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Abstract 

The demand for a system capable of providing reliable navigation solutions regardless of 

operational environment prompted investigations into the use of medium accuracy 

inertial systems aided by GPS measurements. An algorithm for integration of a tactical-

grade IMU (Honeywell 1700) with a conventional high performance receiver (NovAtel 

OEM4) for open sky areas, and a high sensitivity receiver (SiRF Star II Xtrac ) for 

downtown canyons, is developed and tested. This research is focused on obtaining metre-

level positional accuracies for automobile applications.  A loosely–coupled integration 

scheme with estimation algorithms for two GPS environments is implemented: 1) a 

conventional Kalman filter for INS error estimation that includes a special procedure for 

in-motion estimation of INS azimuth error using GPS velocities; and 2) use of multiple 

Kalman filters with fixed and adaptive measurement covariances. The filter’s operational 

mode criteria account for vehicle dynamics and the quality of GPS measurements. In 

open sky conditions, an attitude accuracy of 0.2º-0.6º for azimuth and 0.05º-0.1º for roll 

and pitch is achieved. System positional and velocity accuracy is tested in prediction 

mode using simulated GPS outages.  For data gaps of 30 to 60 s in duration, the system 

accuracy in position and velocity domains ranges from 5 to 15 m and from 0.2 to 0.6 m/s 

respectively depending upon vehicle dynamics. In downtown canyons, the accuracies are 

tested in position domain only; positional error ranges from 10 to 50 m with occasional 

outliers reaching 70 m.  
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1Chapter 1 

Introduction 

The demand for positioning services in recent years has driven extensive research 

towards the development of navigation systems. Beyond the value of scientific inquiry, 

the market also forces requirements in terms of quality, size and price. In the navigation 

marketplace, the Global Positioning System (GPS) and an Inertial Navigation System 

(INS) experience the highest level of demand. However, both systems have a number of 

limitations which challenge their use in many land-based applications. Inertial sensor 

errors, for example, can be large in magnitude and grow over time, while navigation data 

from another unit such as GPS can be used for the INS error compensation. On one hand, 

widespread use of a very accurate INS is constrained by their high cost. On the other 

hand, the operational capability of GPS degrades in harsh environments such as urban 

and forest areas, where GPS signals may be partially or completely blocked by buildings 

and dense foliage. Besides, a GPS receiver does not provide attitude data.  The 

combination of an INS and GPS is well suited to the development of a range of 

applications as each system compensates for the other’s shortcomings. An extended 

research in the field of INS/GPS integration has focused on the use of high accuracy 

inertial systems providing attitude data, augmented by GPS for precise positional and 

velocity information (Grejner-Brzezinska et al., 1998; Cannon et al., 1999; Kumagai et 

al., 2000, Asaoka et al., 2003). In such a configuration, very accurate GPS measurements 

are needed to correct INS errors, which is possible in open sky conditions only. In harsh 
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GPS environments, the accuracy of the GPS solution degrades due to effects such as 

signal masking, signal cross-correlation and multipath. This thesis investigates the use of 

a medium accuracy inertial system aided by GPS measurements in a range of different 

’quality‘ levels depending on the operational environments. Two types of GPS receivers 

are used: a conventional high performance NovAtel OEM4 for open area applications and 

a high sensitivity SiRF receiver for downtown canyons.  

1.1 Background  

1.1.1 Global Positioning System  

Global Positioning System provides accurate and continuous, three-dimensional position 

and velocity information via the satellite constellation to users worldwide. Designed by 

the United States Department of Defense in the 1960s for military purposes (Kaplan, 

1996), GPS is also available to civilian users and it is capable of providing positions 

ranging from metres to centimetres depending on the type of measurements, methods 

implemented for the navigation solution, and operational environments (Misra and Enge, 

2001; Lachapelle, 2002).  With GPS, accurate positions have become available for a 

variety of applications. The falling cost of GPS receivers over the past twenty years has 

rendered the system attractive for automotive applications, where cost is a major factor in 

product acceptance (Misra and Enge, 2001).  
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GPS accuracy is constrained by its susceptibility to many types of systematic and random 

errors. Some GPS errors, such as atmospheric errors, obit errors and clock drifts are 

independent of local surroundings of the receiver, i.e. operational environment. The 

differential GPS technique (DGPS) reduces or even eliminates several errors of this type 

(Enge, 1996). Other errors such as multipath, jamming, signal masking and consequently 

poor geometry are environmentally dependent and can cause significant accuracy 

degradation in harsh GPS conditions. Multipath is generally one of the largest error 

sources for land applications, especially in kinematic mode, when the magnitude of this 

error quickly changes in a manner that is difficult to anticipate or to model 

mathematically. When the receiver is moving, as in automobile applications, the positions 

of various multipath sources change rapidly based on vehicle speed and the resulting 

reflected signals cannot be reliably predicted (Cannon and Lachapelle, 1992). The 

accuracy degradation caused by signal masking and poor geometry can be mitigated by 

the use of innovative High Sensitivity (HS) GPS technology (Enge et al., 2001; 

MacGougan et al, 2002). 

 

Unlike conventional GPS receivers, HS GPS receivers make measurements in signal 

conditions where conventional sensitivity receivers fail. HS receivers are capable of 

tracking and acquiring signals in challenging environments, which often include the 

interior of buildings, under heavy foliage and in urban canyons. HS receiver technology 

is a very powerful tool in terms of the range and quality of solutions available; however, 

its stand-alone operation is limited to significant errors caused by effects such as 

multipath, jamming, signal cross-correlation and high noise. MacGougan (2003) 
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investigated the impact of degraded GPS environments on measurement availability and 

usability which, in turn, are affected by pseudorange measurement errors, and signal 

power degradation. In such environments, position errors ranging from 150 metres to the 

kilometre level were observed. He also showed that a high sensitivity GPS receiver in 

stand-alone mode could not provide reliable, robust position solutions in certain severely 

degraded GPS signal conditions. 

 

Thus, in urban canyons or under heavy foliage, it is advisable and feasible to use an 

external source for position and velocity information, such as an INS, to improve GPS 

reliability and integrity. GPS integrity is defined as the ability to protect the user from 

inaccurate information in a timely manner, e.g. during GPS outages (Lachapelle, 2002).  

1.1.2 Inertial Navigation System  

An Inertial Navigation System is a system of sensors designed to measure specific force 

and angular rates with respect to an inertial frame which, when integrated, provide 

velocity, position and attitude.  Unlike GPS, an INS is a self-contained system, so it is 

autonomous regardless of the operational environment. However, the accuracy of an INS 

is diminished by systemic errors such as inertial alignment errors and inertial sensor 

errors (Titterton and Weston, 1997).  

 

Unlike GPS-type errors, inertial errors are large in magnitude, low frequency in nature 

and grow over time (e.g. position errors). These error qualities stem from the solution of 
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the second order differential mechanization equation. INS errors can be divided into two 

parts. The first is the stationary component (e.g. gyroscope drifts, horizontal attitude 

errors), which is independent of motion parameters and yields those INS errors 

oscillating over time with a very small Schuler frequency corresponding to a period of 

84.4 minutes. Therefore, this large component is quite predictable from an estimation 

point of view and, thus, the major part of the Schuler error can be compensated in the 

output. Its estimation accuracy is defined by knowledge of the system parameters and the 

nature of the associated errors (such as the level of gyro drifts and accelerometer biases). 

The second non-stationary class of errors (e.g. sensor scale factors and their non-

linearities, installation errors, and azimuth misalignment) is defined by motion 

parameters (vehicle accelerations and velocities, traveled distance), which makes it 

difficult to predict.  

 

High performance INSs (gimbaled systems in particular) experience less accuracy 

degradation. Due to restrictions such as price (over US$100,000) and government 

regulations, high performance inertial systems are usually used in military applications 

and commercial airliners, and are not affordable for general-purpose application areas 

such as car navigation. Therefore, recent research efforts have focused on the use of a 

medium accuracy INS and Inertial Measurement Units (IMU) in particular. An IMU is 

the core hardware of any INS, which contains three accelerometers and three rate 

gyroscopes configured along three orthogonal axes. Unlike an INS, an IMU provides 

only raw data, which is already compensated for errors such as scale factors and biases. 

Consequently, the navigation algorithm has to be developed by users themselves, so that 
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velocity, position and attitude information can be evaluated. Due to the relatively lower 

cost of inertial sensors in comparison to high performance INSs, IMUs are characterized 

by their poor accuracy and run-to-run stability, which can result in large errors over short 

time intervals. For example, for a medium accuracy IMU with gyroscope (hereinafter 

gyro) drifts in the range of 1º to 2º per hour, the errors accumulated within an hour can be 

in the order of 50 to 80 m/s for velocity; up to 30 km in position; from 6º  to 8º in 

azimuth; and 1º to 2º in roll and pitch.  

 

An IMU-based on low cost inertial sensors cannot operate in stand-alone mode but, 

augmented by an external device such as GPS, it is capable of providing a relatively high 

accuracy of navigation solution. Salychev et al. (2000) and Sukkarieh (2000) discussed 

the integration of a Systron Donner MotionpakTM IMU with one or more GPS antennas. 

Salychev used external heading information to align the IMU, while Sukkarieh proposed 

the use of non-holonomic constraints, which describe the characteristics of land vehicle 

dynamics. In elementary terms, the motion of a wheeled vehicle on a surface is governed 

by two non-holonomic constraints; i.e. vehicles do not move in an upward/downward 

direction and lateral velocity is almost zero. In summary, it becomes necessary to provide 

an IMU with regular updates by using external information from other sensors such as a 

GPS and/or from Zero Velocity Updates (ZUPTs) as described in Jekeli (2001); El-

Sheimy (2003). Both methods can be combined to obtain more precise information about 

the magnitude of the IMU errors (Grejner-Brzezinska et al., 2002). The complementary 

nature of IMU and GPS systems in principle and operation, specifically in the sense that 
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each system compensates for the other’s shortcomings, demonstrate the prospective 

benefits of GPS and INS integration. 

1.1.3 INS/GPS Integration 

The combination of GPS and INS can deliver superior system performance in comparison 

to the performance of either system in stand-alone mode. Unlike a GPS receiver, an INS 

is capable of delivering navigation information at a relatively high rate. The data rate of 

GPS measurements is typically 1 to 20 Hz depending on the receiver type, while the INS 

data rate is 60 to100 Hz on average. Another important advantage of an INS is the ability 

to provide attitude data in addition to position and velocity information. Despite the 

above advantages, system inaccuracies due to gyro drifts and accelerometer biases cause 

a rapid degradation in position quality, while GPS errors are generally smaller and are not 

time-dependent. Moreover, a GPS receiver has high frequency errors while an INS 

typically does not. The differences in the nature of errors associated with the two systems 

benefits their integration through the use of a Kalman filter, which is a linear estimator 

that uses knowledge of the system dynamics and external measurements to obtain an 

optimal estimate of the state variables at the current epoch (Gelb, 1974). It follows, 

therefore, that these two units combined in a common system will provide superior 

operation in terms of accuracy, integrity and availability (the ability to be used whenever 

it is needed (Lachapelle, 2002)) than each system in stand-alone operation. 

 



 

 

8

The problem of achieving better performance in terms of accuracy of INS/GPS systems 

can be divided into two distinct problems: modeling and estimation. The modeling 

problem is concerned with the development of error models that describe more accurately 

the INS/GPS system. The estimation issue is devoted to achieving more accurate error 

estimates, which are used for error compensation, through the proper use of the available 

process and measurement information. However, there is a contradiction between the two 

issues, since excessive complication of a system model degrades the estimation accuracy 

of the state vector components. To achieve optimal results, a balance of the two 

approaches should be attained.  The size of the state vector defines the length of the 

transition period for the last error component, when all estimates of the state vector 

converge to actual values. For high dimensions of the system model, this interval can be 

significantly long, ranging from 100 to 800 seconds. During this time, the estimation 

accuracy of the other state vector components (directly measured and close to directly 

measured) is degraded in comparison to the steady state accuracy. Moreover, the 

estimation accuracy is generally limited to the level of uncertainty of the system model as 

defined by input noise. The accurate modeling of the random part of INS errors is a very 

problematic task.  

 

Although recently a wide variety of different estimation algorithms have been 

investigated for INS/GPS integration (for instance, the neural network technique (Chiang 

and El-Sheimy, 2002)), Kalman filter techniques are still more commonly applied for 

many applications (Shin and El-Sheimy, 2002). From the estimation viewpoint, the 

optimality of a conventional Kalman filter requires, in principle, good a priori knowledge 
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about the process (the system model) and noise statistics (measurement noise) as well as 

a sufficiently long estimation time or data length. If the above information is inaccurate 

or varies in a manner that is not readily predictable, the estimation accuracy degrades 

from the theoretical prediction. These criteria have limited the applicability of the 

traditional Kalman filter in the case of INS/GPS systems, both conceptually and 

practically. Adaptive filters sense the properties of the environments in which they 

operate and adjust the filter parameters accordingly. Therefore, when the properties of the 

operating environments are not known, or when they change with time in a previously 

unknown manner, these filters become very useful. Thus, such estimation methods are 

beneficial for INS/GPS integration in changing GPS conditions. 

 

Several different integration schemes have been developed in recent years. They can be 

divided into two types: loosely coupled (sometimes referred to as decentralized) and 

tightly coupled (referred as centralized) strategies. In tightly coupled schemes all 

measurements from GPS and INS are processed together in the same filter. The main 

advantage of this technique is in preserving data availability. When there are less than 

three satellites observable and the GPS receiver does not provide any navigation solution, 

the pseudoranges of the remaining satellites can be used for a measurement update. 

Another benefit of this type of integration comes from the fact, that poor GPS 

measurements can be detected and rejected from the solution. However, tightly coupled 

algorithms are computationally less efficient in comparison to loosely coupled schemes 

and usually have a complex system and measurement models (i.e. the measurement 

model contains partial derivatives of pseudorange errors, expressed via geodetic 
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coordinates; the colored measurement noise is introduced to the system model as 

additional error state). The larger dimension of the state vector in this integration scheme 

increases the elapsed time to filter convergence. Therefore, the loosely coupled 

integration has become popular for many applications. This method is based on the 

independence of the GPS and INS navigation functions.  It is a simple and flexible 

scheme of integration, since the filter size is relatively small in comparison to the tightly-

coupled approach. The only limitation of the loosely coupled scheme comes from the fact 

that at least four satellites are necessary to provide GPS updates for the INS filter (Jekeli, 

2001; El-Sheimy, 2003).  

 

Since there is a lack of research devoted to the integration of an IMU with GPS in 

different surroundings, the intent of this research is to develop a flexible, universal 

approach to integration of a medium accuracy IMU with two different types of GPS 

receivers: conventional high performance and high sensitivity. For harsh GPS conditions, 

the algorithm takes into account the challenge of using HS GPS measurements, which are 

characterized by high level of noise and exposed to large errors such as tracking of 

multipath or echo-only signals.  

1.2 Literature Review   

 The idea of INS/GPS integration is not new. A sizeable amount of work has been done to 

investigate the potential benefits of such a navigation system for land applications (Wolf 

et al., 1997; Nayak, 2000; Shin, 2001; Petovello, 2003). However, these investigations 
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evaluate only system performance over short GPS data gaps (i.e. up to 20 seconds) 

(Nayak 2000), require special GPS attitude equipment for in-run calibration (Wolf et al., 

1997) or focused on centimetre-level accuracy positioning (Petovello, 2003).  

 

Some research has been dedicated to the usage of HS GPS receivers for land applications 

in challenging GPS environments. The operational characteristics of a high sensitivity 

receiver SiRF Star II Xtrac were investigated by MacGougan (2002). The results 

indicated that high sensitivity GPS receivers in unaided stand-alone mode provided a 

higher availability of observations in residential and urban areas as compared to standard 

receivers, as they were capable of a 3D fix over 92% to 94% of the test duration. 

However, the filtered position errors were in the order of 25 metres with occasional 

jumps of 100 metres and more. Mesenzev et al. (2002) used a HS receiver augmented 

with a low cost rate gyro. In downtown areas with heavily filtered stand-alone GPS 

solutions, across-track position errors occasionally reached 100 metres. Integration of an 

HS GPS receiver with a rate gyro improved the position accuracy, resulting in an average 

position error of below 20 metres.  

 

Land applications, such as car or pedestrian navigation, have been constrained by the cost 

factor, and this has prevented the use of high performance INS units in these applications. 

Therefore, in the last few years, many new techniques have been developed using GPS 

integrated with lower cost IMUs. An IMU affords reduced performance accuracies and it 

cannot be used as a stand-alone navigation system; but, when augmented by GPS, it can 

provide acceptable performance. Recent developments demonstrated the reliability of 
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such systems. Shin (2001) tested a NovAtel Black Diamond System (BDS), which 

contains a medium accuracy IMU Honeywell 1700 and a NovAtel OEM4 receiver. Using 

field calibration, a velocity-matching alignment as well as non-holonomic constraints, the 

INS measurements were used to bridge GPS gaps. Mohamed (1999) investigated an 

INS/GPS system and developed an adaptive algorithm based on the use of an innovation 

sequence to estimate the system noise matrix, Q, and the measurement noise covariance 

matrix, R, in a Kalman filter algorithm for INS error estimation. This information was 

used for GPS ambiguity resolution technique by applying an On-The-Fly (OTF) Integer 

Whitening Filter. Skaloud (1999) proposed an adaptive algorithm for INS error 

estimation by defining the sensor noise using wavelets. This information was further used 

for GPS ambiguity resolution. 

  

Many new approaches in the field of INS/GPS integration have appeared in recent years 

in navigation and geodetic applications. Inertial data was used to assist ambiguity 

resolution by reducing the search space (Skaloud, 1998; Scherzinger, 2000; Petovello, 

2003) as well as for cycle slip detection (Cannon, 1991; Schwarz et al., 1994). However, 

in automotive applications, a navigation system is assumed to operate and provide an 

acceptable solution in weak environments (e.g. urban or suburban areas), where only 

pseudorange measurements are available for use in the navigation solution.  

1.3 Research Objectives and Motivation  

Since there is a lack of research towards the integration of an IMU with different GPS 

receivers depending on the application environments, this thesis is devoted to  the 
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combination of a medium accuracy IMU (Honeywell 1700) with two types of GPS 

receivers, namely a conventional high performance NovAtel OEM4 and a HS SiRF Star 

II Xtrac. This research examines the loosely coupled scheme of integration as a flexible 

method for augmenting an IMU with GPS measurements of different qualities (in other 

words, the level of errors). The intent of the study is to develop and investigate the 

operational capability of such a system in terms of accuracy, integrity and availability.   

 

To implement the proposed integration algorithm, this work considers the following 

tasks:  

1. Calculation of the navigation solution for a strapdown INS (SINS) using as an 

input raw IMU data;  

2. Loosely-coupled scheme for INS/GPS integration, which includes estimation of 

IMU errors, their prediction during GPS outages and finally error compensation in 

the system output and in the SINS calculation scheme; 

3. Investigation of different estimation approaches of the INS/GPS integration for 

applications in open sky conditions and in urban environments.  

 

The programming is performed in the C++ language using object-oriented programming 

and is intended for use as a post-processing package utilizing estimation techniques that 

could be adapted for real-time applications.  

 

The following tests were conducted to assess the quality of the integrated solution under a 

variety of operational environments: 
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1. Open areas with simulated GPS data gaps for verification of prediction accuracy; 

2. Residential areas with partial short-term satellite blockage due to one- and two-

level houses and roadside foliage;  

3. Urban canyons with heavy masking effects due to high buildings. 

1.4 Thesis Outline  

The thesis consists of seven additional chapters. Chapter 2 provides an overview of GPS, 

namely the main concepts, error budget and high sensitivity theory. Chapter 3 describes 

the principle of inertial navigation, the mechanization equations for calculation of the 

navigation solution, as well as the INS error sources and their nature. Chapter 4 discusses 

the main algorithms of INS/GPS integration and the estimation methods, including the 

Kalman filter and its adaptive version for applications in harsh GPS environments. 

Chapter 5 describes in detail the INS/GPS method employed. The integrated scheme 

investigated in this thesis includes a cascaded technique for in-motion azimuth 

estimation, as well as gyro drift compensation. For downtown applications, the integrated 

scheme uses a simplified INS model and adaptive filtering for changing GPS 

measurement covariance; the algorithm also adjusts filter parameters depending on 

vehicle dynamics. Chapter 6 presents results of field testing in open areas. The analysis of 

the impact of different INS error components on the overall accuracy of the integrated 

system is given in this chapter.  Chapter 7 presents the results of suburban and urban area 

testing. It describes the test conditions in terms of a profile of typical building heights and 

the nature of obstructions that may degrade GPS operation. The limitations in the system 
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accuracy due to long-term operation in prediction mode and error-corrupted GPS 

measurements are also discussed. Chapter 8 summarizes the major results of the 

integrated system operation in different GPS environments and makes recommendations 

for future work. 
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2Chapter 2 

Overview of Global Positioning System  

This chapter presents an overview of the GPS concept and an introduction to high 

sensitivity GPS theory; the various GPS error sources, their nature. Methods of error 

mitigation are also discussed. GPS environments are briefly characterized and the main 

challenges that should be considered in degraded GPS mode are described.  

2.1 GPS Concept 

The Global Positioning System is a satellite-based navigation system, which provides 

accurate position and velocity information worldwide. It is well described in standard 

textbooks such as Kaplan (1996), Parkinson (1996), Hofmann-Wellenhof et al. (1997), 

Misra and Enge (2001) and is not discussed in detail here. Currently, the GPS 

constellation contains 28 operating satellites located in six orbital planes. GPS is based on 

the time-of-arrival (TOA) ranging principle of determining receiver position (Kaplan, 

1996). The crux of the TOA concept lies in measuring the time it takes for a radio 

frequency (RF) signal broadcast from a GPS satellite with a previously determined 

position to a receiver. The pseudorange measurement, which incorporates distortions due 

to errors, can thus be obtained from knowledge of the signal propagation speed, i.e. the 

speed of light.  
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GPS satellites transmit two carrier frequencies:  the primary L1 (1575.42 MHz) and 

secondary L2 (1227.60 MHz). These frequencies are modulated by the navigation 

message and by spread spectrum codes with a unique Pseudo-Random Noise (PRN) 

sequence for each satellite (Ward, 1996a). Therefore, a signal coming from each satellite 

of the GPS constellation can be distinguished and separated from others by the Code 

Division Multiple Access (CDMA) technique. Currently, GPS signals are modulated by 

two codes, namely, the Coarse-Acquisition (C/A) code on L1 and the Precise (P) code on 

L1 and L2. The P-code is restricted to military use via its encryption by the Y code, a 

practice known as anti-spoofing. To decode Y-code encrypted signals, codeless and semi-

codeless cross-correlation tracking techniques are used (Lachapelle, 2002), however 

these methods diminish the signal-to-noise ratio (SNR) by 14 dB or more and thus 

increase the noise level in the observations. This thesis deals only with L1 C/A-code 

measurements, of which a more detailed description follows.  

 

The C/A-code is generated by two 10-bit shift registers, where the outputs of the two 

registers are again added to produce the new code (Misra and Enge, 2001; Cannon, 

2001). The C/A-code is a relatively short code with a period of 1 ms (1023 bits) for fast 

acquisition at a rate of 1023 Mbps. To provide good multiple access properties, the C/A-

codes are designed from a family of codes referred as Gold codes, which are obtained 

from the product of two equal period 1023 bit codes to form a code with the same period 

(Spilker, 1996a).  
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In general, the GPS signal contains pseudorange, carrier phase and Doppler 

measurements. The L1 C/A-code pseudorange and Doppler measurements can be utilized 

for position and velocity calculation; these measurements are used typically in high 

sensitivity receiver applications.  

2.1.1 Pseudorange Measurements  

Pseudorange observations are obtained by measuring the transit time of the signal as it 

travels from the GPS satellite to the receiving antenna. Due to non-synchronized receiver 

and satellite clocks, the measured range (pseudorange) is biased. Therefore, the receiver’s 

clock difference with respect to the satellite’s GPS time must be taken into account. This 

leads to a system of equations with four unknown parameters (three coordinates and 

clock drift); thus at least four satellite observations are necessary for position calculation.  

 

The code observable P for a single satellite can be expressed as (Misra and Enge, 2001; 

Lachapelle, 2002): 

ptropion dddTdtcdP ε+++−+ρ+ρ= )(  (2-1)  

where:  ρ  is the geometric range between the GPS satellite and receiver 

antenna (m); 

dρ   is the orbital error (m); 

dt   is the satellite clock error (s); 

dT   is the receiver clock error (s); 

dion   is the ionospheric delay (m); 
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dtrop   is the tropospheric delay (m);   

εp  is the code noise  (receiver noise + multipath) (m); and  

c  is the speed of electromagnetic wave in vacuum (m/s). 

A brief overview of each of these errors is given below; a more detailed treatment is 

given in works such as Kaplan (1996), Parkinson (1996); Hofmann-Wellenhof et al. 

(1997), Misra and Enge (2001). Orbital, satellite clock, and atmospheric errors can be 

reduced or even eliminated by differencing pseudorange measurements with a receiver at 

a known location (herein referred as DGPS) or by applying algorithms designed to model 

their effects. Some models are based on the parameters broadcast from the GPS 

constellation. The receiver clock error is usually included as an unknown parameter in 

single point and single difference GPS methods. Noise depends on the received signal 

strength and on the correlation method employed in the receiver, so that it cannot be 

decreased without access to the hardware. Multipath is caused by multiple reflections of 

GPS signals interfering with the line-of-sight signal (LOS). It is environmentally 

dependent and thus cannot be mitigated by DGPS. This error is also difficult to model 

and therefore to satisfactorily compensate for. More extended investigations concerning 

atmospheric and multipath errors can be found in Skone (1998), Ray (2000) and 

MacGougan (2003).  

2.1.2 Doppler Measurements  

Doppler measurements are based on an established physical principle that is readily 

observed in nature. For a moving emitter (namely a satellite) or a moving receiver, the 
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received frequency is Doppler shifted with respect to the emitted source. This means that 

the received frequency differs from the emitted one by a certain amount, which is 

velocity-dependent (Hofmann-Wellenhof et al., 1997).  By measuring this frequency shift 

and knowing the emitter’s velocity, one can determine the receiver’s velocity. In the case 

of GPS, the Doppler is a measurement of the instantaneous phase rate of a tracked 

satellite’s signal; as a result, the velocity of the user with respect to the GPS satellites can 

be determined. Doppler measurements are also error-corrupted (Misra and Enge, 2001; 

Lachapelle, 2002): 

φε++−−+ρ+ρ=φ &&&&&&&&
tropion ddTdtdcd )(           (2-2) 

where: φ&   is the Doppler observable (m/s); 

 ρ&   is the geometric range rate (m/s); 

 ρ&d   is the orbital error drift (m/s); 

 dt  is the satellite clock drift; 

 dT  is the receiver clock drift; 

 dion  is the ionospheric delay drift (m/s); 

 dtrop  is the tropospheric delay drift (m/s); 

 φε&   is the receiver noise and the rate of change of multipath (m/s). 

Similarly to pseudorange errors, the atmospheric effects and satellite clock drift are 

reduced by DGPS, where the receiver clock drift is considered in the velocity calculation 

scheme as an unknown parameter, so that a minimum of four Doppler observables is 

needed to solve for the user’s velocity.  
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2.2 GPS Errors 

2.2.1 Orbital Errors 

Orbital errors occur due to the differences in the actual and modeled positions of the 

satellites. Three types of data, of non-uniform accuracy levels, are accessible for position 

and velocity determination of the GPS satellites: almanac, broadcast ephemerides, and 

precise ephemerides (Hofmann-Wellenhof et al., 1997). Broadcast ephemeredes are 

available in real time and orbital parameters are uploaded for each interval of two hours. 

Currently, this type of satellite orbit has an RMS accuracy of about 3 m. More accurate 

orbit information of about 5 cm can be obtained from the International GPS Service 

(IGS); however, it is available only from a few days, up to a week, after the observations 

(Rothacher and Beutler, 2002). Fortunately, orbital errors are correlated for two receivers 

simultaneously tracking the same satellite and thus can be diminished by differencing 

observations between the receivers. The remaining errors are generally in the range of 

much less than 0.5 parts per million (ppm) (Misra and Enge, 2001; Cannon, 2001). PPM 

is the measure of residual errors in GPS measurements, when differential GPS is used. 

One ppm means that one cm of position error is introduced per ten km baseline.  

2.2.2 Satellite Clock Errors 

These errors are due to the offsets in the clock frequency of each satellite with respect to 

the reference clock, which is monitored by the Master Control Station. The satellite errors 

are modeled via a polynomial, the coefficients of which are transmitted as a part of the 
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navigation message (Parkinson, 1996; Lachapelle, 2002). The satellite error is usually 

less than 1 ms and, after implementing the broadcast correction, the remaining error is in 

the order of 8 to 10 ns (2 to 3 m). This error can be eliminated by the DGPS (difference 

in between the receivers), since it is the same for all receivers in the proximity, subject to 

essentially identical signal paths, simultaneously tracking the same satellite.  

2.2.3 Receiver Clock Errors 

This error is the offset of the receiver clock with respect to the reference GPS time. The 

error magnitude is a function of the receiver’s internal firmware. It can range from 200 ns 

up to a few ms, and changes over time due to the clock drift, the magnitude of which is a 

function of the type of oscillator used in the receiver. It can be estimated along with 

receiver coordinates or removed by single differencing between two satellites (ibid).  

2.2.4 Ionospheric Errors 

Signal propagation through the ionosphere produces one of the most significant sources 

of GPS error. It extends from roughly 50 to 1000 km above the Earth’s surface (while the 

GPS orbits are 20000 km above the Earth). The ionosphere is formed by ultraviolet (uv) 

ionizing radiation from the Sun and is characterized by a significant amount of free 

electrons, which in turn affects electromagnetic wave propagation and thus GPS signals. 

The group delay of the ionosphere produces range errors, which typically vary from 1 to 

50 ns or equivalently 0.3 to 15 m in vertical (Misra and Enge, 2001; Lachapelle, 2002). 

Ionospheric effects show diurnal and seasonal variations; they depend on the solar cycle 
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and the geographic location of the RF receiver. The ionospheric delay is a function of 

frequency. Dual frequency GPS users can utilize this property to correct the error in 

range and Doppler measurements. Single frequency users can compensate for ionospheric 

error using the approximate model (e.g. the Klobuchar model), which is based on 

broadcast parameters included in the GPS navigation message (Klobuchar, 1996).  As the 

ionospheric error is spatially correlated, it can also be reduced by single differences 

between receivers. The degree of improvement in error mitigation depends on the 

baseline length between the two stations, typically resulting in a residual error of about 2 

ppm.  

 

During periods of heightened solar and geomagnetic activity, other effects - namely, 

ionospheric scintillation and magnetic storms - have a crucial influence on GPS signals. 

Irregularities in the ionosphere produce diffraction and refraction of RF signals, causing 

short-term signal fading and enhancements which, in turn, can significantly stress the 

tracking capabilities of a GPS receiver and can lead to complete loss of lock. Under 

extremely high ionospheric conditions, the error can reach 100 m and more for single 

point positioning and 20 ppm for differential GPS solutions (ibid).  

2.2.5 Tropospheric Errors  

The troposphere is a part of the Earth’s atmosphere, which affects GPS signals at 

altitudes up to 50-70 km above the surface. The troposphere causes delays in GPS ranges 

due to the slowing and bending of GPS signals. Tropospheric errors can be on the order 
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of 2 m at the zenith and can reach 25 m for low elevation GPS signals. Tropospheric 

delay is subdivided into dry and wet components due to distinct influences on RF signal 

propagation. The dry portion typically contributes 80-90% of the entire effect; however, 

it can be modeled with an accuracy of about 1% at the zenith using meteorological data. 

By contrast, the wet term constitutes the remaining 10-20% of the total error, but it can be 

predicted with an accuracy of only 10–20% (Misra and Enge, 2001; Lachapelle, 2002). 

Several models are available to estimate the tropospheric delay such as the Hopfield, 

Saastamoinen and Black and Eisner (B&E) models (Spilker, 1996b). Due to the spatial 

correlation of the tropospheric error, it can be significantly mitigated by the differential 

technique (difference between receivers) producing a residual error in the order of about 

1 ppm or less (Lachapelle, 2002).    

2.2.6 Multipath Errors  

This effect is well described by its name: a satellite-emitted signal arrives at the receiver 

via more than one path (Hofmann-Wellenhof et al., 1997). It is caused by reflected 

signals that interfere with the direct signal coming to the GPS antenna.  Multipath is one 

of the largest GPS error sources, especially in weak signal environments. It is difficult to 

predict and to compensate for, since it is environmentally dependent and thus cannot be 

mitigated via the differential technique (Ray, 2000). Multipath occurs mainly due to 

reflecting surfaces near a GPS receiver, such as buildings, tree foliage, water bodies and 

even the ground surface. These surroundings are very typical for high sensitivity users, 

where LOS signals may be weak with respect to the strength of the multipath signal. 
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During signal transmission, secondary effects occur due to reflections at the satellite; 

however, multipath effects at the receiver are a main object of concern in published 

works on the subject.   

 

Multipath signals are always delayed, since they travel longer distances than direct (LOS) 

satellite signals. When they arrive at the RF front end, reflected signals have relative 

phase offsets, and these phase differences are proportional to the differences of the path 

lengths (Hofmann-Wellenhof et al., 1997). The phase of the reflected signal defines the 

sign of the multipath error, which can be either negative or positive. There is no general 

model of the multipath effect because of the arbitrary nature of unique geometric 

situations. Based on the signal path geometry, it is understandable that signals received 

from low elevation satellites are more liable to be affected by multipath compared to 

signals close to the zenith. Multipath is classified by the properties of the reflecting 

sources: 1) diffuse forward-scattering from a widely distributed area (e.g. rough 

surfaces); or, 2) specular reflection from smooth surfaces (e.g. water bodies, metal 

surfaces).  

 

Pseudorange multipath is limited by the chipping rate. The higher the chipping rate, the 

lower the maximum multipath (Leick, 1995; Misra and Enge, 2001).  Code multipath 

errors are related to the GPS code. The maximum multipath error for the C/A-code and 

the wide correlator is 0.5 chip, which corresponds to 150 m since the C/A chip length is 

300 m. The C/A-code is affected by a maximum delay of 1.5 code chips; in other words, 

signals delayed more than 450 m do not introduce an error to the C/A-code. Code 
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multipath errors are usually in the order of 10 m to 100 m depending on environmental 

conditions. The direct and reflected signals superimpose to produce the composite 

received signal and, in turn, affect the correlation property of the C/A-code. This is 

illustrated by Figure 2-1. In static applications, multipath introduces a systematic error 

that contains low frequency fluctuations. It can be measured and compensated via 

extended observation periods and statistical analysis, since multipath is correlated day-to-

day due to the repeated satellite-receiver geometry (Ray, 2000; Lachapelle, 2002). 

Multipath decorrelates rapidly as a function of distance between the reflecting surface 

and the GPS antenna. In kinematic mode, due to the changing environments, the positions 

of various reflectors change rapidly based on vehicle speed; as a consequence, the 

resulting reflected signal is almost impossible to model and predict (Cannon and 

Lachapelle, 1992). Therefore, external navigation information from an independent 

device is needed to smooth GPS measurements that have been corrupted by multipath.   

 

Figure 2-1: Multipath Delay on Code Measurements (GCTE, 2004) 

Most multipath mitigation techniques are based on the design of suitable receiver 

architectures for multipath minimization. There are also special antenna designs such as 
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choke rings, groundplanes and other multipath-limiting technologies - namely antenna 

gain patterns, where the received signal strength is elevation-dependent. As was 

discussed in the above, multipath error depends on the distance between the refractor and 

the GPS antenna. It is also defined by correlator spacing and the pre-correlation 

bandwidth (Braasch, 1995; Braasch, 1996). This phenomenon is exploited in the Narrow 

Correlator technique, where the spacing between the early and the late correlators is 

decreased from the standard 1 chip, with a pre-correlation bandwidth of 2 MHz, to 0.1 

chip with a pre-correlation bandwidth of 8 MHz. (van Dierendonck et al., 1992). The 

standard correlators are susceptible to multipath errors for C/A-code chip delays of up to 

1.5 chips (450 m), with the most significant C/A-code multipath errors occurring at about 

0.25 and 0.75 chips (75 and 225 m respectively). For narrow correlators, multipath 

susceptibility peaks are at about 0.2 chips (60 m) and maximum multipath error occurs at 

about 1.1 chip (330 m). More advanced methods have been developed recently, such as 

METTM (Multipath Elimination Technique) (Townsend and Fenton, 1994) and the 

MEDLLTM Multipath Estimation Delay Lock Loop, (van Nee et al., 1994). Multipath 

delays for different types of receiver correlators are illustrated in Figure 2-2.  A detailed 

description of multipath error as well as methods of its mitigation can be found in Ray 

(2000), Misra and Enge (2001), and MacGougan (2003). 

 

It must be mentioned that multipath becomes a large source of error especially for HS 

applications in downtown environments. In highly urbanized areas, LOS satellite signals 

can be completely blocked, while echo signals have enough power to be tracked by a HS 

GPS receiver. For echo-only signals, the maximum threshold for multipath does not 
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apply, since this error is generally unlimited. This can cause large blunders in GPS 

measurements, which develops into a challenge for estimation algorithms because this 

type of error is difficult to model or isolate.  

 

 
Figure 2-2: Multipath Envelope (Spencer, 2004) 

2.2.7 Receiver Noise 

Code noise is generated by the receiver itself in the process of taking a measurement. It 

may be considered as white noise and is typically caused by the high frequency thermal 

noise along with the effects of dynamic stresses on the tracking loops (Ward, 1996b). 

Also, because of the use of independent signal tracking loops for individual parallel 
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channels, there is no correlation due to noise between the channels for measurements 

taken at the same time. The noise level is a function of the code correlation method, 

receiver dynamics, and satellite elevation due to the antenna gain pattern (Ward, 1996b; 

Lachapelle, 2002). Code measurement noise is usually about 5-10 cm but, for GPS 

signals at low elevations, it can approach several decimetres. The receiver noise increases 

by a factor of 2 for differential measurements. 

 

Noise on pseudorange and Doppler measurements increases as signal power decreases 

due to growing thermal noise jitter in the carrier tracking loop and the code tracking loop. 

Pseudorange measurement noise depends on correlation spacing and associated pre-

correlation bandwidth, as well as the bandwidth of the delay lock loop (DLL) used in 

code tracking. Pseudorange noise can be reduced by the carrier-aided DLL (Ward, 

1996b) as well as narrow correlation techniques. Doppler measurement noise depends on 

the thermal noise of the carrier tracking loop and thus depends on the correlation 

bandwidth. Weaker signals will have higher associated measurement noise in general, 

which becomes a big issue for HS GPS users. MacGougan (2003) tested the relationship 

between the signal power and Estimated Relative Pseudorange Error (ERPE) using a 

hardware signal simulator. ERPE is a relative measure of unmodelled error effects 

embedded in the measurements. In simulated free-of-error GPS measurements, the main 

source of ERPE is receiver noise. MacGougan (2003) showed that ERPE could increase 

up to 25 m for GPS signals faded by 20 to 25 dB. Fading is a measure of signal 

attenuation, and is defined as the difference between C/N0 values measured by nearby 
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identical remote and reference receivers, where the reference station has LOS signal 

reception.  

2.3 High Sensitivity GPS 

High Sensitivity (HS) receivers are capable of tracking low power GPS signals, when 

conventional receivers typically experience frequent loss of lock or signal acquisition 

failure. HS receivers are generally used in challenging environments with heavy signal 

masking such as forests, urban areas and even indoors. In these conditions, weak signals 

usually contain attenuated LOS signals, diffracted signals, multipath and echo-only 

signals. Use of these measurements degrades the GPS solution significantly, since low 

power signals are generally noisy and can have large outliers due to reflection effects 

such as multipath and echo.    

2.3.1 GPS Signal Power 

Degraded GPS signals are frequently associated with the term, attenuation. Attenuation 

of a LOS GPS signal is defined as the decrease in its power with increasing distance from 

a transmitting source (satellite), due to geometrical spreading (free space loss) and 

absorption in the atmosphere (Misra and Enge, 2001; Lachapelle, 2002). Attenuation is 

usually expressed in decibels (dB): )ratiolog(10dB = . In GPS applications, the following 

ratio is used:  

r

t

P
P

log10dB =               (2-3) 
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where:    Pt   is transmitted power; and 

   Pr  is received power. 

 

The signal power is expressed via dB-W (dB-Watt); that is the ratio, which is referenced 

to one Watt of power; nevertheless dB-W is still unitless:  

W1
Xlog10WdB 10=−             (2-4) 

where X is the ratio Pt/Pr.  

Due to attenuation, received GPS signals are generally weak. Table 2-1 presents the GPS 

signal power budget for a C/A-code L1 LOS signal. As shown in the table, free space loss 

accounts for the largest component of the signal power budget. It is frequency-dependent 

and increases with the distance traveled by the signal (i.e. the distance between a satellite 

and a receiver) and thus changes with elevation. The received minimum signal strength 

for the L1 C/A-code is -160 dB-W; however, the signal power received by a GPS antenna 

is typically about –158 to -156 dB-W, since GPS satellites emit signals that are on 

average 5.4 dB higher than the specified minimum (Spilker, 1996a).  

 

The above discussion of signal budget does not account for attenuation due to 

propagation through various materials and signal reflection. These effects can 

significantly degrade signal power; thus, HS GPS receivers are designed to sense signals 

having a power level in the range of -182 dB-W to -188 dB-W (Ray, 2002;  MacGougan, 

2003). This facilitates receiver function at attenuations of 27 to 33 dB with respect to the 

typical average received power of -154.6 dB-W. 
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Table 2-1: Signal Power Budget (Lachapelle, 2001) 

Signal Power Budget Power 

(dB-W) 

SV antenna power  13.4  

SV antenna gain  13.4  

Effective isotropically radiated power +26.8 

  

User antenna gain (hemispherical)  3.0  

Free space loss for L1  -184.4 

Atmospheric attenuation  -2.0 

Depolarization loss -3.4  

Total loss reduced by antenna gain -186.8 

  

User receiver power -160.0 
 

2.3.2 Signal Power Reaching GPS Receiver 

The received GPS L1 C/A-code signal power is specified to be at least -160 dB-W while, 

in reality, it is 2 dB greater at higher elevation angles due to the shaped transmit beam 

pattern on the satellite antenna arrays (Ward, 1996a). However, the received power also 

depends on the gain pattern of the GPS antenna, which is typically at its maximum at the 

zenith, and minimum at lower than 5º elevation angles. 
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2.3.3 Carrier-To-Noise Density Ratio 

Carrier-to-noise density ratio (C/N0) is one of the most commonly used estimates of GPS 

signal quality. C/N0 is an instantaneous measure of the ratio of the carrier power with 

respect to noise power density measured per Hertz of bandwidth (and similarly for dB-

W/Hz). With a nominal noise floor spectral density of about -204 dB-Hz and minimum 

guaranteed signal power at -160 dB-W/Hz, the nominal C/N0 magnitude is around 44 dB-

Hz (Ward, 1996a). In theory, C/N0 is unrelated to the type of receiver; however, each 

receiver computes this value based on the measured signal (using the automatic gain 

control measurement or the signal-to-noise measurement). C/N0 also depends upon the 

antenna gain pattern, and the correlation process used by the receiver. 

2.3.4 Main Concept of High Sensitivity GPS 

As mentioned in Chapter 1, HS receivers are specially designed to track low power GPS 

signals. The L1 C/A-code repeats every millisecond. This can be used by the GPS 

receiver, so that the signal can be integrated for extended periods of time in order to 

obtain a higher Signal-to-Noise Ratio SNR (Peterson et al., 1997). Prior investigations 

into the use of low power GPS signals using long dwell times (which is defined as signal 

integration time per frequency-time cell) have been performed by Peterson et al. (1997), 

Moeglein and Krasner (1998) and Chansarkar and Garin (2000). 

 

If a receiver is already tracking a GPS signal, the task of maintaining signal tracking 

under weak signal conditions is much easier than acquisition of weak GPS signals. Signal 
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acquisition is generally difficult, while signal tracking is easier; signal reacquisition 

presents a challenge midway between these operations in terms of difficulty. The ability 

to acquire and track weak GPS signals depends on the capability of the receiver to 

maximize the coherent integration interval prior to non-coherent accumulation, while 

minimizing residual frequency during coherent integration (MacGougan, 2003). Coherent 

integration is the algebraic sum of the signal and noise over the integration period, while 

non-coherent integration uses the squared output of coherent integration. The ability to 

predict the sign of the bits and the timing of the navigation message signal modulation 

directly affects the ability to perform long coherent integration.  

 

Unlike tracking mode operation, signal acquisition mode is characterized by unknown 

navigation data bits, which has the effect of limiting integration time. Signal acquisition 

is an initial search process in two dimensions (range and frequency), a situation that 

requires replication of both the code and carrier of a satellite to acquire the signal. If a 

GPS receiver is supplied with aiding data by means of an almanac, rough estimates of a 

user’s velocity, position and GPS time, then SV’s positions and LOS Doppler are 

computed; the most favorable constellation, in terms of lowest dilution of precision 

(DOP), is determined; thus, the search process time is relatively short, in the order of 30 

seconds to first fix. Otherwise, a GPS receiver works in “sky search” mode; because of 

this, the search pattern is large and the expected search time is long, possibly approaching 

several minutes. During signal reacquisition, due to known Doppler uncertainty and 

almanac information, the search process time is reduced significantly (Ward 1996b; Ray, 

2002). 
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Chansarkar and Garin (2000) described the use of GPS signals at very low power levels 

using long dwell times. In a coherent type of discriminator for the code, the local carrier 

frequency and phase are assumed to be the same as the incoming carrier frequency and 

phase (Ray, 2002). In this case, the correlation values of the quadrature-arm correlators 

are zero, and they are not implemented. Only the in-phase arm correlators are used for the 

coherent type of code tracking loops. The nominal maximum coherent integration time is 

limited to the navigation bit boundaries, thus the integration can be performed coherently 

for up to 20 ms (Ward, 1996b; Ray, 2002). Longer coherent integration is possible, if the 

navigation bits are known a priori, but this process is still restricted by the residual errors 

due to receiver and satellite movements during the integration interval. Non-coherent 

integration, which is defined as integration of the squared in-phase and quadra-phase 

signal components, can be performed for longer periods of time relative to the coherent 

integration, since it is unrelated to navigation data bits. In addition, it is insensitive to 

residual frequency errors due to the recovery of the satellite movement during the 

accumulation period. However, squaring of the signal in non-coherent accumulation also 

results in squaring of the noise and thus leads to a squaring loss (van Diggelen, 2001a; 

Ray, 2002; MacGougan, 2003). Using the full coherent and non-coherent integration 

times, weak signal tracking in degraded GPS environments becomes possible.  

 

To combat against the difficulty in working with weak signals, a new technique referred 

to as Assisted-GPS (AGPS) has been developed in recent years (Moeglein and Krasner, 

1998; van Diggelen, 2001b). Unlike conventional GPS, the receiver does not extract the 

ephemeris or any other data from the GPS satellite data message. Information about 
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ephemeris - an approximate time and position - is instead provided over a wireless phone 

communication channel. Having information about in-view satellites and time, the 

receiver can make a pseudorange measurement, using a long integration interval, even 

when the signal power is much lower than the C/N0, normally needed to read the 

ephemeris data from the navigation message without an error.  

 

An Unaided High Sensitivity (UHS) GPS receiver, hereinafter in this thesis referred to as 

an HS GPS receiver, differs from an AGPS receiver in that it must be provided once with 

time, position, and satellite ephemeris in order to use longer dwell times. Instead of 

telephone communication, the receiver should be initialized in open-sky conditions 

before being used in weak signal environments. Its use in such environments is limited in 

time and, thus, it is practical only for testing purposes and is not very suitable for the 

general user market.  

 

Weak signal processing techniques as well as factors affecting them are well described by 

Peterson et al. (1997), Chansarkar and Garin (2000), van Diggelen (2001a) and 

MacGougan (2003), and are therefore not discussed here in detail. Low power signals are 

associated with high levels of noise. MacGougan (2003) investigated the relationship 

between noise level (ERPE) and signal fading. He showed that pseudorange noise could 

increase by up to 10–25 m for signals degraded by 20-25 dB. The amount of tolerable 

frequency error during the total dwell time depends on the length of coherent integration 

and the type of carrier tracking performed. Phase lock loops and frequency lock loops 

cannot tolerate phase errors greater than 15º and 30º respectively during the total dwell 
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time (Ward, 1996b). The dominant sources of phase error are phase jitter (mostly thermal 

noise) and dynamic stress error. The first component is mostly dependent on the noise 

bandwidth, C/N0 and predetection integration time. The second component depends upon 

the loop bandwidth and its order. For information about the major error sources for signal 

acquisition, which become especially important for low power signals, the reader is 

referred to Ward (1996b).   

2.3.5 Other GPS Errors and High Sensitivity Applications 

In HS applications, GPS accuracy is limited not only by standard error sources such as 

clock drifts, orbit and atmospheric errors, but also by interference effects. High 

sensitivity GPS measurements are particularly vulnerable to tracking of false correlation 

peaks due to signal self-interference and echo-only signals. This section discusses signal 

masking and interference phenomena in the context of weak signal usage.   

 

Due to receiver design and application areas, HS receivers are exposed to track echo-only 

signals. This condition occurs in urban canyons; for example, when a skyscraper blocks a 

direct GPS signal, while a strong glassy reflection from another building is tracked.  The 

attenuated LOS signal may still reach the antenna but, if the power of the reflected signal 

is much greater, the receiver will most likely track the echo-only signal (Chansarkar and 

Garin, 2000; MacGougan, 2003). This situation can cause very large measurement errors 

much greater than the maximum multipath error of ± 150 m for wide correlator receivers. 
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In harsh GPS environments, such as downtown canyons and forests, signal masking 

frequently occurs due to obstacles, such as buildings and trees. It can cause severe 

degradation in geometry and consequently accuracy degradation. This situation may lead 

to a complete loss of signal tracking and may visibly induce direct signal attenuation. The 

direct signals may be weaker than the reflected ones (multipath or echo only) reaching 

the antenna. Such signal masking could also cause large tracking errors. 

 

Due to the C/A-code properties, its cross-correlation and autocorrelation features are not 

ideal, such as small autocorrelation peaks in the periods between maximum auto-

correlation peaks as well as the sensitivity of the code to continuous wave (CW) and 

broadband interference (Ward, 1996c; MacGougan, 2003; Deshpande and Cannon, 

2004). These C/A-code properties can be especially problematic during search and 

acquisition modes. Acquisition of a false correlation peak due to cross-correlation 

signals, jamming or sidelobe tracking leads to large measurement errors. The cross-

correlation peaks and the true correlation peak could have comparable power levels under 

some conditions, which makes false correlation peak phenomena quite frequent 

occurrences for HS receivers. 

 

Interference effects from different jammers or unintentional in-band sources can have a 

significant influence on the resultant GPS accuracy, especially for HS users. Continuous 

wave and broadband interference effects are the most harmful kinds of interference for 

civilian applications. CW interference generally consists of signals with very narrow 

bandwidths, occupying less than 100 kHz (Rash, 1997; MacGougan, 2003). It can be 
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centered around L1, and may effectively avoid filtering techniques due to the fact that all 

of the interfering power is located within its narrow bandwidth (MacGougan, 2003). 

Besides intentional jamming, CW interference can be produced by the transmitter 

harmonics of FM radio stations. Deshpande and Cannon (2004) showed that narrow in-

band CW interference could jam the GPS signal with 15dB more power than the GPS 

signal power.  Wideband jammers effectively lower the C/N0 ratio by increasing the noise 

level. The effect of such jamming varies from increase of the noise level to loss of signal 

tracking and the inability of the receiver to reacquire the GPS signals. Apart from 

intentional jammers, typical sources of wideband interference in the GPS spectrum are 

television transmitter’s harmonics or overpowered pseudolites. Broadband interference is 

a Gaussian wideband interference signal that is usually generated by an intentional noise 

jammer (Spilker and Natali, 1996). Broadband interference signal being close to the GPS 

signal noise, adds to the GPS correlation noise to increase it in the bandwidth of the 

broadband signal (Deshpande and Cannon, 2004). A broadband interference signal is 

potentially more dangerous than the CW interference signal since it is more difficult to 

predict. Deshpande and Cannon (2004) demonstrated that broadband interference could 

jam the GPS signal with 30 dB more interference power than the GPS signal.  

 

Weaker signals will have higher associated measurement noise in general; therefore, it 

also becomes an issue for HS GPS. For more details on error sources affecting HS users, 

see Ward (1996c), MacGougan (2003). 
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2.3.6 GPS Environments in Application to High Sensitivity GPS 

Open Sky Areas 

Open areas present ideal conditions for GPS use and in this case GPS receiver typically 

tracks up to 10-12 satellites. Thus, at least 7 or 8 satellites above the elevation cut-off 

(usually it is above 10º) are used in an ideal navigation solution. It provides good 

geometry and redundancy for error analysis. In this case, only standard GPS errors, such 

as clock, orbital and atmosphere errors, have to be considered in the calculation 

algorithm. By implementing error modeling and/or the differential technique, one can 

achieve a positional accuracy in the range of metres to centimetres depending on the 

measurements used (i.e., code or carrier phase).  

Harsh GPS Environments 

High sensitivity GPS receivers are capable of operating in environments that have 

traditionally challenged conventional GPS receivers. Degraded (harsh) environments 

include forests, suburban residential areas, urban canyons and even enclosed artificial 

structures. This thesis is devoted to navigation applications in an urban environment, 

including residential and urban areas; a brief discussion of these environments is, 

therefore, given below.  
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In suburban environments, signal masking is observed only at low elevations due to trees 

and one to two-storey buildings. Multipath sources are also located at low elevation 

angles. Environmental variables include the surrounding foliage, the height of buildings, 

and the proximity of obstacles to the GPS receiver. Generally, interference effects can be 

significantly reduced by an increase in elevation cut-off.  

 

In urban canyons, signal masking occurs due to skyscrapers and other high buildings. 

Thus, signal attenuation and strong glassy reflections become frequent sources of signal 

degradation. In some downtown areas, signal masking occurs from two directions only. 

For example, when driving in a city with streets running East-West and North-South, 

there will often be open sky perpendicular to the direction of motion. Environmental 

variables in urban canyons include the height of buildings, the reflective ability of 

building walls, and street orientation. Such environments are characterized by severe 

masking and interference effects, which are difficult to model and mitigate. 

Measurement Availability 

Measurement availability is a measure of the number of available measurements within 

each epoch. Another characteristic of availability is a fix density (FD), which is defined 

as the percentage of time during the test when the navigation solution can be computed 

(MacGougan, 2003). The assumption is that, if less than four satellites are available, then 

the receiver cannot provide a three-dimensional (3D) position solution at that epoch. 

With three measurements, a height-constrained solution can provide 2-dimensional (2D) 
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position. In this thesis the term 4D fix density (4D FD) is defined as percentage of test 

time when at least four measurements are available, and similarly a 3D fix density (3D 

FD) is percentage of time when at least three measurements are available. 
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3Chapter 3 

 

Overview of Inertial Navigation System 

 
 This chapter gives a brief introduction to inertial navigation in general, including a 

description of the coordinate frames usually utilized in inertial data processing, and a 

classification of inertial navigation systems and mechanization equations. The principle 

of INS alignment is also presented, followed by a discussion of INS errors and their 

estimation. 

3.1 Coordinate Frames  

To proceed with the basic concept of inertial navigation, the definitions of coordinate 

frames usually utilized are below.  

3.1.1 Inertial Navigation Frame  

According to the Newtonian definition, an inertial frame (i-frame) is considered as non-

rotating and non-accelerating relative to distant stars. However, in practice this is 

impossible to achieve. The best approximation of such frame characteristics is the right 

ascension system. Thus, the definition of an inertial frame may be re-stated as the 

following (Schwarz, 1996; Salychev, 1998):  

Origin  Earth’s centre of mass; 
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Xi – axis  towards mean vernal equinox; 

Yi – axis complete a right-handed system; and 

Zi – axis  parallel to the spin axis of the Earth.  

The inertial frame is presented in Figure 3-1. It should be mentioned that the inertial fame 

is an abstract definition, since the realistic inertial frame is constrained to the accuracy of 

gyros of an inertial system.  

 

Figure 3-1: Inertial Frame (ibid) 

3.1.2 Earth – fixed Frame 

By comparison, an Earth-centered, or Earth-fixed, frame is defined as follows: 

Origin  Earth’s centre of mass; 

Xe – axis  towards the mean Zero meridian;  

Ye – axis complete a right-handed system; and 

Ze – axis  parallel to the spin axis of the Earth.  
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The coordinates in the Earth-Fixed frame (e-frame) can be transformed to the i-frame by 

a negative rotation of the Z – axis by the amount of the Greenwich Mean Time (GMST). 

A geometrical representation of the e-frame is given in Figure 3-2. 

 

Figure 3-2: Earth-fixed Frame (ibid) 

3.1.3 Local – level Frame  

A Local-Level frame of reference differs from the Inertial frame and the Earth-fixed 

frame in location of its origin and axes orientation:  

Origin  the centre of an inertial system (its sensitive axes); 

Xll – axis  ellipsoidal east (E); 

Yll – axis ellipsoidal north (N); and 

Zll – axis  upward direction along ellipsoidal normal (Up). 

The velocity calculations of an INS are typically performed in the local-level frame (ll-

frame). Figure 3-3 gives a graphical interpretation of this coordinate frame. 
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Figure 3-3: Local-level Frame (ibid) 

The transformation between the local-level and Earth-fixed frames can be obtained by 

two consecutive rotations around the Xe and Ze axes of the e-frame by magnitudes of 

geodetic latitude, ϕ, and longitude, λ. It has the following form:  
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where: ϕ, λ  are geodetic latitude and longitude respectively; 

 xe, ye, ze are coordinates in the e-frame; and  

E, N, Up are coordinates in the local-level frame;  

The angular velocity of the ll- frame (ωN, ωE, ωup) is defined as a sum of two types of 

rotations: rotation of the Earth and rotation caused by linear motion of the ll-frame: 
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where: UN, Uup are the projections of Earth’s rate on the ll-frame;  
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           ΩE, ΩN, Ωup  are the projections of the relative angular velocity of the ll-frame 

with respect to the e-frame; 

Rϕ, Rλ are the radii of curvature of the reference ellipsoid in North-South 

and East-West directions, respectively; and 

  h   is the altitude above the reference ellipsoid.  

Note, that the second components in the right hand side of equation (3-2) are the 

projections of the Earth’s rate of rotation onto the local-level frame. 

For a moving vehicle, the change in curvilinear coordinates has the form: 
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             (3-3) 

3.1.4 Body Frame 

A body frame (b-frame) is an orthogonal frame, in which the axes coincide with the axes 

of an IMU. In gimbaled systems, the IMU can be kept aligned to a particular navigation 

frame of interest (e.g. the local-level frame) using external torques derived from the 

measured angular rates (Jekeli, 2001). However, in a strapdown inertial system such as 

that used herein, the IMU is rigidly mounted to the test vehicle and thus can have 

arbitrary orientation. The ll-frame can be rotated to the b-frame by three consecutive 

right-handed rotations about its three axes. The first rotation is about its Z-axis with an 

angle called the heading. The second rotation is about the rotated X-axis by an angle 

referred to as the pitch. The third rotation about the rotated Y-axis, through an angle 
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denoted as the roll, completes the total rotation in three dimensions between the two 

frames. The body frame can thus be defined by the following parameters: 

Origin  centre of an IMU; 

Xb – axis  towards the right side of an IMU; 

Yb – axis  towards the front of an IMU; and 

Zb – axis  upwards and perpendicular to the XY plane. 

In automotive applications, an INS is usually installed in a vehicle in such a way that the 

Yb axis coincides with the vehicle’s longitudinal axis; the Zb axis coincides with the 

vertical axis of the vehicle; and the Xb axis completes a right handed system. 

3.1.5 Navigation Frame   

The axes of a navigation frame (n-frame) can coincide with any arbitrarily chosen frame 

such as the local-level or wander frames, where navigation computations are made. 

3.1.6 Platform frame  

The platform frame (p-frame) is an image of the navigation frame, which is obtained 

from sensor data. Theoretically, for ideal sensors, the p-frame coincides with the n-frame. 

In reality the platform frame incorporates small deviations (attitude errors) from the 

navigation frame due to the IMU sensor errors. The definition of the p-frame is as 

follows: 

Origin  the IMU centre; 

XP – axis slightly misaligned due to attitude errors with the IMU’s X axis; 



 

 

49

YP – axis slightly misaligned with the Y axis of the IMU; 

ZP – axis  completes an orthogonal right-handed system. 

3.1.7 Coordinate Transformations 

In order to transform an arbitrary vector from one coordinate frame to another, the 

transformation (direction cosine) matrix between the two frames is needed. The 

transformation matrix is based on the computation of the direction cosines between each 

pair of axes of the two respective frames. The commonly used transformation contains 

three consecutive right-handed rotations. Each rotation can be represented by a direction 

cosine matrix R (rotation angle). The angles of rotation, called Euler angles, are three 

independent quantities, which define the position of one coordinate frame with respect to 

another. For example, the transformation matrix between the local-level and body frames 

Rb
ll can be obtained from thee direction cosine matrices R3(A)R2(r)R1(p) and has the final 

form (see for example Jekeli, 2001; El-Sheimy, 2003):  
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3.2 Principle of Inertial Navigation 

3.2.1 Poisson equation  

The differentiation of any vector with respect to the inertial space has the form (given by 

the Coriolis formula) as follows:  

r
dt
rd

dt
rd

m
mI

×ω+=              (3-5) 

where: 
Idt

rd   is the derivative of vector r  with respect to the i-frame; 

  
mdt

rd   is the derivative of vector r  with respect to an arbitrary m-frame; 

   mω   is the absolute angular velocity of an m-frame. 

 

After a number of derivations (Salychev, 1998), the relationship between transformation 

matrices of an inertial frame and a non-inertial arbitrary m-fame can be defined as:  
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where: i
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i
m R,R &  are transformation matrix from the m-frame to the inertial frame and its 

derivative, respectively;  
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is the absolute (with respect to the i-frame) angular velocity of the m-frame in matrix 

form. 
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The behaviour of the direction cosine matrix between two arbitrary non-inertial frames, 

m and n, can be described in the form of a Poisson equation: 

n
mnm

n
mnm

n
m

n
m RRRR ω−ω=ω= −

(((&                       (3-8) 

where: n
m

n
m R,R &  are the transformation matrix from the m- to n- frame and its 

derivative, respectively; 

 nm−ω(   is the relative angular velocity between the m- and n- frames in 

matrix form as in equation (3-7); and 

nm ,ωω ((  is the absolute angular velocities of the m- and n- frames (see 

equation (3-5)). 

3.2.2 Quaternion Transformation  

Instead of the three ordered rotations to transform a vector from one frame to another 

using a direction cosine matrix, the transformation can be performed by one rotation 

around a single fixed axis. The rotation vector defining this operation can be represented 

as follows (see Figure 3-4) (ibid):  
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where: Φ   is the magnitude of the rotation vector; and  

            α, β, γ  are the angles between the axis of rotation and a coordinate frame. 
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Usually Hamilton quaternion algebra, which implements the rotation vector idea, is used 

(El-Sheimy, 2003). Hamilton’s quaternion is defined as a hyper-complex number of the 

form: 

kqjqiqqQ 3210 +++=           (3-10) 

where: q0, q1, q2, q3  are real numbers; and  

set {1, i, j, k}  forms the vector basis for a quaternion vector space.  

Quaternion elements can be represented through the parameters of the rotation vectorΦ

(Salychev, 1998):
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Figure 3-4: Rotation Vector Transformation (ibid)
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The norm of quaternion 1qqqqQ 2
3

2
2

2
1

2
0 =+++=  is usually used to normalize the 

quaternion operations in SINS algorithms. The relationship between a direction cosine 

matrix and a quaternion is the following: 
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The Poisson expression in quaternion form is: 

ω⋅= Q
2
1Q&  (3-13) 

where
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Q  is the quaternion of rotation in matrix form.  

Quaternion transformations are usually used in SINS algorithms since only four 

unknowns are necessary for calculation of an updated transformation matrix, while the 

direction cosine method requires nine. Moreover, the direction cosine method entails 

implementation of the six constrains under which the Poisson equation has to be solved 

(because of the main properties of the direction cosine matrix: its symmetry and 

orthogonality). Like the direction cosine method, quaternion transformation also avoids 

singularity issuers (which is a main disadvantage of any three-parameter set such as Euler 

angle transformation or Rodrigues parameter transformation (El-Sheimy, 2003)).     
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3.2.3 Main Concept of Inertial Navigation 

Inertial navigation is an autonomous process of computing position by doubly integrating 

the acceleration of a point, whose position is to be determined (Jekeli, 2001). 

Consequently, it has to be initialized with an initial velocity and position; therefore, based 

on this principle, any INS is a relative positioning system (unlike GPS, which is an 

absolute system). 

 

There are two classifications of inertial systems: gimbaled and strapdown. A gimbaled 

INS deals with the physical realization of the navigation frame using a free axis 

gyrostabilizer platform with three orthogonally placed accelerometers. The isolation of 

the inertial platform from rotations of the host vehicle can be exploited to eliminate many 

sensor error sources and to achieve very high system accuracy (Titterton and Weston, 

1997). However, gimbals are very sophisticated electromechanical assemblies that are 

delicate and expensive to manufacture. As a consequence, gimbaled systems tend to be 

more expensive than strapdown systems. A strapdown inertial system, such as that used 

herein, provides the analytical image of the navigation frame in the on-board computer, 

using the measurements from accelerometers and gyros installed directly on the vehicle 

body. In other words, strapdown gyroscopes are not used to keep the accelerometer input 

axes stabilized, but they are used to maintain a coordinate transformation between the 

two frames. Therefore, the inertial sensors for strapdown systems experience much 

higher rotation rates than gimbaled systems and, consequently, they deliver poorer 

accuracy than their gimbaled counterparts (ibid).  
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3.2.4 Mechanization Equations 

The mechanization equations convert the output of the IMU, which includes rotation 

rates and specific force measurements, into position, velocity and attitude information. 

Once the angular rates and accelerations are obtained, the calculation algorithm can be 

executed. Firstly, having the initial navigation information with respect to the navigation 

frame, the angular rates are integrated to obtain the new orientation of the IMU. 

Secondly, using this information, the accelerations are rotated into the n-frame, where 

they are twice integrated to obtain velocity and position increments (ibid).  

 

The specific force, f, measured by accelerometers, is related to the total vehicle 

acceleration, a, via the gravitational acceleration, gm, as follows: 

mgaf −=             (3-14) 

The equation of the absolute acceleration (with respect to the i-frame) can be defined 

using the well-known Coriolis formula (Salychev, 1998): 
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where: V   is the vehicle velocity with respect to the e-frame; 

 U   is the angular velocity of the Earth; 

 r   is the position vector in the i-frame; and 

 I  represents differentiation with respect to the inertial frame. 

By expanding equation (3-14), the general navigation equation can be derived: 
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gVUV
dt
Vdf N

N

−×+×ω+=          (3-16) 

where: Nω   is the absolute angular velocity of the n-frame; 

)rU(Ugg m ××−=  is the apparent gravity, defined as a vector difference between the 

gravitational acceleration and centripetal acceleration due to the 

Earth’s rotation; and 

N   represents differentiation with respect to the n-frame. 

 

Usually, the modeling of motion is performed in the local-level frame as the navigation 

frame, because in this case, the attitude angles as well as geodetic coordinates, can be 

obtained directly from the system (El-Sheimy, 2003). In addition, the computational 

errors in the navigational parameters on the horizontal (North-East) plane are bounded 

due to the Schuler effect, which will be discussed in the following section 3.4.  

 

From equation (3-16), the projections of the specific force on the ll-frame can be derived 

(Salychev, 1998): 
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where: VN, VE, Vup are the projections of the linear velocity on the ll-frame; 

             ωN, ωE, ωup    are the projections of the absolute angular velocity on the ll-frame;  
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UN, UE, Uup are the projections of the Earth’s rate on the ll-frame; and 

 g  is the apparent gravity. 

Substituting the projections of the absolute angular velocity and the Earth’s rate in the 

local-level frame from equation (3-2) into the above formula, the following set of 

equations can be obtained:  
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In any strapdown INS, the IMU unit provides gyro and accelerometer measurements in 

the body frame, which are further recalculated into the navigation frame. The direction 

cosine matrix between the body and navigation frames, N
bR , can be defined using the 

well-known Poisson equation (3-6). The absolute angular velocity of the body frame is 

directly measured by gyros, whereas the absolute angular velocity of the navigation 

frame is defined from accelerometer measurements. The procedure is as follows:  

The INS system is first initialized with known matrix, N
bR . Then the projections of 

specific force are transformed from the b-frame to the n-frame (in this case, the ll-frame), 

so that the absolute angular velocity and absolute linear velocity of the ll-frame are 

calculated, using formulas (3-17) or (3-18). Thus, the Poisson equation and, therefore, the 

direction cosine matrix, N
bR , can be updated in preparation for the next step. The 
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positions are derived by integrating velocities using equation (3-3), while attitude 

information is defined directly from the elements of N
bR .

For more details on the principles of INS operation refer to Titterton and Weston, 1997;

Salychev (1998); Jekeli (2001) and El-Sheimy (2003). In practice, a few calculation 

schemes have been developed to define navigation parameters. The algorithm of a SINS 

utilized in this thesis is described in Appendix A.

3.3 Principle of INS Alignment  

The principle of inertial navigation assumes that initial information about the system is 

already known. While the starting position and velocity are usually easy to obtain using 

an external device such as GPS, the initial orientation of the system is not typically 

available. Therefore, the INS should perform an initial alignment, which produces 

coincidence between the sensor axes of the IMU with the navigation frame (e.g., the ll-

frame). In a strapdown algorithm, the purpose of INS alignment is to establish the 

relationship between the b-frame and the ll-frame; thus, the initial parameters of the 

transformation matrix, ll
bR  (rotation matrix from the body frame to the local-level frame) 

are required. Two steps are needed in the alignment procedure; namely, horizontal 

alignment (accelerometer leveling) and azimuth alignment (gyro compassing) (Jekeli, 

2001; El-Sheimy, 2003). The essential operation involved in INS alignment is based on 

the sensor output in the local-level frame.  
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3.3.1 Horizontal Alignment 

Horizontal alignment is the procedure for computing the initial misalignment angles in 

horizon θx(0) and θy(0). For ideal (error-free) accelerometers, the vertical accelerometer 

measures the apparent gravity, g, while the horizontal accelerometers have zero output in 

the ll-frame (see equation (3-4)): 
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Accelerometer axes coincide with the b-frame axes and consequently the specific force 

measurements, fE, fN, fup, can be rewritten as:  
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where: b
llR  is the transformation matrix between the ll- and b- frames of the form (3-14).  

In the-b-frame, accelerometer measurements, fxb, fyb, describe the tilt in the X and Y 

directions of the vertical accelerometer with respect to the vertical direction (see Figure 

3-5):  
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For small angles, equation (3-21) can be rewritten: 
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Thus, using accelerometer measurements, the pair of initial horizontal misalignment 

angles, θx(0) and θy(0), can be defined. However, in reality, accelerometers measure these 

angles with their own errors, mainly biases Bxb, Byb (Salychev, 1998): 
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+=
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Equation (3-23) indicates that the horizontal alignment is accurate to the level of 

horizontal accelerometer biases:  
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where )0(θ~),0(θ~ yx  are the errors of horizontal alignment. 

 

 

 

 

Figure 3-5: Principle of INS Alignment  

3.3.2 Azimuth Alignment 

Similar to the horizontal alignment problem, azimuth alignment utilizes measurements in 

the local-level frame. Basically, this procedure is the process of obtaining the azimuth 
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angle A(0), which is defined as an angle between the North axis of the ll-frame and the 

projection of the longitudinal axis of the b-frame (of the test vehicle) on the horizontal 

plane. Theoretically, in the ll-frame, the north gyro measures the projection of the Earth’s 

rotation rate, Ucosϕ, while the east gyro has zero output. After accelerometer leveling, it 

is assumed that the plane XbYb (of the b-frame) is located on the horizon. Thus, gyro 

measurements, ωxb, ωyb, in the-b-frame contain projections of Ucosϕ on their sensitive 

axes due to the tilt angle between horizontal axes Xb, Yb of the b-frame with respect to 

the East and North axes of the ll-frame (see Figure 3-5). This tilt, namely the azimuth 

angle, can therefore be defined using gyro measurements as: 

yb

xb
ω
ω

tgA −=          (3-25) 

In reality, due to gyro errors, the azimuth alignment is limited to the level of the X-gyro 

drift bias ωxb
dr (Salychev, 1998; El-Sheimy, 2003):  

ϕ
ω

=
cosU

)0(A~
dr
xb            (3-26) 

where )0(A~ is the azimuth misalignment error.  

Equation (3-26) shows that, for latitude ϕ = 90 (at the North Pole), the azimuth angle 

cannot be calculated. Therefore, at high latitudes, the local-level frame is not the optimal 

navigation frame for solving mechanization calculations. The Y-axis of the ll-frame 

always points towards geodetic North. In the vicinity of the Poles, any East-West 

movement therefore results in large rotation rates about the Z-axis of the ll-frame. To 

avoid latitude-dependent rotation rates, the wander frame can be used (for details see 

Salychev, 1998 and El-Sheimy, 2003).  
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Using the theoretical base given in this chapter, a navigation solution from raw sensor 

data can be obtained. The complete calculation scheme of a SINS algorithm, employed in 

this thesis, is described in Appendix A. 

3.4 INS Errors 

The INS error state vector for many applications includes coordinate, velocity and 

attitude errors. Since the errors are variable in time, they are usually described by a set of 

differential equations, which characterize the certain behaviour of different error 

components (Jekeli, 2001; El-Sheimy, 2003). A detailed discussion of INS errors is 

considered in the following.   

For small misalignment angles, ΦE, ΦN and Φup, between the platform and local-level 

frames, the transformation matrix between these two coordinate frames can be described 

in matrix form, as derived from the standard direction cosine matrix, considering the 

assumption that, for small angles, cos Φ = 1 and sin Φ = Φ. 
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From the Poisson equation, the gyro measurements in the p-frame can be expressed via 

the absolute angular velocity of the ll-frame and the derivatives of the attitude errors ΦE, 

ΦN, Φup (Salychev, 2003): 
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Similarly, the accelerometer measurements in the p-frame contain specific force values as 

well as accelerometer errors:  
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where:    µE, µN, µup are the accelerometer scale factors; and  

   BN, BE, Bup are the accelerometer biases. 

The difference between the angular velocities of the platform and local-level frames is 

caused mainly by the platform gyro drifts and calculation errors from equation (3-2), 

while the acceleration difference comes mostly from accelerometer scale factors and 

biases as well as errors in the calculation of the Coriolis corrections. Neglecting high 

order terms and other sensor errors (e.g. non-linearities of scale factors, installation 

errors, etc.), a simplified INS error model can be obtained. Herein, the attitude errors can 

be derived from equation (3-28) and velocity errors from equation (3-29), while errors in 

position can be obtained from variation of parameters in equation (3-3). For short-term 

analysis, the following error model can be used (ibid):  
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where: ωN
dr ωE

dr  are the drifts of East and North gyros; and 

 aup ≈ g   is the vertical acceleration, which is equal to the gravity vector. 
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Due to the unique nature of INS error sources, the error model can be divided into two 

parts: Schuler (stationary) and non-stationary. The Schuler component does not depend 

on vehicle motion parameters and it is defined mainly by gyro drifts and accelerometer 

biases. The non-stationary component depends upon vehicle dynamics and it is 

characterized mostly by accelerometer scale factors and azimuth misalignment. The 

solution of such a decoupled model is the sum of the two component solutions. The 

portion of the simplified INS error model based on the Schuler component can be 

described as: 
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The non-stationary part, meanwhile, has the from: 
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The solution of the differential equation of the Schuler part in equation (3-31) yields INS 

velocity errors oscillate with a very small frequency, called the Schuler: 
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Hz5000/1R/g E ≅=ν , which corresponds to a long period of approximately 84 

minutes. (Herein: Re is the Earth’s radius and g is a gravity vector.) In contrast, the 

solution of the second part in equation (3-32) provides noise-like high frequency 

behaviour of the INS non-stationary errors. Equation (3-32) shows that the azimuth 

misalignment error, Φup, and scale factors, µE and µN, are modulated by vehicle motion, 

aE and aN, which will be discussed in detail in Chapter 5. 

 

Similarly to velocity errors, the attitude and position INS errors also contain the Schuler 

oscillations due to the solution of the second order differential equation. The position 

error equations can be obtained by integrating the velocity error formulas; these equations 

show that the INS position errors grow over time due to the Schuler part and increase 

with traveling distance due to the non-stationary part of the total INS error. Since the 

Schuler errors are much larger than the non-stationary ones, the magnitude of the gyro 

drift is one of the main indicators of the quality of an INS. For a SINS, the sensor errors, 

ωdr, B and µ are represented in the error model not in the body- but in the local-level 

frame via the direction cosine matrix, ll
bR . A more comprehensive discussion of INS 

errors in terms of their modeling and estimation will be given in Chapter 5.  

3.4.1 Schuler Loop  

The block-diagram based on equation (3-31), Figure 3-6, illustrates behaviour of the 

Schuler part of the INS error for a single channel (east component) (ibid). The analytical 

image of the gyro platform (p-frame) has a small digression from the local-level frame 
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due to the IMU sensor errors. As a consequence, the east accelerometer measures the 

projection of the apparent gravity, g, on its sensitivity axis with its own bias, BE. The 

integration of this signal yields the INS east velocity error, δVE. The second integration 

leads to the INS position error in the east direction, δE. In order to superpose the platform 

frame with the local-level frame, the torque of the absolute angular velocity of the ll-

frame, VE/R, is introduced to the gyroplatform (for a strapdown system to the quaternion 

block). The errors in linear velocity VE in turn cause the misalignment angle, ΦN, 

between the analytical gyroplatform and the true horizon (see Figure 3-6). This feedback 

is referred to as a Schuler loop. Due to the feedback from the first integrator, the INS 

velocity error, VE, is bounded and it oscillates with the Schuler frequency and a constant 

magnitude. By contrast, the INS position error grows over time, since there is no 

feedback from the second integrator (ibid). The diagram in Figure 3-6 is based on the 

following differential equations derived from equation (3-31): 
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A similar scheme can be drawn for the north component of the INS error. The well-

known physical interpretation of the Schuler effect is a pendulum with an arm of the 

Earth’s radius, so that the platform maintains the horizontal plane in any type of motion 

(ibid).  
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Figure 3-6: Schuler Loop (ibid) 
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4Chapter 4 

 

INS/GPS Integration 

As discussed in Chapter 1 complementary characteristics of INS and GPS produce 

synergistic benefits in combined system, as each system compensates for the other’s 

shortcomings. While the main aspects of GPS and INS were reviewed in Chapters 2 and 

3, this chapter is devoted to the theoretical and practical aspects of integrating the two 

systems. First, a basic description of the most common INS/GPS integration techniques is 

presented with a focus on the cascaded method utilized in this thesis. Due to the 

combination of data types, the error estimation is a subject of concern. Traditionally an 

optimal Kalman filter is used for error estimation in integrated systems. Its calculation 

algorithm and main properties are also explored in this chapter, followed by a discussion 

of an adaptive estimation method. In this thesis, an adaptive Kalman filter with unknown 

measurement covariance is considered. Its calculation scheme based on an innovation 

sequence is also given below.    

4.1 Integration Schemes 

There are several integration strategies applied to INS/GPS integration and they are 

characterized by the type of information that is shared between the individual systems. 

The preferred integration strategy is typically defined by the quality of the INS used in 

the combined system.  
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In practice, four well-known integration approaches are implemented in the navigation 

field (Jekeli, 2001; Petovello, 2003): uncoupled, loosely coupled, tightly coupled and 

finally, ultra-tightly coupled integration. Uncoupled integration implies no data feedback 

from either instrument to the other to facilitate its performance improvement. By contrast, 

in the ultra-tightly coupled approach, the sensors are treated as a common system, which 

produces several types of data that are processed simultaneously to enhance the function 

of individual sensor components. In a loosely coupled system, data from one instrument 

is fed back to aid and improve the other’s performance, but each retains its own 

individual data processing algorithm throughout the interchange process (Jekeli, 2001). 

   

In an uncoupled INS/GPS scheme, GPS measurements are used to compensate INS errors 

in the output of the integrated system only; the GPS information does not contribute to 

decreasing the error rate (i.e. there is no feedback of estimated INS errors into the 

navigation algorithm). Therefore, during GPS outages, the INS works in stand-alone 

mode and the accuracy of the integrated system degrades rapidly; the magnitude, i.e. the 

speed, of such degradation depends on the INS sensor quality. The uncoupled and loosely 

coupled integration schemes are characterized by the same degree of observability due to 

their identical system structures and measurement models. Because of the complex 

relationship between the measurements and the error states, tightly coupled integration is 

distinguished by a weaker degree of observability. The ultra-tight algorithm for INS/GPS 

integration is preferable in terms of the system performance in general. In this case, the 

GPS receiver and the INS no longer work independently, but they operate as a common 

system. GPS updates are utilized to calibrate the INS, while the INS is used to aid the 
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GPS receiver tracking loops during interference or other degraded signal conditions 

(Sennott and Senffner, 1997; Petovello, 2003). However, this type of integration method 

requires access to a receiver’s firmware; as a result, this scheme of integration is usually 

implemented only by equipment manufacturers, and is not currently available to the 

general user or academic communities. 

4.1.1 Loosely Coupled Integration    

Loosely and tightly coupled integration algorithms are the most commonly applied for 

many surveying applications. In both cases, the GPS receiver and the INS operate as 

independent systems, and differ only in the type of information shared between them. 

The cascaded scheme is a well known, and frequently implemented, type of loosely 

coupled integration; it is considered through a comprehensive discussion in the following 

subsection.   

 

In the cascaded scheme of integration, GPS data is fed to an INS-only filter. Usually, the 

differences between the INS and GPS velocities and positions are utilized as 

measurements for the estimation block, in which the INS error equations are used as the 

system model. In this way, the INS filter provides estimates of all observable INS errors, 

which are applied to correct INS raw measurements and to compensate them in the 

system output. When GPS measurements are not available, INS errors must be predicted 

(Salychev, 2003).  
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The main advantage of the loosely coupled strategy lies in the relatively small 

dimensions of the state vectors in the filter, as compared to the tightly coupled case. This 

affects the filter convergence time, by shortening the transition period, so that the filter is 

more flexible for changes in operational environments. Another advantage of this 

approach is the computational simplicity of its implementation. However, the most 

important benefit comes from the flexibility and universality of the loosely coupled 

scheme for different types of INS and GPS units; e.g. herein for the two different types of 

GPS receivers deployed (conventional or HS GPS receivers) in distinct operational 

environments.  

 

The disadvantage of loosely coupled integration is that, in general, a GPS receiver needs 

at least three satellites to compute the navigation solution (in height-constrained mode). 

Under harsh GPS conditions, GPS receivers experience frequent losses of lock due to 

severe satellite blockage. As a result of regular GPS outages, the integrated system 

therefore offers a diminished degree of overall accuracy owing to the prediction mode of 

the INS filter. Nevertheless, the severity of such shortages is questionable and can also be 

considered as an advantage. In challenging GPS applications (e.g. downtown canyons, 

forests), GPS measurements are corrupted significantly by many errors such as multipath, 

signal cross-correlation and echo-only signals. When GPS fails or provides an unreliable 

or erroneous solution, loose integration, operating essentially on two independent 

solutions, is more likely to detect these faults or consequent outliers and is better able to 

take appropriate remedial action (ibid). In consideration of the above, the loosely coupled 
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integration strategy (that is, the cascaded scheme) is considered as more suitable for 

INS/GPS integration in various operating conditions, i.e. urban or open sky areas. 

 

4.1.2 Tightly Coupled Integration  

Tightly coupled algorithm deals with the overall INS/GPS system, where data processing 

is performed in a single filter. This approach is similar to the loosely coupled one and 

differs mostly in terms of its diverse measurement model: instead of positions and 

velocities, pseudoranges calculated by the INS and measured by a GPS receiver are fed to 

the filter as observables. Clearly, tightly coupled integration is more forgiving for GPS 

data gaps (it permits the use of as few as one GPS pseudorange measurement in the 

estimation algorithm). However, the common filter in tight integration is more 

cumbersome than in the loosely coupled case due to a complex measurement model; the 

design matrix defines the relationship between pseudoranges and geodetic coordinates 

and the measurement noise in this case is coloured noise that must be introduced to the 

system model as an additional component. Moreover, the degree of the observability of 

the state vector is generally weaker than in the loosely coupled strategy due to the large 

dimension of the state vector as well as indirect measurements. This degree of 

observability, in turn, defines the longer convergence period for error estimates as 

compared to the loosely-coupled case; furthermore, it can result in accuracy degradation 

of INS error estimation during this interval. For HS applications, due to error-corrupted 

GPS measurements, the additional challenge lies in separation of GPS and INS errors.  
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4.1.3 Centralized and Decentralized Integration Filters 

Processing algorithms fall into two basic categories: centralized and decentralized. The 

centralized approach is usually associated with any tight system integration, where the 

raw sensor data is combined optimally through the use of one sensor processor (e.g. a 

Kalman filter) to obtain the integrated solution (Jekeli, 2001). In INS/GPS integration 

applications, the centralized scheme considers that GPS and INS measurements are 

processed together in the same filter (e.g. in tightly coupled scheme differences between 

INS and GPS ranges are fed into the filter). The main advantages such as system 

availability, and disadvantages, such as weaker observability or sophistication in the 

system design, have been addressed, based on their association with the tightly coupled 

technique. 

 

A decentralized method is associated with loosely coupled or uncoupled integration 

schemes; such methods are characterized by sequential processing where filters of 

individual instruments provide solutions that are ultimately combined in the system 

output or in a common filter called the master processor. Variations of decentralized 

integration, such as cascaded and federated integration, also occur in the literature (ibid). 

In the field of INS/GPS integration, a decentralized filter is based on the independence of 

the GPS and INS navigation functions. Its benefits and limitations have been addressed 

above in section 4.1.1 and 4.1.2 in reference to the cascaded scheme. In a summary, the 

implementation of a cascaded integrated scheme using a decentralized Kalman filter is 
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assumed to be appropriate to serve the requirements of integration and will be considered 

in more detail in Chapter 5. 

4.2 Kalman Filter 

The Kalman filter has been the subject of extensive research and application, particularly 

in the area of autonomous or assisted navigation, since it has many advantages over other 

estimators. A Kalman filter is a set of mathematical equations that provides an efficient 

recursive solution of the least-squares method (Gao and Sideris, 2002). The filter is very 

powerful in several respects: it supports estimations of past, present, and even future 

states; it can do so even when the precise nature of the modeled system is unknown and, 

finally, it is flexible enough to be used either in real-time or for post-mission analysis. 

Accordingly, the Kalman filtering technique has become a widely applied tool in 

INS/GPS integration owing to its applicability to the wide range of error types found in 

INS/GPS applications, as discussed in previous chapters. Details of the Kalman filter 

derivation will not be given here; however, there are numerous references available, such 

as Kalman (1960), Gelb (1974), Krakiwsky (1990) and Brown and Hwang (1992).  

4.2.1 State Space Model 

According to linear system theory, the dynamics of a linear system can be represented by 

a state space model (SSM), where an n-order system of differential equations is converted 

to a set of n-coupled first-order differential equations. In the field of INS/GPS 

integration, the differential equations of INS errors are represented in SSM form and used 
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as a system model in the Kalman filter. This model is linear, when the misalignment 

angles between the platform and the local-level frames, Φx, Φy, Φz, are small (i.e., they 

do not exceed 3º to 5º). In this case, the main assumption made for small angles in the 

INS error model (see equation 3-27: sinΦ = Φ and cosΦ = 1) is valid. For low-cost 

inertial systems, these angles can be much larger than the above threshold; therefore, in 

such applications, error damping should be implemented in order to confine the errors to 

a linear region.  For medium accuracy inertial systems as employed herein, the horizontal 

errors do not exceed 1º to 3º, while azimuth misalignment can be reduced to 1º to 2º by 

applying a one-step correction using GPS heading. Therefore, in this research, the 

linearization problem does not have affect on estimation accuracy.  

 

In discrete form, any linear system can be described using SSM as (Salychev, 1998): 

1k1k,k1k1k,kk wGxx −−−− +Φ=            (4-1) 

where:  xk, xk-1  is a (n x 1) state vector at the current and previous epochs; 

Φk,k-1  is a (n x n) transition matrix between the two epochs in discrete 

form: TAI 1k1k,k −− +=Φ , here: Ak-1 is a system matrix at the 

previous epoch in continuous time form and T is a sampling 

interval; 

Gk,k-1 is an (n x r) input matrix between the two epochs in discrete form: 

TBG 1k1k,k −− = ; here, Bk-1 is an input matrix in continuous time 

form; 
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wk-1 is (r x 1) input noise, assumed to be white, and possessing a zero 

mean with known covariance matrix Q = M[wk-1, wk-1
T]. 

 

The appearance of input noise is caused by input disturbances since, in general, user 

knowledge about system behaviour is limited and some state vector components act 

randomly during the estimation process. These components are usually described by a 

shaping filter, which is defined as a differential equation with white noise input and 

output of a certain correlation function (ibid). Since the level of input white noise defines 

system uncertainties, it therefore characterizes the accuracy of the model representation.  

 

Some part of the system state vector is physically measured according to the 

measurement model:  

kkk vHxz +=              (4-2) 

where: zk  is a (m x 1) measurement vector at the current epoch; 

 H  is a (m x n) design matrix; and 

vk   is (m x 1) measurement noise, assumed to be write and zero mean 

with known covariance matrix R = M[vk-1, vk-1
T]. 

4.2.2 Filter Algorithm 

To estimate the system vector optimally, the following condition should be satisfied: 

min]x~x~[trM])x̂x)(x̂x[(trM T
kk

T
kkkk ≡=−−          (4-3) 
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where: kx̂   is an estimate of a state vector xk; and 

 kx~   is the estimation error. 

An optimal Kalman filter provides minimization of criterion expressed in equation (4-3). 

Its algorithm is well-known and will be introduced without deduction (Kalman, 1960; 

Gelb, 1974; Krakiwsky, 1990 and Brown and Hwang, 1992). 

 

The major equation of the Kalman filter is: 

)x̂Hz(Kx̂x̂ 1k1k,kkk1k1k,kk −−−− Φ−+Φ=                      (4-4) 

where Kk is an optimal gain matrix. The first component on the right hand side of this 

formula expresses the solution of the deterministic part of the system model. The second 

component of equation (4-4) reflects the impact of input uncertainties on the system. This 

component is a weighted (gain Kk) difference between the actual (zk) and the predicted 

measurements. The gain matrix, Kk, can be determined from the following equations: 

T
1k,k1k,k

T
1k,k1k1k,k1k/k QGGPP −−−−−− +ΦΦ=           (4-5) 

1T
1k/k

T
1k/kk ]RHHP[HPK −

−− +=            (4-6) 

1k/kkkk P)HKI(P −−=             (4-7) 

where:  ]x~x~[M])x̂x)(x̂x[(MP T
1k/k1k/k

T
1k1k,kk1k1k,kk1k,k −−−−−−− =Φ−Φ−=  is an a 

priori covariance matrix of estimation errors (errors in prediction); and 

]x~x~[M])x̂x)(x̂x[(MP T
k,k

T
kkkk1k,k =−−=−  is the a posteriori covariance matrix of the 

estimation errors. 

The recurrent calculation algorithm of the Kalman filter is presented in Figure 4-1. 
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Figure 4-1: Calculation Algorithm for A Kalman Filter (Salychev, 1998) 

 

First, the a priori state vector estimate, 1k/kx̂ − , is defined using the deterministic part of 

the system model (prediction of estimation errors). The next step illustrates the accuracy 

of this calculation via the a priori covariance matrix of estimation errors, Pk/k. Then, the 

optimal gain matrix, Kk, is computed, which defines the relationship between the level of 

the useful signal and the intensity of the measurement noise. In other words, for small 

noise in the measurements, the gain, Kk, tends to an identity matrix; and, conversely, for 

noisy error-corrupted measurements, it is close to zero. After the gain calculation, the a 

priori estimate, 1k/kx̂ − , is updated using current measurements, zk, to obtain the final 

estimate of a state vector, kx̂ . Its accuracy is then determined via calculation of the a 

posteriori covariance matrix of estimation errors, Pk.  

kk P,x̂

1k1k/k x̂x̂ −− Φ=

TT
1k1k/k GQGPP +ΦΦ= −−

)x̂Hz(Kx̂x̂ 1k/k
T

kk1k/kk −− −+=

1k/kkk P)HKI(P −−=

k0 P,x

1
k

T
1k/k

T
1k/kk )RHHP(HPK −

−− +=
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The magnitude of the initial covariance matrix of estimation errors, P0, defines the length 

of the transition period; a larger magnitude of P0 corresponds to a shorter transition 

period and vice versa. Thus, an exaggerated level of initial estimation errors is usually 

chosen. 

4.2.3 Main Filter Characteristics  

Observability 

Observability of the state vector is an ability to obtain the initial state from current 

measurements (Gelb, 1974). For time-varying systems, observability can be classified as 

either complete, differential or instantaneous. Instantaneous observability means that the 

state of the system at any time may be determined instantaneously from the observation 

of the output and its derivatives. Differential observability requires that the state of the 

system be observable over a finite time interval, while complete observability implies 

that the initial state can be calculated any time during the estimation procedure (Rhee et 

al., 2002).  In this thesis, only the notion of complete observability is used and is referred 

to herein simply as observability.  

 

Since the design (measurement) matrix H links the measurements with the state vector, it 

characterizes observability. Theoretically, observability can be verified via an 

observability matrix (A), which is calculated using the transition (Φ) and design (H) 

matrices: 
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Φ

=

−1n

2

H
....

H
H
H

A               (4-8) 

where n is the number of measurements. 

If the observability matrix is non-singular, the state vector is observable (Gelb, 1974). 

The property of observability defines the possibility of state vector estimation. In 

practice, a certain vector component is considered observable if it can be derived from 

directly measured components via differentiation (and inversely, integration implies non-

observability) (Salychev, 2003).  

Convergence and Observability Degree 

A Kalman filter operates in two modes: a transition process and a steady state. During the 

transition process, all estimates of the state vector components have to converge to true 

values. At steady state, the Kalman filter operates with a certain constant accuracy, which 

is limited by the accuracy of the system model. For stationary systems, the state vector 

components in the Kalman filter converge sequentially (Gelb, 1974). First, directly 

measured states converge; then, the components, which are closest to the directly 

measured ones, and so on. The position of a certain component in the state vector thus 

defines its degree of observability. Directly measured components are strongly 

observable; weakly observable estimates stand in the state vector further from the directly 

measured ones. Consequently, the duration of the transition process for a certain 

component is defined by its degree of observability (Salychev, 2003).   
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Divergence   

A Kalman filter is designed to be stable; however, in practice, estimation accuracy differs 

from its theoretical prediction. This inconsistency, commonly referred as divergence, can 

be classified as either apparent or true divergence (Gelb, 1974). In apparent divergence, 

estimation errors are bounded, but they grow over time and are generally greater than 

theoretical values. In true divergence, true error estimates eventually become infinite 

(ibid). In general, divergence is caused by inaccurate system model representation. 

Commonly if wrong filter parameters are chosen, the filter has apparent divergence, 

which degrades estimation accuracy, while true divergence occurs with the adoption of 

the wrong system model. As was discussed in section 4.2.1, in regard to INS/GPS 

applications, the system model is linear when misalignment errors Φx, Φy, Φz, are small 

(i.e. less than 5º). Due to the linearization problem, true divergence can occur if the 

misalignment errors are in the order of 20º, which is not the case for medium accuracy 

INS’s. An apparent divergence in the INS/GPS filter can occur when the azimuth 

correction is not implemented. In this thesis, due to the use of INS error compensation in 

the navigation algorithm, the linearization problem cannot cause filter divergence. 

Innovation Sequence and Adaptive Filtering 

An innovation sequence, νk, can be defined as the difference between the actual 

measurement, zk, and the predicted measurement, 1kx̂H −Φ  (Teunissen and Salzmann, 

1998):  

1kkk x̂Hz −Φ−=ν  (4-9) 
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The main properties of the innovation sequence are the following (Salychev, 1998):   

1. It is white noise for an optimal Kalman filter; 

2. The covariance matrix of the innovation sequence νk can be defined as: 

RHHP][MC T
1k,k

T
kkk +=νν= −  (4-10) 

3. 0]x~[M lk =ν  for l < k (4-11) 

 

The innovation sequence is frequently used in adaptive filtering, since it is one of the 

major indicators of real estimation errors. Adaptive filters sense the properties of the 

environments in which they operate and adjust the filter parameters accordingly. These 

filters are useful in cases where the properties of the operating environments are 

unknown, or when they change with time in a previously unknown manner. In other 

words, the implementation of adaptive estimation methods is preferable when the 

accuracy of a priori knowledge about the system model and noise statistics is 

insufficient. Adaptive Kalman filters can be classified in terms of parameters (matrices), 

which should be optimized during the estimation procedure, such as: filters that estimate 

the covariance matrix of measurement noise, R; filters that estimate the covariance matrix 

of input (process) noise, Q; and, finally, algorithms that estimate the matrices of input 

noise and measurement noise simultaneously.  

 

In this thesis, an adaptive Kalman filter of unknown measurement covariance, R, is used 

for estimation and filtering of GPS errors in challenging environments. For INS/GPS 

applications such as those studied herein, the measurement noise is defined by GPS 
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noise. In urban areas, HS GPS measurements are characterized by large errors induced by 

tracking of multipath or echo signals as well as by high code noise due to severe signal 

fading. Therefore, the level of measurement noise of the integrated algorithm frequently 

changes in a random manner, which benefits implementation of a filter with adaptive 

measurement covariance. 

4.2.4 Kalman Filter with Control Signal  

In a field of INS/GPS integration, the Kalman filter with control is frequently applied. 

For example, in this thesis the vector of control signal contains the estimates of gyro 

drifts and azimuth misalignment. In the presence of a control signal, a linear system in 

SSM can be described as:  

1k1k,k1k1k1k,kk wGLuxx −−−−− ++Φ=         (4-12) 

where uk-1 is a known control signal.  

The main Kalman filter formula (4-4) transforms to: 

)HLCux̂Hz(KLux̂x̂ 1k1k1k,kkk1k1k1k,kk −−−−−− −Φ−++Φ=      (4-13) 

The introduction of a known control signal, uk, to the system, however, does not affect 

the gain matrix, Kk, determination and the rest of the calculation scheme remains the 

same as in a conventional Kalman filter (Salychev, 2003). 
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4.2.5 Kalman Filter with Adaptive Measurement Covariance R 

This algorithm is developed for the case of unknown precise information about the 

covariance matrix of the measurement noise, R (Salychev, 1998). The calculation 

algorithm is shown in Figure 4-2.  

 

The covariance matrix of the innovation sequence can be derived by applying the 

condition of maximum probability density of the process ν1, ν2…. νn . For a stationary 

system, this matrix can be obtained by simple averaging in recurrent from: 

T
kk1kk νν

k
1Ĉ

k
1kĈ +

−
= −            (4-14) 

Let’s prove that the above formula is an averaging procedure:  

For step 1, k=1: T
111 ννĈ =  

For step 2, k=2: 
2

νννννν
2
1Ĉ

2
1Ĉ

T
22

T
11T

2211
+

=+=  

For step 3, k=3: 
3

νννννν
νν

3
1Ĉ

3
2Ĉ

T
33

T
22

T
11T

3323
++

=+=  

And so on.      

Substituting this estimate into (4-9), the formula for matrix R can be defined as: 

T
1k,kkk HHPĈR̂ −−=  (4-15) 

At the beginning of estimation, the defined Rk can be negative definite; therefore, the 

following normalization procedure should be considered: If diag 0R̂ k < , then diag 

0R̂ k =  
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Figure 4-2: Calculation Algorithm for An Adaptive Kalman Filter (ibid) 

4.3 Estimation Concepts 

Figure 4-3 demonstrates the principal of different estimation approaches. The term, 

prediction, denotes estimation of the state vector xk at the current epoch tk using 

measurements made in the past zk-n, where tk > tk-n. Filtering is estimation of the state 

vector xk utilizing current measurement zk. These two estimation procedures can be 

implemented in real time as well as in post-mission. Smoothing is estimation of the state 

vector xk, taking into account the total number of measurements within the fixed time 

interval tk-n < tk < tk+n. This procedure can be employed only in post-mission analysis. 

kk P,x̂

1k1k/k x̂x̂ −− Φ=

TT
1k1k/k GQGPP +ΦΦ= −−

1k/kkk x̂Hzv −−=

T
1k/kkk HHPĈR̂ −−=

kk1k/kk vKx̂x̂ += −

1k/kkk P)HKI(P −−=

00 P,x̂

1
k

T
1k/k

T
1k/kk )R̂HHP(HPK −

−− +=

T
kkkĈ υυ=

Zk 
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Smoothing provides better estimation accuracy than filtering and filtering, in turn, is 

more accurate than prediction (Teunissen and Salzmann, 1998). 

 

 

 

 

 

 

 

Figure 4-3: Estimation Modes 

4.3.1 Kalman Filter in Prediction Mode 

Prediction is usually performed during data gaps (herein, during GPS outages). In this 

case, the last estimate of the state vector is used to initialize the prediction procedure. 

When measurements are not available, the covariance matrix of measurement noise R → 

∞ and consequently, the Kalman gain K → 0. It leads to the following transformation of 

the Kalman filter equations: 

T1
1kk

1kk

GQGPP

x̂x̂

+ΦΦ=

Φ=
−

−

−           (4-16)                       

Prediction accuracy is mainly defined by the accuracy of the system model, and thus the 

level of input noise (the second component in the equation for Pk contains covarience 

matrix of input noise, Q), and by the accuracy of the last estimate obtained in filtering 

filtering 

prediction 

smoothing 

tk-n 
time 

tk tk+n 
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measurements 
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mode (the first component in the same equation contains the covarience matrix of 

estimation errors, Pk-1); thus, it degrades over time (Gelb, 1974). For INS/GPS 

applications, the linearization problem is similar for filtering and prediction modes and 

does not have much impact on the estimation accuracy. 
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5Chapter 5 

System Realization and Methodology 

The contribution of this thesis is development of a special scheme for INS/GPS 

integration that can be used in various GPS conditions. Based on the of the cascaded 

integration, which is flexible and compatible method for integration of different types of 

GPS receivers, two diverse estimation algorithms were developed and tested for 

implementation in areas with LOS signal reception and in challenging GPS 

environments. This chapter gives comprehensive analysis of the integration algorithm 

employed. Both estimation techniques used in the INS/GPS system is also presented. 

This discussion includes the system and measurement models utilized in a Kalman filter 

and in adaptive filtering, as well as mechanisms for INS error compensation via 

feedbacks of error corrections to the navigation block and in the system output.  

5.1 INS/GPS Cascaded Integration Scheme 

The integration algorithm is presented in Figure 5-1 and the process is described below. 

First, raw sensor data is processed in the Strapdown Inertial Navigation System (SINS) 

algorithm, where the INS navigation solution is obtained. The SINS algorithm works in 

two modes: alignment and navigation. The GPS position is used to initialize the INS 

alignment (the feedback of XGPS(0) in the Figure 5-1). In the next step, the differences 

between the INS and GPS positions, as well as the velocities, are formed and fed into the 

INS Kalman filter. The INS estimation block also works in two modes: filtering, when 
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GPS measurements are available; and prediction, e.g. during GPS data gaps or when the 

GPS solution is not reliable. Following this, the estimated INS errors are compensated in 

the system output and in the SINS algorithm. For open area applications, the estimates of 

INS errors in position and velocity, as well as the estimated horizontal misalignment 

angles, are utilized to correct the integrated navigation solution, while the estimates of 

gyro drifts and azimuth misalignment are fed back to the SINS calculation scheme. For 

highly urbanized environments such as downtown districts, in the SINS algorithm a 

feedback of only the estimated INS azimuth misalignment is arranged. Position and 

velocity compensation is performed similarly to open area applications.   

 

The combination of INS and GPS improves total system performance, since GPS is used 

for in-motion correction of the INS errors, while the INS bridges GPS outages caused by 

satellite blockage and signal power degradation. In this latter case, the estimation 

algorithm works in prediction mode. As expected, prediction accuracy degrades rapidly 

with time. Analysis of the Kalman filter equations shows that prediction accuracy 

depends only on the estimation accuracy of the state vector components of the last epoch, 

in which GPS measurements were available, along with the accuracy of the system model 

(Salychev, 1998). Consequently, for INS/GPS integration, accurate estimation of the INS 

errors becomes critical in prediction (see section 4.3.1). In this case, the Kalman filter 

calculation algorithm is transformed to the form of equations (4-16).  

 

In filtering mode, the accuracy of the integrated system is defined by the level of 

accuracy of the GPS solution, which depends upon the type of observables used (e.g. 
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pseudorange or carrier phase measurements) and the navigation methods employed (e.g. 

a Least Squares method, or a Kalman filter).  In this thesis, a DGPS code solution is 

utilized to assist the INS. Thus, under line-of-sight GPS signal conditions, a positional 

accuracy at the sub-metre level can be achieved. In downtown canyons, GPS 

measurements are potentially corrupted by multipath, signal degradation and signal cross-

correlation. In such cases, the implementation of traditional estimation tools such as a 

conventional Kalman filter becomes problematic due to challenges with fault detection. 

Under harsh GPS conditions, the measurement covariance is not always trustworthy, or 

may change in a manner that is not highly predictable. Therefore, a Kalman filter with an 

adaptive measurement covariance (see section 4.2.5) is used for error estimation. In 

degraded GPS signal environments, a GPS solution is not always reliable for correction 

of INS errors, such as gyro drifts. Thus, two different estimation schemes for INS/GPS 

integration are employed for open and urban area applications, respectively.  
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Figure 5-1: Cascaded Scheme of INS/GPS Integration 

 

 



92 

 

5.2 Error Estimation and Compensation for Open Area 

Applications 

The INS error estimation scheme is shown in Figure 5-2. As previously mentioned, a 

traditional Kalman filter is implemented. In this thesis, the INS error equations are used 

as a system model, and measurements that are fed to the filter are the differences between 

the INS and GPS positions and velocities. When GPS data is not available, the Kalman 

filter works in prediction mode. The estimation of INS positional errors is performed in 

an individual Kalman filter in order to improve estimation accuracy, since the estimates 

of position and velocity errors have different time lags with respect to actual values, 

which leads to different input noise covariances.   

 

The INS filter output contains the following parameters: position, velocity and attitude 

errors as well as gyro drifts. Estimated INS position and velocity errors are compensated 

in the system output. INS horizontal errors are used to correct the elements of the 

transformation matrix between the body and navigation frames, N
bR . The INS azimuth 

misalignment is compensated independently in the SINS algorithm as a one-step control 

signal introduced to the quaternion of a small rotation, ∆m. Estimated gyro drifts are also 

taken into account in the SINS navigation scheme, in a similar fashion to azimuth error 

compensation.  
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Figure 5-2: Estimation Algorithm for Open Area Applications

Chapter 3 discusses the main characteristics of INS errors in detail. Azimuth

misalignment can have a significant impact on overall system performance during high

vehicle dynamics, because it is motion-dependent. Due to the non-stationary property of

this error, its accurate estimation can be problematic using traditional estimation

approaches; therefore, a special estimation procedure is implemented to obtain an

accurate estimate of azimuth error. Since the method takes into account the degree of

observability of different INS error components, an observability analysis of the INS

errors is presented below.
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5.2.1 Observability Analysis of INS Errors 

For INS error estimation, only the observable components of the INS error need to be 

considered in the system model. Equations (3-30) can be used for short-term analysis of 

half an hour – an hour and prediction intervals of several seconds only, since they do not 

describe INS error behavior with high accuracy. The following error equations are 

utilized for INS error estimation (Salychev, 2003):  

)t(wu
R
V

)t(wu
R
V

)t(wuagV

)t(wuagV

VN

VE

4E
dr
N

E
N

3N
dr
E

N
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2NupEEN
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N
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δ=δ

δ=δ

&

&

&

&

&

&

            (5-1)  

where: δE, δN  are the position errors in the East and North directions,   

respectively;  

δVE, δVN  are the velocity errors in the East and North directions, 

respectively;  

ΦE, ΦN  are the attitude errors of the horizontal channels, respectively;  

Φup  is the azimuth misalignment; 

aE, aN  are the vehicle accelerations; 

g  is the gravity vector;  

dr
N

dr
E ,ωω  are the gyro drifts projected into the local-level frame;  
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w1(t), w2(t) is input noise caused by accelerometer biases, accelerometer scale 

factors, their non-linearities and accelerometer installation errors; 

w3(t), w4(t) is input noise caused by gyro scale factors, their non-linearities and 

gyro installation errors; and 

uE, uN vectors of control signal with error correction (feedback of gyro 

drifts and azimuth misalignment to the quaternion, ∆m). 

 

The gyro drifts, dr
Eω  and dr

Nω , are estimated in projections onto the ll-frame. To consider 

these errors in the SINS algorithm, they have to be recalculated in the body frame (ibid). 

For automobile applications, a vehicle typically changes its attitude significantly in 

heading only; therefore, gyro drifts in the ll-frame can be represented via the projections 

of the drifts onto the b-frame, dr
xbω  and dr

ybω :   

HcosωHsinωω

HsinωHcosωω
dr
yb

dr
xb

dr
N

dr
yb

dr
xb

dr
E

+−=

+=
            (5-2) 

where H is a heading angle.  

The drifts, dr
xbω  and dr

ybω , are usually represented by a shaping filter with a certain 

correlation function (here represented by a 1st Order Gauss-Markov process): 

)t(w2A

)t(w2A

7
dr
yb

dr
yb

6
dr
xb

dr
xb

β+βω−=ω

β+βω−=ω

&

&
            (5-3) 

where: A, β   are parameters of the correlation function |)|exp(A)(R 2
dr τβ=ω ;   

w6(t), w7(t) is input white noise of identity intensity (ibid).  
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Equations (5-1), (5-2) and (5-3) are utilized as a system model in a Kalman filter. Since 

the INS position and velocity errors are derived from the GPS data, these INS error 

components are considered to be directly measured. Due to the fact that separation of 

several nearly constant parameters is problematic, the separation of gΦN(0) and gΦE(0) 

from higher order terms in many cases can be a very difficult task (e.g. accelerometer 

biases, Bxb and Byb, can be separated from horizontal errors, ΦN(0) and ΦE(0), only when 

vehicle azimuth changes significantly, i.e. more than 20º ). Therefore, in this thesis, the 

accelerometer biases, scale factors and installation errors are selected as unobservable 

components and reduced to input noise, w1 and w2.  Similarly, the high order gyro errors 

are assumed to be not observable and reduced to input noise, w3 and w4.   

     

An observability analysis of the INS Schuler components can be performed by 

calculating the observability matrix (A) of the single channel model (see equations (5-

15)). Because this matrix has a non-zero determinant, all Schuler components are 

generally observable. For example, the observability matrix for three measurements (n = 

3 in equation (3-8)) has the following form: 

0TgAdet:and
gTgT2R/gT1
0gT0
001

H
H
H

A 32

222

≠=
⎥
⎥
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⎦

⎤
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⎣

⎡

−−−
−=

⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ
Φ=  

Furthermore, it is clear that all INS errors, which take part in the above set of equations, 

are generally observable since they can be derived through differentiation of the directly 

measured INS error components (position and velocity errors) (ibid). 
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Analysis of the degree of observability of each state vector component shows that the 

strongly observable state vector components (ΦE and ΦN) are nearest to the directly 

measured ones (δVE and δVN). The remaining components are weakly observed ( dr
Eω  and 

dr
Eω ). Consequently, the attitude errors and gyro drift rates have a greater degree of 

observability, when velocity error measurements are used instead of position error 

measurements (in this case, gyro drifts stand closer to the directly measured components 

in the state vector); therefore, the reduced system model, without the position errors, δE 

and δN, is considered. Moreover, the degree of observability corresponds to the duration 

of the estimation transition process (ibid). 

 

Equations (5-1) show that Φup can be separated from ΦE and ΦN only when a vehicle has 

a substantial acceleration change during motion (∆aN, ∆aE > threshold). It comes from the 

fact that two components gΦN and aNΦup in the third formula of (5-1) as well as gΦE and 

aEΦup in the forth formula of (5-1) are nearly constant, if aN and aE do not change, while 

the separation of two nearly constants is a very problematic task. Thus, the observability 

of Φup depends on vehicle dynamics, and precise estimation of the azimuth misalignment 

error is questionable for moderate (stationary) motion or in static mode (Park et al., 2000; 

Salycheva and Cannon, 2004). Hereinafter, stationary motion is defined as motion with 

nearly constant speed.   
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5.2.2 In-motion Azimuth Estimation Using Cascaded Kalman 

Filter 

The considered method is based on the above conventional Kalman filter (KF7 in Figure 

5-2). The INS error model in equation (5-1) (without positions since they are estimated 

independently in the Kalman filter with nine error states, referred as KF9 in Figure 5-2) is 

used as a system model. In the SSM representation, it can be described as: 
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                 (5-4) 

The gyro drifts, dr
Nω̂ and dr

Eω̂ , in equations for EΦ&  and NΦ&  are obtained from the 

estimates, dr
xbω̂ and dr

ybω̂ , using formula (5-2). The azimuth misalignment is compensated 

once as an impulse signal 1T/ˆ
upΦ . Herein, T1 = 0.04 seconds is the sampling time of the 

navigation solution calculation (inertial data rate is reduced from 100 Hz to 25 Hz). 
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The measurement model is based on the velocity difference between an INS and GPS. It 

has the form: 
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or, in matrix form:  
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Using the above system and measurement models, a Kalman filter that estimates the 

azimuth misalignment angle Φup along with the other INS error components can be 

applied. However, an analysis of the degree of observability proves that the transition 

process of the estimation of Φup may be significantly long. Because of the large size of 

the total state vector, the Kalman filter spends additional time for convergence of the 

components, which are closer to the directly measured ones (ΦE and ΦN). In order to 

reduce the convergence time for estimation of Φup, a direct approach is implemented. 

 

Estimation of azimuth misalignment is initialized only when Φup is strongly observable, 

i.e. when the magnitude of the vehicle acceleration change reaches a certain threshold. In 
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this case, the estimation problem statement is reformulated so that Φup is directly 

measured. The estimation algorithm for Φup can be determined directly from the system 

model equations as follows (Salychev, 2003): 

If Na∆  or Ea∆ > δ, then  

2
E

2
N

EENNENNE
up aa

agagaVaV
+

Φ+Φ+δ−δ
=Φ

ˆˆˆˆ
ˆ

&&
          (5-7) 

where: NE V̂,V̂ && δδ   are the estimates of the acceleration errors;  

NE
ˆ,ˆ ΦΦ  are the estimates of the horizontal attitude errors, obtained when 

Na∆ , Ea∆ < δ;  

 δ  is the threshold of the vehicle acceleration change (here: δ ≈ 0.2 

m/s2). 

 

In this thesis, in order to additionally smooth the estimation errors, Φup is averaged over 

some time interval (a sliding window with a size of 100 seconds).  

 

The above approach is applied in the beginning of the estimation of Φup, but after the 

termination of the transition process, the estimate of Φup is introduced into the extended 

Kalman filter. This method decreases the time for convergence of the azimuth 

misalignment significantly, because this error is treated as a directly measured value. 

Initially, the elements of the state vector are set to zero: x0 = 0 (see section 4.2.2).  The 

initial covarience matrix of estimation errors, P0, is the following:  



101 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

8

8

0

e9.100000000
0e9.10000000
0003.0000000
0000003.000000
00000003.00000
0000001.0000
00000001.000
00000001000
0000000010

P  

 

The accuracy of the azimuth error estimation depends on an initial value of Φup after INS 

alignment. For medium accuracy INS units, such as the Honeywell’s HG1700, it can be 

in the order of 6-15º. In this case, the assumed linear INS error model does not describe 

INS error behaviour properly (the assumption made about small angles is not 

appropriate). In order to achieve high accuracy in azimuth misalignment estimation, a 

heading correction is initially used (Salycheva and Cannon, 2004). After a one-step 

correction of the azimuth, the remaining azimuth misalignment of approximately 1 to 2º 

is estimated by a cascaded filter and is compensated in the navigation scheme. Finally, 

the estimation procedure is divided into two parts: 

(1) Coarse azimuth error compensation using external heading information; and 

(2) Fine azimuth error compensation using the cascaded filter.  

5.2.3 Heading Correction  

Another method of in-motion azimuth alignment is the application of a heading 

correction. Approximate heading information can be derived from GPS measurements, 
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see for instance (Shin and El-Sheimy, 2002). For a land vehicle, the heading angle H can 

be calculated using the GPS velocity components (see Figure 5-3).  Heading from GPS 

velocities can be computed as follows: 

GPS
N

GPS
E1GPS

V
V

arctanH −=             (5-8) 

and the standard deviation of the heading error )H(δσ  is  

GPS

GPS
GPS

V
VH )()( δσ

=δσ             (5-9) 

where: σ(δHGPS)   is the standard deviation of the GPS velocity error;  

2GPS
E

2GPS
N

GPS )V()V(V +=   is the GPS velocity (nominal value of vehicle speed). 

For example, for a typical value of σ(δVGPS) = 0.1-0.2 m/s; and vehicle speed VGPS = 10 

m/s, σ(δHGPS) according to equation (5-9) is 0.6º-1º. 

Using GPS measurements, the INS correction of the heading angle is 

GPSINSINS HHH −=δˆ             (5-10) 

where HGPS is calculated only when a vehicle has sufficient speed (more than 5 m/s, 

which is defined empirically). Before compensation of the INS heading error, it is 

averaged over a certain time interval (a sliding window with a size of 100 seconds). 

 

 

 

 

Figure 5-3: GPS Heading 
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For the heading correction, the one-step control signal to the gyro torque (quaternion of a 

small rotation) is arranged as follows: 

1T
Ĥδω

INS
c
z =             (5-11) 

where T1 is time sampling interval.  

In this case, a Kalman filter with a control signal (vector u in equations (5-1)) is applied. 

The conventional Kalman filter equations are changed to equations (4-12) and (4-13).  

5.2.4 Roll and Pitch Correction  

The Kalman filter estimates of the horizontal attitude errors, ΦE and ΦN, represent the 

fact that the platform frame has a small angular deviation from the navigation frame due 

to sensor errors. This means that in the SINS algorithm, the transformation matrix 

between the b-frame and p-frame p
bR  is calculated, instead of transformation matrix 

between the b-frame and the n-frame N
bR . In order to compensate the attitude errors, the 

N
bR  is corrected using the estimates, EΦ̂  and NΦ̂  (Salychev, 2003):  

p
b

N
p

N
b RRR =             (5-12) 

where N
pR  is the transformation matrix between the platform and navigation frames, 

which has a form (see equation (3-27) without Φup correction):  
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Using the new elements of N
bR , roll and pitch angels are corrected (see equation (A-16) 

in Appendix A). 

5.2.5 Gyro Drift Compensation  

The gyro drifts in the projections on the b-frame, dr
xbω and dr

ybω , can be compensated in the 

raw output directly; however, in this thesis, the gyro drifts in the ll-frame, dr
Eω  and dr

Nω , 

are compensated instead by applying the control signals to the quaternion of a slow 

motion ∆m (in a manner similar to the treatment of the heading correction).  

5.2.6 Position and Velocity Correction 

The integrated position and velocities are obtained from the corrected INS output: 

INS
N

INS
N

GPS/INS
N

INS
E

INS
E

GPS/INS
E

INSINSGPS/INS

INSINSGPS/INS

V̂δVV

V̂δVV

N̂δNN

ÊδEE

−=

−=

−=

−=

          (5-14) 

where: EINS/GPS, NINS/GPS are the position increments in the North and East directions, 

which are outputted by the integrated system; 

EINS, NINS 
  are the position increments, outputted from the SINS 

algorithm; 

 INSINS N̂δ,Êδ   are the estimated INS position errors; 

VINS/GPS, VINS/GPS
 are the North and East velocities of the integrated system; 
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VINS, VINS
  are the INS velocities; and 

INSINS V̂δ,V̂δ   are the estimated INS velocity errors. 

5.3 Error Estimation and Compensation for Downtown 

Applications 

 
The scheme of integration is presented in Figure 5-4. As with the open area algorithm, 

Kalman filters are used for error estimation and prediction. In this case, the position and 

velocity estimation is performed independently for the east and north channels. The main 

reason for such separation lies in the relatively small dimensions of the filter state vectors 

which, in turn, decreases the filter convergence time.  

 

For downtown applications, accurate estimation of the weakly observable INS errors 

becomes problematic due to error-corrupted GPS updates. Therefore, only the estimated 

azimuth misalignment error is compensated in the SINS scheme. The azimuth error 

estimate is obtained from an individual Kalman filter with the 7-th state system model 

analogously to the above strategy for open area applications. It is then combined with 

heading error correction, which is obtained from GPS heading, and introduced to the 

SINS scheme. 
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33

Filtering

Prediction

11

FK3N

-- STOP
INS
NVδ

INS
NV

GPS
NV INS

NV̂δ --
INS
NV

GPSN

∫ Filtering

Prediction

22

FK1N

-- STOP
INSNδINSN INSN̂δ --

INSN

INS
NV̂

INSN̂

outputoutput

Filtering

Prediction

44

FK7

Averaging--
INSH

GPSH

INSHδ INSĤδ
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Figure 5-4: Estimation Algorithm for Downtown Applications 
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5.3.1 Velocity Filters  

Conventional Kalman filters with a reduced system model are utilized for the INS 

velocity error estimation (boxes FK3E and FK3N in Figure 5-4). The system equations are 

(see equations (5-1)): 
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In the SSM representation, the system model thus has the following from: 
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The measurement model employed is similar to the open area algorithm:  
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Being driven in urban areas, an automobile must frequently come to a complete stop due 

to a high density of controlled intersections with traffic lights as well as periodic traffic 

jams. This type of vehicle motion can be used to update an inertial system. When a test 

vehicle stops and its linear velocity is equal to zero, the non-zero output of the INS 
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velocity indicates is a pure INS velocity error. In this case, the Schuler component of the 

INS error becomes directly measured, since the non-stationary INS error is negligible in 

static mode (see section 3.3). Measurements of this type are called Zero Velocity Updates 

(ZUPTs), in the case where a test vehicle routinely stops in order to obtain error updates 

(El-Sheimy, 2003). However, in this research a test vehicle is not forced to stop 

purposely to obtain measurement updates, and static measurements (i.e. during stop, 

which will be discussed in the following section) are used when available. Therefore, 

hereinafter, the term ‘stop’ is utilized instead.  

 

The considered estimation scheme takes vehicle dynamics into account. When a test 

vehicle stops, the INS East and North velocities are fed into the filters while, in motion, 

the differences between the INS and GPS velocities are used as measurements 

analogously to the algorithm for open area applications. To accurately estimate the 

Schuler component of the INS error, static measurements should have larger gain than in-

motion measurements, which is defined by the Kalman gain matrix. Therefore, different 

parameters of the measurement covariance are chosen for static and kinematic modes (see 

Kalman equations (4-5) and (4-6)): 
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In downtown areas, HS GPS measurements are characterized by high levels of noise due 

to signal attenuation and they are potentially corrupted by large errors such as those 

induced by the tracking of multipath or echo-only signals. Therefore, in this thesis, the 

value of measurement noise covariance is chosen to be significantly large and defined 

empirically.   

 

The initial error state in the Kalman filter is set to zero (x0 = 0) while the initial 

covarience matrix of estimation errors, P0, has the following form (see section 4.2.2):  
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During the transition process of the azimuth misalignment estimation (the independent 

Kalman filter with 7 states in the system model, box FK7 in Figure 5-4) velocity filters 

work as they do in static mode (the filter estimates are based mainly on the measurements 

rather than on the system model: R=10 m/s2). A complete stop of a test vehicle is 

determined from the filtered accelerometer output. Raw accelerometer data is averaged 

with a sliding window of one second. The stop criterion threshold equals to 0.05 m/s2. 

  

The filters switch to prediction mode when the GPS measurements are not available or 

not reliable. In this case, the Kalman gain is set to zero and the Kalman equations are 

transformed to the form of equations (4-16). The reliability criterion is defined by the 

GPS Position DOP (PDOP), the number of satellites used in the solution and the 

difference between GPS velocity and predicted INS velocity. 
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5.3.2 Coordinate  filters 

 
The INS position increments in the East and North directions, EINS and NINS, are 

determined via integration of the East and North velocities, INS
EV̂ and INS

NV̂ , which are 

already corrected for major errors. The differences between the INS and GPS position 

increments are considered as the INS position error in the East and North directions. 

These measurements are fed into two independent coordinate filters (for the East and 

North channels respectively; see boxes FK1E and FK1N in Figure 5-4). Each coordinate 

filter is a Kalman filter with one state x and adaptive measurement covariance r.  It is 

assumed that the INS position error does not vary significantly, since the INS positions 

are obtained from integration of the corrected INS velocities. Therefore, the system 

model is defined as: 

)t(wx =&             (5-18) 

Analogously to the velocity filters, a measurement model with random walk process is 

implemented in each coordinate filter: 

kkk vxz +=             (5-19) 

where: zk is the measurement of the INS-GPS position difference in the East 

or North directions; 

xk  is the state of the INS error in the East or North positions; and 

vk is measurement  noise assumed to be zero mean white noise with 

covariance r. 

For this simple model, the Kalman filter equations are transformed to the following scalar 

formulas (see section 4.2.5):    
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where: 
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−  is the Kalman gain; and 

  kr̂    is the adapted measurement covariance. 

Similarly to the treatment of velocity filters, the coordinate filters switch to prediction 

mode in the case of GPS data gaps or error-corrupted GPS measurements. The reliability 

criterion is based on the PDOP and the number of satellites used in the solution (see 

Figure 5-4). The filter mode also depends upon vehicle dynamics. When a test vehicle 

stops, the position increments do not change and therefore the filters also work in 

prediction mode. In this case, the estimate is based on the system model and thus the 

Kalman gain is set to zero (the measurement covariance tends to infinity: r→∞). Equation 

(5-20) is thus modified to: 

QGPP
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2

1kk

1kk
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−            (5-21) 

The initial values for the Kalman filter are the following: initial position error, x0 = 0; 

initial covarience of estimation errors, P0 = 10000 m2.  



112 

 

5.3.3 Azimuth Correction 

Since GPS measurements are not always available in downtown canyons, and the GPS 

solution is potentially corrupted by large errors, the estimation accuracy of the weakly 

observable INS error components degrades significantly due to long-term predictions of a 

few minutes. These rough estimates cannot be used for error compensation inside the 

SINS algorithm of a tactical grade (herein a medium accuracy) INS. Therefore, only the 

estimate of azimuth misalignment is fed back to the navigation algorithm.  

 

The azimuth error correction is obtained from two independent sources, similarly to the 

method used for open area application. The first deterministic part INSĤδ is the INS 

heading correction determined using the GPS heading (section 5.2.3). The second 

estimated part is the INS azimuth misalignment, upΦ̂ , acquired from a Kalman filter with 

seven states (box FK7 in Figure 5-4). The method of azimuth estimation and 

compensation is analogous to the open area method. The Kalman filter works in 

prediction, when the GPS velocities are not trustworthy or not available. The reliability 

criterion is based on the difference between the predicted INS velocity and GPS velocity.  

5.3.4 Output of Estimation Block 

 
The INS/GPS integrated system outputs the corrected INS velocities and positions in a 

similar manner to open area algorithm (equation (5-14)), if the estimate of the INS 

azimuth misalignment has already converged and if the GPS positions and velocities are 
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not reliable (defined by the PDOP threshold and number of satellites used in the solution, 

see Figure 5-4 ). Otherwise, the system output is defined by the GPS solution.  
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6Chapter 6  

Open Area Results 

 
In this chapter, the performance of the integrated INS/GPS system is evaluated for open 

area applications. The details of data collection are presented first, followed by the results 

themselves. Results address the objectives listed in Chapter 1 and include position, 

velocity and attitude accuracy analysis during GPS signal acquisition as well as during 

GPS data outages, which are simulated to analyze system performance in prediction 

mode. This chapter also discusses the impact of INS azimuth misalignment error on 

overall system accuracy.  

6.1 Test Description 

Figure 6-1 shows the set-up scheme of the test system. The main piece of equipment used 

for testing was NovAtel’s Black Diamond System (BDS). The BDS contains a medium 

accuracy Honeywell HG1700 AG11 IMU and a high performance NovAtel OEM4 dual-

frequency GPS receiver. The technical characteristics of the test IMU are presented in 

Table 6-1. Because differential GPS measurements were utilized in the integration 

algorithm, two base stations and one remote station were established throughout the tests. 

NovAtel OEM4 receivers at the reference stations and a NovAtel BDS system at the 

remote station were each connected to a NovAtel 600 antenna.  
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Table 6-1: HG1700 IMU Specifications (Honeywell, 1997) 

Specification Value 
Gyros 

Input Range ±1,000 º/sec 
Bias 1.0 - 10 º/h 
Scale Factor Accuracy 150 ppm 
Scale Factor Linearity 150 ppm 
Axis Alignment Stability 500 µrad 
Angular Random Walk 0.125-0.3 º/√h 

Accelerometers 
Input Range ±50 g 
Bias 1.0 mg (980 mGal) 
Scale Factor Accuracy 300 ppm 
Scale Factor Linearity 500 ppm 
Axis Alignment Stability 500 µrad 
Velocity Random Walk 0.0013 (m/s)/√h 

 
 

 

Figure 6-1: Test Set-up for Open area Tests. 

The test set-up of the remote station is presented in Figure 6-2. Inertial data from the 

HG1700 was time tagged with the OEM4 GPS measurements providing synchronization 

of the data coming from the two units. The IMU was rigidly mounted to the floor of the 

University of Calgary’s test van.  The GPS antenna was mounted on the roof of the 

vehicle.   

NovAtel600 
Antenna  

OEM4

HG1700
Remote station

Reference station 

NovAtel600 
Antenna  

OEM4
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Figure 6-2: Remote Station Set-up 

Two base stations were needed to ensure a short baseline between the base and remote 

receivers. In this way, the distance from the test vehicle to the base station ranged from a 

few metres during initialization to about 4 and 15 km. These relatively short distances 

were selected such that an accurate DGPS solution could be used as a reference for 

system evaluation. The first station, placed on a pillar on the roof of the CCIT Building at 

the University of Calgary, provided reference data for the second one, which was set up 

on a pre-existing pillar a few metres from the main road in the test area, midway along 

the test track. Equipment in the vehicle and at the field base station was powered either 

from the van itself or from additional car batteries. At the base station in the test area, a 

12V battery powered the NovAtel receiver and data was logged on the receiver’s memory 

card. In the test vehicle, splitting the DC power from the car’s cigarette lighter provided 

the power for the GPS antenna and a laptop for data logging, while two 12V car batteries 

NovAtel 600 
antenna  

NovAtel OEM4 
GPS card  

HG 1700 IMU 
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powered the BDS system. GPS data was logged at a rate of 1 Hz; raw IMU 

measurements had a data rate of 100 Hz. 

 

The coordinates of the field reference station, the reference trajectory for error analysis 

and reference velocity information were obtained from a double difference carrier phase 

solution. The FLYKIN+TM software, developed by the PLAN Group of the University of 

Calgary, was utilized for this purpose (FLYKIN+TM, Liu et al., 2003). The coordinates of 

the base stations are presented in Table 6-2. The reference trajectories for the two tests, 

obtained from the GPS carrier phase solution, are presented in Figure 6-3.  

Table 6-2: Coordinates of Base Stations 

Station Latitude (dms) Longitude (dms) Height (m) 

Field Station 51 05 46.9138 -114 22 09.8795 1183.142 

E2 Base station 51 04 47.9168 -114 08 01.3605 1118.504 

 

Two tests were conducted in Calgary, on July 30, 2003. They were performed in open 

sky conditions, on a highway 250 running parallel to the Trans-Canada Highway towards 

Banff. The road has a stretch of about 12 km, which is illustrated in Figure 6-4. This area 

was selected because it provided excellent GPS satellite visibility as seen in Figure 6-5. 

The number of satellites tracked was varying from four to ten with an average number of 

seven. The average PDOP was two. Each test commenced with a ten-minute warm-up 

period for INS alignment.  
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Figure 6-3: Reference Trajectories for Tests 1 and 2 
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Figure 6-4: Test Area 

 
After that, on the straight part of the trajectory, three or four consecutive ZUPTs were 

performed to validate the effect of the non-stationary errors on IMU accuracy. The 

duration of each ZUPT was about 10-15 seconds (defined empirically); and the time 

between consecutive ZUPTs was around two to four minutes. During that time, the test 

vehicle was experiencing accelerations of one to two m/s2 (further, referred to as high 

dynamics), which provided good observability for the motion-dependent INS errors. Each 

test was approximately 20 to 30 minutes in duration.  

 

GPS velocities and positions, which were fed into the integrated system, were obtained 

from the differential code solution with carrier phase smoothing using the C3NAVG2TM 

ZUPT mode

. Base  
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software, developed by the PLAN Group of the University of Calgary (C3NAVG2TM, 

Petovello et al. 2000). The elevation cut-off used for all data analysis was 10º.        

 

Figure 6-5: Typical Urban Open Area Environment 

6.2 Experimental Results 

 
Three algorithms were tested to validate the improvement in performance of the INS/GPS 

system using the cascaded Kalman filter for accurate azimuth misalignment estimation: 

1 Reduced Kalman filter (three states in a system model for each channel, referred to 

herein as FK3);  

2 Conventional Kalman filter with a feedback of the estimated azimuth correction to the 

navigation scheme (nine states in a system model, further referred to as FK9); 
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3 Cascaded Kalman filter with combined estimated azimuth and heading corrections as 

a feedback into the navigation block (nine states in a system model, further referred to 

as CKF). This scheme was introduced in section 5.2.1 for open area applications.   

 

It must be mentioned that, for the latter two cases, gyro drift compensation was also 

performed in accordance with the algorithm discussed in section 5.2.1. In this research, a 

third state Kalman filter was expected to show the impact of the non-stationary INS 

errors on INS accuracy in the position and velocity domains. In the following, the 

proposed approach is first tested for the ideal situation, when GPS data is constantly 

available (clean data). Next, it is applied to data with simulated gaps in the GPS 

measurements, so that system accuracy during prediction can be analyzed. 

6.2.1 Results Using Clean GPS Data  

Positional Accuracy 

The positional accuracy of the integrated system is generally limited to the accuracy of 

the GPS code solution excluding a few short-term gaps of several seconds, when GPS 

measurements are not available. The positional accuracy for all three algorithms is 

demonstrated in Figure 6-6, which presents the north position component for Test 1. In 

the lower plot, the north position is shown on a larger scale. 
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ed under similar conditions and thus provided analogous results. 

orrection of the INS positional errors, even a traditional Kalman 

model (FK3) provides relatively high accuracy at the sub-metre 
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level. Table 6-3 gives a statistical analysis of the positional errors of the integrated 

system based on data from both tests. 

Table 6-3: Positional Errors for Clean GPS Data 

Errors RMS Mean | Max | 
FK 3 

δN (m) 0.4 -0.1 1.7 
δE (m) 0.2 -0.1 0.5 

FK 9 
δN (m) 0.3 -0.1 1.5 
δE (m) 0.2 -0.1 0.7 

CKF 
δN (m) 0.3 -0.1 1.5 
δE (m) 0.2 -0.1 0.7 

 

Velocity Accuracy  

In the velocity domain, the situation is slightly different. On one hand, the INS positions 

change smoothly in comparison to the INS velocities, since they are obtained by 

integration. On the other hand, the elements of covarience matrix of input noise are 

chosen to be the same (theoretically optimal) for both cases: KF3 and CKF. Therefore, 

when the Kalman filter with three states in the system model is used, the algorithm trusts 

the model more than the measurements and the impact of the uncompensated INS non-

stationery errors is observed. Figure 6-7 and Figure 6-8 present north velocities of the 

integrated system using the above three algorithms for Test 1 and Test 2, respectively. 

The lower plots of Figure 6-7 and Figure 6-8 show enlargements of the plot areas, where 

several consecutive ZUPTs were conducted. These plots illustrate the influence of non-

stationary INS errors on the velocity accuracy in one channel during high accelerations in 
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another one. Analysis of the results confirms correctness of the assumption that can be 

easily derived from the INS error model (equation (5-1)). At the beginning of each test, 

when the vehicle was experiencing acceleration changes in the east direction (ZUPT 

mode), several jumps due to the non-stationary INS error components occurred.  
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Figure 6-7: Inter-channel Influence of Vehicle Dynamics on Velocity Accuracy,   

Test 1 
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INS azimuth misalignment, being one of the largest non-stationary INS error 

components, is considered in the system model; therefore, it is assumed to have major 

impact (among other non-stationary errors such as accelerometer scale factors and their 

non-linearities) on the overall system accuracy.  
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Figure 6-8: Inter-channel Influence of Vehicle Dynamics on Velocity Accuracy,   

Test 2 
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At the beginning of the test, when the vehicle was experiencing acceleration changes in 

the east direction (ZUPT mode), several jumps in north velocity due to the azimuth error 

occurred. Using the traditional Kalman filter with three and nine state system models (red 

and green lines in the plots, respectively), these jumps are in the order of 0.5 to 1 m/s 

respectively; while, in the output of the Cascaded Kalman filter (magenta line), the jumps 

due to the azimuth error are absent.  

 

It must be noted that the velocity errors were calculated using the FLYKIN+TM output as 

a reference. The FLYKIN+TM velocities cannot be considered as true values and they are 

highly correlated with the velocities obtained from C3NAVG2TM software. The same 

Doppler measurements were utilized in the GPS solution, using the same GPS receiver; 

the observed slight improvement in GPS velocity accuracy is expected due to 

implementation of Kalman filtering in the FLIKIN+ software. The current analysis of 

velocity accuracy of the integrated system is performed to validate overall system 

performance in the velocity domain. As shown in Figure 6-7 and Figure 6-8, traditional 

Kalman filters with three and nine state system models (1st and 2nd methods) provide 

similar results; while the Cascaded Kalman filter (3rd method) offers better accuracy. 

Table 6-4 gives a statistical analysis of the velocity errors of the integrated system using 

clean GPS data from Tests 1 and 2. 
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Table 6-4: Velocity Errors for Clean GPS Data 

Errors RMS Mean | Max | 
FK 3 

δVN (m/s) 0.2 0.0 1.1 
δVE (m/s) 0.2 0.0 1.2 

FK 9 
δVN (m/s) 0.1 0.0 0.9 
δVE (m/s) 0.1 0.0 0.5 

CKF 
δVN (m/s) 0.1 0.0 0.5 
δVE (m/s) 0.1 0.0 0.3 

 

Impact of INS Azimuth Misalignment on Accuracy of Integrated System    

To analyze the impact of azimuth misalignment on system accuracy, the INS velocity 

error is considered. Figure 6-9 and Figure 6-10 present the north component of the INS 

velocity error for Tests 1 and 2, respectively. The raw INS velocity error (difference 

between the GPS and INS velocities) contains the low frequency INS Schuler 

component, while the jumps are due to the non-stationary part of the INS error and GPS 

noise. During ZUPTs or in moderate motion, the INS non-stationary part is negligible 

and, thus, a smooth behavior of the Schuler component is observed. During motion with 

high dynamics, the non-stationary errors become significant, which causes jumps in the 

INS velocity error output.  

 

As seen in the plots, the traditional nine state Kalman filter does not estimate azimuth 

misalignment, Φup, very accurately; therefore, large jumps are observed so that the 

estimated velocity error almost repeats the raw signal, slightly smoothing the 

measurement noise from GPS.  The main reason for this comes from the very large 
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magnitude of the initial azimuth misalignment, so that this error does not belong to the 

linear region any longer. In other words, after the initial INS alignment, the remaining 

azimuth error is still significant, so that the assumption for small angles made in the INS 

error model is no longer appropriate. 
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Figure 6-9: North Velocity INS Error, Test 1 

Consequently, the estimate of Φup does not provide an acceptable level of accuracy. The 

large jumps in the raw signal in the plots are caused by actual outages in the GPS 

measurements. The combination of two algorithms - the Cascaded Kalman filter and 

heading correction - provides better results in terms of accuracy. By initially applying the 

heading correction, the remaining azimuth error is reduced to a level of one to two 

degrees. After that, the Cascaded Kalman filter provides a very accurate azimuth error 

ZUPT 

Stationary motion 

Due to Φup  

Due to Φup  
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estimate, which is used for fine azimuth misalignment compensation in the SINS 

algorithm. 
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Figure 6-10: North Velocity INS Error, Test 2 

The time taken for upΦ̂ convergence is also reduced. In some stages of the tests, the 

magnitude of the INS velocity error for the Cascaded Kalman filter is larger than in the 

case of the traditional Kalman filter with nine states. This is due to the combined 

influence of the ΦupUcosϕ and dr
Eω  components on the velocity error that can have the 

same or opposite signs during the tests.  The estimated upΦ̂  for Tests 1 and 2 using the 

Cascaded Kalman filter is shown in Figure 6-11. The jumps in the azimuth error 

estimates at the beginning of the tests are due to the transition process; the initial 

covarience matrix of estimation errors, P0, is chosen to be large in order to hasten 

convergence (see section 4.2.2). As a result to the above, the filtered INS velocity error 

Due to Φup
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has a smooth Schuler and, consequently, well-predicted behaviour, which is especially 

important for prediction. In order to check this, gaps are simulated in the GPS data. An 

analysis of the system accuracy in prediction mode is considered in the next section.  
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Figure 6-11: Estimated by CKF INS Azimuth Misalignment 

 
The residual azimuth error can be determined by integration of equation (3-32). 

Assuming that the accelerometer scale factors have been previously calibrated and that 

the azimuth error is nearly constant, the non-stationary component of the north velocity 

error nst
NVδ can be approximately defined as:  
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Figure 6-12: Inter-channel Influence of Vehicle Dynamics on INS Velocity Error, 

Test 1 

Therefore, the remaining azimuth error is approximately: 

N

E

E

N

E

Sch
NN

up V̂
jumpV̂δ

V̂
jumpV̂δ

V̂
V̂δV̂δˆ ≅≅

−
−≈Φ          (6-2) 

If the 3rd state Kalman filter is applied, the unestimated azimuth misalignment reaches   

8-10º. Using the traditional 9th state Kalman filter with an Φup correction, the remaining 

azimuth error is approximately 0.5º-2.5º, while the proposed combined method gives   

ZUPT’s 

Stationary motion 
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0.2º-0.6º. The influence of high vehicle dynamics in one channel on the velocity accuracy 

of another channel is demonstrated in Figure 6-12 and Figure 6-13 for the two tests, 

respectively. 
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Figure 6-13: Inter-channel Influence of Vehicle Dynamics on INS Velocity Error, 

Test 2 

Gyro Drift Compensation 

Gyro drift, being one of the major Schuler error components, has a significant impact on 

the INS velocity error. Figure 6-14 presents the INS velocity North and East error 

components after azimuth correction for two cases: with and without compensation of 

gyro drifts dr
Nω  and dr

Eω  (see equations (3-31)).  

ZUPT’s 
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Figure 6-14: Impact of Gyro Drifts on INS Velocity Error, Test 1 

As shown in the plots, if gyro drifts are compensated in the SINS algorithm, the 

amplitude of the Schuler component of the INS velocity error is reduced significantly, 

which improves its estimation accuracy. The estimates of gyro drifts dr
Nω  and dr

Eω  for the 

Tests 1 and 2 are presented in Figure 6-15. As seen from the plots, mutually distinct gyro 

drift behaviours were observed for the two tests. A possible explanation of this effect is 

the influence of temperature on the gyros’ operational capabilities. Two runs were 

Due to ωdr 

Due to ωdr 
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performed sequentially on the same date. During Test 1, the gyro drifts were quite stable, 

not exceeding one degree, while during Test 2, they varied from 1º to 2º. The jumps at the 

outset of the tests are caused by the transition period of the estimation process.  
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Figure 6-15: Gyro Drift Estimates 

Attitude Accuracy  

Since reference attitude information was not available for Tests 1 and 2, an analysis of 

the attitude accuracy could not be performed directly. Figure 6-16, Figure 6-17, Figure 

6-18 and Figure 6-19 present the attitude angles for the two tests, obtained from the 
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integrated solution for two cases: (1) with INS error compensation in the SINS algorithm, 

and (2) without such compensation.  
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Figure 6-16: Roll and Pitch, Test 1 

The difference in system output using the above two strategies illustrates the marginal 

improvement in the attitude accuracy of the integrated system. In roll and pitch, this 

difference ranges from 0.3º to 0.5º while, in azimuth, it varies from 7º to 10º for the two 

tests, respectively; this is shown at a larger scale in the lower plots of Figure 6-18 and 

Figure 6-19. These results confirm the assumption made in Chapter 5 about the accuracy 

of the initial INS alignment. Without azimuth compensation (FK3), the residual azimuth 

misalignment is large; so that it significantly degrades the estimation accuracy of the 

azimuth error. The approximate estimation accuracy of the horizontal errors can be 

obtained from an analysis of INS positional errors in stationary motion during prediction. 
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When the Cascaded Kalman filter is used, the estimation roll-pitch accuracy is better than 

0.05º to 0.1º; the estimation accuracy of azimuth error using the above approach, 

considered in the previous subsection, is better than 0.2º to 0.6º. 
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Figure 6-17: Roll and Pitch, Test 2 
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Figure 6-18: Azimuth, Test 1 
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Figure 6-19: Azimuth, Test 2 
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6.2.2 Results Using GPS Data with Simulated Gaps  

Positional Accuracy  

Eight gaps in the GPS data for both tests were simulated, each with a duration of 10 to 60 

seconds for parts of the tests with moderate (defined as motion with nearly constant 

speed: a < 1 m/s2) and high vehicle dynamics (a > 2 m/s2), to observe the influence of 

INS azimuth misalignment on prediction accuracy. Obviously, the accuracy in prediction 

depends mainly on vehicle dynamics as well as on the duration of a given gap. The 

lengths of simulated data gaps were chosen to be similar to the typical durations of the 

GPS outages in urban areas.    

 

To illustrate the prediction accuracy in position, three cases are considered: (1) the 

reduced Kalman filter without error compensation in the SINS algorithm (1st method – 

FK3, represented by a red line in the following plots); (2) the traditional Kalman filter 

with azimuth correction (2nd method – FK9, represented by a green line in the plots); and 

(3) the proposed combined approach with azimuth and GPS heading corrections (3rd 

method – CKF, represented by a magenta line in the following plots). Figure 6-20 and 

Figure 6-21 present the north position component as an output of the integrated system 

for the two tests, respectively. In these figures, the lower plots show a prediction 

accuracy for the above three cases during a GPS outage with high vehicle dynamics. On 

the top of  Figure 6-22 and Figure 6-23,  simulated GPS data gaps are plotted on the test 
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trajectories for the two tests; the lower plots show the positional accuracies using the 

above three algorithms. 
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Figure 6-20: North Position Component Using Data with Simulated GPS Outages, 

Test 1 

For five- to ten-second outages with stationary vehicle motion, even with use of the 

reduced Kalman filter, metre-level position accuracies are achieved. Firstly, the impact of 

Gaps with moderate 
motion 

Gaps with high 
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the azimuth misalignment for stationary motion is negligible. Secondly, INS velocity 

errors start to grow during GPS gaps and, being integrated, expand the INS positional 

error; however, for intervals on the order of several seconds, these errors do not have 

time to accumulate, making positional accuracy degradation inconsequential. 
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Figure 6-21: North Position Component Using Data with Simulated GPS Outages, 

Test 2 

For long-term prediction, the influence of the azimuth misalignment becomes evident. 

During moderate motion - even for relatively long GPS gaps of 40 to 60 seconds - both 
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filters with azimuth error correction provide a high positional accuracy of 1 to 2 metres. 

However, during high vehicle dynamics with outages of the same duration, the azimuth 

misalignment error causes major accuracy degradation. This effect is well demonstrated 

in the lower plots of Figure 6-20 and Figure 6-21. For example, in Figure 6-20 during a 

30-second GPS gap with relatively high vehicle dynamics, when the 3rd state Kalman 

filter is used, the positional errors grow over the prediction interval up to 70 metres; the 

9th state Kalman filter provides a positional accuracy of about 30 metres, while the 

Cascaded Kalman filter improves the result to 5 metres. To summarize, for stationary 

vehicle motion, metre-level positional accuracy can be obtained even for relatively long 

prediction intervals (with duration of 30 to 60 seconds); nevertheless, for high vehicle 

accelerations, non-stationary INS errors (mostly azimuth misalignment) cause positional 

accuracy degradation in the order of tens of metres. In order to achieve better results, 

accurate estimation of the azimuth misalignment should be considered.  

 

A statistical analysis of the positional errors during prediction using data from both tests 

is presented in Table 6-5. Diagrams in Figure 6-24 depict the RMS values of positional 

errors of the integrated system in prediction for all three cases. As seen in Table 6-5, 

there is a noticeable difference in the results for short-term and long-term data gaps. This 

stems mainly from the fact that the results are categorized by data gap durations, so that 

the results for outages on parts of the test trajectories with low and high vehicle dynamics 

are combined. The influence of high accelerations on system accuracy becomes evident 

during long prediction intervals of more than 20 seconds. By comparison, during outages 

in the order of a few seconds, system errors do not have enough time to accumulate. 
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Figure 6-22: Trajectory for Data with Simulated GPS Outages, Test 1 
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Figure 6-23: Trajectory for Data with Simulated GPS Outages, Test 2 
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Figure 6-24: RMS of Positional Errors in Prediction 
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Table 6-5: Positional Accuracy in Prediction 

Gaps (5-15 sec) Gaps (30-60 sec) Errors RMS Mean |Max| RMS Mean |Max| 
FK3 

δN (m) 1.0 -0.3 3.9 45.7 -5.6 109.7 
δE (m) 0.7 -0.1 1.0 29.0 -2.6 106.2 

FK9 
δN (m) 0.6 0.3 1.5 10.8 5.3 34.0 
δE (m) 0.5 0.1 1.9 6.5 4.0 20.9 

CKF 
δN (m) 0.6 0.1 1.9 5.9 2.0 18.5 
δE (m) 0.4 0.0 1.0 4.9 1.1 11.1 

Velocity Accuracy 

In the velocity domain, a similar situation is observed. Actually velocity errors, being 

integrated over the prediction interval, yield the above errors in position. Figure 6-25 and 

Figure 6-26 present the north component of the system velocity for the two tests, 

respectively. In stationary periods, the two schemes with INS error compensation provide 

comparable velocity accuracies of 0.1 to 0.5 m/s; while, using the 3rd state Kalman filter, 

the achieved accuracy is in the order of 1 to 2 m/s. When the vehicle is experiencing high 

accelerations, the impact of azimuth misalignment becomes observable, which is 

demonstrated in the lower plots of Figure 6-25 and Figure 6-26. These plots represent the 

same gaps considered in the analysis of positional accuracy. By implementing a Kalman 

filter with the reduced model, a prediction accuracy of 2 to 3 m/s is obtained. A 

conventional Kalman filter with Φup correction improves the result to between 0.5 and 1.5 

m/s. Finally, the Cascaded Kalman filter provides the best results, so that the velocity 

error in this case is between 0.2 m/s and 0.5 m/s. 
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Figure 6-25: North Velocity Using Data with Simulated Outages, Test 1 

A statistical analysis of the velocity errors during prediction, based on data from both 

tests, is presented in Table 6-6. In Figure 6-27 the diagrams show RMS values of velocity 

errors for the three strategies investigated. Similar to the position domain, a considerable 

degradation of the system accuracy is observed for long-term data gaps in the order of 30 

to 60 seconds, while prediction intervals of 5 to 16 seconds do not produce such large 

errors even for the Kalman filter with the reduced model. This may be explained in the 
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following way: even during high vehicle accelerations, the system errors in prediction do 

not accumulate within 5 to 8 seconds; meanwhile, gaps of 10 to 15 seconds appeared to 

be associated mostly with those parts of the test trajectory with moderate dynamics.  
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Figure 6-26: North Velocity Using Data with Simulated Outages, Test 2 
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It is important to note that the reference velocity information was obtained from the 

FLYKIN+TM software using GPS measurements from the same GPS unit; on this basis, 

the velocity errors of the integrated system cannot be considered as absolute but as 

relative only with respect to the stand-alone GPS solution during the simulated gaps.  

 

Table 6-6: Velocity Errors in Prediction 

Gaps (5-15 sec) Gaps (30-60 sec) Errors RMS Mean |Max| RMS Mean |Max| 
FK3 

δVN  (m/s) 0.5 -0.3 1.3 2.1 -0.3 5.8 
δVE (m/s) 0.2 -0.1 0.6 3.6 -0.2 13.3 

FK9 
δVN (m/s) 0.2 0.1 0.6 0.6 0.3 1.8 
δVE (m/s) 0.2 0.1 0.5 3.5 0.2 8.7 

CKF 
δVN (m/s) 0.2 0.0 0.5 0.3 0.2 1.2 
δVE (m/s) 0.1 0.0 0.3 1.5 0.1 3.8 
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Figure 6-27: RMS of Velocity Errors in Prediction 
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6.3 Conclusions 

 

The objective of this research was to develop and test the cascaded scheme of INS/GPS 

integration for open area applications. The integration strategy, which was described in 

detail in Chapter 5, includes the cascaded scheme of azimuth error estimation as well as 

compensation for the effects of the estimated azimuth misalignment and gyro drifts in the 

SINS algorithm. The influence of the above INS errors on system performance was 

evaluated. To analyse the prediction accuracy in position and velocity domains, GPS data 

gaps with different durations were simulated. 

 

Test results illustrate the impact of azimuth misalignment on the system accuracy. In 

Chapter 5, an observability analysis showed that azimuth error could be accurately 

estimated during periods of high vehicle dynamics while, in stationary mode, accurate 

estimation became questionable. The test results show that the Cascaded Kalman filter 

decreases the time of the transition process and improves estimation accuracy of the 

azimuth error in general. The combined azimuth correction using the GPS heading and 

the filter’s azimuth error estimate provides better results in comparison to the traditional 

approach. Azimuth compensation in the SINS algorithm also improves the attitude 

accuracy of integrated system; while gyro compensation contributes the improvement of 

estimation accuracy of INS errors in total. 
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The experimental results demonstrate that, in prediction mode, accurate estimation of the 

INS azimuth error becomes essential, especially for long-term GPS outages of 30-60 

seconds with high vehicle dynamics.  Crucial prediction accuracy degradation of 60 to 

120 m in position and 3 to 6 m/s in velocity, on average, is observed, if the azimuth error 

is not considered in the estimation scheme. The extended Kalman filter provides better 

positional accuracy of approximately 10 to 30 m and velocity accuracy of 0.5 to 2 m/s for 

GPS outages of the same duration. The proposed method considered in this thesis 

improves upon the results expected from the traditional approach, so that an accuracy of 

between 5 and 15 m and 0.2-0.6 m/s in the position and velocity domains, respectively, is 

achieved.  
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7Chapter 7 

Results in Suburban and Urban Areas 

Chapter 6 focused on the performance of the integrated system in open areas, using a 

conventional GPS receiver. This chapter presents the description and results of field tests 

of the integrated system in residential and downtown areas, when a high-sensitivity GPS 

receiver is used. The aim of the analysis is to assess overall system performance in terms 

of its positional accuracy. The limitations of system performance in challenging GPS 

environments - namely, long-term prediction accuracies as well as fault detection of HS 

GPS measurements – are also considered herein.  

7.1 Test Description 

Figure 7-1 shows the test set-up. Differential GPS measurements were utilized in the 

integration algorithm for residential area tests; this entailed observation at reference and 

remote stations, which were established throughout the testing. The equipment mounted 

in the test vehicle at the remote station included: a NovAtel’s Black Diamond System 

(BDS) (the same unit used in open area tests) and a SiRF Star II Xtrac high sensitivity 

GPS receiver. Both GPS receivers were connected to a NovAtel 600 antenna via a signal 

splitter. Similar to the open area tests, the reference station was located on a pillar on the 

roof of the CCIT Building at the University of Calgary.  Test equipment comprised a 

NovAtel OEM receiver connected to a NovAtel 600 antenna. The coordinates of the 

reference station were the same as given in Chapter 6. The IMU was rigidly affixed to the 
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floor of the test van, while the GPS antenna was mounted on the roof of the vehicle. 

Analogously to the open area tests, the HG1700 inertial data was time-tagged with GPS 

time. GPS data were collected at a rate of 1 Hz, while the raw IMU measurements were 

logged at a rate of 100 Hz. In the test vehicle, power for the NovAtel antenna, the SiRF 

receiver and a laptop for data logging was provided by splitting the DC power from the 

car’s cigarette lighter; two 12V car batteries powered the BDS system. Table 7-1 presents 

several key characteristics of the GPS receivers used for testing.  

 
 

 

 

 

Figure 7-1: Test Set-up for Urban Areas 

A series of tests were conducted in Calgary, on February, 19 and 20, 2004. Seven tests 

took place in an urban area, each test having a duration of about 20 to 30 minutes. The 

vehicle speed varied from 30 to 60 km/s and the test van frequently stopped on traffic 

lights during each run. The city’s downtown has a variety of tall buildings ranging from 

40 to 200 metres, as illustrated in Figure 7-2. This could cause GPS signal masking 

effects. Several underpasses are located on the test trajectories that could lead to complete 

satellite blockage and consequently loss of lock. Two additional tests were carried out in 

a residential district of Calgary. This area is characterized by one- and two-storey 

buildings and occasional roadside trees, as shown in Figure 7-3. 

Rover station set-up Base station set-up 

OEM4 
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splitter
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Table 7-1: Technical Characteristics of GPS Receivers Used for Testing 

Type of receiver Technical specifications 
SiRF High Sensitivity 
(SiRFStarIIe chipset) 
(Rover Station) 
 

• 12-Channel L1-only C/A 
• Code with carrier aiding 
• 340-800 ms dwell time 
• Wide correlator 
• Tracking Sensitivity -186.0 dB-W 
• Reacquisition Sensitivity - 177.9 dB-

W* 
NovAtel OEM4 
(Rover Station) 
 

• 24-Channel L1/L2 C/A code with 
full carrier tracking 

• Pulse Aperture CorrelatorTM 
NovAtel OEM4 
(Rover Station) 
 

• 24-Channel L1/L2 C/A code with 
full carrier tracking 

• Pulse Aperture CorrelatorTM 
* As determined by hardware simulation testing (MacGougan et al., 2002) 

 
 

 

Figure 7-2: Typical Test Environment in Downtown Calgary 
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Figure 7-3: Typical Test Environment in Residential Area of Calgary 

7.2 GPS Solution 

GPS position and velocity information used in the integrated system was obtained from 

two sources: (1) the single point internal code solution of a SiRF receiver; and (2) the 

code solution using the C3NAVG2TM software, developed by the PLAN Group of the 

University of Calgary (C3NAVG2TM, Petovello et al. 2000). The signal power cut-off was 

set to 0 dB-Hz. For post-processing analysis using the C3NAVG2TM software, different 

parameters were chosen for tests in downtown and residential areas, respectively. In the 

case of the downtown data sets, these parameters were set to the following values:  

• Solution mode: height-constrained single point;  

• GDOP threshold: 10;  

• elevation mask: 7º;  

• threshold for residual checking: 5 metres;  

• carrier phase smoothing: not implemented; and 
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• atmosphere modeling: not implemented. 

 
In urban conditions, large GPS positional errors in the order of the tens of metres were 

observed due to multipath and echo-only signals as well as signal cross-correlation. 

Atmospheric errors did not have a significant impact on the GPS solution as compared to 

the above effects; therefore, these errors were not taken into consideration in post-

processing. Moreover, in downtown areas, the single-point GPS solution provided results 

similar to those of the differential GPS solution; thus, only the single point solution was 

utilized for data processing. To improve solution availability, which is weak due to signal 

masking, a height-constrained strategy was implemented. The average number of 

satellites used in the GPS solution ranged from three to seven, while the PDOP values 

varied from two to more than ten. Using a HS GPS receiver in downtown areas, 

reasonably high GPS measurement availability of 77% to 98% of total test time was 

observed. 

 

The parameters for processing of data from residential areas using C3NAVG2TM are as 

follows:  

• Solution mode: differential;  

• GDOP threshold: 10;  

• elevation mask: 15º;  

• threshold for residual checking: 5 metres; 

• Standard deviation of height (for constraints): 10 metres;   

• carrier phase smoothing: implemented; and 
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• tropospheric correction: implemented. 

In contrast to urban canyons the major errors in position and velocity occurring in 

suburban areas were caused by multipath, signal cross-correlation and echo-only signals 

– all of which could be reduced significantly or even eliminated by increasing the 

elevation mask (set to 15º). As a result, the average number of satellites used in the 

solution was relatively low in comparison to open area environments and ranged from 

four to six; however this still provided a favourable value of the PDOP that did not 

exceed two during most of the testing. GPS measurement availability was very high - in 

the order of 98% to 100% of overall test time. Due to the above, the differential GPS 

solution utilized in these field tests was capable of providing better results than the single 

point approach.  

7.3 Downtown Results 

The reference information was available in the position domain only as supplied by a 

Digital Map of Calgary, which had an accuracy of 5 to 10 metres. The map provides the 

coordinates of a road centreline, so that the precise location of the test vehicle - in terms 

of which lane of the roadway was occupied - remains unknown. As a result, the analysis 

of position accuracy simply is considered herein.    

 

In downtown conditions, the INS is updated by GPS positions and velocities. These 

quantities are potentially corruptible by large errors such as tracking of multipath and 

echo-only signals, and signal cross-correlation; they are also susceptible to degradation of 
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geometry as a result of satellite blockage, which in turn lowers the overall availability of 

a GPS solution. As a consequence of the above, the integrated algorithm is characterized 

by: (1) frequent prediction intervals with a duration varying from 10 seconds up to 1-3 

minutes; and (2) erroneous GPS updates, when undetected. These factors combine to 

drastically degrade the overall system accuracy.  

 

Figure 7-4 presents the reference trajectory for Run #1. It is about 3-4 kilometres long 

and contains several turns for heading accuracy evaluation. This trajectory is 

characterized by a high density of skyscrapers, which produce severe signal masking and 

attenuation along with strong glassy reflections. In a major part of the trajectory (5th and 

6th Avenue) signal masking occurs from two directions only (north and south) due to the 

orientation of the grid pattern of Calgary’s downtown core. 

 

Figure 7-5 demonstrates the achieved system accuracy when the internal GPS solution is 

used. The GPS position and velocity information obtained from the internal solution does 

not contain data gaps of more than a few seconds. Presumably, when a GPS receiver 

loses lock, the positions and velocities are propagated through the duration of an outage. 

The receiver firmware utilizes filtering techniques, which explains the smooth low 

frequency behaviour of position errors (MacGougan et al., 2002 and Basnayake, 2004). 

 

The time intervals, during which the GPS internal solution predicts its positions and 

velocities, are not provided by the receiver firmware. Therefore, measurement 

availability is determined by the number of satellites used in the solution. For this run, it 
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is quite high. The 3D- and 4D- fix density is 95% of the overall test time. As mentioned 

in Chapter 2, fix density is defined herein as the percentage of test time when at least 

three (3D FD) or four (4D FD) measurements are available. 
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Figure 7-4: Reference Trajectory 1 

Due to smooth behaviour of GPS velocities and positions, the estimation algorithm 

‘trusts’ GPS measurements, and no dramatic improvement in accuracy is observed in the 

given example: the RMS of across-track error for stand-alone GPS solution is 14 metres, 

while the integrated solution improves the result to 12 metres. This is well illustrated in 

Table 7-3, which shows the percentage of time during the tests when the filters in the 

integrated scheme work in prediction mode. For Run #1, it is observed for only 4% of the 
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8th St 

7th St 

4th Ave

Digital map 

Trajectory 
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test duration for the velocity filters (only during GPS gaps as indicated by FD of 96%), 

and 19% of the test time for the coordinate filters. It must be mentioned that the 

coordinate filters work in prediction mode more frequently than velocity filters. This is 

due mainly to the operational mode criteria for the filters. Unlike velocity filters, the 

coordinate filters always switch to prediction mode, when the test vehicle stops due to 

traffic jams or lights at controlled intersections. Moreover, GPS velocity measurements 

are typically less noisy in comparison to GPS positions and do not contain large outliers 

due to tracking of multipath and echo-only signals.  

 

Figure 7-6 shows the C/N0 and elevation angles for all satellites tracked during Run #1. 

As seen from the plots, a HS GPS receiver is capable of tracking highly attenuated 

signals with power levels less than 16 to 18 dB-Hz, which is 25 dB-Hz lower than the 

nominal value of C/N0 for LOS signals (by comparison, a conventional GPS receiver is 

able to track signals attenuated by 9 to 10 dB-Hz (MacGougan et al., 2002). As expected, 

the signals from the satellites at lower elevations are more attenuated than the SVs, which 

are closer to zenith (due to longer signal paths and, consequently, larger space loss 

(Lachapelle, 2002). The average C/N0 value is approximately 35 dB-Hz, which is 10 dB-

Hz lower than the average signal power in open sky areas. Due to the elevation cut-off, 

severely degraded GPS signals at low elevations (PRN 1 and 25) with C/N0 less than 20 

dB-Hz are not used in the solution. Meanwhile, the satellite signals with PRNs 4, 10 and 

30, for example, can be attenuated LOS, multipath or even echo-only signals caused by 

strong glassy reflections. The C/N0 values are characterized by medium and high 

frequency fluctuations. The medium frequency oscillations (herein in a range from 20 to 
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43 dB-Hz) are primarily due to multipath errors, while the high frequency components 

are due to receiver noise (Ray, 2000).   
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Figure 7-5: Position Output of Integrated System Using The SiRF Internal Solution, 

 Run #1 on Trajectory #1 

Figure 7-7 presents position output of the integrated system for Run #1, when the DGPS 

C3NAVG2TM solution is used. By comparison to the previous case, considerable 

improvement in the system accuracy is observed: the RMS of across-track error of stand-

alone GPS solution is 86 metres, while the integration with the INS improves the result 

almost in four times to 23 metres. The coordinate Kalman filter with adaptive 

measurement covariance works appropriately in this case due to the following: 

. 
× 

Digital map 
INS/SiRF-Int 
SiRF-Int 

SiRF Solution: 
3D FD: 95% 
4D FD: 95% 
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C3NAVG2TM positions are noisy and contain large errors of high frequency so that the 

GPS accuracy changes abruptly during the test.  
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Figure 7-6: C/N0 and Elevation Angles for All Satellites Tracked, Run #1 
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When the GPS solution is uncertain (i.e. magnitude of the innovation sequence is large), 

the measurement covariance increases, the Kalman gain tends towards zero and the 

estimation algorithm relies on the system model. Probable sources of large GPS errors 

include: false reacquisition or acquisition of the correlation peaks, namely signal cross-

correlation, along with tracking of multipath or echo-only signals. (For example- as seen 

in Figure 7-6, signals transmitted by the satellites with PRNs 4, 10 and 30 can be 

multipath or echo-only due to large variations of the C/N0 values). 
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Figure 7-7: Position Output of Integrated System Using The C3NAVG2TM Solution, 

 Run #1 on Trajectory #1 

This is expected to some extent owing to two factors: (1) the probability of false 

detection at lower signal power levels is much higher; (2) echo-only and multipath 

C3NAVG Solution: 
3D FD: 96% 
4D FD: 63% 

.
∆ 
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signals may have higher signal levels than line-of-sight signals (MacGougan, 2003).

MacGougan investigated the influence of signal cross-correlation effects in the 

measurement domain. The cross-correlation functions have peak levels that reach -24 dB 

with respect to the autocorrelation peak. This is known to result in tracking of false 

correlation peaks at certain Doppler offsets and levels of strength differences between 

signals (Ward, 1996a) . Therefore, signal cross-correlation is assumed to be one of the 

major sources of large outliers in GPS positions.  

C3NAVG2TM GPS measurements contain frequent data gaps of a few seconds caused by 

signal masking as well as the chosen post-processing parameters, such as residual 

checking and the DOP threshold. The reliability criteria based on the PDOP values, the 

number of satellites used in the solution, and the INS-GPS velocity difference also force 

the estimation algorithm to switch to prediction mode, so that the filters work in 

prediction mode more often and for longer time intervals than if this switch were 

motivated by actual gaps in GPS measurements. This situation is well illustrated in 

Figure 7-8, which shows the PDOP values along with the number of satellites used in the 

solution, as obtained from the C3NAVG2TM software. The 3D- and 4D- fix density 

calculated from the number of measurements available, is 96% and 63% respectively. 

Meanwhile, the integrated solution for Run #1 is characterized by prediction intervals of 

30 to 40 seconds, which degrades the position accuracy of the integrated system (see 

Table 7-4) As shown in Table 7-3 the Kalman filters in the estimation algorithm work in 

prediction mode for 41% (the velocity filters) and 54% (the position filters) of the total 

test duration.
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Figure 7-9 presents the across-track errors for Run #1 for the above two cases: (1) using 

the GPS internal solution; and (2) using the C3NAVG2TM solution. The across-track error 

for all tests was computed using the digital map of Calgary as a reference. As mentioned, 

the positional accuracy of a reference trajectory therefore is on the order of 10 to 15 

metres (the digital map provides the coordinates of the road centreline only). Therefore, 

herein the measured position accuracy of less than 15 metres can be evaluated as 

relatively high. The stand-alone C3NAVG2TM positions contain a few outliers in the range 

of 200 to 500 metres. In addition to signal cross-correlation, these large errors may be 

caused by tracking echo-only signals, since this type of error is basically unlimited in 

magnitude.  
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Figure 7-8: PDOP and Number of Satellites Used in Solution for Run #1,  

Based on The C3NAVG2TM Output 
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For Run #1, the stand-alone positional accuracy of the SiRF internal solution varies from 

15 to 40 metres, while the integrated solution slightly improves the result to between 10 

and 35 metres.  

419300 419480 419660 419840 420020 420200
0

10

20

30

40

50

E
rro

r (
m

)

13:28:20 13:31:20 13:34:20 13:37:20 13:40:20 13:43:20

419300 419480 419660 419840 420020 420200
0

50

100

150

200

250

300

350

400

450

500

E
rro

r (
m

)

13:28:20 13:31:20 13:34:20 13:37:20 13:40:20 13:43:20

GPS Time of Week (s), Local Time (hours:minutes:seconds)

Sirf-C3NAVG
INS/Sirf-C3NAVG

Sirf-Int
INS/Sirf-Int

 

Figure 7-9: Across-track Error, Run #1 on Trajectory 1 
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The accuracy of the raw C3NAVG2TM solution is in the order of 50 to 80 metres on 

average with occasional outliers of 200 to 500 metres. The integrated solution improves 

the results significantly, producing a position accuracy ranging from 10 to 50 metres. As 

seen in Figure 7-9, the integrated solution contains occasional jumps in the order of 10 to 

50 metres. They are caused by implementation of the Kalman filter with adaptive 

measurement covariance. In some cases, the filter does not work optimally due to the 

challenge of separating the system errors from GPS measurement errors. Theoretically, 

when the filter is supported with erroneous GPS measurements over several consecutive 

epochs, it obliges the innovation sequence (as defined by the difference between 

predicted state and actual measurements) to grow and the Kalman gain to decrease. As a 

result, the algorithm works similarly to prediction mode and it smoothes the GPS 

blunders. However, in some cases, the innovation sequence remains relatively small, 

when the GPS positions are biased and change slowly over time. It leads to a large gain 

on measurements and causes jumps is the integrated solution. The same effect is observed 

in results for the other runs, described below.  

 

Four more runs were conducted on the same trajectory. Very large across-track errors of 

up to 100-500 metres for the internal solution, and up to 500-2000 metres for the 

C3NAVG2TM solution, were observed due to the effects listed above. Unlike the situation 

in Run #1, even the internal GPS solutions for Run #2 and Run #3 are characterized by 

long-term data gaps of more than one minute.  
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Figure 7-10 presents the position output of the stand-alone SiRF internal and integrated 

solutions for Run #2. As seen in the figure, at the end of the test the GPS positions are not 

available for over 400 metres of the test trajectory, which corresponds to the data gap of 

40-80 seconds. The across-track error of the internal solution ranges from 60 to 300 

metres, while the integrated system improves the result to between 10 and 20 metres. In 

Run #2, the internal solution loses its smoothing ability. The magnitude of the GPS 

position error changes rapidly, varying from tens of metres to over 100 metres. The 

possible cause of this behaviour is the tracking of one or more echo-only signals of high 

elevation which, being undetected, causes divergence of the GPS solution so that it 

becomes unreliable by the end of the test. For example, signals from the satellites with 

PRNs 9 (elevation angle ~ 50º) and 20 (elevation angle ~18º) can be multipath or echo-

only, as shown in  Figure 7-11, which depicts the C/N0 values and elevation angles for all 

tracked satellites. The power levels of these SVs contain large variations from 15 to 45 

dB-Hz. The average C/N0 ranges from 30 to 35 dB-Hz. Signal cross-correlation also has 

the potential to cause divergence of the GPS solution. 

 

The availability obtained from the receiver firmware is relatively high: 3D FD is 96% and 

4D FD is 90%. The 10% loss in 4D FD is presumably due to the long gap at the end of 

the test. However, these values are assumed to be overly optimistic and do not reflect the 

quality of the actual GPS measurements. It can be illustrated by the fact that the filters in 

the integrated algorithm work in prediction for almost half of the overall test duration. 

The integrated system improves the SiRF internal solution significantly. Due to noisy-
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like behaviour of the internal GPS solution, the reliability criteria works optimally, which 

allows successful fault detection of erroneous GPS measurements.  
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Figure 7-10: Position Output of Integrated System Using The SiRF Internal 

Solution,  Run #2 on Trajectory #1 

Figure 7-12 depicts the parts of the test trajectory, when velocity and coordinate filters 

switch operation to prediction mode. This happens when GPS data contains outliers 

larger than 40 to 50 metres. As demonstrated in Table 7-3, the velocity and coordinate 

filters work in prediction mode 23% and 50% of elapsed test time respectively. 

 

Figure 7-13 presents the position output of the integrated system using the C3NAVG2TM 

GPS solution for Run #2. A similar situation to the case of Run #1 is observed.  
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Figure 7-11: C/N0 and Elevation Angles for All Satellites Tracked, Run #2 

The epoch-by epoch Least-Squares solution supplies the system with positions that 

contain large errors of high frequency. Frequent data gaps indicated by the integrated 

algorithm do not exceed 10 to 40 seconds in duration (see Table 7-4), so that the position 

errors of the integrated system in prediction mode do not have time to accumulate.  
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Figure 7-12: Filter Mode for Run #2, The INS/SiRF-Internal Solution 

Figure 7-14 shows the PDOP values and a number of satellites used in the solution as an 

output of the C3NAVG2TM software. There are two data outages of two seconds in 

duration when no solution is obtained. The 3D- and 4D- fix densities of 98% and 96%, 
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respectively, are very high. These values are not very informative since data gaps are 

defined not only by measurement availability, but also by the PDOP and differences 

between GPS and INS-predicted velocities. As a result to the above, prediction intervals 

for velocity and coordinate filter’s operation are much longer than can be expected from 

the FD and PDOP magnitudes, as illustrated in Figure 7-15. 
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Figure 7-13: Position Output of Integrated System Using The C3NAVG2TM Solution, 

 Run #2 on Trajectory #1 

The integrated solution improves the results considerably, as demonstrated in Figure 

7-16, which presents the across-track error for Run #2. The stand-alone internal GPS 

solution has a position accuracy of 30 to 150 metres, while aiding by the INS improves 

the accuracy to between 10 and 50 metres. C3NAVG2TM produces a position solution of 
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3D FD: 98% 
4D FD: 96% 
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accuracy in the order of 50 to 150 metres with occasional outliers of 500 to 1000 metres. 

In this case, the positional accuracy of the integrated system ranges from 20 to 50 metres 

(see Table 7-2). As seen in Figure 7-16, the integrated system provides positions with 

across-track error that contains a few jumps varying from 5 to 10 metres. These outliers 

are result of implementation of the adaptive Kalman filter for position error estimation.  
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Figure 7-14: PDOP and Number of Satellites Used in Solution for Run #2,  

Based on The C3NAVG2TM Output 

Figure 7-17 shows the position output for Run #3 when the internal GPS solution is used. 

Presumably, the GPS receiver lost lock due to signal masking and could not reacquire 

satellite signals for this period; meanwhile, the receiver firmware kept propagating the 
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positions over the prediction interval, resulting in severe accuracy degradation. In this 

run, the longest prediction interval is more than two minutes long (see Table 7-4).  
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Figure 7-15: Filter Mode for Run #2, The INS/SiRF-C3NAVG2TM Solution 
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Figure 7-16: Across-track Error, Run #2 on Trajectory #1 
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Figure 7-17: Position Output of Integrated System Using The SiRF Internal 

Solution, Run #3 on Trajectory #1 

This is indicated by fix density values of 77% (3D) and 76% (4D). Nevertheless, these 

numbers are most probably too optimistic, since the SiRF firmware does not provide 

information about the filtering mode, i.e. the time intervals during which the navigation 

solution is predicted, remain unknown. It is well illustrated by Figure 7-18, which depicts 

parts of the test trajectory when the filters in the integrated algorithm and the receiver 

firmware work in prediction mode. The data outages observed in the internal solution are 

derived from the number of satellites used in the solution in the respective epoch 

(highlighted in magenta). These parts of the GPS internally-derived trajectory do not 

represent the total duration of the gap. The largest errors in GPS internal position were 

SiRF Solution: 
3D FD: 77% 
4D FD: 76% 

. 
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observed during long-term data gaps on the segments of the trajectory containing curves. 

During one of these outages, the receiver is updated with measurements for several 

consecutive epochs before loosing lock again (the right-bottom corner of the plot), 

however, the SiRF firmware repeatedly interpolated positions in the wrong direction. 

This can be caused by the adoption of overly optimistic values of the covarience matrix 

of input noise in the Kalman filter. Too much gain is attributed to the system model, 

rather than to the measurements. 
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Figure 7-18: Operation Modes of The Coordinate Filters of Integrated System and 

The SiRF Internal Solution, Run #3  

In prediction mode, without external heading information, the stand-alone GPS position 

solution drifts 150-500 metres away from the test trajectory. Figure 7-19 presents the 
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C/N0 and elevation angles for all satellites tracked during Run #3. The results are 

analogues to the previous two cases. 
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Figure 7-19: C/N0 and Elevation Angles for All Satellites Tracked, Run #3 

The integrated system provides substantial improvement in the positional accuracy. The 

shape of the trajectory is preserved, and across-track error does not exceed 70 metres. 
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Similar to the previous run, the filters in the estimation algorithm switch to prediction 

mode quite often (21% and 36% of the test time for velocity and coordinate filters, 

respectively, as shown in Figure 7-18).   
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Figure 7-20: Position Output of Integrated System Using The C3NAVG2TM Solution, 

Run #3 on Trajectory #1 

Figure 7-20 presents the position output of the integrated system based on the 

C3NAVG2TM output. As in the first two runs, the raw GPS solution provides poor position 

accuracy with large outliers in the order of tens of metres and regular short-term data 

gaps of 10 to 30 seconds. It is well illustrated by Figure 7-21, which depicts the PDOP 

magnitudes and the number of satellites used in the solution for Run #3. There are several 

outages of a few seconds, when no solution is available. The fix densities for Run #3 are: 

C3NAVG Solution: 
3D FD: 86% 
4D FD: 49% 
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86% (3D) and 49% (4D). The longest data gap for Run #3 is more than two minutes (this 

is not reflected in Figure 7-21). The data gaps are defined by the duration of filter 

operation in prediction mode, while the operational mode criterion is determined not only 

by the PDOP values and the number of satellites used but also by the difference between 

the INS and GPS velocities (see Chapter 5).  

421200 421440 421680 421920
0

2

4

6

8

N
um

be
r o

f S
V

14:00:00 14:04:00 14:08:00 14:12:00
GPS Time of Week (s), Local Time (hours:minutes:seconds)

421200 421440 421680 421920
0

5

10

 P
os

iti
on

 D
O

P

14:00:00 14:04:00 14:08:00 14:12:00

 

Figure 7-21: PDOP and Number of Satellites Used in Solution for Run #3,  

Based on The C3NAVG2TM Output 

Analogous to the previous tests, the integrated system improves position accuracy 

dramatically, which is shown in Figure 7-22. This figure represents the across-track error 

for Run #3. For this run, utilizing the SiRF firmware output, stand-alone GPS operation 

produces an across-track error ranging from 50 to 150 metres on average, with outliers of 
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over 500 metres. The INS, as updated by internal GPS measurements, decreases this error 

significantly, to between 30 and 70 metres.  
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Figure 7-22: Across-track Error, Run #3 on Trajectory #1 
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The across-track error for the stand-alone C3NAVG2TM solution varies from 50 to 150 

metres with several jumps of 300 to 500 metres. The integrated system improves the 

resulting accuracy to 50 metres on average; however, the positional accuracy of the 

integrated solution is degraded to 150 metres in the part of the trajectory containing turns. 

The origin of this degradation is a rough estimate of INS azimuth misalignment, which 

degrades the position accuracy of the integrated system considerably. Due to typical GPS 

data gaps occurring throughout the test (see Figure 7-21), the azimuth error does not have 

enough time to converge, which leads to a residual error of about 6º to 8º. 

 

Another run in downtown Calgary was conducted on a different trajectory, as shown in 

Figure 7-23 and is denoted Run #4. A part of this trajectory running along 6th Avenue is 

characterized by a high density of tall buildings; the remainder is defined by a variegated 

physical environment. For example, on 9th Avenue, a few skyscrapers along with 3- to 5-

storey buildings are located on the north side of the road, while the district south from 9th 

Avenue is an open sky area.  

 

Figure 7-24 presents the position output of the integrated system using GPS internal 

positions and velocities for Run #4 on Trajectory #2. On 6th Avenue, the trajectory 

segment is characterized by a high concentration of buildings, and the stand-alone GPS 

solution experiences position errors of up to 50 metres due to signal masking and tracking 

of multipath signals. On the remainder of the trajectory, errors in position do not exceed 

10 to 20 metres. The fix densities for this run are quite high: 98% (3D) and 96% (4D). 
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The loss in measurement availability appears on the trajectory segment characterized by 

harsh GPS conditions, referred to above. The integrated solution improves the positional 

accuracy to 25 metres for this part of the test.  
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Figure 7-23: Reference Trajectory #2 

 

Figure 7-25 shows the C/N0 values and elevation angles for all satellites tracked during 

Run #4. In a similar manner to previous cases, large fluctuations in C/N0 are observed for 

some satellites owing to multipath effects and tracking of echo-only signals (for example, 

possible candidates are PRN 4 and 10). The average position error of stand-alone GPS 

solutions is in the range of 30 to 100 metres. The GPS solution in Run #4 has only a few 
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data gaps of several seconds in the part of the trajectory with severe satellite blockage. 

Figure 7-26 demonstrates the position output for Run #4 using the C3NAVG2TM solution. 

A few outliers up to 500 to 2000 metres were observed in the C3NAVG2TM positions. The 

possible error sources are false acquisition of correlation peaks as well as tracking of 

echo-only signals. 
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Figure 7-24: Position Output of Integrated System Using The SiRF Internal 

Solution, Run #4 on Trajectory # 2 

Figure 7-27 depicts the PDOP and the number of satellites used in the solution. As seen 

from the plots, the GPS receiver tracks six satellites throughout the run, except in the 

portion characterized by challenging GPS conditions, that is also reflected in FD values 
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(3D FD: 98% and 4D FD: 97%). The PDOP values are also degraded on this part of the 

trajectory. 
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Figure 7-25: C/N0 and Elevation Angles for All Satellites Tracked, Run #4 

The integrated system using C3NAVG2TM data recovers the results significantly, so that a 

level of position accuracy comparable to the integrated internal solution is achieved. The 
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across-track error for the above two cases is shown in Figure 7-28. The RMS of across-

track error for the stand-alone GPS solution is 106 metres, while the integrated solution 

gives only 9 metres of RMS error.  
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Figure 7-26: Position Output of Integrated System Using The C3NAVG2TM Solution, 

Run #4 on Trajectory #2 

 

Another three runs were conducted on Trajectory #1. The INS integrated with the GPS 

internal solution provides test results similar to those considered above. The across-track 

error of the stand-alone GPS internal solution ranges from 50 to 150 metres, while the 

integrated system improves the accuracy to between 10 and 40 metres. 
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Figure 7-27: PDOP and Number of Satellites Used in Solution for Run #4, Based on 

The C3NAVG2TM Output 

 

For Run #5, the C3NAVG2TM solution has frequent data gaps ranging from 40 to 120 

seconds. At the beginning of the test, a continuous GPS solution is not available. Without 

GPS heading updates, the large azimuth error of 8 to 12º could not be corrected and the 

resulting integrated solution does not improve system performance. The minimum time 

required for azimuth error convergence is between 100 and 200 seconds, while a 

consistent GPS solution is available for 20 to 40 seconds. For Run #6 and Run #7, the 

INS aided by the C3NAVG2TM solution produces positions with an accuracy of 20 to 60 

metres. 
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Figure 7-28: Across-track Error for Run #4 on Trajectory 2 
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The statistics of the across-track errors for all runs are shown in Table 7-2. Table 7-3 

presents the percentage of the test time, for velocity and position filters operating in 

prediction mode. The longest gaps in GPS measurements for all runs, which are defined 

by the filter prediction intervals, are given in Table 7-4. 

 

Table 7-2: Across-track Error  

Across-track error RMS 
(m) 

Mean 
(m) 

|Max| 
(m) 

Run #1 on trajectory 1 
C3NAVG2TM Solution 68 48 487
INS/GPS – C3NAVG2TM Solution 23 18 50
SiRF Internal Solution 14 9 42
INS/GPS - SiRF Internal Solution 12 7 36
Run #2 on trajectory 1 
C3NAVG2TM Solution 113 55 1002
INS/GPS – C3NAVG2TM Solution 24 19 54
SiRF Internal Solution 61 38 336
INS/GPS - SiRF Internal Solution 18 14 48
Run #3 on trajectory 1 
C3NAVG2TM Solution 90 56 490
INS/GPS – C3NAVG2TM Solution 38 25 167
SiRF Internal Solution 58 27 520
INS/GPS - SiRF Internal Solution 31 22 72
Run #4 on trajectory 2 
C3NAVG2TM Solution 106 34 2110
INS/GPS – C3NAVG2TM Solution 9 7 24
SiRF Internal Solution 11 8 54
INS/GPS - SiRF Internal Solution 7 6 27
Average for 7 runs 
C3NAVG2TM Solution 86 47 908
INS/GPS – C3NAVG2TM Solution 23 17 80
SiRF Internal Solution 37 21 221
INS/GPS - SiRF Internal Solution 21 15 50
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Table 7-3: Filter Mode: Percentage of Test Time in Prediction  

Filter Mode INS/SiRF 
Internal Solution 

INS/C3NAVG2TM 
Solution 

Run #1 on Trajectory 1 
Velocity filters in prediction 4% 41%
Coordinate filters in prediction 19% 54%
Run #2 on Trajectory 1 
Velocity filters in prediction 23% 19%
Coordinate filters in prediction 50% 38%
Run #3 on Trajectory 1 
Velocity filters in prediction 21% 21%
Coordinate filters in prediction 36% 22%
Run #4 on Trajectory 2 
Velocity filters in prediction 8% 10%
Coordinate filters in prediction 24% 37%
Average for 7 runs in downtown 
Velocity filters in prediction 17% 26%
Coordinate filters in prediction 33% 40%

 

 

Table 7-4: Longest Gap in GPS Measurements 

Longest Gap SiRF Internal 
Solution 

C3NAVG2TM 

Solution 
Run #1 on Trajectory 1 
Velocity  4 seconds 34 seconds
Position 15 seconds 40 seconds
Run #2 on Trajectory 1 
Velocity  33 seconds 30 seconds
Position 78 seconds 41 seconds
Run #3 on Trajectory 1 
Velocity  100 seconds 108 seconds
Position 153 seconds 162 seconds
Run #4 on Trajectory 2 
Velocity  14 seconds 14 seconds
Position 57 seconds 57 seconds
Average for 7 runs in downtown 
Velocity  34 seconds 46 seconds
Position 71 seconds 83 seconds
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7.3.1 Conclusions 

The stand-alone GPS internal solution is characterized by smooth behaviour of position 

errors, which usually do not exceed 50 metres. The receiver firmware provides 

continuous position output over the entire run. When the GPS receiver loses lock due to 

signal masking, positions and velocities are propagated through the duration of an outage. 

As indicated by the integrated algorithm, long prediction intervals ranging from 30 

seconds to 1-3 minutes degrade the accuracy significantly. Position error is observed to 

increase over the duration of a data gap; on the parts of trajectory containing turns, 

without heading information, it reaches a level of 300 to 500 metres.     

 

The integrated system, which uses the GPS internal solution, significantly improves the 

results. Due to reliable GPS updates at the outset of the test, azimuth error is corrected to 

a level of 1º to 2º; because of this early correction, even during long prediction intervals 

of 1 to 2 minutes and more, the integrated system is capable of providing a relatively high 

positional accuracy of 10 to 50 metres. In filtering mode (i.e. when consistent GPS 

updates are available) the position errors of the integrated system do not exceed 10 to 20 

metres. In downtown canyons, the measurement availability of HS receivers is very high: 

4D fix density ranges from 76% to 96% of the total test duration.  The velocity and 

coordinate filters in the estimation algorithm work in prediction mode on average for 

17% and 33% of the test time, respectively. This is an indirect indication of the quality of 

GPS measurements in the time domain. It should be mentioned that coordinate filters 

switch to prediction mode more frequently than velocity filters. This is due to prediction 
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mode criteria that oblige the coordinate filters to switch to prediction mode, when the test 

vehicle is stationary.    

 

In downtown areas, the Least Squares epoch-by-epoch C3NAVG2TM solution is generally 

poor. It provides positional accuracy of 50 to 100 metres on average with occasional 

outliers of 500 to 2000 metres. Possible sources of these large errors include signal cross-

correlation along with tracking of multipath and echo-only signals caused by strong 

glassy reflections. It must be pointed out that the stand-alone GPS solution can be 

improved by implementation of statistical reliability techniques (i.e. Statistical Reliability 

Testing RAIM); see, for example, descriptions of sequential RAIM implementation using 

global and local testing (Baarda, 1968; Kuang, 1996; Teunissen et al., 1998), which allow 

the detection of erroneous measurements and their exclusion from the navigation 

solution. The C3NAVG2TM solution is defined by noisy error behaviour of high frequency 

with regular data gaps of 10 to 40 seconds in duration. The measurement availability 

varies from 49% to 97% 4D FD.             

 

The integration of the C3NAVG2TM solution with inertial data provides a considerable 

improvement in positional accuracy. The coordinate Kalman filter with adaptive 

measurement covariance adjusts its parameters properly due to certain behaviour of GPS 

positions, which was discussed earlier. When the GPS solution is unreliable, the Kalman 

gain drops down and the estimation algorithm relies upon the system model. The 

reliability criteria for GPS measurements also work suitably in this case. The filters of the 

integrated system generally work in prediction mode more often than in the case of 
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integration with the GPS internal solution. On average, the velocity filters work in 

prediction mode for 26% of the test time, while coordinate filters operate in prediction 

mode for 40% of the test time. The positional accuracy of the integration system ranges 

from 10 to 50 metres on average with irregular outliers of 80 to 150 metres during long 

GPS data gaps of a few minutes.  

7.4 Residential Area Results  

Two tests were conducted in a suburban area of Calgary. The reference trajectory was 

obtained from the GPS double difference carrier phase solution using FLYKIN+TM 

software, developed by the PLAN group of the University of Calgary (FLYKINTM+, Liu 

et al., 2003). The Engineering Building in the University campus was utilized as a 

reference station; the baseline varied from 100 metres to 8 kilometres during the tests. In 

the parts of the trajectory with a significant density of roadside trees and buildings, some 

satellites at lower elevations were periodically blocked and back in view for a few 

seconds at a time (the elevation cut-off was set to 15º). Because of this, the limited time 

prevented convergence of the ambiguities to integer values; consequently, the reference 

trajectory was obtained in the float ambiguity resolution mode. Although the accuracy of 

the float solution can vary from 0.1 to 1 metres (Lachapelle, 2003), sub-metre level of 

positional accuracy is considered as sufficient for purposes herein. Because the SiRF 

internal solution was not tested for suburban applications, only the GPS C3NAVG2TM 

positions and velocities were utilized in the integration algorithm.  
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In suburban environments, signal masking and multipath sources generally occur only at 

low elevations due to roadside trees and bushes and one- to two-storey buildings. 

Consequently, these effects can be significantly reduced by an increase in elevation cut-

off. It is well illustrated by Figure 7-29, which presents the C/N0 and elevation angles for 

all SVs tracked during Run #1 in the residential area. Unlike the downtown area situation, 

low power signals with large variations in C/N0 are observed only for satellites at low 

elevations (for example: PRN 7 with elevation ~ 10º; PRN 9 with elevation ~ 11º; and 

PRN 25 with elevation ~ 7º). The average C/N0 of 40 dB-Hz is also higher than for the 

urban tests and it is closer to the typical for open-sky conditions C/N0 value of 44 dB-Hz 

(Ward,1996a; MacGougan, 2003).  

 

The position output of the integrated system for Run #1 is shown in Figure 7-30. The 

integrated solution is generally constrained to the GPS differential pseudorange solution. 

The GPS accuracy in residential areas is worse by comparison to open-sky conditions due 

to degraded geometry caused by a higher elevation mask of 15º, as well as possible 

tracking of multipath signals at high elevations. The position accuracy of the stand-alone 

GPS solution ranges from 1 to 20 metres.    

 

As a result of high elevation cut-off, the average number of satellites used in the solution 

is lower than in open areas, varying from four to six; however, this still provides 

reasonably good PDOP values that do not exceed two for the majority of test duration, as 

illustrated in Figure 7-31. 
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Figure 7-29: C/N0 and Elevation Angles for All Satellites Tracked, Run #1 in 

Residential Area 
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Figure 7-30: Position of Integrated System for Run #1 in Residential Area 

These plots show the number of satellites used in the solution and the PDOP values for 

Run #1. No data gaps were observed in the GPS solution except a gap of one second. The 

measurement availability is also very good: 100% (3D FD) and 99% (4D FD) of overall 

test time.  

 

Due to constant GPS updates, the integrated system provides relatively high positional 

accuracy: the RMS of positional error is in the order of 3 to 4 metres. The statistical 

parameters of the position errors for both tests are presented in Table 7-5. Because the 

results obtained are similar to the open area tests, velocity and attitude accuracy analyses 

are not considered herein.  
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Figure 7-31: PDOP and Number of Satellites Used in Solution, Run #1 in 

Residential Area 

As seen in Table 7-6, due to continuous GPS updates, the filters in the estimation 

algorithm work in prediction mode quite rarely (0.2% to 2% of test duration). The 

prediction intervals for the velocity filters occur mostly at the beginning of the tests, 

during the transition process of the INS azimuth error estimation; meanwhile, the time 

required for coordinate filter prediction is defined by parts of the tests in static mode. The 

positioning accuracy of the system is slightly improved due to smoothing of GPS code 

errors of high frequency (mostly code noise). 
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Table 7-5: Statistics of Position Errors of Integrated System for Two Runs 

Position Error 
for two runs 

RMS 
(m) 

Mean 
(m) 

Max 
(m) 

Northing 3.8 1.9 9.7 
Easting 3.1 1.2 8.1 

 

 

Table 7-6: Filter Mode: Percentage of Test Time in Prediction  

Filtering mode 
 

Average for two runs 

Velocity filters in prediction 0.2 % 
Coordinate filters in prediction 2 % 
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8Chapter 8 

 Conclusions and Recommendations 

This chapter contains a summary of the research presented in this thesis, the conclusions 

drawn from the test results and analysis, and recommendations for future work in 

INS/GPS integration. 

8.1 Summary 

The contribution of this research work is in the development of an algorithm for the 

integration of a medium-accuracy INS with two types of GPS receivers: conventional and 

high sensitivity, and the assessment of system performance in various GPS environments, 

namely in open, residential and urban areas. The system tested used a conventional 

NovAtel OEM4 GPS receiver, a high sensitivity SiRF Star II Xtrac GPS receiver and a 

Honeywell HG1700 AG11 IMU. Due to its flexibility and universality for a range of GPS 

receivers, a cascaded scheme of integration was implemented in the integrated system. 

 

In an effort to optimize the performance of the integrated system under different GPS 

conditions (reception of satellite signals in open sky districts and challenging 

environments), two diverse estimation algorithms were developed. A Kalman filter is 

employed in both strategies.  The INS error equations comprise the system model; the 

measurements, which are fed into the filters, are the differences between INS and GPS 

positions and velocities.   
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For open area applications, the estimation scheme utilizes a conventional Kalman filter 

with a nine-state system model. The INS filter output incorporates the following aspects: 

position and velocity errors, attitude misalignment errors and gyro drifts. Estimated INS 

position and velocity errors are compensated in the system output. INS horizontal errors 

are used to correct the elements of the transformation matrix between the body and 

navigation frames. The INS azimuth misalignment is compensated independently in the 

SINS algorithm as a one-step control signal introduced into the quaternion of a small 

rotation. Estimated gyro drifts are also taken into account in the SINS navigation scheme, 

in a manner similar to azimuth compensation. Due to the non-stationary property of the 

INS azimuth misalignment, reliance on traditional estimation approaches for an accurate 

estimation of this error can be problematic; therefore, a special cascaded procedure was 

implemented to obtain an accurate estimate of this INS error component. The method 

takes into consideration the degree of observability associated with the azimuth error. An 

observability analysis of the INS error equations shows that azimuth misalignment 

becomes observable during periods of high vehicle dynamics. The filter uses this feature, 

so that estimation of azimuth misalignment is initialized when a test vehicle experiences 

large changes in acceleration. In this manner, this INS error component is directly 

measured, which produces a shortening of the transition period of estimation as well as 

an overall improvement in estimation accuracy.  The compensation of INS azimuth error 

is performed into two stages, in terms of coarse and fine corrections respectively. To 

reduce azimuth misalignment after the initial INS alignment, a one-step azimuth 
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correction is executed using the GPS-derived heading. The residual error is then 

compensated using the estimate obtained from the Kalman filter.  

 

For applications in dense urban environments containing high-rise buildings, the 

estimation algorithm is based on the implementation of multiple Kalman filters. The 

estimation of INS velocity and positional errors, as well as INS azimuth misalignment, 

are performed separately for the north and east channels in independent Kalman filters 

with diverse system models. For purposes of velocity error estimation, the system model 

is defined by simplified INS error equations that describe the Schuler component of the 

INS errors and include: velocity errors, horizontal misalignment and gyro drifts. Because 

the velocity filters take vehicle dynamics into account, different gain levels are associated 

with stationary and in-motion measurements, respectively. As a consequence, the filters 

work in three modes: 1) filtering with a relatively large Kalman gain matrix for static 

mode; 2) filtering with a small Kalman gain for kinematic mode; and 3) prediction when 

GPS measurements are either unreliable or unavailable. The Kalman gain is defined by 

different covariances of measurement noise. For position error estimation, the system 

model is a simple dynamic model where velocity is equivalent to white noise. The 

estimation algorithm herein employs the Kalman filter with adaptive measurement 

covariance, which is motivated by the high frequency behavior of GPS positional errors. 

Integrated INS velocities, which are already compensated for the Schuler part of the INS 

velocity error, are fed into the coordinate filters instead of pure INS positions. In this 

manner, the size and complexity of the INS position error expansion are reduced. The 

filters work in two modes: 1) filtering when the GPS solution is accessible; and 2) 
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prediction during GPS data gaps. The estimation of azimuth misalignment is executed in 

the autonomous Kalman filter with seven states in the system model; in addition, this 

error is compensated in the SINS algorithm in a manner similar to the estimation scheme 

for open area applications. The filter works in prediction mode during GPS outages. The 

reliability criteria for all filters in the estimation algorithm are defined by the GPS PDOP, 

the number of satellites used in the GPS solution and the difference between GPS and 

INS-predicted velocities.  

 

The main difference in the integration strategies for system operation in line-of-sight 

conditions and harsh GPS environments lies in the distinct feed-back components of the 

estimated INS errors into the navigation algorithm. In downtown applications, only the 

estimate of the INS azimuth misalignment is taken into consideration since the estimation 

accuracy in general is limited owing to error-corrupted GPS measurements. In open 

areas, the estimated horizontal attitude errors and gyro drifts also are compensated within 

the SINS scheme.  

 

The following sections highlight the major conclusions found in the course of this 

research and recommendations for further work toward improvements in system 

performance.  

8.2 Conclusions   

The primary objective of this thesis was to develop and test the cascaded scheme of 

integration and different estimation algorithms for improvement of overall performance 
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of a medium accuracy IMU integrated with conventional and high sensitivity GPS 

receivers for application in open areas and downtown canyons respectively. This goal has 

been met. A SINS mechanization algorithm was designed through the research; the GPS 

navigation solution was obtained from the existing GPS software C3NAVG2TM and the 

GPS receiver firmware (internal solution). The integrated system was tested in various 

GPS conditions including open-sky areas, residential districts and urban environments. 

For open area applications, GPS data gaps were simulated to validate system 

performance for prediction accuracies. Below, details of the major conclusions of this 

thesis are summarized in terms of the objectives set out in Chapter 1. 

8.2.1 Open Area Applications 

1. Test results confirmed the importance of accurate estimation of INS azimuth 

misalignment.  The cascaded Kalman filter decreases the transition period of the 

azimuth error estimation as well as it improves the estimation accuracy of INS 

azimuth error in general. A conventional Kalman filter requires at least 300 to 350 

seconds for convergence of the azimuth error estimate, while the cascaded scheme 

reduces this period to between 150 and 200 seconds. The combined azimuth 

correction using GPS heading and the filter’s azimuth misalignment estimate provides 

better results in comparison to the traditional approach, so that the residual azimuth 

error ranges from 0.2º to 0.5º.  
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2. As expected, attitude error compensation in the SINS algorithm improves the overall 

attitude accuracy of the integrated system, so that roll and pitch are estimated to be 

accurate to within 0.05º to 0.1º.  

3. Due to gyro drift compensation in the SINS algorithm, the large Schuler component 

of INS velocity error is reduced significantly which, in turn, contributes to the 

improvement of the overall estimation accuracy of INS errors.  

4. The analysis of the results using GPS data with simulated gaps demonstrates that, in 

prediction mode, accurate estimation of the INS azimuth error becomes essential, 

especially for long-term GPS outages of 30 to 60 seconds with high vehicle 

dynamics.  Crucial prediction accuracy degradation of 60 to 120 m in position and 3 

to 6 m/s in velocity, on average, is observed, if the reduced INS error model is used in 

the estimation scheme. The conventional Kalman filter with extended system model 

provides superior positional accuracy of approximately 10 to 30 m and velocity 

accuracy of 0.5 to 2 m/s for GPS outages of the same duration. The cascaded Kalman 

filter considered in this thesis improves the above results to 5 to 15 m in position and 

0.2 to 0.6 m/s in velocity domains.  

8.2.2 Urban and Suburban Area Applications  

For this testing, reference information was available in the position domain only, 

therefore limiting the analysis of positional accuracy in this research. Results in 

downtown areas illustrated the following aspects: 



 

 

206

1. The positional errors of the stand-alone GPS internal solution ranges from 10 to 50 m 

with occasional outliers of 100 to 500 m. The possible cause of these large errors lies 

in long-term data outages caused by signal masking effects. Receiver firmware 

propagates positions through the duration of a gap, resulting in significant error 

expansion particularly on the parts of the test trajectory containing turns, when 

absence of heading information becomes critical.  

2. The integrated system, which uses the GPS internal solution, significantly improves 

the results of the stand-alone GPS solution (during long GPS gaps of 30-120 seconds, 

the integrated system positional accuracy is two to three times better than the stand-

alone GPS solution). However, the system accuracy is limited owing to error-

corrupted GPS updates and data outages.  

• The small dimensions of the velocity Kalman filters in the estimation scheme 

result in relatively short transition periods for INS error estimation, producing an 

INS/GPS integrated solution at the outset of the tests.  

• The unique behaviour of the Schuler component of INS error, which is easy to 

model and predict, allows its accurate estimation; residual non-stationary errors 

are relatively small as opposed to stationary ones. 

• The relatively accurate estimation of the azimuth misalignment to 1º to 2º using a 

Kalman filter with the extended system model is possible due to continuous GPS 

updates at the beginning of the test; this provides ample time for filter 

convergence.  

• Due to the smooth behaviour of GPS measurements, the reliability criteria for the 

filter’s operation do not always produce an optimal performance. 
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As a consequence to all of the above, a slight improvement of positional accuracy is 

observed in the filtering mode. Meanwhile, dramatic accuracy enhancement is 

achieved in prediction mode; i.e. during long-term GPS data gaps. The positional 

errors of the integrated system range from 10 to 50 m on average.  

3. The stand-alone GPS C3NAVG2TM solution provides a positional accuracy of 50 to 

100 metres on average with occasional outliers of 500 to 2000 metres.  Possible 

sources of these blunders include signal cross-correlation along with tracking of 

multipath and echo-only signals caused by strong glassy reflections. The 

C3NAVG2TM epoch-by-epoch Least Squares solution can be improved with the 

implementation of RAIM techniques (Baarda, 1968; Kuang, 1996; Teunissen et al., 

1998), which can be used to detect erroneous measurements and, further, to exclude 

them from the navigation solution. This can improve the results considerably; 

however, the use of statistical reliability methods is limited by masking effects (since 

redundant measurements are not always available, and in some cases error corrupted 

measurements must be used to obtain the navigation solution). The C3NAVG2TM 

solution is defined by regular data gaps of 10 to 40 seconds in duration and by noisy 

error behaviour of high frequency, stipulated by the epoch-by-epoch least-squares 

solution.    

4. The INS integrated with the GPS C3NAVG2TM solution provides a considerable 

improvement in positional accuracy (the achieved positional accuracy of the INS/GPS 

system is on average two to five times better than the stand-alone GPS solution): 

• The coordinate Kalman filter with adaptive measurement covariance adjusts its 

parameters properly due to certain noisy behaviour characteristics of GPS position 



 

 

208

solutions. When the GPS solution is unreliable, the measurement covariance 

increases, the Kalman gain declines, and the filter relies upon the system model. 

The reliability criteria for GPS measurements also work properly and the filters in 

the estimation scheme switch to prediction mode more often than in the case of 

integration with the GPS internal solution. 

• In some runs, regular GPS data gaps occurring at the beginning of the test 

produce a significant residual azimuth error; this is because the extended Kalman 

filter is not supplied with the continuous measurement updates that ordinarily 

facilitate filter convergence. As a consequence, the integrated solution does not 

significantly improve system accuracy. 

The positional accuracy of the integration system ranges from 10 to 50 metres on 

average with irregular outliers of 80 to 150 metres during long GPS data gaps in the 

order of a few minutes.   

 

Tests in residential districts produced the following results:  

The integrated solution is generally constrained to the GPS differential pseudorange 

solution. GPS accuracy in residential areas is worse in comparison to open-sky districts 

owing to degraded geometry caused by a higher elevation mask as well as possible 

tracking of high elevation multipath signals. Continuous GPS measurements throughout 

the testing allowed the integrated system to provide relatively high positional accuracy 

(where RMS of positional error is about 4 metres) as opposed to downtown results. 

However, the system accuracy is constrained by the uncompensated INS errors, which 
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are not taken into consideration in the estimation algorithm (namely, the simplified 

system model and the associated error compensation method).    

8.3 Recommendations 

 
The development of an integration scheme for optimal performance in diverse 

operational environments is problematic. The suggested strategy involves implementing 

distinct estimation strategies for applications in open-sky areas or harsh GPS conditions. 

Based on the results and conclusions of this research, the following recommendations for 

districts with line-of-sight GPS signal reception are proposed: 

1. The long-term accuracy of the integrated system can be improved through the use of a 

more accurate INS error model that contains high-order INS error terms such as gyro 

and accelerometer installation errors, gyro biases and scale factors as well as 

accelerometer biases.  

2. For high dynamics applications, the non-stationary component of INS error that, in 

addition to azimuth misalignment, also contains accelerometer scale factors and their 

non-linearities, can be calibrated a priori using ZUPTs; see, for example, Salychev 

(2003). 

3. To achieve improved estimation accuracy of the INS error, velocity damping can be 

employed. By incorporating velocity error compensation in the SINS algorithm, the 

magnitude of the total INS velocity error can be reduced significantly which, in turn, 

affects the estimation accuracy. However, one must consider the possible challenge 
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arising from an increase of the natural oscillation frequency of the INS error that 

surpasses the Schuler frequency (ibid).   

4. For post-mission analysis, smoothing techniques such as a Kalman filter smoother 

can be implemented to improve estimation accuracy (ibid).  

5. Generally, system accuracy in position and velocity domains is constrained to the 

GPS solution. A carrier phase GPS solution can be used in the integrated system to 

achieve centimeter-level positional accuracy. To additionally improve system 

performance in terms of accuracy and integrity, a tightly-coupled scheme of 

integration can be implemented. Petovello (2003) showed that the tightly-coupled 

strategy provides generally better results in terms of overall system accuracy during 

partial or complete GPS outages. INS seeding also simplifiers (i.e. speeds up) 

ambiguity resolution, thereby providing improvements of 50-70% in comparison to 

operation in GPS stand-alone mode.  

 

For system operation in urban areas, the following improvements can be considered: 

1. The positional accuracy of an INS/GPS integrated system can be improved with the 

implementation of map-matching techniques such as algorithms based on a 

geometrical approach combined with vehicle dynamics constrains  (Basnayake and 

Lachapelle, 2003) or fuzzy logic (Syed Qutub and Cannon, 2004).  

2. The stand-alone C3NAVGTM solution can be improved by implementation of 

statistical reliability techniques, which allow detection and further exclusion of 

erroneous GPS measurements (Baarda, 1968; Kuang, 1996; Teunissen et al., 1998). 

This will improve the overall accuracy of the INS/C3NAVG2TM system. However, the 
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operational capabilities of such methods are limited due to the challenge of detection 

of multiple blunders and the lack of redundant observations in general.   

3. To improve positional accuracy during long-term GPS gaps, non-holonomic velocity 

constraints can be used (Shin, 2001).  

4. The testing of a tightly–coupled integration scheme is needed since this integration 

strategy bolsters system availability; however, fault detection is assumed to be more 

problematic than for a loosely-coupled integration scheme. To overcome this 

problem, noise on the pseudorange and Doppler measurements can be characterized 

in relation to C/N0 (Wieser and Brunner, 2000).  

5. Only the accuracy analysis in the position domain has been considered in this thesis. 

Therefore, an investigation of velocity and attitude accuracy of the system using 

reference from a high accuracy INS is warranted.  

6. The use of HS GPS data was tested in this research; a more comprehensive approach 

to analysis might also include a comparison with the performance of a conventional 

GPS receiver (such as the NovAtel OEM4).  
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10Appendix A 

Strapdown INS Algorithm 

The calculation procedure is divided into two major parts: (i) processing of accelerometer 

data; and (ii) measurement preparation of gyro output. In this thesis, the local-level frame 

is chosen as the navigation frame. 

 

Factory calibrated velocity increments, ∆Wxb,yb,zb, (i.e. initial compensation of the 

accelerometer biases, scale factors and installation errors) are calculated using the 

following formula (Salychev, 1998): 

∫
+

=∆
Tt

t zb,yb,xbzb,yb,xb
k

k

dtaW            (A-1) 

where: axb,yb,zb are the accelerometer indications in the body frame; and T is time 

sampling of the navigation solution calculation. 

 

An analogous procedure is performed for the gyro measurements. Factory calibrated 

angle increments, ∆αxb,yb,zb, (after compensation for gyro biases, scale factors and 

installation errors), are defined: 

∫
+
ω=α∆

Tt

t zb,yb,xbzb,yb,xb
k

k

dt            (A-2) 

where ∆ωxb,yb,zb  are gyro outputs in the body frame. 
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To decrease the data rate, which is usually very high (herein 100 Hz), sculling and coning 

corrections are typically applied to accelerometer and gyro data, respectively. These 

procedures take into account the user’s motion in-between time samples. However, due to 

the low intensity of vehicle dynamics in automotive applications as compared to airborne 

or spaceborne environments, sculling and coning are replaced in this thesis by simple 

integration (equations (A-1) and (A-2)). 

  

Following the above steps, velocity increments are transformed into the navigation frame:  
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            (A-3) 

where N
bR is the transformation matrix between the body and navigation frames.  

 
The determination of this matrix is a major goal of the attitude algorithm calculation. It is 

based on the Poisson formula (3-8) considered in Chapter 3. Due to the simplicity of 

calculation, this equation is solved in quaternion form (see equation (3-13)). The 

procedure is divided into two steps (ibid). The first step involves calculation of the 

quaternion between the body and navigation frames, assuming that the n-frame does not 

move between time samples (considered as an inertial frame during one sample). The 

transformation from the b-frame to the i-frame has a form: 

λ∆=+
f
n

P
1n QQ               (A-4) 

where: Qp
n+1, Qf

n  are rotation quaternions (3-10) on the previous and current steps;  
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∆λ  is a quaternion of a small rotation of the same form (3-10), which 

can be represented via the vector of a small rotation, ∆Φ (see 

equation (3-11)): 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆Φ
∆Φ
∆Φ

=∆Φ

∑

∑

∑

i

i
zb

i

i
yb

i

i
xb

zb

yb

xb

α

α

α

,  

where i
zb

i
yb

i
xb α,α,α  are the angle increments from (A-2). 

The magnitude of this rotation is obtained from gyro measurements at the previous step 

(A-2).  Equation (A-4) can be rewritten in matrix form as:  
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The second step takes into account the motion of the n-frame with respect to the i-frame 

within the last sample. The quaternion expression for this rotation is the following: 

p
1n

f
1n Q*mQ ++ ∆=             (A-6) 

where ∆m* is a quaternion of a small rotation, which is a conjugate of a quaternion (3-

10), and it has the form: kmjmimm*m 3210 ∆−∆−∆−∆=∆  

This quaternion can be also represented through the rotation vector between the above 

frames. For slow motion it can be described as (ibid): 
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where: ωx, ωy, ωz  are projections of angular velocity of the n-frame on its axes; end 
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 T   is a sampling interval.  

Equation (A-6) can be represented in matrix form as:  
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Splitting the quaternion calculations into two steps is motivated by differences in 

magnitude and the nature of the rotations. The rotation of the b-frame with respect to 

inertial space can be considered as fast motion (due to arbitrary angles in-between the 

above frames). By contrast, rotation of the n-frame with respect to the i-frame comprises 

a relatively slow motion (due to the Earth’s low rotation rate). To avoid calculation errors 

as a result of the addition of two components with different magnitudes, this cascaded 

quaternion transformation is appropriate and effective (ibid).  

 

Using the property of the quaternion norm (see Chapter 3), the normalization procedure 

for quaternion transformation is performed as: 

        ∆>+++− )qqqq(1 2
3

2
2

2
1

2
0             

)
2

1(q
1
q

q̂ 1n
1n

1n
∆

+≅
∆−

= +
+

+

 

                   1n1n qq̂ ++ =             (A-9) 

The elements c11, c12, c13…. of the transformation matrix, N
bR , are defined utilizing the 

relationship between the quaternion and direction cosine matrix (3-12). 

 
Vehicle east and north velocities VE and VN are defined from the following equation:  

If , then 

Otherwise 



224 

 

∫

∫

+

+

Ω−+∆=

+Ω−+∆=

Tt

t
EupupENN

Tt

t
NNupupNEE

k

0

k

k

dt)VUV2(WV

dt))U2(VUV2(WV

      (A-10) 

 

where: ∆WE, ∆WN  are the projections of integrated velocity increments from (A-3) in 

the ll-frame;              

           UNx, UNy, UNz  are the projections of Earth rotation onto the ll-frame; and 

ΩE, ΩN  are the projections of relative angular velocity on the ll-frame.  

The terms from equation (A-10) can be represented via elements of the transformation 

matrix between the Earth-fixed and local-level frames, ll
eR  (see equation (3-1)). It has the 

from: 
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The projections of the relative angular velocity onto the ll-frame, ΩE and ΩN, can be 

expressed as (see equation (3-2)): 



225 

 

)
a
hbe

2
b

e1(
a
1

R
1

)
a
h

2
b

e1(
a
1

R
1

hR
V

hR
V

2
23

2
2
332

2
332

N
N

N
E

−+−=

−−=

+
=Ω

+
−=Ω

λ

ϕ

λ

ϕ

        (A-12) 

where: e   is the eccentricity of the reference ellipsoid; 

 a  is the semi-major axis of the reference ellipsoid; 

Rϕ, Rλ are the radii of curvature of the reference ellipsoid in the North-

South and East-West directions respectively; and 

 h   is the vehicle attitude. 

The projections of absolute angular velocity of the ll-frame onto their axes have the form 

(see equation (3-2)): 
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For coordinate determination instead of direct integration, the Poisson equation in 

recurrent form is used (ibid): 
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where N is a step number. 

After determination of the transformation matrix N
eR elements, vehicle curvilinear 

coordinates are defined:  
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The attitude angles are finally calculated from the elements of the transformation matrix, 

N
bR , (c11, c12, c13…) as: 
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where:  p   is pitch;  

 r    is roll; and 

A  is azimuth.  

The calculation scheme of strapdown navigation algorithm is shown in Figure A-1. 

A.1 INS Initial Alignment 

To start the INS calculation algorithm, the initial parameters of the transformation matrix 

between the navigation and body frames, N
bR , must be determined. This procedure, 

referred to as INS alignment (see Chapter 3), contains the following steps (ibid): 
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1. coarse horizontal alignment; 

2. coarse azimuth alignment; and 

3. fine alignment. 

 
During INS alignment, the system works in navigation mode; however, to coincide the 

platform frame with the navigation frame, the additional control signal of the gyro torque 

should be introduced to the quaternion block (closed-loop alignment).  

 

The additional angular velocities, c
xω  and c

yω , can be introduced as:  

x1
c
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y1
c
x

Vk

Vk

δ=ω
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           (A-17) 
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         (A-18) 

where ∆Wx
0 and  ∆Wy

0 are the projections of velocity increments in the p-frame, which, 

for an unmoving vehicle, can be determined as: 
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∫
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In the above equations: 

t   is alignment time; 

g  is gravity; and 

k1, k2   are the damping parameters for 2nd order oscillator. It has the form: 

)t(2

)t(2

y
2
0y0y

x
2
0x0x

β=Φω+Φξω+Φ

α=Φω+Φξω+Φ
&&&

&&&
        (A-20) 

where 02
2
01 ξω2k,g/ωk ==  are chosen so that the horizontal misalignment errors, Φx 

and  Φy, attenuate within a certain time.  

 

After coarse horizontal alignment, the azimuth error, Φz, is estimated:  

ϕ+ω
ω
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arctg c
y

c
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The estimated azimuth correction is then introduced to the quaternion of a small rotation, 

∆m, as additional angular velocity:  

T

coarse
zc

z
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=ω             (A-22) 

After coarse azimuth alignment, using the new quaternion parameters, the fine horizontal 

and azimuth alignments are initiated. The final azimuth correction thus has the form: 

ϕ
ω

=Φ
cosU

c
xfine

z           (A-23) 

The alignment procedure is shown in red in the INS calculation scheme in Figure A-1. 
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The overall functional scheme of INS alignment is as follows. Using the initial vehicle 

position, the initial elements of the matrix ll
eR  (A-11) are defined.  Assuming that the p-

frame coincides with the n-frame, the initial quaternion parameters are: 

T
0 ]0001[q =           (A-25) 

In reality, the p-frame has an arbitrary initial position, so that the alignment task is to set 

misalignment angles to zero. First, the control angular velocity is added to the absolute 

angular velocity and is introduced into the quaternion of slow motion, ∆m, which causes 

attenuation of horizontal misalignment errors to small magnitudes (also referred to as 

coarse horizontal alignment). In this case, the quaternion calculation is changed to:  
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  (A-26) 

This step results in convergence of the quaternion parameters to true attitude angles. At 

this point, control angular velocities are averaged and the rough azimuth misalignment 

angle is obtained. This azimuth correction is also introduced to the quaternion block, ∆m 

(coarse azimuth alignment). Fine alignment is performed in a similar manner to coarse 

alignment using new parameters of the quaternions. For more details in the SINS 

navigation algorithm and alignment a reader is referred to Salychev (1998). 


	Abstract
	Acknowledgements
	Table Of Contents
	List Of Figures
	List Of Tables
	Abbreviations and Acronyms
	List of Symbols
	Chapter 1
	Introduction
	Background
	Global Positioning System
	Inertial Navigation System
	INS/GPS Integration

	Literature Review
	Research Objectives and Motivation
	Thesis Outline

	Chapter 2
	Overview of Global Positioning System
	GPS Concept
	Pseudorange Measurements
	Doppler Measurements

	GPS Errors
	Orbital Errors
	Satellite Clock Errors
	Receiver Clock Errors
	Ionospheric Errors
	Tropospheric Errors
	Multipath Errors
	Receiver Noise

	High Sensitivity GPS
	GPS Signal Power
	Signal Power Reaching GPS Receiver
	Carrier-To-Noise Density Ratio
	Main Concept of High Sensitivity GPS
	Other GPS Errors and High Sensitivity Applications
	GPS Environments in Application to High Sensitivity GPS
	Open Sky Areas
	Harsh GPS Environments
	Measurement Availability



	Chapter 3
	Overview of Inertial Navigation System
	Coordinate Frames
	Inertial Navigation Frame
	Earth – fixed Frame
	Local – level Frame
	Body Frame
	Navigation Frame
	Platform frame
	Coordinate Transformations

	Principle of Inertial Navigation
	Poisson equation
	Quaternion Transformation
	Main Concept of Inertial Navigation
	Mechanization Equations

	Principle of INS Alignment
	Horizontal Alignment
	Azimuth Alignment

	INS Errors
	Schuler Loop


	Chapter 4
	INS/GPS Integration
	Integration Schemes
	Loosely Coupled Integration
	Tightly Coupled Integration
	Centralized and Decentralized Integration Filters

	Kalman Filter
	State Space Model
	Filter Algorithm
	Main Filter Characteristics
	Observability
	Convergence and Observability Degree
	Divergence
	Innovation Sequence and Adaptive Filtering

	Kalman Filter with Control Signal
	Kalman Filter with Adaptive Measurement Covariance R

	Estimation Concepts
	Kalman Filter in Prediction Mode


	Chapter 5
	System Realization and Methodology
	INS/GPS Cascaded Integration Scheme
	Error Estimation and Compensation for Open Area Applications
	Observability Analysis of INS Errors
	In-motion Azimuth Estimation Using Cascaded Kalman Filter
	Heading Correction
	Roll and Pitch Correction
	Gyro Drift Compensation
	Position and Velocity Correction

	Error Estimation and Compensation for Downtown Applications
	Velocity Filters
	Coordinate  filters
	Azimuth Correction
	Output of Estimation Block


	Chapter 6
	Open Area Results
	Test Description
	Experimental Results
	Results Using Clean GPS Data
	Positional Accuracy
	Velocity Accuracy
	Impact of INS Azimuth Misalignment on Accuracy of Integrated
	Gyro Drift Compensation
	Attitude Accuracy

	Results Using GPS Data with Simulated Gaps
	Positional Accuracy
	Velocity Accuracy



	Chapter 7
	Results in Suburban and Urban Areas
	Test Description
	GPS Solution
	Downtown Results
	Conclusions

	Residential Area Results

	Chapter 8
	Conclusions and Recommendations
	Summary
	Conclusions
	Open Area Applications
	Urban and Suburban Area Applications

	Recommendations

	References
	Appendix A
	Strapdown INS Algorithm



