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Abstract 

As a commonly used system for a land vehicle positioning system, a GPS/INS integrated 

system harnesses either a tactical grade or low cost IMU. The high cost of a tactical grade 

IMU constitutes its main limitation to commercial deployment. The performance of a low 

cost IMU degrades quickly over a short time interval of GPS outages. A larger error drift 

of a low cost IMU is not well suited to a land vehicle positioning system that has a strict 

requirement on positioning accuracy such as an intelligent or autonomous vehicle control 

system. 

With a consideration of low cost and high accuracy, several on-board vehicle sensors 

built-in an actual vehicle stability control system are integrated with GPS and low cost 

IMU. The on-board vehicle sensors are dedicated to bridging the gap and limit low cost 

IMU rapid drift errors during GPS outages. 

The on-board vehicle sensors used and analyzed include four wheel speed sensors, G 

sensors (accelerometers), yaw rate sensor (angular rate gyro) and steering angle sensor. 

Three basic and two combined integration strategies and algorithms are developed. The 

integration of the steering angle sensor is particularly novel. A mechanism is developed to 

detect and alleviate the violation of the lateral non-holonomic constraint widely used in 

the wheel speed sensor. The integrated system is implemented in both post-mission and 

real-time. 
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The benefits gained from the on-board vehicle sensors are investigated in terms of the 

positioning accuracy and the time-to-fix GPS ambiguities. The integration strategy with 

all on-board vehicle sensors performs best among all the proposed integration strategies. 

With respect to the GPS and low cost IMU integrated system, its percentage 

improvements are 92.6% for a post-mission test in an open-sky area by simulating GPS 

outages, 65.1% for a suburban area real-time test and 79.2 % for a pseudo-urban area 

real-time test. For ambiguity resolution, the percentage improvement over GPS-only in 

terms of the average time-to-fix ambiguity by integrating all on-board vehicle sensors 

with a low cost IMU is about 15% for 40 s GPS outages. 
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Chapter 1 Introduction 

1.1 Background 

Vehicular positioning and navigation is one of the most important application areas for 

the Global Positioning System (GPS).  In modern society, significant attention has been 

paid to intelligent vehicle systems with the increase in demand for safe and flexible 

manuvering of a vehicle. Typical advanced vehicle systems include anti-lock brake 

systems (ABS), traction control (TC), and vehicle stability control systems (VSC), which 

have already found their way into the production of passenger vehicles (Tseng et al. 

1999). In these systems, positioning accuracy and system redundancy have a crucial 

impact on their performance (Bevly 1999). Positioning accuracy and system redundancy 

also impact the performance and reliability of autonomous vehicle control systems and 

vehicle safety and stability control systems. The more accurate the positioning system, 

the more reliable the vehicle autonomy or the safety control. The importance of sensor 

redundancy lies in the fact that any sensor failure due to mechanical, electrical or external 

disturbances could lead to a disastrous result if the failed sensor was the only sensor 

on-board (Redmill et al. 2001). 

For autonomous vehicle control, Carlson (2003) focused on parameter estimation of 

vehicle models used for navigation and stability control, including the estimation of 
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longitudinal stiffness and wheel effective radius. Bevly (2001) investigated the automatic 

steering control of farm vehicles. By devising a new model for the farm vehicle’s yaw 

dynamics, a Linear Quadratic Regulation (LQR) controller was developed to implement 

accurate lateral control of farm vehicles.  

In autonomous vehicle control and vehicle stability control systems, GPS and other 

dead-reckoning sensors can provide navigation and positioning information (Bevly 1999). 

With respect to GPS, centimetre-level accuracies can be achieved by using carrier phase 

measurements in a double difference approach whereby the integer ambiguities are 

resolved correctly. However, difficulties arise during significant shading from obstacles 

such as buildings, overpasses and trees. This has led to the development of integrated 

systems in which the GPS is complemented by an inertial navigation system (INS). GPS 

provides long-term, accurate, and absolute positioning information. It is also immune to 

gravity. However, it is subject to blockage of line-of-sight signals as well as signal 

interference or jamming. In addition, its measurement update rate is relatively low (< 20 

Hz). By contrast, an INS is autonomous and non-jammable. Because of its high 

bandwidth, an INS provides relative navigation information at a high data rate. Most 

IMU data rates exceed 50 Hz with some reaching into several hundreds of Hz (Petovello 

2003). However, the weak points of an INS lie in the fact that its navigation quality 

degrades with time, and its accuracy depends on the quality of INS sensors. 



 

3

 

GPS/INS integration has been recognized as an effective means for kinematic positioning 

(Cannon 1990). In a GPS-aided INS integrated system, the INS derives position, velocity 

and attitude that are used as the primary navigator outputs. The GPS provides update 

information for the INS, and a Kalman filter can serve as an adequate formulation for 

system integration (Farrell et al. 2000 and Omerbashich 2002). The INS and GPS are 

usually coupled in one of three different ways: loose coupling, tight coupling and deep 

coupling (El-Sheimy 2004, Farrell & Barth 1998 and Schwarz & Wei 1999) to provide 

continuous navigation solutions. The integrated system can maintain centimetre-level 

accuracies with fully available GPS or during short GPS outages provided the inertial 

sensors are sufficiently accurate (Scherzinger 2000).  

Significant research has been undertaken on GPS and INS integration for precise 

kinematic positioning. Petovello (2003) integrated carrier phase DGPS and a tactical 

grade IMU to provide decimetre-level accuracies during GPS outages. Both post 

processing and real-time tests were conducted. A comparison between the tight and loose 

coupling strategies shows that a tight coupling strategy outperformed a loose coupling 

strategy due to the reduction of noise in the integrated system. To compensate for the 

GPS time latency, a real-time system was implemented by storing INS data in a buffer 

and restoring it when the GPS data was available. Scherzinger (2000) investigated a 

precise robust positioning system by integrating GPS and a tactical grade IMU. Inertial 

navigation errors, gyro and accelerometer biases, as well as float double difference 



 

4

 

ambiguities, were estimated. The positioning accuracy during partial and complete GPS 

outages was described. By integrating GPS and low cost inertial sensors, Sukkarieh (2000) 

developed a low cost, high integrity, aided inertial navigation system for autonomous 

land vehicle applications. 

The accuracy of an integrated system can be further improved by applying some effective 

measures (Masson et al. 1996). These measures include non-holonomic constraints, Zero 

Velocity Updates (ZUPTs) as well as limiting attitude error growth (Shin 2001). When 

the vehicle does not jump off or slide on the ground, non-holonomic constraints assume 

the velocities in lateral and longitudinal directions to be zero (Sukkarieh 2000).  

Due to the importance of fast and reliable GPS ambiguity resolution on high positioning 

accuracy, the aforementioned research done by Petovello (2003) and Scherzinger (2000) 

also discussed the benefits of inertial aiding on ambiguity resolution. The time to fix 

ambiguities is measured by the volume of the search space that is closely related to the 

covariance matrix of the estimated ambiguities. Skaloud (1998) derived a closed form of 

ambiguity covariance with an external update from the GPS L1 carrier phase. It indicated 

that an enhanced precision of the float ambiguities and a reduction in the search volume 

depends on the a priori INS position error. A relatively smaller the a priori INS position 

error with respect to the C/A code measurement accuracy will introduce a reduction in the 

time-to-fix ambiguity resolution after GPS outages. 
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To improve accuracy and redundancy, numerous sensors are being employed in advanced 

and intelligent vehicle systems. Significant work has also been done to integrate GPS 

with other lower cost sensors to aid positioning and/or attitude determination. These 

sensors have ranged from the use of a compass, tilt meter and fiber-optic gyro for vehicle 

pitch and azimuth estimation (Harvey 1998), to the integration of GPS with an on-board 

odometer in ABS as well as gyro for positioning in urban areas (Stephen 2000). Wheel 

speed sensors are fundamental components of ABS which is standard equipment on most 

vehicles (Hay 2005). The integration of a wheel speed sensor with GPS/INS has been 

extensively studied. Kubo et al. (1999) implemented a GPS/INS/Wheel speed sensor 

integrated system in the wander angle frame for land-vehicle positioning, and proposed 

an algorithm to calibrate two tilt angles (azimuth and pitch) between the wheel speed 

sensor and the IMU body frame. Numajima et al. (2002) investigated the integration of 

INS/DGPS/Vehicle Motion Sensor (VMS) for land-vehicle in-motion alignment that 

could compensate the poor initialization or large cumulative errors by using a 

decentralized Kalman filter. Bonnifait (2003) developed a very inexpensive vehicle 

localization system by using GPS and ABS sensors (four wheel speed sensors) available 

on most modern cars. It showed that wheel speed sensors can also provide positioning 

information at several metres accuracy by integrating with GPS. Since the wheel speed 

sensor only measures velocity in a forward direction, most of the previous research 
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related to the integration of wheel speed sensor information with GPS/INS applied two 

non-holonomic constraints on the lateral and vertical directions (Shin 2005). 

1.2 Limitations of Previous Research 

As a commonly used system for a land vehicle positioning system, a GPS/INS integrated 

system harnesses either a tactical grade or low cost IMU as shown in previous research. 

The high cost of a tactical grade IMU constitutes its main limitation to commercial 

deployment. By contrast, the performance of a low cost IMU degrades quickly over a 

short time interval of GPS outages. A larger error drift is not well suited to such a land 

vehicle positioning system that has a strict requirement on positioning accuracy. 

Augmenting other low cost sensors with a GPS/INS is an effective way to bridge GPS 

gaps (a time period of partial or complete GPS signal blockage) and reduce the 

stand-alone INS drift error. On-board vehicle sensors built-in a modern automotive 

vehicle provide the most direct and cost-efficient external aid sources for a GPS/INS 

system. To date, research on GPS/INS/On-board vehicle sensor integration mainly 

focuses on wheel speed sensors and low cost gyros (Yaw rate sensors). To make full use 

of on-board vehicle sensors, the previous research can be extended to investigate the 

possibilities and benefits of integrating various on-board vehicle sensors through various 

sensor combinations. By evaluating various sensors and their integration strategies, the 

positioning accuracy can be improved. 
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It was shown through previous research that an automatic vehicle steering system had 

been studied extensively in terms of dynamic modeling and parameter estimation 

(Carlson 2003 and Bevly 2001). However, how to make use of the steering angle sensor 

to enhance positioning accuracy during GPS outages has not been thoroughly 

investigated to date. 

Previous research shows that a lateral constraint applied to wheel speed sensor integration 

is effective only when the vehicle operates on a flat road and no side slip occurs (Brandit 

& Gardner 1998 and Dissanayake et al. 2001). It is no longer valid when the vehicle 

jumps off the road or is driven on an icy or bumpy road where a larger side slip angle can 

occur. In a land vehicle positioning system, the violation of non-holonomic constraints is 

always accompanied by larger side slip angles (ibid). Side slip is a very complicated 

phenomenon. A larger side slip angle that exceeds a specific threshold (5 degrees used in 

this dissertation) is usually coupled with road and tire conditions, high vehicle dynamics 

including fast driving, sharp turns as well as high pitch and roll angular rates. Typical side 

slip angles range approximately from 0 to 30 degrees (Ray 1995). Anderson & Bevly 

(2004) investigated a model-based Kalman filter with GPS velocity measurements to 

estimate side slip.  However, its estimation accuracy relies heavily on the correctness of 

the model which is difficult to develop for various road conditions. 

Both real-time and post-mission processing is necessary for the development of an 

integrated system. The purpose of post-mission processing is to fine tune the parameters 
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of the Kalman filter, to assess the modeling of the sensors, and to check the validity of the 

algorithm. It saves time and cost during system development and reduces the need for 

conducting field tests each time a scenario needs to be evaluated. As an ultimate goal in 

practical applications, a real-time system provides an instantaneous positioning solution. 

The validity of the Kalman filter design and the impact of various sensor combinations 

can be evaluated by real-time test scenarios. Petovello (2003) successfully implemented a 

GPS/INS real-time integrated system. This work can be further extended into a 

GPS/INS/On-board vehicle sensor real-time system with enhancements. 

For a tactical grade IMU, the benefit of inertial aiding on ambiguity resolution has been 

investigated extensively. A comparison between different grades of IMUs (tactical grade 

and automotive grade low cost IMU) in terms of a time-to-fix integer ambiguities will 

enrich these research findings even though the benefits gained from a low cost IMU may 

be somewhat limited than expected. When on-board vehicle sensors are integrated, the 

improvements on ambiguity resolution gained from on-board vehicle sensors can be 

analyzed in addition to the positioning accuracy. 

1.3 Objectives and Contributions of This Dissertation 

Based on the above discussion, with particular emphasis on Petovello (2003), this 

dissertation aims to develop an enhanced land vehicle integrated system. The primary 

objective of this research is to develop a precise land vehicle positioning system with a 
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consideration of low cost, high accuracy and fast ambiguity resolution. Several on-board 

vehicle sensors built-in the vehicle stability control system of an actual vehicle are 

designed to integrate with GPS and low cost IMU. The on-board vehicle sensors, 

including wheel speed sensors, G sensors and yaw rate sensor, and steering angle sensor, 

are dedicated to bridging the gap during GPS outages and limit low cost IMU rapid drift 

errors to some degree depending on the characteristics of the vehicle sensors. 

To achieve this objective, this dissertation focuses on the following methodologies or 

research topics: 

• Analysis of on-board vehicle sensors and development of integration strategies as 

well as algorithms. The characteristics of on-board vehicle sensors are analyzed to obtain 

key statistical specifications and error models. The integration strategies are investigated 

by making full use of on-board vehicle sensors in either an individual or combined 

manner. The basic integration modules are developed by integrating individual on-board 

vehicle sensors. Among all the basic integration modules, the integration of a steering 

angle sensor with GPS and INS constitutes a novel integration strategy. Another valuable 

investigation proposal is to develop combined integration strategies either by a sequential 

combination of the basic integration modules or by creating a complementary 

relationship between different types of sensors. With an appropriate modelling of 

on-board vehicle sensors, integration algorithms will be developed by deriving dynamics 

and measurement models. 
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• Detection and alleviation of the lateral constraint violation. With regard to the wheel 

speed sensor integration strategy and algorithm, the widely used lateral constraint is close 

to the real situation without the side slip or the side slip angle is small. The system 

positioning accuracy will be definitely degraded if the lateral constraint is violated by a 

larger side slip angle.  To compensate the violation of the lateral constraint and enhance 

the positioning accuracy, how to detect and alleviate the violation of the lateral constraint 

will be investigated in this thesis. 

• Implementation of the integration strategies and algorithms. A hardware platform is 

set up by including GPS receivers, a low cost IMU and on-board vehicle sensors 

time-tagging system, a pair of radio link transceivers as well as computers. The 

integration strategies and algorithms are implemented in both post-mission and real-time. 

• Benefits gained from the integration of on-board vehicle sensors. It is important to 

investigate what benefits can be gained from integrating on-board vehicle sensors in 

terms of positioning accuracy and ambiguity resolution. With the reference solution 

provided by an integrated system with the superior quality IMU, positioning accuracy 

with respect to the proposed integration strategies will be analyzed by various tests for 

both tactical grade and low cost IMUs. The time-to-fix GPS ambiguity resolution after 

GPS outages will be compared between GPS-only, GPS/INS as well as 

GPS/INS/On-board vehicle sensors integration strategies for both tactical grade and low 

cost IMU integrated systems, respectively. 
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The major contributions of this dissertation are summarized below. 

1. By considering a variety of on-board vehicle sensors, three basic and two combined 

integration strategies and algorithms are developed. The errors of on-board vehicle 

sensors are modelled in an appropriate manner. The dynamics and measurement 

models of the Kalman filter are developed for each integration strategy. Among all the 

integration strategies, the integration of the steering angle sensor is particularly novel 

for its application in a positioning and navigation system. 

2. In one of the combined integration strategies, an interactive relationship is created 

between the wheel speed sensors, G sensors and yaw rate sensor. Using the 

relationship between different sensors, a mechanism is developed to detect and 

alleviate violations of the lateral non-holonomic constraint used in most of the 

previous research. 

3. The GPS/INS/On-board vehicle sensor integration strategies and algorithms are 

successfully implemented in both real-time and post-processing after Petovello (2003). 

For various integration strategies, the benefits gained from on-board vehicle sensors in 

terms of positioning accuracy and ambiguity resolution are investigated in detail. 

1.4 Dissertation Outline 

This dissertation consists of eight chapters describing how to achieve the objectives 

outlined above. The chapters are organized as follows.  
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Chapter 2 introduces background information that is relevant to this research. Three 

different frames, namely the IMU body frame (b frame), the vehicle frame (v frame) and 

ECEF (Earth-Centred Earth-Fixed) frame (e frame), are defined. The fundamentals of 

GPS and INS are discussed and include: GPS observables, GPS errors, GPS ambiguity 

resolution, INS error sources and equations of motion as well the INS error dynamics 

model. 

In Chapter 3, the characteristics of the selected on-board vehicle sensors are analyzed. 

With a reference velocity provided by the NovAtel OEM2 precise velocity GPS receiver, 

the measurement accuracy of the wheel speed sensors is assessed. G sensors and yaw rate 

sensors are evaluated using mathematical variance and wavelet decomposition for a static 

data set over seven hours. The temporal variability characteristics are analyzed by 

deriving a first-order Gauss-Markov process. The steering angle sensor is also introduced. 

To illustrate in detail the development of integration strategies of GPS, INS and on-board 

vehicle sensors, Chapter 4 first gives an overview of the Kalman filter algorithm. On the 

basis of a comparison between a linearized and extended Kalman filter as well as 

between a centralized (tight coupling strategy) and decentralized (loose coupling strategy) 

Kalman filter, various integration strategies are proposed. 

In Chapter 5, the lever arm effect and the way of estimating the wheel speed sensor lever 

arm vector are discussed due to the importance of the lever arm effect on the integrated 



 

13

 

system positioning accuracy. The integration algorithms are described by showing the 

dynamics and measurement models for each integration strategy. 

Chapter 6 describes the equipment used as well as the configuration of the hardware 

platform. By dealing with GPS time latency in real-time, a way to implement a real-time 

GPS/INS/On-board vehicle sensor integrated system is analyzed. 

Chapter 7 first describes the tests conducted in different areas. By showing the data 

analysis and processing methods, the data collected is analyzed with respect to various 

integration strategies. The benefits gained from integrating all on-board vehicle sensors in 

terms of positioning accuracy as well as ambiguity resolution are investigated. 

Chapter 8 concludes the entire work of this dissertation. Recommendations for future 

work are also presented. 
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Chapter 2 Fundamentals of GPS and INS  

This chapter reviews background information that is necessary for the development and 

analysis in later chapters. These include coordinate frame definitions, GPS and INS. 

2.1 Coordinate Frame Definitions 

Three coordinate frames are important to this research. These include the ECEF frame (e 

frame), the body frame (b frame) and the vehicle frame (v frame), as described below. 

The three frames are shown in Figure 2.1. 

 
Figure 2.1 Coordinate frame definition 
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The origin of the ECEF frame is the centre of the Earth’s mass. The X-axis is located in 

the equatorial plane and points towards the mean Greenwich Meridian. The Y–axis is also 

located in the equatorial plane and is 90 degrees east of the mean Greenwich Meridian. 

The Z-axis parallels the Earth’s mean spin axis (Wang 2003). 

The IMU body frame (b frame) represents the orientation of the IMU axes. The IMU 

sensitive axes are assumed to be approximately coincident with the moving platform 

upon which the IMU sensors are mounted. The origin of the body frame is at the centre of 

the IMU. The X-axis points towards the right of the moving platform upon which the 

IMU sensors are mounted, the Y-axis points toward the front of the moving platform, and 

the Z-axis is orthogonal to the X and Y axes to complete a right-handed frame. 

The vehicle frame (v frame) refers to vehicle body frame, and represents the orientation 

of the vehicle. The origin is the vehicle centre of gravity. The X-axis points towards the 

right side of the vehicle and the Y-axis points towards the forward direction of the 

vehicle’s motion. The Z-axis is orthogonal to the X and Y axes to complete a 

right-handed frame. 

2.2 Global Positioning System 

GPS is an all-weather satellite navigation system, and has been widely used in air, land 

and marine environments as the navigation and positioning tools. Depending on the 

measurements and data processing method, the accuracy of GPS positioning ranges from 
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several metres to the centimetre-level (Lachapelle 2003). To deal with GPS-related issues, 

GPS observables, limitations, error sources and ambiguity resolution will be discussed 

below. 

2.2.1 GPS Observables and Limitations of GPS 

GPS satellites broadcast a signal on a carrier wave with two frequencies (1575.42 MHz 

for L1, 1227.60 MHz for L2) modulated by the C/A code and P code. By acquiring and 

tracking satellite signals, most GPS receivers generate three GPS measurements: 

pseudorange, carrier phase and Doppler. Pseudorange measurements are generated by 

measuring the difference between the transmission time and reception time for tracking a 

GPS signal code. GPS carrier phase measurements are generated by beating the 

frequency between the received GPS carrier signal and the carrier signal generated within 

the receiver. The carrier phase measurements are ambiguous by an unknown integer 

number of cycles. The Doppler measures the instantaneous phase measurement rate, 

which is the derivative of the carrier phase measurement (Kaplan & Hegarty 2006). 

With dual frequencies, L1 and L2, carrier phase measurements, 1Lφ and 2Lφ , can be 

linearly combined to generate a new measurement including widelane, narrowlane and 

ionosphere-free. The widelane measurement, WLφ , of interest to this study is given by 

 1 2WL L Lφ φ φ= −  (2.1) 
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The widelane combination exhibits a relatively longer wavelength at approximately 86 

cm and reduces the ionospheric error (in cycles) four-fold with respect to L1 only 

observations. Thus, the widelane is more reliable and faster to resolve ambiguities under 

adverse conditions (Liu 2003). Despite the advantages of ambiguity resolution, the 

widelane combination amplifies noise compared to L1 and L2 raw observables in metres. 

GPS is susceptible to line-of-sight blockage when operating in urban areas or under dense 

foliage. Signal blockage of several satellites may result in a sudden deterioration in 

positioning accuracy. Other causes of signal loss include intense ionospheric activity, 

satellite failure and inadvertent jamming. When using carrier phase measurements, cycle 

slips can occur due to loss of phase lock, which results in discontinuous measurements 

that limit positioning accuracy. To detect and correct cycle slips, the phase velocity trend 

method, the double frequency detection method or a Kalman filter innovation-based 

detection method can be used (Bisnath & Kim 2001). If cycle slips are detected, attempts 

can be made to correct the ambiguity by the number of slipped cycles. Additionally, when 

using Real-Time Kinematic (RTK) GPS, an outage can be caused by loss of radio 

communication between the base and the rover. An outage at the GPS base station can 

cause rapid deterioration of the GPS rover positioning accuracies (Woolven & 

Scherzinger 1997). All of these are limitations of GPS that need to be considered. 
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2.2.2 GPS Error Sources 

GPS measurements are corrupted by errors. The main error sources include satellite and 

receiver clock error, orbital error, ionospheric and tropospheric errors as well as multipath 

and receiver noise. By taking into account these error sources, GPS measurement 

equations are expressed by 

 ( ) ion trop N MP d c dt dT d dρ ρ ε ε= + + − + + + +  (2.2) 

 1 ( ) ion Trop N Md c dt dT d d Nφ ρ ρ ε ε
λ
⎡ ⎤= + + − − + + + +⎣ ⎦  (2.3) 

 1 ( ) ion trop M Nd c dt dT d dφ ρ ρ ε ε
λ
⎡ ⎤= + + − − + + +⎣ ⎦  (2.4) 

where P  is the pseudorange measurement in metres, ρ is the geometric range between 

the satellite and receiver, dp  is the orbital error, dt  and dT  are satellite and receiver 

clock errors respectively, iond  is the ionospheric error, tropd is the tropospheric error, 

Mε is the multipath error, Nε  is the measurement noise, φ  is the carrier phase 

measurement in cycles, and N  is the ambiguity integer. 

To achieve centimetre-level accuracies, double differenced carrier phase measurements 

must be used with ambiguities being resolved to their correct integers (Kaplan & Hegarty 

2006 and Hofmann-Wellenhof et al. 1997). Double differenced GPS measurements are 

computed between the reference and the rover as well as between two satellites to 

eliminate the receiver and satellite clock errors. The orbital, ionospheric and tropospheric 

errors are significantly reduced, and their reductions are correlated with spatial separation 

between the base and rover stations. The noise level in the double differenced 
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measurements, however, is amplified due to the linear combinations in the double 

differenced operation. 

On the basis of Equations (2.2) to (2.4), the double differenced measurements are 

expressed by 

 ion trop M NP d d dρ ρ ε ε∇∆ = ∇∆ +∇∆ +∇∆ +∇∆ +∇∆ +∇∆  (2.5) 

 ( )1
ion trop M Nd d d Nφ ρ ρ ε ε

λ
∇∆ = ∇∆ +∇∆ −∇∆ +∇∆ +∇∆ +∇∆ +∇∆  (2.6) 

 ( )1
ion trop M Nd d dφ ρ ρ ε ε

λ
∇∆ = ∇∆ +∇∆ −∇∆ +∇∆ +∇∆ +∇∆  (2.7) 

where ∇∆  is the double difference operator. 

The satellite orbital error is characterized by a discrepancy between the computed 

satellite positions from the broadcast ephemeris in the navigation message and their 

actual values. The residual double differenced satellite orbit error is a function of the 

baseline length. It is around 0.1-0.3 ppm. 

Ionospheric error is caused by electrons in the atmosphere layer from 50 to 1500 km 

above the Earth’s surface that affect the propagation of radio waves. It is frequency 

dependent and spatially correlated, and varies with geographic position and solar activity 

(Hofmann-Wellenhof et al. 1997). The phase measurement is advanced and the code 

measurement is delayed by the ionospheric error with equal magnitude and opposite sign. 

The double differenced ionospheric error is approximately 1-3 ppm. It may reach 20 ppm 

or more under extreme ionospheric conditions (Lachapelle 2003 and Cannon 1991). 
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The troposphere delay is caused by the neutral troposphere atmosphere that slightly bends 

the traveling path of the GPS signal. The error consists of dry and wet parts with the dry 

delay being the larger of the two effects. It can be modeled as a function of atmospheric 

pressure, temperature, relative humidity and satellite elevation angle. Given explicit 

modeling or correction, the residual tropospheric error is generally less than 1 ppm 

(Misra & Enge 2001). Under the assumption of short to medium baselines, the 

tropospheric error is generally negligible after applying troposphere modeling. 

Multipath is the error resulting from the reflection and diffraction of a direct GPS signal 

by such structures as buildings or the edges of sharp objects. Since it is highly dependent 

on the surroundings of the GPS receiver antenna, it is difficult to predict and to 

compensate for, and cannot be mitigated by double differencing. Typically, the 

undifferenced C/A-code multipath error tends to be at several metres under adverse 

conditions. With a benign environment, the C/A code multipath error is at the decimetre 

level (1σ  level of 20 cm). By contrast, the L1 carrier phase multipath error is at the 

centimetre level (1σ  level of 2 cm) (Kaplan & Hegarty 2006). 

Measurement noise is generated by the effects of thermal noise and dynamic stress in a 

receiver tracking loop. Measurement noise is closely related to satellite elevation angle: 

the lower the elevation angle the higher the measurement noise. Measurement noise is 

actually amplified by double differencing. The standard deviation of C/A-code 

measurement noise can be around 5-10 cm by using narrow correlator GPS receivers. The 
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standard deviation of L1 carrier phase measurement noise is 1.2 mm (Kaplan & Hegarty 

2006). The low multipath and noise error on carrier phase measurements illustrates the 

advantages of these measurements for high positioning accuracy. On the basis of the 

above analysis, Table 2.1 summarizes the characteristics and magnitudes of GPS errors. 

Table 2.1 GPS Errors and Magnitudes (after Petovello 2003) 

GPS Errors  Characteristics  Magnitude  
Orbital Spatially correlated Typical: 0.1-0.3 ppm 

Ionosphere 

Spatially correlated 
Frequency dependent 

Varies with geographic location and solar 
activity 

Typical: 1-3 ppm  
Extreme: > 10 ppm 

Troposphere  Spatially correlated 
Frequency independent 

Typical: < 1 ppm 
Extreme: 1-3 ppm 

Multipath Dependent on surroundings, antennas and 
elevation angle  

Code: 20 cm 
Phase: 2 cm 

Measurement 
Noise 

Amplified by double differencing 
Elevation angle dependent 

Code: 5-10 cm 
Phase: 1-2 mm 

2.2.3 GPS Ambiguity Resolution 

To achieve centimetre-level accuracies in a reasonable amount of time, double 

differenced carrier phase measurements must be used with ambiguities being resolved to 

their correct integers (Misra & Enge 2001 and Hofmann-Wellenhof et al. 1997). 

Numerous methods are available for ambiguity resolution and validation such as the 

least-squares ambiguity search technique (Hatch 1994), the least-squares ambiguity 

decorrelation adjustment method (LAMBDA) (Teunissen & Kleusberg 1996 and Hein & 

Werner 1995), the fast ambiguity search filter (FASF) (Chen 1994), and sequential 
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integer rounding (Bootstrapping Method) (Han & Rizos 1997). Even though these 

methods are different in some aspects, most of them follow similar procedures that 

include estimation of real-valued ambiguity values and their corresponding covariance 

matrices by least squares or Kalman filtering, the definition of a search volume, the 

determination of correct integers and the validation of the selected set. The LAMBDA 

method is used in this research as it has been shown to be both computationally efficient 

and reliable (Teunissen & Kleusberg 1996). 

Ambiguity resolution is significantly affected by many factors such as satellite 

availability, measurement reliability and GPS error sources. Deterioration in satellite 

availability increases the difficulty for ambiguity resolution by extending the time to 

search and fix the integers. Therefore, it is difficult to accomplish both fast and reliable 

ambiguity resolution in this case. The blunders caused by unreliable measurements can 

greatly affect parameter estimations including real-valued ambiguities. Consequently, 

measurement reliability has a crucial effect on the accuracy of ambiguity resolution. 

Furthermore, large error sources introduce uncertainty for ambiguity resolution and cause 

real-valued estimates to differ from an integer number of cycles. Thus, the larger the error, 

the more the ambiguity will vary from its correct integer value. 
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2.3 Inertial Navigation Systems 

The IMU consists of a triad of accelerometers as well as a triad of gyros. It measures 

three dimensional specific force and angular rates with respect to the IMU axes. The IMU 

measurements are sensitive to temperature and are susceptible to errors and noise. By 

using a mechanization equation, the navigation solution including position, velocity and 

attitude can be derived from the IMU measurements. To improve accuracy, the external 

aid on an INS can update the mechanization output and compensate for IMU 

measurement errors (Rogers 2000 and Grewal et al. 2001). 

2.3.1 IMU Error Sources and Classification of IMU 

Typical IMU errors are classified into bias, scale factor, and non-orthogonality of sensor 

triads, temperature related error as well as noise (Shin 2005 and Petovello 2003). They 

are mathematically expressed by  

 b b b
f f f T ff b S f c T wδ γ δ= + ⋅ + Γ ⋅ + ⋅ +  (2.8) 

 b b b
ib f ib T wd S c T wω ωδω ω γ δ= + ⋅ + Γ ⋅ + ⋅ +  (2.9) 

where bfδ represents the accelerometer errors, bb is the accelerometer biases, fS  is 

the accelerometer scale factor error, bf  is the accelerometer measurement, Tc Tδ⋅ is 

the temperature error effect, b
ibδω is the gyro error , fw  is accelerometer noise, ww  is 

gyro noise, bd is the gyro bias, Sω  is the gyro scale factor error, ib
bω  is the gyro 
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measurement, fγ and ωγ are the non-orthogonalities errors of the accelerometers and 

gyros, and are defined by  

 
Tf f f f f f

f xy xz yx yz zx zyγ γ γ γ γ γ γ⎡ ⎤= ⎣ ⎦  (2.10) 
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The magnitude of the errors determines the accuracy of an IMU. The IMU is mainly 

classified in terms of accuracy into different grades, namely navigational, tactical as well 

as automotive grades. There is a trade-off between quality and cost. Table 2.2 gives a 

brief comparison of different grades of IMUs. 

Table 2.2 Comparisons of different grades of IMUs (El-Sheimy 2004, Shin 2001 and 

Godha 2006) 

IMU grades Navigational  Tactical Automotive 

Gyro bias (deg/h) 0.005-0.01  1.0-10.0 >100 

Accelerometer bias (mg) 0.05-0.1 0.1-1.0 >1.0 

Cost >$90000 >$20000 <$2000 
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It is desired to achieve a high positioning accuracy by making use of a low cost IMU. 

Three grades of IMU are used in this dissertation. The navigational grade IMU integrated 

with DD GPS provides the reference solution for the integrated system. Both the tactical 

grade and the low cost IMUs are integrated with a GPS and on-board vehicle sensors by 

comparing their positioning accuracy to the reference solution. 

2.3.2 Equation of Motion and Mechanization Equation 

With IMU measurements, the equation of vehicle motion in e frame is expressed by 

(Schwarz & Wei 1999) 

 2
( )

e e

e e b e e e
b ie

e e b b
b b ib ei

r v
v R f v g
R R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − Ω +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Ω +Ω⎣ ⎦ ⎣ ⎦

 (2.14) 

where er is the position vector, ev is the velocity vector, e
bR  is the direction cosine 

matrix between the b and e frames, eg is the gravity vector in the e frame, bf is the 

accelerometer measurements, b
ibΩ  is the skew-symmetric matrix of the gyro 

measurement b
ibω , e

ieΩ  is the skew-symmetric matrix of the Earth’s rotation rate e
ieω , 

and b
eiΩ is the skew-symmetric matrix of b

eiω . 

The position, velocity and attitude information shown in the equation of motion are 

solved by the mechanization equation. The mechanization equation algorithm 

implemented in this dissertation is detailed in Savage (2000). Due to the dead reckoning 

nature of an IMU, the initial values of position, velocity and attitude are required as a 



 

26

 

start-up for the mechanization equation. Position and velocity are usually initialized by an 

external data source or an external aid. The alignment procedure, however, initializes the 

pitch and roll angles by levelling and the heading by gyro-compassing. When a low cost 

IMU runs in a static or constant velocity mode, the heading observability becomes poorer. 

Furthermore, larger gyro biases and a lower signal-to-noise ratio degrade its performance 

over time. In this scenario, the initial heading cannot be determined by gyro-compassing. 

Other sensors, such as a magnetic compass or a multi-antenna GPS attitude system, have 

to be considered as alternatives (Shin 2005). 

The outputs of high grade IMUs are incremental angles and velocities due to precise 

digitization. Most low cost IMUs output specific forces and angular rates. The 

mechanization equation proposed by Savage (2000) is operated on incremental velocities 

and incremental angles. To be compatible with Savage’s mechanization equations, low 

cost IMU outputs are transformed into incremental values by 

 

t tb b
t
t tb b

ibt

V f dt

dtθ ω

+∆

+∆

⎧∆ =⎪
⎨
⎪∆ =⎩

∫

∫
 (2.15) 

where bV∆  is the incremental velocity, bθ∆  is the incremental angle, and t∆  is the 

IMU data sampling rate. 

2.3.3 INS Error Dynamics Equation 

When implementing the mechanization equation for a stand-alone INS system, the 

abovementioned typical IMU errors grow with time. The noise exhibits random walk 
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behaviour. To achieve high accuracy, it is necessary that the IMU errors are estimated and 

compensated. In the development of a real-time GPS, INS and on-board vehicle sensor 

integrated system, the augmentation and estimation of on-board vehicle sensor error 

states will increase the system complexity and the computational tasks. The trade-off 

between positioning accuracy and computational load as well as system observability is 

the main consideration in the system development. 

As most low cost IMUs are equipped with an internal temperature compensator, the error 

effects with respect to temperature can thus be ignored. The impacts of accelerometer 

scale factor error and non-orthogonality of the sensor’s installation are dependent on the 

vehicle’s dynamics to a large extent. The high vehicle dynamics result in large inertial 

sensors errors (Salychev et al. 2000).  A land vehicle usually operates at a much lower 

dynamic than marine and airborne systems. Consequently, scale factor and 

non-orthogonality errors can be neglected in a land vehicle positioning system without 

significant influence on positioning accuracy. On the basis of the above considerations, 

IMU biases and noise are taken into account in the system design. By modeling the biases 

as a first-order Gauss-Markov process to represent temporal characteristics, all IMU 

errors are simplified and lumped into biases and noises. 

By applying perturbation analysis to the equation of motion and augmenting gyro and 

accelerometer biases into error states, the INS error dynamics model is given by 

(Schwarz & Wei 1999) 
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where erδ  is the position error vector, evδ  is the velocity error vector, eε  is the 

misalignment angle error vector, bbδ  is the vector of accelerometer bias errors, bdδ  is 

the vector of gyro bias errors. All of aforementioned error states are 3x1 vectors. In 

addition, ( )idiag α  is the diagonal matrix of the time constant reciprocals for the 

accelerometer bias model , ( )idiag β  is the diagonal matrix of time constant reciprocals 

for the gyro bias models, bw  is the driving noise for accelerometer biases, dw  is the 

driving noise for gyro biases, e
bR  is the direction cosine matrix between the b frame and 

the e frame, eF  is the skew-symmetric matrix of specific force in the e frame, eN  is 

the tensor of gravity gradients, e
ieΩ  is the skew-symmetric matrix of the Earth’s rotation 

with respect to the e frame, xδ  is the error states vector, and INSF  is the dynamics 

matrix for the stand-alone INS system, INSG  is the shaping matrix of the driving noise of 

the stand-alone INS system, and w  is the noise matrix. 

With respect to the low cost IMU used in this research, Table 2.3 summarizes the 

mathematical variance (noise level) and the parameters of the first-order Gauss-Markov 
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model of low cost IMU biases. These parameters were obtained by using the sensor 

analysis method described in Chapter 3. 

Table 2.3 Low cost IMU mathematical variance and Gauss-Markov model parameters 

Parameters of the first-order 
Gauss-Markov model for low cost IMU 

biases IMU Sensors Mathematical variance 

Time Constant Temporal standard 
deviation 

X Accelerometer 0.0017 m2/s4 0.36 hr 0.006 m/s2 
Y Accelerometer 0.0039 m2/s4 1.07 hr 0.007 m/s2 
Z Accelerometer 0.0019 m2/s4 0.53 hr 0.004 m/s2 

X Gyro 2.5920e+4.0 deg2/ h2 0.89 hr 86.40 deg/h 
Y Gyro 8.0352e+4.0 deg2/h2 0.73 hr 205.20 deg/h 
Z Gyro 2.3328e+4.0 deg2/h2 0.70 hr 194.40 deg/h 

2.3.4 External Aided INS 

An INS is an autonomous system that can operate continuously in urban centres, 

underpasses and underwater. It is immune to jamming and interference. The inherent 

disadvantage of an INS is that its error sources grow with time. To limit its drift error or 

improve its accuracy, an INS can be aided by complementary external sensors such as 

GPS and on-board vehicle sensors as discussed in this research. With complementary 

features to INS, GPS provides all-weather, accurate and absolute positioning information. 

However, it is susceptible to blockage of line-of-sight signals as well as signal 

interference or jamming. The augmentation of on-board vehicle sensors with GPS and 

INS can bridge the gap during the masking of GPS signals and consequently improve the 

accuracy of a stand-alone INS system. 
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The mechanism of the external aiding on an INS is described in Figure 2.2. In the 

external sensor aiding INS system, the position, velocity and attitude information are 

derived from the mechanization equation. 

 

Figure 2.2 External aiding on INS 

With an appropriate integration strategy and algorithm, the error states of the INS 

mechanization equation output (position, velocity and attitude) as well as the IMU 

measurement error can be estimated by Kalman filter through external aid. Consequently, 

the INS mechanization equation output can be updated, and the IMU sensor error can be 

compensated.  The integration strategies and algorithms for GPS, INS and on-board 

vehicle sensors will be discussed in Chapters 4 and 5, respectively. 
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Chapter 3 Analysis of On-Board Vehicle Sensors  

The on-board vehicle sensors used in this research come from the vehicle stability control 

system, including four wheel speed sensors, two horizontal G sensors (accelerometers) 

and a yaw rate sensor (i.e., a two dimensional automotive grade inertial unit), as well as 

the steering angle sensor. This chapter gives a description and analysis of these on-board 

vehicle sensors. 

3.1 Description of On-Board Vehicle Sensors 

Four wheel speed sensors are attached to the wheels of the vehicle. G sensors and yaw 

rate sensors are placed on the chassis of a vehicle to constitute a two dimensional 

automotive grade inertial unit. The location of the G sensor and yaw rate sensor (GL/YRS) 

unit is very close to the centre of gravity of the vehicle. The steering angle sensor is 

located in the centre of the front wheel axis to measure the front tire turning angle with 

respect to the neutral position. 

Figure 3.1 illustrates the approximate location and geometric relationship of all the 

on-board vehicle sensors. In a general case, the vehicle is assumed to turn at an angular 

rate (yaw rate) γ  with respect to an instantaneous rotation centre o, b is the track width 

between the two rear wheels, R is the length between the right rear wheel and the point o, 

WSSv  is the velocity at the centre point of the rear wheel axis, PV  is the velocity at the 
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gravity centre point, and θ is the angle between the velocity at the centre of gravity and 

the forward direction in the vehicle frame. The G sensors (GX andGY ) and yaw rate 

sensor measure horizontal specific force and the yaw rate at a specific point near the 

centre of gravity, with a distance of rL  to the rear wheel axle as well as a distance of 

fL  to the front wheel axle. The front wheel speed fv  at the centre point of the front 

wheel axle is decomposed into the horizontal velocities, xv  and yv . The steering angle 

ψ  can be approximately derived from xv and yv . Given a rigid body of the vehicle, it is 

reasonable to assume that y WSSv v= . 

 

Figure 3.1 Relationship between the on-board vehicle sensors 

3.2 Wheel Speed Sensors 

Wheel speed sensors are fundamental components of an ABS which is standard 

equipment on most vehicles (Hay 2005). The wheel speed sensor measures the 

Y-direction velocity in the vehicle frame. The wheel speed sensors used in this research 
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are passive types which work on the principle of variable reluctance. The sensor teeth 

travel through a passive magnetic field at a sufficient speed to generate a low voltage 

analog waveform (ibid). The number of pulses per second is measured by the sensor teeth. 

The wheel speed is consequently correlated with the sensed pulses number per second, 

the teeth numbers per rotation as well as the radius of the wheel tire, which can be 

explicitly expressed by 

 2 ( )WSS WSS Pulse Teethv R N Nπ= ⋅  (3.1) 

where WSSR  is the radius of the wheel, PulseN  is the number of pulses per second sensed 

by the wheel speed sensor and TeethN  is the number of teeth. 

From Figure 3.1, the two rear wheel speeds can be computed from the yaw rate by 

(Carlson et al. 2002) 

 
( )RL

RR

V R b
V R

γ
γ

= + ⋅
= ⋅

 (3.2) 

where RRV  and RLV  are the rear right and rear left wheel speed sensor measurements 

respectively 

From the rear wheel speed sensor measurements, R  and γ  are derived by 
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Equation (3.3) implies that the differential of two rear wheel speed sensors provides a 

way to estimate the yaw rate assuming no slip (ibid). 

On the basis of Equation (3.3), the velocity WSSv  and PV  can be computed by 

 2 2 2 2 2 2

( 2) ( ) 2
1( 2) ( ) 4 ( )

2

WSS RR RL

P r RL RR r RL RR

v R b V V

V R b L b V V L V V
b

γ

γ

= + ⋅ = +

= + + ⋅ = + + −
 (3.4) 

The angle θ  is computed by 

 1 1 2 ( )tan tan
2 ( )

r r RL RR

RL RR

L L V V
R b b V V

θ − − ⎛ ⎞⎛ ⎞ −
= = ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (3.5) 

As a special case, when the vehicle operates without turning, the difference between the 

two rear wheel speed sensor measurements is very small. It makes sense that 0θ ≈  and 

P WSSV v≈ . 

The wheel speed sensor used in this research always outputs zero speed when the vehicle 

operates in static mode. Therefore, it is impossible to assess the characteristics of a wheel 

speed sensor using static data. Since the wheel speed sensor measurement noise is 

required in the Kalman filter when it is integrated with other sensors, another method was 

devised to assess measurement noise. The NovAtel OEM2 precise velocity GPS receiver 

can provide velocity accuracy at a millimetre per second level, and it can therefore be 

used as the reference speed to estimate wheel speed sensor measurement noise. By 

driving the vehicle at low (20 km/h), medium (50 km/h) and high (80 km/h) constant 

speeds on a flat road and in a straight direction, the speed error between the wheel speed 
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sensor and the OEM2 GPS velocity receiver can be computed to estimate wheel speed 

sensor measurement accuracy. This basic idea is illustrated in Figure 3.2. 

 

Figure 3.2 Estimation of wheel sensor measurement accuracy 

To verify the measurement accuracy of NovAtel OEM2 GPS velocity receiver, one hour 

static data was collected using NovAtel OEM2 GPS receiver. In static mode, the 

reference velocity is at zero. Figure 3.3 shows the speed error and the average variance of 

the NovAtel OEM2 precise velocity GPS receiver in static mode. By randomly taking 20 

evenly spaced one-second intervals from the speed error, the average speed variance of 

this velocity can be derived to be 1.0 mm2/s2. Consequently, its standard deviation is 

1.0 mm/s, which verifies the fact that the accuracy of NovAtel OEM2 GPS receiver is at 

millimetre per second level. The spikes appeared in Figure 3.3 is introduced by external 

disturbance. 

In dynamic mode, the speed of the wheel speed sensor and the OEM2 GPS receiver, as 

well as the speed difference between the wheel speed sensor and the OEM2 GPS receiver, 
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are shown in Figure 3.4. This speed difference in dynamic mode mainly results from the 

error sources of the wheel speed sensors such as the scale factor and side slip. 

 
Figure 3.3 NovAtel OEM2 precise velocity GPS receiver speed error and speed average 

variance 

 
Figure 3.4 Speeds and the speed difference for the OEM2 GPS receiver and the wheel 

speed sensor  
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To avoid long term variation of the wheel speed difference, 20 evenly spaced one-second 

intervals were taken from Figure 3.4 for mathematical variance analysis. The average 

variance of the wheel speed sensor with respect to the OEM2 GPS receiver is computed 

and shown in Figure 3.5. In this test, the wheel speed sensor measurement is sampled at 

20 Hz. Within a one-second time interval, 20 data samples are covered. Also, the 20 

evenly spaced one-second time intervals are selected randomly.  The average variance 

across all intervals is shown by the solid line. From this point of view, the mathematical 

variance computed in this way can statistically represent the measurement noise of the 

wheel speed sensors. 

 

Figure 3.5 Average variance of the wheel speed sensor with respect to the OEM2 GPS 
receiver 

Using covariance propagation theory, the wheel speed sensor variance can be computed 

by 
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where 2
WSSσ  is the wheel speed sensor average variance, 2

GPSWSS→σ  is the average 

variance of the wheel speed sensor variance relative to the GPS receiver, and 2
GPSσ  is the 

average variance of the OEM2 GPS receiver. 

Therefore, the standard deviation or measurement noise of the wheel speed sensor is 3.2 

cm/s. This value is used as the measurement noise in the Kalman filter when integrating 

WSS with GPS and INS later. 

3.3 G Sensors and Yaw Rate Sensor 

G sensors (accelerometers) measure the specific force in the lateral and longitudinal 

directions. The yaw rate sensor measures the angular rate with respect to vertical 

direction. 

To assess the performance including noise and drift characteristics of the G sensors and 

the yaw rate sensor, a static test was conducted on March 10, 2006. Seven hours of static 

data was collected while the engine was idling. The idling engine speed was 

approximately 750 rpm. The data sampling rate was 100 Hz. The data logging system 

power was supplied by car batteries and an inverter. The outside temperature during the 

test was around -15 degree Celsius and thus the vehicle’s heater was turned on. 

In static mode, the yaw rate sensor measures the Earth’s rotation. The outputs of the G 

sensors are theoretically zero if they are assumed to be highly aligned with the horizontal 
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plane. Practically, the static output of on-board vehicle sensors can be used to assess 

noise level or error variability. 

The G sensor and yaw rate sensor raw data was processed to evaluate the noise level by a 

mathematical variance analysis, and a wavelet tool was used to decompose the raw data 

into high and low frequency data sets. The low-frequency data was utilized to 

approximate the error temporal variability as a first-order Gauss-Markov process 

(Lachapelle et al. 2003). 

3.3.1 Mathematical Variance of G Sensors and Yaw Rate Sensor 

To avoid long term variations in the data, 40 evenly spaced one-second intervals were 

chosen, and the corresponding variance of each interval was calculated for lateral and 

longitudinal G sensors, and yaw rate sensor, respectively. In Figure 3.6, the average 

variance across all intervals is shown by the solid line. The average mathematical 

standard deviation and variance of the G and yaw rate sensors are summarized in Table 

3.1. These values provide the process noise level used in the Kalman filter. With the noise 

level and the double-sided bandwidth information, the noise spectral density of G sensors 

and yaw rate sensor can be computed by (Scherzinger 2004) 

 

2

2

2

GLNoise
GL

GL

YRS Noise
YRS

YRS

q
BW

q
BW

σ

σ

=

=
 (3.7) 



 

40

 

where ,GL YRSq q are the noise spectral density of G sensors and yaw rate sensor, 

respectively, 2 2,GLNoise YRSNoiseσ σ are noise level of G sensors and yaw rate sensor, 

respectively, and ,GL YRSBW BW are the bandwidth of G sensors and yaw rate sensor, 

respectively. 

 

Figure 3.6 Mathematical variances of G and yaw rate sensors 

Table 3.1 Average standard deviation and variance of raw data 

Sensor Average standard deviation Average variance 
GX 0.014 m/s2 2.0620e-004 m2/s4 
GY 0.039 m/s2 1.4786e-003 m2/s4 

Yaw Rate Sensor 256.32 deg/h 6.5699e+004 deg2/h2 

3.3.2 Wavelet analysis of G and Yaw Rate Sensors 

Similar to Fourier analysis, wavelet analysis can decompose a signal into low and high 

frequency components (Walker 1999). The main difference between Wavelet and Fourier 

analyses is that Wavelet analysis uses a wide variety of base functions whereas Fourier 
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analysis uses sine and cosine as its base functions. A Daubechies (db8) mother wavelet is 

used to decompose the raw data herein (Lachapelle et al. 2003). Since the noise has a 

zero mean, the wavelet decomposition level at which the mean of the high frequency 

components becomes non-zero is selected. After wavelet decomposition, the high 

frequency parts can be used to analyze noise, and the low frequency part can be used to 

analyze slowly varying errors. 

Figure 3.7 shows the mean of the high frequency components across the levels of wavelet 

decomposition. It can be seen that the mean value of the high frequency noise starts to be 

non-zero when the decomposition level is greater than 10. Therefore a decomposition 

level of 10 is selected here.  With respect to the decomposition level 10, the raw data, 

the decomposed high and low frequency data for G and yaw rate sensors are shown from 

Figure 3.8 to Figure 3.10, respectively. The raw data is a combination of high-frequency 

noise and slowly varying sensor errors. After wavelet decomposition, the high-frequency 

noise and slowly varying errors are separated effectively from the raw sensor data, and 

the slowly varying sensor noise becomes a relatively clean, low frequency signal. 

The variance of the high-frequency components gives an estimate of the noise power. 

Table 3.2 summarizes the variance of the high frequency components for the G and yaw 

rate sensors, and gives a comparison with the mathematical variance computed in the last 

section. This comparison shows that the mathematical and decomposed high-frequency 
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variances are very close to each other, which indicates that no error was introduced by 

the wavelet analysis. 

 

Figure 3.7 Means of high frequency components vs. the level of wavelet decomposition 
of the G and yaw rate sensors 

 

Figure 3.8 Raw and decomposed data from the GX sensor 
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Figure 3.9 Raw and decomposed data from GY sensor 

 

Figure 3.10 Raw and decomposed data from yaw rate sensor 
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Table 3.2 Comparison of the average standard deviation of the raw data and the average 
standard deviation of the high frequency noise after wavelet decomposition 

Sensors Standard deviation of the raw data Standard deviation of Wavelet 
decomposition 

GX 0.014 m/s2 0.015 m/s2 
GY 0.039 m/s2  0.038 m/s2  
YRS 256.32 deg/h 263.88 deg/h 

 

3.3.3 First-Order Gauss-Markov Model of G Sensors and Yaw Rate Sensor 

The low-frequency components after wavelet decomposition can be used to compute 

autocorrelation function. With the autocorrelation function, the slow varying error can be 

modeled as a first-order Gauss-Markov process. The first-order Gauss-Markov model is 

expressed by  

 2( ) ( ) 2 ( )x t x t u tβ σ β= − +  (3.8) 

and its corresponding autocorrelation function is  

 2( )R e β ττ σ −=  (3.9) 

The parameters σ  and β  can be estimated from the autocorrelation series by using a 

least squares curve fitting technique. In an integrated system, the biases of the G and yaw 

rate sensors are modeled as first-order Gauss-Markov processes, and are estimated by 

Kalman filtering.  

Figure 3.11 shows the raw and approximated autocorrelation functions from the least 

squares curve fitting technique for G and yaw rate sensors. In general, a first-order 

Gauss-Markov approximation is accurate for a time shift of up to a few hours. For longer 
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time shifts, the approximation no longer holds. The estimated parameters σ  and β  

for the G and yaw rate sensors are summarized in Table 3.3. 

 

Figure 3.11 Raw and approximated autocorrelation functions for G and yaw rate sensors 

Table 3.3 Parameters of the first-order Gauss-Markov process for the G and yaw rate 
sensors 

Sensor σ  1 β  [hour] 

GX 0.017 m/s2 1.25 

GY 0.033 m/s2 1.21 
Yaw Rate Sensor 221.04 deg/h 0.87 

These parameters provide the necessary information for modelling the biases of G 

sensors and yaw rate sensor as the first-order Gauss-Markov process. The noise spectral 

densities with respect to the biases of G sensors and yaw rate sensor can also be derived 

from σ  and β  as shown by (Gelb 1976) 
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where ,  
GL YRSb bq q are the noise spectral density associated with G sensors and yaw rate 

sensor biases, respectively, ,  
GL YRSb bσ σ are the temporal standard deviation of G sensors 

and yaw rate sensor biases, respectively, and ,  
GL YRSb bβ β are the time constant reciprocals 

of G sensors and yaw rate sensor biases, respectively. 

3.4 Steering Angle Sensor 

As illustrated by Figure 3.12, the steering angle sensor measures the front tire turning 

angle with respect to the neutral position. Through an electrical control unit, the operation 

of the steering wheel is transformed into steering angle information with respect to the 

neutral position by using a constant scale factor. Since the transformation implemented 

by the electrical control unit is nonlinear in nature, the constant scale factor is only an 

approximation of the real situation. 

 

Figure 3.12 Steering angle sensor  
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Since it is difficult to find a reference for evaluating the measurement accuracy of the 

steering angle sensor, its measurement accuracy can be either determined empirically 

through testing various scenarios in the Kalman filter or indirectly estimated from the 

derived steering angle from other sensor measurements with the known measurement 

accuracy by using the variance propagation theory. 

As shown in Figure 3.1, the steering angle can be derived from xv  and yv . The 

relationship between xv  and yv  with the wheel speed sensor and the yaw rate is given 

by  

 x f

y WSS

v L

v v

γ=

=
 (3.11) 

The steering angle is thus indirectly computed by (Carlson et al. 2002) 

 1tan f

WSS

L r
v

ψ − ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (3.12) 

The opposite sign in Equation (3.12) is due to the definition of the vehicle frame as 

Right-Front-Up, while a positive steering angle is defined as being in the 

counter-clockwise direction. 

With the known measurement accuracy of the wheel speed sensor and yaw rate sensor, 

the measurement accuracy of the steering angle sensor can be estimated in term of the 

variance propagation theory by 
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 (3.13) 

where 2
ψσ  is the variance of the steering angle sensor measurement, WSSv  is velocity at 

the centre point of the rear wheel axle (the average value of two rear wheel speed sensor 

measurement), 2
WSSvσ  is the variance of WSSv , γ  is the yaw rate sensor measurement, 

2
rσ  is the variance of the yaw rate sensor measurement, and fL  is the distance between 

the location of GL/YRS unit and the axle of the front wheel. 

 



 

49

 

Chapter 4 GPS/INS/On-Board Vehicle Sensor Integration 

Strategies 

Kalman filtering is well suited for information integration from different data sources. To 

develop integration strategies for the GPS, INS and on-board vehicle sensors analyzed in 

Chapter 3, this chapter first gives an overview of the Kalman filter algorithm. On the 

basis of a comparison between linearized and extended Kalman filters as well as 

centralized (tight coupling strategy) versus decentralized (loose coupling strategy) 

Kalman filters, various integration strategies are proposed. 

4.1 Overview of Kalman Filter 

Kalman filtering is an optimal recursive estimator that incorporates measurement 

information to estimate the current states of interest in a linear dynamic system (Maybeck 

1979). Based on an assumption that the linear dynamics system and the measurement are 

perturbed by white noise, the Kalman filter utilizes the system dynamics model and 

measurement model, the statistics of the dynamics system noise and measurement noise 

as well as the required initial information to deduce the estimation (ibid). 

4.1.1 The Algorithm of Kalman Filter 

For practical use, the dynamics model is usually expressed in a continuous format by 
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 ( ) ( ) ( ) ( ) ( )x t F t x t G t w t= +  (4.1) 

where ( )x t is the continuous-time state vector, )(tF  is the continuous time dynamics 

matrix, )(tG is the shaping matrix, )(tw  is a dynamic process noise vector with zero 

mean and uncorrelated Gaussian distribution. The covariance matrix of the noise vector is 

given by (Gelb 1974) 

 [ ( ) ( ) ] ( ) ( )TE w t w Q t tτ δ τ= ⋅ −  (4.2) 

where ,  t τ denote different time epochs, ( )tδ  is called the Dirac delta function, and 

( )Q t is the process noise matrix. 

The continuous measurement model is given by 

 mz H x w= ⋅ +  (4.3) 

where z  is the measurement, H is the design matrix, and mw is the measurement noise 

that has zero mean with uncorrelated Gaussian distribution. Similarly to the process noise 

in the dynamics model, the covariance matrix of the measurement noise is expressed by 

 ( ) ( ) ( )T
m mE w t w R tτ δ τ⎡ ⎤ = ⋅ −⎣ ⎦  (4.4) 

where R  is called the covariance matrix of the measurement noise. 

In practical use, the continuous models are usually transformed into discrete form, and 

the discrete dynamics and measurement models are expressed as follows 

 1, 1

k

k k k k k

k k k m

x x w
z H x w

− −= Φ +

= +
 (4.5) 
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where 1, +Φ kk  is called the transition matrix, which can be approximately calculated 

through a Taylor series expansion (Brown & Hwang 1992) 

 
2 3

, 1
( ) ( ) ...

2! 3!
F t

k k
F t F te I F t∆

+
∆ ∆

Φ = = + ∆ + + +  (4.6) 

where t∆  is the sampling rate of the discrete system. 

The discrete process noise kw  is computed by 

 ( )1

1, ( ) ( ) ( )k

k

t

k kt
w t G w dτ τ τ τ+

+= Φ ⋅ ⋅∫  (4.7) 

The discrete process noise also has a zero mean with uncorrelated Gaussian distribution, 

namely 
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 (4.8) 

where kQ  is the covariance matrix of the discrete process noise. 

A numerical algorithm for the computation of the covariance matrix of kw  is expressed 

by the following formula (Grewal et al. 2001) 

 , 1 , 1[ ] ( )
2

T T T T
k k k k k k k k k k k

tQ E w w G QG G QG+ +
∆

= ⋅ = Φ Φ +  (4.9) 

Similarly, the covariance matrix of the discrete measurement noise is characterized by 
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The state vector kx  and its covariance matrix kP  are computed by prediction and 

update steps. The prediction step propagates the current state to the next step, and the 

update step modifies the prediction results using currently available measurements. The 

optimal Kalman filter gain is calculated in the update step. These procedures are 

summarized here and are detailed in Gelb (1974). 

The prediction step is 

 1
T

1

 x

 
k k

k k k

x

P P Q

−
+

−
+

⎧ = Φ ⋅⎪
⎨

= Φ Φ +⎪⎩
 (4.11) 

where kx is a posteriori state vector at the current epoch, 1kx−
+  is the a priori state vector 

at the next epoch, P−  is the a priori estimated covariance matrix, and P is the a 

posteriori estimated covariance matrix. 

The update step is conducted by 
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 (4.12) 

where K is the Kalman filter gain, and I  is the identity matrix. 

The Kalman filter is an unbiased, recursive estimator on the condition of the minimum 

variance. Through the prediction step, followed by measurement update, the state vector 

and its covariance matrix are estimated on an epoch-by-epoch basis.  
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4.1.2 Linearized and Extended Kalman Filters 

The Kalman filter is essentially linear in nature. In most practical applications, however, 

the measurement model and/or the system dynamics model are nonlinear. Kalman filter 

theory can be applied approximately to a nonlinear system when the nonlinear system is 

linearized with a trajectory. Depending on the trajectory used for linearization, a Kalman 

filter can be classified into a linearized or an extended approach (Brown & Hwang 1992). 

With a nominal trajectory, relevant Kalman filter parameters, such as the Kalman filter 

gain and the design matrix, can be computed off-line. Thus, the linearized Kalman filter 

has an efficient real-time implementation. However, the deviation between actual and 

nominal trajectories drifts with time without bound, and the assumption of small error 

magnitudes tends to be violated in the process of linearization. With these features, the 

linearized Kalman filter is applicable for areas with an approximate trajectory and a short 

system running time. 

On the contrary, the extended Kalman filter does not depend on any nominal trajectory. 

Its linearization trajectory is continuously updated with estimated results. In this way, the 

deviation between estimated trajectory and actual trajectory is bounded at a small level. 

However, a larger initial uncertainty and measurement noise may lead to a divergence of 

the extended Kalman filter. The pros and cons of the linearized and the extended Kalman 

filters are summarized in Table 4.1 and imply that the extended Kalman filter is 

appropriate for land vehicle positioning and navigation systems. 
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Table 4.1 Comparison of linearized and extended Kalman filters (Brown & Hwang 
1992) 

 Extended Kalman Filter Linearized Kalman Filter 

Advantages The trajectory deviation is 
bounded Efficient real-time computation 

Disadvantages 
Large initial uncertainty and 
measurement noise may lead 
to a divergence 

Trajectory deviation drifts without 
bound 

Application area 
The approximate trajectory is 
not known in advance 
The running period is long 

The approximate trajectory is 
known in advance 
The running period is short 

To illustrate the linearization of the measurement model, assume the nonlinear 

measurement model is given by  

 ( ) mz h x ω= +  (4.13) 

where ( )h x  is the estimated measurement, and mω  is the measurement noise, z  is the 

raw measurement that is also a function of state x . 

By defining the error state as 

 ˆx x xδ = −  (4.14) 

where xδ  is the error state, x̂  is the estimated state, and x  is the true value. 

Using the Taylor series theory at the first-order, the linearization of the measurement 

model is expressed by 

 ˆ ˆˆ( )x x x x m
z hz x h x x
x x

δ δ ω= =
∂ ∂

+ = + +
∂ ∂

 (4.15) 
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where ˆx x
zz x
x

δ δ=
∂

=
∂

 is the perturbation of the raw measurement, and ˆx x
hh x
x

δ δ=
∂

=
∂

 

is the perturbation of the estimated measurement. 

By defining the measurement misclosure (or innovation sequence) as  

 ˆ( )ze z h x= −  (4.16) 

Equation (4.15) can be rearranged as  

 ˆ ˆ( )

     =

z m x x x x m

m

h ze h z x
x x

H x

δ δ ω δ ω

δ ω

= =
∂ ∂

= − + = − +
∂ ∂

+
 (4.17) 

where H  is the design matrix. 

4.1.3 Decentralized and Centralized Kalman Filters 

Kalman filtering is well suited to information integration from different data sources 

(Maybeck 1979). Different sensor sources can be integrated with either a loose coupling 

or a tight coupling strategy. According to the coupling relationship between the local 

sensors and the filtering technique, Kalman filtering for integrated systems is usually 

implemented in decentralized and centralized ways (Schwarz et al. 1994). 

Figure 4.1 illustrates the structure of loose coupling and decentralized Kalman filter (after 

Scherzinger 2004). Decentralized Kalman filtering processes the local Kalman filtering 

outputs within a master Kalman filter in a suboptimal and sequential way, and it 

corresponds to a loosely coupled integrated system. A decentralized Kalman filter has a 
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two-staged, distributed, architecture whereby the output of local sensor-related filters is 

subsequently processed and combined by a larger master filter (Gao et al. 1993). 

 

Figure 4.1 Loose coupling and decentralized Kalman filter 

As shown in Figure 4.2 (after Scherzinger 2004), centralized Kalman filtering combines 

different sensor data optimally using one Kalman filter. It is associated with a tightly 

coupled integrated system. A centralized Kalman filter processes all available sensor 

measurements at each epoch to obtain a globally optimal solution. 

Both centralized and decentralized Kalman filters have their advantages and 

disadvantages, and a tradeoff needs to be made for a specific application. Centralized 

Kalman filtering outperforms decentralized filtering in terms of overall system accuracy, 

which is attributed to reduced process noise in a centralized Kalman filter (Petovello 

2003). Another noticeable advantage of centralized Kalman filtering is that ongoing 

aiding can be provided even when the number of GPS satellites is less than four 
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(Scherzinger 2001), and an optimal solution can be determined. However, data 

processing concentrated on one Kalman filter degrades system flexibility and tolerance to 

fault. 

 

Figure 4.2 Tight coupling and centralized Kalman filter 

The decentralized Kalman filter has a modular and flexible architecture that results in 

high computational efficiency and fault-tolerant characteristics. However, a decentralized 

Kalman filter only provides suboptimal solutions, and the GPS local Kalman filter inside 

a decentralized Kalman filter cannot work effectively when the number of GPS satellites 

is less than four. Table 4.2 makes a comparison between centralized and decentralized 

Kalman filters. 

Based on the above analysis, a tight coupling strategy and extended Kalman filters are 

used in this research to tightly couple the GPS, INS and on-board vehicle sensors in an 

effective manner. 
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Table 4.2 Comparison of centralized and decentralized filters 

 Centralized Filter 
(Tight coupling strategy) 

Decentralized filter 
(Loose coupling strategy) 

Advantages 

 Small noise level 
 Global optimal solution 
 GPS measurement can be less than 4 
 Fast ambiguity resolution 

 Flexible  
 High computing efficiency 
 Tolerance to fault 

Disadvantages 
 Large size of error model 
 Low calculation efficiency 
 Low tolerance to fault 

 4 satellites are needed 
 Suboptimal 
 High noise 

4.2 Integration Strategies 

To make full use of the on-board vehicle sensors for the land vehicle positioning and 

navigation, Table 4.3 gives a description of the relationship of the on-board vehicle 

sensors and the navigation information. 

Table 4.3 On-board vehicle sensors vs. navigation information 

Sensor Name Position  Velocity  Azimuth Others 

Wheel speed 
sensors (WSS) 

Yes 
(Integrated from 
WSS and YRS) 

Yes 
(Directly) 

Yes 
(Derived from 
the differential 
of two wheel 

speed sensors) 

Susceptible to 
the side slip 

G Sensors 
(GL) 

Yes 
(Integrated from 

GL and YRS) 

Yes 
(Integrated 

from GL and 
YRS) 

No 

Can detect the 
side slip by 
cooperating 
with YRS  

Yaw rate 
sensor (YRS) No No 

Yes 
(Integrated 
from YRS) 

Can detect the 
side slip by 
cooperating 

with GL 

Steering angle 
sensor (SAS) No No No 

Constraint 
velocity error 

drift 
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Using a tight coupling strategy, five types of integration strategies are proposed by 

integrating GPS, an IMU (tactical grade or MEMS low cost IMUs) as well as several 

on-board vehicle sensors. The proposed integration strategies are summarized in Table 

4.4. 

Table 4.4 Descriptions of integration strategies 

Integration strategies Descriptions 

GPS/INS/WSS 

WSS provides the longitudinal velocity update 
Non-holonomic constraints are applied in lateral and 
vertical directions 
Constraints are violated by a larger side slip angle 
WSS performs ZUPT in static mode 

GPS/INS/GL/YRS 
Provides the lateral and longitudinal velocity update 
Lower quality of GL/YRS 
Computes the side slip angle 

GPS/INS/SAS Compute the steering angle from the horizontal velocity 
Velocity error drift is constrained by SAS 

GPS/INS/WSS/SAS WSS and SAS sequentially update the Kalman filter 

GPS/INS/WSS/GL/YRS/SAS

SAS updates the Kalman filter in a sequential way 
WSS and GL/YRS are functioning in an interactive way 
WSS enhances the initial velocity accuracy for GL/YRS 
GL/YRS computes the side slip angle to detect and 
alleviate the violation of non-holonomic constraints 

4.2.1 GPS/INS/Wheel Speed Sensor Integration Strategy 

Figure 4.3 shows the integration strategy for GPS/INS/Wheel speed sensor combination. 

All available sensor measurements are integrated by a tight coupling strategy at each 

epoch to obtain a globally optimal solution using one centralized Kalman filter. For the 

equipment used, the IMU data rate is 100 Hz, and its mechanization equation output rate 

is set to 10 Hz. The position, velocity and attitude information of the integrated system 
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are given by implementing the mechanization equation of the IMU in ECEF frame. The 

GPS measurements used herein are double differenced carrier phase, double differenced 

Doppler and double differenced pseudorange at a 1 Hz rate. The on-board vehicle sensors 

are sampled at 100 Hz. To make a tradeoff between system accuracy and computational 

load in a real-time test, vehicle sensors data are thinned at 1 Hz for the update of the 

centralized Kalman filter. The external update to the centralized Kalman filter, such as 

GPS and on-board vehicle sensors, facilitates the estimation of error states including 

position errors, velocity errors, misalignment angles, as well as accelerometer and gyro 

biases. 

 

Figure 4.3 GPS/INS/ WSS integration strategy 

Due to the centralized processing approach, the satellite measurements are estimated by 
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using the integrated position and velocity. The raw GPS measurements and the estimated 

satellite measurements are compared to derive GPS measurement misclosures in the 

centralized Kalman filter. When ambiguities need to be fixed, the float double differenced 

ambiguities are augmented and estimated in the centralized Kalman filter. Integer 

ambiguities are resolved by the LAMBDA method using real-valued ambiguities and 

their relevant estimated standard deviations from the Kalman filter. 

The centralized Kalman filter used for each integration strategy is a closed loop type. It 

indicates that the relationship between the centralized Kalman filter and the external 

update are bidirectional. In one manner, the GPS update provides an external aid to limit 

the INS drift error when GPS is available. During GPS outages, on-board vehicle sensors 

will continue to update the centralized Kalman filter and bridge the GPS data gap. In 

another way, the estimated error states feedback to the integrated solutions as well as the 

IMU and vehicle sensor measurements. With feedback information, the integrated 

position, velocity and attitude angles can be corrected by the estimated error states of 

position, velocity and misalignment angles. Also, the estimated accelerometer and gyro 

biases, as well as augmented on-board vehicle sensor error states can rectify the IMU and 

on-board vehicle sensor measurements. 

In practical use, tire size is subject to many factors such as a payload, driving conditions, 

temperature, tire-air pressure and tread wear. Additionally, the IMU body frame does not 

always coincide with the vehicle frame. Thus, the scale factor of the wheel speed sensor 
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and the tilt angles between the vehicle and the body frames are augmented into error 

states of the centralized Kalman filter. 

The wheel speed sensor estimates the forward-direction velocity in the vehicle frame, 

while two non-holonomic constraints are applied to vertical and lateral directions. The 

non-holonomic constraints imply that the vehicle does not move in vertical or the lateral 

directions assuming the land vehicle does not jump off or slide on the road. The lateral 

non-holonomic constraint is very close to a real condition when the vehicle runs on a flat 

road with a very small side slip, and it is violated when the vehicle runs on an icy or 

bumpy road with a larger side slip. This constitutes a weak point of the GPS/INS/WSS 

integration strategy. 

The wheel speed sensor provides absolute velocity information to update the centralized 

Kalman filter. The measurement misclosure is computed in the vehicle frame by 

comparing the difference between integrated velocity and WSS measurements plus two 

non-holonomic constraints. With feedback from the centralized Kalman filter, the raw 

WSS measurement corrected by the estimated scale factor becomes closer to reality, and 

the estimated tilt angles between the body and vehicle frames make the WSS update more 

precise. During GPS outages, non-holonomic constraints as well as absolute velocity 

information can constrain the velocity and consequently the position drift of the 

stand-alone INS system. Furthermore, the zero velocity output of the WSS in static mode 

provides the possibility to perform a zero velocity update (ZUPT). Hence, it contributes 
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to limit the drift error in such a scenario that the vehicle runs in a static mode. 

4.2.2 GPS/INS/G Sensors/Yaw Rate Sensor Integration Strategy  

The GSP/INS/G sensors/Yaw rate sensor integration strategy is described in Figure 4.4. 

Instead of providing absolute velocity as WSS, the GL/YRS unit constitutes a 

dead-reckoning, horizontally two-dimensional IMU. Consequently, lateral and 

longitudinal velocity can be derived from GL/YRS measurements with the initial velocity 

being provided from the integrated system. 

 

Figure 4.4 GPS/INS/GL/YRS integration strategy 

The GL/YRS unit performs a velocity update in its body frame by computing 
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measurement misclosures between the integrated velocity (being transformed from the 

ECEF frame into the body frame) and the lateral/longitudinal velocity derived from the 

GL/YRS. Similarly to an IMU, the biases of the G sensor and yaw rate sensor are 

augmented into error states of the closed loop centralized Kalman filter. On the other 

hand, estimated GL/YRS biases are used to compensate raw GL/YRS measurements. 

The quality of an automotive grade GL/YRS is of the same order as the low cost IMU, 

and is much lower than a tactical grade IMU. Thus, its error will drift at the same rate as a 

low cost IMU or at a much greater rate than a tactical grade IMU during GPS outages. 

Consequently, the improvement on positioning accuracy gained from the GL/YRS is 

expected to be somewhat limited and less significant than that from the WSS. 

4.2.3 GPS/INS/Steering Angle Sensor Integration Strategy 

Using a similar structure as that of the other two integration strategies discussed above, 

the basic idea of integrating the steering angle sensor is to compute the estimated steering 

angle from the integrated velocity output in the vehicle frame, and then to employ the 

steering angle measurement to update the centralized Kalman filter as shown in Figure 

4.5. 

As described in Chapter 3, the steering angle sensor measures the angle of the steering 

wheel. By passing through the Electrical Control Unit (ECU) and the actuator, the 

steering wheel angle is transformed into the vehicle tire angle relative to its neutral 

position. The steering angle is referred to as the vehicle tire angle relative to its neutral 
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position hereafter. The transformation between the steering wheel angle and the vehicle 

tire angle is performed by a constant gain or scale factor. 

 

Figure 4.5 GPS/INS/SAS integration strategy 

Due to some of the non-linear characteristics in the ECU and the actuator, however, this 

transformation is far from linear in nature. To adapt to the variation of the transformation 

gain, the scale factor and bias of the steering angle sensor are augmented into error states 

of the Kalman filter. Similarly to the G sensors and the yaw rate sensor, a constant bias 

exists in the steering angle sensor measurement. It will degrade the steering angle sensor 

measurement accuracy, and needs to be estimated by the centralized Kalman filter. 
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The literature indicates that using the steering angle sensor to aid an INS to constrain the 

INS velocity error drift is novel. To date, the steering angle sensor is mainly used in the 

land vehicle steering system for the autonomous control of the vehicle. This research 

develops a new way to put the steering angle sensor into the land vehicle positioning and 

navigation by effectively integrating the steering angle sensor with GPS and INS. 

4.2.4 Combined Integration Strategy for GPS/INS/On-Board Vehicle Sensors 

Based on the aforementioned basic integration strategies, namely the GPS/INS/WSS 

(with two non-holonomic constraints), GPS/INS/GL/YRS as well as GPS/INS/SAS, two 

combined integration strategies can be derived from the basic modules or by creating a 

relationship between different vehicle sensors. These include: 

• GPS/INS/WSS/SAS , and  

• GPS/INS/WSS/SAS/GL/YRS  

Either the basic or the combined integration strategies can be flexibly selected and 

implemented in software. Since the wheel speed sensor and the steering angle sensor 

produce independent measurements, sequential updating is used in the combined 

integration strategy GPS/INS/WSS/SAS. This integration strategy performs velocity and 

steering angle update in a sequential way. 

The combined integration strategy GPS/INS/WSS/SAS/GL/YRS integrates all on-board 

vehicle sensors with the GPS/INS. With a sequential and independent update from the 

steering angle sensor, the WSS and GL/YRS work in a coordinated way to compensate 
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their weak points in one way or another. Figure 4.7 describes this interactive relationship 

between the WSS and GL/YRS. 

 

Figure 4.6 Combined integration strategies of GPS/INS/On-board vehicle sensors 

The absolute velocity update from the WSS measurements limits the longitudinal 

velocity drift error. Consequently, the accuracy of the initial longitudinal velocity for the 

GL/YRS is increased. On the other hand, the side slip angle can be calculated from the 
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lateral and longitudinal velocities. The side slip angle information provides a way to 

detect and alleviate violation of the lateral non-holonomic constraint. When the side slip 

angle is smaller than a specific threshold, the lateral constraint is most likely valid. 

However, when the side slip angle goes beyond a specific threshold, the lateral 

non-holonomic constraint is violated. 

One possible way to compensate for the violation of the lateral non-holonomic constraint 

is to make use of the lateral velocity calculated from the GL/YRS to replace the lateral 

non-holonomic constraint. 

 

Figure 4.7 Interactive relationship between WSS and GL/YRS 
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Chapter 5 GPS/INS/On-Board Vehicle Sensor Integrated 

Algorithms 

Integration algorithms are developed by deriving the dynamics and measurement models 

used in the Kalman filter for each basic integration module discussed in Chapter 4, 

namely, GPS/INS/WSS, GPS/INS/GL/YRS and GPS/INS/SAS, as well as a combined 

integration strategy GPS/INS/WSS/SAS/GL/YRS. Due to the importance of the lever 

arm effect on the integrated system positioning accuracy, the lever arm effect and the way 

of estimating the wheel speed sensor lever arm vector will be discussed first. 

5.1 Lever Arm Effect 

In the GPS/INS/On-board vehicle sensor integrated system, the GPS antenna is placed on 

the roof of the vehicle. The low cost IMU is fixed near the driver seat. The wheel speed 

sensors (WSS) are attached to the vehicle’s wheels. The average value of the two rear 

wheel speed sensor measurements is used for system integration. Thus, the centre point 

of the rear wheel axle is the virtual location of the wheel speed sensor. The steering angle 

sensor is located on the centre point of the front wheel axle. The G sensors/Yaw rate 

sensor (GL/YRS) unit is installed on the chassis of the vehicle, and lies between the 

wheel speed sensor and the yaw rate sensor. The offsets of these locations introduce 

spatial vectors, which are called lever arms. When the GPS, IMU and on-board vehicle 
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sensors are integrated, lever arm effects must be taken into account since they are 

significant relative to the accuracy required. 

Using the GPS antenna phase centre as a reference point, the lever arm vectors are 

computed from the IMU and on-board vehicle sensors to the GPS antenna phase centre. 

These lever arm vectors are represented by b
IMU GPSL → , b

WSS GPSL → , b
SAS GPSL →  and 

/
b
GL YRS GPSL →  in Figure 5.1. 

 

Figure 5.1 Lever arm vector for GPS, INS and on-board vehicle sensors 

With the defined lever arm vectors, the position and velocity at the IMU and on-board 

vehicle sensors are mapped to the GPS antenna phase centre. In this way, the outputs of 

the integrated system are referenced to the GPS antenna phase centre. The position and 

velocity at the IMU are transformed into the GPS antenna phase centre by Equation (5.1) 

(Petovello et al. 2005). 
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( )

e e e b
IMU GPS IMU b IMU GPS
e e e b e e b e e b

IMU GPS IMU b IMU GPS IMU b ib ie b IMU GPS

P P R L

V V R L V R R L
→ →

→ → →

⎧ = +⎪
⎨

= + = + Ω −Ω⎪⎩
 (5.1) 

where e
IMU GPSP → is the e frame position mapped from the IMU to the GPS antenna phase 

centre, e
IMUP  is the e frame position at the IMU, e

bR  is the direction matrix between the 

b and e frames, 
Tb b b b

IMU GPS IMU GPS IMU GPS IMU GPSL x y z→ → → →⎡ ⎤= ⎣ ⎦  is the lever arm vector 

between the IMU and the GPS antenna phase centre, e
IMU GPSV → is the e frame velocity 

mapped from the IMU to the GPS antenna phase centre, e
IMUV  is e frame velocity at the 

IMU, b
ibΩ is the skew-symmetric matrix of the gyro measurement, and e

ieΩ  is the 

skew-symmetric matrix of the Earth’s rotation (which can be neglected for low cost 

IMUs). 

For on-board vehicle sensors, the position information does not get involved in the 

system integration or in the update of the Kalman filter. Thus, only a velocity 

transformation from the on-board vehicle sensors into the GPS antenna phase centre is 

required, as shown in Equation (5.2). 

 

/ / /

   ( )

    ( )

( )

e e e b e e b
WSS GPS WSS b ib ie b WSS GPS
e e e b e e b

SAS GPS SAS b ib ie b SAS GPS
e e e b e e b

GL YRS GPS GL YRS b ib ie b GL YRS GPS

V V R R L

V V R R L

V V R R L

→ →

→ →

→ →

⎧ = + Ω −Ω
⎪

= + Ω −Ω⎨
⎪ = + Ω −Ω⎩

 (5.2) 

where e
WSS GPSV → is the e frame velocity mapped from the centre point of the rear wheel 

axle to the GPS antenna phase centre, e
WSSV  is e frame velocity at the centre point of the 

rear wheel axle, 
Tb b b b

WSS GPS WSS GPS WSS GPS WSS GPSL x y z→ → → →⎡ ⎤= ⎣ ⎦  is the lever arm vector 

from the centre point of the rear wheel axle to the GPS antenna phase centre, e
SAS GPSV → is 
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the e frame velocity transformed from the centre point of the wheel axle to the GPS 

antenna phase centre, e
SASV  is e frame velocity at the centre point of the front wheel axle, 

Tb b b b
SAS GPS SAS GPS SAS GPS SAS GPSL x y z→ → → →⎡ ⎤= ⎣ ⎦  is the lever arm vector from the SAS to the 

GPS antenna phase centre, /
e

GL YRS GPSV → is the e frame velocity from the GL/YRS unit to 

the GPS antenna phase centre, /
e

GL YRSV  is e frame velocity at the centre point of the 

GL/YRS unit, and / / / /

Tb b b b
GL YRS GPS GL YRS GPS GL YRS GPS GL YRS GPSL x y z→ → → →⎡ ⎤= ⎣ ⎦  is the lever 

arm vector from the GL/YRS unit to the GPS antenna phase centre. 

5.2 Wheel Speed Sensor Lever Arm Estimation 

The lever arm vector between the centre point of the rear wheel axle and the GPS antenna 

phase centre can be estimated by the Kalman filter using a loose coupling strategy. The 

method discussed in this section also applies to the estimation of the IMU lever arm 

vector. A geometric layout of on-board vehicle sensors can be found from the vehicle 

manual. With the estimation of the lever arm vector of the wheel speed sensor, the lever 

arm vectors of other on-board vehicle sensors can be determined accordingly in terms of 

the geometric dimension of the sensors. 

The loose coupling strategy used for the estimation of WSS lever arm, as shown in Figure 

5.2, consists of a GPS-Only Kalman filter and an INS Kalman filter. The GPS-only 

Kalman filter estimates the position and velocity from GPS measurements. Instead of 

using the raw GPS measurement to update the centralized Kalman filter in the tight 

coupling strategy, the position and velocity estimated by the GPS-Only Kalman filter as 
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well as the WSS measurement are used to update the INS Kalman filter. Given the initial 

values of the lever arm vector, the error state of the lever arm vector is estimated by the 

INS Kalman filter. 

 

Figure 5.2 Loose coupling strategy for the estimation of the WSS lever arm effect 

For simplification, misalignment angles between the IMU body frame and the vehicle 

frame are not considered in the lever arm estimation. The error states of the lever arm 

vector and the wheel speed sensor scale factor are modeled as random constants, and are 

augmented to the state vector of the INS Kalman filter. The state vector of the Kalman 

filter consequently becomes, 

 e e e b b b
WSS GPSx r v b d L Sδ δ δ ε δ δ δ →⎡ ⎤= ∆⎣ ⎦  (5.3) 

where b
WSS GPSLδ →  is the error state of the lever arm vector, and Sδ is the error state of 

the wheel speed sensor scale factor. 
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For the low cost IMU, the Earth’s rotation rate in Equation (5.2) can be neglected. The 

measurement equation is shown as follows 

 / /
e e e b b
GPS INS WSS b WSS b ib WSS GPSv R V R L w→= + Ω +  (5.4) 

where [ ]0 0 T
WSS WSSV S v= ⋅  contains two non-holonomic constraints and the wheel 

speed sensor measurement WSSv , S is the wheel speed sensor scale factor, and 

/ /
e
GPS INS WSSv  is the velocity of the integrated system in the e frame.  

The perturbation of the right hand side of the measurement model in Equation (5.4) is 

shown in Equation (5.5) 

( )
( ) ( ) ( )

( )

e e b b
b WSS b ib WSS GPS

e e e b b e b b e b b
b WSS b WSS b ib WSS GPS b ib WSS GPS b ib WSS GPS
E E e e e SB b e b b

WSS WSS GPS b WSS b WSS GPS b ib WSS GPS

R V R L

R V R V S R L R L R L

V L R V S R L d R L

δ

δ δ δ δ δ

ε δ δ

→

→ → →

Ω
→ → →

⋅ + Ω

= ⋅ + ⋅ ⋅ + Ω + Ω + Ω

= − + ⋅ + ⋅ ⋅ − ⋅ + Ω

(5.5) 

where E
WSSV  is the skew-symmetric matrix of e

b WSSR V⋅ , E
WSS GPSLΩ → is the skew-symmetric 

matrix of e b b
b ib WSS GPSR L →Ω , and SB

WSS GPSL →  is the skew-symmetric matrix of b
WSS GPSL → . 

On the basis of Equations (5.4) and (5.5), the measurement model for the WSS lever arm 

vector estimation is shown in Equation (5.6) 

 3 3 3 3 3 3
E E e SB e b e

WSS WSS GPS b WSS GPS b ib b WSSH O I V L O R L R R VΩ
× × → × →⎡ ⎤= + − Ω −⎣ ⎦  (5.6) 

where O  is the null matrix with the subscripted dimensions. 
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5.3 Modeling of the On-Board Vehicle Sensor Errors Using a 

Stochastic Process 

Random constant, random walk and the first-order Gauss-Markov processes are 

commonly used stochastic processes to model random phenomena (Gelb 1974). 

A random constant is a non-dynamic quantity with a fixed, albeit random amplitude. It is 

modelled as an integrator with no input but with an initial condition, 

 0x =  (5.7) 

The random constant is appropriate for modelling typical phenomena that do not change 

their values over time (Maybeck 1979). As steering and turning operations generally 

occur over short time spans, it makes sense to model the steering angle sensor scale factor 

and bias as random constants. Similarly, other on-board vehicle sensor error parameters 

that are long-term stable, such as the tilt angles between the IMU body and vehicle 

frames, the wheel speed sensor scale factor as well as the lever arm vectors are also 

modelled as random constants. When IMU and on-board vehicle sensors are 

mechanically installed on a certain point, the tilt angles between the IMU body and 

vehicle frames as well as the lever arm vector are almost constant. The scale factor of the 

wheel speed sensor is closely related to payload on the vehicle, and is susceptible to the 

side slip. The side slip is associated with road conditions and high vehicle dynamics. It is 

not easy to predict. Without losing generality, it is reasonable to model the scale factor of 

the wheel speed sensor as the random constant. 
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However, it is a more appropriate way to model error states that vary slowly over time as 

a random walk or a first-order Gauss-Markov process.  

A random walk represents the output of an integrator driven by Gaussian white noise. It is 

an independent increment process, whose stochastic differential equation is expressed by 

 x w=  (5.8) 

where w  is the Gaussian white noise. 

The first-order Gauss-Markov process is used to model an exponentially correlated 

process comprised of white noise. It is characterized by an exponential autocorrelation 

 x x wβ= − +  (5.9) 

where β  is the reciprocal of the correlation time constant. 

Between the first-order Gauss-Markov process and the random walk, the first-order 

Gauss-Markov process can approximate the random walk when the correlation time is 

extreme large or 0β = . 

The typical usage of a first-order Gauss-Markov process is to model the slow varying 

errors in the IMU and on-board vehicle sensors, such as gyro and accelerometer biases as 

well as G sensors and yaw rate sensor biases. 

In the random walk process, if the noise power in the random walk process is expressed 

by 
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 ( ) ( ) ( )TE w t w q tτ δ τ⎡ ⎤ = −⎣ ⎦  (5.10) 

The variance of the random walk process is consequently (Brown & Hwang 1992), 

 2
0( )x q t tσ = −  (5.11) 

where 0t  is the initial time, and t  is the time at current epoch. 

It explicitly indicates that the variance of the random walk grows with time. The noises in 

IMU and some on-board vehicle sensors behave as the random walk when integrating the 

noise corrupted measurements of accelerometers/G sensors or gyros/yaw rate sensor into 

velocity or attitude angles. In this way, the accuracy of mechanization outputs of IMU or 

G sensor/Yaw rate sensor degrade with time due to the integral of noise in the random 

walk process. It can be seen the noise is another factor that leads to the drift error in the 

stand-alone inertial system in addition to the error sources such as biases. 

5.4 GPS/INS/Wheel Speed Sensor Integration Algorithm 

When using a centralized Kalman filter, the GPS/INS integrated system augments double 

differenced ambiguities ( N∇∆ ) when necessary into the INS dynamics error model in 

Equation (2.16). The dynamics model for the GPS/INS centralized Kalman filter is 

consequently given by Equation (5.12) (Petovello 2003). 

Equation (5.12) implies that the bias states for the accelerometers and gyros are modeled 

as first-order Gauss-Markov processes, although any other suitable models could be used 

instead. 
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⎡ ⎤
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⎣ ⎦

 (5.12) 

where N∆∇  is the vector of double difference carrier phase ambiguities, and /GPS INSF  

is the dynamics matrix for the GPS/INS integration strategy, /GPS INSG  is the shaping 

matrix of the driving noise, and w  is the noise matrix. 

In terms of the GPS/INS/WSS integration strategy shown in Figure 4.3, the scale factor 

of the wheel speed sensor and the tilt angles between the vehicle and body frames are 

augmented to the error states of the GPS/INS centralized Kalman filter. Thus, the 

dynamics model in Equation (5.12) is augmented into Equation (5.13). The wheel speed 

sensor scale factor and the tilt angles between the b and v frames are modeled as random 

constants. 
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 (5.13) 

where / /GPS INS WSSF is the dynamics matrix for the GPS/INS/WSS integration strategy, 

/ /GPS INS WSSG is the shaping matrix, Sδ is the wheel speed sensor scale factor error state, 

and [ ]Tb vε δα δβ δγ− = is the error vector of the tilt angles between the body frame 

and the vehicle frame corresponding to the X, Y and Z axes, respectively. 

Since wheel speed is measured in the vehicle frame, whereas velocities in the integrated 

system are parameterized in the ECEF frame, the WSS update can be carried out either in 

the e frame by transforming the WSS measurement into the e frame, or alternatively it 

can be carried out in the v frame by transforming the integrated velocities into the v frame. 

In this research, the WSS update is carried out in the v frame. 
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The velocity at the centre point of the rear wheel axle represents the average of the two 

rear wheel speed sensor measurements. It is used as the external velocity update to aid the 

INS. The wheel speed sensor provides the velocity information in the longitudinal 

direction (along-track) of the vehicle. The non-holonomic constraints are applied in 

vertical and lateral (cross-track) directions of the vehicle frame. As shown in Figure 5.3, 

the non-holonomic constraints mean that the velocities in vertical and lateral (cross-track) 

directions are zero if the vehicle does not jump off and slide on the ground. 

 

Figure 5.3 Non-holonomic constraints 

The measurement equation in the Kalman filter is expressed by Equation (5.14) with two 

non-holonomic constraints being applied to the X and Z axes of the vehicle frame. 

 
0

( )
0

v e T e
wss b b mS v R R v w

⎡ ⎤
⎢ ⎥⋅ = +⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.14) 

where S  is the wheel speed sensor scale factor, and v
bR  is the direction cosine matrix 

between the b and v frames as calculated by Equation (5.15) 

 ( )3 1 2( ) ( )v
bR R R Rγ α β=  (5.15) 
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where , ,α β γ  are the tilt angles between the b and v frames with respect to the X, Y 

and Z axes, respectively. 

The perturbation of the left hand side of Equation (5.16) is expressed by the following 

equation 

 
0 0

 
0 0
WSS WSS WSSS v v S V Sδ δ δ

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= =⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (5.16) 

where [ ]0 0 T
WSS WSSV v= is the measurement used for the WSS update. It is a 3x1 

vector.  

The perturbation of the right hand side of Equation (5.14) is shown in Equation (5.17)  

 ( ( ) ) ( ) ( )v e T e v e T e v e T E e V
b b b b b b b vR R v R R v R R V Vδ δ ε ε −= + −  (5.17) 

where ev  is the velocity in the integrated system in the e frame, and ( )v v e T e
b bv R R v=  is 

the integrated velocity in the v frame. EV  is the skew-symmetric matrix of the 

integrated velocity in the e frame ev , and VV  is the skew-symmetric matrix of the 

integrated velocity expressed in the vehicle frame vv . 

From Equations (4.16) and (5.14), the measurement misclosure is shown in Equation 

(5.18). 

 
0

( )
0

v e T e
z wss b be S v R R v

⎡ ⎤
⎢ ⎥= ⋅ −⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.18) 

From Equations (4.17) and (5.14), the design matrix is derived from Equation (5.19)  
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( ) ( )

     =

v e T e v e T E e V
z b b b b b v WSS m

WSS m

e R R v R R V V V S
H x

δ ε ε δ ω
δ ω

−= + − − +
+

 (5.19) 

Thus, the design matrix WSSH  is summarized below 

3 3 3 3 3 3 3( ) ( )v e T v e T E V
WSS b b b b AR WSSH O R R R R V O O O V V× × × ×⎡ ⎤= − −⎣ ⎦  (5.20) 

Equation (5.20) is a hyper-matrix in which each sub-matrix corresponds to the error states 

defined in (5.13). O  is a null matrix with subscripted dimensions. 

5.5 GPS/INS/G Sensors/Yaw Rate Sensor Integration Algorithm 

As shown in Figure 4.4, the biases of the G sensors and yaw rate sensor are augmented 

into the GPS/INS centralized Kalman filter as a first-order Gauss-Markov process. 

Consequently, the dynamics model for the GPS/INS/GL/YRS integration strategy is 

shown in Equation (5.21) 
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= +

 (5.21) 

where GLbδ  is the (2x1) error vector of the G sensor biases, YRSdδ  is the (1x1) error 

vector of the yaw rate sensor bias, GLβ  and YRSβ  are the time constant reciprocals of 

the first-order Gauss-Markov process model for the GL and YRS biases respectively, 

GLw  and YRSw  are the driving noises for the GL and YRS biases respectively, 

/ / /GPS INS GL YRSF is the dynamics matrix for the GPS/INS/GL/YRS integration strategy and 

/ / /GPS INS GL YRSG is the shaping matrix. 

When using the G sensors and yaw rate sensor, the equations of motion in the body frame 

are shown in Equation (5.22) (Dissanayake et al. 2001). Since the non-holonomic 
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constraint is applied in the vertical direction, the vertical velocity is only coupled with 

gravity. 

 

( )
( ) ( )

1

2

( )b b
x x GL y YRS x

b b
y y GL x YRS y

b b
z z

V f b V r d g

V f b V r d g

V g

⎧ = − − − +
⎪⎪ = − + − +⎨
⎪

=⎪⎩

 (5.22) 

where  and x yf f  are the specific force measurements from the G sensors, γ  is the yaw 

rate measurement , , ,b b b
x y zV V V  are the velocities in the b frame, and , ,b b b

x y zg g g  are the 

gravity elements in the b frame, [ ]1 2 0GL GL GLb b b=  and YRSd  are the biases of the G 

sensors and the yaw rate sensor respectively. 

The gravity vector in Equation (5.22) is derived from the gravity vector in the e frame by 

Equation (5.23). 

 ( )b e T e
bg R g=  (5.23) 

where eg is the gravity vector in the e frame, and e
bR  is the direction cosine matrix 

between the b and e frames.  

By defining 

 
1 0 0 0 1 0
0 1 0 ,   ,   1 0 0
0 0 0 0 0 0 0

x

y

f
M f f J

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.24) 

Equation (5.22) can be replaced by the state space vector in Equation (5.25), which 

simplifies the mathematical analysis. 
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 ( ) ( )b b b
GL YRSV M f b JV d gγ= − + − +  (5.25) 

where bV  is the velocity vector in the b frame, f  is the specific force vector from the 

G sensors, bg  is the gravity vector in the b frame, and JM ,  are the coefficients defined 

in Equation (5.24).  

Using the trapezoid method of integration (Jekeli 2000), the velocity in the body frame 

can be integrated from Equation (5.25) as  

 0

0 1 2

1 (0) (0) 0 (0) (0)

2 0 1
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b b

b b
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b b
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k M f b JV d g

k M f b J V k t d g

γ

γ

⎧ = + + ⋅ ∆⎪
⎪

= − + − +⎨
⎪

= − + + ⋅ ∆ − +⎪
⎩

 (5.26) 

where 0
bV  is the initial velocity that comes from the integrated system, (0)f  and (0)γ  

are the G sensors and yaw rate sensor measurements at the last epoch, (0)GLb  and (0)YRSd  

are the G sensors and yaw rate sensor biases at the last epoch, 0
bg  is the last epoch’s 

gravity vector in the b frame, 1k  and 2k  are parameters for the trapezoid integration, 

and t∆  is the integration time interval (defined to be 1 s in this research). As 

aforementioned, the update rate on the centralized Kalman filter from the external aid 

(GPS, WSS, GL/YRS and SAS) is selected at 1 Hz by making a tradeoff between the 

computational load and the system performance. Additionally, the integration of GL/YRS 

unit is bounded by retrieving the initial velocity from the integrated system output within 

each integration time interval. Hence the integration time interval for GL/YRS 

mechanization equation is selected at 1 Hz. 
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To conduct the GL/YRS update in the b frame, the velocity in the integrated system is 

transformed from the e frame into the b frame, and the measurement equation is 

expressed by Equation (5.27). 

 ( )b e T e
bV R v=  (5.27) 

where bV  is the velocity computed from Equation (5.26), and ev  is the velocity of the 

integrated system in the e frame.  

The perturbation of the gravity vector in Equation (5.23) can be derived as shown in 

Equation (5.28). 

 ( ) ( )b e T e e e T e e
b bg R N r R Gδ δ ε= +  (5.28) 

where eN  is the tensor of gravity gradients, eG  is the skew-symmetric matrix of the 

gravity vector in the e frame.  

Using Equations (5.26) and (5.28), the perturbation of the velocity vector bV  is 

expressed by Equation (5.29) 
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δ δ

= + ∆

∆ ∆
= +

∆ ∆
+ + + ⋅ ∆

 (5.29) 

The perturbation of the right hand side of Equation (5.27) is shown in Equation (5.30) 

 ( )( ) ( ) ( )e T e e T e e T E e
b b bR v R v R Vδ δ ε= +  (5.30) 
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where EV  is the skew-symmetric matrix of the integrated velocity in the e frame. 

Similarly to the WSS update, the measurement misclosure can be derived from Equations 

(4.16) and (5.27), as shown below 

 ( )   b e T e
z be V R v= −  (5.31) 

Based on Equations (5.29) and (5.30), the design matrix related to the GL/YRS velocity 

update is consequently derived in Equation (5.32) in terms of Equations (4.17) 
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t t- M b J V k t d w

 H x w
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δ δ ε

δ δ

δ

= − +

∆ ∆⎡ ⎤= − + + − ∆⎢ ⎥⎣ ⎦
∆ ∆

− + ∆ +

= +

 (5.32) 

where /GL YRSH  is the design matrix for the GL/YRS update, which is coupled with the 

error states of position, velocity, b to e frame misalignment angles and GL/YRS biases. 

More specifically, the design matrix is: 

/

3 3 3 3 3 0 1( ) ( ) ( ) ( ) ( )
2 2 2 2

GL YRS

e T e e T e T E e T e b
b b b b AR

H
t t t tR N R R V R G t O O O - M J V k t× × ×

=

∆ ∆ ∆ ∆⎡ ⎤− ∆ − + ∆⎢ ⎥⎣ ⎦

 (5.33) 

In this research, the noise power of the GL/YRS was determined using data from a static 

test by calculating the average standard deviation across 40 evenly spaced one-second 

intervals of static data. When performing integration with the GL/YRS measurements to 

derive velocity, the noise in the GL/YRS generates a random walk error because of the 

integration. In terms of Equation (5.11), the integral of G sensor noise into the velocity 
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behaves as a random walk process. The variance resulting from the propagation of noise 

is 

 2 2
b
Noise

GLV
tσ σ= ∆  (5.34) 

where 2
b
Noisev

σ  is the noise power of the G sensors, t∆  is the time interval for integration, 

and 2
b
NoiseV

σ  is the variance propagated by measurement noise. 

Considering that integration is performed every 1 s, and the initial value comes from the 

integrated system every 1 s, 2 2
b

GLNoiseV
σ σ=  herein. Therefore, the velocity variance for the 

GL/YRS velocity update can be tuned adaptively in terms of variance propagation theory 

from Equation (5.26), which is shown in Equation (5.35) 
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 (5.35) 

where 2
bVσ  is the velocity variance of the GL/YRS, 2

GLbσ  and 2
YRSdσ  are the estimated 

variances of GL/YRS biases provided by the Kalman filter, 
(0)

2
GLbσ  and 

(0)

2
YRSdσ  are the 

variances of GL/YRS biases at the previous step, 
0

2
bVσ  is the initial velocity variance 

from the integrated system, 2
bgσ  is the variance of the gravity vector in the b frame, and 

2
erσ  is the position variance in the e frame. 
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5.6 GPS/INS/Steering Angle Sensor Integration Algorithm 

In the dynamics model for the GPS/INS/Steering angle sensor integrated system, the 

scale factor and the bias of the steering angle sensor are augmented into the error state 

vector of the GPS/INS centralized Kalman filter. The scale factor and steering angle 

sensor bias are all modeled as random constants. The dynamics model is therefore 

expressed by 

 

/

|
|
|
|

 |
    

|
|
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 (5.36) 

where SASSδ  is the error state of the steering angle sensor, SASdδ is the error state of the 

steering angle sensor bias, / /GPS INS SASF  is the dynamics matrix of the GPS/INS/SAS 

integration strategy, and / /GPS INS SASG is the shaping matrix of the GPS/INS/SAS 

integration strategy. 
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Assuming the sideslip of the front tire is zero, the steering angle can be estimated from 

the velocity in the vehicle frame. The measurement model for the GPS/INS/Steering 

angle sensor is shown in Equation (5.37) 

 1tan
v
x

SAS SAS mv
y

vS d w
v

ψ − ⎛ ⎞
− = − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.37) 

where SASS  is the scale factor of the steering angle sensor, SASd  is the bias of the 

steering angle sensor, ψ  is the steering angle sensor measurement, and mw  is 

measurement noise.  

The opposite sign on the right hand side of Equation (5.37), which represents the 

estimated steering angle from the velocity in the vehicle frame, is due to the definition of 

the vehicle frame as Right-Front-Up, while a positive steering angle corresponds to a left 

turn which is contrary in sign to the value calculated from the estimated velocity.  

The velocity in Equation (5.37) is defined in the vehicle frame, which is obtained by 

transforming the velocity from the ECEF frame, as shown in Equation (5.38) 

 ( )v v e T e
b bv R R v=  (5.38) 

The measurement misclosure is computed below 

 1tan
v
x

z SAS SAS v
y

ve S d
v

ψ − ⎛ ⎞
= − + ⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.39) 

The perturbation of the measurement on the left hand side of Equation (5.37) is shown in 

Equation (5.40) 
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 ( )SAS SAS SAS SASz S d S dδ δ ψ ψδ δ= − = −  (5.40) 

The perturbation of the velocity in the vehicle frame shown in Equation (5.38) is derived 

by  

 
( ) ( )

     e e

v v e T e v e T E e
b b b b

e e
v

v R R v R R V

C v C
ε

δ δ ε

δ ε

= +

= +
 (5.41) 

where ( )e
v e T
b bv

C R R=  is the coefficient of the perturbation of velocity (in the v frame) 

with respect to the velocity error state, EV  is the skew-symmetric matrix of the 

integrated velocity in the ECEF frame, and ( )e
v e T E
b bC R R V

ε
= is the coefficient of 

perturbation of the velocity (in the v frame) with respect to misalignment angles  

The perturbation of the estimated steering angle is: 
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 (5.42) 

Substituting Equation (5.41) for Equation (5.42) gives, 
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where ( , )ev
C i j  represents the element of ev

C  matrix at the i-th row and j-th column. 

( , )eC i j
ε

 represents the element of eC
ε

 matrix at the i-th row and j-th column. 

e e e e
x y zv v v vδ δ δ δ⎡ ⎤= ⎣ ⎦  is the velocity error state vector, and e e e e

x y zε ε ε ε⎡ ⎤= ⎣ ⎦  is the 

misalignment angle vector. 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
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and  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

(2,1) (1,1) (2,2) (1,2) (2,3) (1,3)e e e e e e
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 e e
e e

H v H
h C v C

δ ε
δ δ ε= +  (5.44) 

On the basis of Equations (5.40) and (5.44), the design matrix for the steering angle 

sensor update can be derived from Equation (5.45) 

 
/ /     =

e e
e e

z m SAS SASHv H

GPS INS SAS m

e h z C v C S d

H x
ε

δ δ ω δ ε ψδ δ

δ ω

= − + = + − +

+
 (5.45) 

Therefore, the design matrix is summarized below: 

 1 3 1 3 1 3 1 1.0e eSAS ARH v H
H O C C O O O

δ ε
ψ× × × ×⎡ ⎤= −⎣ ⎦  (5.46) 

5.7 GPS/INS/WSS/SAS/GL/YRS Integrated Algorithms 

As described in Section 4.2.4, the integration strategy GPS/INS/WSS/SAS/GL/YRS 

integrates all on-board vehicle sensors with the GPS/INS. The WSS and GL/YRS are 

incorporated as a mechanism for the detection/alleviation of lateral non-holonomic 

constraint violation applied in the WSS update. Following the GPS/INS/WSS/GL/YRS 
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update, the steering angle sensor updates the centralized Kalman filter sequentially. By 

augmenting all error states associated with on-board vehicle sensors into the error state 

vector of the GPS/INS centralized Kalman filter, the dynamics model for this integration 

strategy is evolved into Equation (5.47). 
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where / / / / /GPS INS WSS SAS GL YRSF  is the dynamics matrix for this integration strategy, and 

/ / / / /GPS INS WSS SAS GL YRSG is the shaping matrix.  

With respect to the mechanism for detecting and alleviating the violation of the lateral 

non-holonomic constraint, Figure 5.4 describes the geometric relationship between the 

WSS and GL/YRS, as well as a simplified vehicle’s bicycle model containing the rear 

wheel side slip angle. Vehicle’s bicycle model actually simplifies the four-wheel vehicle 

model into a two-wheel vehicle model along the vehicle gravity center. 

 

Figure 5.4 Geometric relationship between WSS and GL/YRS 
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The rear wheel side slip angle can be calculated in Equation (5.48) from the transformed 

velocity in the lateral and longitudinal directions using Ray (1995). 

 1tan
b
x r

r b
y

V L
V

γβ −
⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.48) 

where rβ  is the rear wheel side slip angle, rL  is the distance between the GL/YRS and 

WSS, and b
xV  and b

yV  are the lateral and longitudinal velocity derived from the 

GL/YRS. 

The lateral non-holonomic constraint is most frequently violated when the side slip angle 

is large. Therefore, the side slip angle provides a way to detect and alleviate a violation of 

this constraint. The design of this mechanism is described below. 

With a statistical analysis on the side slip angle, the positioning accuracy starts to degrade 

when the side slip angle is greater than 5 degrees whereas the lateral constraint is still 

applied in WSS update. Thus, a threshold of 5 degrees is selected in this research for 

detecting the violation of the lateral constraint. When the side slip angle is smaller than a 

threshold, the non-holonomic constraint is valid, and the non-holonomic constraints are 

applied in both the lateral and vertical directions. In this case, Equation (5.49) is used as 

the measurement for the WSS update 

 
0

0
WSS WSSV v

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.49) 
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By contrast, if the side slip angle exceeds a threshold, the violation of the lateral 

non-holonomic constraint can be replaced by the GL/YRS derived lateral velocity, i.e.  

 
0

b
x

WSS WSS

V
V v

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.50) 

The cooperation between the WSS and GL/YRS leads to a mechanism for the detection 

and alleviation of lateral non-holonomic constraint violation. As a result, the GPS/INS/ 

on-board vehicle sensor integrated positioning system can adapt to a variety of driving 

cases with high positioning accuracy. 

The velocity in vehicle frame used for WSS update, WSSV , is a vector that contains three 

elements. The longitudinal element is a real value that comes from WSS measurement. 

The lateral and vertical elements are virtual values that can be either non-holonomic 

constraints or other values from external measurements. Despite the fact that a lateral 

velocity can also be given from the INS mechanization output, it cannot be employed as 

an external or independent measurement to remove the lateral constraint if violated. 

Otherwise, a linear correlation or dependence will be introduced when performing 

external update to the centralized Kalman filter. GL/YRS unit, however, provides 

redundant and independent measurement for detecting and compensating the violation of 

the lateral constraint. 

To achieve a high positioning accuracy, it is necessary to switch Equation (5.49) and 

Equation (5.50) in terms of a side slip angle threshold. With a small side slip angle, the 
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lateral constraint is more close to the real situation where the lateral velocity is very 

small. If Equation (5.50) is still being used when the lateral constraint is not violated, the 

error and noise from GL/YRS unit will degrade the positioning accuracy. 

To match the dynamics model defined in Equation (5.47), the design matrices for WSS, 

SAS as well as GL/YRS measurements update are accordingly resized as follows: 

3 3 3 3 3 3 3 3 2 3 1 3 1 3 1( ) ( )v e T v e T E V
WSS b b b b AR WSSH O R R R R V O O O V V O O O O× × × × × × × ×⎡ ⎤= − −⎣ ⎦  (5.51) 
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e T e e T e T E b
b b b AR

GL YRS b

R G tt R N R R V O O O
H

J V k t ttO O - M O O

× × ×

× × × ×

⎡ ⎤∆∆
−⎢ ⎥

⎢ ⎥=
⎢ ⎥+ ⋅∆ ∆∆⎢ ⎥−
⎣ ⎦

(5.52) 

1 3 1 3 1 3 1 1 1 1 3 1 2 1 1 1.0e eSAS ARH v H
H O C C O O O O O O O

δ ε
ψ× × × × × × × ×⎡ ⎤= −⎣ ⎦ (5.53) 

5.8 Error Compensations in a Closed Loop Integrated System 

As discussed in Chapter 4, GPS, INS and on-board vehicle sensors are integrated in a 

closed loop. When on-board vehicle sensors and GPS perform external update, the error 

states of navigation information (position, velocity and attitude) as well as IMU and 

on-board vehicle sensor errors are estimated from the centralized Kalman filter. The 

estimated error states are fed back to the integrated system to update the integrated 

solution and compensate the errors in the raw measurements of the IMU and on-board 

vehicle sensors. In this way, the external measurements used in the Kalman filter as well 

as the integrated system solution become close to the true value, and a high positioning 

accuracy can be achieved. 

The estimated error states of position, velocity and attitude are used to update the 
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navigation information computed from the INS by 

 
ˆ  
ˆ  

ˆ( )l l
b b

r r r
v v v

R I E Rε

δ
δ

= +
= +

= −

 (5.54) 

where I is the identity matrix, Eε is the skew-symmetric matrix of ε , r̂  and v̂  are 

the position and velocity from INS integrated solution, r  and v  are the position and 

velocity after updating from the error states in the Kalman filter, l
bR  is the updated 

direction cosine matrix, and ˆ l
bR  is the direction cosine matrix computed from the INS 

integrated system. 

Using the estimated error states of accelerometer and gyro biases, the previous estimated 

IMU biases are updated by 

 
ˆ

ˆ
b b b

d d d

δ

δ

= +

= +
 (5.55) 

where b̂ and d̂  are the previous accelerometer gyro and accelerometer biases, and b  

and d  are the updated value by the estimated error states of bδ and dδ in the Kalman 

filter. 

The IMU raw measurements are compensated for the estimated biases by 

 
ˆ

ˆ

b b

b b
ib ib

f f b
dω ω

= −

= −
 (5.56) 

where bf  and b
ibω  are the compensated IMU measurements on the basis of the raw 

IMU measurements ˆ bf  and ˆ b
ibω .  
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Similar to the IMU, the error states of the on-board vehicle sensors are updated by  

 

ˆ     
ˆ 
ˆ 
ˆ  
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S S S

S S S

d d d
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δ
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= +

 (5.57) 

where the existing wheel speed sensor scale factor Ŝ , the steering angle sensor scale 

factor ˆ
SASS , the steering angle sensor bias ˆ

SASd , the G sensor bias ĜLb  and the yaw rate 

sensor bias ˆ
Yawd are updated by the error states Sδ , SASSδ , SASdδ , GLbδ  and Yawdδ  

respectively to introduce more accurate values of S , SASS , SASd , GLb  and Yawd . 

Consequently, the on-board vehicle sensor raw measurements are compensated by the 

updated scale factors or the biases to give more accurate values used as the measurements 

in the centralized Kalman filter, 

 

ˆ /
ˆ   
ˆ 
ˆ     = 

WSS WSS

SAS SAS

GL GL GL

Yaw

v v S
S d

f f b
d

ψ ψ

γ γ

=
= −

= −
−

 (5.58) 

where ˆWSSv , ψ̂ , ĜLf  and γ̂  are the raw measurements of wheel speed sensor, steering 

angle sensor, G sensors and yaw rate sensor, respectively. 

5.9 External Aiding on GPS Ambiguity Resolution 

Reliable and fast ambiguity resolution has crucial effects on high-accuracy GPS 

applications. The search volume of ambiguity resolution is closely related to ambiguity 
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resolution speed, and is often measured by the Ambiguity Dilution of Precision (ADOP) 

given by Teunissen and Odijk (1997), 

 
1

ˆ
m

NADOP P=  (5.59) 

where NPˆ  is the covariance matrix of the estimated ambiguities, and m  is the number of 

double difference ambiguities being estimated. 

It can be seen from Equation (5.59) that the search volume for ambiguity resolution is 

closely related to the covariance of the float ambiguities. Scherzinger (2002) and 

Petovello (2003) as well as Zhang et al. (2005) analyzed the impact of inertial aiding on 

ambiguity resolution over GPS-only by investigating the covariance matrix. Based on this 

work, three strategies, including GPS-only, GPS/INS and GPS/INS/on-board vehicle 

sensors, are compared for the time to fix ambiguities after GPS outages. 

Assuming that the covariance matrix after resetting the ambiguity resolution is xPˆ , and no 

correlation exists between the error states of the Kalman filter and the ambiguity states, 

that is  

 ˆ
ˆ

ˆ

0
0

r
X

N

P
P

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5.60) 

where XP ˆ is the initial covariance matrix after resetting the ambiguity resolution, NPˆ is the 

covariance matrix of estimated float ambiguities, and rPˆ  is the covariance matrix of the 

estimated error states. 
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Scherzinger (2002) investigated the relationship between a posteriori covariance matrix 

of floated ambiguity and estimated error states, as illustrated by  
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 (5.61) 

where ˆ 1NP  and ˆ 2NP are the a posteriori VCV matrix of the float ambiguities for 

strategies 1 and 2, ˆ1rP−  and ˆ2rP−  are the initial the a priori VCV matrix of the error states 

after the reset of ambiguity for Strategies 1 and 2, λ  is the wavelength, Nσ  is the 

initial accuracy of the float ambiguities, D  is the double difference operator, A  is the 

single-difference measurement model design matrix, NH Iλ=  is the design matrix 

correlated with ambiguity, and Rφ  is the carrier phase measurement accuracy.  

Equation (5.61) implies qualitatively that a smaller the a priori covariance matrix of the 

error states is associated with a smaller covariance matrix of the float ambiguities. For 

example, if the a priori covariance matrix of the error states for Strategy 1 is smaller than 

that for Strategy 2,  

 ˆ ˆ1 2P Pr r
− −<  (5.62) 

then, the a priori VCV matrix of the float ambiguity for Strategy 1 is accordingly smaller 

than for Strategy 2, namely 

 ˆ ˆ1 2P PN N<  (5.63) 
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Thus, a smaller the a priori covariance matrix of error states (such as the position error 

states) can introduce a smaller covariance matrix of the float ambiguities, which leads to 

a smaller ambiguity search volume and, consequently, to a reduction in the time-to-fix 

ambiguities.  

With respect to resetting the ambiguity resolution process after GPS outages, the a priori 

covariance matrix of the error states can be initialized in three ways in terms of different 

integration strategies implemented for the integrated system. The effects of different 

strategies on the time-to-fix ambiguities are analyzed as follows.  

Case I: GPS-Only. In this strategy, the position, velocity as well as the position and 

covariance matrix are initialized using DD C/A code solution when resetting ambiguities 

after GPS outages. The initial positioning accuracy derived from the DD pseudorange 

measurements is at the level of several metres.  

Case II: INS aiding during ambiguity resolution. During GPS outages, the position and 

velocity are derived from the INS mechanization equation. The covariance matrix is 

propagated by a prediction without external updating, as illustrated by Equation (5.64). 
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 (5.64) 

where Φ  is the transition matrix, kQ  is the process noise matrix in the current epoch, 

k̂r
P− is the a priori covariance matrix at the current epoch, and 

k̂r
P+  is the a posteriori 

covariance at the current epoch. 
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The posteriori covariance, 
k̂r

P+ , in Equation (5.64) measures the accuracy of the error 

states. Without external update, the INS error drifts with time. As noise is accumulated 

epoch by epoch, the propagated covariance matrix also increases with time. After GPS 

outages, 
k̂r

P+  is used as the initial covariance matrix for ambiguity resolution. 

Case III: INS/On-board vehicle sensor aiding ambiguity resolution. In this strategy, the 

on-board vehicle sensors perform the external update on the INS system. The 

measurement model for the on-board vehicle sensor update is expressed by Equation 

(5.65), 

 v v vz H x wδ= +  (5.65) 

where vz is the measurement misclosure of the on-board vehicle sensors, vH  is the 

design matrix of the on-board vehicle sensors, and vw  is the measurement noise of the 

on-board vehicle sensors. 

The INS-only propagated covariance matrix is updated by on-board vehicle sensors, as 

shown below 
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where vR is the measurement accuracy of the on-board vehicle sensors. 

Since the term 
1 1 1

1
ˆ ˆ ˆ( )
k k k

T T
r v v r v v v rP H H P H R H P
+ + +

− − − −+  in Equation (5.66) is quadratic in nature, 

the external update from the on-board vehicle sensors can limit the INS drift error and 
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reduce the INS propagated covariance to some degree depending on the measurement 

accuracy of the on-board vehicle sensors. 

In summary, the covariance matrix of the float ambiguities determines the ambiguity 

search space. A smaller initial covariance matrix of the error states in the Kalman filter 

(more specifically the position error states) is associated with a smaller covariance matrix 

of the float ambiguities. Thus, faster ambiguity resolution can be achieved by a smaller 

initial covariance of the error states. A comparison of the aforementioned three strategies 

on the performance of ambiguity resolution after GPS outages is therefore investigated by 

their initial covariance matrix of error states. Compared to INS-only aiding on ambiguity 

resolution, INS/on-board vehicle sensor aiding can reduce the covariance by an on-board 

vehicle sensor update. As a result, faster ambiguity resolution can be expected from 

INS/on-board vehicle sensor aiding than from INS-only aiding. The degree of 

improvement depends on the measurement accuracy of the on-board vehicle sensors. The 

initial position accuracy for ambiguity resolution with the GPS-only strategy can be about 

several metres. In contrast, the covariance of either the INS-only or INS/on-board vehicle 

sensor system increases with time and is correlated with the quality of the IMU. The 

benefits gained from stand-alone INS or INS/on-board vehicle sensor aiding over a 

GPS-only system is related to the duration of GPS outages and the quality of the IMU. 

With shorter duration GPS outages and higher quality of IMUs, aiding from a stand-alone 

INS or from INS/on-board vehicle sensors on ambiguity resolution performs better than 
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the GPS-only strategy assuming the estimated standard deviation of the position drift 

error is smaller than the standard deviation of DD C/A code solution. On the contrary, 

when positioning drift error of the stand-alone INS or INS/on-board vehicle sensor 

system goes beyond the positioning accuracy derived from pseudorange measurements 

due to longer duration GPS outages or a lower quality IMU, the benefits of the 

time-to-fix ambiguity resolution gained from the stand-alone INS or INS/On-board 

vehicle sensor are expected to be somewhat limited. 
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Chapter 6 Real-Time GPS/INS/On-Board Vehicle Sensor 

Integrated System 

A hardware platform was set up to test the integration strategies and algorithms. The 

equipment used as well as the system configuration will be described in this chapter. By 

dealing with the GPS time latency in real-time, a method to implement the real-time 

GPS/INS/On-board vehicle sensor integrated system will also be discussed.  

6.1 Hardware Platform Setup 

Figure 6.1 gives an overview of the system used for the tests and data collection. It 

includes all the equipment used in the open-sky test that was processed in post-mission as 

well as all the real-time tests in open-sky, suburban and pseudo-urban areas, although 

only a subset of the IMUs (HG1700 IMU or CIMU) were used in each case for the 

generation of the reference trajectory. Through a connection to the interface unit, the 

on-board vehicle sensors and the low cost IMU data were time tagged and logged onto 

the PC1 via a serial port. This part was common to both the post-mission and real-time 

tests. All the GPS, low cost IMU and the on-board vehicle sensor data were collected or 

processed in real-time on PC2. Three NovAtel 600 antennas atop the van were connected 

to four NovAtel OEM4 GPS receivers for different purposes. To save antenna numbers 

and reduce the complexity of the lever arm effect, one splitter is used for two GPS 
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receivers. The FreeWave radio link antennas and transceivers were used to broadcast the 

GPS base station data for the real-time test. The CIMU data were collected by an 

Applanix POS LS system to generate the reference trajectory for all the real-time tests. 

The HG1700 IMU data were time-tagged and logged by a NovAtel SPAN system to 

provide the reference solution for the post-mission test in an open-sky area. 

 

Figure 6.1 System setup 

Figure 6.2 is a block diagram that illustrates the system setup. The GPS base station was 

setup on a pillar with a surveyed coordinate. For the post-mission test in the open-sky 

area, the GPS base station data was saved onto a flash card. For all the real-time tests, 

however, the reference GPS data was broadcast from the base station to the rover station 
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via a pair of FreeWave radio link antennas and transceivers. The data stream from the 

serial port of the base GPS receiver is packaged in a binary format defined by GPS 

receiver manufacturer. This binary data stream is picked up and broadcast by a radio 

transceiver at base station. With a radio link connection created between a pair of radio 

link transceivers at base and rover ends, the binary data stream from the serial port of 

base GPS receiver is consequently received at the rover station for real-time use. 

Antenna 1 was connected to a GPS receiver (20 Hz data rate) that was built into the PC1 

for time-tagging of the low cost IMU and the on-board vehicle sensor data. The low cost 

IMU and the on-board vehicle sensor data were interfaced with the PC1 via an interface 

unit and a serial port. The low cost IMU and the vehicle sensor data collected at 100 Hz 

by the PC1 were packaged in a binary format and logged onto PC2 via a RS232 serial 

port. The binary data stream with a combination of both low cost IMU and all on-board 

vehicle sensors constitutes a large data volume for serial port communication. To fulfil a 

real-time integrated system, a higher baud rate at 230400 bps is selected, which goes 

beyond the limit of current PC system nominated at 115200 bps. To overcome this 

limitation, a special PCI card (NI PCI-84304) for the enhancement of RS232 serial port 

communication speed is embedded into the PC.  
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Figure 6.2 System set-up block diagram 

As shown in Figure 6.2, the post-mission and real-time tests each collected and processed 

the data in different ways. In post-mission processing, the low cost IMU, the on-board 

vehicle sensors as well as the rover GPS data were collected and saved onto the hard 

drive of the PC2 by a specially designed data logging software. The GPS base station 
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data was saved onto a flash card. The GPS base and rover data as well as the low cost 

IMU and on-board vehicle sensor data was processed off-line to generate a post-mission 

solution. 

Unlike the post-mission test, the real-time tests collected and processed the data in 

real-time using the SAINTTM (Satellite And Inertial Navigation Technology) software. 

The real-time raw data was also logged onto the hard drive of PC2 for comparing the 

compatibility between the real-time and post-mission solutions. The GPS base station 

data (1 Hz data rate) was broadcast by a pair of radio transceivers. The SAINTTM 

software on the PC2 collected the real-time raw data via three RS232 serial ports. The 

data included the low cost IMU and the on-board vehicle sensor data, the GPS base 

station data broadcast by the radio link antenna and the transceiver as well as the GPS 

rover data. The GPS, low cost IMU and on-board vehicle sensor data was processed in 

real-time on the PC2 to generate a real-time solution. 

Using a splitter, Antenna 2 was connected to both a rover GPS receiver and the SPAN 

system GPS receiver. The GPS receiver in the SPAN system provided time-tagging to the 

HG1700 IMU data, which was saved on a flash card at 100 Hz data rate. The 

GPS/HG1700 IMU integrated solution provided a reference solution for the analysis of 

the post-mission test. 

An embedded NovAtel OEM4 GPS receiver in the POS LS system was connected to 

antenna 3. The CIMU data was collected at 200 Hz by the Applanix POS LS data logging 
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system. For all the real-time tests, the reference trajectory was generated by GPS/CIMU 

integrated solution using the Applanix Pos Pac software. 

6.2 GPS Latency 

In the real-time integrated positioning system, the GPS base station data is broadcast to 

the land vehicle by a radio link. A time delay will be introduced due to a certain amount 

of time taken for the transmission of base GPS data to the land vehicle. The time delay 

depends on the amount of data to be broadcast, the Baud rate of the radio link, the power 

of the radio link transceiver as well as the length of the separation between the GPS 

receiver and the vehicle. When the integrated system computes the time-matched double 

differenced GPS data, the GPS time is “behind” the most recent IMU or vehicle sensor 

time by the amount of the time delay called GPS latency. In the GPS/INS/On-board 

vehicle sensor real-time integrated system, the low cost IMU and the on-board vehicle 

sensor data was received synchronously on a same data flow encoded in a binary data 

format. Hence, no time latency exists between the IMU and on-board vehicle sensors. 

The GPS data is sampled at 1 Hz, and IMU data is sampled at 100 Hz. IMU data is 

processed at a higher rate than GPS. When the time matched double difference GPS data 

is received at the rover station, the GPS time latency is computed as the difference 

between the IMU time and the GPS time, i.e. 

GPS Time Latency=IMU time–GPS time 
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As IMU and on-board vehicle sensor data are considered to be synchronous, the GPS 

time latency with respect to IMU coexist to the on-board vehicle sensors. To achieve a 

high positioning accuracy, the GPS latency needs to be taken into account when a 

real-time integrated system is implemented by integrating GPS with INS and on-board 

vehicle sensors. 

6.3 Implementation of Real-Time Integrated System 

The most effective way to handle the GPS time latency in real-time is to buffer the 

relevant data, including the IMU data, the on-board vehicle sensor raw measurements, the 

INS mechanization states as well as the Kalman filter covariance matrix, when GPS data 

is not available, and to restore and reprocess the buffered data when the GPS data is 

available. 

In the software, the buffer was set up to tolerate a maximum GPS latency at 3 seconds. 

This selection represents a good compromise between the worst case of GPS latency and 

the data buffering/reprocessing capability in the real-time system. The GPS latency at 3 

seconds can cover the most of the worst cases of GPS latency and make the real-time 

system work in a proper way. A much larger maximum GPS latency will increase the 

time for data buffering, data restoration and data reprocessing, and lead to a malfunction 

of the real-time system. With the data buffering/restoring technique, the real-time solution 

can be expected to be compatible with the post-mission solution when the GPS time 

latency is less than 3 s. The GPS time latency varies from test to test. By investigating the 
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GPS time latency in each real-time test, the compatibility between the real-time and the 

post-mission solution can also be verified if the GPS time latency is less than 3 s. 

Figure 6.3 is a flowchart to show the procedure of the real-time data processing. The 

flowchart consists of three branches: IMU data processing, On-board vehicle sensor 

update and GPS data update. To keep the system accuracy and maintain computational 

efficiency of the real-time system, both the vehicle sensor and GPS update rates are 

selected to be 1 Hz. 

 

Figure 6.3 Real-time data processing flowchart 
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The INS is initialized by the GPS solution. The vehicle sensor and GPS data update the 

Kalman filter independently. During periods when no GPS and/or the vehicle sensor are 

available, the Kalman filter predicts ahead and the IMU mechanization equation is 

implemented at 10 Hz. The relevant IMU/INS parameters (including IMU raw data, the 

INS mechanization states as well as the centralized Kalman filter covariance matrix) are 

buffered. When the on-board vehicle sensor measurements are available, the on-board 

vehicle sensor raw measurements and other relevant parameters are buffered after the 

on-board vehicle sensor update on the Kalman filter is performed. Similarly, when GPS 

data is available, the following steps are performed: 

1. The relevant IMU/INS parameters and the on-board vehicle sensor data if any are 

restored from the data buffers at the GPS measurement time; 

2. The GPS update is performed, and; 

3. All of the buffered IMU and vehicle sensor data is reprocessed to the latest IMU and 

vehicle sensor time. 

To implement a real-time integrated system, Figure 6.4 illustrates the time sequence for 

real-time data processing (after Petovello 2003). Nine steps are classified and described 

below for the real-time data processing including INS mechanization, vehicle sensor 

update, GPS update, the buffering of the IMU/INS data and the vehicle sensor data, as 

well as the restoring/reprocessing the IMU and the on-board vehicle sensor data.  

Step 1. Initialize the INS at time t1. 
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Step 2. Process the IMU data as it is received.  This includes executing the INS 

mechanizations, predicting the INS Kalman filter error states and covariance 

matrix and buffering the relevant IMU data and INS mechanization states.  

Step 3. When vehicle sensor data is available at time t2, it is used to update the INS 

Kalman filter.  The data are then stored in a data buffer. 

Step 4. Continue to process the IMU data until the next measurement update is received 

(assumed here to be a GPS update).  As in Step 1, this involves executing the 

INS mechanizations, predicting the INS Kalman filter and buffering the relevant 

data. 

Step 5. When GPS data, time-tagged for time t1, is received at time t3, the relevant 

parameters in the buffer at time t1 are restored and the GPS update is performed. 

Step 6. Reprocess all of the buffered IMU/INS data from time t1 to t2.  Note that the 

IMU/INS data is still buffered during this processing. 

Step 7. At time t2, reprocess the buffered vehicle sensor data. 

Step 8. Reprocess all of the buffered IMU/INS data from time t2 to t3.  Note that the 

IMU/INS data is still buffered during this processing.  After this step, the 

system has “caught up” to the current data being received.  This is equivalent to 

Step 1, but the system is now “initialized” at time t3, instead of t1, and, 

Step 9. Continue processing and buffering IMU/INS data as it is received. Continue 

performing on-board vehicle sensor update and buffering the on-board vehicle 

sensor data if available. 



 

116

 

 

Figure 6.4 Data buffering, restoring and reprocessing sequence (after Petovello 2003) 
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Chapter 7 Tests, Results and Analysis 

This chapter describes the tests conducted in different areas for either real-time or 

post-mission processing. The data processing and analysis method is presented. Data 

collected from all tests is analyzed with respect to all the integration strategies discussed 

in Chapter 4. The tuning of the Kalman filter is verified and the benefits gained from the 

integration of on-board vehicle sensors in terms of the position and velocity accuracy as 

well as the ambiguity resolution are investigated. 

7.1 Test Descriptions 

The tests included an open-sky kinematic test processed in post-mission and real-time 

tests in various areas (open-sky, suburban and pseudo-urban areas). Each test ran for 

several minutes in static mode for initialization and 20-30 minutes in kinematic mode. 

The reference solution for the open-sky kinematic test processed in post-mission was 

generated by GPS/HG1700 IMU. 

For all real-time tests in open-sky, suburban and pseudo-urban areas, the integrated 

GPS/CIMU provided the reference information. During real-time tests, raw data was 

recorded along with the real-time solutions, which was used to assess the compatibility 

between the real-time and post-processed solutions. Due to an ideal GPS environment in 

the open-sky tests (post-mission and real-time), only L1 carrier phase measurement is 
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used. To maintain a reliable and fast ambiguity resolution under severe multipath effects 

in suburban and pseudo-urban areas, the widelane carrier phase measurements were 

employed in suburban and pseudo-urban area real-time tests. 

7.1.1 Post-Mission Kinematic Test in Open-Sky Area 

The purpose of the open-sky kinematic test processed in post-mission was to test the 

software for tuning of the Kalman filter, the modeling of sensors as well as the validity of 

the integration algorithm. The system performance and positioning accuracy for various 

integration strategies were assessed by simulating GPS outages over various times. 

Figure 7.1 gives an overview of this test. It was conducted on March 21, 2006 in 

Springbank near Calgary, which is an open-sky area with good GPS satellite visibility. 

 

Figure 7.1 Op atic test processed in post-mission 
en-sky kinem

Antenna 2
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The system ran several minutes in static mode for initialization, and approximately 30 

minutes in kinematic mode for positioning and navigation testing with a maximum GPS 

baseline length of 4 km. With an ideal environment for GPS ambiguity resolution, the 

GPS measurements used in this test included L1 carrier phase, Doppler and the C/A code. 

7.1.2 Real-Time Test Descriptions 

The real-time tests are described in terms of the test areas, namely, the open-sky, 

suburban and pseudo-urban areas, respectively. The real-time tests gave an evaluation of 

the validity of the design of the Kalman filter as well as the impact of various sensor 

combinations when the satellite signals were masked in suburban and pseudo-urban 

areas. 

The real-time open-sky test was conducted on June 28, 2006 in Springbank near Calgary. 

Figure 7.2 shows the GPS base station and the test surroundings. The GPS base station 

antenna was set up on a pillar with a surveyed coordinate.  Beside the pillar, a radio link 

antenna was erected on a tripod to broadcast the GPS base station measurement signals 

with a radio transceiver. The radio link transceiver broadcast the raw GPS measurements 

in a binary format from base station to the rover on the vehicle. 
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Figure 7.2 Description of real-time test in open-sky area 

The real-time test in a suburban area started and ended in front of the Calgary Centre for 

Innovative Technology (CCIT) building at the University of Calgary on June 28, 2006. 

The test was conducted around the campus with a maximum baseline of 2.5 km, and 

several minutes of static mode for initialization, as well as approximately 20 minutes for 

the real-time kinematic test. As shown in Figure 7.3, the GPS base station and radio link 

antennas were set up on the roof of the CCIT building. Also, partial and complete GPS 

outages were mainly introduced by the dense foliage, small buildings near the street as 

well as bridges. Unlike the open-sky area, the multipath error significantly increases in 

suburban or urban areas. To guarantee reliable ambiguity resolution, the widelane (L1-L2) 

carrier phase (rather than L1 in the open-sky test), Doppler and the C/A code 

measurements were used. 
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Figure 7.3 Real-time test in suburban area 

The pseudo-urban area approximates urban canyon environment but with overall lower 

masking angles and with severe masking conditions occurring for significantly shorter 

durations than in a real urban canyon (Petovello 2003). Using the same GPS base station 

and integration strategy as in the suburban area test, the pseudo-urban area test was 

conducted on the campus of the University of Calgary on June 28, 2006. The maximum 

baseline was around 1 km. The test ran several minutes in static mode for initialization as 

well as approximately 20 minutes in kinematic mode. The multipath error and GPS signal 

masking were more severe than that in the suburban area. Therefore, the widelane carrier 

phase, Doppler and C/A code measurements were also used. 

Figure 7.4 gives a brief description of the environment in the pseudo-urban area test. The 

tall buildings, tunnels and trees frequently masked the GPS satellite signals to introduce a 

position and velocity drift when the low cost IMU lost external aiding. The position and 
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velocity drift errors were measured by comparing the integration strategy of GPS/Low 

cost IMU/WSS/SAS/GL/YRS output with the GPS/CIMU integrated solution. Even 

though the navigational grade CIMU also drifts with time without GPS aiding, it drifts to 

a much smaller degree than the low cost IMU due to its high accuracy and quality. 

Therefore, even with relatively longer GPS masking duration in the pseudo-urban area, 

the accuracy of the reference solution generated by CIMU is still acceptable. The 

accuracy of the reference solution will be detailed in the following sections. 

 

Figure 7.4 Real-time test in pseudo-urban area 

7.2 Data Processing and Analysis Methods 

For each test, the data were processed and the results were analyzed among the six 

integration strategies, which include: 

1. GPS/INS,  
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2. GPS/INS/WSS, 

3. GPS/INS/SAS, 

4. GPS/INS/GL/YRS, 

5 GPS/INS/WSS/SAS, and 

6 GPS/INS/WSS/SAS/GL/YRS 

The data processing and analysis methods are described as follows. 

7.2.1 Analysis of GPS Information 

In the GPS/Low cost IMU/On-board vehicle sensor integrated system, GPS is the driving 

factor in terms of system accuracy. When GPS is fully available, it plays a dominant role 

in the integrated system and determines the absolute accuracy of the integrated system. 

To this end, the GPS availability, namely, the satellite availability in both the base and 

rover stations, was analyzed in all tests. Also, the satellite DOPs (horizontal and vertical 

dilutions of precision) which are measures of the satellite geometry are also shown in 

each test. Lower DOP values give better position accuracies. 

Correct and fast ambiguity resolution has crucial effects on the positioning accuracy 

when the carrier phase measurement is used.  In general, correct ambiguity resolution 

can result in a centimetre-level positioning accuracy. Associated with the number of 

satellites tracked, the number of double difference ambiguities that have been fixed is 

also shown. 
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In double differenced GPS, multipath, noise and the ionosphere are the main error 

sources. As discussed in Chapter 2, the ionospheric error is spatially correlated and its 

residual error level is about 2-3 ppm with respect to the baseline separation under normal 

conditions. The ionospheric error is generally negligible for short baselines. Multipath in 

the suburban and urban areas is much more severe than in open-sky conditions. In this 

research, the C/A code measurement is used for system integration in all tests. The C/A 

code is more susceptible to multipath error than the carrier phase. Even though C/A code 

can benefit ambiguity resolution by providing the unambiguous position information after 

GPS outages, the increased code error due to severe and highly variable multipath effects 

in the suburban and urban areas sometimes may lead to wrong and slowly converging 

ambiguity resolution. To improve the robustness of the ambiguity resolution, the 

widelane carrier phase measurement was used in the real-time suburban and 

pseudo-urban area tests. By contrast, the L1 carrier phase was used in the open-sky test 

due to a relatively benign multipath environment. The use of widelane measurements is at 

the cost of amplifying the noise by the linear combination of the L1 and L2 carrier phase. 

However, it is a tradeoff between fast and reliable ambiguity resolution and an increase in 

the noise. 

The carrier phase results (L1 and widelane) with fixed ambiguities and the C/A code 

residuals are investigated to give some relevant information on the accuracy of GPS 

solution as well as the correctness of the ambiguity resolution. With a good estimated 
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position, the overall L1 carrier phase residuals with fixed ambiguities are around 1-2 cm. 

The magnitudes of the WL carrier phase residuals are below 5 cm for the most part. If the 

truth solution is accurate to the centimetre-level, the C/A code residuals are essentially 

equivalent to the code errors (Petovello 2003). Unexpectedly large carrier phase residuals 

and/or biased pseudorange residuals suggest a wrong ambiguity fix or large multipath 

error may have occurred. 

7.2.2 GPS Time Latency 

For all real-time tests, the GPS latencies with respect to the IMU time are investigated. 

They were typically on the order of 0.1-0.2 s (Petovello, 2003). With the data 

buffering/restoring technique, the real-time solution can be compatible with the 

post-mission solution when the GPS time latency is less than 3 s. The GPS time latency 

varies from test to test. By investigating the GPS time latency in each real-time test, the 

compatibility between the real-time and the post-mission solution can also be verified if 

the GPS time latency is less than 3 s.  

7.2.3 Reference Solution and Its Accuracy 

To assess the performance of the GPS/Low cost IMU/On-board vehicle sensor integrated 

system, a reference solution is generated from another independent system such as the 

GPS/HG1700 IMU (tactical grade IMU) integrated system or GPS/CIMU (navigational 

grade IMU). As shown in the hardware platform description, three different GPS units are 
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employed to integrate with navigational grade, tactical grade and low cost IMUs for 

generating independent solutions. Furthermore, the reference solution can be generated 

by either the optimal backward smoothing technique or by a forward Kalman filtering 

technique. In the open-sky test with good GPS availability, the GPS determines the 

absolute accuracy. Both the GPS/HG1700 IMU and GPS/CIMU integrated solutions are 

accurate to the centimetre-level, and there is no significant difference in the optimal 

smoothing and forward Kalman filtering solutions. However, in the suburban and urban 

areas, both tactical and navigation grade IMUs are susceptible to position and velocity 

drift due to the frequent masking of satellite signals by trees, buildings and underpasses. 

As the CIMU is about 100 times more accurate than the HG1700 IMU, the reference 

trajectory generated by the GPS/CIMU with an optimal backward smoothing technique 

would be more reliable than that generated by the GPS/HG1700 IMU in suburban and 

urban areas. With this in mind, the reference trajectory in the open-sky kinematic test 

with post-mission was generated by the GPS/HG1700 IMU integrated solution without 

optimal smoothing. For the real-time tests in the open-sky, suburban and the 

pseudo-urban areas, however, the GPS/CIMU integrated solution with backward optimal 

smoothing was used to generate the reference. 

It is important to know the accuracy of the reference trajectory. For the reference 

generated by GPS/HG1700 solution, its accuracy was shown by the estimated standard 

deviations of position and velocity. Furthermore, some extra information can also be 
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given by investigating the carrier phase residuals with fixed ambiguity processing.  The 

GPS/CIMU solution processed by the Applanix POS Pac software gives the estimated 

RMS error of the estimated position and velocity. The estimated RMS errors are 

equivalent to the estimated standard deviation assuming the estimated error has zero 

mean.  

7.2.4 Performance Analysis of Various Integration Strategies 

The performances of the six integration strategies were assessed with respect to the 

reference by looking into their position and velocity difference and the estimated standard 

deviations of the position and velocity difference. The estimated position and velocity 

standard deviations are an estimate of the error by the Kalman filter, which should have 

good agreement with the actual error in an ideal case. In practice, however, it indicates 

that the model and parameters in the Kalman filter are well tuned if the estimated 

standard deviation does not deviate too much from the variation of the actual error, or 

more specifically the position and velocity differences in this case. The estimated 

standard deviations of the position and velocity differences are computed by variance 

propagation theory. Assuming the position (velocity) solution from the GPS/Low cost 

IMU/On-board vehicle sensor integrated system is 1X  with an estimated standard 

deviation 
1Xσ , and the corresponding solution from the reference is 2X  with an 

estimated standard deviation 
2Xσ , the position (velocity) difference and the estimated 

standard deviation were computed by Equation (7.1) 
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To confirm the consistency of the position (velocity) difference and the estimated 

standard deviation of the difference, the position (velocity) difference and the 

Difference3σ±  (“3-sigma”) were plotted on the same plot. Statistically, the probability of 

the difference being Difference3σ±  is 99.74%. It implies that most of the difference should 

be within the scope of Difference3σ±  if the Kalman filter was well tuned.  

To check the validity of the Kalman filter by comparing the actual difference and the 

estimated standard deviation of the difference, only the results for the GPS/INS and the 

GPS/INS/WSS/SAS/GL/YRS strategies are investigated and illustrated by figures. This is 

feasible since these two integration strategies are two extreme cases. Among all the 

GPS/INS/On-board vehicle sensors integrated strategies, GPS/INS/WSS/SAS/GL/YRS 

integration strategy is the most typical one which covers all the information of the low 

cost IMU and all the on-board vehicle sensors. If its Kalman filter is verified to be well 

tuned, it suggests that any other integration strategy should also work well. 

7.3 Results and Analysis 

By comparing the six integration strategies for all tests, the test results are analyzed in the 

following order: 

1. Open-sky kinematic test - post-mission, 

2. Open-sky area - real-time, 
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3. Suburban area - real-time, and  

4. Pseudo-urban area – real-time. 

7.3.1 Open-Sky Kinematic Test - Post-Mission 

The post-mission results for the open-sky kinematic test were analyzed by using the 

GPS/HG1700 IMU tightly coupled solution as the reference. It is necessary to first 

analyze the performance and accuracy of the reference solution. Figure 7.5 shows the L1 

carrier phase residuals when the ambiguities are fixed, the baseline length and the 

pseudorange code residuals (colour-coded by PRN) for the reference solution. With a 

maximum separation between the GPS reference station and the vehicle being 

approximately 4 km, most of the L1 carrier phase residuals were within 1-2 cm. The code 

residuals were also within a reasonable level. It implies that ambiguities are resolved 

correctly. 

To be more specific, Figure 7.6 and Figure 7.7 show the estimated standard deviations of 

the position and velocity for the GPS/HG1700 integrated reference solution. The 

estimated standard deviation is a measure of the accuracy for the estimated solution. It 

can be seen that the reference is estimated to be accurate to the centimetre and cm/s level, 

which indicates that the GPS/HG1700 IMU integrated solution is sufficiently accurate to 

be used as the reference solution. 
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Figure 7.5 L1 Carrier phase and PRN code residuals for the reference solution (Open-sky 

test in post-mission) 

 

Figure 7.6 Estimated position standard deviation of the reference solution (Open-sky test 
in post-mission) 
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Figure 7.7 Estimated velocity standard deviation of the reference solution (Open-sky test 

in post-mission) 

With respect to GPS/Low cost IMU integrated system, Figure 7.8 and Figure 7.9 show 

the L1 carrier phase residuals with fixed ambiguities, C/A code residuals colour-coded by 

PRN, the satellite horizontal and vertical DOPs, the number of satellites tracked as well 

as the number of resolved ambiguities. With good GPS availability and satellite geometry, 

the DD ambiguities were fixed correctly, which is also implied by the reasonable L1 

carrier phase and the pseudorange code residuals. 
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Figure 7.8 L1 carrier phase and code residuals for GPS/Low cost IMU integrated solution 

(Open-sky test in post-mission) 

 

Figure 7.9 Satellite DOPs, SV numbers and fixed ambiguity numbers for GPS/Low cost 
IMU integrated solution (Open-sky test in post-mission) 

To verify that GPS determines the absolute accuracy in open-sky conditions, the 

GPS/Low-cost IMU integrated position was compared with the GPS-only solution as 
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shown in Figure 7.10. Table 7.1 gives the statistics of the position differences. It shows 

that the position difference between the GPS/Low-cost IMU and GPS-only has a zero 

mean, and the standard deviation of the position difference is at the millimetre level. The 

small difference between the GPS/Low-cost IMU and the GPS-only solution indicates 

that the integration of the low cost IMU and GPS did not introduce a deviation of the 

integrated solution with respect to the GPS-only solution, and consequently it can be 

assumed that the Kalman filter was designed properly. 

 
Figure 7.10 Position differences between GPS/Low cost IMU and the GPS-Only 

(Open-sky test in post-mission) 

Table 7.1 Statistics of the position differences between the GPS/Low cost IMU and the 
GPS-only solutions (Open-sky test in post-mission) 

Mean of position difference [cm] Standard deviation of position difference [cm] 

North East Up North East Up 

0.0 0.0 0.0 0.5 0.4 0.5 
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To go one step further, the consistency of the actual position and velocity differences and 

the estimated standard deviation of the position and velocity differences are investigated 

for the GPS/Low-cost IMU and the GPS/Low-cost IMU/WSS/SAS/GL/YRS integrated 

solutions with respect to the reference solutions. Figure 7.11 to Figure 7.14 show the 

position and the velocity differences (with the corresponding 3-sigma envelope) of the 

GPS/Low cost IMU and GPS/Low cost IMU/WSS/SAS/GL/YRS solutions. It can be 

seen that the difference is at the centimetre level with more noise in the GPS/Low cost 

IMU/WSS/SAS/GL/YRS integration strategy. As expected, most of the differences were 

within the 3-sigma boundary. The consistency of the actual differences and the estimated 

standard deviations of the differences indicate that the Kalman filters for these two 

integration strategies were well tuned from this scenario. 

Table 7.2 and Table 7.3 summarize the statistics of the position and velocity differences 

of all integration strategies with respect to the reference. The position and velocity 

differences of all integration strategies with respect to the reference are within the 

centimetre level when GPS is fully available. 
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Figure 7.11 Position differences between GPS/Low cost IMU and the reference solution 

(Open-sky test in post-mission) 

 
Figure 7.12 Velocity differences between GPS/Low cost IMU and the reference solution 

(Open-sky test for post-mission) 
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Figure 7.13 Position differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and 

the reference solution (Open-sky test in post-mission) 

 
Figure 7.14 Velocity differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and 

the reference solution (Open-sky test in post-mission) 
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Table 7.2 Statistics of the position differences between GPS/Low cost IMU/On-board 
vehicle sensor and the reference solution (Open-sky test in post-mission) 

Mean position difference 
[cm] 

standard deviation of 
position difference [cm]Strategies 

North East Up North East Up 
GPS/INS 0.0 0.0 0.7 1.5 1.3 1.1 

GPS/INS/WSS 0.0 0.0 0.0 3.3 3.1 1.9 
GPS/INS/SAS 0.0 0.1 0.6 3.4 3.0 1.8 

GPS/INS/GL/YRS -0.2 0.0 0.6 3.9 3.7 2.0 
GPS/INS/WSS/SAS -0.2 -0.1 0.6 3.4 3.1 2.0 

GPS/INS/WSS/SAS/GL/YRS -0.2 -0.1 0.6 3.4 3.1 2.0 

Table 7.3 Statistics of the velocity differences between GPS/Low cost IMU/On-board 
vehicle sensor and the reference solution (Open-sky test in post-mission) 

Mean velocity difference 
[cm/s] 

Standard deviation of 
velocity difference 

[cm/s] 
Strategies 

North East Up North East Up 
GPS/INS 0.0 0.0 0.4 2.3 2.3 1.4 

GPS/INS/WSS 0.0 0.0 0.4 2.3 2.4 1.4 
GPS/INS/SAS 0.0 0.0 0.4 2.4 2.4 1.4 

GPS/INS/GL/YRS 0.0 0.0 0.4 2.6 2.7 1.7 
GPS/INS/WSS/SAS 0.0 0.0 0.4 2.3 2.4 1.4 

GPS/INS/WSS/SAS/GL/YRS 0.0 0.0 0.4 2.3 2.4 1.4 

To investigate the benefits gained from the integration of the on-board vehicle sensors, 12 

GPS outages were simulated with a duration of 40 s. The simulated GPS outages are 

labelled by the red lines on the reference trajectory in Figure 7.15. The vehicle velocity 

and attitude associated with the 12 simulated GPS outages are shown in Figure 7.16 and 

Figure 7.17, respectively. 

Table 7.4 outlines the maximum vehicle dynamics during GPS outages. From the range 

for speed and the attitude angles and the maximum attitude angular rate summarized in 
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Table 7.4, it can be concluded that the simulated GPS outages cover a wide range of 

vehicle dynamics. Therefore, the simulated GPS outages are typical and useful for the 

evaluation of the position and velocity drift error of various integration strategies. 

 
Figure 7.15 Reference trajectory with the 12 simulated GPS outages (Open-sky test in 

post-mission) 

 

Figure 7.16 Velocity during 12 simulated outages (Open-sky test in post-mission) 
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Figure 7.17 Attitude during 12 simulated GPS outages (Open-sky test in post-mission) 

Table 7.4 Summary of the vehicle dynamics for 12 simulated GPS outages (Open-sky test 
in post-mission) 

 Speed Roll Pitch Azimuth 
Minimum 0.0 km/h -1.78 deg -5.25 deg 0.0 deg 
Maximum 78.8 km/h 8.34 deg 2.88 deg 359.0 deg 

Maximum rate - 8.58 deg/s 10.25 deg/s 27.13 deg/s 

A side slip angle is closely related to a violation of the lateral non-holonomic constraint. 

When a larger side slip angle (exceeds the five-degree threshold) is detected, the removal 

of the lateral non-holonomic constraint will improve the positioning accuracy to some 

degree. As a complicated phenomenon, side slips are correlated with many factors, such 

as the vehicle dynamics and road conditions. Figure 7.18 shows the computed side slip 

angles during the 12 simulated GPS outages, with a maximum of side slip angle of about 

20 degrees. By correlating the larger side slip angles with the vehicle dynamics 

(especially the vehicle attitude shown in Figure 7.17), the larger side slip angles that 
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appeared in the 12 simulated GPS outages mainly resulted from sharp turns, or larger 

roll/pitch angular rates due to bumpy or icy roads in the winter. The side slip angles 

appeared within the 12 simulated GPS outages are typical for the land vehicle positioning 

and navigation system. 

 
Figure 7.18 Side slip angles during 12 simulated GPS outages (Open-sky test in 

post-mission) 

To illustrate the position and velocity drift error for the 12 simulated 40 s GPS outages 

and to analyze the validity of the Kalman filter, Figure 7.19 to Figure 7.21 show the RMS 

position error and the average estimated standard deviation in the horizontal, up and the 

3D directions, respectively. Similarly, Figure 7.22 to Figure 7.24 show the RMS velocity 

error and the average estimated standard deviation in the same directions. Also shown in 

the figures (for comparison purposes) are the results of the associated GPS/HG1700 
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IMU/On-board vehicle sensor integration strategies. The solid lines represent the RMS 

error, and the dashed lines represent the average estimated deviation. 

Table 7.5 and Table 7.6 compare the position RMS errors and the average estimated 

standard deviations using different integration strategies for both the low cost IMU and 

HG1700 IMU, respectively. The corresponding velocity results are summarized in Table 

7.7 and Table 7.8. 

Being consistent with the relevant results of the GPS/HG1700 IMU/On-board vehicle 

integration strategies, the stand-alone low cost IMU system drifts very rapidly. However, 

significant benefits can be gained from the integration of the wheel speed sensor by 

improving the horizontal positioning accuracy by 91%. The next best sensor is the 

steering angle sensor which can improve the horizontal positioning accuracy by 50%. The 

horizontal positioning accuracy can be further enhanced by sequentially integrating the 

wheel speed sensor and the steering angle sensor. The improvement gained from the 

integration of the G sensors and yaw rate sensor is less significant than the wheel speed 

sensor or the steering angle sensor as their accuracy is at the same grade with the low cost 

IMU. With several larger side slip angles during the simulated GPS outages, the lateral 

non-holonomic constraint will most likely be violated when the side slip angles are larger 

than the 5-degree threshold. In these cases, the G sensors and yaw rate sensor can be 

employed to detect and alleviate the violation of the lateral non-holonomic constraint, 

which can enhance the positioning accuracy when the side slip angles exceed the 
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pre-defined threshold. Overall, the integration strategy with GPS, INS and all the vehicle 

sensors together (GPS/INS/WSS/SAS/GL/YRS) shows the best performance, as 

expected. 

 
Figure 7.19 Horizontal position RMS error and average estimated standard deviation 

(Open-sky test in post-mission) 
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Figure 7.20 Up position RMS and average estimated standard deviation (Open-sky test in 

post-mission) 

 
Figure 7.21 3D RMS position error and average estimated standard deviation (Open-sky 

test in post-mission) 
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Figure 7.22 Horizontal RMS velocity error and average estimated standard deviation 

(Open-sky test in post-mission) 
 

 
Figure 7.23 Up RMS velocity error and average estimated standard deviation (Open-sky 

test in post-mission) 
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Figure 7.24 3D RMS velocity error and average standard deviation (Open-skytest in 

post-mission) 

Table 7.5 RMS position error and average estimated standard deviation (Low cost IMU, 
Open-sky test in post-mission) 

Horizontal RMS position 
error at the end of 40 s GPS 

outages [m]  

Average estimated standard 
deviation at the end of 40 s 

GPS outages [m] 
Strategies for Low 

Cost IMU 
Horizontal Up 3D Horizontal Up 3D 

GPS/INS 
 30.48 2.45 30.58 31.98 7.36 32.82 

GPS/INS/WSS 
 2.92 0.80 3.03 3.59 2.30 4.27 

GPS/INS/SAS 
 14.38 2.47 14.59 19.59 6.80 20.74 

GPS/INS/GL/YRS 
 25.00 2.54 25.13 24.91 7.35 25.97 

GPS/INS/WSS/SAS 
 2.67 0.76 2.78 3.05 2.14 3.73 

GPS/INS/WSS/SAS 
/GL/YRS 2.27 0.81 2.41 2.02 2.25 3.02 
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Table 7.6 RMS position error and average estimated standard deviation (HG1700 IMU, 
Open-sky test in post mission) 

Horizontal RMS position 
error at the end of 40 s GPS 

outages [m]  

Average position estimated 
standard deviation at the end 

of 40 s GPS outages [m] 
Strategies for HG1700 

IMU 
Horizontal Up 3D Horizontal Up 3D 

GPS/INS 
 1.62 1.04 1.93 3.62 1.32 3.85 

GPS/INS/WSS 
 0.57 0.76 0.95 1.23 1.13 1.67 

GPS/INS/SAS 
 1.01 1.03 1.44 2.58 1.32 2.90 

GPS/INS/GL/YRS 
 1.49 1.03 1.81 3.56 1.32 3.80 

GPS/INS/WSS/SAS 
 0.55 0.76 0.94 1.22 1.13 1.66 

GPS/INS/WSS/SAS 
/GL/YRS 0.43 0.79 0.90 0.74 1.14 1.36 

Table 7.7 RMS velocity error and average velocity estimated standard deviation (Low 
cost IMU, open-sky test in post-mission) 

Horizontal RMS position 
error at the end of 40 s GPS 

outages [m/s]  

Average position estimated 
standard deviation at the end 

of 40 s GPS outages [m/s] 
Strategies for Low 

Cost IMU 
Horizontal Up 3D Horizontal Up 3D 

GPS/INS 
 1.87 0.10 1.87 1.94 0.31 1.96 

GPS/INS/WSS 
 0.17 0.05 0.18 0.22 0.14 0.26 

GPS/INS/SAS 
 1.01 0.10 1.02 1.28 0.30 1.32 

GPS/INS/GL/YRS 
 1.63 0.10 1.63 1.51 0.31 1.54 

GPS/INS/WSS/SAS 
 0.19 0.04 0.20 0.19 0.13 0.23 

GPS/INS/WSS/SAS 
/GL/YRS 0.12 0.05 0.13 0.14 0.14 0.20 
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Table 7.8 RMS velocity error and average velocity estimated standard deviation 
(HG1700 IMU, Open-sky test in post-mission) 

Horizontal RMS velocity 
error at the end of 40 s GPS 

outages [m/s]  

Average velocity estimated 
standard deviation at the end 

of 40 s GPS outages [m/s] 
Strategies for 
HG1700 IMU 

Horizontal Up 3D Horizontal Up 3D 
GPS/INS 

 0.09 0.04 0.10 0.18 0.05 0.19 

GPS/INS/WSS 
 0.03 0.03 0.05 0.07 0.05 0.08 

GPS/INS/SAS 
 0.05 0.04 0.07 0.13 0.05 0.14 

GPS/INS/GL/YRS 
 0.08 0.04 0.10 0.18 0.05 0.18 

GPS/INS/WSS/SAS 
 0.03 0.03 0.05 0.07 0.05 0.08 

GPS/INS/WSS/SAS 
/GL/YRS 0.03 0.03 0.04 0.05 0.05 0.07 

A full GPS outage is an extreme case in which the Kalman filter will only perform 

prediction or the on-board vehicle sensor update if selected. Using a tight coupling 

strategy implemented by a centralized Kalman filter, GPS can still update the Kalman 

filter and limit the INS position and velocity drift error with partial GPS outages (the 

double differenced observations are less than four). In land vehicle positioning 

applications, partial GPS outages can be introduced by dense foliage and tall buildings. 

To evaluate the effects of on-board vehicle sensors on positioning performance in the 

case of partial GPS availability, 12 partial GPS outages with 1, 2 and 3 double 

differenced satellites are simulated, respectively. As shown in Figure 7.25, the horizontal 

positioning accuracy is compared between various integration strategies for both the low 

cost and HG1700 tactical grade IMUs with partial and full GPS outages.  
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Table 7.9 gives the horizontal position RMS error at the end of the 40 second partial and 

full GPS outages with and without on-board vehicle sensor aiding on the GPS/Low cost 

IMU and GPS/HG1700 IMU integrated systems. With two or three double differenced 

satellites, the horizontal position error is relatively small. To be specific, the horizontal 

position RMS error is at the decimetre level for the low cost IMU integrated system, and 

is at the centimetre level for the HG1700 tactical grade IMU integrated system. GPS is a 

still a driving factor that determines the absolute system accuracy when two or more 

double differenced satellites are available. However, with only one double differenced 

satellite, the horizontal position error drifts with time rapidly without external aiding 

from the on-board vehicle sensors. However, its horizontal positioning error is still 

smaller than the case of a complete GPS outage. It implies that one double differenced 

satellite can still improve the horizontal positioning accuracy due to the structure of the 

centralized Kalman filter. Similar to the complete GPS outage, the integration of the 

on-board vehicle sensors can significantly reduce the horizontal positioning error when 

only one double differenced satellite is available. 
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Figure 7.25 Horizontal RMS position drift error with 40 s partial and full GPS outages 

(Open-sky test in post-mission) 

Table 7.9 Horizontal RMS position error at the end of 40 s partial and full GPS outages 
(Open-sky test in post-mission) 

Horizontal RMS position drift 
error at the end of 40 s GPS 

outages for low cost IMU [m] 

Horizontal RMS position drift 
error at the end of 40 s GPS 

outages for HG1700 IMU [m] 
Number of 

DD satellites 
available 

GPS/INS GPS/INS/WSS 
/SAS/GL/YRS GPS/INS GPS/INS/WSS

/SAS/GL/YRS
None 30.48 2.27 1.62 0.43 

1 28.56 1.96 1.34 0.43 
2 0.18 0.15 0.08 0.07 
3 0.14 0.13 0.06 0.04 

Since fast ambiguity resolution plays an important role in a precise positioning system, 

the improvement from the IMU and on-board vehicle sensors on ambiguity resolution is 

investigated. Twelve GPS outages are simulated with durations of 10 s, 20 s, 30 s and 
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40 s, respectively. For the data collected herein with the maximum baseline length at 4 

km, the correct ambiguities were always selected and thus focus is only given to the time 

required to fix the ambiguities. Figure 7.26 compares the average time to fix GPS 

ambiguities after various GPS outage durations for the GPS-Only, GPS/INS (including 

low cost IMU and HG1700 IMU), as well as GPS/INS/WSS/SAS/GL/YRS integration 

strategies. Table 7.10 summarizes the average time to fix GPS integer ambiguities shown 

in Figure 7.26. 

The time to fix integer ambiguities is determined by the search volume, which is closely 

related to the covariance of the estimated ambiguities reference. A GPS-only system is 

initialized by a differential pseudorange solution, which can be at the level of one to 

several metres. The initial positioning covariance matrix of either the stand-alone INS or 

INS/On-board vehicle sensor system grows with time and correlates with the quality of 

the IMU. With shorter GPS outage durations and a higher quality IMU, the stand-alone 

INS or INS/On-board vehicle sensor system outperforms the GPS-only strategy given 

that its estimated standard deviation of the position error state is smaller than the 

positioning standard deviation initialized by the DD pseudorange solution. Otherwise, the 

benefits gained from INS or INS/On-board vehicle sensor aiding is expected to be 

somewhat limited due to longer duration GPS outages or a lower quality of IMU. 

Compared to the stand-alone INS, the INS/On-board vehicle sensor system reduces the 

estimated covariance matrix by external aiding from the on-board vehicle sensors. Thus, 
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faster ambiguity resolution can be expected from the INS/On-board vehicle sensor 

system with respect to the stand-alone INS system. 

It can be seen from Figure 7.26 and Table 7.10 that the IMU can reduce the time-to-fix 

ambiguities over GPS-only, especially when the duration of the GPS outage is less than 

30 s. Due to a relatively lower quality, the low cost IMU has a larger estimated 

covariance than that for the tactical grade HG1700 IMU. Therefore, the benefits on the 

ambiguity resolution gained from the low cost IMU is less than that from the tactical 

grade HG1700 IMU. Furthermore, when all the on-board vehicle sensors are integrated 

with the IMU, the time to fix ambiguities can be further reduced on the basis of an IMU 

due to the fact that the on-board vehicle sensors increase the positioning accuracy and 

significantly reduce the estimated covariance of the ambiguities when integrated with an 

IMU. 

 
Figure 7.26 Average time to fix GPS ambiguities after GPS outages 
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Table 7.10 Average time to fix GPS ambiguities after GPS outages for different 
integration strategies (Open-sky test in post-mission) 

Average time to fix GPS ambiguities after 
GPS outages for different integration 

strategies [s] 
Strategies 

10 s 20 s 30 s 40 s 
GPS-Only 30.1 33.3 32.3 33.0 

GPS/HG1700 IMU 2.5 19.0 25.8 29.2 
GPS/HG1700 IMU/WSS/SAS/GL/YRS 2.1 17.0 24.3 27.9 

GPS/Low cost IMU 26.3 29.3 32.1 32.9 
GPS/Low cost IMU/WSS/SAS/GL/YRS 22.8 26.9 26.7 28.2 

7.3.2 Open-sky Area – Real-time Test 

With good GPS availability and satellite geometry in the open-sky real-time test, Figure 

7.27 and Figure 7.28 show the L1 carrier phase and pseudorange code residuals, the 

satellite horizontal and vertical DOPs, the number of tracked satellites and the number of 

fixed ambiguities for the GPS/Low cost IMU/WSS/SAS/GL/YRS integration strategy, as 

obtained in real-time. Most of the L1 carrier phase and code residuals are at a similar 

level to the open-sky post-mission results analyzed in Section 7.3.1. However, the carrier 

phase residuals increased to be more than 5 cm with a biased pseudorange residual 

around GPS time 339720 s. At this time period, the separation between the reference 

station and the vehicle was about 3 km, and the vehicle was passing a construction site 

near the road. The increased multipath error resulted from the construction site could 

account for the increased carrier phase residuals and the biased code residual on one 

satellite. This conjecture is confirmed by the fact that the residuals return to smaller 

values later in the data set. 
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Figure 7.27 L1 carrier phase residuals with fixed ambiguities and the C/A code residuals 

(Real-time open-sky test) 

 
Figure 7.28 Satellite DOPs, satellite availability and number of fixed ambiguities 

(Real-time open-sky test) 

Figure 7.29 shows the estimated GPS time latency associated with the open-sky real-time 

test. The GPS time latency was mostly on the order of 0.1 to 0.2 s with an exception of 

the maximum 1.8 s GPS time latency during a short time period around 339810 s. During 
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this time period, the vehicle was running across a construction site with a 3 km 

separation between the GPS reference station and the vehicle. The radio link transceiver 

did not work in a normal way within this short time period. Nevertheless, the data buffer 

in the software can tolerate 3 s of GPS time latency. The abnormal GPS time latency 

within this short time period can be handled properly by using the data 

buffering/restoring technique discussed in Section 3 of Chapter 6. Thus, the compatibility 

between the real-time and post-mission solutions can be guaranteed. 

 

Figure 7.29 GPS time latency with respect to IMU time (Real-time open-sky test) 

The vehicle dynamics (velocity and the attitude) and the side slip angles during the entire 

real-time test in the open-sky area are illustrated from Figure 7.30 to Figure 7.32, 

respectively. As the vehicle was operated on a flat road in the summer, the roll and pitch 

angles were less than 5 degrees. As a result, the side slip was less significant than the 

open-sky test conducted in the winter time for the post-mission analysis. Most of the side 
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slip angles are less than 5 degrees with the maximum values being about 8 degrees and 

sparsely distributed around the specific epochs at 339180 s and 339600 s, respectively. 

These two specific epochs are correlated with the vehicle’s turning maneuver which can 

be found from the azimuth and the side slip angle shown in Figure 7.31 and Figure 7.32.  

 

Figure 7.30 Vehicle velocity for real-time open-sky test 

 
Figure 7.31 Vehicle attitude for real-time open-sky test 
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Figure 7.32 Side slip angle for open-sky real-time test 

The reference trajectory generated by the GPS/CIMU is shown in Figure 7.33, and the 

estimated RMS for position and velocity are shown in Figure 7.34 and Figure 7.35, 

respectively. The estimated RMS of the position and velocity in GPS/CIMU integrated 

system is computed from Applanix POS PAC software. Some ripples in these figures are 

due to a higher CIMU mechanization output rate (20 Hz) and a lower GPS update rate 

(1 Hz). As an optimal backward smoothing was used, the estimated RMS is relatively 

large at the last epoch, because a backward Kalman filter is still not converged to a steady 

state. In general, the estimated horizontal position is accurate to be 1 cm, and the 

accuracy of the estimated position in the up direction is around 6 cm. The velocity 

accuracy is at the millimetre per second level. 
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Figure 7.33 Reference trajectory generated by the GPS/CIMU integrated solution 

(Open-sky real-time test) 

 

Figure 7.34 Estimated position RMS of reference solution (Open-sky real-time test) 
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Figure 7.35 Estimated velocity RMS of the reference solution (Open-sky real-time test) 

The position and the velocity differences between the real-time solution for the GPS/Low 

cost IMU/WSS/SASGL/YRS integration strategy and the reference solutions as well as 

the relevant 3–sigma envelopes are shown in Figure 7.36 and Figure 7.37, respectively. 

The statistics of the differences are given in Table 7.11. Similar to the open-sky 

post-mission results, the difference is also at the centimetre level. Most of the position 

and velocity differences are within the 3-sigma envelope. It indicates that the actual 

difference and the estimated standard deviation of the difference have a good agreement, 

and the Kalman filter is well tuned in the open sky area with good GPS availability. 
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Figure 7.36 Position difference between GPS/Low cost IMU/WSS/SAS/GL/YRS and 
reference solution (open-sky real-time test) 

 
Figure 7.37 Velocity difference between GPS/Low cost IMU/WSS/SAS/GL/YRS and the 

reference solution for open-sky real-time test 
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Table 7.11 Statistics of the position and velocity differences between the GPS/Low cost 
IMU/WSS/SAS/GL/YRS and the reference solution (Open-sky real-time test) 

Mean Standard deviation Items 
North East Up North East Up 

Position 
difference [cm] 0.5 0.2 -0.5 3.4 3.5 2.5 

Velocity 
difference [cm/s] 0.2 0.2 -0.2 2.9 2.8 2.4 

7.3.3 Suburban Area – Real-time Test 

For the real-time test in the suburban area, Figure 7.38 and Figure 7.39 show the detailed 

GPS information, which include the widelane carrier phase residuals with fixed 

ambiguities, baseline length, the pseudorange residuals, DOP values, the number of 

tracked satellites at the reference and rover stations (and their difference), as well as the 

number of fixed ambiguities. Since the widelane linear combination amplifies the noise, 

the widelane carrier phase residuals are larger (5 cm for the most part) than the L1 carrier 

phase residuals (1-2 cm for the most part) as shown in the open-sky test. The variable 

multipath in the suburban area adversely increases the pseudorange code residuals 

compared to that in the open-sky test. Some severe multipath scenarios lead to a 

maximum of 2 m pseudorange code residuals. Most of the horizontal DOPs are below 

two with several cases exceeding five. However, the GPS availability is far from ideal 

since dense foliage, underpasses and buildings near the road introduced partial and 

complete satellite masking. The satellite availability differences between the GPS 

reference and the rover stations indicate the level of GPS satellite masking. In Figure 7.39, 

for example, eight satellites are constantly tracked by the reference station Therefore, any 
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time when the difference of the satellite numbers overlaps with eight, it implies complete 

satellite masking. 

 

Figure 7.38 WL carrier phase and C/A code residuals (Suburban area real-time test) 

 
Figure 7.39 Satellite DOPs, satellite numbers and the fixed ambiguities numbers 

(Suburban area real-time test) 
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Figure 7.40 shows the estimated GPS time latency during the test.  Most of the 

latencies are on the order of 0.1-0.2 s with the maximum value being 0.4 s which 

indicates that the radio link was working well throughout the test. Since the time latency 

is far below the data buffer limit (3 s), the real-time and the post-mission solutions can be 

expected to be compatible. 

 
Figure 7.40 GPS time latency (Suburban area real-time test) 

Figure 7.41 and Figure 7.42 indicate that the suburban area real-time test is associated 

with a relatively low vehicle dynamics including the vehicle velocity and attitude. 

Compared to the open-sky test conducted in the winter for post-mission processing, the 

side slip is less severe since the test was conducted in the summer time on a relatively flat 

road as shown in Figure 7.43. The side slip angles that are larger than 5 degrees are 

sparsely distributed around specific epochs at 321100 s, 321400 s and 321840 s, which 

are correlated with the vehicle turning operations. 
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Figure 7.41 Vehicle velocity (Suburban area real-time test) 

 

Figure 7.42 Vehicle attitude (Suburban area real-time test) 
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Figure 7.43 Vehicle side slip angle (Suburban area real-time test) 

Figure 7.44 shows the reference trajectory generated by the GPS/CIMU integrated system 

with optimal backward smoothing. The map appeared on the plot comes from the 

database of Microsoft Map. Figure 7.45 and Figure 7.46 illustrate the estimated position 

and velocity accuracies for the reference solution. The estimated accuracy of the 

GPS/CIMU integrated solution with optimal smoothing is closely related to the GPS 

availability. When GPS is fully available, the estimated accuracy is comparable to that in 

open-sky conditions. However, the estimated accuracy is correlated to satellite masking, 

and relies heavily on the durations of the any outages. The longer the duration of the GPS 

blockage, the poorer the estimated accuracy it is. Nevertheless, due to the superior quality 

of the navigational grade CIMU, the worst case for the estimated accuracy is at the 

decimetre level (10-15 cm) for this test. Its accuracy is much higher than that in the low 

cost IMU integrated system. 
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Figure 7.44 Reference trajectory generated by GPS/CIMU integrated solution (Suburban 

area real-time test) 

 
Figure 7.45 Estimated position RMS of the reference solution (Suburban area real-time 

test) 
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Figure 7.46 Estimated velocity RMS of the reference solution (Suburban area real-time 

test) 

The position and velocity computed from both the GPS/Low cost IMU and GPS/Low 

cost IMU/WSS/SAS/GL/YRS integration strategies are compared with the reference 

solution. For the GPS/Low cost IMU integration strategy, Figure 7.47 and Figure 7.48 

show the position and velocity differences respectively, along with the corresponding 

3-sigma envelopes. Figure 7.49 and Figure 7.50 show the same plots for the GPS/Low 

cost IMU/WSS/SAS/GL/YRS integration strategy. Due to the well tuned Kalman filter, 

the actual differences and the estimated standard deviations are consistent at an 

acceptable level. When GPS is fully available, both the differences and the estimated 

standard deviations of the differences are very small. The actual differences and their 

estimated standard deviations increase significantly depending on the GPS outages and 

the duration of the outage, which can be seen from two specific epochs such as 321120 s 

and 321480 s. By comparing the two integration strategies, the aiding from all the 
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on-board vehicle sensors can significantly reduce the position and velocity drift of 

stand-alone INS with the low cost IMU. 

 
Figure 7.47 Position differences between GPS/Low cost IMU and the reference solution 

(Suburban area real-time test) 

 
Figure 7.48 Velocity differences between GPS/Low cost IMU and the reference solution 

(Suburban area real-time test) 
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Figure 7.49 Position differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and 

the reference solution (Suburban area real-time test) 

 
Figure 7.50 Velocity differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and 

the reference solution (Suburban area real-time test) 

To detail the comparison of all the integration strategies, Figure 7.51 to Figure 7.53 

compare the performance of all integration strategies on the same plot by investigating 

the position differences in the horizontal, up and 3D directions. The velocity differences 
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for the different integration strategies and the associated estimated standard deviations of 

the position and velocity differences are shown in Appendix C. For comparison purposes, 

the results for both the tactical grade HG1700 IMU and the low cost IMU are analyzed. 

The benefits gained from the on-board vehicle sensors on the stand-alone IMU (either the 

low cost or tactical grade HG1700 IMU) is a significant reduction in the horizontal 

position error. To be more specific, the horizontal position difference shown in Figure 

7.51 at epochs 321120 s and 321320 s can be reduced from approximate 10 m with the 

stand-alone low cost IMU to approximate 2-3 m by integrating all the sensors with the 

low cost IMU. Due to a higher quality, the free-running HG1700 IMU drifts at a lower 

rate than the low cost IMU. With external aiding on the HG1700 IMU from all the 

on-board vehicle sensors, the horizontal position drift error can also be significantly 

reduced from 5 m to less than 1 m at epoch 321120 s. 

By zooming the horizontal positioning error between some epochs with a longer duration 

of GPS outages, Figure 7.54 compares the horizontal positioning errors between different 

integration strategies of the low cost IMU integrated system. On the same plot, the GPS 

satellite HDOP is indicated by the black dots at a 1 Hz data rate. The discontinuity of the 

HDOP output implies the satellite availability is less than four. 
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Figure 7.51 Horizontal differences of all integration strategies and the reference solution 

(Suburban area real-time test) 

 
Figure 7.52 Up position differences of all integration strategies and the reference solution 

(Suburban area real-time test) 
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Figure 7.53 3D position differences of all integration strategies and the reference solution 

(Suburban area real-time test) 

 

Figure 7.54 Zooming of horizontal position difference (Surban area real-time test) 
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Figure 7.55 compares the histograms of the positioning error for GPS/INS and 

GPS/INS/On-board vehicle sensors integration strategies with both the low cost IMU and 

the tactical grade IMU. Table 7.12 and Table 7.13 compare various integration strategies 

associated with two grades of IMUs statistically by computing their RMS position and 

velocity differences with respect to the reference solution. When GPS is fully available, 

GPS plays a dominant role that determines the absolute positioning accuracy of the 

system. During partial or complete satellite signal masking, any integration strategy that 

contains the wheel speed sensor has a relatively lower RMS difference. It implies that the 

wheel speed sensor is a key sensor to limit the position and velocity drift in the integrated 

system. This is mainly due to the fact that the wheel speed sensor provides an absolute 

velocity update at a high measurement accuracy. Furthermore, it performs a special 

function (ZUPT) to limit the drift error when the vehicle operates in static mode.  

 

Figure 7.55 Histogram of horizontal position difference (Suburban area real-time test) 
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For the low cost IMU integrated system, the steering angle sensor can also benefit in the 

reduction of the position and velocity errors even though its improvement is less than the 

wheel speed sensor. In contrast to the wheel speed sensor that performs ZUPTs in static 

mode, the steering angle sensor does not work in static mode as the estimated steering 

angle derived from the velocity becomes undetermined at zero velocity. In kinematic 

mode, however, the steering angle sensor can constraint the velocity drift, and 

consequently limit the positioning error during partial and complete GPS outages. 

With a relatively lower quality, the GL/YRS unit always provides a relative velocity 

update by retrieving its initial information from the integrated system every 1 second. 

Given the integrated system degrades at a rapid rate without external GPS aid, the benefit 

gained from GL/YRS is somewhat limited compared to WSS and SAS. However, if the 

side slip angle exceeds a specific threshold (5 degrees) to introduce a violation of the 

lateral constraint, the horizontal position accuracy can be further enhanced by using the G 

sensor and yaw rate sensor to remove the lateral constraint. Thus, the integration strategy 

that contains all the on-board vehicle sensors (GPS/INS/WSS/SAS/GL/YRS) performs 

best among all of the integration strategies. These results are consistent with the 

post-processed results for the open-sky kinematic test with simulated GPS outages. 

Due to a relatively short duration of GPS masking in the suburban area as well as the 

relatively lower quality of the G sensors, yaw rate sensor and the steering angle sensor 

compared to the tactical grade HG1700 IMU, the benefits gained from the G sensors, yaw 
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rate sensor as well as the steering angle sensor on the HG1700 IMU integrated system 

are somewhat limited compared to the low cost IMU integrated system.  

Table 7.12 RMS position and velocity difference of all integration strategies and the 
reference solution (Low cost IMU, Suburban area real-time test) 

RMS position difference [m] RMS velocity difference 
[m/s] Strategy 

Horizontal UP 3D Horizontal UP 3D 
GPS/INS 

 1.09 0.64 1.27 0.14 0.07 0.16 

GPS/INS/WSS 
 0.48 0.36 0.60 0.08 0.06 0.09 

GPS/INS/SAS 
 0.76 0.57 0.94 0.12 0.07 0.14 

GPS/INS/GL/YRS 
 1.05 0.62 1.22 0.15 0.07 0.16 

GPS/INS/WSS/SAS 
 0.47 0.36 0.59 0.07 0.06 0.09 

GPS/INS/WSS/SAS 
/GL/YRS 0.38 0.35 0.51 0.06 0.05 0.08 

 
Table 7.13 RMS position and velocity difference of all integration strategies and the 

reference solution (HG1700 IMU, Suburban area real-time test) 

RMS position difference [m] RMS velocity difference 
[m/s] Strategy 

Horizontal UP 3D Horizontal UP 3D 
GPS/INS 

 0.53 0.40 0.67 0.03 0.02 0.04 

GPS/INS/WSS 
 0.33 0.28 0.44 0.03 0.02 0.03 

GPS/INS/SAS 
 0.51 0.39 0.65 0.03 0.02 0.04 

GPS/INS/GL/YRS 
 0.53 0.40 0.66 0.03 0.02 0.04 

GPS/INS/WSS/SAS 
 0.33 0.28 0.44 0.03 0.02 0.03 

GPS/INS/WSS/SAS 
/GL/YRS 0.32 0.28 0.42 0.02 0.02 0.03 
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7.3.4 Pseudo-Urban Area – Real-time Test 

For the real-time pseudo-urban area test, multipath is more severe than that in the 

open-sky and the suburban area. Consequently, some larger pseudorange residuals appear 

periodically. Figure 7.56 shows the carrier phase residuals, baseline length and 

pseudorange residuals. Most of the widelane carrier phase residuals were about 5 cm. 

Since the maximum baseline length was approximately 1 km, the main error sources in 

the carrier phase residuals are from multipath effects (Lachapelle 2003). 

It is shown in Figure 7.57 that partial and complete GPS masking were more frequently 

encountered in the pseudo-urban area test because of the tall buildings, trees and 

underpasses. The masking duration was also longer than in the suburban area. The 

horizontal DOP was generally around two with some epochs exceeding five.  

 
Figure 7.56 WL carrier phase residuals with fixed ambiguities and the code residuals 

(Pseudo-urban area real-time test) 
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Figure 7.57 Satellite DOPS, satellite numbers and fixed ambiguity numbers 

(Pseudo-urban area real-time test) 

The GPS latencies with respect to the IMU time shown in Figure 7.58  are mostly on the 

order of 0.1 s to 0.2 s with some on the order of 0.3 s to 0.5 s. It indicates that the radio 

link transceiver and the real-time data collection system worked properly. Similar to the 

open-sky and the suburban area tests, the real-time system generates the same solution as 

that processed in post-mission since the GPS time latencies are far less than the time limit 

(3 s) that the data buffer can accommodate. 
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Figure 7.58 GPS latencies (Pseudo-urban area real-time test) 

The vehicle velocity, attitude as well as the side slip angle during the entire pseudo-urban 

area real-time test are given in Figure 7.59 to Figure 7.61. The vehicle operated on a flat 

road in the summer time where the maximum pitch and roll angles were less than 5 

degrees, and the maximum velocity was less than 15 m/s (54 km/h). It implies relatively 

low vehicle dynamics. More frequent vehicle turning in the pseudo-urban area leads to a 

maximum side slip angle of 8 degrees that are more densely distributed across the entire 

test than that in the suburban area test with more than 5 degree side slip angles distributed 

around three different epochs. 
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Figure 7.59 Vehicle velocity (Pseudo-urban area real-time test) 

 

Figure 7.60 Vehicle attitude (Pseudo-urban area real-time test) 
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Figure 7.61 Vehicle side slip angle (Pseudo-urban area real-time test) 

Figure 7.62 shows the reference trajectory generated by the GPS/CIMU integrated system. 

It can be seen from Figure 7.63 and Figure 7.64 that the position and velocity accuracies 

for the GPS/CIMU integrated solution was lower than that in the suburban area due to the 

more severe satellite masking and the longer duration of the masking.  However, even in 

the worst cases, the position accuracy is still at the decimetre level, and the velocity is at 

the centimetre per second level.  
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Figure 7.62  Reference trajectory generated by GPS/CIMU (Pseudo-urban area real-time 

test) 

 
Figure 7.63 Estimated position RMS of the reference (Pseudo-urban area real-time test) 
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Figure 7.64 Estimated velocity RMS of the reference solution (Pseudo-urban area 

real-time test) 

Similar to the analysis in the suburban area test, Figure 7.65 to Figure 7.68 are the 

position and the velocity differences of the GPS/Low cost IMU and GPS/Low cost 

IMU/WSS/SAS/GL/YRS systems with respect to the reference solution, along with the 

corresponding 3-sigma envelopes. Most of the position and the velocity differences of 

these two integration strategies fall within the 3-sigma range, as expected. Comparing to 

the suburban area test, the position and velocity drift errors are larger (maximum of 

approximately 15 m in the horizontal direction) for the low cost IMU system without any 

external aiding from GPS and the on-board vehicle sensors. On the other hand, the 

integration of the on-board vehicle sensors with the low cost IMU can also significantly 

reduce the position from 15 m to 1.5 m. 
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Figure 7.65 Position differences between GPS/Low cost IMU and the reference solution 

(Pseudo-urban area real-time test) 

 
Figure 7.66 Velocity differences of GPS/Low cost IMU and the reference solution 

(Pseudo-urban area real-time test) 
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Figure 7.67 Position differences of GPS/Low cost IMU/WSS/SAS/GL/YRS and the 

reference solution (Pseudo-urban area real-time test) 

 
Figure 7.68 Velocity differences of GPS/Low cost IMU/WSS/SAS/GL/YRS and the 

reference solution (Pseudo-urban area real-time test) 

Figure 7.69 to Figure 7.71 compare the position differences in the horizontal, up and 3D 

directions for all integration strategies. The velocity differences along with the estimated 

standard deviation of the position/velocity differences (1-sigma) in the horizontal, up and 
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3D directions for all integration strategies are shown in Appendix C. Figure 7.72 

emphasizes the horizontal position error for the low cost IMU integrated system within a 

longer duration of the GPS outage. Figure 7.73 shows the histograms of the horizontal 

position error of the GPS/INS and GPS /INS/On-board vehicle sensor integration 

strategies for both the low cost and tactical grade IMUs. Table 7.14 and Table 7.15 

summarize the RMS of the position and velocity differences for all the integration 

strategies in terms of the low cost IMU and the tactical grade HG1700 IMU, respectively. 

During masking of the GPS satellite signals, the performance of either low cost IMU or 

HG1700 IMU system without external aiding from the on-board vehicle sensors degrades 

more severely than that in the suburban area. The improvement on the positioning 

accuracy of the low cost IMU integrated system gained from the on-board vehicle sensor 

is more significant and more evident than the tactical grade HG1700 IMU integrated 

system. Among all the on-board vehicle sensors, the wheel speed sensor contributes the 

most, with the steering angle sensor as the second, and the benefits from the G sensor and 

yaw rate sensor being somewhat limited. However, using a mechanism for the detection 

and alleviation of the lateral non-holonomic constraint violation, the 

GPS/INS/WSS/SAS/GL/YRS integration strategy performs best among all the integration 

strategies. 
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Figure 7.69 Horizontal position differences of all integration strategies (Pseudo-urban 

area real-time test) 

 
Figure 7.70 Up position differences for all integration strategies (Pseudo-urban area 

real-time test) 
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Figure 7.71 3D position differences of all integration strategies (Pseudo-urban area 

real-time test) 

 
Figure 7.72 Zooming of horizontal position difference for low cost IMU integrated 

system (Pseudo-urban area real-time test) 
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Figure 7.73 Histogram of horizontal position difference (Pseudo-urban area real-time 

test) 
 

Table 7.14 RMS position and velocity differences of all integration strategies and the 
reference solution (Low Cost IMU, Pseudo-urban area real-time test) 

RMS position difference 
[m] 

RMS velocity difference 
[m/s] Strategy 

Horizontal UP 3D Horizontal UP 3D 
GPS/INS 

 2.60 2.03 3.30 0.21 0.08 0.22 

GPS/INS/WSS 
 0.58 0.83 1.02 0.06 0.03 0.07 

GPS/INS/SAS 
 1.76 1.88 2.58 0.16 0.08 0.18 

GPS/INS/GL/YRS 
 2.58 2.03 3.29 0.21 0.08 0.22 

GPS/INS/WSS/SAS 
 0.57 0.82 1.00 0.06 0.03 0.07 

GPS/INS/WSS/SAS 
/GL/YRS 0.54 0.82 0.98 0.05 0.03 0.06 
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Table 7.15 RMS position and velocity differences of all integration strategies and the 
reference solution (HG1700 IMU, Pseudo-urban area real-time test)  

RMS position difference 
[m] 

RMS velocity difference 
[m/s] Strategy 

Horizontal UP 3D Horizontal UP 3D 
GPS/INS 

 0.71 0.89 1.14 0.02 0.02 0.03 

GPS/INS/WSS 
 0.55 0.62 0.83 0.02 0.01 0.03 

GPS/INS/SAS 
 0.71 0.89 1.14 0.02 0.03 0.03 

GPS/INS/GL/YRS 
 0.71 0.89 1.14 0.02 0.02 0.03 

GPS/INS/WSS/SAS 
 0.54 0.62 0.83 0.02 0.01 0.03 

GPS/INS/WSS/SAS
/GL/YRS 0.53 0.62 0.82 0.02 0.01 0.03 

7.3.5 Summary 

It is consistently illustrated by all the tests that GPS plays a dominant role in determining 

the absolute positioning accuracy of the system when double differenced GPS availability 

is more than two. During GPS outages, the positioning accuracy can be enhanced by the 

integration of on-board vehicle sensors. The wheel speed sensor is a key sensor to limit 

the horizontal position drift error. The steering angle sensor is the second best sensor that 

can moderately limit the positioning error drift. The improvement from G sensors and 

yaw rate sensor is somewhat limited than the wheel speed sensor and the steering angle 

sensor. However, when the lateral constraint is violated, the positioning accuracy can be 

further enhanced by alleviating the violation of the lateral constraint with an interactive 

relationship between WSS and GL/YRS. The integration strategy that contains all 
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on-board vehicle sensors performs best among all the proposed integration strategies. A 

faster ambiguity resolution can be expected from INS/On-board vehicle sensor system 

with respect to the stand-alone INS system. 
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Chapter 8 Conclusions and Recommendations 

The goal of this research has been to develop a land vehicle positioning and navigation 

system at low cost and with high accuracy. To bridge GPS gaps and limit the drift error of 

a stand-alone INS, several on-board vehicle sensors are integrated with GPS and a low 

cost IMU. The on-board vehicle sensors are built-in the vehicle stability control system of 

an actual vehicle. To make full use of the built-in sensors and improve the positioning 

accuracy to a larger degree, the on-board vehicle sensors used in this research include 

wheel speed sensors, G sensors (accelerometers), a yaw rate sensor as well as a steering 

angle sensor. 

Based on an analysis of the characteristics of the on-board vehicle sensors, three basic 

and two combined integration strategies and algorithms are developed. The basic 

integration module that integrates the steering angle sensor with GPS and INS is novel. 

The combined integration strategy that contains all on-board vehicle sensors creates an 

interactive relationship between the wheel speed sensors, G sensors and yaw rate sensor. 

A mechanism is developed to detect and alleviate the violation of a lateral non-holonomic 

constraint by using the interactive relationships between different sensors. 

A hardware platform is set up by composing GPS receivers, a low cost IMU and on-board 

vehicle sensor time-tagging system, a pair of radio link transceivers and antennas and 

computers. The integration strategies and algorithms are implemented in post-mission 
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and real-time. Test results imply significant benefits in terms of positioning accuracy and 

ambiguity resolution can be gained through external aiding of the on-board vehicle 

sensors on INS. 

The following summarizes the results of this dissertation and presents recommendations 

for future work. 

8.1 Conclusions 

The integration of on-board vehicle sensors can enhance the horizontal positioning 

accuracy during GPS outages, and reduce the time to fix GPS ambiguities after GPS 

outages. The benefits gained on the horizontal positioning accuracy and the ambiguity 

resolution is dependent on the performance or the measurement accuracy of the on-board 

vehicle sensors. The major conclusions are summarized below. 

1. Performance of on-board vehicle sensors 

The measurement accuracy of wheel-speed sensors is at 3-5 cm/s level. The wheel speed 

sensor has a capability of detecting zero velocity in static mode. As their limitations, the 

wheel speed sensors are susceptible to the change of the actual tire rolling radius as well 

as the side slips. 

Similar to the grade and quality of the low cost IMU used in this research, the G 

sensors/Yaw rate sensor constitutes a two-dimensional automotive grade inertial unit. 
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GL/YRS unit provides a possible way to detect and alleviate negative impact of the side 

slip on the performance of the wheel speed sensor. 

The scale factor and bias are main error sources of the steering angle sensor. The 

measurement accuracy of the steering angle sensor can be either empirically determined 

by tuning the Kalman filter or indirectly estimated from the measurement accuracy of 

wheel speed sensor and yaw rate sensor. 

2. Positioning accuracy 

It is consistently illustrated by all the tests that GPS plays the dominant role in 

determining the absolute positioning accuracy of the system, and the solution of the 

integrated system is accurate to be 2-3 centimetre level when GPS is fully available. 

The wheel speed sensor provides absolute velocity update with relatively high 

measurement accuracy as well as ZUPT in static mode. Due to these characteristics, the 

wheel speed sensor can limit the velocity and consequently the position error drift of the 

free-running INS system during GPS outages. The wheel speed sensor is a key sensor to 

limit the horizontal position drift error. With respect to horizontal positioning accuracy, 

the percentage improvements from the wheel speed sensor over GPS and low cost IMU 

integrated system are 90.4% for the open-sky test (post-mission processing with 12 

simulated GPS outages), 56.0% for suburban area real-time test and 77.7 % for 

pseudo-urban area real-time test, respectively. 
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The steering angle can be observed from the velocity in kinematic mode. Consequently, 

the steering angle sensor can create a constraint on velocity. The steering angle sensor is 

the second best sensor that can moderately limit the positioning error drift. Over GPS and 

low cost IMU integrated system, the percentage improvements on the horizontal 

positioning accuracy from the steering angle sensor are 52.8% for the open-sky test 

(post-mission processing with 12 simulated GPS outages), 30.3% for suburban area 

real-time test and 32.3 % for pseudo-urban area real-time test, respectively. 

With a relatively lower quality, the automotive grade GL/YRS unit performs relative 

velocity update. Hence, the improvement from G sensors and yaw rate sensor is less 

significant than the wheel speed sensor and the steering angle sensor. The percentage 

improvements on the horizontal positioning accuracy from GL/YRS unit are only 18.0% 

for the open-sky test (post-mission processing with 12 simulated GPS outages), 3.7% for 

suburban area real-time test and 0.8% for pseudo-urban area real-time test, respectively.  

The combined integration strategy with all on-board vehicle sensors performs best among 

all the proposed integration strategies. This strategy performs WSS and SAS update in a 

sequential way given the steering angle sensor and wheel speed sensor provide 

fundamentally independent measurements. More external updates on Kalman filter yield 

a better estimation of the navigation information. The positioning accuracy can be further 

enhanced by detecting and alleviating the violation of the lateral constraint with an 

interactive relationship between WSS and GL/YRS. Over GPS and low cost IMU 
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integrated system, its percentage improvements on the horizontal positioning accuracy 

are 92.6% for the open-sky test (post-mission processing with 12 simulated GPS outages), 

65.1% for suburban area real-time test and 79.2% for pseudo-urban area real-time test, 

respectively. 

GPS is a still a driving factor that determines the absolute system accuracy when two or 

three double differenced satellites are available. The horizontal position RMS error is at 

the decimetre level for the low cost IMU integrated system, and is at the centimetre level 

for the HG1700 tactical grade IMU integrated system. One double differenced satellite 

can still improve the horizontal positioning accuracy over full GPS outage by 6.3% for 

low cost IMU and by 17.3% for the tactical grade IMU integrated system, respectively. 

With external aid from all on-board vehicle sensors, horizontal positioning accuracy can 

be further improved on the basis of one double differenced GPS satellite by 93.1% for 

low cost IMU and by 67.9% for tactical grade IMU. 

The well tuned Kalman filter is implied by a good agreement between actual RMS error 

and the average estimated standard deviation in the open-sky test processed in 

post-mission with simulated GPS outages. In all real-time tests, most actual position 

errors occur within a 3 Sigma (estimated standard deviation) boundary. 

3. Ambiguity resolution 

With a shorter duration of GPS outage and a higher quality IMU, the stand-alone INS or 

INS/On-board vehicle sensor system outperforms the GPS-only strategy given that its 
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estimated standard deviation of the position error state is smaller than the position 

standard deviation of differential C/A code solution. For a longer duration of GPS 

outages or a lower quality of IMU, the benefits gained from stand-alone INS or 

INS/On-board vehicle sensor are expected to be somewhat limited. A faster ambiguity 

resolution can be expected from the INS/On-board vehicle sensor system over the 

stand-alone INS system. 

The low cost IMU reduces the average time to fix ambiguity to a much smaller degree 

than that of the tactical grade IMU. With a 20 s GPS outage, 42.9% and 12.0%  

percentage improvement over GPS-only can be gained from stand-alone tactical grade 

and low cost IMUs, respectively. For a 40 s GPS outage, the percentage improvement 

over GPS-only by integrating all on-board vehicle sensors with tactical grade IMU and 

low cost IMU are 15.5% and 14.6%, respectively. 

8.2 Recommendations 

1. Use fuzzy logic theory to detect the violation of the lateral non-holonomic 

constraint 

In this research, a predefined threshold of side slip angle was used to detect the violation 

of the lateral non-holonomic constraint. The detection result is sensitive to the definition 

of the side slip angle threshold. To be more robust, the fuzzy logic theory can be 

considered as an alternative. 
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2. Develop the low cost GPS and on-board vehicle sensor integrated system 

In the land vehicle positioning system, the two dimensional horizontal positioning 

information is a main concern when the vehicle operates on a flat road. In a system that 

requires meter level accuracy and an extremely lower cost, a two dimensional land 

vehicle positioning system can be developed by integrating GPS with the dead-reckoning 

on-board vehicle sensors in two ways, namely GPS/Wheel speed sensor/Yaw rate sensor 

as well as GPS/G sensors/Yaw rate sensor. Without IMU, system costs can be reduced to 

a large degree. 

3. In-motion alignment 

It is difficult for the low cost IMU to align the heading or azimuth in static mode due to 

the rapid drift error and the large uncertainty of the vertical gyro. Furthermore, it is not 

feasible to initialize the INS in static mode for a certain period of time before starting the 

land vehicle positioning system. To increase system flexibility, it is necessary to 

investigate in-motion alignment by dealing with large heading uncertainty. 

4. Make use of vehicle dynamic model to aid INS or on-board vehicle sensor 

The vehicle dynamic model describes the relationship between the driving force, mass, 

moment of inertia, velocity, acceleration and angular rate based on Newton’s law. It can 

work as an external aid for INS or on-board vehicle sensors to extend periods of high 

accuracy performance when GPS is not available. 
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5. Use high sensitivity GPS receiver and map-mapping technique 

The GPS receiver used in this research was the dual frequency NovAtel OEM4 receiver. 

Its high price constitutes a major limitation for an extensive commercial application in 

land vehicle positioning systems. The development of an integrated system with a low 

cost high sensitivity GPS receiver, map-mapping module, a low cost IMU and/or 

on-board vehicle sensors can be considered. The high sensitivity GPS receiver can reduce 

the cost and increase the GPS availability in the urban area. With auxiliary information 

from the map-mapping module, a better estimation of the navigation information can be 

given. 

6. Simulate more realistic GPS outages 

In the open-sky area with a good GPS signal, it is an ideal case to simulate 12 GPS 

outages with 40 s durations. To be more realistic and typical, it is necessary to simulate 

more GPS outages with much longer outage duration as well as with attenuated or 

deteriorated GPS signals. 

7. Long baseline length 

The maximum baseline length in this research is around 4 km. This kind of short baseline 

length is not enough for the real application. The increase of baseline length will not only 

increase the magnitude of GPS errors, but also increase the complexity of GPS ambiguity 

resolution. The assessment of effects of longer baseline length is required.  
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8. Use on-board vehicle sensor to aid GPS signal tracking 

As INS can aid GPS signal tracking inside GPS receivers by ultra-tight coupling strategy, 

it is also reasonable to make use of on-board vehicle sensors or INS/On-board vehicle 

sensors to aid GPS signal tracking. 

9. Unscented Kalman filter (UKF) and adaptive Kalman filter 

The Kalman filter implemented in this research is a standard extended Kalman filter. An 

extensive investigation and comparison of various Kalman filters, such as unscented 

Kalman filter and adaptive Kalman filter, will be helpful for the design of a more robust 

navigation system in terms of specific applications. 
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Appendix A 

Skew-Symmetric Matrix, Gravity Vector and Tensor of 

Gravity Gradients 

• Symmetric Matrix 

Assuming a 3 1× vector [ ]Ta x y z=  

The skew-symmetric matrix of vector a  is defined by 

 
0

0
0

z y
A z x

y x

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

 (A.1) 

• Normal Gravity Vector  

The normal gravity vector is defined by 

 3
e e e e e

ie iee

kM r r
r

γ ≈ − −Ω Ω  (A.2) 

where  

 k is the gravitational constant,  

 M is the mass of the Earth,  

 e
y y zr r r r⎡ ⎤= ⎣ ⎦  is the position in ECEF frame, 

 2 2 2e
x y zr r r r= + + ,  
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, and 

 eω  is the rotation rate of the Earth 

• Tensor of Gravity Gradients 
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Appendix B 

Reliability Test in the Kalman Filter 

The reality test in the Kalman filter is based on the analysis of the innovation sequence. 

The innovation sequence is defined by  

 
kk kv z H x−= − ⋅  (B.1) 

The innovation sequence follows a zero mean Gaussian distribution. The covariance 

matrix of the innovation sequence is 

 T
vQ HP H R−= +  (B.2) 

Two hypotheses can be made by 

 
[ ]
[ ]

0

1

: 0

:

H E v

H E v

=

= ∇
 (B.3) 

where ∇ is the model error vector. 

Assuming a single blunder, the blunder vector is defined by  

 [ ]0 ... 0 1 0 ... 0 T
kim =  (B.4) 

On the basis of the null hypothesis 0H  and the alternative hypothesis 1H , the test 

statistics is given by 

 
1

1( )

T
ki v
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v ii

m Q vt
Q

−

−
=  (B.5) 

The distribution of the single blunder test statistics follows Gauss normal distribution,  
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where 0δ  is the non-centrality parameter, 1
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Appendix C 

Supplementary Results for Real-Time Test 

 

 

 
Figure A 1 Estimated position differences with respect to the reference of all integration 

strategies (Suburban area test) 
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Figure A 2 Estimated standard deviations of the up position difference of all integration 

strategies (Suburban area test) 

 

Figure A 3 Estimated standard deviations of the 3D position difference for all integration 

strategies (Suburban area test)  
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Figure A 4 Horizontal Velocity differences with respect to GPS/CIMU for all integration 

strategies (Suburban area test) 

 
Figure A 5 Horizontal estimated standard deviations of the horizontal velocity difference 

for all integration strategies (Suburban area test) 
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Figure A 6 Up velocity differences with respect to the reference for all integration 

strategies (Suburban area test) 

 

Figure A 7 Estimated standard deviations of up velocity difference for all integration 

strategies for the real-time test in suburban area 
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Figure A 8 3D velocity differences with respect to the reference of all integration 

strategies for the real-time test in suburban area  

 

Figure A 9 Estimated standard deviations of 3D velocity difference for all integration 

strategies for real-time test in suburban area 
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Figure A 10 Estimated standard deviations of horizontal position difference for all 

integration strategies for real-time pseudo-urban area test 

 

Figure A 11 Estimated standard deviations of the up position difference for all integration 

strategies (Pseudo-urban area test) 
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Figure A 12  Estimated 3D position differences of all integration strategies 

(Pseudo-urban area test) 

 

Figure A 13 Horizontal velocity differences of all integration strategies (Pseudo-urban 

area test) 
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Figure A 14 Estimated standard deviations of the horizontal velocity difference for all 

integration strategies (Pseudo-urban area test) 

 

Figure A 15 Up velocity differences of all integration strategies (Pseudo-urban area test)  
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Figure A 16 Estimated standard deviations of up velocity difference for all integration 

strategies (Pseudo-urban area test)  

 
Figure A 17 3D velocity differences of all integration strategies (Pseudo-urban area test) 
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Figure A 18 Estimated standard deviations of 3D velocity for all integration strategies 

(Pseudo-urban area test) 

 


