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ABSTRACT 
 
Ambiguity resolution is the key to precise positioning applications with GPS (Global 

Positioning System) carrier phase measurements. The objective of this research is to 

investigate the feasibility of integrating high quality inertial data into GPS On-the-Fly 

(OTF) ambiguity resolution and cycle slip detection. A key factor to an ambiguity search 

procedure is the accuracy of the float ambiguities. The superior navigation accuracy over 

the short term provided by a high quality INS (Inertial Navigation System) can improve 

the precision of the initial float ambiguities, and the integration of inertial data into the 

ambiguity filtering process can yield more accurate float ambiguities and thus facilitate 

the integer search procedure. In this thesis, inertial aiding in the FASF (Fast Ambiguity 

Search Filtering) ambiguity resolution is examined in theory under three INS/GPS 

integration scenarios: loose and tight coupling integration in a decentralized filter 

structure, and an augmented master filter integration in a centralized filter structure. The 

ambiguity dilution precision (ADOP), which measures the accuracy of the float 

ambiguities and the size of the search space, is investigated. To evaluate the performance 

of the algorithms proposed in the thesis two data sets are processed and results are 

analyzed. It is found that the ADOP is significantly reduced with INS data in all three 

integration schemas as long as the GPS outage period is less than 30 seconds. The time to 

fix integers is reduced on average 30% - 70% depending on the GPS outage period and 

the INS/GPS integration strategy. Results also show that tightly coupling and centralized 

integration outperform the loose coupling approach. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

 

1.1 Background and Objectives 
 

The Navstar Global Positioning System (GPS) is an all–weather, radio frequency (RF) 

satellite navigation system established by the U.S. Department of Defense (Parkinson et 

al., 1995). It offers different levels of positioning accuracies with code and carrier phase 

measurements. When used in differential mode, carrier phase measurements have to be 

used in order to achieve accuracies at the centimetre level; however, they contain an 

unknown number of integer cycles called ambiguities. Correct determination of these 

integer ambiguities is a prerequisite for accurate and reliable positioning.  

 

Ambiguity resolution has been a research area since the 1980s, and it has attracted more 

researchers after GPS became operational in 1994. A number of techniques have been 

developed for on–the–fly (OTF) ambiguity resolution, among them are the ambiguity 

function technique (Remondi, 1984), the LAMBDA method (Teunissen, 1993; 1997), 

and the fast ambiguity search filter (FASF) technique (Chen, 1993; Chen and Lachapelle, 

1994). The major difficulties in fixing ambiguities are twofold. First, resolved 

ambiguities are integers, which makes it difficult to directly use some standard parameter 

estimation methods, such as least squares, since the optimization procedure typically 

results in a float solution (i.e. real-valued ambiguities). Thus a search to find the integers 

among all potential candidates has to be conducted. The second difficulty in ambiguity 

resolution is due to the various error sources affecting GPS measurements. Examples of 
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common error sources include atmosphere effects, multipath and receiver noise, just to 

name a few. The degradation of GPS measurements makes it difficult to estimate 

accurate positions and float ambiguity solutions, which can impact the search procedure 

to fix integers quickly and reliably. However, for many real-time applications, resolving 

ambiguities reliably and quickly is typically a requirement. These last two requirements 

are of a conflicting nature since there is usually a trade-off between the time to fix and 

reliability.  

 

The double difference (DD) technique is usually applied to carrier phase measurements to 

eliminate or reduce common error sources such as atmospheric effects, orbit errors and 

the satellite clock bias. Although most common errors are minimized in this mode, errors 

due to multipath and the atmospheric errors over long baselines, may still be significant. 

Also in the presence of  high dynamics, cycle slips frequently occur due to the loss of 

phase lock in the receivers which may require the resolution procedure to restart. Cycle 

slips have to be detected and recovered correctly in order to maintain correct ambiguities. 

Due to the line-of-sight attribute of GPS signals, it is common that there are situations 

where there are no GPS measurements available, or the number of observed satellites is 

less than four, so that no position solution can be achieved. Such cases affect the 

reliability of using GPS as a stand-alone positioning method. 

 

An Inertial Navigation System (INS) is a self-contained navigation system which does 

not require any external signals and can thus provide a continuous navigation solution 

(Britting, 1971). However, the position drifts due to the gyro and accelerometer biases if 

the INS is operated in stand-alone mode (Britting, 1971). Although the positioning 
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accuracy from an INS degrades over time, an INS of good quality can offer superior 

positioning accuracy over the short time, which creates the possibility of including 

inertial data into GPS ambiguity resolution. Therefore the integration of an INS and GPS 

can provide a reliable and accurate positioning system (Cannon, 1991). The incorporation 

of inertial measurements with GPS to resolve ambiguities and to recover cycle slips has 

been investigated (Schwarz et al, 1994; Skaloud, 1999; Scherzinger, 2000; 2002; 

Petovello et al, 2001; Petovello 2003). It has been demonstrated that the time and reliability 

of ambiguity resolution can be improved by including inertial data (Skaloud 1999, 

Scherzinger 2002, Petovello 2003).  

 

The research of this thesis is aimed to study the feasibility of using navigation grade 

inertial data to resolve ambiguities within the FASF framework by evaluating the 

algorithm theoretically and by processing real data sets. The objectives of the research are 

as follows: 

 

� Investigate the feasibility of INS aiding in GPS ambiguity resolution and cycle slip 

recovery using different INS/GPS integration architectures. The ambiguity resolution 

algorithm is based upon the FASF implementation in FLYKINTM developed at 

University of Calgary (Chen, 1993). 

� Develop a software package based on FLYKINTM and an INS/GPS integration 

program developed in the Department of Geomatics Engineering, University of 

Calgary to implement the proposed method. 
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� Test and evaluate the effectiveness of the proposed method by processing and 

analyzing data sets. Sample data sets are provided by the Applanix Corporation, and 

consist of two land vehicle tests. 

 

1.2 Thesis Outline 

 

The thesis is composed of eight chapters. Chapter 2 gives an overview on the positioning 

principles of GPS and INS as well as the error sources in GPS positioning. It also 

describes the algorithm to perform INS coarse and fine alignments.  Different INS/GPS 

integration strategies which are used in the software package are also presented and 

discussed. 

 

Chapter 3 discusses principles of GPS ambiguity resolution. Different ambiguity search 

techniques are discussed with a focus on the LAMBDA (Least Squares AMBiguity 

Decorrelation Adjustment) and FASF methods. 

 

Chapter 4 contains a thorough description of the INS aiding methodology for GPS 

ambiguity resolution. Three INS aiding approaches in GPS ambiguity resolution are 

presented from a theoretical point of view, as well as from the implementation aspect 

within the FASF framework. 
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Chapter 5 gives a description of the FLYKIN based software design. Various program 

modules as well as the input and output of the software are presented. 

 

Chapter 6 contains a complete description of two tests and INS/GPS integration results to 

verify the quality of INS/GPS integration algorithms implemented in the software 

package.  

 

Chapter 7 provides results of ambiguity resolution with inertial aiding using the software 

package. By analyzing the results the performance of the proposed method is evaluated.  

 

Conclusions and recommendations based on this thesis research are provided in Chapter 

8. 
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CHAPTER 2 

GPS AND INS FUNDAMENTALS 

2.1 GPS Concepts 

2.1.1 Basic Concepts 

 

The Navigation System with Timing And Ranging (NAVSTAR) Global Positioning 

System (GPS) is a satellite-based radio-navigation system developed and maintained by 

the Joint Program Office (JPO), which is directed by the U.S. Department of Defense 

(DoD). The GPS was developed to satisfy requirements for the military forces to 

accurately and instantaneously determine their position, velocity, and time in a common 

reference coordinate system anywhere on or near the Earth on a continuous basis 

(Parkinson et al., 1995). The system is composed of three parts, the space segment 

consisting of satellites that broadcast signals, the control segment steering the worldwide 

system and the user segment including the many types of GPS receivers available. 

 

Currently there are twenty-seven satellites (24 + 3 spares) in the Space Segment deployed 

in six orbital planes with an inclination of 55 degree, an altitude of approximately 20,000 

km and a period of about 12 sidereal hours (GPS SPS Performance Standard, 2001). This 

constellation of satellites provides global and continuous GPS coverage at any time of the 

day. Each satellite in the constellation continuously broadcasts signals on two L-band 

carrier phase frequencies, one is L1 frequency at 1575.42 MHz (λ =19 cm) and the other 

is the L2 frequency at 1227.6 MHz (λ =24 cm). Two pseudo-random noise (PRN) codes, 

which are used to obtain the pseudorange from each satellite to the receiver, are 
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modulated onto these two base carriers. The first code, C/A–code (Coarse/Acquisition 

code) is modulated only on L1, while the second code, P-code (Precise code) is 

modulated on both the L1 and L2 carriers. In addition to the PRN codes, the navigation 

message consisting of information such as satellite ephemeris, satellite clock bias and 

satellite status is also modulated onto the L1 and L2 carriers. 

 

The Control Segment comprises of the Operational Control System that consists of a 

master control station, worldwide monitor stations, and ground control stations. The main 

operational task of the control segment is to track the satellites, determine satellite orbits, 

upload the navigation message, and to control the satellites (GPS SPS Performance 

Standard, 2001). 

 

The User Segment is basically different types of GPS receivers, which uses the GPS 

satellite signals to determine user’s position, velocity and time. Originally GPS was 

designated for military use, but since the system was deployed, it has been used in the 

civilian community for various applications such as conducting land and geodetic control 

surveys, and fleet management and control in the cities (Hofmann-Wellenhof et al., 

1997). 

 

2.1.2 Positioning Principle with GPS Observables 

The fundamental GPS observables are pseudorange, carrier phase and the instantaneous 

Doppler frequency.  The pseudorange is measured by comparing the replica of the C/A- 

code generated in the receiver with the code transmitted from the satellite to determine 
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the time shift through an autocorrelation analysis. The carrier phase measurement is the 

accumulated phase offset between the receiver reference signal and the received satellite 

signal. Therefore the initial number of integer cycles in the carrier phase is unknown 

(Wells et al., 1987). The unknown integers are the so-called ambiguities. 

 

The basic pseudorange and carrier phase observation equations can be expressed as 

follows (Lachapelle, 1998): 

 

ptropion dddTdtcdp ερρ +++−++= )(           (2.1) 

φελρρφ ++−+−++= tropion ddNdTdtcd )(          (2.2) 

where 

 p  is the pseudorange measurement (m), 

 φ  is the carrier phase measurement (m), 

 ρ  is the range between GPS satellite and receiver (m), 

 ρd   is the orbital error (m), 

 c  is the speed of light (m/s), 

 dt   is the satellite clock error (s), 

 dT  is the receiver clock error (s), 

           λ  is the carrier phase wavelength (m), 

           N  is the carrier phase integer ambiguities (cycle), 

           iond  is the ionospheric effect (m), 

           tropd  is the tropospheric effect (m), and  
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φεε ,p  are the measurement noise and multipath (m) on the pseudorange and 

carrier phase, respectively. 

 

Due to various error sources in equation (2.1) single point positioning is inaccurate, 

however, a type of differenced observation can be formed to reduce some common error 

sources. By subtracting measurements at a reference station from measurements at a user 

receiver for the same satellite, the satellite clock error, dt , will be removed. Such a single 

differenced observation also reduces the orbit and atmospheric errors. The positioning 

equations with the single differenced observation can be formed as follows (Lachapelle, 

1998): 

 

ptropion dddTcdp ∆+∆+∆+∆−∆+∆=∆ ερρ          (2.3) 

φελρρφ ∆+∆+∆−∆+∆−∆+∆=∆ tropion ddNdTcd         (2.4) 

where ∆  is the single difference (between receivers) operator. 

 

By further taking the difference between measurements from a base satellite and 

measurements at other satellites, double differenced observations can be obtained. The 

positioning equations for the double differenced observables are (Lachapelle, 1998): 

 

ptropion dddp ∆∇+∆∇+∆∇+∆∇+∆∇=∆∇ ερρ          (2.5) 

φελρρφ ∆∇+∆∇+∆∇−∆∇+∆∇+∆∇=∆∇ tropion ddNd         (2.6) 

where ∇ is the single difference (between satellites) operator such that ∆∇  is the double 

difference operator. 
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The above equations eliminate the satellite and receiver clock errors, and reduce 

atmospheric and orbital errors as a function of separation between the reference and user 

receivers. 

 

Equation (2.6) is generally used in applications where a high positioning accuracy is 

required. However in order to use equation (2.6) the double differenced ambiguity N∆∇  

needs to be resolved. Positioning with the fixed ambiguities (integers) has an accuracy at 

the few centimetre level (Lachapelle et al., 2000). For short baselines (<10 km), the main 

errors that affect the ambiguity resolution are carrier phase multipath and receiver noise.  

However ionospheric and atmospheric errors will become significant for long baselines 

(Lu, 1995; Raquet et al., 1998). 

 

2.1.3 GPS Errors 
 
As indicated in the above section, GPS measurements are subject to many error sources. 

These error sources are briefly discussed below. 

 
Ionospheric Error 
 

The ionosphere is the layer of the atmosphere ranging from about 50 km to 1000 km 

where free electrons exist. The ionospheric delay on GPS signals is proportional to the 

total electron content (TEC) along the signal path and inversely proportional to the 

squared frequency (Lachapelle, 1998). The equation relating carrier phase error to the 

ionosphere is given as follows (Lachapelle, 1998): 
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TEC3.40
2f

I −=               (2.7) 

where  

 I  is error in carrier phase due to ionosphere, and 

 f  is frequency of the L1 or L2 carrier. 

The TEC values in the equation depend on the rate of ionization, recombination and 

transport processes (Skone, 2001). The rate of ionization is a function of the solar 

activity, which follows cycles of approximately 11 years (Klobuchar, 1996). The value of 

TEC also varies diurnally. The diurnal maximum occurs at about 2:00 pm local time and 

and the minimum usually occurs just before the sunrise (Liao, 2000). It has been 

observed that TEC increases by a factor of three during a solar maximum versus solar 

minimum (Klobuchar et al., 1995). The latest solar maximum occurred during year 2000-

2001.  The data set used in this thesis was collected in late 2000, which means 

ionospheric error should be significant in the data.  

 

The ionospheric effect is correlated with the baseline length between the base and remote 

receivers. For a large separation between the base station and the remote receiver, the 

ionospheric effect on GPS positions can be quite significant. The ionosphere error can be 

on the order of 2-50 metres in single point positioning mode and can be reduced by using 

the double differential technique to 0.5 – 2 ppm (Lachapelle, 1998). Since the ionospheric 

delay on GPS carrier frequencies is dispersive, a special linear combinations of L1 and 

L2 carrier phase measurements can be formed to eliminate the first order of the 

ionosphere effect (Hofmann-Wellenhof et al., 1997). Recent research has also shown that 
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the ionosphere delay can be well estimated in a wide area GPS network or a regional GPS 

network by using interpolation or least squares collocation (Raquet, 1998). 

 

Tropospheric Error 

 

The troposphere is the lowest part of the atmosphere and it reaches a height of about 10 

km (Spilker, 1996). It is electrically neutral and non-dispersive for frequencies as high as 

15 GHz. The tropospheric delay consists of two parts, the dry and wet components, and is 

affected by temperature, humidity, and pressure. The dry delay constitutes around 80-

90% of the total error and it can be modeled to an accuracy of 1% or better (Raquet, 

1998).  The wet delay only contributes 10-20% of the total delay, but it is difficult to 

model accurately. Due to its non-dispersive effect, dual frequency data cannot be used to 

compute the delay. Various models have been developed to estimate the tropospheric 

delay, and the best known include the Hopfield model (Hopfield, 1969) and the 

Saastamoinen model (Saastamoinen, 1973). Similar to the method of handling 

ionospheric error over the short baselines double differenced observations can be used to 

reduce the tropospheric effect to 0.1 – 1 ppm (Lachapelle, 1998). 

 

Orbital error 

 

Orbital error is caused by the discrepancies between the actual positions of the satellites 

and the predicted positions from the broadcast ephemeris. The orbital errors can range 

from 3 to 8 metres, and by applying the double differential technique, as shown in 
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Equation (2.5), the orbital errors can be greatly reduced to 0.1-0.5 ppm (Lachapelle, 

1998).  Precise ephemeris can be used in post-mission applications to achieve better 

absolute accuracies, which can be less than 10 centimetres (Zumberge and Bertiger, 

1996).  

 

Multipath error 

 

Multipath is the phenomena whereby a signal arrives at an antenna via two or more 

different paths (Ray, 2000). Multipath effects are generally specific to antenna and 

receiver architectures and depend on the surrounding environment. Multipath affects both 

the carrier phase and code measurements. Generally code multipath error can be on the 

order of 0.1-3 metres and is much larger than carrier phase multipath, which typically 

ranges from 0.1-3 cm (Lachapelle, 1998). In the static mode, multipath is non-Gaussian 

in nature and shows sinusoidal oscillations due to satellite geometry changes. In the 

dynamic mode, multipath behaves more randomly because of the combinations of vehicle 

movement and satellite geometry change. For short baselines, the carrier phase multipath 

error is usually the most significant error source that affects ambiguity resolution (Shi 

and Cannon, 1995). Special antenna designs, such as choke rings and multipath limiting 

antennas, can mitigate multipath effects. Recent research has shown that multipath can be 

also reduced by using a multi-antenna system along with a Kalman filtering technique 

(Ray, 2000). 
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Receiver Noise 

Receiver noise is usually caused by high frequency thermal noise and the effects of 

dynamic stresses on a receiver’s tracking loop (Spilker, 1994). It is usually considered as 

white noise as it is uncorrelated over time. The typical psedorange measurement noise is 

approximately 0.1 to 3 m on the C/A-code and 0.2 – 2 mm on the carrier phase 

measurement (Lachapelle, 1998).  With differential corrections the receiver noise 

increases by 2 , and double differences have a noise amplification of two due to the two 

differencing steps. 

 

2.2 INS Concepts  

 

Inertial Navigation Systems (INS) made their appearance in commercial aviation in the 

late sixties and have been extensively used in intercontinental navigation and in-flight 

control systems (Salychev, 1998). Their distinctive characteristic is the capability for 

autonomous navigation in any environment. They operate without reference to an 

external signal and therefore are not affected by atmospheric conditions, line-of-sight 

obstructions or underwater or underground operation.  

 

The principle of inertial navigation is based on Newton's first and second laws of motion 

(Britting, 1971). By measuring vehicle acceleration in an inertial frame of reference, 

integrating it with respect to time and transforming it to the navigation frame, velocity, 

attitude and position differences in the navigation frame can be obtained. Sensors used to 

implement such a system are accelerometers that measure specific force and gyroscopes 
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for the realization of an inertial frame of reference. Since specific force measurements 

contain the effect of the gravity field of the earth, a gravity model is needed to extract 

vehicle acceleration from the measurements. Because typical INS employs three 

translational and three rotational sensors, it can be used for positioning as well as for 

attitude sensing. 

 

There are three main types of INS, namely the space-stabilized system, the local-level 

system and the strapdown system (Schmidt, 1978). The INS system used in this research 

is a strapdown system which is described in the following section. 

 

2.2.1 INS Mechanization  

A strapdown navigation system contains three accelerometers and three rate gyroscopes, 

which measure the projections of specific force and absolute angular velocity, 

respectively, on their sensitive axes. In the strapdown INS these sensors are fixed in an 

Inertial Measurement Unit (IMU), and measurements are only available in the body 

frame. The direction cosine matrix between the body frame and the navigation frame 

needs to be computed analytically. 

 

In order to realize stand-alone INS navigation, a series of mechanization equations have 

to be implemented (Schmidt, 1978). Different computational frames can be chosen based 

on the specific application and INS used (e.g. strapdown, platform). In this thesis, the 

wander azimuth frame was chosen as the computational frame while the local-level frame 
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was chosen as the navigation frame (Schwarz and Wei, 1999). The algorithmic flowchart 

is shown in Figure 2.1. 
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Figure 2.1 Wander Azimuth Frame INS Mechanization (Schwarz and Wei, 1999) 
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2.2.2 Coarse Alignment 

 

The purpose of the alignment phase is to establish an initial rotation matrix relating the 

body axes to the wander frame. The body frame in the algorithm adopts right (x) – 

forward (y) – up (z) axes as demonstrated below: 

 

 
 
 
 
 
 
 
 

Figure 2.2 Body Axis 
 

An alignment has two steps: coarse alignment and fine alignment. The coarse alignment 

is to obtain the approximate attitude, which will be fed into the fine alignment procedure 

to improve the attitude accuracy (Salychev, 1998). 

 

Coarse alignment uses the fact that in static mode the gyros and accelerometers only 

sense the motion of the earth and the normal gravity and the following are assumed: 

 

a. Pitch, roll and azimuth are small (± several degrees) and the initial wander angle is 

zero, and  

b. The position ( ,,λϕ h) is known at the time of alignment. 

  

  
IMU Body x 
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The time of the coarse alignment consists of sixteen four-second periods (thus 64 seconds 

for the total coarse alignment procedure). The attitude parameters (roll, pitch and 

azimuth) are updated in a manner shown below: 
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The initial roll, pitch and azimuth, i.e. 000 ,, AzimuthPitchRoll , are assumed to be zero. At 

the end of each four second interval the update to previous attitudes, i.e. 

AzimuthPitchRoll δδδ ,, , are calculated using the summed earth rate and velocities: 
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where γ  is normal gravity and t∆  is the sampling interval. xv , yv , w
xθ  and w

yθ  are  

projections of velocity and earth rate in the body frame. For each interval the earth rate is 

summed by averaging the transformed gyro measurements (body to wander with 

assumption that the yaw is zero): 
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where n  is the number of epochs and w
iθ  is the earth rate. 

 

However the velocity sums are computed through the INS navigation module. Velocity 

from the module (in the wander frame) is converted into the body frame. After each four 

second loop, the updated attitude parameters will be fed into the INS navigation module. 

 

The above process can be considered as one of computationally nulling the velocities in 

the level frame. The criterion for the completion of the coarse alignment is: 

 

0)()( 222 ≅+= w
y

w
x vvv         (2.11) 

 

The coarse alignment procedure is shown in Figure 2.3. 

 
 
 
 
 
2.2.2 Fine Alignment 
 
 

Results from the coarse alignment are refined through fine alignment to improve their 

accuracy. Fine alignment is accomplished by a Kalman filter that models the attitude 

misalignments along with position error, velocity error, accelerometer biases and gyro 

drifts. It is also assumed that during fine alignment the vehicle is stationary.  For details 

of fine alignment see Wong (1985), for example. 
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Figure 2.3 Coarse Alignment Process 
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The fine alignment employs the INS navigation module and Kalman Filter to perform a 

succession of zero velocity updates. An update interval of 20 seconds was chosen in this 

case. Below is the description of the filter. 

 

 Error Model 

 
The INS states model 15 errors: 

 

[ ]T
uenhpr bbbdddvhvvx 321321δδδδδλδϕδεδεδε=     (2.12) 

where 

Hpr δεδεδε ,,      are the misalignments (roll, pitch and heading) (radians), 

hδδλδϕ ,,        are the position errors, i.e. latitude, longitude errors (in radians) 

and height (m), 

hen vvv δδδ ,,        are the horizontal velocity errors (radian/s) and vertical velocity  

                           error (m/s), 

321 ,, ddd            is the gyro drift vector in the body frame (deg/hr), and  

321 ,, bbb             are the accelerometer bias vector in the body frame (m/s2). 

The system model can then be presented: 

 

kkkk uxx +Φ=+1                      (2.13) 

where 

kΦ   is the transition matrix, and  

ku    is the system disturbance. 
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Measurement Model (ZUPT) 
 
The measurements are: 

 

[ ] T
khenk vvvz δδδ=         (2.14) 

 

where  hen vvv δδδ  and ,  are the summed velocities (m/s) during the ZUPT interval (20 

seconds), for the north, east and up directions. The measurement equation is then: 
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        (2.15) 

where ϕcos)( and 21 hNrhMr +=+= . 

 

The first non-zero column is the sixth column in the design matrix. The states 

corresponding to the non-zero elements (r1, r2 and 1) are nvδ , evδ  (in rad/s) and uvδ (in 

m/s), respectively. 

 

The filter does a state prediction every one second. At the end of every ten seconds, the 

predicted error states and its covariance are updated using the measurements. The 

estimated error states are then used to correct the position, velocity and attitude. The 

update of the attitude adopts the following linear formula: 

 

)(ˆ EIRR l
b

l
b +=       (2.16) 
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where l
bR  is the rotation matrix relating the body axes to the local-level frame and E  is 

the skew-symmetric matrix of the misalignment states.   

 

A flow-chart of the fine alignment procedure is presented in Figure 2.4. 

 

2.3 INS/GPS Integration 

 

The Kalman filter has been commonly used for INS/GPS integration. Depending on the 

structure of the filter there are two strategies developed: the decentralized schema and the 

centralized schema (Gao et al., 1993; Schwarz et al., 1994). In the decentralized strategy 

two filters, i.e. the GPS filter and the master INS filter, run simultaneously, while in the 

centralized approach there is only one filter – the master filter. However, in this latter 

case the state vector in the master filter is augmented to include ambiguity states in the 

case that ambiguities need to be resolved to achieve high accuracy. The following 

sections describe the filter structures used in this research and in the software developed 

for its implementation. 

2.3.1 Kalman Filter Structure in the Decentralized Integration Schema 

 

The structure of the INS/GPS integration is shown in Figure 2.5. There are two 

independent filters running in parallel, i.e. the GPS filter that estimates the GPS 

navigation solution and its ambiguities, and the master filter that estimates the INS errors.  
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Figure 2.4 Fine Alignment Procedure 
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Figure 2.5 INS/GPS Integration Filter Structure 

 

As indicated in the above figure either of two types of GPS information can be fed into 

the master filter to update the filter’s predictions. One is GPS position and velocity, the 

other is GPS measurements and double differenced ambiguities. The first integration is 

so-called loose coupling and the latter is referred to as tight coupling (Schwarz, 1994). 

Measurement equations for each integration type will be described in the following 

sections. 

 

Feedback to the INS navigation module are velocity and position corrections, gyro drift 

and accelerometer bias, and it occurs at every epoch when the information is available. It 

is used to prevent INS error growth. The feedback from the master filter to the GPS 

Kalman filter, however, is used to correct cycle slips when they occur and/or to assist the 

GPS filter to fix integers. 

 

GPS Filter 
 

The GPS filter system states are: 

 
Tgpsgpsgps Nvrx ],,[ ∆∇= δδδ                                  (2.17) 
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where 

. vector correctionambiguity  ddifference double  theis   
and (m/s),or error vect velocity  theis     

(m),or error vectposition   theis     
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δ
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The system (discrete) equation is: 

 
gps
k

gps
k

gpsgps
k uxx +Φ=+1          (2.18) 
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The transition matrix is: 
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The measurement equations are as follow: 
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where k∆Φ∇δ  is the difference between the measured and approximate double 

differenced (DD) carrier phase measurements, kρδ ∆∇  is the difference between the 

measured and approximate DD code measurements, kkk CBA  and  , are coefficient 

matrices, and kk rr 21  and are measurement noise values for carrier and code measurements, 

respectively. 

 

Master Filter  

 

The system states are the INS errors (15 states): 

 

Tinsinsins bdvrx ],,,,[ δδε=               (2.22) 

where 

ε  is the misalignment vector (north, east and up) (rad/s), 

 insrδ  is the position error vector (m), 

 insvδ  is the velocity error vector (m/s), 

 d    is the gyro drift vector (deg/hr), and  

 b    is the accelerometer bias vector (m/s2). 

 

 

The system equation is: 
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insins
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where 
insΦ   is the transition matrix, and  

ins
ku   is the system disturbance. 

 

For details on the structure of the transition matrix, insΦ , refer to Schwarz and Wei 

(1999). 

 

Outputs from the INS navigation module and the GPS filter module form the system 

measurements to update the master filter’s predictions. Depending on what GPS 

information is used there are two integration modes: loose coupling for GPS position and 

velocity, and tight coupling for GPS measurements (pseudorange, phase and phase rate) 

and double differenced ambiguities. 

 

Loose Coupling 
 

The configuration of the loose coupling approach is shown below: 
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Figure 2.6 Loose Coupling Integration Filter Configuration 
 

The measurement in this configuration is the difference between the INS and GPS 

navigation solutions. The GPS navigation solution is from the GPS filter as indicated in 
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Figure 2.6. Since the GPS solution is a referenced source, its accuracy affects the 

estimation of the master filter. 

 

The measurement equation in this integration mode is: 
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22             (2.24) 

where I is an identity matrix. 

 

Therefore, in loose coupling, the configuration measurement equation (2.24) and the 

system model equation (2.23) constitute the Kalman filter. In this integration model, 

position and velocity from the GPS filter are used as the update information. 

 

Tight Coupling 
 

The configuration for tight coupling is given below: 
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Figure 2.7 Tight Coupling Integration Filter Configuration 
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The format of the measurement equation is the same as in the GPS filter, but it uses 

positions from the INS rather than GPS as the approximate position: 
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Thus measurement equations (2.25) and (2.26) and system model equation (2.23) form 

the filter for tight coupling. 

 

2.3.2 Kalman Filter Structure for Centralized Integration  

 

The centralized filter configuration is shown in Figure 2.8 where an augmented master 

filter (AMF) is constructed to have ambiguities in its state vector. 
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Figure 2.8 Augmented Master Filter (AMF) Configuration 
 

In the above configuration, the AMF also estimates float ambiguities and FASF, merely 

an integer search module, searches the integers based on the float ambiguities and their 
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variance-covariance (VCV) information from the AMF. If ambiguities are fixed in FASF, 

the integers will be fed into the AMF and ambiguity estimation will stop. 

 

The system states are 15 INS errors plus ambiguity errors for all double differences: 

 
Tinsins Nbdvrx ],,,,,[ ∆∇= δδδε           (2.27) 

 

The system equation is: 

 

kkk uxx +Φ=+1             (2.28) 

where 

Φ  is the augmented transition matrix, and 

ku  is the system disturbance. 

 

The augmented transition matrix takes the following format: 

 








Φ
=Φ

nXn

ins

I0
0

            (2.29) 

 

where n is the number of double differenced ambiguities. 

 

The measurements are double differenced pseudorange, phase and phase rate from GPS. 

Similar to the analysis in Section 2.3.1, the measurement equations are presented below: 
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Above measurement equations 2.30 and 2.31 along with system equation 2.28 constitute 

the filter for centralized integration schema. When comparing to the tight coupling 

approach, it can be seen that measurement equations are the same but the system state in 

the centralized integration also includes ambiguities. 
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CHAPTER 3 

GPS AMBIGUITY RESOLUTION 

 

The carrier phase measurement is the most precise GPS signal with which users can 

achieve positioning accuracies at the centimetre level. However, since a GPS receiver can 

only measure the fractional part of the phase and integrate the full cycles over time, the 

unknown integer cycles, the so-called integer ambiguities, must be resolved.  

 

Many ambiguity resolution methods have been proposed. However due to the fact that 

there are many error sources that deteriorate the phase measurement it is difficult to 

resolve the integers reliably and quickly. In this chapter, the principles of ambiguity 

resolution are first discussed. Integer fixing involves three basic steps: float ambiguity 

estimation, integer search and validation. The least squares method and Kalman filtering 

technique are discussed in the context of float ambiguity estimation. Two typical integer 

searching mechanisms, the ambiguity function method and LAMBDA are briefly 

introduced in the integer ambiguity search. The FASF method developed by Chen (1993) 

is then studied in detail.  

 

Three basic steps of fixing ambiguities are as follows: 

1. Estimation of the float ambiguities and the associated covariance information 

2. Integer ambiguity search 

3. Integer validation (ratio test or discrimination test) 
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Float-ambiguity estimation is the first and crucial step to resolve the integers. It offers the 

approximate ambiguity solution with an uncertainty represented by the estimated 

variance. Although the estimated ambiguities are the optimal solutions in a statistical 

sense, which can be provided by some standard estimators like least squares, they are 

generally not integers. Thus the search procedure is implemented to find the integers 

within the candidate space which is constructed based upon the float solution and its 

covariance information from the first step. The discrimination test procedure is then 

needed to validate the solution.  

3.1 Float Ambiguity Estimation 
 
 
This section introduces two float estimation methods, least squares and the Kalman filter. 

 

3.1.1 Least Squares Estimation 
 
The least squares method is used to estimate a set of unknown parameters from redundant 

obervables through a known mathematical model. The statement of the least squares 

estimation in the linear system model is to estimate the parameters, x , in the following 

equation (Krakiwsky, 1990): 

 

rAxl +=               (3.1) 

where 

 l   is measured observables, 

 A  is the design matrix, 

 x  is the unknown parameter vector, and 
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 r  is the vector of measurement residuals. 

 

Under the condition that the following quadratic form must be minimized: 

 

r̂PˆTr  =  minimum             (3.2) 

where 

r̂                  is the vector of  measurement residuals, and  

12
0

−= lCP σ     is the weight matrix. 1
0
−σ is the priori variance factor and 1−

lC is the               

                      VCV matrix of the measurement errors. 

Since the mathematical model relating the carrier phase measurements to the unknown 

ambiguity parameters is nonlinear as indicated by equation (2.6), the nonlinear relation 

needs to be linearized in order to apply a least squares estimator. After linearization, the 

least squares equation for GPS ambiguity estimation using carrier phase measurements is: 

 

ϕεδϕδ ∆∇+∆∇+=∆∇ NBrA             (3.3) 

where  

ϕδ ∆∇   is the vector of measured minus computed double difference carrier phase  

             measurement, 

       rδ         is the parameter vector containing the increments of the baseline coordinates,   

       N∆∇   is the double difference ambiguity vector,  

      BA,     are the design matrices, and  

     ϕε ∆∇      is the DD carrier phase measurement errors.  
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The least squares estimation for equation (3.3) is carried out in an iterative fashion until 

the correction vector, rδ , converges below a threshold, which is close to zero (in the order 

of 410− ). 

 

The important assumptions behind least squares are that the state vector is constant over 

one estimation interval and that the measurement errors are Gaussian.  The first 

assumption leads to estimation over a period of static time or on a per epoch basis for a 

dynamic environment. The second assumption is required to guarantee that the least 

squares estimate is optimal.  

3.1.2 Kalman Filtering 
 
Kalman filtering allows for the state vector to change over time, as is the case for a 

dynamic system which is typical for GPS kinematic positioning. The Kalman filter 

prediction and update equations are called the system dynamic model and measurement 

model, respectively. These two equations are presented below and the filter loop is shown 

in Figure 3.1(Brown and Hwang, 1995). 

 

The system model is given as: 

kkkk uxx +Φ=+1              (3.4) 

where 

 kx   is the state vector at epoch k , 

 kΦ   is the discrete transition matrix relating kx  to 1+kx , and 

            ku   is the disturbance vector. 
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The measurement model is: 

kkkk rxHz +=               (3.5) 

where 

 kz    is the measurement vector at epoch k , 

 kH   is the coefficient matrix relating the measurement to the state vector 

at epoch  

                   k , and  

 kr    is the measurement noise vector at epoch k . 
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Figure 3.1 Kalman Filtering Flow Chart (Brown and Hwang, 1995) 
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The system and measurement equations in a GPS filter are described in Section 2.3.1. 

Since Kalman filter estimation information is carried from the previous epoch to the 

subsequent epoch, the accuracy of the ambiguities is improved over the estimation period 

as additional measurements are available for update, which are described in the following 

sections. As an example, Figure 3.2 shows the estimation of the DD ambiguity for PRNs 

5-8 before it is fixed using a sample of GPS data.  
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Figure 3.2 Kalman Filter Estimation of Float Ambiguity Std. Deviation for DD PRNs 5-8 
 

3.2 Search Algorithm 
 
Once the float ambiguities and their associated error VCV matrix are obtained, the search 

can then be performed to find integers. Initial ambiguities, along with their error 
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covariance, construct a search space and the algorithm basically finds appropriate 

combinations of integer candidates in this search space. The search can be implemented 

in either the position or ambiguity domain. This section introduces two well-known 

search methods that are performed in these two different domains. 

3.2.1 Ambiguity Function Method 
 
The ambiguity function method (AFM) was proposed by Counselman and Gourevitch 

(1981). Remondi (1984, 1990) and Mader (1990) further investigated the concept. 

Erickson (1992) also studied the reliability and performance of AFM. The principle of the 

ambiguity function method is to find a set of ambiguity candidates in a cube in the 

position domain to maximize the following objective function: 

 

∑∑
= =

∆∇−∆∇=
n

k

m

j

j
kAB

j
kABBBB zyxAFM

1 1
,, ]2exp[),,( ρ

λ
πφ          (3.6) 

where 

  BA  and    are the base and remote stations respectively, 

  n   is the number of epochs, 

  m   is the number of total satellites observed, 

   j
kAB,φ∆∇   is the double differenced phase measurement for the satellite j  at  

    epoch k , and 

  j
kAB ,ρ∆∇      is the double differenced code measurement for the satellite j  at  

    epoch k . 

 

The AFM procedure is as follows: 
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1. Calculate the approximate position for the remote station B using differential code 

measurements, 

2.  Construct a cube with the approximate coordinates of B obtained in step 1 as its 

centre and partition the cube into grid points as shown in Figure 3.3. The volume of 

the cube is determined by standard deviations, e.g. xσ4± , yσ4± and 

zσ4± (Remondi, 1991), which are obtained from the error covariance matrix of the 

code solution at the first step. 

3. Compute the objective function from equation (3.4) for each grid in the position cube. 

The candidate integers that yield the maximum value should be the desired solution. 

 

 
A B 

 
Figure 3.3 Search Cube for the Ambiguity Function Method 

 

Although theoretically the AFM can generate correct integers, the large search volume 

makes this method generally impractical for real-time applications. As demonstrated by 

Hofmann-Wellenhof (1997), assuming a 6m  6m  m6 ×× cube with a 1 cm grid the number 

of possible ambiguity candidates reaches 83 1017.2)601( ×≈ .  Erickson (1992) also 

concluded that, in order to achieve the greatest success, AFM should be used with short 

baselines (< 10 km) and GPS satellites with high elevations (> 15 °).  
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3.2.2 LAMBDA Method 
 
Teunissen et al. (1993,1997) document the LAMBDA method which stands for Least-

square AMBiguity Decorrelation Adjustment. It is one of the most sophisticated and 

well-documented ambiguity resolution methods (Jonge et al., 1996). The LAMBDA 

method applies normal least squares to obtain the float ambiguities, N̂∆∇ , and its 

variance- covariance (VCV) matrix, NQ ˆ∆∇ . The search is then carried out within the 

search space defined by N̂∆∇  and NQ ˆ∆∇  to find the integers N
(

∆∇ satisfying the 

following condition: 

 

n
N

T ZNNNQNN ∈∆∇=∆∇−∆∇∆∇−∆∇ −
∆∇    ,minimum)ˆ()ˆ( 1

ˆ          (3.7) 

 

Based on the constraint of the integer nature for the solution in equation (3.5) the 

LAMBDA method is also called the integer least squares adjustment. The ambiguity 

search space or region is defined as follows: 

 

21
ˆ )ˆ()ˆ( χ≤∆∇−∆∇∆∇−∆∇ −

∆∇ NNQNN N
T             (3.8) 

 

where 2χ  is a positive constant and represents the size of the ellipsoidal search region. 

The region is centred at the float solution, N̂∆∇ , and its shape is governed by the 

variance matrix, NQ ˆ∆∇ . Its size can be controlled by choosing an appropriate value for 2χ . 
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Although the search space is given by equation (3.6), it is difficult to implement the 

search due to the nondiagonality of NQ ˆ∆∇ , which indicates that the float ambiguities are 

highly correlated in most cases. To facilitate the search and achieve better efficiency, a Z-

transformation, which decorrelates the DD ambiguities, is applied to NQ ˆ∆∇ . The 

transformation makes NQ ˆ∆∇  nearly diagonal, which means that the ambiguities become 

almost decorrelated. The transformation is called the LAMBDA decorrelation.  After the 

Z-transformation is applied, the ambiguities as well as the variance matrix are 

transformed into the Z domain. The search problem is therefore converted into the 

transformed ambiguity domain. Denoting the transformed ambiguities and the variance 

matrix as z and zQ  , based on the triangular decomposition of the variance matrix zQ , the 

quadratic form of equation (3.6) can then be written as a sum of independent squares in 

the individual ambiguities (Teunissen, 1993): 

 

∑
=

− −=−−
n

i
ziIiz

T
Ii

zzzzQzz
1

22
|

1
ˆ |

/)ˆ()ˆ()ˆ( σ                                  (3.9) 

 

where 2
|Iizσ  is the thi diagonal element in zQ  and it is the conditional variance of 

ambiguity iz conditioned on all previous ones ( 1,...,2,1,0 −= iI ). The notation Iiz |ˆ is used 

to denote the conditional ambiguity. Using the above quadratic form, the following 

sequential bounds on the individual ambiguities can be formed: 
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A search within all ranges defined by equation (3.10) is then performed. Throughout the 

search procedure two integer candidate sets with the smallest and the second smallest 

sum of squared residuals are kept. Afterwards, the ratio of the smallest and the second 

smallest sum-of-squared (SOS) residuals is calculated and a discrimination test is 

performed by comparing it with a predefined threshold. If the test passes, the candidate 

set with the smallest SOS residuals is deemed the integer solution and the integers are 

then transformed back to the normal ambiguity domain by applying an inverse Z-

transformation. 

 
The core part of the LAMBDA method exists in the decorrelation process which 

simplifies the computation of the minimization equation and reduces the search space. A 

full discussion on the decorrelation is presented in Section 3.3.2. When comparing the 

LAMBDA method with the AFM, the LAMBDA method is faster and significantly more 

efficient (Weisenburger, 1997). The FASF method, to be discussed in the next section, 

combines the Kalman filter and the LAMBDA decorrelation. 

 

3.3 FASF with LAMBDA Decorrelation  

 

The FASF is an OTF ambiguity search algorithm developed by Chen (1993, 1994a). 

FASF is a search procedure carried out in the ambiguity domain and the basic theory is 
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the same as described in the LAMBDA method, i.e. to find the integers satisfying the 

integer least squares objective function equation (3.5) within the integer candidate space 

defined by equation (3.8). A Kalman filter is built into FASF to estimate the float 

ambiguities and the associated VCV matrix. This makes the FASF suitable for real-time 

applications. Unlike the LAMBDA search, where ambiguity ranges are dynamically 

calculated through the search procedure, it computes the search range beforehand  (Chen, 

1994b). This section discusses the FASF filter structure and the search procedure along 

with the important LAMBDA decorrelation which is adopted in the FASF. Figure 3.4 

shows the workflow of the FASF method. 

 

Filter Structure 
 
The system and measurement equations of the filter are as described in Section 2.1. 

System equation (2.1), along with the measurement equation (2.3), constitutes the 

Kalman filter in FASF. At each epoch, the float ambiguities and their error covariances 

are estimated and a search is performed until the integers are obtained. The advantage of 

using a Kalman filter is that with more measurements available, the estimation of the 

float solution is more accurate and thus the size of search space is reduced.  

3.3.1 LAMBDA Decorrelation  
 
 
The LAMBDA decorrelation proposed by Teunissen (1994), which facilitates the 

computation of the search space and reduces the number of ambiguity candidates to be 

searched and evaluated, is not a prerequisite to perform any ambiguity search to find the 

integers which must satisfy the minimization problem as given by equation (3.7).  
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Figure 3.4 FASF Workflow 
 
 



 

 

 

46

As indicated earlier, the ambiguity search is aimed to find integer candidates from the 

search space to minimize equation (3.7). Rewriting the objective function and definition 

of the search space gives: 

 

n
N

T ZNNNQNN ∈∆∇=∆∇−∆∇∆∇−∆∇ −
∆∇    ,minimum)ˆ()ˆ( 1

ˆ       (3.11) 

21
ˆ )ˆ()ˆ( χ≤∆∇−∆∇∆∇−∆∇ −

∆∇ NNQNN N
T           (3.12) 

 

Expanding the above ambiguity vectors NN ∆∇∆∇ ,ˆ  gives the following: 

[ ]
[ ]
[ ]

[ ]k

T
kk

T
k

T
k

NNN
NNNNNNN

NNNN

NNNN

∆∇∆∇∆∇=
∆∇−∆∇∆∇−∆∇∆∇−∆∇=∆∇

∆∇∆∇∆∇=∆∇

∆∇∆∇∆∇=∆∇

δδδ
δ

L

L

L

L

21

2211

21

21

ˆˆˆ

ˆˆˆˆ

 

It can be observed that if the VCV matrix, NQ ˆ∆∇ , is diagonal, equation (3.11) is reduced 

to be the sum of independent squares and thus just by ‘rounding’ the float ambiguities to 

their nearest integers the correct solution can be obtained. However, due to the 

correlation among DD ambiguities, NQ ˆ∆∇  is not diagonal. Thus it is not trivial to iterate 

candidates in the search ranges defined by equation (3.12). Therefore, the primary aim of 

introducing a LAMBDA decorrelation is to diagonalize the VCV matrix, which 

decorrelates DD ambiguities after the transformation. The transformation also has to 

maintain following properties (Teunissen, 1994): 

� It should be volume preserving 

� Elements in the transformation matrix must be integers 
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Due to its second property above, the transformation is called Z-transformation and the 

domain after the transformation is called Z domain. 

 

To quantify the correlation, the correlation matrix is introduced (Teunissen, 1994): 

 

{ } { } 2
1

ˆˆ2
1

ˆˆ )()( −
∆∇∆∇

−
∆∇∆∇ = NNNN QdiagQQdiagR       (3.13) 

 

A scalar, which measures the decorrelation and is called the correlation number, can be 

defined: 

( ) 2
1

ˆˆ )det( NN Rr ∆∇∆∇ =       (3.14) 

 

Substituting (3.13) into equation (3.8) gives the following: 

 

{ }
2

1

ˆ

ˆ
ˆ )(det

)det(










=

∆∇

∆∇
∆∇

N

N
N Qdiag

Q
r       (3.15) 

 

When NQ ˆ∆∇  is diagonal, Nr ˆ∆∇  is equal to one, otherwise its value is close to zero. By 

introducing the correlation number, the decorrelation process is now translated into the 

problem of maximizing Nr ˆ∆∇ .  From equation (3.15) it can be observed that to maximize 

Nr ˆ∆∇  is to minimize the denominator in equation (3.15), i.e. the product of diagonal 

elements in NQ ˆ∆∇ : 
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∏
=

∆∇ =
k

i
N

1
ˆ minmumσ        (3.16) 

 

This is the principal of the LAMBDA decorrelation method. It is found that the process 

of applying the Z-transformation is a process of the conditional least squares adjustment. 

Namely, the diagonal elements in the transformed matrix zQ  are conditional variances 

denoting by 
kzzizzziz ,...11,11,...,21,1| +−

σ . 

With the DD ambiguities decorrelated, the size of the transformed search space will be 

reduced as well. Considering the definition of the Ambiguity Dilution of Precision 

(ADOP) discussed in Section 3.3.5, the following relation between the correlation 

number and ADOP holds: 

 

{ }
2

1

ˆ
ˆ )(det

)(










=

∆∇
∆∇

N

n

N Qdiag
ADOPr       (3.17) 

 

As shown the in the equation, as the denominator of the right hand side of equation (3.17) 

is minimized and the correlation number moves towards one, the ADOP decreases. As is 

shown later, the ADOP is closely related to the search space such that reducing the 

ADOP implies a shrinkage of the search space. 

  

Due to the second requirement on the Z-transformation, that elements in the 

transformation matrix must be integers, NQ ˆ∆∇  will not be completely diagonal. 
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Nevertheless, equation (3.11) is approximately translated into one simplified version 

which is straightforward to implement: 

 

( )∑
=

−k

i z

ii

i

zz

1
2

2ˆ
σ

=minimum      (3.18) 

 

The above equation is the exact objective function to be evaluated throughout the 

recursive search procedure in FASF. 

3.3.2 Search Procedure 
 

The search is performed at each epoch in an attempt to obtain integer ambiguities. The 

unique feature of FASF exists in its sequential ambiguity search range adjustment, or the 

Recursive Computation of the Search Range (RCSR) (Chen, 1994). Suppose that the float 

ambiguities and their error variances at a certain epoch are denoted as 

)ˆ,...,ˆ,ˆ( 21 nNNN ∇∆∇∆∇∆  and ( ),...,, ˆˆˆ
21 nNNN ∇∆∇∆∇∆ σσσ . During the search, the error 

variance of an ambiguity is adjusted assuming that all remaining ambiguities are fixed. 

As demonstrated by Lu (1995) such an assumption is equivalent to a constraint in the 

least squares adjustment and thus mathematically the adjusted error variance and states 

can be obtained using the following formulas: 

 

nnx
T
nnxx QqqnQnQ ,ˆˆ~ )/()()( −=          (3.19) 

nnxn QNNqxnx ,ˆ )/()ˆ(ˆ)( ∇∆−∇∆−=          (3.20) 

nnxQNNn ,ˆ
2 )/()ˆ(ˆ)( ∇∆−∇∆+Ω=Ω          (3.21) 
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where 

 )(~ nQx    is the error variance matrix after the adjustment, 

 )(ˆ nQx    is the error variance matrix before the adjustment, 

 nq           is the last column in xC ˆ  related to N̂∇∆ , 

 nnxQ ,ˆ )(   is the diagonal element related to N̂∇∆  in xQ ˆ , 

 x            are the states in the filter )ˆ,....ˆ,ˆ,,,( 21 nNNNzyx ∇∆∇∆∇∆δδδ ,  

 xx  and ˆ   represent the state before and after adjusted, respectively, and  

       Ω          is the sum of squared (SOS) residuals. ΩΩ  and ˆ stand for the SOS before  

                         and after the adjustment.  

Equation (3.19) indicates that the variance after the adjustment is smaller than the 

original one. This implies that the search range for this ambiguity is reduced. Note that in 

the LAMBDA decorrelation discussion, it was found that the decorrelation also reduces 

the search space through the conditional least squares adjustment. Thus two processes 

exist in FASF to reduce the search space which makes the number of potential integer 

candidates significantly less than other resolution methods. When comparing FASF with 

LAMBDA, they share the same reduction scheme at the first stage in the ambiguity 

search process, which is to decorrelate the ambiguity VCV matrix.  

 

The RCSR in the FASF works backwards. By denoting the adjusted error ambiguity 

variance as ),...,,(
21 nNNN ∇∆∇∆∇∆ σσσ , the error variance of the last ambiguity is: 

 

nn NN ˆ∇∆∇∆ = σσ             (3.22) 
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The adjusted error variance of the remaining ambiguities can be computed using equation 

(3.19). Given the adjusted ambiguities and their error variance, the search range for each 

ambiguity can be computed as: 

 

nn NnnNn kNNkN ∇∆∇∆ +∇∆≤∇∆≤−∇∆ σσ         (3.23) 

where k is the scale factor. Depending on the error behaviour in the observations, its 

value can range from 3 to 10 (Lu, 1995). 

 

Assuming that there are n ambiguities, there will be n levels in which the recursive 

search procedure will be performed with each ambiguity having its search range 

representing one level. Search levels can be demonstrated graphically as in Figure 3.5 

below: 
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Figure 3.5 FASF Search Levels. 
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Throughout the recursive search, two sets of candidates consisting of the smallest and the 

second smallest SOS residuals given by equation (3.18) are obtained. At the end, the 

discrimination test is on the ratio of the smallest and the second smallest SOS residuals to 

validate the acceptability. The ratio test is discussed in the next section.  

 

3.3.3 Quality Control  
 
The quality control process has two purposes. One is to guarantee with some likelihood 

that the solution from the recursive search procedure is correct through a statistical test 

called the discrimination or ratio test. The other aim is to further validate integers at each 

epoch over the period after the integer is fixed. The validation test at this stage is the 

residual test.  

Ratio Test 

This validation test evaluates the ratio between the SOS residuals of the best and second 

best integer sets against a threshold. Based on equation (3.13), the SOS is defined as the 

following in FASF: 

 

niji

n

i
ii QNN ,...,,...,1|

2

1
/)ˆ( ≠

=
∑ ∆∇−∆∇=Ω           (3.24) 

where 

Ω                 is the sum of squared residuals, 

NN ∆∇∆∇ ,ˆ  are float ambiguity and integer candidate, respectively, and  

nijiQ ,...,,...,1| ≠     is the conditional variance of ambiguity i assuming that the rest   

                     ambiguities are fixed. 
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The ratio test is: 

 

τ>
Ω

Ω

smallest

smallestond  sec             (3.25) 

where τ is a threshold. This threshold will be discussed shortly in the following 

paragraphs. 

 

The ratio calculated on the left hand side of equation (3.25) is a random variable. The test 

can then be translated into hypothesis testing with two hypotheses, the null hypothesis 

denoted by 0H  and the alternative hypothesis denoted by 1H : 

0H  : the best solution is correct 

1H  : the best solution is incorrect 

Given a threshold (the critical value) if the test for equation (3.25) passes, 0H  would not 

be rejected and the set of ambiguity candidates with the smallest SOS would be selected 

as the correct solution. Otherwise 0H  would be rejected. The rationale behind the 

validation test is that the SOS of the correct integers should be significantly larger than 

the SOS of the second best solution. This also implies that the likelihood of the best 

solution should be sufficiently different from the likelihood of the second best solution if 

enough geometry information is accumulated over time. If the difference is not sufficient 

the evidence of accepting the best solution would not be conclusive. Figure 3.6 shows the 

SOS of two sets of ambiguity candidates from a sample of GPS data. In this figure, the 

SOS of the wrong ambiguities (the second best) diverges as the geometry changes over 

times while the the SOS of the correct ambiguities (the best) converges. This makes the 
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ratio between these two SOSs reach the threshold, which in this case is 4, resulting in the 

integer resolution. 
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Figure 3.6 SOS Values of the Correct Ambiguities and Incorrect Ambiguities 
 

In some of the literatures (Abidin, 1993; Rochacher and Mervart, 1996), the ratio is said 

to be a Fisher distribution. Lu (1995) states that this is not correct since the denominator 

and numerator are clearly correlated. Nevertheless, theoretically the threshold can be 

chosen with some significance level. In the case of an F-distribution the critical value or 

threshold can be determined based on the significance level, α , and the degrees of 

freedom of the system. The ratio test however can lead to incorrect results, i.e. the null 

hypothesis 0H  may fail to reject while it is false and a type II error is committed. A Type 

I error, in which 0H  is rejected while it is true, can also be committed and it causes the 

search procedure to take longer time to resolve integers. The ratio used in this research is 

4. To further validate the integers which are deemed correct based on the ratio test, the 

residual check is performed. 
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Residual Check 

 
The residual test is to further check whether the ‘fixed’ integers are correct or not. The 

rationale behind the residual check is that if the ambiguities are incorrectly fixed the 

measurement residuals will be large, or they will increase over the time as the geometry 

changes. The residuals are calculated using the following formula: 

 

ϕλρ ∆∇−∆∇+∇∆= Nr ˆ       (3.26) 

where ρ̂∆∇  is the computed DD range between receivers and satellites using the fixed 

solution. The misclosure given by equation (3.26) is then used to carry out the test: 

 

2

1

τ
τ

≤
≤

r
r

       (3.27) 

where 1τ and 2τ  are two thresholds and 21 ττ < . 1τ  is used to detect small errors while 2τ  

is designated for large errors or blunders. In FLYKIN, the empirical values of these two 

thresholds ( 1τ and 2τ ) are 3.5 cm and 5 cm for ‘short’ baselines (< 1000 m), and 5 cm 

and 7 cm for the ‘long’ baselines (>1000 m), respectively. A flowchart of the residual 

check is shown in Figure 3.7. 

 

3.4 Ambiguity Dilution of Precision (ADOP) and Ambiguity Search Space 
 

The ADOP is a scalar measurement which represents the accuracy of the float 

ambiguities and the size of the integer search space (Teunissen, 1997). Its value is 

defined as follows: 
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n
aQADOP 2

1

)(det=              (3.28) 

where aQ  is the VCV matrix of the float ambiguities at a given epoch. 

Theoretically the ADOP is invariant under volume preserving transformations such as the 

Z-transformation (Teunissen, 1995). The computation of equation (3.28) is not an easy 

task. An alternative method to compute the ADOP is: 

 

∏
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det σ            (3.29) 

 

where 
1,...,1|

ˆ
−niNσ is the conditional variance of ambiguity iN̂  after LAMBDA decorrelation. 

 

Teunissen (1997a) presents a closed form of the ADOP in a least squares estimation for 

the L1 only case as: 
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where 

m     is the number of satellites , 

k      is the number of samples, 

1λ     is the wave length, 

1ρσ   is the standard deviation of the code measurement, and 

1φσ   is the standard deviation of the carrier phase measurement. 
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Equation (3.30) shows that there is no dependency on the reference satellite, or the 

geometry. Generally the ADOP depends on the following factors (Teunissen, 1997a): 
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Figure 3.7 Residual Test 
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1. The number of satellites observed. 

2. The accuracy of the code and carrier phase measurements. 

3. Measurement redundancy. 

 

The closed form for dual frequency is (Teunissen, 1997): 
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where 

m             is the number of satellites,  

k              is the number of samples, 

21,λλ       are the wavelengths of L1 and L2, respectively, 

21
, ρρ σσ   are the standard deviations of L1 and L2 code measurements, 

respectively, and  

21
, φφ σσ   are the standard deviations of L1 and L2 carrier phase measurements, 

respectively. 

 

A comparison of equations (3.30) and (3.31) shows that the dual frequency ADOP is 

smaller than that of L1 because of the inclusion of L2 measurements. This, in theory, 

explains why generally time to resolve integers is generally faster when there are L2 

measurements present in the filter. 
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In FASF the actual number of ambiguity candidates to be searched is dynamic depending 

on the covariance matrix of the float ambiguities from the filter and the ambiguity 

validation procedure (e.g. the maximum number of candidates to be processed). 

However, the ADOP can provide information on the size of the search space. The search 

space volume can be obtained using the following formula: 

 

nn
n ADOPkV =            (3.32) 

where  

nV    is the number of integer candidates in the search space where there are n 

satellites, and 

k        is the scale (expansion) factor used in computing search range in FASF  

 procedure. 
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CHAPTER 4 

AMBIGUITY RESOLUTION WITH INS AIDING 

 

This chapter investigates the feasibility of using inertial data to aid OTF ambiguity 

resolution in a modified FASF framework. Three approaches to assist GPS ambiguity 

resolution are studied in this chapter. The implementation of each of them depends on 

different INS/GPS integration schemes. The approaches that are studied are: 

� INS bridging in a decentralized filter configuration 

� Adding an INS navigation solution as a reference or measurement to the GPS 

filter to enhance the GPS measurement update in a decentralized filter 

configuration. This is called INS measurement aiding. 

� Augmenting the INS master filter to have ambiguity states in the centralized filter 

configuration. 

 

The first approach feeds an INS navigation solution as initial information in the GPS 

filter before ambiguity estimation. The INS measurement aiding approach adds the INS 

navigation solutions to the measurement equations in the GPS filter to update the 

prediction. It is clear that the centralized integration approach naturally has the aiding 

capability of the third method since ambiguities are part of the state vector. The following 

subsections discuss each of these aiding approaches. 
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4.1 Ambiguity Resolution with INS Bridging  
 
FASF restarts the ambiguity estimation and search procedure to determine new 

ambiguities after cycle slips and less than four satellites available or when GPS outages 

occur since the filter loses the fixed integer solution. Figure 4.1 shows a flowchart of 

ambiguity fixing with consideration of GPS outages. 

 

The information gained on the ambiguity prior to the outage is completely lost in the 

filter reset.  As shown in Figure 4.2 the ambiguity estimates during phase B will not 

incorporate any information from phase A. In GPS-only positioning at the starting point 

of phase B, i.e. once the receiver reacquires satellites, the initial position is computed 

using standard least squares with DD code measurements. The initial float ambiguities 

are calculated with the following formula using code and carrier phase measurements: 

 

λ
ρφ ∆∇−∆∇=∆∇ 0N̂               (4.1) 

where  

 0N̂∆∇    is the double differenced initial ambiguities (cycles), 

 φ∆∇      is the double differenced carrier phase measurement (metres), and 

 ρ∆∇      is the double differenced pseudorange (metres) 

 

However the initial positions and float ambiguities calculated from GPS measurements 

may not be accurate.    The accuracy will depend on the vehicle dynamics and many other 
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Figure 4.1 Ambiguity Resolution with GPS Outage 
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surrounding factors (e.g. multipath and receiver noise) which can affect GPS 

measurements adversely.  Since an INS is a self-contained navigation system which does 

not require any external signals, it can fill the outage and act as a bridge to carry previous 

estimation information into phase B. 

  Filter Reset 

INS

GPS 
OutageEstimate Phase Estimate Phase B A

 
 

Figure 4.2 GPS Filter Reset and INS Bridging During a GPS Outage 
 

The aiding mechanism in the decentralized integration is shown in Figure 4.3. With this 

aiding approach, the state error prediction in the master filter is still performed during the 

GPS outage and the INS output continues to be corrected with the predicted errors. Once 

the outage ends, the position and velocity along with their associated covariance matrix 

information from the INS is used to initialize the GPS filter. The initial ambiguities are 

calculated using the following equation: 

 

λ
ρϕ )∆∇−∆∇=∆∇ 0N̂               (4.2) 

 

where ρ̂∆∇  is the computed double-difference pseudorange based on the predicted INS 

position. By replacing the measured pseudorange with the more accurate predicted 

measurement, the code multipath error and receiver noise are potentially removed. 

Typically the code multipath ranges from 0.2 and 3 m while the code noise from 0.1 to 
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3m (Lachapelle, 1998). These errors are quite significant and will affect the ambiguity 

estimation accuracy and thus degrade the time to fix integers in the FASF search 

procedure. After the outage, and when ambiguity integers are fixed, navigation solutions 

or measurements and integers are fedback to the INS filter to perform the update. The 

dashed line in the figure represents this feedback. 
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Figure 4.3 INS Navigation Aiding in a Decentralized INS/GPS Integration Filter 
 

 

 

4.2 Ambiguity Resolution with INS Measurement Aiding  
 
As described in Section 2.3.3, in a tightly coupled integration using a decentralized filter 

structure, the GPS carrier phase and code measurements along with GPS integer 

ambiguities are fed into the master filter which estimates the INS errors. The GPS filter 
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(or local filter) runs independently of the master filter to estimate ambiguities. In the case 

that the GPS filter loses its integers when there are GPS outages (or when the residual 

consistency check fails) the filter needs to restart ambiguity estimation and search. The 

aiding mechanism is the same as that demonstrated in Figure 4.3. During float ambiguity 

estimation, the navigation solution from the INS in stand-alone mode along with the 

covariance matrix from the master filter are used as additional measurement information 

in the GPS filter update equation.  

 

Denoting the position from the INS output at k epoch as ,ins
kr  gives: 
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Equation (4.5) can then be used to update the FASF’s prediction along with its original 

measurement equations (2.19) and (2.20). 
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4.3 Augmentation of Master Filter to Assist Ambiguity Resolution 
 
In the centralized INS/GPS integration structure as indicated in Figure 2.8, the master 

filter is augmented to have ambiguity states. By modeling the ambiguity states into the 

master filter’s state vector, the IMU automatically contributes to ambiguity estimation. In 

this configuration, the Kalman filter is removed from the FASF and thus only the search 

algorithm remains. Basically the filters i.e. the FASF filter and the master filter, are 

merged together into one filter and all functions in the GPS navigation module are 

removed.  Cycle slip detection is integrated into the aiding module using the inertial data. 

The inertial aiding in cycle slip detection is discussed in Section 4.6, and the ambiguity 

resolution aiding mechanism is shown in Figure 4.4. 
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Figure 4.4 INS Aiding in the Centralized INS/GPS Integration Filter 
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With this aiding approach, the augmented master filter (AMF) will estimate the float 

ambiguities and the FASF search procedure takes the estimated float ambiguities along 

with their covariance matrix to perform a normal search. Once the integers are fixed the 

AMF will stop ambiguity estimation. 

 

4.4 Summary of INS Aiding Approaches in Ambiguity Resolution  
 
The three ambiguity resolution approaches with INS data require a navigation solution 

from the INS stand-alone navigation module, and the first two approaches require 

additional error predictions from the master filter. Thus, the feasibility of using these 

three mechanisms depends on the quality of the INS equipment and the period of INS 

stand-alone navigation. The advantage of using an INS solution in ambiguity resolution 

only occurs when the accuracy of the INS solution is better than the DGPS code solution. 

The feasibility relies on the INS to provide a superior accuracy over the short term. 

Figure 4.5 shows a position drift of a high quality IMU during a 10-second snapshot 

period. The INS data is from the HG-1050 INS, which is a navigation- grade INS to be 

further discussed in Chapter 6.  

 

Although GPS does not have such a linear error growth behaviour, it typically cannot 

achieve such accuracy with double differenced pseudorange measurements. The self-

contained features of the INS also provide a reliable information source. By incorporating 

an accurate INS bridging solution into FASF, more accurate information is obtained to 

perform its subsequent estimation and thus the time to fix integers and the reliability can 

be potentially improved. 
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Figure 4.5 INS Position Drift (Horizontal Error), 10 seconds 

 
 

The first approach, so-called INS navigation aiding, is primarily useful in GPS outages 

where there is no GPS available or the number of satellites available is insufficient (i.e. 

less than four) such that the GPS navigation module cannot fix the receiver’s position. 

This approach is simplistic and easy to implement since it does not require any change to 

the system model.  

 

The INS measurement aiding approach may not be suitable for GPS outages with a 

relatively long period of time because the INS is already in stand-alone navigation mode 

during the GPS outage and its navigation solution may not be sufficiently good to be 

added in the GPS filter as an additional piece of measurement information after the 

outage due to the linear position error drift of the INS stand-alone solution.  However, 

INS measurement aiding would be suitable very short-period GPS outages or cases when 

the GPS filter loses the integers because of cycle slips or failure of the residual checks. In 

these cases, the INS drift will not be significant since the INS measurement incorporation 
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in the GPS filter starts almost immediately after INS stand-alone navigation mode. This 

approach requires the modification of the measurement equations in the GPS filter and it 

is obviously more complicated than INS navigation aiding. 

 

The third approach, the augmented master filter, is a very different INS/GPS integration 

architecture from the first two approaches. It reduces the complexity of having two 

parallel Kalman filters. INS aiding in ambiguity resolution is automatically accomplished 

through the float ambiguity estimation in the augmented state vector. This approach is 

also subject to the INS drift during its stand-alone navigation mode. 

 

4.5 Float Ambiguity Accuracy and ADOP with INS Aiding 
 

In previous sections, the incorporation of an INS navigation solution into the GPS filter, 

as an additional piece of information, is studied. The key to this integration is whether it 

can improve the accuracy of the estimated float ambiguity since the accuracy is directly 

related to the FASF search procedure as indicated earlier. In other words, it needs to be 

determined if the inertial data can reduce the ADOP magnitude and thus shrink the 

ambiguity search space. A float ambiguity with poorer accuracy will increase the time to 

fix integers and also reduce the reliability of fixing. This section explores the effect of 

inertial data over the accuracy of the float ambiguity as well as the ADOP in the least 

squares framework. 
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Assuming there are n observations and k  satellites (except the base satellite), the system 

of equations which contains the double-differenced code, carrier phase and INS 

navigation solution are: 
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where 

 insrδ                is the difference between INS position and the nominal position, i.e.  

                        the INS  ‘measurement’ vector ( 13 ×n ), 

ρδ ∆∇              is the vector ( 1×nk ) of measured minus computed double difference    

                        code measurement, 

ϕδ ∆∇              is the vector ( 1×nk ) of measured minus computed double difference   

                        carrier phase measurement, 

       rδ                    is the parameter vector ( 13× ) that contains the increments of the   

                              baseline  coordinates, 

      N∆∇                is the double difference ambiguity vector ( 1×k ), 

      H                     is a design matrix ( 33 ×n ), 

      A                      is a design matrix ( 3×nk ), 

      B                      is a design matrix ( knk × ) of the ambiguity state vector, and 

     ϕρ εεε ∆∇∆∇ ,,ins   are the measurement noises of the INS, DD code and carrier phase  

                               measurements, respectively.  
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The design matrices H and B  take following special forms: 
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Rearranging equation (4.6) into a vector form gives: 
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           (4.9) 

or the more simplistic form: 

 

ε+= Bby                        (4.10) 

The closed form of the least squares solution to the above normal equation can readily be 

obtained. However, what is of interest is the VCV matrix of the estimated parameters. 

The VCV matrix can be obtained based on standard least squares adjustment theory 

(Krakiwsky, 1990): 
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where 1−
εR  is the inverse of VCV matrix of measurement errors ε . 

 

What is needed to resolve is the VCV matrix for the DD ambiguities, i.e. NQ ∆∇ . The 

following closed form of the DD ambiguity vector VCV matrix can be obtained (for a 

full derivation see Appendix A): 

 

]][[1 *11111**
2 ϕϕρϕϕϕλ ∆∇

−
∆∇

−−
∆∇

−−
∆∇∆∇∆∇∆∇ ′′+′′+= BRRAARAHRHRBRRQ insN     (4.12) 

where  

ϕ∆∇R  is the VCV of the DD carrier phase measurement errors  

ρ∆∇R  is the VCV of the DD code measurement errors,  

insR  is the VCV of the INS navigation errors, and 

*
ϕ∆∇R  is the kk × matrix that is the linear combinations of 1−

∆∇ ϕR . See derivation 

in the Appendix A. 

If there is no inertial data present in the system equations, the same technique can be used 

to obtain the corresponding VCV matrix of the DD ambiguities as follows: 

 

 ]][[1 *1111**
2

*
ϕϕρϕϕϕλ ∆∇

−
∆∇

−−
∆∇

−
∆∇∆∇∆∇∆∇ ′′′+= BRRAARARBRRQ N       (4.13) 

 

All VCV matrices and their corresponding inverse forms are positive definite matrices. 

The special form, *
ϕ∆∇R , is a positive definite matrix as well. By comparing equations 

(4.13) and (4.12) it is intuitive that the following condition is satisfied: 
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*detdet NN QQ ∆∇∆∇ <            (4.14) 

 

The analysis of the VCV matrix of the DD ambiguities indicates that the incorporation of 

the inertial data improves the accuracy of the float ambiguities and reduces the search 

space. This result will be shown with real data in Chapter 7. 

  

4.6 Cycle Slip Detection and Recovery with INS Aiding 

 
Cycle slip detection and repair is an important strategy for quality control in GPS 

navigation with carrier phase measurements. In the case when only GPS is available, the 

detection of cycle slips and recovery can be performed with the aid of the Doppler 

measurements (Cannon, 2002). The algorithm basically predicts the carrier phase 

measurement and compares it with the actual observation. The predicted carrier phase 

can be calculated using the following equation: 
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where 

φ     is the carrier phase measurement, 

φ&     is the carrier phase rate, 

k     is the epoch where measurement is made, and  

t∆   is the time interval between two consecutive epochs. 
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The accuracy of this method largely depends on the vehicle dynamics. It assumes that the 

vehicle’s velocity is constant during the interval t∆  which may not be true in reality, 

especially when the vehicle makes a turn or accelerates. This method may also not be 

able to detect small cycle slips. The typical magnitude of cycle slips that can be detected 

and recovered with this method is 10 cycles under normal vehicle dynamics (Cannon, 

1994). 

 

During INS/GPS integration, the INS can be used to predict the vehicle’s position which 

has better accuracy since the INS has very good short-term positioning accuracy. A 

double differenced carrier phase can then be computed based on the INS output and a 

difference can be calculated by comparing the calculated double differenced carrier phase 

and the measured one using the following formula: 

φ
λ

ρδ ∇∆−∇∆=            (4.16) 

where 

δ        is the difference between the predicted and measured double-difference   

          carrier phase in cycles, 

ρ∇∆   is the computed double-difference pseudorange in meters based on INS   

           predicted position, and  

φ∇∆   is the measured double-difference carrier phase (cycles). 

With δ computed, a threshold can then be applied to determine whether a cycle slip 

occurs or not. The threshold should not be large in order to reliably detect small cycle 

slips. The threshold also needs to be adjusted depending on the quality of INS and the 

vehicle’s dynamics. 
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CHAPTER 5 

INS/GPS INTEGRATION SOFTWARE 

 

A software package, INSGPS, which demonstrates the methodologies discussed in the 

previous chapter, was developed. It is based on the existing ambiguity resolution program 

FLYKIN™ and INS/GPS software which only used code measurements in the 

integration. This chapter describes the structure of the newly developed program and 

various modules as well as its input and output. 

 

5.1 Software Modules 

 

As shown in Figure 5.1 there are three high level modules, i.e. the INS navigation module, 

the GPS navigation module and the INS/GPS integration module. These three modules 

work together in different data processing modes such as INS-only, GPS-only or 

INS/GPS. 

 

The following sections give the details of each module. 

 

5.1.1 INS Navigation Module  

 
The INS navigation module performs the coarse and fine alignments to obtain the initial 

orientation relating the INS body frame to the wander frame and subsequently to resolve 

the INS mechanization equations in the wander coordinate system to obtain positions and 
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velocities.  Figure 5.2 shows the INS navigation module. As indicated in the flowchart, 

vertical channel assistance from the GPS navigation module is required. 
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Figure 5.1 High Level Software Modules 
 

 

The coarse alignment contains 16 iterations and in each iteration the alignment procedure 

processes four seconds of data. The period of the coarse alignment is thus 64 seconds. 

Fine alignment needs a time specification from the input option file indicating the 

window of the INS data to perform the fine alignment. After these two steps, the program 

enters the INS mechanization module to compute positions and velocities with raw 

measurements from the gyros and accelerometers. The INS navigation module exits when 

there is no external data available for processing. 
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Figure 5.2 INS Navigation Module 
 

5.1.2 GPS Navigation Module 

 

The GPS navigation module computes the receiver’s positions and velocities as well as 

resolves ambiguities along with their variances based on the code and carrier phase 
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measurements. The ambiguity resolution method – FASF, is implemented in the 

navigation module to resolve integers. Figure 5.3 shows a flow chart of the GPS 

navigation module.  

 

In FASF, a Kalman filter is first used to estimate float ambiguities and the LAMBDA 

transformation is then performed. The recursive search procedure is carried out within the 

transformed search space. During the search, if the number of ambiguity candidates is 

more than 2000 the search exits. The number 2000 is an empirical value built in 

FLYKINTM to reduce the search time. FASF keeps track of two ambiguity candidates 

whose SOS residuals are the smallest and the second smallest among all the candidates in 

the search space. After the search, the ratio of SOS residuals of the two candidates are 

calculated and compared with a threshold. If the computed value is lager than the 

threshold, the ambiguity candidate with the smallest SOS residuals is considered the 

correct solution. The navigation module uses the fixed integers to calculate positions and 

velocities after the integers are resolved. Otherwise the module uses the estimated float 

ambiguities to compute the so-called float solution, which has a poorer accuracy 

compared to the fixed solution.  
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Figure 5.3 GPS Navigation Module 
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5.1.3 INS/GPS Integration Module 

 

The INS/GPS integration module combines information from the GPS navigation module 

to update the predictions of the 15 error states in the INS Kalman filter. However, the 

information from the GPS navigation module is different depending on the integration 

approach, i.e. whether it is loose coupling or tight coupling. In the loose coupling 

configuration, the navigation solution from the GPS navigation module is used as a 

reference and the difference between the GPS and INS solutions are used as 

measurements to update the prediction in the master filter. In the tight coupling 

configuration, however, the code and carrier phase measurements from the GPS 

receivers, and the ambiguities from the GPS navigation module, are required to update 

the prediction. A flowchart for the INS integration module is shown in Figure 5.4.  

 

5.2 Augmented INS/GPS Integration Module 
 

The augmented integration configuration does not require the GPS navigation module. 

Since the ambiguity error states are added to the master filter. The error states in the 

master filter are the 15 standard INS errors plus the errors of all the double differenced 

GPS ambiguities. The measurements are DD code, carrier phase and phase rate (Doppler) 

from the GPS receivers. 
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Figure 5.4 INS/GPS Integration Module 
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Figure 5.5 Augmented INS/GPS Integration Module 
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5.3 Software Input and Output  

 
The INS/GPS integration program can run in five modes in terms of data processing, i.e. 

INS-only, GPS-only, INS/GPS loose coupling, and INS/GPS tight coupling 1 and 2. INS-

only mode means INS stand-alone navigation where no integration with GPS is 

performed. However GPS data is still required to provide vertical channel assistance to 

the INS navigation module. The GPS-only mode only requires GPS data and the INS 

navigation module is not involved. The rest of the modes invoke INS/GPS integration 

with the Kalman filtering mechanism depending on the coupling scheme. 

 

Four data files are required as the data input to run the program: 

• Raw GPS measurement data of the base station 

• Raw GPS measurement data of the rover station 

• Ephemeris data of satellites recorded in the base station  

• Raw INS data of the rover station 

Data files, along with the input option file, provide all input information to run the 

program. The program also creates four output files: 

• GPS navigation solution (.GPS) 

• GPS ambiguity resolution results (.AMB) 

• GPS cycle slip detection summary (.SLP) 

• INS coarse and fine alignment results (.ALG; except GPS-Only) 

• INS navigation solution (.INS; INS-Only) or INS/GPS integration solution (.INS; 

except GPS-Only) 
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Conceptually the information in the option file can be grouped into the following three 

sections: 

• GPS data specification 

• INS data specification 

• Miscellaneous  

Details on above specifications are presented in Tables B.1 to B.3 in Appendix B. The 

format of all output files is summarized in Table B.4 in Appendix B. 

 

 



 

 

 

85

CHAPTER 6 

TEST DESCRIPTIONS 

 

Two van tests are discussed in this chapter. The first van test denoted as Van Test I, is a 

short baseline test conducted with lower dynamics while the second test, denoted as Van 

Test II, is performed over a longer baseline and with higher dynamics. Results from the 

developed software under different integration scenarios are presented in this chapter to 

verify the quality of GPS-only, INS-only and INS/GPS navigation modules described in 

Chapter 5. 

6.1 Van Test I 
 

This test was conducted by Applanix Corporation on August 13, 2000 in the area of 

Richmond Hill, Ontario. The test trajectory comprised a drive along streets near the 

Applanix building. The vehicle used in the test was a GMC Rally. The GPS receivers 

used in the base and rover stations were the NovAtel Millennium receivers, and the data 

rate of the GPS receiver was set at 1 Hz. The IMU was the Honeywell HG1050, which 

uses Honeywell GG1342 RLGs and Sundstrand QA-2000 accelerometers. Table 6.1 

shows the IMU’s error characteristics. The data rate of the HG1050 INS was 50 Hz. The 

IMU and the GPS antenna were mounted on the top of the vehicle. The coordinate system 

of the IMU with respect to the vehicle is defined as forward (X – axis), right (Y – axis) 

and down (Z – axis) as shown in Figure 6.1. The lever arms of the IMU with respect to 

GPS antenna centre are defined as in Table 6.2. The van trajectory from GPS-only 

navigation mode is shown in Figure 6.2. The time latency caused by data transmission 
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can cause significant errors to INS/GPS integration (Petovello, 2003). However, 

measurement time between GPS and INS was synchronized by Applanix  Corporation 

when the data was provided. 

 

Errors Values 

Accelerometer bias 50 gµ  

Accelerometer scale factor error 200 ppm 

Gyro bias 0.007 deg/hr 

Gyro scale factor error 20 ppm 

Gyro random walk 0.005 deg/ hr  

 

 

X

Y

Z

 
 

 
Figure 6.1 IMU Orientation with Respect to the Van. 

 

 

X (m) Y (m) Z (m) 

2.96 0.31 -1.78 

 

 

Table 6.1 Honeywell HG1050 Error Characteristics  

Table 6.2 Lever Arm of IMU GPS Antenna Centre 
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6.2 Van Test II 
 
The second test was conducted by Applanix Corporation (on October 23, 2000) in the 

same area as Van Test I. The equipment used in this test was the same as in Van Test I 

except that the receiver in the vehicle was a Trimble SE4000.  
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Figure 6.2 Van Trajectory, Van Test I 
 

 

 

The data rate of the IMU was also 50 Hz and 1 Hz for the GPS receivers. Figure 6.3 

shows the van trajectory during the test. The IMU orientation with respect to the van and 

the lever arm configuration were the same as in the first test.  The measurement time 
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between GPS and INS for this test was also synchronized when the data was provided by 

Applanix Corporation.  

-5 0 5 10 15
-10

0

10

20

30

40

50

60

East (km)

N
or
th
 (k

m
)

Base station 
(Start and end points) 

 
Figure 6.3  Van Trajectory, Van Test II 

 
 

6.3 GPS Kinematic Solution 

 

This section provides the GPS solution (GPS-only mode with L1) from the software for 

both tests. The results are a good indication of the dynamics and geometries during the 

tests that are closely related to ambiguity resolution. Under higher dynamics, the tracking 

performance of the receiver can be affected and thus cycle slips can occur more 

frequently than a van test with lower dynamics. This will subsequently affect the ability 
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of the ambiguity resolution process to resolve the correct integers in a timely and reliable 

way.  

6.3.1 Van Test I 
 
Figure 6.4 shows the baseline variation during the van test, and the plot indicates that the 

baseline does not exceed 240 m. The speed profile presented in Figure 6.5 shows that the 

test had moderate dynamics.  As shown in Figure 6.6, the number of satellites tracked by 

the remote receiver during the test changes frequently due to surrounding buildings which 

block signals from GPS satellites. However, there were no cycle slips detected primarily 

because the test had very low dynamics. Ambiguities were fixed to integers during the 

most of the test as shown in Figure 6.8. The cutoff elevation is 7.5 degree. 
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Figure 6.4 Baseline Variation, Van Test I 
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Figure 6.5 Speed Profile, Van Test I 
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Figure 6.6 Numer of Satellites vs. Time, Van Test I 
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Figure 6.7 PDOP vs. Time, Van Test I 

 
 

Figure 6.8 Ambiguity Resolution Over Time, Van Test I 
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For this test, as shown in Figure 6.8, the majority of the initial ambiguities are maintained 

through out the whole trajectory with only a few of the satellites needing to recompute 

their ambiguities. Therefore, the position accuracy is quite high. In order to assess the 

impact of error sources, carrier phase residuals are plotted in Figure 6.9 when ambiguities 

are fixed. Since this test is a short baseline test, the atomospheric errors should not be 

significant. The residual magnitude along with its pattern in Figure 6.9 indicates that the 

major error sources are multipath and noise. 

 

 
 

Figure 6.9 DD Carrier Phase Residuals, L1, Van Test I 
 

Baseline

Residuals
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The double difference ionosphere errors with L1 and L2 data is presented in Figure 6.10 

below. 

 

 
 

Figure 6.10 Differential Ionosphere Errors, Van Test I 

 

6.3.2 Van Test II 
 
The baseline variation presented in Figure 6.11 indicates that this is a relatively long 

baseline test. The speed profile is shown in Figure 6.12 and it is relatively higher than 

that of the first test. It can be seen that the dynamics are higher in this test and also there 

are a few sudden stops during the test. Cycle slips occurr at various times for all satellites 

as shown in Figure 6.15. The PDOP is plotted in Figure 6.14, and comparing with the 
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PDOP in Van Test I, it can be seen that this test has slightly poorer geometry. The spikes 

in Figure 6.14 are caused by the loss of satellites. The cutoff elevation for this data is 7.5 

degree as well. 
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Figure 6.11 Baseline Variation, Van Test II 
 



 

 

 

95

413000 413900 414800 415700 416600 417500 418400 419300 420200
0

5

10

15

20

25

30

35

13:43 13:58 14:13 14:28 14:43 14:58 15:13 15:28 15:43
GPS Time(s): Local Time (h:mm)

T
ot

al
 S

pe
ed

 (m
/s

)

 
Figure 6.12 Speed Profile, Van Test II 
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Figure 6.13 Number of Satellites versus Time, Van Test II 
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Figure 6.14 PDOP versus Time, Van Test II 
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Figure 6.15 Cycle slips versus Time, Van Test II 
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Carrier phase residuals of those satellites with fixed ambiguities are fixed are plotted in 

Figure 6.16 below. The figure only shows the part of the trajectory with baselines less 

than 20 km. When the baseline goes above 20 km FlykinTM cannot fix ambiguities. Also 

in the figure there is a gap between GPS time 414622 and 414668 s, and this is because 

during this period all satellites lost their fixed ambiguities. When comparing Figures 6.16 

and 6.9, the residual magnitude is larger in Van Test II. This indicates that the 

atomospheric error has more impact on this van test. 

 

 

 

 
Figure 6.16 DD Carrier Phase Residuals, L1, Van Test II 
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The double differencel ionosphere errors for this test with L1 and L2 measurements is 

shown in Figure 6.17 below. When comparing this figure to Figure 10, it can be seen that 

the magnitude of ionosphere errors is larger than Van Test I’s. This is consistent with the 

residual analysis. 

 

 
Figure 6.17 Differential Ionosphere Errors, Van Test II 

 

6.4 INS Solution 

 
This section presents the results from the INS stand-alone navigation solution for the two 

van tests. The attitude profiles show the maneuvers of the vehicles during the tests. The 

INS drift is derived by comparing the INS stand-alone solution with the solution from 

GPS -only mode. The drift is a good indication of the quality of the IMU used. 
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6.4.1 Van Test I 
 
Figures 6.18 through 6.20 show the results from INS stand-alone navigation. The position 

drift and the velocity error growth presented in Figures 6.19 and 6.20 are fairly 

reasonable given the quality of the IMU (0.007 degrees per hour).  
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Figure 6.18 Attitude Profile, Van Test I 
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Figure 6.19 INS Position Drift, Van Test I 
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Figure 6.20 INS Velocity Drift, Van Test I 
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6.4.2 Van Test II 
 
 
Figures 6.21 through 6.23 show results for the second van test. This test lasts about two 

hours, and the Schuler pattern is well indicated in Figures 6.22 and 6.23. 
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Figure 6.21 Attitude Profile, Van Test II 
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Figure 6.22 INS Position Drift, Van Test II 
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Figure 6.23 Velocity Position Drift, Van Test II 
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6.5 INS/GPS Integration Solution 

 
Results from the three INS/GPS integration schemes are presented to evaluate the 

integration performance. Position and velocity errors from the tightly coupled integration 

for the first test (Van Test I) are plotted in Figures 6.24 and 6.25.  However, data sets 

from both tests are processed using all three integration schemes, i.e. loose coupling and 

tight coupling in a decentralized filter structure and centralized integration. Error 

statistics from different integration structures are summarized in Tables 6.3 and 6.4. GPS 

results are used as a reference to compute error statistics. Loose coupling uses position 

and velocity from the GPS navigation module to update the error predictions in the 

master filter. 
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Figure 6.24 Position Error, INS/GPS, Tight Coupling, Van Test I 
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Figure 6.25 Velocity Error, INS/GPS Tight Coupling, Van Test I 
 
 

 
 

Latitude (cm) 
Longitude 

(cm) 
North Velocity 

(cm/s) 
South Velocity 

(cm/s) 

 

               Errors 

Integration 

Strategies   
Mean RMS Mean RMS Mean RMS Mean RMS 

Loose Coupling -0.1 1.3 0.1 1.0 0.0 0.3 0.0 0.3 

Tight Coupling 0.0 1.1 0.0 0.8 0.0 0.2 0.0 0.2 

Centralized 
Integration 

0.0 1.0 0.0 0.8 -0.1 0.2 0.0 0.2 

 
 

Table 6.3 Error Statistics, Van Test I 
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Latitude (cm) Longitude 
(cm) 

North Velocity 
(cm/s) 

South Velocity 
(cm/s) 

 

Errors 

Integration 

Strategies 
Mean RMS Mean RMS Mean RMS Mean RMS 

Loose Coupling -0.1 2.1 0.0 1.8 -0.1 0.5 0.0 0.6 
Tight Coupling  -0.1 1.6 0.0 1.5 0.0 0.3 0.0 0.4 
Centralized 
Integration 0.0 1.5 0.1 1.2 0.0 0.3 0.0 0.2 

 
 
Figure 6.26, a comparison of the 2DRMS for the three integrations for Van Test I, shows 

that, although the RMS difference of positions and velocities for these three integrations 

is not significant, the tight coupling and centralized integration have slightly better 

performance. As discussed in Section 2.3, in loose coupling, the position and velocity 

from the GPS filter is mostly correlated over time and this violates the optimization 

assumption in the filtering process and thus affects the filtering performance. However, 

code and phase measurements from GPS receivers are used directly in the tight coupling 

and the centralized integration. 

 

When comparing results of Van Test I and II, it can be seen that RMS values for Van 

Test II are slightly higher. As shown in Section 6.3.2, the second test is a long baseline 

and it has more dynamics. During the second test, there are also constant cycle slips.  

 

Results of this Chapter verify the algorithm of INS/GPS integrations. In the next chapter 

the results of using INS data to aid GPS ambiguity resolution will be analyzed. 

Table 6.4 Error Statistics, Van Test II 
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Figure 6.26 Integration Performance, Van Test I 
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CHAPTER 7 

TEST RESULTS AND ANALYSIS 
 

Results from two van tests for ambiguity resolution with INS aiding are presented and 

analyzed in this chapter. Tests are used to prove the concept and methodology developed 

in previous chapters. The benefits of integrating inertial data into GPS ambiguity 

resolution are examined in these two test cases. 

7.1 Test Design 
 

In order to investigate the effect of INS aiding on GPS ambiguity resolution, a GPS 

outage is simulated by taking out GPS measurements during the outage period. Two 

outage scenarios are simulated, a complete outage where there are no GPS measurements 

available, and a partial outage where there are less than three satellites available.  Three 

outage cases are simulated. Different outage periods are designed such that the 

improvement with using INS in GPS ambiguity resolution can be seen from the best case 

to a poorer case. The first outage period is very short so that the INS can continue to 

deliver positions with superior accuracy. This type of outage has the maximum benefit of 

using the INS to assist GPS to fix integers due to the accurate position seed from the INS.  

The second outage period is moderately short, in which positions from the INS are less 

accurate. However, the position drift from the INS should not be significantly degraded, 

and there should be still some improvement.  The third period is relatively long, such that 

the position from the INS is degraded and INS aiding shows no improvement in 
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ambiguity resolution. Based on the quality of the IMU used in the test these three outage 

periods are: 

� 10 – second outage 

� 30 – second outage 

� 60 – second outage 

Position drifts from INS during above outage periods will be discussed shortly. 

The key values with and without INS aiding in each case to study are: 

� The time to fix the integers indicating the performance of the search procedure 

� The ADOP indicating the accuracy of the float ambiguities and the search space 

As indicated previously, the purpose of simulating multiple outage periods is to study the 

ability of INS aiding to assist integer resolution under different conditions. Generally, the 

longer the outage, the poorer the IMU accuracy. It is expected that a longer outage will 

reduce the effect of INS aiding. Ten GPS outages were simulated for each outage period. 

In tight coupling, once there are no GPS measurements available, the master filter 

performs pure prediction and the INS solution is corrected using the predictions from the 

master filter. For a complete GPS outage, the master filters in the loose coupling and 

centralized integration schemes have the same behaviour. However under a partial 

outage, for the tight coupling and centralized integration schemes, the measurements 

from the available GPS satellites are fed into the master filter to update the prediction. 

Therefore, it is expected that the position error in partial outages is smaller than that in 

full outages.  
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Figures 1 and 2 below show individual outages in the trajectories of Van I and II. Each 

mark represents a GPS outage. 
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Figure 7.1 GPS Outage Locations, Van Test I 
 
 
Figures 7.3 through 7.5 show the INS drifts during the ten complete outages for the 

tightly coupled integration for Van Test I. All outages are labeled by the sequence 

numbers on the top of the position drifts. 
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Figure 7.2 GPS Outage Locations, Van Test II 
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Figure 7.3 Horizontal Error, 10-second  Full GPS Outage, Van Test I 
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Figure 7.4 Horizontal Error, 30-second Full GPS Outage, Van Test I 
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Figure 7.5 Horizontal Error, 60-second Full GPS Outage, Van Test I 
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Results from tight coupling integration under a partial outage (3 satellites visible) are 

presented in Figures 7.6 to 7.8. Three satellites with high elevations were chosen in the 

partial outages. Comparing to the full outage results, the 2D position drift is significantly 

smaller for the partial GPS outage scenario. This indicates that the filter has better 

prediction performance with GPS measurements as expected. 
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Figure 7.6 Horizontal Error, 10-second Partial GPS Outage, Van Test I 



 

 

 

113

418500 419400 420300 421200
0

10

20

30

40

50

60

70

80

90

100

15:15 15:30 15:45 16:00
GPS Time(s): Local Time (h:mm)

2D
 P

os
iti

on
 E

rr
or

 (c
m

)

1 2 

3 

4 5 

6 

7 
8 

9 

10 

 

Figure 7.7 Horizontal Error, 30-second Partial GPS Outage, Van Test I 
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Figure 7.8 Horizontal Error, 60-second Partial GPS Outage, Van Test I 
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Position error statistics for the three integration scenarios under complete and partial GPS 

outages are summarized in Table 7.1. It can be observed that in the loose coupling 

position errors are the same under full and partial outages for the same outage period. As 

discussed before, this is because there is no GPS navigation solution available for both 

complete and partial outages (less than 3 satellites), which is used for correcting the INS 

solution. However, under tight coupling and centralized integration schemes, there are 

GPS measurements available for the update in the master filter. Therefore, it can be seen 

that, in the table, position drifts are all improved under partial outages for tight coupling 

and centralized integration.  

INS Horizontal Position Error RMS (metres) GPS outage 
duration  

(Seconds) Loose Coupling Tight Coupling Centralized Intgr. 

 Full* Partial* Full Partial Full Partial 
10  0.2 0.2 0.2 0.1 0.2 0.1 
30 0.8 0.8 0.8 0.4 0.8 0.4 
60 2.0 2.0 2.0 0.9 2.0 1.0 

*Full – full GPS outage; Partial – partial GPS outage (3 satellites visible) 

 

The same testing scenarios are simulated for Van Test II. GPS outages of three different 

periods (10, 30 and 60 seconds) are simulated for ten cases. Position error statistics for 

Van Test II are presented in Table 7.2. Compared to Table 7.1, it can be seen that the 

position drift in this test gives no significant difference. This is because the IMU used in 

both tests was exactly the same. 

 

 

Table 7.1 GPS Outage Position Error Statistics, Van Test I 
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INS Horizontal Position Error RMS (metres) 
Loose Coupling Tight Coupling Centralized Intgr. 

GPS outage 
duration  

(Seconds) Full* Partial* Full Partial Full Partial 
10  0.2 0.2 0.2 0.1 0.2 0.1 
30 0.9 0.9 0.9 0.5 0.8 0.5 
60 2.1 2.1 2.1 1.1 2.0 1.2 

*Full – full GPS outage; Partial – partial GPS outage (3 satellites visible) 

 

7.2 Analysis  of Results  
 

7.2.1 Van Test I 
 

The L1 ADOPs with and without INS aiding during the full ten GPS outages under tight 

coupling integration are shown in Figures 7.9 to 7.11. The same results for the widelane 

are shown in Figures 7.12 to 7.14. As discussed in Chapter 4, the ADOP is an indicator of 

the float ambiguity accuracy which relates to the size of the integer search space.  During 

the 10-second outage, the ADOP is significantly reduced due to the good position 

accuracy maintained by the inertial solution during the outage. However as the duration 

of the outage increases, the position error is seriously degraded and thus the benefit of 

incorporating the inertial solution becomes negligible. This is particularly clear in the 60-

second outage case as shown in Figures 7.11 and 7.14 where the position error drift is 

about 2 metres and the inertial solution integration yields no benefit. However, a 

reduction of the ADOP does not guarantee that integers can be fixed with INS aiding. 

The ADOP only indicates the size of the search space as well as the accuracy of the float 

ambiguities and the search within the reduced space may not yield an integer solution 

subject to the conditions outlined in Section 3.3. 

Table 7.2 GPS Outage Position Error Statistics, Van Test II 
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Figure 7.9 L1 ADOP, 10-second Full Outage, Van Test I 
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Figure 7.10 L1 ADOP, 30-second Full Outage, Van Test I 
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Figure 7.11 L1 ADOP, 60-second Full Outage, Van Test I 
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Figure 7.12 WL ADOP, 10-second Full Outage, Van Test I 
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Figure 7.13 WL ADOP, 30-second Full Outage, Van Test I 
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Figure 7.14 WL ADOP, 60-second Full Outage, Van Test I 
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The ADOP reduction shown in the above figures is used to demonstrate that the search 

space shrinks with INS data in the ambiguity resolution process. However, as discussed 

at the beginning, the ADOP is only an indicator of the search size and it cannot guarantee 

fixing the integers. The time to fix ambiguities is a good candidate to quantify the 

improvement on ambiguity resolution using INS data. 

 

The time to fix integers in each case is recorded during the data process. Results of the 

10, 30, 60 second full and partial GPS outages in Van I test are summarized in Tables 7.3 

to 7.5, respectively. The outage start time for each case is slightly different because the 

FASF needs different intervals to fix ambiguities between outages. 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Start Time(s) 

 
TFI*, No 

INS 
aiding I** II III I II III 

 
Baseline 
(metres) 

419001 106 56 57 40 56 30 20 60
419161 114 67 60 15 67 26 11 179
419321 108 57 45 40 57 34 9 78
419481 156 83 77 62 83 41 31 195
419641 117 65 59 41 65 27 12 204
419801 125 69 70 68 69 31 23 48
419961 135 71 69 60 71 32 17 208
420121 107 64 58 55 64 29 14 208
420281 277 150 151 145 150 41 41 86
420441 110 61 57 55 61 37 19 202

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration 
 

Table 7.3 10-second GPS Outage, L1, Van Test I 
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TFI*, with INS aiding (RMS) 
Full Outage Partial Outage 

 
GPS Outage 
Start Time(s) 

 
TFI*, No 

INS 
aiding 
RMS 

I** II III I II III 

 
Baseline 
(metres) 

419000.9316 191 121 123 101 121 84 71 60
419180.9240 104 79 62 24 79 49 51 207
419360.9937 135 94 81 67 94 60 50 106
419540.9346 145 107 82 71 107 74 61 100
419720.9355 125 87 71 65 87 57 45 194
419900.9367 124 84 75 67 84 55 47 233
420070.9372 194 138 123 102 138 104 91 65
420260.9384 198 140 134 110 140 103 93 160
420440.9394 235 161 151 129 161 131 105 164
420620.9404 147 107 97 78 107 74 65 56

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
 
 
   

TFI*, with INS aiding, RMS 
Full Outage Partial Outage 

 
GPS Outage 
Start Time(s) 

 
TFI*, No 

INS 
aiding 
RMS 

I** II III I II III 

 
Baseline 
(metres) 

419001 205 206 209 207 206 187 172 60
419211 133 130 129 127 130 117 109 228
419421 168 169 167 168 169 151 147 228
419631 150 149 151 150 149 130 122 208
419841 181 181 180 179 181 159 150 132
420051 194 194 193 192 194 175 167 53
420261 136 135 132 134 135 114 109 160
420471 235 235 236 234 235 213 214 204
420681 150 151 150 149 151 130 129 56
420891 161 159 161 158 159 137 130 56

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
 

Table 7.4 30-second GPS Outage, L1, Van Test I 

Table 7.5 60- second GPS Outage, L1, Van Test I 



 

 

 

121

The average time to fix ambiguities in the various scenarios is presented in Table 7.6. 

The performance of the ambiguity resolution improvement as a percentage is shown in 

Table 7.7. 

 

The performance of INS aiding in ambiguity resolution under a full GPS outage can be 

seen in Figure 7.15. It can be observed that the average time to fix integers is 

significantly reduced when the GPS outage duration is short (10 seconds). As the outage 

duration increases the time reduction is decreased. While for a 30-second outage duration 

there is a moderate reduction, the improvement in the 60-second outage becomes almost 

zero. This can be explained by the large INS drift over the relatively longer time (about 2 

metres after 60 seconds). It can also be seen from Table 7.6 that in loose coupling 

integration, the time to fix integers is the same under both full and partial outages. This is 

because in the partial outage there is no GPS solution available as is the case for the full 

outage. However, for tight coupling and centralized integration schemes, GPS 

measurements are available for master filter update in the partial outages. 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Duration (s) 

 
TFI*, No 

INS aiding 
 I** II III I II III 

10 135 74 70 57 74 32 19 
30 151 111 99 81 111 79 67 
60 161 160 161 159 160 144 135 

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
 
 

Table 7.6 Ambiguity Resolution Time Statistics, L1, Van Test I 
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Percentage of TFI Reduction with INS aiding 

Full Outage Partial Outage 
 

GPS Outage 
Duration (s) 

I** II III I II III 
10 45% 48% 57% 45% 76% 85% 
30 26% 34% 46% 26% 47% 55% 
60 0 0 1% 0 10% 16% 

**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
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Figure 7.15 Ambiguity Resolution Performance, L1 Full Outage, Van Test I 
 

 

Results under partial GPS outages are shown in Figure 7.16.  Compared with the full 

outage scenario, the reduction of time to fix integers under partial outages is more 

significant in tight coupling and centralized INS/GPS integration scenarios. This is 

because the GPS measurements available during the outage are still used in the master 

filter to update the predictions. The measurement update improves the system filtering 

Table 7.7 Time to Fix Integers Improvement, L1, Van Test I 
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performance and thus makes the navigation solution more accurate as indicated in 

Section 7.1. It is particularly obvious that under a full GPS outage the time reduction in a 

60-second outage is zero while under a partial outage there is still some reduction. 

However, the GPS satellites in the partial outage present no improvement in the loose 

coupling integration. This is because there are only three satellites retained in the outage 

and the number of satellites is not sufficient to construct any navigation solution in the 

GPS filter, thus the master filter stays in pure prediction mode. 
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Figure 7.16 Ambiguity Resolution Performance, L1 Partial Outage, Van Test I 
 

 

The overall inertial aiding performance under full outage versus partial outage in 

ambiguity resolution can be seen in Table 7.8. The results show that under partial outage 

circumstances, the improvement percentage is more significant than for the full GPS 

outage.  The effect of a partial presence of GPS satellites in ambiguity resolution with 



 

 

 

124

inertial data under a 10-second outage is shown in Figure 7.17. During the full outage, the 

master filter (or the augmented filter in centralized integration) performs pure prediction. 

The presence of GPS satellites, however, can be fed into the filter to update the 

predictions and the accuracy of the position from the filter can therefore be improved. 

The more accurate information from the master filter during the outage can then improve 

the system filtering performance while full satellite measurements are available and thus 

makes the search procedure fix the ambiguities faster. In loose coupling, the GPS filter 

cannot generate a position under a partial outage where there are less than four satellites 

visible, and thus it cannot provide navigation solutions to the master filter to update its 

predictions. This makes no difference in terms of the time to fix integers with inertial 

aiding between full and partial GPS outage case as shown in the Figure 7.16.  
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Figure 7.17 Ambiguity Resolution Performance, L1 GPS Outage, Van Test I 
 

 

 



 

 

 

125

The results under the same testing scenarios for the widelane are summarized in Tables 

7.8 and 7.9. The same improvement patterns can be observed from statistics in the 

widelane case. In Table 7.8, time to fix integers is the same for loose coupling integration 

under both full and partial outages. As discussed previously, this is because there are no 

GPS positions available in the partial outage as is the case for the full outage. The 

introduction of inertial data in the ambiguity resolution process reduces the average time 

to fix integers to different extents depending on the outage duration. GPS measurements 

in the partial outages improve the accuracy of information from the master filter 

prediction and thus facilitate ambiguity resolution after outages. 

 

Table 7.8 Ambiguity Resolution Time Statistics, Widelane, Van Test I 
 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Duration (s) 

 
TFI*, No 

INS aiding 
 I** II III I II III 

10 43 28 20 11 29 14 10 
30 45 30 21 15 30 16 12 
60 48 48 47 49 47 35 30 

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized integration. 

Percentage of TFI Reduction with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Duration (s) 

I** II III I II III 
10 34% 53% 74% 32% 67% 76% 
30 33% 53% 66% 33% 64% 73% 
60 0 2% 0 0 27% 37% 

**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
 

Table 7.9 Time to Fix Integers Improvement, Wide-lane, Van Test I 
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7.2.2 Van Test II 
 
 
In this section the second van test is examined to determine the effect of inertial data on 

ambiguity resolution under relatively longer baselines and higher dynamics. As shown in 

Section 6.3.2, the baseline length in Van Test II reaches up to 50 km while the maximum 

baseline in Van Test I is less than 240 m. The effect of longer baselines is such that the 

atmospheric errors can be significantly larger. 

 

Time to fix integers for L1 under the 10, 30, and 60-second outages are summarized in 

Tables 7.10 to 7.12. After 20 km, the search process cannot find the candidate set 

satisfying the ratio test and thus integers cannot be fixed. It is particularly clear that the 

search process fails to fix integers when the baselines are longer.  

 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Start Time(s) 

 
TFI*, No 

INS 
aiding I** II III I II III 

 
Baseline 
(Metres) 

413629 97 61 49 48 60 37 34 79
414034 132 103 95 92 102 56 55 1697
414436 220 209 197 195 202 103 101 5018
414980 321 310 308 305 310 177 170 9733
415713 592 581 579 520 581 397 390 15635
417429 -- -- -- -- -- -- -- 50287
418166 -- -- -- -- -- -- -- 45702
418577 -- -- -- -- -- -- -- 37055
420125 211 150 151 145 151 81 78 2365
420396 102 61 57 55 67 37 35 119

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration 

Table 7.10 10 – second GPS Outage, L1, Van Test II 
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TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Start Time(s) 

 
TFI*, No 

INS 
aiding I** II III I II III 

 
Baseline 
(Metres) 

413629 97 71 60 57 69 47 45 79
414034 132 109 105 99 110 66 63 1697
414436 220 217 206 203 214 112 111 5018
414980 321 312 310 307 315 189 182 9733
415713 592 585 580 537 584 405 400 15635
417429 -- -- -- -- -- -- -- 50287
418166 -- -- -- -- -- -- -- 45702
418578 -- -- -- -- -- -- -- 37055
420125 211 161 157 149 159 92 89 2365
420396 102 74 67 63 75 48 45 119

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
    
 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Start Time(s) 

 
TFI*, No 

INS 
aiding I** II III I II III 

 
Baseline 
(Metres) 

413628.9278 97 98 99 97 98 90 85 79
414033.9274 132 132 130 131 131 121 114 1697
414435.9279 220 221 219 220 221 215 206 5018
414979.9285 321 321 321 320 320 301 290 9733
415712.9349 592 593 591 590 591 580 561 15635
417428.9299 -- -- -- -- -- -- -- 50287
418165.9299 -- -- -- -- -- -- -- 45702
418576.9297 -- -- -- -- -- -- -- 37055
420124.9286 211 212 211 210 210 198 187 2365
420395.6783 102 101 102 101 102 96 85 119

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
 

 

 

Table 7.11 30 – second GPS Outage, L1, Van Test II 

Table 7.12 60 – second GPS Outage, L1, Van Test II 
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When looking at individual simulation points in Van Test II, it can be observed that the 

points at longer baselines show less improvement in time to fix integers with INS aiding 

than shorter baseline points. Figure 7.18 shows the INS aiding effect on all simulation 

points versus baselines for 10-second GPS outage with loose coupling. The case is true 

for all other GPS outage periods and INS aiding schemes. It can be seen that the 

effectiveness of INS aiding in GPS ambiguity resolution decreases as the baseline 

increases in this test case. This may be explained by the presence of more significant 

atmospheric errors in the longer baselines. 
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Figure 7.18 Performance of Ambiguity Resolution with INS Aiding versus baselines 
 
The average times to fix ambiguities for the L1 and widelane measurements are 

summarized in Tables 7.13 and 7.14, respectively. Figure 7.19 shows the performance of 

ambiguity resolution with INS aiding. Basically the improvement pattern observed in 

Van Test I can be seen in Van Test II as well. During the 10-second GPS outage period 

there is an improvement in ambiguity resolution from INS aiding. As the outage period 



 

 

 

129

increases, the improvement decreases. It is particularly clear that in the 60-second outage 

period the improvement is almost zero. The same observation exists for the partial outage 

cases as well as the widelane case. 

 

When comparing Figure 7.19 to 7.16, it can be immediately seen that Van Test I has a 

more significant improvement than Van Test II in all outage scenarios. However, time to 

fix integers shown in the figures is average values. In Van Test I, all simulation points 

had very short baselines while simulation points in Van Test II have baselines ranging 

from 80 m to 50 km. Since the longer baseline points have less improvement as shown in 

the results, the averaged values can be larger with more long baseline points. 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Duration (s) 

 
TFI*, No 

INS aiding 
 I** II III I II III 

10 240 210 205 194 212 126 123 
30 240 218 212 203 217 137 133 
60 240 240 239 238 240 229 219 

*TFI – Time to Fix Integers, seconds 
**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 

 

TFI*, with INS aiding 
Full Outage Partial Outage 

 
GPS Outage 
Duration (s) 

 
TFI*, No 

INS aiding 
 I** II III I II III 

10 104 91 80 82 92 68 64 
30 104 94 85 84 94 73 68 
60 104 105 104 103 104 95 93 

*TFI – Time to Fix Integers, seconds 

Table 7.13 Ambiguity Resolution Time Statistics, L1, Van Test II 

Table 7.14 Ambiguity Resolution Time Statistics, Widelane, Van Test II 
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**I – loose coupling integration, II – tight coupling integration, III – centralized 
integration. 
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 Figure 7.19 Ambiguity Resolution Performance, L1 Full Outage, Van Test II 
 
 

7.2.3 Summary 
 
The data analysis in this chapter shows that with inertial data the performance of 

ambiguity resolution is significantly improved. In this regard, loose coupling does not 

perform as well as the tight coupling and centralized integration. Better improvement is 

achieved under partial GPS outages, where GPS measurements are still available for 

updating the master filter, than complete outages, in which the master filter operates in 

pure prediction mode. It is also found that with longer GPS outage periods, the benefit of 

using inertial data in the ambiguity resolution decreases.  Based on results from Van Test 

II, the improvement in ambiguity resolution tends to be a function of baseline, with less 

improvement in terms of time to fix integers as baseline increases.  

 



 

 

 

131

Petovello (2003) also examined the impact of inertial data on GPS ambiguity resolution. 

Basically, the same improvement pattern was observed in the data analysis with different 

specific improvement percentage. It was also found that tight integration outperforms 

loose integration and the improvement in time to fix integers decreases as GPS outage 

time increases. Scherzinger (2002) also studied the impact of inertial data on ambiguity 

accuracy prior to the integer search procedure. The ADOP was also significantly 

decreased when inertial data was integrated with the tight integration. However, when 

comparing INS error growth, it was found that Petovello (2003) and Scherzinger (2002) 

had better average results under the same GPS outage period even with lower grade IMU 

HG1700. This is because of the shorter initial INS alignment time and thus larger 

alignment errors. The location of GPS outages as shown in Figures 7.2 and 7.3, where 

GPS outages occurred during vehicle sharp turns, can also contribute to stand-alone INS 

error growth. 

 

7.3 Cycle Slip Detection with INS Aiding 
 
 

As discussed in Section 4.6, the basic concept behind INS aiding in cycle slip detection 

during GPS outages is to use the predicted INS position in order to calculate the DD 

carrier phase and compare it with the measured DD carrier phase to obtain the difference 

(Eq. 4.15). The difference value, δ , will be close to zero and continuous with respect to 

time.  The value of δ  is monitored and a threshold is placed to determine whether cycle 

slip occurs, and upon a cycle slip the measured DD carrier phase is corrected by δ . 

Therefore the accuracy of cycle slip detection depends upon the accuracy of INS position 
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prediction during GPS outages. The INS position errors induced into GPS DD carrier 

phase measurement will cause constant biases in ambiguity determination and thus the 

errors should be well below a half cycle. Table 7.15 shows the statistics of δ  on PRNs 11, 

15 and 23 in Van Test I (i.e. difference between INS derived DD carrier phase 

measurement and measured DD carrier phase) over a 500-second sample size where there 

are no cycle slips. The base GPS satellite is PRN 12. 

 

In order to study the efficiency of using an INS for cycle slip detection, cycle slips were 

simulated for ten GPS outages with 10-second outage periods.  The data set used is Van 

Test I. INS position errors in 30 and 60-second outages are too large to perform cycle slip 

detection. A slip of ten cycles is created in the L1 carrier phase measurement on PRN 5 

one epoch after the outage. PRN 5 is chosen because it is available during the entire test. 

PRN Mean (cm) RMS (cm) Min (cm) Max (cm) 
11 0.1 0.4 -0.2 0.3 
15 0 0.3 -0.1 0.2 
23 0.1 0.5 -0.3 0.2 

 

The purpose of having a one-epoch delay is to make the phase rate available and to 

perform a comparison between cycle slip detection with GPS phase rate and with INS 

aiding. Figure 7.20 shows the generation procedure. 

 

Table 7.15 Statistics on Diff. between INS Derived and GPS Measured DD Carrier Phase 

Difference, L1 
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GPS Outage 

INS Prediction  

Cycle slips 

  

Figure 7.20 Cycle Slip Generation 
 

Table 7.16 shows the detection results for both the full and partial GPS outages. At each 

epoch the same simulation is repeated 500 times in order to get RMS statistics. It can be 

seen that the cycle slip error defined as the difference between the detected cycle slip (δ ) 

and true cycle slip is generally smaller for the INS/GPS integration case than in cycle slip 

detection with the GPS phase rate. This is because the position from the INS prediction 

over the short-term is very accurate and thus cycle slip detection with INS aiding has 

better performance. In the INS aiding case, cycle slip errors for a partial outage are 

smaller than for a full outage and this is because the position solution in a partial GPS 

outage has better accuracy.  Figure 7.21 below shows a clear improvement in cycle slip 

detection with INS aiding. 

Outage Start Time 
(sec) 

Full Outage 
(cm) 

Partial Outage 
(cm) 

GPS Phase Rate 
(cm) 

419001 3.1 1.6 4.9 
419161 2.9 2.2 5.4 
419321 3.1 1.9 5.3 
419481 2.7 1.5 6.1 
419641 2.8 1.4 5.1 
419801 3.2 2.0 5.5 
419961 2.9 1.1 4.8 
420121 3.0 1.7 5.7 
420281 3.1 1.9 4.9 
420441 2.8 1.3 5.1 

 

Table 7.16 Difference between δ  and True Cycle Slips (RMS, cm), L1 
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Figure 7.21 Cycle Slip Detection with INS Aiding vs. Doppler (Phase Rate) 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

The objective of this research was to investigate the feasibility of integrating high quality 

inertial data into GPS carrier phase ambiguity resolution. The research was comprised of 

three major components. The relevant theory on GPS and INS and INS/GPS integration 

was presented in the first part, combined with a detailed study on three INS/GPS 

integration filter structures and a brief overview on GPS ambiguity resolution principles. 

In the second part, the methodology of integrating inertial data into GPS ambiguity 

resolution was developed. The inertial aiding scheme was studied under three INS/GPS 

integration scenarios: loose coupling, tight coupling and the augmented master filter 

integration. The third part consisted of a description of the software package that 

implements the methodology and results from processing two data sets with short and 

longer baselines. In the following sections conclusions are drawn from the research 

carried out in this thesis and recommendations are given for the future research on this 

topic. 

 

8.1 Conclusions 
 
 
1. Three INS/GPS integration strategies proposed in the research have different 

advantages. The first approach, so-called INS navigation aiding, is primarily useful in 

GPS outages where there are no GPS positions available or the number of satellites 

available is insufficient (e.g. less than four) such that the GPS navigation stand-alone 
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module can not resolve the receiver’s position. This approach is simplistic and easy to 

implement since it does not require any change in the system model. INS 

measurement aiding is suitable for instant or very short-period GPS outages. It is also 

useful for cases where the GPS filter loses the integers because of cycle slips or 

failure of residual checks invalidating the integers. The third approach, the augmented 

master filter, reduces the complexity of having two parallel Kalman filters. The INS 

aiding in the ambiguity resolution is automatically accomplished through the float 

ambiguity estimation in the augmented state vector. This approach is also subject to 

the INS drift during stand-alone navigation mode. 

 

2. The LAMBDA technique reduces the correlation among ambiguities. The process of 

applying LAMBDA transformation to the VCV matrix of initial float ambiguities is a 

process of performing conditional least squares adjustment. After the adjustment the 

accuracy of transformed ambiguities is improved. The presence of high-quality 

inertial data in the measurement update further improves the accuracy of float 

ambiguity estimation. The theoretical analysis of ADOP in least squares framework 

as well as results from the data analysis shows that with additional inertial data the 

accuracy of float ambiguities is improved and the size of ambiguity search space is 

reduced. 

 

3. The performance of INS aiding in ambiguity resolution is examined by processing 

two data sets.  10, 30 and 60-second GPS outages were simulated in each data set and 

the time to fix integers after the outages were recorded. Results from both data sets 
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showed that during short-term GPS outages, incorporation of INS data reduced the 

time to fix ambiguities quite significantly (average 40 – 70% improvement in 10 – 

second GPS outage case). The INS aiding in the augmented master filter integration 

has the best performance.  The INS aiding mechanism for long baseline case showed 

almost the same percentage improvement in terms of average time to fix integers after 

the outages. However the feasibility of using INS data in the long baseline case 

eventually depends on the significance of GPS atmospheric errors. Results showed 

that in the circumstances where GPS-only cannot resolve integers due to atmospheric 

errors in long baselines inertial data integration cannot improve the situation to fix 

integers either. 

 

4. The efficiency of using inertial data in cycle slip detection and recovery is also 

examined by processing the short baseline test data. Cycle slips are simulated at 

various epochs with 10 – second GPS outages and slip detections with INS and GPS-

only are performed at these epochs. Results show that cycle slips recovered with INS 

is more accurate than with GPS-only. The efficiency of using INS/GPS integration to 

detect and recover cycle slips primarily depends on the INS bridging time. Over a 

long-term bridge, such that the INS error drift exceeds one half cycle, there is no 

benefit of using inertial data to perform cycle slip detection and recovery. 
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8.2 Recommendations 
 
 

1. The data process in the software is for post-mission data sets. Further evaluation 

on real time data process should be performed in the future work. 

 

2. Two van data sets were used. Data sets from aircraft tests should be processed to 

evaluate the performance of INS aiding in ambiguity resolution under higher 

dynamics. 

 

3. The IMU used in the tests is very high quality. Other grades and low-cost IMUs 

can be used to further evaluate the feasibility of using inertial data in fixing 

integers and detecting cycle slips. 

 

4. In post-mission data processing the technique of forward - backward prediction 

and smoothing can be applied to extend INS bridging time in ambiguity resolution 

and cycle slip detection. 
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APPENDIX A 
 
Derivation of DD ambiguity VCV Matrix  

Rewriting equation (3.6) gives: 
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Substituting above expressions (A.2) and (A.3) into (A.1) yields: 
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The matrix algebra theory indicates that the following formula exists for the partitioned 

inverse (Golub et al., 1989): 
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Applying above partitioned inverse to (A.4) gives: 
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With the updating formula in the matrix algebra (Golub et al., 1989): 
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Another form of equation (A.5) can be obtained: 
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( ) 11* −−
∆∇∆∇ ′= BRBR ϕϕ             (A.7) 

From the special form of C as indicated by equation  (3.5) it can be seen that *
ϕ∆∇R is a 

kk × matrix that is the linear combinations of columns and rows in 1−
∆∇ ϕR . 
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APPENDIX B 
 
GPS Data Specification (Lines 1 – 10) 
 
 

Line Description Contents 
1 - GPS start time (seconds), GPS end time (seconds), Base 

satellite PRN, 
2 - Code measurement type ( 0 – CA, 1-L1, 2-L2), carrier 

phase measurement type ( 0,1 – L1, 2 – L2, 3 – widelane), 
GPS time type ( 1 – transmit time, 2 – receive time) 

3 - Cut off evaluation (degree), tropospheric correction flag (0 
– NO, 1 - YES) 

4 Coordinates of the 
monitor station 

Coordinate type ( 0 – geocentric, 1 – ellipsoidal), x 
(latitude), y ( longitude), z ( height) 

5 Approximate 
coordinates of the 
remote station 

Coordinate type (0 – geocentric, 1 – ellipsoidal), x 
(latitude), y  (longitude), z (height) 

6 - Satellites to be rejected in the data process, space 
delimited 

7 - GPS static start time (seconds), GPS static end time 
(seconds) 

8 - A full file path to the GPS data of the base station 
9 - A full file path to the GPS data of the remote station 
10 - A full file path to the GPS ephemeris data 

 

Table B.1 GPS Data Specifications 
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INS Data Specification( lines 11 – 17) 
 
 

Line Description Contents 
11 - A full path to the IMU data 
12 - INS start time (seconds), fine alignment period (seconds) , 

frequency (HZ) 
13 Initial variances for 

the KALMAN filter 
Misalignment x (degree2), y (degree2), z (degree2), latitude 
(m2), longitude (m2), north velocity (m/s) 2,  south velocity 
(m/s) 2, height (meter2), vertical velocity(m/s) 2, gyro drift x 
(degree/hr)2, drift y (degree/hr)2, drift z (degree/hr)2, accl. 
bias x (m/s2)2, bias y (m/s2)2, bias z(m/s2)2, 

14 System disturbance 
specification 
(spectral densities ) 

Misalignment x (degree2), y (degree2), z (degree2), latitude 
(m2), longitude (m2), north velocity (m/s) 2, south velocity 
(m/s) 2, height (meter2), vertical velocity (m/s) 2, gyro drift 
x (degree/hr) 2, drift y (degree/hr) 2, drift z (degree/hr) 2, 
accl. bias x (m/s2) 2, bias y (m/s2)2, bias z(m/s2)2, 

15 ZUPT variances Variance  (m/s) 2 
16 Lever arm 

configuration 
X (m), y (m), z (m) 

17 Correlation time of 
gyro drift and 
accelerometer bias 

Gyro x (seconds), y (seconds), z (seconds), accelerometer 
x (seconds), y (seconds), z (seconds) 

 

 

Miscellaneous( lines 18 – 20) 
 
 

Line Description Contents 
18 Data process mode Data process mode (0 – INS Only, 1 – GPS Only, 2 – 

INS/GPS loose coupling, 3 – INS/GPS tight coupling 1, 4 
- INS/GPS integration with centralized filter structure) 

19 INS Aiding Flag INS aiding mode ( 0 – No aiding, 1 – YES)  
20 Output file prefix Prefix (e.g. van, aircraft etc.) 

 
 
 
 

Table B.2 INS Data Specification 

Table B.3 Miscellaneous Specifications 
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Output File Description Format 

*.GPS GPS navigation 
solution 

GPS time (seconds), latitude (degree), variance (m), 
longitude (degree), variance (m2), height (m2), 
variance (m2), north velocity (m/s), variance (m/s) 2, 
south velocity (m/s), variance (m/s) 2, vertical 
velocity (m/s), variance (m/s) 2 

*.AMB GPS ambiguity 
resolution results 

GPS time (seconds), integer flag (0 – float, 1 – 
fixed), number of integer candidates, ADOP 
(cycles), PRN#1, residual (cm), PRN#2, residual 
(cm), …… 

*.SLP Cycle slip detection 
summary 

GPS time (seconds), PRN#1, cycle slips (cycles), 
PRN#2, cycle slips (cycles),…… 

*.ALG INS coarse 
alignment results 

GPS time (seconds), roll (degree), pitch (degree), 
yaw (degree) 

*.ALG INS fine alignment 
results (presented 
after coarse 
alignment results) 

GPS time (seconds), roll (degree), variance 
(degree2), pitch (degree), variance (degree2), yaw 
(degree), variance (degree2) 

*.INS INS navigation or 
INS/GPS 
integration results 

GPS time (seconds), latitude (degree), variance (m), 
longitude (degree), variance (m2), height (m2), 
variance (m2), north velocity (m/s), variance (m/s) 2, 
south velocity (m/s), variance (m/s) 2, vertical 
velocity (m/s), variance (m/s) 2, roll (degree), 
variance (degree2), pitch (degree), variance (degree2), 
yaw (degree), variance (degree2) 

 
 
 
 
 
 
 

 

Table B.4 Formats of Output Files 




