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ABSTRACT 

The estimation accuracy of a conventional Kalman filter is ultimately limited by 

imperfect mathematical modeling of the input noise and this issue has become a barrier to 

improving estimation performance for some applications. In contrast, the wave estimation 

method, which describes the dynamic system in a deterministic way over a short period, 

has the advantages of providing higher estimation accuracy in a situation where the input 

disturbances are of low frequency, slowly varying in nature, and rely on relatively weak 

observables. In the thesis, a wave estimator has been developed to integrate differential 

GPS (DGPS) with a medium accuracy IMU, for land positioning with the emphasis on 

accuracies at the metre level. A loosely coupled integration approach has been developed, 

which uses carrier phase-smoothed C/A-code-based DGPS positions and velocities as 

updates to the IMU. 

 

Two data sets are used to assess the GPS/INS integration results. The first data set is from 

the CastNav 4000 GPS/INS simulator. This data set contains simulated inertial and GPS 

measurements with synchronized time tag. The simulator also provides a reference 

trajectory simultaneously as the data was logged. Another data set is from a field test near 

Calgary, using a Honeywell HG1700 IMU and two NovAtel OEM-4 GPS receivers. A 

reference trajectory for the field data was obtained by using the carrier phase kinematic 

positioning technique.  

 

The above mentioned datasets were processed using a conventional Kalman filter as well 

as a wave estimator. For the field data set, the positioning accuracy has a RMS less than 

0.5 m horizontally; the velocity estimation accuracy has a RMS value less than 3.5 cm/s 

when using a Kalman filter. In case of using a wave estimator, the position accuracy has a 

same RMS value with that of using a Kalman filter; and the velocity accuracy has an 

RMS value no greater than 1.26 cm/s. Both the Kalman filtering and the wave estimator 

case satisfied the metre-level positioning requirements. INS prediction results are also 

examined. For full GPS outage situation with no vehicle manoeuvring, the INS prediction 

accuracy is from 0.25m to 1.26m during 5 seconds and 10seconds simulated GPS data 
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gaps respectively. For full GPS outage situation with vehicle manoeuvring, the INS 

prediction accuracy varies from 3.15m to 12m during 5 seconds and 10 seconds GPS data 

gaps. For the simulation data set, when using a Kalman filter, a similar accuracy was 

achieved compared with the field data results. When using a wave estimator, the 

estimation results to the weakly observed state vectors achieved improved results 

compared with that of the Kalman filter. The horizontal misalignment angle estimation 

improved about 4 times. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Objectives 

The integration of the Global Positioning System (GPS) and an Inertial Navigation 

System (INS) has been an important development in modern navigation. GPS is a system 

that provides consistently accurate navigation solutions, which are generally independent 

of time, location and weather. GPS, by itself, is sometimes affected by signal blockage 

and attenuation in mountainous areas, dense forests, and areas with high-rise buildings. 

An INS is an autonomous, all-weather navigation system, which can provide position, 

velocity and attitude information in real-time. However, its navigation performance 

deteriorates with time due to the inertial sensor’s performance. Researchers have found 

an efficient way to limit INS navigation errors by updating the INS velocity and position 

with external measurements, which have consistent accuracy over time. GPS is often 

used to provide these external measurements through a GPS/INS integrated system. In 

this case, the INS becomes an error-bounded navigator when GPS data is available. The 

advantages of GPS/INS integration are more than an improvement of accuracy. For 

example, the INS solutions can be used to identify and correct GPS carrier phase cycle 

slips (Cannon, 1991). Improved receiver reacquisition time by using INS to bridge GPS 

gaps in a tightly coupled GPS/INS Real Time Kinematic (RTK) robust positioning 

system has been achieved (Scherzinger, 2000). Gustafson et al. (1996) has achieved 

significant improvement in GPS receiver anti-jam capability by using a deeply integrated 

signal processing technique. Finally, positioning availability can be increased greatly 

(e.g. Greenspan, 1996). 

 

The integration of GPS and INS has been successfully used in practice during the past 

decades. However, much of the work has focused on the use of a high accuracy Inertial 

Measurement Unit (IMU), which is an inertial sensors’ block without navigation 

solutions output. These IMUs provide good accuracy measurements during GPS data 
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gaps, but their high cost places a severe restriction on applications (Petovello, 2001). For 

high accuracy positioning using GPS, carrier phase measurements are usually selected, 

but the carrier phase measurements are ambiguous due to an initially unknown number of 

cycles between the receiver and the satellite. High accuracy positioning is possible only if 

these ambiguities can be reliably resolved to their integer values (Kaplan, 1996). Another 

drawback of carrier phase processing is the relative difficulty in maintaining phase lock 

as compared to code lock. If a cycle slip can be detected and corrected, the associated 

ambiguity can be estimated as an integer value and determined by algorithms such as 

FASF (Chen, 1994), or LAMBDA (Teunissen and Tiberius, 1994). Although the above 

algorithms provide rapid ambiguity resolution capabilities, they are still limited by the 

error sources affecting the carrier phase measurements.  

 

The pseudorange measurement is the time difference (in equivalent metres) between the 

Doppler-shifted received pseudo-random noise (PRN) code and the receiver-generated 

code. Since the measurement is not a true geometric range between the satellite and the 

receiver, but instead is significantly biased by several error sources, it is consequently 

denoted as a pseudorange. Differential GPS (DGPS) can cancel or reduce most of the 

common errors. Metre-level positioning can be achieved by DGPS using pseudorange 

measurements with a relatively simple carrier smoothing algorithm. One objective of this 

thesis is to use pseudorange-derived DGPS positions and velocities to update a medium 

accuracy IMU in order to achieve metre-level positioning accuracies by using a 

conventional Kalman filter.  

 

Kalman filtering provides a powerful tool to create synergism between two navigation 

sensors - GPS receivers and INS - since it is able to take advantage of both systems’ 

characteristics to provide a common, integrated navigation implementation with a 

performance superior to either of the sensor subsystems (Grewal and Weill, 2001). It 

gives optimal estimation as measured by the minimum mean square error (MMSE). 

However, it is optimal only if the system and measurement noise values are accurately 

modeled, and in addition, the estimation quality is only as good as the underlying model 

(Ray et al., 1999). Furthermore, the estimation transition state for a Kalman filter is a 



  3 

 

sequential convergence process, which depends on the “degree of observability’’ of the 

state variables. The weakly observed states need a longer time to converge and thus 

estimation during this period yields poorer results (Salychev, 2001). Reliable Kalman 

filtering results rely on the correct definition of both the mathematical and stochastic 

models used in the filtering process. At steady state, the estimation accuracy is limited by 

the input noise (Wang and Stewart, 2000). In recent years, some new estimation methods 

have been developed and wave estimation is one of them. In the wave estimation method, 

input disturbances are described by pseudo-deterministic models that are valid over a 

short time interval. This has been successfully used in navigation for the past decade; 

Salychev (1991) applied wave estimation approaches to an inertial surveying system 

(I-42) while Liu (1992) applied it to real-time azimuth estimation for a LTN 90-100 

Strapdown INS initial alignment process. Ray et al. (1999) applied a modified wave 

estimation method to a real-time GPS/GLONASS-INS (LT-90-100) integration system. 

In all of the above applications, which involved a navigation-grade INS, the estimation 

accuracy improved significantly. The second objective of this thesis is to use a wave 

estimator to integrate DGPS with a medium accuracy IMU, and to compare the results 

with those from the conventional Kalman filter. 

 

The design and implementation of Kalman filter and wave estimator will be assessed by 

using both simulation and field data. A six-hour land vehicle simulation data set from 

CastNav 4000 GPS/INS simulator, will be used to assess the integration results. A one-

hour land vehicle field test data using the Honeywell HG1700 IMU and two NovAtel 

OEM4 GPS receivers is then used to assess the properties of a Kalman filter and wave 

estimator using real data. 

1.2 Thesis Outline 

In Chapter 2, both GPS and INS fundamentals are reviewed. GPS measurements and 

error sources are discussed. The DGPS technique to reduce these errors is also reviewed. 

Fundamentals of inertial navigation systems and their structures are also discussed as 

well as error sources, their propagation properties and error modeling. IMU raw data 

from both the field test and GPS/INS simulator are analyzed in order to investigate their 
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error properties. A stochastic model for both the gyroscope and the accelerometer are 

established. Finally, different integration strategies and filter architectures are discussed, 

and their advantages and disadvantages are briefly summarized.  

 

Chapter 3 reviews basic estimation methodologies, i.e. conventional Kalman filtering, 

innovation-based adaptive Kalman filtering, as well as the wave estimation method. 

Properties and estimation accuracies of these methods are discussed. A loosely coupled 

integrated approach is selected to achieve the metre-level positioning results. The 

mathematical models for Kalman filtering, adaptive Kalman filtering as well as wave 

estimation are established. These models will be used in the next two chapters to process 

both the simulated and field test data sets. 

 

Chapter 4 gives the analysis of the simulated data set from the CastNav 4000 GPS/INS 

simulator. This equipment creates a GPS RF and inertial environment for developing, 

testing, and integrating loosely-coupled GPS/INS systems. Kalman filtering and wave 

estimation methods are used to process this data set. Both sets of results are compared 

with the reference trajectory provided by the simulator. Advantages and disadvantages of 

both estimation methods are then discussed. 

 

Chapter 5 focuses on the field data analysis. A test run was carried out in Calgary, 

Alberta, on August 16, 1999. Both DGPS and IMU data were logged simultaneously. The 

IMU used in this field test was a medium accuracy Honeywell HG1700 whereas the GPS 

receivers were NovAtel OEM4 units. Utilizing the loosely coupled model developed in 

Chapter 3, Kalman filtering results are first accessed. One of the advantages of GPS/INS 

integration is the IMU prediction during a GPS outage. Both full and partial GPS outages 

are simulated (as there are no outages occurring during this field test) and prediction 

accuracy is discussed. As an alternative of the Kalman filter, wave estimators are also 

used to process the data. Results from both the Kalman filter and the wave estimator are 

analyzed. 
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Chapter 6 contains conclusions and recommendations formed through this thesis as well 

as the topics that need further research and development. 
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CHAPTER 2 

FUNDAMENTALS OF GPS AND INS 

2.1 Global Positioning System 

The GPS is a satellite navigation system maintained by the U.S. Department of Defense 

(DoD), and jointly managed by the DoD and the Department of Transportation. The 

current GPS constellation consists of 28 Block II/IIA/IIR satellites 

(www.navcen.uscg.gov/Ftp/gps/status.txt), occupying six orbital planes inclined with a 

55-degree angle with respect to the equator. GPS satellites broadcast navigation messages 

and provide a global, 24-hour, all-weather navigation service (Department of Defense, 

2001). 

 

GPS satellites orbit 20,200 km above the Earth’s surface with a period of about 12 hours. 

They transmit signals on two frequencies; L1 at 1575.42 MHz and L2 at 1227.6 MHz. 

These signals are bi-phase modulated by one or two PRN codes; the Coarse/Acquisition, 

C/A-code, and the Precise, P-code. The L1 carrier is modulated by both the C/A- and the 

P-codes while the L2 carrier is only modulated by the P-code. The C/A-code is 

transmitted at 1/10 of the fundamental GPS frequency (10.23 MHz) and is repeated every 

one millisecond. In contrast, the P-code is transmitted at the fundamental frequency and 

is only repeated every 267 days. The navigation message, containing broadcast ephemeris 

and health information, is modulated on both frequencies at 50 bits per second (Spilker, 

1996). 

 

The C/A-code is unrestricted and is used for the Standard Positioning Service (SPS) 

where single point positioning accuracies of 13 metres horizontally and 22 metres 

vertically can be achieved at a 95% confidence interval (Department of Defense, 2001). 

Recent field test at the University of Calgary shows a better result. The RMS values are 

on the order of 2.0 m horizontally and 4.0 to 5.0 m vertically (Skone et al., 2003). The 
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more accurate P-code which provides the Precise Positioning Service (PPS) to authorized 

users only. Unauthorized users are restricted from the P-code by the DoD. This restriction 

is accomplished by means of Anti-Spoofing (A-S), where the P-code is translated (to give 

the encrypted Y-code) except to authorized users (Hofmann-Wellenhof et al., 2001). 

2.1.1 Observables and Error Sources 

There are three types of GPS observables, namely, pseudorange, carrier phase and 

Doppler, whereby the pseudorange and carrier phase measurements are generally 

considered the two basic observables. Pseudorange measurements are made by 

comparing a receiver-replicated PRN code with the incoming signal from a particular 

satellite to determine the time shift needed to correlate the two signals. This time shift is 

the pseudorange and it represents the difference in time between signal transmission and 

reception, the so-called transmit time. It is called pseudorange rather than range since the 

receiver and satellite clocks are not synchronized, therefore, the pseudorange contains 

clock biases as well as other error sources. The carrier phase measurement is made by 

differencing the incoming carrier signal with a receiver-generated carrier signal. The 

resulting beat phase is therefore the difference in phase between the satellite and receiver 

signals at the time of measurement. Differencing of the carrier signals is much more 

accurate than the measurement of time in the case of the pseudorange, therefore the 

carrier phase has lower noise characteristics (Cannon, 1991). 

 

The signal travels through inhomogeneous space, which has varying effects on the code 

(p) and carrier (Φ ) measurements. The code and carrier phase observables can be 

expressed as (Lachapelle, 1998)  

r trop ion mult/p pp = +c(dt - dT)+d +d +d +d +ρ ε    (2-1) 

ΦΦ ++−+++−+=Φ ελρ /)( multiontropr ddddNdTdtc  (2-2) 

where ρ   is the geometric range (m) 

 c   is the speed of light (m/s) 
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dt   is the satellite clock error (s) 

dT   is the receiver clock error (s) 

rd   is the orbital error (m) 

iond   is the ionosphere delay (m) 

tropd   is the troposphere delay (m) 

multdρ   is the pseudorange multipath effect (m) 

pε   is the pseudorange measurement noise (m) 

λ   is the wavelength of GPS carrier (m)  

0.19m for L1 and  0.24m for L2 

 N    is the integer ambiguity (cycles) 

 multdΦ   is the carrier phase multipath effect (m), and 

 Φε   is the carrier phase measurement noise (m). 

The carrier phase measurement generated from the receiver contains only the fractional 

part of the geometric range, so it is ambiguous. The ambiguity, N, is an integer value 

which represents the difference between the true range and measured phase. The 

ambiguity is constant over a measurement time span provided there are no cycle slips in 

the carrier phase data. Cycle slips are caused in situations such as satellite shading, 

extreme vehicle dynamics, intense ionosphere activity, etc., and results in loss of phase 

lock between the receiver and the satellite.  

 

The Doppler frequency is the third observable and it represents the rate of change of the 

carrier phase observable. It reflects the relative velocity between the receiver and the GPS 

satellite. This information can be used for velocity derivation and cycle slip detection. 

This observable can be expressed as (Lachapelle, 2001): 
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ΦΦ ++−++−+=Φ ερ /)( multiontropr ddddTdtdc                        (2-3) 

where Φ  is the Doppler (m/s) 

  ρ  is the range rate between the receiver and the satellite (m/s), and 

  ( )•  denotes a time derivative. 

It should be noticed that the ambiguity term is gone after time derivation calculus. 

Ionospheric Error 

The ionosphere is a region of the atmosphere extending roughly from 50 to 1,500 km, 

and it is characterized by a significant number of free electrons (with negative charge) 

and positively charged ions (Leick, 1995). Free electrons affect the propagation of radio 

waves, so they are of interest to GPS users. The ionosphere can cause a group delay of 

the modulated signal, a carrier phase advance and scintillations, which are the small-scale 

irregularities in the electron content of the ionosphere, with spatial extents from a few 

metres to a few kilometres. It can produce both refraction and diffraction effects on 

received GPS signals (Wanninger, 1993). It should be noted that the effects on the code 

and carrier phase have the same value but opposite sign. 

 

The ionospheric error can be of the order of 2-50 m in single point positioning mode and 

it can be reduced by DGPS processing. The improvement depends on the baseline length 

between the reference station and the remote receiver, as the ionosphere decorrelates 

spatially. The residual error is approximately 2 parts per million (ppm) with differential 

corrections, but it may reach 20 ppm or more under extreme high ionospheric conditions 

(e.g. Lachapelle, 2001), since the activity of the ionosphere is strongly affected by the 

number of the sunspots, which are dark patches on the Sun. The number of sunspots on 

the Sun at any given time varies in an 11-year cycle as does the number and severity of 

disturbances in space weather (Bugoslavskaya, 1962). Figure 2-1 shows the sunspot 

numbers in the last solar cycle (solar maximum occurred in the middle of 2000). 

(http://science.msfc.nasa.gov/ssl/pad/solar/images/ssn_predict_l.gif). Figure 2-2 shows 
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the evolution of the Earth’s mean TEC in the same period 

(http://www.aiub.unibe.ch/ionosphere/meantec.gif). They are consistent largely. 
 

 

Figure 2-1 Sunspot Numbers and the Periodic Behaviors 

 

Figure 2-2 Earth’s Mean TEC and the Periodic Behaviors 
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In addition to varying with the solar cycle, the TEC presents the following type of 

variations (Skone, 1999): 

1  Daily: Maximum around 2:00 pm local time in the equatorial region. 

2  Seasonal: Lowest TEC in the summer (of the Northern Hemisphere); minima close to 

the equinoxes (March and September) and in the winter. These characteristics follow 

the months of the year, not the season, which means that they are opposite for the 

Southern Hemisphere, i.e. lowest in the winter and maximum in the summer. 

3  Geographic: Two maxima at ±10° from the magnetic equator, in the region under the 

so-called equatorial anomaly. 

Tropospheric Delay 

The troposphere is the lower part of the Earth’s atmosphere where temperature decrease 

with an increase in altitude. The thickness of the troposphere is not the same everywhere. 

It extends to a height of less than 9 km over the poles and in excess of 16 km over the 

equator (Lutgens and Tarbuck, 1989). The troposphere is electrically neutral and non-

dispersive for frequencies as high as about 15 GHz. Within this medium, group and phase 

velocities of the GPS signal on both the L1 and L2 frequencies are equally reduced. The 

influences of the troposphere on the GPS measurement can be expressed by wet and dry 

components. The wet component depends on the distribution of the water vapour in the 

atmosphere and is harder to model. However, it is responsible for only 10% to 20% of the 

total troposphere refraction. The dry component can be precisely described by models 

(Seeber, 1993). Mendes (1999) presents a detailed description and analysis of several 

models. The resulting delay is a function of atmospheric temperature, pressure, and 

moisture content. Without appropriate compensation, tropospheric delay will induce 

pseudorange and carrier-phase errors from about 2 metres for a satellite at the zenith to 

more than 20 metres for a low-elevation satellite (Spilker, 1996). The residual 

tropospheric error is about 1 ppm in differential mode (Lachapelle, 1998). 
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Orbital Error 

To use GPS for positioning, it is generally assumed that the satellite coordinates are 

known. These orbits are expressed in terms of an ephemeris, which is a mathematical 

description of where a satellite is at a given time (Roulston et al., 2000). The satellite 

coordinates are then developed from these ephemerides. 

 

Three types of data are available to determine position and velocity vectors of the 

satellites in a terrestrial reference frame at any instant: almanac, broadcast ephemerides, 

and precise ephemerides (Hofmann-Wellenhof et al., 2001). These data types differ in 

accuracy. The broadcast orbit RMS accuracy currently is about 2 m (Beutler, 1997). The 

GPS Accuracy Improvement Initiative (AII) focuses on enhancing the quality of the 

clock and ephemeris parameter values embedded within the broadcast navigation 

message (Hay, 2000). Once operational in 2005, AII is expected to reduce the signal-in-

space range error (SISER) to 1.3 m RMS (ibid). 

 

In order to derive more precise orbits needed for scientific and engineering applications, 

several groups started to compute what is known as precise ephemerides (Fortes, 2002). 

Among them are the official precise orbits computed by the Navel Surface Warfare 

Center together with National Imagery and Mapping Agency (NIMA), available upon 

request about 4-8 weeks after the observations (Buetler et al., 1998), and the orbit 

computed by the International GPS Service (IGS) (IGS, 2001). IGS products are 

currently used by a large user community because of their user-friendly properties. The 

accuracy of the real-time IGS Ultra-Rapid (Predicted) orbit product is about 0.25 m and 

updated twice per day. The accuracy of the IGS Rapid orbit product is about 0.05 m, 

updated daily with a latency of 17 hours. The accuracy of IGS final orbit product is better 

than 0.05 m, updated weekly with a latency of 13 to 20 days (IGS ACC, 2001). In this 

thesis the broadcast ephemeredes are used. 
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Satellite Clock Error 

GPS satellites use two types of atomic clocks: rubidium and caesium. Satellite clock error 

is referred to as the difference between the satellite clock and the GPS system time 

(reference clock). This is monitored by the Master Control Station (MCS) and the errors 

are transmitted as coefficients of a polynomial as a part of the navigation message. 

Satellite clock errors can be effectively eliminated through DGPS (Lachapelle, 2001).  

Receiver Clock Error 

Receiver clock error is the offset between the receiver clock and the GPS system time. 

The error magnitude is a function of the receiver’s internal firmware. It can vary between 

200 µs  to a few ms. Receiver clock error changes with time due to the clock-drift. 

Receiver clock error can be established along with station coordinates, or it can be 

completely removed by single differencing between satellites (Cannon, 1999). 

Multipath and Noise Errors 

The above discussed errors can be minimized or removed by DGPS corrections; 

however, multipath and receiver noise cannot be compensated by using DGPS. 

 

Multipath is the corruption of the direct GPS signal by one or more signals reflected from 

the local surroundings. These reflections affect both pseudorange and carrier-based 

measurements in a GPS receiver. As shown in Figure 2-3, the reflector of 

electromagnetic signals could be buildings, metal surfaces, water bodies, and the ground 

(Nayak, 2000). Pseudorange multipath is limited by the chipping rate. The higher the 

chipping rate, the lower the maximum multipath (Leick, 1995). The maximum C/A-code 

multipath can reach a magnitude of about 0.5 of a code chip (150 m), and generally there 

is no effect from reflectors that are more than 150 m from the antenna (Lachapelle, 

2001). The maximum carrier-phase multipath can reach 0.25 λ, which means that it will 

not exceed 4.75 cm for L1 (Ray, 2000). 
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Measurement noise is any noise that is generated by the receiver itself in the process of 

taking the pseudorange or the phase measurement. It is considered to be white noise, and 

the receiver noise level is dependent on a number of factors (Raquet, 1998). For instance, 

it is usually a function of the code correlation method, receiver dynamics and antenna 

gain pattern. With narrow correlation techniques, the measurement noise is at a level 

ranging from 0.1 % to 1 % of the measurement wavelength (Nayak, 2000). The noise on 

the pseudorange is at a level of 5 to 10 centimetres for high elevation satellites; it may 

increase to tens of centimetres for lower elevation satellite; while only several millimetres 

on the carrier phase observable (Raquet, 1998). The receiver noise increases by 2  when 

differential correction is applied. 

 

 

Figure 2-3 Multipath Environment Example (from Nayak, 2000) 

2.2 Inertial Navigation Systems (INS) 

The basic principle of an INS is based on the integration of accelerations observed by the 

accelerometers on board the moving platform. The system will accomplish this task 

through appropriate processing of the data obtained from the specific force and angular 

velocity measurements. Thus, an appropriately initialized inertial navigation system is 
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capable of continuous determination of vehicle position, velocity and attitude without the 

use of the external information (Britting, 1971). 

2.2.1 Hardware Configurations 

There are three types of INS, namely space-stabilized systems (SSINS), local-level 

systems (LLINS), and strapdown systems (SINS) (Salychev, 1995). 

Space-Stabilized System 

The space-stabilized system keeps its sensor axes coinciding with an inertial frame. It 

requires the system to establish its orientation with respect to the inertial frame and to 

torque the platform back by the amount of rotation it senses, as shown in Figure 2-4. The 

rectangular box represents the platform; the frame axis with a subscript l refers to the 

local level frame, and the inertial frame axis is subscripted with an i . At the starting point 

A, it is assumed that the local level frame and the inertial frame coincide. When the 

SSINS moves from point A to point C, the local level frame rotates an angle relative to 

inertial space; however, the platform frame tracks the inertial frame so, it still coincides 

with inertial frame. The integration of the raw data is performed in the inertial frame as 

well. The result can then be transformed to the local level frame. The main disadvantage 

of this system is that the gyros and accelerometers are put into a varying gravity field. 

Local-Level System 

A local-level system aligns its sensor axis with the local level frame. The platform is 

constantly torqued in order to coincide with the local level frame; the navigation 

solutions will be obtained in this frame as well. The advantage of a local level system is 

that no coordinate transformation is needed so the navigation calculation is relatively 

simple. The problem is that when the system works in the polar region, the control torque 

becomes very large, so the local level system usually transfers to a wandering mode when 

it works in high latitude areas (Lei, 1978). Figure 2-5 shows how the LLINS works. 

When the LLINS t moves from point A to point C, the local level frame rotates an angle 

with respect to the inertial space, and the platform tracks the rotation of the local level 

frame. The platform frame axis still coincides with the local level frame. 
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Figure 2-4 Space Stabilized Inertial Navigation System 

 

Figure 2-5 Local Level Inertial Navigation Systems 
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Strapdown Inertial Navigation System 

Both above mentioned systems have a mechanical platform, which is torqued to track the 

navigation frame. Therefore, they are called gimballed systems. The third system is the 

strapdown inertial navigation system (SINS). In a SINS, the gyroscope and the 

accelerometer triads are directly mounted on the moving vehicle; therefore, the sensors 

are not mounted on a stabilized platform as in the case of a gimballed system. In an 

SINS, a mathematical platform is established in the computer. The sensors measure the 

rotation rates and the specific forces along the axes of the body frame. If the initial Euler 

angles and velocities of the system are known, the rotation rate of the system due to the 

Earth’s rotation and system velocity can be removed from the measured rate in order to 

obtain the attitude rate. The Euler angle increment can be achieved by integrating the 

attitude rate, so the systems Euler angle can be determined. Once the Euler angle is 

known, the measured specific force can be transformed to a local level or wandering 

frame; therefore, the navigation solution will be achieved as that in the local level system. 

 

An IMU and the navigation mechanization algorithms form an INS. The IMU is a single 

unit, which collects angular velocity and linear acceleration data and then sends it to the 

onboard microprocessor. The IMU housing actually contains two separate sensor triads. 

The first one is the accelerometer triad. The signal it generates represents the 

accelerations along each of its axes produced by, and acting on, the vehicle. The second 

sensor triad is the gyroscope triad; the signals it outputs describe the vehicle angular rate 

about each of the sensor axes. Even though the IMU is not located at the vehicle centre of 

mass, the angular rate measurements are not affected by linear or angular accelerations. 

Navigation mechanization equations are the computer implementation of the INS 

equations based on the computed and measured variables (Farrel and Barth, 1999). 

Mechanization equations can be established in different frames according to the 

application tasks. The inertial sensor used in this research is a Honeywell HG1700 

strapdown IMU, which is a medium accuracy unit using Ring Laser Gyroscope (RLG) 

technology (Honeywell Inc.). Compared to its mechanical gyroscope counterpart, system 
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reliability is increased since an RLG does not have any moving parts. In addition, the 

costs of RLGs are also lower than mechanical gyros. However, except for very high-end 

products, the noise level of RLGs is higher than mechanical gyros. Therefore, it is very 

important to establish proper error models and apply gyro drift testing and compensations 

before the system can be switched to navigation mode. This will be discussed in Section 

2.2.4. 

2.2.2 Mechanization Equations 

Measurements from the gyros and the accelerometers are the angular velocities and 

specific forces about and along the three axes of the body frame (b-frame), which is a 

3-D coordinate system coinciding with the output axes of the sensor block, as shown in 

Figure 2-6. The navigation frame is where the data integration is performed. Users can 

select any coordinate system as the navigation frame depending on the application 

requirements. The local level frame is often selected as the navigation frame because of 

its computational efficiency and convenience (Lei, 1978). 

 

 

Figure 2-6 Definition of Body Frame 

Sensors errors involved in the raw measurements must be compensated before they are 

sent to the mechanization equations to calculate the navigation solutions. These sensor 

errors contain deterministic and random components. Error properties and modeling will 

be discussed in detail in Section 2.2.3. 
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After the sensor error compensation of the raw measurements sensed in the body frame, 

the angular velocities are integrated to update the transformation matrix from the body 

frame to the navigation frame, i.e., l
bR , by using the quaternion method (Salychev, 

1998). The linear accelerations along the body frame axes obtained from the specific 

force measurements are transformed to the navigation frame, and are integrated to obtain 

the velocity and position in the navigation frame.  

 

In inertial space, Newton’s second law of motion can be expressed as follows: 

i i ir = f + G        (2-4) 

where ( i ) refers to the inertial frame 

if  is the specific force vector 

 ir  is the acceleration vector of the INS carrier, and 

 iG  is the gravitational acceleration vector. 

 

The above equation can be transformed into the local level frame conveniently, and can 

be expressed as the following set of first order differential equations, see Schwarz and 

Wei (2000) for details: 

(2 )

l l

l l b l l l l
b ie el

l l b
b b lb

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

r Dv
v R f Ω Ω v + g
R R Ω

   (2-5) 

where l  refers to local level frame 

The position vector can be expressed as: 

( , , )l hϕ λ=r       (2-6) 

ϕ is the latitude, λ is the longitude and h is the height. 
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The velocity vector in l -frame can be expressed as equation (2-7) and D is a 3 3× square 

matrix, which expressed the relationship of the velocity and position vector in local level 

frame. 

 (( ) cos , ( ) , )l
N MR h R h hλ ϕ ϕ= + +v    (2-7) 

  
0 1/( ) 0

1/( ) cos 0 0
0 0 0

M

N

R h
R h ϕ

+⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

D    (2-8) 

 l l l l l
ie ieg = G -Ω Ω r       (2-9) 

 lg  is the gravity vector in the local level frame, and 

  l
ieΩ  is the skew-symmetric matrix of the angular velocity vector l

ieω . 

Equation (2-10) is the earth rate relative to the inertial space projected in l - frame 

  [0, cos , sin ]l T
ie e eω ϕ ω ϕ=ω     (2-10) 

  l
elΩ  is the skew-symmetric matrix of the angular velocity vector l

elω  

  [ / , / , tan / ]l T
el n M e N e Nv R v R v Rϕ= −ω     (2-11) 

   is the angular velocity vector of the l-frame relative to e-frame 

  b
lbΩ  is the skew-symmetric matrix of the angular velocity vector b

lbω  

 b b b l
lb ib l ilω = ω - R ω       (2-12) 

 b b b
ib ib ibω = ω - d        (2-13) 

  b
ibω  is the gyro sensed angular velocity vector 
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  b
ibd  is the gyro drift vector 

  b
ibω  is the corrected angular velocity vector in body frame 

  l
bR  is the transformation matrix from body frame to local level frame 

 b b bf = f - b        (2-14) 

   bf  is the accelerometer sensed acceleration in body frame 

  bb  is the accelerometer bias vector 

  ,e nv v  are east and north velocity respectively, and 

  ,M NR R  are the radii of the meridian and prime vertical respectively. 

The computation involved to implement the system described in equation (2-5) includes 

the processing of angular rate measurements implied in the term b
lbΩ and the specific 

force term bf as shown in Figure 2-7. Firstly, gyro drift corrections are applied to the 

measured body rates with respect to inertial space by using equation (2-13). The 

corrected angular rate measurements are then used to compute the transformation matrix 

between the body and navigation frames, which is required to transform the specific force 

measurements from the accelerometers. This transformation matrix, l
bR , must be 

continuously updated in order to follow the vehicle dynamics. Secondly, the specific 

force measurements, bf , will be corrected by the accelerometer bias first, as shown by 

equation (2-14), then the corrected specific force measurements will be transformed from 

the body to the navigation frame. As the specific force contains all the sensed 

accelerations, the Coriolis acceleration, gravitational and centrifugal accelerations must 

be removed in order to extract correct vehicle velocity and position. The Coriolis 

acceleration is a function of the vehicle velocity while the sum of gravitational and 

centrifugal acceleration is the gravity which can be approximated by the free-air normal 

gravity lγ . Details of these corrections can be found in Wong (1988). The corrected 
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specific force now represents the vehicle acceleration, and can be integrated to get the 

vehicle velocity increments. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Diagram of SINS Mechanization Equation Solution in the Local Level Frame 

2.3 Error Sources and Properties 

INS navigation solutions are degraded by sensor errors and random disturbances 

(Salychev, 1998). These error sources include (1) Bias errors: a constant signal on the 

output, independent of input, and can be modeled as random walk. (deg. /hr); (2) Scale 

factor errors: linear and proportional to input. (Usually expressed in ppm); (3) 

Misalignment: ideally, the gyro and accelerometer defined an orthogonal triad, but the 

installation can not be perfect (it is also called non-orthogonality); (4) Temperature error: 

temperature dependence of bias and scale factor errors; and (5) Quantization errors: A/D 

converter has finite precision where very weak signals are treated as noise (Lei, 1978). 

Inertial error sources can be divided into two categories. One category contains stationary 
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errors like the random constant part of the gyro drift. Every time the system is started, a 

unique “constant” drift can be determined by initial calibration and drift testing process. 

The other kind of errors are non-stationary errors like the accelerometer scale factor. It 

has terms related to the acceleration and the rate of acceleration, others like 

non-orthogonality of the sensor’s installation. They are dependent on the body dynamics 

to a great extent, which makes the inertial sensors have a large error during vehicle 

dynamics (Salychev, 2001). 

 

For the stationary part, there are two error propagation properties: un-damped oscillation 

and un-bounded position errors. Computer-simulated INS errors are shown in Figure 2-8 

and Figure 2-9. Figure 2-8 shows the misalignment angle. For an initial value of three 

arc-seconds due to the accelerometer bias, it causes an un-damped oscillation with a 

maximum magnitude of about 6 arc-seconds. Figure 2-9 shows the east position error 

caused by a constant gyro drift of 0.01 deg/hr. It will become un-bounded over time. 

These errors also propagate with three different frequencies. Figure 2-8 and Figure 2-9 

show the relationship of these three frequencies: the Shuler frequency ( sω =1.24e-2 

rad/s), Earth rotation ( eω =7.2921158e-5 rad/s) and Foucault frequency ( sinf eω ω ϕ= ). 

In Figure 2-8, the Shuler frequency modulates the Foucault period; and in Figure 2-9 the 

Shuler frequency is superpositioned with the Earth period. Therefore, it is necessary to 

damp the Shuler and Earth frequencies for long-term applications (Lei, 1978). 

 

For the Honeywell HG1700 used in this research, the day to day gyro drift is up to 1.0 

deg / hr (Ford, 2001). If there is no compensation, the positioning errors will be as high as 

16 nautical miles per hour. (Detailed description of this system is given in Section 5.1.) 

Therefore, the initial calibration and drift compensation is very important in order to 

achieve high accuracy position results. For details see Shin (2001). 
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Figure 2-8 Simulated INS Horizontal Misalignment Angle 

 

Figure 2-9 Simulated INS Position Errors 
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2.2.4 INS Error Models 

The errors that need to be estimated include misalignment angles, position errors, 

velocity errors and sensor biases. They are defined as the deviations of the computed 

values from the true values. Their behaviour can be modeled by applying perturbing 

techniques, i.e. by assuming the navigation quantities are perturbed from their true values 

by a small amount and deriving the expression for those small deviations from the true 

values as a set of first-order differential equations. The following is an overview of the 

errors and for the details see Wong (1988). 

Attitude Errors 

Attitude errors are defined as the misalignment angles due to the orthogonal 

transformation errors between the body frame and the local level frame coordinate axes, 

expressed in the local level frame (Salychev, 1998), as shown in equation 2-15, where E 

is skew-symmetric matrix of the misalignment angle lε . 

l l
b bR = (I + E)R       (2-15) 

State space model is: 

ε εl l l l l
il il b= -Ω -δω + R δd      (2-16) 

where 

   
0 sin cos

sin 0
cos 0

e e
l
il e

e

ω ϕ ω ϕ
ω ϕ ϕ
ω ϕ ϕ

⎡ ⎤
⎢ ⎥− = − −⎢ ⎥
⎢ ⎥⎣ ⎦

Ω     (2-17) 

   ( )sin cos

( )cos sin

l
il e

e

δϕ

ω λ ϕδϕ ϕδλ

ω λ ϕδϕ ϕδλ

−⎡ ⎤
⎢ ⎥

= − + +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

ω     (2-18) 

  δd  is the residual gyro drift 

  ~ represents errors 



  26 

 

  I is the identity matrix 

Position Errors 

N

m

V
R
δδϕ =       (2-19) 

 tan
cos cos

E E

n n

V V
R R
δδλ ϕδϕ

ϕ ϕ
= +     (2-20) 

zh vδ δ=       (2-21) 

Velocity Errors 

 

ε ( 2 ) ( )l l l l l l l l l l l
el ie el ie b= − − + + + +δv F Ω Ω δv V δω + 2δω R δb δγ   (2-22) 

where   F  is the skew-symmetric matrix of the specific force vector lf  

  lV  is the skew-symmetric matrix of the velocity vector lv  

  lδγ  is the error in the normal gravity vector 
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n e uf f f  are the north, east and up components of the specific force            
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δγ      (2-25) 

  δb  is the residual accelerometer bias, and 

  R is the mean radius of the Earth. 

In the above equations, the following approximation has been made in order to simplify 

the formulas: 

eω >> , ,ϕ λ  ,ϕ λ >>
h
R

 

This is true for most of the land and marine platform dynamics. For high dynamic 

vehicles, however, the equations will be slightly different from those given here (Cannon, 

1991). 

Sensor Errors 

The variation of the residual gyro drift and accelerometer bias from alignment to 

alignment is random. They can be modeled by a first order Gauss-Markov process as 

described by equations (2-26) and (2-27) or white noise, shown in equations (2-28) and 

(2-29), according to the analysis results from the field data. 

ζ= −d d + w       (2-26) 

β= −b b + w       (2-27) 

d = 0       (2-28) 

b = 0       (2-29) 

 

In this research, the sensor errors are described by white noise. Equations (2-28) and (2-

29) will be used to model the gyro and accelerometer errors in the following chapters. 
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Error Models of Dynamic System 

 The error equations discussed above can be written in matrix form 

x = Fx + w       (2-30) 

where 

[ ]T
n e u x y z x y zh h d d d b b bε ε ε δϕ δλ δ δϕ δλ δ=x   (2-31) 

The dynamics matrix F is shown in Figure 2-12.Equation (2-30) is called the system 

model and equation (2-31) defines the state vector. Details about the linear system state 

space model are reviewed in Chapter 3. 
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Figure 2- 10 Dynamic Matrix of INS Error Model (Sun, 1999) 
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2.3 GPS/INS Integration Schemes and Architectures 

The degree of complexity of the integration approach should reflect the mission 

requirement; it may also be limited by the investment that can be made to obtain these 

objectives. Integration strategies and mechanisms may be very simple or relatively 

complex. Generally speaking, the GPS/INS integration schemes have three categories, 

namely uncoupled mode; loosely coupled mode and tightly coupled mode (Greenspan, 

1996). For each category, variations may exist across applications. This section will 

discuss commonly used integration schemes and their architectures. 

2.3.1. Uncoupled Mode 

Figure 2-11 illustrates the configuration in which GPS and INS produce independent 

navigation solutions with no influence of one on the other. ( )GPSP V  are the GPS-derived 

position, velocity while ( )INSP V A  are INS-derived position, velocity and attitude. 

( )estP V A  are the estimated positions, velocities and attitudes parameters. The integrated 

navigation solution is mechanized by an external integration processor. It can be as 

simple as a selector or be as complex as a Kalman filter (Spilker, 1996). A selector is the 

simplest way to combine these two systems together, and the accuracy of the navigation 

solution will not be worse than the accuracy of the INS. In the case when a medium to 

low accuracy IMU is used, the accuracy may be very low. A Kalman filter is a good 

solution in this case. 

 

 

 

 

 

 

 

Figure 2-11 Uncoupled Integration Mode 
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The features of the uncoupled integration method are that it is the easiest, fastest and least 

expensive way to integrate GPS and INS. Both GPS-only and INS-only navigation 

solutions are available separately which can provide some tolerance to failures of the 

subsystem components. It can also provide en-route navigation which is at least as 

accurate as that available from the INS (Greenspan, 1996). 

2.3.2 Loosely Coupled Mode 

Inertial navigation systems in principle permit autonomous operation. However, due to 

their error propagation properties, most applications require high-terminal accuracy. And 

external aiding is usually utilized to bound the INS errors. Figure 2-12 shows a loosely 

coupled integrated configuration with a feedback loop (Greenspan, 1996). 

 

 

 

 

 

 

 

 

 

 

Figure 2-12 Loosely Coupled Integration Approach 

In a loosely coupled system, the GPS receiver has its own Kalman filter to process 

pseudorange or Doppler measurements which are used to calculate positions and 

velocities. GPS-derived positions and velocities are combined with INS positions and 

velocities to form the error residuals which are sent to the navigation Kalman filter. This 

filter corrects the INS in a feedback  manner, and the effects of biases and drifts, as well 

as misalignment errors, will be significantly decreased. The features of a loosely coupled 
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approach include: (1) it allows maximum use of off-the-shelf hardware and software that 

can be easily assembled into a cascaded system without major development; and (2) the 

feedback of the error states to the inertial navigation system will bound the INS errors. 

This is especially important for medium to low accuracy IMU systems because the 

feedback loop effectively corrects sensor errors. In addition, the position, velocity and 

attitude corrections to the INS mechanization equations can be applied at the same time if 

needed. 

 

According to different applications, a loosely coupled scheme can be implemented in a 

variety of configurations. Most commonly used are open-loop and closed-loop 

implementations. Removing all the dashed lines in Figure 2-12 forms an open-loop 

configuration. All the measurements from GPS (pre-filtered position and velocity) and 

INS (position and velocity) are processed in the navigation Kalman filter. As there is no 

feedback, all the measurements are used without pre-correction. Open-loop 

implementation is straightforward to realize. However, it is only suitable for integration 

with a high-end inertial sensor and for short-term applications. A medium to low 

accuracy IMU propagates relatively large navigation errors in a fixed time interval 

compared with that of a high-end system. If there is no feedback loop to produce the 

compensation to the inertial sensor and the mechanization equation, the measurements 

will have higher values that will spoil the linear system assumption. For a closed-loop 

configuration, feedback is applied from the integration filter to the inertial sensors and/or 

the mechanization equations. Results from the previous step are used to minimize 

approximation error. A closed-loop scheme is especially useful when the sensor 

accuracies are poor. Because medium to low accuracy sensors usually have fast varying 

error properties, real-time or near real-time estimation and compensation to these errors is 

very important to improve the accuracy of the navigation solutions from the INS. 

 

A loosely coupled integration approach has been widely used in the past decade because 

of its high flexibility and performance. For example Cannon et al. (1999) used an open 

loop, loosely coupled, integration scheme for an airborne decimetre level positioning. 

INS solutions were used to detect and correct GPS cycle slips and to bridge GPS gaps. 
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Salychev et al. (2000) used a closed loop, loosely coupled, integration scheme and 

realized both a low-cost and medium accuracy GPS/IMU integration for attitude 

determination, which reached an RMS value of 22 to 25 arc-min horizontally when using 

a low-cost IMU, and an RMS value of 2 to 3 arc-min horizontally when using an medium 

accuracy IMU. Scherzinger (2001) used a loosely coupled inertial Real Time Kinematic 

(RTK) aiding, which exported the INS position and variance-covariance matrix to the 

GPS/INS filtering module in order to accelerate the time to a fix integer ambiguity 

solution after a GPS outage. The results showed that after a full GPS outage lasting up to 

60 seconds, the integer recovery time decreased to 10 to 15 seconds compared of 45 to 

100 seconds when no position seed was used. 

2.3.3 Tightly Coupled Mode 

In a tightly coupled system architecture, separate Kalman filters for the GPS receiver and 

the navigation process are combined into a single integrated filter. As shown in Figure 

2-13, this filter accepts GPS pseudorange and Doppler measurement residuals directly. 

The filter error states now include the INS error states (position, velocity, attitude, gyro 

drift, accelerometer bias) as well as new states representing the GPS receiver clock bias 

and drift. The components of the filter state vector that represent the INS errors are used 

to calibrate the INS and correct its estimates of position and velocity and the direction 

cosine matrices (DCM) describing vehicle attitude. The filter estimates of clock bias and 

drift are used to correct the GPS measurements. An INS-derived estimate of pseudorange 

and range rate are formed using satellite ephemeris data, INS position and velocity data 

and estimated GPS receiver clock errors. This predicted pseudorange and Doppler are 

combined with the receiver output data to form residuals that drive the navigation filter. 

Outputs from the Kalman filter and the INS can also be used to aid the satellite tracking 

loops in the GPS receiver.  

 

The tightly coupled architecture more effectively utilizes the available measurements and 

a priori information to determine and correct for system errors in a highly integrated 

fashion. It can thus yield better performance than the loosely coupled system, providing 

accurate navigation estimates during periods of high vehicle dynamics or jamming. 
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Ohlmeryer et al. (2002) applied a tightly coupled GPS/INS configuration to an extended 

range guided missile system. A positioning accuracy on target of between 1-2 metres 

circular error of probability (CEP) out to 40 nautical miles in a GPS jamming 

environment has been achieved. Some of the benefits of a tightly coupled system are: 

more direct exploitation of the fundamental measurement data, more direct aiding of the 

receiver tracking process by the filter and INS, a higher likelihood of maintaining firm 

satellite tracks, and better resiliency to poor satellite geometry, high vehicle dynamics, 

data dropouts, IMU errors, and jamming. 

 

 

 

 

 

 

Figure 2-13 Tightly Coupled Integration Scheme 
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CHAPTER 3 

ESTIMATION APPROACHES 
 

In this Chapter, two GPS/INS integration approaches are discussed. The state space 

approach for error estimation is reviewed. The conventional Kalman filtering algorithm 

and the adaptive Kalman filtering algorithm, as well as their application to GPS/INS 

integration, are discussed. As an alternative to a Kalman filter, the wave estimation 

approach is introduced and its mathematical model is established. Both the Kalman filter 

and wave estimator will be used to fuse GPS/INS data in the following chapters. 

3.1 Kalman Filter Algorithm 

The Kalman filter algorithm has been widely used to process the data since it has many 

advantages over other estimators (e.g. Greenspan, 1996). Kalman filtering offers 

flexibility such that it can be used in either in a real-time or a post-mission environment. 

It can also accommodate measurement updates from a wide variety of sensors, GPS in 

this case. Details of the Kalman filter derivation will not be given here, however, there 

are numerous references available such as Gelb (1974), Brown (1996) and Grewal et al. 

(2001). 

3.1.1. State Space Model and Kalman Filtering Algorithm 

According to linear system theory, the dynamics of a linear system can be represented by 

a state space model, where a set of first order differential equations express the deviation 

from a reference trajectory (Liu, 1994): 

x = Fx + w       (3-1) 

z = Hx + v       (3-2) 

where   x is an 1n×  state vector 

  F is an n n× system dynamic matrix 

  w is an 1n×  system noise vector 
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  z is an 1m×  observation vector 

  v is an 1m×  measurement noise 

  H is an m n×  design matrix 

  m  is the number of measurement, and  

  n  is the number of the states. 

 

Equation (3-1) is the dynamic equation and equation (3-2) is the observation equation. 

Since the implementation of the estimation process is done on a computer, the discrete 

form is generally more convenient to use. Corresponding to equations (3-1) and (3-2), the 

discrete system equations are derived as follows: 

 1 1,k k k k k+ +x = Φ x + w       (3-3) 

 k k kz = Hx + v        (3-4) 

where  k  denotes epoch kt  

  Φ  is the n n×  state transition matrix 

  kx  is the state vector at a discrete epoch k  

  kz  is the observation vector at a discrete epoch k , and 

  kw and kv are system driving noise and observation noise at epoch k . 

In a Kalman filter, it is assumed that kw and kv  have white noise characteristics with the 

following properties (Gelb 1974): 

 
[ ] [ ]

[ ] [ ] [ ] 0

k k

T T T
i j ij i j ij i i =

E w = 0, E v = 0,

E w w = Qδ , E v v = Rδ , E w v ,
   

1
0ij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 

where   •E( )  is the mathematical expectation.  

For a stationary system, the state transition matrix Φ  is: 

eF∆tΦ =       (3-5) 
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and can be approximated by a Taylor series expansion over a short time interval (Zheng, 

1998) , t∆ . Expanding equation (3-5), and truncating after the first two terms, results in: 

Φ = I + F∆t       (3-6) 

where I is the identity matrix. 

 

Kalman filtering is a two-step recursive process (Salychev, 1998). The first step is 

prediction by the system model, i.e.: 

1 1垐k k k k− −,x (-) = Φ x (+)       (3-7)

 , -1 -1 , -1 -1
T

k k k k k k kP (-) = Φ P (+)Φ + Q     (3-8) 

and the second step is the measurement update of the system model. The elements of the 

update process are as follow: 

Kalman gain matrix: 

  1( ) [ ( ) ]T T
k k k k k k k

−= − − +K P H H P H R     (3-9) 

Error covariance update: 

)(][)( kkkk −−=+ PHKIP      (3-10) 

State update: 

垐 �k k k k kx = x (-) + K (z - Hx (-))      (3-11) 

where   ˆ kx   is the estimated state vector 

  ˆ ( )k k k k −υ = z - H x  is the innovation vector 

  kP   is the n n× covariance matrix of the state vector 

  I  is the identity matrix 

  kR   is the m m×  covariance matrix of the measurement noise 

  kK   is the n m×  Kalman gain matrix, and 

kQ  is the n n×  covariance matrix. 
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kQ  can be derived from the integral of the spectral density matrix of the system noise 

matrix Q, i.e. (Maybeck, 1994).  

ττττ= ∫
∆

d)()()( T
t

0
k ΦQΦQ      (3-12) 

The above equation can be simplified as follows, and for details see Wong (1988). 

k t≈ ∆Q Q        (3-13) 

A flowchart of the Kalman filter is shown in Figure 3-1. 

 

 

 

 

Figure 3-1 Flowchart of a Kalman Filter (Brown, 1994) 

0P   is the initial value of P  matrix 

0x   is the initial value of the state vector, and 

0z  is the initial value of the measurement vector. 

3.1.2. Accuracy of the Kalman Filter 

The estimation accuracy depends on the a priori information of the system and 

measurement models, as well as the noise statistics. The estimation error, defined as the 

difference between the estimates and the true state vector, can be expressed as follows: 

ˆk k kx = x - x       (3-14) 

00 xP

ˆ kx

1( ) [ ( ) ]T T
k k k k k k k
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Substituting the Kalman filtering equations and the system model into equation (3-14) 

gives: 

1 1k k k k k k k k− −x = (I - K H)Φ x - (I - K H)w + K v    (3-15) 

Restoring the above equation in reverse time, the estimation error at any epoch, k, can be 

expressed in terms of the initial errors (Salychev, 1998): 

{ } 0
1

2

1 1
0 1

2

1
0 1

k

k k
i

jk

k i k j k j
j i

jk

k i k j k j
j i

=

−

+ − − − −
= =

−

+ − − −
= =

⎧ ⎫
⎨ ⎬
⎩ ⎭
⎧ ⎫
⎨ ⎬
⎩ ⎭

∏

∑ ∏

∑ ∏

x = (I - K H)Φ x

- (I - K H)Φ (I - K H)w

+ (I - K H)Φ K v

   (3-16) 

The first component of equation (3-16) shows how the initial estimation error attenuates 

with time. It has been proven that 
1

k

k
i=
∏ (I - K H)Φ  tends to zero over time (Leondes, 

1976). The second term shows the influence of input noise, and the last term illustrates 

the process of measurement noise smoothing. A well-designed Kalman filter will 

attenuate the initial state errors, and smooth the effects of system and measurement errors 

through the averaging process. 

A priori information 

A priori information including the initial value of the state 0x , and the initial error 

covariance matrix, 0P , will only influence the transit process of a Kalman filter but not 

the steady state, i.e. theoretically a priori information will not affect the estimation 

optimality of the Kalman filter. However, since the Kalman filter has a sequential 

convergence property, strongly observed states converge first, weakly observed states, 

such as the accelerometer and gyro biases, take a longer time to converge (Salychev, 

1991). During this period, the estimation errors attenuate slowly, and estimation gives 

poor results. Therefore, their initial values should be carefully determined through lab 

calibration tests. At steady state, the Kalman filter provides the estimates with a constant 

accuracy, which cannot be improved. 
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Matrix R and Q 

The measurement noise covariance matrix, R, which describes how well the 

measurement noise is modeled, is one of the important factors related to the estimation 

quality. Imperfect modeling may be caused by the non-modeling and/or mis-modeling of 

the measurement observables, also by ignoring the non-white properties of measurement 

errors. The system noise covariance, Q, which defines the extent to which the prediction 

should be trusted, is another important factor that affects the estimation quality. The role 

of the Q matrix in a Kalman filter is to define the uncertainty after each prediction step 

(Mohamed, 1999). A Q  value that is too large will result in noisy estimates, whereas a Q 

value that is too small will result in a smoother, but biased, estimate. Therefore, a 

reasonable Q matrix value is critical for achieving good estimates. 

Innovation sequence 

The innovation sequence is defined as the difference between the current measurement 

vector and the a priori estimates, as shown in Salychev (1998): 

ˆk k kυ = z - Hx (-)       (3-17) 

Substituting the measurement equation and using the definition in equation (3-14) gives: 

k k kυ = Hx (-) + v       (3-18) 

This shows that the innovation sequence contains information on the a priori estimation 

error, which is corrupted by the measurement noise. The innovation sequence has the 

following properties: (1) kυ is white noise for an optimal Kalman filter. This property can 

be used to check the optimality of a Kalman filter; (2) the covariance matrix of the 

innovation sequence is: 

1 T T
k k k k k
-Y = E[υ υ ] = HP (-)H + R     (3-19) 

where kY  is called the information matrix of innovations (Grewal, 2001), and (3) the 

likelihood function of the innovation vector is: 
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 1exp(- )
2

T
k k k k=(υ ) υ Y υL      (3-20) 

which can be used to check the anomalous sensor data. Alternatively, its equivalent 

statistics expression is: 

2
T
k k

l
χ =

υ Yυ       (3-21) 

where l  is the dimension of kυ . Equation (3-21) is non-negative with a minimum value 

of zero. If the Kalman filter was perfectly designed and all the white noise was Gaussian, 

this would be a 2χ distribution. An upper limit threshold value can be determined to 

detect the anomalous sensor data (Grewal, 2001).  

 

The innovation sequence also plays an important role in the innovation-based adaptive 

estimation (IAE) algorithm. This will be discussed in the next section. It can also be used 

as an indicator of the real estimation errors. In practice, there is usually a gap between the 

theoretical estimation error (expressed by the covariance matrix of the estimation error, 

kP ) and the real one. This is caused by the imperfection of the mathematical description 

of the applied system model.  

Accuracy limit of Kalman filter 

According to Salychev (1998), the steady state value of the estimation error covariance 

matrix is: 

1 1

1

n
n T n i T i

st st
i

+ +

=
∑P = A(ΦA) AP (Φ ) + A (ΦA) Q(Φ )   (3-22) 

where stA = I - K H and st stP , K are the steady state of kP and kK respectively. 

 

It is clear that the first term attenuates over time. The second term will tend to a steady 

value, which depends on the level of the system noise, i.e. the level of the system 

uncertainty restricts the estimation accuracy. 
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3.1.3. Kalman Filter Configuration Implemented 

An open loop loosely coupled GPS/INS integration scheme has been selected for this 

research because a loosely coupled scheme has the advantages of: (1) maximizing the use 

of the off-shelf products; (2) a relatively simple mathematical model; (3) robust 

navigation solutions; and (4) provision of INS predicted positions and velocities during 

GPS outages. Details have been discussed in Section 2.3.2. The system model is 

described in equations (2-30) and (2-31) and Figure 2-11. The measurement equation is: 

k
⎡ ⎤
⎢ ⎥
⎣ ⎦

INS GPS

INS GPS

P - P
z =

V - V
      (3-23) 

and the measurement covariance matrix is: 

2 2 2 2 2 2( )
n e hk h v v vdiag ϕ λσ σ σ σ σ σ=R     (3-24) 

Details will be discussed in Chapters 4 and 5. 

3.2 Adaptive Kalman Filter 

As discussed in Section 3.1, the estimation accuracy of a conventional Kalman filter 

depends on the a priori knowledge of the system model and the noise statistics. If this 

knowledge is not successfully accurate, the estimation accuracy will be degraded. 

Adapting the filter covariance matrices R and/ or Q is one of the remedies to solve the 

above issue. There are two different implementations of the adaptive Kalman filter. One 

is the multiple model adaptive estimation (MMAE) while the other is an 

innovation-based adaptive estimator (IAE) (Mohamed, 1999). 

3.2.1. Multiple Model Adaptive Estimation (MMAE) 

In the MMAE approach, a bank of Kalman filters runs in parallel using different models 

for the statistical filter information matrices, R and/or Q. The structure of each filter and 

the bank of filters are shown in Figures 3-2 and 3-3, respectively (Mohamed, 1999). 
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Figure 3- 2 # i  Kalman filter in a MMAE 

In Figure 3-2, iα  and ( )iP α  are the unknown random variable and its known statistical 

distribution respectively, and in Figure 3-3 l  is the total number of filters. 

 

 

 

 

Figure 3- 3 Structure of MMAE 

At each recursive step, the adaptive filter performs the following: 

(1) According to its own statistic model, each filter will calculate its estimates 

ˆ ( )k ix α . 

(2) Compute the a posteriori probabilities for each hypothesis. 

(3) Form the adaptive estimates of x as a weighted sum of the estimates from each 

individual Kalman filter: 

1

垐 ( )
l

k k i i k
i

x P zα
=
∑x = (α )       (3-25) 

In the above equation i kP(α z )  is the weight of the i th filter when measurements z up to 

epoch k  are available. As measurements evolve with time, the adaptive scheme learns 

which of the filters is the correct one, and its weight will approach unity while others 

( )k ix α ˆ ( )k ix αkz
KF # i ( )i kP zα
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approach zero. The bank of filters accomplishes this by investigating the sums of the 

weighted squared measurement innovation vector or the so-called residuals. The 

estimates of the filter with the smallest sum receives the highest weight and prevail. 

3.2.2.Innovation-Based Adaptive Estimator (IAE) 

The IAE approach (Maybeck, 1994; Salychev, 1998) adapts the kR  and/or kQ  matrices. 

Based on the whiteness of the filter innovation sequence, kR  and kQ  matrices are 

adapted as follows: 

ˆˆ T
k k kR = C HP (-)H       (3-26) 

垐 T
k k k kQ = K C K       (3-27) 

In the above equation, ˆ
kQ and ˆ

kR are the estimated values of Q and R matrices, and ˆ
kC  

is the calculated covariance matrix of the innovation sequence at epoch k, which can be 

calculated as follows: 

1
1 1垐 T

k k k k
k

k k−
−

= +C C υ υ      (3-28) 

The IAE approach adds little computational complexity to the GPS/INS integration 

algorithm. Based on a number of computer runs of different GPS/INS datasets, the time 

increased for the computation of the adaptive block in the IAE approach does not exceed 

5% of the original processing time of the conventional Kalman filter (Mohamed, 1999). 

Compared with the MMAE approach, considerable time saving is achieved, therefore 

IAE approach is more suitable for application to GPS/INS integration. The calculation 

schemes of the adaptive algorithm for an unknown R-only and unknown Q-only are 

shown in Figure 3-3 and Figure 3-4. For a detailed derivation, refer to Salychev (1998) 

and Mohamed (1999). 

3.2.3 Application of IAE to Loosely Coupled GPS/INS 

As discussed in the last section, the IAE approach has its advantages in application to a 

loosely coupled GPS/INS integrated system. An adaptive Q method is used in this 

research. While the measurement noise covariance matrix, R, is kept constant, the system 
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noise covariance matrix, Q, is estimated adaptively. As the system under investigation is  

stationary, the adapted result will provide more accurate knowledge of the system noise, 

hence the estimation accuracy should be improved. These results will be shown in 

Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 4 Flowchart for Adaptive R Matrix Only Method 

kz
kz  

垐k k-1x (-) = Φx

ˆT
k k,k-1 k-1 k,k-1 k-1P (-) = Φ P (+)Φ + Q

ˆk k kυ = z - Hx (-)

1 1垐 k
k k
−

= + T
k k -1 k kC C υ υ

垐 T
k k-1 k K-1Q = K C K

T T -1
k k k k k k kK = P (-)H [H P (-)H + R ]  

垐 �k k k k kx = x (-) + K (z - Hx (-))

k k k kP (+) = [I - K H ]P (-)



  45 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3-5 Flowchart for Adaptive Q Matrix Only Method 

3.3 Wave Estimator 

3.3.1 The Methodology 

In a conventional Kalman filter, the input noise in equation (3-1) is white or coloured and 

is described by expectations and variances. In reality, some noise processes have a 

discernible waveform, which can be described by deterministic means over a short time. 

Typical examples are shown in Figure 3-6. The wave estimation technique is based on 

this principle and the wave process can be expressed as follows (Salychev, 1998):  
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)t(fc.....)t(fc)t(fc)t(w nn2211 +++=    (3-29) 

where 

 ( )if t  are known base functions, and 

 ( )ic t  are unknown coefficients which vary from one instant to the next. 

For example, the disturbances shown in equation (3-29) can be given as: 1( )w t c=  and 

1 2( )w t c c t= + , respectively. 

 

   

 

 

 

 

 

 

 

Figure 3-6 System Noise Waveform Examples 

The coefficients appear random with respect to time and value, and they change in a 

piecewise manner. In order to represent )(tw  in state space, equation (3-29) can be 

rewritten in differential equation form with Dirac functions as input: 

1

1
( ) ( ) ( ) ( )

i i

ii i

d w t d w tr r w t t
dt dt

δ
−

+ + ⋅⋅⋅⋅ + =    (3-30) 

Equation (3-30) now can be written in state variable form with (Liu, 1992): 

)t(wx1 =  

W(t) 

t

W(t) 

t
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or in matrix notation 

x = A x + δ       (3-31) 

where )t()t(),t( i21 δ⋅⋅⋅⋅⋅⋅δδ  are Dirac impulse functions with unknown intensity. 

Equation (3-31) can be expressed in the following discrete form: 

1 1k k k− −
* * * 0*x = Φ x + δ        (3-32) 

where  1k−
0*δ  is the analogue of a series of Dirac functions of unknown density 

  i.e. 
0*

0
lim
T T

δδ
→

= , and 

  k
*x  are disturbance states. 

Physically, 0
1k−

*δ is a pulse sequence with unknown value. 

Equation (3-30), which describes the disturbance acted on the linear dynamic system, can 

be added to the original systems shown in equation (3-1) to represent a linear system as: 

1 *
1* *

1, 1

k k
k

k kk k

−
−

−−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

11 12
*
22

Φ Φx x
= +δ

0 Φx x
    (3-33) 

The values of *
1kδ − are assumed to change at an equal time interval NT, which is called a 

wave cycle; where N is an integer and T is the sampling time. Equation (3-31) is different 

from equation (3-1) in that though random in nature, the input pulse sequence is 

deterministic within one wave cycle and can be estimated. Equation (3-31) and the 

measurement equation (3-2) form the mathematical model for the estimation problem, 

which is similar to the Kalman filtering algorithm and can be solved by a set of recursive 

formulas. 
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Assume that the initial value of the state vector is 0 0=x . This is not a stringent restriction 

since the unknown initial values of the state vectors may be taken into account by a 

proper selection of the vector 0δ . In order to estimate the state vector in the first time 

interval of N time steps, the initial value of the vector δ  must be determined. Assuming 

that H is constant, for the first cycle, substituting equation (3-31) N times into equation 

(3-2) the following can be achieved:  

 
......

N N N N N N

1 1 1 1,0 0 0 1

2 2 2 2,0 0 2,1 0 2

,0 0 ,1 0

z = Hx + v = HΦ x + Hδ + v
z = Hx + v = HΦ x + HΦ δ + v

z = Hx + v = HΦ x + HΦ δ + v

   (3-34) 

By introducing an auxiliary vector s, which satisfies the following recursive equation: 

1 , 1k k k k+ −s = Φ s       (3-35) 

with 1 0s = δ  k=1,2,…N-1, and 0x = 0 , the following measurement equation is formed: 

k k kz = H s + v       (3-36) 

Equations (3-33) and (3-34) form a conventional Kalman filtering mathematical model 

for the estimation of auxiliary vector s: 

1 1 1 1 1垐 �k k k k k k k k k+ + + + +, ,s = Φ s + K (z - HΦ s )    (3-37) 

with  1ˆ ..... 1k N −s = 0, = 1, 2, , and  

1 1 1

1 1 1 1

1 1 1

T
k k k k k

T T
k k k k

k k k

+ + +

+ + + +

+ + +

,k ,

-1

P (-) = Φ P (+)Φ

K = P (-)H [HP (-)H + R ]
P = (I - K H)P (-)

     

where k k k
TP = E[s s ]    is the n n× variance matrix of s, and 

 k k k
TR = E[v v ]   is the m m×  variance matrix of measurement noise. 



  49 

 

At the end of the wave cycle, the estimation of Nx  is simply: 

ˆˆ N Nx = s        (3-38) 

In the second wave cycle (with N time steps) from t= (N+1)T to t= 2NT, a new unknown 

value of 1δ  appears at the instant k=N, which will affect the value of ˆ N+1x . The 

observation equation in this cycle can be expressed as follows: 

......

N N N N N N N

N N N N N N N N N

N N N N N N N N N

+1 +1 +1 +1, 1 +1

+2 +2 +2 +2, +2, +1 1 +2

2 2 2 2 , 2 , +1 1 2

z = Hx + v = HΦ x + Hδ + v
z = Hx + v = HΦ x + HΦ δ + v

z = Hx + v = HΦ x + HΦ δ + v

 (3-39) 

Similar to the method used in the first wave cycle, the auxiliary vector ks  is introduced as 

shown in equation (3-33): 

1k k k k+ , -1s = Φ s  

with N+1 1s = δ , k=N+1, N+2,…2N-1. Rearranging the observation equation, the following 

measurement equation is obtained: 

......

N N N N N N N

N N N N N N N

N N N N N N N

* *
+1 +1 +1, +1 +1

* *
+2 +2 +2, +2 +2

* *
2 2 2 , 2 2

z = z - HΦ x = Hs + v

z = z - HΦ x = Hs + v

z = z - HΦ x = Hs + v

   (3-40) 

where 

ˆN i N i N i N N N+ + +
*

,v = v + HΦ (x - x )     (3-41) 

The Kalman filter now has the initial condition N+1s = 0.  The measurement noise 

covariance matrix R is: 

T T T
N i N i N i N i N i N N N i N+ + + + +

* * 0
, + ,R = E[v v ] = R + HΦ P Φ H   (3-42) 
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where 
0 T
N i N i N i+ + +R = E[v v ]       (3-43) 

1 1 1
T

N N N+ + +P = E[s s ]       (3-44) 

At the end of this cycle is the following: 

ˆ垐N N N N N2 2 , 2x = Φ x + s      (3-45) 

When it is necessary to restore the estimates between cycle point N, 2N,…., the following 

formulas can be used: 

ˆ垐

ˆ垐

ˆ垐

N N N N N

N N N N N

N N N N N

+1 +1, +1

+2 +2, +2

+3 +3, +3

x = Φ x + s
x = Φ x + s
x = Φ x + s

     (3-46) 

where 

垐

垐 �

......
垐 �

N N N N

N N N N N N N

N N N N N N N

2 -1 2 -1,2 2

2 -2 2 -2,2 -1 2 -1 2 -1,2 2

+1 +1, +2 +2 +1,2 2

s = Φ s
s = Φ s = Φ s

s = Φ s = Φ s

    (3-47) 

The main advantage of wave estimation is that despite estimating within a wave cycle by 

a set of Kalman filter equations, the auxiliary vector s is estimated as described by 

equation (3-33) with zero input noise. It is well known that the estimated error covariance 

matrix is determined by the level of the input noise. When there is no input noise, the 

estimated error covariance matrix tends to zero. The following sub-section will give a 

detailed analysis of the accuracy of a wave estimator. 

3.3.2 Accuracy Analysis 

Assume that the system being considered here is time independent, i.e. k k, -1Φ = Φ . In 

addition, define the error vector as follows: 
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ˆk k k−x = x x       (3-46) 

At the end of an arbitrary wave cycle, k 

1 1

1
1

k N k N k N k N k N

N

k N i k k N k N
i

+ + − + − + +

+ + − + +
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∏

*

*

x = (I - K H)Φx - K v

= (I - K H)Φ x - K v
  (3-47) 

The first term of the equation represents the contribution of the initial estimate error at 

the beginning of each wave cycle, and the second term is the effect of the measurement 

noise. The norm of the first term tends to zero as N increases, i.e. the estimation error 

tends to zero at the end of each wave cycle. As mentioned previously, instead of 

describing the system noise by a statistical model, the wave estimator uses a pseudo-

random model to describe the system noise, and the estimation result is good when the 

model adequately fits the real disturbance. For the effect of measurement noise, it will 

remain at the same level as that in the case of a conventional Kalman filter. 

3.3.2 Application of a Wave Estimator to GPS/INS Integration 

The major error sources in an inertial navigation system are the inertial sensor errors. 

According to the analysis in Chapter 2, gyro drifts and accelerometer biases are modeled 

as white-noise processes. From classical INS theory, the gyro drift can be observed 

through the accumulation of information about the angular velocity, but the 

accelerometer biases are unobservable (Salychev, 1998). It will not make a significant 

difference if they are not included in the system model. For the filed data set used in this 

research, the convergence analysis for the Kalman filter shows that all the state vectors 

converge within 120 seconds except for accelerometer biases (Zhang, 2001). In order to 

simplify the problem, a sub-optimal model is selected where the accelerometer biases are 

eliminated which will not make a lot of difference over a short time span. The gyro drifts 

are modeled as straight lines within each cycle, i.e.: 

0 1

0 1

E

N

c c t
d d t

δω
δω

= +
= +

      (3-48) 
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Rewriting equation (3-48) in state space form gives: 

1 2 1

2 2

3 4 3

4 4

E

N

x x
x
x x
x

δω δ
δ
δω δ
δ

= = +
=
= = +
=

      (3-49) 

Adding equation (3-49) into system equations, with the state transition matrix modified 

by the elimination of the accelerometer biases, a system model suitable for the wave 

algorithm is obtained.  

3.4 Summary 

This Chapter reviewed basic estimation approaches, i.e. conventional Kalman filtering, 

innovation-based adaptive Kalman filtering, as well as the wave estimation approach. 

Their advantages and disadvantages were discussed and the possibilities to apply these 

estimation methods to a loosely coupled GPS/INS integrated navigation system were 

analyzed. According to the above discussions, a brief summary is given as follow: 

 

1. Kalman filtering offers flexibility such that it has been widely used to process the 

GPS/INS data in the last decade, and it can also been used in either a real-time or 

a post-mission environment. However, its estimation accuracy depends on the a 

priori information of the system and measurement models, as well as noise 

statistics. Lack of this information will degrade the estimation accuracy. 

 

2. Adapting the filter covariance matrices R and/or Q is one of the remedies to 

achieving a better knowledge of the a priori information. IAE method adapts the 

kR  and/or kQ  matrices based on the whiteness of the filter innovation sequence. 

Compared with the MMAE method, it adds little computational complexity to the 

GPS/INS integration algorithm. An adaptive Q-only approach will be used in the 

following Chapters in order to improve the estimation accuracy of the navigation 

Kalman filter. 
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3. Wave estimation is a relatively new estimation method. Instead of using 

expectation and variance to model the white or coloured noise in a Kalman filter, 

a wave estimator describes the system noise by a deterministic means over a short 

time since some of the noise processes have discernible waveforms. Inertial 

sensor errors have this property. Therefore, the wave estimation method is 

suitable for low frequency, slow changing noise signals such as sensor errors in a 

GPS/INS integration system. It provides better estimation accuracy for weakly 

observed state variables. 

 

4. It is very important to reasonably choose the wave cycle, which is the time within 

which the system noise can be described by a deterministic model. The estimation 

results are good if this pseudo-random model adequately fits the real disturbances. 

 

5. Once the mathematical model for the wave estimation has been established, a 

software package was developed. It contains the following models: (1) Inertial 

mechanical equation; (2) Conventional Kalman filter; (3) Innovation-based 

adaptive Kalman filter; and (4) Wave estimation. The input files include IMU raw 

data as well as GPS position and velocity. A simplified diagram of the data 

processing flow for this research is shown in Figure 3-7. Green blocks refer to 

existing hardware / software whereas blue blocks are the software modules 

developed in this research. 

 

6.  GPS position and velocity calculation is provided by another software package: 

C3NAVG2. Details about C3NAVG2  will be discussed in the following chapters. 

The navigation filter block includes three sub-modules: a conventional Kalman 

filter; an innovation-based adaptive Kalman filter and a wave estimator. 

According to the users’ choice, this system can realize loosely coupled GPS/INS 

integration via a conventional Kalman filter, a IAE adaptive Q-only filter or a 

wave estimator. These results with be shown and discussed in the following 

chapters. 
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Figure 3-7 Diagram of The GPS/INS Integration System Data Flow 
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CHAPTER 4 

GPS/INS SIMULATION ANALYSIS 

As discussed in Chapter 3, a loosely coupled integration scheme has been developed to 

integrate a medium accuracy IMU with DGPS to achieve metre-level positioning 

accuracies. Mathematical models for both a Kalman filter and a wave estimator have 

been developed. In order to evaluate the design and implementation of these estimators, a 

simulated data set generated by a CastNav 4000 GPS/INS simulator was used to assess 

both the Kalman filter and wave estimator. The results from both estimators are analyzed. 

As discussed in Chapter 3, one of the advantages of the wave estimation approach is that 

it shows improved performance in comparison to a Kalman filter. The improvement is 

generally in situations where the input disturbances are of low frequency, slow varying in 

nature, and where there are relatively weak observables in the state vector. This chapter 

will discuss the accuracy improvement to these weak observables. 

4.1 Equipment Setup and Data Files 

The simulation system used to produce the GPS/INS data is a CastNav 4000 GPS/INS 

simulator from CAST Navigation Inc. The CastNav 4000 is a hardware-in-the-loop 

simulator that generates high fidelity, GPS RF signals commensurate with simulated 

inertial measurements as inputs to a loosely coupled and/or cascaded GPS/INS system to 

get real-time navigation solutions. This allows realistic dynamic stimulation in the 

laboratory environment. It creates a GPS RF and inertial environment for developing, 

testing, and integrating loosely coupled GPS/INS systems. The system offers dynamic 

manoeuvring capability with full control of the GPS constellation and host vehicle 

parameters. It also provides a data logging block to record the raw data from the GPS 

simulator and the simulated inertial sensor for post mission processing. A block diagram 

of the CastNav 4000 is shown in Figure 4-1 (Cast Navigation Inc., 2003). As post 

mission processing was selected in this research, only the green line connected 

components were used to generate the GPS/INS raw data.  
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Figure 4- 1 Block Diagram of CastNav 4000 GPS/INS Simulator 

4.1.1. Data File Descriptions 

The raw GPS data produced for this test contains 1 Hz L1 C/A-code pseudorange and 

Doppler. The simulated IMU raw data are 100 Hz specific force and angular velocity 

measurements, with coning and sculling compensated. The IMU and GPS data 

specifications are shown in Tables 4-1 and 4-2 (Cast Inc., 2001). 

Table 4-1 IMU Specifications of Simulation Data Set 

Accelerometer Parameters Gyroscope Parameters 

Scale factor accuracy (ppm) 300 Scale factor accuracy (ppm) 150 

Scale factor linearity (ppm) 500 Scale factor linearity (ppm) 150 

Bias (milli-g) 1 Bias (deg/hr) 1 

Non-orthogonality (ppm) 100 Non-orthogonality (ppm) 100 

Velocity random walk (m/s/ hr ) 0.0198 Angular random walk (deg / hr ) 0.125 
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Table 4-2 GPS Simulation Data Assumptions 

Troposphere Model Collins Phase III 

Ionosphere Model Extended Klobuchar 

Pseudorange Noise 1 m 

Doppler Noise 1 cm/s 

Multi Path Errors Not Applied 

Data Rate 1 Hz 

 

In Table 4-2, only the troposphere and the ionosphere errors were applied by the 

GPS/INS simulator. The pseudorange and Doppler noises were added by the author. The 

Collins Phase III model uses built-in zenith delay and scale height parameters. In this 

simulated data set, total zenith delay is 2.59 m, and the troposphere scale height is 7282 

m. Extended Klobuchar model modified conventional Klobuchar model to make it 

suitable to high altitude users, including receivers above the ionosphere as well as space 

based users. As a land vehicle situation was simulated in this test run, the so-called 

extended Klobuchar model is equivalent to the conventional Klobuchar model in this 

case.  

 

This simulated data set contains the following data files: 

1. Reference trajectory: a text file containing the GPS time tag, three dimensional 

true position, velocity and acceleration, as well as attitude information. 

2. GPS raw data: binary data file contains GPS time tag, L1/L2 C/A-code 

pseudorange and the Doppler. Satellite ephemeris data is also contained in this 

file. 

3. IMU raw data: binary data file contains IMU time tag, specific force and angular 

velocity measurements. 

4. Reference file of IMU output. It includes specific force, angular velocity 

measurements and attitude reference values. 
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From the IMU specifications showed in Table 4-1, it is clear that the IMU is a medium 

accuracy unit, so it satisfies the requirements of this research. 

4.1.2. Data Pre-Processing Module  

GPS raw data from the GPS/INS simulator is a binary file, which contains both the 

observation and the ephemeris information. This data file has to be re-formatted before it 

can be used as the input of C3NAVG2TM ,which works in DGPS mode. Through it, the 

DGPS positions and velocities are obtained. This task is done by the data pre-processing 

module as shown in Figure 3-7. A detailed description of this module is shown in Figure 

4-2. The output of the “Reformatted File” block contains two binary files: GPS raw 

measurement file, i.e. code pseudorange and Doppler on L1 and ephemeris files. These 

two binary files are then fed into the “C3NAVG2TM block”. C3NAVG2TM is a C program 

that processes GPS and/or GLONASS pseudorange data in both static and kinematic 

modes (Petovello et al., 1999) This program also allows for carrier smoothing of the 

pseudorange, differential positioning, and height fixed, etc. The height fixed constrain 

can be applied in two different ways. One is “always”, and the other is when GDOP 

greater than a pre-set thresh-hold. Single differential between receivers is used in this 

research. The DGPS results from C3NAVG2TM are assessed through a comparison with 

the reference trajectory; details will be given in Section 4.3. 

 

The final output of the data pre-processing model, i.e. the output of the C3NAVG2TM , is a 

binary file, which contains GPS positions, velocities and time tags. Together with the 

output file from the INS mechanization block, which contains the INS derived positions 

and velocities, the GPS position and velocity file will be sent to the navigation filter 

block to realize GPS/INS integration. The navigation filter block has three parallel 

sub-modules: a conventional Kalman filtering module, an IAE adaptive filtering module 

and a wave estimator module. Switching to any one of these sub-modules can realize a 

specific navigation filtering approach selected by the users. In this chapter, a 

conventional Kalman filter and a wave estimator will be realized and the filtering 

accuracy will be discussed. In the next chapter, an IAE adaptive Kalman filter and a wave 
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estimator will be used to assess the field test data, and the accuracy of the INS prediction 

will also be analyzed. 

 

 

 

 

 

Figure 4-2 Diagram of Data Pre-Formatting Module 

4.2 Test Descriptions 

As discussed in Section 4.1, GPS observables and ephemeris can be extracted from the 

GPS raw data file. This binary file contains the dynamics information of both the host 

vehicle and the GPS satellites at each epoch. The transformed files are then fed into 

C3NAVG2TM to get position and velocity. This simulation test was carried out under land 

vehicle assumptions. Different dynamics were simulated including acceleration, 

deceleration and turning. A reference file, which contains true positions, velocities and 

accelerations was produced at the same time. This reference trajectory is used to assess 

both the C3NAVG2TM DGPS positions, velocities as well as the navigation filtering 

results. Figure 4-3 shows the 3-D reference trajectory. It is an 8-turn rectangular-shaped 

trajectory. The reference station coordinates are as follows (WGS-84): 
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Figure 4-4 shows the reference positions in latitude and longitude. Figure 4-5 shows the 

reference velocities. It can be seen that the maximum speed is about 30 m/s, i.e. 108 

km/hr. Figure 4-6 shows the reference acceleration. It has a range of +/- 2 m/s2 that 

adequately describes the movement of a land vehicle under typical operation. 

 

 

Figure 4- 3 Reference Trajectory of Simulated Data Set 

The initial rover position is: 
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The initial separation between the reference and the rover is 368.785 m vertically. The 

reference and the rover coordinates coincide horizontally at the initial point. The 

maximum baseline length is about 22 km during this test run. The simulation test run 

took 6 hours. Data pre-processing and results assessment will be discussed in the next 

section. 
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Figure 4- 4 Horizontal Reference Positions versus Time of the Simulation Data Set 

 

Figure 4- 5 Horizontal Reference Velocities versus Time of the Simulation Data Set 
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Figure 4- 6 Horizontal Reference Accelerations versus Time of the Simulation Data Set 

4.3. Data Pre-Processing 

4.3.1 Assessment of DGPS Position and Velocity 

One of the objectives of this research is to achieve metre-level positioning results by 

using position and velocity derived from GPS pseudorange measurements integrating 

with a medium accuracy IMU. As the CastNav 4000 simulator cannot provide carrier 

phase measurements, carrier phase smoothing can not be realized; so only raw 

pseudorange and Doppler are used. Therefore, the GPS raw measurements, i.e. 

pseudorange and Doppler on L1, are pre-processed by C3NAVG2TM. An elevation mask 

of 15° was used. Ionospheric and tropospheric corrections were not applied because the 

maximum baseline length is not greater than 22 km and for such a short baseline DGPS 

can effectively remove most of the atmospheric affects. The DGPS results from 

C3NAVG2TM were assessed through a comparison with the reference trajectory. The 

statistics of the position and velocity differences between C3NAVG2TM and the reference 

trajectory are shown in Table 4-3. Both the RMS values of the horizontal position 
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differences are less than 0.24 m, and the horizontal RMS value of the velocity difference 

is no greater than 0.38 cm/s. The maximum horizontal position error is 2.5 m and the 

maximum velocity error is 3.0 cm/s. This means that the C3NAVG2TM positions and 

velocities have consistent accuracy, and can be used as updates to the medium accuracy 

IMU as going to be discussed in the following sections. The horizontal position error 

variation versus time is shown in Figure 4-7. Figure 4-8 shows horizontal velocity error 

versus time. Figure 4-9 shows the satellite geometry and available satellite numbers 

during this simulated test run. The maximum satellites available is 9, and the minimum is 

5, with an average of 7. The figure also shows that the DOPs are connected with the 

satellite numbers. For example, at GPS time 33300 seconds, an increased satellites 

number from 6 to 8 caused DOP values decreased almost 50 % at the same time. This 

consequently affects the position and velocity accuracy. Examining Figures 4-7, 4-8 and 

4-9, it is clear that both the position and velocity errors decrease at GPS time 33300 

seconds. These discussions show that, during this simulated test run, the DGPS position 

and velocity solutions from the C3NAVG2TM have consistent accuracy so it can be used 

as position and velocity updates in the GPS/INS system. Comparing Table 4-3 with Table 

5-3, which is a statistics of the position and velocity assessment of C3NAVG2TM  results 

while using a field data, the accuracy of the simulation data results are marginally better 

than that of the field data. The reasons are: 1) there are no multipath errors in simulation 

data. 2) The satellite availability and geometry in the simulated data is better than that of 

the field test. 

Table 4- 3 Statistics of Position and Velocity Difference of C3NAVG2TM VS Reference 

Trajectory Using Simulated Data 

Component Mean RMS 

Latitude (m)   0.00    0.24 
Longitude (m)  -0.01    0.21 
Height (m)   0.00    0.21 
North Velocity (cm/s)   0.00    0.25 
East Velocity (cm/s)   0.00    0.38 
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Figure 4- 7 Position Differences between C3NAVG2TM and the Reference Trajectory on 

the Simulated Data 

 

Figure 4- 8 Velocity Differences between C3NAVG2TM and The Reference Trajectory on 

the Simulated Data 
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Figure 4- 9 Satellite Geometry and Availability during the Simulation Test 

4.4 GPS/INS Integrated Results Using Kalman Filter 

The navigation filter block shown in Figure 3-7 can be realized in different ways. In this 

chapter, a Kalman filter and a wave estimator will be implemented respectively to 

analyze the simulation data. In the next chapter, an IAE adaptive Kalman filter and a 

wave estimator will be realized to analysis the performance of the designed GPS/INS 

integration scheme by using the field test data. The following sub-sections will discuss 

the results using a Kalman filter. 

4.4.1. Kalman Filtering Results Analysis 

According to the mathematical model discussed in Chapter 3, a conventional Kalman 

Filter is implemented, and the accuracy of the Kalman filtering will be assessed. Table 

4-4 shows the statistics of the horizontal position and velocity errors. Both the position 

and velocity errors have a zero means. The maximum position error has a value of 2.0 m, 

and the maximum velocity error has a value of 1.4 cm/s. Comparing Table 4-4 with 4-3, 
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it is clear that the accuracy of the filtered position and the velocity agreed with the 

accuracy of the DGPS position and velocity during this 6-hour simulation test. This is 

expected and shows that the GPS updates have effectively limited the IMU navigation 

solution errors. According to the sensor errors given in Table 4-1, the accumulated 

position error of INS-only will reach a maximum value of 400 km in 6 hours. Another 

advantage of GPS/INS integration is that it can provide attitude information, which is 

usually not available for the off-shelf GPS receivers. INS-only attitude information will 

be degraded due to sensor errors, initial misalignment and system noise. Using Kalman 

filtering with some attitude correction method suitable for medium to low accuracy IMU 

unit (Salychev, 2000), the misalignment angles can be limited to within a reasonable 

range, which is shown in Table 4-5. Table 4-5 shows that the horizontal misalignment 

angle is about 1 arc-minute. Figure 4-12 gives a plot of the horizontal misalignment 

angles. 

Table 4- 4 Statistics of Position and Velocity Error Using a Kalman Filter 

 

 

 

 

The maximum horizontal misalignment angle is not greater than 2 arc-minutes, and the 

maximum azimuth misalignment is about 2 degrees. The horizontal accuracy is much 

better than the azimuth accuracy. Since the horizontal accuracy is basically determined 

by the accuracy of the accelerometers. According to Table 4-1, the bias of the 

accelerometer is only about 1 mGal. This guaranteed the horizontal accuracy, while the 

azimuth accuracy is constrained by the initial azimuth alignment results. As the gyro drift 

can not be completely compensated, the initial azimuth misalignment angle may be as 

large as a few degrees (Salychev, 2003). This is the main reason of a larger azimuth 

misalignment angle. 

Component Mean RMS 
North Position (m)  0.00  0.40 
East Position (m)  0.00  0.46  
North Velocity (cm/s)  0.00  1.16 
East Velocity (cm/s)  0.00 2.10 
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Figure 4- 10 Position Errors Using a Kalman Filter for the Simulated Data 

 

Figure 4- 11 Horizontal Velocity Estimation Errors of Kalman Filter for the Simulated 

Data 
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Table 4- 5 Misalignment Angle of Kalman Filter Using Simulation Data 

 Mean  RMS   
Roll (arcmin.) -0.02 0.62 
Pitch (arcmin.)  0.03 0.61 
Heading (deg)  0.00  1   

 

 

Figure 4- 12 Horizontal Misalignment Angle for the Simulated Data 

4.4 GPS/INS Integrated Results Using a Wave Estimator 

4.4.1.State vector Convergence Analysis 

As discussed in Chapter 3, the wave estimation approach is suitable for the situation 

where the input disturbances are of low frequency, slow varying in nature, and have 

relatively weak observables in the state vector. The observability of a component of the 

state vector can be examined by its convergence property. It has been mentioned in 

Chapter 2 that the Kalman filter has a sequential behaviour of convergence for the 

different state vector components. The strongly observed state vector component 

converges first. For example, the component of the covariance matrix, or the RMS of the 
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estimation errors of each component of the state vector, can be examined to determine the 

observability of the state vector. Figure 4-13 shows the convergence process of the 

diagonal elements of the P matrix. In order to show the values of different range in a 

same frame, the diagonal elements of the P matrix have been normalized. This plot shows 

the transition process of the estimation errors. The position and the velocity errors 

converge first. Both of them have a transit time less than 5 seconds. The misalignment 

angles follow, it converges in 15 seconds, while the gyro drift will take more than 40 

seconds to converge. Therefore, the gyro drift and the misalignment angles are 

considered as the weak observables.  

 
Figure 4- 13 Transit Process of the Covariance Matrix for the Simulated Data 

According to the discussion in Section 3.3, the wave estimator is suitable for the 

estimation of weak observables, and the state component which has a close relationship 

with the weakly observed state vectors will benefit from it. In this case, the accuracy of 

the misalignment angle estimates are expected to have an improvement since it has a 

close relation with the gyro drift. This will be discussed in the next sub-section. 

4.4.2 Benefits of the Estimation for Weakly Observed State Vectors 

The gyro drift is described by a wave function. It increased the estimation accuracy of the 

weakly observed states, in this case, the misalignment angles. This can be explained by 
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the SINS error propagation process. Figure 4-14 show a simplified SINS error diagram, 

which ignored the Coriolis acceleration and the coupling terms between horizontal loops. 

It is suitable for short-term applications. In this figure, R is the average radius of the 

Earth; s is the Laplace operator; g is the gravity; A∆  is the accelerometer bias and drω  is 

the gyro drift. The misalignment angle can be derived from the diagram: 

dre
n n

drn
e e

V
R

V
R

δε ω

δε ω

= +

= − +
      (4-1) 

Equation (4-1) shows that the gyro drift has a direct affect on the misalignment angles. 

As discussed in Section 2.3, the velocity error equations have a close relation with the 

misalignment angle. See Equation (2-22). It can be expected that, if the gyro drift (weak 

observable) can be adequately estimated using a wave model, the misalignment angle 

estimation will be benefit greatly; consequently, the velocity estimation will be benefit to 

some extent as well. Figure 4-15 shows a simplified flowchart for wave stimulator 

calculation according to the derivations in Section 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14 Simplified SINS Error Propagation Diagram (from Yi, 1987)
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Figure 4- 15 Calculation Flowchart of Wave Estimation 

Together with the INS derived positions and velocities, GPS positions and velocities are 

sent to the wave estimator. State vectors are directly estimated at the end of each wave 

cycle. After the first wave cycle, state vectors at every epoch can be recovered through a 

backward restore technique. This means a wave estimator can not be used as a real-time 

filter. It has a time delay equal to the length of a wave cycle.  

4.4.3 Estimation Results Using Wave Estimator 

Figures 4-16 and 4-17 give the estimated position and velocity errors by using the wave 

estimator. Through trial and error, the wave cycle was selected as 300 seconds. As a 

result, there are no estimates in the first cycle as mentioned in Section 3.3. Therefore, 

what is shown here is the estimation error starting at the second wave cycle. Comparing 

Figure 4-16 with 4-10, the position estimate of the Kalman filter and the wave estimator 

have a similar accuracy. However, the results from the Kalman filter are noisier than that 

of the wave estimator, since the wave estimator uses the pseudo-determinate model to 

describe the system noise. Figure 4-17 shows the velocity estimation errors of the wave 

estimator. The maximum horizontal velocity error is no greater than 1 cm/s. Table 4-5 

shows the statistics of the position and velocity errors with the wave cycle equal to 300 

seconds. The jumps at the beginning of some wave cycles in Figure 4-17 are caused by 

an improperly selected initial values of the vector s for that wave cycle, and the 
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assumption that the wave coefficient of the input noise changes at a fixed interval, (300 

seconds here), which might not be the best choice. 

 
Figure 4-16 Position Errors Using a Wave Estimator for the Simulation Data 

 

Figure 4- 17 Velocity Errors Using a Wave Estimator for the Simulation Data 
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Table 4- 6 Statistics of Position and Velocity Estimation Errors 

 

 

 

Figure 4-18 shows the horizontal misalignment angle, and Table 4-5 gives the statistics. 

Comparing Figures 4-18 with 4-14, it is clear that the estimation accuracy of the 

horizontal misalignment angle increased greatly. According to the discussion in Chapter 

3, a wave estimator is suitable to the weakly observed states. In this research the gyro 

drift has been described by the wave function, therefore, the state vector, which has a 

stronger relation with it, will benefit by the wave approach. The estimation of the 

misalignment angles improved significantly. On the other hand, the position error, which 

does not have a strong relation with the gyro drift, has no direct benefit. 

 

 

Figure 4- 18 Horizontal Misalignment Angle Using Simulated Data 

Component Mean RMS 
North Position (m)  0.00  0.26 
East Position (m)  0.00  0.25  
North Velocity (cm/s)  0.00  0.40 
East Velocity (cm/s)  0.00 0.52 



  74 

 

Table 4- 7 Statistics of Misalignment Angles 

Component Means  RMS  
Roll (arcmin.)   0.00 0.09 
Pitch (arcmin.)   0.00 0.16 
Heading (deg)   0.00 0.60  

 

4.5 Summary 

The objective of this research was to develop a metre-level accuracy integrated 

navigation scheme using a medium accuracy IMU. An Inertial navigation system in 

principle permits autonomous operation. However, due to its error propagation 

characteristics, most applications requiring high terminal accuracy, utilize external aiding 

to reduce the INS errors, GPS, in this case. As discussed in the previous chapters, a 

feedback aiding technique has been used to develop this loosely coupled GPS/INS 

integration system. The residuals formed by differencing the INS position velocity and 

GPS position velocity, are sent to the Kalman filter. The Kalman filter contains an 

internal model of the INS error dynamics and processes the measurements to estimate the 

value of INS errors. As a feedback scheme, which offers greater robustness, is selected, 

this system has relatively high accuracy and stability. A simulated data set has been used 

in this chapter in order to assess the design and implementation of the Kalman filter and 

the wave estimator. As discussed in Chapter 3, a wave estimator has the advantages of 

providing higher estimation accuracy in a situation where the input disturbances are of 

low frequency, slowly varying in nature, and rely on relatively weak observables. The 

results showed that the state vector, which has a stronger relation with those waveforms 

described weak observables, would achieve better estimation accuracy. According to the 

test results, a brief summary is given as follow: 

 

1. Pseudorange DGPS position and velocity updates limited the time dependent INS 

position and velocity errors through Kalman filtering. 

 



  75 

 

2. Using simulated GPS/INS data, the Kalman filter’s maximum position error is no 

greater than 2.5 m in horizontal. The RMS values for position errors are less than 

0.46 m. The RMS values for velocity errors are no greater than 2.1 cm/s. 

 

3. Using simulated GPS/INS data, the wave estimator’s maximum position error is 

no greater than 1.25 m in the horizontal. The RMS values for position errors are 

less than 0.26 m. The RMS value for velocity errors is no greater than 0.5 cm/s. 

Compared to the results there is no obvious improvement. The reason for this is 

that position error estimation does not have a tight coupling with the weakly 

observed states, the gyro drift, in this case. For velocity error estimation, a wave 

estimator can achieve better results (see Chapter 5 also).  

 

4. Using a Kalman filter, the estimation accuracy for the horizontal misalignment 

angle had an RMS value of 0.62 arc-minutes. The Azimuth misalignment angle, it 

had an RMS value of 1 degree. 

 

5. Using a wave estimator, the estimation accuracy for the horizontal misalignment 

angle had an RMS value of 0.16 arc-minute, and for the Azimuth misalignment 

angle, the RMS value was 0.6 degrees. The horizontal misalignment angle 

estimation improved about four times. 

 

6. Comparing the results from 4 and 5 above, it is clear that attitude estimation can 

achieve higher accuracy when using a wave estimator. 

 

7. A fixed wave cycle has been used in processing this data set. In practice, the 

slowly changed sensor’s bias can be described more accurately by using a 

changing cycle time. Therefore, estimation cycle-time adaptive choice will be a 

future research subject. 
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CHAPTER 5 

RESULTS AND ANALYSIS USING FIELD DATA 

As discussed in the Chapters 2 and 3, the mathematical models for both of the Kalman 

filter and the wave estimator have been established for a loosely coupled integration 

scheme. Their advantages and disadvantages are also evaluated theoretically. In Chapter 

4, a data set from CastNav 4000 GPS/INS simulator was analysed. A real data set from a 

field test is necessary to evaluate the integration filter. In order to assess the performance 

of the GPS/INS integration scheme and its application to practice, a land vehicle field test 

was carried out in Calgary, Alberta. In this chapter, field test results are analysed. As 

there was no attitude reference while collecting this data set, attitude accuracy can not be 

assessed in this chapter. Instead, an IAE adaptive filter will be applied to the field data. 

Also, the INS prediction accuracy for the Kalman filter will be discussed.  

5.1 Equipment and Setup  

The base station used in this test is a NovAtel OEM-3 Millennium GPS card. The vehicle 

(rover) was equipped with a NovAtel Black Diamond System (BDS). BDS is a tightly 

integrated GPS/INS system (NovAtel Inc., 2001) consisting of: 

1. BDS controller: The controller is a high performance, dual frequency NovAtel 

OEM4 GPS card with a PC card slot for raw GPS and IMU data logging. 

2. BDS inertial sensor: BDS uses a Honeywell HG1700 IMU, which is a strapdown 

system using a triad of accelerometers and a triad of ring laser gyros (RLG). 

Table 5-1 shows the Honeywell HG1700 specifications. 

The inertial sensors are mounted orthogonally inside a compact (15 cm high×  15 cm 

diameter) cylindrical case to measure specific force and angular increments in the body 

frame. Internally the velocity and rotation angle increments are sampled at a 600Hz rate. 

Coning and sculling compensations are applied to the accumulated velocity and angular 

increments. The hardware is shown in Figure 5-1. 
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Figure 5-1 Honeywell HG1700 IMU and Novatel Black Diamond System(BDS) 

(http://www.novatel.com/images/products/bds_sm.jpg) 

Table 5-1 Honeywell 1700 IMU Specifications (Honeywell Inc) 

Specification Value 
Gyro Input Rate ± 1,000 deg / sec. 
Gyro Rate Scale Factor 100 ppm 
Gyro Rate Bias 1.0 Deg 
Angular Random Walk 0.125 deg/ .hr  to 0.3 deg/ .hr  
Accelerometer Range ± 50 g 
Accelerometer Linearity  500 ppm 
Accelerometer Scale Factor 300 ppm 
Accelerometer Bias 1.0 mg (980 mGal) 

 

The test run was carried out in Calgary, Alberta, August 16, 1999. The dataset was 

collected by the graduate student in Geomatics Engineering. The system was mounted on 

the roof of the test vehicle and the antenna was hard-mounted on the case containing the 

IMU. The vehicle was driven on a L-shaped traverse as shown in Figure 5-2. The total 

duration of the test was about 75 minutes. Raw measurements from the OEM-4 receiver 

were logged at a 1 Hz rate, and the raw angular rates and specific force data from 
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HG1700 were recorded at 100 Hz. The maximum baseline length is 11.7 km. The 

reference station coordinate is: 

51 09 '47" 114 00 '05" 1073.09h mϕ λ= = − =  

 

 

Figure 5-2 Field Test Route 

5.2 Data Pre-Processing 

5.2.1 Generation of Reference Trajectory 

In order to evaluate the integrated results, a reference trajectory was generated to 

determine if the integration filter was properly designed and implemented. The GPS data 

was first processed using FLYKINTM, which is a kinematic software package that 

processes double differenced (DD) carrier phase, pseudorange and Doppler 

measurements (Cannon et al., 1999). A Kalman filter is utilized whereby the filter states 

consist of position and velocity corrections as well as an ambiguity state for each of the 

double differenced carrier phase measurement. Parallel to this, an integer ambiguity 

resolution scheme is implemented whereby a search is conducted for the correct integer 

ambiguity. FLYKINTM has been used to assess numerous receiver technologies and GPS 
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missions (Cannon et al., 1997). The satellite elevation cut-off angle used was 15°.  Only 

L1 measurements were used in this test. In order to prove that the carrier phase reference 

solution was in fact accurate, all the ambiguity fixed DD carrier phase residuals were 

calculated, and their statistics are given in Table 5-2. RMS values for the DD carrier 

phase residuals were generally less than 0.8 cm, and the residuals did not exceed ? .6  

cm. This shows that the accuracy is consistently high throughout the test and no gross 

errors occurred. Fixed solutions were achieved at every epoch during the test run. It can 

then be reasonably assumed that the reference trajectory is accurate to within a few 

centimetres. 

Table 5- 2 GPS DD Carrier Phase Residual Statistics (cm) 

 

PRN Mean RMS Max Min 

3 0.3 0.6 1.9 -1.3 
6 0.2 0.6 2.0 -1.5 

10 0.1 0.5 1.3 -1.3 
13 0.2 0.3 0.7 -0.4 
17 0.2 0.4 1.1 -1.0 
21 -0.3 0.7 1.5 -2.1 
23 0.3 0.8 2.6 -1.9 
26 0.0 0.5 2.3 -1.8 

5.2.2 Assessment of DGPS Position and Velocity 

One of the objectives of this research is to achieve metre-level positioning results by 

using position and velocity derived from carrier phase smoothed GPS pseudorange 

measurements integrated with a medium accuracy IMU. So the GPS raw measurements, 

i.e. pseudorange and carrier phase on L1, were pre-processed by C3NAVG2TM. The 

DGPS results from C3NAVG2TM were assessed through a comparison with the 

FLYKINTM results. The statistics of the position and velocity differences between 

C3NAVG2TM and the FLYKINTM are shown in Table 5-2. Both the RMS values of the 

horizontal and vertical position differences are less than 0.25 m, and the horizontal RMS 

values of the velocity differences are not greater than 2.7 cm/s. The position differences 

versus time is shown in Figure 5-3. Figure 5-4 shows how the velocity differences varies 
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with time. Figure 5-5 shows the satellite geometry and available satellite numbers during 

the test run. The maximum number of satellites is 9, and the minimum is 4, with an 

average of 7. These figures show that the DOPs are correlated with satellite availability 

as expected. For example, at GPS time 14620 seconds, the number of satellite decreased 

from 9 to 5. The related DOPs values have a jumped increase. This change consequently 

degraded the position accuracy. These results show that the C3NAVG2TM positions and 

velocities have a consistent accuracy during this field test, and can be used as updates to 

the medium accuracy IMU as discussed in the following sections. 

Table 5- 3 Statistics of Position and Velocity Differences of C3NAVG2TM versus 
FLYKINTM for the Field Data 

Component Mean RMS 
Latitude (m) -0.14         0.24 
Longitude (m)       0.15         0.33 
Height (m)       0.15         0.24 
North Velocity (cm/s)       0.00         2.70 
East Velocity (cm/s)       0.00         1.20 

 

 

 

 

 

 

 

Figure 5- 3 Field Test Data Position Accuracy Assessment 
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Figure 5- 4 Field Test Data Velocity Accuracy Assessment 

 

Figure 5-5 Satellite Geometry and Availability for Field Test Data 
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5.2.3 Simulation of GPS Data Outages 

One of the advantages of GPS/INS integration is that the INS predicted positions and 

velocities are available during GPS outages. The accuracy of the INS predicted positions 

depends on the following factors: (1) the initial accuracy at the start of the GPS outage, 

(2) the inertial sensors’ properties and (3) the dynamics of the vehicle before and during 

the GPS outage. Although there were no GPS outages during this test run, different GPS 

gaps were simulated to check the INS prediction accuracy. The reference trajectory 

during this simulated outage can be used as a reference to evaluate the prediction results. 

Both full GPS outages and partial outages were simulated. 

 

A full GPS outage is defined here to be the complete absence of all the GPS observable 

data, during the time that the GPS satellites are completely blocked. A partial outage is 

defined to occur when some of the satellite signals are blocked due to canopy or dense 

urban canyons, for example. The number of observables may be as low as 2 or 3. During 

these time intervals, the GPS receiver is either unable to complete the positioning 

calculation or the positioning accuracy is degraded due to poor satellite geometry. There 

were 10 GPS full data outages simulated for this test run. The data gaps were selected to 

encompass different vehicle dynamics, from constant velocity to relatively large along-

track and lateral acceleration. In this way INS prediction accuracy under different 

situations can be evaluated. Figure 5-6 shows the 3D field test run trajectory and where 

the outages were artificially added. Prediction accuracy during the data outages is 

assessed by the reference solution. Table 5-4 shows the properties of these 10 simulated 

outages. The duration of the simulated data gaps varied from 5 to 10 seconds. No 

manoeuvre means the vehicle travels with constant speed during GPS outages. 

Manoeuvre means there are accelerations during or just before the outage occurs. Partial 

GPS outage were simulated by artificially raising the satellite cut-off elevation. 30° and 

40° cut-off elevations were selected respectively. In each case the available satellite 

number was not greater than 4. Figure 5-7 shows the HDOPs and the satellite availability 

at 30° and 40° elevation cut-offs respectively. For the 30° elevation mask case, there 

were four satellites available most of the time. However, in the 40° elevation mask case, 
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only 3 satellites were available in general. A decreased number of satellites will cause 

high DOP values.  It is clear that the DOP values are different between the 30° and 40° 

cut-off angle cases. As discussed in Section 2.1.1, the GPS positioning accuracy is 

measured by the combined non-modeled measurement error and the effect of the satellite 

geometry. The non-modeled measurement errors will certainly be different from one 

satellite to another because of the various view angles. A more simplified way of 

examining the GPS positioning accuracy can be achieved through the introduction of the 

user equivalent range error (UERE). Multiplying the UERE by the appropriate DOP 

value produces the precision of GPS positioning at a 1σ  level. Based on above-

mentioned situations, INS prediction results will be given in the next section and their 

accuracy will be analysed. 

Table 5-4 Simulated GPS Data Gap Properties 

Position Error (m) 
Outage # Start Time (s) 

North East

Dynamics 
During Outage 

1 144670 -0.01 -0.03 No manoeuvre 
2 145280  0.09 -0.13 Manoeuvre 
3 145760  0.02 -0.02 Manoeuvre 
4 145920  0.17  0.66 Manoeuvre 
5 146362  0.16 -0.31 Manoeuvre 
6 146986 -0.01  0.16 No manoeuvre 
7 147048 -0.21 -0.43 Manoeuvre 
8 147580  0.12 -0.03 No manoeuvre 
9 147920  0.41 -0.21 No manoeuvre 

10 148230  0.32 -0.21 Manoeuvre 
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Figure 5- 6 3D Trajectory and GPS Outages for Field Data 

 

Figure 5- 7 HDOPs and Satellite Number during Partial GPS Outages for Field Data 
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5.3 GPS versus GPS/INS Integrated Results Using a Kalman Filter 

5.3.1 Filtering Results Analysis 

The Kalman filter approach for GPS/INS integration is first assessed. Figures 5-8 and 5-9 

show the integrated GPS/INS position and velocity errors respectively, which have been 

determined through a comparison with the reference trajectory. The DGPS positions and 

velocities are from C3NAVG2TM. Table 5-5 shows that the RMS value of the horizontal 

position errors do not exceed 0.5 m and the RMS of the velocity error is limited to within 

3.5 cm/s. In the above results, the variance matrix of input the noise is Q = Q0, where Q0 

is the average input noise at steady state. Q0 has been determined by modifying the 

conventional Kalman filter to an IAE adaptive Q-only filter. As discussed in Section 

3.2.2, wherein the measurement noise matrix is kept constant and the input noise is 

estimated adaptively. In Figure 5-8, there are some jumps in the plot of north position 

error. Comparing to Figure 5-5, the change of satellite geometry causes jumps of the 

horizontal DOPs value, which coincide with the jumps of the horizontal position error at 

GPS time 146200 and 148050 seconds respectively. 

Table 5- 5 GPS/INS Estimation Error Statistics for Field Data 

Component Mean RMS 
Latitude (m) 0.05 0.50 
Longitude (m) 0.24 0.38 
North Velocity (cm/s) 0.00 3.50 
East Velocity (cm/s) 0.00 3.10 

 

The average of the estimated input noise at steady state is calculated and used as Q0 since 

the system is assumed to be stationary. Table 564 shows the position and velocity 

accuracies with different input noise values derived from the average steady state values. 

The statistics show that with higher Q (i.e. Q>Q0) or lower Q (i.e. Q<Q0) input noise 

values, the estimates become noisier and have increased RMS values. This shows that the 

estimation accuracy is restricted by the level of input uncertainties in the system model. 

The accuracy cannot be increased within the scope of this type of modeling method.  
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Figure 5-8 Position Errors of Kalman Filtering Result for Field Test Data 

 

Figure 5-9 Velocity Errors of Kalman Filtering Result for Field Test Data 
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The results show that when using a conventional Kalman filter, the RMS values for the 

horizontal positions are no greater than 0.58 metres, and RMS values for horizontal 

velocities are no less than 3.1 cm/s. For the horizontal loops, the updated position has a 

DRMS of 0.88 metres. These results satisfy the metre-level positioning requirement. 

Table 5- 6 Statistics of GPS/INS Errors with Different Input Noise Values 

Value of Q0 Component Mean RMS 
Latitude (m) 0.31 1.12 
North Velocity (cm/s) 0.00 4.30 
Longitude (m) 0.21 0.96 

0.01Q0 

East Velocity (cm/s) 0.00 3.90 
Latitude (m) 0.16 0.50 
North Velocity (cm/s) 0.00 4.60 
Longitude (m) 0.09 0.71 

0.1Q0 

East Velocity (cm/s) 0.00 3.60 
Latitude (m) 0.15 0.40 
North Velocity (cm/s) 0.00 3.00 
Longitude (m) 0.11 0.58 

Q0 

East Velocity (cm/s) 0.00 3.10 
Latitude (m) -0.43 1.14 
North Velocity (cm/s) 0.00 9.00 
Longitude (m) -0.16 0.80 

10Q0 

East Velocity (cm/s) 0.00 8.20 
Latitude (m) -0.46 1.17 
North Velocity (cm/s) 0.00 10.00 
Longitude (m) -0.01 0.92 

20Q0 

East Velocity (cm/s) 0.00 8.90 

5.3.2 Prediction Accuracy Analysis 

Full Outage Situation 

As discussed in the subsection 5.2.3, GPS data gaps were simulated. 5 seconds and 10 

seconds outage time were applied to the 10 data gaps respectively. Figure 5-10 shows 8 

INS prediction position errors out of the 10 data gaps. Outage #1 shows results for a 5 
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seconds GPS outage with a low constant speed and with no manoeuvring. The data gap 

started at GPS time 144670 second with initial error of - 0.01 m. The maximum predicted 

horizontal error reached 0.25 metres at GPS time 144675 second when the outage ended. 

Outage #3 shows another 5 seconds GPS outage time, but with vehicle manoeuvrings. It 

started at GPS time 145760, the initial error is about 0.09 m. The maximum acceleration 

during this period reached 1.12 m/s2. The maximum horizontal error is over 3 metres 

when this five second outage ended. Outage # 9 shows that during a 10 second GPS 

outage, the maximum position error is 1.25 m when the vehicle is moving at a constant 

speed. This data gap started at GPS time 146920 seconds with an initial error of 0.2m. 

The position error reached 0.5 m after 5 seconds INS prediction. Outage #10 is another 

10 seconds data gap start at GPS time 148230 with an initial error about –0.2 m. The 

vehicle was manoeuvring with a maximum acceleration of 2.15 m/s2 during this data gap. 

The maximum error is as high as 11.75 m when the data gap ended at GPS time 148240 

seconds. 

 

Figure 5- 10 INS Prediction Error for Field Test Data 

Table 5-7 gives the statistics of prediction position errors. The results show that the 

prediction accuracy is dependent on the vehicle dynamics greatly during the GPS gaps. 

When the vehicle velocity changes during the prediction interval; the prediction accuracy 

is about 3.15 m over 5 seconds; while during the same GPS gap and the vehicle moving 

at a constant velocity, the maximum error is only 0.25 m. These errors are closely related 
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to the IMU (inertial sensor) properties. As discussed in Section 2.2.3, the inertial derived 

position errors can be divided into two categories, i.e. the stationary part and the 

non-stationary part. The analytical solution of Equation (2-24) can be expressed as 

Equation (5-1). 

Table 5- 7 Statistics of Position Error during GPS Outage 

Outage Time(s) Position Errors (m) 
 Component Mean RMS Max 

No manoeuvre -0.13 0.70 1.64 
5 

Manoeuvre   1.33 1.64 0.81 
No manoeuvre   0.55 0.81 6.45 

10 Manoeuvre  -5.66 6.45 1.64 
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(5- 1) (from Salychev, 1998) 

where   δφ and δλ  are the north and east position errors (m) 

  
R
g

=υ   is the Shuler frequency (rad/s), and 

  ∆N and ∆E  are distance increments in north and east direction (m). 

In Equation (5-1), the non-stationary part will increase with respect to the distance 

increment due to the azimuth misalignment angle and the accelerometer scale factor 

errors. This part may become very large as the distance increases. While the vehicle is 

moving with a constant speed, only the Schuler part is in effect. The position error is an 

un-damped oscillation with a 84.4 minutes cycle (Refer to Figures 2-8 and 2-9). The 

magnitude of the error is related to the gyro drift rate and the initial values of the 

Schuler Part Non-stationary Part 
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horizontal misalignment angles. During the vehicle dynamics, the non-stationary errors 

impact the inertial solution. This part increases with respect to the distance increment due 

to the azimuth misalignment angle and the accelerometer scale factor error. The 

non-stationary part may become very large as the distance increases. This explains why 

the prediction error increases significantly, when the vehicle is manoeuvring. 

Partial Outage Situations 

In practice, a very common situation is a vehicle traveling in urban canyons. In these 

cases, satellite availability decreases significantly and may continue for a long time. In 

this sub-section different elevation masks are applied to C3NAVG2TM to simulate a partial 

outage situation and the results are analyzed. 

 

Figure 5-11 shows the results of the integrated position errors using pseudeorange at 

different elevation masks. The figure shows that at a 30° elevation angle, the position 

error has a maximum value of about 1 metre with a zero mean, but at a 40° elevation 

angle the maximum east error is up to 4 metres. Checking the observation numbers, there 

were 4508 position and velocity solutions at a 15° elevation mask. This number drops to 

4443 at a 30° elevation mask. When the elevation mask increased to 40°, the position and 

velocity solution drops to 3094. The main reason for this is that the higher the elevation 

mask, the smaller the number of available satellites, which degrades the accuracy of GPS. 

For the GPS/INS integration software, when there is a lack of measurements (i.e. 

positions and velocities), there are a larger errors. Compared with the reference trajectory 

values (the results from FLYKINTM using 15° elevation mask), the statistics are shown in 

Table 5-8. This table shows that the results are degraded significantly compared to the 

reference value. The reason for this is a lower number of satellites causing a degradation 

of the availability for the GPS/INS integration software. Therefore, the integration 

accuracy degrades significantly. 
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Figure 5-11 Horizontal Position Errors at High Elevation Masks 

There are two ways to improve the accuracy of a GPS/INS integrated system in case of a 

high elevation masking. One is using tightly coupled integration approach, which is less 

sensitive to a decrease in the satellite availability. The other is using a combined 

GPS/Galileo constellation (in the future), which can maintain satellite availability in 

extreme high elevation masking situations (O’Keefe, 2001). 

Table 5- 8 Position Degradation Due to High Elevation Mask 

Elevation Angle (Deg.) 30 35 40 
Mean  11.60  11.90  10.38 
RMS  15.46  11.46  14.42 

 

East Error (m) 
MAX  35.92  35.92  35.92 
Mean -14.25 -14.10 -13.58 
RMS  12.46  14.51  13.97 

 

North Error (m) 
MAX  26.86  31.86  31.86 

 

5.4 GPS versus GPS/INS Integrated Results Using a Wave Estimator 

As discussed in Chapter 3, the accuracy of a Kalman filter is limited by the system input 

noise level. The analysis in Section 5.3 proved this conclusion. When the conventional 

Kalman filter was modified to an IAE adaptive filter, the system noise was estimated 

adaptively while the measurement noise stayed unchanged. From Table 5-6, it can be 

seen that non- properly selected Q values did affect the Kalman filtering results. 

However, the accuracy improvement by using the IAE filter is still limited by the system 
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noise. As there are no attitude reference for the field test data, this section will only 

discuss the position and velocity estimation accuracies by using a wave estimator and 

compare them with the estimation results from the IAE adaptive Kalman filter. 

 

As discussed in Section 3.2.3, the gyro drift can be described as a slow varying 

disturbance. A pseudo-random model can be used to describe its property. Its state space 

model can be expressed by equation (3-49). In one wave cycle, 0c  and 1c  are constant, 

their value changes only when a new wave cycle started. A test and trial method was used 

to find a suitable value of the wave cycle. The estimation errors for different wave cycles 

are shown in Table 5-9. Among these results, a wave cycle equal to 300 seconds gave 

relatively better results. Figure 5-12 and 5-13 show the estimated velocity and position 

errors respectively by using the wave estimator (WE) with the wave cycle equal to 300 

seconds. As a result, there are no estimates in the first cycle as mentioned in Section 3.3. 

Therefore, what is shown in these figures is the estimation error starting at the second 

wave cycle. Table 5-7 shows the statistics of position and velocity errors with the wave 

cycle equal to 300 seconds. The jumps at the beginning of some wave cycles in Figure 

5-12 are caused by improperly selected initial values of the vector s for that wave cycle, 

and the assumption that the wave coefficient of the input noise changes at a fixed 

interval. In this case 300 seconds here, might not be optimal.  

 

From Figure 5-12 it can also be seen that the north channel has more jumps than the east 

channel, though its effect is not big enough to show noticeable differences in the mean 

and RMS values in Table 5-10. One reason for this is that the inertial sensor noise along 

the north and east axes have different wave cycles. The same cycle time (300s) is used to 

describe both of them, which may cause errors, since it may not be able to be optimal for 

both axes. The second reason is that there is not sufficient static data to do initial drift 

testing and scale factor calibration, so these errors will affect the estimates. 

 

Table 5-10 shows that 300-seconds interval is a reasonable choice for a wave cycle for 

this data set. Comparing Tables 5-4 (highlighted lines) and 5-10, it can be seen that the 

position estimation results have no improvement, and in fact the Kalman filter shows 
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marginally better results. For velocity, the wave estimation errors improved by about 

50%. For example, the RMS value of the north velocity error is 3.0 cm/s using a Kalman 

filter, whereas it improved to 1.3 cm/s when using the wave estimator. It should be noted 

that these improvements are nearing the accuracy of the velocity reference. 

 

It can be concluded that wave estimation shows an improved performance in comparison 

with a Kalman filter in the situation where the input disturbances are of low frequency, 

slow varying in nature, and for relatively weak observables in the state vector. The results 

show that by using the wave estimator, velocity estimation but not the position 

estimation, gives better results in comparison with the Kalman filter for this data set. This 

is because the gyro drift was modeled by a deterministic model in a wave cycle. The state 

vector, which has a stronger relation with it, will benefit by the wave approach. On the 

other hand, the position error, which does not have a strong relation with the gyro drift, 

has no direct benefit. 

 

 

Figure 5-12 Velocity Estimation Error of the Wave Estimator for Field Data 
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Figure 5- 13 Position Estimation Error of The Wave Estimator for Field Data 

Table 5- 9 Velocity Errors for Different Wave Cycles 

 

 

 

 

 

 

 

North Velocity (cm/s) East Velocity (cm/s) 
Cycle (s) 

Mean RMS Mean RMS 
200 0.79 2.46 -0.23 2.02 
250 0.88 2.59 -0.58 1.82 
300 0.01 0.25 -0.01 0.26 
350 1.06 2.93 -0.2.2 2.20 
400 0.89 3.85 0.86 12.6 
500 1.60 4.78 0.46 3.15 
600 0.66 4.98 0.58 6.62 
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Table 5-10 Error statistics of wave estimation 

Component Mean RMS 
Latitude (m) 0.34  0.56 
Longitude (m) -0.29 0.68 
North Velocity (cm/s) 0.10 1.30 
East Velocity (cm/s) -0.10 1.30 

5.5 Summary 

The objective of this research was to develop a metre-level integrated navigation scheme 

using a medium accuracy IMU. An inertial navigation system, in principle, permits 

autonomous operation. However, due to its error propagation characteristics, most 

applications requiring high terminal accuracy utilize external aiding to reduce the INS 

error, GPS, in this case. As discussed in the previous chapters, a feedback aiding 

technique has been used to develop this loosely coupled GPS/INS integration system. 

The residuals formed by differencing the INS position and velocity from the GPS 

position and velocity are sent to the Kalman filter. The Kalman filter contains an internal 

model of the INS error dynamics, and processes the measurements to estimate the values 

of INS errors. A feedback scheme, which offers greater robustness, is selected. The error 

estimates are then used to correct the navigation data within the INS itself. An adaptive 

Q-only IAE adaptive filter is used to average the input noise since the system under 

investigation is  stationary. The wave estimation result showed improved performance in 

comparison with a Kalman filter where the input disturbances are of low frequency, slow 

varying in nature, and have relatively weak observables in the state vector. As discussed 

in Section 4.4, the convergence process of the state vector component is different from 

one to the others; the transit time depends on the observability. Data analysis results show 

that the position and velocity errors converge first, the misalignment angles follow, and 

the gyro drift component needs at least 40 seconds to converge. Therefore, the gyro drift 

is considered as a weakly observed state, and is modelled as pseudo-random model in the 

wave estimator. In this chapter, both the Kalman filter and wave estimator are used to 



  96 

 

process the field test data. The integration of GPS and INS has been proven very 

successful. According to the test results, a brief summary is given as follow: 

 

1. Pseudorange DGPS position and velocity updates limited the time dependent INS 

position and velocity errors through Kalman filtering. 

 

2. Using a Kalman filter, the maximum position error is less than 1 metre in the 

horizontal. The RMS values for position are less than 0.12 m. The RMS values for 

velocity are less than 0.17 m/s. 

 

3. For a full GPS outage situation with no vehicle manoeuvring, the INS prediction 

accuracy is from 0.25m to 1.26m during 5 and 10 s simulated GPS data gaps, 

respectively. 

 

4. For a full GPS outage situation with vehicle manoeuvrings, and the maximum 

acceleration is up to 2.11 m/s2, the INS prediction accuracy varies from 3.15 m to 12 

m during 5 and 10 s GPS data gaps. 

 

5. For partial GPS outage, 35° and 40° elevation cut-off angles were simulated. The 

results show that as the elevation mask increases, the available satellites decreased. 

This degraded the availability, reliability, and integrity of GPS greatly with significant 

position errors appearing. 

 

6. The remedies for partial GPS outages are to use tightly integrated schemes or 

GPS/Galileo constellation combinations. 

 

7. INS prediction accuracy is highly related with the vehicle dynamics and the properties 

of inertial sensors. Non-stationary errors may be large if the system is not well 

calibrated before it is switched to the navigation mode.  
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8. An IAE adaptive filter is used to average the input noise since a stationary system is 

under investigation in this case. The results show that the level of input uncertainties in 

the system model restricts the estimation accuracy. The accuracy cannot be increased 

within the scope of this type of modeling method.  

 

9. The wave estimation results show that for the velocity estimation, better results are 

obtained in comparison with the Kalman filter. The reason for that is the gyro drift, 

which in this case is modeled by a wave function. It is deterministic over a wave cycle. 

The state vector has a stronger relation with it, and will benefit by the wave approach. 

On the other hand, the position error, which does not have a strong relation with the 

gyro drift, has no direct benefit. As there was no attitude reference for this field data 

set, the estimation results for the misalignment angles were not be able to be analysed. 

 

10. The wave cycle should be selected very carefully. It was shown that an improperly 

selected wave cycle will result in larger errors. An improperly chosen initial value for 

the vector s at the beginning of each wave cycle will also cause errors of the estimates 

in the current wave cycle. 

 

11.In practice, the slowly changed sensors’ biases can be described more accurately by 

using an adaptive varying cycle time. Therefore, estimation cycle-time adaptive choice 

will be a future research subject.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The contribution of this research was in the development and testing of a GPS/INS 

integration scheme for metre-level positioning using a medium accuracy IMU. An INS 

mechanization model was developed through the research and the navigation solutions 

obtained from the existing GPS software (C3NAVG2TM and FLYKINTM). These were 

combined in a loosely coupled GPS/INS approach, and both a Kalman filter and a wave 

estimator were designed and implemented. A simulated data set and a filed test data set 

were used to assess the algorithm and mathematical models. The advantage of the wave 

estimation approach is that it shows improved performance in comparison with Kalman 

filter in a situation where the input disturbances are of low frequency, slow varying in 

nature, and a relatively weak observables in the state vector. The improvement is obvious 

in the estimation of misalignment angles. As there was no attitude reference for the field 

test data, these results are only shown in simulated data. One of the advantages of 

GPS/INS integration is that the INS predicted positions and velocities are available 

during GPS outages. Full and partial GPS outages were simulated respectively and the 

INS prediction results were analyzed in details for the field data. The following 

conclusions address the findings in both the application of a Kalman filter and the wave 

estimator. 

6.1 Conclusions 

The following conclusions regarding GPS/INS integration using both a simulation data 

set from a CastNav 4000 GPS/INS simulator and a field data set from a medium accuracy 

IMU for metre-level positioning made from this research are: 

 

1. The achievable accuracy of GPS/INS integration using a medium accuracy IMU is at 

the metre-level using both simulated data and land vehicle field test data when 

consistent GPS updates are available. The GPS updates were at a 1 Hz data rate in this 

case. 
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2. The Honeywell HG1700, a medium accuracy IMU, used in this research can 

successfully bridge the GPS gaps. The prediction accuracy is a function of the initial 

errors at the beginning of the outage and the vehicle dynamics. 

 

3. The partial GPS outage, which often happens in urban canyons and mountainous 

areas, degrades the integration accuracy. The remedies for partial GPS outages are to 

use tightly coupled integration schemes or to use GPS/Galileo constellation 

combinations which will be available in the future. 

 

4. Another advantage of the GPS/INS integration system is that it can provide attitude 

information. This is usually impossible for off-shelf GPS receivers. For a medium to 

low accuracy IMU, INS-only derived attitude has a low accuracy. With GPS 

corrections, the horizontal misalignment angles have a RMS value of 1.2 arc-minutes 

when a Kalman filter was applied. 

 

5. The Kalman filter has a sequential convergence property. Data processing results show 

that the position and velocity estimation errors converge first, misalignment angles 

follow, and the gyro drift took about 40 seconds to converge. Gyro drift and 

misalignment angles are considered as weakly observed state vectors. 

 

6.  Wave estimation is suitable for low frequency, slow varying disturbances. Gyro drift 

was modeled by a wave function in this research. A wave estimator was applied to 

both the simulation and the field data. The results from the simulation data shows that 

wave estimation improved the estimation accuracy to the weakly observed states. The 

estimation accuracy of the misalignment angle improved greatly, because it has a close 

relationship to the gyro drift. Improved estimation accuracy for the velocity error 

estimates is achieved as well since the misalignment angle affects the velocity 

equation directly. Since there was no attitude reference for the field data, attitude 

estimation can not be evaluated. However, the velocity estimate yields improved 

results.  
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7. A fixed wave cycle has been used in processing this data set. In practice, the slowly 

changed sensors’ bias can be described more accurately by using a changing cycle 

time. Therefore, estimation cycle-time adaptive choice will be a future research 

subject. 

 

8.  For a Kalman filter, IAE was used to average input noise since a stationary system is 

under investigation in this case. The result shows that the level of input uncertainties in 

the system model restricts the estimation accuracy. The accuracy cannot be increased 

within the scope of this type of modeling method.  

6.2 Recommendations 

Based on the results of this research, the following recommendations regarding 

improvement of the performance of GPS/INS integration for metre-level positioning 

using a medium accuracy IMU are drawn: 

 

1. Embedding the GPS solution software into the GPS/INS integration software will be 

beneficial from the user’s point of view. 

 

2. In order to improve the IMU prediction accuracy during GPS outages, an initial 

calibration and gyro drift testing algorithm should be introduced and applied before 

the system starts to work. In the case of long partial GPS outages, it is necessary to 

introduce ZUPT to the system in order to improve the INS-only solutions. 

 

3. As discussed in Section 5.4, the selection of wave cycle is important to the estimation 

results of a wave estimator. Adaptive wave cycles should be introduced since each 

wave cycle may not exactly be the same length. 

 

4. A further improvement of wave estimation and its application to real time GPS/INS 

integration system should be investigated.  
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5. The tightly coupled GPS/INS integration scheme should be considered in order to 

improve the integration accuracy during partial GPS outages (Petovello, 2003). 

 

6. Consider the GPS/Galileo constellation combination to increase available satellite 

number and improve the satellite geometry when the vehicle travels in a city canyon.  
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