stokes formulas in the neighborhood of (θθP=450, λλP=2400)

The integrals in formulas (4.1.16), (4.1.30), (4.1.31b), (4.1.34) and (4.1.35b) are singular

because their kernel functions M(Q, P), F(Q, P) and )(M QPψ , ),,(f PQQP θθψ  are

singular when Q→P or 0QP →ψ  (see figures 4.1 and 4.2).

The singularity of the integral in the inverse Stokes (or Hotine) formula (4.1.34) (or

(4.1.30)) has been discussed in many references, such as Heiskanen and Moritz (1967),

Bian and Dong (1991) and Zhang (1993). Here we discuss the singularities of the

integrals in (4.1.16), (4.1.31b) and (4.1.35b).

According to (4.1.22), we know that the integral on the left hand side of (4.1.16) and the

integrals in the inverse Stokes formula (4.1.30) and the inverse Stokes formula (4.1.34)
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have the same form. So the integral on the left hand side of (4.1.16) can be treated with

the same method used in processing the inverse Stokes (Hotine) formula.

Similarly, according to (4.1.23), the integral on the left hand side of (4.1.16) and the

integrals in (4.1.31b) and (4.1.35b) have the same form. Therefore, in the following, we

only discuss the method to treat the singularity of the integral in (4.1.31b).

Obviously, we only need to consider the integral in the innermost spherical cap area σ0

with the centre at the computation point P and a radius 0ψ  which is so small that the

spherical cap area can be treated as a plane. That is we discuss the following integral
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From (4.1.27) and (4.1.24a), and noting that σ is a unit sphere, we have
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where

2
sin2 0

0

ψ
=l . (4.2.3)

For Q in σ0, we expand )Q(g 0δ  into a Taylor series at the computation point P:
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L+δ+δ+δ=δ )P(gy)P(gx)P(g)Q(g 0
y

0
x

00 (4.2.4)

where the rectangular coordinates x, y are defined by

QPQPQPQP siny    ;cosx α=α= ll (4.2.5)

so that the x-axis points north, and
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The Taylor series (4.2.4) may also be written as

L+αδ+αδ+δ=δ QPQP
0
yQP

0
x

00 ]sin)P(gcos)P(g[)P(g)Q(g l (4.2.7)

Inserting this into (4.2.2), performing the integral with respect to QPα  first, noting

(4.1.28) and neglecting the quantities of )l(O 2
0 , we have

)]P(g)1cos3)(P(g[
4

)P(g 0
xP

200 δ+−θδ=δ
l

(4.2.8)

We see that the effect of the innermost spherical cap area on the integral (4.1.31b)

depends, to a first approximation, on )P(g 0δ  and )P(g 0
xδ . The value of )P(g 0

xδ  can be

obtained by numerical differentiation 0gδ .
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4.2.2 Input data

In (4.1.31b) and (4.1.35b), the input data are respectively 0gδ , and 0g∆  and T. These

data are available only in some ocean areas. Here we give some modification on the input

data.

According to (4.1.25) and (4.1.33), we have

)e(Oe)Q(g)Q(g)Q(g 4210 +δ−δ=δ (4.2.9)

)e(Oe)Q(g)Q(g)Q(g 4210 +∆−∆=∆           (4.2.10)

In addition, the disturbing potential T(P) on the reference ellipsoid can be expressed as

)P(Te)P(T)P(T 120 +=           (4.2.11)

where )P(T 0  is the spherical approximation of T(P). Since 1gδ  should be multiplied by

e2 before it is added to 0gδ , we obtain by inserting the above formulas into the integrals

in (4.1.31) and (4.1.34) respectively and neglecting the quantities of order of O(e2) that

QPQQP
1
2 d),,(f)Q(g

4
1

)P(g σθθψδ
π

=δ ∫
σ

 (4.2.12)

QPQQP

0
1
2 d),,(f ]

R
)Q(T2

)Q(g[
4
1

 )P(g σθθψ+∆
π

=∆ ∫
σ

 (4.2.13)

where gδ  is the gravity disturbance which can be computed approximately from the

global geopotential models, g∆  and T0 are the gravity anomaly and the spherical

disturbing potential which are already available globally with the resolutions of less than

1 degree and locally with higher resolutions.
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4.2.3 Spherical harmonic expansions of the integrals

In the following, we will expand )P(g1
2δ  and )P(g1

2∆  into series of spherical harmonics

so that they can be computed from the global geopotential models.

According to section 2-14 of Heiskanen and Moritz (1967), under the spherical

approximation, we have
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where Tn(θ, λ) is Laplace’s surface harmonics of the disturbing potential T:
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From (4.1.34) and their definitions, we know that integrals )P(g1
2δ  and )P(g1

2∆  are

equal. According to (1-102) of Heiskanen and Moritz (1967), we have from (4.2.12) that
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From (A11) of Wang (1999) (Note: there is a printing error in that formula) and (4.2.15),

we know that
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So we obtain from (4.2.17) that
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Thus we express )P(g1
2δ  and )P(g1

2∆  by a series of spherical harmonics. The input data

{ }nmnm d,c are the spherical harmonic coefficients of the disturbing potential.

4.3 Chapter summary

This chapter gives the ellipsoidal corrections )P(g1δ  and )P(g1∆  to the inverse Hotine

formula )P(g 0δ  (the spherical gravity disturbance) and the inverse Stokes formula

)P(g 0∆  (the spherical gravity anomaly) respectively.
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• By adding the ellipsoidal corrections to their spherical solutions, the error of the

gravity disturbance and the gravity anomaly decreases from O(e2) to O(e4), which can

be neglected for most practical purposes.

• )P(g1δ  is expressed as a sum of a simple analytical function about 0gδ (P) and an

integral about 0gδ . In the practical computation of the integral, the input data 0gδ

can be substituted by the gravity disturbance gδ , which can be approximately

computed from global geopotential models. The integral part of )P(g1δ  can also be

computed directly from global geopotential models via formula (4.2.26).

• )P(g1∆  is expressed as a sum of a simple analytical function about 0g∆ (P) and T(P)

and an integral about 0g∆  and T. In the practical computation of the integral, the

input data 0g∆  and T(P) can be substituted respectively by the gravity anomaly g∆

and the spherical disturbing potential T0, which are already available globally with

resolutions of less than 1 degree and locally with higher resolutions. The integral part

of )P(g1∆  can also be computed directly from the global geopotential models via

formula (4.2.26).

• Like the ellipsoidal correction to gravity anomaly given in Wang (1999), the

ellipsoidal correction )P(g1∆  is also be computed from an auxiliary data 0g∆  (or

g∆ ).  However, the kernel function in the formula of computing 0g∆  (or g∆ ) is

simpler than the kernel function in the formula of computing the auxiliary data χ used

in Wang (1999) and 0g∆  (or g∆ )  is already available globally with the resolutions of

less than 1 degree and locally with higher resolutions. Therefore the ellipsoidal

correction )P(g1∆  given in this chapter is more effective.
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5 Solutions to the Second Geodetic Boundary
Value Problem

In chapter 1, we discussed the definition and the significance of the second geodetic

boundary value problem (SGBVP). In this chapter, we will give some approximate

solutions of this problem.

By definition, the SGBVP is an oblique derivative problem and its boundary surface is

the very complicated topographical surface of the Earth. Similar to solving the third

geodetic boundary value problem, we can directly solve the SGBVP by an integral

equation method or convert this problem into a normal derivative problem, such as the

spherical boundary value problem or the ellipsoidal boundary value problem, by properly

adjusting the disturbing potential.

In this chapter, we will first investigate the second spherical boundary value problem and

the second ellipsoidal boundary value problem, then apply the solutions of these two

normal derivative problems to solve the SGBVP. Three approximate solutions of the

SGBVP and a brief comparison of these solutions will be given.

5.1 Second spherical boundary value problem

In this section, we will discuss the second spherical boundary value problem. It can be

defined mathematically as finding a function T such that
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where 
r∂

∂
 means the derivative along the radial vector and  SM is the mean sphere.

5.1.1 Generalized Hotine formula

Since T is harmonic outside SM, it can be shown that T
r

r
∂
∂

 is also harmonic outside SM.

Following Heiskanen and Moritz (1967) and noting the second condition in (5.1.1), we

have for P outside SM
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Integrating the above formula from Pr  to ∞  along the radial direction of P and noting the

regularity condition in (5.1.1), we have for P outside SM
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In the following, we further evaluate the integral in (5.1.5). According to the definition of

the integral, the point 'P  in the above integral satisfies Q'PPQ = ψψ . Let

 cosRx2xRX     ; =    ; xr    ;xr 22
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According to Wang et al. (1985),
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We denote

ψ=ψ= sinRb   ; cosRa (5.1.9)

Then
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Obviously, 222 Rba =+ . Setting 22
1 b)ax(X ++= , then we have from Wang et al.

(1985) that
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It follows from (5.1.5), (5.1.7) and (5.1.8) that
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Thus we obtain formula (5.1.4) plus formula (5.1.12) for computing T of the points

outside SM. Furthermore, letting P go to the surface SM in (5.1.4), i.e. letting RrP → , and

noting that T is continuous onto SM, we obtain

σδψ
π

= ∫
σ

dg(Q))(H
4

R
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This means that (5.1.4) and (5.1.12) also hold on SM. Therefore the solution of (5.1.1) can

be represented by (5.1.4) and (5.1.12).

The formula (5.1.13) plus (5.1.14) is Hotine’s formula, which represents the disturbing

potential on a sphere using gravity disturbances on the sphere. The other expression of

Hotine’s formula for N can be obtained directly via Bruns’ formula

σδψ
πγ

= ∫
σ

(Q)dg)(H
4

R
N PQP                              (5.1.15)

Obviously, formula (5.1.4) plus (5.1.12) generalizes Hotine’s formula from the surface

SM to its external space. So it can be called the generalized Hotine formula.

5.1.2 Discussion

• The solution (5.1.4), the unique solution of the second spherical boundary value

problem (5.1.1), is a generalization of Hotine’s formula. It is similar to the
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generalized Stokes formula (2-16) in Heiskanen and Moritz (1967) and its kernel

function H(P,Q) is simpler than the generalized Stokes function.

• From the derivation of the generalized Hotine formula, we know that the condition

)r/1(O)(PT 3
P= , which is required in the derivation of Stokes’s formula, is not

needed. This means that in the SGBVP, the reference ellipsoid is not required to

satisfy that its mass equals to the mass of the Earth and its centre coincides with the

centre of mass of the Earth.

• To apply Hotine’s formula to the SGBVP, the disturbing potential should be

transformed so that it is harmonic outside SM and the gravity disturbances should be

reduced from SE onto SM. The distance rδ  between the two surfaces SE and SM can

also be obtained from GPS measurements. Since rδ  is large than the geodetic heights

h, the distance between SE and SM, in most areas, the transform of the disturbing

potential and the reduction of gravity disturbances may cause a big error. A method to

avoid the big error is transforming the disturbing potential so that it is harmonic

outside Se and reducing the gravity disturbances from SE onto Se and then solving the

second ellipsoidal boundary value problem.

5.2 Ellipsoidal corrections to Hotine’s formula

Hotine’s formula gives a method for evaluating the geoidal heights from the gravity

disturbances. As we discussed above, however, the input data and the output data in

Hotine’s formula are on a sphere with radius R. An adjustment of the anomalous gravity

field such as the gravity reduction or the analytical continuation of gravity disturbances is

needed to apply Hotine’s formula to solve the SGBVP. To avoid the big error caused by

the adjustment, it is better to adjust the anomalous gravity field so that the disturbing

potential is harmonic outside the reference ellipsoid Se and the gravity disturbance data
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are given on Se. Thus we obtain the second ellipsoidal boundary value problem. The

mathematical definition is as follows:
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where 
h∂
∂

 means the derivative along the normal plumb line and eS  is the surface of the

reference ellipsoid.

Unlike the second spherical boundary value problem, the second ellipsoidal boundary

value problem has no exact closed solution like Hotine’s formula. An approach for

approximately expressing the solution of the problem is regarding Hotine’s formula as its

first approximation and extending the approximation up to the term of O(e2), called the

ellipsoidal correction to Hotine’s formula. In the following subsections, we will give a

formula of computing the ellipsoidal correction.

5.2.1 Establishment of the integral equation

In this section, we will establish an integral equation by means of (5.2.1), which will be

employed to obtain the final solution of (5.2.1).

It can be proved that for an arbitrarily point P0 given inside SE, the general Hotine

function
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satisfies
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]S[H)P,P(H e0 ∈ (for the fixed point P0) (5.2.3)

So from (5.2.1) and Green’s second identity (Heiskanen and Moritz, 1967), we obtain

that
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In (5.2.2), letting P be the moving point Q on Se and differentiating H(Q, P0) along the

normal plumb line at Q,  we get
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where

 =)P,Q(K 01 ]
h

)cosr(

h

r
[

)cos1(r

1

Q

QPQ

Q

Q

QPQ

0

0
∂

ψ∂
−

∂
∂

ψ−

]
h

)cosr(

h
[

cosrr

1

Q

QPQ

Q

QP

QPQPQP

00

000
∂

ψ∂
−

∂

∂

ψ−+
−

l

l
               (5.2.6)

It is easy to prove that when P0 goes to P (the projection of P0 on SE) from the inner of SE,
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and
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So for any given point P on SE, we obtain by letting PP0 →  in (5.2.4) that
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Equation (5.2.10) is the integral equation that will be used for determining T on Se.

5.2.2 Determination of the geoidal height

Denoting the projection of the surface element dQ  onto the unit sphere σ  by Qdσ , we

have

QQ
2
Q dsecrdQ σβ= (5.2.12)
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where Qβ  is the angle between the radial vector and the normal of Q on Se. Then, for any

given point P on SE, (5.2.10) becomes
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With be the semiminor axis and e the first eccentricity of the reference ellipsoid, and Pθ

and Qθ  respectively the complements of the geocentric latitudes of P and Q, we have

similar formulas with those given in chapter 3:
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It then follows from (5.2.1) that
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where )(H QPψ  is the Hotine function
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From (5.2.11) and (5.2.5), we obtain
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Therefore from (5.2.13), we obtain
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Let

)e(O)P(Te)P(T)P(T 4
1

2
0 ++=     (5.2.21)

Then from (6.1.27), we obtain
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According to the Bruns formula, we obtain from (5.2.21-23) the geoidal height

)e(O)P(Ne)P(N)P(N 4
1

2
0 +′+′=    (5.2.24)

with the spherical geoidal height

QQP

P

e
0 d)(H)Q(g

4

b
)P(N σψδ

πγ
=′ ∫

σ

    (5.2.25)

and its ellipsoidal correction
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where f1 and f2 are defined respectively by (5.2.17) and (5.2.19).

From the definition of the mean radius R of the Earth (see (1.1.24)), we have
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It follows from (5.2.24-26) that
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Equation (5.2.28) plus equations (5.2.29), (5.2.30), (5.2.31) and (5.2.19) are the formulas

for computing the ellipsoidal geoidal height with accuracy of the order of O(e4).  We can

call (5.2.28) the ellipsoidal Hotine formula and N1 the ellipsoidal correction for

Hotine’s formula (5.2.29).

5.2.3 Practical considerations on the ellipsoidal correction

In the above subsection, we obtained the Hotine formula (5.2.29) and its ellipsoidal

correction (5.2.30). The ellipsoidal correction N1 is a sum of two integrals about the

gravity disturbance δg and the spherical geoidal height N0. Here we give some details on

the evaluation of the integrals of the ellipsoidal correction N1.
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(i) The kernel functions f0 and f2 of the integrals are singular at QPψ =0 because they

contain the factors
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θ (degree) λ (degree)

Figure 5.1  Behavior of kernel function f0 of the ellipsoidal correction to Hotine’s

formula in the neighborhood of (θθP=450, λλP=2400)
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θ (degree) λ (degree)

Figure 5.2  Behavior of kernel function f2 of the ellipsoidal correction to Hotine’s
formula in the neighborhood of (θθP=450, λλP=2400)

From (3.3.3), we have that for 1QP <<ψ ,
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Thus the kernel functions f0 and f2 have the same degree of singularity at 0QP =ψ

as the Stokes function )(S QPψ  and the Hotine function )(H QPψ . So the integrals

in (5.2.30) are weakly singular integrals and the singularity can be treated by the

method used for Stokes’s integral (see Heiskanen and Moritz, 1967).
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(ii) From the definitions (2.31) of f0, we know that like the Stokes function, f0 quickly

decreases when QPψ  goes from 0 to π . Therefore, in the practical evaluation of

the integral component, we divide σ  into two parts: nearσ  and farσ , where the area

nearσ  is usually a spherical cap containing the computation point P as its centre.

Since the kernel function is larger over nearσ , the integral over nearσ  should be

carefully computed using a high resolution and high accuracy spherical geoid

model obtained from the ground gravity data by means of Stokes’s formula (2.42)

if a high accuracy geoid is required. The area farσ  is far from the computation

point P, so the kernel function is relatively small over farσ . Therefore, in the

computation of the integral over farσ , we can use the spherical geoidal height data

N0 computed from a global geopotential model.

5.3 Treatment of the topography in Hotine’s formula

In the preceding sections, we have given the solutions of the spherical and ellipsoidal

boundary value problems: Hotine’s formula (5.1.13) and the ellipsoidal Hotine formula

(5.2.28). In these two formulas, the input data δg should be given on the surface SM of the

mean sphere (or the reference ellipsoid Se) and there is no mass outside SM (or Se).

However, in the SGBVP, we can only have gravity disturbances on the topographic

surface SE and the mass densities outside Se (or SM) are not zero. So before employing the

Hotine formula to solve the SGBVP, we should adjust the anomalous gravity field to

convert the SGBVP into the spherical or ellipsoidal boundary value problem. In this

section, we will introduce two methods of adjusting the anomalous gravity field:

Helmert’s condensation reduction and the analytical continuation approach. The solutions

of these two methods are expressed as the sum of Hotine’s formula and a correction term.

This correction term, which reflects the effect of the mass above the sphere or ellipsoid,

is called the topographic correction. We will also introduce an integral equation method
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that gives an approximate solution of the SGBVP by solving it directly. The solution of

the integral equation method is also expressed as the sum of Hotine’s formula and a

topographic correction. Finally, we will give a brief comparison of the three topographic

corrections.

5.3.1 Helmert’s condensation reduction

Helmert’s condensation reduction is a very classical method of accounting for the

topographic masses in Stokes’s theory (Sideris, 1990). Here we use its basic spirit to

handle the effect of the topographic masses with Hotine’s formula.

• Basic Steps

Similar to its application in Stokes’s theory, the basic steps of Helmert’s condensation

reduction are as follows:

(a) remove all masses above the reference ellipsoid Se;

(b) lower the station from the observation point P on the topographic surface SE to the

point P0 on the ellipsoid Se;

(c) restore the masses condensed on a layer on the ellipsoid Se with density σ=ρh.

• Formulas

From this procedure, we can compute H
0gδ  on the ellipsoid via

AgAAgg P
C
PPP

H
0 0

δ+δ=+−δ=δ (5.3.1)

where the superscript H denotes Helmet’s reduction, Pgδ  is the free-air gravity

disturbance at P, AP is the attraction of the topography at P and C
P0

A  is the attraction of

the condensed topography at P0.
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Figure 5.3  The geometry of Helmert’s condensation reduction

Obviously, the attraction change δA is not the only change associated with this reduction.

Due to the shifting of masses, the potential changes as well by an amount called the

indirect effect on the potential, given by the following equation:

C
PP 00

TTT −=δ (5.3.2)

where 
0PT  is the potential of the topographic masses at P0 and C

P0
T  is the potential of the

condensed masses at P0. Due to this potential change, the use of Hotine’s formula with

H
0gδ  produces not the geoid but a surface called the co-geoid. Thus, the final expression

giving the geoidal heights can be written as

∫
σ γ

δ
+σδψ

πγ
=

)P(T
d)Q(g)(H

4

R
N H

0QPP 00
=Nc(P)+δN(P) (5.3.3)

where Nc is the co-geoidal height and δN is the indirect effect on the geoid. In planar

approximation, using geodetic heights h instead of orthometric heights H in Sideris

(1990), δT and δA can be formulated using the vertical derivative operator L (see

(1.4.12d)). The potential change is
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and the attraction change is equal to the terrain correction c:
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where G denotes Newton’s gravitational constant and ρ is the density of the topography,

which is supposed to be known.

If we just consider the first terms of (5.3.4) and (5.3.5), then
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• Discussion

• The method described above is similar to that used in the Stokes theory except

that the orthometric height H used in the Stokes theory is substituted by the

geodetic height h here.

• The density of the topographic masses is assumed to be known in the solution.

• An ellipsoidal correction discussed in section 5.2 should be added to the final

solution above if a high accuracy geoid model is required.
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5.3.2 Analytical continuation method

In this section, we will use the Moritz’s method (Moritz 1980) used in Molodensky’s

problem to solve the SGBVP. In this method, no density assumptions are required and to

satisfy the condition of Hotine’s formula, a potential T  harmonic outside the geocentre

and satisfying the theorem 3 in chapter 2 will be employed.

• Analytical continuation of the gravity disturbance

Let P be a point on the topographic surface SE, at which the height anomaly ζ is wanted,

and Q be a point on SE at which the gravity disturbance δg is given. The gravity

disturbance of T  at the ellipsoid SP through P is denoted by gδ  (see the following

figure).

hP

P

Q

hQ

zQ

Q0 SP

Se

SE

δg

gδ

Figure 5.4  The geometry of the analytical continuation method

Similar to the work done in section 2.4.2, we can obtain the relation between δg and gδ

as follows
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By inverting the above equation, we obtain
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where L is the vertical derivative operator.

• Applying Hotine’s formula

Since gδ  is given on the ellipsoid SP, ζ at point P can be obtained by Hotine’s formula
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Considering only the first two terms of the above infinite series, we have
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P
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The Hotine operator H is defined by
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• Discussion

• The method described above is identical to the method given by Moritz (1980) in

the third geodetic boundary value problem except that the orthometric height is

employed here.

• An ellipsoidal correction discussed in section 5.2 should be added to the final

solution above if the geodetic height h is employed in the solution.

5.3.3 The integral equation method

In this section, we will give an integral equation method of solving the second geodetic

boundary value problem
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where SE is the topographic surface of the Earth. The generalized Hotine formula will be

employed to establish two integral equations from which the height anomaly ζ will be

obtained.
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• Establishment of the integral equations

It can be proved that for any continuous function *gδ  on ES , the function

E
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satisfies the first condition of (5.3.15). Thus we can represent the disturbing potential T

by the above formula provided that there exists gδ  so that T satisfies the boundary

condition in (5.3.15). Differentiating (5.3.16), we obtain
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From the definition (5.1.12) of the generalized Hotine function, we have that
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Letting P go to ES , we obtain from the boundary condition and the properties of the

single layer potential (see Heiskanen and Moritz, 1967) that
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where Pβ  is the angle between the radius vector of P and the normal of ES  at point P.

Denoting δg*(Q)secβQ and the projection of the surface element ESd  onto the unit sphere

σ  by µ(Q) and Qdσ , respectively, we have from (5.3.16) and (5.3.19) that
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• An approximate solution of the integral equations

In the following, we will now solve the above two integral equations to get the formulas

for computing the height anomalies on the topographic surface ES  from the gravity

disturbances on ES .

Denoting the distances of P and Q to SM by Prδ  and Qrδ  respectively (see figure below),

we have
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Figure 5.5  The geometry of the integral equation method
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Obviously
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In the sequel, we suppose that

1k1 < (5.3.28)

and neglect the quantities equal to or less than the order of 2
2k  and 2

PQ2fk .

From (5.3.24) and noting (5.3.27) and (5.3.28), we have
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It follows that
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Furthermore, let

)P()P()P( 10 µ+µ=µ (5.3.34)

)P(T)P(T)P(T 10 += (5.3.35)

where

P0 g)P( δ=µ (5.3.36)
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Inserting equations (5.3.22), (5.3.33), (5.3.34) and (5.3.36) into (5.3.21) and equations

(5.3.32), (5.3.35) and (5.3.37) into (5.3.20) and neglecting the terms equal to or less than

the order of 12k µ , we obtain
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In the above two equations, neglecting respectively the terms of the order of
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we obtain
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Then from Bruns’ formula, we finally obtain from (5.3.35) that
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and

QQPQ
P

0 dg)(H
4

R
(P) σδψ

πγ
=ζ ∫

σ

(5.3.46)

Q1PQ
P

1 d)Q(g)(H
4

R
)P( σδψ

πγ
=ζ ∫

σ
QQ

PQPQ

2
PQ

PQ

dg

)
2

sin1(
2

sin2

f)
2

sin21(

4

R
σδ

ψ
+

ψ

ψ
+

π
− ∫

σ

(5.3.47)

Equations (5.3.45), (5.3.46), (5.3.47) and (5.3.44) are the formulas for computing the

height anomalies on the topographic surface ES , which take the effect of the topography
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into account. The term 1gδ  defined by (5.3.44) can be called the topography correction to

the gravity disturbance and 1ζ  defined by (5.3.47) the topographic correction to the

height anomaly.

• Discussion

Here we will give some discussion on the approximate formulas for computing the height

anomalies on the topographic surface ES .

1. The solution is based on the second geodetic boundary value problem with the

topographic surface ES  as its boundary surface. The method for approximately

solving the problem is similar with that used by Brovar (Moritz 1980) in

Molodensky’s problem.

2. In the derivation of the formulas (5.3.45), (5.3.46), (5.3.47) and (5.3.44), we made

several assumptions:

a. To make the equations (5.3.29-31) hold, we suppose (5.3.28) holds;

b. To make the solutions (5.3.44) and (5.3.47) valid, we suppose that the integral

QQ
PQ3

PQ dg

2
sinR4

rr

4

1
σδ

ψ
δ−δ

π ∫
σ

(5.3.48)

exists.

Since
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PQwhen            tanf PPQ →β′→ (5.3.49)

where Pβ′  is the inclination angle of the topographic surface along  the direction PQ ,

the condition (5.3.28) can be satisfied when
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∈

 or 0
P
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856.44sup
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<β
∈

(5.3.50)

Now we investigate the method for handling the integral (5.3.48). Obviously, we only

need to consider the integral in the innermost spherical cap area σ0 with the centre at

the computation point P and a radius 0ψ , which is so small that the spherical cap area

σ0 can be treated as a plane. That is we discuss the following integral:
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For Q in σ0, we expand Qrδ  into a Taylor series at the computation point P:
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where the rectangular coordinates x, y are defined by
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so that the x-axis points north, and
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The Taylor series (5.3.52) may also be written as
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Inserting this into (5.3.51), performing the integration with respect to QPα  first,

noting (4.1.29) and neglecting the quantities of )l(O 2
0 , we have

]rr[
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where

2
sinR2l 0

0

ψ
= (5.3.57)

So, when the topographic surface SE is smooth enough (its radius vector is

differentiable at least twice), the integral (5.3.48) exists and can be handled via the

method discussed above.

In practice, the topographic surface can be obtained via mathematical fit from the

GPS measurements. So it can be selected to satisfy the above two conditions.

3. In the derivation of the formulas, the quantity Prδ  is the distance of P on the

topographic surface SE onto the surface of the mean sphere SM. This quantity can also

be obtained from GPS measurements. In the formulas, the effect of the flattening of

the Earth is included in the topographic correction.
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5.3.4 Comparison of the three methods

In this subsection, we will discuss briefly the relationships among the three methods for

the computation of the geoidal height (or height anomaly) taking the topography into

account.

• Relationship between Helmert’s condensation reduction and the analytical

continuation

Now we suppose that gδ  is linearly related with the elevation h. That is

PP hG2ag ρπ+=δ (5.3.58)

Furthermore, we suppose that h/R is small enough so that the terms containing it can be

neglected. So from (5.3.14), we have
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It follows from (5.3.7) that
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Since

IHL 1−γ−= (5.3.61)

where I is the unit operator, we obtain that
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12
PPP1 hG)A()g( −γρπ−δ= HH (5.3.62)

So from (5.3.11), we have

12
PP0P hG)A()P(N −γρπ−δ+=ζ H

)P(N)P(NC δ+=       (5.3.63)

Comparing with (5.3.33), we can conclude that Helmert’s condensation reduction and the

analytical continuation are equivalent to each other when gδ  is linearly related with the

elevation h and h/R is zero (planar approximation).

• Relationship between the solutions of the analytical continuation and the

integral equation method

Here we discuss briefly the relationship between solutions of the analytical continuation

and the integral equation method. We use the geodetic height h to replace rδ  and suppose

that h and Pβ  are small enough so that the terms containing R/h , P
2tan β  and 2

PQf  can

be neglected in (5.3.44) and (5.3.47). Thus we obtain

)P()P()P( 10 ζ+ζ=ζ (5.3.64)
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with
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The gravity correction term 1gδ  can be rewritten as
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where g1 is defined by (5.3.14). It follows from (5.3.61) and (5.3.66) that

γ
δ

+=δ=ζ PP
P1P11

gh
)g()g()P( HH (5.3.69)

where the second term of the right hand side of above formula can be neglected since it is

also a small quantity as the quantities containing R/h .

So from (5.3.64) and (5.3.11) we can conclude that under the assumption that h and Pβ

are small enough so that the terms containing R/h , P
2tan β  and 2

PQf  can be neglected in

(5.3.44) and (5.3.47), the analytical continuation method and the integral equation

method are equivalent to each other.

• Brief summary

In this subsection, we compared the three methods of evaluating the topography

correction. We have the following suggestions:

1. In the area that the topography satisfies that SE is smooth enough (its radius vector is

differentiable at least twice) and its inclination angles are less than 440, we can
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employ the integral equation method to evaluate the topographic correction to the

geoidal height (or height anomaly) for it is rigorous under these assumptions.

2. In the area that the inclination angles and the elevations of the topography are very

small, we can employ the analytical continuation method to evaluate the topographic

correction to the geoidal height (or height anomaly) for it is equivalent to the integral

equation method and has a simpler expression.

3. Furthermore, in the area that the mass densities of the topography are known and the

gravity disturbance gδ  is linearly related with the elevation h, we can employ

Helmert’s condensation reduction to evaluate the topographic correction to the

geoidal height (or height anomaly) for it is equivalent to the analytical continuation

method and has a simpler expression.

5.4 Chapter summary

In this chapter, we investigated in detail the solutions to the SGBVP. We first obtained

the generalized Hotine formula and the ellipsoidal Hotine formula respectively from

solving the second spherical boundary value problem and the second ellipsoidal boundary

value problem. Then we applied the Hotine formulas to solve the SGBVP by the Helmert

condensation reduction and the analytical continuation method. We also gave an integral

equation method for directly solving the SGBVP. A brief comparison of the solutions of

the three methods shows that the integral equation solution needs fewest assumptions but

is formulated complicatedly and under some assumptions, these three solutions are

equivalent to each other.
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6 Local Character of the Anomalous Gravity
Field

In section 1.5.4, we discussed the significance of the local character of the anomalous

gravity field. In this chapter, we will establish some integral models showing the local

relationships of the quantities of the anomalous gravity field by means of kernel functions

having some properties of wavelet.

6.1 Definition and properties of the basic kernel

In this section, we will define the basic kernel function for the models, from which other

kernel functions can be obtained, and discuss its properties.

Definition 6.1  For an arbitrarily given point P in R 3  and a non-negative integer n, we

define  (Q)F Pn  in R 3 -{P} as follows:
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∂
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PQ
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                  (6.1.1)

where r
P  is the radius vector of P with respect to the geocentre, and PQl  is the distance

between point P and point Q in R 3 -{P}.
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6.1.1 Lemmas

Before discussing the properties of (Q)F Pn , we shall introduce several useful lemmas.

Lemma 6.1  Let PQQP  ,r ,r ψ  be the radius of P and Q and the angle between r P  and r Q

respectively, and

PPQQP rcosr(Q)h −ψ=                                                    (6.1.2)
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Proof.  From the definition of (Q)F Pn , we have
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So lemma 6.1 holds#
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Lemma 6.2  Let

(Q)h(Q)F=(Q)t PP0P  (6.1.9)

Then

1(Q)t1- P ≤≤                                                   (6.1.10)

Proof.  From the definition (6.1.1) and (6.1.2), we have

0
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22
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ψ
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It follows that (6.1.10) holds #

Lemma 6.3  If V  is an infinitely differentiable and harmonic function in an area �, then

for an arbitrarily given constant vector r, V
r∂

∂
 is also an infinitely differentiable and

harmonic function in the area �.

Proof.  We denote the angles between r and the coordinate axes by zyx ααα  , , ,

respectively. Then

V
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cos+V
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cos+V
X

cos=V
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∂
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∂
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α
∂
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α
∂
∂

zyx   .                             (6.1.12)

Since r is a constant vector, xαcos , yαcos  and zαcos  are all constants. V
r∂

∂
 is infinitely

differentiable because V is infinitely differentiable. And since V is harmonic in �, we

have that in �
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which means V
X∂
∂

 is harmonic in �. In the same way, we can prove that V
Y∂
∂

 and

V
Z∂
∂

 are also harmonic in �. It follows from (6.1.12) that V
r∂

∂
 is harmonic in � #

6.1.2 Properties of the basic kernel function

Now we shall discuss the properties of (Q)F Pn .

Property 6.1  For an arbitrarily given point P in R 3 , we have
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Proof.  We use mathematical induction to prove the property.

(a) When n =1, we have
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i.e. (6.1.14) holds for n =1. Suppose that (6.1.14) holds for n =k, then by (6.1.3) and

(6.1.4),
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i.e. (6.1.14) holds for n =k+1 . So by the induction principal, (6.1.14) holds.

(b) It is obvious that (6.1.15) holds for n=0. Suppose it holds for n=k, then
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i.e. (6.1.15) holds for n=k+1. It follows that (6.1.15) holds for n≥0 #

Property 6.2               
)1n(

PQPnPn (Q))t(P=(Q)F +−l                                                (6.1.19)

where )t(Pn  is the n-order Legendre polynomial (Heiskanen and Moritz, 1967).
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Proof.  Let

1n
PQPnPn (Q)F=(Q)P +l (6.1.20)

then by Property 6.1 and noting that 
1

PQP0 =(Q)F −l  we have

(Q)P
n

1-n
+(Q)P(Q)t

n

1-n2
=(Q)P P1nP1nPPn −− (6.1.21)

and

1=(Q)P P0   (6.1.22)

Therefore by (1-59) in Heiskanen and Moritz (1967) and (6.1.10), we have

(Q))t(P=(Q)P PnPn               (6.1.23)

This means that (6.1.19) holds  #

Property 6.3  (Q)F Pn  is harmonic in R 3 -{P}.

Proof.  It is easy to see that 
1

PQP0 =(Q)F −l  is harmonic and infinitely differentiable in R 3 -

{P}. By Lemma 6.3, we know that (Q)F
r

=(Q)F P0
P

P1 ∂
∂

 is harmonic and differentiable

and, by extending this, we obtain that for any non-negative integer n, (Q)F Pn  is harmonic

in 3R -{P} #
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By Property 6.2, we can obtain the following two properties:

Property 6.4  (Q)F Pn  is regular, i.e., if Qr → ∞  or ∞→PQl , then 0(Q)F Pn → .

Property 6.5  With an increase in n, when Qr ∞→  or ∞→PQl , the rate of vanishing of

(Q)F Pn  increases.

Property 6.6  For QP rr < , we have

)(cosP
r

r

k

n
)Q(F PQk1k

Q

nk
P

nk
Pn ψ








= +

−∞

=
∑   (6.1.24)

)cos(P
r

r

k

n
)1k((Q)F

r PQk2k
Q

nk
P

nk
Pn

Q

ψ







+−=

∂
∂

+

−∞

=
∑     (6.1.25)

where PQψ  is the angle between Qr  and Pr .

Proof. According to Heiskanen and Moritz (1967),

)(cosP
r

r1
PQk

0k
1k

Q

k
P

PQ

ψ= ∑
∞

=
+l

(6.1.26)

It then follows from (6.1.1) and (6.1.26) that (6.1.24) and (6.1.25) hold #

The properties 6.4 and 6.5 show that (Q)F Pn  has some properties of wavelet )t(b,aψ  (see

Keller, 1995: )
a

tb
()t(b,a

−
ψ≡ψ , n is similar to a-1 and P and Q correspond to b and t
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respectively; also see Hohlschneider, 1995, Freeden and Schneider, 1998 and Liu et al.,

1998 for more information about wavelets and their applications). In fact, from (6.1.19),

we can see that (Q)F Pn  is the product of Q))(t(P Pn  and )1n(
PQ

+−l , where the function

Q))(t(P Pn  is a wave function which varies between –1 and 1 and whose frequency

increases with an increase in n. The function )1n(
PQ

+−l  can be regarded as the amplitude

which vanishes with an increase in lPQ, and the rate of vanishing increases as n increases.

Regarding this, we can get further understanding from the following two tables.

We consider a situation in which Q moves only on a curved surface, which might as well

be supposed to be the surface of a sphere with radius Qr , and P is a point which does not

belong on the surface, i.e. QP rr ≠ . Let d= QP rr −  and ψ  be the angle between r P  and r
Q

.

Then by the definition of (Q)F Pn , we know that (Q)F Pn  relates only to Qr , n, d and ,ψ

i.e.

) ,d ,n ,r(F=(Q)F QPn ψ   . (6.1.27)

Let

)0 ,d ,n ,r(F)/ ,d ,n ,r(F=R QQf ψ (6.1.28)

Then tables 6.1 and 6.2 show the relationships between Rf and n, d, ψ  when rQ=6372

km. From table 6.1, we can see that Rf decreases with an increase in ,ψ  and the rate of

decrease increases with an increase in the distance d of P from the surface on which Q

moves. For a pictorial representation, see Figure 6.1. From table 6.2, we can see that Rf

decreases with an increase in ,ψ  and the rate of decrease increases with an increase in n.

Figure 6.2 illustrates this behavior.
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Table 6.1   Rf-values for various values of d(in km) and ψ (in degree)

when Qr =6372km, n=2

          d -0.001 0.001 -1.000 1.000 -200.000 200.000

     ψ ο

0.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0E-06 9.637E-01 9.637E-01 9.999E-01 9.999E-01 1.000E+00 1.000E+00

1.0E-05 5.099E-02 5.099E-02 9.999E-01 9.999E-01 1.000E+00 1.000E+00

1.0E-04 -3.505E-04 -3.505E-04 9.996E-01 9.996E-01 9.999E-01 9.999E-01

1.0E-03 -3.634E-07 -3.634E-07 9.637E-01 9.637E-01 9.999E-01 9.999E-01

1.0E-02 -3.635E-10 -3.635E-10 5.100E-02 5.090E-02 9.999E-01 9.999E-01

1.0E-01 -3.635E-13 -3.635E-13 -3.507E-04 -3.507E-04 9.909E-01 9.906E-01

1.0E+00 -3.634E-16 -3.634E-16 -3.635E-07 -3.630E-07 4.341E-01 4.280E-01

1.0E+01 -3.552E-19 -3.552E-19 -3.554E-10 -3.549E-10 -2.829E-03 -2.117E-03

 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

d ψ o 

1.E-06 
1.E-05 

1.E-04 
1.E-03 

1.E-02 
1.E-01 1 

10 

0 

-200 

-0.001 

-1 

Rf 

Figure 6.1  The relationship between Rf and d (in km), ψ  (degree)

when Qr =6372 km, n=2



170

Table 6.2  Rf-values for various values of n and ψ (in degree)

when Qr =6372(km) and d=-0.001(km)

       n 0 1 10 50 100 1000

    ψο    

0.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0E-06 9.938E-01 9.817E-01 6.448E-01 1.810E-02 -7.896E-02 -1.611E-04

1.0E-05 6.686E-01 2.989E-01 -5.211E-04 -1.196E-10 -4.521E-20 0.000E+00

1.0E-04 8.996E-02 7.183E-04 -4.307E-13 7.403E-56 0.000E+00 0.000E+00

1.0E-03 8.991E-03 7.262E-07 -7.608E-24 0.000E+00 0.000E+00 0.000E+00

1.0E-02 8.992E-04 6.565E-10 -7.645E-35 0.000E+00 0.000E+00 0.000E+00

1.0E-01 8.992E-05 -6.329E-12 -7.645E-46 0.000E+00 0.000E+00 0.000E+00

1.0E+00 8.992E-06 -7.048E-13 -7.614E-57 0.000E+00 0.000E+00 0.000E+00

1.0E+01 8.992E-07 -7.056E-14 -4.649E-68 0.000E+00 0.000E+00 0.000E+00

 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0 
1.E-06 

1.E-05 
1.E-04 

1.E-03 
1.E-02 

1.E-01 
1 

10 

0 
1 

10 
50 

100 
1000 

Rf 

n o ψ 

Figure 6.2  The relationship between Rf and n,ψ  (degree)

when Qr =6372 (km), d=-0.001 (km)
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6.2 Local relationships among the disturbing density, the
disturbing potential and the disturbing gravity

In the preceding section, for a non-negative integer n and an arbitrarily given point P in

3R , we defined a function (Q)F Pn  being harmonic in R
3 -{P} and having some

properties of wavelet. In this section, we will, by means of (Q)F Pn , establish the

relationships among the disturbing density δρ , the disturbing potential T and the

disturbing gravity gδ  (or the gravity anomaly ∆g) in the Earth's gravity field.

6.2.1 Local relationship between the disturbing potential and the

disturbing gravity on a leveling surface

 The disturbing potential T satisfies the following relation (Guan and Ning, 1981):

Qn
r

Qg
r

Qγ
r

Qα

i

u

È

Q

sphereunit    The

Figure 6.3  The relation among Qg
r

, Qγ
r

 and Qn
r
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QQQ
Q

cos]tanucosÈ-g(Q)-[Q)(T
n

ααγδ≈
∂

∂
r (6.2.1)

where Qn
r

 is an arbitrarily given vector at Q, Qα  is the angle between Qn
r

 and the gravity

vector Qg
r

 at Q, Θ is the total deflection of the vertical and u is an angle between the

plane ( Qg
r

, Qn
r

) and the plane ( Qg
r

, Qγ
r

) (see Figure 6.3).

When nQ is the interior normal vector of a surface σ , which is a level surface (real or

normal) or a spherical surface with its centre at the geocentre, Qα  will be very small. So

we can neglect the effect of the deflections of the vertical in (6.2.1) and obtain that

g(Q)-Q)(T
nQ

δ=
∂

∂
r     (Q is on σ ) (6.2.2)

After proper reductions, we can represent the boundary surface by a level surface Eσ  (for

example the geoid or the reference ellipsoid). Thus the disturbing potential T is harmonic

outside Eσ . Now we choose a level surface σ completely surrounding Eσ  and take a

point P inside σ. Then since the Earth and P are all inside σ, both (Q)F Pn  and T are

harmonic and regular outside σ. It follows from Green’s second formula (Heiskanen and

Moritz, 1967) that

Model 6.1a:  0=(Q)dQFg(Q)(Q)dQF
n

(Q)T PnPn
Q

∫∫
σσ

δ+
∂

∂
r                          (6.2.3)

Furthermore, from the fundamental equation of physical geodesy, we have

(Q)T
h

1
-g(Q)g(Q)Q)(T

n
Q

Q

QQ

rr
∂

γ∂
γ

∆=δ=
∂

∂
− .     (6.2.4)
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So Model 6.1a can be rewritten as

Model 6.1b: 0=(Q)dQFg(Q)(Q)]dQF
h

1
-(Q)F

n
(Q)[T PnPn

Q

Q

Q
Pn

Q
∫∫
σσ

∆+
∂

γ∂
γ∂

∂
rr         (6.2.5)

Model 6.1 shows the relationship among the information on some frequency of the

disturbing potential T and the disturbing gravity gδ  or gravity anomaly ∆g on a level

surface σ  completely surrounding the Earth. From Property 6.2, we know that the kernel

functions in the model decrease when Q goes away from P, and with the increase in n or

the decrease in the distance between P and the surface σ  the kernel functions have higher

frequencies and their rates of decrease increase. This means that with the increase in n or

the decrease in the distance between P and the surface σ , the integrals in the model can

be evaluated in a smaller neighborhood of P  (the nearest point on σ  from P) and the data

(input and output) should contain higher frequencies. So when n increases or the distance

between P and the curved surface σ  decreases, the data's information is projected in the

neighborhood of P . Since P is an arbitrarily given point inside σ , by selecting P we can

project the local information of the disturbing potential T and the disturbing gravity gδ

(or gravity anomaly ∆g) in the neighborhood of any point on σ . A more detailed

discussion will be given in the next section.

6.2.2 Local relationship among the disturbing density, the disturbing
potential and the disturbing gravity

Now we consider the relationships among the disturbing density δρ, the disturbing

potential T and the disturbing gravity δg.

Let τ  be the space inside Eσ . By Poisson’s equation, we have
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τ
τδρπ

∆
 outside is Q0,

in  is Q(Q),G4-
=(Q)T   (6.2.6)

where G is the gravitation constant. For a level surface σ  completely surrounding Eσ

and a point P outside σ , we know from Property 6.3 that

0(Q)F Pn =∆  (Q is inside σ) (6.2.7)

So by Green’s second formula (Heiskanen and Moritz, 1967), equation (6.2.2) and noting

that σ surrounds τ , we obtain

Model 6.2:  (Q)dQFg(Q)(Q)dQF
n

(Q)T PnPn
Q

∫∫
σσ

δ+
∂

∂
r 0=(Q)dQF(Q)G4- Pn∫

τ

δρπ    (6.2.8)

In Model 6.2, the impact of the disturbing density of the interior point Q decreases with

the increase in the depth of Q, and the rate of the decrease increases with increasing n. So

when n is bigger, the model shows the relationship between the high frequency

information of the disturbing density δρ  in shallow layers of the Earth and the disturbing

gravity and disturbing potential on a surface surrounding the Earth.

6.2.3 Local relationship between the disturbing potential and the
disturbing gravity on different layers

Finally, we give the relationship between the disturbing potential T and the disturbing

gravity δg on different layers.

Let 1σ  and 2σ  be the level surfaces satisfying 21 σ⊂σ⊂τ , and P be a point outside 2σ .

Then from (6.2.8) we can easily obtain
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 Model 6.3:  =δ+
∂

∂
∫∫
σσ

(Q)dQFg(Q)(Q)dQF
n

(Q)T PnPn
Q 11

r

Q)dQ(F)Qg(Q)dQ(F
n

)Q(T PnPn
Q 22

′′′δ+′′
∂

∂′= ∫∫
σσ ′

r   .           (6.2.9)

Model 6.3 shows the relationship among the information at some frequency of the

disturbing potential T and the disturbing gravity gδ  on different layers. Since P is close

to 2σ , the frequency of the information on 2σ  is higher than that on 1σ . But when n

increases, the frequencies of the information on both layers will be higher. So when

determining the data on 1σ  from the data on 2σ , we can get the higher resolution of the

data on 1σ  by increasing the resolution of the data on 2σ  without a change in the distance

between the two layers. This is very important for processing satellite gravity data.

6.3 ‘Multi-resolution’ representation of the single-layer
density of the disturbing potential

In section 1.4.2, we discussed three indirect parameter methods for representing the

disturbing potential: the spherical harmonic representation; Bjerhammar’s representation

and the ‘fictitious’ single layer density representation. These methods were proposed for

simplifying the representation of the disturbing potential. Another significance of these

models is that their model parameters, consisting of a set of spherical harmonic

coefficients or a function distributed on a spherical surface, can be determined from all

kinds of gravity data. As we showed in section 1.5.4, however, these methods are hard to

be employed in the processing of high-resolution gravity data since in these models the

local relationships between the model parameters and the high-resolution gravity data are

very weak.
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In this section, we will generalize the ‘fictitious’ single layer density representation of the

disturbing potential to establish a new model in which the local character of the model

parameters is considered.

6.3.1 Establishment of the model

The ‘fictitious’ single layer density representation of the disturbing potential is given as

follows (Hsu and Zhu, 1984):

∫ ρ
π

=
BS

*
Q

PQ

dQ
1

4

1
)P(T

l
(6.3.1)

where SB is the surface of the Bjerhammar sphere with radius RB and *ρ  is the “model

parameters” which will be determined from the gravity data.

Q

SB

S0

P

O

Q0

Figure 6.4  The sphere S0 and the Bjerhammar sphere SB

For d0>0, we draw a sphere S0 centred at the centre O of SB and with radius R0=RB-d0

(see figure 6.4)
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Replacing the geocentre OE by Q0 in (6.1.26), we obtain

)QPQ(cosP
l

d1
0n

0n
1n

PQ

n
0

PQ 0

∠= ∑
∞

=
+l

(6.3.2)

Therefore from (6.1.19), we have

)P(Fd
1

0nQ
0n

n
0

PQ
∑

∞

=

=
l

(6.3.3)

It follows from (6.3.1) that

∑ ∫
∞

=
ρ

π
=

0n S

00
*
nnQ

0

0
dQ)Q()P(F

4

1
)P(T (6.3.4)

where

2
0

2
Bn

0
*
Q0

*
n

R

R
d)Q( ρ=ρ (6.3.5)

Equation (6.3.4) is the model we want.

6.3.2 Further discussion on the model

Obviously model (6.3.4) is a generalization of the ‘fictitious’ single layer density

representation of the disturbing potential (6.3.1). This can be seen by taking d0=0.

The model (6.3.4) expresses the disturbing potential T as a summation of an infinite

series. From the properties of )P(F
0nQ , for each n, the term nT  in the series
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∫ ρ
π

≡
0

0

S

00
*
nnQn dQ)Q()P(F

4

1
)P(T (6.3.6)

represents some frequency information of the disturbing potential and the frequency goes

from low to high when n goes from 0 to ∞. In this sense, (6.3.4) can be regarded as a

generalization of the spherical harmonic expansion (1.4.19) of the disturbing potential.

Actually, when taking d0=RB in (6.3.2), we can obtain (1.4.19) and nT  corresponds to the

Laplace spherical harmonics nY  of the disturbing potential.

It is obvious from the following equation (6.3.7) that the parameters n
0mnmnm }S,C{ =  in nY

have no local relationships with the disturbing potential T.

λθ







λ
λ

θλθ=







∫ dd

msin

mcos
)(cosP),(Tk

S

C
nmn

nm

nm (6.3.7)

Although the parameters *
nρ  can not be expressed by means of a simple closed formula

like (6.3.7) of the disturbing potential T, there exist local relationships between *
nρ  and T.

In the following, we will discuss how to obtain the relationships.

First of all, for equation (6.3.1), we use the method discussed in section 1.5.4 to obtain a

solution of the parameters *ρ . Since the kernel function in the integral equation (6.3.1)

decreases slowly, the resolution of the resulting *ρ  will be low. From these *ρ , we can

obtain *
0ρ  by means of (6.3.5).

Then we rewrite equation (6.3.4) as
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∫

∫∑

ρ
π

=

ρ
π

=−≡
∞

=

0

0

0

S

00
*
101

S

00
*
nnQ

1k
0

1

dQ)Q()Q,P(K
4

1
          

dQ)Q()P(F
4

1
)P(T)P(T)P(T

 (6.3.8)

where )P(T0  can be obtain from *
0ρ  by means of (6.3.6) and  the kernel function K1 is

given by

∑
∞

=

−+=−=
2n

nQ
1n

0Q1Q0
PQ0

01 )P(Fd)P(F))P(F
l

1
(

d

1
)Q,P(K

000
(6.3.9)

Obviously, the kernel function K1 decreases faster than the kernel function in (6.3.1)

when Q0 moves away from P. Therefore, (6.3.8) shows a stronger local relationship

between *
1ρ  and T1, and from this integral equation, we can obtain *

1ρ  with a resolution

higher than *
0ρ .

Finally, after n steps, we can obtain

∫∑ ρ
π

=−≡
−

=
0S

00
*
n0n

1n

0k
k

n dQ)Q()Q,P(K
4

1
)P(T)P(T)P(T (6.3.10)

where

∑
∞

+=

−+=
1nk

kQ
nk

0nQ0n )P(Fd)P(F)Q,P(K
00

(6.3.11)

For a big enough n, the relation (6.3.10) shows a strong local relationship between *
nρ

and Tn and from this integral equation, we can obtain *
1ρ  with a high resolution.
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Thus, step by step, we obtain the model parameters { }n

0k
*
k =ρ  and with increase in k, the

resolution of *
kρ  increases. So we call the model (6.3.4) the ‘Multi-resolution’

representation of the single-layer density of the disturbing potential T.

6.4 Detailed discussion on Model 6.1 and its practical
evaluation

Under spherical approximation, the value of the geoidal height (or the disturbing

potential) at a single point on the geoid can be given by Stokes’s formula

)dQ(Sg(Q)
4

R

4

P)(T
P)(N PQ

PP

ψ∆
πγ

=
πγ

= ∫
σ

. (6.4.1)

Since the Stokes function )(S PQψ  can be expressed as

)(cosP
1k

1k2
)(S PQ

2n
kPQ ψ

−
+

=ψ ∑
∞

=

,          (6.4.2)

we have

(P)g
1k

R
)P(T

2k
k∑

∞

=

∆
−

= , (6.4.3)

where the surface harmonics

σψ∆
π
+

=∆ ∫
σ

d)(cosP(Q)g
4

1k2
(P)g PQkk (6.4.4)
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represent global information of the gravity anomaly at specific frequencies. (6.4.3) means

that T(P) contains global gravity information on all frequencies (except for n<2). Stokes’s

formula (6.4.1) is the relation between the geoidal height at a single point on the geoid

and the gravity anomalies on the entire geoid. It can be said that Stokes’s formula is the

rigorous formula for computing the geoidal height from the globally and continually

distributed gravity anomalies in spherical approximation. However, the numerical

evaluation of such a formula is generally hindered for two reasons: one is the lack of

adequate global coverage of gravity anomalies; the other is that the gravity data are given

only at discrete points.

In order to give a supplement to Stokes’s formula, Paul (1991) established a model as

follows:

σψ∆=σψ ∫∫
σσ

)d(Fg(Q))d(F(Q)T PQ1PQ2      (6.4.5)

with

)v,å(Q

)v,å x,(Q
)(F

0

PQ1 =ψ (6.4.6)

∑
∞

=

ψε−+
ε

=ψ
2k

PQkk
0

PQ2 )(cosP)v,(Q)1k)(1k2(
v),(Q2

1
)(F      (6.4.7)

where ε >0, v>0.5, x=cos PQψ ,

v22

1v2

])1x[(
)v,x,å(Q

ε+−
ε

=
−

, (6.4.8)

∫
−

=
1

1

0 x)dv,x,å(Q)v,å(Q , (6.4.9)
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and )v,(Qk ε  (k>0) are given by the following recurrence relations:

1v21v2
01 )4/()v,(Q)v22()v,(Q)v22( −− +εε−ε=ε−−ε−        (6.4.10a)

1v21v2
0

2
12 )4/()v,(Q)v

3

2
2()v,(Q)4v2()v,(Q)v

4

3
2( −− +εε+ε=εε+−+ε−+ε−     (6.4.10b)

1v21v2

01
2

23

)4/(                           

)v,(Q2)v,(Q)3v
5

4

5

28
()v,(Q)6v2()v,(Q)v

5

6

5

12
(

−− +εε−ε=

ε−εε+−+ε−+ε−
      (6.4.10c)

)]v,(Qa[a)v,(Q jk

4

1j
j0k ε=ε −

=
∑  (k>3)           (6.4.10d)

  
)1v2k(k

)1k2(
a 0 +−

−
= ,    )vk(2a1 −= ,

  )1)(3k2(
5k2

)4v2k)(2k(

1k2

)1v2k)(1k(
a 2

2 ε+−−
−

−+−
−

−
+−−

−=

  )3vk(2a 3 −+= ,  
5k2

)4v2k)(3k(
a 4 −

−+−
−=

The kernel functions )(F PQ1 ψ  and )(F PQ2 ψ  in model (6.4.5) were shown to decay

sharply when PQψ  goes from 0 to π.

Model (6.4.5) was called a local relationship between disturbing potential (geoidal

height) and gravity anomaly. It provides the possibility of reducing the integration area of

the gravity anomaly in (6.4.1) to a local area of the geoid while the integral will

simultaneously be made equal to an integral transform of the local geoidal height.

However, the kernel function )(F PQ2 ψ  is given by the summation of an infinite series

(6.4.7), which is hard to be expressed by an analytical formula. In addition, the

relationship is established only under spherical approximation.

Model 6.1b established in the preceding section has the same characteristic as Paul’s

model in some aspects. Since the kernel functions in both models vanish sharply when
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the moving point moves away from the computation point, they both show the local

relationship between the disturbing potential (the geoidal height) and the gravity

anomaly. However, Model 6.1b holds not only under spherical approximation, but it can

hold for a level surface, and under the spherical approximation the kernel functions in

Model 6.1b can be easily computed from (6.1.14) and (6.1.15) and the following equation

(6.4.12).

To obtain a further understanding of the local character of Model 6.1b, we will discuss a

special case: First, we use a spherical surface σ0 with the mean radius of the Earth R

instead of σ in Model 6.1b, and obtain

σ∆=σ ∫∫
σσ

(Q)dFg(Q)(Q)dF(Q)T PnPn (6.4.11)

where (note (6.1.15))
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∂
∂

=   (6.4.12)

Then if we choose P to be the centre of σ0, we have

)(cosP
R

1
(Q)F and 0r PQn1nPnP ψ== +  

It follows from (6.4.11) and (6.4.12) that

σψ∆=σψ ∫∫
σσ

d)(cosPg(Q)
1-n

R
)dcos(P(Q)T PQnPQn (6.4.13)
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The above formula is a well-known formula which shows the relationship between the

information of T and ∆g at some frequency. Since the kernel function )(cosP PQn ψ  varies

between -1 and 1 when PQψ  goes from 0 to π, the integrals in (6.4.13) have to be

evaluated globally. This means that the relationship showed in (6.4.13) is a global

relationship.

As a generalization of (6.4.13), Model 6.1 (where P is not at the centre of σ ) has its

advantages. Unlike the case in (6.4.13), the distance between the moving point Q and the

fixed point P increases when PQψ  goes from 0 to π. It follows that the kernel functions in

Model 6.1 vanish as PQψ  goes from 0 to π. Thus, in the integrals in Model 6.1, the

information on the area that is closer to P is bulged more than others. So in this respect,

Model 6.1 has local character that is different from (6.4.13).

Furthermore, from Property 6.6, (6.4.11) can be rewritten as

∑∫
∞

=

−

σ

λθ
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−

π=σ∆=∆
nk

kk

nk
P

PnPn ),(T
R

r

k

n

1k2

1k
4(Q)dFg(Q)g)(L (6.4.14)

where ),(Tk λθ  is the k-degree Laplace surface harmonic of the disturbing potential T.

This means that, with the increase in n or the decrease in d (=R- Pr ), the  high degree

harmonic coefficients are amplified in the model and, for a given n, the harmonic

potential coefficients of degree less than n are not contained in the model.

Model 6.1b establishes the relations between the gravity anomaly g∆  and the disturbing

potential T on the surface σ. Can we then get T from g∆  by this model for a given n?

Rigorously speaking, the answer is no. This is because (6.2.5) is an integral equation of

the first kind that is improperly posed. This can be further explained in view of spectral

analysis from (6.4.14): first, g)(L Pn ∆  lacks the first n-1 degree harmonic potential
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coefficients; second, g)(L Pn ∆  is less sensitive than T to the harmonic potential

coefficients of very large degree because

)k(when            0
R

r

k

n

1k2

1k
k

nk
P ∞→→








+
− −

(6.4.15)

Thanks to the advent of satellite geodesy, the low degree harmonic coefficients have

already been obtained with very high accuracy, which is expected to increase further with

the planned dedicated gravity satellite missions. We can take these coefficients into

account in computing the normal gravity field so that the disturbing potential T does not

contain these coefficients:

    ),(T),(T
0nk

k λθ=λθ ∑
∞

=

where 0n  satisfies that the first 0n -1 harmonic coefficients have already been known and

subtracted. In fact, in the Stokes formula, the zero and first degree coefficients are

excluded.

For the second problem, we can suppose that the harmonic potential coefficients of very

large degree are zero because they are very small compared to the lower degree

coefficients. Although Stokes’s formula, the rigorous solution of the Robin boundary-

value problem on a spherical surface, expresses the disturbing potential T over all

frequencies, it is impossible in practical applications to get the disturbing potential T over

all frequencies because of the fact that the input data (gravity anomalies g∆ ) are only

given at discrete points. What we can get is T with finite frequency extension or finite

resolution.

In harmonic spectral analysis, T can be approximated by a set of finite spherical
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harmonic coefficients { } max

0

n

nnnmnm S,C = :
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k λθ=λθ ∑

=

So (6.4.14) is approximated by
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If 0nn ≤ , (6.4.16) contains a finite set of spherical harmonic coefficients { } max

0

n

nnnmnm S,C =

as the unknown parameters. Thus we can get a unique solution T from (6.4.16) by

properly choosing P (the closer 
R

rP  is to 1, the more amplified the high degree

coefficients are).

In spatial analysis, we divide the area into many blocks according to the resolution of the

gravity data and suppose that T is constant in each block. Then the unknown function T

becomes a vector {Ti} with finite dimension and can be estimated by the least squares

technique from the known gravity data. In more detail, we divide the surface σ  into a

far-area farσ  and a near-area nearσ . Furthermore, we divide nearσ  into a set of grid

elements { iσ } by meridians and parallels. The size of the grid elements is chosen

according to the resolution of the data. Thus Model 6.1b becomes

n
P

n
Pi

i
i

n
Pi

i
i fBTAg =+∆ ∑∑                                      (6.4.17)

where ig∆  and iT  are, respectively, the mean values of g∆  and T on iσ ;  and
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where iQ  is a point in iσ ; iσ∆  is the area of iσ ; and 
n
Pf  can be evaluated from a global

gravity field model and the error of doing so is very small because the values of the

kernel functions in farσ  are very small relative to those in the near-area. From (6.4.17),

we can estimate {Ti} from { ig∆ } by the least squares technique. By properly choosing n

( 0nn ≤ ) and P, we can make n
PiA  or n

PiB  decrease rapidly when the distance between P

and iσ  increases. From table 1 and table 2, we know that for a fixed n, n
PiA  and n

PiB

decrease when the distance between P and iσ  increases and the rate of decrease is slow

when the size of the grid elements is small, but for grid elements with a small size, we

can increase n or decrease the distance between P and σ  so that the rate of decrease of

n
PiA  and n

PiB  is still rapid. Thus, the coefficient matrix of the normal equations is a sparse

and very strongly diagonal-dominant. This guarantees the stability of the least square

solution of (6.4.17) (see Keller, 1995 and Fei, 1994). So from Model 6.1b, we can obtain

T from g∆  with certain resolution in a local area by properly choosing n and the distance

between P and σ , and the resulting solution will be stable.

Like Paul (1991), we can call Model 6.1 the local relationship model between the gravity

data and the disturbing potential data. The local relationship has two meanings. One is

that we can evaluate with high accuracy the integrals in the model by using mainly the

high-accuracy and high-resolution data in a local area. The other is that we can get a

stable solution with the required resolution when we invert the integrals because of the

rapidly decreasing kernel function of the integrals in the model.
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6.5 Chapter summary

In the preceding sections, we established three models showing the relationships among

the disturbing density, the disturbing potential and the disturbing gravity (gravity

disturbance or anomaly) and a ‘Multi-resolution’ representation of the single-layer

density of the disturbing potential. These models have the following characteristics:

1. The basic kernel function (Q)F Pn  (6.1.1) has some properties of wavelet and can be

evaluated from the recurrence formula (6.1.14) or directly from (6.1.19).

2. The models 6.1, 6.2 and 6.3 show the relationships among the information at some

frequency of the disturbing density inside the Earth, the disturbing potential and the

disturbing gravity outside the Earth, and with increase in n, the frequency of the

information increases and the local character of the information is projected.

3. The multi-resolution representation of the single-layer density of the disturbing

potential expresses the disturbing potential T as a summation of an infinite series. For

each n, the term nT  in the series represents some frequency information of the

disturbing potential and the parameters in nT  have some local relationships with the

disturbing potential. When n goes from 0 to ∞, the frequency goes from low to high

while the local character goes from weak to strong.

4. These models all involve integral equations of the first kind, which are improperly

posed. However, when the disturbing potential T in the models is replaced by its

discretized form {Ti}, we can solve {Ti} from the models by means of the least

squares technique. Since the kernel functions in the integrals decrease rapidly by

properly choosing n, the coefficient matrices of the resulting normal equations can be

very sparse and very strongly diagonal-dominant, thus the method will be very

efficient.
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7 Conclusions and Recommendations

In this thesis, we developed some refinements of the solutions of the geodetic boundary

value problems. The following are the conclusions and recommendations of the thesis.

7.1 Summary and conclusions

1. We supplemented the Runge theorems so that the derivatives of the disturbing

potential are involved. The new theorems, which state that the disturbing potential

and its derivatives can be approximated simultaneously by a function harmonic

outside an inner point of the Earth and its corresponding derivatives, are more

suitable for providing theoretical guarantee to the approximate theories in physical

geodesy.

2. We derived new ellipsoidal correction formulas to Stokes’s formula and the inverse

Stokes/Hotine formulas. By adding these corrections to the corresponding formulas,

the system errors decrease from O(e2) to O(e4). Compared to the other relevant

spherical formulas, the new formulas are very effective since they are simple closed

formulas and the input data are those already obtained via the spherical formulas. A

numerical test for the ellipsoidal correction to Stokes’s formula in the US showed that

the contribution of the ellipsoidal correction ranges from –31 cm to –1 cm and a

global geoid model with a resolution of 1 degree is sufficient for the computation if

the required accuracy is of the order of 1cm.

3. We investigated the second geodetic boundary value problem based on ground

gravity disturbances:
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• We analyzed the significance of the second geodetic boundary value problem.

The conclusion of the analysis is that in the era of GPS, the second geodetic

boundary value problem is most important for the determination of a high

accuracy geoid model and the external gravity field, especially for the purpose of

replacing the conventional leveling by GPS observations.

• We generalized Hotine’s formula to the outside space so that we can evaluate the

exterior disturbing potential from the ground gravity disturbances, and obtained

an ellipsoidal Hotine formula which is expressed as the spherical Hotine formula

plus an ellipsoidal correction term.

• We obtained three approximate solutions to the second geodetic boundary value

problem. Two of them were obtained from applying Hotine’s formula or the

ellipsoidal Hotine formula to solve the second geodetic boundary value problem

by means of the Helmert condensation reduction and the analytical continuation

method. The third is an integral equation solution obtained from directly solving

the second geodetic boundary value problem. Among the three solutions, the

Helmet condensation reduction solution has the simplest formula but needs the

most assumptions, the analytical continuation solution is in the middle and the

integral equation solution is the most complicated but needs the least assumptions.

4. We established four models showing the local characters of the disturbing potential

and other gravity parameters. Three of them show the relationships among the

disturbing density, the surface disturbing potential and the surface disturbing gravity.

The fourth model gives the ‘multi-resolution’ single-layer density representation of

the disturbing potential. The important character of these models is that their kernel

functions decrease fast, which guarantees that the integrals in the models can be

evaluated with high accuracy by using mainly the high-accuracy and high-resolution

data in a local area, and stable solutions with high resolution can be obtained when

inverting the integrals. A brief analysis indicated that these local relationship models

are useful in the processing of high-resolution gravity data.
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7.2 Recommendations

1. For the determination of a geoid model with 1-cm accuracy, the ellipsoidal correction

computed from a global geoid model with 10 resolution or better should be added to

the spherical geoid model obtained via Stokes’s formula.

2. For the accurate estimation of the effect of the Earth’s flattening on the inverse

Hotine/Stokes formulas, further numerical tests are needed.

3. To make the solution of the second geodetic boundary value problem realizable, it is

necessary to measure the positions of the gravity data points via GPS. It is

recommended to produce an instrument that integrates the gravimeter and the GPS

receiver so that the position and the gravity value of the observation point can be

measured simultaneously. As for the selection of the three solutions discussed in this

thesis, it is recommended from a theoretical analysis to use the integral equation

solution in areas with complicated topography, the analytical continuation solution in

areas where the inclination angles and the elevations of the topography are very

small, and Helmert’s condensation reduction solution in areas where the mass density

of the topography is known and the gravity disturbance gδ  is linearly related with the

elevation h. This recommendation should be verified by future numerical tests.

4. A numerical test on the models given in chapter 6 will be given in a future

investigation to show how significant these models are for practical work.



192

References

Ardalan AA (1999) High Resolution Regional Geoid Computation in the World Geodetic

Datum 2000 Based upon Collocation of Linearized Observational Functionals of the

Type GPS, Gravity Potential and Gravity intensity. PhD thesis, Department of

Geodesy and Geo Informatics, Stuttgart University, Stuttgart, Germany

Balmino G, Moynot B, Sarrailh M, Vales N (1987) Free air gravity anomalies over the

oceans from Seasat and GeoS-3 altimetry data. EOS Trans, AGU 68: 17-19

Bian S, Dong X (1991) On the singular integration in physical geodesy. Manuscr Geod

16: 283-287

Bjerhammar A (1964) A new theory of geodetic gravity. Trans. Roy. Inst. Technol.,

Stockholm, 243

Bjerhammar A (1975) Discrete approaches to the solution of the boundary value problem

in physical geodesy. Boll. Geod. Sci. Affini, 34: 185-240

Bjerhammar A, Svensson L (1983) On the geodetic boundary value problem for a fixed

boundary surface-A satellite approach. Bull. Geod 57: 382-393

Brovar VV (1964) On the solution of Molodensky’s boundary value problem. Bull.

Geod. 72:169-173

Cruz JY (1986) Ellipsoidal corrections to potential coefficients obtained from gravity

anomaly data on the ellipsoid. Report No. 371, Department of Geodetic Science and

Surveying, OSU



193

Fei ZL (1994) The determination of the single-layer potential model of the earth's gravity

field from the satellite gravity gradiometer data (in Chinese). Acda Geodaetica et

Cartographica Sinica, No. 1, pp 29-36

Fei ZL, Sideris MG (1999) Local relationships among the disturbing density, the

disturbing potential and the disturbing gravity of the Earth’s gravity field. Journal of

Geodesy Vol. 73, No. 10, pp. 534-542.

Fei ZL, Sideris MG (2000) A new method for computing the ellipsoidal correction for

Stokes's formula. Journal of Geodesy 74 (2): 223-231

Freeden W, Schneider F (1998) An integrated wavelet concept of physical geodesy.

Journal of Geodesy 72(5): 259-281

Gilliland JR (1994a) Cap sizes in geoid calculations. Aust. J. Geod. Photogram. Surv. 60:

95-107

Gilliland JR (1994b) Geoid undulations and GPS heights in the Melbourne region. Aust.

J. Geod. Photogram. Surv. 61: 41-48

Grafarend EW, Ardalan A, Sideris MG (1999) The spheroidal fixed-free two-boundary-

value problem for geoid determination (the spheroidal Bruns' transform), Journal of

Geodesy 73 (10): 513-533

Guan ZL, Ning JS (1981) The figure and the exterior gravity field of the earth (in Chinese).

Surveying and Mapping Press of China, Beijing

Heiskanen WA, Moritz H (1967) Physical Geodesy. W.H. Freeman and Co., San

Francisco and London



194

Hotine M (1969) Mathematical Geodesy. ESSA Monograph 2, US Dep. of Commerce,

Washington

Hsu HT, Zhu ZW (1984) The fictitious simple layer density representation of the exterior

gravity field of the earth, Sciences Sinica (B), No. 6: 575-580

Hwang C, Parsons B (1995) Gravity anomalies derived from Seasat, Geosat, ERS-1 and

TOPEX/POSEIDON altimetry and ship gravity: a case-study over the Reykjanes

Ridge. Geophys J Int 122: 551-568

Keller W (1995) Harmonic Downward Continuation using a Haar Wavelet Frame. In

Proc. Of IAG Symposium G4: Airborne Gravimetry, XXIth GENERAL ASSEMBLY

OF IUGG, pp 81-85, Boulder, USA

Kim JH (1996) Improved recovery of gravity anomalies from dense altimeter data.

Report N. 444, Department of Geodetic Science and Surveying, OSU

Krarup T (1969) A contribution to the mathematical foundation of physical geodesy.

Publ. 44, Dan. Geod. Inst., Copenhagen

Krarup T (1975) On potential theory. In (Brosowski and Martensen 1975), vol. 12: 79-

160

Li J, Sideris MG (1997) Marine gravity and geoid determination by optimal combination

of satellite altimetry and shipborne gravimetry data. Journal of Geodesy 71: 209-216

Liu LT, Hsu HT, Gao BX (1998) A new family of orthonormal wavelet bases. Journal of

Geodesy 72(5): 294-303



195

Mainville M (1986) The altimetry-gravimetry problem using othernormal base functions.

Report No. 373, Department of Geodetic Science and Surveying, OSU

Martinec Z (1998) Construction of Green’s function for the Stokes boundary-value

problem with ellipsoidal corrections in the boundary condition. Journal of Geodesy

72: 460-472

Martinec Z, Grafarend EW (1997a) Construction of Green's function to the external

Dirichlet boundary-value problem for the Laplace equation on an ellipsoid of

revolution. Journal of Geodesy 71(9): 562-570

Martinec Z, Grafarend EW (1997b) Solution to the Stokes boundary-value problem on an

ellipsoid of revolution. Stud. Geoph. Geod. 41: 103-129

Martinec Z, Matyska C (1997) On the solvability of the Stokes pseudo-boundary-value

problem for geoid determination. Journal of Geodesy 71: 103-112

Martinec Z, Vanicek P (1994) Direct topographical effect of Helmert’s condensation for

a spherical approximation of the geoid. Manuscripta geodaetica 19: 257-268

Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external

gravitational field and figure of the Earth. Transl. From Russian (1960), Israel

Program for Scientific Translations, Jerusalem

Moritz H (1980) Advanced Physical Geodesy, Herbert Wichmann Verlag Karlsruhe,

Abacus Press, Tunbridge Wells Kent

Moritz H (1990) The figure of the Earth: theoretical geodesy and the Earth’s interior.

Karlsruhe: Wichmann



196

Noe H (1980) Numerical investigations on the problem of Molodensky. Mitt Geod Inst

Technischen Universitaet Graz 36

Olgiati A, Balmino G, Sarrilh M, Green CM (1995) gravity anomalies from satellite

altimetry: Comparisons between computation via geoid heights and vis deflections of

the vertical. Bull Geod 69: 252-260

Paul MK (1991) On some possible local relationships between geoidal height and gravity

anomaly, Manuscripta Geodaetica 16: 177-190

Ritter S (1998) The nullfield method for the ellipsoidal Stokes problem. Journal of

Geodesy 72: 101-106

Rummel R (1989) Uniquely and Overdetermined Geodetic Boundary Value Problem by

Least Squares. Bull. Geod. Vol 63: 1-33

Rummel R, Haagmans R (1990) Gravity gradients from satellite altimetry. Marine

Geodesy 14: 1-12

Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1

satellite altimetry. J Geophys Res 102: 10039-10054

Sanso F, Stock B (1985) A numerical experiment in the altimetry-gravimetry (Problem

II). Manu. Geod. Vol 10

Sideris MG (1990) Rigorous gravimetric terrain modelling using Molodensky’s operator.

Manuscripta geodaetica 15: 97-106



197

Sideris MG, Fei ZL, Blais JAR (1999) Ellipsoidal corrections for the inverse

Hotine/Stokes formulas. Technical Reports of Department of Geodesy and

Geoinformatics: Festschrift for Erik W. Grafarend, University of Stuttgart, German.

Sideris MG, Forsberg R (1991) Review of Geoid Prediction Methods in Mountainous

Regions. International Association of Geodesy Symposia 106: Determination of the

Geoid, Edited by R. H. Rapp and F. Sanso 51-62

Sjoberg LE, Nord T (1992) geoidal undulation computation by modifying Stokes’ kernel

versus Hotine’s kernel from gravity anomalies. Manuscripta geodaetica 17: 135-140

Smith DA, Milbert G (1999) The GEOID96 high-resolution geoid height model for the

United States. J of Geodesy, 73(5): 219-236

Sona G (1995) Numerical problems in the computation of ellipsoidal harmonics. J of

Geodesy, 70: 117-126

Stokes GG (1849) On the variation of gravity on the surface of the Earth. Transactions of

the Cambridge Philosophical Society 8: 672-695

Thông NC (1996) Explicit expression and regularization of the harmonic reproducing

kernels for the earth's ellipsoid. Journal of Geodesy 70(9): 533-538

Vanicek P, Featherstone WE (1998) Performance of three types of Stokes' kernel in the

combined solution for the geoid. Journal of Geodesy 72: 684-697

Vanicek P, Huang J, Novák P, Pagiatakis S, Véronneau M, Martinec Z, Featherstone WE

(1999) Determination of the boundary values for the Stokes-Helmert problem.

Journal of Geodesy 73: 180-192

Vanicek P, Martinec Z (1994) The Stokes-Helmert scheme for the evaluation of a precise

geoid. Manuscripta geodaetica 19: 119-128



198

Vanicek P, Sjoberg LE (1991) Reformulation of Stokes’s theory for higher than second-

degree reference field and modification of integration kernels. Journal of Geophysical

Research 96 B(4): 6529-6539

Vanicek P, Zhang C, Sjoberg LE (1991) A comparison of Stokes’ and Hotine’s

Approaches to Geoid computation. Manuscripta Geodaetica 17: 29-35

Wang HZ et al. (1985) Handbook of Modern Mathematics in Science and Engineering (I)

(in Chinese). The University of Science and Technology of Central China, Wuhan,

China

Wang YM (1999) On the ellipsoidal corrections to gravity anomalies computed using the

inverse Stokes integral. Journal of Geodesy 73(1): 29-34

Wang YM, Rapp RH (1990) Terrain effects on geoid undulation computations.

Manuscripta geodaetica 15: 23-29

Yu JH, Cao HS (1996) Ellipsoid harmonic series and the original Stokes problem with

the boundary of the reference ellipsoid. J of G 70: 431-439

Yu JH, Wu XP (1998) The solution of mixed boundary value problems with the reference

ellipsoid as boundary. Journal of Geodesy 71(8): 454-460

Zhang C (1993) Recovery of gravity information from satellite altimetry data and

associated forward geopotential models. UCGE Rep 20058, The University of

Calgary, Calgary, Canada

Zhang C, Blais JAR (1993) Recovery of gravity disturbances from satellite altimetry by

FFT techniques: a synthetic study. Manuscripta geodaetica 18: 158-170

Zhang C, Blais JAR (1995) Comparison of methods for marine gravity determination

from satellite altimetry data in the Labrador Sea. Bull. Geod. 69: 173-180


