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ABSTRACT

This thesis presents a novel optimal methodology for dealing with linear estimation

problems in spatial deterministic fields, using discrete and regularly gridded data. More

specifically, a unified study of various important issues that affect the theoretical analysis

and practical computations associated with signal approximation problems (namely,

stability, convergence, error analysis and choice of estimation model restrictions) is

performed with respect to the data resolution parameter. A combination of different

mathematical tools is employed for our theoretical developments, with the underlying ideas

originating from the areas of deterministic collocation in Hilbert spaces, frame signal

expansions, spatio-statistical collocation and multiresolution signal analysis theory. The

spatio-statistical collocation principle is used to develop a new generalized multiresolution

signal analysis scheme, which offers increased flexibility (in terms of scale level

restrictions) and it is more powerful (in terms of approximation performance) than the

classic dyadic multiresolution analyses that are associated with standard wavelet theory.

Additional investigations are conducted on interpolation error analysis with respect to the

data resolution level and the used estimation kernel, as well as on aliasing error

propagation in convolution integral formulas using discrete gridded input data. Most of the

theoretical developments are made with practical applications in mind, which means that

an extensive (and original) treatment of the optimal noise filtering problem is also included,

considering the most general case with non-stationary additive noise in the gridded input

data.
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Chapter  1

INTRODUCTION

1.1  Background

One of the most important tools in modern operational physical geodesy, as in many other

areas of applied sciences and engineering, is the use of optimal approximation (or

estimation) methods. Although physical systems can usually be described very precisely

according to a certain theoretical model (e.g. Newtonian gravity field theory), their actual

realization through discrete observations requires additional optimal estimation

procedures. A wide variety of such procedures have been developed over the years,

ranging from classic linear methods (Gaussian least-squares theory, Tikhonov regulariza-

tion, Wiener-Kolmogorov theory, etc.), to more complicated non-linear estimation

schemes (adaptive basis selection, maximum entropy estimation, Bayesian estimation,

fuzzy methods, etc.). The choice of a specific estimation model is, to a certain extent,

arbitrary, but usually we prefer linear methods due to their theoretical simplicity and

straightforward implementation. Furthermore, the formalism of functional analysis offers
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a convenient compact treatment of linear approximation methods within a geometrical

Hilbert space framework, which, in turn, allows for a unified analysis of many diverse

physical problems (Naylor and Sell, 1982; Kirsch, 1996; Debnath and Mikusinski, 1999).

In geodesy, there are numerous situations where the incorporation of an optimal

estimation procedure is necessary. For example, Stokes’s integral formula provides a very

accurate theoretical basis for geoid determination (Heiskanen and Moritz, 1967), but its

practical use with a discrete set of gravity measurements leads to an ill-posed problem

with no unique solution. An external optimal estimation model/principle is then required

in order to approximate the geoid signal in a unique manner. Stated in a general fashion,

every geodetic application that utilizes discrete (and possibly noisy) spatial data, for the

recovery of an unknown field or signal, is associated with a corresponding estimation

problem that needs to be solved in some optimal interpolatory sense (Bjerhammar, 1987).

Regardless of the specific method used, the solution of such operational geodetic

approximation problems should obey some basic properties. Perhaps the most important

among these properties is the stability of the solution algorithm. An estimation model that

is very sensitive to small perturbations in the discrete input data can produce large errors

in the final results, which may deviate significantly from reality (Gerstl and Rummel,

1981). Robust methods are always preferable in order to ensure a well-conditioned signal

approximation scheme, with small numerical distortions from computer round-off errors

and external noise effects. An equally important aspect, within a spatial estimation
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framework, is also the convergence of the solution algorithm to the true field as the

amount of discrete data increases (Eeg and Krarup, 1973; p. 39). It would be useless to

acquire high-resolution data sets from modern satellite, airborne or terrestrial sensors, if

we do not have the ability to process them in a consistent (in the sense of estimation

theory) manner. The problems of stability and convergence are actually strongly related to

each other. Not only do we want to use a convergent estimation methodology that can

fully recover an unknown spatial field using infinitely dense data, but we must also

ensure that its algorithm remains reasonably stable as the data density increases. It is

rather ironic that the most celebrated operational method in geodesy (i.e. collocation),

along with its many different facets, becomes highly ill-conditioned for increasing data

resolution (Sjoberg, 1978; Rummel et al., 1979).

Apart from the stability and convergence issues, optimal estimation methods should also

be able to provide an insightful view to the behaviour of the underlying unknown fields,

as well as to the quality of their approximation. In this respect, spectral and error analysis

procedures have to be applied to the results of the signal estimation algorithms. Until

recently, the only mathematical tools available to geodesists for studying the spectral

characteristics of their signals were the classic Fourier decompositions/transformations,

which measure the signal spectral content exclusively in the frequency domain, in terms

of either spatial frequencies or spatial wavelengths (Kaula, 1959; Schwarz, 1984). This

approach, however, can only offer a very narrow viewpoint to their underlying behaviour,

since it overlooks important localized trends and signal irregularities. Localized spectral
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information is far more insightful than the ‘global averaging’ implied in the Fourier

methods of harmonic analysis, and it is already used in various types of signal processing

applications (Cohen, 1995; Hlawatsch and Boudreaux-Bartels, 1992). More importantly,

the results of any spectral analysis method depend directly on the estimation model within

which we choose to approximate our unknown fields from their discrete data. For

example, if we use the collocation concept for gravity field approximation in a Hilbert

space of piecewise-constant harmonic functions, it would not be very illuminating to

employ a Fourier-based spectral analysis for the estimated signals. Although this specific

example is quite extreme, it nevertheless reveals the need to adapt the spectral analysis

procedures to the signal estimation models (or vice versa).

In terms of accuracy analysis for the results of operational approximation algorithms,

there exists a wide variety of qualitative and quantitative signal error measures,

depending on the specific properties of the geodetic estimation technique used. The

deterministic version of collocation, for example, can offer rigorous upper bound values

for the signal error norm within a certain Hilbert space (Dermanis, 1976; Tscherning,

1986), which are often difficult to admit a practically useful interpretation, and even more

difficult to compute. The stochastic/probabilistic facet of collocation (Dermanis, 1976;

Sanso, 1986), on the other hand, is overall problematic for interpolation error analysis in

geodetic signals using noiseless discrete data, since the underlying fields do not alter their

behaviour over different observation (‘experiment’) repetitions, as the variance-

covariance propagation law requires. An additional issue of special importance, for both
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theoretical and practical studies, is the development of an algorithmic procedure that

computes the decay rate of some functional of the signal estimation error with respect to

the data resolution level. Such a resolution-dependent error modelling scheme, however,

is not yet available within the signal approximation framework used in geodesy.

Since estimation methods are only artificial mathematical constructions, their application

to physical problems is always associated with a number of additional modelling choices

or assumptions. In geodetic problems, we often need to impose specific a-priori

restrictions to our signals before we can employ a certain operational approximation

technique. Typical examples of such situations include the norm (or reproducing kernel)

choice problem in deterministic collocation (Dermanis, 1977), the signal stationarity and

ergodicity assumption for the practical implementation of stochastic collocation (Moritz,

1980), and the additional noise stationarity assumption for the application of Wiener-type

optimal filtering schemes (Sideris, 1995; Sanso and Sideris, 1995). The implications of

these modelling issues are usually neglected in practical applications, although their

importance is quite significant and it should always remind us of the limitations and/or

the drawbacks of our optimal estimation tools.

To this end, we have identified a number of major factors that affect both the theoretical

analysis and the practical computations associated with signal estimation problems,

namely, stability, convergence, spectral and error analysis, and choice of model

restrictions. A unified study of these important issues, with respect to the data resolution
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parameter, is the central focus of this research work, whose specific objectives are

discussed in the following section.

1.2  Thesis Objectives

The overall objective of this thesis is to present a new optimal methodology for dealing

with linear approximation problems in spatial deterministic fields, using discrete and

regularly gridded data. The key task is to develop a stable estimation framework for

increasing data resolution, that can be reduced to a well defined signal description when

the data become infinitely dense. In addition, no a-priori smoothing restrictions should be

imposed to the true unknown fields, which are allowed to exhibit irregular local

variations at any scale level.

A number of different mathematical tools are employed for the theoretical developments

of this thesis. In particular, we combine various ideas originating from the deterministic

collocation concept (Moritz, 1980), from the spatio-statistical interpretation of collocation

according to Sanso (1978), and finally from the multiresolution analysis (MRA) concept

according to Mallat (1989a,b). The latter corresponds to a relatively new tool of

approximation theory that has been developed at an explosive rate over the last decade.

Its increasing popularity stems from its immediate connection with the wavelet theory,

which currently represents the most sophisticated framework for signal analysis and

estimation (Sweldens, 1996; Mallat, 1998a,b).
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A primary objective of the thesis is to combine, in a cascading manner, the three

aforementioned theoretical concepts in order to eliminate their individual limitations. As

a first step, the use of MRA methods will be introduced as a necessary regularization

scheme for dealing with the stability, convergence and modelling issues of deterministic

collocation, when gridded data of increasing resolution are used. Some important aspects

of the general linear approximation problem in Hilbert spaces are also presented, using a

tool of functional analysis known as frame expansions (Young, 1980). The next step

involves the incorporation of the spatio-statistical collocation principle in order to

determine an optimal MRA model for the stable estimation of an unknown field from its

gridded data at a given resolution.

Another important objective, which is directly associated with the previous cascading

methodology, is to extend the classic multiresolution analysis methods for more general

cases than the ones implied in Mallat’s approximation model. The original MRA concept

requires that the data resolution level is always given in a dyadic form, a fact that restricts

its applicability in many practical situations. Again, the spatio-statistical collocation

principle will be used to develop a new generalized MRA scheme, which is more flexible

in terms of scale level restrictions and more powerful in terms of approximation

performance.

The problem of error analysis in multiresolution signal estimation forms the basis of one

more objective of this research. The emphasis is given on the derivation of a simple



8

rigorous algorithmic procedure that can measure the decay rate of the mean square

interpolation error as a function of the data resolution and the used estimation kernel. In

addition, the problem of aliasing error propagation in convolution-type integral formulas

with gridded input data is studied, which is of great importance in many geodetic

applications.

The last topic that is addressed in the thesis is noise filtering. Although the previous

objectives concentrate on important aspects of the linear approximation problem in

spatial deterministic fields using errorless data, the most realistic situation arises when the

discrete input observations are influenced by random noise. A new linear multiresolution

method for optimal noise filtering is presented, containing certain similarities with the

existing Wiener-type filtering schemes. The latter, however, rely entirely on the

stationarity for the input data noise, an assumption that will not be imposed in our

developments.

1.3  Thesis Outline

The analysis and the results of this research work are presented in the next five chapters.

In the sequel, the main structure and the general contents of each chapter are outlined.

In Chapter 2, the necessary mathematical background on multiresolution analysis

methods for signal approximation is given. The presentation closely follows Mallat’s
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original formulation, with the addition of some more recent important results. Although

the developments in this dissertation do not explicitly incorporate the concept of wavelet

signal expansions, their relationship with the multiresolution analysis framework is

briefly explained in order to follow some of the discussions in the forthcoming chapters.

In Chapter 3, a descriptive theoretical overview of the various versions of the collocation

method is provided and some important existing problems are identified. A detailed

analysis of the linear signal approximation problem in Hilbert spaces is also presented,

revealing interesting modelling aspects that have not been previously discussed in the

geodetic literature. The concept of frame signal expansions is then explained, and it is

used for studying the stability and convergence properties of deterministic collocation

with gridded data at uniform resolution. The last part of the chapter introduces the use of

the MRA principle, within a Hilbert space linear estimation framework, as a necessary

regularization tool for obtaining unperturbed stability and convergence for increasing data

density.

The problem of optimal multiresolution signal approximation is treated in Chapter 4,

which contains many of the original contributions of this thesis. A brief discussion on the

modelling and spectral-related advantages for the use of multiresolution estimation

techniques in geodesy is first given. The spatio-statistical collocation principle is then

employed for the development of a new linear estimation method, which results in a

certain class of optimal resolution-dependent interpolating kernels. A few examples for
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the behaviour and the stability performance of these optimal kernels, at different data

resolution levels, are provided using some synthetic signal models. This chapter also

contains the construction of a generalized MRA scheme for signal analysis, that

overcomes the usual dyadic restriction for the scale level values. Finally, a detailed

discussion on the similarities and differences between this new multiresolution structure

and the traditional dyadic MRA schemes concludes the chapter.

Chapter 5 deals with the problems of aliasing error analysis and noise filtering within a

multiresolution signal estimation model using gridded data at a certain resolution. A

simple frequency-domain algorithm is constructed for the computation of the decay rate

of the mean square estimation error as a function of the data resolution level and the used

estimation kernel. Numerical examples are also given to test this algorithm with the help

of simple synthetic signal models and various scaling estimation kernels. The issue of

aliasing error propagation in convolution-type integral formulas is also studied, and some

special cases of interest in geodetic practice are identified. The second part of the chapter

deals with the problem of optimal noise filtering in multiresolution signal interpolation

models. An original Wiener-type linear method is developed that has the ability to be

easily implemented using FFT techniques, even in the presence of non-stationary

observational noise. Finally, some conclusions and recommendations for further research

work are given in Chapter 6.
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Chapter 2

OVERVIEW OF MULTIRESOLUTION APPROXIMATION

THEORY

Generally stated, multiresolution methods deal with the analysis and synthesis of signals

in terms of a scale-based representation (Cohen, 1993). This offers a more flexible (and

often more natural) framework than the usual Fourier techniques of harmonic analysis,

which consider only frequency-based signal representations. The development of such

methods was initiated for various purposes in many different scientific fields, a factor that

has resulted in numerous different approaches for their underlying theoretical

background. For example, electrical engineers and signal analysts use the concepts of

filter banks, multi-rate systems and joint time-frequency or time-scale distributions (Rioul

and Vetterli, 1994; Hlawatsch and Boudreaux-Bartels, 1992; Cohen, 1995), pure

mathematicians and physicists employ ideas from integral transform theory to obtain a

continuous and/or a discretized scale-based decomposition of functions (Heil and Walnut,

1994; Daubechies et al., 1986; Daubechies, 1990), whereas approximation theorists study

the subject from a functional analysis point of view (De Vore and Lucier, 1992; De Boor
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et al., 1994; Unser and Daubechies, 1997). For some historical reviews and related

applications, see the papers by Cohen (1989) and Daubechies (1996).

In this chapter, we will follow just one among these many ‘roots’, which is directly

related with the specific problems tackled later in this thesis. This is also the approach

that has managed to unify with a common language the disciplines of signal processing,

wavelet analysis and approximation theory (Mallat, 1998a). It is important to emphasize

that a comprehensive introduction to multiresolution methods in signal approximation

requires an extensive amount of discussion, which is not possible to be given within the

limits of a single chapter. Therefore, in the following sections we will only present some

basic fundamental concepts that are going to be used in the rest of the thesis. For more

mathematical details, the textbooks by Walter (1994), Holschneider (1995), Mertins

(1996) and Mallat (1998b) should be consulted.

2.1  Multiresolution Analysis – Basic Definitions

The concept of multiresolution signal analysis is a relatively recent one, originally

developed by Mallat (1989a,b). Wavelet signal expansions, on the other hand, appeared

long before Mallat’s formulation, with the most common example being the asymptotic

approximation of 2L  signals by the translates of piecewise-constant base functions (i.e.

Haar wavelet bases). Since there exists a very strong connection between these two
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mathematical subjects, they are usually viewed as the ‘two sides of the same coin’,

although there do exist pathological cases of wavelet signal expansions that cannot be

identified under Mallat’s multiresolution framework, which is described below.

A multiresolution analysis (MRA) in the Hilbert space of square-integrable functions

)(2 ℜL  is defined as an infinite sequence of closed linear subspaces ),(2 ℜ⊂ LV j  having

the following five properties (Jawerth and Sweldens, 1994):

(i)       Z         ,        1 ∈∀⊂ + jVV jj      (2.1)

(ii)    1    )2(          )( +∈⇔∈ jj VxfVxf         (2.2)

(iii)      Z         ,        )2(          )( ∈∀∈+⇔∈ − nVnxfVxf j
j

j       (2.3)

(iv)    } 0 {          and    )(       2 =ℜ= ∞+
−∞=

∞+
−∞= j jj j VLVspan                 (2.4)

(v)    A scaling function oVx   )( ∈ϕ , with a non-vanishing integral, exists such
that the family Z)( ∈− nnxϕ  is a Riesz basis for .oV                     (2.5)

The above definition is not minimal, in the sense that some of the conditions (i)-(v) can

be derived from the remaining ones (Wojtaszczyk, 1997). However, it has been

customary to treat all these five MRA properties as independent statements. Condition (ii)

implies that all the individual subspaces } { jV  of a multiresolution analysis are dyadically
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scaled versions of each other, which in addition form a nested sequence according to

condition (i). The third condition assigns a translation-invariant property to the MRA

subspaces with respect to their associated dyadic resolution interval .2 j
jx −=∆  Finally,

condition (iv) imposes a kind of causal behaviour in the nested sequence }, { jV  which

should be dense in )(2 ℜL  (for high resolution) and it should shrink to the zero space (for

low resolution).

The concept of a Riesz basis is a simple generalization of the notion of orthonormal

bases in Hilbert spaces, corresponding to a set of linearly independent functions that form

a complete, oblique and stable system of reconstructing elements. A set of functions

Z)( ∈nn xϕ  that spans a Hilbert space H  is said to be a Riesz basis, if and only if there

exist constants 0        >≥ cC  such that

2/1
2

H 

2/1
2           )(            












≤≤












∑∑∑
n

n
n

nn
n

n aCxaac ϕ     (2.6)

for any square-summable sequence of scalars .} { Z∈nna  If we have a Riesz basis

Z)( ∈nn xϕ  in an arbitrary Hilbert space, then there always exists a unique biorthogonal

system Z)(~
∈nn xϕ  which also forms a Riesz basis for the same space (Wojtaszczyk,

1997). The biorthogonality property between the two systems is expressed by the formula
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mnmn xx ,    )(~  ,  )( δϕϕ =><         (2.7)

where ><  ,  denotes the inner product in the underlying Hilbert space, and mn,δ

corresponds to the Kronecker delta symbol. More details on the general theory of Riesz

bases can be found in Young (1980) and Heil and Walnut (1994).

If a Riesz basis (in the usual 2L  norm) is formed by the integer translates Z)( ∈− nnxϕ  of

a basic function ),(  )( 2 ℜ∈ Lxϕ  then the Fourier transform )(ωΦ  of the generating kernel

should always satisfy the following relationship (Wojtaszczyk, 1997):

∑ ∞<≤+≤<
k

BkA          )2(          0 2πωΦ         (2.8)

for some strictly positive finite bounds A  and .B  Equation (2.8) represents a very basic

and important condition in the multiresolution analysis framework, which hereinafter will

be referred to as the Riesz condition. It is actually equivalent to the space-domain

definition of a Riesz basis given in eq.(2.6), when ZZ )(  )( ∈∈ −= nnn nxx ϕϕ  and

.  2H L=  In the special case where the set Z)( ∈− nnxϕ  forms an orthonormal basis

for its closed linear span ),(  2 ℜ∈ LVo  the Riesz condition takes the simple form

∑ =+
k

k 1     )2(  2πωΦ                        (2.9)
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Throughout this thesis, Fourier transform functions )(ωΦ  that satisfy the above equation

will be called orthonormal filters (or just orthogonal filters, for the cases where the

constant on the right-hand side in eq.(2.9) differs from the value one).

If a kernel )(  )( 2 ℜ∈ Lxϕ  satisfies the Riesz condition given in eq.(2.8), then it can be

shown that the sets Z)/( ∈− nnhxϕ  form Riesz bases for their corresponding closed linear

spans ),(2 ℜ⊂ LVh  for any non-zero value of the scaling parameter h  (Unser and

Daubechies, 1997). In this way, the family of the dyadic translates Z)2( ∈− n
j nxϕ  will

also form a Riesz basis for every nested subspace jV  of the MRA that is generated by the

scaling function ).(xϕ

From this brief introduction, it is clear that we can adopt two main ways for establishing

the existence of a multiresolution analysis, i.e.

• We can take the subspaces } { jV  as our basic, given objects. They have to satisfy

conditions (i)-(iv), which usually are rather easy to check. Then, we need to find a

scaling function that satisfies the last property (v). This is usually not so obvious.

• We can start with a scaling function )()( 2 ℜ∈ Lxϕ  that satisfies the basic Riesz

condition in eq.(2.8). We define the initial subspace oV  as the closed linear span
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of the set ,)( Z∈− nnxϕ  and the other subspaces jV  are defined accordingly

through the scaling condition (ii). Hence, the translation-invariance property (iii)

is automatically satisfied, and we only need to check the validity of conditions (i)

and (iv).

There is also a third way that is not as evident from the MRA definition. This method

starts from the so-called scaling or dilation equation (Strang, 1989)

∑ −=
n

n nxax )(       )
2

( ϕϕ         (2.10)

and then tries to build the scaling function from there by using an appropriate and unique

choice of square-summable coefficients .} { Z∈nna  The above equation is just an

expression of the fact that ,  1 oVV ⊂−  where the subspace oV  is defined as the closed

linear span of a translation-invariant Riesz basis Z)( ∈− nnxϕ  and the subspace 1−V  is

simply generated by the dyadic scaling condition (ii). Clearly, only very special sequences

} { na  can satisfy a scaling equation as shown in eq.(2.10) and, furthermore, create a

scaling function )(xϕ  whose associated subspace sequence } { jV  satisfies the

completeness condition (iv). Nevertheless, this approach has been used extensively for

the construction of various MRA models in )(2 ℜL  with certain optimal properties for

their scaling function ),(xϕ  such as compact support, symmetry, cardinality,



18

orthonormality, number of vanishing moments, etc. For more details and examples, see

Daubechies (1992), Mallat (1998b) and Hernandez and Weiss (1996).

2.2  Biorthogonal and Orthonormal Bases in Multiresolution Analyses

Every finite-energy signal that belongs into an arbitrary dyadic subspace )(2 ℜ⊂ LV j  of

some multiresolution analysis model } { jV  has the general linear expansion form

j
n

j
n Vxfnxaxf     )(        ,    )2(      )( ∈∀−= ∑ ϕ                     (2.11)

where oVx ∈)(ϕ  is the scaling function associated with the underlying MRA, and

Z} { ∈nna  represents a square-summable sequence of coefficients that is uniquely

determined through the conventional 2L  inner product, i.e.

∫ −=

>−<=

dxnxxf

nxxfa

jj

jj
n

  )2(~  )(  2        

 )2(~ , )( 2    

ϕ

ϕ
                             (2.12)

The analysis kernel oVx ∈)(~ϕ  is called the dual (or biorthogonal) scaling function, and it

generates the same multiresolution analysis as ).(xϕ  It is uniquely defined by the

following equation (Unser and Daubechies, 1997):
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∑ −= −

n
n nxcx  )(      )(~ 1 ϕϕ                    (2.13a)

or, in the frequency domain

∑ +
=

k
k   )2(  

)(    )(~
2πωΦ

ωΦωΦ                                (2.13b)

where 1−
nc  is the so-called convolution inverse of the autocorrelation sequence nc  of the

synthesis scaling function ),(xϕ  i.e.

∫ +=

∗−= =

dynyy

xxc nxn

 )( )(         

 )(    )(     

ϕϕ

ϕϕ

                             (2.14a)

Note that the superscript in the coefficients 1−
nc  does not mean the usual arithmetic

inversion, but it just implies that

n
m

mnmnn cccc δ              11 ==∗ ∑ −
−

− (2.14b)

where nδ  denotes the discrete delta sequence. The two sets of functions, Z)2( ∈− n
j nxϕ

and ,)2(~
Z∈− n

j nxϕ  will constitute a pair of biorthogonal Riesz bases for the same MRA
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subspace jV  at the given dyadic scale level. For more details, see Aldroubi and Unser

(1993) and Mallat (1998b).

The concept of a Riesz basis in an infinite-dimensional  Hilbert space jV  is identical with

the existence of a linear topological isomorphism between jV  and the space )Z(2l  of

square-summable sequences. The latter contains the expansion coefficients Z} { ∈nna  for

all signals in jV  with respect to the Riesz basis under consideration; see eq.(2.6). Since

linear topological isomorphisms are (by definition) continuous mappings, the linear MRA

expansion in eq.(2.11) will always yield a stable signal representation (in the 2L  norm)

for every function .)( jVxf ∈  Furthermore, the stability of the individual Riesz bases

Z)2( ∈− n
j nxϕ  will remain constant at every dyadic scale level, due to the self-similarity

of the MRA subspaces } { jV  imposed by eq.(2.2), and the scale-invariance property of

the 2L  norm*. The ideal situation occurs when the basic Riesz basis Z)( ∈− nnxϕ  is

additionally orthogonal, in which case the signal expansion in eq.(2.11) becomes a

perfectly stable linear algorithm at any dyadic scale level (i.e. its condition number is

always equal to one).

                                                          
* By scale-invariance property of the 2L  norm, we mean that 22  )(     )( 

L
axfa

L
xf =  for every )(2 ℜL

signal and for any non-zero scaling factor .a
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In every MRA subspace ,jV  an infinite number of orthonormal bases can be constructed

from a given Riesz basis Z)2( ∈− n
j nxϕ  according to the orthonormalization trick given

in Young (1980, p. 46); see also Holschneider (1995, p. 187) and Wojtaszczyk (1997, p.

24). These orthonormal bases will be comprised of normalized dyadic translates

Z)2( 2 ∈− n
j

o
j nxϕ  of a basic scaling function ,)( oo Vx ∈ϕ  which is usually called the

orthonormal scaling function. For the same multiresolution analysis in ),(2 ℜL  we can

thus have many different choices for its generating scaling function (Aldroubi and Unser,

1993). The most typical choice for the orthonormal scaling kernel )(xoϕ  is given by the

frequency-domain normalization formula (Wojtaszczyk, 1997)

∑ +
=

k
k 2 )2(   

)(    )(
πωΦ

ωΦωΦο                                  (2.15)

where )(ωΦ  is the Fourier transform of some non-orthonormal scaling function

.)( oVx ∈ϕ  It can easily be verified that ),(ωΦο  as defined in the last equation, satisfies

the orthonormality Riesz condition that was given in eq.(2.9). For an alternative

orthonormalization procedure within a multiresolution analysis framework, see Mallat

(1989b).
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2.3  Sampling Bases in Multiresolution Analyses

Under mild decaying restrictions on the orthonormal scaling function ),(xoϕ  every

subspace )(2 ℜ⊂ LV j  of an MRA sequence is a reproducing kernel Hilbert space

(RKHS). Its actual reproducing kernel ),( yxk j  is given by the ‘quasi-stationary’ scaling

expression (Walter, 1992)

)2 ,2( 2    ),( yxkyxk jj
o

j
j =                                (2.16a)

and

∑ −−=
n

ooo nynxyxk )(  )(     ),( ϕϕ                    (2.16b)

where ),( yxko  is the reproducing kernel of the ‘unit scale’ or ‘reference’ MRA subspace

.oV  As the resolution index j  increases, the reproducing kernel ),( yxk j  will gradually

converge to the Dirac delta function ),( yx −δ  which corresponds to an informal

reproducing kernel for all )(2 ℜL  signals (Walter, 1993). Note that ),( yxko  can also be

expressed with respect to a pair of biorthogonal scaling functions, as follows (Unser and

Daubechies, 1997):

∑ −−=
n

o nynxyxk )(~  )(     ),( ϕϕ                      (2.17)
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In every dyadic multiresolution analysis in )(2 ℜL  that possess a sequence of proper

reproducing kernels, we can associate a certain sampling theorem with each of its nested

subspaces ).(2 ℜ⊂ LV j  This interesting result was originally derived by Walter (1992)

and it was subsequently extended by many authors (Xia and Zhang, 1993; Janssen, 1993;

Aldroubi and Unser, 1994; Djokovic and Vaidyanathan, 1997).

According to Walter (1992), the set ZZ )0 ,(),( ∈∈ −= nono nxknxk  formed by the integer

translates of the basic reproducing kernel ),( yxko  provides an alternative Riesz basis for

the reference MRA subspace .oV  Its dual basis is generated by the integer translates of a

specific kernel oo Vxk ∈)(~  that possess the cardinal (sampling) property, i.e.







±±±=

=
=

... ,3 ,2 ,1   ,   0  

0   ,    1  
    )(~

n

n
nko    (2.18)

The expansion of an arbitrary signal oVxf ∈)(  with respect to such a cardinal Riesz basis

takes the form of a generalized sampling theorem, as follows:

=−><=

−=

∑

∑

  )(~  ),( ),(            

 )(~       )(

2
n

oLo

n
on

nxknxkxf

nxkaxf

       



24

∑ −=
n

o nxknf  )(~  )(                                                         (2.19)

The situation can easily be extended at any dyadic resolution level. In this way, for every

function ,)( jVxf ∈  we have

∑ −= −

n

j
o

j nxknfxf  )2(~  )2(     )(                   (2.20)

The determination of the sampling scaling kernel )(~ xko  can be easily performed in the

frequency domain, according to the formula (Walter, 1992)

∑ +
=

k

o k
K

 )2( 
)(

    )(~
πωΦ

ωΦ
ω

ο
ο                                              (2.21)

where )(ωΦο  is the Fourier transform of the orthonormal scaling function )(xoϕ  shown

in eq.(2.16b).

The existence of uniform-sampling signal expansions in MRA subspaces provides a

useful extension of the well known Shannon’s sampling theorem for band-limited signals

(Jerri, 1977). As a matter of fact, Shannon’s interpolating formula fits perfectly into

Mallat’s multiresolution analysis setting, since its basic scaling kernel  )(xsϕ  (the sinc

function) generates a special MRA sequence } { jV  of band-limited nested subspaces in
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),(2 ℜL  with their associated bandwidths given by the dyadic form ].2 , 2[ ππ jj−  For

more details and examples on the connection between sampling theorems and MRA

theory, see Zayed (1993), Walter (1994) and Aldroubi and Unser (1992, 1994). An

additional excellent reference is Nashed and Walter (1991), where the notion of sampling

theorems is studied in a more abstract Hilbert space framework.

2.4  Multiresolution Approximation via Orthogonal Projectors

A multiresolution analysis } { jV  can be used to determine a certain linear approximation

jj Vxf   )( ∈  of an arbitrary finite-energy signal )(  )( 2 ℜ∈ Lxf  at a dyadic resolution level

.2 jjx −=∆  In fact, this was the main motivation behind the original formulation of the

MRA concept; see the discussion in Mallat (1989a). The first and the fourth basic

properties of an MRA, according to eqs.(2.1) and (2.4), imply that the accuracy of such an

approximation scheme can be made arbitrarily high by selecting a suitable resolution

interval .jx∆  Higher resolution approximations )(xf j  ( +∞→j ) will yield smaller

errors , )()( 2Lj xfxf −  whereas lower resolution approximations )(xf j  ( −∞→j )

will gradually yield no information at all about the field )(xf  under consideration.



26

The most straightforward way to perform such a multiresolution signal approximation is

to employ a sequence of orthogonal projectors } { jP  that can be linked with the nested

subspace sequence }. { jV  The optimal signal approximation ),(ˆ xf j  at a certain dyadic

resolution level, can then be determined through the orthogonal projection of the original

signal )(  )( 2 ℜ∈ Lxf  onto the corresponding MRA subspace ,jV  i.e.

)(     )(ˆ xfPxf jj =                     (2.22)

which, of course, satisfies the minimum 2L  error norm criterion

min     )()(ˆ      )( 22 =−=
LjLj xfxfxe                             (2.23)

among any other signals jj Vxf   )( ∈  at the same scale level. Such a projective scheme is

usually called the least-squares solution for the signal approximation problem (Unser

and Daubechies, 1997).

Due to the nature of the 2L  inner product, the computation of the optimal approximation

)(ˆ xf j  implies a very interesting algorithmic procedure, which is described by the

following linear formula (Mallat, 1989a):
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where the symbol ∗  is used to denote both continuous and semi-continuous convolution

operations. The kernels )(xϕ  and )(~ xϕ  correspond to a pair of biorthogonal scaling

functions for the specific MRA model in which the linear multiresolution approximation

takes place. We can also express the optimal signal estimate )(ˆ xf j  in terms of a more

compact projective operation, as follows:

∫

∫

=

=

><==

dyyfyxk

dyyfyxk

yfyxkxfPxf

jj
o

j

j

Ljjj
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  )( ),(                                

)( , ),(    )(     )(ˆ
2

                                                  (2.25)
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where ),( yxk j  is the reproducing kernel of the approximation subspace )(2 ℜ⊂ LV j  at

the desired resolution level; see eq.(2.16).

The algorithm for computing the optimal signal approximation )( )(ˆ xfPxf jj =  consists

of three basic steps, connected in a linear cascading manner. Initially, the original field

)(xf  is filtered through a certain analysis kernel, an operation which stems from the first

(continuous) convolution shown in eq.(2.24). The analysis kernel )2(~ xj−ϕ  corresponds

to a flipped version of the dual scaling function that is tuned to the desired scale level of

approximation by a proper dyadic dilation. Such a prefiltering operation has a kind of

‘anti-aliasing’ role within the linear approximation procedure. The output signal is then

sampled at the corresponding dyadic rate j
jx 21 =∆ −  and the result is the sequence of

coefficients } { na  appearing in eq.(2.24). Finally, a synthesis kernel )2( xjϕ  is applied to

this coefficient sequence through the second (semi-continuous) convolution operator

shown in eq.(2.24), in order to obtain the optimal signal estimate. Of course, when an

orthonormal scaling function )(xoϕ  is employed in the approximation procedure then

both the analysis and the synthesis kernels coincide with the same function, i.e.

).()(~)( xxx οϕϕϕ ==  The above three-step projective scheme is illustrated with the help

of the linear system shown in Figure 2.1.
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Figure 2.1  Optimal multiresolution signal approximation via orthogonal projection onto
a dyadic MRA subspace jV

An exhaustive error analysis of the previous approximation algorithm can be found in Blu

and Unser (1999b). A more general study for the performance of the least-squares signal

estimate ),( )(ˆ xfPxf jj =  in terms of pointwise, asymptotic and 2L  error analysis, is

also given in Unser and Daubechies (1997) and Blu and Unser (1999a), where the various

approximation subspaces )(  2 ℜ⊂ LV j  at each scale level are not necessarily restricted to

form a nested MRA sequence.

2.5  Multiresolution Interpolation via Oblique Projectors

Another simpler approach to obtain a multiresolution approximation for a finite-energy

signal  ),(  )( 2 ℜ∈ Lxf  within some MRA model }, { jV  is to use only its discrete values at

a uniform sampling resolution .2 j
jx −=∆  By applying the sampling theorem associated
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with the corresponding MRA subspace at the given data scale level, we can compute an

interpolating signal approximation as follows:

∑ −= −

n

jj
j nxsnfxf  )2(  )2(     )(ˆ int                    (2.26)

where Z)2( ∈− n
j nxs  denotes the Riesz sampling basis in the used MRA model (see

section 2.3). In general, we have that )()(ˆ int xfxf j ≠  since the original signal does not

necessarily belong in the specific approximation subspace .jV  Moreover, the signal

interpolant )(ˆ int xf j  will generally be different from the least-squares approximation

)(ˆ xf j  obtained through the orthogonal projective algorithm of eq.(2.24).

Strictly speaking, the multiresolution interpolation scheme in eq.(2.26) corresponds to a

signal estimation procedure, whereas the orthogonal projective formula in eq.(2.24) is

related to a signal approximation methodology. Such a distinction follows the rigorous

mathematical terminology, which reserves the term ‘approximation’ to describe the

procedure of replacing a known quantity with a simpler (smoother) one, whereas

‘estimation’ is usually used to denote the approximation of an unknown quantity from

incomplete or imperfect data. In this thesis, however, these two terms will be used

interchangeably.
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As in the case of the least-squares multiresolution approximation, the interpolating signal

estimate in eq.(2.26) can also be expressed as a projective operation

)(     )(ˆ int xfQxf jj =                    (2.27)

where jQ  denotes a certain projector from the Hilbert space )(2 ℜL  onto an MRA

subspace .jV  The role of the above operator is to sample the original signal )(xf  at a

dyadic resolution level ,2 j
jx −=∆  and then reconstruct a continuous waveform

jj Vxf   )(ˆ int ∈  using these samples and the interpolating scaling function .  )( oVxs ∈  In

order to establish the projective property of the interpolator ,jQ  it is sufficient to show

that .2
jj QQ =  Obviously, we have that

jj VxgxgQxg     )(       ,     )(     )( ∈∀=                    (2.28)

since the set Z)2( ∈− n
j nxs  is an interpolating basis for every MRA subspace

).(  2 ℜ⊂ LV j  As a result, we can write the following:

==

=

  )(                  

)(ˆ     )(ˆ intint

xfQQ

xfQxf

jj

jjj
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)(                 2 xfQ j=                                  (2.29)

If we now compare eqs.(2.27) and (2.29), we can conclude that the operator jQ  possess

the projective property. Note that the multiresolution interpolation corresponds to an

oblique signal projection onto the approximation subspace .jV  Thus, it is less accurate

than the least-squares approximation solution, which is associated with an orthogonal

signal projection onto .jV  For theoretical and practical comparisons between the two

methods, as well as for cases where the basic scaling kernel oVxs   )( ∈  in eq.(2.26) is not

strictly interpolating, see Unser and Daubechies (1997) and Blu and Unser (1999a,b). The

previous convolution-based interpolation procedure, at a certain dyadic resolution level,

is illustrated in Figure 2.2

Figure 2.2  Multiresolution signal interpolation in a dyadic MRA subspace jV
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It should be mentioned that the input unknown signal )(xf  in the projective interpolation

algorithm of eq.(2.26) or (2.27) cannot be any finite-energy function, because the

sampling operation in the )(2 ℜL  Hilbert space may result in non square-summable

sequences ).( jxnf ∆  However, this is of little concern in physical/practical problems

where it can safely be assumed that the underlying fields always produce square-

summable data sequences, at any finite sampling level. On the other hand, any square-

integrable signal can be approximated arbitrarily well (in the 2L  norm) by an MRA

sampling expansion of increasing resolution, since MRA subspace sequences } { jV  are

dense in the whole Hilbert space ).(2 ℜL  For more details, see Blu and Unser (1999a,b)

and Unser (2000).

A very useful property of Riesz sampling bases, within the multiresolution analysis

framework, is that they provide the same stability level for the signal interpolation

algorithm of eq.(2.26) at every dyadic value of the data resolution. If Z)2( ∈− n
j nxs

denotes such a Riesz sampling basis in an MRA sequence }, { jV  then we have

j
n

jj Vxgnxsngxg     )(       ,    )2(  )2(     )( ∈∀−= ∑ −                           (2.30)

From the general definition of a Riesz basis (see section 2.1), we also have the analogous

isomorphic condition
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for some strictly positive constants .    Cc ≤  Using the self-similarity property of the MRA

subspaces } { jV  according to eq.(2.2) and the scale-invariance property of the 2L  norm

(see the footnote in page 20), it can be shown that the condition number of the linear

algorithm in eq.(2.30) remains constant at every sampling resolution .2 j
jx −=∆  Its

actual value is determined by the ratio AB /  of the maximum lower and the minimum

upper bounds that appear in the fundamental frequency-domain Riesz condition, i.e.

∑ ∞<≤+≤<
k

BkSA          )2(          0 2πω       (2.32)

where )(ωS  denotes the Fourier transform of the basic sampling kernel .  )( oVxs ∈  Note

that the condition number of the linear expansion formula in eq.(2.30) is defined as the

product of two operator (supremum) norms associated with the forward and the inverse

isomorphic mappings between jV  and ),Z(2l  which are implied in the Riesz condition of

eq.(2.31); see Strang (1988) and Phillips and Taylor (1996).
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2.6  Wavelet Bases

A function )(  )( 2 ℜ∈ Lxψ  is called a wavelet (or mother wavelet) if the set of its

normalized dyadic translates  Z ,)2( 2 ∈− nj
jj nxψ  generates an orthonormal basis for

the Hilbert space ).(2 ℜL  If we use the more compact notation )(, xnjψ  to denote an

arbitrary wavelet basis, we can write the following expansion formula:

)(    )(          ,       )2(             

     )(  )( , )(     )(

2

,
,

,
,, 2

ℜ∈∀−=

><=

∑

∑

Lxfnxa

xxxfxf

nj

j
nj

nj
njLnj

ψ

ψψ

                                      (2.33)

where the 2D sequence of wavelet coefficients } { ,nja  is determined by the linear

filtering procedure

[ ]   Z   ,    ,     )2(    )(  2           

 

              )2(  )(  2    

2 

,

∈−∗=

−=

−=

∫

njxxf
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jnx
jj

jj
nj

ψ

ψ

                (2.34)

The values of the above coefficients correspond to gridded samples of successively

filtered versions of the original signal )(xf  by the wavelet kernel ).(xψ  The resolution

interval of this sampling operation is entirely adapted to the spread of the wavelet filter,
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which varies in a dyadically exponential fashion. In the signal processing literature, such

an analysis scheme is usually called octave-band or Q-constant analysis (Mertins, 1996).

Among other methodologies, the concept of multiresolution analysis provides a very

general and straightforward approach for building wavelet bases in ).(2 ℜL  This

fundamental result was first established by Mallat (1989b) and it marked the beginning of

an enormous amount of theoretical and practical developments in the fields of signal

processing and approximation theory, which continue at an explosive rate up to date. As a

matter of fact, wavelet bases that do not arise from an MRA structure are essentially

exceptional cases (Weiss and Hernandez, 1996; p. 47).

The transition from a multiresolution analysis model } { jV  to an associated wavelet basis

)(, xnjψ  is based on the following decomposition scheme for every MRA subspace:

11         −− ⊕= jjj WVV                      (2.35)

where the symbol ⊕  denotes the direct sum between two disjoint linear subspaces. The

subspace 1−jW  is the orthogonal complement of 1−jV  in ,jV  and it basically contains the

additional precision of the least-squares multiresolution signal approximation when the

dyadic resolution increases from 12 −j  to .2 j  If we now introduce a reference scale level
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oj2  and apply the orthogonal decomposition of eq.(2.35) successively, we can get the

general equation

k
j

ojkojj WVV           
1−

=
⊕=                      (2.36)

where all the individual complements kW  are orthogonal to each other due to the nesting

property of the MRA subspaces }, { jV  i.e.

11             −+ ⊥⊥⊥ jojoj
WWW                      (2.37)

If we also take into account the fourth (completeness) basic property of a multiresolution

analysis according to eq.(2.4), we can finally obtain a total orthogonal partition of the

entire )(2 ℜL  Hilbert space as follows:

jj
WL     )(2

∞+

−∞=
⊕=ℜ                                  (2.38)

The elements of the orthogonal sequence } { jW  are usually called the ‘detail subspaces’

in order to indicate the fact that they contain the signal information needed to go from a

coarse resolution representation to a higher one, within a certain MRA model }. { jV  The

above hierarchical decomposition framework is illustrated in Figure 2.3.
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Figure 2.3  Hierarchical decomposition of a multiresolution analysis } { jV  in terms of a

sequence of ‘detail-wavelet’ orthogonal subspaces } { jW
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dyadic scale level j2  will generate a single wavelet basis Z,)2( 2 ∈− nj
jj nxψ  for the

whole Hilbert space ),(2 ℜL  according to its orthogonal decomposition in eq.(2.38).

In this way, the study of a signal )(xf j  that belongs in a certain multiresolution subspace

)(2 ℜ⊂ LV j  is considerably enriched through its wavelet expansion at coarser resolution

levels, according to the form

∑ ∑∑
−

−∞=
−=−=

1

, )2(      )2(      )(
j

k n

k
nk

n

j
nj nxbnxaxf ψϕ                                        (2.39)

where )(xϕ  is the scaling function (not necessarily orthonormal) of the MRA under

consideration. A minimum resolution value oj2  is usually selected as a coarse signal

reference for the wavelet decomposition, i.e.
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where )(xf
oj

 denotes the orthogonal projection of the original signal )(xf j  onto the

lower MRA subspace .joj
VV ⊂  A variety of algorithms exist in the wavelet literature

for the determination of the reference scaling coefficients } { nc  and the wavelet

coefficients } { ,nkb  from the values of the initial scaling coefficients } { na  in eq.(2.39).

For more details on such computational issues, as well as for extensions in higher

dimensions and/or compact signal domains, see Mallat (1998b), Wojtaszczyk (1997) and

Daubechies (1992).

One of the important advantages, among many others, of wavelet bases is their ability to

‘capture’ the local signal details at various scale levels. Wavelet kernels )(xψ  generally

have a compact form with fast decay, which makes them an ideal tool for spectral

analysis procedures in transient signals with high irregular variations. This is in contrast

to the classic Fourier methods of harmonic analysis, where the underlying base functions

(sinusoids) have an infinite support and uniform behaviour across their domain, and thus

they cannot isolate any local features in the signal.

Although wavelet signal analysis is a very interesting and important topic that has started

to receive increasing interest for many geodetic applications, it will not be discussed

further here. In the following chapters, we will deal exclusively with the multiresolution

analysis concept which basically corresponds to one of the many different facets of
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wavelets. Due to this connection, however, their implicit association with all the

forthcoming theoretical developments should always be kept in mind.
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Chapter  3

FROM DETERMINISTIC COLLOCATION TO

MULTIRESOLUTION APPROXIMATION

The purpose of this chapter is twofold. First, the general problem of linear signal

approximation in arbitrary Hilbert spaces is reviewed. The formulation and the solution

of this problem are presented in a very detailed way, emphasizing some important aspects

that are often overlooked in many textbooks and monographs found in the geodetic

literature. A relatively recent mathematical tool of functional analysis, called a frame, is

also used to analyze the stability of the solution algorithm for the linear approximation

problem. The second main scope of the chapter is to study the relationship between the

Hilbert space in which we choose to perform the linear approximation, and the

stability/convergence properties of its solution algorithm for increasing data resolution. In

particular, it will be shown that a constantly stable and convergent (in the sense of

infinitely dense data) linear signal estimation scheme in a Hilbert space H requires the

incorporation of a multiresolution (MR) structure of subspaces in H, similar to the one

introduced in the previous chapter.
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3.1  What is Collocation ?

Before we study the linear approximation problem in Hilbert spaces and its associated

stability and convergence issues, a descriptive (yet brief) overview of the general

collocation concept in physical geodesy will be given in this section. Collocation is

widely known as an optimal linear estimation method for gravity field modelling using

discrete (and possibly heterogeneous) data. Behind this vague definition lie two

fundamentally distinct viewpoints, with correspondingly different mathematical and

physical models/assumptions associated with them. Both approaches have certain

advantages and drawbacks, and they have been the subject of extensive debate in the

geodetic scientific community over the past three decades.

3.1.1  Deterministic Collocation

The first approach, which will be called deterministic collocation, uses a functional

analysis setting with the unknown field under consideration f  (e.g. the anomalous

potential of the Earth) being modelled as an individual element in an infinite-dimensional

reproducing kernel Hilbert space (RKHS) H. The available discrete observations from the

field are also modelled as continuous linear functionals ,fL j  belonging in the dual

Hilbert space H′  of H.  The optimally approximated field f̂  is then considered as the

smoothest function, in the topology of H, that satisfies the given functionals. The

situation corresponds to a typical inverse problem with no unique solution initially (ill-
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posed), which is then regularized according to a simple Tikhonov-type projective scheme

(Schwarz, 1979; Moritz, 1980). Such a linear approximation method is not of course an

exclusive privilege of physical geodesy problems, but it has been borrowed from other

areas of mathematics where it is often found under the name minimum-norm interpolation

in RKHS (Davis, 1975). The original idea for using such deterministic Hilbert space

methods in gravity field modelling is due to Torben Krarup, who in his famous

publication (Krarup, 1969) developed a pioneering framework for solving discrete

boundary value problems (BVPs) in Hilbert spaces of harmonic functions outside a

certain spherical approximation of the Earth. However, the reformulation of the gravity

field determination problem as an underdetermined/discrete BVP, instead of a continuous

BVP in the sense of classic potential theory (i.e. Stokes, Molodensky), whose solution

should employ only the finite number of the available discrete data in a certain optimal

fashion, was made earlier than Krarup’s developments by Bjerhammar (1964). The

interpolatory character of Bjerhammar’s discrete BVP, along with his proposed idea for

the analytical downward reduction of the discrete observations on a certain reference

sphere, have contributed in several ways to a clarification of the conceptual foundations

in modern physical geodesy; see also Bjerhammar (1973, 1975, 1987). More details on

the deterministic aspects of collocation can be found in Dermanis (1976), Krarup (1978),

Leglemann (1979), Meissl (1976), Moritz (1980) and Tscherning (1978b, 1986).

Deterministic collocation ‘suffers’ from two important problems, one of which is the so-

called norm choice (or reproducing kernel choice) problem; see Dermanis (1977). In
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order to use the method and to actually compute an estimate for the unknown field from

its discrete data, we need to know the reproducing kernel in the Hilbert space H, which in

turn requires the prescription of a specific norm (topology) or inner product. An a-priori

choice for the norm, inner product, or reproducing kernel is (to a certain extent) arbitrary,

and not only does it affect the physical interpretation of the signal approximation, but it

also controls other important aspects like the stability of the solution algorithm, as well as

the admissible spatial configurations of the data needed to obtain such stable solutions

(Eeg and Krarup, 1973; Rummel et al., 1979). These issues will be explored further later

in this chapter.

The second important problem in deterministic collocation stems from the lack of

efficient measures to evaluate the accuracy of the minimum-norm interpolation algorithm.

Although there do exist rigorous upper bound values for the error norm ,ˆ
H

ff −  that

can characterize the overall performance of the linear estimation procedure in a given

Hilbert space H, their use is of rather limited practical importance and their actual

computation requires the complete knowledge of the unknown field itself (Dermanis,

1976; Tscherning, 1986). Furthermore, the choice of a specific signal norm, reproducing

kernel, or inner product directly influences the nature of the accuracy measure ,ˆ
H

ff −

which may not necessarily admit a practically useful interpretation (e.g. RMS-type

approximation error). We will return to the accuracy evaluation issues in the following

chapters.
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3.1.2  Stochastic-Probabilistic Collocation

The second fundamental viewpoint in linear approximation problems of physical geodesy

constitutes the stochastic version of collocation. According to this approach, the true field

f  is modelled as a zero-mean stochastic process (after a possible subtraction of a simple

trend model) and the available discrete observations are considered as zero-mean random

variables that are linearly related to the unknown random field. The optimal

approximation (or more precisely, prediction) f̂  is now defined as the one satisfying the

minimum mean square error (MMSE) principle, i.e. { } min)ˆ( 2 =− ffE , where E

denotes the expectation operator in a probabilistic sense. The final solution is obtained by

additionally requiring that f̂  is an unbiased estimator of ,f  which should be linearly

related to the available discrete (stochastic) data.

As in the deterministic collocation case, this probabilistic estimation method has also

been borrowed from other areas of mathematics and applied sciences (signal analysis,

communication engineering) where it was originally developed. The underlying

framework is formally known as the Wiener-Kolmogorov (W-K) linear prediction theory,

pointing to the pioneering work of the two scientists back in the 1930s and 1940s. An

excellent review paper on many different aspects of W-K theory, with more than 350

relevant references, is Kailath (1974). The original introduction of the W-K methodology

in physical geodesy estimation problems should be attributed to the work of Moritz

(1962) on optimal linear interpolation of gravity data. For a detailed treatment of the
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stochastic principles in collocation theory and related applications in gravity field

modelling, see Dermanis (1976), Dermanis and Sanso (1997), Bjerhammar (1982),

Moritz (1970, 1980), Sanso (1986) and Rapp (1978).

For the computation of the optimal prediction f̂  in the W-K theory it is required to know

the covariance (CV) function )}()({),( QfPfEQPC =  of the unknown signal, which

describes the average behaviour of f  at specific points (or pairs of points) in its domain.

Often, in practical applications, the unknown field is additionally modelled as a stationary

and ergodic stochastic process. The main benefit of such an assumption is that the

estimation of the (generally) unknown signal CV function becomes possible using the

available realization of the unknown field (i.e. the discrete observations). Furthermore, in

the stationary case it is highly beneficial to transform the approximation problem to the

frequency domain using the Fourier transform, since the computational effort of the

solution algorithm is significantly reduced due to the de-correlation (‘whitening’)

property of the Fourier transform over stationary random signals; for more mathematical

details, see Parzen (1967), Papoulis (1993), Priestley (1981), and for geodetic

applications of frequency-domain collocation, see Eren (1980), Schwarz et al. (1990),

Sideris (1995), Sanso and Sideris (1997) and Nash and Jordan (1978).

The main drawback of the probabilistic viewpoint in collocation is that it is not physically

acceptable, since the external gravity field of the Earth is not a stochastic phenomenon as



48

the W-K theory requires. Excluding time-dependent variations (which are very weak

compared to the mean spatial power of the ‘steady’ gravity field and which nowadays can

be modelled and computed with very high accuracy) and random noise effects, repetitive

gravity field measurements should always give the same result. For an interesting, as well

as amusing, discussion on this aspect, see Moritz and Sanso (1980). Furthermore, treating

the deterministic gravity field as a stochastic phenomenon creates important problems in

the interpretation of the accuracy measures that we often use to evaluate the quality of the

W-K linear prediction algorithm. The formalism of variance-covariance propagation

allows us to easily obtain the variances and covariances of the prediction error,

),(ˆ)()( PfPfPe −=  at the points where the prediction is applied. Such accuracy

information has a purely probabilistic nature (i.e. average error over many experiment

repetitions), that is meaningless in a physically deterministic/causal system. Note that all

the discussions so far, as well as for the rest of this chapter, are referred to a noiseless

discrete data setting.

On the other hand, the exact equivalence between the final solution algorithms for both

the deterministic and the stochastic collocation case, which occurs when we identify the

reproducing kernel used in the former approach with the covariance function employed in

the latter, makes it possible to develop an intermediate viewpoint in collocation that can

eliminate, to some degree, most of the pitfalls in the two original formulations.
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3.1.3  Spatio-Statistical Collocation: A Compromise

According to the concept of spatio-statistical collocation, instead of using quantities

defined through ‘experiment repetitions’ via the expectation operator ,E  we employ

certain spatial statistics measures to describe the behaviour of the unknown deterministic

field, as well as the behaviour of its estimation error. In this way, the CV function of an

unknown signal is now defined in a purely deterministic sense, using a spatial averaging

operator .M  For example, in the one-dimensional case, the spatial signal CV function is

defined as

{ } )( )(     ),( τττ ++= QfPfMQPC     (3.1)

where the operator M  is applied to the translation parameter τ  only. A common choice

for ,M  which actually allows the efficient incorporation of Fourier methods into the

statistical collocation framework, is the integral

∫ ++= τττ dQfPfQPC  )( )(     ),(     (3.2)

By a simple change of variables, it is easily seen that the last equation is reduced to the

usual ‘stationary’ form

∫ +==−= dxxfxfCQPCQPC   )( )(     )(    )(    ),( ξξ                   (3.3)
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For multi-dimensional problems, we should additionally consider more translation (and

possibly azimuthal) parameters in the definition of the operator ,M  instead of a single

translation parameter .τ  In such cases, customary terminology calls for homogeneous CV

functions (translation parameters only in M ), or isotropic CV functions (translation and

azimuth parameters in M ).

As in the stochastic collocation case, the optimal signal approximation f̂  is again

defined as the one satisfying a MMSE principle, which is now expressed in a purely

deterministic spatio-statistical manner. In the 1D case, the optimal estimation criterion of

statistical collocation takes the following form:

{ } min      ) ,(         ) ,(  ) ,(    
  

1 ==++
Ω ∫

Ω
QPCdxxQexPeM eooo τττ    (3.4a)

where the estimation error has the general expression

) ,(ˆ    )(    ) ,( oo xPfPfxPe −=     (3.4b)

The above optimal principle takes into account the fact that, if we translate by ox  the

available spatial configuration of the data points (but not the unknown field itself), we

will generally obtain some new observation values that will produce a different

approximation for the unknown field. In this way, the estimation error at an arbitrary
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point P  becomes also a function of the ‘position’ ox  of the data point configuration,

with respect to the reference system used to describe the unknown field. The spatio-

statistical collocation solution will then minimize the mean error CV function ) ,( QPCe

over all possible positions Ω  of the given data point geometry. Note that for multi-

dimensional problems, the position of the data point network is not determined solely

through a single translation parameter ,ox  but it includes additional translation and

rotational parameters as well. Such a situation is illustrated in Figure 3.1, where we can

see two different locations for the same geometry of a planar data point network. The

network shown with dotted lines is just a translated (over the spatial coordinates x and y)

and rotated (at 90° angle) version of the data point network shown with solid lines.

Figure 3.1  Different ‘positions’ for the same geometry of a 2D data point network

x

y
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Two additional conditions are taken into account in the statistical collocation framework,

which are: (i) linearity of the solution )(ˆ Pf  with respect to the discrete input data, and

(ii) translation-invariance of the solution with respect to corresponding changes in the

origin of the reference system. The last property will basically ensure that, if )(ˆ Pf  is the

optimal linear approximation for the unknown field ),(Pf  then )(ˆ α+Pf  should be the

corresponding optimal linear approximation for the field ).( α+Pf  In the multi-

dimensional case, we should assume approximation invariance under more general rigid

transformations of the reference system, which may possibly include rotational

parameters. The use of this spatio-statistical version of collocation was proposed in the

classic book of Heiskanen and Moritz (1967), but it was actually Sanso (1978) who first

formulated a rigorous and complete mathematical setting for the method. A relevant and

extensive discussion can also be found in Moritz (1978a, 1980). The statistical

collocation framework will be studied in detail in Chapter 4, for the special case of

regularly gridded data.

The general formula for the estimated field under the statistical collocation concept is

similar to the ones obtained under either the deterministic or the stochastic approach,

where now instead of a reproducing kernel or a probabilistic CV function, we use a

spatial CV function that is defined in a purely deterministic sense as per eq.(3.1). In this

way, the use of the spatio-statistical MMSE principle in eq.(3.4) automatically gives rise

to a minimum-norm solution in a Hilbert space with reproducing kernel equal to the
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signal spatial CV function. For an interesting topological paradox that exists during this

identification procedure, see Tscherning (1977).

3.1.4  Some Important Existing Problems

Regardless of which of the three previous approaches we adopt, the linear estimation of

an unknown field from discrete data always requires the inversion of an N × N symmetric

matrix, where N  is the number of the available observations. Usually, such a numerical

task creates important problems in terms of the required computational effort and the

stability of the solution algorithm. Although the computing time/storage requirements can

be significantly reduced through special algorithmic and modelling techniques (Bottoni

and Barzaghi, 1993; Sanso and Schuh, 1987) and/or fast Fourier transform (FFT)

methods (Sideris, 1995; Schwarz et al., 1990; Eren, 1980; Thomas and Heller, 1976), the

stability problem is not generally overcome by them. For example, if a high-resolution

data point configuration is used, relative to the spread (correlation length) of the selected

reproducing kernel (or CV function), then the resulting matrix will be highly ill-

conditioned regardless of the domain in which we perform its inversion. In this way, the

establishment of convergence for the collocation algorithm, as the data density increases,

also becomes very difficult from a numerical/computational point of view.

Apart from the stability/convergence problem, there exists one more issue of special

importance in collocation. The introduction of the spatio-statistical estimation principle in
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eq.(3.4) by Sanso has been perceived by many geodesists only as an attempt for assigning

a non-stochastic interpretation to Moritz’s (or Wiener’s) optimal prediction formulas,

overcoming in this way the non-existence of a stochastic gravity field. Along with this

perception, however, it has also remained the false belief that we need to model the

gravity field as a stationary signal because of the ‘stationary’ form of Sanso’s spatial CV

function. This is believed to provide serious limitations in the whole approximation

procedure of statistical collocation, since the actual behaviour of gravity field signals is

‘non-stationary’. Besides the fact that the above claim is meaningless, since the notion of

stationarity has no place in deterministic signals (see also the related discussion in Sanso,

1978), it is the author’s opinion that the spatio-statistical formulation of collocation is a

very powerful and complete tool as it is, without having the need to be considered as a

‘supplement’ to W-K theory for physical geodesy approximation problems. Furthermore,

it is one of the main goals of this thesis to show that the use of ‘stationary’ signal CV

functions, as in eq.(3.3), not only does not impose any assumption of uniform behaviour

for the underlying unknown fields, but is actually closely related to one of the best

mathematical tools available today for localized (‘non-stationary’) signal analysis and

estimation.

From the above two important problems in collocation theory (stability/convergence and

stationarity), the first is explored in this chapter whereas the second is discussed in

Chapter 4. Our starting point will be the deterministic viewpoint in collocation, from
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which we will gradually arrive at a spatio-statistical MR stable version, without the need

of using the intermediate stochastic ‘burden’.

3.2  Linear Approximation in Hilbert Spaces

An infinite-dimensional separable Hilbert space H is given. For an unknown function

H,∈f  we have available observations nb  which have a linear dependence on ,f  i.e.

Γ∈><=               ,      ,     ngfb nn                             (3.5)

where < , > denotes the inner product in the Hilbert space H, and ng  are known elements

from the same space. The index set Γ  will be assumed, for the moment, as a finite subset

of the integers (i.e. only a finite amount of observations is available). The problem is how

to recover the unknown signal f  using the observation values nb  and the observational

representers .ng

Let us denote by V the Hilbert subspace of H which is defined as the linear span of the

finite sequence .}{ Γ∈nng  The unknown function can now be uniquely decomposed into

two orthogonal elements as follows:

⊥+=
VV       fff     (3.6)
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where Vf  is the orthogonal projection of f  onto V, and ⊥V
f  is the orthogonal

projection of f  onto the Hilbert subspace ⊥V  (orthogonal complement of V in H, i.e.

HVV =⊕ ⊥ ). In this way, the general observation equation (3.5) takes the following

form:

  ,         

 ,      ,         

 ,     

V

VV

VV

><=

><+><=

>+<=

⊥

⊥

n

nn

nn

gf

gfgf

gffb

           (3.7)

It is seen that the available measurements are only partially related to the unknown field.

In fact, they can only determine its orthogonal projection Vf  onto the finite-dimensional

subspace V spanned by the known family },{ ng  and they contain absolutely no

information about the second component .
V⊥f  Since the observation values nb  do not

supply any information about the orthogonal complement of ,Vf  the desired

approximation f̂  for the unknown field can be expressed in the general linear form

∑
Γ∈

==
n

nn gaff           ˆ
V     (3.8)

where na  are unknown coefficients with respect to the sequence that generates the actual

solution space V of the linear approximation problem. Using (3.8), the observation

equation (3.7) yields
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Γ∈><=><= ∑∑
Γ∈Γ∈

nggaggab
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kkn     ,       ,        ,                      (3.9)

or, by using matrix notation
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(3.10a)

aGb       =      (3.10b)

where N denotes the finite number of the available observations. It is also useful to

express the original observation equations in the following operatorial form:

VV            fUfPU ==b   (3.11)

where VP  is the orthogonal projector from the Hilbert space H onto its subspace V, and

U  is a linear operator defined as follows:

Γ∈∀><→Γ→ ngfflU n          ,          ,    )(     V  :  VV2     (3.12)

The role of the above operator is to take every function from the subspace V and to

compute its inner products with respect to the sequence .}{ Γ∈nng  Since the latter

corresponds to a finite set of functions, the collection of all these inner products (for
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every VV ∈f ) can be considered as an individual element b of the Hilbert space ).(2 Γl

Note that the Hilbert space of real square-summable sequences over the index set Γ  is

essentially identical with the classic Euclidean space Nℜ  of N-dimensional real vectors,

where N is the cardinality of .Γ  Also, since the family Γ∈nng }{  spans the whole

subspace V, the operator U  in eq.(3.12) will always be an injective (one-to-one)

operator.

The computation of the recoverable part Vf  of the unknown field requires the inversion

of the operator ,U  or equivalently the inversion of the symmetric N × N Grammian

matrix G in eq.(3.10). In order to perform such an inversion, we will distinguish between

the following two cases regarding the behaviour of the observational representers:

Case 1 : Γ∈nng }{  is a linearly independent set

Case 2 : Γ∈nng }{  is a linearly dependent set

A geometrical interpretation of the above two cases is illustrated in Figure 3.2. The only

difference between them is that the linear operator U  is surjective (onto) in the first case,

whereas in the second case it is not. The internal correlations existing between the

observation values ,, >< ngf  when the set }{ ng  is linearly dependent, make the

reproduction of any N-tuple of real numbers in the observation space impossible. The

extra dots that are left unconnected in Figure 3.2(b) represent those elements in )(2 Γl
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which do not belong in the range of the ‘observational’ operator U  for Case 2. Since we

are only interested in the inversion of the operator ,U  we can also create the

representative diagram shown in Figure 3.3.

Figure 3.2  Mapping type of the observation equations for Case 1 (a) and Case 2 (b)

Figure 3.3  The geometry of the linear operator U for Case 1 (a) and Case 2 (b)
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In both cases there will exist a unique pseudo-inverse operator ,~ 1−U  which can be

defined on the image space ImU of the linear operator U  (i.e. ImU is the actual

observation space of the linear approximation problem). The basic property of the

pseudo-inverse is that, when applied to elements of )(2 Γl  that do not belong in ImU

(Case 2), it becomes a zero operator (Mallat, 1998b; pp. 130-131). In the sequel, the

inversion scheme is analyzed for each case separately. The properties of the linear

approximation f̂  for the unknown field will also be discussed and explained in detail.

3.2.1  Inversion Scheme for Case 1

In the case of linear independence for the observational representers, the pseudo-inverse

1~−U  corresponds to the usual inverse operator .1−U  The latter is well defined, since U

is always a bijective (surjective + injective) operator.

The numerical computation of the linear approximation for the unknown field is achieved

by simply inverting the Grammian symmetric matrix G  in (3.10), from which we can

finally determine the (unique) values of the unknown coefficients na  that are needed in

(3.8), i.e.

bGa       1−=   (3.13)
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The system of the observational representers Γ∈nng }{  will provide a basis for the

solution space V in this case, and the actual linear approximation of the unknown field is

just an expansion with respect to this (in general non-orthogonal) basis.

3.2.2  Inversion Scheme for Case 2

In the case of linear dependence for the observational representers, the pseudo-inverse

operator 1~−U  will not correspond to 1−U  in the usual sense, because the latter does not

exist in this case (U  is not surjective). However, since U  is always an injective linear

operator, we can uniquely compute one of its infinite left-inverses which will also be

identical with its pseudo-inverse (Mallat, 1998b; p. 130). The pseudo-inverse operator of

U  in this case will have the form

*1*1  )(    ~ UUUU −− =   (3.14)

where *U  denotes the adjoint of .U  Since the Grammian matrix G is singular in this

case, the numerical computation of f̂  can be achieved by a minimum-norm solution for

the singular linear system of eq.(3.10). Such a solution is obtained by simply computing

the unique pseudo-inverse (Moore-Penrose inverse) +G  of the N × N matrix G, i.e.

bGa       ˆ +=   (3.15)
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The general form of the pseudo-inverse matrix +G  is given by the following formula

(Rao and Mitra, 1971):

EEEEEEGG 2TT1T )(  )(    −−+ −+=   (3.16)

where E is an r × N matrix whose rows are some linearly independent solutions of the

singular homogeneous system ,0Ga =  and r corresponds to the rank deficiency of .G

This matrix is not uniquely defined and it always satisfies the condition .T 0GE =  A

particularly interesting and useful formula, that has been extensively used by various

routines for the numerical computation of ,+G  is the following (Albert, 1972):

12TT
0

T12T
0

)(lim    )(lim    −
→

−
→

+ +=+= IGGGGIGGG λλ
λλ

  (3.17)

The observational representers Γ∈nng }{  in Case 2 provide a redundant system of base

functions for the solution space V, which is not a basis. The signal solution V
ˆ ff =  can

thus be expressed in an infinite number of ways with respect to the known family }.{ ng

The use of the pseudo-inverse operator ,~ 1−U  through eq.(3.15), gives just a single set â

among all admissible coefficients a  satisfying the system (3.10), which has the

minimum-norm property, i.e.

aaaaaa TT           ˆˆ     ˆ =≤=     (3.18)
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Finally, it can be easily shown that when the pseudo-inverse operator 1~−U  is applied to

elements of )(2 Γl  which do not belong in ImU, then the result will be the zero element

of the Hilbert subspace V, i.e.

0bGbImImImb          0   ~      then  )()(   , )(  12 ==Γ=⊕∈∀ +−⊥⊥ orUlUUU   (3.19)

For more details, see Mallat (1998b, Chapter 5). Note again that the Hilbert space )(2 Γl

of real square-summable sequences over the index set Γ  is essentially identical with the

classic Euclidean space Nℜ  of N-dimensional real vectors, where N is the cardinality of

.Γ

3.2.3  Comments

The general solution of the linear approximation problem, given by eq.(3.8), obeys the

minimum norm principle (deterministic collocation) in the sense that

         ˆ ff ≤                           (3.20)

for every other function H∈f  that satisfies the given observation equations in eq.(3.5).

In the last equation, the symbol  denotes the norm in the Hilbert space H. This

property is trivial to prove by simply taking into account the decomposition formula (3.6)
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and the generalized Pythagorean theorem in Hilbert spaces. In fact, if we had started the

development of our solution procedure by imposing a-priori the following optimality

criterion for the estimated field f̂ :

min     ˆ =f    (3.21)

then we would have derived the exact same system of normal equations as in (3.10). The

unique solution Hˆ ∈f  that satisfies both the minimum norm principle (3.21) and the

observation equations (3.5) will always belong to the Hilbert subspace H,V ⊂  and it will

thus have the general expression of eq.(3.8); see Tscherning (1986). However, when the

observational representers are linearly dependent (Case 2) then the expansion coefficients

of this expression are not uniquely defined, and an additional minimum-norm solution for

them should be computed according to (3.15). It should be emphasized that the

uniqueness of the linear approximation fPf V
ˆ =  is always assured, regardless of the

linear dependence/independence of the finite set of the observational representers.

It is quite interesting to realize that the minimum norm principle (3.21), which has been

used extensively in geodesy up to date, is more of a by-product of the Hilbertian

‘geometrical’ setting for the linear approximation problem, rather than an arbitrary

optimal estimation criterion of maximum smoothness for the unknown field in a given

topology. Also, in the geodetic literature the problem of linear approximation for gravity
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field signals in Hilbert spaces is exclusively treated for the Case 1 only (see, e.g.

Tscherning, 1986; Moritz, 1980; Meissl, 1976). The Case 2, where the observational

representers are linearly dependent, can also be easily included in the Hilbertian

approximation framework by simply computing the pseudo-inverse of the singular

Grammian matrix G, as was explained in the previous paragraphs. Numerical stability

problems that may occur during the computation of the matrices 1−G  or +G  and other

related issues are discussed in section 3.3.

3.2.4  Modelling Considerations

The previous presentation reveals in an interesting way one aspect of the modelling

choice problem, which emerges when we use the deterministic collocation concept in

actual practical applications. The starting point in such cases is just a given N-tuple of

real numbers ,}{ Γ∈nnb  corresponding to the discrete observations obtained from the

unknown field. As a second step, a certain modelling choice for f  will enable us to

construct linear observation equations of the form (3.5), which are then solved according

to the previous methodology. In order for this methodology to work, however, we have to

ensure that the given N-tuple of observations belongs to the image space )(2 Γ⊆ lUIm

of the linear operator .U  This, in turn, depends solely on our modelling choice, i.e. the

form of the inner product < , > and the type of the observational representers .ng
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Assuming that the observations nb  correspond to point values of the unknown field itself,

we can then express the observational representers in the following general form:

),(    )( nn QPKPg =

where ),( QPK  is the reproducing kernel of the Hilbert space H chosen to model the

unknown field, and Γ∈nnQ }{  is the data point configuration. In this way, the

interpolation modelling is exclusively based on the selection of a positive-definite,

symmetric, bivariate function. If the set Γ∈nnQPK ),(  is linearly independent, then our

observation sequence (regardless of its numerical values nb ) will certainly belong in the

image space ).(2 Γ≡ lUIm  The linear estimation algorithm will always produce a proper

numerical result, but our modelling choice can neither be questioned, nor validated in this

case!

However, if we repeat the same modelling choice using denser data point configurations

Γ′∈′ nnQ }{ , we should expect that the new set of the observational representers

Γ′∈′ nnQPK ),(  starts to become linearly dependent. In order for the denser sequence of

observation values Γ′∈′ nnb }{  to remain in ),(2 Γ′⊂′ lUIm  the unknown field must

exhibit a certain ‘correlated’ behaviour induced by our interpolating modelling choice. In

simple words, the unknown field f  has to belong in the Hilbert space with the specific
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reproducing kernel. For a given approximation model ),,( QPK  the level of the imposed

correlation in the observation values will generally increase as the data point density

(resolution) increases.

Hence, an essential factor in the modelling procedure becomes the minimum spatial

resolution of data points }{ nQ  above which the unknown field should start to exhibit an

increasing correlation in its values. The answer to this question (if any) will still leave a

relative freedom in choosing a specific model ),( QPK  for measuring this correlation,

whose unique selection requires the incorporation of additional criteria.

3.3  Numerical Stability and the Role of Frames

An issue of special interest in the framework of linear approximation in Hilbert spaces is

that of stable signal representations. The importance of stability is not restricted only to

practical/computational issues (i.e. condition number of the matrices 1−G  or +G ), but it

affects theoretical aspects of the estimation algorithm as well (convergence behaviour). In

our present Hilbertian setting for the signal approximation problem, the notion of stability

is exclusively related to the continuity of the pseudo-inverse linear operator 1~−U  that is

applied to the original data UImb∈  for the (partial) recovery of the unknown field ,f

i.e.
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b ~        ˆ 1
V

−== Uff   (3.22)

Note that there is no need for the observational representers to be linearly independent in

order to have a stable approximation scheme, since the continuity of the operator 1~−U

does not depend on the linear dependence/independence of the family ,}{ Γ∈nng  as it will

be explained in the following sections. Think, for example, of the case of three unit

vectors lying on the same plane and forming angles of 120° between each other. At least

our intuition should tell us that this linearly dependent set corresponds to a very stable

and robust planar coordinate system, which may be more preferable than a coordinate

system formed by two linearly independent vectors with an angle of 20° between each

other.

3.3.1  General Frame Theory

The most appropriate mathematical tool for studying the behaviour of the linear

approximation operator 1~−U  is the concept of a frame. In simple words, a frame in a

Hilbert space V is a family of elements V,∈jφ  such that

(i) every V∈f  is uniquely determined by its projections >< jf φ,

(ii) the reconstruction of f  from the values >< jf φ,  is a stable algorithmic process
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The rigorous mathematical definition of a frame } { jφ  in a Hilbert space V is based on

the following formula:

∞+<≤><≤< ∑              ,              0 222 fBffA
j

jφ   (3.23)

which should be satisfied by every V.∈f  Note that (3.23) provides a simple

generalization of the well known Plancherel-Parseval property for orthonormal bases. The

symbols A and B are some strictly positive constants, independent of ,f  and they are

called frame bounds. Frame theory was originally developed by Duffin and Schaeffer

(1952), in the context of nonharmonic Fourier series for the reconstruction of band-

limited signals from their irregularly spaced samples. Some very good introductory

references on frame theory can be found in the books by Young (1980), Hernandez and

Weiss (1996) and Mallat (1998b). For more advanced details on frame theory and related

applications, see Daubechies et al. (1986), Daubechies (1990), Heil and Walnut (1994)

and Strohmer (1995).

Every frame in a Hilbert space V is associated with a corresponding frame operator ,F

which is defined as follows:

Z        ,         ,   )Z(     V  :  2 ∈∀><→→ jfflF jφ              (3.24)
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where it is assumed, for generality, that the number of the frame components is infinite.

The definition of a frame system, according to the double inequality (3.23), ensures that

the linear operator F  is always: (i) injective, and (ii) bounded (continuous). Furthermore,

it can be shown that (3.23) is a necessary and sufficient condition guaranteeing that F  is

invertible on its image, with a bounded (continuous) inverse; for a proof, see Mallat

(1998b, p. 129). If the frame components are all linearly independent elements of V, then

the frame operator is also surjective and its image space is the whole Hilbert space ).Z(2l

In this special case, the frame is called Riesz basis (see Chapter 2).

A frame thus always defines a unique, complete and stable discrete representation for

signals in a Hilbert space, which may also be redundant. When the frame components are

all normalized, ,1  =jφ  this redundancy is measured by the values of the frame bounds.

If the normalized } { jφ  are linearly independent, then it can be proven that A ≤ 1 ≤ B.

The frame is an orthonormal basis if and only if A = B = 1. If A > 1, then the normalized

frame is overcomplete (redundant) and the value of A can be interpreted as a minimum

redundancy factor.

The reconstruction of an arbitrary signal V∈f  from its frame ‘coordinates’ >< jf φ,  is

computed with the help of a unique dual frame },~ { jφ  according to the equation

(Daubechies et al., 1986)
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∑∑ ><=><=
j

jj
j

jj fff φφφφ   ~ ,     ~   ,       (3.25)

The family }~ { jφ  is also a frame for the Hilbert space V, having frame bounds 1−A  and

,1−B  and being uniquely defined by the operatorial formula

jj FF φφ  )(    ~ 1* −=   (3.26)

where *F  is the adjoint of .F  A proof for the invertibility of the operator FF*  can be

found in Mallat (1998b, pp. 130-131). The signal reconstruction formula in eq.(3.25) can

also be written in the equivalent operatorial form

fFFfFFFFf   ~      )(    1*1* −− == (3.27a)

It can easily be shown that the pseudo-inverse operator *1*1 )(~ FFFF −− =  corresponds

to the usual inverse of ,F  when the latter is restricted on its image space. Furthermore,

1~−F  is always bounded (continuous) and it has the minimum supremum norm among all

possible generalized inverses of .F  Its condition number )~( 1−Fk  satisfies the relation

A
BFFFk

psupsu       ~         )~( 11 == −−                        (3.27b)
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For more details and proofs, see Daubechies et al. (1986). In simple words, therefore, the

fundamental property of a redundant frame is to provide a unique and stable expansion

for every signal V∈f

∑=
j

jjaf φ         (3.28)

using, among all infinite possibilities for the sets of coefficients ,ja  the one that has the

smallest )Z(2l  norm. Note that, in general, the frame components will not constitute a

basis in the technical sense, although their closed linear span is all of V. This is so

because } { jφ  need not be independent. On the other hand, a basis for V, which always

assumes the expansion form (3.28), is not necessarily stable and, therefore, not a frame.

A number of simple examples can be used to clarify the situation. Let ∞
=1} { jje  be an

orthonormal basis for an infinite-dimensional Hilbert space V. Then

1. ∞
=1} { jje  is a frame for V, with frame bounds A = B = 1

2. ...} ,,,,,, { 332211 eeeeee  is a frame for V, with frame bounds A = B = 2

3. ...} ,,,,2 { 4321 eeee  is a frame for V, with frame bounds A = 1 and B = 4

4. ...} ,
4

,
3

,
2

, { 432
1

eee
e  is a complete orthogonal basis for V, but not a frame
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Hence, in infinite-dimensional Hilbert spaces a family of vectors may be complete and

not yield a stable signal representation. For more examples and explanations, see

Strohmer (1995) and Heil and Walnut (1994). Also, one can easily verify that a finite set

of signals V  } { 1 ∈≤≤ Njjφ  is always a frame for the Hilbert subspace generated by their

linear combinations, regardless of their linear independence/dependence (Mallat, 1998b).

This last fact will be used later on in section 3.3.3.

3.3.2  Gabor and Affine Frames

In order to recover a signal from its frame coefficients ,, >< jf φ  we should first

analytically pre-compute the dual frame components jφ~  according to eq.(3.26), and then

we can reconstruct f  using the sum

∑ ><=
j

jjff φφ ~  ,       (3.29)

Fortunately, the above computational scheme is greatly simplified when the frame bounds

A and B are equal (tight frames), in which case we have the simple relation (Daubechies

et al., 1986)

jj A
φφ   1    ~ =   (3.30)
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Within the context of computationally efficient tight frames, the major mathematical

developments that took place during the last decade have resulted in the construction of

two main tight-frame families for various types of Hilbert spaces (including )(2 nL ℜ  and

Sobolev spaces). These two families are widely known as: (i) Weyl-Heisenberg or Gabor

frames, and (ii) wavelet or affine frames. The first type corresponds basically to a

discretized windowed Fourier transform, with the individual frame components being

generated by a simple translation and modulation of a basic window function. For more

details, see Daubechies et al. (1986) and Benedetto and Walnut (1994). In the one-

dimensional case, the Gabor frames have the general form

xik
okn oenuxwx ξφ   )(    )(, −=   (3.31)

where now the frame components depend on two integer indices ).,( kn  The basic space

and frequency sampling intervals, ou  and ,oξ  are adjusted to the space-frequency spread

of the window function w(x).

The second family of tight frames (wavelet frames) was essentially developed over the

last few years in order to overcome certain limitations for the resolution properties of the

space-frequency Gabor spectrum . , 
2

, >< knf φ  In this case, instead of using a

modulation, the basic window function is dilated and translated to generate the individual

frame components, i.e.
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)(      )( 2/
, ok

k
kn nu

a
xwax −= −φ   (3.32)

where again the parameters ou  and a  depend on the space-frequency localization of the

selected window ).(xw  More details on wavelet frames can be found in Daubechies et al.

(1986), Daubechies (1990, 1992) and Benedetto (1994).

Note that the generating window function, as well as the discretization parameters

( ,ou ,oξ a ), should satisfy certain conditions in order for the functions )(, xknφ  to

generate either a Gabor or a wavelet tight frame, and they cannot be selected arbitrarily.

In Daubechies et al. (1986) and Daubechies (1990, 1992), sufficient conditions are given

to build window functions that generate either a Gabor or a wavelet tight frame in 2L

Hilbert spaces. These conditions allow us to construct generating functions which are: (i)

smooth (differentiable), and (ii) well localized in both space and frequency domain sense.

The first property is important when we try to study the Gabor or wavelet frame

spectrum, since the use of a discontinuous w(x) may introduce artificial high-frequency

content in the spectrum and it can distort the image of the analyzed signal. Also, the

localization properties of the frame components } { ,knφ  allow us to get a closer look at

the fine signal details, avoiding a simple and vague ‘global averaging’ that is usually

obtained when we use non-localized reconstruction components (e.g. infinite sinusoids in

classic Fourier harmonic analysis).
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It should be mentioned that Gabor and wavelet frames have also been constructed for the

general non-tight case. For Gabor non-tight frames ),(, xknφ  we are additionally faced

with the pleasant result that the dual frame }~ { ,knφ  will also be comprised of translations

and modulations of a dual window function w~  (Mallat, 1998; p. 143). However, the same

does not apply in general for the wavelet frame case; see Daubechies (1990, 1992).

In certain applications, the frame components may depend on the specific analyzed signal

,f  and they cannot be arbitrarily chosen from a pre-determined Gabor or wavelet frame

‘dictionary’. A classic example is the frames associated with irregular sampling problems

(Duffin and Schaeffer, 1952; Feichtinger and Grochenig, 1994; Strohmer, 1995), where

every frame component depends on the specific location of each sample value ., >< jf φ

If the irregular sampling grid varies from signal to signal this modifies the frame vectors,

and it is then highly inefficient to compute the dual frame for each new signal. An

overview of various numerically efficient, iterative algorithms that can be applied in such

cases is given in Mallat (1998b, p. 135).

One of the main practical advantages of overcomplete frame systems is that their

redundancy becomes very useful in reducing the effect of possible additive noise in the

frame coefficients ,, >< jf φ  and it significantly increases the robustness of the signal

reconstruction algorithm (compared to ‘minimal basis’ reconstruction schemes). These

issues have been studied in detail mainly in the signal and image processing community,
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where frames are often used for high precision analog-to-digital conversion based on

oversampling. For more details, see Benedetto (1998) and Cvetkovic and Vetterli (1998).

3.3.3  Frames and Linear Approximation in Hilbert Spaces

After the preceding brief overview on frame theory, let us now see its relevance with

respect to the initial approximation problem of section 3.2. Since a finite set of elements

in a Hilbert space is always a frame for the Hilbert subspace generated by their linear

combinations, the set of the observational representers Γ∈nng }{  will also be a frame for

the Hilbert subspace HV ⊂  (solution space). The linear estimate of the unknown field,

according to eq.(3.8), will thus be just an expansion with respect to the ‘observational

frame’ }.{ ng  Furthermore, the unknown coefficients of this expansion, which are

obtained from the solution of the consistent linear system in (3.10), will correspond to the

optimal/stable ones implied by frame theory.

In order to see this better, let us denote by g  an N × 1 vector containing all the

observational representers as follows:

[ ]T         1 Nj ggg=g                 (3.33)
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Each component of the observational frame can be expressed with respect to the unique

dual frame }~{ ng  according to the formula (see section 3.3.1)

Γ∈∀><= ∑
Γ∈

jgggg
n

nnjj           ~  ,       (3.34)

or, by using matrix notation to combine all the frame components,

Ggg  ~    TT =   (3.35)

where

[ ]T1
~  ~  ~     ~

Nj ggg=g                 (3.36)

and G is the symmetric N × N Grammian matrix given in (3.10). The general linear

approximation algorithm in (3.8) can be written in the equivalent vector form

ag          ˆ TV == ff   (3.37)

which, using (3.35), takes the form

aGg   ~        ˆ TV == ff   (3.38)

Now, if we substitute the product Ga  according to the system in (3.10), we finally get
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  (3.39)

Hence, the optimal linear approximation of the unknown field is reduced to a simple

frame expansion for its recoverable part in the finite-dimensional Hilbert subspace

H.V ⊂  The linear operator U  [see eq.(3.12)] will be a frame operator for the solution

space V, and its pseudo-inverse 1~−U  is thus always continuous (stable).

There are two different, but equivalent, ways to view the numerical computation of the

signal estimation ,f̂  which both require the calculation of the pseudo-inverse matrix

.+G  In particular, we can either compute the projections (frame coefficients) of f  with

respect to the dual frame }~{ ng  of the observational representers },{ ng  according to the

scheme

><=><→+ jj gfgf ~,      ~,               VbG (3.40a)

or we can directly compute the dual frame components jg~  using the product
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jg~              T →+Gg (3.40b)

In either case, the final solution will always be given by the general vector form

bGg       ˆ T +=f (3.40c)

Of course, when the observational representers are all linearly independent then the

Grammian matrix G will be non-singular, and the last three equations are simplified

accordingly by using .1−+ = GG  Furthermore, in this special case the sets }{ ng  and

}~{ ng  will constitute a pair of biorthogonal Riesz bases for the solution space V.

The use of frame theory shows that the stability of the linear approximation algorithm in

an arbitrary Hilbert space H is always guaranteed, as long as we deal with a finite amount

of data ., >< ngf  Although this result may seem satisfactory for practical purposes, it

actually raises new interesting questions related to the convergence of the linear

approximation f̂  towards the true field ,f  as well as to the original setup of the

estimation problem itself (i.e. selection of the Hilbert space H and its associated inner

product, type of the observational representers ,ng  invariance properties of the solution,

etc.). In particular, the convergence problem should not be viewed just as an advanced

theoretical ‘detail’, since the highly increasing flow of various observations for the

Earth’s gravity field that takes place today makes convergence considerations, within the
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linear approximation context, especially important in both theoretical and

practical/computational sense.

Regardless of the type of the Hilbert space H in which the signal estimation takes place, a

necessary condition for convergence is that the closed linear span V of the observational

representers tends to H, as the amount of the discrete data >< ngf ,  increases. However,

the structure of H and/or the structure of the measurement modelling (i.e. form of the

various representers ng ) may be such that the observational frame becomes less and less

stable as the data resolution increases. Although the system of the observational

representers will constantly be a frame (for its corresponding linear span = solution space

of the linear approximation problem) for every finite set of observations, its bound values

A and B may converge rapidly towards 0 and/or ,∞  respectively, for high data point

density. This can cause serious numerical problems in calculations using the matrices

+G  or ,1−G  making the whole estimation procedure highly ill-conditioned. More

importantly, in the limit where we consider infinitely dense data, the upper frame bound

will definitely reach the value ,∞=B  whereas the lower frame bound A may still

converge to a finite positive value. Such a situation will make the recovery of f  from

infinite-resolution data sets an ill-posed problem! This does not mean, however, that the

true field H∈f  cannot be uniquely defined from its ‘very dense values’ ., >< ngf  It

just means that the linear approximation algorithm of eq.(3.40c) cannot be reduced to a

well defined (stable) signal description when the data resolution increases beyond limit,
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and thus convergence cannot be secured in this case. Further discussion on the interplay

between stability, convergence and data resolution, within the deterministic collocation

framework, will be given in section 3.5.

3.3.4  A Note on Ill-Posed Problems

From the discussion given in the previous sections, it seems that an arbitrary selection of

the Hilbert space H (within which we choose to model our unknown signals) is not

enough to ensure a well-conditioned linear approximation scheme for any data resolution

and, also, it does not necessarily provide convergence to a stable signal expression in the

case of infinitely dense data. Although the selected space H may be perfectly suitable to

describe some physical system, its ‘structure’ could pose certain limitations on the

admissible data point configurations/topologies that can be used for a reasonably stable

signal estimation procedure. Generalizing the notion of an ill-posed problem according to

Hadamard (1923), we can say that some additional type of ill-posedness may be hidden in

the original approximation problem of section 3.2, which is related to the stability

behaviour of its solution for different data resolutions, as well as to its convergence

properties for infinitely dense data.

The general linear procedure that was followed in section 3.2 basically corresponds to a

simple Tikhonov-type regularization scheme, which is needed to overcome the non-

uniqueness aspect of the solution of the underdetermined estimation problem of eq.(3.5).
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Many authors choose to call this minimum-norm regularization methodology (within a

certain infinite-dimensional Hilbert space H) the least-squares solution for the signal

approximation problem. The formalism of frame theory ensured that this projective

regularization scheme will always lead to a stable solution algorithm for a given

configuration of finite data. But when it comes to considering different possible data

configurations with increasing spatial density and related convergence issues, an

additional regularization of the initial approximation problem may be feasible. Such

specific procedures will be discussed later on in this chapter. For some general

alternatives, see Nashed (1976).

3.4  The Hilbert Space Choice Problem

In this section, we will study more closely the general modelling problem for linear signal

approximation in Hilbert spaces, which was briefly discussed in the previous paragraphs.

Note that the modelling aspects now do not include the problems mentioned at the end of

section 3.2.4 (i.e. it is assumed a-priori that the unknown field does indeed belong to the

chosen Hilbert space). In particular, we just try to establish a set of conditions satisfied by

a global Hilbert space H enclosing all of our unknown signals, which are sufficient to

ensure certain desirable properties for the solution of the linear approximation problem in

both theoretical and practical sense. Such properties are:
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 (i) convergence of the linear approximation f̂  to the true unknown field

H∈f  in the case of infinitely dense data;

 (ii) a numerically stable algorithm for the computation of f̂ ; and

 (iii) the level of stability should be independent of the available data point

configuration, i.e. the condition number of the pseudo-inverse

approximation operator 1~−U  should not worsen as the data resolution

increases.

It will be seen that such an ‘optimization’ attempt not only provides significant insight

into the limitations of the classic deterministic collocation method  but, most importantly,

it directs us to a certain multiresolution reformulation of the linear estimation problem,

through which we can achieve the previous three essential properties.

An additional important property is the invariance of the solution with respect to arbitrary

rigid transformations of the reference system. Essentially, this will guarantee the

independence of the estimated field f̂  from the origin (and orientation) of the reference

system used to describe the spatial position of the data points. For 1D approximation

problems, these transformations correspond to simple translations of the reference system

with respect to the data point configuration, whereas for higher dimensions we should

include possible rotations of the reference system as well. In order to achieve such
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invariance properties for the solution of the linear approximation problem, the norm in

the global Hilbert space H should satisfy a corresponding invariance condition*, i.e.

 )(      )(       , H  •• =∈∀ Tfff                  (3.41)

where T  denotes a general rigid transformation in the domain of .f  In the 1D case, the

last equation takes the form

 )(      )(       , H  τ−=∈∀ xfxff                 (3.42)

with τ  being an arbitrary real number.

It would seem only natural to require that the linear estimation scheme should also satisfy

some kind of scale-invariance. For example, we would want the relative approximation

error 
   

  
  

   

 ˆ 

f
e

f

ff
=

−
 to be independent of the scale of the used reference system. For

this type of invariance, a reasonable condition on the norm of the Hilbert space H could

be, e.g., for the 1D case,

 )(  1     )(       , H  
a
xf

a
xff =∈∀                  (3.43)

                                                          
∗ Actually, such a norm condition is needed to ensure the invariance of the estimation error  ˆ   ffe −=  of the
linear approximation solution, under arbitrary rigid transformations of the reference system.
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where a  is some non-zero scaling factor. In the sequel, we will assume that the norm in

the global Hilbert space H satisfies both invariance conditions (3.42) and (3.43). The

derivation of their multi-dimensional counterparts is straightforward and it will not be

given here.

3.4.1  Data Type and Configuration

In the two previous sections, 3.2 and 3.3, the available discrete data from the unknown

field H∈f  were assumed to have the general inner product form , ,    ><= nn gfb

where ng  are known elements of the global Hilbert space H. This is the usual modelling

approach for the observation equations when we consider linear estimation problems in

infinite-dimensional Hilbert spaces. The measurements nb  correspond to the values of

certain bounded linear functionals fLn  that are applied to the unknown field, and the

elements H∈ng  are exactly the representers of these functionals according to the well

known Riesz representation theorem (Moritz, 1980). In order to study the structure of

the Hilbert space H, in view of the desired solution properties (i)-(iii), a more specific

physical meaning for both nb  and ng  is required. In this way, expressions like ‘infinitely

dense data’, ‘increasing data density’, or ‘data point configuration’ could be

unambiguously formulated in proper mathematical terms.
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The most straightforward case arises when the discrete data represent point values of the

unknown field itself (i.e. interpolation problem). In such cases, the observational

representers correspond to the reproducing kernel that is associated with the global

Hilbert space. A value of the unknown field H,∈f  at a point Q, can always be expressed

in the linear form

PQPKPfQf ><= ),( ),(    )(   (3.44)

where ),( QPK  is the reproducing kernel (r.k) of the Hilbert space H, and the subscript P

means that the inner product is calculated using the point P as the independent variable.

According to the dimensionality of the problem, the points P and Q will depend on one,

two, or more coordinates. In order to keep the notation simple, we will work in the sequel

only for the 1D case, where the domain of the signals will be assumed as the whole real

line. The extension into higher dimensions and/or compact domains does not produce

major conceptual complications, and it will not restrict the generality of the subsequent

results.

The consideration of different spatial configurations for the point data values )( nQf  is

also greatly simplified if we work with regularly gridded data, i.e. ).()( xnfQf n ∆=  In

this way, cases of increasing data resolution, as well as limiting cases of infinitely dense

data, can be simply considered by changing the value of the sampling parameter ∆x.
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Hence, in the following we will deal exclusively with discrete data of an unknown field

H∈f  that have the gridded form

>∆<=∆= ),( ),(    )(    xnxKxfxnfbn   (3.45)

where the range (n) of the available values will be generally assumed infinite. Such an

assumption basically implies that we have sampled the unknown field, at the given

resolution level ∆x, over its entire support. In cases of signals with finite support, the

observation sequence nb  will consist of a finite number of non-zero values padded with

zeros. Note that the domain of the signals is assumed to be the whole real line.

3.4.2  Stable and Convergent Deterministic Collocation (Interpolation Problem)

Let us assume that we have a sequence of gridded point data Z)( ∈∆ nxnf  for an unknown

field f  belonging in an infinite-dimensional Hilbert space H, with reproducing kernel

).,( yxK  Following section 3.2 and taking into account eq.(3.45), we know that the

optimal solution space of the linear approximation problem (for the given data resolution

∆x) is the closed linear span HV ⊂∆x  of the set .),( Z∈∆ nxnxK  Since the solution space

is a closed linear subspace of the global RKHS H, it will also be a RKHS itself with its

reproducing kernel being generally different from ),( yxK ; see Aronszajn (1950). The
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norm and inner product associated with both x∆V  and H,  however, will always be the

same.

In order to have a stable linear approximation scheme, we know that the translates

Z),( ∈∆ nxnxK  of the reproducing kernel should constitute a frame for their closed linear

span. This simply means that every function in the solution space x∆V  must satisfy the

relationship (see section 3.3)

x
n

xggBxnxKxggA ∆∈∀∞+<≤>∆<≤< ∑ V)(    ,               ),( ),(             0 222      (3.46a)

for some finite frame bounds A and B. We can further simplify the above relationship

using the reproducing property of the kernel ).,( yxK  In this way, for a unique and stable

optimal linear approximation from the gridded signal samples, all the functions in the

solution space x∆V  should satisfy the relation

x
n

xggBxnggA ∆∈∀∞+<≤∆≤< ∑ V)(     ,               )(             0 222   (3.46b)

The left part of the above inequality implies that the signals of the solution space, which

take zero values at all data points, should all be topologically equal to the zero function.

As a result, for any reasonable norm choice in H, the solution space should not contain

functions like the one shown in Figure 3.4.
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Figure 3.4  Unacceptable function for the solution space x∆V  in the case of stable
optimal linear approximation using discrete samples with resolution ∆x

As the data configuration changes (i.e. varying sampling interval ∆x), the optimal solution

space for the linear approximation problem changes accordingly. Let us denote by x′∆V

the closed linear span of the set ,),( Z∈′∆ nxnxK  which is the optimal solution space

corresponding to a new data sequence obtained from the unknown field with sampling

resolution .xx ∆≠′∆  Obviously, in order to continue having a unique and stable signal

solution from the new data set ,)( Z∈′∆ nxnf  all the functions in the new solution space

should satisfy the following relationship:

x
n

xhhBxnhhA ′∆∈∀∞+<′≤′∆≤′< ∑ V)(     ,               )(             0 222     (3.47)

where A′  and B′  are some new frame bounds, generally different from A and B given in

eq.(3.46b). Both frame conditions in the last two equations are associated with two

corresponding frame operators xU∆  and ,xU ′∆  where the underlying frame components

∆x 2∆x-∆x

 g(x)

 x
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are assumed to be Z),( ∈∆ nxnxK  and ,),( Z∈′∆ nxnxK  respectively. In each case, the

optimal linear estimation (minimum-norm solution) of the unknown field H∈f  from its

discrete samples is determined through the continuous pseudo-inverses 1~−
∆xU  and ,~ 1−

′∆xU

according to eq.(3.22).

The condition number of the linear approximation operators 1~−
∆xU  and 1~−

′∆xU  gives a

measure of the sensitivity of the optimal solution f̂  with respect to small perturbations in

the discrete data values. A large condition number implies a numerically ill-conditioned

problem, which may have a strong effect on the accuracy of the solution. The condition

number of each of these operators is given by the following formulas:
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and
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where the symbol psu  denotes the supremum operator norm (Naylor and Sell, 1982).

The norm symbol   without a subscript denotes, of course, the norm associated with the

global Hilbert space H.

In order to keep the stability of the linear estimation problem independent of the data

resolution, the two above condition numbers, corresponding to two arbitrary data

sampling intervals ( x∆  and x′∆ ), should be equal. An easy and straightforward way to

achieve this result is to require that the two corresponding solution spaces are related

through a simple isometric scaling, i.e.

 V    )(      )(          V    )( xx x
x
xg

x
xxhxg ′∆∆ ∈

′∆
∆

′∆
∆=⇔∈              (3.49)
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Indeed, if the last relationship is true, then the two condition numbers in eqs.(3.48a) and

(3.48b) become equal by taking into account the isometric scaling property of the norm in

the Hilbert space H; see eq.(3.43).

A non-varying stability level for the linear signal approximation requires, therefore, that

all the different solution spaces x∆V  (corresponding to different data resolutions ∆x) are

just scaled isometric versions of each other, according to the general formula (3.49).

Under the initial assumption that the global space H is a proper RKHS, each of these

closed subspaces HV ⊂∆x  is a RKHS itself, with its reproducing kernel ),( yxK x∆

depending on the data resolution. The previous scaling condition between the various

solution spaces implies an equivalent scaling condition between their corresponding

reproducing kernels. In this way, the r.k of every solution space x∆V  should have the

following form for non-varying stability in the optimal approximation procedure:

),( 1    ),(
x

y
x

xK
x

yxK ox ∆∆∆
=∆   (3.50)

where ),( yxKo  is the r.k corresponding to the solution space for a normalized data

resolution .1=∆x  Due to the scale-invariance property of the norm in H, imposed by

eq.(3.43), all the different reproducing kernels will satisfy the condition

constant     ),(      ),( ==∆ yxKyxK ox   (3.51)
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where the constant on the right hand side is independent of the data density. In order to

establish this last property, the norm operator should be applied twice to the reproducing

kernel ),,( yxK x∆  first considered as a function of x  only and then as a function of .y

The final norm equivalence in eq.(3.51) should be understood either with respect to the x

coordinate (keeping y fixed), or with respect to the y coordinate (keeping x fixed).

The fulfillment of the third basic property for the linear approximation problem (i.e.

convergence in the case of infinitely dense data) requires, of course, that

H    Vlim
0

=∆→∆ xx
  (3.52)

which can also be written in terms of the reproducing kernels of the corresponding spaces

as

),(    ),(lim
0

yxKyxK xx
=∆→∆

  (3.53)

Using eq.(3.50), the previous relation can be finally expressed as follows:

),( 1  lim    ),(
0 x

y
x

xK
x

yxK ox ∆∆∆
=

→∆
  (3.54)

The last condition should be satisfied by the reproducing kernel of the global Hilbert

space H in order for the solution of the linear approximation problem (according to the
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deterministic collocation approach - section 3.2) to satisfy the three fundamental

properties stated in the beginning of section 3.4. The derivation of this condition was

based on a certain scale-invariance property that has been imposed for the norm in H.

Note that other types of scale-invariant norms, not necessarily the same as in eq.(3.43),

may be introduced and used for the modelling of the Hilbert space H. In such a case, we

should modify accordingly the isometric scaling (3.49) for the solution spaces, as well as

the condition (3.50) for their reproducing kernels. An analogous change will also occur in

the final condition (3.54).

It is seen, however, that this ‘optimal’ reproducing kernel will not be a proper function in

the usual sense. As a matter of fact, ),( yxK  seems to have all the basic characteristics of

the Dirac delta distribution ).( yx −δ  This type of ‘function’ is a rather complicated

notion that is defined as a limiting process on well behaved kernels (e.g. Gaussian,

Dirichlet, Fejer, etc.), and it is particularly useful for its informal reproducing property

under the usual 2L  inner product (Gelfand and Shilov, 1964), i.e.

)(     )( )(      ,    )(    )(   2 yfdxyxxfLxf =−ℜ∈∀ ∫ δ               (3.55)

Of course, in such cases the usual formalism of deterministic collocation cannot be

applied anymore (due to the lack of a proper reproducing kernel for H), but instead we

have to develop a new methodology for constructing the solution subspaces HV ⊂∆x
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and obtaining a stable solution for the linear approximation problem at every data

resolution level. More details and explanations will be given in section 3.6.

3.5  Trade-Off Between Data and Model Resolution

The stability and convergence issues of the linear approximation problem in Hilbert

spaces have been discussed extensively in the geodetic literature. Their importance

regarding the optimal estimation of the gravity field of the Earth from discrete

measurements was first pointed out by Eeg and Krarup (1973). The following quotation is

taken from the concluding remarks in their classic publication:

“ No doubt the less satisfactory point in operational geodesy is that of the choice of the norm;
the result is only defined when the norm has been chosen; it depends on the norm; and the
choice of the norm is to some extend arbitrary.
… we could ask: under which conditions will the solution in operational geodesy converge to
the correct result independently of the choice of the norm when the observations are correct and
their number increases without limit? This should give conditions about the class of norms from
which the choice may be made and about the nature and distribution of the observations. In
order to be meaningful, this question must be modified so as to demand not only convergence
but also stability, i.e. the results must depend continuously on the observation data.”

Although both stability and convergence are very important in the deterministic

collocation framework, in this section we will restrict our attention mostly on the

convergence issue. The stability problem has already been discussed in the previous

sections using the tool of frame theory, and it was actually shown that it is reduced to a

convergence question in the case of infinitely dense data (see the discussion at the end of
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section 3.3.3). For some interesting studies on the stability of geodetic estimation

methods, see Schwarz (1979), Rummel et al. (1979) and Gerstl and Rummel (1981).

The convergence problem in collocation theory has been investigated by many authors;

see Moritz (1976a), Tscherning (1978a), Sanso and Tscherning (1980) and Barzaghi and

Sanso (1986). Most of the studies that have used Krarup’s deterministic framework rely

upon rather strong assumptions, which create new (and even more difficult) questions

that need to be answered for a complete treatment of the problem. In particular, the first

standard assumption is that the observational representers in the Hilbert space (within

which the convergence problem is studied) are always linearly independent, so that the

Grammian matrix G in eq.(3.10) is always non-singular. Such a restriction is imposed

even for very dense, yet discrete, data point configurations (i.e. ε-net point sets, see

Moritz, 1976a), which are considered sufficient to ensure the full recovery of the

unknown field through the linear estimation algorithm. In brief, the observational

representers associated with such sufficiently dense data topologies (e.g. the set of the

representers of the evaluation functional over an ε-net point network) are assumed to

provide a complete system of independent base functions for the whole Hilbert space in

which we model our unknown signals (Tscherning, 1978a). Based on this setting, a

fundamental result of strong convergence for the collocation algorithm has already been

established by Moritz (1976a) and it was subsequently extended by Tscherning (1978a).
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The previous basic assumption for the convergence of deterministic collocation implies,

in a way, that there should exist a close connection between the adopted approximation

model (i.e. the RKHS H) and the overall ‘resolution properties’ of the signals that this

model/space can provide. In simple words, for a given Hilbert space H with reproducing

kernel ),,( QPK  we should be able to identify a set of points }{ nQ  such that the functions

),( nQPK  form a basis for H (Tscherning, 1978a). Any data point configuration (finite or

infinite) }{ nQ′  that violates the linear independence condition for ),( nQPK ′  is considered

unacceptable and it cannot be incorporated in the linear approximation framework. But is

it reasonable to use an estimation model based on selective ‘sampling scenarios’ for the

unknown field, excluding other possible data configurations with varying spatial

resolution that may arise in practice? And, most importantly, how are we going to a-priori

select or determine the resolution properties of our unknown signals that should be

implicitly associated with the form of their modelling reproducing kernel?

In essence, the methodology that has been applied for establishing the convergence

properties of deterministic collocation leads back to its original major drawback: the

reproducing kernel choice problem. The reproducing kernel in the Hilbert space H is

supposed to dictate a certain convergence scheme, in the sense that (Moritz, 1976a)

 ),(    lim    )(      , H    )(  
1
∑
=∞→

=∈∀
N

n
nnN

QPKaPfPf               (3.56)
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where the coefficients na  are obtained from the solution of the following non-singular

linear system:
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  (3.57)

Thus, the critical issue that will control the convergence of the linear estimation algorithm

becomes the spatial point configuration }{ nQ  for which (3.56) and (3.57) are satisfied. It

is a rather challenging and relatively unexplored mathematical problem to try finding (if it

exists) for a given reproducing kernel ),( QPK  its associated point distribution }{ nQ  that

can provide completeness and linear independence in the corresponding Hilbert space H,

according to the two previous equations. For some special cases, see Nashed and Walter

(1991) and Yao (1967).

It is worth mentioning that the convergence setting in deterministic collocation, as

expressed through the last two equations, clearly corresponds to the search of a sampling

theorem in the underlying Hilbert space, where the associated sampling functions will be

given by the general formula (Moritz, 1976b)
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and ],[ 1 mn−G  are the elements of the inverse of the N × N Grammian matrix shown in

eq.(3.57).

It should be intuitively obvious that the use of a slowly decaying reproducing kernel (with

a sparse sampling point distribution }{ nQ  associated with it) will limit our modelling

capabilities to correspondingly smooth signals, which may not be compatible with

relatively dense data sets. If we want to increase the resolution content (‘details’) of the

signals in the adopted Hilbert space model H, we have to choose a faster decaying

reproducing kernel with a denser sampling point distribution }{ nQ  associated with it. It is

less obvious, however, that the use of such ‘higher-resolution’ reproducing kernels in

conjunction with low-resolution data sets (relative to the spread of ),( QPK  or the spatial

density of its associated sampling point set }{ nQ ) can result in minimum-norm signal

approximations that may be completely erroneous. An example of such situation is

illustrated in Figure 3.5, where 13 point gravity anomaly values along a certain profile,

with a normalized sampling interval ,1=∆x  are used to determine optimal linear

approximations of the underlying signal through two different reproducing kernels.
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Figure 3.5  Minimum-norm collocation using a ‘low-resolution’ r.k (lower graph) and a
‘higher-resolution’ r.k (upper graph). The dots represent the data values.

In the one case (upper graph) the used reproducing kernel corresponds to the Hilbert

space of )(2 ℜL  band-limited functions within the frequency interval ],2 ,2[ ππ−  whereas

in the second case (lower graph) the minimum-norm interpolation takes place in the

Hilbert space of )(2 ℜL  band-limited functions within the frequency interval ]. ,[ ππ−

Although the first RKHS is capable of providing more detailed signals than the second
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RKHS, its use with a sparse data point distribution produces a linear estimation that

contains artificial details which cannot be justified from the resolution of the available

data. On the other hand, the use of a lower-resolution reproducing kernel in the second

case results in a more reasonable approximation scheme, which ‘merges’ the spatial

resolution of the available data points with the model resolution implied in the

corresponding RKHS in a certain optimal fashion (in this specific example, we just have

an application of Shannon’s sampling formula). Similar examples can be easily

constructed for many other pairs of ‘lower’ and ‘higher’ resolution reproducing kernels.

In every convergence problem in signal approximation methods the central role is always

played by the notion of a correct or true solution for the unknown field that we try to

estimate. Unlike the philosophy of pure mathematics, in applied physical sciences (like

physical geodesy) the correct solution is just a model obtained by simplifying in some

way physical reality. In Sanso’s (1987) words: ‘this is what we can do at most’. When we

consider the deterministic collocation concept for our approximation purposes, the

modelling takes the form of a specific Hilbert space with an associated reproducing

kernel. As it was explained in the previous paragraphs, however, there will always exist a

certain trade-off among: (i) the overall signal details that this model can provide, (ii) the

quality of the signal approximation for sparse data point configurations (relative to the

implied model spatial resolution }{ nQ ), and (iii) the stability/existence of the signal

approximation for data sets denser than the implied model resolution (see also Rummel et
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al., 1979). This would suggest that we should change our modelling choice for every new

data point configuration in order to construct reasonable and stable signal approximations

that balance between the data and model resolution. But in this way the convergence

problem becomes meaningless since the global RKHS will be different for every new

data set!

3.6  The Connection with the MRA Concept

The final result in section 3.4 may seem a bit puzzling and even contradictory with the

original setting of the problems discussed therein. Essentially, we have shown that in

order to achieve

• a constantly stable linear signal approximation for increasing data resolution, and

• convergence for infinitely dense data,

then the global Hilbert space H, within which we model our unknown signals, should not

possess a reproducing kernel! That is because ),,( yxK  as determined by the limiting

procedure in section 3.4.2 under the two previous conditions, could not definitely belong

in any reasonable space of natural signals and, therefore, it is not a reproducing kernel in

the strict sense. Actually, a more involved mathematical analysis is required to establish

the non-existence of a proper reproducing kernel for H in this case. For the purpose of

this thesis, it is sufficient to conclude that the method of deterministic collocation cannot
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satisfy the two previous properties, since its fundamental ingredient (the reproducing

kernel) is reduced to a delta-type kernel which is useless for our signal estimation

applications. Recall that the validity of this result depends on a certain scale-invariance

condition that had been imposed for the norm in H, according to eq.(3.43).

Although we have only considered the special case where the observed data are gridded

point values of the unknown field itself (interpolation problem), the same result can be

obtained by using other types of gridded linear functionals as well. Also, if we had chosen

to truncate the sequence of the stable solution spaces x∆V  at some ‘ideal’ finite

resolution minx∆  (thus requiring only convergence of the linear approximation scheme

for data sets approaching a certain finite resolution level), then we can establish the

existence of a proper reproducing kernel for the global Hilbert space H, but we would still

be facing the important trade-off problems between model and data resolution that were

discussed in section 3.5.

On the other hand, this peculiar behaviour of the ‘optimal’ ),( yxK  according to eq.(3.54)

corresponds to a perfectly acceptable mathematical structure that lies in the vast field of

generalized functions and distributions (Sobolev, 1964). What is the important

characteristic of all function spaces admitting such a distributional delta form as their

reproducing kernel*? Basically, such a Hilbert space H should be interpreted as an

                                                          
* The term ‘reproducing kernel’ is now used in a non-rigorous sense.
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infinite-resolution signal space. Regardless of its topological structure (i.e. the specific

type of its scale-invariant norm  according to eq.(3.43)), the value of an arbitrary

signal in H, at a point Q, cannot be generally determined by its local behaviour in the

neighborhood of Q. That is because no well behaved kernel H),( ∈yxK  exists which,

when applied to an arbitrary H,)( ∈xf  could recover the exact same signal. However,

this does not mean that H will not contain smooth functions, whose value at a specific

point could be predicted arbitrarily well from a set of values at a dense network of

adjacent points.

An infinite-resolution Hilbert space provides an ideal choice to model signals with highly

irregular patterns, where abrupt changes may be expected between nearby points. In view

of the rapid increase in gravity field data resolution that takes place today, the recovery of

such local irregularities in the gravity field signals not only seems possible from an

observational point of view, but it is also extremely useful in certain types of applications

(e.g. geophysical inverse problems, geodynamical studies, cm-level geoid determination,

etc.). Thus, it would seem only natural to use a Hilbert space setting that is actually

capable of providing signals with such ‘erratic’ behaviour. Extreme cases of signals with

singularities should not be excluded from the approximation framework, since such

situations may very well arise in various signal processing applications (Mallat and

Hwang, 1992).
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A very important problem, however, still remains. If the ‘optimal’ global Hilbert space

should not possess a proper reproducing kernel, how are we going to actually construct

the various solution subspaces HV ⊂∆x  for the linear estimation problem at each data

resolution level? In such cases, the observational representers

),(    )( xnxKxgn ∆=        (3.59)

are not usual functions, and linear expressions of the form of eq.(3.40c) cannot be

properly defined and used for the numerical computation of the estimated field. A

possible solution to this problem is discussed below.

3.6.1  Linear Estimation as a Multiresolution Approximation

At first, it would be useful to understand in simple terms why the minimum-norm

solution of the linear estimation problem will fail to give a reasonable answer when the

selected signal Hilbert space has the infinite-resolution characteristics discussed above

(i.e. H does not possess a proper reproducing kernel). In this case, the evaluation

functional in H is not bounded (continuous), which means that there is no real number

0>C  such that the inequality

         )( fCPf ≤     (3.60)
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will hold for every H∈f  and for every point P in the domain of f  (Moritz, 1980). The

invalidity of (3.60) basically means that there will exist functions in H with ,0  =f  but

at the same time there may be points in their domain for which .0)( ≠Pf  In other words,

isolated singularities are acceptable in infinite-resolution Hilbert spaces and they are

topologically equal to the zero function. Therefore, the minimum-norm function that

assumes given values at a discrete network of data points will be the zero function, and

that makes minimum-norm interpolating solutions for the linear estimation problem

useless, both theoretically and computationally. As was explained in the previous

paragraphs, knowledge of f  at discrete points cannot generally provide any information

about its behaviour in the neighborhood of these points, and this fact is immediately

reflected in the inadequacy of eq.(3.40c) to yield a proper numerical result. A more

rigorous mathematical treatment requires the incorporation of concepts from measure

theory (Halmos, 1991) which will be avoided here.

The above situation should not be perceived as a ‘deficiency’ of the infinite-resolution

Hilbert space H, but it is merely a modelling requirement. In order to compute a

reasonable linear estimation for an unknown field from its discrete values, we have to

develop a different methodology which will not employ the generalized reproducing

kernel of H and it will satisfy the crucial properties of constant stability (for increasing

data resolution) and convergence (for infinitely dense data). Such a constructive

methodology will now be briefly described.
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The final result of any linear estimation procedure in a Hilbert space H can always be

viewed as a bijective linear mapping (T) from an observation space (Λ) to a solution

subspace (V ⊂ H). The observation space contains all possible data sets obtained from

different numerical realizations of an unknown field, which is now modelled through an

infinite-resolution Hilbert space H with a scale-invariant norm according to eq.(3.43). All

these data sets are associated with a specific geometrical/spatial configuration, which in

this chapter has been assumed as a sequence of gridded sampled values at a certain

resolution level. In order to have a stable bijective mapping ,T  the following condition

should be satisfied:

Λ∈∈∀≤≤ ΛΛ      ,  V  ˆ                             ˆ           
H

bbb fBfA   (3.61)

where b  denotes the gridded data set obtained from an unknown field H,∈f  b ˆ Tf =

denotes its linear approximation that is determined via the estimation operator ,T  and A,

B are strictly positive constants. The formula (3.61) is just an alternative definition for an

isomorphic mapping between the solution space and the observation space

(Holschneider, 1995; p. 183). For all practical purposes, it is convenient to choose the

norm in Λ as the standard 2l  norm for discrete sequences, and thus the observation space

can always be viewed as the )Z(2l  Hilbert space of square-summable sequences. This

should not raise any major objections, since the available discrete data are always
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measurable through such a norm in almost every scientific discipline. The situation is

illustrated in Figure 3.6.

Figure 3.6  Linear estimation as an isomorphic mapping T

So far we have identified a stable linear estimation procedure (in an infinite-resolution

Hilbert space H) as an isomorphic mapping T  between a solution space H  V ⊂  and the

observation space ),Z(2l  which contains regularly sampled values of the unknown signal

that we want to approximate. If we further require that T  is a translation-invariant

estimation operator, then the solution space should be generated by a stable (Riesz) basis

of the form ,)( Z∈∆ ∆− nx xnxϕ  where x∆  is the data resolution level associated with the

observation space. The proof is very simple and it is omitted (see Mallat, 1989b; Walter,

1992).
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After having established the structure of a single solution space (corresponding to a

specific data resolution level), let us now see what additional properties we should require

when the data density changes. For a new resolution level ,x′∆  we should again be able to

obtain a similar isomorphic mapping T ′  between a new solution space HV ⊂′  and the

observation space ).Z(2l  Note that the observation space again contains all square-

summable data sequences, which are obtained though with a different sampling rate from

the unknown signal. In order to maintain the same stability level in the new isomorphism

T ′  as in ,T  the two bijective estimation operators should have equal condition numbers.

It is easy to prove that this will be true (under the scale-invariance condition (3.43) for the

norm in the global Hilbert space H) when V  and V ′  are related through the isometric

scaling of eq.(3.49). If we combine this last property with the requirement of translation–

invariance for the new isomorphism ,T ′  then the new solution space should, too, be

generated by a stable (Riesz) basis of the form ,)( Z∈′∆ ′∆− nx xnxϕ  such that

)(    )( x
x
xx xx ′∆

∆= ∆′∆ ϕϕ                 (3.62)

In essence, the linear signal estimation algorithm should always employ the ‘same’

isomorphic mapping at different spatial scales (depending on the resolution of the

available sampled data), thus adding a scale-invariance property to our framework as

well. The underlying approximation model of the procedure described above can be

expressed in the general linear form
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∑ −
∆

∆=
n

n
x

xxnfxf )(  )(     )(ˆ ϕ       (3.63)

where H)( ∈xϕ  is a basic kernel, whose scaled translates Z)( ∈−
∆ nn

x
xϕ  should always

constitute a Riesz basis for their closed linear span H.V ⊂  The choice of a specific

kernel )(xϕ  must be based on certain optimality criteria for the estimation procedure,

which will normally try to minimize some functional of the signal approximation error

).(ˆ)(  )( xfxfxe −=

It is also logical to impose a certain causality principle with respect to the signal

information that we are going to extract from the available discrete data through the

various isomorphic estimation mappings. Such a principle can be stated as follows:

xx ′∆>∆′⊂     for           V    V   (3.64)

where V  and V ′  denote the solution spaces for data resolution levels x∆  and ,x′∆

respectively. Finally, the convergence issue for infinitely dense data requires, of course,

that

H    Vlim
0

=
→∆x

                         (3.65)
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If we recall from Chapter 2 the basic properties that characterize a multiresolution

sequence of subspaces (MRA), then we see from the previous discussion that a constantly

stable, convergent and translation-invariant scheme for the signal estimation problem in

an infinite-resolution Hilbert space H requires, basically, the introduction of such a MR

structure within H. The solution at each data resolution level x∆  can then be obtained

through an isomorphic mapping of the form (3.63), where the scaling kernel )(xϕ  is the

one that generates the MRA-type sequence of solution subspaces. In a way, we have ‘re-

invented’ Mallat’s MRA concept as a useful regularization tool for linear estimation

problems in infinite-resolution Hilbert spaces, using discrete gridded data at varying

resolutions.

It is interesting to observe the basic modelling difference with respect to the deterministic

collocation estimation method. Here, we a-priori defined the observation space to be the

whole )Z(2l  Hilbert space, irrespectively of the actual data resolution level. The

unknown field H)( ∈xf  and its observed gridded values are not restricted by any

specific smoothing conditions, apart from the fact that the sampling procedure should

always result in square-summable data sequences. The necessary smoothing that is

required to obtain a unique and stable solution for the linear estimation problem is

applied entirely on the approximated signal )(ˆ xf  through an isomorphic mapping which

‘adapts’ to the current data resolution level. In deterministic collocation, on the other

hand, the behaviour of the unknown field is a-priori restricted according to a certain
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model (i.e. reproducing kernel) and the admissible observation space may change, for

different data resolution levels, due to this restriction (see the discussion in section 3.2.4).

3.6.2  Summary – Final Remarks

The main purpose of this rather long chapter was to reveal the drawbacks of the classic

deterministic collocation method, and to adopt an MRA-type estimation framework as a

useful alternative for dealing with signal interpolation problems in Hilbert spaces using

gridded data. A descriptive, rather than strictly mathematical, approach has been followed

with the emphasis mostly put on the modelling aspects of the linear approximation

problem.

The basic drawback behind deterministic collocation is that it depends exclusively on a

fixed model/waveform (i.e. the reproducing kernel) for describing the signal behaviour,

without really taking into account the resolution of the available discrete data. This

affects directly the quality of the approximated signal (for low-resolution data sets), as

well as the numerical stability of the solution algorithm (for high-resolution data sets). In

section 3.4.2, it was shown that a constantly stable and convergent (in the sense of

infinitely dense data) linear estimation scheme in a Hilbert space H is generally

incompatible with the existence of a proper reproducing kernel for H. In particular, when

the norm in H satisfies a certain scale-invariance condition, then the reproducing kernel

should have a generalized form similar to the Dirac delta function in order to maintain
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stability and convergence for increasing data density. This suggests an interesting

alternative formulation for the linear estimation problem, which will not ‘connect’

anymore the data values and the unknown signal via inner product observation equations

in a finite-resolution Hilbert space with a proper reproducing kernel.

Such an alternative methodology considers the unknown field as a single element of an

infinite-resolution Hilbert space H with a scale-invariant norm according to eq.(3.43), and

it uses a sequence of nested multiresolution subspaces }V { j  within H, similar to the

dyadic MRAs that were discussed in Chapter 2. In this way, rather than trying to invert an

increasingly ill-conditioned frame operator (deterministic collocation approach), the

solution of the linear estimation problem at each data resolution level jx∆  is obtained

through constantly stable isomorphic mappings between the observation space )Z(2l  and

a corresponding signal subspace H,V ⊂j  according to the translation-invariant scheme

of eq.(3.63). The sequence of the solution subspaces will depend on a generating kernel

whose scaled translates Z)( ∈−
∆ n

j
n

x
xϕ  should provide a Riesz (stable) basis for their

closed linear span, as well as on a specific rule according to which the data resolution

level jx∆  changes from one solution space jV  to the next .V 1+j  In a way, the problem

of selecting a specific scaling approximation kernel has now replaced the reproducing

kernel choice problem that existed in the deterministic collocation approach.
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It should be noted that in such an MR interpolatory framework, the signal estimation from

a (finite or infinite) data set with resolution jx∆  always takes place in an infinite-

dimensional solution subspace .V j  This is in contrast to deterministic collocation, where

the minimum-norm signal solution from a finite data set is always a member of a finite-

dimensional Hilbert subspace spanned by the observational representers. What remains

‘limited’ in the MR approximation framework is not the dimensionality of the estimation

space, but rather the spatial resolution of the recovered field jxf V)(ˆ ∈  within a certain

hierarchical sequence of nested Hilbert subspaces }V { j  of increasing resolution. This

maximum recoverable field resolution is dictated by the sampling density of the available

data points. The latter also determines the spread of the basic scaling kernel ),(xϕ  thus

obtaining the desired balance between model and data resolution that was discussed in

section 3.5.

Note that we have not even established that such an MR subspace structure }V { j

generally exists. From Mallat’s developments, we definitely know that it exists when we

identify the infinite-resolution space H as the )(2 ℜL  Hilbert space, and when the data

resolution level has the dyadic form j
jx −=∆ 2  (Mallat, 1989b). From Walter’s

developments, we also know that in most dyadic MRAs there do exist cardinal scaling

kernels ),(xϕ  which can be used to solve the linear signal interpolation problem at

various resolution levels in a constantly stable and convergent way  (Walter, 1992).
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Multi-dimensional extensions, as well as extensions in compact signal domains, are also

possible in these cases. In the following chapter, we will actually generalize Mallat’s

MRA framework for non-dyadic schemes, and we will also solve the problem of selecting

an optimal scaling kernel based on the spatio-statistical collocation concept.
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Chapter  4

OPTIMAL MULTIRESOLUTION APPROXIMATION

Following the suggestions given in the last sections of the previous chapter, we will now

study the problem of finding an optimal scaling kernel )(xϕ  for the linear translation-

invariant approximation of an unknown field from discrete gridded data at different

resolution levels. The basic setting will remain relatively simple by considering only 1D

signals, and the available discrete data will still be assumed as noiseless gridded values of

the unknown field itself. The latter will be modelled as an individual element of the

infinite-resolution Hilbert space ),(2 ℜL  which permits the use of the (always very useful)

Fourier transform formalism. Certain modifications can be applied to the following

formulations of this chapter to accommodate more complicated estimation problems in

higher dimensions, using various types of gridded linear functionals. Nevertheless, even

for the simplest of all cases that we are going to analyze here, the following methodology

remains especially important since it will open a new and less restrictive viewpoint to the

classic MR approximation concept that was originally developed by Mallat. Using a
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spatio-statistical collocation approach and a mean square error optimal criterion, a new

constructive (frequency-domain based) framework for building generalized MR analyses

in )(2 ℜL  will be presented, without the need of the usual dyadic restriction that exists in

standard wavelet approximation theory.

4.1  Basic Aspects of the Multiresolution Model

The basic form of the linear approximation model that we are going to consider in this

chapter is

∑ −
∆

∆=
n j

j n
x
xxngxg )(  )(     )(ˆ ϕ         (4.1)

where )(  )( 2 ℜ∈ Lxϕ  is an unknown scaling kernel that should be determined in some

optimal sense. In the previous chapter, the use of linear models of the form given by

eq.(4.1) was introduced as an effective alternative to deterministic collocation, which has

certain limitations for dealing with discrete data at varying resolutions. When )(xϕ  is a

fixed kernel (i.e. independent of the actual data resolution) that satisfies the Riesz

condition of eq.(2.8), then the previous linear approximation formula can easily be

identified as a continuously stable isomorphic mapping from the observation space )Z(2l

to a model-solution signal space ),( 2 ℜ⊂∆ LV
jx  for every resolution value .jx∆  If, apart
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from stability in the estimation algorithm, we additionally require causality (i.e. denser

data provide new information about the unknown field, whereas increasingly sparse data

contribute very little knowledge that becomes no knowledge ≡ zero function in the limit)

and convergence to the true field ),(  )( 2 ℜ∈ Lxg  then the sequence of the solution

subspaces Z} { ∈∆ jjxV  should create an MRA-type structure within the infinite-resolution

Hilbert space ).(2 ℜL

The use of convolution-based estimation models of the form of eq.(4.1) has been

extensively studied by many researchers, especially in the signal and image processing

community. Depending on the choice of their basic kernel, they provide a wide variety of

corresponding interpolating (or quasi-interpolating, since )(xϕ  need not be necessarily

cardinal) signal spaces with certain associated optimal properties, whose study goes back

to the famous Strang-Fix theory on error bounds for nth-order approximations of finite-

energy signals (Strang and Fix, 1971). Such type of linear estimation models can be

identified as a natural generalization of Shannon’s interpolation formula for band-limited

signals, which is often avoided in practice in favor of shorter kernel methods such as

bilinear interpolation (Pratt, 1978), cubic convolution (Park and Showengerdt, 1983;

Keys, 1981), or polynomial spline approximation (Unser et al., 1991; Hou and Andrews,

1978). The latter approximation models usually outperform sinc-based interpolation for

finite-support )(2 ℜL  signals and they are much more efficient to implement, especially
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for higher dimensions (Parker et al., 1983; Unser, 1999). Some interesting results on the

asymptotic equivalence between Shannon’s sampling theory and the generalized

interpolation formula in eq.(4.1) have been obtained for the case where )(xϕ  is a B-

spline kernel of order n (Unser et al., 1992), as well as for more general cases (Aldroubi

and Unser, 1994). A comprehensive treatment of such generalized linear interpolation (or

quasi-interpolation) models, including a detailed pointwise, asymptotic, and 2L  error

analysis of their performance with respect to the data resolution level, can be found in the

papers by Blu and Unser (1999a) and Unser and Daubechies (1997). In Unser and Zerubia

(1997, 1998), the well known Papoulis sampling theorem for multi-sensor/multi-channel

data (Papoulis, 1977) was appropriately extended for non band-limited cases using a

combination of expressions of the form given in eq.(4.1), and it was studied with respect

to various issues such as stability and aliasing error performance.

The multiresolution aspects of these generalized interpolation models, in connection with

the MRA and wavelet theory in the )(2 ℜL  Hilbert space, have also been explored in

detail with many important achievements, such as: sampling theorems for wavelet

multiscale subspaces (Walter, 1992, 1994; Zayed, 1993), use of the Zak transform for

general sampling theorems in MRA subspaces and for studying their stability at non-zero

sampling phase values (Janssen, 1993), construction of various orthonormal cardinal

scaling functions (Xia and Zhang, 1993), development of interpolating scaling functions

based on the autocorrelation function of an orthogonal scaling function (Saito and
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Beylkin, 1993), spline-based interpolating scaling functions and development of fast B-

spline transforms for continuous image representation and interpolation at various scale

levels (Unser and Aldroubi, 1992; Unser et al., 1991), construction of interpolating

wavelet transforms and symmetric interpolating wavelet functions (Aldroubi and Unser,

1993; Donoho, 1992), extension of Walter’s sampling theory in MRA subspaces to

include non-uniform sampling, derivative sampling, oversampling and local averages

(Djokovic and Vaidyanathan, 1997), quantitative and qualitative Fourier analysis of the

approximation error in generalized interpolation and quasi-interpolation scaling models

(Blu and Unser, 1997, 1999b, 1999c), and study of families of multiresolution and

wavelet spaces with certain optimal properties (Aldroubi and Unser, 1993), among many

others. An excellent recent review paper on various aspects of linear sampling-type

estimation models within a Hilbert space framework is also Unser (2000), which can be

considered as an updated version of the classic review paper on sampling theory by Jerri

(1977). At a considerably more advanced mathematical level are the papers by Higgins

(1985) and Butzer et al. (1988), which provide a solid foundation on the basic properties

of sampling estimation models and an exhaustive study of their approximation error.

For geodetic applications, the use of linear estimation models of the type given in eq.(4.1)

(i.e. of their multi-dimensional counterparts) is of great importance, and not just for

routine interpolation purposes. The multiscale character of these models provides a very

natural framework to reference the discrete data values with respect to a continuous

representation of the underlying unknown field, that is directly adapted to its sampling
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resolution; see Sanso (1987) for an interesting discussion on this aspect. As it was

mentioned in the previous chapter, this is in contrast to the usual deterministic collocation

method where the approximation kernel does not ‘sense’ the actual data resolution level,

causing (apart from numerical stability problems for high data point density) certain

‘fitting’ or ‘incompatibility’ problems between data and model resolution that

automatically affect the quality of the final signal estimation (see section 3.5)*.

The need for a proper data referencing model is embedded in most problems of modern

operational geodesy and its implementation is probably the most important and crucial

step for their solution. For example, in order to solve Stokes’s BVP using a global grid of

gravity anomaly measurements in a way that will allow us to rigorously study the

stability, convergence and the behaviour of the estimation error of its solution, we should

first decide upon a choice of base functions for approximating the continuous gravity

anomaly signal using the original discrete data (data referencing). Then, we can apply the

Stokes convolution integral to this discretized representation of the gravity anomaly field

and study the result within the Hilbert space associated with the chosen system of base

functions. This is exactly what the collocation framework offers when it is applied, for

example, in geoid determination from discrete gravity values in a global (or local) sense.

                                                          
* One might argue here that the classic collocation approximation kernel (i.e. the one given in terms of a fixed CV
function or reproducing kernel, with a possible bounded linear functional applied on it depending on the type of data)
does take into account the actual data resolution, especially when it is determined through an experimental procedure
(i.e. empirical determination of the signal CV function). What we mean in the text, however, is that the spread of the
usual collocation kernel is not adapted to the given data sampling resolution in any prescribed way, as it happens in the
linear model of eq.(4.1), and most importantly it should (in principle) remain constant regardless of the data point
density.
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Since we usually prefer to employ linear and translation-invariant data referencing

models, and most of the operators of interest in geodesy are also linear and shift-

invariant, the study of geodetic formulas gSf  =  using discrete input data is simply

reduced to the determination of the operation , ϕS  where S  is the operator under

consideration and ϕ  is the kernel of the chosen data referencing model. In the geodetic

literature, this procedure is commonly known as the propagation law for reproducing

kernels or CV functions within the collocation framework.

In this respect, the MR estimation formula in eq.(4.1) provides a general and stable

background scheme, upon which we can base the study of geodetic linear operators in

shift-invariant interpolation spaces of increasing resolution according to the scheme

.ˆ ˆ gSf =  The use of efficient FFT-based computational techniques is of course possible

in cases where we deal with convolution operators ,S  and it requires the knowledge of

the Fourier transform of the signal . ϕS  Note here that the traditional application of FFT

methods in physical geodesy, for the numerical evaluation of convolution integrals, has

been always based on the assumption that ),()( xx δϕ =  which basically implies that the

discrete input data are not referenced at all with respect to some continuous signal model.

Apart from certain theoretical questions that such an assumption certainly raises, the

incorporation of a proper reference kernel/filter for the discrete data in the FFT

algorithms significantly improves the accuracy of the results, depending of course on the

aliasing level in the discrete data as well as on the behaviour of the convolution kernel S
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itself. Such issues, however, will not be treated in this thesis. For some relevant details,

see section 5.1.4.

Of special interest is the case where the reference estimation kernel ),(xϕ  apart from

satisfying the essential Riesz condition, also provides a scaling function for some MRA

model in the )(2 ℜL  Hilbert space. The main advantage in such cases is the

computational efficiency that is achieved due to the sparse spectral representation of

many types of linear operators (integral, differential, etc.) in wavelet bases, as well as the

ability to apply a localized analysis of the effect of such operators at various signal scale

levels; see Alpert (1993), Beylkin (1992) and Beylkin et al. (1991) for more details.

Such wavelet-based multiresolution computations with various geodetic operators,

including cases where a stable and unique operator inversion is required (e.g. downward

continuation, inverse gravimetric problem, computation of altimetrically derived gravity

anomalies, etc.), have already started to receive considerable attention within the geodetic

community; see Keller (1995, 1997), Ballani (1995), Barthelmes et al. (1995), Battha et

al. (1995) and Benciolini and Zatelli (1998). More complicated signal estimation

problems involving different types of input data from various sources and resolutions

(e.g. altimetry-gravimetry BVP), can also be treated within a generalized MR framework

as the one implied by the special case of eq.(4.1). This kind of multi-data estimation
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problems, however, will not be discussed here. For relevant details, see Freeden and

Schneider (1998), Freeden (1999) and Li (1996a,b).

4.2  Spectral Aspects of the Multiresolution Model

The main characteristic of the linear approximation model in eq.(4.1) is that its kernel

directly adapts, through an appropriate dilation, to the resolution level of the regular data

grid (see Figure 4.1). Although this ‘kernel tuning’ was initially introduced in Chapter 3

as a necessary regularization tool in order to achieve unperturbed stability for the linear

interpolation scheme in the 2L  norm, its usefulness and implications go far beyond that.

Let us briefly describe what exactly these implications are. The unknown field ),(xg

which we try to estimate through eq.(4.1), is initially modelled as an infinite-resolution

)(2 ℜL  signal. Such a modelling choice is very flexible and not restrictive at all, since

most of the signals that we encounter in practical applications can be considered as finite-

energy signals. Furthermore, the )(2 ℜL  space provides us with some additional nice

properties, such as: (i) a simple inner product in order to keep the same geometrical

elegance for the linear approximation problem that existed in the deterministic

collocation method, (ii) a very useful induced norm that can measure the signal

estimation error in the familiar mean square sense, and (iii) the existence of a powerful
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tool (Fourier transform) that simplifies and speeds up the numerical computations, as well

as the theoretical analysis, associated with the estimation algorithm of eq.(4.1).

Figure 4.1  Adaptation of the approximation kernel to the data resolution level ( )(xϕ  is
an interpolating B-spline of fifth order in this example)

There are of course many different methods for approximating our unknown field )(xg

with another simpler linear form )(  )(ˆ 2 ℜ∈ Lxg  based on discrete gridded data, which all

exhibit different levels of performance depending on the behaviour of the original signal

and the grid density. Until recently, the only mathematical tool used by geodesists to
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rigorously express and quantify the physical limitations (uncertainty) associated with the

estimation of the gravity field from discrete measurements was the famous Nyquist

principle. In terms of spectral content, discrete data were always linked with band-limited

signal models which were considered the only possible realizations of the unknown fields

under consideration. The interplay between data resolution and gravity field information

was exclusively based on Fourier-based spectral concepts and measures like ‘maximum

recoverable frequency’ or ‘minimum recoverable wavelength’ (Schwarz, 1984).

On the other hand, the various operational methods that are often employed in gravity

field modelling do not necessarily imply a band-limited signal approximation. Consider,

for example, the case where a Gaussian or a finite-support CV function is employed in

the collocation estimation procedure, which clearly corresponds to the use of a non band-

limited estimation kernel. In this way, spectral analysis issues are certainly affected by the

used data referencing model. If we choose, for some reason, to approximate a continuous

unknown field from its discrete values through a piecewise constant linear model (i.e.

spline interpolation of zero order), it would not be very illuminating to apply a Fourier-

based spectral analysis to the reconstructed field. In order to specify the limitations of our

approximation models and to be able to spectrally analyze their results in a meaningful

and consistent manner, a more general spectral system has to be used that will not

necessarily use frequency as its spectral measure, and which could be directly ‘adapted’ to

the chosen estimation kernel.
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This is exactly the situation with the general approximation scheme in eq.(4.1), when it is

viewed under an MRA hierarchical framework within the )(2 ℜL  Hilbert space. If the

basic estimation kernel )(xϕ  corresponds to the scaling function of some nested

multiresolution analysis model, then the approximated field )(ˆ xg  will have a resolution-

limited spectrum with respect to the associated wavelet basis (see Chapter 2). This

provides a useful extension of the classic Nyquist principle, according to which discrete

data can only recover a limited amount of spectral signal information. The central role

now is not played by harmonic components of varying frequency, but by self-similar

localized building blocks (wavelet components) according to a zoom-in/zoom-out

approach. The reconstructed field is not measured against sinusoidal frequency variations

of infinite extent, but against localized scale-dependent variations with respect to a given

wavelet model that is implied by our estimation kernel. The maximum recoverable scale

level of the signal details, according to the adopted MRA model, is actually determined

by the resolution of the given signal values. Note that under such a generalized spectral

framework, the usual frequency-domain approach that associates a band-limited signal

Fourier spectrum to a set of gridded data is not lost, but it just becomes a special MRA

case for the kernel choice )()( xsincx =ϕ ; see, e.g. Zayed (1993, p. 317).

The need for using scale-dependent local measures to describe the behaviour of gravity

field signals was already identified by Sanso (1987), long before the developments in

wavelet theory started to reach the geodetic community. The linear approximation model
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of eq.(4.1), in conjunction with Walter’s sampling theory for MRA subspaces and related

wavelet signal expansions, provide very powerful tools towards this direction. At this

point, however, one could naturally ask: which specific MRA model/kernel )(xϕ  should

we use to describe the signal details at the given data resolution level? Is there some way

to determine an optimal scaling kernel for the given unknown field )(xg  with the given

discrete data? Should we restrict ourselves only to dyadic sampling schemes, as Mallat’s

MRA theory requires? Furthermore, our discussions from the last sections of Chapter 3

up to this point have considered only the use of a fixed reference kernel ),(xϕ  which, in a

way, implies a ‘stationary’ treatment with respect to the data resolution parameter. An

alternative, and perhaps more attractive, approach could be to allow for linear

approximation models in which not only the spread of their kernel is adapted to the given

data resolution, but the kernel itself as well. The above important questions will be

answered and discussed in the remaining sections of this chapter.

4.3  Optimal Linear Approximation and Data Resolution

In this section, the optimal linear estimation problem for an unknown deterministic field

)()( 2 ℜ∈ Lxg  will be solved in such a way that the immediate connection between the

approximated signal and the available data resolution will explicitly appear in the solution

formula. In particular, the final optimal estimate )(ˆ xg  will depend only on a basic kernel

),()( 2 ℜ∈ Lxϕ  which is appropriately scaled to match the given data resolution level.
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This scaling property will not be a-priori assigned to the linear approximation model, but

it will rather result from a certain optimization principle that is going to be imposed in the

estimation procedure.

4.3.1  General Formulation

We will assume that the available data represent noiseless point values )(nhg  of the

unknown field itself, taken on a uniform grid with known resolution level h . The field is

considered as 1D for simplicity. The multi-dimensional case (i.e. when the unknown field

belongs in the )(2 nL ℜ  Hilbert space) is just a straightforward extension of the following

derivations.

Since we are seeking a linear approximation, the estimated signal )(ˆ xg  will have the

general form

∑=
n

hn xnhgxg )(  )(     )(ˆ ,ϕ     (4.2)

where )(, xhnϕ  is a family of unknown base functions which should be optimally selected

to approximate ).(xg  The dependence of these base functions on the data resolution is

initially introduced through the use of the subscript .h  If we further impose the condition

of translation-invariance for the estimated field ĝ  with respect to the spatial reference
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system (in the multi-dimensional case this becomes invariance under more general

transformations of the reference system that include both translation and rotational

parameters), then the family )(, xhnϕ  should be generated from a single kernel ),(xhϕ

such that

)(    )(, nhxx hhn −= ϕϕ     (4.3)

and eq.(4.2) becomes

∑ −=
n

h nhxnhgxg )(  )(     )(ˆ ϕ     (4.4)

The estimation formula in eq.(4.4) can be illustrated in terms of the linear filtering

procedure shown in Figure 4.2. Applying the Fourier transform to the above convolution

equation, we get

)(  )(    )(ˆ ωΦωω hhGG =     (4.5)

where )(ˆ ωG  and )(ωΦh  are the Fourier transforms of the approximated signal and the

basic kernel ),(xhϕ  respectively. The term )(ωhG  corresponds to the Fourier transform

of the generalized function

∑∑ −=−=
nn

h nhxnhgnhxxgxg )(  )(     )(   )(    )( δδ   (4.6a)
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and it has the periodic form (Oppenheim and Schafer, 1989)

∑∑ −=+=
n

nhi

k
h enhg

h
kG

h
G ωπωω   )(     )2(   1    )(   (4.6b)

with )(ωG  being the Fourier transform of the true unknown signal ),(xg  and )(xδ  is the

Dirac delta function.

Figure 4.2  Filtering configuration of linear translation-invariant signal approximation
using discrete samples

Note that the previous frequency-domain formulas imply that we have sampled the

unknown signal )()( 2 ℜ∈ Lxg  over its entire (finite or infinite) support. If the available

data grid )(nhg  covers only a limited part of the signal support, then the previous Fourier

transform formalism is certainly not valid and a rectangular window function should be

additionally incorporated. In order to avoid such complications, we will assume that the

support of the unknown field covers only the region inside the given data grid boundaries.

Although such an assumption may be unacceptable for applications involving temporal

Φh(ω) × × × × ˆ g(x) g(x)  g(nh)
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Approximation
Filter

∑ 
n

 δ (x - nh)
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signals with finite data grids (where predictions into the future may be required), it

nevertheless provides a very reasonable framework for approximation studies in spatial

fields. It should also be emphasized that, even though )(xg  is assumed zero outside the

given grid boundaries, its approximation )(ˆ xg  by eq.(4.4) may exhibit a non-zero pattern

outside the data grid. Of course, the theoretical case of infinitely extended 1D grids is still

embedded in all the previous equations.

Another more technical condition that should also be imposed in order for the previous

frequency-domain framework to be rigorously correct, is that the available data sequence

)(nhg  is always measurable in the following sense:

∞<∑      )(  2

n
nhg              (4.7)

Indeed, under such a condition the Fourier transform )(ωhG  of the data sequence in

eq.(4.6b) will always converge to a finite periodic function of ω  (Oppenheim and

Schafer, 1989; p. 48). Note that eq.(4.7) implies that the admissible observation space is

the whole )Z(2l  Hilbert space, which is in agreement with the MR refinement of the

linear approximation problem that was suggested at the end of the previous chapter.
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4.3.2  A Spatio-Statistical Optimal Principle

The approximation error, in both the space and the frequency domain, for the given data

configuration )(nhg  is

)(ˆ    )(    )( xgxgxe −=  ,     )(ˆ    )(    )( ωωω GGE −=     (4.8)

and its power spectrum can easily be derived by taking eq.(4.5) into account, i.e.

)( )( )( )(    )( )( )(                     

  )( )( )(    )( )(    )( )(     )( 

**

***2

ωωωΦωΦωωωΦ

ωωωΦωωωωω

hhhhhh

hh

GGGG

GGGGEEE

∗

∗

+−

−−==
                         (4.9)

where the asterisk * denotes complex conjugation.

The sampled sequence ),(nhg  however, is not the only possible information that we

could have extracted from the unknown signal at the given resolution level. If we shift the

sampler (or impulse train) ∑ −n nhx )(δ  by an amount ,ox  an infinite number of

different data sequences can be obtained, which all represent different sampling schemes

for the same unknown signal at the same resolution. The situation is illustrated in Figure

4.3, from which we can see that (at a specific resolution h) all the possible sampled

sequences of )(xg  can be described by the general form ),( oxnhg −  where the sampling

phase parameter ox  varies between the limits 2/h−  and 2/h .
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Figure 4.3  Different signal sampling configurations at a given resolution level h

In accordance with the translation-invariance condition for the approximation framework,

the general linear equation for the estimated signal from an arbitrary sampled sequence at

the resolution level h  will have the form

∑ −+−=
n

ohoo nhxxxnhgxxg )(  )(     ),(ˆ ϕ               (4.10)

The Fourier transform of eq.(4.10), considered as a function of x  only, yields

∑
−

+=
k

ox
h
ki

ho e
h
kG

h
xG

π
πωωΦ  ω

2

  )2(   )(1    ),(ˆ   (4.11)

where it is again assumed that all possible sampled sequences )( oxnhg −  of the

unknown field are always measurable in the sense of eq.(4.7). Hence, for each different
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sampling phase value ,ox  we will have a correspondingly different approximation error

),,( oxxe  i.e.

),(ˆ    )(    ),( oo xxgxgxxe −=                   (4.12a)

whose Fourier transform is

∑
−

+−=
k

ox
h
ki

ho e
h
kG

h
GxE

π
πωωΦωω

2

  )2(   )(  1    )(    ),( (4.12b)

The optimal criterion for choosing the best approximation kernel )(xhϕ  will be

min      ),(    1    )(
2/

2/

2 == ∫
−

h

h
ooe dxxE

h
P ωω               (4.13)

The above equation represents a minimum mean square error (MMSE) principle,

expressed in the frequency domain. The quantity )(ωeP  is nothing other than the mean

error power spectrum. Note that the term ‘mean’ is not used in a probabilistic sense (as

in Wiener’s linear prediction theory), but it has a rather spatio-statistical meaning. In

other words, the optimization of the linear estimation algorithm does not employ the

usual expectation operator considering different ‘experiment repetitions’, but it is based

on the average error over all possible sampling configurations for the given data

resolution level. This is exactly the logic behind the concept of statistical collocation that
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was briefly discussed in section 3.1.3; see also Sanso (1978). In Appendix A, it is proven

that

)( )( )(    )( )(                                     

  )( )(    )(       ),(  

*

*
2/

2/

2

ωωΦωΦωωΦ

ωωΦωω

hhhh

h

h

h
oo

CC

CChdxxE

+−

−−=∫
−                           (4.14)

where )(ωC  is the Fourier transform of the spatial covariance (CV) function )(xc  of the

unknown deterministic signal. This CV function has the usual ‘stationary’ form

2*  )(     )( )(    )(            )(  )(     )( ωωωω GGGCdyxygygxc ==→←+= ℑ∫   (4.15)

where the symbol ℑ  in the last equation denotes a Fourier transform pair. The term

)(ωC  is thus the usual signal power spectrum, and the term )(ωhC  in eq.(4.14) denotes

its following periodization (see Appendix A):

∑ +=
k

h h
kC

h
C )2(   1    )( πωω   (4.16)

Using equations (4.13) and (4.14), we can finally obtain the optimal estimation filter as

follows:
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ωωΦ   (4.17)

For justification of the mathematical procedure that leads to the above optimal result, see

Bendat and Piersol (1986), sect. 6.1.4, eqs.(6.55)-(6.57), or Sideris (1995), eqs.(11)-(13).

The corresponding optimal space-domain kernel )(xhϕ  can be now expressed through

the scaling relationship

)(    )(
h
xxh ϕϕ =   (4.18)

where the generating scaling function )(xϕ  is defined in the frequency domain as

follows:

∑ +
=→←ℑ

k h
k

h
C

h
C

x
)2( 

)(
    )(       )( πω

ω

ωΦϕ                                          (4.19)

The above result can easily be verified by taking into account the fundamental scaling

property of the Fourier transform (Bracewell, 1986). Finally, if we combine eqs.(4.4) and

(4.18), the optimal linear approximation formula for an unknown deterministic field )(xg

according to the MMSE principle (4.13), using its discrete samples on a uniform grid

with resolution level h , will have the wavelet-like form
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∑ −=
n

n
h
xnhgxg )(  )(     )(ˆ ϕ   (4.20)

It is worth mentioning that the basic reconstructing kernel )(xϕ  will always be a real

symmetric function, since its Fourier transform in eq.(4.19) is always real-valued and

symmetric (i.e. the signal power spectrum )(ωC  is always a real-valued positive

symmetric function).

4.3.3  Comments

The use of convolution-based linear estimation models of the form of eq.(4.20) is very

common in many signal processing applications in the context of classical interpolation,

quasi-interpolation and multiscale approximation through projections into MR subspaces

(Keys, 1981; Unser and Daubechies, 1997; Blu and Unser, 1999a,b). In such cases, the

selection of the basic kernel )(xϕ  is usually made a-priori (e.g. sinc-based interpolation,

polynomial spline interpolation, etc.), and its performance is evaluated according to an

assumed behaviour for the unknown signal (e.g. bandlimitedness, spectrum decay rate,

etc.) and/or certain theoretical error bounds that depend on the form of the used kernel

(Strang-Fix conditions); for more details, see Unser and Daubechies (1997). Here, on the

other hand, we have a-priori introduced a spatio-statistical error power spectrum as an

accuracy measure for the linear estimation algorithm, which is then optimized in order to

choose the best kernel )(xϕ  for the given unknown signal ).(xg  Furthermore, the
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translation-invariance condition that was imposed in the estimation procedure makes this

optimal kernel depend only on the spatial CV function (or, equivalently, on the power

spectrum) of the unknown field under consideration, according to eq.(4.19). The

additional dependence of )(xϕ  on the data resolution level, as it is evident from

eq.(4.19), will be discussed in detail in the next section.

In our derivations, we never assumed that the estimated signal should reproduce the

available noiseless data, i.e. ).()(ˆ nhgnhg =  However, this will always be satisfied since

the optimal kernel )(xϕ  is a cardinal (sampling) function. This simply means that







±±±=

=
=

... ,3 ,2 ,1   ,   0  

0   ,    1  
    )(

n

n
nϕ  (4.21a)

Indeed, using eq.(4.19) we easily see that the Fourier transform )(ωΦ  of the optimal

kernel satisfies the relation

 1    
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h
C

h
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n πω
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which assures, through the well known Poisson summation formula, that the

corresponding space-domain function )(xϕ  is a sampling function. Some mild technical
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conditions on the signal power spectrum ),(ωC  which are needed to ensure the validity

of eq.(4.21b), will be discussed later in this chapter.

The use of the optimal kernel )/(    )( hxxh ϕϕ =  also ensures the convergence of the linear

interpolation algorithm to the true field, as the data resolution increases. This can easily

be seen in the frequency domain using the Fourier transform )(ωΦh  of the optimal

approximation kernel, given in eq.(4.17). If we take into account eqs.(4.5) and (4.6b), we

have

∑ +=
k

h h
kG

h
G )2(   1  )(    )(ˆ πωωΦω    (4.21c)

and by using the optimal filter expression from eq.(4.17), we finally obtain

∑
∑

+
+

=
k

k

h
kG

h
kC

CG )2(   
)2( 

)(    )(ˆ πωπω

ωω    (4.21d)

From the last equation, we can see that the estimated signal will converge to the true

signal in the 2L  sense, as .0  →h

An interesting similarity exists between the optimal filter in eq.(4.17) and the Wiener

filter for noisy stationary random signals. According to Wiener’s linear prediction theory,
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the optimal estimation filter is defined as the ratio between the power spectral densities

(PSDs) of the noiseless stochastic signal and the noisy input signal (Sideris, 1995). This is

very similar to eq.(4.17), where the numerator )(ωC  is the Fourier transform of the

spatial CV function of the true deterministic signal ),(xg  and the denominator )(ωhC

can be identified as the Fourier transform of the spatial CV function of the ‘noisy’ input

signal )(xgh ; see eq.(4.6a). In our case, the noise takes the form of the lost information

due to the discretization of the original true signal (aliasing error), shown in Figure 4.2.

It should be noted that, apart from the previous informal algorithmic similarity with the

Wiener filter theory, no stochastic tools have been used in the present filtering

formulation for the signal estimation problem. Its optimal solution has been based on

entirely different concepts and assumptions from the ones found in linear prediction

theory of random fields (Christakos, 1992). The term covariance function, that has been

used throughout this section, should be understood in a purely spatial deterministic sense

and not in any stochastic/probabilistic context under some stationarity and ergodicity

assumption. This is especially important in view of the stationarity restriction problem

which is believed to exist in the statistical collocation framework. Our present

formulation can be considered as ‘stationary’ only in the sense that we use the same

kernel at every data point to describe the behaviour of the estimated signal; see eq.(4.20).

This results solely from the logical requirement of having a translation-invariant

approximation scheme, i.e. independent of the origin of the reference system used to
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describe the position of the data points; see also the related discussion given in Sanso

(1978). However, this does not imply that the signal has (or should have) a uniform-

stationary behaviour across its domain, and it certainly does not inhibit us from obtaining

localized information for its varying behaviour. On the other hand, if we choose to use an

algorithmically ‘non-stationary’ linear approximation model, where the associated kernel

should change from data point to data point, then we automatically loose the invariance

property under translations (or more general rigid transformations in the multi-

dimensional case) of the spatial reference system.

4.4  The Multiresolution Character of Statistical Collocation

The final result of the previous section is quite general and it did not involve any

particular concepts from Mallat’s multiresolution theory. It is interesting that the

statistical collocation principle actually leads to a scale-invariant approximation scheme

(i.e. independent of the scale of the reference system used to describe the position of the

data points), similar to the one encountered in wavelet theory. However, there is a

significant difference between the collocation-based model of eq.(4.20) and the classic

MRA-based approximation methodology, due to the fact that the optimal scaling kernel

)(xϕ  associated with the collocation case is now changing for every different data

resolution level ,h  according to the frequency-domain form given in eq.(4.19).
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The most appropriate way to describe the behaviour of the signal estimation model in

eq.(4.20), with its associated kernel defined by eq.(4.19), is to characterize it as: (i)

translation-invariant, (ii) scale-invariant, and (iii) data resolution-dependent. Regardless

of the origin and the scale of the reference system used to describe the spatial position of

a given set of gridded data points, the estimated field according to the statistical

collocation algorithm will always have the same form/shape.

Let us briefly demonstrate the scale-invariance aspect (a similar methodology can also be

employed for the translation-invariance aspect). If we use a new reference system

axx /=′  to describe the original unknown field )(xg  and the position of its point data

values ),(nhg  then the estimation problem is reduced to approximating a new unknown

field )()( axgxg =′  using its point data values ).()/()( nhganhghng =′=′′  The

application of the collocation formula in eq.(4.20) yields

)(ˆ    )(  )(             
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′′=′

∑

∑∑

ϕ

ϕϕ

  (4.22)

which demonstrates the scale-invariance property of statistical collocation. Note that the

sampling resolution of the unknown field is the same for both reference systems x′  and x

(i.e. we use the same point data values each time). The above situation of scale-invariant
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signal approximation, for a certain data resolution level, is figuratively illustrated in

Figure 4.4.

Figure 4.4  Scale-invariant signal approximation at a certain data resolution level h (the
value of the scaling parameter is assumed a > 1)

The optimal kernel )(xϕ  in the statistical collocation model of eq.(4.20) is appropriately

scaled (shrunk or expanded) in order to match the resolution level of the given data grid

),(nhg  as this is expressed in the scale of the used reference system. The final

approximated field )(ˆ xg  is then formed by adding translates of the scaled optimal kernel

),/( hxϕ  which are centered at all data points. Although such a linear scheme very closely

Reference
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obeys the classic multiresolution/wavelet spirit, it cannot really be identified as such

because the actual form of )(xϕ  is a function of the data resolution h  itself. On the other

hand, the standard MRA theory requires the use of a fixed scaling kernel, which is just

tuned to the desired scale level of the signal approximation by proper dyadic dilations

(see Chapter 2).

In order to better understand the above essential difference, we should express the

optimal scaling kernel associated with the statistical collocation in the following

parameterized form [see eq.(4.19)]:

∑ +
=→←ℑ

k h
k

h
C

h
C

hhx
)2( 

)(
    ) ,(       ) ,( πω

ω

ωΦϕ                (4.23a)

where the data resolution h  plays the role of a constant parameter. According to the

fundamental scaling property of the Fourier transform, the scaled version

)()/( xhx hϕϕ =  of the optimal kernel will have the following frequency-domain form:

      
)2( 

)(      ) ,(        ) ,(
∑ +

=→←ℑ

k h
kC

Chhhhh
h
x

πω

ωωΦϕ        (4.23b)

which is identical to the Wiener-like estimation filter )(ωΦh  that was determined in

section 4.3.2. For each different value of the resolution parameter the optimal kernel in
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eq.(4.23a) will assume a correspondingly different waveform, and thus the approximation

model of eq.(4.20) will not employ scaled versions of the same )(xϕ  for every data

resolution level. Hence, we see that the statistical collocation concept not only produces a

scale-invariant signal approximation, but it also forces the behaviour of its estimation

kernel to be adapted to the sampling resolution of the unknown field in a certain optimal

fashion, as suggested by eq.(4.23a). In contrast to the classic MRA methodology, this

clearly provides a ‘non-stationary’ treatment of the linear interpolation problem with

respect to the data resolution parameter, which may have a significant impact on the

accuracy of the signal approximation (see Chapter 5 for some simulated comparisons).

Finally, it is very important to note that, regardless of the actual value of ,h  the function

),( hxϕ  will always correspond to a cardinal (sampling) kernel, as was explained in

section 4.3.3.

4.5 Optimal Multiresolution Approximation Kernels Using Synthetic
 Signal Power Spectra

In order to see how the optimal approximation kernel ),( hxϕ  behaves at different data

resolution levels ,h  some simple simulation examples will be given in this section. Four

different models for the power spectrum of the underlying unknown signal )(xg  are used.

In particular, we consider the following cases:
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Gaussian Power Spectrum

2
     )( ωω −= eBC                  (4.24a)

Exponential Power Spectrum

        )( ωω −= eBC           (4.24b)

)( 2−ωO  Power Spectrum

21
    )(

ω
ω

+
= BC                   (4.24c)

‘Experimental’ Power Spectrum

21

 /3)sin(      )4cos( 
      )(

ω

ωω
ω

+

+
= BC (4.24d)

where B  denotes an arbitrary scale factor in all cases. The Gaussian power spectrum has

the fastest decay rate of all four models. The third and the fourth models have basically

the same slow asymptotic decay, with the ‘experimental’ power spectrum showing higher

frequency variations that may be expected in many practical situations. The exponential

model exhibits an intermediate decaying pattern which, initially, is faster than the

Gaussian (up to 1=ω ). After that point, it starts to decay much slower than the Gaussian

model but still a bit faster than the other two models. All four models for the signal power

spectrum )(ωC  are illustrated in Figure 4.5.
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Figure 4.5  Various models for the signal power spectrum )(ωC

The varying behaviour of the optimal interpolation filter according to eq.(4.23a), for some

selected data resolution levels, is shown in Figures 4.6 and 4.7. In particular, Figure 4.6

shows the Fourier transform ),( hωΦ  for the case where the signal power spectrum

follows either a Gaussian model (left column), or an exponential model (right column).

Accordingly, the left column in Figure 4.7 illustrates the optimal interpolation filter for

the case where )(ωC  behaves as the model given in eq.(4.24c), whereas the right column

in the same figure corresponds to the case where )(ωC  behaves as the experimental

model given in eq.(4.24d).
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Figure 4.6  Fourier transform ),( hωΦ  of the optimal approximation kernel for various
data resolution levels h. The left column corresponds to a Gaussian model for the signal

power spectrum, whereas the right column corresponds to an exponential model.
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Figure 4.7  Fourier transform ),( hωΦ  of the optimal approximation kernel for various
data resolution levels h. The left column corresponds to the signal power spectrum model

given by eq.(4.24c), whereas the right column corresponds to the model given by
eq.(4.24d).
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These plots help considerably in understanding the (somewhat peculiar) multiresolution

behaviour of the optimal interpolation kernel in the statistical collocation framework.

Under proper mild conditions on the signal power spectrum, the estimation kernel

),( hxϕ  will asymptotically converge to an )(2 ℜL  cardinal function as .0→h  All the

individual kernels of this convergent sequence will be )(2 ℜL  sampling functions as well.

In the case of Figure 4.6, for example, it is obvious that the spatial expression ),( hxϕ  of

the optimal estimation filter will gradually converge to the sinc interpolator, since for

high data density the Fourier transform ),( hωΦ  tends to a perfect low-pass filter over the

frequency band ].,[ ππ−  This result is achieved for both the Gaussian and the exponential

signal models, with the latter case showing a slower rate of kernel convergence due to the

slower asymptotic decay of the exponential power spectrum over the Gaussian. Despite

this interesting fact, it would be improper to conclude that band-limited signal

interpolation will yield an almost optimal level of accuracy, at any data resolution level,

for these two specific cases (signal models). As a matter of fact, sinc-based interpolation

for Gaussian/exponential-type signals performs very poorly as h increases, compared to

the actual optimal interpolation filters shown in Figure 4.6, as well as to other spline-

based kernels (see Chapter 5 for such comparisons). In the case of Figure 4.7, where the

implied signal power spectra decay even slower than the Gaussian and the exponential

models, the asymptotic form of the optimal collocation filter will taper off less quickly

than the perfect (Nyquist-based) low-pass estimation filter. Such a result is in agreement
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with the short-kernel approximation methods that practitioners usually employ in signal

processing applications (Unser and Daubechies, 1997; Keys, 1981), as well as with the

general wavelet spirit that suggests good space localization as an effective kernel property

for approximating the details of irregular signals with high frequency variations.

Nevertheless, we should mention once more that the optimal collocation kernel is

essentially different from the classic MRA scaling functions that appear in wavelet

theory, since its behaviour depends explicitly on the actual data resolution level.

On the other hand, as the sampling resolution decreases ( ∞→h ), the optimal kernel

),( hxϕ  will gradually become the zero function in the )(2 ℜL  sense. This is evident from

the behaviour of its Fourier transform in both Figures 4.6 and 4.7. Such kind of behaviour

is consistent with the general causality principle for the estimation procedure, which was

mentioned in the beginning of this chapter. The rigorous mathematical proofs of the

above statements, as well as the derivation of some necessary mild conditions on the

signal power spectrum ),(ωC  are beyond the scope of this thesis and they will not be

presented here. Some relevant details can be found in the next section.

4.6  Generalized Multiresolution Analysis

In this section, we will explore in more detail the connection between the statistical

collocation model of eqs.(4.19) and (4.20), and the multiresolution approximation
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framework which was presented in Chapter 2. We shall also attempt to clarify a few

mathematical details that were left unjustified in the previous sections. In particular, it

will be shown that under certain conditions on the spatial CV function and the power

spectrum of the unknown signal ),(xg  the corresponding optimal estimation kernel

) ,( hxϕ  produces a generalized MRA-type approximation scheme in the Hilbert space

).(2 ℜL

4.6.1  MRA Properties of the Optimal Collocation Kernel

First, we need to establish that the optimal estimation kernel in statistical collocation, as

given in eq.(4.19) or eq.(4.23a), is a well defined function in the )(2 ℜL  Hilbert space for

any positive value of the data resolution .h  Using eq.(4.23a), the 2L  norm of the optimal

kernel takes the following form:
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where )(2 ωπM  is an auxiliary 2π-periodic function, given by the formula
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and the discrete infinite sequence ka  is given by the general expression

  Z        ,     )2(  1    ∈+= k
h
k

h
C

h
ak

πω                                                 (4.26b)

Recall, that the signal power spectrum )(ωC  is always a real-valued, non-negative and

even function, which belongs in the )(1 ℜL  space (since the unknown signal is assumed to

belong in the )(2 ℜL  Hilbert space). The infinite series ∑k ka  corresponds to the 2π-

periodic Fourier transform of a space-domain sequence ][nb  constructed from the

discrete signal covariance values as follows (Oppenheim and Schafer, 1989):

)(    ][ nhcnb =                               (4.27)
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where )(xc  is the signal spatial CV function; see eq.(4.15). Therefore, if the sequence

][nb  is absolutely summable, the series ∑k ka  will always converge uniformly to a

finite, continuous, 2π-periodic function of ω  (Oppenheim and Schafer 1989, p. 47). In

this way, we will impose the following condition on the signal spatial CV function:

CONDITION I :      0            ,          )(  >∀∞<∑ hnhc
n

    (4.28)

Note that the above condition is always satisfied when the underlying unknown field

)(xg  has a finite support in the space domain. A simple example of a CV function with

infinite support, for which the above condition is valid, is the Gaussian function. Under

condition (4.28), the series ∑k ka  will converge uniformly for every value of ω  and ,h

and since all its individual terms are always non-negative, the series ∑k ka2  will also

converge to a finite 2π-periodic function of ω  for every data resolution level. It is also

essential to ensure the validity of the following relationship:

0       ,            ,    0      )2( 1      >ℜ∈∀≠+= ∑∑ h
h
k

h
C

h
a

kk
k ωπω   (4.29)

There are various types of conditions that can be imposed on the signal power spectrum,

in order for eq.(4.29) to be true. For the purpose of this thesis, we shall simply assume

one of the following:
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CONDITION II :   (4.30)

a. ℜ∈∀>=           ,     0     )(     )( 2 ωωω GC      or   

b. )(ωC  is allowed to vanish only at a finite number of arbitrary isolated

points, and/or in a finite number of closed frequency intervals. The signal

power spectrum )(ωC  is also allowed to vanish at an infinite number of

isolated points without destroying the validity of eq.(4.29), as long as

these infinite points are not equidistant.

The justification of the previous restrictions on the signal power spectrum depends on the

physical properties of the unknown field that we want to estimate. The case where the

signal power spectrum vanishes in an unbounded frequency interval (i.e. the unknown

field )(xg  is a band-limited signal) requires special consideration, and it will not be

treated here.

If we further assume that the signal power spectrum is a continuous function, i.e.

CONDITION III :     )(ωC  is continuous for every ℜ∈    ω                   (4.31)

then, under the three previous conditions, the auxiliary term )(2 ωπM  in eq.(4.26a) will

always converge to a finite, strictly-positive, continuous and 2π-periodic function, and

therefore its integral in eq.(4.25) will always be a finite number. This makes the optimal
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approximation kernel ),( hxϕ  a proper )(2 ℜL  function for any real positive value of the

data resolution level .h

Finally, the condition that the optimal kernel in statistical collocation has a non-vanishing

integral (just like the scaling function of an MRA should have a non-vanishing integral,

see section 2.1) requires that its Fourier transform ),( hωΦ  does not vanish at the origin.

Taking into account eq.(4.23a), this is transformed to the following simple condition for

the signal power spectrum:

CONDITION IV :      0      )( 0 ≠=ωωC                      (4.32)

We are now in a position to consider a certain infinite sequence Z} { ∈jjV  of linear

subspaces within the Hilbert space ).(2 ℜL  Each element of this sequence is defined as

the closed linear span of the set ,)  ,( Z∈− nj
j

hn
h
xϕ  where ),( jhxϕ  is the optimal

collocation kernel given by eq.(4.23a), and 0>jh  denotes the data resolution level

associated with each subspace .jV  We will further assume that

CONDITION V :      Z          ,        1 ∈∀> + jhh jj           (4.33)
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which makes } { jV  a subspace sequence of increasing resolution in ).(2 ℜL  Note that the

scaling parameter is not restricted to dyadic values only (i.e. j
jh −= 2 ), as it happens in

the classic MRA case. By definition, the above subspace sequence satisfies the third

(translation-invariance) basic property of an MRA (see eq.(2.3), section 2.1) for any

possible form of the scaling parameter ,jh  i.e.

  Z           ,        )(          )( ∈∀∈+⇔∈ nVnhxfVxf jjj           (4.34)

In order for the specific sequence } { jV  to satisfy the nesting property of an MRA, we

have to impose some additional restrictions on the way that the scaling parameter jh

changes from one subspace jV  to the next .1+jV  In particular, we have to assume that for

every Z∈j

CONDITION VI :     } 1 {  Z           where,        
1

−∈= +

+
jj

j

j aa
h

h
  (4.35)

The above condition implies that any two successive scaling parameters should be related

through a positive integer number, different from unity. Note that the actual integer value

ja  may change from one subspace pair ) , ( 1+jj VV  to another ). , ( 21 ++ jj VV  However,

eq.(4.35) will ensure that the scaling parameters associated with an arbitrary pair of

subspaces kjkj VV <) ,(  are always related through a positive integer number as follows:



160

  Z           ,    ...      11 ∈<∀= −+ kjaaa
h

h
kjj

k

j            (4.36)

The special case where the scaling ratio in eq.(4.35) assumes a fixed positive integer

value a  (independent from the resolution index j ) occurs if we restrict the data

resolution level jh  to take the exponential form

     j
j ah −=                               (4.37)

where a  is now a fixed positive integer number, different from unity. Dyadic subspace

schemes (as in the classic MRA framework) will arise if we set the value of a  to be equal

to 2. Nevertheless, the more general condition of eq.(4.35) is all that we actually need in

order for the specific subspace sequence } { jV  to be nested. The proof is straightforward

and it can be found in Appendix B.

Furthermore, the subspace sequence constructed from the optimal approximation kernel

will satisfy the fourth (‘completeness’) basic property of an MRA. In order to see this, we

have to recall the fact that the optimal kernel ),( jhxϕ  is always a sampling function,

regardless of the actual value of the data resolution level .jh  In this way, every signal that

belongs to an arbitrary subspace )(2 ℜ⊂ LV j  of the multiresolution sequence } { jV  will

have the general form
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j
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j
j

j Vxfhn
h
xnhfxf     )(           ,   ) ,(  )(     )( ∈∀−= ∑ ϕ (4.38a)

Taking into account eq.(4.23a) and applying the Fourier transform to the last equation, we

obtain the equivalent frequency-domain form of every signal belonging in an arbitrary

subspace of the sequence }, { jV  i.e.

j
n j
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h
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∑

πωπω

ωω    (4.38b)

As the resolution index j  increases, the data sampling level jh  associated with the

corresponding subspace becomes smaller and smaller, according to the general condition

imposed by eq.(4.33). Obviously, when jh  becomes infinitely small the last equation will

be reduced to a simple identity, i.e.

    )(    )( ωω FF =                                (4.39a)

which is naturally satisfied by every signal in the Hilbert space ).(2 ℜL  In other words,

)(      lim 2
  

ℜ=
∞→

LV jj
                               (4.39b)

Lastly, we have to check if the family of scaled translates
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Z)  ,( ∈− nj
j

hn
h
xϕ

of the optimal estimation kernel forms a Riesz basis for every element )(  2 ℜ⊂ LV j  of the

multiresolution subspace sequence that is spanned by this set. This final MRA property

(see eq.(2.5), section 2.1) is especially important since it will ensure stable and unique

signal approximation schemes from their discrete samples within every solution subspace

.jV  A necessary and sufficient condition for this last property is

0      ,                ,             )  ,2(          0
2

>ℜ∈∀∞+<≤+≤< ∑ j
k

j hBhkA ωπωΦ   (4.40)

where A  and B  are some strictly positive bounds, and ),( jhωΦ  is the Fourier transform

of the optimal kernel ),( jhxϕ  at data resolution level .jh  If we take into account

eq.(4.23a), the above Riesz condition can be easily expressed as a function of the signal

power spectrum in the following way:
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where )(2 ωπM  is the same 2π-periodic auxiliary function that was defined previously in

eq.(4.26a). At the beginning of this section we established that (under conditions I, II and

III) the term )(2 ωπM  will always converge to a strictly-positive, continuous and 2π-

periodic function of ,ω  for every value of the data resolution level .jh  In this way, the

existence of both the lower bound and the upper bound in the double inequality (4.41) is

always guaranteed. Note that the actual numerical values of the two Riesz bounds A and

B will change as jh  changes, which basically means that the level of stability of the

individual Riesz bases formed by the optimal collocation kernel will not necessarily be

the same at each resolution level.

4.6.2  An Interesting Result

We have established the interesting result that: the solution of the linear approximation

problem for an unknown deterministic field )(  )( 2 ℜ∈ Lxg  from its discrete and regularly

gridded samples, under the condition of translation-invariance and the spatio-statistical

MMSE optimal principle (4.13), gives rise to a generalized MRA-type structure } { jV

within the Hilbert space ).(2 ℜL  The main difference between this multiresolution

subspace structure and the classic MRAs according to Mallat (1989b) is that its scaling

kernel does not have a fixed form, but it actually varies for every different scale level jh



164

associated with the corresponding subspace .jV  In this case, the power spectrum of the

unknown signal under consideration generates the scaling function ) ,( jhxϕ  at each

resolution value ,jh  according to the optimal frequency-domain form given in eq.(4.23a).

Certain conditions must also be satisfied by the spatial CV function and the power

spectrum of the unknown signal, as discussed in the previous section.

The only traditional MRA property that will not necessarily be satisfied by the subspace

sequence } { jV  constructed through the optimal scaling kernel of statistical collocation is

the ‘self-similar’ dyadic scaling condition between the individual subspaces, i.e.

     )2(          )( 1+∈⇔∈ jj VxfVxf                          (4.42)

In a way, the above property has now been replaced by the freedom to use a much more

flexible rule according to which the scaling parameter (data sampling level) jh  decreases

from one nested subspace jV  to the next ,1+jV  based on the general formula of eq.(4.35).

Note that the optimal scaling kernel ) ,( jhxϕ  essentially generates not just a single nested

sequence } { jV  of dense MR subspaces in )(2 ℜL  but an infinite number of such

subspace sequences. Each one of them will depend on a specific formula that we choose

to generate the various scale levels ,jh  as well as on a specific reference scale value .oh

A list of such different alternatives is given in Table 4.1. The classic case where the
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nested subspaces are associated with a fixed dyadic scaling parameter is shown in the last

two columns of Table 4.1, for some selected reference scale values. Even for such dyadic

scaling schemes, however, the self-similar property of eq.(4.42) will not necessarily be

satisfied by the generalized MRA sequence } { jV  associated with the optimal collocation

kernel, unless we impose some further conditions on the signal power spectrum ).(ωC

Table 4.1  Sample of scale level values jh  associated with different generalized MRA

sequences } { jV  that are produced from the same scaling kernel ) ,( jhxϕ

SCALE LEVEL GENERATOR  [ see eq.(4.35) ]

32    2

1
+=

+
j

h

h

j

j 1  

1
2    +

+
= j

j

j
h

h
2    

1
=

+j

j
h

h

REFERENCE SCALE VALUE

Individual
Scale

Levels

h0  =  1 h0  =  0.3 h0  =  1 h0  =  0.3 h0  =  1 h0  =  0.3

h3 1/165 1/550 1/64 3/640 1/8 0.0375

h2 1/15 0.02 1/8 0.0375 1/4 0.075

h1 1/3 0.1 0.5 0.15 1/2 0.15

h0 1 0.3 1 0.3 1 0.3

h-1 5 1.5 4 1.2 2 0.6

h-2 55 16.5 32 9.6 4 1.2

h-3 1155 346.5 512 153.6 8 2.4

It is worth mentioning that all the derivations in section 4.6.1 are valid even if the

frequency-domain function )(ωC  does not correspond to the true signal power spectrum.

This means that we are allowed to use a certain model for the signal power spectrum (or
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the signal CV function) in the construction of the estimation kernel ), ,( jhxϕ  without

destroying its cardinal and MRA properties (as long as this model is compatible with the

basic conditions given previously, or any other conditions that may be equivalently

derived for the same purpose). More importantly, the signal estimate )(ˆ xg  obtained by

the statistical collocation algorithm will still converge in a stable way to the true field in

the )(2 ℜL  sense, as the data resolution increases ( 0→jh ). The optimal MMSE

principle of eq.(4.13), however, will not be rigorously satisfied in such cases.

4.6.3  Stability of the Optimal Riesz Bases

A note should be made regarding the stability of the Riesz sampling bases which are

constructed through the statistical collocation kernel ). ,( jhxϕ  In the usual dyadic MRA

cases of Chapter 2, the stability level of a Riesz basis constructed from a certain scaling

function )(xϕ  remains the same within every multiresolution subspace ,jV  and it is

basically determined by the ratio ( AB / ) of the two bounds that appear in the frequency-

domain Riesz condition of eq.(2.8). The ideal case occurs when the set Z)( ∈− nnxϕ  is

also orthogonal (and thus BA = ), which makes the reconstruction of a signal jVxf   )( ∈

from its coefficients with respect to the corresponding orthogonal Riesz basis

Z)2( ∈− n
j nxϕ  a perfectly stable linear process with condition number equal to one.
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However, this situation of unperturbed stability (in the 2L  norm) does not apply in the

generalized MRA structure that is constructed from the optimal collocation kernel. The

reason is that its generating scaling function does not have a fixed form, but it varies for

every nested subspace jV  according to eq.(4.23a). As a result, the two bounds in the

generalized Riesz condition of eq.(4.40) will now depend on the scaling parameter .jh  In

order to get an idea on how the condition number of the optimal Riesz bases changes

within the generalized MRA }, { jV  the behaviour of the 2π-periodic function

∑ += k jhkM
2

2  )  ,2(  )( πωΦωπ  in eq.(4.41) has been plotted for some selected scale

levels .jh  We have used the same four synthetic models for the signal power spectrum

that were considered in section 4.5. The results are shown in Figures 4.8 through 4.11 for

the Gaussian, exponential, )( 2−ωO  and experimental signal model, respectively.

In all cases, the 2π-periodic function )(2 ωπM  does not exceed the value 1, which is

actually expected due to the positivity of the signal power spectrum; see eq.(4.41). The

condition number of the optimal Riesz bases Z) ,/( ∈− njj hnhxϕ , for every signal model

and data resolution level ,jh  is determined by the ratio of the maximum and minimum

values in each corresponding curve shown in the previous figures. The value of this ratio

will generally be larger than 1, and it will vary from one resolution level to the next for

every signal model.
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Figure 4.8  Plots of the 2π-periodic function ),(2 ωπM  given in eq.(4.41), for various
scale levels. The signal power spectrum )(ωC  is assumed to follow a Gaussian model.

Figure 4.9  Plots of the 2π-periodic function ),(2 ωπM  given in eq.(4.41), for various
scale levels. The signal power spectrum )(ωC  is assumed to follow an exponential

model.
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Figure 4.10  Plots of the 2π-periodic function ),(2 ωπM  given in eq.(4.41), for various
scale levels. The signal power spectrum )(ωC  is assumed to follow the model given in

eq.(4.24c).

Figure 4.11  Plots of the 2π-periodic function ),(2 ωπM  given in eq.(4.41), for various
scale levels. The signal power spectrum )(ωC  is assumed to follow the model given in

eq.(4.24d).
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As it is evidenced from the behaviour of these plots, the function )(2 ωπM  should

converge to a certain strictly-positive bounded expression for increasing data density, that

will determine the asymptotic stability behaviour of the optimal estimation algorithm in

eq.(4.20). For the special case where the signal power spectrum )(ωC  follows either a

Gaussian or an exponential model, the asymptotic stability of the optimal Riesz basis

becomes perfect ( BA = ), and the periodic function )(2 ωπM  will simply be reduced to a

constant of value 1 (see Figures 4.8 and 4.9). This should be expected since in section 4.5

we had already seen that the optimal collocation kernel ),( jhxϕ  converges to the sinc

interpolator in such cases, which of course creates an orthonormal set of base functions

.)( Z∈− nnxsinc  In general, however, the Riesz sampling basis that is constructed from

the collocation kernel ) ,( jhxϕ  will not necessarily converge to an orthogonal system as

seen, for example, in the cases of Figures 4.10 and 4.11.

It is interesting to observe that the stability of the optimal Riesz bases may not become

worse as the data resolution level increases. This is obvious in the cases of the Gaussian

and the exponential signal models, where the condition number of the linear

approximation algorithm actually improves for high data density, approaching the ideal

value of 1! A related important point, that requires a detailed mathematical analysis, is

also the monotonic dependence of the stability of the optimal Riesz bases in the statistical

collocation framework with respect to the data resolution level .jh  Such a conclusion,
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however, cannot be supported from the limited numerical experiments that were

performed in this section.

4.6.4  Final Remarks

The analysis performed in this chapter reveals an interesting viewpoint for the statistical

collocation algorithm in eq.(4.20). Under certain conditions, the estimated (or referenced)

field )(ˆ xg  will always belong in a Hilbert subspace )(2 ℜ⊂ LV j  of a generalized MRA

sequence, the scale level of which is dictated from the sampling resolution jh  of the

discrete data. The collocation-based interpolation algorithm can be viewed as the

application of a stable sampling theorem associated with this specific subspace, since

the set of translates Z)  ,( ∈− nj
j

hn
h
xϕ  of the optimal estimation kernel will constitute a

Riesz sampling basis for .jV  This result closely adheres to similar mathematical studies,

where it was shown that for (almost) every dyadic MRA in )(2 ℜL  there exists a Riesz

sampling basis in each of its nested subspaces (Walter, 1992). The idea of using sampling

expansions for representing gravity field signals is certainly not new, and it has already

been discussed by many authors in the context of optimal linear estimation from discrete

data; see Giacaglia and Lundquist (1972), Moritz (1976b, 1978b), Schmidt (1981),

Sunkel (1981, 1984), Svensson (1983), Bjerhammar (1983) and Freeden (1983).
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At this point, we should indicate the essential difference between the original MRA

approximation concept according to Mallat (1989b) and the present collocation-based

MR estimation scheme. The initial idea, as proposed by Mallat, was based on the

orthogonal projection of the unknown signal )()( 2 ℜ∈ Lxg  onto a dyadic MRA subspace

.jV  This approach requires access to the true continuous field ),(xg  which is hardly

known in most geodetic applications*. It combines a sequence of linear operations (i.e.

prefiltering/analysis, sampling and postfiltering/synthesis) which are needed to determine

the least-squares approximation of )(xg  within a multiresolution subspace ),(2 ℜ⊂ LV j

and it is often used for efficient analog signal transmission, storage and compression in

terms of a discretized representation at a certain scale level (Mallat, 1989a; Unser and

Daubechies, 1997); see also section 2.4. Taking into account the basic properties that

characterize a classic MRA structure, such an approximation scheme could be viewed as

starting from the top of an inverted pyramid (i.e. MRA) and by successive orthogonal

projections onto more and more detailed pyramid layers (i.e. MRA subspaces) we finally

return to the top.

                                                          
* Note that the usual deterministic collocation method in an arbitrary Hilbert space H  also employs an orthogonal

projective scheme to determine the optimal (smoothest) linear approximation )(ˆ xg  of an unknown signal

H.)( ∈xg  However, deterministic collocation does not require the full knowledge of the total field ),(xg  but only

the values of linear continuous functionals .gLn  The representers of these functionals then determine the linear

subspace HV ⊂  in which the orthogonal projective approximation takes place. Mallat’s framework is essentially

different from such a scheme, in that it does not use functional representers to define the solution subspace of the

linear approximation problem. The Hilbert space H  in Mallat’s MRA method is identified as the infinite-resolution

)(2 ℜL  space, in which typical signal observables (such as discrete point values or derivatives) do not admit a

bounded representation in terms of continuous linear functionals.
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In geodetic operational problems, on the other hand, we usually start with a finite set of

measurements from which we try to build a discretized representation of the underlying

field based on some optimal estimation principles and certain information about its

average spatial behaviour. The solution to this problem, according to the spatio-statistical

collocation approach, can then be seen as starting from the bottom of a generalized MRA

structure, and by obtaining denser and denser sampled values of the field (and

correspondingly applying the sampling theorem associated with each subspace jV  of this

generalized MRA) we finally reach the top. It can actually be shown that this type of

‘bottom-to-top’ multiresolution interpolatory scheme, through the use of a scaling

cardinal kernel ), ,( jhxϕ  corresponds to an oblique projection of the original unknown

signal )(  )( 2 ℜ∈ Lxg  onto a generalized MRA subspace jV ; see Blu and Unser (1999a).

The derivation of the MR interpolation algorithm in section 4.3.2 was based only on a

few simple principles (i.e. linearity, translation-invariance), as well as on the spatio-

statistical MMSE optimal criterion. Properties such as stability and convergence, which

motivated most of our discussions in Chapter 3, were not considered at all for arriving at

the final result of eq.(4.20). Nevertheless, the optimal signal estimate )(ˆ xg  according to

this interpolation equation is both stable and convergent (in the 2L  norm) for increasing

data resolution, as was explained in the previous sections. Hence, rather than trying to

find an ‘optimal’ dyadic MRA that can overcome the stability, convergence and model-
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versus-data resolution problems of deterministic collocation (as was suggested in Chapter

3), we followed a spatio-statistical collocation approach in this chapter that led to a

similar, but more general, MRA-type approximation result. It is worth mentioning that

similar attempts for refining the optimal interpolation procedures used in gravity field

modelling have also been reported by the Swedish school of collocation (Svensson, 1983;

Bjerhammar, 1983), which resulted in the so-called ‘inversion-free Bjerhammar

predictors’; see also Bjerhammar (1987).

Concluding this chapter, we should briefly mention two major research topics which are

natural extensions of the results presented herein. The first deals with the existence and

construction of ‘generalized wavelet bases’ in the orthogonal complements } { jW  of the

generalized MRA sequence } { jV  (i.e. jjj VWV         11 =⊕ −− ) that is created by the

optimal collocation kernel ). ,( jhxϕ  Such a spectral system would provide a powerful

extension of the standard wavelet bases that are always associated with Mallat’s dyadic

MRAs (Chapter 2). If such a step becomes successful, we can essentially link the

interpolation algorithm of statistical collocation with ‘its own’ system of ‘non-stationary’

base functions. In this case, the estimated-referenced signal )(ˆ xg  will always have a

resolution-limited spectrum with respect to the corresponding wavelet-type spectral

system (generalization of the Nyquist principle).
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The second topic involves the application of a convolution operator to the optimally

interpolated field )(ˆ xg  of eq.(4.20), i.e.

∑

∑

−′=





 −∗=∗=
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n

hn
h
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hn
h
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ϕ

                          (4.43)

Such a case is of great importance in geodesy, since discrete gridded data (e.g. gravity

anomalies, orthometric heights, topographic densities, etc.) are often used as input to

many convolution algorithms for gravity field recovery. Given the optimal form of the

interpolating kernel ) ,( hxϕ  that was determined in section 4.3.2, it is easily realized that

      
)2( 

)(  )(
    ) ,(      ) ,(
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h
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h
C

hhx πω

ωω

ωΦϕ                      (4.44)

where )(ωS  is the Fourier transform of the convolution kernel ),(xs  and )(ωC

corresponds to the power spectrum of the input field ).(xg  The interest is now to study if

(and under which conditions on the convolution operator s ) the new synthetic scaling

kernel ) ,( hxϕ′  also creates its own generalized MRA sequence } { jV ′  that could be

associated with the output estimated field )(ˆ xf  of eq.(4.43). Both of the aforementioned
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topics are very important and interesting, and they require extensive mathematical

analysis that is not possible to be presented here.
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Chapter 5

ALIASING ERROR AND NOISE FILTERING IN LINEAR

MULTIRESOLUTION APPROXIMATION MODELS

Error analysis is one of the most critical issues in every signal estimation method.

Meaningful and easy to compute error measures are very important for evaluating the

quality of the final signal approximation from a given data set, for assessing data

requirements (e.g. sampling resolution level) based on pre-selected signal error limits, as

well as for comparing different estimation models/kernels for a given class of unknown

signals. As it was mentioned earlier in section 3.1.1, the deterministic collocation

methodology does not generally provide the means for a practically useful and

straightforward error analysis, especially with respect to the data resolution parameter.

The linear MR approximation model that was studied in the last chapter, on the other

hand, is much better suited for a resolution-dependent analysis of the signal interpolation

error. Furthermore, the topology ( 2L  norm) that is associated with such MRA-type

approximation schemes can easily produce a spatial average estimate of the overall signal

error (RMS error), which is commonly used in many applications. In the following
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sections, we will study in detail various types of signal error estimates that can be

obtained when using a general linear MR approximation model with regularly gridded

data. The main focus will be on the development of a simple algorithm for computing the

mean 2L  estimation error as a function of the data resolution level, as well as on the study

of aliasing propagation in convolution-type integral formulas. In addition to such

deterministic error analysis that reflects only the effect of the finite data resolution, a

linear noise filtering methodology is also presented for dealing with more realistic signal

estimation problems where the discrete input data are influenced by additive (in general

non-stationary) random noise.

5.1  Accuracy of Linear Multiresolution Approximation Models

In this section, we will present a certain spatio-statistical methodology for studying the

behaviour of the signal error in linear multiresolution approximation models. The general

estimation equation has the usual convolution-type form

∑ −=
n

n
h
xnhgxg )(  )(     )(ˆ ϕ         (5.1)

where )(xϕ  is an appropriate known kernel and h  is the data resolution level. The

justification for the use of the wavelet-like interpolating model of eq.(5.1), as well as

criteria for an optimal determination of its basic scaling kernel, have already been
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discussed in the previous chapters. Here, we concentrate our attention explicitly on the

behaviour of the approximation error

∑ −−=
n

n
h
xnhgxgxe )(  )(     )(    )( ϕ         (5.2)

where the used kernel )(xϕ  does not necessarily have the optimal form that was derived

in the last chapter. The term ),(xe  as defined in the above equation, represents the

aliasing error for the unknown signal at the given resolution. Of special importance is the

development of a simple algorithm that computes the decay rate of some functional of

this error with respect to the data resolution level h. Such an algorithm will be constructed

and tested, using various kernels and simulated signals, in the following sections. It is

always assumed that the signal is sampled over its entire (finite or infinite) support. Note

also that no special properties/restrictions have been assigned to the unknown field (e.g.

bandlimitedness, smoothness, etc.) besides the fact that it is a finite-energy signal with a

properly defined Fourier transform, and that its sampling always results in a square-

summable data sequence.

The only restrictions that we need to put on the kernel )(xϕ  are those guaranteeing that

the estimation model of eq.(5.1) provides: (i) an unambiguous (unique) signal description

for any set of measurable data values )Z(} )( { 2lnhg ∈ , and (ii) a stable numerical

algorithm. Since we would like to use the (always useful) Fourier transform formalism, it
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is also important that the closed linear span of Z)( ∈− nn
h
xϕ  be a well defined subspace of

the Hilbert space ).(2 ℜL  In terms of error analysis, there is no particular reason to require

that the approximation kernel should correspond to a scaling function of some MRA

model in ).(2 ℜL  The three above properties are satisfied (for any finite data resolution

level) if and only if the following condition is met by the Fourier transform of the kernel

)(xϕ :

∞<≤+≤< ∑          )2(          0 2 BnA
n

πωΦ         (5.3)

For more details, see Aldroubi and Unser (1994) and Unser and Daubechies (1997). Note

that the above Riesz condition is not restrictive at all and it is satisfied by virtually any

approximation kernel used in practice. It is also necessarily satisfied by all scaling

functions encountered in wavelet approximation theory, as well as by the optimal

collocation kernel that was derived in the previous chapter under certain constraints on

the spatial CV function and the power spectrum of the unknown signal.

5.1.1  Multi-Parameter Error Description – Error CV Functions

In deterministic signal estimation from discrete data it is not possible to obtain an exact

expression for the actual error (or even the square error) as a function of the spatial point
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position x. This is because such an expression requires a-priori knowledge of the

unknown field ),(xg  i.e.

)(ˆ    )(    )( xgxgxe −=                         (5.4)

Similarly, a spectral analysis for the pointwise estimation error also requires complete

knowledge of the total unknown field. For practical applications, we need to develop

alternative expressions/measures for describing the behaviour of the signal error, whose

evaluation should be based on more accessible characteristics of the unknown field (e.g.

its spatial CV function or its power spectrum).

In order to do that, we can initially express the signal approximation error as a function of

three distinct spatial parameters, as follows:

∑ −
+

−−=
n

o
oo n

h
xx

xnhgxghxxe )(  )(     )(    ),,( ϕ                  (5.5)

The parameter x  denotes the spatial point location where the error is evaluated, whereas

the two additional parameters ( ox  and h ) correspond to the sampling phase and the data

sampling resolution, respectively. The last two quantities are not completely independent

and they always satisfy the relation .2/       2/ hxh o <≤−  The above error formula is valid

in accordance with a translation-invariance condition for the multiresolution estimation

algorithm. This multi-dimensional error description is illustrated in Figure 5.1. Note that,
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even if we average the pointwise error ),,( hxxe o  over the sampling phase parameter ,ox

we would still need to know the complete field )(xg  in order to perform an accuracy

evaluation at a certain resolution level.

Figure 5.1  Multi-parameter description of the signal approximation error in linear
translation-invariant MR models using 1D gridded data

Using eq.(5.5), we can define a spatial error CV function at a certain data resolution

level ( h ) and sampling phase value ( ox ). Such a CV function has the usual ‘stationary’
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∫ += dxhxxehxxehxc oooe   ) , ,(  ) , ,(     ) , ,( ξξ                  (5.6)
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and its value at the origin (‘error variance’) corresponds to the square 2L  error norm at a

specific ox  and ,h  i.e.

2
2

20  ) , ,(      ) , ,(     ) , ,(
Loooe hxxedxhxxehxc == ∫=ξξ                 (5.7)

The study of the above error CV function, or equivalently the study of its Fourier

transform (i.e. error power spectrum), can reveal valuable information about the average

spatial behaviour of the pointwise error at specific h  and ox  values. Unfortunately, such

an error CV function cannot be computed without complete knowledge of the unknown

field itself. In order to overcome this limitation, we can now define a mean error CV

function over all possible sampling phase values. We will have

∫
−

=
2/

2/
  ) , ,(  1    ) ,(

h

h
ooee dxhxc

h
hcaver ξξ                             (5.8)

It can be easily shown that the Fourier transform of the mean error CV function,

considered as a function of ξ  only, has the following integral form:

∫
−

=
2/

2/

2  ) , ,(    1    ) ,(
h

h
ooe dxhxE

h
hP ωω                             (5.9)
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where ) , ,( hxE oω  is the Fourier transform of the pointwise error term in eq.(5.5) with

respect to the spatial parameter .x  In other words, the mean error CV function is just the

inverse Fourier transform of the mean error power spectrum, where the ‘mean’ in both

domains is meant in a spatio-statistical sense over all possible sampling phase values.

By analytically computing the Fourier transform of the pointwise error in eq.(5.5), we can

finally obtain the following algebraic expression for the mean error power spectrum at

a certain resolution level:

2 )(  )(      )()(    )()(    )(    ) ,( ωΦωωΦωωΦωωω hChhChCChP he +−−= ∗       (5.10)

where )(ωC  is the signal power spectrum, )(ωhC  denotes its periodization according to

eq.(4.16), and )(ωΦ  corresponds to the Fourier transform of the approximation kernel.

The proof of the above equation is based on similar derivations as the ones given in

Appendix A. This last formula defines an error measure which does not require complete

knowledge of the unknown field, but only knowledge of its power spectrum (or its spatial

CV function). Actually, the term ) ,( hPe ω  corresponds to the exact same spatio-statistical

quantity that was used in the optimization procedure of Chapter 4, which resulted in the

collocation filter according to eq.(4.19). If we substitute this optimal collocation filter in

eq.(5.10), we get the following simple expression for the optimized mean error power

spectrum:
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Note that the error formula in eq.(5.10) is also valid for cases where the kernel of the

linear MR approximation model does not have a fixed form, but it may depend on the

data resolution itself, i.e. ),()( hxx ϕϕ =  or ).,()( hωΦωΦ =  This is actually the case with

the optimal collocation kernel, as was explained in the last chapter. For simplicity, in all

the following error formulas we will omit the possible dependence of the approximation

kernel/filter on the data resolution level h.

Simulations were conducted in order to provide some examples for the behaviour of

), ,( hPe ω  and the results are shown in Figures 5.2 through 5.7. Four different

interpolating kernels were used along with a few synthetic signal models. In particular,

we used three of the signal models )(ωC  that were introduced in section 4.5, namely

Gaussian, )( 2−ωO  and ‘experimental’. The first three tested estimation filters )(ωΦ

correspond to fixed interpolating kernels (sinc function, linear interpolating spline, cubic

interpolating spline), whereas the fourth estimation filter is resolution-dependent and it

corresponds to the optimal collocation kernel for every signal model; see eq.(4.19). With

the exception of the Gaussian signal model (where we already know that the optimal

collocation kernel converges to the sinc interpolator for high data resolution), the use of a
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perfect low-pass estimation filter )(ωΦ  shows by far the worst performance among all

kernels. Even for Gaussian signals, the sinc kernel performs very poorly for relatively low

data resolution, see Figure 5.2. It is also interesting to observe that, in almost all cases, the

asymptotic frequency decay of ) ,( hPe ω  follows exactly the same pattern for every

approximation kernel.

A final brief note should be made regarding the consistency of the linear estimation

formula in eq.(5.1), as the data density increases. Using eq.(5.10), it can be shown that a

necessary and sufficient condition in order for the mean error power spectrum ) ,( hPe ω  to

vanish (as 0  →h ) is

1     )( 0 ==ωωΦ       (5.12a)

In addition to the Riesz condition given in eq.(5.3), the last equation imposes a very mild

extra restriction for the admissibility of the scaling kernels )(xϕ  that should be used with

such MR interpolating models. Note that for cases where the estimation filter )(ωΦ  does

not have a fixed form, but it varies depending on the data resolution level, the condition

of eq.(5.12a) takes the limiting form

1     ),(   lim 0 0  
==→ ωωΦ h

h
      (5.12b)
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Figure 5.2  Mean error power spectrum for Gaussian signal model using various
interpolating kernels (the data resolution level is h=4)

Figure 5.3  Mean error power spectrum for Gaussian signal model using various
interpolating kernels (the data resolution level is h=1.5)
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Figure 5.4  Mean error power spectrum for the ‘experimental’ signal model using various
interpolating kernels (the data resolution level is h=1.5)

Figure 5.5  Mean error power spectrum for the ‘experimental’ signal model using various
interpolating kernels (the data resolution level is h=10)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Frequency

Cubic Interp. Spline
Linear Interp. Spline

Shannon kernel
Optimal kernel

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Frequency

Cubic Interp. Spline
Linear Interp. Spline

Shannon kernel
Optimal kernel



189

Figure 5.6  Mean error power spectrum for the )( 2−ωO  signal model using various
interpolating kernels (the data resolution level is h=1.5)

Figure 5.7  Mean error power spectrum for the )( 2−ωO  signal model using various
interpolating kernels (the data resolution level is h=4)
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which is of course satisfied by the optimal collocation filter that was determined in

Chapter 4. It is worth mentioning that the admissible kernels do not need to be strictly

interpolating in order to have a consistent MR estimation scheme (i.e. the data values

)(nhg  do not need to be reproduced exactly by the signal approximation )(ˆ xg ). This

offers great flexibility in cases where we want to work with smooth orthonormal

approximation bases Z)( ∈− nnxϕ  having compact support, since the only interpolating

orthonormal kernel )(xϕ  with compact support is the discontinuous Haar kernel; for

more details, see Xia and Zhang (1993).

5.1.2  Decay Rate of the Mean 2L  Approximation Error

As the data sampling step gets smaller, the error of eq.(5.1) decreases and eventually

becomes negligible as h  goes to zero. The rate of decrease of the approximation error as

a function of h  is very crucial in many signal processing applications (Unser and

Daubechies, 1997; Blu and Unser, 1999a), as well as in classic approximation theory

(Butzer et al., 1988; De Boor et al., 1994). Such information would permit, for example,

an objective comparison between different estimation kernels for a given class of

unknown signals. It is also very useful for identifying critical data resolution levels that

can provide an overall mean square estimation error below certain threshold values.

Therefore, it becomes very important to obtain a general expression that describes the
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decaying pattern of the signal error of eq.(5.1) as a function of the data resolution h  and

the used kernel ).(xϕ

In the previous section we mentioned that a pointwise approach for studying the

behaviour of the approximation error requires the use of a-priori known (synthetic) fields.

Here, on the other hand, we want to develop a resolution-dependent error description

based on more easily modelled characteristics of the unknown field, such as the spatial

signal CV function or the signal power spectrum. As a result, we should dismiss the

concept of pointwise error description and replace it with a suitable error norm that

characterizes the overall performance of the estimation algorithm at every data resolution

level .h  A convenient choice for such an error measure is the following quantity:

∫
−

=
2/

2/

2
2

2    ) , ,(   1    )(
h

h
oLo dxhxxe

h
hσ     (5.13)

which corresponds to the mean square 2L  error norm, averaged over all sampling

phase values at a specific data resolution. Such a spatio-statistical global error measure

has also been considered in a similar recent study by Blu and Unser (1999a,b). Note that

the value of )(2 hσ  is exactly equal to the ‘mean error variance’ derived from the mean

error CV function in eq.(5.8), i.e.

0
2 ) ,(    )( == ξξσ hch aver

e                         (5.14)
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A simple algorithm for the numerical computation of the mean error variance, at different

resolution levels, can be easily constructed in the frequency domain. Using eq.(5.14) and

one of the basic properties of the Fourier transform, we can express the mean error

variance in terms of the following frequency-domain integral:

∫= ωω
π

σ dhPh e   ) ,(  
2
1    )(2                         (5.15)

where ) ,( hPe ω  is the mean error power spectrum which is given by the general formula

in eq.(5.10). If we assume that the approximation kernel )(xϕ  corresponds to a symmetric

function (something that is often employed in signal analysis), then the above integral can

be reduced to the simple form

∫= ωωω
π

σ dhKCh   )( )(  
2
1    )(2                         (5.16)

where )(ωC  is the power spectrum of the unknown signal under consideration. The key

kernel )(ωK  depends solely on the approximation filter and it is defined as follows:

∑ ++−=
k

kK 2 )2(       )(  2    1    )( πωΦωΦω                         (5.17)

where )(ωΦ  is the Fourier transform of the kernel ).(xϕ  The proof of the above

algorithm can be found in Appendix C. If the approximation kernel is not a symmetric
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function (e.g. Haar kernel), then the numerical value computed from the integral in

eq.(5.16) will correspond to the maximum lower bound (infimum) for the mean error

variance. Also, in the special case where the integer translates of )(xϕ  constitute an

orthonormal set under the 2L  inner product (e.g. orthonormal scaling functions

encountered in wavelet theory), the auxiliary kernel )(ωK  is reduced to the very simple

form

( )  )(     1   2    )( ωΦω −=K                          (5.18)

Note that the symbol  )( ωΦ  denotes the magnitude of the Fourier transform, and not the

absolute value of ).(ωΦ  When the space-domain kernel is symmetric, we obviously have

. )( )( ωΦωΦ =

Using the previous error algorithm, an interesting result can be obtained for the special

case of band-limited signal interpolation. In such a case, the kernel )(xϕ  corresponds to

the usual sinc function and the associated approximation filter )(ωΦ  becomes a perfect

low-pass filter over the frequency band ].,[ ππ−  The application of the integral error

formula in eq.(5.16) will then yield the result

∫
>

=
h

dCh
/

2   )(    1    )(
πω

ωω
π

σ                                  (5.19)
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which corresponds to twice the signal energy contained outside the Nyquist bandwidth.

This is actually a reasonable result since applying a perfect low-pass filter to a discrete

data set (in order to get a continuous field approximation) not only cuts off all signal

information outside the Nyquist bandwidth, but it also keeps all the distorted (aliased)

signal frequencies within the recovered bandwidth completely unfiltered; see Figure 5.8.

It is quite remarkable that our error modelling methodology shows that the effect of this

‘spectrum folding’ to the mean square estimation error is exactly equal to the lost signal

energy that lies outside the Nyquist bandwidth! If the original unknown field is already

band-limited and the sampling resolution level h is below its Nyquist limit, then the mean

error variance )(2 hσ  naturally becomes zero.

Figure 5.8  Filtering scheme of the linear MR estimation formula in eq.(5.1) for the case
of band-limited signal interpolation
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The procedure described in this section provides an original frequency-domain approach

for studying the behaviour of the mean 2L  approximation error in linear MR models as a

function of the data sampling level and the estimation kernel. Its implementation is

straightforward and it is based on a simple integration of the signal power spectrum

against an auxiliary kernel, which: (i) depends exclusively on the used estimation filter,

and (ii) is scaled according to the given data resolution level. The computational

algorithm becomes even simpler in the case where an orthonormal estimation filter is

employed, which makes the use of orthonormal scaling kernels )(xϕ  in the MR

approximation framework of eq.(5.1) particularly attractive from an error analysis point

of view.

The error formula in eq.(5.16) should be considered a refinement of a certain frequency-

domain methodology that has often been applied for aliasing studies in gravity field

signals (Forsberg, 1986; Kotsakis and Sideris, 1998, 1999). According to this

methodology, the mean square aliasing error in a signal that is sampled at resolution level

h  and has a power spectrum )(ωC  is estimated by the simple integral formula*

∫
>

=
h

dCh
/

2   )(    
2
1    )(ˆ

πω
ωω

π
σ                                                 (5.20)

                                                          
* In practice, a 2D generalization of this formula is used, as well as generalizations for signals defined
on strictly compact domains and having purely discrete Fourier power spectra (Forsberg, 1986).
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whose result corresponds to the signal energy contained outside the Nyquist bandwidth.

However, the above error estimate is valid only for cases where a perfect low-pass

prefiltering (over the Nyquist bandwidth) has been applied to the continuous signal,

before the sampling procedure takes place. In gravity field approximation problems, on

the other hand, it is usually impossible to apply such a prefiltering simply because we

cannot access the original continuous signals but only their discrete values at a certain

resolution level. Furthermore, it should be kept in mind that the aliasing error is a

‘relative’ concept, in the sense that it depends significantly on the chosen reconstruction

kernel ),(xϕ  which may not necessarily be the sinc function as implied in the special case

of eq.(5.20). Therefore, any methodology applied for signal error analysis should always

incorporate the associated estimation kernel/filter, as in eq.(5.16).

5.1.3  Numerical Examples with Synthetic Signals

In order to test the behaviour of the mean error variance )(2 hσ  according to the

frequency-domain formula (5.16), several numerical examples are presented herein. We

will use three different models for the signal power spectrum ),(ωC  namely Gaussian,

‘experimental’ and )( 2−ωO -type models; see section 4.5 for their analytical forms. The

tested estimation filters )(ωΦ  for the computation of the mean error variance in every

signal model correspond to the following kernels: (i) Shannon (sinc) kernel, (ii) Haar

kernel, (iii) linear orthonormal B-spline (order 1), (iv) cubic orthonormal B-spline (order
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3), and (v) optimal collocation kernel according to eq.(4.19). The first four scaling kernels

)(xϕ  are independent of the actual data resolution and they have a fixed waveform. Their

Fourier transforms are shown in Figure 5.9. Analytical expressions for the two

orthonormal spline kernels (as well as for their non-orthogonal and interpolating versions

of any order) can be found in Mallat (1998b, p. 227) and Unser (1999). Note that the Haar

function (linear orthonormal B-spline of zero order) is the only non-symmetric estimation

kernel used, and thus the corresponding filter shown in Figure 5.9 illustrates only the

magnitude of its Fourier transform. The optimal collocation kernel for every signal model

is of course resolution-dependent, i.e. ),,()( hxx ϕϕ =  and its behaviour for various data

sampling levels was demonstrated earlier in Chapter 4.

Figure 5.9  Tested MR approximation filters )(ωΦ  corresponding to different
orthonormal scaling kernels )(xϕ
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The average performance of all five approximation filters )(ωΦ  for the various signal

models, over a certain range of data resolution values, is shown in the Figures 5.10

through 5.12. Note that the computation of the mean error variance )(2 hσ  for the Haar

kernel case was based on the integration of the mean error power spectrum ) ,( hPe ω

according to eq.(5.15), and not on the simplified integral formula of eq.(5.16) which is

valid only for symmetric kernels.

The error curves shown in Figure 5.10 correspond to the case of a Gaussian signal model.

From this figure we can easily verify the asymptotic convergence of the optimal

collocation kernel to the sinc interpolator, for high data resolution (see also section 4.5).

However, as the data sampling rate h/1  decreases, the performance of band-limited

signal interpolation based on the use of the Shannon kernel worsens significantly, and the

corresponding values of the mean error variance become even higher than the cases of

spline-based signal approximation using the orthonormal B-spline kernels of degree 1 and

3. Note that the Shannon kernel is basically identical to a B-spline function of infinite

order, as was recently shown by Aldroubi and Unser (1994).

A similar error trend is observed for the other two signal models (Figures 5.11 and 5.12),

where the band-limited signal interpolation shows consistently larger error variances than

the ‘shorter kernel’ approximation schemes based on the use of either a linear or a cubic

orthonormal spline.
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Figure 5.10  Decay rate of the mean error variance using various MR estimation kernels.
The unknown signal follows a Gaussian power spectrum model.
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Figure 5.11  Decay rate of the mean error variance using various MR estimation kernels.
The unknown signal follows an )( 2−ωO -type power spectrum model.

Figure 5.12  Decay rate of the mean error variance using various MR estimation kernels.
The unknown signal follows an ‘experimental’ power spectrum model.
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The Haar scaling function shows the worst performance among all estimation kernels for

every signal model, which should be expected due to its discontinuous (step-like)

interpolating behaviour. Finally, it is interesting to point out the superiority of the

collocation-based optimal kernel, especially for the most realistic case of the

experimental signal model )(ωC  (see Figure 5.12), which reveals the potential hidden

behind the use of resolution-dependent scaling kernels ),( hxϕ  in linear MR

approximation models.

In practice, the ability of the error formula in eq.(5.16) to reliably measure the aliasing

effect on the signal approximation )(ˆ xg  depends on how well the function )(ωC

resembles the characteristics of the true signal power spectrum . )( 2ωG  Many gravity

field studies have demonstrated that this kind of uncertainty can significantly affect the

accuracy evaluation of optimal linear estimation methods, such as traditional collocation

(Moritz, 1980). The problem of properly estimating the power spectrum (or the spatial

CV function) of the unknown field is embedded in every error modelling procedure

associated with any type of signal approximation method used in geodesy. Although these

important empirical estimation problems are not treated in this thesis, it is reasonable to

claim that the mean error variance, as given by eq.(5.16), will not be very sensitive with

respect to the choice of the signal power spectrum model. This is because )(2 hσ  is

basically the outcome of a smoothing operation applied to the adopted signal model

),(ωC  which results from its integration against the auxiliary kernel ).( ωhK
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5.1.4  Aliasing Error Propagation in Convolution-Type Integral Formulas

The error formula in eq.(5.16) can be modified for the purpose of evaluating the

propagated mean error variance in convolution-type integral formulas, using regularly

gridded input data with uniform resolution. This is of special importance in physical

geodesy applications where discrete gravity/height data are used as input in many

different convolution algorithms for gravity field recovery, including upward and

downward continuation, terrain correction computation, indirect effect computation, and

of course gravimetric geoid determination based on Stokes’ integral. In terms of error

analysis, the main interest in such cases is to measure the output signal aliasing error for a

given gravity/height grid resolution, as well as to infer the required data grid spacing for a

pre-selected mean error level in the estimated output signal.

Such situations can be described mathematically by a general operatorial form

)(    )(    )( 12 xgxsxg ∗=                                                   (5.21)

where )(xs  is a given convolution kernel that connects the two continuous fields )(1 xg

and ).(2 xg  Although we will only examine the simple one-dimensional case here, certain

generalizations of the following results can easily be made to cover multi-dimensional

problems. In practice, the evaluation of eq.(5.21) is based on gridded data values for the

input signal, which should be ‘referenced’ according to the general MR approximation

model of eq.(5.1). In this way, we have
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∑ 



 −∗=∗=

n
n

h
xxsnhgxgxsxg )(    )(  )(     )(ˆ    )(    )(ˆ 112 ϕ   (5.22)

where )(xϕ  denotes the chosen estimation (reference) kernel, which may not necessarily

be the optimal collocation-based interpolation kernel that was determined in Chapter 4.

The situation is illustrated in Figure 5.13.

Figure 5.13  Multiresolution filtering configuration of convolution-based integral
formulas using discrete input data

The pointwise approximation errors for the referenced input signal and the output signal,

at a certain sampling phase and data resolution level, will accordingly be related by the

convolution formula

),,(    )(    ),,( 12 hxxexshxxe oo ∗=                  (5.23)

and the corresponding error power spectra are
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2
1

22
2  ) , ,(    )(      ) , ,( hxEShxE oo ωωω =                (5.24)

where 2 )( ωS  denotes the Fourier power spectrum of the convolution operator under

consideration. Obviously, the mean error power spectra of the two signals, at the given

data resolution level, will be related through the following simple equation:

),(   )(     ),(
1

2
2

hPShP ee ωωω =                  (5.25)

since the convolution kernel )(xs  does not depend on the sampling phase ox  of the

gridded input data; see eq.(5.9).

The mean error variance of the estimated output signal )(ˆ2 xg  is given by the frequency-

domain integral

∫= ωω
π

σ dhPh e   ) ,(  
2
1    )(

2
2
2                         (5.26)

Based on the same methodology that was used in section 5.1.2 (see also Appendix C), the

above error formula can easily be transformed to the following integral expression (for

the case of a symmetric reference kernel )(xϕ ):

∫= ωωω
π

σ dhKCh   )( )(  
2
1    )( 1

2
2                         (5.27)
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where )(1 ωC  corresponds to the power spectrum of the input field ).(1 xg  The auxiliary

frequency-domain kernel )(ωK  now depends not only on the used estimation filter

),(ωΦ  but also on the connecting convolution kernel, and it has the analytical form

∑ +++−=
k

k
h
k

h
S

h
S

h
SK 2

222
 )2(    )2(      )(    )(   2     )(     )( πωΦπωωωΦωω      (5.28)

Note that the behaviour of )(ωK  directly depends on the data resolution level ,h  in

contrast to the simple ‘interpolation’ case that was examined in section 5.1.2, where the

corresponding error modelling kernel )(ωK  had a fixed form (independent of the data

sampling level); see eq.(5.17). Aliasing error analysis for signal interpolation (or quasi-

interpolation) MR models can be treated as a special case of the previous input-output

linear system framework, if we simply identify the convolution kernel )(xs  with the

Dirac delta function ).(xδ

5.1.4.1  Special Case 1: Band-limited Data Referencing Model

Let us now use the previous error propagation methodology for two particularly

interesting special cases. The first corresponds to the choice )()( xsincx =ϕ  for the data

referencing model, which implies a band-limited approximation of the convolution

formula in eq.(5.21) over the Nyquist bandwidth ]./ ,/[ hh ππ−  In order to derive the
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simplified expression of the mean error variance for the band-limited output signal

),(ˆ2 xg  we should first decompose the power spectrum of the convolution kernel )(xs  as

follows:

2
 

2
 

2  )(       )(      )( outerinner SSS ωωω +=        (5.29)

where the two individual components correspond to the disjoint parts of 2 )( ωS  within

and outside the Nyquist bandwidth, respectively, i.e.





 ≤

=
elsewhere       ,           0       

/           ,     )(   
      )( 

2
2
 

hS
S inner

πωω
ω              (5.30a)

and





 >

=
elsewhere       ,            0      

/           ,     )(   
      )( 

2
2
 

hS
S outer

πωω
ω              (5.30b)

Using the above decomposition and the fact that the reference estimation filter )(ωΦ

corresponds to the indicator function )(ωχ π,π−  (perfect low-pass filter), the general

error formula of eq.(5.27) can be now simplified as follows:
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Therefore, we see that in the band-limited approximation case the total error variance of

the output field )(ˆ2 xg  consists of two basic components, both of which directly depend

on the input signal energy contained only outside the Nyquist bandwidth. When the

convolution kernel is the Dirac delta function ( 1)( =ωS ), then the above result is reduced

to the mean variance for the band-limited signal interpolation error and the two variance

components, ah)(2
2σ  and ,)(2

2 bhσ  become equal.
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5.1.4.2  Special Case 2: ‘No’ Data Referencing Model

Another interesting special approximation problem occurs when the data referencing

model )(xϕ  corresponds to the delta kernel, in which case the MR estimation filter takes

the simple constant form .1)( =ωΦ  Such a situation is closely related to the usual FFT-

based discrete numerical computations that are routinely applied in many gravity field

convolution algorithms (e.g. geoid determination from gravity grids using Stokes’s

formula).

In this special case, the operational convolution formula in eq.(5.22) is reduced to the

following form:

∑ −=
n

nhxsnhghxg )(  )(      )(ˆ 12     (5.32)

In practice, the output signal is evaluated only in a finite network of discrete points,

usually on the same grid in which the values of the input signal are given, i.e.

∑ −=
n

nhmhsnhghmhg )(  )(      )(ˆ 12     (5.33)

using efficient FFT algorithms. Note that eqs.(5.32) and (5.33) correspond to a simple

discretization process for the numerical (approximate) computation of the original
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convolution formula in eq.(5.21). In fact, their use is exactly equivalent to applying the

familiar parallelogram rule for numerical integration.

Although no specific continuous reference model )(ˆ1 xg  for the input signal is implied in

this case, we can still use the error formula from eq.(5.27) to compute the mean error

variance of the continuous output field ),(ˆ2 xg  as implied by eq.(5.32). The scaled

version of the error modelling kernel ),(ωK  according to eq.(5.28), will now have the

simple form
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and the corresponding mean error variance for the output signal becomes
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The last equation can be compared with the corresponding error formula in eq.(5.31) that

was derived for the special case of a band-limited data referencing model. They both have

a common error variance component, which depends exclusively on the amount of input

signal energy contained outside the Nyquist bandwidth ]./,/[ hh ππ−  However, the first

term in eq.(5.34b) is mostly affected by the input signal energy within the Nyquist

bandwidth (depending on the decay of 2 )( ωS  and the specific data resolution level h ),

in contrast to the first error term in eq.(5.31) which still depends only on the input signal

energy outside the Nyquist bandwidth. Such a comparison seems to support the initial

claim that was made earlier in section 4.1, according to which the use of a proper MR

referencing kernel )(xϕ  for the discrete data will generally improve the accuracy of FFT-

based numerical computations in linear input-output systems.

An illuminating approach to this important subject can be followed by comparing the

mean error power spectra of the output signal, as computed with and without the help of a

reference filter for the input data ).(1 nhg  Let us denote by ),(
2

hPe ωϕ  the mean error

power spectrum for )(ˆ2 xg  when a proper symmetric reference kernel )(xϕ  is used in the

operational algorithm of eq.(5.22), and by ),(
2

hPe ωδ  the mean error power spectrum for

)(ˆ2 xg  when no specific data referencing model is employed, i.e. ).()( xx δϕ =  In this

way, from eqs.(5.10) and (5.25) we have
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The reference estimation filter )(ωΦ  is always of ‘low-pass’ type and it generally

satisfies the relation

0     )(     1        1     )( ≥−⇒≤ ωΦωΦ        (5.36)

Actually, at the origin it takes its maximum value ( 1 )0( =Φ ), in accordance with the

general convergence condition given in eq.(5.12a). If we now form the difference

between the two error power spectra, and taking also into account eq.(5.36), we will have
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        (5.37)

The above formula can serve as a useful guideline for studying the accuracy gain (or

sometimes the accuracy loss) due to the incorporation of a low-pass reference filter )(ωΦ

in linear input-output (convolution) systems with gridded data. It is seen that the

behaviour of the input signal power spectrum ),(1 ωC  in conjunction with the data

resolution level ,h  exclusively determine if there is going to be an improvement in the

output signal accuracy, since the sign of the difference ),( hP ωδ  depends only on the

quantity ).(ωA  On the other hand, the actual reference filter )(ωΦ  and the convolution



213

operator )(ωS  act basically as scaling factors, which control the significance of the

approximation difference between the two methods.

It is quite obvious from eq.(5.37) that a large positive value for the integral ∫ ωδ dP  

(which favors the use of a low-pass reference filter in the approximation framework) will

occur in cases where the data resolution level h  leaves a significant amount of input

signal energy outside the Nyquist bandwidth, and additionally the power spectrum

2 )( ωS  of the convolution kernel is not significantly weak outside this bandwidth. On

the other hand, as h  becomes infinitely small (i.e. increasing data resolution), the

difference between the two methods becomes negligible, since

[ ] 0       )0(     1        )(   1   lim
0  

=−=−
→

ΦωΦ h
h

     (5.38)

according to the convergence condition for the reference MR estimation filter. Although

the preceding theoretical error analysis is very important, actual numerical investigations

using simulated input signals and real-life convolution kernels are certainly required to

justify the need of incorporating MR estimation reference filters in linear input-output

systems with discrete data at varying resolutions.
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5.1.5  Comparison with Wiener Filtering

An interesting similarity exists between equation (5.11) for the optimized mean error

power spectrum ),,( hPe ω  and the formula giving the PSD of the prediction error in the

Wiener filtering theory for stationary random signals. In section 4.3.3, we had identified a

similar situation between the actual Wiener filter and the optimal collocation-based MR

filter that is implied in eq.(5.11).

According to Wiener’s theory, the optimal estimation filter applied to a stationary zero-

mean stochastic signal )(xg  contaminated with stationary random noise ),(xv  under the

assumption of zero correlation between the signal and the noise, produces a stationary

zero-mean prediction error )(xe  with an associated PSD given by the formula (Sideris,

1995)
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where )(ωgP  is the PSD of the actual random signal and )(ωvP  is the PSD of the

stationary input noise. The symbol )(ωgP ′  denotes the PSD of the total input signal

)()()( xvxgxg +=′  to the Wiener filter. In the absence of any input noise, the PSD of the

prediction error is zero and the Wiener filter becomes a simple identity operator.



215

The two error formulas in eqs.(5.11) and (5.39) exhibit a strong algorithmic similarity in

terms of a certain signal-to-noise ratio (SNR) form. Despite this interesting fact, they are

each based on different mathematical principles and assumptions, and their underlying

filtering settings correspond to two completely distinct physical situations. In particular,

all signals involved in the Wiener filtering scheme are stochastic and continuous, whereas

eq.(5.11) is based on a deterministic linear estimation methodology utilizing only discrete

‘noisy’ data at varying resolutions. In the latter case, the noise takes the form of the lost

signal information due to the discretization of the original unknown field (see Figure

5.14), and when the data resolution becomes very high (‘zero noise’) then the associated

mean error power spectrum in eq.(5.11) converges to zero.

Furthermore, the two estimation schemes employ entirely different concepts to define a

signal error measure, in terms of either probabilistic (different experiment repetitions) or

spatio-statistical (different sampling phases) averages, which is subsequently used in the

optimization of the estimation filter for the input data of each case. The definition of

these output error measures, as well as the overall filtering structure of the two estimation

methodologies, are illustrated in Figure 5.14.

We should mention once more that no ‘stationarity’ assumption is used in the

multiresolution filtering (spatio-statistical collocation) case, in contrast to the Wiener

filtering scheme where the stationarity assumption (for both the signal and the

observational noise) is essential.
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Figure 5.14  Diagrammatic comparison between the classic Wiener estimation filter
(bottom system) and optimal translation-invariant linear MR approximation using

deterministic gridded data (top system)

However, it is the translation-invariance condition, which was imposed in the

deterministic case, that makes the two linear estimation models comparable in terms of

convolution-based filters that are applied to the input data of each case. The more general

problem where the discrete input data in the MR filtering scheme of eq.(5.1) are

influenced by random noise will be examined in the next section.
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Concluding this comparison between the spatio-statistical collocation scheme and the

Wiener filtering methodology, we should point out one final important difference.

Stationary random processes are theoretically defined as infinitely lasting signals with a

uniform behaviour across their domain, which obviously do not possess a well defined

Fourier transform (i.e. they are not finite-energy signals)*. The stochastic input signal

)(xg  and the additive random noise )(xv  in the Wiener filter case should thus be

considered as truncated ensemble realizations of stationary processes with a finite record

length ,T  in order for the linear estimation scheme to be physically realizable.

Accordingly, the definition of the output error PSD shown in Figure 5.14 is based on the

well known Wiener-Khinchine relationship, which takes the expectation of 2 )( ωE  over

different finite data records with length ,T  multiplies this average error power spectrum

by ,/1 T  and finally lets T  increase beyond bound; see Bendat and Piersol (1993). In this

way, the integration of )(ωeP  will yield the usual (probabilistic) variance 2
eσ  of the

stationary prediction error ),(xe  whose square root is expressed in the same units as the

input signal and the input noise.

On the other hand, in the MR filtering scheme of spatio-statistical collocation we do not

face the above complications, since the unknown field is a-priori modelled as a finite-

energy deterministic signal, with the additional mild requirement that its sampling always

                                                          
* Note that we do not consider cases of compact signal domains in this thesis. Since most of our developments are
restricted in a 1D setting, the domain of the signals should always be understood as the whole real line.
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results in a square-summable data sequence. The integration of the mean error power

spectrum ),,( hPe ω  at a certain data resolution level ,h  yields the mean square 2L  norm

of the approximation error ),,( hxxe o  averaged over all possible sampling phase values.

If we want to convert this deterministic error norm into an RMS-type measure that is

compatible with the data signal units, we can simply divide the mean error ‘variance’

)(2 hσ  by the finite extent of the spatial field ),(xg  and then take the square root of the

resulting value. Note that such an operation only gives an estimate of the RMS signal

error, since the support of the error signal ),,( hxxe o  may be larger than the support of the

unknown field, depending on the localization properties of the approximation kernel

)(xϕ  and the actual data resolution level. Furthermore, it should always be kept in mind

that the value of )(2 hσ  corresponds to an average performance at a specific resolution

level ,h  which may deviate from the actual 2L  error norm produced by a given data set

with a certain sampling phase .ox  For this type of error variability problems, see Blu and

Unser (1999a).

5.2  Noise Filtering

The signal error analysis in the previous sections was based entirely on a noiseless data

setting, taking into account only the finite resolution of the available observations. In

practice, however, the discrete data can hardly be considered noise-free. Hence, it is very
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important to also study the case of having additive random noise in the samples of an

unknown deterministic field when using the linear MR estimation model of eq.(5.1). In

particular, we should consider the problem of modifying the original scaling kernel ),(xϕ

that we would normally use with noiseless data, in order to reduce the effect of the

propagated noise in the final approximated field as much as possible.

5.2.1  Continuous Versus Discrete Noise

Let us assume that we have available noisy samples )(nhd  of an unknown field ),(xg

taken at a spatial resolution level .h  Then, we can write the following equation:

)(    )(    )( nhvnhgnhd +=         (5.40)

where )(nhg  are the true values of the unknown deterministic signal, and )(nhv

represents a discrete (in general non-stationary) random noise sequence. The associated

stochastic model which is used to describe the behaviour of the measurement noise is

expressed by the formulae
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where )(2 nhvσ  is the noise variance at each data point, and ),( mhnhvσ  is the noise

spatial covariance between the data points nhx =  and .mhx =  Note that we use a purely

discrete model for the data noise, in contrast to other formulations of the optimal

estimation problem in gravity field signals where a spatially continuous (and stationary)

model is usually employed with the help of a stationary noise CV function (Sideris, 1995;

Li, 1996c; Li and Sideris, 1997; Tziavos et al., 1996). The use of continuous noise models

is a rather questionable issue within an estimation framework utilizing only discrete

spatial data. The measurement noise does not generally exist in a physical sense as a

continuous spatial signal (i.e. we do not ‘sample the noise’), but it originates only because

we performed an observation with an imperfect instrument under certain external

influences at a specific point in space.

On the other hand, there exist cases of signal approximation problems with discrete

spatial data where it does make sense to consider continuous noise models. For example,

a data acquisition device may change its noise characteristics, as it moves from one

spatial point to another, according to a given continuous (time-dependent) stochastic

model. However, since we always collect (and process) observations at a finite network

of data points, the input noise will still be a discrete signal (in a spatial sense) with an

associated discrete stochastic model. The latter is determined in such cases, at the points

of interest, from a continuous time-dependent error model and the spatio-temporal ‘path’

of the measuring device. One may also consider extreme cases in signal estimation
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problems with discrete spatial data where the observational noise (or some part of it) does

indeed exist in a spatially continuous sense (e.g. atmospheric effects in various types of

measurements). Such cases are not considered here and they can usually be treated by

applying a-priori corrections to the discrete data for these spatially continuous noise

effects, before the optimal estimation takes place.

In any case, the important aspect to be emphasized here is that we do not really need

continuous noise models for our finite-resolution discrete data in signal approximation

schemes as in eq.(5.1). As it will be demonstrated in the next sections, all that is

algorithmically necessary is the discrete model given in eq.(5.41), even if the underlying

data noise is generated by continuous (time/spatial) stochastic phenomena. For the

treatment of noise in continuous fields of measurements, see Sanso and Sona (1995).

5.2.2  General Formulation

As in the case of the noiseless approximation problem (see section 4.3), the optimal

signal estimate )(ˆ xg  will employ the discrete noisy data )(nhd  in a linear and

translation-invariant fashion. The ‘need’ to obtain a translation-invariant signal estimate

(i.e. independent of the spatial reference system) is not affected by the presence of

(stationary or non-stationary) noise in the observations. Based on these two assumptions,

the estimation formula should have the familiar convolution-type form
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∑ −=
n

h nhxnhdxg )(  )(     )(ˆ ξ       (5.42)

where )(xhξ  is an unknown kernel, which generally depends on the data resolution level

.h  The above equation can be illustrated through the linear filtering procedure shown in

Figure 5.15.

Figure 5.15  Linear translation-invariant signal estimation using discrete noisy data

In order to determine an optimal form for the kernel ),(xhξ  we have to introduce an

associated optimality principle. The signal error produced by the filtering equation (5.42)

can be decomposed into two distinct components

)(ˆ    )(    )(    )(    )( xgxgxexexe vh −=+=     (5.43)

where )(xeh  is the part of the total estimation error caused from the use of discrete data

with finite sampling resolution (aliasing error), and )(xev  is the additional part due to the
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noise presence in the data samples. Note that the fundamental difference between these

two error components is that )(xeh  is a purely deterministic signal (whose behaviour has

been modelled and studied in section 5.1), whereas )(xev  is a stochastic signal

originating exclusively from the presence of random noise in the discrete data.

In the absence of any noise from the input data, the best we can do is to obtain just an

interpolated model )(xmg  for the unknown field, that will depend on the true signal

samples )(nhg  at the given spatial resolution. We will assume that such a signal model is

given in terms of a linear translation-invariant form, as follows:

∑ −=
n

hg nhxnhgxm )(  )(     )( ϕ       (5.44)

The noise-dependent error component )(xev  should be measured relative to such a

noiseless ‘reference model’ for the unknown field. In this way, we will have

∑∑ −−−=

−=

n
h

n
h

gv
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)(  )(     )(  )(              

)(ˆ    )(    )(

ξϕ
      (5.45)

whereas the resolution-dependent deterministic error term )(xeh  is
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        (5.46)

The signal model )(xmg  is controlled by a certain MR scaling kernel ),/()( hxxh ϕϕ =

which should obey all the admissibility conditions addressed in section 5.1. Note that the

above error decomposition provides great flexibility for the design of the noise filtering

kernel ),(xhξ  since the choice of )(xϕ  may be arbitrarily based on noise-independent

modelling criteria for the behaviour of the unknown field at the given resolution level .h

As a matter of fact, the problem of linear noise filtering for signals that belong in an

arbitrary MRA subspace can be embedded into the previous formulation, if we identify

the reference kernel )(xϕ  with the scaling sampling function of the MRA under

consideration. Regardless of the behaviour of the unknown signal, it is convenient to

choose an orthonormal reference scaling kernel because of the simplification that is

achieved in the study of the resolution-dependent error component )(xeh  (see section

5.1.2).

The optimal determination of the data noise filter will be based on the minimization of a

suitable functional of the stochastic error component )(xev  given in eq.(5.45). Such an

optimization procedure is analytically described in the next section.



225

5.2.3  Optimization of the Noise Filter

The optimization of the noise filtering kernel )(xhξ  will be carried out in this section,

following a frequency-domain methodology. In particular, the optimal estimation

criterion that we will use has the familiar mean-square-error (MSE) expression

min     )(   2 =




 ωvEE                             (5.47)

where )(ωvE  denotes the Fourier transform of the noise-dependent error component

)(xev . Note that the term ‘mean’ corresponds to its usual probabilistic interpretation (i.e.

E  is the classic expectation operator), in contrast to the optimization scheme that was

followed in the previous chapter where the MSE was defined in a spatio-statistical

deterministic sense. The reference scaling kernel )/()( hxxh ϕϕ =  was then optimized

using the spatio-statistical power spectrum of the resolution-dependent error ),(xeh

whereas the noise filtering kernel )(xhξ  will now be optimized using the mean power

spectrum of the noise-dependent error ).(xev

From eq.(5.45), the Fourier transform of )(xev  will take the following form:
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where )(ωΦh  and )(ωΞ h  denote the Fourier transforms of the reference kernel )(xhϕ

and the noise filtering kernel ),(xhξ  respectively. The term )(ωhG  corresponds to the

periodic Fourier transform of the sequence formed by the true signal values ),(nhg

whereas )(ωhV  is the periodic Fourier transform of the sequence formed by the actual

noise values at every data point, i.e.

∑ −=
n

nhi
h enhvV ωω   )(     )(                   (5.49)

In order to ensure the existence (convergence) of the two periodic Fourier transforms

)(ωhG  and ),(ωhV  both the signal and the noise values should be measurable in the

sense of eq.(4.7). One might think that such a condition is contradictory with the concept

of stationary noise, which is generally understood as an infinitely lasting process with

uniform statistical behaviour across the whole real line. However, in physical applications

the unknown spatial fields cover only finite regions and, as a result, the condition in

eq.(4.7) for both the signal and the noise (stationary or not) is always met. As Ronald



227

Bracewell noted in his classic book (Bracewell, 1986; p. 9): ‘the question of the existence

of Fourier transforms may safely be ignored when the signal to be transformed is an

accurately specified description of a physical quantity. Physical possibility is a valid

sufficient condition for the existence of the Fourier transform’.

Using eq.(5.48), we can derive the noise-dependent error power spectrum as follows:
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and by applying the expectation operator to the above expression, we obtain the mean

error power spectrum
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where the term )(ωvP  is used to denote the following quantity:

{ }
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
== 2*  )(       )( )(      )( ωωωω hhhv VEVVEP                                     (5.52)
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The determination of the optimal noise filter )(ωΞ h  can now be easily made using

eqs.(5.47) and (5.51). The underlying procedure is straightforward (see, e.g. Bendat and

Piersol, 1986; pp. 182-183) and it gives the final Wiener-like result
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In the following section, the two-step (separable) filtering structure of the above optimal

result is analytically discussed.

5.2.4  The Cascade Structure of the Optimal Noise Filter

There are several important remarks that should be made at this point regarding the final

result of the previous section. First, it is seen that the optimal estimation procedure is

basically decomposed into two individual steps (filters), which are connected in a linear

cascading manner. The first step, expressed by the periodic filter component ),(ωhW  has

the role of ‘denoising’ the discrete input data )(nhd  using certain information about the

average behaviour of the input noise and the underlying unknown field. In contrast, the
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second filter component )(ωΦh  is solely used to obtain a continuous representation for

the final estimated field ),(ˆ xg  based on a properly selected reference scaling kernel

)./()( hxxh ϕϕ =  In this way, the result of the optimization procedure in Chapter 4 (for

the resolution-dependent signal error )(xeh ) can easily be incorporated into the current

optimal result for the noise-dependent signal error ),(xev  if we set the quantity )(ωΦh

equal to the collocation-based MR filter according to eq.(4.17). The two basic steps of the

optimal noise filtering procedure are illustrated in Figure 5.16.

Figure 5.16  Two-step optimal translation-invariant filtering of discrete noisy data

From the previous figure, we can see that it is not necessary to modify the scaling kernel

)(xϕ  of the linear MR approximation model in eq.(5.1) when dealing with noisy input

data. The optimization of the noise-dependent output error, according to eq.(5.45), adds

just an intermediate filtering step that is applied to the original discrete data )(nhd  and it

 g(x)
Sampling Noise

 × × × ×

∑ 
n

 δ (x - nh)

 g(nh)

Noise Filter

ˆ g(x)    ++++

 v(nh)

 d(nh)
Wh (ω ) Φh (ω )

MR
Approximation

Filter
ˆ d(nh)

Ξh (ω )



230

produces a new estimated sequence )(ˆ nhd  in which the effect of the observational noise

has been minimized in a certain translation-invariant linear fashion. We can then use this

‘synthetic’ data sequence as input to the basic estimation model of eq.(5.1) in order to get

a continuous approximation of the underlying unknown field at the given resolution level

.h

The structure of the noise filter )(ωhW  is very similar to the classic Wiener estimation

filter used in random field theory. There exist, however, significant conceptual

differences between the two optimal estimation schemes as well, since: (i) the underlying

unknown signal )(xg  has not been modelled as a stationary stochastic process, and (ii)

the additive input noise has not been assumed to be stationary. In order to better

understand the Wiener-like behaviour of the filter ),(ωhW  let us analyze its two main

building components in more detail. We can write the following:
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where X  denotes the finite extent of the unknown spatial field ).(xg  The two auxiliary

functions, )(1 ωC  and ),(2 ωC  correspond to the periodic Fourier transforms of two

associated space-domain sequences, )(1 nhc  and ),(2 nhc  which have the form

∑ +=
m

nhmhgmhg
X
hnhc )( )(       )(1          (5.55a)

and

∑ +=
m

v nhmhmh
X
hnhc ),(       )(2 σ          (5.55b)

We shall demonstrate the above fact for the case of the noise-dependent Fourier pair

)()( 22 ωCnhc ↔ ; a similar methodology can also be applied for the signal-dependent

Fourier pair ).()( 11 ωCnhc ↔  We have the following:
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The sequence )(1 nhc  in eq.(5.55a) can be identified as the discrete spatial CV function of

the unknown signal at a given resolution level .h  This function contains less information

than the continuous signal CV function that was used in the previous chapter for

optimizing the MR reference kernel ),(xhϕ  since it takes into account only the discrete

values of the unknown field at a certain resolution and at a certain sampling phase (the

sampling phase ox  of the input data has been assumed zero in this section, see eq.(5.40)).

Note that the discrete spatial CV function does not generally correspond to a sampled

version of the continuous signal CV function given in eq.(4.15) or, equivalently, the

quantity 2 )( ωhG  is not generally obtained by a simple periodization of the true signal

power spectrum , )( 2ωG  since

∑∑ +≠+=
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The second sequence )(2 nhc  in eq.(5.55b), on the other hand, cannot be interpreted as

the discrete noise CV function and, as a result, the quantity )(ωvP  should not generally

be viewed as the data noise PSD. Such an interpretation is possible only in the special

situation where the additive noise )(nhv  is stationary, in which case the sequence )(2 nhc

is reduced to the probabilistic CV function of the discrete input noise.

The similarities of our noise filtering framework with the Wiener filtering formalism stem

from our initial modelling choice in eq.(5.42) that the signal estimation procedure should

always be linear and translation-invariant. This results in a convolution-based algorithmic

scheme in terms of an SNR-type optimal filter. The differences associated with the two

methodologies are due to the fact that the data noise is not restricted to being stationary in

our case, in contrast to Wiener filtering where the stationarity assumption, for both the

signal and the noise, is crucial. The unknown field )(xg  has been modelled as a

deterministic finite-energy signal in our case, with the only additional restriction being

that it should have a compact spatial support X  (such an assumption is needed in order

for )(2 nhc  and )(2 ωC  to be well defined in the stationary noise case). Note that if the

input noise is non-stationary then the signal estimation algorithm, according to Wiener’s

linear theory, can no longer be reduced to a simple filtering operation but, instead, it takes

the form of a complicated integral equation (Wiener-Hopf formula) whose solution

determines the best linear (but not translation-invariant in this case) signal estimate in a

MSE sense; see Sanso and Sideris (1997). In our approximation framework, however, the



234

a-priori imposed condition of translation-invariance for the optimal signal estimate allows

us to treat both stationary and non-stationary noise cases in a unified linear filtering

(convolution-type) manner, which can be efficiently implemented via FFT techniques.

5.2.5  Additional Remarks

Concluding this chapter, a few additional remarks will be given about the noise filtering

framework that was presented in the preceding paragraphs. One important aspect for

practical applications is the realization of the periodic noise filter )(ωhW  given in

eq.(5.54). Although the input noise ‘PSD’ )( ωvP  can always be determined from the

noise variances and covariances using the discrete Fourier transform of the sequence

),(2 nhc  the signal ‘PSD’ 2 )( ωhG  is generally unknown since it depends on the true

signal values )(nhg  at the specific resolution. The same problem also exists in the classic

Wiener filter theory, which requires the knowledge of the noiseless (stochastic) signal

PSD function. In our case, one possibility to overcome this filter realization problem is to

introduce a certain ‘external’ model for the discrete signal CV function )(1 nhc  at the

given resolution level, and then simply compute its discrete Fourier transform needed in

eq.(5.54).
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An alternative methodology can also be followed using the noisy data set )(nhd  in order

to empirically estimate the deterministic signal ‘PSD’. If we denote by )(ωhD  the

discrete Fourier transform of the input data sequence, we obviously have

∑ −=
n

nhi
h enhdD ωω   )(     )(                 (5.58a)

and

)(    )(    )( ωωω hhh VGD +=                 (5.58b)

where the discrete Fourier transform )(ωhV  of the noise is given by eq.(5.49). Using the

last equation, we can obtain the following relationship:
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and by applying the expectation operator
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The signal ‘PSD’ 2 )( ωhG  can now be determined empirically through the last formula,

using the available realization 2 )( ωhD  of the data power spectrum as an estimate of its

expected value . )(   2






 ωhDE

The use of the optimal (separable) estimation filter ),(ωΞ h  according to eq.(5.53), gives

rise to the following expression for the mean power spectrum of the noise-dependent

error component )(xev :
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since the reference kernel of the noiseless signal model is always assumed to have the

scaling form )./()( hxxh ϕϕ =  An interesting point in the last formula is that the data

resolution level h  acts as a scaling factor, which makes the noise-dependent signal error

decrease as the data sampling density increases! This result should not be surprising to

signal analysts, since it is well known that linear signal approximation schemes based on

oversampling can lead to significant noise reduction (Benedetto, 1998). Note also that the
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inverse Fourier transform of the above equation will not necessarily correspond to an

‘error CV function’, since the noise-dependent error component )(xev  is not necessarily a

stationary random signal.

A key point in the development of our translation-invariant estimation procedure was the

decomposition of the total signal error into a resolution-dependent part )(xeh  and a

noise-dependent part )(xev ; see eqs.(5.45) and (5.46). Such a modelling choice offers the

possibility of studying/optimizing individually the effects of the finite data resolution and

the additive input noise to the final signal estimate ),(ˆ xg  using appropriate error

measures and criteria for each case. Note that the second error component )(xev  is not

entirely independent from the actual data resolution, but it actually depends on h

according to eq.(5.60). It is also interesting that the optimization of the noise-dependent

signal error led to a separable filter solution ),(ωΞ h  which simplifies the linear

estimation algorithm into two basic and distinct steps (discrete data denoising + signal

‘interpolation’); see Figure 5.16. An additional advantage due to the separability of the

optimal noise filter is that it allows us to treat the final estimated field )(ˆ xg  as a member

of a Hilbert subspace ),(2 ℜ⊂ LVh  where hV  is the linear space spanned by the

translation-invariant Riesz basis Z)( ∈− nn
h
xϕ  generated from the chosen reference

scaling kernel. In this way, we may incorporate the various MRA tools (e.g. wavelet
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spectral analysis) into our optimal signal approximation framework not only for noiseless

data schemes (see Chapter 4), but also for cases with noisy input data.

The partition of the total signal error )(xe  in terms of resolution-dependent and noise-

dependent disjoint parts is actually more than an arbitrary modelling choice. If, instead of

the optimal criterion given in eq.(5.47), we had used the following ‘total’  MSE

estimation principle:

{ } min     )(    2 =ωEE                               (5.61)

then the optimized filtering kernel )(xhξ  would have the frequency-domain form
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The above result is practically useless, since it requires the knowledge of the total

unknown field )(ωG  beforehand. The signal error decomposition, according to eqs.(5.45)

and (5.46), is thus necessary in order to obtain a reasonable (i.e. realizable) optimal

solution for the noise filtering kernel )(xhξ  in terms of signal/noise ‘PSD’ information.

This decomposition requires the introduction of an intermediate translation-invariant

noiseless model )(xmg  for the unknown signal, which can be either arbitrary or it may be

determined through a separate optimization procedure according to Chapter 4. Such a
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procedure leads to the substitution of the true signal Fourier transform )(ωG  in eq.(5.62)

with a noiseless model )( )()( ωΦωω hhg GM =  at the given resolution level; see

eq.(5.44).

The theoretical analysis presented in section 5.2 provides an original approach to the

linear approximation problem in deterministic spatial fields using discrete noisy samples

at a given resolution level. The classic methodology that has traditionally been applied for

this type of approximation problems in geodesy is Tikhonov regularization, which

employs a hybrid optimal estimation principle in terms of a deterministic signal norm and

a quadratic (Euclidean) observation error norm; see Moritz (1980, pp. 238-249). The

simultaneous minimization of these two quantities yields a unique optimal solution,

which corresponds to the ‘smoothest’ field with the smallest possible deviations from its

observed noisy values. Such an approximation procedure is identical to using the

deterministic collocation method within a certain Hilbert space, when the available linear

functionals are influenced by zero-mean random errors; for more details, see Moritz

(1980, sect. 28-30) and Dermanis and Sanso (1997, ch. 8). The main problems associated

with the above estimation methodology encompass all the issues that were previously

discussed in Chapter 3 of this thesis (i.e. choice of the norm/reproducing kernel, stability

with respect to increasing data resolution, compatibility between data and model

resolution). In order to overcome these types of problems, we have essentially replaced

the arbitrary signal norm (field smoothing condition) that appears in Tikhonov’s
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regularization principle with the notion of a noiseless signal model at the given data

resolution level, according to the linear multiresolution expansion of eq.(5.44).

5.3  A Physical Geodesy Example

A simple theoretical example will now be presented in order to demonstrate the

applicability of the signal estimation framework that was developed in the last two

chapters. The example is taken from physical geodesy and it corresponds to the problem

of local gravimetric geoid determination using Stokes’s integral formula under a planar

approximation. We will assume that the input data are discrete noisy gravity anomalies,

given on a 2D orthogonal planar grid with uniform resolution level h  in both directions.

The true gravity anomaly signal will be denoted by )(xg∆  and its gridded noisy samples

by ),( k⋅∆ hgv  where x  and k  are (2×1) vectors in the Euclidean spaces 2ℜ  and ,Z2

respectively. We will also use the symbol )( k⋅hv  to denote a 2D (non-stationary in

general) random noise sequence, such that

)(    )(    )( kkk ⋅+⋅∆=⋅∆ hvhghgv                                         (5.63)

where )( k⋅∆ hg  are the true (noiseless) values of the gravity anomaly signal at the data

points. As usual, the sampling procedure is assumed to cover the entire (finite) support of

the local gravity anomaly field ).(  )( 22 ℜ∈∆ Lg x  The optimal estimation of the geoid
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undulation signal )(xN  from the gravity anomaly data will then follow the procedure

shown in the linear system of Figure 5.17.

Figure 5.17  Optimal geoid estimation from gridded noisy gravity anomalies using a
certain multiresolution reference filter

As seen from the above figure, the geoid estimation algorithm consists of two basic

separable parts. The first step is a straightforward extension of the one-dimensional noise

filtering methodology that was described in section 5.2. The optimal noise filter that is

applied to the gravity anomaly data )( k⋅∆ hgv  will have the two-dimensional Wiener-

like form
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where 
2

 )( ωωωωhG∆  is the periodic ‘PSD’ of the deterministic (true) gravity anomaly

values (not of the total gravity anomaly signal) at the given resolution level ,h  )(ωωωωvP  is

the periodic noise ‘PSD’, and ωωωω  denotes a (2×1) real frequency vector. The quantity

)(ωωωωhG∆  corresponds to the following 2D discrete Fourier transform:

∑∑ ⋅+∆=⋅∆=∆ −

kk

k kk )2(   1      )(     )( 2
T

h
G

h
ehgG ihh

πωωωωωωωω ωωωω         (5.65)

with )(ωωωωG∆  being the 2D continuous Fourier transform of the true gravity anomaly

signal ).(xg∆  Alternatively, we can also express the gravity anomaly ‘PSD’ function in

the form

∑ −
∆ ⋅=∆

k

kk ωωωωωωωω
T

  )(      )( 
2 ihgh ehcG                                             (5.66)

where )( k⋅∆ hc g  is the 2D discrete spatial CV function of the gravity anomaly field

)(xg∆  at a uniform resolution level ,h  i.e.

∑ ⋅+⋅∆⋅∆=⋅∆
m

kmmk  )  (  )(     )( hhghghc g                                 (5.67)
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For the practical determination of the quantity , )( 
2

ωωωωhG∆  see the comments given in

the beginning of section 5.2.5. Similarly, the data noise ‘PSD’ will be given by the 2D

discrete Fourier transform

∑ −⋅=
k

kk ωωωωωωωω
T

  )(     )( ihvv ehcP                                                         (5.68)

where the two-dimensional discrete sequence )( k⋅hcv  is defined through the summation

formula (see section 5.2.4)

∑ ⋅+⋅⋅=⋅
m

kmmk  )   , (     )( hhhvhcv σ                                             (5.69)

In the last equation, the symbol )   , ( kmm ⋅+⋅⋅ hhhvσ  denotes the covariance of the

gravity anomaly noise between the 2D data points m⋅h  and .  km ⋅+⋅ hh  The optimal

noise filter of eq.(5.64) is multiplied by the 2D discrete Fourier transform of the data

sequence ),( k⋅∆ hgv  and the result is a new ‘synthetic’ set of estimated gravity anomaly

values )(ˆ k⋅∆ hg  from which the effect of the observational noise has been minimized in a

certain translation-invariant MSE sense (see section 5.2.3). The underlying linear filtering

procedure can be described by the equation



244







 ∆ℑ=⋅∆ −  )(  )(       )(ˆ 1 ωωωωωωωω

v
h GWhg k                             (5.70)

where the term )(ωωωω
vG∆  corresponds to the 2D discrete Fourier transform of the noisy

data sequence, i.e.

∑ −⋅∆=∆
k

kk ωωωωωωωω
T

  )(     )( ihvv ehgG                             (5.71)

and 1−ℑ  denotes the 2D inverse discrete Fourier transform operator.

The second step in the geoid estimation procedure utilizes the filtered gravity anomaly

data )(ˆ k⋅∆ hg  to obtain a certain linear approximation )(ˆ xN  for the geoid signal (see

Figure 5.17). The underlying translation-invariant algorithm can be expressed by the

general convolution formula

)(ˆ    )(    )(ˆ xxx gsN ∆∗=                                                                   (5.72a)

where the estimated (referenced) input signal )(ˆ xg∆  is given in terms of a 2D

multiresolution approximation model, similar to the 1D case of eq.(5.1), i.e.

∑ −⋅⋅∆=∆
k

kxkx )  1(  )(ˆ     )(ˆ
h

hgg ϕ                                                       (5.72b)
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The function )(xs  in eq.(5.72a) corresponds to the 2D planar Stokes kernel (Schwarz et

al., 1990), whereas )(  )( 22 ℜ∈ Lxϕ  represents some 2D scaling interpolating kernel that is

chosen to model the behaviour of the local gravity anomaly field at the given resolution

level. For an optimal (in a spatio-statistical sense) determination of the reference kernel

),(xϕ  a two-dimensional generalization of the optimization procedure given in section

4.3 should be followed. Eqs.(5.72a) and (5.72b) can also be combined into a single

estimation step, as follows:

∑ 



 −⋅∗⋅∆=

k
kxxkx )  1(    )(  )(ˆ     )(ˆ

h
shgN ϕ                                                  (5.73a)

or, equivalently, in the frequency domain

∑ −⋅∆⋅=
k

kk ωωωωωωωωωωωωωωωω
T

  )(ˆ   )( )(     )(ˆ 2 ihehghShN Φ                                                 (5.73b)

In practice, the evaluation of the output geoid signal )(ˆ xN  is performed only at the points

of the input gravity data grid. For this purpose, we can apply efficient FFT techniques in

the numerical computation of the formulas (5.73a) and (5.73b), which obviously requires

the knowledge of the 2D Fourier transform of the convolution product )1(    )( xx ⋅∗
h

s ϕ

between the Stokes kernel and the MR approximation (referencing) kernel.
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Chapter  6

CONCLUSIONS AND RECOMMENDATIONS

6.1  Summary – Conclusions

The discussion in this section will focus on the main conclusions that can be drawn from

this thesis work. However, it should be noted that in the preceding investigations there

were many interesting and key theoretical findings that have been individually identified,

summarized and discussed in detail in the various sections of each chapter and, therefore,

will not be repeated here.

The central scope of this research work was to address and study various problems that

occur in linear signal estimation from discrete gridded data. Such problems included:

solution stability, solution convergence, optimal adaptation of the estimation kernel to the

data resolution level, resolution-dependent analysis of the signal interpolation error,

aliasing error propagation in convolution integral formulas with discrete input data, and

noise filtering. All these issues are very important in modern operational geodesy and
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they affect both theoretical aspects (e.g. discrete BVPs) and practical applications (e.g.

local geoid determination) in gravity field modelling and approximation.

A general linear estimation framework for dealing with the above problems has been

developed, based on the use of concepts from multiresolution analysis theory. The thesis

aimed at showing that the multiresolution signal analysis methods, according to Mallat’s

pioneering work, are not just an additional mathematical tool with a competitive role

against traditional approximation techniques used in geodesy. From the findings

presented in the previous chapters, it can be concluded that the MRA concept actually has

a complementary (regularization) role within the signal estimation framework of

deterministic collocation in Hilbert spaces (chapter 3). Furthermore, it was found to be

complemented (or rather extended) by the spatio-statistical collocation principle (chapter

4).

A major portion of the thesis was devoted to discussing the classic collocation method for

linear approximation in Hilbert spaces, and identifying its drawbacks for deterministic

signal modelling and estimation. The use of frame theory was essential for studying the

basic aspects and limitations of this method. In fact, it has expanded its applicability for

more general cases than the ones usually treated in the geodetic literature (i.e. cases of

linearly dependent observational representers).
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The main problem that was identified in the deterministic collocation method is the use of

a fixed estimation kernel, which does not take into account the actual data resolution.

This affects the numerical stability of its underlying signal interpolation algorithm, as

well as the overall quality of the minimum-norm signal estimate when the given data

resolution is not ‘compatible’ with the implied model resolution. The multiresolution

analysis theory in infinite-resolution Hilbert spaces (such as )(2 ℜL ), on the other hand,

provides an ideal and effective tool for dealing with stability, convergence and modelling

issues in linear approximation problems with gridded data of increasing resolution. It has

been shown that we can actually arrive at the MRA concept through the deterministic

collocation formalism by requiring unperturbed stability and convergence in the optimal

solution algorithm for increasing data density, and additionally assuming a certain scale-

invariance condition for the underlying signal norm.

Although the use of the multiresolution analysis concept was initially suggested from a

stability and convergence point of view, in Chapter 4 we re-established its link with the

linear estimation problem from a completely different viewpoint. In particular, the spatio-

statistical collocation principle (with gridded data) was proven to give rise to an MRA-

type interpolation algorithm, with its basic kernel being completely adapted to the data

resolution level in a certain optimal fashion. This result provided a powerful extension of

Mallat’s classic approximation framework, since it allows not only for the spread of the

estimation kernel to be tuned to the data grid density, but also for the functional form of
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the kernel itself. The accuracy improvement that is obtained by using such resolution-

dependent interpolating kernels in the linear estimation framework, over the usual fixed

scaling kernels of MRA theory, was also demonstrated through some numerical examples

in Chapter 5, which revealed the practical significance of our theoretical developments

for actual signal approximation applications in geodesy.

Another key result in this thesis was the development of a rigorous, yet simple,

algorithmic procedure that can be used to measure the decay rate of the mean square

interpolation error in linear multiresolution estimation models, as a function of the data

resolution level and the scaling approximation kernel. The same procedure has also been

used for propagating the effect of the aliasing error in convolution integral formulas with

gridded input data at uniform resolution. Such resolution-dependent error modelling

techniques are extremely important in various geodetic applications (e.g. gravimetric

geoid determination), especially for identifying data resolution requirements for a mean

accuracy level in the estimated signal. They can also be used for comparing the

performance of different estimation kernels for varying data grid density, as well as for

evaluating the need to incorporate an additional multiresolution reference filter for the

discrete input data in the classic FFT-based geodetic computations.

Finally, the last part of the thesis presented a theoretical treatment of various issues

related to the noise filtering problem within a linear multiresolution estimation model.

Our developments provided a similar optimal solution with the one given in Wiener
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filtering theory, without employing the usual stationarity assumption for the input data

noise, but by using only a translation-invariance restriction for the signal estimation

algorithm. Such a result demonstrated that the FFT-based computational techniques can

be a very efficient tool in signal approximation problems even with non-stationary noisy

data, if we are willing to keep the translation-invariance property for our linear signal

estimate. Furthermore, our modelling choice of decomposing the total signal error in

terms of resolution-dependent and noise-dependent disjoint parts resulted in the

possibility of studying/optimizing individually the effects of the finite data resolution and

the additive input noise to the final signal estimate, using appropriate error measures and

criteria for each case. This new approach overcomes some of the traditional limitations

that we face when we use other classic geodetic approximation procedures, such as

Tikhonov’s regularization.

6.2  Recommendations for Further Research

Considerable extensions of the research work presented herein are certainly required in

order to further explore the potential of multiresolution (and wavelet-based) analysis

methods for geodetic estimation problems. The present thesis has served the purpose of

laying out various aspects of these methods that make their further study, in both

theoretical and practical levels, justifiable and, hopefully, more interesting.
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The rigorous formulation and extension for all of our theoretical developments, which

were presented in Chapters 4 and 5 of this thesis, in higher dimensional settings should

obviously be made. This provides a challenging problem for cases of signals with

compact spherical domains that are needed in global geodetic applications. However,

simpler two-dimensional planar generalizations do not introduce major complications and

they can easily be employed for many local applications in gravity field modelling with

real (or synthetic) data. Of particular interest is the incorporation of multiresolution

reference kernels or filters, for the discrete input data, in geodetic convolution algorithms.

As was suggested in more detail in previous sections of the thesis, such an estimation

approach should be compared with the classical FFT-based numerical methods that are

routinely used in many geodetic applications, where no specific reference model for the

discrete input data is employed.

An interesting, but more mathematically oriented and considerably more difficult, topic is

also to investigate the possibility of building wavelet-type bases within the generalized

MRA structure that was constructed from the resolution-dependent form of the

collocation scaling kernel. This would provide a very powerful ‘non-stationary’ spectral

system that can be directly linked with the optimal signal estimation methodology

developed in this thesis. Additional studies should also be made on the determination of

closed expressions for the resolution-dependent optimal collocation filter, based on the

use of different analytical models for the signal power spectrum.
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The present research has only treated the special case where the input data in the linear

estimation framework are gridded values of the unknown field itself. Single input-output

convolution systems have been additionally considered, but only from an aliasing error

propagation point of view. The existence of a generalized MRA-type behaviour in the

estimated output signal of such linear systems should also be investigated, as was

suggested in more detail at the end of Chapter 4. Furthermore, the stability problem of the

linear estimation algorithm has been considered only from a data resolution point of view.

The additional effect due to the ill-conditioned structure of various inverse convolution

operators that appear in many geodetic formulas must be further regularized within the

multiresolution estimation framework. Finally, the problem of optimally (and efficiently)

combining heterogeneous noisy data given at different scale levels, within an integrated

MRA-type estimation framework, provides the ultimate challenge in terms of geo-

mathematical applications.

Given the continuously increasing interest of the geodetic community in multiresolution

and wavelet methods and the significant achievements that have been obtained up to date,

it is evident that further research on this area is warranted.
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APPENDIX A

In this appendix we will prove the following equation (see also eq.(4.14), page 137):
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where the asterisk * denotes the complex conjugate, )(ωΦh  is the Fourier transform of

the approximation kernel )(xhϕ  at data resolution level ,h  and )(ωC  is the Fourier

transform of the spatial CV function )(xc  of the unknown signal, i.e.

∫ += dyxygygxc  )( )(     )(      (A.2)

The function )(ωhC  has the following periodic form:

∑ +=
k

h h
kC

h
C )2(   1    )( πωω    (A.3)

Taking into account eqs.(4.11) and (4.12) from Chapter 4, the error power spectrum at an

arbitrary value of the sampling phase ox  has the following form:
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where the auxiliary function ),( oxA ω  is given by the formula

∑
−

+=
k

oxh
ki

o e
h
kG

h
xA

π
πωω

2

  )2(   1    ),(    (A.5)

Integrating equation (A.4) over ,ox  we get analytically for every term
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Following similar derivations as in eq.(A.7), we also have that
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Finally, the integration of the last term in equation (A.4) yields
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Combining together the results from equations (A.6) - (A.9), we finally get the initially

claimed statement of equation (A.1).
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APPENDIX B

In this appendix we will prove that the multiresolution subspace sequence }, { jV  which is

constructed through the optimal collocation kernel ),,( jhxϕ  has the basic nesting MRA

property, i.e.

  Z           ,         1 ∈∀⊂ + jVV jj                     (B.1)

Each element )(2 ℜ⊂ LV j  of this subspace sequence is defined as the closed linear span

of the set ,)  ,( Z∈− nj
j

hn
h
xϕ  where the kernel ),( jhxϕ  is defined by eq.(4.23a) and the

scaling parameter jh  associated with each subspace jV  is assumed to satisfy the two

general conditions given in eqs.(4.33) and (4.35). Furthermore, the power spectrum and

the CV function of the underlying unknown field are assumed to satisfy all the conditions

given for them in section 4.6.1. Every signal jj Vxf     )( ∈  will have the following general

form:

jj
n

j
j

nj Vxfhn
h
xbxf     )(         ,     ) ,(       )( ∈∀−= ∑ ϕ                (B.2)
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where Z} { ∈nnb  is a certain square-summable sequence of coefficients. Taking into

account eq.(4.23b), the last equation can be equivalently expressed in the frequency

domain as follows:
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where )(/2 ωπ jh
B  denotes a certain ( jh/2π )-periodic function with finite )/2 ,0(2

jhL π

norm. In the same way, every signal )(1 xf j+  that belongs in the subspace 1+jV  will have

the frequency-domain form:
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jj VxfB
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ωω π           (B.4)

where 1+jh  is the scaling parameter associated with ,1+jV  and )(
1/2 ωπ +jh

B  denotes a

certain ( 1/2 +jhπ )-periodic function with finite )/2 ,0( 1
2

+jhL π  norm. It is quite easy

now to transform eq.(B.3) into the form of eq.(B.4). Indeed, starting from eq.(B.3) we

will have



270

jjjh

k j

j

jhjh

k j

j

jh

k j
j

k j
j

k j

j

jh

k j
j

k j
j

k j

jj

VxfN

h
kC

Ch

B

h
kC

Ch

B

h
kCh

h
kCh

h
kC

Ch

B

h
kCh

h
kCh

h
kC

ChF

    )(          ,   )(   
 )2(  

)(               

  

  )(   )(   
 )2(  

)(               

 )(   
 )2(   

 )2(  

   
 )2(  

)(               

 )(   
 )2(   

 )2(  

   
 )2(  

)(      )(

1/2

1

1

/21/2

1

1

/2
1

1

1

1

/2

1
1

1
1

∈∀
+

=

+
=

+

+

+
=

+

+

+
=

+

+

+

+

+

+

+

+

+

+

+
+

+
+

∑

∑

∑

∑

∑

∑

∑

∑

ωπω

ω

ωωΛπω

ω

ωπω

πω

πω

ω

ωπω

πω

πω

ωω

π

ππ

π

π

               (B.5)

where the auxiliary function )(
1/2 ωΛ π +jh

 is defined by the formula
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Obviously, the above function is ( 1/2 +jhπ )-periodic, since the two scaling parameters

( jh  and 1+jh ) are assumed to be related through a positive integer number, according to

condition VI in eq.(4.35). For the same reason, the product of the two periodic functions
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)(
1/2 ωΛ π +jh

 and ),(/2 ωπ jhB  which is denoted by )(
1/2 ωπ +jh

N  in eq.(B.5), will also

be a ( 1/2 +jhπ )-periodic function.

Furthermore, under conditions I and II [see eqs.(4.28) and (4.30)], both the numerator and

denominator in eq.(B.6) will converge uniformly to finite, strictly-positive, continuous

periodic functions, for any pair of values for the scaling parameters jh  and .1+jh  Hence,

the periodic function )(
1/2 ωΛ π +jh

 will have a finite )/2 ,0( 1
2

+jhL π  norm. As a result,

the auxiliary periodic function )(
1/2 ωπ +jh

N  in eq.(B.5) will also have a finite

)/2 ,0( 1
2

+jhL π  norm. In this way, the final frequency-domain form of eq.(B.5)

corresponds exactly to the expression of a function belonging into the higher resolution

subspace ,1+jV  according to the general formula given in eq.(B.4), and the nesting

property therefore has been established.
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APPENDIX C

In this appendix we will prove the fundamental integral formula that gives the mean error

‘variance’ )(2 hσ  in linear MR signal approximation models of the form of eq.(5.1), as a

function of the data resolution level ,h  i.e.

∫= ωωω
π

σ dhKCh  )( )(  
2
1    )(2     (C.1)

where )(ωC  denotes the power spectrum of the unknown signal, and )(ωK  corresponds

to the auxiliary frequency-domain kernel

∑ ++−=
k

kK 2 )2(       )(  2    1    )( πωΦωΦω      (C.2)

with )(ωΦ  being the Fourier transform of the approximation scaling kernel ).(xϕ  The

latter will be assumed to correspond to a symmetric function.

According to eq.(5.15) in Chapter 5, the mean error variance is defined as the integral of

the mean (spatio-statistical) error power spectrum over the whole real line, i.e.
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∫= ωω
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2
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where the mean error power spectrum is given by the general formula (see section 5.1.1)
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In order to simplify eq.(C.4), we should express the basic MR approximation filter in the

following polar complex form:

)(   )(     )( ωΦωΦωΦ ∠= ie                    (C.5)

where )(ωΦ∠  denotes the phase of the Fourier transform ).(ωΦ  According to Euler’s

formula, we have that

( )
( ) )(  cos   )(   2                             

         )(     )(    )( )()(

ωΦωΦ

ωΦωΦωΦ ωΦωΦ

∠=

+=+ ∠−∠∗ ii ee
                      (C.6)

In this way, the mean error power spectrum in eq.(C.4) takes the form

( )[ ] 2 )(  )(       )(  cos   )(  2    1  )(    ) ,( ωΦωωΦωΦωω hChhhChP he +∠−=                (C.7)
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and under the assumption that the approximation filter )(ωΦ  corresponds to a symmetric

space-domain kernel ),(xϕ  we finally have

[ ] 2 )(  )(       )(  2    1  )(    ) ,( ωΦωωΦωω hChhChP he +−=                             (C.8)

Hence, the integral formula for the mean error variance in eq.(C.3) takes the analytical

form
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The second integral at the right-hand side of the last equation can be further modified,

taking into account eq.(4.16) from Chapter 4, as follows:
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If we substitute eq.(C.10) into eq.(C.9), we can finally obtain the initially claimed integral

formula for the mean error variance, i.e.
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where the auxiliary frequency-domain kernel )(ωK  is given by eq.(C.2).




