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ABSTRACT 

With the decreasing cost of inertial measurement units (IMUs), the use of 

integrated GPS/INS (Global Positioning System/Inertial Navigation System) 

systems becomes more feasible for high-accuracy navigation.  Improvements 

from the integration of GPS and tactical-grade inertial navigation systems have 

previously been investigated using the Honeywell HG1700 for high-accuracy 

vehicular applications. However, side-by-side testing of other tactical-grade 

inertial measurement units (IMUs) has not been done to assess whether the 

same improvements can be achieved when using the data collected 

simultaneously using more than one IMU. In this thesis, Honeywell HG1700 and 

Litton LN200 IMUs are independently integrated with a NovAtel OEM4 dual-

frequency GPS receiver in the same test vehicle for high-accuracy positioning 

using GPS carrier phase observables. Improvements realized through the 

integration of GPS and these two tactical-grade INS’s using different integration 

strategies are investigated. The performance in the position domain is measured 

through the system accuracy during complete GPS data outages of up to 100 

seconds. The times to fix ambiguities after complete data outages are then used 

to measure the improvement in the ambiguity domain to assess how INS aiding 

affects the ambiguity resolution process, relative to the GPS-only solution. Initial 

results show that both integrated systems are capable of providing 2 to 4 

centimetre accuracy with good GPS coverage with more than six GPS satellites 
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available and less than 4 GDOP values. Furthermore, a quantitative relationship 

between the free-inertial positioning accuracy after a GPS outage and the 

respective ambiguity resolution improvements with the aiding of inertial data is 

presented. In this thesis, a Rauch-Tung-Striebel (RTS) smoothing method is 

implemented and tested during different periods of GPS outages as well to 

investigate the smoothing technique in minimizing the position error during 

outages. Initial results show that smoothing can reduce the 3D RMS position 

errors by up to 96% for 100-second GPS data outages. 

  

The assessment of the use of different ambiguity strategies on short baselines 

(less than 10 km) and long baselines (more than 50 km), in terms of position 

accuracy, will provide insight as to which ambiguity strategy is best suited in the 

presence of large differential errors. To give the criteria for ambiguity strategy 

selection under different scenarios, the ambiguity resolution strategies and their 

advantages and disadvantages under short and long baseline conditions were 

investigated. 
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CHAPTER ONE - INTRODUCTION 

 

With the ever-increasing demand for precise position and navigation information, 

much effort has been invested in improving positioning systems in terms of 

extending the achievable precision as well as mitigating signal disturbances. 

The integration of a tactical-grade inertial measurement unit (IMU), such as the 

Honeywell HG1700, with kinematic carrier phase differential Global Positioning 

System (CDGPS) has successfully achieved centimetre-level positioning 

accuracy for vehicular applications (Scherzinger, 2000; Petovello et al., 2001; 

Leach et al., 2003; Petovello, 2003a).  Furthermore, these results demonstrate a 

50% to 80% average improvement in the time needed to re-fix L1 integer 

ambiguities after complete GPS data outages of 40 seconds using loose and 

tight coupling integration approaches, respectively (Petovello, 2003a). However, 

to this point, no quantitative measure of how different quality IMUs affect the 

integrated system performance in terms of position accuracy and ambiguity 

resolution improvements has been done using side-by-side testing. 

 

This thesis aims to evaluate the performance of kinematic GPS integrated with 

two different tactical-grade IMUs in terms of free-inertial (INS alone) position 

accuracy during - and ambiguity resolution performance after - GPS data 

outages. As part of the investigation, various integration strategies are also 
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considered to determine if the integration strategy affects the system 

performance. The research to be conducted proposes to evaluate the 

performance of kinematic GPS integrated with two different tactical grade IMUs, 

namely the LN200 and the HG1700. The performance of these two integrated 

systems will be compared in terms of position, and ambiguity resolution. The 

ambiguity resolution strategies given in Liu (2003) will be augmented by 

implementing various approaches which will be further investigated in Chapters 

Three and Seven. Since Petovello (2003a, 2003b) looked only at relatively short 

baselines (less than 8 km), the impact of long baselines (longer than 60 km) on 

the performance of the integrated system will also be evaluated in this research. 

In addition, the application of backward smoothing to improve the accuracy of 

the integrated system during GPS data outages in post-mission will also be 

investigated.  

 

The following section describes some of the work done previously in this area 

and further details on the proposed objectives and approaches. 

 

1.1 BACKGROUND AND OBJECTIVES 

 

The following subsections review the advantages and disadvantages of GPS 

and INS technologies. That will further provide motivation for an integrated 
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approach. Some GPS and INS related concepts and applications are also 

described. 

 

1.1.1 GLOBAL POSITIONING SYSTEM (GPS) 

 

The Global Positioning System (GPS), composed of a constellation of satellites, 

broadcasts signals that can be used to derive precise time, location, and velocity 

information. Standard GPS position estimates can achieve accuracy on the 

order of metres to centimetres (Lachapelle, 2003), depending on the 

measurements and methods employed. To this end, GPS position estimates can 

achieve accuracies at the centimetre level by using carrier phase observables 

combined with differential GPS techniques involving two (or more) GPS 

receivers. This high accuracy positioning capability is required by many 

applications such as automated vehicle position control sub-systems within an 

automated highway system (AHS). However, a navigation system based solely 

on GPS still has some issues to be resolved to achieve such a high accuracy. 

 

The first issue is to resolve the initially unknown number of cycles between the 

receiver and a satellite, which is referred to as the ambiguity. Only after these 

ambiguities are resolved to their integer values is centimetre-level positioning 

possible (Kaplan, 1996; Lachapelle, 2003).  Much research has therefore been 

focused on resolving the integer ambiguities in as short a time as possible, and 
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several algorithms have been developed such as the Fast Ambiguity Search 

Filter (FASF) (Chen, 1994) and Least-squares Ambiguity Decorrelation 

Adjustment (LAMBDA) (Teunissen et al., 1994). Han and Rizos (1997), Hein 

and Werner (1995) and Hatch (1994) discussed the performance of these and 

other algorithms. Further information about ambiguity search techniques will be 

investigated in Chapter Three. 

 

The second issue is to eliminate errors affecting carrier phase measurements 

such as atmospheric, satellite-based, and receiver clock errors and, in this case, 

double-differencing provides an effective way of eliminating or mitigating the 

effects of such errors (Lachapelle, 2003). Although it can eliminate satellite and 

receiver clock error, double differencing reduces only the spatially correlated 

atmospheric and orbital errors with the residual error being a function of user-

reference station separation. Multipath and receiver noise cannot be reduced by 

double differencing but are, instead, amplified. Therefore, errors will remain after 

double differencing which will affect integer ambiguity resolution. De Jong et al. 

(2002) have identified the general rule of thumb that instantaneous ambiguity 

resolution is possible if the position accuracy (along the line-of-sight to the 

satellite) is known to better than half of the wavelength of the ambiguities being 

resolved. 

 

Research has been conducted to reduce the spatially correlated atmospheric 
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errors, including modeling of the ionospheric error (Skone, 1998), the 

tropospheric error (Zhang, 1999) and composite error effects (Raquet, 1998).  

Extensive research on mitigating carrier phase multipath has also been 

conducted, including the development of an antenna array method (Ray, 2000) 

and a signal processing-based method (Axelard et al., 1996; Comp and Axelard, 

1998). However, despite such efforts, problems remain; for example, because 

both the ionospheric error modeling method given by Skone (1998), and the 

tropospheric error modeling method given by Zhang (1999), require more than 

one reference station to predict the corresponding atmospheric error, many of 

the techniques developed are inapplicable to kinematic positioning using a 

single reference station. 

 

The third issue is maintaining carrier phase lock. Precise kinematic positioning 

requires continuous tracking of the carrier phase. The loss of phase lock, which 

leads to discontinuous phase measurements, generates cycle slips. If a cycle 

slip is detected, the first option is to try to correct the ambiguity by the number of 

cycles slipped (Cannon, 1991).  If this approach is unsuccessful, the associated 

ambiguity can be estimated as a real value and determined using one of the 

appropriate search techniques (Cannon, 1990). However, for the processing of 

GPS-only measurements, detection and correction of cycle slips require 

sophisticated algorithms that track a large number of satellites for detection and 

correction.  
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Fourthly, the use of GPS-only measurements is possible only if four or more 

satellites can be tracked at the same time to get a position estimation. However, 

the maximum expected power of a satellite’s signal, after traveled more than 

20,000 km from a satellite orbit all the way to the Earth, are in the order of only -

153 dBW (Spilker, 1996; Misra and Enge, 2001). Hence, loss of lock is common 

in certain applications such as vehicular navigation in urban areas.  This can 

result in poor positioning accuracy and/or position unavailability because of 

measurement outages. In order to improve the position accuracy in case of a 

GPS outage, Nassar (2003), and Shin and El-Sheimy (2002) tried backward 

smoothing techniques to bridge the position accuracy during GPS outages in 

post-mission.  

 

Finally, since exploitation of the integer nature of the ambiguities allows for high-

accuracy position estimates, recent efforts have focused on decreasing the time 

needed for re-determining integer ambiguities after loss of lock. The faster the 

ambiguity resolution process, the faster the system will be able to return to the 

highest accuracy level. So the efforts using aiding information, e.g. INS, to help 

re-determine integer ambiguities after GPS outages have been made recently. 

More than a 50% to 80% average improvement in L1 ambiguity resolution times 

after complete data outages has been achieved using a loosely and tightly 

coupled GPS/INS integration approach, respectively compared to a GPS-only 
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approach (Petovello, 2003a). 

 

1.1.2 INERTIAL NAVIGATION SYSTEMS (INS) 

 

Unlike GPS, which typically updates position and velocity at 1 Hz intervals 

(although some receivers have 10 Hz and higher capabilities), an inertial 

navigation system (INS) can provide the vehicle state information at rates of at 

least 10 Hz. However, an INS has its disadvantages as well. 

 

The main disadvantage of an unaided INS is unbounded growth in the position 

estimation error owing to the nature of an INS. System inaccuracies, such as 

gyro drifts and accelerometer biases, cause a rapid degradation in position 

quality. The degradation speed is dependent on the sensor quality. To overcome 

this drawback, the use of higher quality units, which exhibit significantly lower 

position degradation, is one option. However, higher quality units are very 

expensive. Therefore, providing an INS with regular updates in order to limit the 

errors to a reasonable level – a task that is commonly achieved through the use 

of zero velocity updates (ZUPTS) – is another option (Jekeli, 2000; Masson et 

al., 1996).  However, in many applications such as aviation, periodic stops of the 

carrier are impractical. Many other means of bounding INS errors have been 

developed over the past few decades, such as position markers that are sensed 

by the vehicle to be positioned (Ebert et al., 1994), and external velocity sensors 
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such as Electromagnetic (EM) logs (Carvill, 1993). Generally, an INS system 

used in conjunction with aiding sensors can provide the state estimate at the 

desired control frequency more accurately than either technique used 

independently. Most recently, much research has been focused on using GPS 

position and velocity (or measurement) updates to bound INS errors, despite the 

fact that GPS has high frequency errors while an INS typically does not. 

 

1.1.3  INS/GPS INTEGRATION 

 

As described in the previous sections, INS and GPS possess complementary 

characteristics (Greenspan, 1996; Ŝkaloud, 1998) that makes integration in a 

common positioning system ideal (Greenspan, 1996). Each system 

compensates for the other’s shortcomings. However, most research conducted 

to date has focused on the use of high-end inertial equipment. Although these 

allow for good navigation performance, their high cost is a serious limitation. 

Therefore lower cost and, hence, poorer quality IMUs must be investigated as 

possible alternatives. Extensive research has been performed to investigate the 

potential benefits when GPS is integrated with poorer quality IMUs (Petovello et 

al., 2001; Scherzinger, 2002; Petovello, 2003a; Leach et al., 2003). The aiding 

of INS can improve GPS performance in many aspects. 

 

The first obvious performance improvements delivered by GPS aiding of an INS 
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are smooth, high data rate, and high accuracy data updates. Kinematic carrier 

phase GPS, with a 1 to 10 Hz update rate, provides high accuracy (centimetre 

level to this end) position and velocity information. The INS estimates states 

without differentiation (low sensitivity to high-frequency noise) at a very high 

data update rate.  

 

The second GPS aiding technique for INS performance improvement is carrier 

phase ambiguity resolution. Generally speaking, the size of the search space is 

an important predictor of ambiguity resolution, and relates directly to the success 

of the ambiguity resolution process. An INS can provide position and velocity 

information to GPS, following which the INS can influence the size of the 

ambiguity search space. Ŝkaloud (1998), Teunissen (1996), and Scherzinger 

(2000, 2002) describe how the inclusion of high-quality inertial measurements 

affects the size of the ambiguity search space in such a way that the ambiguity 

resolution process benefits. Petovello (2003a) achieved more than a 50% to 

80% average improvement in L1 ambiguity resolution times after complete data 

outages using loosely and tightly coupled integration approaches, respectively, 

through GPS aiding of an HG1700 IMU. In most cases, using inertial data will 

result in greater applicability of the on-the-fly (OTF) search algorithm since the 

ambiguities can be determined over shorter time spans and with fewer satellites. 

The availability of INS position and velocity information can shorten the 

ambiguity search time, if such a search is even necessary, after short GPS data 
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outages. Reduction of the on-the-fly ambiguity search space can be 

accomplished using the INS to bridge GPS gaps (Söhne et al., 1994; Ŝkaloud, 

1998; Grejner-Brzezinska et al., 1998; Scherzinger, 2000; Petovello, 2003a).  

 

The third performance improvement is reliability enhancement. Both GPS and 

INS can provide three-dimensional position and velocity information. Thus, 

redundant measurements are available for the determination of the vehicle 

trajectory parameters which greatly enhances the reliability of the system, as the 

two systems can act as checks on one another using redundant measurements 

(Brenner, 1995). The minimum detectable blunder (MDB) of the Doppler and L1 

carrier phase measurements have shown to be reduced by decimetres per 

second and several centimetres, respectively, by the use of a tightly coupled 

CDGPS/INS system (Petovello, 2003a). GPS cycle slip identification and 

correction with the help of an INS solution computed between GPS epochs is 

another important improvement in GPS reliability (Cannon, 1991; Schwarz et al., 

1994a; Colombo et al., 1999). After a cycle slip, with the help of the INS solution, 

a search process need not be implemented if ambiguities are already fixed. 

Similarly, the search process need not be reset if ambiguities have to be 

resolved to their integer values. 

 

Finally, in addition to improvements in position accuracy, ambiguity resolution, 

reliability and availability GPS/INS integration can improve system performance 
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in many other respects. A deeply coupled integration approach has been 

developed by Sennott and Senffner (1997) and Bye et al. (1997) which improved 

GPS receiver tracking performance by feeding the INS information (predicted 

range and range rates) to the receiver to aid the code and carrier phase tracking 

loops.  

 

1.1.4 BACKWARD SMOOTHING 

 

Reference trajectory generation is needed for many applications and in some 

cases this requires centimetre-level position accuracy. However, in many cases 

(such as in urban canyons or GPS blocked conditions), the position error 

associated with the free inertial position solution using tactical-grade IMUs will 

be worse than 10 centimetres after a 10 to 15-second GPS data outage. To 

improve the accuracy attained through stand-alone INS or INS/GPS integration, 

several methods have been investigated, as described below. 

 

The first of these entails maximizing the GPS data quality since GPS provides 

the update information. This, in turn, can be achieved by using short reference 

to rover baselines (Schwarz et al., 1994b), more sophisticated ionospheric and 

tropospheric correction models (Abdullah, 1997), and so on. The use of high 

quality inertial sensor technologies, such as those used in airborne gravimetry 

(Bruton, 2000), is another option. 
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The third strategy usually involves applying optimal procedures for the overall 

system calibration and/or sensor placement, e.g. in direct georeferencing 

applications to name a few (Ŝkaloud, 1999). 

 

The fourth method is to use optimized INS mathematical modeling and error 

compensation techniques, especially in INS stand-alone applications and 

INS/GPS applications with frequent GPS outages. For example, as compared to 

the Gauss-Markov process, in terms of modeling the INS error, the use of an 

autoregressive (AR) process (Nassar, 2003) that predicts current states based 

on a linear combination of previous states can improve the results by 40% to 

60% in INS stand-alone positioning and by 15% to 35% in INS/DGPS 

applications during DGPS outages (Nassar, 2003). The Gauss-Markov process 

is a special class of random processes which can be generated by passing 

white noise through simple filters. If a continuous process ( )tx  is a first-order 

Gauss-Markov process, then it can be represented by the differential equation 

wxx =+ β&  where w represents white noise (a random process with constant 

power spectrum density), and β1  is the so-called correlation time. The use of 

de-noised INS data can improve positioning performance by 55% in INS stand-

alone positioning and by 35% during DGPS outages in INS/DGPS applications 

(ibid). 
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However, many applications such as vehicular navigation, a low cost IMU 

integrated with carrier phase GPS is a typical selection to achieve high accuracy 

navigation solutions. In this situation, to improve positions obtained during GPS 

outages in INS/GPS applications, two different bridging methods have been 

investigated by Nassar (2003): backward smoothing and Strap-down Inertial 

Navigation System (SINS) parametric error modeling. When applying either of 

these bridging approaches during GPS outages, position errors are decreased 

by 85% to 93% (Nassar, 2003), while 60% to 90% improvements in maximum 

position accuracy have also been achieved by Shin and El-Sheimy (2002). In 

the latter case, the complete vcv information produced by forward Kalman 

filtering was not used so further improvement in position accuracy could not be 

done, despite a reduction in time needed to store the results. 

 

In this research, the Rauch-Tung-Striebel (RTS) backward smoothing method is 

implemented to improve position accuracy during GPS outages in INS/CDGPS 

application (Rauch et al. 1965; Nassar, 2003). The application of backward 

smoothing to improve the integrated system performance in terms of position 

accuracy during CDGPS data outages for post-mission can provide more 

accurate trajectory information in case of any GPS data outages during data 

collection. 
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1.1.5 OBJECTIVES 

 

The overall objective of this thesis is to investigate the integration of two tactical 

grade IMUs with a GPS. The sub-objectives are below. 

 

1. Compare the performance of two tactical-grade IMUs integrated with 

GPS. Free inertial solution during GPS outages can best represent the 

performance of each IMU. Meanwhile, the re-fix time after GPS outages 

with inertial aiding can be used to assess the improvements of 

ambiguity resolution with inertial aiding. Simulation of complete GPS 

outages with varying duration is used to assess the performance of 

kinematic GPS integrated with two different tactical-grade IMUs in terms 

of free-inertial position accuracy during - and ambiguity resolution 

performance after - GPS data outages. As part of the investigation, 

various integration strategies are also considered to determine if the 

integration strategy affects the system performance. 

2. Quantify improvement in ambiguity resolution performance over GPS-

only case. Once the carrier phase observables become available in the 

aftermath of a GPS outage, the integer ambiguities must be re-

determined as quickly as possible to enable the system to regain the 

highest possible accuracy level. The time taken to re-fix the ambiguities 

in the integrated system, as compared to the GPS-only case, will be 
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compared and correlated to the free-inertial accuracy to derive the 

relationship of quantity improvements to free-inertial accuracy. 

3. Evaluate the application of backward smoothing to improve the 

accuracy of the integrated system during GPS data outages in post-

mission phase.  

4. Assess the performance of various ambiguity processing strategies for 

short baseline (less than 10 km) and long baseline (longer than 60 km) 

conditions. The performance is judged on the basis of the maximum 

achievable position accuracy for both short and long baselines, and by 

the time to re-fix an ambiguity for short baseline since it is possible to 

resolve ambiguities only in the short baseline case. 

 

This thesis aims to evaluate the performance of kinematic GPS integrated with 

two different tactical-grade IMUs in terms of free-inertial position accuracy during 

- and ambiguity resolution performance after - GPS data outages. As part of the 

investigation, various integration strategies are also considered to determine if 

the integration strategy affects the system performance. Since Petovello (2003a, 

2003b) looked only at relatively short baselines (less than 8 km), the impact of 

long baselines (longer than 60 km) on the performance of the integrated system 

will also be evaluated in this research. In addition, the application of backward 

smoothing to improve the accuracy of the integrated system during GPS data 

outages in post-mission will also be investigated. An assessment using different 
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ambiguity resolution strategies under long baseline (about 80 km) conditions, 

as measured by the achievable position accuracy, is tested to provide a general 

idea of which ambiguity strategy is more suitable in the presence of larger 

differential errors, as compared to the short baseline case. 

 

The major contributions of this thesis are: 

 

1. The performance comparison of kinematic GPS integrated with two 

different tactical-grade IMUs in terms of free-inertial position accuracy 

during - and ambiguity resolution performance after - GPS data outages. 

The comparison is measured by free inertial position accuracy and time 

to re-fix ambiguities after GPS outage. The influence of each integration 

strategy, namely loosely coupled and tightly coupled, was investigated 

by comparing the overall position solution of each strategy. 

2. A relationship between ambiguity resolution improvements, in terms of 

time to re-fix ambiguities, and INS variance seeding after a complete 

GPS outage has been developed. This knowledge will simplify the 

selection of an IMU needed to obtain a certain level of navigation 

performance in terms of ambiguity resolution (e.g. the ambiguity re-

fixing time after a GPS complete outage with inertial aiding). This will 

provide another “tool” for designing and assessing GPS/INS systems 

and/or system requirements 



 

 

17

3. A backward smoothing method - namely the RTS smoother - is 

implemented in this particular research. The implementation and 

application of backward smoothing is intended to improve the 

performance of the integrated system in terms of position accuracy 

during GPS data outages in post-mission, thus providing a more 

accurate position solution in case of any GPS data outages during data 

collection. 

4. The ambiguity resolution strategies given in Liu (2003) has been 

augmented by implementing various approaches in current Satellite And 

Inertial Navigation Technology (SAINTTM) software (Petovello et al. 

2003). 

5. Augmentation of the Satellite And Inertial Navigation Technology 

(SAINTTM) software (Petovello et al. 2003) developed in the Position, 

Location and Navigation (PLAN) Group in the Department of Geomatics 

Engineering, University of Calgary is employed to implement the 

proposed methods. 

 

1.2 THESIS OUTLINE 

 

The thesis is composed of eight chapters and two appendices which are 

organized as described below. 
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Chapter One presents the background, objectives and motivation.  The research 

to be performed along with the methodology used are presented in Chapters 

Two, Three and Four. Chapter Two gives an overview of the positioning 

principles of GPS and INS as well as the error sources relevant to GPS 

positioning. It also describes the different INS/CDGPS integration strategies 

which are used in the exiting software system. 

 

An overview of ambiguity resolution in terms of concepts, search techniques, 

observables and processing strategies are given in Chapter Three. 

 

Chapter Four is devoted to the subject of bridging CDGPS outages in 

INS/CDGPS integration applications. Optimal backward smoothing is applied as 

the bridging method and the concepts and modifications of the backward 

smoothing equations required for the case of bridging GPS outages are 

developed. 

 

Chapter Five gives a description of a field test and the corresponding GPS 

solutions, along with INS/CDGPS integration results to verify the quality of the 

reference trajectory. 

 

Chapter Six provides short baseline results of the integrated system which are 
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produced off-line; specifically, position accuracy during complete data 

outages, ambiguity resolution performance produced by use of inertial data, as 

well as position improvements during GPS outages using backward smoothing 

methods are investigated. An assessment of the ambiguity processing strategy 

under long baseline (about 80 km) conditions in terms of position accuracy is 

given in Chapter Seven using field data. 

 

Chapter Eight concludes the major results and findings obtained in the previous 

chapters with reference to the objectives listed in Section 1.1.5. 
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CHAPTER TWO - OVERVIEW OF GPS AND INS 

 

This chapter reviews the GPS and INS systems separately, and the integration 

of GPS and INS. GPS is reviewed firstly focusing on the various error sources 

and their magnitudes. The GPS observables are reviewed and the principles of 

inertial navigation systems are detailed through a focus on the relevant 

equations. A review of the most common GPS/INS integration strategies 

realized in the existing software system is presented with more detail given to 

those strategies used in subsequent chapters.  

 

2.1 OVERVIEW OF THE GLOBAL POSITIONING SYSTEM 

 

For military users to accurately and instantaneously determine their position, 

velocity, and time in a common reference coordinate system anywhere on or 

near the Earth on a continuous basis (Parkinson et al., 1995), the GPS was 

originally designed for metre-level accuracies (Parkinson, 1996); developed by 

the United States Department of Defense (DoD); and first declared operational 

in 1993 (Leick, 1995). The developments from there, produced primarily by the 

civil community, have made centimetre-level accuracies more common. The 

realization and revolution of GPS gives modern positioning and navigation the 

ability to provide a wide range of positioning accuracies under all weather 
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conditions. An overview of GPS concepts focusing on GPS architecture, 

observables and error sources is presented in this section.  

  

2.1.1 BASIC CONCEPTS 

 

The Navigation System with Timing And Ranging (NAVSTAR) Global 

Positioning System is a satellite-based radio-navigation system developed and 

maintained by the Joint Program Office (JPO), which is directed by the United 

States Department of Defense (DoD). The GPS system consists of three 

segments: the Space Segment, the Control Segment, and the User Segment. 

The Space Segment comprises the satellites which broadcast signals; the 

Control Segment manages the satellite operations; and the User Segment 

covers activities related to the development of military and civil GPS user 

equipment (i.e., receivers). The DoD is responsible for both the Space and 

Control Segments, while the development of receivers and services in the civil 

sector is essentially conducted by market forces. 

 

Currently there are twenty-nine Block II/IIA/IIR satellites (24 operational, 3 

spares, and 2 newly launched) in the Space Segment (U.S. Naval Observatory, 

2005). GPS satellites operate in near-circular 20,200 km, 12-hour orbits at an 

inclination of 55 degrees and with stationary ground tracks (as shown in Figure 

2.1). This constellation of satellites provides continuous GPS coverage 

ftp://tycho.usno.navy.mil/pub/gps/gpsb2.txt
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anywhere on Earth at any time of the day. Each satellite in the constellation 

continuously broadcasts signals on two L-band carrier phase frequencies. One 

is the L1 frequency at 1575.42 MHz (wavelength 19 cm) and the other is the L2 

frequency at 1227.6 MHz (wavelength 24 cm). Two pseudo-random noise (PRN) 

codes, which are used to achieve the pseudorange from a receiver to a 

corresponding satellite, are modulated onto corresponding base carriers. The 

first code, the Coarse/Acquisition code (C/A-code), is modulated only on L1. 

However, the second code, the Precise code (P-code), is modulated on both L1 

and L2 carriers. The navigation message whicih includes the satellite ephemeris, 

the satellite clock bias and the satellite status is modulated onto both the L1 and 

L2 carriers. According to the GPS modernization plan, a C-Code will be added 

on L2, a Military M-Code will be added both on L1 and L2, and another 

frequency (L5 = 1176.45 MHz) will be introduced in the future. The first satellite 

containing the L2 C-code was launched on September 21, 2005 (Lockheed 

Martin Corporation, 2005). 
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Figure 2.1 GPS Satellites Constellation (Garmin, 2005) 
 

The Control Segment consists of a Master Control Station located at the 

Schriever Air Force Base in Colorado Springs, and five monitoring stations 

which are located at the Falcon Air Force Base (Colorado), Hawaii, Ascension 

Island (the Atlantic Ocean), Diego Garcia Atoll (the Indian Ocean), and 

Kwajalein Island (the South Pacific Ocean) (as shown in Figure 2.2). The major 

responsibility of each of the monitoring stations is to check the exact altitude, 

position, speed, and overall health of the orbiting satellites. The stations will also 

pay attention to any variations that are caused by the gravity of the Moon, the 

Sun and the pressure of solar radiation.  All of this information is passed along 

to, and processed by, the Control Station, which then corrects and updates the 

navigational messages of the satellites. Ground antennas monitor and track the 

satellites from horizon to horizon to further enhance control measures. These 

ground antennas can also transmit correction information to any individual 

http://www.garmin.com/
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satellites. 

  

The user segment is comprised of the equipment for military personnel and 

civilians who determine their position by receiving GPS signals. Military 

equipment has been integrated with GPS user equipment in many ways, e.g. 

fighter jets, bombers, tankers, helicopters, ships, tanks, jeeps, and soldiers’ 

equipment. Furthermore, military applications of GPS also include target 

designation, close air support, “smart” weapons, etc (ibid). In the civilian 

community, GPS users come from many different sectors such as surveying, 

agriculture, shipping (land and sea), in-car navigation, recreation and other 

outdoor-related activities (ibid). 

 

Figure 2.2 GPS Control Segment (Federal Aviation Administration,2005)  
 

http://gps.faa.gov/
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2.1.2 GPS OBSERVABLES 

 

GPS observables consist mainly of pseudorange (code), carrier phase (phase) 

and the instantaneous Doppler frequency. Lower precision applications, such as 

most navigation applications, use pseudoranges. Carrier phase observations are 

used to achieve the high precision required in applications such as geodetic 

surveying and large scale airborne mapping. Pseudorange observables are 

derived from the PRN-codes by comparing the replica PRN-code generated in 

the receiver with the PRN-code transmitted from the satellite to determine the 

time shift through an autocorrelation analysis. Consequently, pseudorange 

observables are accordingly classified by code and frequency as L1-C/A, L1-P 

and L2-P code observable; carrier phase (phase) observables are derived from 

the accumulation of phase offset between the replica carrier signal and the 

received satellite carrier signal. Therefore, the initial number of integer cycles in 

the carrier phase (referred to as the “ambiguities”) is unknown (Wells et al., 

1987).  

 

The basic pseudorange and carrier phase observation equations in metres and 

cycles can be expressed as follows (Misra and Enge, 2001): 
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( ) P
s

u dTdTcITdP ερρ +−++++=  (2.1) 

( ) CP
s

u NdTdTcITdCP ελρρ ++−+−++=  (2.2) 

 

where 

 P   is the pseudorange observation (m), 

 CP   is the carrier phase observation (cycles), 

 ρ   is the true range between GPS satellite and receiver (m), 

 ρd   is the orbital error (m), 

 T   is the tropospheric effect (m), 

 I   is the ionospheric effect (m), 

 c   is the speed of light (m/s), 

 udT   is the receiver clock error (s), 

 sdT   is the satellite clock error (s), 

 λ   is the carrier wavelength (m), 

 N   is the carrier phase integer ambiguities (cycles) 

 Pε   is the measurement noise and multipath on pseudorange (m), and 

 CPε   is the measurement noise and multipath on carrier phase (cycles). 

 

As can be seen in Equations (2.1) and (2.2), some common error sources can 

be reduced and mitigated using differential techniques. In the context of this 
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thesis, the double-differenced (DD) processing technique is used. The 

double-differenced observation equation and error sources are therefore 

discussed in detail herein. 

 

Figure 2.3 Double Differencing Concept 
 

Figure 2.3 shows a typical DD set-up. In implementing DD, a single differenced 

(D) observation is derived first by subtracting measurements at a reference 

station from measurements at a user receiver for the same satellite. The 

corresponding code and phase observation equations can be constructed as 

follows (Misra and Enge, 2001): 

 

( ) P
s

u dTdTcITdP ερρ ∆+−∆+∆+∆+∆+∆=∆  (2.3) 

( )[ ] CP
s

u NdTdTcITdCP ελρρ ∆+∆+−∆+∆−∆+∆+∆=∆  (2.4) 

PRN n 
PRN m 

Rover Reference 
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By further taking the difference between measurements from the base satellite 

and measurements at other satellites, double-differenced observations can be 

obtained. The corresponding code and phase observation equations are formed 

as follows (Misra and Enge, 2001): 

 

( ) P
s

u dTdTcITdP ερρ ∆∇+−∆∇+∆∇+∆∇+∆∇+∆∇=∆∇  (2.5) 

( ) CP
s

u NdTdTcITdCP ελρρ ∆∇+∆∇+−∆∇+∆∇−∆∇+∆∇+∆∇=∆∇  (2.6) 

 

where ∆  and ∆∇  are single difference (D) and double-difference (DD) 

operators, respectively. 

 

As such, many advantages can be achieved by DD. First, the receiver clock 

offset is removed. Second, since the satellite clocks are highly stable (Kaplan, 

1996), the value of the double-differenced satellite clock error is reduced close 

to zero as long as the observations are differenced at approximately the same 

time at both the reference and rover stations. Third, the DD tropospheric error, 

DD satellite orbital error, and DD ionospheric error are much smaller than the 

un-differenced values. The DD observable has some disadvantage over the un-

differenced observable, however. The most significant effect is that the noise 

and multipath level of the DD observable increases because of the non-spatially 
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correlated characteristics of noise and multipath error. Equations (2.5) and 

(2.6) can be further simplified as: 

 

PITdP ερρ ∆∇+∆∇+∆∇+∆∇+∆∇=∆∇  (2.7) 

CPNITdCP ελρρ ∆∇+∆∇+∆∇−∆∇+∆∇+∆∇=∆∇  (2.8) 

 

The DD phase observable represented by Equation (2.8) is generally used in 

applications requiring high positioning accuracy. However, the DD ambiguity 

N∆∇  must be resolved to its integer value to obtain such high levels of accuracy. 

For short baselines (less than 10 km), the main errors affecting ambiguity 

resolution are generally carrier phase multipath and receiver noise (assuming 

normal operating conditions). However ionospheric and tropospheric errors will 

become significant for long baselines (Lu, 1995; Raquet et al., 1998). Detailed 

information about GPS error sources is presented in the following section. 

 

2.1.3 GPS ERROR SOURCES 

 

As mentioned in the above section, GPS DD observables are subject to many 

error sources, which will be briefly discussed in this section. DD errors can be 

classified into two categories based on the relation between the DD error and 

baseline length - namely the spatially correlated and non-spatially correlated 
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errors. Spatially correlated errors are those that tend to cancel between rover 

and reference receivers but which increase proportional to the baseline length. 

These errors include satellite orbital error, tropospheric error and ionospheric 

error. Non-spatially correlated errors are those that are not related to the 

baseline length and unique to each receiver or its environment. Therefore, non-

spatially correlated errors cannot be cancelled through DD processing. The 

corresponding errors are multipath error and measurement noise. All of the 

above-mentioned error sources are discussed in detail later in this section. 

 

GPS signals are affected by the medium through which they travel from the 

satellites to receiver. The traveling distance ranges from about 20,200 km when 

a satellite is overhead to about 26,000 km when it is rising or setting. All but the 

final 5% of the signal travel can be regarded as in a vacuum or free space, 

through which the electromagnetic signals travel with a constant speed, c . 

Closer to the surface of the Earth (Figure 2.4), at a height of about 1,000 km, the 

signals enter a layer of charged particles, called the ionosphere. Later in their 

earthward journey, at a height of about 40 km, the signals encounter an 

electrically neutral gaseous layer referred to as the troposphere. The refraction 

of the GPS signal in the Earth’s atmosphere results in changes in both the 

signal’s speed and direction. Accordingly, the ionospheric and tropospheric 

errors are referred to as signal propagation modeling errors. 
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Figure 2.4 Refraction of GPS Signals in the Earth’s atmosphere 
 

An increase in path length due to bending of the signal ray, greatly exaggerated 

in Figure 2.4, is generally insignificant. The effect of the change in speed of 

propagation, however, is significant. With this in mind, the GPS signal 

propagation modeling errors are discussed as follows. 
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TROPOSPHERIC ERROR 

 

The troposphere is the layer of the atmosphere closest to the Earth which 

reaches a height of about 50 km (Spiker, 1996). It has a nature of electrically 

neutral and non-dispersive for frequencies as high as 15 GHz. Because it is 

filled with water vapour, it refracts the GPS signals. The change of the 

refractivity from ionosphere space to the troposphere causes a reduction in the 

speed of the GPS signal, which produces a delay in the GPS signal. The 

tropospheric delay is composed of two parts, the dry and wet components, and 

is a function of temperature, pressure, and relative humidity. These weather 

parameters, however, have short spatial correlations, since the weather in one 

place might be very different from that in another location even only a few 

kilometres away. Thus, the DD technique can reduce this error only when the 

baseline is short and the weather conditions at the reference and rover are 

similar. Measurement of these weather parameters at widely spaced monitoring 

stations would be ineffective owing to their short spatial correlations (Kaplan, 

1996). Unfortunately, no two frequency subtraction techniques will work in such 

situations due to its non-dispersive effect of the troposphere delay on two 

frequency GPS signals.  

 

Generally, tropospheric delay can be modeled very well. Typically the 
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contribution of the troposphere to the differential positioning error budget 

varies from 0.2 to 0.4 parts per million (ppm), based on application of a model 

described in Lachapelle (2004). Consequently, the errors which are related to 

GPS receiver separations are typically quantified in terms of parts per million 

(ppm), where 1 ppm equals to 1 mm of error per kilometre of receiver separation.  

Assuming a nominal value of 0.4 ppm and a baseline of between 10 and 80 km, 

use the baseline length multiply 0.4 ppm, the residual tropospheric error is as 

high as 0.4 cm to 3.2 cm. This being said, for baselines less than 25 km, the 

residual tropospheric delay may be negligible, depending on local weather 

conditions and station height differences. For long baselines, say on the order of 

80 km, in order to achieve a 2 to 3 cm level of positioning accuracy, either the 

residual tropospheric delay must be modelled explicitly or corrections have to be 

made to compensate for it. 

 

There are quite a few of tropospheric delay models available for this purpose; 

e.g. as described in Hopfield (1970, 1972), Saastamoinen (1972), and Lanyi 

(1984). The Hopfield tropospheric delay model and Saastamoinen tropospheric 

model are the most frequently used to this end, and they give comparable 

results in most situations. The Hopfield tropospheric delay model was used 

herein. 

 

The Hopfield model represents dry and wet tropospheric delay values for the 
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zenith direction using the equations 
5
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eT = , where 0T  is the temperature (Kelvin), 0P  is the total pressure 

and 0e  is the partial pressure due to water vapour (both in millibars), all 

determined at the antenna location by measurements or on the basis of models 

of the standard atmosphere. dh  (≈  43 km) is defined as the height above the 

antenna at which the dry refractivity is zero; and wh  (= 12 km) is defined as the 

height above the antenna at which the wet refractivity is zero.  

 

IONOSPHERIC ERROR 

 

The ionosphere is a region of ionized gases (free electrons and ions) which is 

caused by the Sun’s radiation, and extends from a height of about 50 km to 

about 1,000 km above the Earth. The propagation speed of a radio signal in the 

ionosphere depends on the number of free electrons in its path, defined as the 

total electron content (TEC): the number of electrons in a tube of 1 m2 cross-

section extending from the receiver to the satellite (Misra and Enge, 2001). 

Ionized gas is a dispersive medium for radio waves, meaning that a GPS signal 

passing through the ionosphere is refracted, delaying the signal, and advancing 

the phase with equal magnitude but opposite sign. This effect is frequency-
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dependent and highly dependent on the time of day, receiver latitude and 

solar cycles. The quantified ionospheric delay in terms of measurements of 

pseudorange (Equation 2.1) and carrier phase (Equation 2.2) is as follows: 

 

2
3.40
f

TECII CP
⋅

=−=ρ   (2.9) 

 

where f  is signal frequency. In simplified terms, the ionospheric group delay is 

represented as I  and the phase delay as I− . 

 

If a dual-frequency receiver is available (GPS broadcasts on two frequencies), 

the first order of ionospheric errors can be eliminated using a special linear 

combination observation of two frequencies. This is discussed further in Section 

3.4. 

 

The estimated contribution of the ionospheric error to the differential positioning 

error budget is about 1-2 ppm (Seeber, 1993) at the time of solar minimum. The 

contribution of the ionospheric error to the differential positing error budget 

increases when solar activity increases and/or latitude decrease. The typical 

value of ionospheric error will be shown in Table 2.1. Say the ionospheric error 

contribution is 3 ppm, with a 10 to 80 km baseline; the differential positioning 

error budget is on the order of 3 cm to 24 cm. As a rule of thumb, the 
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instantaneous ambiguity resolution can be achieved when the line of sight 

error is less than half of wavelength. So the ambiguities might not be able to be 

resolved when baseline length longer than 30 km with 3 ppm ionospheric error 

contribution without considering the DOP values. 

 

SATELLITE ORBITAL ERROR 

 

Orbital error is a result of the discrepancies between the actual positions of the 

satellites and the predicted positions promulgated by the broadcast ephemeris. 

The influence of orbital error in computing position solution, according to Wells 

et al. (1986), can be represented as follows: 

 

ρ
ρd

b
db

=        (2.10) 

 

where db  is the total error in the length of the baseline b ; ρd  is the total error in 

the coordinates of a satellite position; and ρ  is the distance from the satellite to 

the respective stations. Equation (2.9) shows that the actual influence of the 

satellite orbital error on the baseline is limited. According to IGS (2005), the 

satellite orbital computed from the broadcast ephemeris has an root mean 

square (RMS) error of 2 m. Assuming an average satellite-receiver range of 
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20,200 km and a baseline of 10 to around 80 km, the contribution of the 

orbital error to the differential positioning error budget is on the order of about 

0.2 to 1.6 cm. This being said, the contribution of the orbital error to the 

differential positioning error budget is less than 1 cm for baseline lengths under 

50 km and thus can be negligible.  

 

The errors listed above are spatially correlated, which means that they are 

correlated between stations as a function of their separation. With this in mind, a 

summary of the typical and extreme error magnitudes for spatially correlated 

errors is given in Table 2.1. 

 
Table 2.1 Magnitudes of Spatially Correlated DD Error Sources (Petovello, 

2003) 
 Error Magnitude 
Error Typical (RMS) Extreme 
Orbital 0.1 ppm N/A 

Troposphere1 < 1 ppm 1-3 ppm 

Ionosphere 1-3 ppm2 > 10 ppm3 
1 After applying a tropospheric model 
2 Effects vary with geographic location and the solar activity 
3 For Calgary region, effects near the equator can reach to 50 ppm 
 

MULTIPATH  

 

Multipath is exactly that - the propagation of the same signal along multiple 
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paths (Figure 2.5). Multipath is one of the largest GPS error sources. It is 

difficult to predict and to compensate for, since it is environmentally dependent 

and thus cannot be mitigated via the differential technique (Ray, 2000). 

Figure 2.
 

As seen in Figure 2.5 a 

also receiving the same 

the ground, buildings, etc

objects. Receiving multip
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5 Multipath Sketch Map (Zhang, 2003) 

receiver may receive a signal from the satellite but is 

signal from the same satellite after it has bounced off 

., or diffracted upon encountering the edges of sharp 

le signals from the same satellite in this way can add 
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additional error to the range to the satellite. There is currently no good way to 

prevent multipath completely. Some high-end receivers have choke-ring 

assemblies around the receiver element, which prevents most of the ground-

reflected multipath, but not all. 

 

MEASUREMENT NOISE 

 

The code and carrier measurements are affected by random measurement 

noise, called receiver noise, which is a broad term covering the radio frequency 

radiation sensed by the antenna in the band of interest that is unrelated to the 

signal; noise introduced by the antenna, amplifiers, cables, and the receiver; 

interferences (i.e. interference from other GPS signal and GPS-like broadcasts 

from system augmentations); signal quantization noise, which are called by a 

joint name as thermal noise and the dynamic stresses effects on a receiver’s 

tracking loop (Misra and Enge, 2001; Spilker, 1994). Measurement noise is 

usually considered as white noise as it is uncorrelated over time, channels and 

receivers, thus cannot be mitigated by DD. In fact, a rover receiver inherits the 

multipath and measurement noise errors incurred at the reference station. With 

differential corrections the receiver noise increases by 2 , and two times with 

double-differencing due to the two differencing steps. 
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Multipath and measurement noise are non-spatially correlated error sources, 

which cannot be mitigated using the differential technique but are, rather, 

increased thereby. With this in mind, the typical magnitudes of multipath and 

measurement noise in un-differenced mode and their mitigation techniques are 

summarized in Table 2.2(Misra and Enge, 2001). 

 

Table 2.2 Magnitudes of Non-Spatially Correlated GPS Error Sources1 
 Error Magnitude 

Error Un-differenced Mitigation 
Receiver 

Noise and 
Multipath2 

Code 0.5-1 m 
 

Phase 0.5-1 cm 

Uncorrelated between antennas 
Mitigation through antenna design and sitting, 

receiver design, and carrier-smoothing 
 

Noise 
Code 0.05-0.1 m3 

 
Phase 1-2 mm 

Uncorrelated between receivers 
 

Mitigation through receiver design 
1 using Narrow CorrelatorTM (0.1 chip) and in “clean” environments (open sky, 

obstacle-free) 
2 extremely the code and carrier multipath can reach up to 4 m and 2.5 cm 

respectively with 3 dB signal to multipath ratio in idea situation (only one 
reflected signal and unlimited bandwidth) 

3 the code measurement precision of a NovAtel OEM4 DL receiver is 6 cm 
(RMS) (NovAtel, 2005) 

 

As shown in Table 2.2, the multipath and measurement noise error, unlike the 

signal propagation error (ionospheric and tropospheric error) and GPS Control 

Segment-responsible error (satellite clock and orbit errors), are affected by 

receiver selection, antenna design and sitting. Because it is difficult to 

completely correct for the multipath error, even in high precision GPS units, 

multipath is a serious concern to the GPS user. In fact, all error sources (satellite 
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clock and orbit error, ionospheric and tropospheric error, and receiver noise 

and multipath) can exist in a GPS measurement. The combined effect of these 

error sources on pseudorange measurements is referred to as the user range 

error (URE), also known as the user equivalent range error (UERE). 

 

2.2 INS CONCEPTS 

 

An inertial navigation system measures the position and attitude of a vehicle by 

measuring the accelerations and rotations applied to the system’s inertial frame. 

It is widely used because it refers to no real-world item beyond itself. It is 

therefore immune to jamming and deception. An overview of INS principles, 

mechanization and error modeling, with a focus on the relevant equations, is 

presented in this section. 

 

2.2.1 PRINCIPLES OF INS 

 

An accelerometer is such an instrument that measures acceleration along its 

axis. Integrate the output once and velocity is computed. Integrate again, and 

the position is determined- or rather, the change in position - along the 

accelerometer’s axis. The above concept is illustrated in following Figure 2.6. 

http://encyclopedia.laborlawtalk.com/Acceleration
http://encyclopedia.laborlawtalk.com/Rotation
http://encyclopedia.laborlawtalk.com/Inertial_frame
http://encyclopedia.laborlawtalk.com/Jamming
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Figure 2.6 Inertial Navigation Concept Fundamental (Savage, 2000) 
 

If the direction of travel is known, the current relative position can be deduced. In 

this sense, inertial navigation is simply a form of dead reckoning. In order to 

achieve the current coordinates referring to a particular frame, the starting point 

is needed. However, an inertial navigation device or system (INS) cannot find its 

initial position on the Earth; it can find latitude, with difficulty, but not longitude 

(Savage, 2000). 

 

Three orthogonally arranged accelerometers, when maintaining alignment to the 

corresponding navigation frame (e.g. for local level frame maintaining alignment 

to north-south, east-west and vertical.), can measure the position and velocity 

changes relative to the navigation frame (Savage, 2000; Grewal et al., 2001). 

First generation inertial navigation systems suspended the accelerometers in a 

set of three gimbals that were gyro-stabilized to maintain the direction (Savage, 

2000; Grewal et al., 2001; Greenspan, 1995). The gyros, similarly, are single 

axis devices, the integration of which gives an output proportional to the angle 

through which the gyros have been rotated (about their input axes) (Savage, 

2000; Grewal et al., 2001; Greenspan, 1995). The gyros in a first generation INS 

Position/Position 
Change ∫ dt ∫ dtAcceleration  

Velocity
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are used as the sensing elements in null-seeking servos, with the output of 

each gyro connected to a servo-motor driving the appropriate gimbal, thus 

keeping the gimbal in a constant orientation in inertial space. The gimballed INS 

can be very reliable and accurate. However, its rather large size and 

mechanically complex gimbal arrangement make it an unwieldy piece of 

equipment. The modern ring laser gyro (RLG) inertial navigation measurement 

unit is about 7 x 11 x 11 inches (178 x 178 x 270 mm) in size, about 10 kg in 

weight, and costs some tens of thousands of dollars. This makes the RLG 

approximately two to three times better in every respect than the ‘latest’ 

gimballed inertial navigation measurement unit, while delivering about the same 

level of performance. Thus, since the 1970s, the INS industry began to 

contemplate an alternative, simpler arrangement (Savage, 2000; Grewal et al., 

2001; Greenspan, 1995). In the new concept, the gimbals were eliminated 

altogether and with the gyros and accelerometers simply ‘strapped-down’ onto 

the mounting frame. The gyros were not used as null-seekers, but as a means 

of measuring rotations in space. As such, the system senses the direction in 

which the accelerometer axis set is pointing at a given instant. In effect, it uses a 

‘mathematical gimbal’ set to replace the mechanical gimbals. The equations 

used to convert the output of the IMU into useful position, velocity and attitude 

information are presented in the following section.   
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2.2.2 INS MECHANIZATION 

 

In order to convert IMU output to useful spatial data, a series of equations have 

to be realized (Schmidt, 1978). The computation can be processed in different 

navigation frames based on the specific application and INS used (e.g. a strap-

down, platform). In this thesis, the Earth-Centered Earth-Fixed (ECEF) frame 

was chosen as the computational frame. The algorithmic flowchart (El-Sheimy, 

2005) is shown in Figure 2.7. 

 

Figure 2.7 Mechanization in Earth-Centered Earth-Fixed Frame 
  

In Figure 2.7, φ,λ,h represent latitude, longitude and altitude, respectively. 
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the ECEF frame as (Schwarz and Wei, 1999) 
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 (2.11) 

 

where a dot indicates a time derivative and g  represents the normal gravity; e
bR  

represents the rotation matrix from the body frame to ECEF frame; p  is the 

position vector; v  is the velocity vector; and Ω  is the skew-symmetric form of 

the rotation rate vector ω . As can be seen, the specific force, bf  and the 

angular rate measurements, b
ibω , measured by the IMU act as inputs to the 

system (the inertial frame to body frame rotation as to measured in the body 

frame). The superscript indicates the frame from which states are measured.  

The mechanization equations process data received from the IMU to obtain 

updated navigation parameters without regard to the veracity of these 

parameters.  

 

2.2.3 INERTIAL SENSOR ERROR EQUATIONS 

 

Gyros and accelerometers, however, are subject to errors which limit the 

accuracy to which the observable can be measured. Due to these errors, the 
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solution of the above system of differential equations also contains errors, 

which can be systematic or stochastic in nature. Therefore, these two types of 

errors are determined first through error models and then compensated through 

Kalman filtering. The SINS systematic error models are defined by perturbing 

the above non-linear equations (Equation 2.11). On the other hand, the SINS 

stochastic error models, which represent the SINS sensor errors, should be 

modeled in a different way owing to the parameters of the sensor operation. The 

SINS accelerometer and gyro sensor errors consist of both deterministic and 

random components. The deterministic part includes biases and scale factors, 

which are determined by calibration and then removed from the raw 

measurements. The random part, however, is correlated over time, which is due 

essentially to variations in the SINS sensor bias terms and therefore is modeled 

stochastically. As such, these errors are included in the SINS error model. For 

most applications, a first-order Gauss-Markov model is usually used to describe 

the random errors associated with inertial sensors. Those error states are then 

estimated in an INS or INS/GPS filter.  

 

Generally, the INS error states estimated in a navigation filter usually include 

three each of the following: position errors, velocity errors, attitude 

misalignments, gyro drifts and accelerometer biases. The dynamic models for 

the above parameters can be written as a series of first-order differential 

equations as follows: 
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Dots denote time derivatives and the superscripts “n” and “b” denote parameters 

in the navigation and body frame, respectively. Particularly if using an ECEF 

frame as the navigation frame, all superscripts “n” should be replaced by “e”. 

The symbols in Equation (2.12) are interpreted as follows: 

pδ  is the vector containing the 3 position errors 

vδ   is the vector containing the 3 velocity errors 

F   is the skew-symmetric matrix of specific force 

ε   is the vector containing the 3 attitude errors (misalignments) 

N   is the tensor of gravitational gradients 

n
inΩ   is the skew-symmetric matrix of the rotation rate of the navigation 

frame relative to inertial space seen from the navigation frame 

n
bR   is the rotation matrix from the body frame to the navigation frame 

d   is the vector containing the 3 gyro drifts 

b   is the vector containing the 3 accelerometer biases 

βα ,  are parameters for modeling the drift and bias terms as first-order 
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Gauss-Markov process, and 

4,3,2,1=iw  is a noise term. 

Appendix E gives the detailed dynamics matrix of the 15-state Kalman filter in 

both the local-level and ECEF frames corresponding to Equation (2.12). 

 

2.3 GPS/INS INTEGRATION 

 

Having reviewed major aspects of GPS and INS in the above sections, the 

integration of the two systems will be concentrated in following section. To this 

end, even if there is only one GPS and one possible INS, there will still be many 

ways to integrate them (e.g. loosely coupled, tightly coupled and deeply coupled 

integration). As an alternative, three of the four most commonly used 

approaches, according to Jekeli (2000) and Scherzinger (2000), are investigated 

in this section. The four most commonly used integration architectures are: 

uncoupled integration; loose integration; tight integration; and deep/ultra-tight 

integration. The loose and tight integration strategies along with the basic 

architecture – uncoupled integration are the most common in the literature and 

will be used herein. The following section describes the filter structures used in 

this research and in the software developed for its implementation. 

 

The term tightly coupled usually uses a single Kalman filter to fuse all sensor 
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data. Loosely coupled, however, generally uses more than one Kalman filter 

with many possible coupling architectures (Carson, 1988; Wei and Schwarz, 

1989). 

 

2.3.1 GPS/INS INTEGRATION ARCHITECTURES 

 

Two integration strategies, namely loose coupling with INS seeding and tight 

coupling, are employed herein (referred to herein for convenience simply as 

“loose coupling” and “tight coupling”, etc.),. In the loose coupling with INS 

seeding strategy, separate GPS and INS filters are implemented and the 

position and velocity of the GPS filter are treated as observations in the INS filter. 

Position and velocity from the INS filter are further used to ‘seed’ the GPS filter 

when it needs to be initialized or reset following GPS data outages. In the tight 

coupling strategy, only one filter is used to estimate all relevant GPS and INS 

states. Figure 2.8 and Figure 2.9 show the two integration strategies (Petovello 

et al., 2003; Zhang et al., 2005). Note that, pursuant to the tight integration 

strategy, the shaded grey boxes correspond to their loose integration strategy 

counterparts and are included here solely for purposes of comparison. 

 

Implied in the loose integration strategy is the fact that process noise is added to 

both the GPS and INS filters. This increased noise, relative to the noise added 

to the INS filters alone (as shown in the tight integration), will introduce some 
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discrepancies (Petovello et al., 2003). This being said, the advantage of the 

loose integration strategy is that the dimension of the state vectors is reduced 

relative to the tight integration case, which allows for computationally more 

efficient programs due to a reduced number of floating point operations needed 

in the Kalman filtering algorithm. Furthermore, since the inputs to the INS filter in 

the loose integration case are position, velocity and the corresponding variance 

covariance output of a GPS filter, the output from a GPS receiver or existing 

software program can be directly used to update the INS filter, thus saving 

computational resources. 

 

Since both integration strategies effectively deliver more information to the GPS 

data processing step, they should both positively affect the ambiguity resolution 

process, relative to the GPS-only case.  More specifically, as more information is 

provided to the GPS data processing step, the resulting search space for GPS 

ambiguities should decrease. This, in turn, should yield shorter ambiguity 

resolution times.  With this in mind, the increased process noise in the loose 

coupling approach, relative to the tight coupling approach, should increase the 

time to fix ambiguities after a complete GPS outage. Moreover, the direct 

correlation between ambiguity states and position states using the tight coupling 

strategy suggests more efficient ambiguity resolution as compared to the indirect 

correlation when the loose coupling strategy is used. Therefore, improvements 

in ambiguity resolution are expected to be lower for a loose integration strategy 
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compared to a tight integration strategy. Furthermore, for either integration 

strategy, the quality of the IMU will directly affect the quality of the data that is 

aiding the GPS.   

 

Figure 2.8 GPS/INS Information Flow Diagram Using the Loose Integration 
Strategy (Petovello et al., 2003) 
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Figure 2.9 GPS/INS Information Flow Diagram Using the Tight Integration 
Strategy (Petovello et al., 2003) 

 

Detailed information about the GPS, INS and GPS/INS integration filters used 

herein is given in Petovello (2003). 

 

It must be noted that the GPS/INS filter used in tightly coupled integration 

consists of a combination of GPS-only and INS-only filters. The GPS/INS case is 

simply the INS-only filter augmented with the double-difference ambiguities 

when they need to be estimated as real-valued quantities. This means that the 

GPS position and velocity error states coincide with the INS position and velocity 

errors in tightly coupled mode. In this way, the tightly coupled filter is identical to 

that of the INS filter discussed above, augmented by the necessary GPS 

ambiguity states. With this in mind, the tightly coupled GPS/INS filter and the 
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loosely coupled INS filter are essentially the same if all ambiguities have been 

resolved or during complete GPS outages. The processing noise incident to the 

loose coupling strategy, however, is higher. Furthermore, because of the indirect 

correlation between position and ambiguity states stemming from use of a loose 

coupling strategy, and higher processing noise, the loose coupling strategy is 

expected lower convergence speed compare to tight coupling with same initial 

position seeding. 
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CHAPTER THREE - OVERVIEW OF CARRIER PHASE 

INTEGER AMBIGUITY RESOLUTION 

 

GPS is a constellation of satellites, from which the broadcasts signals can be 

used to derive precise timing, location, and velocity information. Standard GPS 

position estimates can achieve metre to centimetre level accuracies (Lachapelle, 

2003), depending on the measurements and methods employed. GPS position 

estimates can achieve centimetre level accuracy of by using carrier phase 

observables combined with differential GPS techniques involving two (or more) 

receivers. However, a navigation system based solely on GPS can achieve such 

a high accuracy only if the ambiguities have been resolved to their correct 

integer values. Consequently, several ambiguity resolution techniques have 

been investigated during the last decade. A brief review of the previous work on 

ambiguity resolution and validation that has been carried out by many research 

groups from all over the world will be presented in this chapter. 

 

3.1 OVERVIEW OF AMBIGUITY RESOLUTION 

 

As shown in Table 3.1, the desired GPS carrier phase observable is the number 

of full carrier cycles, plus the fractional cycle, between the satellites and receiver. 
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However, a GPS receiver cannot distinguish one carrier cycle from another. 

The best it can do is measure the instantaneous fractional phase and keep track 

of whole-cycle changes to the phase; hence, the initial phase value when a 

receiver starts tracking a satellite contains an arbitrary integer number of cycles. 

The initially unknown number of cycles between the receiver and a satellite is 

called the ambiguity.  

 

Figure 3.1 - Geometrical Interpretation of Ambiguity (Cannon and Lachapelle, 
2003) 

 

As shown in Table 3.1, only after these ambiguities are resolved to be their 

integer values is centimetre level positioning possible (Kaplan, 1996; Lachapelle, 

2003). Much research has therefore been focused on resolving the integer 
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ambiguities in as short a time as possible. 

 

Table 3.1 Achievable Accuracy vs. Different Positioning Choice (Kaplan, 1996; 
Lachapelle, 2003) 

 
Mode 

Achievable Accuracy (m) 
0.01               0.10                         1.0                     10.0
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Differential  
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Differential  
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(1) Search space definition (generate the potential integer ambiguity 

combinations, that should be considered by the algorithm; each 

combination is comprised of an integer ambiguity for each of the double-

difference satellite pairs.); 

(2) Ambiguity resolution (Identify the correct integer ambiguity combination); 

and 

(3) Ambiguity validation (Verify the ambiguities resolved in step 2 

previously). 

Some of the concepts indicated in the above procedures are investigated in 

further detail below. 

 

SEARCH SPACE 

 

The search space is the volume of uncertainty that surrounds the approximate 

coordinates of the unknown GPS receiver antenna location. Furthermore, the 

size of the search space will affect the efficiency - i.e., the computational speed, 

of ambiguity resolution. Because a larger search space yields a higher number 

of potential integer ambiguity combinations to assess, this consequently 

increases the computational burden. It is necessary to balance computational 

load with a conservative search space size. Much research has been dedicated 

on this aspect, for example by Teunissen (1997) and Teunissen et al. (1996) to 
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name a couple.  

AMBIGUITY RESOLUTION 

 

The criterion used by many ambiguity resolution techniques in identifying the 

correct integer ambiguity combination is the selection of the integer combination 

which minimizes the sum-of-squared residuals (SSR) in the least squares 

adjustment. This introduces the argument that the combination that best fits the 

data indicates the correct result and, if this combination is correct, the amount of 

confidence to be accorded. Since only the correct integer ambiguity combination 

can provide centimetre-level position accuracy, the quality of a GPS ambiguity 

resolution strategy is closely related to its reliability. More specifically, if a non-

optimal ambiguity set is selected, the resulting position error will far exceed the 

estimated accuracy of that position, resulting in an integrity threat.  As such, the 

ability of the ambiguity resolution process to correctly identify the proper 

ambiguity resolution set is paramount, especially for safety-critical applications. 

 

AMBIGUITY VALIDATION 

 

Following selection of an integer ambiguity combination, a test (namely the 

integrity test or a validation procedure) to check the correctness of this solution 
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must be implemented. Some investigations for verifying the ambiguity 

resolution have been done. Traditionally, ambiguity validation test procedures 

are based on the so-called F-ratio of the second minimum quadratic form of the 

least-squares residuals and the minimum quadratic form of the least-squares 

residuals (Counselman and Abbot, 1989). In this particular method, the F-ratio is 

approximately treated as a Fisher statistic for comparison. Wang et al. (1998) 

proposed another ambiguity validation test procedure, namely the discrimination 

function test. This approach is based on the so called W-ratio, the ration of the 

difference between the minimum and second minimum quadratic forms of the 

least-squares residuals and its standard deviation. In this method the W-ratio 

has a Student’s t distribution. Furthermore, Teunissen (1998, 1999), proposed a 

measure of the probability success of the ambiguity resolution approach, 

particularly for the integer bootstrapping technique adopted by the LAMBDA 

method. 

 

To this end, Euler and Ziegler (2000) and Kotthoff et al. (2003) described the 

strategy of increasing ambiguity resolution reliability through a repeated search 

process.  In the repeated search process method, the integer ambiguities are 

continuously recomputed at certain intervals as part of a background process. 

The presence of different integer ambiguity results will lead to an alarm state, 

which is a particular value of the ratio, in percentage terms, of one integer 

ambiguity solution to all possible integer ambiguity solutions of one satellite; 
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once the previous solution has been proven as incorrect, the process 

continues with the newly found ambiguity set and monitoring courtesy of the 

background repeated search process. 

 

3.2 OVERVIEW OF AMBIGUITY SEARCH TECHNIQUES 

 

As the previous sections have described, once the initial ambiguities, along with 

their respective error covariance values, construct a search space, the search 

algorithm basically finds appropriate combinations of integer candidates in this 

search space. The search can be implemented in either the measurement, 

coordinate or ambiguity domains. Hatch and Euler (1994) presented a 

comprehensive study of the classification of the ambiguity resolution techniques 

based on the domain in which the search can be implemented. Some 

techniques for ambiguity resolution presented during the last decade will be 

introduced in this section according to this classification. Consistent with the 

work of Hatch and Euler (1994), the classification of ambiguity search 

techniques is three-fold. 

 

The first class, which is the simplest ambiguity resolution technique, is in the 

measurement domain which uses C/A or P-code pseudoranges directly to 

determine the ambiguities of the corresponding carrier phase observations. This 
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method is also referred to as geometry-free ambiguity resolution technique 

(Misra and Enge, 2001). However, because of the relatively poor precision of 

raw C/A or even P-code pseudoranges for determination of the integer 

ambiguities, inter-frequency linear combinations of L1 and L2 observations are 

commonly used with a smoothing process for the estimated ambiguities. 

Comprehensive studies of the inter-frequency combination can be found in 

papers of Cocard and Geiger (1992), Liu et al. (2002), Liu (2003) and Collins 

(1999) to name a few of which an investigation follows. 

 

The search algorithms in the coordinate (position) domain (the second class) 

include the very first ambiguity resolution technique, namely the Ambiguity 

Function Method (AFM) (Counselman and Gourevitch, 1981). Pursuant to the 

fact that only the fractional value of the instantaneous carrier phase 

measurement is used in this technique, the ambiguity function values are not 

affected by the whole-cycle change of the carrier phase or by cycle slips. 

However, this technique provides poor computational efficiency and 

consequently it has garnered little interest in recent years, even though 

significant improvements on the original algorithm have been made by Han and 

Rizos (1996). 

 

Nowadays, most investigations on ambiguity resolution techniques are focused 

on techniques based on the theory of integer least-squares estimation 
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(Teunissen, 1993) in the ambiguity domain, which is the third class. In this 

theory, ambiguity estimation can be carried out in three steps: (1) the float 

solution; (2) the integer ambiguity estimation and validation; and (3) the fixed 

solution (Liu, 2002). Each ambiguity resolution technique makes use of the 

variance-covariance matrix of the ambiguities obtained at the float solution step, 

which forms the ambiguity search space mentioned in the previous section; it 

employs different ambiguity search processes at the integer ambiguity 

estimation step, then validates the estimated integer ambiguity. According to the 

nature of the ambiguity search process, different ambiguity resolution 

techniques have been developed during the last decade, such as the Least-

Squares Ambiguity Search Technique (LSAST) (Hatch, 1990), the Fast 

Ambiguity Resolution Approach (FARA) (Frei and Beutler, 1990), the Least-

Squares AMBiguity Decorrelation Adjustment (LAMBDA) (Teunissen, 1994), the 

Fast Ambiguity Search Filter (FASF) (Chen and Lachapelle, 1995), the modified 

Cholesky decomposition method (Euler and Landau, 1992), the null space 

method (Martin-Neira et al., 1995) and the Optimal Method for Estimating GPS 

Ambiguities (OMEGA) (Kim and Langley, 1999) to name a few. Further 

investigation into some of the ambiguity resolution techniques in ambiguity 

domain mentioned above will be presented in the following section. 
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3.3 AMBIGUITY SEARCH TECHNIQUES 

 

The ambiguity search techniques which belong to the first two classes 

delineated in the previous section are so straightforward and thus will not be 

further discussed. As for the third class, however, only the well-known and often-

used search methods are introduced herein. A brief comparison and 

investigation of all search techniques belonging to the third class is given first in 

this section to achieve a general appreciation of these techniques. 

 

3.3.1 CLASSIFICATION OF AMBIGUITY SEARCH TECHNIQUES 

 

In comparing and investigating the search techniques, we kept in mind two 

questions:  

1) How do the techniques describe or limit the ambiguity search space? and 

2) How do the techniques deal with the ambiguity parameters? 

 

As mentioned in Section 3.1, reducing the search space that comprises the 

ambiguity candidate sets is a general approach to improve the computational 

efficiency. In this case, the correct ambiguity set should be retained in the 

reduced search space included in the original search space. To date, two 

approaches have been developed for reliable search space reduction. One 
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method is the search domain transformation method which transforms the 

original ambiguity sets into corresponding forms in a transformed space. The 

reduction effect in this approach is usually achieved through a “many-to-one” 

relationship between the original and transformed sets, and/or through 

redefining a more efficient search space than the original (Abidin, 1993; Martin-

Neria et al., 1995). The other method for reducing the search space is to define 

the conditional search ranges in multi-level searches (e.g., FARA and FASF). 

The basic idea of this approach is based on the fact that the ambiguity 

parameters of lower search levels are conditioned by those of higher search 

levels. Naturally, some techniques endeavour to use both transformation and 

conditional methods simultaneously (e.g., LAMBDA and OMEGA).  

 

To improve the clarity of the above discussion, the following observation is 

offered:  in sum, ambiguity resolution techniques have been classified into three 

categories as seen in Figure 3.2 by answering “How do the techniques describe 

or limit the ambiguity search space?”. Figure 3.2 graphically sets out the 

relationship between the three types of techniques.  
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Figure 3.2 Ambiguity Search Techniques Classification 
 

To answer the second question, “How do the techniques deal with the ambiguity 

parameters?”, the ambiguity search techniques can be grouped into two classes: 

(1) the “all-ambiguity-search” method (e.g., FARA, LAMBDA, FASF and 

modified Cholesky decomposition method); and (2) the “independent-ambiguity-

search” (Kim and Langley, 2000) method (e.g., LSAST and OMEGA). The first 
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method uses all of the ambiguity parameters to generate the ambiguity search 

space. The second one uses only independent ambiguity parameters which 

provide a unique solution for the system (or observation equations). The second 

one enables the determination of dependent ambiguity parameters once their 

independent homologues are given (Hatch, 1990). One well-known search 

method that is performed on a transformation/conditional basis (namely 

LAMBDA) is further described in the following section since it is the search 

method chosen for use herein. 

 

3.3.2 LAMBDA METHOD 

 

The LAMBDA (Least-square AMBiguity Decorrelation Adjustment) method was 

investigated by Teunissen in 1993 and 1994. It applies the normal least-squares 

techniques to obtain the float ambiguities, N̂∆∇ , and its variance-covariance 

(VCV) matrix, N̂∆∇Q . However, nowadays, the initial float ambiguities and the 

VCV matrix are usually arrived at through GPS Kalman filtering. Nevertheless, 

the LAMBDA search technique is still essentially the same in terms of its use of 

the same candidate ambiguities and VCV information. The search process 

consists basically of a procedure to find the appropriate N∆∇  satisfying the 

following condition 
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( ) ( ) minumumˆˆ 1
ˆ =∆∇−∆∇∆∇−∆∇ −

∆∇
NNNN N

T
Q  (3.1) 

 

Unfortunately, the standard techniques, which are commonly available for 

solving ordinary least-squares problems, generally cannot be used for solving 

Equation (3.1) due to the integer property of the ambiguity candidates. 

Consequently, methods that in one way or another make use of a discrete 

search strategy to find the minimization of Equation (3.1) must be used. The 

idea is to use the objective function of Equation (3.1) to introduce an ellipsoidal 

region in Rn. A search is then performed on the basis of that ellipsoidal region 

for the minimization of Equation (3.1). The ellipsoidal search space, or search 

region, is given by (Teunissen, 1993) 

 

( ) ( ) 21
ˆ

ˆˆ χ≤∆∇−∆∇∆∇−∆∇ −
∆∇ NNNN N

T
Q  (3.2) 

 

where 2χ  is a positive constant and the selection of which can control the size 

of ellipsoidal search region. The search region is centred at the float solution, 

N̂∆∇ , with its shape being determined by the variance-covariance matrix, N̂∆∇Q . 

However, the quadratic form of Inequality Equation (3.2) cannot be used as a 

criterion to identify the set of candidate grid-points. So the ellipsoidal planes of 

support are introduced to replace the inequality in Equation (3.2) with an 

equivalent description, and the search region bounded by the planes of support 
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represented by Inequality Equation (3.2) becomes (Teunissen, 1993) 

 

( ) niNN
iNii ,,2,1,ˆ 22

ˆ
2

L=≤∆∇−∆∇
∆∇
χσ  (3.3) 

 

Where 2
ˆ

iN∆∇σ  is the variance of the estimator of iN̂∆∇ . Inequality Equation (3.3) 

can be used to select candidate grid-points from which the minimization of (3.1) 

can then be chosen. Although Inequality Equation (3.3) is promising in its 

simplicity, the search can be very time consuming when the search region 

defined by Inequality Equation (3.3) is significantly larger than the original 

ellipsoidal region. Furthermore, this will definitely occur when the ellipsoid is 

both elongated and rotated with respect to the grid axes. To address this 

situation, adjustable bounds are introduced. Bounds are made dependent on the 

stage of progress of the search process. These bounds were obtained through a 

sequential conditional least-squares adjustment, which resulted in the 

introduction of the conditional estimated float ambiguities. The bounds can be 

represented as follows (Teunissen, 1993) 
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These bounds, as represented by Inequality Equation (3.4) and Equation (3.5), 

are indeed much less conservative than Inequality Equation (3.3). The search 

space given by Inequality Equation (3.2), makes it difficult to implement the 

search due to the non-diagonal of the variance-covariance matrix N̂∆∇Q . To 

facilitate the search and achieve better efficiency, a LAMBDA decorrelation is 

applied to N̂∆∇Q . The LAMBDA decorrelation basically performs a Z-

transformation witch makes N̂∆∇Q  nearly diagonal (which means that the 

ambiguities become almost fully decorrelated). After the LAMBDA decorrelation 

is applied, the ambiguities as well as the variance-covariance matrix are 

transformed into the Z domain. The search problem is then converted into the 

transformed search space. Denoting the transformed float ambiguities and its 

variance-covariance matrix as ẑ  and ẑQ , the quadratic form of Equation (3.1) 

can then be written in the following form (Teunissen, 1993; Teunissen, 1994) 

 

( ) ( ) ( ) ( )zzzzNNNN z
T

N

T
−−=∆∇−∆∇∆∇−∆∇ −−

∆∇
ˆˆˆˆ 1

ˆ
1

ˆ QQ  (3.6) 

 

Based on the triangular decomposition of the variance-covariance matrix ẑQ , 

the quadratic form of Equation (3.3) can be further expressed as a sum of 

independent squares in the individual ambiguities (Teunissen, 1993) 
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Where 2
ˆ 1,,2,1,| −= iNNiz L

σ  is the thi  diagonal element of matrix ẑQ , which represents the 

conditional variance of ambiguity iz  conditioned on all previous ones 

( 1,,2,1 −= iN L ). The term 1,,2,1,|ˆ −= iNNiz L  denotes the conditional ambiguities, also 

conditioned on all previous values. Inequality Equation (3.4) and Equation (3.5) 

can be further represented as 
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Inequality Equation (3.8) and Equation (3.9) allow performance of the search for 

the transformed integer least-squares ambiguities in a highly efficient manner. 

 

A search performed within all ranges defined by Inequality Equation (3.8) and 

Equation (3.9) attempts to find two integer candidate sets with the smallest and 

the second-smallest sum-of-squared (SOS) residuals. The discrimination test 

will use the ratio of the smallest and the second-smallest SOS residuals by 

comparing each with a predefined threshold to decide if the candidate set 
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ambiguities with the smallest SOS is deemed to be the correct integer 

solution. The fixed integers are then transformed back from Z domain by 

applying an inverse Z-transformation. 

 

3.3.3 AMBIGUITY RESOLUTION IMPROVEMENTS WITH AIDING OF INERTIAL DATA 

 

The foregoing investigation on GPS, INS, GPS/INS integration and GPS 

ambiguity search techniques leads naturally to the question of how GPS 

ambiguity resolution can be improved with the aid of inertial data. To this end, 

many researchers, such as Farrell et al. (2000), Sennott and Senffner (1997), 

and Grejner-Brzezinska et al. (1998) to name a few, have conducted studies 

only on the aspect of accuracy improvements realized through aiding by inertial 

data. In recent years, researchers such as Ŝkaloud (1998), Petovello et al. 

(2001), Petovello (2003a), Petovello et al. (2003), and Scherzinger (2000) 

explored the improvements in ambiguity resolution search space and time to fix 

based inertial data aiding; however, an investigation of the magnitude of 

improvement in ambiguity resolution with inertial data aiding is still desired. 

Zhang et al. (2005) first proposed an analytical equation to quantify the 

ambiguity resolution improvements with respect to the INS free-inertial solution 

after GPS outages. To better accommodate the uniqueness of each type of 

coupling strategy, this section focuses on analyzing the quantity of improvement.  
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Generally, the time to fix ambiguities after a GPS outage depends on three 

factors: (1) The float ambiguity estimate from the GPS or GPS/INS filter after the 

first phase measurement following a GPS outage; (2) The filter’s convergence 

speed; and (3) GPS measurement noise and the level of tropospheric, 

ionospheric and multipath errors. The first factor, the float ambiguity candidates 

from the GPS or GPS/INS filter after the first phase measurement following a 

GPS outage, will definitely decide the initial states and corresponding variance-

covariance (VCV) matrix. The second factor, the convergence speed of filters 

used, will decide how rapidly the VCV decreases to a reasonable value leading 

to a successful search. The third factor, measurement noise and the level of 

tropospheric, ionospheric and multipath errors, usually affects the overall 

success of the search process in terms of time to fix and correctness of fix. The 

desired quantity improvements will be investigated as follows through an 

analysis of the three factors identified above. The fact that loosely and tightly 

coupled integration strategies have different abilities to affect the second factor 

(convergence speed of filters) mentioned above must be kept in mind before 

further investigation. 

 

The a priori and a posteriori VCV matrices are partitioned as ⎥
⎦
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error states. 2P  is the VCV of remaining velocity error, misalignment and 

inertial error states when using a tight coupling strategy, and is the VCV of 

velocity error states when a loose coupling strategy is used. aP  is the VCV of 

estimated float ambiguity states. 

 

The float ambiguity states are re-initialized following a GPS outage to reflect 

complete loss of phase information so that, consistent with theory in 

(Scherzinger, 2002), DDP T
aa
2

0
σ=−  and 0P =−

sa . This means that the −
aP  is 

essentially the same using either integration strategy (GPS only, loose coupling 

or tight coupling). 

 

To this end, the equation representing the updated ambiguity covariance matrix 

after a resetting of the ambiguity states can be written as (Scherzinger, 2002) 

 

[ ] −−−−−−+ ++−= aa
T

p
T

aaa PRPDAAPDPPP 122
φδ λλ  (3.10) 

 

In the above equation, the superscript minus (“–”) denotes a quantity before 

update and the superscript plus (“+”) denotes a quantity after update, and  

 aP  is the covariance matrix of the ambiguity states, 

 D  is the double-difference operator, 

 A  is the single-difference design matrix of the observations, 
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 λ  is the phase wavelength 

 pδP  is the covariance matrix of the position errors prior to incorporating 

the carrier phase data, and 

 φR  is the covariance matrix of the phase observation noise. 

 

pδP  in the GPS only case is simply the double-differenced code solution position 

error VCV. In the integrated case, however, it can be computed as following 

Equation (3.11). 

 

In the current context, the significance of Equation (3.10) is that it shows that the 

covariance of the ambiguities decreases with a smaller a priori covariance 

matrix of the position errors (prior to incorporating the carrier phase data), thus 

reducing the time required to fix ambiguities. To this end, the a priori covariance 

matrix of the position errors after resetting of the ambiguity states (i.e., after a 

data outage) can be thought of as the weighted average of the differential GPS 

code solution at that time and the INS solution, as shown in the following 

equation 

 

-1
Code

-1
INS

-1
δp PPP +=   (3.11) 

where CodeP  is the covariance matrix of the differential code position solution and 
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INSP  is the covariance matrix of the INS position solution.  To better 

understand Equation (3.11), the 3-by-3 covariance matrices, ( )•P , is replaced 

with the corresponding 3-D position variance, ( )
2σ • .  In this way, Equation (3.11) 

can be written as 

 

2
INS

2
Code

INSCode

2
INS

2
Code

δp
σσ

σσ

σ
1

σ
1

1σ
+

=
+

=  (3.12) 

 

Now consider that for the GPS-only case, the initial position accuracy before 

adding the carrier phase data after a data outage will be given by the differential 

code accuracy (i.e., Codeδpσ σ= ).  However, for the integrated case, the initial 

position accuracy before adding the carrier phase data will be given by Equation 

(3.12).  The percentage improvement in δpσ  relative to the GPS-only case, %I , 

can therefore be written as 
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Returning to Equation (3.10), with a different a priori covariance −
1pδP  and −

2pδP , 
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which represents a priori covariance using the GPS-only and integrated 

strategies, respectively, the updated ambiguity states’ covariances are different. 

According to the property of Equation (3.11), −− − 21 pp δδ PP  is positive semi-definite. 

As such 

 

( ) DDDRAPPADDRDPP T
a

T
pp

T
a

T
aaa

1
21

142
21 120

−−−−++ −=− δδσλ  (3.14) 

 

Thus, improvements in δpσ  should translate directly into improvements in 

ambiguity resolution time following a data outage. Equation (3.13) can be 

considered as an analytical estimate of the ambiguity resolution improvement 

(relative to GPS-only), as a function of Codeσ  and INSσ . Note that the translation 

from Equation (3.11) to Equation (3.12) does not take the cross-correlation 

values into account, so that this relation is simply an analytical estimation under 

ideal conditions. Furthermore, Equation (3.13) does not account for phase 

measurement noise and assumes that the cross-correlation between position 

states and ambiguity states is very small. As discussed in the first paragraph of 

Section 3.3.3, this equation might be different since distinct integration strategies 

have different abilities to affect the other two factors which, in turn, affect the 

time to fix ambiguities after GPS outages. This will be further shown in Chapter 

Six. 
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It is important to note at this point that the above analysis is based on a 

simplification of the equations to accommodate ideal conditions, which can be 

better represented by a tight coupling strategy as mentioned in Section 2.3.1. 

Tightly coupled integration provides for enhanced observability of the floated 

ambiguities when the inertial position error is sufficiently small via the cross-

correlation between the roving position error and floated ambiguities generated 

by the phase DD measurement (Scherzinger, 2002). As such, compared to 

loosely coupled integration, it has a faster converging filter. That implies that the 

analytical equation represented by Equation (3.13) is more suitable for tightly 

coupled integration, and the improvements gained through the use of loosely 

coupled integration is expected to be lower than the values computed using 

Equation (3.13). It is important to note that Equation (3.13) is capable of simply 

predicting the GPS-only ambiguity resolution improvements, and cannot be used 

directly to improve the ambiguity resolution in the GPS-only case. Thus, with a 

given system and data set, the ambiguity resolution performance of GPS-only 

has already been determined. The significance of Equation (3.13) is solely to 

predict how much improvement can ideally be expected compared to GPS-only 

with inertial aiding in terms of the free-inertial accuracy at the end of a GPS data 

outage. It should also be noted that in Equation 3.10, the covariance of the 

phase measurement noise is assumed to be negligible as compared to other 

factors inside the brackets. However, under certain conditions, the effects of 

phase measurement noise are not negligible; e.g., a weak signal is typically 
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characterized by a very low GPS signal to noise ratio. Equation 3.13 might not 

be applicable in such a situation. 

 

3.4 OVERVIEW OF GPS OBSERVABLES – GPS INTER-FREQUENCY 

CARRIER PHASE COMBINATION 

 

Following the above investigation of ambiguity resolution techniques, an 

overview of GPS inter-frequency carrier phase combinations available from dual 

frequency GPS carrier phase observations and relative errors is given in this 

section. According to the general rule of thumb that instantaneous ambiguity 

resolution is possible if the position accuracy (along the line-of-sight to the 

satellite) is known to better than half of the wavelength of the ambiguities being 

resolved (de Jong et al., 2002), the inter-frequency carrier phase combinations 

and relative errors will be evaluated with two different scales: cycles and metres. 

 

L1, L2 OBSERVATION: 

 

The simplified versions of the GPS L1 and L2 carrier phase observations can be 

presented as: 
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where ρ  represents the geometric range plus troposphere, clocks and orbit 

error; 21λ  represents the wavelength associated with each frequency; 21N  is the 

corresponding cycle ambiguity; 21 CPCPε  is the carrier phase noise and multipath 

error associated with each frequency; I  is the ionospheric propagation delay on 

the L1 frequency; and q  is the ratio of L1 frequency to L2 frequency which is 

607721 =ff . Thus, the general expression for a linearly combined carrier 

phase observation is 

 

21, jCPiCPCP ji +=    (3.16) 

 

The wavelength of jiCP ,  can be expressed as 
1

21
,

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=
λλ

λ ji
ji  with ambiguity 

21, jNiNN ji += . 

 

The observation for a linearly combined carrier phase observation can be 

presented as 
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( ) ( )jiji
ji

ji CPeIjqiNCP ,
1

,
,

, ++−+=
λλ

ρ  (3.17) 

 

where e  is the un-modeled error (multipath, noise, residual tropospheric error) 

combined of two frequencies, and ρ  is the double-differenced satellite to 

receiver range. When the measurement noise (including of carrier phase noise 

and multipath) of the phase linear combination exceeds a certain threshold, 

correct ambiguity resolution becomes difficult or highly unlikely. So the 

measurement noise of the linear combined observation is investigated in a 

generic manner as following. 

 

Assuming that the measurement noise of a L1 and L2 phase observation has 

the same portion of its wavelength in cycle (e.g. %α  un-differenced), the 

corresponding double-differenced measurement noise of L1 and L2 is: 

 

 
( )

)metres(     %2
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i

CPie
λα

α
×=

=
 

 

Then the linear combined measurement noise will be: 
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( )

)metres(           %2

)cycles(                 %2
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+=

+=
 

 

The most commonly used linear combinations such as widelane (WL), 

ionosphere free (IF) and narrowlane (NL) consequently can be achieved 

according to previous equations and will be presented in detail as follows. 

 

WIDELANE COMBINATION ( 1,1, −== jiCPWL ): 
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 (3.18) 

 

With a very small ionospheric effect (in cycles) which is reduced to 17/60 of an 

L1 wavelength – meaning that, if the ionospheric bias on the L1 observable is 

one L1 cycle, the corresponding ionosphere error on the WL observable is only 

17/60 of a cycle.  Consequently, the widelane combination is more resistant to 

ionospheric errors (in cycles) than either L1 or L2 and is more reliable for 
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ambiguity resolution under adverse ionospheric conditions. Despite the 

reduction in the impact of the ionospheric error in terms of the number of cycles, 

the widelane approach amplifies the ionospheric effect in metres 

( II
WL 60

77
60
17

1

=λ
λ

) and noise in the widelane observable. The result is a noisier 

position estimate, compared to the corresponding L1 or L2 case.  

 

NARROWLANE COMBINATION ( 1,1, == jiCPNL ): 
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 (3.19) 

 

The narrowlane combination (NL) has the unusual property of reducing the 

noise (in terms of metre units). This means that, after resolving NL ambiguities, 

the position accuracy will be increased. As a result, the narrowlane should give 

better positioning results than L1, WL and IF, if the ionospheric error is negligible. 

However, the decreasing of NL wavelength makes resolution of NL ambiguities 

very difficult. Further more, the narrowlane combination amplifies the 
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measurement noise in cycle and the ionospheric effect which is equal to what 

widelane has. In thesis research, the narrowlane is not investigated further since 

its integer ambiguity is difficult to resolve. 

 

IONOSPHERE-FREE (IF) COMBINATION (
2

1,1,
λ
λ

−== jiCPIF ): 
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 (3.20) 

 

Obviously, the removal of the first-order effects of the ionosphere is the main 

advantage of the ionosphere-free (IF) combination; however, the IF ambiguities 

are no longer integer in nature and must therefore be estimated as real-valued 

parameters. 

 

A detailed comparison of inter-frequency carrier phase combination is presented 

in Table 3.2 (Liu, 2002; Collins, 1999; Lachapelle, 2003). 
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Table 3.2 Inter-frequency carrier phase combination characteristics 
Amplification 

(cycles) 
Amplification 

(length) 
jiCP ,  i  j  

ji,λ  ji ,1 λλ
 

noise ion |mp| noise ion |mp| 
1CP  1 0 19.0 1 1 1 1 1 1 1 

2CP  0 1 24.4 0.78 1 1.28 1 1.28 1.63 1.28 

WLCP  1 -1 86.2 0.22 1.41 -0.28 1.41 6.42 -1.28 6.42 

NLCP  1 1 10.7 1.78 1.41 2.28 1.41 0.80 1.28 0.80 

IFCP  1 -77/60 48.3 0.39 1.26 0 1.26 3.23 0 3.23 
 

3.5 AMBIGUITY ESTIMATION PROCESSING STRATEGIES 

 

With the various combinations of observables discussed in the previous section, 

many ambiguity estimation processing strategies arise, as detailed in Liu et al. 

(2003) and Liu (2002).  

 

Table 3.3 given by Liu et al. (2003) presents eight different strategies in terms of 

ambiguities estimated and observables used. The pseudorange observable P  is 

used in every strategy and 2/1CP  represents the corresponding L1 or L2 carrier 

phase observable, while WLN /2/1  represents L1, L2 or widelane ambiguities 
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Table 3.3 Processing Strategy Summary1 
Strategy Ambiguities 

estimated 
Observables 

used 
Ionosphere 

1 1N  1CP P  
2 WLN  1CP 2CP P  
3 1N 2N  1CP 2CP P  
4 1N WLN  1CP 2CP P  

 
Not 

Parameterized 

5 1N WLN  (IF fixed) 1CP 2CP P  
6 IFN       (IF float) 1CP 2CP P  

Ionosphere-Free 
Combinations 

7 1N 2N  1CP 2CP P  
8 1N WLN  1CP 2CP P  

Stochastic 
Ionosphere Modeling 

1 Refer to Section 3.4, “Overview of GPS Observables”, for details on the 
advantages and disadvantages of each inter-frequency combination. 
 

The eight strategies shown in Table 3.3, can be separated into three categories. 

Strategies 1 to 4 belong to the first class, which does not take ionosphere bias 

into account. The second class consists of strategies 5 and 6. By using the IF 

observable, the second class can remove the first-order ionosphere bias and, by 

estimating ionosphere bias through stochastic ionospheric modeling, the third 

class, which contains strategies 7 and 8, can significantly eliminate the 

ionosphere bias. 

 

Based on the test results given by Liu et al. (2003) a further investigation into the 

advantages and disadvantages of different processing strategies is given as 

follows. 

1. WL ambiguity resolution is reliable as well as easier to resolve than both the 

L1 and L2 ambiguities. However, WL combinations cannot guarantee the 
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optimal position results in terms of accuracy under conditions of high 

ionospheric activity because of the amplification of ionospheric bias in the 

WL observable in units of metres. 

 

2. The IF combination observable or the stochastic ionosphere modeling 

processing strategies are more suitable for high ionospheric activity 

conditions for achievement of optimal position results. 

 

3. Because the WL ambiguity is easier to resolve than both the L1 and L2 

ambiguity, better position results can be achieved after the WL ambiguities 

are correctly fixed while L1 ambiguities are not fixed if L1 and WL 

ambiguities are estimated in the same filter, instead of L1 and L2 ambiguities. 

And since resolution of WL ambiguities can speed up the convergence 

speed of filters, this strategy is expected faster time to fix L1 ambiguities 

compared to Strategy 1 when the filter start from the same initial condition. 

This being said, start form same condition (same initial position, velocity, 

VCV and so on) the Kalman filter using strategy 1 and strategy 4 has 

different convergence speed with the filter of using strategy 4 faster. For 

instance, GPS-only Kalman filter using strategy 1 needs more time than that 

of using strategy 4 when the Kalman filters initialized with the same initial 

values (which is the case after GPS outage) to converge to same level. 

 

4. For Strategy 5, the reduced wavelength results in a longer time to fix the L1 

ambiguities, thus limiting the real-time use of this case. Furthermore, 

because of the slow convergence, Strategy 5 can obtain only an ionospheric-

free solution if the L1 ambiguities are not fixed. This effectively makes 

Strategy 5 unsuitable for practical purposes. So this strategy will not be 

implemented in the software used herein, and not be investigated in this 

thesis either. 
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5. By comparison, Strategy 1 can provide the accurate solution and typically 

used in most applications, but its success is dependent on several factors, 

such as measurement noise, residual tropospheric error, multipath and the 

ionospheric level. 

 

So, the strategy 1 will be investigated in Chapter Six with emphasize on short 

baseline results. Strategy 1, 2, 3, 4, 6, 7, 8 will be investigated in Chapter Seven 

to compare the performance of each strategy with presence large differential 

errors (long baseline).  
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CHAPTER FOUR - OPTIMAL BACKWARD SMOOTHING 

FOR BRIDGING POSITION ERROR DURING GPS OUTAGES 

 

GPS generally provides high quality carrier phase measurements (via tight 

coupling), and accurate position and velocity information (via loose coupling). 

However, in many cases, the GPS signal might be blocked or lost, which means 

that no update is available. If accurate positions are required during such 

outages, some bridging algorithms must be used for estimating improved 

positions for these periods (Nassar, 2002). One of the bridging methods, namely 

optimal backward smoothing, is profiled in this chapter.  

 

4.1 INS/GPS EXTENDED KALMAN FILTER 

 

As discussed in Chapter Two, more detailed information about the system and 

measurement model can be found in Wu (2003). The discrete error model and 

measurement model can be written as 

 

kkkk

kkkkk

VXHZ
WXX

+=

+Φ= −−−

δδ
δδ 111,    (4.1) 
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[ ]TdbεvpX δδδ =  represents the Kalman filter error states. Double-

differenced ambiguity correction states should be added in tightly coupled mode. 

The parameters in Equation (4.1) are interpreted as follows for the purposes of 

convenience: 

 kXδ   is the system error state vector to be estimated at time tk, 

 1, −Φ kk  is the system state transition matrix, 

 1−kW   is the vector of the system input random noise, and 

[ ] kjk
T
jkE δQWW =  where 

⎩
⎨
⎧

≠
=

=
kj
kj

kj ,0
,1

δ , kQ  is system noise covariance matrix, 

kZδ   is the vector of the system observations (measurement update) at 

time tk, 

kH   is the design matrix relating the system measurements to the 

system error states, and 

kV   is the vector of measurements random noise. And [ ] kjk
T
jkE δRVV =  

where 
⎩
⎨
⎧

≠
=

=
kj
kj

kj ,0
,1

δ , kR  is the measurement noise covariance 

matrix. 

 

It should be noted that the measurement model depends on whether a loosely 

or tightly coupled strategy is used.  
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For optimal estimation of the SINS error state vector components, an 

Extended Kalman Filter (EKF) is used herein; the discrete EKF algorithm can be 

summarized as 

 

[ ]
[ ]
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kkkkkkk

kkkkk

PHKIP
XHZKXX

RHPHHPK
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XX

δδδδ

δδ

  (4.2) 

 

Equation (4.1) is the result of the perturbed system represented by Equation 

(2.15). After achieving the optimal estimation 1
ˆ

−kXδ , 1
ˆ

−kXδ  is used to correct the 

mechanization results. Thus, 1
ˆ

−kXδ  is always zero, which means that the first 

step in such prediction is always zero. 

 

0X ≡−1,
ˆ

kkδ        (4.3) 

 

As seen in Equations (4.2) and (4.3), in the case of SINS/GPS integration, the 

state vector can be estimated with GPS measurement updates. In case of a 

GPS outage, no GPS measurement updates are available. Therefore, the 

measurement noise covariance matrix kR  in Equation (4.2) can be considered 
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to equal infinity ∞  and, hence, the Kalman gain matrix kK  in the same 

equation will be zero. Consequently, during GPS outage intervals, the updated 

Equation (4.2) will take the following forms: 

 

11,11,1,

1,
ˆˆ

−−−−−

−

+ΦΦ==

≡=

k
T

kkkkkkkk

kkk

QPPP

0XX δδ
  (4.4) 

 

This being said, the mechanization solution error continually grows and the error 

correction cannot be estimated until GPS updates become available again. 

  

4.2 BACKWARD SMOOTHING ALGORITHMS 

 

In the previous section, optimal estimation of the error states vector at epoch k, 

provided by EKF, is obtained using measurements that are available only up to 

epoch k. Optimal Backward Smoothing (BS), however, allows an optimally 

smoothed estimation of the state vector at epoch k using all or some of the 

measurements that are available before and after epoch k. Basically, the BS 

algorithm could be considered as an means of optimally combining forward 

estimation and backward estimations. With this in mind, the development of an 

optimal smoother algorithm is presented in this section. For simplicity’s sake, 

Xδ  and Zδ  will be referred to as X  and Z , respectively, in the following  
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discussion. 

 

4.2.1 SMOOTHER BASIC 

 

In late 1950s, many needs in applications such space navigation, statistical 

communication theory, made Wiener filter (Wiener, 1949) comes into reality.  

Kalman in 1961 introduced Kalman filter which can be mechanized easily on the 

present-day digital computer. These two filters were very closely bonded to 

navigation application since they were introduced, major reason of that is both 

filters can predict and estimate optimal solution. However, Kalman did not 

consider the important problem of smoothing, which obviously has very good 

potential ability to be used in navigation application too. Before Wiener filter, 

Kalman filter and smoother applied in GPS/INS integration, they are mainly 

applied in control application. 

    

In practice, all measurements are achieved in finite time duration. Thus, the 

most effective and reasonable smoothing method will take advantage of all 

measurements in this duration and to estimate all states in this duration – this is 

referred as Fixed Interval Smoothing. A basic BS method which uses variance 

weight forward and backward solution as optimal solution is investigated in this 

section. As mentioned above, the forward Kalman filter generates the optimal 

estimate at any time based on all past measurements and it does not use any 
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information in future measurements. A Kalman filter running backward in time 

(referred to as a backward Kalman filter) from some end time T  will exhibit a 

similar optimality with respect to future measurements, which is shown in Figure 

4.1. 

 

Figure 4.1 Forward and Backward Kalman Filter 
 

Figure 4.1 shows the basic principle on which both forward and backward 

Kalman filtering is based. The subscripts, f and b, represent forward and 

backward operations, respectively.  

 

By definition, the smoothing is seeking a combination of these two estimates 

that optimally uses all measurements in the fixed interval [ ]T,0 . The combination, 

which has to be linear in this case, can be defined as  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) [ ] ( )tIBAtBtAttt
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XXXXXX
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vvvvvv
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−+++=−=
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ˆˆˆ
  (4.5) 
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( ) ( ) [ ]( )[ ]TtttEt kkkb ,∈= ZXX
vv)v

 

0 
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where subscripts “s”, “f”, “b” represent smoothed estimation, forward 

estimation and backward estimation, respectively; and “^” and “~” represent 

estimated solution and estimation error, respectively. The smoothed estimation 

should be unbiased; hence AIB −=  and 0=−+ IBA . Then the estimation 

error in Equation (4.5) above can be rewritten as 

 

( ) ( ) ( ) ( )tAItAt bfs XXX
~~~ vvv

−+=   (4.6) 

 

The coefficients A  and AI −  were given as follows by Scherzinger (2004): 
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  (4.7) 

 

the corresponding VCV matrix of smoothed solution were given as (Scherzinger, 

2004):  
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or  

 

( ) ( ) ( )ttt bfs
111 −−− += PPP   (4.9) 

 

The above implies that the optimal smoothed information is always better than 

the information in either the forward or backward filter. Hence optimal smoothing 

will always improve the estimation error. However, smoothing is performed after 

the filtering stage. Hence all smoothing algorithms will be dependent on the 

filtered solution obtained. Thus, accurate filtering is required for accurate 

smoothing. As mentioned in Section 2.3.1, the tightly coupled GPS/INS filter and 

loosely coupled INS filter perform essentially the same during complete GPS 

outages. Hence, backward smoothing is applied only with the tightly coupled 

strategy in this research. The result based on use of a loosely coupled strategy 

is expected to be the same as that obtained through use of a tightly coupled 

strategy. 

 

4.3 RAUCH-TUNG-STRIEBEL (RTS) SMOOTHER 

 

Based on the theory mentioned in Section 4.2, Rauch et al. (1965) introduced 

the Rauch-Tung-Striebel (RTS) smoother. The RTS smoother consists of 

algorithms taking advantages of both forward sweep information and backward 
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sweep information. The forward sweep is the common Kalman filter 

represented as 
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Store information from Equation (4.2) during forward Kalman filtering the new 

measurements 1,
ˆ~

−−= kkkkk XHZZ ; gain matrix [ ] 1
1,1,

−

−−
∗ += k

T
kkkk

T
kkkk RHPHHPK . 

The backward sweep begins at the end of the forward filter (i.e. at epoch N) with 

the initial conditions of f
N

s
N XX ˆˆ vv
=  and f

N
s
N PP = , Where superscript “s” and “f” 

represent forward Kalman filter and backward smoother, respectively. The RTS 

algorithm equations are developed as follows: 

 

The smoothed results will take advantage of all measurements after epoch k to 

generate optimal estimate of epoch k, which can be represented as: 

 

∑
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By definition the Equation (4.12) can be re-written as: 
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thus 
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Equation (4.16) subtract  kX  on both side then we get: 
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. Compute covariance matrix both side of 

Equation (4.17), then the smoothed covariance matrix is as following: 
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Summarized from above the RTS smoother can be written as following: 
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It should be noted that, in this particular research, since the extended Kalman 
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filter is used, the predicted states vector f
kk ,1

ˆ
+X

v
 in forward Kalman filtering is 

always zero. 

 

In general, the RTS smoother propagates the smoothed solution directly, using 

the forward Kalman filter states, covariance and model parameters as inputs.  
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CHAPTER FIVE - FIELD TESTING DESCRIPTION AND 

DATA PROCESSING 

 

One field test conducted in a modified passenger van is discussed in this 

chapter. Two base stations were set up during the data collection run, one of 

which provides a short baseline (about 8 km), and the other a long baseline of 

about 80 km. The corresponding tests are denoted as the Short Baseline Test 

and Long Baseline Test, and the results using corresponding data are denoted 

as Short Baseline Results and Long Baseline Results. Results from the modified 

software under distinct integration scenarios using short baseline data are 

presented in this chapter to verify the quality of the GPS-only and INS/GPS 

integrated solutions. Results of the long baseline test are presented in Chapter 

Seven to illustrate how different ambiguity processing strategies perform in the 

presence of large differential errors. The discussion begins with the use of short 

baseline data to achieve a reference trajectory. 

 

5.1 SYSTEMS OVERVIEW 

 

5.1.1 EQUIPMENT AND FIELD TESTING 
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A field test was performed by the Mobile Multi-Sensor Research Group of 

the Department of Geomatics Engineering at the University of Calgary in 

conjunction with NovAtel Inc. This test was conducted on July 18, 2003 near 

Balzac, which is north of Calgary in an area which provided good satellite 

visibility. The remote GPS reference station data collection, which provided long 

baseline results, was conducted using the Three Hills station of the Southern 

Alberta GPS Network (SAN). SAN is a network of 14 dual-frequency GPS 

receivers covering part of southern Alberta which collects GPS data on a 

continuous basis (Dao, et., al. 2004, Dao, 2005).  The data from four stations is 

available in real-time and can be used for a variety of purposes, including real-

time kinematic (RTK) testing in single and multiple reference station modes as 

well as for atmospheric studies (Dao, 2005; Dao, et., al. 2004; Alves, 2004; 

Skone and Hoyle). The stations filled with blue color in Figure 5.1 shows the 

position of the SAN reference station used in this particular test, the local 

reference station and the test area as well. The distance between remote and 

local reference stations is about 80 km. 
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Figure 5.1 Southern Alberta Network, Local and Remote Base 
 

The remote and local GPS reference stations are as shown in Figure 5.1 and 

Figure 5.2.  The baseline length to the local reference station during the test was 

a maximum of eight kilometres, while the baseline length to the remote 

reference during the test was about eighty kilometres. Figure 5.3 shows the Kp 

index for the day of the test as well as for two days on either side of the test day. 

As shown, the Kp index for the period of the test is relatively low considering that 

the Kp index has a range from zero to nine (GFZ-Potsdam, 2004). 

 

The coordinates of the local base station were computed using Bernese 
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software (Hugentobler et al., 2005) with more than 5 hours carrier-phase 

measurements respect to Three Hill base station which is used as the other 

base statioin in this test. The accuracy given by Bernese is at mili-metre level, 

thus the relative accuracy of two base stations used herin is expected very high. 

   

The HG1700 rover GPS antenna and an LN200 IMU were mounted on the roof 

of the test van as shown in Figure 5.4. The short baseline results can provide an 

accurate CDGPS/INS integration solution which could be used as a reference 

for evaluating the integrated system (the next two chapters contain details of 

their implementation). Ionospheric conditions during the test are not considered 

to be significant for the short baseline data, taking into consideration the 

baseline length and the Kp index value. Appendix D gives the estimated 

ionospheric delay for the short and long baseline conditions, respectively. The 

estimated ionospheric delay was about 1 ppm during the data collection.   

 
Figure 5.2 GPS Reference Remote (left) and Local (right) Station Setup 
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Figure 5.3 Kp Index Before and After Data Collection Period 

 

Figure 5.4 Test Hardware Setup Showing the Rover GPS Antenna, the HG1700 
IMU and the LN200 IMU 
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One data collection run was performed, which began with a static 

initialization period of about 5 minutes followed by about 40 minutes of driving. 

The vehicle trajectory during the test, relative to the local reference station, is 

shown in Figure 5.5 (the trajectory was traversed twice) in which black arrows 

denote the direction of travel. Vehicle speeds varied from 0 to 110 km/h (30 m/s) 

as shown in Figure 5.6, which plots the estimated vehicle velocity versus time 

for the complete run after the initial alignment period. 

 

Figure 5.5 Test Trajectory with respect to Local Reference Station 
 

The local reference station was overlapped with the start and end points in 

Figure 5.5 above. As can be seen, the longest baseline length is about 8 km. 
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The reason for setting the end point very near the start point in the test is to 

verify the correctness of ambiguities. The trajectory comprised most dynamics 

typical of vehicle motion such as left, right and U-turns, acceleration and de-

acceleration; the trajectory included no sudden stops or large changes in 

elevation or grade. 

 

Figure 5.6 Estimated Vehicle Velocities Using Tight Coupling Short Baseline 
Solution 

  

The NovAtel OEM4, which is high quality dual-frequency GPS receiver capable 

of generating low noise code, Doppler and carrier phase measurements, was 

used at each of the GPS reference stations (Novatel, 2005a). Two rover GPS 



 

 

107

OEM4 receivers were mounted in the test vehicle and integrated with each 

of the HG1700 and LN200 IMUs. The IMU data from both systems was received 

and time-tagged by the corresponding GPS receiver before being output through 

one of the receiver’s serial ports. This process eliminates any significant timing 

discrepancies between the GPS and IMU data. When processing the data, the 

GPS data used was from only one of the receivers in the test vehicle, thus 

allowing for a fair comparison. All GPS receivers (at the reference and remote 

stations and the rover receivers) used NovAtel 600 series antennas (Novatel, 

2005b).  Some of the more relevant performance specifications for the IMUs 

tested are as shown in Table 5.1. 

 

Table 5.1 IMU Specifications 
Parameter HG-17001 LN-2002 

Gyro Bias (deg/h) 1~10 1~10 

Angular Random Walk (deg/√h) (max) 0.152 0.04~0.1 

Accel Bias (m/s2) 9.8e-3 2e-3~9.8e-3 

Velocity Random Walk (m/s/√h) (max) 0.0013 0.001 
1 Honeywell (1997) 
2 Litton Inc. (2004) 
 

The coordinates of the local GPS reference stations were computed using 

differential carrier phase positioning techniques and are considered accurate to 

within several centimetres. 
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5.1.2 PROCESSING SOFTWARE 

 

Data was processed using the University of Calgary’s Satellite And Inertial 

Navigation Technology (SAINTTM) software (Petovello et al., 2004). With 

different combinations of inter-frequency observables (Liu, 2002; Collins, 1999), 

many ambiguity estimation processing strategies are possible (Liu et al., 2003; 

Liu, 2002) after the software being modified (the original version SAINTTM only 

process L1 only and WL only strategies shown in Table 5.2 as Strategies 1 and 

2). A summary of ambiguity processing strategies is presented in Table 5.2. The 

modified SAINTTM software can process carrier phase observables using any of 

the strategies shown in the table. Compared to those strategies in Table 3.3, 

only Strategy 5 in Table 3.3 is not implemented in SAINTTM, since it was not 

suitable for practical purposes as mentioned in Chapter Three.  

 

It should be noticed that in strategy 6 and 7, Ionospheric error is modeled as first 

order Gauss-Markov process and treated as error states in GPS or GPS/INS 

Kalman filter (Liu, 2002). 
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Table 5.2 SAINTTM Ambiguity Processing Strategy Summary 
Strategy Ambiguities 

estimated 
Observables 

used 
Ionosphere 

1 1N  1CP P  
2 WLN  1CP 2CP P  
3 1N 2N  1CP 2CP P  
4 1N WLN  1CP 2CP P  

 
Not 

Parameterized 

5 IFN  (IF float) 1CP 2CP P  Ionosphere-Free Combinations 

6 1N 2N  1CP 2CP P  
7 1N WLN  1CP 2CP P  

Stochastic 
Ionosphere Modeling 

 

Since the Short Baseline Test provided baseline lengths of less than 10 km, and 

considering that the Kp index is about 3 which means ionospheric error is at a 

low level, the ionospheric error was assumed to be about 3 ppm (parts per 

million). The maximum position error caused by the ionosphere is about 3 cm. 

This conjecture is supported by the residual analysis included in Section 5.2.  In 

light of this, for the Short Baseline case the L1 carrier phase ambiguities were 

amenable to direct resolution. As such, the reference trajectory was therefore 

processed using the Strategy 1 which incorporated L1 carrier phase data, as 

well as L1 C/A code and Doppler measurements, using the double-difference 

technique. The GPS integer ambiguities are resolved using the LAMBDA 

method (Teunissen, 1994). In the long baseline case, the ionospheric error 

becomes the dominant error source. There is a very good chace to not be able 

to resolve the L1 and L2 ambiguities. The position error performance using 

different ambiguity resolution strategies in the long baseline case will be further 
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investigated in Chapter Seven. 

 

5.2 REFERENCE TRAJECTORY GENERATION 

 

In order to assess the performance of the two systems and the long baseline 

solution, a reference trajectory is needed. To determine a reference trajectory, 

all of the GPS and INS raw measurements of short baseline data were 

processed together using the tightly coupled integration strategy. The tightly 

coupled solution was favoured over a GPS-only solution because the GPS-only 

solution is output only at 1 Hz, while the tightly coupled solution is output at 

10 Hz. Moreover, the trajectory was computed using all available information 

and should thus be of the highest quality. Thereafter, the RTS optimal 

smoothing technique was used to improve the accuracy. The accuracy of this 

solution is dependent on two factors. One is the GPS kinematic carrier phase 

differential solution accuracy which will define the absolute accuracy of the 

system. The other is the relative accuracy of the INS which will then determine 

how this initial GPS error is propagated forward in time between GPS data 

updates. Since the accuracy of the GPS solution is fairly well known - floating 

ambiguity solutions can provide decimetre accuracy while fixed integer solutions 

are capable of centimetre accuracy over short baselines (Cannon, 1997) - the 

reference trajectory is considered to be centimetre-level since almost all of the 
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ambiguities were fixed and maintained throughout the run. The only 

exceptions were a few instances when at most three ambiguities (of nine) were 

temporarily lost but were recovered no more than 5 seconds later. An analysis of 

the residuals during the run (see Section 5.2.1 below), and the static position at 

the start and end of the run (shown in Figure 5.5), indicate that the ambiguities 

were indeed resolved correctly. The following subsections analyze the quality of 

the truth trajectory after initial fixing of the ambiguity. First, the quality of the 

GPS-only solutions is investigated followed by an analysis of the integration 

solutions. A comparison of different integration approaches is also included to 

illustrate their differences. All investigations in this section focus only on the 

short baseline solution.  

 

5.2.1 SHORT BASELINE GPS-ONLY SOLUTION 

 

The GPS-only solution is investigated in this section in order to assess the GPS 

data quality and ionospheric error effects. 

 

This section provides the carrier phase differential solution from the software 

using the short baseline data. For the short baseline case, as mentioned above, 

the L1 ambiguity can be easily resolved. Since the L1-only strategy provides the 

highest accuracy, the GPS data was processed using L1 carrier phase and the 

majority of ambiguities were resolved to their integer value and maintained 
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through the run in this particular case (as shown in Figure 5.7). The only 

exceptions were a few instances when at most three ambiguities (of nine) were 

temporarily lost but were recovered at most 85 seconds later. Thus, the GPS-

only solution is considered to be at the centimetre-level. To help confirm this, the 

upper plot in Figure 5.7 shows the absolute L1 carrier phase residuals as a 

function of time for the satellites whose ambiguities are fixed, as computed using 

the GPS-only strategy. Also shown on the plot is the distance of the vehicle from 

the reference station. The number of satellites available above a cut-off angle of 

10 degrees and the number of satellites whose ambiguities are fixed are shown 

in the lower graph.  Baseline lengths of approximately zero occur when the 

vehicle is stationary next to the reference station.  

 

Throughout the data set, the L1 carrier phase residuals are about 2 to 3 cm, and 

do not change with baseline length. This being said, the ionospheric effect is 

considered negligible in this short baseline case and the only remaining errors 

using double differencing are those due to multipath and noise. Although the 

residuals are typically 2 to 3 cm, there are some cases when they are larger 

than 3 cm and even up to 4.8 cm at one epoch. It was found that in all cases 

when the phase residual was larger than 3 cm occurred with low elevation 

satellites; typically less than 15 degrees (see Appendix A which shows the DOP 

values and satellite elevation angles during the test for more details). The larger 

ambiguity residuals are therefore most likely caused by multipath errors since 
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the GDOP values shown in Figure A.1 changes very little (from 2 to 1.8) 

after local time 10:20. Also, as shown in Figure A.2, it can be concluded that 

from GPS time 490400 s to 492100 s (10:13 AM to 10:42 AM local time) there 

were several GPS satellites at very low elevation angles (around 10 to 15 

degrees, 3 satellites are dropping in and 3 satellites are dropping out), that 

potentially gave nosier GPS measurements during that time. 

 

Finally, it can be also seen in the lower plot of Figure 5.7 that the majority of L1 

carrier phase ambiguities were fixed and maintained throughout the test run. As 

mentioned above, at some epochs some of the ambiguities were lost and then 

recovered very quickly. However, given the number of visible satellites, if 

ambiguities from only a few satellites are lost the influence on the ultimate 

positioning accuracy is negligible. Given the above, the GPS-only solution can 

be assumed to be accurate to the 2 to 4 cm level at all times.  
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Figure 5.7 Absolute Value of GPS-Only Solution Fixed Ambiguity L1 Carrier 
Phase Residuals vs. Baseline Length without Data Outages (upper plot); 

Number of Satellites Visible, and Number of Satellites with Ambiguities Fixed 
(lower plot) 

 

5.2.2 SHORT BASELINE INS/CDGPS INTEGRATION SOLUTION 

 

The above analysis focused on the GPS-only solutions, since this will ultimately 

determine the absolute accuracy of the integrated system. However, an 

assessment of the integrated system performance is also important. Moreover, 

the GPS-only solution can only provide a 1 Hz output. A good indication of the 

quality of the integrated solution is the magnitude of the corrections applied to 
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INS position and velocity states, as well as the fixed ambiguity L1 residuals. 

 

Table 5.3 shows the RMS three-dimensional corrections to the position and 

velocity error states for each run. Since the corrections are an indicator of the 

smoothness of the trajectory over time, it can be seen that the trajectories are 

smooth to about the centimetre level in position. Furthermore, since the GPS 

solutions analyzed above will determine the absolute accuracy of the system, 

the truth trajectories are assumed to be accurate to within 2 to 4 cm at all times. 

In addition, the required correction to INS using the HG1700 is 3 mm higher than 

that using the LN200. This implies that the LN200 has lower inherent noise than 

the HG1700. 

 

 Table 5.3 RMS of Corrections to INS Position and Velocity Errors States Using 
a Tight Integration Without Data Outages 

Corrections HG1700/CDGPS LN200/CDGPS 

Position 9 mm 6 mm 

Velocity   5 mm/s   2 mm/s 

 

COMPARISON OF LOOSE AND TIGHT INTEGRATED SOLUTIONS 

 

As mentioned in Section 2.3.1, the loose and tight integration approaches can 

be assumed to be almost equivalent under ideal situations. This section 
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investigated different integration approaches’ differences in practical 

situations by comparing the solution of each integration approach. Table 5.4 

shows the difference between the loosely and tightly coupled solutions. As can 

be seen, the difference between the two solutions is at the millimetre level. 

These differences are most likely because the tight integration approach has 

better ability to smooth the GPS noise than loose integration does (Petovello, 

2003). For greater clarity, the implications of this concept are revisited below.  

 

Table 5.4 RMS Difference Between Positions Computed Using Loose and Tight 
Integration Strategies without Data Outage 

Axis HG1700/CDGPS LN200/CDGPS 

East 2 mm 1 mm 

North 1 mm 1 mm 

Up 2 mm 1 mm 
 

Table 5.5 shows the RMS statistics of the fixed L1 carrier phase residuals for the 

GPS-only, loose and tight integration solutions respectively. The RMS of the 

fixed L1 carrier phase residuals using the tightly coupled strategy is larger than 

that of using either the loosely coupled, or GPS-only, strategies. This helps to 

confirm that the position differences in Table 5.4 are caused by high-frequency 

errors in the measurements. Furthermore, it implies that the tight integration 

approach is better able to filter the GPS measurements. Specifically, since the 

ambiguity has been fixed, more high-frequency measurement noise is forced 
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into the residuals, and not into the position estimates as in the case of loose 

integration. Although it can filter the GPS noise using INS position and velocity 

seeding - the ability of the loosely coupled strategy to filter GPS noise is weak. 

This can be confirmed by reference to Table 5.5 that the RMS of the fixed L1 

carrier phase residuals are the same using either the GPS-only or loosely 

coupled strategies. Overall, the two integration approaches can be assumed to 

be equivalent under ideal conditions (e.g. with no measurement noise), with the 

tight integration approach providing the smoother trajectory. This being said, 

although the loosely coupled strategy and tight coupling have very similar 

performances in the position domain, they have different abilities to filter GPS 

measurement noise. As can be seen in Table 5.5, the mean of the absolute 

fixed L1 residuals using either the loosely coupled or GPS-only strategy are at a 

level of 7 mm for both the HG1700 and LN200 systems. However, that of the 

tightly coupled strategy is 1 mm and 2 mm higher for the HG1700 and LN200 

systems, respectively. This implies the ability to filter GPS measurement noise is 

related to the quality of the IMU. 

 

Table 5.5 Mean of Absolute Fixed L1 Carrier Phase Residuals Computed Using 
Different Integration Strategies 

Mean Absolute Residuals HG1700/CDGPS LN200/CDGPS 

GPS-only  7 mm 7 mm 

Loosely Coupled  7 mm 7 mm 

Tightly Coupled  8 mm 9 mm 
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Given the above, the tightly coupled short baseline solution as a reference 

trajectory is considered to be accurate to the 2 to 4 centimetre level.  

 

5.2.3 GPS DATA OUTAGE SIMULATION 

 

To assess the GPS/INS performance in terms of (i) position accuracy, and (ii) 

integer ambiguity resolution during and after GPS data outages, nine complete 

data outages were simulated during post-mission processing. The GPS data 

outages were selected to encompass a wide range of vehicle dynamics, from 

(approximately) constant velocity to relatively large along-track and lateral 

accelerations. In this way, the evaluation of the GPS/INS integrated systems is 

done over a wide range of operational conditions. To help clarify this, Figure 5.8 

shows the baseline length as a function of time (i.e., same as the top plot in 

Figure 5.7) along with the starting points of each of the simulated data outages. 
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Figure 5.8 Baseline Length and the Starting Points of each of the Simulated 
GPS Outages 

 

The duration of the simulated GPS data outages was varied from 2 to 100 

seconds to help determine: 

 

1 The length of time over which the different INS’s can provide instantaneous 

ambiguity resolution compared to the GPS-only solution; and  

 

2 The length of time over which the different INS’s are able to assist in the 

integer ambiguity resolution process, even if instantaneous ambiguity 
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resolution is not possible. 

 

It is noted that only one data outage was simulated per processing run.  In this 

way, the best available position is available prior to each outage.  By way of 

contrast, if multiple outages were simulated over each processing run, then the 

effect of any one outage may influence the performance subsequently obtained.  

Although this approach will yield fairly optimal results, it represents a fair method 

with which to compare the two systems tested. It is also should be noted that 

complete GPS outages are simulated simply by setting the elevation cut off 

angle to 90 degrees at some epochs. However, in reality GPS outages are 

generally precluded by a deterioration of the measurements. Thus these results 

based on simulated GPS outages are not necessarily representative of real GPS 

outages in the strictest sense.   

 

5.2.4 DATA ANALYSIS STRATEGY 

 

The results obtained during the simulated GPS outages are compared with the 

reference solution. The position accuracy during the data outages (i.e., the free-

inertial solution) is assessed by means of a comparison with the reference 

trajectory. Since the reference trajectory is accurate to the centimetre-level, the 

resulting position difference is almost entirely due to errors in the INS in the 

absence of GPS updates (i.e., to the free-inertial error). The free-inertial solution 
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accuracies are a reliable indicator of system functioning when comparing 

two integrated systems in the position domain since they are affected only by 

the performance of the IMU’s.  

 

When the GPS data is re-introduced at the end of the data outage, the 

necessary GPS ambiguities must be re-resolved. Once these are resolved to 

their integer values, they are compared with the reference ambiguity values to 

ensure their veracity. Also of interest in this regard is the time required for the 

ambiguities to be resolved to their integer values, relative to the GPS-only case, 

with shorter times indicating greater relative improvement. Since the exploitation 

of the integer nature of the GPS carrier phase ambiguities is what allows for 

high-accuracy position estimates in a reasonable time period, the ambiguity 

resolution procedure is critical.  The ambiguity resolution process is highly 

affected by the size of the ambiguity search space, which is related to the 

covariance matrix of the estimated ambiguities (Teunissen et al., 1996). 

 

To assess the above performance parameters, complete GPS data outages 

were simulated during post-processing by artificially rejecting all satellites in 

view. In many cases, kinematic applications which would benefit from the 

inclusion of inertial measurements the most are those requiring an 

instantaneous or nearly instantaneous ambiguity resolution to become 

successful (Skaloud, 1998). With this in mind, the time taken to fix ambiguities 
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after different durations of complete GPS data outages is investigated to 

evaluate the improvements in ambiguity resolution resulting from the addition of 

inertial data. 

 

The above data processing routine was repeated for each of the different 

GPS/INS integration systems – namely, the GPS/HG1700 and GPS/LN200 – 

and repeated for each of the different integration strategies, namely loose 

coupling and tight coupling. The corresponding results are presented in Chapter 

Six. 

 

In many cases, the use of a short baseline such as would be found on shipboard 

navigation applications, is not practical. Thus the performance under the 

different ambiguity resolution processing strategies under long baseline 

conditions (in the presence of large differential errors) is also investigated. Since, 

in the long baseline case, only the WL ambiguities can be resolved, the results 

achieved using long baseline data are compared with the reference trajectory 

only in position domain. The corresponding results are presented in Chapter 

Seven. 
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CHAPTER SIX - PERFORMANCE COMPARISON OF 

TWO INTEGRATED SYSTEMS 

 

The short baseline data results are presented in this chapter to compare the 

performance of the two integrated systems in position and ambiguity domain. 

Furthermore, the ambiguity resolution improvements with the aiding of inertial 

data have also been investigated. In doing so, an analytical relation mentioned 

in section 2.3.2 between ambiguity resolution improvements with aiding of 

inertial data and INS system performance in position domain is verified using 

two different INS. The RTS smoother’s ability to bridge the position error during 

and after GPS outage is presented as the final step in this analysis. The 

performance of the two systems is assessed in terms of position accuracy and 

ambiguity resolution, as discussed in the following sections. 

 

6.1 COMPARISON IN POSITION DOMAIN 

 

To compare the free-inertial positioning capability of the two integrated systems 

during data outages, the 3-D position errors were computed as a function of the 

time elapsed since the most recent GPS update for each simulated outage. The 

RMS position error across all nine simulated data outages was computed and is 
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assumed to be a good indicator of the ability of the two systems to bridge 

data outages. The top plots in Figure 6.1 and Figure 6.2 show the RMS position 

error of the tight coupling solution obtained from L1 data, during complete GPS 

outages. Also shown is the average estimate of the filters’ 3-D standard 

deviation (STD) (across all nine outages) of each integrated system. As can be 

seen, the estimate of the filter’s 3-D STD agrees reasonably well with the RMS 

of the position error, although the estimated error appears to be slightly 

pessimistic. The agreement between the actual and estimated errors suggests 

that appropriate model parameters were used for modeling the system error 

states. More detailed analyses for the selection of the IMU sensor error model 

parameters can be found in Appendix C. Since the errors appear to be well 

modeled in both systems, and all other processing parameters were the same 

(Appendix C), the primary explanation for the different performance between the 

systems is the quality of the IMU sensor. Finally, it is noted that, although the 

results in Figure 6.1 and Figure 6.2 are for the tight integration approach only, 

the results obtained using loose integration are nearly identical, and were 

therefore omitted for clarity.  

 

It is noted that the middle and bottom plots in Figure 6.1 and Figure 6.2 zoom 

the upper plot in y-axis with the same scale on x-axis, in doing so, clearer 

relation between RMS position error and time into GPS data outage can be seen. 
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Figure 6.1 GPS/HG1700 Integrated System 3-D RMS Errors and Average 
Estimated Standard Deviations during All Complete Data Outages Using L1 

Carrier Phase Updates and a Tight Integration 
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Figure 6.2 GPS/LN200 Integrated System 3-D RMS Errors and Average 
Estimated Standard Deviations During All Complete Data Outages Using L1 

Carrier Phase Updates and a Tight Integration 
 

To begin the analysis, let us consider the RMS position error as a function of 

time.  As seen in Figure 6.1 and Figure 6.2, the errors grow quadratically, as 

expected.  Upon closer inspection, the HG1700 and LN200 systems are seen to 

provide 10 cm accuracy for approximately 6 and 8 seconds, respectively.  

Furthermore, the errors grow to 2 m after about 36 and 49 seconds, respectively.  

For longer data outages, the position errors grow quite rapidly to a maximum of 

20 and 10 m after 100 seconds, respectively.  Overall, this type of performance 
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compares well with previous investigations. Specifically, for purposes of 

comparison, in Petovello (2003a) the 3-D positioning error reached 10 cm and 

2 m after approximately 6 and 40 seconds, respectively, using the HG1700 unit.  

Similarly, Scherzinger (2000) obtained 3-D errors of 10 cm and 1.8 m after 10 

and 60 seconds, respectively, using an LN200 combined with other sensors 

(hence the slightly better performance than observed herein). 

 

Now, recall that one of the objectives of this chapter is to correlate free-inertial 

positioning accuracy and ambiguity resolution improvements after data outages 

(relative to GPS alone).  As a first step in accomplishing this, a correlation 

between the free-inertial positioning accuracy and the GPS-only positioning 

accuracy should be obtained. More specifically, a relationship between the 

estimated free-inertial position accuracy and the estimated GPS-only code 

accuracy is desired (i.e., relate the free-inertial and GPS 3-D STD values).  The 

reason for this is threefold.  First, from a system design and analysis standpoint, 

being able to use estimated position accuracies (e.g., from covariance 

simulations) is very pragmatic. Second, after a GPS data outage, the estimated 

GPS-only position accuracy will be determined almost exclusively by the 

differential code measurements (while the carrier phase data will be used 

primarily to estimate the ambiguity states).  As such, the differential code 

accuracy directly defines the size of the GPS-only ambiguity search space.  

Third, the estimated differential code accuracy is easily computed and is thus 



 

 

128

available for potential use in the processing software (whereas the actual 

positioning error is not available). In light of this, the GPS-only 3-D STD was 

computed for all epochs for the data set under consideration.  The average 

value across the data set was then computed to be 1.8 m (1σ).  This value is 

used in the subsequent analysis. It should be noted that the average GPS-only 

3-D STD of 1.8 m is computed on the basis of the data used herein. This is not a 

universal value and should not be expected to occur when using a different GPS 

data set. 

 

With the above analysis in mind, the subsequent analysis (in this section) 

focuses on the estimated free-inertial accuracy relative to the GPS-only case.  

The middle graphs of Figure 6.1 and Figure 6.2 (which are zoomed versions of 

the top graphs) show that the estimated 3-D STD of the free-inertial solution is 

as good or better than 1.8 m (i.e., the GPS-only 3-D STD) for data outages 

lasting up to about 26 s and 40 s for the HG1700 and LN200 systems, 

respectively. In turn, this should relate to improvements in ambiguity resolution 

times after GPS outages (see Section 6.2 for an in-depth treatment of this issue). 

Finally, the estimated accuracy of the free-inertial solution is as good or better 

than 10 cm for data outages lasting up to 2 s and 4 s for the HG1700 and LN200 

systems, respectively. 
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Having correlated the free-inertial and GPS-only accuracies, the following 

section attempts to further correlate free-inertial performance with ambiguity 

resolution performance. 

 

6.2 COMPARISON IN THE AMBIGUITY RESOLUTION DOMAIN 

 

As a first step in assessing the ambiguity resolution performance of the 

integrated systems, Figure 6.3 and Figure 6.4 show the average time needed to 

resolve the L1 carrier phase ambiguities after each data outage for the HG1700 

and LN200 systems, respectively.  Specifically, the average is taken across all 

nine simulated GPS outages of the same duration. The results show four 

important characteristics. 
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Figure 6.3 Average Time to Fix L1 Carrier Phase Ambiguities after Complete 
Data Outages for CDGPS/HG1700 
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Figure 6.4 Average Time to Fix L1 Carrier Phase Ambiguities after Complete 
Data Outages for CDGPS/LN200 

 

First, regardless of how long the GPS outage lasts, the GPS-only filter needs, on 

average, approximately the same amount of time to resolve the ambiguities.  

This is because the time needed to resolve ambiguities using GPS alone is 

based primarily on measurement noise, multipath effects and satellite geometry, 

all of which are expected to be approximately constant throughout the data set. 

Although Figure 6.3 and Figure 6.4 represent average values, Figure 6.5 and 

Figure 6.6 show each of the individual cases. Note that because the average 

time to fix the ambiguities using either integration strategy is approximately the 
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same as for the GPS-only case after the 40 s mark, for the sake of clarity, 

only durations shorter than 40 seconds are shown. 

 

Figure 6.5 Time to Fix L1 Ambiguities After Each Complete GPS Data Outages 
(CDGPS/HG1700) 

 
 



 

 

133

 

Figure 6.6 Time to Fix L1 Ambiguities After Each Complete GPS Data Outages 
(CDGPS/LN200) 

 

Second, the GPS-only solution performs the poorest, relative to either integrated 

solution.  In some of the cases, a 100% improvement over GPS-only can be 

achieved using the integrated systems, meaning that instantaneous ambiguity 

resolution is possible. Specifically, for data outages up to 2 and 4 seconds for 

the HG1700 and LN200 systems, respectively, instantaneous ambiguity 

resolution is possible using either integration strategy.     

 

Third, for outage durations lasting approximately 12 to 40 s (depending on the 
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IMU), there is also a noticeable improvement when using tight integration 

over loose integration with GPS seeding. This improvement is suspected to be 

due to the reduced level of process noise in the tight integration approach and 

the stronger cross-correlation between position and ambiguity states using tight 

coupling than that of using a loose coupling strategy, which makes the ambiguity 

states converge faster after GPS outage.  

 

Fourth, as the inertial position covariance increases over time during a data 

outage, the benefit to the ambiguity resolution process decreases accordingly, 

with the limit being the GPS-only case. To see this more clearly, Table 6.1 gives 

the average percentage improvement in L1 ambiguity resolution times after 

complete data outages using different approaches for both systems. The 

improvement of each outage can be computed as 

 

( )
%100

 FixTo Time
 FixTo Time FixTo Time

Im%
only-GPS

eTight/Loosonly-GPS ×
−

=  (6.1)  

 

The subscripts represent the corresponding integration strategies used herein. It 

should be noted that the average improvements, in percentage terms, after a 

16-second outage attenuates rapidly (shown as an improvement gap) compared 

to that observed following 12-second outages for the HG1700, with similar 
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performance observed for the LN200 system after a 30-second outage. A 

fuller discussion of this is given in the following section. 

 

Table 6.1 Average Percent Improvement in L1 Ambiguity Resolution Times After 
Complete Data Outages Using Different Approaches 

Average Percent Improvement % 
HG1700 LN200 

Outage 
Duration 

[s] T/G1 L/G2 T/G L/G 
2 1003 100 100 100 
4 96.9 96.9 100 100 
6 96.9 96.5 96.9 96.9 
9 93.8 90.7 96.9 96.9 
12 88.2 52.1 93.7 93.4 
16 53.3 26.1 93.6 69.3 
20 31.8 17.7 85.3 46.0 
30 19.9 6.5 51.7 26.9 
40 12.4 3.0 29.0 10.9 
50 3.7 2.0 17.0 6.7 
60 2.7 1.3 10.5 4.5 
80 0.4 0.0 5.1 1.5 

100 0.3 0.2 2.8 1.1 
1 improvements realized through use of tight coupling over GPS-only 

strategy 
2 improvements realized using loose coupling with seeding strategy 

over GPS-only strategy 
3 denotes instantaneous ambiguity resolution achieved  

 

6.3 AMBIGUITY RESOLUTION IMPROVEMENTS WITH AIDING OF INERTIAL 

DATA 

 

In the previous section, a correlation between the free-inertial position accuracy 

and the differential code position accuracy was explored.  Now, a correlation 
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between the differential code accuracy and the improvements in the time to 

fix the ambiguities is desired.  

  

To begin, the results in Table 6.1 are cross-referenced with those from the 

positioning accuracy assessment in the previous section. Specifically, 

instantaneous ambiguity resolution is possible as long as the estimated INS 3-D 

STD after the data outage is below 10 cm.  This corresponds to 2 or 4 seconds, 

depending on the IMU.  Second, once the estimated INS 3-D STD degrades to 

approximately the same level as that of the GPS-only case (i.e., 1.8 m), the 

improvement in the ambiguity domain is less than approximately 30%, on 

average.  While these conclusions are important, it is still desirable to identify a 

more rigorous analytical relationship. However, recall from the previous 

mentioned that the accuracy of the differential code solution ( Codeσ ) is 1.8 m. 

When this value is substituted into equation (3.13), an approximate estimate of 

the percentage improvement in the ambiguity resolution performance as a 

function of the INS 3-D STD at the end of a data outage is obtained.  To 

evaluate this equation, Figure 6.9 and Figure 6.10 show the actual improvement 

in ambiguity resolution times as a function of the INS position accuracy at the 

end of the data outage along with the estimated value from Equation (3.13). 
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Figure 6.7 Time to Fix L1 Ambiguity Improvements after Each Complete GPS 
Outage and Each Duration vs. Corresponding Estimated STD of Filter using 

Tight Coupling 
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Figure 6.8 Time to Fix L1 Ambiguity Improvements after Each Complete GPS 
Outage and Each Duration vs. Corresponding Estimated STD of Filter using 

Loose Coupling 
 

As can be seen in Figure 6.8, the values predicted from equation (3.13) agree 

reasonably well with actual improvements in the ambiguity resolution times 

overall. However, a couple of points should be noted.  First, the analytical 

estimate appears to be better suited to predicting the performance of the tight 

integration strategy.  The reason for this is, as mentioned in Chapter Three, that 

the analytical relation is more suitable for the tightly coupled strategy. The 

improvements in the loosely coupled case are expected to be lower than that of 
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the tightly coupled strategy, since loose coupling has indirect correlation 

between position states and ambiguity states, a lower convergence speed filter 

and a higher level of processing noise.  Second, there appear to be some 

“outliers” along the x-axis where there is almost no improvement. Upon closer 

inspection, nearly all such data points were found to correspond to GPS data 

outages lasting on the order of 30 s.  In this case, the free-inertial solution 

accuracy is already at the metre level and thus does not always yield the desired 

improvements. Specifically, the improvement will not only be a function of the 

estimated position accuracy (which is the inherent assumption in the current 

analysis), but also of the true position (velocity, and attitude) errors, phase 

measurement noise and possibly the cross-correlation between the various INS 

and/or GPS error states. Thirdly when the estimated INS position error is smaller 

than 0.1 metres, a 100 percent improvement can always be achieved using 

either a loosely or tightly coupled integration strategy. The points showing 100 

percent improvement are overlapping and thus cannot be seen clearly in the 

above figures. 

Although the above results are very promising, the solid curves shown in Figure 

6.9 and Figure 6.10 are derived assuming an estimated differential code 

accuracy of 1.8 m.  Although this is valid for the data processed herein, more 

investigation is necessary to ascertain whether Equation 3.13 provides similar 

performance under real situations. To make it clear, Figure 6.9 and Figure 6.10 
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were plotted again as Figure 6.9 and Figure 6.10. The actual improvements 

in ambiguity resolution using different systems are the same as that depicted in 

Figure 6.9 and Figure 6.10. The predicted improvements, however, which are 

represented by the green dots, are computed with estimated double differential 

code accuracy and estimated INS position accuracy at end of data outages 

using Equation (3.13). Figure 6.9 and Figure 6.10 give more clear and detailed 

views of Figure 6.7 and Figure 6.8.  

 

Figure 6.9 Time to Fix L1 Ambiguity Improvements after Each Complete GPS 
Outages and Each Duration vs. Corresponding Estimated STD of Filter using 

Tight Coupling 



 

 

141

 

Figure 6.10 Time to Fix L1 Ambiguity Improvements after Each Complete GPS 
Outages and Each Duration vs. Corresponding Estimated STD of Filter using 

Loose Coupling 
 

As can be seen in Figure 6.9 and Figure 6.10, the ambiguity resolution 

improvements realized using a loosely coupled strategy are slightly worse than 

in the case of tight coupling. As mentioned in the above section, Equation (3.13) 

is more accurate when using a tightly coupled strategy. However, the 

improvements produced with the use of a loosely coupled strategy are still very 

promising. Figure 6.10 above shows that the highest improvement can hardly be 

larger than the improvement computed using Equation (3.13) when position 
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covariance is bigger than about 20 cm after GPS outages using a loosely 

coupled strategy, which can still provide insight into the level of improvement 

that can be expected, in terms of ambiguity resolution, when using either a loose 

or tight coupling strategy. This conclusion is expected to be emulated by any 

chosen grade of IMU. From the above analysis, the “improvement gap” 

observed after 12 and 20-second outages for the HG1700 and LN200 systems, 

respectively, is actually reasonable and can be predicted using Equation 3.13. 

Essentially, this “improvement gap” can be viewed as the result of the position 

error attenuating in a non-linear fashion. 

 

6.4 RTS BACKWARD SMOOTHING TEST RESULTS 

 

The data used in the above analysis is used to test the performance of the 

Backward Smoothing (BS) algorithm in bridging GPS outages as well. Although 

different outage durations are simulated, only one of 100 s outages of the 

HG1700/GPS system has been selected as an example to illustrate the actual 

behaviour of the INS positioning error during and after GPS outage periods 

(before smoothing) as well as the effect of BS on these errors. 

 

The averaged absolute position differences between the free-inertial solution 

and the reference solution, for the chosen outage period across all nine 
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simulated data outages are given in Figure 6.11 and Figure 6.12. Average 

absolute residual position errors for the same outage interval after RTS 

smoothing are also shown in the same figures. 

 

Figure 6.11 Average Absolute Position Error Across All 9 Simulated GPS 
Outages Before and After RTS Smoothing (HG1700/GPS System) 

 

To show the information from Figure 6.11 more clearly, Table 6.2 and Table 6.3 

show the average maximum value of position error during a 100-second GPS 

outage and the maximum residual position error during a 100-second GPS 

outage after RTS smoothing, using the HG1700/GPS and LN200/GPS systems, 

respectively. 
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Figure 6.12 Average Absolute Position Error Across All 9 Simulated GPS 
Outages Before and After RTS Smoothing (LN200/GPS System) 

 

It should be noted that start from 100 s (the end of the complete GPS outage) to 

about 130 s the solution during this period is a float solution. The ambiguities 

were generally fixed around 130 s. That is the reason why there is a step at 

about 130 s. 
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Table 6.2 Average Maximum Value of Position Error Cross all 9 Simulated 
100-second GPS Outages Before and After RTS Smoothing (HG1700/GPS) 

Average Maximum 
Position Error 

Before Smoothing 
[m] 

After Smoothing 
[m] 

Improvements
% 

East 11.96 0.22 98.2 
North 9.99 0.28 97.2 

Up   2.35 0.26 89.0 
Horizontal 15.59 0.35 97.7 

3-D 15.76 0.40 97.5 
 

Table 6.3 Average Maximum Value of Position Error Cross all 9 Simulated 100-
seconds GPS Outages Before and After RTS Smoothing (LN200/GPS) 

Average Maximum 
Position Error 

Before Smooth 
[m] 

After Smooth 
[m] 

Improvements 
% 

East Position Error 7.20 0.14 98.1 
North Position Error 5.84 0.23 96.1 

Up Position Error 2.20 0.21 90.3 
Horizontal Error 9.27 0.27 97.1 

3-D Position Error 9.53 0.30 96.8 
 

The results show that improvements of greater than 96% in maximum position 

error after RTS smoothing in 3-D can be achieved using an RTS smoother. 

Results show that the RTS smoother shown as equation 4.13 is able to remove 

up to 97% of the 3-D position error in GPS outage cases. This confirms that 

backward smoothing is a very effective method of removing position error at the 

post-mission stage. The residual 3-D position errors after application of an RTS 

smoother are about 40 cm and 30 cm for the HG1700/CDGPS and 

LN200/CDGPS, respectively, in the case of a 100-second GPS outage. 

 

Only the averaged absolute position error and absolute residual position error 
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were shown in this section. However, the position error and residual position 

error before and after smoothing of each particular GPS outage can be seen in 

Appendix B. 
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CHAPTER SEVEN - AMBIGUITY PROCESSING 

STRATEGY PERFORMANCE COMPARISON 

 

The long baseline data results are presented in this chapter to compare the 

performance of different ambiguity processing strategies in the presence of large 

differential errors in the position domain. The short baseline results focusing on 

the assessment of the ambiguity re-fixing time using different ambiguity 

processing strategies after GPS outages are presented as well. Since the 

inertial aiding to improve ambiguity resolution in the short baseline case was 

investigated in Chapter Six using the L1 only strategy as an example, only GPS-

only, which provides longest ambiguity re-fix time, solutions are presented in this 

chapter for the short baseline scenario. As mentioned in Chapter Two, the 

ionospheric error will become to be the dominant error source in long baseline 

case. This means that the ionospheric error can be up to 20 centimetres for the 

80 km baseline with a typical 2ppm ionospheric error (Table 2.2 in Chapter Two), 

indicating that ambiguity resolution is difficult. In this particular test, none of the 

integer ambiguities except the WL has been resolved in the long baseline case, 

so the comparison of different ambiguity resolution strategies is implemented 

only in the position domain. The same data was processed using the FLYKIN+ 

software as well in order to verify if the ambiguities are capable of resolution. 

FLYKIN+ is a differential GPS processing package developed by the PLAN 
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group, Department of Geomatics Engineering, University of Calgary (Liu, 

2003). It can accommodate processes using L1, L2, or WL and IF frequency 

combinations. It also provides stochastic modelling of the ionospere. Only WL 

ambiguities can be resolved when processing the data used herein using 

FLYKIN+.  

 

The performance of the two systems is assessed in terms of position accuracy 

via using different ambiguity resolution strategies for the long baseline test, and 

in terms of ambiguity resolution using different ambiguity processing strategies 

for the short baseline test, as discussed in the following sections. 

 

As mentioned in Chapter Six, using the GPS-only strategy the time to fix 

ambiguities after a GPS outage only depends on the quality of the GPS 

measurements but not the outage duration. Furthermore, as shown in Figure 6.5 

and Figure 6.6, the time to fix ambiguities using a GPS-only strategy at each of 

the nine simulated GPS outages after different duration are very close. This 

means that the quality of the GPS measurements during these outages are very 

close. It doesn’t make sense to simulate all GPS outages as shown Chapter Six, 

so only GPS outage durations of 9, 20, 50 and 100 seconds at the second GPS 

outage were simulated as examples for further investigation in this section.  

The definition and characteristics of each ambiguity processing strategies are 
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first presented in this chapter. 

 

7.1 DEFINITION OF EACH AMBIGUITY PROCESSING STRATEGIES 

 

The definition of each ambiguity processing strategies is given in the following 

sub-sections (Liu, 2003): 

 

7.1.1 STRATEGY 1 (L1) 

 

This L1 only strategy uses the L1 carrier phase, code and Doppler 

measurements. As mentioned in Chapter Three, this is the simplest strategy, 

where only the L1 ambiguity is estimated. Compared to the L2 and WL, the L1 

carrier has the shortest wavelength. That means to resolve the L1 ambiguity it 

needs the longest time with the same initial conditions. Since this strategy has 

low noise and ionospheric error characteristics compared to WL and L2, this 

strategy has the highest accuracy after its ambiguities have been resolved. 

 

7.1.2 STRATEGY 2 (WL) 

 

This WL only strategy uses the WL carrier phase observable and estimates WL 

ambiguities. As mentioned in Chapter Three, it is expected that this strategy 
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should have better ambiguity resolution performance than Strategy 1 

considering the longer wavelength (86 cm). However, high noise and 

ionospheric error signature is expected when using this strategy since WL 

contains nearly six times the noise than L1 in metres. 

 

7.1.3 STRATEGY 3 (L1L2) 

 

In this strategy, the L1 and L2 carrier phase observables are used, and the L1 

and L2 ambiguities are estimated in the filter. This strategy has more system 

redundancy than Strategies 1 and 2. Compared to Strategy 2, the carrier phase 

noise is kept to a minimum since no frequency combination is formed between 

L1 and L2. However, because the L2 carrier has more ionospheric error than 

either the L1 or the WL, it is expected that this strategy performs slightly better 

than Strategy 1 under very low ionospheric error and will perform poorer than 

Strategy 1 in high ionospheric activity. In very low ionospheric error conditions, 

the measurement noise level of Strategy 3 is similar to Strategy 1, thus it is 

expected to have same amount of time to fix ambiguities compared to Strategy 1 

when starting from the same initial conditions. 

 

7.1.4 STRATEGY 4 (L1WL) 

 

This strategy is very similar to Strategy 3 except that the WL and L1 ambiguities 
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are estimated in the filter rather than the L1 and L2 ambiguities, although L1 

and L2 observables are used. Like Strategy 3 this strategy has more system 

redundancy than Strategies 1 and 2. Since this strategy uses L1 and L2 

observables to estimate L1 and WL instead of L1 and L2, the noise is kept to a 

minimum. It is therefore expected that this strategy has a similar accuracy as 

Strategy 3 in the position estimation. Furthermore, because the WL ambiguity is 

easier to resolve than both the L1 and L2 ambiguities, better position results can 

be achieved after the WL ambiguities are correctly fixed while L1 ambiguities are 

not fixed if L1 and WL ambiguities are estimated in the same filter, instead of L1 

and L2 ambiguities. Since resolving the WL ambiguities can speed up the 

convergence speed of filters, this strategy is expected to have a faster time to fix 

L1 ambiguities compared to Strategy 1 when starting from the same initial 

conditions. Similar to Strategy 3, this strategy is expected to be at the same 

level of position estimation accuracy as Strategies 1 and 3 with low ionospheric 

error. 

 

7.1.5 STRATEGY 5 (IF) 

 

The IF ambiguities, which are floating values by definition, are estimated using 

the IF observations in this strategy. In this strategy, the ambiguities are 

estimated but need not be resolved to integers. One obvious advantage is that 

this strategy uses the ionosphere-free combination to cancel the ionospheric 
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error. This being said, if all other observation errors (e.g. tropospheric error, 

satellite orbital error, multipath) are properly accounted for, the float-valued IF 

ambiguities should be errorless. No ambiguities are needed to be resolved to 

their integer values. However, the amplification of the measurement noise (the 

IF observation is three times as noisy as L1 in metres) makes the IF solution 

noisy. So in very low ionospheric error conditions, this strategy performs the 

worst compared to Strategies 1, 3 and 4. Since the IF contains nearly three 

times the noise than L1 in metres (WL contains nearly 6 times than L1 in 

metres), it is expected to give better position estimation accuracy in very low 

ionospheric error conditions after filter convergence. 

 

7.1.6 STRATEGY 6 (L1WL+I) 

 

Similar to Strategy 4, this strategy now expands the filter’s states to include the 

DD ionospheric error (Liu, 2002), which is modelled as a first order Gauss-

Markov process. Given that the DD ionospheric error is modelled explicitly, the 

estimator in Strategy 6 is largely unbiased. Thus, it is expected that the position 

estimate will not be influenced by the ionospheric error. Similar to Strategy 4, it 

is expected that the time to fix L1 ambiguities is at the same level as Strategy 4, 

with Strategy 6 being slightly faster, when starting from the same initial 

conditions.  
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7.1.7 STRATEGY 7 (L1L2+I) 

 

This strategy is very similar to the Strategy 6. The introduction of DD ionospheric 

error states makes the estimator in this strategy largely unbiased. This strategy 

has no frequency combination. Thus, better position estimation is expected 

compared to Strategies 5 and 6 if ambiguities are resolved correctly.  

 

Summarised from above, the time to re-fix ambiguities using different strategies 

start from the same initial conditions as: 

 

L1L1L2IL1L2L1WLIL1WLWL TTFTTFTTFTTFTTFTTF ≤≤≤≤≤ ++  (7.1) 

 

The position estimation accuracy after estimators which are using each 

ambiguity processing strategy have converged in very low ionospheric error 

case (e.g. short baseline) is as: 

 

eline)(Short Bas  L1L2L1WLIL1L2IL1WLL1IFWL σσσσσσσ ≈≈≈≈≤≤ ++  (7.2) 

where σ  represents position accuracy. 

 

The position estimation accuracy after estimators which are using each 



 

 

154

ambiguity processing strategy have converged in the very high ionospheric 

error case (e.g. ionospheric error far greater than L1 carrier phase noise in long 

baseline) is: 

 Baseline)(Long  IFL1L2IIL1WLL1L2L1WLL1WL σσσσσσσ ≤≈≤≈≈≤ +  (7.3) 

It should be noted that the inequality represented by Equations (7.2) and (7.3) 

are affected by estimator convergence speed. The convergence speed of 

estimators using different ambiguity processing strategies can be summarized 

from above when starting from the same initial conditions as Table 7.1. 

 

Table 7.1 Estimator Convergence Speed Comparison Using Each Ambiguity 
Processing Strategy 

Ambiguity 
Processing Strategies 

L1 WL L1L2 L1WL IF L1L2+I L1WL+I

Estimator 
Convergence Speed 

slow very 
fast 

slow fast very 
slow 

slow fast 

 

The inequality in Equations (7.2) and (7.3), when the position accuracy 

computed across a data run (before the estimator has converged and after) after 

taking the estimator convergence speed in to account, will change to be: 

  '
L1L2

'
L1WL

'
IL1L2

'
IL1WL

'
L1

'
WL σσσσσσ ≈≈≈≈≤ ++  (7.4) 

Inequality Equation (7.4) is adjusted form of Inequality Equation (7.2) under 
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short baseline when considering convergence speed. '
IFσ  can be even 

worse than that of the WL in the short baseline case in the above inequality. 

 

speed) econvergencestimator  gconsiderin  Baseline(Long
 '

IL1WL
'
L1WL

'
WL

'
IL1L2

'
L1

'
L1L2 ++ ≈≤≤≈≈ σσσσσσ

 (7.5) 

 

Inequality Equation (7.5) is adjusted form of Inequality Equation (7.3) under long 

baseline when considering convergence speed. '
IFσ  can be even the worst in 

above inequality since IF has slowest estimator convergence speed. 

 

The above summarization of Equations (7.1), (7.4) and (7.5) and their relation to 

Table 7.1 is proven in the next section.  

 

7.2 SHORT BASELINE TESTS AND RESULTS 

 

7.2.1 AMBIGUITY PROCESSING STRATEGY DIFFERENCES IN POSITION DOMAIN 

 

To compare the performance of different ambiguity processing strategies under 

short baseline condition results are first presented in this section with focusing 

on position accuracy. For kinematic positioning practice, the overall position 
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accuracy (right after initial alignments until the end of the run) is a very 

important criterion to evaluate the performance of the system. So the RMS of 

the position differences with respect to the reference trajectory investigated later 

is an RMS of the overall position difference. The short baseline data was 

processed using a tight coupling integration strategy, and different ambiguity 

processing strategies separately. Table 7.2 and Table 7.3 give the position 

differences using each ambiguity processing strategy in the short baseline case 

of the HG1700/CDGPS and LN200/CDGPS specifically. The comparison is 

preceded using the L1 tight coupling solution as the reference. Other tight 

coupling solutions using a corresponding ambiguity processing strategy are 

compared with the reference. The results during the initial alignment were 

discarded (e.g. only results in kinematic mode were compared). In the short 

baseline case, the DD ionospheric error and residual DD tropospheric error are 

small enough to be neglected. Refer to Appendix D for detailed information 

regarding stochastic DD ionospheric error modeling used in Strategies 6 and 7. 

In addition, Appendix D gives further information about the estimated double-

differenced ionospheric delay for both short and long baseline conditions. 
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Table 7.2 RMS of Overall Position Difference Compare to Short Baseline 
Tight Integration L1 Solution (HG1700/CDGPS system, Short Baseline) 

Integration 
strategies 

L1 
(mm) 

WL 
(mm) 

L1L2 
(mm) 

L1WL 
(mm) 

IF 
(mm) 

L1L2+I 
(mm) 

L1WL+I
(mm) 

N2 0 32 6 6 44 7 6 
E3 0 41 3 3 49 4 4 
U4 0 39 7 7 154 7 7 

 
T1 

3-D5 0 64 10 10 168 10 10 
1 Tight coupling integration strategy 
2 North position difference 
3 East position difference  
4 Up position difference 
5 3-Dimmention position difference 
 

Table 7.3 RMS of Overall Position Difference Compare to Short Baseline Tight 
Integration L1 Solution (LN200/CDGPS system, Short Baseline) 

Integration 
strategies 

L1 
(mm) 

WL 
(mm) 

L1L2 
(mm) 

L1WL 
(mm) 

IF 
(mm) 

L1L2+I 
(mm) 

L1WL+I
(mm) 

N 0 32 6 6 44 7 6 
E 0 41 3 3 49 4 4 
U 0 39 7 7 154 7 7 

 
T 

3-D 0 64 10 10 168 10 10 
 

It should be noted that all ambiguities in Table 7.2 and Table 7.3 were fixed 

correctly and major ambiguities were kept to their integer values until the end of 

the run except for the IF ambiguities. As can be seen in the tables Strategies 1, 

3, 4, 6, and 7 have a very similar position accuracy performance in short 

baseline case. Considering the 2-4 cm accuracy of theh L1 tight coupling 

solution, the differences between ambiguity processing Strategies 1, 3, 4, 6 and 

7 are neglectable. 
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As mentioned in Section 3.4, the WL contains nearly six times the noise than 

L1 and the IF contains nearly three times the noise. This being said, the position 

estimates using WL are expected to be noisier than that of using IF. However, 

as shown in Table 7.2 and Table 7.3, the position estimates using IF are worse 

than WL. This is because the estimator using the IF observable converges very 

slowly. Before the IF ambiguities converge to reasonable values, the position 

estimation has a very large bias. This makes the RMS of the position differences 

using Strategy 5, compared to Strategy 1, much larger than that of using 

Strategies 2 and 1. Generally, the results in Table 7.2 and Table 7.3 follow the 

rules of inequality (Equation (7.2)). The exception is that the position accuracy 

when using the IF processing strategy is the worst but not that of WL because 

the estimator when using the IF ambiguity processing strategy needs more time 

to converge.  

 

Since the position accuracies of Strategies 1, 3, 4, 6, and 7 are very similar (1 

cm RMS difference in 3-D), the time to re-fix ambiguities after a GPS outage is 

the other important criteria to compare the performance of different ambiguity 

processing strategies. 

 

To better understand the short baseline results in the position domain, position 

differences between the reference solution and solutions obtained with the use 

of each strategy, as well as under short baselines, are as presented in Figures 
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7.1 to 7.6. It should be noted that the HG1700/GPS and LN200/GPS 

systems achieved the same results and, thus, only the HG1700/GPS results are 

given. As mentioned in Section 7.1, the L1 strategy (Strategy 1) which is used to 

compute the reference trajectory, the L1L2 strategy (Strategy 3), the L1WL 

strategy (Strategy 4), the L1L2+I strategy (Strategy 6) and the L1WL+I strategy 

(Strategy 7) are expected to deliver comparable position accuracies. As can be 

seen in Figures 7.1 to 7.4, and with reference to Table 7.2, the position 

difference of these strategies are at about the 1 cm level in the short baseline 

case and, thus, are negligible considering the 2 to 4 cm position accuracy of the 

reference trajectory. 

 

However, due to its high noise measurements and 86 cm length wavelength, the 

position solution of the WL strategy (Strategy 2) is characterized by a distinct 

noise-like quality. Consequently, the position differences between the WL 

solution and the reference solution are about 6 cm (see Table 7.2). 
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Figure 7.1 Position Difference L1L2 strategy Compared to Reference Trajectory 
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Figure 7.2 Position Difference L1WL strategy Compared to Reference Trajectory 
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Figure 7.3 Position Difference L1L2+I strategy Compared to Reference 
Trajectory 
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Figure 7.4 Position Difference L1WL+I strategy Compared to Reference 
Trajectory 
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Figure 7.5 Position Difference WL strategy Compared to Reference Trajectory 
 

The IF strategy (Strategy 5) solution demonstrates a very different position 

performance, as compared to the other strategies, as seen in Figure 7.6. As 

discussed in Section 7.1, the IF strategy ambiguities are characteristically float, 

having a wavelength of 48 cm. In addition, using the IF strategy amplifies the 

noise by almost three times, and the use of the IF strategy results in a very slow 

convergence. As can be seen in Figure 7.6, as compared to the other strategies, 

the IF strategy position error takes a much longer time to converge to the 

centimetre level. It is this exorbitant time demand that makes the overall position 
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performance of the IF strategy the worst among all strategies. 

 

Figure 7.6 Position Difference IF strategy Compared to Reference Trajectory 
 

 

7.2.2 AMBIGUITY PROCESSING STRATEGY DIFFERENCES IN THE AMBIGUITY DOMAIN 

 

A GPS-only strategy provides the most basic criterion of how an ambiguity 

processing strategy is different. The performance with inertial aiding in ambiguity 

resolution is dependent on the GPS-only solution. So only the GPS-only 

ambiguity resolution solutions using different ambiguity processing strategies 
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are investigated in this section. Only one GPS complete outage is simulated 

- which is outage 2 shown in Chapter Five. Durations of 9, 20, 50 and 100 

seconds are simulated specifically in the outage. 

 

Figure 7.7 Time To Fix Corresponding Ambiguities after 9, 20, 50 and 100 
seconds Outage at outage number 2 using different ambiguity processing 

strategies (HG1700/CDGPS system, GPS-only) 
 

Figure 7.7 (HG1700/CDGPS system, using a GPS-only integration strategy) 

shows the time to fix the corresponding ambiguities after 9, 20, 50 and 100 

second complete GPS outages at outage number 2 using different ambiguity 

processing strategies. The LN200/CDGPS results are exactly the same since 
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the two systems used the same GPS data, thus the results will not be shown. 

It shows that the time to fix after a GPS outage with a GPS-only strategy is 

related to which processing strategy is used but not the length of the duration. 

Since the IF strategy has only a float solution, ambiguity fixing was not 

attempted. 

 

Summarised from Section 7.1, the time to re-fix ambiguities using different 

strategies start from the same initial condition is 

as L1L1L2IL1L2L1WLIL1WLWL TTFTTFTTFTTFTTFTTF ≤≤≤≤≤ ++ ; where TTF 

represents time to fix. Subscripts represent corresponding ambiguity processing 

strategies. Figure 7.7 shows this trend. This being said, in the short baseline 

case (which means low DD ionospheric and tropospheric errors), Strategies 4 

and 6 (when properly modeling the ionospheric error factor) can give a near 

optimal position solution but the fastest time to re-fix ambiguities after a GPS 

outage. 

 

7.3 LONG BASELINE TESTS AND RESULTS 

 

The performance in the position domain is presented in this section. The 

analysis will be conducted according to the ambiguity processing strategy. In 

this scenario, the entire long baseline data set is processed with SAINTTM using 



 

 

168

different ambiguity processing strategies with the positions being estimated 

at each epoch. The integration position solution is compared to the short 

baseline tightly coupled L1 solution as discussed in Chapter Five, which is used 

as a reference trajectory. The RMS of the position differences is also computed. 

The purposes of this section are to: 

 

1) Determine the position error level of each ambiguity processing strategy 

in the long baseline case;  

2) Assess the position accuracy of each ambiguity processing strategy in 

the long baseline case; and what is the difference between (1) and (2) 

3) Assess the filter convergence speed affecting the position accuracy using 

different ambiguity processing strategies. 

 

In conjunction with these objectives, this investigation will also help determine 

whether fixing WL first can reduce the position errors even if the L1 ambiguities 

cannot be fixed, although the ultimate goal is to fix the L1 ambiguities. Fixing the 

L1 and L2 ambiguities was not tried during processing to prevent the introducing 

of fixing wrong errors. 
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Table 7.4 RMS of Overall Position Difference Compare to Short Baseline 
Tight Integration L1 Solution (HG1700/CDGPS system, Long Baseline) 

Integration 
strategies 

L1 
(cm) 

WL 
(cm) 

L1L2 
(cm) 

L1WL 
(cm) 

IF 
(cm) 

L1L2+I 
(cm) 

L1WL+I
(cm) 

N 8 7 8 4 5 8 4 
E 9 6 7 3 4 6 4 
U 32 5 28 7 34 17 5 

 
T 

3-D 34 11 30 8 34 19 7 
 

The same results as Table 7.4 can be achieved using the LN200/CDGPS 

system, but thus will not be presented herein. It should be noted that in Table 

7.4, all WL ambiguities were resolved across the data and the integer values 

were kept until the end of the data set. It is expected in the long baseline case, 

which means high ionospheric error, the inequality in Equation (7.5) - 

'
IL1WL

'
L1WL

'
WL

'
IL1L2

'
L1

'
L1L2 ++ ≈≈≤≈≈ σσσσσσ  when considering estimator 

convergence speed - can be proved by Table 7.4. Because the IF strategy 

estimator has the slowest convergence speed (IF ambiguities did not converge 

to a reasonable value until the end of the data run), the overall position accuracy 

of the IF strategy is the worst in this particular case. This proves the inequality in 

Equation (7.5). Therefore, in the long baseline case, L1WL+I (Strategy 7) is 

expected to give the best position estimates if the ionospheric error is properly 

modeled. L1WL (Strategy 4) estimation results are except the same level of 

accuracy as Strategy 7. To better understand the performance of each strategy 

in the position domain, a comparison is given with the reference trajectory in 

each case, producing the position differences for each ambiguity processing 
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strategy. Referring to Section 7.1, the performance of each ambiguity 

processing strategy in the position domain depends not only on the quality of the 

measurements but also on the convergence speed of the corresponding 

estimator in the long baseline case. The L1 and L1L2 strategies demonstrate 

comparable position performance since they are based on very similar noise 

levels associated with measurements as well as similar convergence speeds. As 

compared to the L1 and L1L2 strategies, the L1L2+I strategy took the 

ionospheric delay into account and produced estimates for those values. Apart 

from other considerations, it is expected to have superior performance in terms 

of position accuracy if the ionospheric delay is properly modeled in the Kalman 

filter. 
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Figure 7.8 Position Difference L1 Strategy Compared to Reference Trajectory 
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Figure 7.9 Position Difference L1L2 Strategy Compared to Reference Trajectory 
 

As can be seen in Figures 7.8 and 7.9, the L1 and L1L2 strategies display 

similar patterns in convergence, with the L1 strategy solution being slightly 

noisier. The estimation of the ionospheric delay in the Kalman filter using the 

L1L2+I strategy slightly improves the position accuracy, as compared to that 

produced via the L1L2 strategy, as shown in Figure 7.10. 
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Figure 7.10 Position Difference L1L2+I Strategy Compared to Reference 
Trajectory 
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Figure 7.11 Position Difference WL Strategy Compared to Reference Trajectory 
 

The WL strategy is used in the long baseline case because the WL ambiguities 

are more easily resolved as compared to either L1 or L2 ambiguities; 

consequently, the position accuracy rapidly converges to a reasonable value, as 

can be seen in Figure 7.11. Although the WL strategy solution is very noisy, the 

resolution of the WL ambiguities makes the solution robust and thus the overall 

position accuracy reasonably high, as compared to the L1, L1L2 and L1L2+I 

strategies. 
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Figure 7.12 Position Difference L1WL strategy Compared to Reference 
Trajectory 
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Figure 7.13 Position Difference L1WL+I Strategy Compared to Reference 
Trajectory 

 

As can be seen in Figure 7.12 and 7.13, the L1WL and L1WL+I strategy 

solutions have the same pattern of convergence as the WL strategy solution, but 

are much less noisy. Because the WL ambiguity is easier to resolve than both 

the L1 and L2 ambiguities, better position results can be achieved after the WL 

ambiguities are correctly fixed, while L1 ambiguities are not fixed if L1 and WL 

ambiguities are estimated in the same filter, instead of L1 and L2 ambiguities. 

Also, the estimation of ionospheric delay can improve the position performance 
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slightly in this case, since the ionospheric delay is not as severe as 

discussed in Appendix D. 

 

Figure 7.14 Position Difference IF Strategy Compared to Reference Trajectory 
 

Compared to the WL strategy, the IF solution is less noisy; however, since it has 

the slowest convergence speed among all the strategies makes this strategy’s 

overall performance the lowest due to the small ionospheric error. As can be 

seen, the IF strategy estimator cannot converge to 10 cm until the end of the 

data run. 
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CHAPTER EIGHT - CONCLUSIONS AND 

RECOMMENDATIONS 

 

Essentially, this research investigated three topics. 1) Side-by-side testing of 

tactical-grade inertial measurement units, the HG1700 and the LN200, to assess 

whether comparable improvements can be achieved. Furthermore, an analytical 

equation was tested to compute the improvement in ambiguity resolution can be 

realized when kinematic carrier phase double differenced GPS is integrated with 

a generic IMU; 2) The effectiveness of the RTS smoothing technique in bridging 

position error during GPS outage; and 3) A detailed analysis of the impact of 

different ambiguity processing strategies on carrier phase ambiguity resolution 

and position accuracy under operational conditions. 

 

This thesis began with a thorough investigation into ambiguity resolution 

improvements produced with the aid of inertial data. To verify the analytical 

equation, 9 complete GPS outages with duration from 2 to 100 seconds were 

simulated when processing the test data using SAINTTM software package with 

L1 only ambiguity processing strategy; To examine the impact of the RTS 

smoothing technique in bridging the position error during GPS outages, the 

simulated 9 outages with 100 seconds duration was selected as an sample. 

Modified SAINTTM save all information during processing for the RTS smoothing 
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usages; to examine the impact of the different ambiguity processing 

strategies on ambiguity resolution and position accuracy, a total of seven 

ambiguities resolution strategies were implemented in the SAINTTM software 

package. All those seven strategies have been tested using two baselines 

kinematic data from Calgary as described in Chapter Five. The short baseline 

length ranges from 0 km to 8 km; and the long baseline length ranges from 71 

km to 79 km. It should be noted that actual GPS outages have very different 

characteristics as compared to simulated outages of the type used in this 

research; thus, in the strictest sense, the conclusions below are applicable only 

in simulated GPS outage situations.  

 

Based on the tests and results achieved, the following conclusions can be made: 

 

1.  The integrated system showed better performance than GPS-only in all 

cases. Furthermore, the tight integration strategy outperformed the loose 

integration approach. These differences in some cases, however, were 

not significant. 

2.  The HG1700 and LN200 systems are seen to provide 10 cm accuracy for 

approximately 6 and 8 seconds, respectively.  Furthermore, the errors 

grow to 2 m after about 36 and 49 seconds, respectively.  For longer data 

outages, the position errors grow quite rapidly to a maximum of 20 and 10 

m after 100 seconds, respectively. 
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3.  Regardless of how long the GPS outage lasts, the GPS-only filter 

needs, on average, approximately the same amount of time to resolve the 

ambiguities. 

4.  The GPS-only solution performs the poorest in ambiguity resolution, 

relative to either integrated solution.  In some of the cases, a 100% 

improvement over GPS-only can be achieved using the integrated 

systems, meaning that instantaneous ambiguity resolution is possible. 

Specifically, for data outages up to 2 and 4 seconds for the HG1700 and 

LN200 systems, respectively, instantaneous ambiguity resolution is 

possible using either integration strategy. 

5.  For outage durations lasting approximately 12 to 40 s (depending on the 

IMU), there is also a noticeable improvement when using tight integration 

over loose integration with GPS seeding. 

6.  As the inertial position covariance increases over time during a data 

outage, the benefit to the ambiguity resolution process decreases 

accordingly, with the limit being the GPS-only case. 

7.  Equation (3.13) provides insight into the level of improvement that can be 

expected, in terms of ambiguity resolution, when using either a loose or 

tight coupling strategy after complete GPS outage. This conclusion is 

expected to be emulated by any chosen grade of IMU. 

8.  Improvements of greater than 96% in the sense of maximum position error 

after RTS smoothing in 3-D can be achieved using an RTS smoother. 
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9.  The strategy 1, 3, 4, 6, and 7 has very similar position accuracy 

performance in short baseline case. Consider of 2-4 cm accuracy of L1 

tight coupling solution, the difference of ambiguity processing strategy 1, 

3, 4, 6 and 7 is neglectable. 

10. WL ambiguities are both reliable and easy to resolve. Figure 7.7 shows 

that the time to fix the WL ambiguities is much shorter that the time to fix 

the L1 or L2 ambiguities. 

11. Inequality (7.1) gives relation of time to fix corresponding ambiguities 

using different ambiguity processing strategies where start form same 

initial condition. 

12. Inequality (7.2) gives expecting position accuracy relation achieved by 

different ambiguity processing strategy in short baseline condition. 

However, considering of estimator of IF strategy (strategy 5) is very slow, 

the position accuracy of IF strategy overall may descend even worse than 

that of WL strategy (strategy 2). 

13. In short baseline case, strategy 4 and strategy 6 (when properly modeling 

the ionospheric error factor) can give near optimal position solution but 

fastest time to re-fix ambiguities after GPS outage. 

14. The system overall position accuracy is not only depending on the 

measurements noise but also the estimator convergence speed 

especially for kinematic navigation practice. Since no one can expect 

carrier has longer than 30 minutes static mode to wait the estimator 
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converging in practice. 

15. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2 

ambiguities, does help to resolve the L1 ambiguities faster in short 

baseline case. It was demonstrated in Figure 7.7 that the time to fix 

ambiguities using WL, L1WL, and L1WL+I (strategy 1, 4, 6) are 

comparable in short baseline case. 

16. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2 

can decrease the overall position errors if the WL is fixed correctly in long 

baseline case. It was demonstrated in Table 7.4 that overall RMS position 

error in strategies 4 and 6 are significantly better than the position errors 

in strategies 1, 3, and 7 when both L1 and L2 ambiguities are not fixed. 

17. The strategy 1, 3, 4, 6, and 7 has very similar position accuracy 

performance in short baseline case. Table 7.2 and Table 7.3 has 

demonstrated that inequality (7.4) describe the position accuracy of each 

ambiguity processing strategy clearly. The convergence speed of IF 

estimator makes the overall position accuracy descend. 

18. In short baseline case (which means low DD ionospheric error and DD 

tropospheric error), strategy 4 and strategy 6 (when properly modeling 

the ionospheric error factor) can give near optimal position solution but 

fastest time to re-fix ambiguities after GPS outage. 

19. It is expected that L1WL+I (strategy 6) can achieve the best position 

estimate compare to all others in long baseline condition, since the 
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ionospheric error becomes the dominant error source. And the 

estimator has very fast convergence speed. The results in Table 7.4 have 

demonstrated that. 

20. In long baseline case, it is expected that IF strategy can give the best 

position estimation. However, because IF strategy estimator has the 

slowest convergence speed (IF ambiguities did not converge to 

reasonable value till end of the data run), the position accuracy of IF 

strategy is the worst but not the best in this particular case. 

 

Based on the results and conclusions above of this research, the 

recommendations regarding the use and further investigations of qualified 

ambiguity resolution improvement with aiding of inertial data; backward 

smoothing in improving reference trajectory accuracy; various ambiguity 

resolution strategies can be made as following: 

 

1.  The Equation (3.13) is an only analytical qualified ambiguity resolution 

improvement with aiding of inertial data. Chapter Six shows that this 

equation is more suitable for tight integration strategy. Further research 

can be done to explain this phenomenon. 

2.  RTS smoothing in Chapter Six has shown it’s capability to improve the 

position accuracy during GPS outage. More than 96% position error can 

be removed after applying RTS smoothing technique. Naturally, it is 
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expected that the after smoothed ambiguity states and corresponding 

VCV are more efficient to resolve the integer ambiguities compare to that 

of forward filter. Thus if a data run contains a long period of float 

ambiguity solution, it is expected the ambiguities can be resolved after 

backward smoothing then the position accuracy of the float solution can 

be improved. 

3.  The test results in Chapter Six and seven are based on certain input 

parameters (e.g. IMU gyro and accelerometer error model parameters, 

data rate, observation variances, the magnitude of the noise spectral 

density driving the velocity and position states, and the magnitude of the 

pseudo-ionosphere observable variance). The impact of these input 

parameters on the output is not investigated in this thesis. 

4.  The author tested the Equation (3.13), RTS smoothing improvements, and 

performance of each ambiguity processing strategy only with one data 

set. It is recommended that more data sets should be used to do so, and 

should be tested more extensively for RTK applications. 

 

Overall, this thesis gives an quantitative relationship between the free-inertial 

positioning accuracy after GPS outage and the respective ambiguity resolution 

improvements with the aiding of inertial data is presented to compute how big 

ambiguity resolution improvement can be expected use a generic IMU; verifies 

the RTS smoothing technique performance; and clarifies the advantages and 
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disadvantages of all the introduced ambiguity resolution strategies in short 

baseline condition and long baseline condition. With these knowledge, the 

selection of IMU in different scenario and ambiguity resolution process can be 

better understood, and the optimal scheme of ambiguity processing strategy for 

an application can be chosen. 
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APPENDIX A 

 

The DOP (Dilution of Precision) value during the test and the elevation angle of 

each satellite during the test are given in Figure A.1 and Figure A.2.  

 

 
Figure A.1 DOP Value During Data Collection 
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Figure A.2 Satellite Elevation Angle during Data Collection 
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APPENDIX B 

 

The position error difference comparisons before and after smoothing are given 

in Appendix B. The following Figure B.1 to Figure B.18 shows that the difference 

in each of the simulated outages. The blue line represents the position error 

before smoothing, and the red line represents the position error of smoothed 

results. For the sake of clarity, only the 100-second data outage results for 

HG1700/CDGPS and LN200/CDGPS systems are shown herein. 

  

 

Figure B.1 Position Error at GPS Outage #1 (HG1700/CDGPS) 
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Figure B.2 Position Error at GPS Outage #2 (HG1700/CDGPS) 
 

 

Figure B.3 Position Error at GPS Outage #3 (HG1700/CDGPS) 
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Figure B.4 Position Error at GPS Outage #4 (HG1700/CDGPS) 
 

 

Figure B.5 Position Error at GPS Outage #5 (HG1700/CDGPS) 
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Figure B.6 Position Error at GPS Outage #6 (HG1700/CDGPS) 
 

 

Figure B.7 Position Error at GPS Outage #7 (HG1700/CDGPS) 
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Figure B.8 Position Error at GPS Outage #8 (HG1700/CDGPS) 
 

 

Figure B.9 Position Error at GPS Outage #9 (HG1700/CDGPS) 
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Figure B.10 Position Error at GPS Outage #1 (LN200/CDGPS) 
 

 

Figure B.11 Position Error at GPS Outage #2 (LN200/CDGPS) 
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Figure B.12 Position Error at GPS Outage #3 (LN200/CDGPS) 
 

 

Figure B.13 Position Error at GPS Outage #4 (LN200/CDGPS) 
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Figure B.14 Position Error at GPS Outage #5 (LN200/CDGPS) 
 

 

Figure B.15 Position Error at GPS Outage #6 (LN200/CDGPS) 
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Figure B.16 Position Error at GPS Outage #7 (LN200/CDGPS) 
 

 

Figure B.17 Position Error at GPS Outage #8 (LN200/CDGPS) 
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Figure B.18 Position Error at GPS Outage #9 (LN200/CDGPS) 
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APPENDIX C 

 

The INS error model parameters and other parameters regarding the 

parameters which have been used to process GPS and INS test data in this 

particular research are given in Appendix C. 

 

C.1 PROCESSING STRATEGY AND GPS MEASUREMENTS PARAMETERS 

 

C/A code and Doppler measurements were always used to update the system. 

The carrier-phase measurements were L1 and L2. The selection of ambiguity 

processing strategy will ultimately decide which observation or observations will 

be selected based on Table 5.2. The variances of the different observations 

used in the processing of each strategy for all two baselines are given in Table 

C.1. For the comparison consistency, the variances given to the pseudoranges 

for all strategies are the same. The L1 and L2 carrier-phase observation 

standard deviations are the same for Strategies 1 to 5. The L1 and L2 carrier-

phase observation standard deviations for Strategies 6 and 7 are the same, 

however, lower than that of Strategies 1 to 5, because Strategies 6 and 7 

models the DD ionospheric error explicitly. The standard deviation 0σ  for the 

short baseline is 10 cm and 50 cm for the long baseline because the long 

baseline has a much higher ionospheric error than that of short baseline. 
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Table C.1 Observation Standard Deviations 
Observation Standard Deviations Strategy 

P (m) CP1 (Cycle) CP2 (Cycle) I0 (m) 
1 0.5 0.050 0.050 N/A 
2 0.5 0.050 0.050 N/A 
3 0.5 0.050 0.050 N/A 
4 0.5 0.050 0.050 N/A 
5 0.5 0.050 0.050 N/A 
6 0.5 0.025 0.025 0σ  
7 0.5 0.025 0.025 0σ  

 

C.2 INS ERROR MODEL PARAMETERS 

 

A first-order Gauss-Markov model is commonly used as error model to be 

included in the INS Kalman Filter. And a white noise power spectral density is 

needed to construct the noise distribution matrix as well. By studying the auto 

correlation sequences of the noise components at the output of initial sensors 

after wavelet de-noising and the standard variation of the noise components at 

the raw measurements of the initial sensors, we determined that a re-estimated 

first-order Gauss-Markov model and an estimated white noise spectral density 

can efficiently model such noise behavior for tactical grade IMU. 

 

The detailed information about the method to estimate the first-order Gauss-

Markov model parameters and a method to estimate the white noise power 

spectral density was given by Lachapelle et, al. (2003). The parameters of 

HG1700 and LN200 which were applied in this research were presented in this 
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section in following Table C.2.  

 

Table C.2 Estimated Error Model Parameters 

1 The white noise spectral density of each axis was considered to equal to the 
average value of three axis’s variances 
 

C.3   GPS DYNAMIC MODEL PARAMETERS 

With respect to the DD carrier phase based GPS Kalman filter, for most 

navigation problems, the dynamics of the system are modeled using a random 

walk. Considering a random walk model for the velocity states [ ]Tzyx vvv with 

corresponding driving noise vector [ ]Tzyx www , the equation relating the 

white driving noise and the three velocity states are as 

zz

yy

xx

wv
wv
wv

=
=
=

. The spectral 

density for the driving noise vector [ ]Tzyx spspsp  were set to 100 m2/s3. 

HG1700 X Gyro Y Gyro Z Gyro X Acc Y Acc Z Acc 
White 
noise SD 

101 
deg/hr/sqrt(Hz)

7.8e-31 
m/s/s/sqrt(Hz)

Bias 
GMσ  

0.2605 
(deg/hr) 

0.2607 
(deg/hr)

0.2613 
(deg/hr)

3.411e-5 
(m/s/s)

5.397e-5 
(m/s/s) 

7.231e-5 
(m/s/s)

Biasτ  (s) 392.9 392.9 397.7 397 382 432 
LN200 X Gyro Y Gyro Z Gyro X Acc Y Acc Z Acc 
White 
noise SD 

5.6 
deg/hr/sqrt(Hz) 

3.0e-3 
m/s/s/sqrt(Hz) 

Bias 
GMσ  

0.0139 
(deg/hr) 

0.0196 
(deg/hr)

0.0204 
(deg/hr)

4.894e-5 
(m/s/s)

6.207e-5 
(m/s/s) 

7.070e-5 
(m/s/s)

Biasτ  (s) 337.8 265.9 336.2 365.7 292.0 315.3 
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APPENDIX D 

The estimated double-differenced ionospheric delay for both the short and long 

baseline cases is given in this appendix. It begins with a discussion of the 

stochastic modeling of the DD ionospheric error.  

 

Based on the very good temporal characteristics of the ionospheric error, Skone 

(1998) showed that a first order Gauss-Markov process is consistent with the 

observed temporal correlations in TEC. The following system model was 

employed to describe the evolution of the TEC: 

 ( ) ( ) ( )jj
T

t

j twtVTECetVTEC +=
−

+
0

1

δ

 

where VTEC is the TEC component in the zenith direction, 0T  is the correlation 

time and jj ttt −= +1δ . This property allows estimation of the ionospheric error 

through a Kalman filter. A Gauss-Markov process was used to model the 

ionospheric delay. The DD ionospheric error iI  in metres between the ith 

satellite-receiver pair was modeled as a Gauss-Markov process with a driving 

noise iw  of spectral density iσ  in units of m2/s, and a time constant 0T  in 

seconds. The discrete state-space equation for iI  is derived as k
i

k
i

T
t

k
i wIeI +=

−
+ 01

δ

; 

the variance of the discrete white noise k
iw  is ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

− t
Ti eT δσ

0

2
0 1

2
. The DD 
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ionospheric error state vector (I1, I2, I3 … and In) is then expanded into the 

Kalman filter. 

 

Figure D.1 shows the estimated double-differenced ionospheric delay of all 

double difference satellite pairs versus baseline length using GPS-only, L1WL+I 

strategy for the short baseline case. 

 

Figure D.1 Estimated DD Ionospheric Delay vs. Baseline Length vs. GPS Time 
 

As can be seen, the double-differenced ionospheric delay, in the short baseline 

case, is less than 1 ppm.  



 

 

211

 

Figure D.2 Estimated DD Ionospheric Delay vs. Baseline Length vs. GPS Time 
 

Figure D.2 shows the estimated double-differenced ionospheric delay of all 

double difference satellite pairs versus baseline length using GPS-only, and an 

L1WL+I strategy for the long baseline case. This means that the ionospheric 

error is not considered to be significant for the data set used herein. 
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APPENDIX E 

The dynamics matrix of the 15 state Kalman filter linearzed SINS error model in 

the local level and ECEF frames corresponding to Equation 2.12 are given in 

this appendix. The dynamics matrix in local level frame is as following. 
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1113,7 RF =  

1214,7 RF =  

1315,7 RF =  

ϕω sin1,8 eF =  

hN
F

+
=

ϕλ cos
3,8

&
 

hN
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−=

1
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( ) ϕλω sin7,8
&+−= eF  
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where the superscripts E, N, and U denote East, North and upwards (zenith) 

respectively; M is the Earth’s Meridian radius of curvature; N is the Earth’s Prime 

vertical radius of curvature; ϕ , λ , h  are latitude, longitude and height, 

respectively; eω  is the angular rate for Earth rotation; Ev , Nv , Uv  are velocity  

components represented in the local level frame; Ef , Nf , Uf  are 
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accelerometer-specific force components in the local level frame; Uγ  is 

normal gravity in the local level frame; xb
β , yb

β , zb
β  are gyro bias first order 

Gauss-Markov model coefficients for each axis; xd
β , yd

β , zd
β  are 

accelerometer drift first order Gauss-Markov model coefficients for each axis; 

and 

⎥
⎥
⎥
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⎢
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⎣

⎡
=

333231

232221

131211

RRR
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RRR

l
bR  is a rotation matrix between the IMU body frame and the 

local level frame. 

 

For the sake of clarity, the dynamics matrix in the ECEF frame was separated 

into 25 3 by 3 dimensional matrix and is represented as follows: 
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e
bR  represents the rotation matrix between the IMU 

body frame and the ECEF frame; 
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F  is the skew-symmetric 

matrix for the specific force vector given in the ECEF frame; the coefficient 
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where r  is the length of the geocentric position vector and kM is the product of 

the Newtonian gravitational constant, and the Earth’s mass; 
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is the skew-symmetric matrix for the Earth rotation rate; I  is a 3 x 3 identity 

matrix; 
⎥
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β  is a diagonal matrix of 1/(correlation time) of the 

first order Gauss-Markov process describing the accelerometer bias, and the 

1/(correlation time) of the first order Gauss-Markov process describing the gyro 

drifts is represented by 
⎥
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β ; and 0  is a 3 by 3 zero matrix.  
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