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ABSTRACT

This research investigates some problems on the refinements of the solutions of the
geodetic boundary value problems. The main results of this research are as below:

Supplements to the Runge theorems are developed, which provide important guarantees
for the approximate solutions of the gravity field, so that their guarantees are more
sufficient.

A new éellipsoidal correction formula has been derived, which makes Stokes's formula
error decrease from O(€?) to O(e*). Compared to other relative formulas, the new formula
isvery effective in evaluating the ellipsoidal correction from the known spherical geoidal
heights. A new ellipsoidal correction formulais also given for the inverse Stokes/Hotine
formulas.

The second geodetic boundary value problem (SGBV P) has been investigated, which will
play an important role in the determination of high accuracy geoid models in the age of
GPS. a generalized Hotine formula, the solution of the second spherical boundary value
problem, and the ellipsoidal Hotine formula, an approximate solution of the second
ellipsoidal boundary value problem, are obtained and applied to solve the SGBVP by the
Helmert condensation reduction method, the analytical continuation method and the
integral equation method.

Four models showing the local characters of the disturbing potential and other gravity
parameters have been established. Three of them show the relationships among the
disturbing density, the disturbing potential and the disturbing gravity. The fourth model
gives the “multi-resolution” single-layer density representation of the disturbing
potential. The important character of these models is that the kernel functions in these
models decrease fast, which guarantees that the integrals in the models can be evaluated
with high accuracy by using mainly the high-accuracy and high-resolution data in a local
area, and stable solutions with high resolution can be obtained when inverting the
integrals.
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O Introduction

The main purposes of physical geodesy are the determination of the external gravity field
and the geoid. Traditionaly, these tasks are handled by solving the third geodetic
boundary value problem in which the input data are gravity anomalies on the surface of
the Earth. With the advancement of the gravimetric techniques, some new types of
gravity data, such as the gravity disturbance data on the Earth’s surface, airborne gravity
data, satellite gravity data, etc., arise, and the accuracy and resolution of the data are
improved constantly. So it becomes very important to utilize all these data for
determining the high-resolution external gravity potential of the Earth. This research will
discuss some aspects of refining the solutions of the geodetic boundary value problems
(BVPs) to accommodate the devel opments of the gravimetric techniques.

In this chapter, we will briefly introduce the background of the research, the open
problemsto be treated here and the outline of thisthesis.

0.1 Background and literature review

Since the days of G.G. Stokes (Stokes, 1849), Stokes's formula has been an important
tool in the determination of the geoid. Rigorously, Stokes's formula is a solution of the
third spherical BVP. The input data, which must be given on the geoid, are the gravity
anomalies obtained from gravity and leveling observations. To apply Stokes's formula
for the determination of the geoid, several schemes of transforming the disturbing
potential, such as Helmert's condensation reduction and the analytical continuation
method, have been employed (Moritz, 1980; Wang and Rapp, 1990; Sideris and
Forsberg, 1991; Martinec and Vanieek, 1994; Vanieek and Martinec, 1994; Vaniéek et
a., 1999). To avoid the transformation of the disturbing potential, Molodensky et al.
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(1962) and Brovar (1964) proposed respectively the integral equation methods to directly
solve the third geodetic BVP. Similar to the analytical continuation method, the
approximate solutions of Molodensky’s and Brovar's methods are also expressed by
Stokes's formula plus correction terms. In the past 35 years, further advances in the
theory of the third geodetic BV P have been achieved. Some of these advances are the
achievements of Molodensky et al. (1962), Moritz (1980), Cruz (1986), Sona (1995),
Thoéng (1996), Yu and Cao (1996), Martinec and Grafarend (1997b), Martinec and
Matyska (1997), Martinec (1998), Ritter (1998), Fei and Sideris (2000), etc., on the
solution of the third ellipsoidal BV P. The resulting solutions of the third ellipsoidal BVP
make the errors of the order of the Earth’'s flattening in the application of Stokes's
formula decrease to the order of the square of the Earth’s flattening.

The third geodetic BVP is based on gravity anomalies which can be obtained from
gravity and leveling observations. A reason of employing the solution of the third
geodetic BVP in the determination of the disturbing potential is that, in the past, gravity
anomalies were the only disturbing gravity data that could be obtained accurately. M.
Hotine at the end of the 1960’ s proposed a solution of the disturbing potential (Hotine's
formula) which uses gravity disturbances as input data. The gravity disturbance is another
kind of disturbing gravity, which can be evaluated from the gravity and the geodetic
height of the observation point. Since the geodetic height could not be obtained directly
by conventional survey techniques, Hotine and other authors (see, e.g., S oberg and Nord,
1992; Vanicek et al., 1991) had to employ an approximate geoidal height to obtain the
gravity disturbance. Thanks to the advent of GPS techniques, the geodetic height can now
be easily observed with very high accuracy. Consequently, the gravity disturbance can be
easily obtained with a high accuracy. Therefore, for the second geodetic BV P, which is
based on gravity disturbances, research parallel to what has been done for the third
geodetic boundary value problem is very important in the era of GPS.

The third and second geodetic BVPs are all based on disturbing gravity data distributed
over the globe. However, the gravity data over the oceans are hard to be obtained via
conventiona gravimetry. With the advent of satellite altimetry, the geoidal heights over
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the oceans can be measured with a high accuracy. From these geoidal height data, the
disturbing potential outside the Earth’s surface can be evaluated via the Poisson formula,
the solution of the first spherical boundary value problem. Besides that, disturbing gravity
can also be recovered from these geoidal height data. To invert these data into the
disturbing gravity data, many methods have been proposed (Balmino et a., 1987; Zhang
and Blais, 1995; Hwang and Parsons, 1995; Olgiati et a., 1995; Sandwell and Smith,
1996; Kim, 1996; Li and Sideris, 1997). One of the methods is to employ the inverse
Hotine/Stokes formulas, which are directly derived from Poisson’s formula. Similar to
Stokes's formula, the Poisson formula and the inverse Hotine/Stokes formulas are all
spherical approximation formulas. The application of these formulas will cause an error
of the order of the Earth’s flattening. To decrease the effect of the Earth’s flattening on
these formulas, Martinec and Grafarend (1997a) gave a solution of the first ellipsoidal
boundary value problem while Wang (1999) and Sideris et al. (1999) proposed to add an
ellipsoidal correction term to the spherical disturbing gravity recovered from altimetry
data viathe inverse Hotine/Stokes formul as.

The three boundary value problems discussed above are the basic boundary value
problems. They only deal with a single type of gravity data (gravity anomalies, gravity
disturbances or geoidal heights). To deal with multi-type data at the same time, many
other geodetic BVPs, such as Bjerhammar’s problem (Bjerhammar, 1964; Bjerhammar
and Svensson, 1983; Hsu and Zhu, 1984), the mixed BVPs (Sanso and Stock, 1985;
Mainville, 1986; Y u and Wu, 1998), the overdetermined BVPs (Rummel, 1989) and the
two-boundary-value problem (Ardalan, 1999; Grafarend et al., 1999), etc., have been
proposed. Bjerhammar’s problem deals with the determination of a disturbing potential
harmonic outside a sphere, called Bjerhammar sphere, from gravity data on or outside the
Earth’'s surface. This disturbing potential can be ssmply represented by Stokes's formula
(Bjerhammar, 1964) or a single-layer potential formula (Hsu and Zhu, 1984). The model
parameters (the fictional gravity anomalies or the fictional single-layer densities) in these
representations of the disturbing potential are obtained by means of the inversion of the
gravity data. A basic question in Bjerhammar’s problem is whether the disturbing
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potential, which is harmonic outside the Earth, can be approximated by the function
harmonic outside the Bjerhammar sphere. This question is perfectly answered by Runge's
theorems in physical geodesy (Moritz, 1980): the Runge-Krarup theorem (Krarup, 1969;
Krarup, 1975) and the Keldysh-Lavrentiev theorem (Bjerhammar, 1975). Besides
Bjerhammar’s problem, the analytical continuation method for the geodetic boundary
value problems also needs the guarantee of the Runge theorems. However, the Runge
theorems only guarantee the disturbing potential can be approximated by the solution of
Bjerhammar’ s problem. The derivatives of the disturbing potential are not involved in the
theorems. Therefore the guarantee provided by the Runge theorems is not sufficient for
the theory mentioned above since the geodetic problems usually involve the first-order
derivative of the disturbing potential. It is thus valuable to give supplements to the Runge
theorems so that they involve the derivatives of the disturbing potential.

Compared to satellite gravity data, the ground gravity data have better accuracy and
resolution. They depict in detail the character of the gravity field. However, dense ground
gravity data are only available in some local areas such as Europe and North America. In
other areas and especially on the oceans, the best gravity data are those obtained from
satellite measurements, which are globally producing gravity data with higher and higher
accuracy and resolution. To solve the incomplete global coverage of accurate gravity
measurements in the determination of the geoidal heights, Stokes's formula is modified
so that the results can be evaluated from the input data in a local area (Vanicek and
Sjoberg, 1991; Soberg and Nord, 1992; Gilliland, 1994; Vanicek and Featherstone,
1998). The important character of the modified Stokes formulas is that their kernel
functions decay faster than the original Stokes function. The relationship models of the
guantities of the anomalous gravity field established by kernel functions decaying fast are
called the local relationship models (see Paul, 1991; Fel and Sideris, 1999). Another
significance of these local relationship models is that we can obtain stable solutions with
high resolution when we invert the integrals in the models. This property is very
important to determine the parameters of the anomalous gravity field with high resolution
by means of inversion of high-resolution gravity data.



0.2 Outline of thethesis

In this thesis, we will discuss some refinements of the solutions of the geodetic boundary
value problems. The following is the outline of our work:

Chapter 1 is an introduction of some basic knowledge of the Earth’s gravity field theory,
which includes the definitions of the quantities of the gravity field, basic problems of the
gravity field theory and their solutions, and some open problems.

In chapter 2, we give supplements to Runge-Krarup’s theorem and Keldysh-Lavrentiev’'s
theorem so that these two theorems involve the derivatives of the disturbing potential.

Chapter 3 discusses the ellipsoidal correction to Stokes's formula. The discussion
includes a theoretical part from which a new ellipsoidal correction formulais developed,
and anumerical test of the new ellipsoidal correction formula.

Chapter 4 discusses the ellipsoidal correctionsto the inverse Hotine/Stokes formulas.

In chapter 5, we propose several approximate methods for solving the second geodetic
boundary value problems. The work includes the generalized Hotine formula, the
ellipsoidal correction to Hotine's formula and three methods for considering the effect of
topographic massin the application of Hotine's formula.

Finally, in chapter 6, we investigate the local character of the anomalous gravity field.
Four local relationship models are established. Three of which show the loca
relationships among the disturbing potential, disturbing gravity and disturbing density.
The fourth model is a*“multi-resolution” representation of the disturbing potential, which
isageneralization of the single-layer potential solution of Bjerhammar’s problem.

Chapter 7 lists the major conclusions of this research and recommendations for further

work.



1 Theoretical Background and Open Problems

This preparatory chapter isintended mainly to introduce the basic background knowledge
of this research on the Earth’s gravity field. Sections 1 to 4 review the basic concepts of
the Earth’s gravity field, the problems of physical geodesy, the methods for determining
the Earth’s gravity field and Runge’s theorems in physical geodesy. Section 5 introduces
some open problems on the refinements needed for the determination of the Earth’'s

gravity field.

Like in most publication in the geodetic literature, this thesis is restricted to what can be
called “classical physical geodesy”: both the figure of the Earth and its gravity field are
considered independent of time.

1.1 Basic concepts of the Earth’sgravity field

To simplify the mathematics, one decomposes the Earth’s gravity field into the sum of
the normal gravity field and the anomalous gravity field. This section reviews the basic
properties of the Earth’s norma gravity field and anomalous gravity field, and the

coordinate systems related to them.

1.1.1 The Earth’sgravity potential

First of all, we give the definition of the fundamental Earth-fixed rectangular
coordinate system XY Z: the origin Ok is at the Earth’s centre of mass (the geocentre);
the Z-axis coincides with the mean axis of rotation and points to the north celestia pole;
the X-axis lies in the mean Greenwich meridian plane and is normal to the Z-axis; the Y -
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axis is normal to the XZ-plane and is directed so that the XY Z system is right-handed.
Therectangular coordinates and the spherical coordinates of a point P are denoted by

(Xp, Yp, Zp) and (r,,9,,! ), respectively.

A basic quantity that describes the Earth’s gravity field isthe gravity potential W, which
isdefined asfollows

W =V + Ve, (1.1.1)

where Vp isthe gravitational potential defined by

v, =63 Yaq (1.1.2)

- e

where t; isthe Earth’s body, |, is the distance between the computation point P and

the moving point Q, r (Q) is the mass density of the Earth a Q, G is the Newtonian

gravitational constant
G=6.672" 10" m’s%g*,
and V_, isthe potential of the centrifugal force given by

V= %WZ (XZ+YP) (1.1.3)

wherew isthe angular velocity of the Earth’ s rotation.

The gravity potential W satisfies the following relations:



_law? outside S

= , (1.1.4)
7- 4pGr +2w° insideS;

where St is the topographic surface, the visible surface of the Earth, w is the angular

velocity of the Earth and D is the Laplacian operator.

Thegravity vector gisthe gradient of W:
u

v i (1.1.5)
e

which consists of the gravitational force grad V and the centrifugal force grad Vcp.

The magnitude, or norm, of the gravity vector g isthegravity g:

g=[g[; (1.16)
the direction of g, expressed by the unit vector

n=g'g, (2.1.7)

isthedirection of thevertical, or plumb line.

Both the gravity potential W and its first order derivative g are continuous in the space R®
while the second order derivatives of W are discontinuous on the surface Se.
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The surfaces W=Const. are called equipotential surfaces or level surfaces. They are
everywhere normal to the gravity vector. A particular one Sy of these surfaces,

W(X,Y,Z)=Wo=Const.

which approximately forms an average surface of the oceans, is distinguished by calling

it the geoid.

The distance of apoint to the geoid Sy along the plumb line is the orthometric height H.

S

Figurel.1 Theorthometric height H

The natural coordinates of a point outside the geoid isthe triplet (F, L, H), where F is
the astronomic latitude defined as the angle between g and the equatoria plane and L

the astronomic longitude defined as the angle between the local meridian plane and the

mean Greenwich meridian plane.

1.1.2 Normal gravity field

The normal gravity field, afirst approximation of the actual gravity field, is generated by
an ellipsoid of revolution with its centre at the geocentre, called the reference elipsoid.
There are severa reference ellipsoids. The most widely used reference ellipsoid is the
WGS-84 dllipsoid, which is defined by the following parameters:
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Major semi-axis a.=6378137 m
Minor semi-axis be=6356752 m
Angular velocity w=7292115" 10 ™ rad s*
Theoretical gravity Potential of the reference ellipsoid
Uo=62636860.8497 m? s

Another important parameter is the first eccentricity e defined as

e= (1_ b_z)

2

N

(1.1.8)

With the four quantities &, be, W, Ug, the normal gravity potential U and the normal
gravity goutside (or on) the reference ellipsoid can be evaluated uniquely from closed

formulas. For details, please see Heiskanen and Moritz (1967) and Guan and Ning
(1981). U satisfies:

2w outsideS,

2
119
- 4pGr , +2wW° insideS, (1.19)

i

DU =i

7

where S is the surface of the reference ellipsoid and r  isthe normal density, which
can not be determined uniquely by the four parameters.

Similar to the gravity potential W, the normal gravity potential U and its first order

derivative g are continuous in the space R® while the second order derivatives of U are

discontinuous on the surface Se.

The surfaces U=Const. are called nor mal level surfaces and the direction of the normal

gravity vector g iscalled the direction of the normal vertical or the normal plumb line.

The distance h of apoint P to the reference ellipsoid is called the geodetic height.
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Figure 1.2 Thereferenceellipsoid S and the geodetic height h

The geodetic coordinates of a point is the triplet (f, | , h) where f is the geodetic
latitude defined as the angle between g and the equator plane and | is the geodetic

longitude, which equalsto L.

The telluroid S, the first approximation of the topographic surface, is defined as a
surface, the points Q of which are in one to one correspondence with the points P of the

topographic surface satisfying either
(F, L, W)e=(f, 1, U)q, (1.1.10)
or

(F,L,H)e=(f, I, h)q. (1.1.11)

The distance of apoint on S to S along the normal plumb isthe normal height H'.
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1.1.3 Anomalousgravity field
The difference between the gravity potential W and the normal gravity potential U
T=W-U, (1.1.12)

is caled the disturbing potential. It can be considered as being produced by a

disturbingdensity dr (°r - r ) asfollows:

\dr (Q)

T.=G Q (1.1.13)
lng

te
It can be proved that T satisfies the following conditions

iDl, =0 PisoutsideS,
T, =0(1/1,) r® ¥ (1.1.14)
1T anditsfirst order derivative are continuousoutsideand on S,

where the first condition is caled the harmonic condition of T, the second condition is
called the regularity condition of T and the third condition is called the continuation
condition of T.

The deflection of the vertical Q is the angle between the directions of the vertical and

the normal vertical, which isvery small.

The disturbing gravity, the difference between gravity and normal gravity, has two

different definitions: Oneisthe gravity disturbance dg defined as

dg(P) =0; - G5, (1.1.15a)
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The other isthe gravity anomaly Dg defined as

DQ(P) =0p- gQ, (1115b)
where P and Q satisfy
(F,L,H)e=(f, I, h)q. (1.1.16)

The above relation shows that if P ison the geoid, Q is on the reference ellipsoid and if P
is on the topographic surface, Q ison the telluroid.

The difference between the geoid and the reference ellipsoid can be expressed by the
geoidal height N, which is defined as the geodetic height of a point of the geoid.

Figure 1.3 Thegeoidal height N and the height anomaly z

The difference between the topographic surface and the telluroid can be expressed by the
height anomaly z, which is defined as the distance between a point P of the topographic

surface and its corresponding point Q of thetelluroid.

There exist the following approximate relations among the quantities of the anomalous
gravity field (Heiskanen and Moritz, 1967; Moritz, 1980):
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N=h-H (1L.1.17)

z=h-H (1.1.18)

dz:N-z:H*-H:%gH (1.1.19)
iN (PisonS,andQisonS

E:E:} ( _|son  an QI-SOI’I ) (1.1.20)

% U 7z (PisonS;andQisonsS)

qT

—=-d 1.1.21

T 199

—_— - —=T=- (1122)

hogth

where .”—11] means the derivative along the normal plumb line, g is the mean value of g

along the plumb line, and g isthe mean value of g along the normal plumb line. Equation

(1.1.20) is called the Bruns formula and equation (1.1.22) is called the fundamental
eguation of physical geodesy.

A spherical approximation of equation (1.1.22) isgiven as

W+ET =-Dg (1123)

where % means the derivative aong the radial vector, R isthe mean radius of the Earth

defined as

R =3/a’b, (1.1.24)
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1.2 Basic problems of physical geodesy

The main aims of physical geodesy are to determine the exterior gravity field and the
geoid. Since the normal gravity field can be directly evaluated from simple closed
formulas, the problems are converted to the determination of the disturbing potential T
and the geoidal height N or height anomaly z , which are relatively small. The input data
used are the quantities of the gravity field measured on the surface of the Earth or/and on
surfaces at airplane or satellite altitudes. Since N and z can be directly evaluated from T
by means of the Bruns formula and T satisfies (1.1.14), the basic problem of physica
geodesy can be expressed by the geodetic boundary value problems and, if needed, the
analytical continuation of the data.

For simplifying the description of the problems, we give some definitions before

continuing the discussion:

Definition 1.1 For a closed surface S in the space R®, let H(S) be the set of functions f
satisfying:

jDfs =0 PisoutsideS

i (1.2.1)
if.® O/r,) P®¥

where r,, isthe geocentric radius of P.

Definition 1.2 Let H[S] be the set of functions which belong to H(S) and have their first

derivatives continuous on and outside S.

Definition 1.3 For a fixed point O in the space R®, let H(O) be the set of functions f
satisfying:
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iDf, =0 PLO
i (1.2.2)
1fo® O(@/r,) P® ¥
Examples:
1. Forafixed Oin R?, function f, =1/1,, belongsto H(O);
2. For aclosed smooth surface Sin R®, the function
fo= q—‘ ! dQ (1.2.3)
P - . .
S 'PQ
belongs to H[S] while the function
f —q—‘ldQ+""2(1)dQ (1.2.4)
= - 2.
s'rQ sy Teg

belongsto H(S) but not to H[F];

3. According to (1.1.14), the disturbing potential T belongsto H[Sg].

1.2.1 Geodetic boundary value problems

Geodetic boundary value problems deal with the determination of the gravity potential on
and outside the Earth’s surface from the ground gravity data They can be defined
mathematically as finding the disturbing potential T satisfying:
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}TT HIS

! _ (1.2.5)
BT, =f, PisonS

where the boundary surface S is the topographic surface Sg outside which the mass
density is zero and on which the input data f, are given and B, which correspondsto f,
isazero or first order derivative operator or their combination. After a proper adjustment
for the disturbing potential T, S can be the telluroid &, the geoid S;, the reference
ellipsoid S or the mean sphere Sy, where the mean sphere Sy is a sphere centred at the
geocentre and with radius R.

According to the differences of the input data, there are various kinds of geodetic
boundary value problems. In this subsection, we will introduce some geodetic boundary
value problems that will be further investigated in the following chapters.

Thethird geodetic boundary value problem

In this problem, the input data are the gravity potential W (or the orthometric height H or
the normal height H') and the gravity g on Sg, which can be obtained via gravimetry and
leveling, the output data are the topographic surface Sg (or the geodetic heights h or the
geoidal height N) and the external gravity potential. Correspondingly, in (1.2.5), f, isthe
gravity anomaly data Dg on Sg and B is a combination of the first and zero order

derivative operators. The regularity condition of the third geodetic BVP is below

T, = L, O(ig) P® ¥ (cisaconstant) (1.2.59)

P e

This condition is stronger than the regularity condition of the disturbing potential (see
(1.1.14)). It can be satisfied when the centre of the reference ellipsoid coincides with the
geocentre (Heiskanen and Moritz, 1967). Furthermore, if the mass of the reference
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ellipsoid equals to the mass of the Earth, the constant ¢ in (1.2.5a) equals to zero
(Heiskanen and Moritz, 1967). So the regularity condition becomes

T, = O(r—13) P® ¥ (1.2.5h)
P

In the following, we suppose that T in the third geodetic BVP satisfies the regularity
condition (1.2.5b). The mathematical expression of the third geodetic BVP is as follows

iTT H[S]

:

T, =0(3) P® ¥

i P (1.2.6)
:

Rl 199, _ .

2T . =P T = py(P PisonS

iqn b th > =-Dg(P) isonS;

where .”—11] means the derivative along the normal plumb line.

Problem (1.2.6) is called Molodensky’s problem. Since the normal plumb line is not
norma to Sg, Molodensky’s problem is an obliqgue derivative problem. After
transforming the disturbing potential T, the Molodensky’ s problem can be converted into
the Stokes problem, a normal derivative problem in which the boundary surface is the
geoid.

The second boundary value problem

In this case, the input data are the topographic surface of the Earth Sg (the geodetic
heights h) and the gravity g on Sg, which can be obtained via gravimetry and GPS
measurements, the output data are the gravity potential W on Sg (or the orthometric
height H, the normal height H" or the geoidal height N) and the external gravity potential.
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Correspondingly, in (1.2.5), f, isthe gravity disturbance data dg on Sg and B is the first

order derivative operator. That is

iTT H[S]

:l:

i

+%sz-dg(P) PisonS;

(1.2.7)

When the boundary surface is the geoid, the second boundary value problem is called the
Hotine problem.

Thefirst boundary value problem

In this case, the input data are the topographic surface Sg and the gravity potential W on
Se (or the geoidal height N), the output data are the external gravity potential and the
gravity on Sg. Correspondingly, in (1.2.5), f, is the disturbing potential data To on S,
which can be obtained by leveling and GPS measurement on land or satellite altimetry
over the ocean, and B isthe identity operator. That is

FTT H[S]
i (1.2.8)
1T, =T,(P) PisonSg

The above problem is aso called Dirichlet’s problem. From the solution of above
problem, we can also obtain the gravity anomaly or gravity disturbance on Sg (thus the
gravity on Sg) viathe following formulas:

I I+
Dg(P) = T Tp + % 1h Ts (1.2.89)
dg(P) =- 1TP (1.2.8b)

Th
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The determination of the gravity anomaly/disturbance on the geoid from the disturbing
potential data on the geoid is called the inver se Stokes/Hotine problem.

1.2.2 Analytical downward continuation problems

Geodetic boundary value problems deal with data measured on the Earth’s surface. With
the advent of satellite and airborne gravity techniques, it becomes more and more
important to investigate the methods that use data at satellite and airborne atitudes to
determine the external disturbing potential. Since the input data are distributed on
surfaces above the ground, we can call this kind of problem the analytical downward
continuation problem.

The mathematical definition of the analytical downward continuation problemsis to find
afunction T satisfying:

FTT H[S]
i (1.2.9
BT, =f, PisonS,,

where S is the topographic surface of the Earth, Syaq is the surface on which the input

data are given, and B, which correspondsto f,, is a zero, first, or second order derivative

operator or their combination.

1.3 Runge' stheoremsin physical geodesy

From its definition, we know that the disturbing potential T is harmonic only outside the
Earth. Since the topographic surface is very complicated, T is a very complex function.
To simplify the representation of the disturbing potential, we consider functions which
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are harmonic outside a spherica surface that lies completely inside the Earth. Can T be
approximated by these functions? The possibility of such an approximation is guaranteed
by Runge’ s theorem.

In physical geodesy, Runge’s theorem has two forms (Moritz, 1980): the Runge-Krarup
theorem and the Keldysh-Lavrentiev theorem.

Runge-Krarup’stheorem

Any function f, harmonic and regular outside the Earth’s surface Sg, may be uniformly
approximated by functionsy , harmonic and regular outside an arbitrarily given sphere Sg

inside the Earth, in the sense that for any given small number >0, the relation

If-y [<e (1.3.1)

holds everywhere outside and on any closed surface Sy completely surrounding the
Earth’ s surface.

Figure1.4 Therelationsof the surfaces Sy, Sg and Sg in Runge’ stheorem
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Keldysh-Lavrentiev’stheorem

If the Earth’ s surface Sg is sufficiently regular (e.g. continuously differentiable), then any
function f , harmonic and regular outside S¢ and continuous outside and on Sg, may be
uniformly approximated by functions y, harmonic and regular outside an arbitrarily

given sphere Sg inside the Earth, in the sense that for any given >0, the relation

If-y [<e (1.3.2)

holds everywhere outside and on Se.

1.4 Some classical approachesfor representing the gravity
field

As we mentioned above, the determination of the gravity field of the Earth leads to the
determination of the disturbing potential function T outside and on the Earth’ s surface. In
the past, many approaches have been employed to process the different data for the
determination of the disturbing potential. According to Moritz (1980), there are
essentially two possible approaches to the determination of the gravity field: the model
approach and the operational approach. Moritz (1980) wrote: “In the model approach,
one starts from a mathematical model or from a theory and then tries to fit this model to
reality, for instance by determining the parameters of the model from observation.” In
other words, in the model approach, we should first establish, from a theory, a model
representing the disturbing potential by a set of parameters, called the model parameters,
then determine the model parameters from observation, and finally evaluate the

disturbing potential by using these parameters.
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In this section, we will introduce some classical models for representing the gravity field.
According to the difference of the model parameters, we further divide the models into

direct parameter model and indirect parameter model.

1.4.1 Direct parameter model

In these approaches, the disturbing potential T is expressed directly as an analytic
function of the observed gravity. In other words, the model parameters of the Earth’s
gravity field are the data directly measured or simply calculated from the observations.
Usually, these gravity field models are directly obtained from solving the geodetic
boundary value problems.

Stokes' sformula

The famous Stokes formula is an approximate solution of Stokes's problem (Heiskanen
and Moritz, 1967), in which the mass density outside the geoid has been set to zero, and
the gravity anomaly Dg on the geoid has aready been evaluated by means of gravity

reductions such as the remove-restore technique.

Since the geoid is approximated by the reference ellipsoid, Stokes's problem can be
expressed mathematically by the following third ellipsoidal boundary value problem:

iTT H[S,]

:

T, = O(rig) P® ¥

i P (1.4.1)
'

[l 1 ﬂgp _ ;

e T, - — 2PT =_Dg(P PisonS,

e Dg(P)
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By neglecting the flattening of the ellipsoid S, we can get the spherical approximation
solution of (1.4.1), the general Stokesformula, asfollows

= 4_ITO (‘)s(p, Q)Dg st (1.4.2

where s is the unit sphere, R is the mean radius of the Earth, and the kernel function
S(P,Q), the general Stokesfunction, isdefined as

RI 2 - Rcos
S(PQ)—Z—R R_ 3Rl R sy w(5+3in " Yeo*leoy

PQ e P P P

(1.4.3)

where 1, is the radius of the computation point P, |, is the distance between P and the

moving point Q on Sy, and y ., isthe angle between the radius of P and Q.

Let r,=R, we obtain the Stokes formula, which is the classical formula for computing

the geoidal height from the gravity anomaly, as follows

R \
p= s OY po)Dgods (1.4.49)

R N
= 1pg O o) Dids (1.4.4b)

where the Stokes function Sy ) isgiven as:

S ) =lsin 22 n 2 snt ) (145)
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Brovar’sand Moritz s solutionsfor Molodensky’s problem

In Molodensky’s problem, the gravity potential W (or the normal height H) and the

gravity vector g are given on the topographic surface. Since the topographic surface can

be approximated by the telluroid by properly linearizing, Molodensky’s problem can be
expressed mathematically by the following third boundary value problem (Moritz, 1980):

iTT H[S]

|

iT,=0(L) P® ¥

1 e (1.4.6)
:

[l 1 ﬂgp _ ;

i lp- ——— 15 =- P) Pison

{ﬂh p g, Th p Dg(P) I S

where S isthetelluroid.

There are many methods for solving Molodensky’s problem to get the formula for
computing the disturbing potential on the telluroid from the gravity anomalies on the
telluroid. Moritz (1980) introduced three term-wise equivalents in planar approximation
series solutions. Molodensky’s solution, Brovar’s solution and Moritz' solution. These
three solutions can be generally expressed as

¥
o

T=3T, (1.4.7)

n=0

where Tg is given by

_R
To= ™ 9'S(y)ngs (1.4.8)
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Here, we will give respectively the terms T, of the Brovar solution and the Moritz

solution.

Brovar’s solution is obtained by directly solving an integral equation derived from

eguation (1.4.6). Itsterms T, (n>0) can be expressed as follows:

T,= 4—F; JmS(y )ds (14.99)
R, R? ,(H - H})?
T,=—gnSly)ds- — ¢35 mgds (1.4.9b)
4p S 4p s IO
with
m, = Dg (1.4.10a)
R? H - H,
m = P on)dS (1.4.10b)
s 0
R? H - H; ,
m = 2 ol—gmds +m tan“b (1.4.10c)
s 0

where lp is the distance of the projections onto Sy of the moving point and the

computation point and b isthe terrain inclination angle at the computation point.
Moritz's solution is obtained by analytically continuing the gravity anomalies onto a

point level surface (a level surface through the computation point) and applying the
Stokes formulafor these gravity anomalies. Itsterms T, (n>0) are as follows:

T.(P) =4—F:)c‘pls(y )ds (14.113)
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T,(P) = ¢g,S(y )ds (14.11b)
ap
with
g, =Dy (1.4.129)
g, =-(H- Hp)L(9,) (1.4.12b)
9, =- (H- Hp)L[L(g,)] (1.4.12¢)

where the operator L isthe vertical derivative operator defined as

L(f):-f—P+R—2@ﬂds (1.4.12d)
R 20 A4,

Hotine sformula

The Hotine formula is an approximate solution of Hotine's problem, in which the mass
density outside the geoid has been set to zero and the gravity disturbance dg on the geoid
has already been evaluated by means of gravity reduction. Neglecting the small
difference between the geoid and the reference ellipsoid, Hotine's problem can be

expressed mathematically by the following second €llipsoidal boundary value problem:

iTT H[S,]

|
i
L= =- i

o T, =-dg(P) PisonS,

(1.4.13)

The Hotine formula, which computes the geoidal height from the gravity disturbance, is
asfollows (Hotine, 1969):
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R OH (Y so)dgods (1.4.14)

N. =
" apg

where the Hotine function H(y ,) isgivenas:

HY vo) =[siny$]'1- |n[1+(s'ny$)-1] (14.15)

| nver se Stokes/Hotine for mulas

Stokes's (Hotine's) formula is employed to evaluate the geoidal height from gravity
anomalies (gravity disturbances). However, gravity data are hard to measure directly in
ocean areas. With the advent of the satellite altimetry technique, geoidal heights can be
measured directly with a high accuracy in ocean areas. The following inverse
Stokes/Hotine formulas (Heiskanen and Moritz, 1967; Zhang,1993), which are the
approximate solutions of the inverse Stokes/Hotine problem, are employed to compute

the gravity in ocean areas from the geoidal height derived from satellite altimetry:

_Ne, g . _

Dy, =1 +4pRgv|(yPQ)(|\|P Ng)ds (1.4.16)
_ Ne. g _

dg, =- =1 +4|0R§jv|(yPQ)(|\|P Ng)ds (1.4.17)

where the M olodensky function M(y ) isgiven by

1

- 1.4.18
4Sin3(Y po/2) (1.4.18)

M(Y pg) =
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1.4.2 Indirect parameter approaches

In the direct parameter approaches, the disturbing potential can be directly computed
from the measurements. However, the measurements must be the gravity anomalies, the
gravity disturbances or the geoidal heights measured in the oceans. However, these data
are only a part of the gravity data that can be measured via the current measuring
techniques. We now have gravity gradiometer data, and gravity data measured at satellite
and airborne altitudes. The problem of processing these data is the analytical downward
continuation problem. In order to solve this problem, indirect parameter models are
proposed. In these models, the parameters are intermediate parameters other than the data
directly measured or simply calculated from the measurements, and may have no direct
physical meanings. Usually, to determine these model parameters from the observations,
one has to solve an integral equation of first kind or a normal equation. The advantage of
these approachesisthat all kinds of gravity data can be employed to determine the model
parameters. Usually, in order to simplify the model so that the integral equation or the
normal equation is simple, the disturbing potential T is supposed to be a function
harmonic outside a spherical surface that lies completely inside the Earth. The validity of
this assumption is guaranteed by Runge' s theorem.

Spherical harmonic representation

In this model, the model parameters are the set of spherical harmonic coefficients { Ciyn,
S} (Moritz, 1980). The disturbing potentia T is expressed as

¥ n n
T(r,q1)=GMQ % a P, (cosq)[C,,,cosml +S, sinml ] (1.4.19)
n=0 m=0

with
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Cnm = Cnm - Cnm; Snm = Snm - Snm (1420)

where{C,,,S,,} arethe coefficients used in the computation of the normal gravity field,

{Pam} arethe Legendre functions and M is the total mass of the Earth.

Bjerhammar’srepresentation

In this model (Bjerhammar, 1964), the model parameters are the ‘fictitious gravity
anomalies DY~ on the surface of Bjerhammar’s sphere Sg that lies completely inside the

Earth. The disturbing potential is expressed as:

T, = i—; (P, Q) Dy, ds (14.21)
where S(P,Q) isthe general Stokes function, Rg isthe radius of Sg.
‘Fictitious singlelayer density representation

The *fictitious’ single layer density representation of the disturbing potential, proposed by
Hsu and Zhu (1984), is equivalent to but simpler in form than Bjerhammar’'s
representation. In this model, the model parameters are the ‘fictitious single layer

densities r” on the surface of Bjerhammar’'s sphere Sg. The disturbing potential is

expressed as:

TP = 4_p q— r QdS (1422)
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1.5 Some open problems

In this section, we will introduce some open problems which require theoretical

refinements and will be further discussed in the following chapters.

1.5.1 Insufficiency of Runge’ stheorem in physical geodesy

In the Moritz's solution for Molodensky’s problem (section 1.4.1) and the approaches
mentioned in section 1.4.2, to employ Stokes's formula or simplify the representation of
the disturbing potential T harmonic outside the Earth, a function T, harmonic down to a
point level surface or the Bjerhammar sphere completely embedded in the Earth, is
employed as an approximation of T. The validity of the approximation is justified by
Runge’'s theorem (the Runge-Krarup theorem or the Keldysh-Lavrentiev theorem).
However, in the geodetic boundary value problems (1.2.5) and the downward
continuation problems (1.2.9), T satisfies not only the harmonicity condition (1.2.1) but

a so the boundary condition

BT, =f, (PisonS) (1.5.1)

where Sis the Earth’s surface or the surface at the satellite or airborne atitude. So there
isaneed to provethat BT is approximated simultaneously by BT on S. In other words, a
necessary condition under which the approaches mentioned in section 1.4.2 are valid is
that:

(). For any given e>0, there exists a function T, harmonic and regular outside the

Bjerhammar sphere, satisfying
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IT-T |<eand [BT-BT |<e (15.2)

everywhere outside and on the Earth’ s surface.

By solving the equations (1.2.5) and (1.2.9), wecangeta T satisfying

|BT-BT |<e (15.3)

When B is a zero-order derivative, Runge's theorem guarantees the condition (1).
However, the data usually used in physical geodesy are gravity data (and even
gradiometer data). So B must contain first or second-order derivatives. In this case, it is
hard to get (1) directly from Runge’s theorem or from the proof given in Moritz (1980).
Indeed, when the geodetic boundary vaue problems (1.2.5) or the downward
continuation problems (1.2.9) are properly-posed, it can be proved that (I) holds by
means of Runge's theorem. However, the properly-posed problem of (1.2.5) is very
complex and the problems (1.2.9) are improperly-posed. So for Moritz’s method
mentioned in section 1.4.1 and the methods mentioned in section 1.4.2, the guarantee

provided by Runge’ s theorem is not sufficient.

In chapter 2, we will give supplements to the Runge-Krarup theorem and Keldysh-
Lavrentiev theorem, respectively, so that they contain (1), thus supply a more sufficient
guarantee to the methods mentioned.



1.5.2 Ellipsoidal correction problems

Stokes's formula is a classical formula in the theory of gravity field representation. At
present, it is still the basic tool for computing the geoid from gravity anomaly data.
Rigorously, Stokes'sformulais a spherical approximation formula which holds only on a
spherical reference surface, i.e. the input data (gravity anomalies) must be given on the
sphere. However, gravity anomalies can only be observed on the Earth’s topographic
surface. These anomalies can be reduced to the geoid or to a local level surface via
orthometric (or normal) heights. For example, in a remove-restore technique, the gravity
anomalies are reduced onto alevel surface viaterrain reduction, and in Moritz's solution
(Moritz, 1980) the gravity anomalies are analytically continued to the geoid (or a point
level surface) via a Taylor series expansion. The geoid and the local level surface can be
approximated respectively by the reference ellipsoid and the local reference ellipsoid (on
which the normal potential equals the gravity potential of the local level surface). Since
the flattening of the ellipsoid is very small (about 0.003), in practica computation the
ellipsoid is treated as a sphere so that Stokes's formula can be applied on it. The error
caused from neglecting the flattening of the ellipsoid is about 0.003N. This magnitude,
amounting up to several tens of centimeters, is quite considerable now. So, it becomes
very important to evaluate the effect of the flattening on the Stokes formula. In other
words, we should investigate more rigorously the third ellipsoidal geodetic boundary
value problem (1.4.1).

Similarly, the Hotine formula and the inverse Stokes/Hotine formula are also the
spherical approximation formulas. In the application of these formulas for geodetic
purposes, ellipsoidal corrections are needed to get results with higher accuracy.

In chapters 3, 4 and 5, we will give detailed investigations on the ellipsoidal corrections
to the Stokes formula, the inverse Stokes/Hotine formula and the Hotine formula

respectively.



1.5.3 GPSleveling and the second geodetic boundary value problem

In this subsection, we will discuss the relation between GPS and the geodetic boundary
value problems.

GPSleveling problem

The impact of the Globa Positioning System (GPS) on control network surveying can
hardly be overstated. In a short span of time, differential GPS technology for horizontal
geodetic surveys has been adopted to completely replace conventional surveying
techniques. The superb length accuracy, coupled with greater efficiency and increased
productivity in the field, has revolutionized our field operations.

However, one sector of geodetic surveying has remained much the same. That is, the
vertical control surveying. GPS is a three-dimensional system, and certainly provides
height information. GPS data, whether collected and processed in a point position mode
or in a differential mode, yield three-dimensional positions. These positions are usually
expressed as Cartesian coordinates referred to the centre of the Earth. By means of a
mathematical transformation, positions expressed in Cartesian coordinates are converted
into geodetic latitude, longitude, and geodetic height. These heights are in a different
height system than orthometric heights historically obtained with geodetic leveling.
Topographic maps, not to mention the innumerable digital and analogue data sets, are
based on orthometric heights.

GPS leveling is using GPS and other geodetic techniques (other than leveling) to produce
the orthometric height so that GPS can completely replace spirit leveling. According to
(1.1.17), to relate GPS height h to orthometric height H requires a high-resolution geoidal
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height model of comparable accuracy. In other words, the key problem of GPS leveling is

to determine a high resolution and high accuracy geoid model.

Deficiency of the third geodetic boundary value problemsin GPS leveling

Stokes's and Molodensky’s formulas are the classical methods for determining high-
resolution gravimetric geoid models. The Stokes theory and the Molodensky theory solve
the third geodetic boundary value problem. They produce respectively geoida heights

and height anomalies from gravity anomaly data Dg given on the geoid and the telluroid.

The gravity anomaly Dg is defined as
Dgr =05 - O (1.5.4)

where P is on the geoid (Stokes's model) or on the topographic surface (Molodensky’s
model) and Q is the point corresponding to P on the reference ellipsoid or on the

telluroid. If Pisonthe geoid, g, (thus Dg,) is obtained from the gravity observation via

agravity reduction by employing orthometric height H

DO» = G +1?—f| H- gs- G (15.5)

where g, is the refined Bouguer correction of the gravity observation. If P is on the

topographic surface, g, (thus Dg) is computed from the normal gravity formula by

employing the normal height H™ of P

Ddr =0p - % +%H* (1.5.6)
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where g, isthe related normal gravity on the reference ellipsoid.

Therefore, to get the gravity anomaly Dg,, we should know the gravity at P and the

orthometric height H (or normal height H') at P. This means that the gravity anomalies
consist of gravity dataand leveling data.

A reason for using gravity anomalies as the input data to determine the geoidal heights
was that before the advent of GPS, the gravity anomalies were the only disturbing gravity
data that could be obtained via conventional survey techniques. The geodetic height, a
basic parameter of the Earth’s figure, was very difficult to be observed directly. Actually,
in the past, determining the geodetic heights of points on the physical surface of the Earth
was an important goal of geodesy. On the other hand, the orthometric heights can be
measured with conventional geodetic leveling. So we can obtain the gravity anomaly
data. Then from the third geodetic boundary value problem, we can obtain the geoidal
height or height anomaly. Finally, the geodetic height can be simply approximated by the
sum of the leveling height H (or H') and the geoidal height N (or z) obtained from the

third geodetic boundary value problems.

S0 in the third geodetic boundary value problem the input data are gravity data g and
leveling data H or H™ while the output data are the geoidal heights N or the height
anomalies z and the geodetic heights h (h=N+H or h=z+H"). We can call this problem the
Gravity+Leveling problem. Obvioudly, using the geoidal heights or height anomalies
obtained from the third geodetic boundary value problem to determine the orthometric
heights or normal heights will encounter alogical problem.

In the practical application of Stokes's theory or Molodensky’s theory, the orthometric
heights H and the normal heights H™ are replaced approximately by the heights obtained
from digital topography modelsin order to avoid costly leveling observations. Obviously,
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the replacement will cause an error in the gravity anomalies. According to (1.5.5) and
(1.5.6), 1 m difference between these two height data will cause about 0.3mgal error on
the gravity anomaly (the effect on the Bouguer correction is not included). In this case we
cannot obtain the gravity anomalies with accuracy better than 0.3 mgal even if we can
now obtain the gravity observations with 0.01lmgal accuracy. Furthermore, we have from

Stokes' s formula

03R Oy )|ds »4.2m (1.5.7)

R

This means that the 1m error in the orthometric heights may cause theoretically about
4.2m system error in geoidal heights. So without high accuracy leveling measurements, it
is hard to obtain the geoidal heights with accuracy comparable to the accuracy of the
geodetic heights obtained via GPS.

From the discussion above, we can conclude that it is difficult to solve the GPS leveling
problem viathe third geodetic boundary value problems.

Second geodetic boundary value problem

Now we discuss the following second geodetic boundary value problem.

iTT HI[Y
:

i
%%sz-dgp PisonS

(15.8)

where the boundary surface S is the topographic surface Sg of the Earth or the

reference ellipsoid Se. The input data dg isthe gravity disturbance defined as:
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dgp =0r- O (1.5.9)

When P is on the reference ellipsoid, dg, can be obtained by replacing H by the
geodetic height h in the equation (1.5.5). When P is on the topographic surface, dg,
can be obtained by substituting H™ by h in the equation (1.5.6). Above all, dg can be

obtained from the measurements of the gravity and the geodetic height on the
topographic surface.

S0, in the second geodetic boundary value problem, the geodetic heights h of the
points on the topographic surface, which replace the position of H in the third
geodetic boundary value problem, are needed. However, in the past it was hard to
directly measure h. This means that we could not easily obtain dg in the past. Thisis
the reason why the second geodetic boundary value problem has not been fully
investigated.

With the advent of GPS, the positions (thus the geodetic heights) of points on the
topographic surface can be obtained. With gravity measurements on the topographic
surface, we can obtain the gravity disturbances dg, another kind of disturbing
gravity. So it is very important to investigate the boundary value problem
corresponding to the gravity disturbances, the second geodetic boundary value
problem. We can aso call this problem Gravity+GPS problem.

Besides its input data being easier to obtain than the input data of the third boundary
value problem, the second geodetic boundary value problem has two other advantages
over the third geodetic boundary value problem:
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The second geodetic boundary value problem is in theory a fixed boundary
surface problem. The boundary surface is the known topographic surface
(obtained from GPS measurements). However, the third geodetic boundary value
problem is a free boundary surface problem. The boundary surfaces are the
topographic surface or the geoid, which are unknown and to be determined in the
problem. In practical applications, these surfaces are approximated respectively
by the telluroid (obtained from leveling measurements) and the reference
ellipsoid.

The boundary condition in the second geodetic boundary value problem is simpler
than the boundary condition in the third geodetic boundary value problem which
is obtained approximately vialinearization.

At present, among the geodetic height h, the orthometric height H (or the normal
height H") and the geoidal height N (or the height anomaly z), N (or z) can not be
measured directly and the measurement of H (or H') is more complicated than the
measure of h. N (or z) is a bridge between H (or H) and h. The following table 1.1

compares three basic methods of determining N (or z):

Table1.1 Comparison of the basic methods of evaluating N (or z)

Method Input Data Mathematical M odel Output Data
GPStLeveling | handH (or H) N (or z)=h-H (or H) N (or z)
: . * Stokes' smodel or
Gravity+Leveling | gandH (or H) Molodensky’ s model N (or z)
. Second geodetic boundary
Gravity+GPS gandh value problem N (or z)
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From the above table, we see that the Gravity+GPS method is the unique basic
method determining the geoidal height without leveling. It is very suitable to be used
to solve the GPS leveling problem.

Brief summary

The GPS leveling problem is proposed for replacing the conventional spirit
leveling. The key problem is to determine a high resolution and high accuracy
geoid model without using dense leveling data.

The third geodetic boundary value problem is not suitable for solving the GPS

leveling problem since it needs dense leveling data as input data.

GPS surveying provides the important input data for the second geodetic
boundary value problem, which makes the investigation and application of this
problem possible. On the other hand, the second geodetic boundary problem aso

provides the possibility for solving the GPS leveling problem.

The second geodetic boundary problem is better than the third geodetic boundary
value problem in terms of the accuracy of models and input data. The detailed
investigation theoretically and practically of the second boundary value problem
is very necessary not only for solving the GPS leveling problem but for the
determination of a high accuracy and high-resolution gravity field model.

1.5.4 Local character of the gravimetric solutions

With the advance of the gravimetric techniques, the amount of global gravity data
obtained on the Earth's surface and at aircraft or satellite altitudes is increasing, and the

accuracy and resolution of the data are improved constantly. Compared to satellite
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gravity data, the ground gravity data have better accuracy and resolution. They depict in
detail the character of the gravity field. However, dense ground gravity data can only be
obtained in some local areas such as Europe and North America. In the other areas
especially on the oceans, the best gravity data are those obtained from satellite gravity
measurements, which are globally producing gravity data with higher and higher
accuracy and resolution. So it becomes very important to utilize all these data for
determining the high-resolution gravity potential outside the Earth and for researching the
distribution of the Earth's density.

In the previous sections, we have introduced some basic models showing the
relationships between the disturbing potential and the disturbing gravity data. These
traditional models essentially involve an integral formula of the form:

Y(P) = (K(P,QX(Q)dQ (1.5.10)

where X and Y respectively represent the input and output data; s is either the Earth's
surface, or the geoid, or the surface of the Bjerhammar sphere, etc.; and the kernel
K(P,Q) satisfiesthe relationship

lim K(P,Q)/%I;é 1o, (1.5.11)

Ipg® ¥
where |, isthe distance between Pand Q, and r,, isthe radius vector of P.

Since.”irl,;(lg vanishes slowly as I, ® ¥, it follows from (1.5.11) that K(P,Q) also

P

vanishes slowly as |, ® ¥ . Therefore, we will encounter two problems in the

application of the relation (1.5.10):



1.

2.
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when computing Y from X in (1.5.10), the integral must be evaluated in alarger area,
thus making the collection of datadifficult;

when computing X from Y in (1.5.10), besides the need for data in a larger area, the
stability of the solution X declines as its resolution increases, thus restricting the
resolution of the solution X (Fei, 1994; Keller, 1995).

These two problems show that the model (1.5.10) doesn’t reflect the local character of the

input or output data. Here, the local character can be understood in that the value of

output data at some point can be determined mainly by the values of the input data in a

neighborhood of the point. From the following two examples, we can get further

understanding about the two problems.

In the Stokes formula, the basic formula for determining the exterior gravity field and
the geoid from gravity anomalies, Y and X represent the disturbing potential T and
the gravity anomaly Dg respectively, s is the geoid, and K(P,Q) is the Stokes
function S(y ). Since S(y ) decreases slowly wheny increases, the gravity data at the
points far away from the computation point still have very important effects on the
evaluation. This means that we need a globa gravity data set to compute the
disturbing potential at a single point. However, the incomplete global coverage of the
high accuracy and high-resolution ground gravity data precludes an exact evaluation
of the disturbing potential using Stokes's formula. Instead, many modified formulas
are used in practice, where only gravity datain the area around the computation point
are needed in the integration. These modifications to Stokes's formula are aso
attractive due to the increase in computational efficiency that is offered by working
with a smaller integration area. One of the modified Stokes formulas is the
generalized Stokes scheme for geoid computation proposed by Vanieek and Sjoberg
(1991). In this scheme, the low-frequency information of the gravity field, which can
be computed from a global geopotential model, is considered in the computation of
the normal gravity field model so that the disturbing gravity field (T and Dg™) does
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not contain the low frequency information. The modified Stokes formulais written as

™ =45pc‘53“” (y)Dg"ds (15.12)
where SV (y ), the modified Stokes kernel function, has the series expansion
Mooy § 2n+1 3 2n+1
S'y)=Sly)- a fan(cosy) =a o P (cosy) (1.5.13)

n=2 n=M+1

From table 1.2 showing the behaviours of kernel functions S and S¥, we see that S¥
decreases faster than S when y increases, which guarantees the integration (1.5.12)
can be done by using the gravity anomalies in a loca area surrounding the
computation point. It can be said that the modified Stokes formula (1.5.12) shows
more local relationship between the disturbing potential and the gravity anomalies

than Stokes'sformula (1.4.44).

Table 1.2 Behaviour of the Stokes function and
the modified Stokes function (M=360)

y ° 18"y %)/ s705)| | ISty )s05)] |y ° | 1"y O/ S*(05) | ISy °)/S(05)]
051 1 5.5 | 2.3229784E-02 | 0.1056424206
1.0 | 0.3436138195 0.5166225365 | 6.0 | 2.0149055E-02 | 9.7206253E-02
1.5 | 0.1824867893 0.3532196332 | 6.5 | 1.7660911E-02 | 8.9963646E-02
2.0 | 0.1162550062 0.2703797466 | 7.0 | 1.5618097E-02 | 8.3664776E-02
2.5 | 8.1841479E-02 | 0.2199814108 | 7.5 | 0.0139171792 7.8125693E-02
3.0 | 6.1363823E-02 | 0.1859101097 | 8.0 | 0.0124836118 | 7.3207879E-02
3.5 | 0.0480484992 0.1612288120 | 8.5 | 1.1262468E-02 | 6.8804986E-02
4.0 | 3.8830902E-02 | 0.1424538348 | 9.0 | 1.0212487E-02 | 0.0648339704
4.5 | 32145647E-02 | 01276414551 | 9.5 | 9.3021389E-03 | 6.1229013E-02
5.0 | 0.0271191438 0.1156204690 | 10 | 8.5069642E-03 | 5.7937256E-02
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Now we discuss the problem of determining the model parameters of the *fictitious’
single layer density representation of the disturbing potential: determining r~ from

the known gravity disturbances on or above the physical surface of the Earth.
According to (1.4.22), the relation between the two kinds of datais asfollows:

dg, = i) g (Q)l (- i)dS (Pison or above Sg) (1.5.14)

ap o RILE P

Since Sg is completely inside Sg, the equation (1.5.14) is an integral equation of the
first kind, which is improperly posed. In practice, we divide Sg into many blocks
according to the resolution of the gravity data and suppose that r ~ is constant in each
block. Then the unknown function r”~ becomes a vector {r ";} with finite dimension
and can be estimated by the least squares technique from the known gravity data. In
more detail, we divide S; into a set of grid elements {S} by meridians and parallels.
The size of the grid elements is chosen according to the resolution of the data. Thus
equation (1.5.14) becomes

é r *iAip = dgp (1515)
with
A, =-(1yps (15.16)
Mrs g

where Q; isapoint in S and DS is the area of S.. From (1.5.15), we can estimate
{r"i} from{dg,} by the least squares technique. When the size of the grid elements

{S} issmall, however, Aip decreases slowly since .”irl,;(lg decreases slowly when the

P

distance between P and S increases. Thus, the coefficient matrix of the norma
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eguations is strongly correlated. This makes the least square solution unstable (see
Fei, 1994; Keller, 1995). So from the ‘fictitious’ single layer density model (1.4.22),
we can not obtain a stable high-resolution solution of the model parameters even if

we have high-resolution gravity data on the topographic surface.

From the discussion above, we see that the establishment of the local relationships
between the input data and the output data via fast decreasing kernel functions are very
important for solving the incomplete global coverage of accurate gravity measurements
and obtaining a stable high resolution solution of the gravity field model. In detail, the
local relationship has two significances: one is that we can evaluate with a high accuracy
the integrals in the models by using mainly high-accuracy and high-resolution datain a
local area; the other is that we can get a stable solution with high resolution when we
invert the integrals in the models because of the rapid decrease of the kernel function of
the integrals. In chapter 5 and 6, we will give more detailed investigations on the local
relationships.



46

2 Supplementsto Runge's Theoremsin Physical
Geodesy

In physical geodesy, the approximations of the Earth's gravity field by means of
Bjerhammar's representations and spherical harmonics series etc. all need the guarantee
of Runge's theorem. Runge’s theorem has two forms in physical geodesy: the Runge-
Krarup theorem and Keldysh-Lavrentiev theorem. They guarantee that the disturbing
potential T given in the approximating theories of physical geodesy can approximate
arbitrarily well the actual disturbing potential T. They do not, however, dea with the
problem of the radial derivative of T and T . The data usually used are the first-order and
second-order radia derivative of T, i.e. gravity data and gradiometer data. We need to
know whether the derivatives of T can also approximate the derivatives of T
simultaneoudly. In this sense, the guarantee of Runge's theorem for the approximation
theories concerned is not sufficient. In this chapter, we will prove that for a given non-
negative integer n and an arbitrary small positive constant e, there exist T so that the k-
order (O£ k £ n) radia derivatives of the difference between T and T are less than e
everywhere on and outside the Earth’s surface (in this case, n=1) or a smooth surface S
completely surrounding Se. The Runge-Krarup theorem and Keldysh-Lavrentiev theorem
(where k=0) are obviously special cases of the generalized theorems.

2.1 Preparations

In this subsection, we give some notations and some lemmas for the proofs of our final

conclusions.
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Definition 2.1 For aclosed surface Sin space R?, let

i(S) °{P: Pisinside S}, 1(S) °{P:Pisinsdeor on S},
eS) °{P:. PisoutsideS}, E(S) °{P:PisoutsideoronS}.

Definition 2.2 For a given point O in space R®, a closed surface S is called a star-
shaped surface about O if O is inside S and there is only one intersection Q
between S and the line OQ for every Q on S. The set of al the star-shaped
surfaces about O is denoted by A (O). i.e.

A(O) © {S: Sisastar surfaceabout O} .

Example of star-shaped surface: In the following figure, the surface S is a star-shaped
surface about O, but is not a star-shaped surface about O;.

Q i

Figure2.1 An example of star-shaped surface

Definition 2.3 For a given closed surface S, A(S) is defined as the set of al the closed

smooth surfaces completely surrounding S, i.e.

A(S) ° {S: S isaclosed smooth surface completely surrounding S}.
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Definition 2.4 Suppose that S is a closed surface, N is a non-negative integer, A is the
space formed by al n-order (n £ N) differentiable functions in E(S). Then the

norm | ||2 inthe space A is defined as follows:

1= e s o
S T h=oN PTE(g ve
Vpl Vp

f(P) (fT A) (2.1.1)

where Vp isthe set of al the directions which pass through P.

Lemma 2.1. Suppose that Sis a closed surface, O isin i(S) and S, 1 A(O) C A(S). For

any given point Qp on Sy, take a point Q; on the line OQg such that

d,/2 (21.2)

oQ T 'oQ C

where

d, =inf{l, :P1 S,,Q1 S} (2.1.3)

So

Figure2.2 Therelation among S, S; and S
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Then the surface S; composed by all Q; satisfies (see figure 2.2):

(i) ST AO)CA®S,
(i) deinf{le:PT E(S,), QT 1(S)}>0,

(i) S, T A®S).

Proof: (a). Since Syl A(S), we know from (2.1.2) and (2.1.3) that S; is a closed smooth
surface and dp>0. From (2.1.3), we know that for any given point Q on or inside S and a
point Pon S, 1, 2 d,. So from (2.1.2), we know that S, completely surrounds S. Thus
S, T A(S). Now we provethat S T A(O). That is to prove that for any given point P on

S;, only Pison line OP and S;. If it is not true, then there must exist another point Q on
line OP and S; such that

oo * lop (2.1.9)
So from the definition of S;, we know that there exist two points P and Q' on S and
line OP' satisfying

log =loo +0e/2,  lgp =lop+dy/2

oQ
From (2.1.4), we see that P and Q' are not the same point. This is contrary to

S,T A(0).So ST A(O) and (i) holds.

(b). Since S; and S are closed surfaces, if d=0, then there must exist an intersection P of
S; and S. Consider P as the point on S; then from the definition of S;, we know that
thereexistsapoint P, on S; and theline OP suchthat P, * P. Since P isalso on Sy, there



50
exist two different points P, and P on line OP and S;. This is contrary to S, 1 A(O). So
(i) holds.

(c). (iii) can be obtained directly from (ii) and (2.1.2)#

Lemma 2.2. Suppose that S, T A(O) C A(S) and there exist three real positive numbers
a, b and c satisfying

loo- b |
O<sup-2—fcfinf —2—<1 (2.1.5)
dslgg+a Ay +a

For every point Q; on Sy, take aset of points{Q, ,Q,},.; ontheline OQ; so that

log =looC¥t+(k-Dckta; 1. =1

oQ. ~ 'oQ 0Q, 0oQ¢ c (216)

For afixed k, let S, and S, bethe surfaces formed by al Q, and Q, , respectively. Then

O 2

Figure 2.3 Relationsamong Sc and S,

). Qi) adl g <a+b (k3 1):

(ii). S, isaclosed surface containing O and
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inf 1gg >0; (2.1.7)

r°
(ii). ST A(S.,) where §,° S;

(iv). Let Sg be the spherical surface with O as its centre and ry (° %iQ?';IOQ) as its

radius. Then there exists an integer msuchthat S, 1 A(S,).
Proof: (1). From (2.1.6) and the right hand side of (2.1.5), we obtain

I log, =log, <t + (k- D a= (g +a)CK +(k- 2)c“*a

oq<0QK‘

<o €% (k- 2 Pa=ly, <o <l (2.1.8)

oQ 0oQ,

This means that Q, and Q, are on the line OQ;. So from S 1 A(O), we obtain

Q.1 i(S,). Furthermore, from the left side of (2.1.5), we have

1- c£2*P (2.1.9)
IOQ1+a
It follows that
| =1 (1-o £l 2P aip 21.10
05 =log (- ©) Elog = <a+b. (2.1.10
oQ
So (i) holds.

(2). Since O isaninner point of S, érin;lle > 0. It follows from (2.1.6) and the definition

of S, that (ii) holds.
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(3). It is easy to see from the definition of S, that S, is a closed smooth surface
containing O as an inner point. Now we prove that every Q, , isinside S,. If thisis not
true, then there existsa Q,, which ison or outside S, . Since O isinside S, , thereis an

intersection Q of S, and theline OQ, ,. That is

log £ log, (2.1.11)

However, from the definitionsof S, and S,_;, we know that there exists Q' on S, such

that

log = logC " + (k- 1)c*a (2.1.12)

oQ

Q. —

o€+ (k- 2ca (2.1.13)

Thisiscontrary to (2.1.11). So (iii) holds.

(4). From (2.1.6) and noting that c<1 and S, is bounded, it is easy to prove that there

exists an integer m such that

sup | = <rg (2.1.149)

It follows that (iv) holds#

Lemma 2.3. Suppose that S is a closed surface and SI A(S). Then for any given

T1 H(S), there exist two bounded function X and Y on S such that
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T(P) = &ﬂds - Y(Q) (—)dS (PT e9) (2.1.15)
PQ

Ny

where n,, is the outer direction of the normal of S at Q. Furthermore, if Sis a spherical

surface, then there exists a bounded function Z on S such that

T(P) = o@ds (PT e(9) (2.1.16)
Proof: Since TT H(S) and ST A(S), T and %T are continuous on S, thus bounded.
Q
For QT S, let
1
= ——T Y =7 2.1.17
X(Q = 20 T, Q) Q) 2p Q ( )

Then from Green’sformula

T(P) = 1 qi— (Q)YS, - — OT(Q) — (—)dS (2.1.18)

4p g Tng g leq
we see that (2.1.15) holds.

If Sisaspherical surface, then

(2.1.19)
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where O' and R are respectively the centre and the radius of S. According to (1-89) in
Heiskanen and Moritz (1967), we have

T(P)——p T(Q)Lds (PT €9) (2.1.20)

Multiplying (2.1.20) by -¥2 and adding the product to (2.1.8), we obtain from (2.1.19) that
1. 1.1

> ( P)=— d T(Q +T(Q - 51-—dS, (2.1.21)
4p g 2R g

Let

Z(Q)‘[—T(Q) TQ 2] (21.22)
No 2R 2p

then (2.1.16) holds#

Lemma2.4. Let P,(t) ben-degree Legendre polynomial. Then for |t| £1
(). [P £1;
(i) [P (®)[£n?;

(iii). £n*,

Proof: (1). (i) was stated in section 1.3 of Moritz (1990).

(2). From (1-86) of the appendix of Guan and Ling (1981), we havethat for n3 1,

P..(t)- P,(t) =(2n+DP,(t) (2.1.23)



Noting that
R(=L R(M1=0 RM=t R()=1 (2.1.24)

we obtain that

P ®| =R+ AP0 Pz'k.l(t)]‘ EL+ A k) D@+D E@+)? (2129

k=1

P (0] = P (1) +én_ [Py (1) P z(t)]‘ £ a 4k =2(n +1)n £ (2n)? (2.1.26)

This meansthat (ii) holds.
(3). From (2.1.23), we obtain
P.M)-P. (1) =(2n+DP, (t)
Then from the proof of (ii), we know that (iii) holds#

Lemma 2.5. Let O, P and Q be the three points in R%; vp and vo be the two directions

through P and Q, respectively. For a constant ¢ (0<c<1), take a point Q on the line OQ

such that

log = Clog (2.1.27)
Then
@i). %IOQ £1
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N 1 1 T 1

). —|—£1; —|—£l; — — | -|EN

(i) IV PQ "ﬂVp PQ e v PQ PQ

)| | LT 2

where
toge = cosBPQQ (2.1.28)
N g 1,1 (2.1.29)

ls o

Proof: From the definition of the derivative and the knowledge of triangle functions, it

can be proved that for any given two points P, and Py in space and two directions v, and

v, respectively through Po and P; (seefigure 2.4),

P.

Po

Figure2.4 Thedirections v, and v

®
iIPP =cos(R,P,Vv;) (2.1.30)
T[Vpl 0'1 1
)l ¥ 1
cos(RP, V) £ — (2.1.31)
T[VPO i IPOPl

®
Takeapoint P inthedirection OP (seefigure 2.5) such that
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(2.1.32)

lop = Clop

and let Vs be the direction through Q and parallel to vo. Then from (2.1.27) we obtain

g =Clog a1d COSPQ,V.) = coS(PQ, ;) (2.1.33)

Figure2.5 Therelationsbetween PandP, and v, andv6

It follows from (2.1.30) and (2.1.31) that

lIOQ = cos(CS@Q,vQ) (2.1.34)
Va

T lop = cos(gP, Vp) (2.1.35)
P

1 > s

'HT IP5 =ccos(P' Q,v,) =ccos(PQ, V6) (2.1.36)
Q

q ®

TPIP6 =ccos(QP,v;) (2.1.37)
T, |- 50 c

‘HTPMI@ _“HVP [ccos(PQ,va)] £ |p5 (2.1.38)

Therefore (i) and (ii) hold. Furthermore, from the definition of t we have

PQQ’



|2

t _lor~ Clag - I (2.1.39)
PQ -
2 ool

Finally from (2.1.34-38) and noting that

V,=0 1 _=o0 ll|OQ:0 (2.1.40)

R VAL R vt VA

we see that (jii) hol ds#

2.2 Supplement to Runge-Krarup’stheorem

In this section, we will give a supplement to Runge-Krarup’s theorem. This is expressed

asthe following theorems.

Theorem 2.1 Let T, Og and Sg be the disturbing potential, the centre and the surface of
the Earth, respectively. Then for an arbitrary surface S,1 A(O.) G A(S;), an arbitrary

point O inside Sy, an arbitrary non-negative integer N and an arbitrary real number >0,

thereexists T1 H(O) satisfying

Figure 2.6 Therelationsbetween S, Sp, O and O
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[T-7|; <e (22.1)

This theorem shows that for any positive integer N, the n-degree (0 £ n £ N ) derivatives
of the disturbing potential T can be approximated on and outside a smooth star-shaped
surface Sp completely surrounding the Earth’s surface by the n-degree derivatives of a
function T which is harmonic everywhere except an inner point of So. Obviously, this
gives a supplement to Runge-Krarup’s theorem so that the derivatives of the disturbing
potential are included. The following is a proof of the theorem.

Proof: Here we only prove the theorem in the case that N=1. For N>1, the proof is
similar. Our proof consists of two steps.

Step 1: we will provethat there exists T, 1T H(O.) satisfying

e

IT- Tof, < > (2.2.2)

From Lemma 2.1, we know that for Sg, S and Og, there exists a surface S; satisfying the

conditions:

ST AOL)CA(S,) and S,T A(S) (2.2.3)
doinf{l,: Pl E(S,), QT I(S)} >0 (2.2.4)

Since S; isaclosed surface containing Ok, the centre of the Earth, asits interior point, the

radius r,, of the pointson S, satisfy

O <inf ry £sUpry < +¥ (2.2.5)
As * ds



Take a, b satisfying

_d .
O<b< mln(E : |qn£l o) (2.2.6)
d binf r,
O<a< mln(—- b9 ° ) (2.2.7)
supr,
as
Let
c=1- _2¥b (2.2.8)
supr, +a
ds

- b i f'o
O<sup EcEinf <1 (2.2.9)
QTQI’Q+a Q|31I’Q+a
d
a+b< 2 (2.2.10)

So according to Lemma 2.2, for S, a, b and ¢ given above, we can take a set of surfaces

{Sk : §K}rk":1 containing Ok as their inner point, and a spherical surface Sg with centre at Og
and radius r; (= %glfg ry) SO that they satisfy the conditions (i-iv) of Lemma 2.2. Since

TT H(e(S)), ST AS:) and S,T A(S), it follows from Lemma 2.3 that there exist

bounded functions X; and Y ; and a positive constant M such that

T(P) = o>@d8lQ Y (Q) — (—)dSlQ (PT ES,)) (22.11)



For any given Q,1 S, takea Q, on line OQ, such that

and

From (2.2.4) and (2.2.10), we know that for PT E(S,),

Thus

OX(Q)dS,, + QY (Q)dS,, <M,
s s

PQ

3d’

| QAQ
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(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)
(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)
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So according to Lemma 2.4, Lemma 2.5 and equation (1-81) of Heiskanen and Moritz
(1967), we obtain that for PT E(S,) and Q,T S

So the above four

followsthat for e, =

T 1

1
PJ‘ a, (ﬂﬁl“’n tiso,) Ea( 3N, < +¥ (2.2.21)
a PQl
% Q1Q1 éé 1 n 2 2
ﬂT(_) aoﬂ—[IM Pultigo )l £ ()" 2An+1)7N; <+ (22.22)
Q 'PQ n= Q PO, n=
—(—) g—[QlQlP( = )] £é(£)“2(n+1)2N2<+¥ (2.2.23)
ﬂvp PO, n—Oﬂ o In+i. n\"PQQ, 20 2 1 e
1T qup £§ Lyngn+1)N° <+¥
ﬂvp g | (p_q) "‘.loﬂ 2T, 12 (e )] 8 ) AN+, (2.2.29

series are absolutely convergent when PT E(S,) and QT S. It

& , there exists a positive integer n; such that
2(m+DM,

SV R N L LA

H E(Sp) ﬂV:: ﬂn{g Ile ﬂvp ﬂnQ n=0
QIS

)- [Inﬂ-n(tm)]ﬁel (For Q,1'8) (2225

wherei, j=0or 1. For Q,1 S and Pt Q, let

n

B
fio (P) = I‘iﬁ‘ P.(teso,) (2.2.26)
n=0 'pQ,
It can be proved that

fio T H@Q,)

(2.2.27)



Furthermorefor PT S, let

T

T.(P) = (Qu)f 1o, (P)IS, - OY(Ql)ﬁ[lel(P)]dSQ (2.2.28)
S S 1
Then
T,T H(S) (2.2.29)
and
1 TP
IT- T, =max sup |- f1o (P)IX,(Q))dQ,
=01 HAE(SU)S Vp Ile

P I
Oy g i~ e (PIM(Q)90,
p _ e
<e[ S(ljxl(Ql)ldQ1 + 9Y1(Q1)|dQ1] EeM, =5 s (2.2.30)

For S,T A(S), repeating the above work by replacing S¢, S;, S and Thy S, S, S,

and T, respectively, we can obtaina T,T H(S,) such that

1 e
T - Tl <o—— 2231
Furthermore, for each k (1£ k £ m), thereexistsa T, I H(S,) such that
M- Te <o (T,0T) (2.2.32)
k-1 k S 2(m+1) 0



Sofor T, T H(S,), wehave

1 _¢8 1 me
IT- Tal <21||Tk_1 - Tels, “Am+D (2.2.33)

From S;1 A(S,) and Lemma2.3, we know that there exists a function Z(Q) on Sg and a

positive constant Ng such that

T.(P) = (‘)@dsmQ (PT ES,)) (2.2.34)
Sy PQ

OZ(QdS,o <Ny (2.2.35)

S

According to the definitions of Sg and S, we know that

1.
o =Irg = 2 |Q rln; o (Qon Sp) (2.2.36)
rp 3 |ern; ry +d (PT ES,)) (2.2.37)

Sofor Pl E(S) and Q on S,

1.

—inf r,
r s Q
fop 20 ° 1 (2.2.39)
e infro+d 2

Qs

Let t =cosDPOQ and note that ri< % we have from Lemma 2.4 and (2.1.30) and
P

(2.1.31) that



So there exists a positive integer n, such that

e
Sy —P __°
SIE\S(/?O) ﬂVP ( PQ) ﬂVP n-O[( T Mo ( )]‘ 2(m+1)Ng
For Pt O, let
feo(P) = a [( )" P (0] (Qison Sg)

0 fp Tp

Tg(P) = (\)Z(Q)f BQ (P)dSBQ

Obvioudly, T, T H(O.), and from (2.2.34-35) and (2.2.41-43) we obtain

1 e _ e

I - Tells <5 Ng =
S 2(m+1Ng 2(m+1)

m

Thusfrom (2.2.33)

Il 8 oy P(t)ﬁa(1)1<+¥

PQ n=0 'p P n=0

PR - oy 1 1
ﬂVP(PQ) 9Oﬂvp[(P) rPP(t)]fﬁa()(nﬂ) ! ey

1 em e
o +

o EIT- Tl #IT, - T

Thus we have finished the work of thefirst step.

s S2m+1)  2Am+1)
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(2.2.39)

(2.2.40)

(2.2.41)

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)
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Step 2: Inthe following, we will prove the conclusion of the theorem 2.1.

Since O isinside S and S;T A(O.), we know that there is no intersection between S

andtheline O_O . That is
d, ° inf{l, : Pl S, Qisontheline0_0} >0 (2.2.46)
Draw two closed surfaces S and S' satisfying respectively the following conditions:

Q1 S if andonlyif inf{l,,:QisonthelineO_0} =d, /2 (2.2.47)

Q1 s if andonlyif inf{l,, :QisonthelineO_0} =d, /4 (2.2.48)

Obvioudly, S and S' are smooth surfaces surrounding completely the line OE6 and

being surrounded completely by S, and

St A(S))CA(O) (2.2.49)
Since T, 1 H(O.) and Ot isinside S', we have

T, T H(S) (2.2.50)
Repesting the work done in the first step by using S', S, Tg and O to replace
respectively Sg, So, T and Og, and noting (2.2.49) and (2.2.50), we can see that there

exists T1 H(O) satisfying

- Tl <5 (2251)
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Since S isinside S, it follows from (2.1.1) that
—1 —l e
[To- T, £]Ts- Tl < > (22.52)
Therefore we obtain from (2.2.45) that

1

IT- T||; E[T- Tols +[Te - T||; <e (2.2.53)

Thus we have finished the proof of the theorem 2.1#

2.3 Supplement to the Keldysh-L avrentiev theorem

In the above section, we gave a supplement to the Runge-Krarup theorem so that it is also
valid for the derivatives of the disturbing potential. Now we will give a supplement to the
Keldysh-Lavrentiev theorem. Thisis expressed as the following theorem 2.2.

Theorem 2.2. Let T, O and Sg be the disturbing potential, the centre and the surface of
the Earth, respectively. If Se is smooth and S.T A(O.), then for an arbitrary point O

inside Se and an arbitrary real number €>0, there exists T1 H(O) satisfying;
=1
|T- T||SE <e (2.3.1)

This theorem shows that the n-degree (n=0,1) derivatives of the disturbing potential T can
be approximated on and outside the Earth’s surface S by the n-degree derivatives of a

function T which is harmonic outside an inner point of Sg if Sg is a smooth star-shaped
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surface. In this theorem, the degree of the derivative is less than 2. This is because the
second (or higher) degree derivatives of the disturbing potential are not continuous on the
Earth’s surface. Obvioudly, it gives a supplement to Keldysh-Lavrentiev’'s theorem so
that the first order derivatives of the disturbing potential are included. The following is a

proof of the theorem.

Proof: According to (1.1.13), the disturbing potential can be expressed as

T(P) = G(‘)dr(—Q)d (2.3.2)

t
t IPQ

wheret isthe space surrounded by Sg, dr is the disturbing density function of the Earth

and G isthe Newton gravitation constant.

Let
r .. =max{r(Q):Qfl t}, (2.3.3)
Foa = Max{r, :QT S}, (2.3.4)
and
d, = min{1, 3 (235)
’ BOG g (o +1) -
d, =(d,)’ (2.3.6)

For every Q (ry,dq,l o) on Sg, take a point Q (ra,qQ,I o) satisfying the following

condition (seefigure 2.7)

s =Mo" d, (2.3.7)
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Figure2.7 Therelation between Sz and S

Obviously, since ST A(O.), the surface S formed by all points Q is completely
surrounded by Se. Thus S.1 A(S). Let t, be the space surrounded by S and

t,=t-t,. Thenthevolumeof t, isasfollows:

; - rd
V(t,) = ¢ty = szd’ff r’drdcosqdl o = 5pd’ Q 3 2 dcosgedl
t, Q
20 oo [To - T5l[rg +Tolg + 131
=Q Q 3 dcosqydl 4
\2p \p 2 2
£ QQ d,redcosadl =4pr..d, (2.3.8)

For an arbitrary given point P on or outside S¢ (PT E(S;)), draw a sphere t, with the
centreat Pand aradiusof ds. Let t, =t, Ct,. Then from (2.3.2), we have for any given

vl V, that
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T(P) = GOQdHG rl(—Q)dt+Gor(—Q)dt (2.3.9)
t;-t, PQ

T rm=6a0- L L6 are it RIFES
'HTPT(P) —Gt?“ Q v, [IPQ]Olt +Gt192 r(Q) v, [IPQ]Olt +G£§ (Q v, [IPQ]OIt (2.3.10)

Let

T,(P) = Goﬂdt (2.3.11)

Then from (2.3.9) and (2.3.10) and noting (2.1.30), we obtain that

T(P) - T(PE£G r(Q)dt +G4@dt £Gr —dt + q—dt} (2.3.12)
ty-t, IPQ t, IPQ t1 t2 t, PQ
Ty Lrpe r(Q)—[—]dt + Gy Q[
fiv P fiv P t1 fiv P t, ﬂVP PQ
Gr —dt + &y5-dt} (2.3.13)
O, 9;
From the definition of t, , we know that
lo® d; for QT t, - t, (2.3.14)
It follows from (2.3.6) and (2.3.8) that
2 d 2 2
o) —dt £d— Ot Ed—V(tl) g APlrads d = 4pr?, d: (2.3.15)
tl t2 PQ 3t1 2 3
2
o ITdt £ ? e V(tl) £ 4prd—d = 4pr2. d, (2.3.16)

tl t2 3 tl 2 3



Since t, | t,,wehave

q—d\ t £ q—d\ t Q\Zp Q\pQ\d3 I’Zdrd COSC{Z" 2pd2
= = 3
t, PQ tp PQ

N 1 £ N 1 t 2P (P U 1 I’Z r |
3
t(Jg dt t(jé d QAQ 2 drdcoscd ipd

r

= |k

So from (2.3.12) and (2.3.13), we have

T(P) - To(P)| £Gr ,[4pr2,d5 +2pd;]
T 1m)- V1Pl £ 6r o l4pr2,d, +4pds)
Ve \Y%

P

It follows from (2.3.5) that

T - TO||1SE £Gr . [4pr2,d, +4pd,] < g
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(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

From the definition (2.3.11) of To, we know that T,T H(S) . Substituting respectively T,

S, So,Nandeby To, S, S, 1 and g in the theorem 2.1, we see that, for the O inside

S, thereexists T1 H(O) satisfying

e

- <2

1
Se
It follows from (2.3.21) that
IT- 7l <e
S

Thus we have finished the proof of the theorem#

(2.3.22)

(2.3.23)
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2.4 Discussion

In the preceding sections, we gave two theorems (Theorem 2.1 and Theorem 2.2), which
deal with not only the disturbing potential but also with its derivatives. In the following,
we will discuss the conditions in the theorems and give an example on how the theorems
are applied.

2.4.1 Conditionsin thetheorems

In these two theorems, the smooth star-shaped surface (see the definition 2.2) plays a
very important role. In theorem 2.2, the Earth’s surface Se is supposed to be a smooth
star-shaped surface about the Earth’s centre Og. In theorem 2.1, the surface S, on and
outside which the disturbing potential T or its up to n-degree derivatives are
approximated, is supposed to be a smooth star-shaped surface about Og. In other words,
St (or S) should be smooth, and for a point Q on Se (or ), al the other points on the
line OeQ are inside Sg (or S). For physical geodesy purposes, it is acceptable to adjust
dightly the figure of the Earth so that its surface is a star-shaped surface about the
geocentre. In fact, in the application of physical geodesy theories, the surface St is
supposed to be a plane, a spherical surface or a smooth fitting surface. Therefore, we will
aways suppose that the Earth’s surface Sg is a smooth star-shaped surface about the
geocentre. In this case, the condition of theorem 2.2 is satisfied and the surface S in the
theorem 2.1 can be taken as close to S as we want. Furthermore, we can merge the two
theoremsinto the following theorem:

Theorem 2.3. For apoint O inside Sg, an arbitrary given positive integer N, a star-

shaped surface Sp completely surrounding Sg and an arbitrary positive e, there exists a

function T , harmonic everywhere except O, such that

[T-T|; <e and |T-T| <e (24.1)
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2.4.2 An application in Moritz' s solution for Molodensky’s problem

In the following, we will give an example to show how theorem 2.3 is applied to the
solution of the geodetic BVP.

As we know Molodensky’s problem deas with the determination of the disturbing
potential from gravity anomalies on the surface of the Earth. Unlike a level surface,
which can be approximated by an ellipsoidal surface, the Earth’s surface is very complex.
Stokes's formula can not be applied to the gravity anomalies on that surface. Therefore,
Moritz (1980) proposed the analytical continuation method, in which the disturbing
potential T and the gravity anomaly Dg are analytically continued from Sg onto a point

level surface Sp (see figure 2.8).

Figure 2.8 Thetopographic surface Sg and the point level surface Sp

According to our theorems, for an arbitrarily small positive constant e, an arbitrarily
large positive integer N and a surface S sufficiently close to Sg, there exists afunction T
satisfying that
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1. T1 H(O)

2. [Ty- Ty|<e (for Q on or outside S)

3. |Pg, - Dgy|<e (for Q on or outside Sg)
1?anQ-%D§Q<e (for OEn£ N and Q on or outside Sy)
z z

From the conditions 3 and 4, when the distance zg of a point Q on Sg to Sp is small

enough, Dg on S, has the following relations with Dg on Sg:

DgQ_ » UQ_ (DgQ'p) » UQ_ (DQQ_P) (2.4.2)
DgQ+ » DﬁQ+ » UQ+ (DQQ;) (24.3)

where U is the continuation operator (see Moritz, 1980)

=

TR
Uo=a z¢
Q Q
nmo N Izg

with z, =H, - H, (24.49)

Here, the first relation of (2.4.2) and the second relation of (2.4.3) are obtained from a
Taylor expansion, the second relation of (2.4.2) is guaranteed by condition 4 and the first
relation of (2.4.3) is guaranteed by condition 3.

After we get Dg from Dg by resolving (2.4.2) and (2.4.3), we can use Dg in the Stokes
formulato get T, since T satisfies the condition 1 and S is a level surface. Finaly,

from the condition 2, we know that T, equals approximately to Tp.
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2.5 Chapter summary

In this chapter, we proved theorem 2.1 and theorem 2.2 as supplements to the Runge-
Krarup theorem and the Keldysh-Lavrentiev theorem, respectively, so that they are valid
for the derivatives of the disturbing potential aswell as the disturbing potential itself.

The conditions about the Earth’s surface in our theorems, which are a little bit different
than those in the Runge-Krarup theorem and the Keldysh-Lavrentiev theorem, are
acceptable for geodesy purposes.

Besides Moritz's analytical continuation method for Molodensky’s theory, the indirect
parameter approaches introduced in subsection 1.4.2 all need the guarantee of theorem
2.1 or theorem 2.2 when they deal with gravity or gravity gradiometer data.
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3 A New Method for Computing the Ellipsoidal
Correction for Stokes' s Formula

In this chapter, we will discuss the ellipsoidal correction problem for Stokes's formula

and derive a new solution.

Stokes's formula, an approximate solution of the Stokes problem, has been playing a key
role in the determination of the geoid from gravity anomaly data. Rigorously, Stokes's
problem is a geoidal boundary value problem. That is that gravity anomalies are given on
the geoid and the disturbing potential is supposed to be harmonic outside the geoid. Since
the difference between the geoid and the reference ellipsoid is very small, we can treat
Stokes's problem as an €llipsoidal boundary value problem. In other words, the Stokes
problem can be described mathematically as determining a disturbing potential function
T satisfying (1.4.1)

Various approaches have been proposed to solve the above ellipsoidal boundary value
problem (Molodensky et al., 1962; Moritz, 1980; Cruz, 1986; Sona, 1995; Thong, 1996;
Yu and Cao, 1996; Martinec and Grafarend, 1997; Martinec and Matyska, 1997,
Martinec, 1998; Ritter, 1998). Usually, they can be divided into two main approaches:
One directly represents the disturbing potential T in terms of an ellipsoidal harmonic
series, which is rigorous but very complicated because it requires the introduction of
Legendre functions of the second kind (Sona, 1995). Another one regards Stokes's
formula as the first approximation of the solution of (1.4.1) and pushes the approximation
up to the term of O(e?), where e is the first eccentricity of the ellipsoid. This term, called
the ellipsoidal correction, is expressed in terms of closed integral formulas, such as the
solutions described in Molodensky et a. (1962), Moritz (1980) and Martinec and
Grafarend (1997).
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In the following sections, we will give a new closed integral formula for computing the
ellipsoidal correction. A brief comparison of the ellipsoidal corrections given in
Molodensky et a. (1962), Moritz (1980), Martinec and Grafarend (1997) and this chapter
and anumerical test for the new formulawill also be given.

3.1 Derivation of the ellipsoidal correction

In the following, to solve equation (1.4.1), we will (a) establish an integral equation, and
(b) solve the integral equation to get Stokes s formula plusits ellipsoidal correction.

3.1.1 Establishment of theintegral equation

According to Moritz (1980), for an arbitrary point Py given inside S, the generalized
Stokes function

2 1 3 r I.- r, COS +1
S(P,R) == +=- =~ cosy o [5+3In—2 Yoo Ty (310
pp, Ip P P 2rp
satisfies

iDS(P,R,) =0 (PisoutsideS,)
HimS(P.R) =0 (312)
1 (P, P,) iscontinuoudy differenti able on and outsideS,

From Green’ s second identity (Heiskanen and Moritz, 1962), we obtain that

5 @12,

Se Q

OS(Q P ) (Q) (3.1.3)
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It follows from the third formulain (1.4.1) that

FQI- 22F) i:}h&s«z, P)dS, = PUQSQP)S,  (314)
S

. Thq 9o Ng

In (1.4.1), letting P be the moving point Q on S and differentiating the function S(Q, Po)
along the normal vertical at Q, we obtain

[ r | r r
ﬂS(Q,PO):_ 22 ﬂQPo +i3[6IQPOﬂQ_3rQﬂQPo_rQﬂQ +3rPOCOSyQPOﬂ_Q]
The lop T 1o Thq The The fhe
) 3r, COSY op [‘IHQP0 Ty 1Cre, cosy on)]
ro(fg - Te, COSY gp, +1gg ) The  Thg Thg
r r, COS r,- r, COS +1
+i3[2rpocosyQ% T _rQ‘ﬂ(p0 YQPO)][5+3|n Q™ p COSY g LY
2 1l
-2 V%, R (3.1.5)
lor, g
where
1 qr. ﬂIQp ﬂrQ ﬂI'Q
K,(Q,P,) = =16l Q3 RN +3r, COSY op —]
1 0 r(:; QR ﬂhQ Q ﬂhQ Q ﬂhQ R QR ﬂhQ

) 3r, COSY op [‘Hl on , Tro  (rg, COSY or,)

ro(fg - Te, COSY gp, 1) e Thg Thg

]

r 9i(r, cos r,- r, Cos +1
+i3[2rP COSY op o . o Uy yQP")][5+3In o 'r ™Y or T on
rQ 0 0 ﬂhQ ﬂhQ 2|’Q

]

(3.1.6)
Following Moritz (1980), when Py goesto P (the projection of Py on S;) from the inner of
S, then
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ﬂ QP 4L ﬂ QP
0 T(Q) 7 Izp e o dS. = oZT(Q) ‘HhQ ( . )dS ® -4pT(P) +S? T(Q)|2PﬂTdS
(3.1.7)
and
ON QK. (Q,R)dS, ® (QK,(Q,P)dS, (3.1.8)
Se S
FQ - %o s@.pis, ® oT(Q)i“&S(Q PYS, (319
se 9o e S 9o The
QPI(Q)S(Q RS, ® FPg(Q)S(Q,P)dS, (3.1.10)
Se S
So for any given point P on S, we obtain by letting P, ® P in (3.1.4) that
4pT(P) - QN(QK(Q,P)dS, = (Pg(QS(Q,P)S, (3.1.11)
S S
where
K(QP)=18QP) 1 Mo gq py (3112

fhg 9o Thg

Equation (3.1.11) isthe integral equation that will be used for determining T on S..

3.1.2 Deter mination of the geoidal height

Denoting the projection of the surface element dS,, onto the unit sphere s by ds,, we

have

dS, =r3sechds, (3.1.13)
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where b, is the angle between the radius vector of Q and the surface normal of the

surface S at point Q. Then, for any given point Pon S, (3.1.11) becomes

4pT(P) - F(QK(Q,P)rg sechyds, = FPa(Q)S(Q, P)rg secb,ds , (3.1.14)

With be the semiminor axis and e the first eccentricity of the reference ellipsoid, and g,

and q, respectively the complements of the geocentric latitudes of P and Q, we have

rp = be[1+%e2(1- cos® g,) + O(e")] (3.1.153)
_ 1, 2 4

o = be[1+§e (1- cos”qg) + O(e™)] (3.1.15b)

lp = 2D, siny—zQ"[1+%e2(2 - 00 g, - €08’ p) + O(e")] (3.1.150)

r3sech, =bZ[1+e’(1- cos’q,) + O(e")] (3.1.15d)

Furthermore, from Molodensky et al. (1962), we have

r
o =1+0(e*) (3.1.168)
hg
I CoS(, - €0SQ,)°
Toe _ gn&[l_ iez(gcosz Qg +C0S° G5 - (cosdg Ae) )+ 0(e*)] (3.1.16b)
ﬂhQ 2 4 Sinz ﬁ
2
I, COS
W = e*(cos(q, oS, - COS” [, COSY op) + O(e*) (3.1.16¢)
Q
- i& = 3[1- e’(cos’ 0o - 1) +0(e")] (3.1.16d)
% ‘HhQ b, 2

It then follows from (3.1.1) that



S(Q P)rgsech, =b[S(y p) + €, (Y op: g, dp) + O(E")]

where Sy ) isthe Stokes function

. Yo

Y op
7L t+dn?
> —/)]

Y o) =

QP
2

sin

and

y
1(YQP Uo: QP)——S(Y Qp)(SIn qP)+(cos (g - COS qp)(3SIn2 2QP 2)

_ 1 Ygo 2 =20 e2(costq. - L 4
o The S(Q,P)rQsech—be[l e“(cos” g, 2)+O(e 0[S(Y or)

+€%f,(Y gprUo,dp) + O(")]

=29y ) + € (Y gp.Ug.0p) + O(e")

where

fo(Y op:0q.dp) =Sy QP)(ZSinZ do - cos’ g;)

+2(cos’ g - €os’ g)(3sin’ y—ZQP - 2)

From (3.1.5), we obtain

ﬂs1("?, P) =-29)y op) +1+3cosy o + e2f3(y o1 lo,Op) * o(e")

2
rg sechy,
Q
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(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)
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where

(cosqq - €osqp)® .\ 3(cosq cosq, - cos’ q,)

f3(Y oprUos0p) =-
gsin® % asin? T

1 25 5
[- =cos’ do *+ 8005 Qe +3C0S( COSqp]

Yo 8
2

+

sin——

+[13—7 cos’ g, - 3cos2 g - 1—scoqu cosq,]

+sin yZQP [7 cos’ g, - 2710052 Jp - 3C0S» COSU ]

+sin ZyQF’[ 12—5 quQ+—coszqP] 6s:|n3y2QPcoszqQ

3cos c0S(, - €OSQp)°
Y o [( % Ae)" 4¢osq Cosg; +4cos’ g

Yor

8a+snyQ% sin
2 2

- (3cos’ g, + oS’ qp)sn 2 - 8cos? qunzyzQP]

+3In(sin y2 rsin?? QP)[cosy or(2008° g, - €OS° gp) - €OSQ,CosY,]  (3.1.23)

Therefore, from (3.1.12), (3.1.14), (3.1.17), (3.1.20) and (3.1.22), we obtain
4pT(P) - OT(Q)(]-'*' 3COSy QP)dSQ - ez OT(Q)[fz(y QP! qQ J qp) + f3(y QP! qQ J qp)]ds Q

= b, PIUQSY ¢p)ds ¢ +€°D, PIQ), (Y gp+Uq.dp)dS o +O(e”) (3.1.24)

The second condition in (1.4.1) means that the disturbing potential T does not contain the

spherical harmonics of degrees one and zero. So we have
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O (Q)ds 4 = O (Q)R,(cosy op)ds , =0 (3.1.25)
O (Q)cosy opds , = QT (Q)R(cosy op)ds, =0 (3.1.26)

Thus (3.1.24) becomes

4pT(P) = b, PIQ)SY op)ds  +€*{b, CPIQ1 (Y g+ U, Up)dS

+ N (QLF LY p+ o p) +F5(Y opr o, dp)lds o} + O(e") (3.1.27)
Let
T(P) =T,(P) +€°T,(P) + O(e") (3.1.28)

Then from (3.1.27), we obtain

T,(P) = Z—p PUQSY o )ds (3.1.29)

T.(P) = 4ip{be(‘ng(Q)f1(y 1o Ap)dS o + Qo (Qf o (Y 1T dp)dS o} (3.1.30)

where

fo(y QP’qQ’qP) :fZ(yQP’quqP)+f3(y QP’qQ’qP)

_ (cosq - cosQp)° .\ 3(cosq, €osq, - cos’ q,)

3yQP ZyQP

2

8sn 4sin



)1/ [2- 4Elcosz do - gcos2 gp +3c0sq, OS]
QP

+

sin

169 9 13
+[-8+?cos do - gcos Op - Ecoqu C0SQ;]

ren) @ [- 12 + 1075 cos’ g, + :31 cos’ g - 3C0S(q C0SQ,]
+sin? E[20- %10052 do +:glcos2 ] - 6s:in3y—2QPcos2 dg

3C0SY [(coqu - cosqp)’

- 4050, COS(, +4€0S’

8(1+sin&) snle®
2 2

- (3c0s’ gy + COS’ gp) SN yZQP - 8cos’ g, sin® y P

Y op

i 3|n(sin7+sin2yﬁ

> ) [cosq, cosq, +(2- 4.cos? 0q) COSY el

According to the Bruns formula, we obtain
N(P) = Ng(P) +e*N{(P) + O(e”)

with the spherical geoidal height

Pe DYQSY o),

NG(P) = e

and its ellipsoidal correction

(3.1.31)

(3.1.32)

(3.1.33)

N{KP) = 4—1[){% GPIQN1(Y g+ Gq.0p)dS o + NE(Q)F (Y 0p1 0o, Ap)dS o} (3.1.34)



wheref; isdefined by (3.1.19) and fo is obtained from (3.1.31), (3.1.21) and (3.1.23).

Now we further discuss the first term of N¢:
N (P) = pg dDg(Q)f (Y op1Uo:0p)dS (3.1.35)

From (3.1.19), (3.1.33), (3.1.25) and (3.1.26), we have that

in2 cos’ g, (1+3cos
N}Ii(P):S'rl Ge Ng(P) - 4b %ol > yQF’)olsQ (3.1.36)
From sections 1-11 to 1-14 of Heiskanen and Moritz (1967), we can obtain that
cos’ dq (1+3008Y o) _1 /5 37— 3/3=
< 2 & 6 15 20(QQ Q)+COSqP[¥RSO(qQ!| Q)+1_OR10(qQ!| Q)]
. Ja2 — V35
+singp cosl p[—— 35 Ra(dg; Q)+ R.u1(do! )]
Ja2 f
tsingesinl [E%l(qg Q)+ Su(qQ o)l (3.1.37)
We now represent Dg by the spherical harmonic expansion
¥ n _ _
DY(Q) =GA (N- DA AR (dos! o) + IK 1 Sin (A | )] (3.1.38)

n=2 m=0

where G is the mean gravity, dJ . ,dK . are the fully normalized geopotential

coefficients of the disturbing potential and R, (d,.! 4),S,(dg.! o) are the fully
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normalized Legendre harmonics. Then from the orthogonality of the harmonics

R, (0.l o) adS,, (dy,! o). weobtain

sn’q, Gb, /5 37
2

NG (P) = NG(P) - 2 [l + cosdl, 2l

P

J42 V42

+sinq, cosl PEd\]3l+sinqpsinl PEdK31]
So, finally, the ellipsoidal correction is expressed as

NS(P) = NE(P)+ - By .- 0p)s

(3.1.39)

(3.1.40)

Equations (3.1.32), (3.1.33), (3.1.39), (3.1.40) and (3.1.31) are the formulas for

computing the ellipsoidal geoidal height with an accuracy of the order of O(&”).

Rigorously, equation (3.1.33) is not the same as the standard Stokes's formula because

the semiminor axis be is used instead of the mean radius R. According to the definition of

R (see (1.1.24)),
1 2 4
b, = R(1- §e +0(e"))

Therefore from (3.1.32), (3.1.33), (3.1.39) and (3.1.40), we obtain

N(P) = N,(P) +€°N, (P) + O(e")

R .
400 SCﬁ(y or)D9(Q)ds

Nl(P) = Nll(P) + N12(P)

No(P) =

(3.1.41)

(3.1.42)

(3.1.43)
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where

sn’q, 1 GR /5 37
N, (P) = - =]N,(P)- —[-—=dJ,, + cosq, ——dJ
u(P) =[ 3] o(P) gP[15 P G5 Vo
+sing cosl Pisz31+siansinl Piszm] (3.1.44)
35 35
1.
N, (P) = s ONo(Qf (Y gpsUor p)dS o (3.1.45)

and fo is till defined by (3.1.31).

Thus we finally obtain the formulas for computing the ellipsoidal geoidal height, whichis
expressed as the standard Stokes formula (3.1.42) plus an ellipsoidal correction (3.1.43).

3.2 A brief comparison of Molodensky's method, Moritz's
method, M artinec and Grafarend's method and the method
in this chapter

The following Tables 3.1, 3.2 and 3.3 show the differences of the solutions in
Molodensky et a. (1962), Moritz (1980), Martinec and Grafarend (1997) and our
development.

Notes:

0] The method used in this chapter follows the method used in Molodensky et al.
(1962). The difference is that instead of using the general Stokes function S(P, Py)



Table 3.1 Differences of the solutionsin Molodensky et al. (1962), Moritz (1980),
Martinec and Grafarend (1997) and thiswor k

Molodensky et al. Moritz Martinec & Grafarend Thiswork
Regulari 1 1
conition | T)=0C3) T(P)=0(3) TP =2 +0() T(P)=0(3)
(rr®¥) (rr®¥) (rr®¥) (rr®¥)
Boundary | qT(P) 1 1, 1T(P) 1 1o, LG Tr(P) . 1 Mg
condition T, g Th, T(P) . g h T(P) i + bT(P) fh. g Th T(P)
=- Dg(P) =- Dg(P) =- Dg(P) =- Dg(P)
Ellipsoidal _a,
correction | Ni(P) = 4pg, N,(P) = N, (P) N, (P) = N, (P)
PP |+ pomy s PR CINCLLE
+ ¥ (Q)f . (Q,P)ds b,
SO: where N, (P = Iog, whereN,, (P) is given by
+ Yo (Qf (A P)AS] | 1 (o @- 3sin’f) N (3.1.44) and
0 Ny(P) === - PUQf o P
where R . & ° NO(P):L
To(P) = FUQSY )5 ey 939(Q)S(y op) 4pg,
_ ° ’ @(Qﬂy QP)dS
¢ = Fo(Qf e (QP)as and Dg'(P) is given in ®
’ Table 3.2
Kern(_al fui, fu, and f,, ae| Sy )is the Stokes| f,. is given in Table| f; isgivenby (3.1.31).
functions | given in Table 3.3. function. 3.3.
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Table 3.2 Thedefinition of Dg* in Moritz (1980)

DG'(Q)= = 8 & 6mRm il )+ HinSin(l 0 o)

n=2 m=0

where R (f 5.1 ). S, (f 5.1 o) are Legendre surface harmonics and
G =KnnAnom H A T MnA
Hon = KinBrom ¥ B ¥ MiBriam
where A . ,B,, are the coefficients of the spherical harmonic expansion of the
disturbing potential T and
_ 3n-3)(n- m-H(n- m)
T 2(2n-3)(2n- 1)
| = n®- 3m°n- 9n® - 6m?- 10n+9
. 32n+3)(2n- 1)
_ (Bn+5(n+m+2)(n+m+1
T 2(2n+5)(2n +3)

nm

m

Table 3.3 Thedefinitions of the kernel functionsin
Molodensky et al. (1962) and Martinec and Grafarend (1997)

cos? g, - 3cosq 3
fn(QP) = —— S o) fua(QP) = g S or):
1 4- 5cos’ (cosq, - €0sqp)?
fua(@P) = o[~ - e

P gnle 4sn®l®

fue (Q,P) = SiNQ,(COSQ, SINY , COSY , COSA o - SINQ, COS” Y ,€COS* A o
+8in 0, Sin%ao,)K, (Cosy ) +(1- sin’ g, sin?a ,)K ,(cosy )
- SINQ}, 0S8 p(COST}, SINY (- SINC}, COSY 1 €058, ) K 5(COSY ) - K, (COSY )
where g, isthe reduced latitude of P and K; (i=1,2,3,4) are given asfollows:

§ 2j-1  dP(Y) $ (j+D3(2j+)
Kih=a —= - K =a 55 R
© %u-a(a+n dt N go;n(g+$ ®
Km=8 S py. k=4 V@D,

% (- 22+ 2 (-p2




(i)

(iii)

0

(see (3.1.1)), Molodensky et a. (1962) used the function 1/1,, as the kernel
function of the equation (3.1.3).

The regularity condition used in Molodensky et a. (1962), Moritz (1980) and this
chapter is the same as that used in the derivation of Stokes's formula (see
Heiskanen and Moritz, 1967). This condition is stronger than that used in
Martinec and Grafarend (1997).

From the derivations in section 2, we see that the regularity condition in (3.0.1) is
used to make (3.1.25) and (3.1.26) hold so that we can get (3.1.27) from (3.1.24).
However, if we substitute S(Q,R,) in (3.1.3) by S(Q,R,)-1/r, , which is aso

harmonic outside S according to Moritz (1980), then the term (‘)T(Q)dsQ will

disappear in an equation corresponding to (3.1.24). What we still need to do isto
make (3.1.26) hold. Obvioudy, this can be guaranteed by the more general
regularity condition used in Martinec and Grafarend (1997). The spherical geoidal
height will be given by the general Stokes formula (see Heiskanen and Moritz,
1967) and the ellipsoidal correction will be somewhat different than that given in
section 2.

At present time, the mass of the Earth can be estimated very accurately. By
properly selecting the normal gravity field, we can easily make the disturbing
potential T satisfy the regular condition in (3.0.1). So the difference between the

two regularity conditionsis not a key problem.

The boundary condition used in Martinec and Grafarend (1997) is somewhat
different than the boundary condition used in Molodensky et al. (1962), Moritz
(1980) and this chapter. The differenceis
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?[e2 cos2q, +O(e*)] (3.2.1)

e

From the derivations in subsection 3.1, we see that the effect of this difference on

the ellipsoidal correctionis

25 Ba(QS ) cos20,05, (322)

Martinec (1998) has shown that the term above has a small impact on the
ellipsoidal correction because it is characterized by an integration kernel with a

logarithmic singularity at y ,,=0 and it can be neglected in cm geoid computation

if a higher-degree reference field is introduced as a reference potential according

to the numerical demonstration given by Cruz (1986).

All four solutions express the ellipsoidal geoidal height by the spherical geoidal
height No given by Stokes's formula plus the ellipsoidal correction N1 given by
closed integral formulas. The relative errors of the solutions are O(€”).

In Molodensky et al. (1962), to evaluate N at a single point from Dg, we need
two auxiliary data sets To and c. First we integrate Dg to get auxiliary data set To;
then we integrate Ty to get another auxiliary data set c; finally, we obtain N1 from

integrating Dg, Toand c. That is:

Dg » To » C » N
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The auxiliary data sets To and ¢, except for To at the computation point which can
be further used to compute the final ellipsoidal geoidal height, are useless after
computing N1. So the solution in Molodensky et al. (1962) is very computation-
intensive even through the kernel functions fu1, fw2 and fys are smple analytical

functions.

In Moritz (1980), only one auxiliary data set Dg" is needed and the kernel

function is also a simple analytical function, but Dg* is only expressed by an

infinite summation of the coefficients A ,,B,, Of the spherical harmonic

nm?

expansion of the disturbing potential T.

The coefficients A __,B

nm? nm ?

however, are what we want to know. They are not the

coefficients dJ,,,,dK,,, of the spherical harmonic expansion of the spherical

approximation disturbing potential To corresponding to No, which can be
computed from the gravity data by means of the spherical approximation

formulas.

In the practical evaluation, Dg' is approximately computed using truncated

spherical harmonic coefficients {dJ,,,,, dK .} oms.

nm?’

In Martinec and Grafarend (1997), no auxiliary data set is needed. We can
directly integrate Dg to obtain Nj:

Dg > N,
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So this solution is much simpler than that in Molodensky et al. (1962) and Moritz
(1980). However, the simplicity is obtained by complicating the kernel functionin
its solution. From table 3.3, we see that the kernel function fyg contains the series
of Legendre polynomials and their derivatives, so it is obviousy more
complicated than the kernel functions in Molodensky et al. (1962) and Moritz
(1980).

In this chapter, one auxiliary data set N is needed to evaluate N; from Dg. We
first integrate Dg to get No, the 'auxiliary' data set; then we obtain N1 from No and
the first 3 degree harmonic coefficients plus an integral about No. That is.

Dg > No > Ny

Like in Molodensky et al. (1962), the kernel function in the integral of this
solution is a simple analytical function. So this solution is simpler than the
solution of Molodensky et al. (1962) in the sense that only one auxiliary data set
is needed for the evaluation of N1 from Dg.

Because of the need of an auxiliary data set, it seems that this solution is more
complex than the solution in Martinec and Grafarend (1997). However, the
‘auxiliary' data Np are nothing else but the spherical geoidal heights, which are
dready available in many areas of the world, such as in Europe and North
America. When we evaluate N; in such areas, this solution is simpler than the
solution in Martinec and Grafarend (1997) in the sense that we can directly
evaluate N1 from No with asimple analytical function.

This solution is similar to the solution in Moritz (1980). They both need an
auxiliary data set. Their kernel functions are simple analytical functions and have
the same degree of singularity at the origin. However, the auxiliary data set No in



A
this solution is much simpler than the auxiliary data set Dg* in Moritz (1980) in

the sense that:

(8 No can be computed directly from gravity anomaly data by means of Stokes's

formulg;
(b) No can aso be computed approximately from the geopotential model

No(P) = RA & [03mRor (Gon o) + AK oS (G| )] (323

n=2 m=0

Obviously, this formula is simpler than that used for computing Dg' (see

Table 3.2) and Ny is less sensitive to high degree coefficients than Dg* is; and

(c) No is aready available globaly with resolutions of less than 1 degree and

locally with higher resolutions.

3.3 Practical computation of the ellipsoidal correction

In the above section, we obtained the Stokes formula (3.1.42) and its ellipsoidal
correction (3.1.43). The élipsoida correction term N; consists of two components; Ni1
and N12. The component N11 is a simple analytical function about the spherical geoidal
height No and the first three degree spherical harmonic coefficients of the disturbing
potential. It is easy to be evaluated from equation (3.1.44). The component Nj,, called
the integral term, is expressed by a closed integral formula (3.1.45). In this section, we
will further discuss the ellipsoidal correction formula(3.1.43).
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3.3.1 Singularity of theintegral term in the ellipsoidal correction
formula

The kernel function fo of the integral termissingular at y ,=0 (see figure 3.1) because it

contains the factors
2
Cos(, - COS COS(, - COS
(cosdq v q'°); qu . 1 ;In(siny2QP+sin2y2QP) (3.3.1)
sn*2¥ sn? =2 sn—=
2 2 2
1500

241
2405

240

q (degree)
29”930 | (degree)

Figure 3.1 Behavior of kernel function fo of the ellipsoidal correction to Stokes's
formulain the neighborhood of (qp=30° | s=240°)
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Figure 3.2 Spherical triangle

From the spherical triangle of figure 3.2, we have

COS(, = COSY op COS{, +SINY p SINQ, COSA p (3.3.2

Y op

Yo [cos
2

Cosq - COs(p =2sin >

C0Sa gp SiNQp - SN

y§P cosqp] (3.3.3)

It then follows from (3.1.31) that

4- 5c05” (- (SiNQ,COSa ) - :—ZasianpcosaQP

fo(Y gpso,0p) » Y o <<1) (3.34)
Y op
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This means that the kernel function fo has the same degree of singularity at y , =0 as
the Stokes function Sy ) . So the integral component in (3.1.43) is a weakly singular

integral and the singularity can be treated by the method used for Stokes's integral (see
Heiskanen and Moritz, 1967, or the following subsection).

3.3.2Method for applying the ellipsoidal correction formula

In the ellipsoidal correction formula (3.1.43), the first term N14 is easy to compute from
No and the first 3-degree harmonic coefficients. The term N, (P) is a global integral
formula. The input data is the “spherical” geoida height data. Since the high-resolution
and high-accuracy “spherical” geoidal height data are only given in some local areas and
the kernel function has same degree of singularity at the computing point P as the Stokes

function, we will use the following well known method to evaluate theterm N, (P).

From the definitions (3.1.31) of the kernel function fo of N,,(P), we know that, like the

Stokes function, fo quickly decreaseswhen'y ,, goesfrom Oto p. Therefore, in practical
evaluation of the integral term, we divide s into two parts: s _, and s, , where the area

s . isusually a square area containing the computation point P as its centre. Since the

near

kernel function is larger over s the integral over s, should be carefully computed

using a high resolution and high accuracy spherica geoid model obtained from the
ground gravity data by means of Stokes's formula (3.1.42) if a high accuracy geoid is

required. The area s, is far from the computation point P, so the kernel function is
relatively small over s, . Therefore, in the computation of the integral over s, we can

use the spherical geoidal height data No computed from a global geopotential model. In

detail, we express N, (P) as
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Ny, (P) = N¢, (P)+N ., (P) (3.3.5)
where

Nfa,(P)=j—;Sg\lo(Q)fo(y 10l IS (336)

N e (P, =j—;SS\IO(Q)f0(y or100,0p)dS (3.3.7)

The formula for computing N, (P) from a global geoid model

Theevaluation of N, (P) isperformed using afinite summation:

2

Nfa,(P)Ij—pé Nof s, (338)
i

where s; arethe surface elements bordered by meridians and parallels both separated by
c degrees and{s u} =S, Nj isthe mean value of the spherical geoidal height No for s ;
f,” isthe mean value of the kernel function fo for s ; and
S, = IO—Zczsinq- (3.3.9)
1 1802 i
where q; is the mid-latitude of s, and c, the side length (degree) of the grids in far-

zone, isrelated to the resolution of the global geoid model.
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The formula for computing N __, (P) from alocal geoid model

Theevaluation of N __, (P) isalso performed using afinite summation:

e’ e’ |
Nnea,(P)=4—p a Niffs, +p (ol oo 0. 0-)dS (3.310)
ij Sp

Sij* sp

where s; are the surface elements bordered by meridians and parallels both separated by

d degrees and{s ij} =S, Sp Isthe surface element containing the computing point P

(the origin); N; is the mean value of the spherical geoidal height No for s ; f; is the
mean value of the kernel function fo for s ; and
S. = p’ d?sin (3.3.11)
I~ 1802 o 3.

where ¢, isthe mid-latitude of s, and d, the side length (degree) of the grids in near-

ij

zone, isrelated to the resolution of the local geoid model.

According to (3.3.4), in a smal neighborhood of the computing point P, the kernel

function fo can be expressed as:

2- cos’ g, - (sinq, cosa ) - gsin 20, Cosa o

fo(Y oprUordp) » (3.3.12)
y QP
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So we can obtain

1 . (3- cos’q,) pd
4_pspd\|0(Q)fo(y o1 lo ’qP)dSQ » 2 : 360 N, (P) (3.3.13)
Thus (3.3.10) should be rewritten as
2 } 2
N (P)=S & Nofos, + 37005 Ae) PO\ ez (3.3.14)

4psijlsp J 4 360

In s since the kernel function fo is larger than in s, , we have to use a high

resolution and high accuracy geoid model for the evaluation of the integral if the required

accuracy of the ellipsoidal correction is high.

3.3.3 A numerical test for the ellipsoidal correction formula

In this subsection, we will apply the ellipsoidal correction formula to the computation of
the US geoid.

Theinput data

In the test for computing the ellipsoidal correction, a global geoid model and a high-

resolution and high-accuracy local geoid model are need.

The global geoid model used for computing Nt is the geoidal height grid computed at 1
degree spacing with the EGM 96 spherical harmonic potential coefficient set complete to
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degree and order 360 (for more information about EGM96, please see its official
webpage: http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html).

The local geoid model used for computing Nnew IS the 2 arc minute geoidal height grid for
the conterminous United States (GEOID96) (Smith and Milbert, 1999), computed from
about 1.8 million terrestrial and marine gravity data.

Results and discussion

Thesizeof thearea s,

Figure 3.3 gives the relationship between the ellipsoidal correction N1 and the

side length of the square area s . It shows that a global geoid model with a

resolution of 1 degree is sufficient for the computation of the integral if the

required accuracy isof the order of 1 cm.

-17.85

-17.9 .

-17.95 | .

N1 (cm)

-18 | .

-18.05 | .

-18.1

1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

The side length of the near-area (degree)

Figure3.3 Ni (cm) at P(45N, 240E) with different side length of thearea s _,
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The contributions of N1; and N>
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Figure 3.4 The contribution (cm) of the term N11 in the ellipsoidal correction N1
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Figure 3.5 The contribution (cm) of the term N1z in the ellipsoidal correction N1
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Figure 3.4 and Figure 3.5 are respectively the maps of the term N1; and the
integral term N2 in US (24%-58°N, 230°-300°E). In this area, N1; ranges from
—3.8cm to 5.6cm and N1, ranges from —28cm to -2cm. So both N1; and Ni» are

important in the computation of Nj.

The contribution of the ellipsoidal correction

55\'

50

Latitude (degree)
N ~
o o

w
o
T

-16
19 ¥

1 1 1 1
230 240 250 260 270 280 290 300
Longitude (degree)

Figure 3.6 The contribution (cm) of the ellipsoidal correction

The above figure 3.6 is the map of the ellipsoidal correction in US. In this area, the
ellipsoidal correction ranges from —31 cm to —1 cm.
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3.4 Chapter summary

In this chapter, we investigated the ellipsoidal geodetic boundary value problem and gave
asolution for the ellipsoidal geoidal heights.

The solution, as those already available, generalizes the Stokes formula from the
spherical boundary surface to the ellipsoidal boundary surface by adding an
ellipsoidal correction to the Stokes formula. It makes the error of geoidal height

decrease from O(€?) to O(e*), which can be neglected for most practical purposes.

The éllipsoidal correction N1 involves the spherical geoidal height Np and a kernel
function which is a simple analytical function that has the same degree of singularity
at the origin as the Stokes function.

The solution is simpler than the solutions in Molodensky et a. (1962) and Moritz
(1980). It is also simpler than the solution in Martinec and Grafarend (1997) when
evaluating the ellipsoidal correction N1 in an area where the spherical geoidal height
No has already been evaluated.

A numerical test for the ellipsoidal correction formula shows that:
The effect of the flattening of the ellipsoid should be taken into account in the
computation of the geoid when the required accuracy is better than the decimetre

level.

The new ellipsoidal correction formula, which uses the spherical geoidal height

dataasitsinput data, is an effective formula.
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For the computation of the ellipsoida correction with accuracy of the order of

1cm, aglobal geoid model with aresolution of 1 degreeis sufficient.

For more accurate €ellipsoidal correction computation, a detailed local ‘ spherical’
geoid model in the computation area is needed for the computation in the near-

Zone.

The contribution of the ellipsoidal correction ranges from —31 cm to —1 cm in the

conterminous United States.
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4 Ellipsoidal Correctionsto the Inverse
Hotine/Stokes For mulas

The satellite altimetry technique provides direct measurements of sea surface heights
with respect to the reference ellipsoid, the geometrical reference surface for elevations.
Since 1973, a series of atimetry satellites such as SKYLAB, GEOS-3, SEASAT,
GEOSAT, ERS-1, TOPEX, etc., have been launched and have collected data over the
oceans. Owing to instrument improvement, geophysical and environmental correction
improvement and radial orbit error reduction, the precision of satellite atimetry
measurements has improved from the 3-metre to the 2-centimetre level. The resolution of
satellite altimeter data along the tracks has also come down from 70 km to 20 km or less
(see Zhang, 1993). Tremendous amounts of satellite altimeter data with very high
precision have been collected since the advent of the satellite altimetry. After subtracting
the dynamic sea surface topography, satellite altimetry can provide an estimation of the
geoidal height N in ocean areas with a level of precision of about 10cm (Rummel and
Haagmans, 1990). These geoidal height data can be used to recover the gravity

disturbances and gravity anomalies over the oceans.

Papers reporting results on recovering the gravity information from satellite altimeter
data, and in some cases, areview of prior work, include those of Zhang and Blais (1995),
Hwang and Parsons (1995), Olgiati et al. (1995), Sandwell and Smith (1996) and Kim
(1997). The models employed for recovering the gravity information from the satellite
altimeter data are mainly the spherical harmonic expansion of the disturbing potential, the
Hotine/Stokes formulas and the inverse Hotine/Stokes formulas. The gravity
disturbances/anomalies obtained via these models may be called the spherical gravity
disturbances/anomalies since these models are valid under the spherical approximation.
In these models, the input and output data are supposed to be given on a sphere, the mean
sphere. The geoidal height N (disturbing potential T) from altimetry and the gravity
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disturbance/anomaly dg/Dg to be computed from N refer to the geoid which is very close
to the reference ellipsoid Se. They satisfy the following relations:

TT H[S,] (4.0.1)

T(P) = O(rig) (Pisat infinite) (4.0.2)

%T(P) = - dg(P) (Pison Sy (4.0.3)

Dg(P) =dg(P) + 199, (Pison &) (4.0.9)
g Th,

T(P) =g.N(P) (Pison &) (4.0.5)

where rp is the radius of point P and ﬂ% is the derivative along the elipsoidal normal
P

direction of P.

The maximum difference between S; and the geoid is about 100m, so we can treat the
data given on the geoid as data on the reference ellipsoid. The relative error caused by

doing so is about 10 *. However, the relative error of substituting the reference ellipsoid

by the mean sphere surface is about 3" 10°°. The effects of this error on the gravity
anomaly and gravity disturbance, which are also called the effects of the Earth's
flattening, may reach about 0.3 mGal. When the aim of the satellite altimetry isto recover
the gravity information with accuracy less than 1 mGal, the effects of the Earth’'s

flattening should be considered.

In order to reduce the effects of the Earth’s flattening on the gravity anomaly, Wang
(1999) proposed to add an ellipsoidal correction term to the spherical gravity anomaly
recovered from the atimetry data via the inverse Stokes formula. The ellipsoidal
correction is expressed by integral formulas and in series of spherical harmonic
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expansions. In the integral formulas, an auxiliary function c is needed for computing the

ellipsoidal correction Dg* from the disturbing potential T, that is:
T %I5YI® ¢ LY@ Dot

In this chapter, we will derive new ellipsoidal correction formulas to the spherical gravity
disturbances/anomalies respectively. These elipsoidal correction formulas consist of two
parts. a simple function part and an integral part. The input data are the disturbing
potentials and the spherical gravity disturbances/anomalies, which are aready computed
from atimetry data in some ocean areas with a high accuracy or are computed
approximately from the Earth geopotential.

4.1 Formulas of the ellipsoidal correctionsto the spherical
gravity disturbance and the spherical gravity anomaly

In this section, we will

(a) establish an integral equation, which shows the relation between the geoidal heights
and the gravity disturbances on the reference ellipsoid;

(b) solve the integral equation to get the formula of the ellipsoidal correction to the
inverse Hotine formula (the spherical gravity disturbance); and

(c) derive the formula of the ellipsoidal correction to the inverse Stokes formula (the
spherical gravity anomaly) from the result of (b);
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4.1.1 Establishment of theintegral equation

It can be proved that for an arbitrarily point Py given inside S, the function

r5- o 1. 1.1
FQPR)° 252 =2 Ty et (4.1.1)
fRlon, e lop™ T lop
satisfies
F(Q.P,)T H[S,] (4.1.2)

According to Green’s second identity (Heiskanen and Moritz, 1962), we obtain that for

an arbitrary function V1 H[S.],

o TFQP) 1
S?V Q) Tdseq = %V(Q)F(Q, P,)dS, (4.1.3)

Let V in (4.1.3) be the disturbing potential T. Then we obtain from (4.0.3)

5@ TFQR)s - syQ)FQ.P)ds, (4.1.4)

Se ﬂh Q S

We denote the ellipsoidal coordinates and the spherical coordinates of a point P by (up,
bp, | p) and (rp, gp, | p) respectively. From section 1-20 of Heiskanen and Moritz (1967),
we know that

Up

Q=)
V,(P)° E T H[S,] (4.15)

Qi)
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andforQon S,

V4{Q)=1 (4.1.6)

From sections 2-7, 2-8 and 2-9 of Heiskanen and Moritz (1967), we have

U, .. L E
ey - jtant = 417
Q, (i E) i 0 (4.1.7)
2 2
W‘"‘(P)=-\/ 5 u":'.zz TVa (P) (4.1.8)
Th, us +E“sin“b, Tu;
and
E E 1 E E 1
tan'— = —[1- =(—)? +O((—))] = e[1- =e?+0O(e* 4.19
b, be[ 3(b ) ((be) )] =€l 3 (e”)] (4.19
SoforQon S,
E
Wa(Q)—-\/ bi+E*  bZ+E® _ 1 1
Thg b2 +E*sin’b,, tan'le a,/1+€2sin’by 1. :—13e'2+0(e'4)
1 2 1 1 .2 4
=-—M+€°(=- =sin“b.)+O(e 4.1.10
ae[ (3 > o) +O(€7)] ( )
Since

a, = R(1+%e2); g?=e’+0(e") (4.1.11)



111
and
, tan®by, a:cos’q

sin“bg = =
Q .
1+tan’b, bZsin®q, +aZcos’ g,

= cos’ o[1+e*sin? g, +O(e)]

= cos’ g, +O(e) (4.1.12)
eguation (4.1.10) can be rewritten as

NVa v, 1,2l 1 o 4
R(Q)— R[1+e (6 5608 do) + O(e™)] (4.1.13)

It then follows from (4.1.3), (4.1.5) and (4.1.6) that

07\“:1‘5;0)(15@ =- q§[1+ e? (%- %cosz o) +OENFQ RS,  (4114)
Se S

For agiven Pon S, we obtain from (4.1.4) minus (4.1.14) multiplied by T(P) that

3TQ- T Mols

T(P)

=3-dgQ+——= [1+ €’ ( - —cos qQ)+O(e MIFQ,R)dS, (4.1.15)
s

According to the properties of the single-layer potential and note (4.1.1), we obtain by
letting Po® P in (4.1.15) and neglecting the quantities of the order of O(e”) that

T(P)

AT - T(PIM(Q,P)YS,,=4p{- dg(P) + —~[1+e (—- —COSZ 0p)]} cos(rp, hp)

()

+3-do(Q) +——= [1+ e ( - %cos 0o)I}HQ,P)dS, (4.1.16)

Se

where
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r2-r?

F(Q,P)° Qr E P (4.12.17)
plop

and

2, Ty (13- 12) e
rolde The rlop g

M(Q.P)° %F(Q, P) = (4.1.18)
Q

The kernel functions M(Q,P) and F(Q,P) are singular when Q® P. Their singularities for
Q® P will be discussed in section 4.2.1.

Equation (4.1.16) is the integral equation from which the inverse Hotine formula and its
ellipsoidal correction will be obtained.

4.1.2 Inverse Hotine formula and its ellipsoidal correction

Denoting the projection of the surface element dS,, onto the unit sphere s by ds,, we

have
dS, =r5sechds, (4.1.19)

where by, is the angle between the radius vector of Q and the surface normal of the

surface S at point Q. With R the mean radius and e the first eccentricity of the reference

ellipsoid, and g, and q,, respectively the complements of the geocentric latitudes of the

points Pand Q on S, we have

Mo = R[1+%e2(sin2qP - g) +0(e")] (4.1.20Q)

ro = R[1+%e2 (sin®qq - g) +0(e")] (4.1.20b)
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lgp = 2Rsin%[1+711e2(sm2 0o +SiN%Q, - 13‘) +0(eY)] (4.1.200)
rasec o= ’[1+ *(sin® - 3)+o eM] (4.1.20d)

Furthermore, from Molodensky et al. (1962), we have

ﬂrQ — _ 4
———=009(Iy,hy) =1+ O(e") (4.1.219)
fhg
I c0S(q, - €0sQ,)>
Mer _ sinE[l- lez(iacos2 qq +COS* G5 - (cosq %) )+0(e")] (4.1.21b)
Th, 2 7 4 gnz Yo
1 ﬂgQ 2 2 5 4

- —— ="[1+€*(=- cos’q,) +O(e")] (4.1.21¢)
9o Thg R ©

It then follows from (4.1.17) and (4.1.18) that
F(Q,P)rgsecby, =f(y p,0q.0p)[e” +O(e’)] (4.1.22)
M
M(Q, P)rg sech,, = (’éQP) [1+ ez(% cos? g - %) +0(e*)] (4.1.23)
where
1sin’q, - sin“q
FY oo lor0e) = 3 ¢ v 2 (4.1.243)
gn3£
2
1
MY gp) =——— (4.1.24b)
asin® Y@

Let

dg(Q) =dg°(Q) +dg*(Q)e* + O(e*) (4.1.25)
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Inserting (4.1.19), (4.1.22), (4.1.23) and (4.1.25) into (4.1.16) and neglecting the
quantities of order of O(e*), we obtain

G- TP Mby QP)

[1+€? (% cos® qp - %)]ds o

T(P) T(P) 1 cos’qp
R R (R ]}

+e’[- dg*(P) +
[-dg"(P) P

= 4p{- dg°(P) +
- (4.1.26)
- € Jdg°(Q) - R TV oredo:Gp)0S g

From (3.3.2), we have

sin’q, - sin” g, =cos’ g, - €0S” (], COS’Y p - SIN? 0, SIN*Y , COS” @

- 2€0S(, COSY SN, SINY 5 COSA

2Yop 2 Yo

=4sin 5 [cos®qp - Sin® g, COS” @ gp]
- 2€0S(, COSY p SN, SINY o, COSA o (4.1.27)
Noting that
2p 2p 2p
gja op = 2P; 0:osaQPda =0 0:05 agpdage =p (4.1.28)
0
we obtain that
s 2 s 2 2
sin - sin P psn sin’
\ Uo dp dSzOO Uq - dp 4sin yQP dsnyQPdaQP
s gndle 00 gn3ter 2
2 2

1
=16p(2cos’ g, - Sin® gp) (f1- x?)dx
0
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=16p(2cos’ gp - %) (4.1.29)

It follows from (4.1.24) and (4.1.26) that

oo T(P) 1
(P =T 2R OTQ) - TEIMY )i (4.1.30)
dgl(P) = dgi(P) + dgé (P) (4.1.31)

where

dgi(P) = (C"S % %)dg(’(P) (4.1.313)
dgb(P) = - 4—1p O (QF Y gp o, 0p)dS (4.1.31b)

Formula (4.1.30) is the inverse Hotine formula, from which the spherical gravity
disturbance is computed, and (4.1.31) is the ellipsoidal correction for the inverse Hotine

formula

4.1.3 Inverse Stokesformula and its ellipsoidal correction

According to (4.0.4) and noting (4.1.21c), (4.1.30) and (4.1.31), we have that

DY(P) = dg(P) + (- 1% yT(p)
ge The

2T, 2T(P) 5
R

=dg°(P) - e’[dg*(P) - . cos’ g,)] +O(e*) (4.1.32)

Let

Dg(P) = Dg°(P) + Dg* (P)e” + O(e") (4.1.33)
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then
Dg°(P) = g’ (P)- 210
(4.1.34)
_ T(P) A
TR ﬁdT(Q) T(P)IM(y o )ds
Dy*(P) = g (P) -ZTT(P)(cosZ 0 - %)
90 1., 0 1 .., 2T(P) 5
=(%- Q) o BE QI Qp,qQ,qp)dsQ-f(g- cos’ )
=Dy;(P) +Dg;(P) (4.1.35)
where
D! (P) = - 1 (P2 3005°Gp) | COS"Gp Ly (4.1.359)
R 2 6
Dgz(P)—-zp—Rdr(Q)f(yQp G:e S o~ cpg (Q)F (Y om0 )0S o (4.1.35h)

The formula (4.1.34) is the inverse Stokes formula, from which the spherical gravity
anomaly is computed, and (4.1.35) is the ellipsoida correction for the inverse Stokes
formula.

4.2 Practical considerationsfor theintegralsin the formulas

In the above section, we obtained the closed formulas (4.1.31) and (4.1.35) of the
ellipsoidal corrections dg* and Dg' respectively to the inverse Hotine formula (4.1.30)
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(the spherical gravity disturbance dg°) and the inverse Stokes formula (4.1.34) (the
spherical gravity anomaly Dg®) from the basic integral equation (4.1.16). Formula
(4.1.31) (formula (4.1.35)) is expressed as a sum of a simple analytical function and an
integral about dg® (Dg® and T). Obviously, the first part of dg* (Dg') is easy to be
computed from dg® (Dg and T). In the following, we will give detailed discussions on the
integral parts (4.1.31b) and (4.1.35b).

4.2.1 Singularities

%10

Figure 4.1 Behavior of kernel function M of the inver se Hotine/Stokes formulasin
the neighborhood of (qp=45°, 1 p=240°)
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Figure 4.2 Behavior of kernel function f of the ellipsoidal correctionsto theinverse
Hotine/Stokes formulasin the neighbor hood of (qp=45", 1 p=240°)

The integrals in formulas (4.1.16), (4.1.30), (4.1.31b), (4.1.34) and (4.1.35b) are singular
because their kernel functions M(Q, P), F(Q, P) and M(y o), f(Y o.0q.0p) are

singular when Q® Por y , ® 0O (seefigures4.1and 4.2).

The singularity of the integral in the inverse Stokes (or Hotine) formula (4.1.34) (or
(4.1.30)) has been discussed in many references, such as Heiskanen and Moritz (1967),
Bian and Dong (1991) and Zhang (1993). Here we discuss the singularities of the
integralsin (4.1.16), (4.1.31b) and (4.1.35Db).

According to (4.1.22), we know that the integral on the left hand side of (4.1.16) and the
integrals in the inverse Stokes formula (4.1.30) and the inverse Stokes formula (4.1.34)
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have the same form. So the integral on the left hand side of (4.1.16) can be treated with
the same method used in processing the inverse Stokes (Hotine) formula.

Similarly, according to (4.1.23), the integral on the left hand side of (4.1.16) and the
integrals in (4.1.31b) and (4.1.35b) have the same form. Therefore, in the following, we

only discuss the method to treat the singularity of the integral in (4.1.31b).

Obviously, we only need to consider the integral in the innermost spherical cap area so

with the centre at the computation point P and a radius y , which is so small that the

spherical cap area can be treated as aplane. That is we discuss the following integral

dg(P) = 4—1p O QF (Y gp o 0r)IS 4.2.1)

From (4.1.27) and (4.1.244Q), and noting that s isaunit sphere, we have

— 1 ® 1 Yo oYor -,
dg(P):4— O 0 d°@Q {4sin > cos’® > [cos’ g - Sin® g COS” @ ]
Y gp=0agp=0 8sin® E
- 2C0S(], COSY pSINQ, SINY ;,COSA e} SINY p0a Ay o
15 R G2
=5 0 O’ (QN(- = )lcos’ gp - Sn” g cos” el
lgp=0agp=0
1. e Y3 o
- IQ—P(l- ?)(1- T) Sin2q, cosa gp}da oedl e (4.2.2)
where
l, = Zsiny—2° . (4.2.3)

For Qinsg, weexpand dg°(Q) into a Taylor series at the computation point P:
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dg’(Q) = dg°(P) + xdg; (P) + ydgy (P) +-+- (4.2.4)
where the rectangular coordinates x, y are defined by
X=lgpC0Sap; Y =lgpSinag, (4.2.5)
so that the x-axis points north, and

Tdg®
Ty

Tdg’

dg; (P) :T(P); dgy (P) =

(P) (4.2.6)
The Taylor series (4.2.4) may also be written as
dg°(Q) = dg°(P) +[dg, (P) cosa ,, + dgy (P) sinag]lgp + - (4.2.7)

Inserting this into (4.2.2), performing the integral with respect to a, first, noting

(4.1.28) and neglecting the quantities of O(I2) , we have

dg(P) = IZO[OIQO(P)(E’*COS2 G - 1)+ dg;(P)] (4.2.8)

We see that the effect of the innermost spherical cap area on the integral (4.1.31Db)
depends, to a first approximation, on dg®(P) and dg®(P). The value of dg’(P) can be

obtained by numerical differentiation dg°.
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4.2.2 Input data

In (4.1.31b) and (4.1.35b), the input data are respectively dg°, and Dg° and T. These

data are available only in some ocean areas. Here we give some modification on the input
data.

According to (4.1.25) and (4.1.33), we have

dg’(Q) =dg(Q) - dg'(Q)e” + O(e") (4.2.9)
Dg°(Q) = Dg(Q) - Dg*(Q)e” +O(e”) (4.2.10)

In addition, the disturbing potential T(P) on the reference ellipsoid can be expressed as
T(P) =T°(P) +e’T*(P) (4.2.11)

where T°(P) is the spherical approximation of T(P). Since dg' should be multiplied by

€’ before it is added to dg°, we obtain by inserting the above formulas into the integrals

in (4.1.31) and (4.1.34) respectively and neglecting the quantities of order of O(e?) that

dgb(P) = 4—1pdig(Q)f (¥ grrGor e S (42.12)

Dy (P) =4—1pdDg(Q)+2TT(@]f(y oo 0o, 0o)S (4.2.13)

where dg is the gravity disturbance which can be computed approximately from the
global geopotentia models, Dg and T° are the gravity anomaly and the spherical

disturbing potential which are already available globally with the resolutions of less than
1 degree and locally with higher resolutions.
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4.2.3 Spherical harmonic expansions of theintegrals

In the following, we will expand dglz(P) and Dglz(P) into series of spherical harmonics

so that they can be computed from the global geopotential models.

According to section 2-14 of Heiskanen and Moritz (1967), under the spherical
approximation, we have

dg(g,l) = %é (n+)T . (q,1) (4.2.14)

n=2

where Tn(q, | ) isLaplace’ s surface harmonics of the disturbing potential T:

T, (@)= 8 CurRon (@1 + 41y S1 (1] (4215)
Let
dg(q,! )cos’q =%§ (n+DX  (q,1) (4.2.16)

n=2

From (4.1.34) and their definitions, we know that integrals dglz(P) and Dglz(P) are
equal. According to (1-102) of Heiskanen and Moritz (1967), we have from (4.2.12) that

Dgb(P) = dgh(P) = 4_1p Gdg(Q) cos’ g, - dg(P)cos’ g, i oSG Golg(Q) - dy(P) ;.

s gsin3l® I gsin*2® )
2
1.4 3
=—[-a n(+DX, (.| p)+a n(N+T,(gs,! 5)cos’ ge] (4.2.17)

2R n=2 n=2
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Let

8 (1+17,G1)c02q° & (1+DA [ER o (@) + APy Son (@1 )] (4.2.18)

n=2 n=2 m=0

én(n +1)T, (g1 )cos' q° g n(n +1)6°1n [AG 1y R (1) + dH 1S4 (9,1)] (4.2.19)

n=2 n=2 m=0

From (A11) of Wang (1999) (Note: there is a printing error in that formula) and (4.2.15),

we know that

T,(01)c05* = @ {Cun[@N Rpson (@1 ) +BIR 1, (1) + GTR 5 (G41)]

m=0

+ o8y Shom (A1) +07S (1) +gTS, (a1} (4.2.20)

where
am = (n-m+YH(n- m+2) (4.2.21)
(2n+1)(2n+3)
m_2n*-2m*+2n-1 (4.2.22)
" (@n+D@n- 1 -
o" = (n+m)(n+m-1) (4.2.23)
(2n+1)(2n- 1)
Therefore
1dE, Ui & k+ Rn@l )u
i f:é_ T(ql)cos q.
{OF, b n+l "5 T Sun (0 ')%
_N-1 o 3Gl ) Cm 0, N+3 o 1 Croml (4.2.24)

] nz:dn Zm% bm|dnm% gn+2%dn+2m%
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e |
:, nml;lz o] k(k+1) T (q | )COSZ ql nm q )U
faH 0" S nmep " ¢ L@

(n 2)(n- 1) ICn omU

| Cnm U (n + 2)(n + 3) m ‘I, Cn+2m

ar +b'{ ~— T gn 4.2.25
n(n +1) " 2| dn ZmK 1 dnm% n(n +1) gn 2: dn+2m% ( )
So we obtain from (4.2.17) that
1 ¥ n
Dy (F) = dg5(P) =2 8 & [0A R (Gpl ) + 0By, Sin (e | ) (4.226)
n=2 m=0
where
‘|,dAnml.;-I _ (n D(n- m-H(n- m)i | Choml
, =
TdBnm (2n 1)(2n 3) Idn ZmK
(n+3)(n+m+1)(n+m+2)ICn+2m (4.2.27)

@n+5@N+3 (o]

Thus we express dglz(P) and Dglz(P) by a series of spherical harmonics. The input data

{c...d.., }are the spherical harmonic coefficients of the disturbing potential.

4.3 Chapter summary

This chapter gives the ellipsoidal corrections dg*(P) and Dg'(P) to the inverse Hotine
formula dg°(P) (the spherical gravity disturbance) and the inverse Stokes formula

Dg°(P) (the spherical gravity anomaly) respectively.
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By adding the ellipsoidal corrections to their spherical solutions, the error of the
gravity disturbance and the gravity anomaly decreases from O(€?) to O(e*), which can
be neglected for most practical purposes.

dg'(P) is expressed as a sum of a simple analytical function about dg®(P) and an
integral about dg®. In the practical computation of the integral, the input data dg°
can be substituted by the gravity disturbance dg, which can be approximately
computed from global geopotential models. The integral part of dg'(P) can also be

computed directly from global geopotential models viaformula (4.2.26).

Dg*(P) is expressed as a sum of asimple analytical function about Dg° (P) and T(P)
and an integral about Dg° and T. In the practical computation of the integral, the

input data Dg°® and T(P) can be substituted respectively by the gravity anomaly Dg

and the spherical disturbing potential T°, which are aready available globally with
resolutions of less than 1 degree and locally with higher resolutions. The integral part

of Dg'(P) can aso be computed directly from the global geopotential models via
formula (4.2.26).

Like the ellipsoidal correction to gravity anomaly given in Wang (1999), the
ellipsoidal correction Dg*(P) is aso be computed from an auxiliary data Dg° (or
Dg). However, the kernel function in the formula of computing Dg° (or Dg) is
simpler than the kernel function in the formula of computing the auxiliary datac used
in Wang (1999) and Dg° (or Dg) isalready available globally with the resolutions of
less than 1 degree and locally with higher resolutions. Therefore the ellipsoidal

correction Dg*(P) given in this chapter is more effective.
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5 Solutions to the Second Geodetic Boundary
Value Problem

In chapter 1, we discussed the definition and the significance of the second geodetic
boundary value problem (SGBVP). In this chapter, we will give some approximate

solutions of this problem.

By definition, the SGBVP is an oblique derivative problem and its boundary surface is
the very complicated topographical surface of the Earth. Similar to solving the third
geodetic boundary value problem, we can directly solve the SGBVP by an integra
eguation method or convert this problem into a normal derivative problem, such as the
spherical boundary value problem or the ellipsoidal boundary value problem, by properly
adjusting the disturbing potential.

In this chapter, we will first investigate the second spherical boundary value problem and
the second ellipsoidal boundary value problem, then apply the solutions of these two
normal derivative problems to solve the SGBVP. Three approximate solutions of the
SGBVP and a brief comparison of these solutions will be given.

5.1 Second spherical boundary value problem

In this section, we will discuss the second spherical boundary value problem. It can be
defined mathematically asfinding afunction T such that

1TT H[S]

|
iy
j =- i

T T, =-dg(P) PisonS,,

(5.1.1)
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where % means the derivative along the radial vector and Sy isthe mean sphere.

5.1.1 Generalized Hotine for mula

Since T is harmonic outside Sy, it can be shown that r%T is also harmonic outside Sy.

Following Heiskanen and Moritz (1967) and noting the second condition in (5.1.1), we
have for P outside Sy

2
'n T(P) = EO—rPI 3R Rdg(Q)ds  (Qison Su) (5.1.2)
Therefore
T -=- io—‘rpz'Rsz (Qds  (QisonSu) (5.1.3)

Integrating the above formulafrom r, to ¥ along the radial direction of P and noting the

regularity condition in (5.1.1), we have for P outside Sy

TP) = ™ d—|(P Q)dg(Q)ds (Qison Syv) (5.1.4)

S

where

¥ rP -R*R

H(P,Q) = Fd (Qison Sy) (5.1.5)
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In the following, we further evaluate the integral in (5.1.5). According to the definition of
theintegral, the point P in the above integral satisfiesy ,, =y 5. L€t

r=Xq, =X, Yoo=Y; X=R?+x?- 2Rxcosy (5.1.6)
P 0 P PQ
then
¥r:-R?R ¥ x?-R?
P P|3 r_drPI:RQU gdx
PQ P X(R? + x? - 2Rx cosy )2
\¥ X 2 \¥ 1
=R dx - R dx 51.7
¢ 0 XA/X Qo XXX I ( )
According to Wang et al. (1985),
4R? - 4R r
¥ X _ - X COoSsy
RQOX\/YdX__R 2 ain? 2 2
4R“sin y\/x 2Rxcosy +R Ny (5.1.8)
cosy - 15 COSY pq
sn’y IPQs:inzyPQ
We denote
a=Rcosy; b=Rsny (5.1.9
Then
¥ 1 d ¥
X =
Q. 3xJIx Q, X[(x - a)? +b2]1/(x a)’ +b2

- dx
Qo @ (x+a)[x?+ bZ]Jx +b?
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K. X-a
2 (x? - @®)[x*+b*]/x% + b2
N X-a r 1 1

2 (@ + b7 X2 + b7 (X7 - a%) X? 7p7 &

1 R 1 ¥ X-a

= - ax -
(@ +b7) Q- (x + VX2 +b? % Q. (X2 + D)/ x2 + b?
= L Q¥ ! dx
° +p? o Y 2
(&b Xl/(x " +b ) (5.1.10)

- d
QO—Za [(X+a)2 +b2]—\/(X+a)2 +b2 X}

Obviously, a®+b? =R?. Setting X, =(x +a)* +b?, then we have from Wang et al.
(1985) that

¢ 1 P X
QxyX — RTQxx T Qearesy XX

1

ax]

1 1, JX+R - 2Rcosy 4Rxcosy +4R2
—?{[- Eln( R—= )]X [ ,— vo- 2Rcosy }
0 sn y 0~
lo +R
:%{In(l- cosy ) - In(PQr—- cosy )
i (5.1.11)
] cosy L Tocosy +R- 2Rcoszy}
sn’y lpgSin’y
It follows from (5.1.5), (5.1.7) and (5.1.8) that
lpo + R - rpCOS
H(P, Q)——- In P29 po (5.1.12)

lpo rp(l- COSY pq)
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Thus we obtain formula (5.1.4) plus formula (5.1.12) for computing T of the points
outside Sy. Furthermore, letting P go to the surface Sy in (5.1.4), i.e. letting r, ® R, and

noting that T is continuous onto Sy, we obtain

T(P) =4—F:)Cﬁ(y -0)dg(Q)ds (51.13)
where
H(y PQ) = ; - In(1+ ;) (5.1.14)
SNy po/2) SNy po/2)

This means that (5.1.4) and (5.1.12) also hold on Sy. Therefore the solution of (5.1.1) can
be represented by (5.1.4) and (5.1.12).

The formula (5.1.13) plus (5.1.14) is Hotine' s formula, which represents the disturbing

potential on a sphere using gravity disturbances on the sphere. The other expression of
Hotine' sformulafor N can be obtained directly viaBruns formula

_ R
o = g 1O Qs (5.1.15)

Obvioudly, formula (5.1.4) plus (5.1.12) generalizes Hotine's formula from the surface
Swu toitsexternal space. So it can be called the generalized Hotine formula.

5.1.2 Discussion

The solution (5.1.4), the unique solution of the second spherical boundary value

problem (5.1.1), is a generdization of Hotine's formula. It is smilar to the



131
generalized Stokes formula (2-16) in Heiskanen and Moritz (1967) and its kernel
function H(P,Q) is simpler than the generalized Stokes function.

From the derivation of the generalized Hotine formula, we know that the condition
T(P) =0/ r,f), which is required in the derivation of Stokes's formula, is not

needed. This means that in the SGBVP, the reference ellipsoid is not required to
satisfy that its mass equals to the mass of the Earth and its centre coincides with the

centre of mass of the Earth.

To apply Hotine's formula to the SGBVP, the disturbing potential should be
transformed so that it is harmonic outside Sy and the gravity disturbances should be
reduced from Sg onto Sy. The distance dr between the two surfaces Sg and Sy can
also be obtained from GPS measurements. Since dr is large than the geodetic heights
h, the distance between Sg and Sy, in most areas, the transform of the disturbing
potential and the reduction of gravity disturbances may cause a big error. A method to
avoid the big error is transforming the disturbing potential so that it is harmonic
outside S and reducing the gravity disturbances from St onto Se and then solving the
second ellipsoidal boundary value problem.

5.2 Ellipsoidal correctionsto Hotine' sformula

Hotine's formula gives a method for evaluating the geoidal heights from the gravity
disturbances. As we discussed above, however, the input data and the output data in
Hotine' s formula are on a sphere with radius R. An adjustment of the anomalous gravity
field such as the gravity reduction or the analytical continuation of gravity disturbancesis
needed to apply Hotine's formula to solve the SGBVP. To avoid the big error caused by
the adjustment, it is better to adjust the anomalous gravity field so that the disturbing
potential is harmonic outside the reference ellipsoid Se and the gravity disturbance data
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are given on S.. Thus we obtain the second ellipsoidal boundary value problem. The
mathematical definition is asfollows:

iTT H[S,]

|
i
+%TP =-dg(P) PisonS,

(5.2.1)

where .”—11] means the derivative along the normal plumb line and S, is the surface of the

reference ellipsoid.

Unlike the second spherical boundary value problem, the second ellipsoidal boundary
value problem has no exact closed solution like Hotine's formula. An approach for
approximately expressing the solution of the problem isregarding Hotine' sformula asits
first approximation and extending the approximation up to the term of O(€?), called the
ellipsoidal correction to Hotine's formula. In the following subsections, we will give a
formula of computing the ellipsoidal correction.

5.2.1 Establishment of theintegral equation

In this section, we will establish an integral equation by means of (5.2.1), which will be
employed to obtain the final solution of (5.2.1).

It can be proved that for an arbitrarily point Py given inside Sg, the general Hotine
function

2r lop + 1 - IpCOS
H(P,P,) = A L S Y pp,
ler, ro(1- CoSY pp)

(5.2.2)

satisfies
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H(P, PO)T H[S,] (for the fixed point Pp) (5.2.3)

So from (5.2.1) and Green's second identity (Heiskanen and Moritz, 1967), we obtain
that

o J(®) %Q = - (FO(QH(Q,P,)dQ (5.2.4)
Se Q S

In (5.2.2), letting P be the moving point Q on S and differentiating H(Q, Po) along the
normal plumblineat Q, we get

THQPR) _ 2% o | 1 Ty firq COSY or )
The 15, hg  ro(l- cosy o) Thg The

]

] 1 ['HIQPO ~ Ti(rg cosy o5)

lop, + e, = 1o COSY op,  TINg The

]

20, Mog
2
lor Thq

+K(QR) (5.2.5)

where

1 firg ﬂ(rQ cosy QPO)
P)= i
K.(QFo) ro(1- cosy on)['ﬂhq Thg

]

] 1 ['HIQPO ~ Ti(rg cosy o5)

lop, + T, = 1o COSY op,  TINg The

1 (5.2.6)

It is easy to prove that when Py goes to P (the projection of Py on Sg) from the inner of Sg,
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2, Tﬁé Q= o2 Qry ﬂhQ(lQp )dQ® 4pT(P)r,, |2P 'anQ (5.2.7)

and
QT(Q)Kl(Q, P)dQ® QT(Q)Kl(Q, P)dQ (5.2.8)
S(\)jg(Q)H(Q, F)dQ® SE\}jg(Q)H(Q, P)Q (5.2.9)

So for any given point P on Sg, we obtain by letting P, ® P in (5.2.4) that

4pT(P)r, - ONQ)K(Q,P)dQ = (¥lg(QH(Q,P)Q (5.2.10)
Se S
where
K(Q,P) = THQ.F) (5.2.11)
The

Equation (5.2.10) isthe integral equation that will be used for determining T on S..

5.2.2 Deter mination of the geoidal height

Denoting the projection of the surface element dQ onto the unit sphere s by ds,, we

have

dQ =rjsechds, (5.2.12)
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where b, isthe angle between the radia vector and the normal of Q on Se. Then, for any

given point Pon Sg, (5.2.10) becomes
r2 r2
4pT(P) - N(QK(Q, P)r—QsechdsQ = (F9(QH(Q, P)rﬁsechdsQ (5.2.13)
s P s P

With be the semiminor axis and e the first eccentricity of the reference ellipsoid, and q,

and g, respectively the complements of the geocentric latitudes of P and Q, we have

similar formulas with those given in chapter 3:

rp = be[1+%e2(1- cos® g,) + O(e")] (5.2.144)
ro=b [1+Ee2(1- cos®g,) + O(e™)] (5.2.14b)
Q e 2 Q L.

| gp = 2b, in yzQP [1+%e2 (2- cos’ g, - coS? q,) +O(e")] (5.2.14¢)
r3sech, =bZ[1+e’(1- cos’q,) + O(e")] (5.2.14d)
ﬂrQ — 4
o —1+0(e) (5.2.14¢)
fihg

I COS(, - COSOp)°
Moe —sinl [1- 1ez(:acoszqQ +c0s?qp - (cosd %) )+0(e*)] (5.2.14f)
fhe 2" 4 Y o

T

ﬂ(rQ cosy QP)

g = COSY op *+€7(C0S0, COSQ, - COS” gy COSY op) +O(e”) (5.2.149)

It then follows from (5.2.1) that

H(QP)-2 500D = B[H(Y gp) * E4(Y gn.0o,0e) + O(E)] (5.2.15)
b
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where H(y ) isthe Hotine function

H = - In(1+ 5216
M =502 " eny ) (5216
and
. 1.

f1(Y gprdq.ap) = H(Y QP)(snqu - Esnqu) (5.2.17)

From (5.2.11) and (5.2.5), we obtain

r2

K(Q, P)r—Qsech =€, (Y gp+Uq,dp) + O(e") (5.2.18)

P

where

(cosq - cosQp)° N (cosqp - 3c0s(g)(cosqp - €osd,)

fo(Y gps0o,Up) =-

gsin® & 8sin2 %"

2 2

.\ 5cos’ g, - COS’ O
8sin2%

2

.\ 1 - (cosqq - €osqp)” , 40080 COST, - 4cos’ qq
gu+sn’®)  sn2l® sin? <
2 2 2
- 5¢0s’ g, +€0S’ g, ] (5.2.19)

Therefore from (5.2.13), we obtain

4pT(P) - ez OT(Q)fz(y QP! qQ J qp)ds Q

= b, (FI(Q)H(Y op)ds ,, +e’b, (HI(Q)f (Y o Uq.Tp)dS o +O(e*) (5.2.20)



137
Let

T(P) =T, (P) +€°T,(P) + O(e*) (5.2.21)
Then from (6.1.27), we obtain
n®=%@wmw@mq (5.2.22)

T.(P)= 4ip{ b, FA(Qf 1 (Y gp1Ug.Ap)dS g + Qo (QF (Y gp1Tg.Tp)dS o} (5:2.23)

According to the Bruns formula, we obtain from (5.2.21-23) the geoidal height

N(P) = N¢(P) +e*N{(P) + O(e*) (5.2.24)

with the spherical geoidal height

NS(P) =

b,
4p;P Scjig(Q)H(y o )dS g (5.2.25)

and its ellipsoidal correction

N{KP) = 4—2{% FIQF (Y gp:0q-0p)dS o + NFHQ) (Y gp.g.Tp)dS o} (5.2.26)

where f1 and f, are defined respectively by (5.2.17) and (5.2.19).

From the definition of the mean radius R of the Earth (see (1.1.24)), we have
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b, = R(L- e—;) (5.2.27)

It follows from (5.2.24-26) that

N(P) = N, (P) +e*N,(P) + O(e”) (5.2.28)
_ R
No(P) = 4pg, g-i(y 0p)dg(Q)ds (5.2.29)

N, (P) = 4—2{5 FIQf o (Y oo 0p)IS o + NFQ 5 (Y oo Uo.dp)dS o} (5:230)

where

. 1. 1
fo(y gpiUq.dp) =H(Y QP)(snqu - Esmzqn: - :—3) (5.2.31)

Equation (5.2.28) plus equations (5.2.29), (5.2.30), (5.2.31) and (5.2.19) are the formulas
for computing the ellipsoidal geoidal height with accuracy of the order of O(e"). We can
cal (5.2.28) the ellipsoidal Hotine formula and N; the ellipsoidal correction for
Hotine' sformula (5.2.29).

5.2.3 Practical considerationson the ellipsoidal correction

In the above subsection, we obtained the Hotine formula (5.2.29) and its ellipsoidal
correction (5.2.30). The ellipsoidal correction N; is a sum of two integrals about the
gravity disturbance dg and the spherical geoidal height No. Here we give some details on
the evaluation of the integrals of the ellipsoidal correction Nj.
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The kernel functions fo and f of the integrals are singular at y ,,=0 because they

(i)

contain the factors

(5.2.32)

1

(cosqg - cosQp)° cos(q, - COSp

241

| (degree)

239

44

Figure5.1 Behavior of kernel function fo of the ellipsoidal correction to Hotine's

450, | p=240)

formulain the neighborhood of (qp
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o0

Tog

23945

Figure 5.2 Behavior of kernel function f, of the ellipsoidal correction to Hotine's
formulain the neighborhood of (qp=45°, | s=240°)

From (3.3.3), we have that for y , <<1,

1. 2
fo(Y gprUo:Op) » ——(SiN* 0y - =) (5.2.33)
Yo 3

2 + (g 2 1 . 2
Cos”Qp + (Sin0p COSa ) - 5 8iN2q, c0Sa g

f,(Y opr0g:Tp) » (5.2.34)
y QP

Thus the kernel functions fo and f2 have the same degree of singularity at y o, =0
as the Stokes function Sy ) and the Hotine function H(y ). So the integrals

in (5.2.30) are weakly singular integrals and the singularity can be treated by the
method used for Stokes' s integral (see Heiskanen and Moritz, 1967).
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(i) From the definitions (2.31) of fo, we know that like the Stokes function, fo quickly

decreases when y ,, goes from O to p. Therefore, in the practical evaluation of
the integral component, we divide s into two parts: s, and s, , where the area

s . isusualy a spherical cap containing the computation point P as its centre.

near

Since the kernel function is larger over s the integral over s, . should be

carefully computed using a high resolution and high accuracy spherical geoid
model obtained from the ground gravity data by means of Stokes's formula (2.42)

if a high accuracy geoid is required. The area s, is far from the computation
point P, so the kernel function is relatively small over s, .. Therefore, in the
computation of theintegral over s, we can use the spherical geoidal height data

No computed from a global geopotential model.

5.3 Treatment of the topography in Hotine's formula

In the preceding sections, we have given the solutions of the spherical and ellipsoidal
boundary value problems: Hotine's formula (5.1.13) and the ellipsoidal Hotine formula
(5.2.28). In these two formulas, the input data dg should be given on the surface Sy of the
mean sphere (or the reference elipsoid S) and there is no mass outside Sy (or ).
However, in the SGBVP, we can only have gravity disturbances on the topographic
surface Sg and the mass densities outside S (or Su) are not zero. So before employing the
Hotine formula to solve the SGBVP, we should adjust the anomalous gravity field to
convert the SGBVP into the spherical or ellipsoidal boundary value problem. In this
section, we will introduce two methods of adjusting the anomalous gravity field:
Helmert’ s condensation reduction and the analytical continuation approach. The solutions
of these two methods are expressed as the sum of Hotine' s formula and a correction term.
This correction term, which reflects the effect of the mass above the sphere or ellipsoid,
is called the topographic correction. We will also introduce an integral equation method



142
that gives an approximate solution of the SGBVP by solving it directly. The solution of
the integral equation method is also expressed as the sum of Hotine's formula and a
topographic correction. Finally, we will give a brief comparison of the three topographic
corrections.

5.3.1 Helmert’s condensation reduction

Helmert's condensation reduction is a very classical method of accounting for the
topographic masses in Stokes's theory (Sideris, 1990). Here we use its basic spirit to
handle the effect of the topographic masses with Hotine's formula.

Basic Steps

Similar to its application in Stokes's theory, the basic steps of Helmert's condensation
reduction are as follows:

(a) remove all masses above the reference ellipsoid Sg;
(b) lower the station from the observation point P on the topographic surface S to the
point Py on the éllipsoid S;

(c) restore the masses condensed on alayer on the ellipsoid Se with density s=r h.
Formulas
From this procedure, we can compute dg;' on the elipsoid via
dgy =dg, - A, +Af =dg, +dA (5.3.1)

where the superscript H denotes Helmet's reduction, dg, is the free-air gravity
disturbance at P, Ap is the attraction of the topography at P and A,‘j0 is the attraction of

the condensed topography at Po.
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Figure5.3 The geometry of Helmert’s condensation reduction

Obvioudly, the attraction change dA is not the only change associated with this reduction.
Due to the shifting of masses, the potential changes as well by an amount called the
indirect effect on the potential, given by the following equation:

dT=T, - T (5.3.2)

where T, isthe potentia of the topographic masses at P and Tg is the potential of the
condensed masses at Py. Due to this potential change, the use of Hotine's formula with
dg}' produces not the geoid but a surface called the co-geoid. Thus, the final expression
giving the geoidal heights can be written as

No = s G105 005 Qs + 2 NP 533)

where N° is the co-geoidal height and dN is the indirect effect on the geoid. In planar
approximation, using geodetic heights h instead of orthometric heights H in Sideris
(1990), dT and dA can be formulated using the vertical derivative operator L (see
(1.4.12d)). The potential changeis
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¥
- _ 2 2 1 2k-1p, 2k+1
dT =- pGrhg - 2pGr 21 2k +D) L“"h (5.349)

and the attraction change is equal to the terrain correction c:

— — g 1 2k-1 2k
dA, =c, = 2pGr %mL (h-hyp) (5.3.5)

where G denotes Newton’s gravitational constant and r is the density of the topography,

which is supposed to be known.

If we just consider the first terms of (5.3.4) and (5.3.5), then

dN(P) = - pGr h3g™* (5.3.6)
and
2 1 2 \(hQ B hp)z
dA, =pGr(L(h- hp)%)p :EGr R O|s—ds (5.3.7)
S PQo
Discussion

The method described above is similar to that used in the Stokes theory except
that the orthometric height H used in the Stokes theory is substituted by the
geodetic height h here.

The density of the topographic massesis assumed to be known in the solution.

An ellipsoidal correction discussed in section 5.2 should be added to the final

solution above if a high accuracy geoid model isrequired.
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5.3.2 Analytical continuation method

In this section, we will use the Moritz's method (Moritz 1980) used in Molodensky’s
problem to solve the SGBVP. In this method, no density assumptions are required and to
satisfy the condition of Hotine's formula, a potential T harmonic outside the geocentre

and satisfying the theorem 3 in chapter 2 will be employed.

Analytical continuation of the gravity disturbance

Let P be a point on the topographic surface Sg, at which the height anomaly z is wanted,
and Q be a point on Sg a which the gravity disturbance dg is given. The gravity
disturbance of T at the ellipsoid Sp through P is denoted by dg (see the following
figure).

ZqQ
dg P /
/7 Qf T Sr
el
_— A

Figure5.4 Thegeometry of the analytical continuation method

Similar to the work done in section 2.4.2, we can obtain the relation between dg and dg

asfollows
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dg, = ?:oﬁ o ‘ﬂzg Zy = hQ - h, (5.3.8)
By inverting the above equation, we obtain
¥ n
dgo, = A 9,(Q), 9,(Q) =dgy, 9,(Q) =- A z5(L I m)o (5.3.9)
n=0 m=1

where L isthe vertical derivative operator.

Applying Hotine’' sformula
Since dg isgiven on the ellipsoid Sp, z at point P can be obtained by Hotine's formula

Re o § R, .
G ro)dbos o =a 7 OH(Y ro)dg, Qs (5.3.10)
Ps

4 P s n=0

Z, =
Considering only the first two terms of the above infinite series, we have
3h,
Zp = NO(P)+?NO(P)+H(91)P (5.3.11)
where
R \
N, (P) = 4_pg OH(Y ro)dgds 4 (5.312)

The Hotine operator H is defined by
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R .
H(f)p = 4_pgsd_|(y po)f oS g (5.3.13)
and
h,-h 2 (h,-h -
0@ = (g~ L= 2P K JPe” 1o Bly, (5314
Ps laq
Discussion

The method described above is identical to the method given by Moritz (1980) in
the third geodetic boundary value problem except that the orthometric height is
employed here.

An ellipsoidal correction discussed in section 5.2 should be added to the final

solution above if the geodetic height h is employed in the solution.

5.3.3 Theintegral equation method

In this section, we will give an integral equation method of solving the second geodetic
boundary value problem

1T HS]

by

| =- i

f1h T, =-dg(P) PisonS:

(5.3.15)

where St is the topographic surface of the Earth. The generalized Hotine formula will be
employed to establish two integral equations from which the height anomaly z will be
obtained.
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Establishment of theintegral equations

It can be proved that for any continuous function dg” on S, the function

T(P) = 4piR H(P.Q)dg’ (Q)dS, (Pison and outside S, (5.3.16)

satisfies the first condition of (5.3.15). Thus we can represent the disturbing potential T
by the above formula provided that there exists dg so that T satisfies the boundary

condition in (5.3.15). Differentiating (5.3.16), we obtain

1. 1 .1 \ .
'H_rPT(P) = R Sg i H(P,Q)]dg (Q)dS. (PisoutsideS;) (5.3.17)

From the definition (5.1.12) of the generalized Hotine function, we have that

ro(r2-r? r
follo %) o 1, 4 To (5.3.18)
e

el o

THP.Q)-

3
fire rol PQ

Letting P go to S;, we obtain from the boundary condition and the properties of the
single layer potential (see Heiskanen and Moritz, 1967) that
r 1 ro(r5-13)

- dg, =- 2dg (P)cosb,, + dg’ (Q)dS 5.3.19
Op R o (P) p 4pRSEO rPI?I;Q g (Q) E ( )

where b, isthe angle between the radius vector of P and the normal of S; at point P.

Denoting dg (Q)secho and the projection of the surface element dS. onto the unit sphere

s by mQ) andds,, respectively, we have from (5.3.16) and (5.3.19) that
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A éH(P,Q)r’r(Q)olsQ (Pisonand outside S; and Qison S;) (5.3.20)

S

1
TP)=——
) 4pR

T 1 Tg(re - 1o)
dg, = Err(P)coszbP +4_p ()Wn(Q)dsQ (PandQareon S.) (5.3.21)

s Pl PQ

An approximate solution of theintegral equations

In the following, we will now solve the above two integral equations to get the formulas

for computing the height anomalies on the topographic surface S from the gravity

disturbanceson S;.

Denoting the distances of P and Q to Sv by dr, and dr, respectively (see figure below),

we have

dr,

L = R+ dI’P = R[1+ H] (5322)
dr,,

o =R+dr, = R[1+?] (5.3.23)

+ } 2
12, =4r?sin? Y ra 4 et dlo el , (e - )", (5.3.24)
& T gresnzlee

Figure5.5 The geometry of theintegral equation method
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Let
drp - dr
fog = "—yQ Ky = sup [foq (5.3.25)
2Rsin =2 Pas
2
and
K, = sup |92 (5.3.26)
pads| R
Obviously
L < 22K _ 6004 (5.3.27)
6371km
In the sequel, we suppose that
k,<1 (5.3.28)
and neglect the quantities equal to or less than the order of k3 and k,f PZQ :
From (5.3.24) and noting (5.3.27) and (5.3.28), we have
B . Yo, 1dp+dg 1
lpo =2Rsin , [1+E = +§f,§Q +O(f,;‘Q)] (5.3.29)
1 1 1dr, +dr, 1
== [1- 5 P = Q. Ef,fQ +0(f 50)] (5.3.30)
R JRsn
dro +dr
11 . 3% % §f,§Q +0(f )] (5.3.31)

e gregnrYre 2 R 2
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It follows that

(@+2sn? P2 o
2 PQ
+O 1 (53.32)

yﬂ) gnm
2

2 2 2er
rQH(PaQ) =RH(y PQ) +_R H(y PQ) . y
2sin$(1+sin

2
37,2 _ 2 d _ d d _ d
rQ(rP _ rQ) = rP rQ [1+ 2 rQ rP _ Efle + O(f :Q)] (5333)
Rrpl g ARSI Yro R 2
2
Furthermore, let
mP) =my,(P) +m(P) (5.3.34)
T(P)=T,(P) +T,(P) (5.3.35)
where
m,(P) = dg, (5.3.36)
R \
To(P) = a OH(Y po)dgods o (5.3.37)

Inserting equations (5.3.22), (5.3.33), (5.3.34) and (5.3.36) into (5.3.21) and equations
(5.3.32), (5.3.35) and (5.3.37) into (5.3.20) and neglecting the terms equal to or less than

the order of k,m, we obtain

sec’b, , drg - drp
4p 0

ar
m () = dg[tan’b, - ~ 2]+ dgqds

*4Rsin’ =2
2
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, drg - drp

1 3
— dgpds g - — fPngstQ
2pssiny$ % Sargne Y
1, dy .
+o(,- f4.dgods o) (5.3.38)
Psargnl
2
R . 2er
T,(P)= P G p)[M(Q) + —~dgolds g
R . (@r2snTig, e
"0y y o ddods o+ O(—ondesQ) (5.3.39)
s 2sin PQ(1+s|n "Q) S5 ;Q

In the above two equations, neglecting respectively the terms of the order of

dr, - drp
Lyl fadg ds (5.3.40)
4p Yeg o °
*4Rsin®=2
R 4
—C dg,ds (5.3.41)
4p gny P
we obtain

dr,. sec’b, . dry-drp
0

m(P) = dg,[tan” b, - —*]+— dgyds
P syrgnl
2
; drg - dr
+2i‘ s dedsQ-Si‘ @ —F f2dgyds, (5.3.42)
pssny% * 4Rsin” =%
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R . 2er
T.(P)= s (Y )M (Q) + TdQQ]dSQ

Y
R (@+2sin ;Q)f,ZQ

"0
4P Zsiny%(Hsin

dgqds o (5.343)
y PQ )
2

Let

2dr,, ’ dr,. sec’b, . dry-drp
dg, = dgp[tan®b, +—=] + POy—2
R gP gP[ P R ] 4p

dg, (P) =m(P) + dgyds

s 4Rsin® X2
2
sec’b, . fpo
2p 0

3sec’b, | dry - dr;

dgedsy -

s gn—2 P s4rgn3l™
2 2

fodgods, (5.3.44)

Then from Bruns' formula, we finally obtain from (5.3.35) that

z(P)=2z,(P)+z,(P) (5.3.45)
and
Zo(P) = —— (Y po)dgods (5.3.46)
° 4ng s P ° ° o
R R r2snt s
2:(P) = 40 010 )0y (Qds o - 70— y—ddelsq (5:347)
P < 52§n$(1+5in%)

Equations (5.3.45), (5.3.46), (5.3.47) and (5.3.44) are the formulas for computing the
height anomalies on the topographic surface S;, which take the effect of the topography
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into account. The term dg, defined by (5.3.44) can be called the topography correction to

the gravity disturbance and z, defined by (5.3.47) the topographic correction to the
height anomaly.

Discussion

Here we will give some discussion on the approximate formulas for computing the height

anomalies on the topographic surface S .

1. The solution is based on the second geodetic boundary value problem with the
topographic surface S; as its boundary surface. The method for approximately

solving the problem is similar with that used by Brovar (Moritz 1980) in
Molodensky’ s problem.

2. In the derivation of the formulas (5.3.45), (5.3.46), (5.3.47) and (5.3.44), we made
several assumptions:

a. Tomakethe equations (5.3.29-31) hold, we suppose (5.3.28) holds,
b. To make the solutions (5.3.44) and (5.3.47) valid, we suppose that the integral

o (5.3.48)

exists.

Since
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foo® tanbg  when Q® P (5.3.49)

where b¢ is the inclination angle of the topographic surface along the direction %

the condition (5.3.28) can be satisfied when

suptan” by| <1 or sugb,| < 44.856° (5.3.50)
Al S A s

Now we investigate the method for handling the integral (5.3.48). Obviously, we only
need to consider the integral in the innermost spherical cap area s with the centre at

the computation point P and aradius y ,, which is so small that the spherical cap area

So can be treated as a plane. That is we discuss the following integral:

oldSo (5.3.51)
For Qinso, we expand dr,, into aTaylor series at the computation point P:
dry = drp +xdrp + ydr,p + (X2dr ., + Xydr, o + yzdryzp) oE (5.3.52)
where the rectangular coordinates x, y are defined by
X =1poC08a0p; Y =lpaSiNag, (5.3.53)

so that the x-axis points north, and

Tdr T2ar T2ar

d ar
g = (0 0y = (11117)“ 0 = (g )oitop =g 0 )oi Oy = ()5 (6354
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The Taylor series (5.3.52) may also be written as
dry, - drp =(dr,, cosa ,, +drpsinage)l e,

+(dr ., cos” agp +drpc08a5pSNA G + dryzP sn“agp)lpg - (5.3.59)

Inserting this into (5.3.51), performing the integration with respect to a ., firgt,

noting (4.1.29) and neglecting the quantities of O(12) , we have

_|dggl
dg°(P) = ; S[dr ., +dr .. ] (5.3.56)
where
| =2Rsin’®
0~ Sm7 (5.357)

So, when the topographic surface Sg is smooth enough (its radius vector is
differentiable at least twice), the integral (5.3.48) exists and can be handled via the
method discussed above.

In practice, the topographic surface can be obtained via mathematical fit from the

GPS measurements. So it can be selected to satisfy the above two conditions.

In the derivation of the formulas, the quantity dr, is the distance of P on the
topographic surface Sg onto the surface of the mean sphere Sy. This quantity can also
be obtained from GPS measurements. In the formulas, the effect of the flattening of
the Earth isincluded in the topographic correction.
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5.3.4 Comparison of the three methods

In this subsection, we will discuss briefly the relationships among the three methods for
the computation of the geoidal height (or height anomaly) taking the topography into

account.

Relationship between Helmert’s condensation reduction and the analytical

continuation

Now we suppose that dg islinearly related with the elevation h. That is
dg, =a+2pGrh, (5.3.58)

Furthermore, we suppose that h/R is small enough so that the terms containing it can be
neglected. So from (5.3.14), we have

h, - hg
9,(Q) =GrR*¢Yh, - hp)%ds o (5.3.59)

RQ

It follows from (5.3.7) that

hg - ho)?- 2(hg - hp)(hg - N

|3 Q
s R
=pGr R? o - héds 2pGrh R® g - ths
- on Q- Pon O 3 ®o
2p 5 oo, P e,
=pGr (Lh?), - 2pGr h,(Lh), (5.3.60)
Since

HL =-g*l (5.3.61)

where | isthe unit operator, we obtain that
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H(g,)s =H(dA), - pGrhig™ (5.3.62)

So from (5.3.11), we have

z, =N,(P)+H(dA), - pGrhig™

=N°(P)+dN(P) (5.3.63)

Comparing with (5.3.33), we can conclude that Helmert’ s condensation reduction and the

analytical continuation are equivalent to each other when dg is linearly related with the

elevation h and h/R is zero (planar approximation).

Relationship between the solutions of the analytical continuation and the

integral equation method

Here we discuss briefly the relationship between solutions of the analytical continuation
and the integral equation method. We use the geodetic height h to replace dr and suppose

that h and b, are small enough so that the terms containing h/R, tan’b,, and f2, can

be neglected in (5.3.44) and (5.3.47). Thus we obtain

z(P) =z,(P) +z,(P) (5.3.64)
where
R .
z,(P) =Ny(P) = 4_pgsd_|(y po)dgodS, (5.3.65)
and
R .
z,(P) = Ing 9" (Y pq)dg, (Q)ds (5.3.66)

with
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R? \hodg, - hpdg
dgl(P)zz_pO Q ?3 pd9q
S PoQo

ds, (5.3.67)

The gravity correction term dg, can be rewritten as

R? .ho,dg, - ho.dg, R? .h.dg, - h.dg,
dg,(P)=—¢ ds, - —¢ ds
gl( ) 2p SO IgOQO Q 2p SO I:;OQO Q
=-L(hg)s +9,(P) (5.3.68)

where g; is defined by (5.3.14). It follows from (5.3.61) and (5.3.66) that

h.dg,

z,(P)=H(dg,)r =H(9,)s +PT (5.3.69)

where the second term of the right hand side of above formula can be neglected sinceitis
also asmall quantity as the quantities containing h/R.

So from (5.3.64) and (5.3.11) we can conclude that under the assumption that h and b,
are small enough so that the terms containing h/R, tan®b, and f,fQ can be neglected in

(5.3.44) and (5.3.47), the analytical continuation method and the integral equation
method are equivalent to each other.

Brief summary

In this subsection, we compared the three methods of evaluating the topography
correction. We have the following suggestions:

1. Inthe areathat the topography satisfies that Sg is smooth enough (its radius vector is
differentiable at least twice) and its inclination angles are less than 44°, we can
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employ the integral equation method to evaluate the topographic correction to the
geoidal height (or height anomaly) for it is rigorous under these assumptions.

2. In the area that the inclination angles and the elevations of the topography are very
small, we can employ the analytical continuation method to evaluate the topographic
correction to the geoidal height (or height anomaly) for it is equivalent to the integral
eguation method and has a simpler expression.

3. Furthermore, in the area that the mass densities of the topography are known and the
gravity disturbance dg is linearly related with the elevation h, we can employ
Helmert's condensation reduction to evaluate the topographic correction to the
geoidal height (or height anomaly) for it is equivalent to the analytical continuation
method and has a simpler expression.

5.4 Chapter summary

In this chapter, we investigated in detail the solutions to the SGBVP. We first obtained
the generalized Hotine formula and the ellipsoidal Hotine formula respectively from
solving the second spherical boundary value problem and the second ellipsoidal boundary
value problem. Then we applied the Hotine formulas to solve the SGBVP by the Helmert
condensation reduction and the analytical continuation method. We also gave an integral
eguation method for directly solving the SGBVP. A brief comparison of the solutions of
the three methods shows that the integral equation solution needs fewest assumptions but
is formulated complicatedly and under some assumptions, these three solutions are
equivalent to each other.
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6 Local Character of the Anomalous Gravity
Field

In section 1.5.4, we discussed the significance of the local character of the anomalous
gravity field. In this chapter, we will establish some integral models showing the local
relationships of the quantities of the anomalous gravity field by means of kernel functions
having some properties of wavelet.

6.1 Definition and properties of the basic kernel

In this section, we will define the basic kernel function for the models, from which other
kernel functions can be obtained, and discussits properties.

Definition 6.1 For an arbitrarily given point P in R® and a non-negative integer n, we
define F,(Q) in R°-{P} asfollows:

E (n=0)

nP(Q)
Fl T ; E (n>0) (6.1.1)

i
i
]
i
fn

where r, is the radius vector of P with respect to the geocentre, and leq is the distance

between point P and point Q in R*-{ P}.
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6.1.1 Lemmas

Before discussing the properties of F(Q) , we shall introduce several useful lemmas.

Lemma6.1 Let I, My, Y pq bethe radius of P and Q and the angle between r, and r

respectively, and
Np(Q) = 1o COSY 4o - T 6.1.2)
Then
(@ = 2@ (@) (613)
. [F Qs Q1 = 2R, QN (@) - Fo (@) (614)

Proof. From the definition of F(Q) , we have

al Fop (Q) = (15 +15 - 2151508y po) 2 (1gCOSY po - 1p) =Fip(Qh(Q)  (6.1.5)

s

1 _ 1 ) _ .

ﬂ_I’PhP(Q) = . (rqCosy pq - Ip) =-1 (6.1.6)
Therefore

ﬂ—’: F2(Q) = 2F,n(Q) ﬂ% Fr(Q = 2F5(Qhs(Q) 6.17)

[P _ T o 2 hE
'n_rP(FOP (Qh:(Q)) =h:(Q) . For (Q) + Fop (Q) " h:(Q)

P

= 2R, (Qh3 (Q) - Fin(Q) (6.1.8)

So lemma 6.1 holds#
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Lemma6.2 Let
t-(Q) = Fpp (Q)h(Q) (6.1.9)
Then
S1Et,(Q £1 (6.1.10)

Proof. From the definition (6.1.1) and (6.1.2), we have

1-12(0) = r5(1-cos’ Y pg)

2 *0 (6.1.11)
PQ

It follows that (6.1.10) holds #

Lemma6.3 If V isaninfinitely differentiable and harmonic function in an area [[Jthen
for an arbitrarily given constant vector r, %V is aso an infinitely differentiable and

harmonic function in the area [J

Proof. We denote the angles between r and the coordinate axes by a,,a,.a,,

respectively. Then

1 1 1 1
—V =cosa, —V +cosa, —V +cosa,—V . 1
X vy , (6.1.12)

fir 1Z

Sincer isaconstant vector, cosa,, cosa, and cosa, areall constants. %V is infinitely

differentiable because V is infinitely differentiable. And since V is harmonic in [Jwe
have that in [J
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2
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which means ‘ﬂlxv is harmonic in [JIn the same way, we can prove that
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(6.1.13)

lV and
1Y

'nlzv are also harmonic in [JIt follows from (6.1.12) that %V isharmonic in 3¢

6.1.2 Properties of the basic kernel function

Now we shall discuss the propertiesof F.(Q) .

Property 6.1 For an arbitrarily given point Pin R®, we have

e = DR QN (QF, £ Q- TR QR Q) (120)
1
E I:nP (Q) [ nP (Q) + rP n+1P (Q)] (n 3 O)

Proof. We use mathematical induction to prove the property.

(& Whenn =1, we have

%@F%ﬂ@=%@%@

(6.1.14)

(6.1.15)

(6.1.16)

i.e. (6.1.14) holds for n =1. Suppose that (6.1.14) holds for n =k, then by (6.1.3) and

(6.1.4),
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_ 1 1 2k-1
e =3 g [ R QMe(QF Q- E IR (QF ()]
e ACTREIRE) +i1£1[ngp (Qh2(Q)- 2 (Q)JF. . (Q)
(k-* 2(k-1)
) (k +k For (Q)Rar (Q) - (k +D)k ———Fp(Qhs(QF_ »(Q)
2kk 11F02P(Q)h (Q)FkP(Q) ng(Q)Fk »(Q) (6.1.17)

i.e. (6.1.14) holdsfor n =k+1 . So by the induction principal, (6.1.14) holds.

(b) Itisobviousthat (6.1.15) holds for n=0. Supposeit holds for n=k, then

ha 177
4p(Q) = (®)
1, Feap K+1 e Trg Fe

_ 1 9 (k+)
TRl [Fe (Q) + 1pF1p (Q)]

= - (K +DF 10 (Q) + Fern(Q) + (K + 21oFon(Q)]
Q

=- k+2 [Fk+1P (Q) + rP k+2P (Q)]

o

(6.1.18)

i.e. (6.1.15) holdsfor n=k+1. It follows that (6.1.15) holdsfor n® 0 #

Property 6.2 Fp(Q) = P (to(Q)IG™ (6.1.19)

where P, (t) isthe n-order Legendre polynomial (Heiskanen and Moritz, 1967).
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Proof. Let

Pp(Q) =Fo(QI5 (6.1.20)

then by Property 6.1 and noting that For(Q) = 75 we have

Pe(@ = QP @+ P Q) (6.1.21)

and
Pr(Q =1 (6.1.22)

Therefore by (1-59) in Heiskanen and Moritz (1967) and (6.1.10), we have

P.(Q =P, (t,(Q) (6.1.23)

Thismeansthat (6.1.19) holds #

Property 6.3 F_,(Q) isharmonicin R*-{P}.

Proof. Itiseasy to seethat For(Q) = l5g is harmonic and infinitely differentiable in R®-

{P}. By Lemma 6.3, we know that Fp(Q) = ﬂlrFop(Q) is harmonic and differentiable

P

and, by extending this, we obtain that for any non-negative integer n, F(Q) isharmonic

in R®-{P} #



By Property 6.2, we can obtain the following two properties:

Property 6.4 F.(Q) isregular,i.e,if r,® ¥ or |

Property 6.5 With anincreaseinn, when 1, ® ¥ or |,

F-(Q) increases.

Property 6.6 For r, <r,, wehave

g o
FnP(Q) = a Or

k-
k: "k P, (CoSY po)
k=n@K gl Q

)l
EFnP Q) = a (k +1)gk_ K+2 P (cosy PQ)

wherey ., istheangle between r, and r;.

Proof. According to Heiskanen and Moritz (1967),

1 rk
|_ = a k+1P (cosy PQ)
PQ k=0 Q

It then follows from (6.1.1) and (6.1.26) that (6.1.24) and (6.1.25) hold #

o ® ¥, then F.(Q) ® 0.
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® ¥ , therate of vanishing of

(6.1.24)

(6.1.25)

(6.1.26)

The properties 6.4 and 6.5 show that F,(Q) has some properties of wavelet y () (see

Keller, 1995: y _,(t) ° y(%), nis similar to a* and P and Q correspond to b and t
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respectively; also see Hohlschneider, 1995, Freeden and Schneider, 1998 and Liu et al.,
1998 for more information about wavelets and their applications). In fact, from (6.1.19),

we can see that F,(Q) is the product of P,(t,(Q)) and 1.5™, where the function

P.(t.(Q)) is a wave function which varies between —1 and 1 and whose frequency

- (n+1)

increases with an increase in n. The function 1,

can be regarded as the amplitude

which vanishes with an increase in Ipg, and the rate of vanishing increases as n increases.
Regarding this, we can get further understanding from the following two tables.

We consider a situation in which Q moves only on a curved surface, which might as well

be supposed to be the surface of a sphere with radius I, and P is a point which does not
belong on the surface, i.e. I, * Iy. Let d=r, - Iy and Y be the angle between r, and ry -
Then by the definition of F,(Q), we know that F_.(Q) relatesonly to r,, n,dand ¥,

i.e

Fe(Q) =F(rg,n,d,y) . (6.1.27)

Let

R; = F(ry,n,d,y)/F(ry,n,d,0) (6.1.28)

Then tables 6.1 and 6.2 show the relationships between Rs and n, d, ¥ when rqg=6372
km. From table 6.1, we can see that Ry decreases with an increase in Yy, and the rate of
decrease increases with an increase in the distance d of P from the surface on which Q
moves. For a pictorial representation, see Figure 6.1. From table 6.2, we can see that Rs
decreases with anincreasein Y , and the rate of decrease increases with an increase in n.
Figure 6.2 illustrates this behavior.
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Table6.1 Rsvaluesfor variousvaluesof d(in km) and Yy (in degree)

when 1,=6372km, n=2

d -0.001 0.001 -1.000 1.000 -200.000 200.000
Yo
0.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0E-06 9.637E-01 | 9.637E-01 9.999E-01 | 9.999E-01 | 1.000E+00 | 1.000E+00
1.0E-05 5.099E-02 | 5.099E-02 9.999E-01 | 9.999E-01 | 1.000E+00 | 1.000E+00
1.0E-04 -3.505E-04 | -3.505E-04 | 9.996E-01 | 9.996E-01 | 9.999E-01 | 9.999E-01
1.0E-03 -3.634E-07 | -3.634E-07 | 9.637E-01 | 9.637E-01 | 9.999E-01 | 9.999E-01
1.0E-02 -3.635E-10 | -3.635E-10 | 5.100E-02 | 5.090E-02 | 9.999E-01 | 9.999E-01
1.0E-01 -3.635E-13 | -3.635E-13 | -3.507E-04 | -3.507E-04 | 9.909E-01 | 9.906E-01
1.0E+00 -3.634E-16 | -3.634E-16 | -3.635E-07 | -3.630E-07 | 4.341E-01 | 4.280E-01
1.0E+01 -3.552E-19 | -3.552E-19 | -3.554E-10 | -3.549E-10 | -2.829E-03 | -2.117E-03
Ry

Figure 6.1 Thereationship between Rfand d (in km), ¥ (degree)

when 1,=6372 km, n=2



Table6.2 Rs-valuesfor variousvaluesof nand Yy (in degree)

when r,=6372(km) and d=-0.001(km)
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n 0 1 10 50 100 1000
yo
0.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0E-06] 9.938E-01] 9.817E-01| 6.448E-01] 1.810E-02( -7.896E-02]| -1.611E-04
1.0E-05] 6.686E-01] 2.989E-01| -5.211E-04| -1.196E-10{ -4.521E-20| 0.000E+00
1.0E-04] 8.996E-02| 7.183E-04| -4.307E-13| 7.403E-56/ 0.000E+00| 0.000E+00
1.0E-03] 8.991E-03] 7.262E-07] -7.608E-24] 0.000E+00| 0.000E+00| 0.000E+00
1.0E-02] 8.992E-04] 6.565E-10| -7.645E-35| 0.000E+00| 0.000E+00| 0.000E+00
1.0E-01] 8.992E-05] -6.329E-12| -7.645E-46] 0.000E+00| 0.000E+00| 0.000E+00
1.0E+00] 8.992E-06] -7.048E-13] -7.614E-57] 0.000E+00| 0.000E+00| 0.000E+00
1.0E+01] 8.992E-07] -7.056E-14] -4.649E-68] 0.000E+00| 0.000E+00| 0.000E+00

Figure 6.2 Thereationship between Rfand n,y (degree)
when r,=6372 (km), d=-0.001 (km)
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6.2 L ocal relationships among the disturbing density, the
disturbing potential and the disturbing gravity

In the preceding section, for a non-negative integer n and an arbitrarily given point Pin
R®, we defined a function F.(Q) being harmonic in R*-{P} and having some
properties of wavelet. In this section, we will, by means of F,(Q), establish the
relationships among the disturbing density dr, the disturbing potential T and the

disturbing gravity dg (or the gravity anomaly Dg) in the Earth's gravity field.

6.2.1 Local relationship between the disturbing potential and the
disturbing gravity on aleveling surface

The disturbing potential T satisfies the following relation (Guan and Ning, 1981):

The unit sphere

Figure 6.3 Therelation among g,, g, and R,
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iT(Q) » -[dg(Q) - g,E cosutana ,]cosa (6.2.1)

ing
where N, isan arbitrarily given vector a Q, a, isthe angle between n, and the gravity
vector g, a Q, Q is the total deflection of the vertical and u is an angle between the

plane (d,,N,) and the plane (4, G,) (see Figure 6.3).

When ng is the interior normal vector of a surface s, which is a level surface (real or

normal) or a spherical surface with its centre at the geocentre, a, will be very small. So

we can neglect the effect of the deflections of the vertical in (6.2.1) and obtain that

T 1@ =@ Qison s) (622)
fing
After proper reductions, we can represent the boundary surface by alevel surface s . (for

example the geoid or the reference ellipsoid). Thus the disturbing potential T is harmonic

outside s.. Now we choose a level surface s completely surrounding s. and take a
point P inside s. Then since the Earth and P are al inside s, both F,(Q) and T are

harmonic and regular outside s. It follows from Green’s second formula (Heiskanen and
Moritz, 1967) that

Modl 6.1a: FQ ﬂﬁian(Q)dm FIQF(QdQ= 0 (623
s Q s

Furthermore, from the fundamental equation of physical geodesy, we have

-V Q) =y =0y - L e rg. (6.2.4

ﬂﬁQ gQ ﬂhQ
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So Moddl 6.1a can be rewritten as

Moddl 6.1b; T QL —Fu(Q) -i% Fo(QI0Q+ PUQF(QIQ=0  (625)

fing Q 1ing

Model 6.1 shows the relationship among the information on some frequency of the
disturbing potential T and the disturbing gravity d9 or gravity anomaly Dg on a level
surface s completely surrounding the Earth. From Property 6.2, we know that the kernel
functions in the model decrease when Q goes away from P, and with the increase in n or
the decrease in the distance between P and the surface S the kernel functions have higher
frequencies and their rates of decrease increase. This means that with the increase in n or
the decrease in the distance between P and the surface s , the integrals in the model can
be evaluated in a smaller neighborhood of P (the nearest point on S from P) and the data
(input and output) should contain higher frequencies. So when n increases or the distance
between P and the curved surface S decreases, the data's information is projected in the
neighborhood of P.SincePisan arbitrarily given point inside s , by selecting P we can
project the local information of the disturbing potential T and the disturbing gravity dg

(or gravity anomaly Dg) in the neighborhood of any point on S. A more detailed

discussion will be given in the next section.

6.2.2 Local relationship among the disturbing density, the disturbing
potential and the disturbing gravity

Now we consider the relationships among the disturbing density dr, the disturbing
potential T and the disturbing gravity dg.

Let t bethespaceinside s .. By Poisson’s equation, we have
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_1-4pGdr (Q), Qisint
bT(Q) = : 0, Qisoutsidet (6.2.6)

where G is the gravitation constant. For a level surface s completely surrounding s

and apoint Poutside s , we know from Property 6.3 that
DF,.(Q) =0 (Qisingdes) (6.2.7)

So by Green's second formula (Heiskanen and Moritz, 1967), equation (6.2.2) and noting

that s surrounds t , we obtain

Mode 6.2 (F(Q) g1 Fie(QdQ+ U (R~ 4pG(SH (U (AIQ=0 (628)
s Q s t

In Model 6.2, the impact of the disturbing density of the interior point Q decreases with
the increase in the depth of Q, and the rate of the decrease increases with increasing n. So
when n is bigger, the model shows the relationship between the high frequency
information of the disturbing density dr in shallow layers of the Earth and the disturbing

gravity and disturbing potential on a surface surrounding the Earth.
6.2.3 Local relationship between the disturbing potential and the
disturbing gravity on different layers

Finaly, we give the relationship between the disturbing potential T and the disturbing
gravity dg on different layers.

Let s, and S, bethelevel surfaces satisfying t 1 s, 1 s,, and P be apoint outside S ,.

Then from (6.2.8) we can easily obtain
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Modd 63 T(Q) o Fre(QQ+ FOQF(QQ =
Q Sy

S1

- SoT(Qqﬂﬁlanp (QIIQ FYQUFA(QIHRE . (629
Model 6.3 shows the relationship among the information at some frequency of the
disturbing potential T and the disturbing gravity dg on different layers. Since P is close
to S,, the frequency of the information on S, is higher than that on S,. But when n
increases, the frequencies of the information on both layers will be higher. So when
determining the dataon s, from the dataon S ,, we can get the higher resolution of the
dataon S, by increasing the resolution of the dataon S, without a change in the distance

between the two layers. Thisis very important for processing satellite gravity data.

6.3 ‘Multi-resolution’ representation of the single-layer
density of the disturbing potential

In section 1.4.2, we discussed three indirect parameter methods for representing the
disturbing potential: the spherical harmonic representation; Bjerhammar’s representation
and the ‘fictitious single layer density representation. These methods were proposed for
simplifying the representation of the disturbing potential. Another significance of these
models is that their model parameters, consisting of a set of spherical harmonic
coefficients or a function distributed on a spherical surface, can be determined from all
kinds of gravity data. Aswe showed in section 1.5.4, however, these methods are hard to
be employed in the processing of high-resolution gravity data since in these models the
local relationships between the model parameters and the high-resolution gravity data are

very weak.
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In this section, we will generalize the ‘fictitious' single layer density representation of the
disturbing potential to establish a new model in which the local character of the model

parametersis considered.

6.3.1 Establishment of the modéel

The *fictitious' single layer density representation of the disturbing potential is given as
follows (Hsu and Zhu, 1984):

T(P) = 4_3:0 qir ~dQ (6.3.1)

Sg PQ

where S is the surface of the Bjerhammar sphere with radius Rg and ' is the “model

parameters’ which will be determined from the gravity data.

Figure6.4 The sphere S and the Bjerhammar sphere Sg

For dp>0, we draw a sphere S centred at the centre O of Sg and with radius Ro=Rz-dy
(seefigure 6.4)
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Replacing the geocentre Og by Qo in (6.1.26), we obtain

L -4 % p (00spPQ,Q) (6:3.2)

I PQ  n=0lpQ,

1 d:
Inl

Therefore from (6.1.19), we have

¥
1. a diF. (P) (6.3.3)
n=0

Lo

It follows from (6.3.1) that

°¥ 1 *
T(P)=a 4_ d:nQ0 (P)r ,(Q,)dQ, (6.3.4)
n=0 p S
where
* * R2
ra(Qo) =rodg R—E (6.3.5)

0

Equation (6.3.4) isthe model we want.

6.3.2 Further discussion on the model

Obviously model (6.3.4) is a generdlization of the ‘fictitious single layer density
representation of the disturbing potential (6.3.1). This can be seen by taking do=0.

The model (6.3.4) expresses the disturbing potential T as a summation of an infinite

series. From the propertiesof F, (P), for each n, theterm T, inthe series
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T,(P)° 4—1p Fo (P (Qo)dQ, (636)
Sy

represents some frequency information of the disturbing potential and the frequency goes
from low to high when n goes from O to ¥. In this sense, (6.3.4) can be regarded as a
generalization of the spherical harmonic expansion (1.4.19) of the disturbing potential.
Actually, when taking do=Rg in (6.3.2), we can obtain (1.4.19) and T, corresponds to the

Laplace spherical harmonics Y,, of the disturbing potential.

It is obvious from the following equation (6.3.7) that the parameters {C ,.,S .}, in Y

n

have no local relationships with the disturbing potential T.

0 osml §

o 57l )P (cos)B ™ Sigal (6.37)
gsnm 1) gsm ml g

Although the parameters r’ can not be expressed by means of a simple closed formula

like (6.3.7) of the disturbing potential T, there exist local relationships between r and T.

In the following, we will discuss how to obtain the relationships.

First of al, for equation (6.3.1), we use the method discussed in section 1.5.4 to obtain a

solution of the parameters r . Since the kernel function in the integral equation (6.3.1)
decreases slowly, the resolution of the resulting r~ will be low. From these r”, we can

obtain r , by means of (6.3.5).

Then we rewrite equation (6.3.4) as
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TP)° T(P)- T,(A =4 4ipc‘fngo (P)r.(Q0)dQ,s
. 1 Ps (6.3.8)
= 4_pSDd<1(P’ Qo)r 1(Qo)on

where T,(P) can be obtain from r, by means of (6.3.6) and the kernel function K is
given by
1

K1(P.Qo) = di (- Foo, (P)) =Fao, (P) + a d5 'Fo, (P) (6.39)
o po n=2

Obvioudly, the kernel function K decreases faster than the kernel function in (6.3.1)
when Qo moves away from P. Therefore, (6.3.8) shows a stronger local relationship

between r; and T, and from this integral equation, we can obtain r; with a resolution

higher than r .

Finaly, after n steps, we can obtain

T"(P)° T(P)- & T (P) = 4ip o (P. Qo) (Q0)dQ, (6:3.10)
k=0 S
where
Kn(P,Qo) = Fg, (P) + g dl(()_anQ0 (P) (6.3.11)

k=n+1

For a big enough n, the relation (6.3.10) shows a strong local relationship between r

and T" and from this integral equation, we can obtain r 1 with a high resolution.
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Thus, step by step, we obtain the model parameters {r k}: and with increase in k, the

=0
resolution of r, increases. So we call the model (6.3.4) the ‘Multi-resolution

representation of the single-layer density of the disturbing potential T.

6.4 Detailed discussion on Model 6.1 and its practical
evaluation

Under spherical approximation, the value of the geoidal height (or the disturbing
potential) at a single point on the geoid can be given by Stokes' s formula

T8 =R sty w)de. (641)

N(P) =
4pg.  4pgs s

Since the Stokes function Sy ,,) can be expressed as

Sy PQ) a k P (coyy PQ) (6.4.2)

1

we have

¥
R
TP =4 —
k=2k-1

Dy, (P) , (6.4.3)

where the surface harmonics

Dy, (P) = Llcpg(Q)P (cosy po)ds (64.4)
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represent global information of the gravity anomaly at specific frequencies. (6.4.3) means
that T(P) contains global gravity information on all frequencies (except for n<2). Stokes's
formula (6.4.1) is the relation between the geoidal height at a single point on the geoid
and the gravity anomalies on the entire geoid. It can be said that Stokes's formulais the
rigorous formula for computing the geoidal height from the globally and continually
distributed gravity anomalies in spherical approximation. However, the numerical
evauation of such a formula is generally hindered for two reasons. one is the lack of
adequate global coverage of gravity anomalies; the other is that the gravity data are given
only at discrete points.

In order to give a supplement to Stokes's formula, Paul (1991) established a model as

follows:
ON(QFR,(Y po)ds = PIAQ)F,(Y po)ds (6.4.5)
with
Q(x,av)
FY po) =2 6.4.6
(y Q) Qo(a,V) ( )
1 ¢ ]
Rl ) =50 ey 8 (K + Dk - Q& VIR (cosy ro) (64.7)

where >0, v>0.5, X=c0sY p,

2v-1
e

[(x- D7 + "

Q(x,3,v) = (6.4.8)

1

Qo (& V) = R(x.av)dx, (6.4.9)

-1
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and Q, (e,v) (k>0) are given by the following recurrence relations:

(2- 2v)Q,(e V) - (2- 2v)Q, (e V) = - e /(e® +4)** (6.4.10a)

(2- S9N+ (V- AR,V +(2- Sv+E)Q(av) =ere™ /(e +4"F (64100

12 6 28 4 )
(g' EV)Qs(e,V)+(2V' 6)Qz(&V)+(€' §V+3e )Q.(e V) - 2Qy(e V) (6.4.100
—e- e2V—1 /(62 +4)V—1
Qu(eVv) = ao[é a,Q,_ (& V)] (k>3) (6.4.10d)
o (2k-1) o
T kk-2v+D) =2k,
. (k- D(k- 2v+1) (k- 2)(k+2v- 4) (2K - Y1+ )
2k - 1 2k- 5
(k- 3)(k +2v - 4)

a,=2(k+v-3), a, =-

2k-5

The kernel functions F(y ;) and F,(y po) in model (6.4.5) were shown to decay

sharply when y ., goesfrom O to p.

Model (6.4.5) was called a local relationship between disturbing potential (geoidal
height) and gravity anomaly. It provides the possibility of reducing the integration area of
the gravity anomaly in (6.4.1) to a local area of the geoid while the integral will
simultaneously be made equa to an integral transform of the local geoidal height.

However, the kernel function F,(y p,) is given by the summation of an infinite series

(6.4.7), which is hard to be expressed by an analytical formula. In addition, the
relationship is established only under spherical approximation.

Model 6.1b established in the preceding section has the same characteristic as Paul’s
model in some aspects. Since the kernel functions in both models vanish sharply when
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the moving point moves away from the computation point, they both show the local

relationship between the disturbing potential (the geoidal height) and the gravity

anomaly. However, Model 6.1b holds not only under spherical approximation, but it can

hold for a level surface, and under the spherical approximation the kernel functions in
Model 6.1b can be easily computed from (6.1.14) and (6.1.15) and the following equation

(6.4.12),

To obtain a further understanding of the local character of Model 6.1b, we will discuss a

special case: First, we use a spherical surface so with the mean radius of the Earth R

instead of s in Model 6.1b, and obtain
O (QF,(Qds = Pa(QF,-(Qds

where (note (6.1.15))

L N P K
Fe(Q) = fr Fr(Q) R Fr(Q) R Fe(Q) +(n+1) R Foar (Q)

Then if we choose P to be the centre of so, we have
1
r, =0andF,.(Q) = o (cosy pq)
It follows from (6.4.11) and (6.4.12) that

F (QP, (cosy w)ds = ni_lc‘pg(Q)Pn (COSY n)dls

(6.4.11)

(6.4.12)

(6.4.13)
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The above formula is a well-known formula which shows the relationship between the

information of T and Dg at some frequency. Since the kernel function P, (cosy ) varies
between -1 and 1 when y ., goes from O to p, the integrals in (6.4.13) have to be

evaluated globally. This means that the relationship showed in (6.4.13) is a global
relationship.

As a generalization of (6.4.13), Model 6.1 (where P is not at the centre of S) has its
advantages. Unlike the case in (6.4.13), the distance between the moving point Q and the

fixed point Pincreaseswhen y ., goesfrom O to p. It follows that the kernel functionsin
Model 6.1 vanish as y ., goes from O to p. Thus, in the integrals in Model 6.1, the

information on the area that is closer to P is bulged more than others. So in this respect,
Model 6.1 haslocal character that is different from (6.4.13).

Furthermore, from Property 6.6, (6.4.11) can be rewritten as

_ _ .8 k-lamorl"
L »(Dg) = SdDg(Q)an(Q)ds = 4|oka:tn o 1gkg =

T.(q,1) (6.4.14)

where T, (q,1 ) is the k-degree Laplace surface harmonic of the disturbing potential T.
This means that, with the increase in n or the decrease in d (=R-r,), the high degree

harmonic coefficients are amplified in the model and, for a given n, the harmonic
potential coefficients of degree lessthan n are not contained in the model.

Model 6.1b establishes the relations between the gravity anomaly Dg and the disturbing
potential T on the surface s. Can we then get T from Dg by this model for a given n?

Rigorously speaking, the answer is no. This is because (6.2.5) is an integral equation of
the first kind that is improperly posed. This can be further explained in view of spectral
analysis from (6.4.14): first, L .(Dg) lacks the first n-1 degree harmonic potential



185
coefficients, second, L .(Dg) is less sensitive than T to the harmonic potential

coefficients of very large degree because

k-1amors"
2k +18k 5 R¥

® 0 (whenk ® ¥) (6.4.15)

Thanks to the advent of satellite geodesy, the low degree harmonic coefficients have
aready been obtained with very high accuracy, which is expected to increase further with
the planned dedicated gravity satellite missions. We can take these coefficients into
account in computing the normal gravity field so that the disturbing potential T does not
contain these coefficients:

T(a,!)=a T(al)

k=ng

where n, satisfies that the first n,-1 harmonic coefficients have already been known and

subtracted. In fact, in the Stokes formula, the zero and first degree coefficients are
excluded.

For the second problem, we can suppose that the harmonic potentia coefficients of very
large degree are zero because they are very small compared to the lower degree
coefficients. Although Stokes's formula, the rigorous solution of the Robin boundary-
value problem on a spherical surface, expresses the disturbing potential T over all
frequencies, it isimpossible in practical applications to get the disturbing potential T over
all frequencies because of the fact that the input data (gravity anomalies Dg) are only
given at discrete points. What we can get is T with finite frequency extension or finite

resolution.

In harmonic spectral analysis, T can be approximated by a set of finite spherical
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harmonic coefficients {C__,S_}"™ :

n=ngy

T(a,!)= & Te(al)

k=ng

S0 (6.4.14) is approximated by

N &= k-1am0rs "
L. (Dg) = SdDg(Q)an(Q)ds » 4|o§3:tn —2k+1gkng T(al) (6.4.16)

If n£n,, (6.4.16) contains a finite set of spherical harmonic coefficients {C .S, }'™

as the unknown parameters. Thus we can get a unique solution T from (6.4.16) by

properly choosing P (the closer rﬁ" is to 1, the more amplified the high degree

coefficients are).

In spatial analysis, we divide the area into many blocks according to the resolution of the
gravity data and suppose that T is constant in each block. Then the unknown function T
becomes a vector {T;} with finite dimension and can be estimated by the least squares
technique from the known gravity data. In more detail, we divide the surface s into a
far-area S;, and a near-area S, . Furthermore, we divide S, into a set of grid
elements {s;} by meridians and paralels. The size of the grid elements is chosen

according to the resolution of the data. Thus Model 6.1b becomes

a Dy AL+Q TBL =17 (6.4.17)

where Dg, and T, are, respectively, the mean valuesof Dg and T on s, ; and
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AL =F.(Q)Ds, (6.4.18q)
B = [l Fp(Qi)IDs; - i -'lg(Qi)]FnP(Qi)DSi (6.4.18b)
ﬂﬁQi gQi ﬂhQi h

£2 = PUQF(QIQ- FTQF (@ - [ GQIF(Q}IQ (6.4.180)
Sta 1-[nQ gQ TIhQ

where Q, isapointin s, ; Ds, istheareaof s, ; and f7 can be evaluated from a global
gravity field model and the error of doing so is very small because the values of the
kernel functions in S;, are very small relative to those in the near-area. From (6.4.17),
we can estimate { Ti} from { Dg,} by the least squares technique. By properly choosing n
(n£n,)and P, we can make A, or B{, decrease rapidly when the distance between P
and s, increases. From table 1 and table 2, we know that for a fixed n, AT, and B,
decrease when the distance between P and s, increases and the rate of decrease is slow
when the size of the grid elements is small, but for grid elements with a small size, we
can increase n or decrease the distance between P and S so that the rate of decrease of
A and B, istill rapid. Thus, the coefficient matrix of the normal equationsis a sparse
and very strongly diagonal-dominant. This guarantees the stability of the least square
solution of (6.4.17) (see Keller, 1995 and Fei, 1994). So from Model 6.1b, we can obtain
T from Dg with certain resolution in alocal area by properly choosing n and the distance

between P and s , and the resulting solution will be stable.

Like Paul (1991), we can call Model 6.1 the local relationship model between the gravity
data and the disturbing potential data. The local relationship has two meanings. One is
that we can evaluate with high accuracy the integrals in the model by using mainly the
high-accuracy and high-resolution data in a local area. The other is that we can get a
stable solution with the required resolution when we invert the integrals because of the
rapidly decreasing kernel function of the integralsin the model.
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6.5 Chapter summary

In the preceding sections, we established three models showing the relationships among
the disturbing density, the disturbing potential and the disturbing gravity (gravity
disturbance or anomaly) and a ‘Multi-resolution’ representation of the single-layer
density of the disturbing potential. These models have the following characteristics:

1. The basic kernel function F,(Q) (6.1.1) has some properties of wavelet and can be

evaluated from the recurrence formula (6.1.14) or directly from (6.1.19).

2. The models 6.1, 6.2 and 6.3 show the relationships among the information at some
frequency of the disturbing density inside the Earth, the disturbing potential and the
disturbing gravity outside the Earth, and with increase in n, the frequency of the
information increases and the local character of the information is projected.

3. The multi-resolution representation of the single-layer density of the disturbing
potential expresses the disturbing potential T as a summation of an infinite series. For

each n, the term T, in the series represents some frequency information of the
disturbing potential and the parametersin T, have some local relationships with the

disturbing potential. When n goes from 0 to ¥, the frequency goes from low to high

while the local character goes from weak to strong.

4. These models al involve integral equations of the first kind, which are improperly
posed. However, when the disturbing potential T in the models is replaced by its
discretized form {T;}, we can solve {T;} from the models by means of the least
squares technique. Since the kernel functions in the integrals decrease rapidly by
properly choosing n, the coefficient matrices of the resulting normal equations can be
very sparse and very strongly diagonal-dominant, thus the method will be very
efficient.
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7 Conclusons and Recommendations

In this thesis, we developed some refinements of the solutions of the geodetic boundary

value problems. The following are the conclusions and recommendations of the thesis.

7.1 Summary and conclusions

1.

2.

We supplemented the Runge theorems so that the derivatives of the disturbing
potential are involved. The new theorems, which state that the disturbing potential
and its derivatives can be approximated simultaneously by a function harmonic
outside an inner point of the Earth and its corresponding derivatives, are more
suitable for providing theoretical guarantee to the approximate theories in physical

geodesy.

We derived new ellipsoidal correction formulas to Stokes's formula and the inverse
Stokes/Hotine formulas. By adding these corrections to the corresponding formulas,
the system errors decrease from O(e?) to O(e*). Compared to the other relevant
spherical formulas, the new formulas are very effective since they are simple closed
formulas and the input data are those already obtained via the spherical formulas. A
numerical test for the ellipsoidal correction to Stokes's formulain the US showed that
the contribution of the ellipsoidal correction ranges from —31 cm to —1 cm and a
global geoid model with a resolution of 1 degree is sufficient for the computation if

the required accuracy is of the order of 1cm.

We investigated the second geodetic boundary value problem based on ground

gravity disturbances.



190
We analyzed the significance of the second geodetic boundary value problem.
The conclusion of the analysis is that in the era of GPS, the second geodetic
boundary value problem is most important for the determination of a high
accuracy geoid model and the external gravity field, especially for the purpose of
replacing the conventional leveling by GPS observations.

We generalized Hotine's formula to the outside space so that we can evaluate the
exterior disturbing potential from the ground gravity disturbances, and obtained
an ellipsoidal Hotine formula which is expressed as the spherical Hotine formula
plus an ellipsoidal correction term.

We obtained three approximate solutions to the second geodetic boundary value
problem. Two of them were obtained from applying Hotine's formula or the
ellipsoidal Hotine formula to solve the second geodetic boundary value problem
by means of the Helmert condensation reduction and the analytical continuation
method. The third is an integral equation solution obtained from directly solving
the second geodetic boundary value problem. Among the three solutions, the
Helmet condensation reduction solution has the simplest formula but needs the
most assumptions, the analytical continuation solution is in the middle and the
integral equation solution is the most complicated but needs the |east assumptions.

4. We established four models showing the local characters of the disturbing potential
and other gravity parameters. Three of them show the relationships among the
disturbing density, the surface disturbing potential and the surface disturbing gravity.
The fourth model gives the ‘multi-resolution’ single-layer density representation of
the disturbing potential. The important character of these models is that their kernel
functions decrease fast, which guarantees that the integrals in the models can be
evaluated with high accuracy by using mainly the high-accuracy and high-resolution
data in a local area, and stable solutions with high resolution can be obtained when
inverting the integrals. A brief analysis indicated that these local relationship models
are useful in the processing of high-resolution gravity data.
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7.2 Recommendations

1. For the determination of a geoid model with 1-cm accuracy, the ellipsoidal correction
computed from a global geoid model with 1° resolution or better should be added to
the spherical geoid model obtained via Stokes's formula.

2. For the accurate estimation of the effect of the Earth’s flattening on the inverse

Hotine/Stokes formulas, further numerical tests are needed.

3. To make the solution of the second geodetic boundary value problem redlizable, it is
necessary to measure the positions of the gravity data points via GPS. It is
recommended to produce an instrument that integrates the gravimeter and the GPS
receiver so that the position and the gravity value of the observation point can be
measured simultaneously. As for the selection of the three solutions discussed in this
thesis, it is recommended from a theoretical analysis to use the integral equation
solution in areas with complicated topography, the analytical continuation solution in
areas where the inclination angles and the elevations of the topography are very
small, and Helmert’ s condensation reduction solution in areas where the mass density
of the topography is known and the gravity disturbance dg is linearly related with the

elevation h. This recommendation should be verified by future numerical tests.

4. A numerical test on the models given in chapter 6 will be given in a future
investigation to show how significant these models are for practical work.
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