
 
 

  

 
 
 

UCGE Reports 
Number 20168 

 

 
 
 

Department of Geomatics Engineering 
 
 
 
 

Implementation and Analysis of GPS Ambiguity 
Resolution Strategies in Single and Multiple Reference 

Station Scenarios 
(URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) 

 
by 

 
 

Junjie Liu 
 
 

January 2003 
 
 
 
 
 
 

 



THE UNIVERSITY OF CALGARY 

 

Implementation and Analysis of GPS Ambiguity Resolution Strategies in Single and 

Multiple Reference Station Scenarios 

 

by 

 

Junjie Liu 

 

 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

 

DEPARTMENT OF GEOMATICS ENGINEERING 

 

CALGARY, ALBERTA 

January 20, 2003 

 

© Junjie Liu 2002 

 

 



 

 

 

 

iii 

ABSTRACT 

 

The Global Positioning System (GPS) double-difference (DD) operations can effectively 

reduce or eliminate many errors innate to raw undifferenced carrier-phase observables, 

such as the atmospheric effects and satellite orbital error. Although the DD carrier phase 

is a much more precise observable than the pseudorange, it is ambiguous because of the 

constant, but unknown, initial integer number of carrier cycles. In order to fully exploit 

the carrier phase observable to achieve centimetre-level accuracy, this ambiguity needs to 

be resolved. For most real-time kinematic (RTK) applications, the main obstacle to 

successful ambiguity resolution is the DD ionospheric error. This issue is more notable 

during the time of a solar maximum when the DD ionospheric error may increase by a 

factor of three. Ambiguity resolution under the influence of the ionosphere has been 

under extensive investigation for the past decade, and numerous resolution strategies 

have been proposed.  

 

In this research, several representative ambiguity-resolution strategies are compared. As a 

result, eight different ambiguity resolution strategies are implemented and investigated 

with an emphasis on the impact of the ionospheric error on positioning accuracy and 

ambiguity resolution. These eight strategies include the L1-only ambiguity resolution, 

widelane (WL) ambiguity resolution, combined L1 and L2 ambiguity resolution, 

ambiguity resolution using of ionosphere-free (IF) combination, and stochastic 

ionosphere modelling ambiguity resolution. All eight strategies are tested on three 

baselines ranging from 13 km to 43 km. In general, strategies that take the ionospheric 
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error into account in their estimation models give much better position and ambiguity 

results than those that do not, and the stochastic ionosphere modelling ambiguity 

resolution strategies give best performance in both the ambiguity and position domains. 

The impact of the different parameterization schemes is also investigated and it is found 

that parameterizing the L1 and L2 observables with respect to L1 and WL ambiguities 

versus L1 and L2 ambiguities does not bring significant gain in the ambiguity domain, 

while it does in the position domain. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Objectives 

 

The Global Positioning System (GPS) Standard Positioning Service (SPS) provides 

positioning accuracies of approximately 13 m in the horizontal and 22 m in the vertical at 

a 95% probability level (U.S. Department of Defense, 2001). However, many civil 

applications such as dredging, harbour guidance, and offshore oil exploration require 

accuracies in the metre to sub-metre levels (Lachapelle, 2000). This cannot be met by the 

SPS of GPS. 

 

To meet the aforementioned accuracy specifications, differential GPS (DGPS) is used in 

which relative positioning between two GPS receivers using GPS pseudorange 

observables is performed. The differencing operation in DGPS effectively removes many 

errors from the raw GPS pseudorange observables since most of these errors are highly 

correlated between receivers. As a result, the accuracy and precision of the SPS can be 

dramatically increased. Figure 1.1 shows the usual configuration of a DGPS system. The 

reference GPS station and the rovers (e.g. ship, surveyor) all track the same satellites. The 

error can be computed for the reference station observable to each satellite if the 

coordinates of the reference station are known. The rover observables will have 
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approximately the same level of error as those at the reference station because the error 

sources between the reference station and the rover station are strongly correlated. The 

reference station then transmits the computed errors (corrections) to the rover to 

compensate for the errors in the rover’s observations. This results in a better position 

solution. DGPS greatly enhances the accuracy that a user can obtain with GPS. 

 

 

Figure 1.1 Typical DGPS Configuration 

 

More civil communities are no longer satisfied with the performance of pseudorange- 

based DGPS and are requiring higher accuracies at the centimetre level. For example, 

dam deformation monitoring and earthquake prediction both require the positioning 

accuracy to be at the centimetre or even millimetre level (Behr and Hudnut, 1998), and 3-

Dimenional navigation in navigation channels requires better than 10-centimetre 

positioning accuracy (Lachapelle, 2000).   The pseudorange-based DGPS cannot meet 

these stringent accuracy requirements due to the accuracy limitations of the pseudorange 

observables (Langley, 1996).  
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In order to achieve centimetre or millimetre level accuracies, the double-differenced 

(DD) carrier phase observable must be used, which means that the DD integer carrier 

phase ambiguities need to be resolved. Unlike pseudorange-based DGPS, where the 

dominant accuracy-limiting factor is code multipath and receiver noise, the dominant 

accuracy-limiting factor for carrier phase based positioning is the differential ionospheric 

error, the differential tropospheric error, the differential satellite orbital error and 

multipath. 

  

The tropospheric delay is caused by the Earth’s troposphere and can generally be well 

modelled using most tropospheric delay models (Spilker, 1994).  The residual 

tropospheric error for baselines ranging up to 30 to 40 km may be negligible and the 

differential satellite orbital error also tends to cancel for short to medium baselines. The 

real difficulty lies in the differential ionospheric error because, unlike the troposphere, the 

ionosphere cannot be easily modelled (Klobuchar, 1996).  

 

The differential ionospheric error is dependant on baseline length and the level of the 

ionospheric activity. For very short baselines, the differential ionospheric errors tend to 

cancel and L1 or L2 ambiguity resolution is straightforward. With an increase of the 

baseline length, the differential ionospheric error tends to increase as well, thus making it 

difficult or sometimes impossible to resolve the DD carrier phase integer ambiguities. 

The resolution of the ambiguities is likely to be successful as long as the distance to the 

nearest reference receiver is less than 10-30 km, depending on geographic location, time 

of day, and location in the 11-year sunspot cycle (Colombo, 1998).  
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Ambiguity resolution under the influence of the ionosphere has long been a fertile 

research topic, particularly during a solar maximum, which is the case at the time of this 

thesis. A lot of research has been carried out in this field to ensure correct ambiguity 

fixing under active ionospheric conditions. As a result, many ionospheric models have 

been developed.  Klobuchar (1986) introduced an ionospheric error model that is being 

used by the GPS control centre as part of the navigation message broadcast by the GPS 

satellites. This model consists of a cosine representation of the diurnal ionospheric error 

curve, which will vary in amplitude and period depending on the user’s latitude. It has 

been shown to be effective in removing around 50% of the total RMS (root-mean-square) 

error. Applying this model will obviously help the SPS performance. However, to reach 

centimetre level positioning performance, this model is not sensitive enough. Another 

model is the global ionosphere map produced by the Centre for Orbit Determination in 

Europe (CODE) (Schaer, 1999). These maps are only available for postprocessing and 

cannot be used in real time. Other models include the United Sates Wide Area 

Augmentation System (WAAS) ionospheric grid model. This model estimates the 

ionospheric error at the fixed grid points in real time, using a Kalman filter technique 

(Skone, 1998). Unfortunately, this grid model still does not have sufficient sensitivity to 

provide centimetre-level positioning performance (FAA, 1997).  

 

Other research efforts examine the use of frequency combinations to combat the 

increased ionospheric effect. One countermeasure to a high ionospheric effect is to form 

the widelane (WL) observable since the WL has a much smaller ionosphere/wavelength 

ratio than L1 or L2 so it is more resistant to ionospheric error. Examples can be found in 
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Hatch (1982, 1989), Allison (1991), Euler and Landau (1992), Goad (1992), and Seeber 

(1993). Other well-known countermeasures include forming the ionosphere-free 

combinations to remove the first order ionospheric effect (Blewitt, 1989). Teunissen 

(1997) proposed an original method that estimates the ionospheric error explicitly 

through stochastic modelling.  

 

With so many methods for ambiguity resolution, it is sometimes difficult to determine 

which method best fits an application. It is not clear whether these methods have the 

same ambiguity resolution and positioning performance or whether one is significantly 

better than the others, depending on the conditions. Even with the same ambiguity 

resolution method, different parameterization schemes may be used. For example, it is 

popular practice to parameterize the dual frequency carrier phase observable with respect 

to the L1 and WL ambiguities in contrast to the L1 and L2 ambiguities, e.g. Goad (1992), 

Bock (1996), and Liu (2001). The reasons and benefits (if any) for this practice are not 

clear. 

 

Another emerging technique to facilitate successful ambiguity resolution under a severe 

ionosphere is to use a network of GPS reference stations to model the ionospheric error 

explicitly. The University of Calgary has developed a very promising approach called 

MultiRefTM (Multiple Reference Station) (Raquet, 1998; Fortes, 2002). This approach 

can model and correct differential errors (mainly the ionospheric error) between various 

reference stations for transmission to a user in the network. With less residual differential 

errors, ambiguity resolution performance can be improved. 
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Based on these developments, the following objectives form the basis of the thesis 

research:  

• Implement various ambiguity resolution strategies. These strategies include the 

well known ionosphere-free combination ambiguity resolution strategy, stochastic 

ionospheric modelling strategy, widelane ambiguity resolution strategy and L1 

only ambiguity resolution strategy.   

• Investigate the implemented ambiguity resolution strategies to access how the 

selection of observation types and combinations, different parameterization 

schemes, and estimation model impact the ambiguity resolution and positioning 

performance.  

• Evaluate the impact of the ionospheric error on ambiguity resolution and 

positioning performance. 

• Implement a real-time system to evaluate the MultiRefT M approach when using 

various ambiguity resolution strategies. 

 

Considering that ambiguity resolution is a very broad and complicated topic that depends 

on many different factors such as rover dynamics, baseline length etc., the scope of this 

thesis is restricted to normal RTK practice. Normal RTK practice means that the baseline 

separation is usually less than 50 km, and the rover receiver is assumed to be in kinematic 

mode. 

In fulfilling the above objectives, the author has significantly enhanced the University of 

Calgary software FLYKINTM. The latest FLYKIN+TM and FLYKINRT+T M software can 
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operate in both post mission and real-time modes within a single software package. It can 

process the data in either static or kinematic mode with various ambiguity resolution 

strategies that will be discussed in detail in this thesis.  

 

1.2 Thesis Outline 

 

Chapter 2 describes the general differential GPS positioning concepts. The basic 

equations relating DD GPS observables and their unknown parameters are presented. 

Various differential error sources are introduced, and the impact of the ionosphere on 

relative carrier phase positioning is investigated.  

 

Chapter 3 discusses ambiguity resolution techniques. Centimetre positioning accuracy 

can be achieved only when the integer carrier phase ambiguities are correctly fixed. 

Ambiguity resolution is the core of the carrier phase relative positioning. There are 

various ambiguity resolution techniques available, and this chapter investigates several 

commonly used ones.  

 

Chapter 4 is the core of this thesis. It contains two parts. The first part investigates 

various ambiguity resolution strategies utilizing different carrier phase combinations, 

parameterizations, and estimation models. The observation equations for these strategies 

are presented in this chapter. Test results for these strategies are shown in Chapter 5. The 

second part of this chapter discusses the software realization of these ambiguity 

resolution strategies, namely the development process of the FLYKIN+T M software. Most 
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of the research work done for this thesis is on the development of FLYKIN+T M, so it is 

relevant to discuss some issues related to the software development. The general software 

functionality and architecture are presented in this chapter. 

 

In Chapter 5, results for the various ambiguity resolution strategies introduced in Chapter 

4 are shown for single and multiple reference station scenarios. The test methodology and 

parameters are presented. The performance is compared in terms of positioning, time to 

ambiguity resolution, and percentage of correctly resolved ambiguities. Finally, 

advantages and disadvantages of various ambiguity resolution strategies are outlined.  

 

Chapter 6 concludes the thesis and envisages further research. 
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CHAPTER 2 

GPS OBSERVABLES AND ERROR SOURCES 

 

2.1 Basic GPS Observables 

 

Many GPS receivers output two primary GPS observables:  pseudorange and carrier 

phase. 

 

The pseudorange observable is generated by measuring the difference between the 

transmission time and reception time of the GPS Pseudo-Random Noise (PRN) signal. 

The observation equation relating the pseudorange observableP  in metres and unknown 

parameters is expressed as (Parkinson, 1996): 

)( s
u TTcP −== ρ       (2.1) 

where 2 2 2( ) ( ) ( )s s sx x y y z zρ = − + − + − (the true range between the GPS satellite 

and receiver antenna phase centre), ( , ,s s sx y z ) is the satellite coordinate, and ( , ,x y z ) 

is the receiver antenna phase centre coordinate which is to be estimated. Both satellite 

and receiver coordinates are refered to the Earth-Centred-Earth-Fixed reference frame 

(WGS84). uT  is the time of reception in seconds, sT is the time of transmission in 

seconds, and c  is the speed of light in metres per second. 
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Equation (2.1) holds only in theory. In practice the GPS signal is corrupted by many error 

sources. These error sources include satellite clock error, satellite coordinate error, and 

atmospheric effects (including tropospheric and ionospheric components); therefore the 

complete equation relating the pseudorange in metres and unknown parameters is 

expressed as 

0
0( - )s

u PP d T I c dT dTρ ρ ε= + + + + +    (2.2) 

where dρ is the satellite orbital error in metres, T  is the tropospheric delay in metres, I  

is the ionospheric delay in metres, 0
udT is the receiver clock offset in seconds, sdT0 is the 

satellite clock offset in seconds, and Pε  is the combined effect of pseudorange multipath 

and receiver measurement noise in metres.  

 

Similarly, the observation equation for the carrier phase observable, CP , in cycles is 

defined as  

0
0[ - ( - )]/s

u CPCP d T I c dT dT Nρ ρ λ ε= + + + + +              (2.3) 

whereλ is the L1 or L2 carrier wavelength in metres, N  is an arbitrary number 

representing the unknown, but constant, initial phase ambiguity, and CPε  is the combined 

effect of multipath and receiver measurement noise in cycles. The carrier phase 

observation equation is very similar to that of the pseudorange except that it contains an 

extra parameter, N . The ionospheric error for the carrier phase observable is the same as 

the pseudorange observable in units of metres but they differ in sign, as the ionosphere 

causes an advance to the carrier and a delay to the pseudorange (Klobuchar, 1996). In the 

context of this thesis, the double differenced (DD) processing technique is used. The 
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double differenced observable equation and error sources are therefore discussed in more 

detail.  

 

Figure 2.1 depicts a typical DD set-up. By taking the difference between observations to 

the same satellite from the rover and reference GPS receiver, the satellite clock error, 

tropospheric error, ionospheric error, and satellite orbital error are significantly reduced. 

The amount of reduction depends on the spatial separation between the reference and 

rover GPS receivers. The derived observable is known as the single difference (SD) 

observable between receivers. By further differencing the SD observable between 

satellites (see Figure 2.1), the receiver clock errors are eliminated completely. DD 

processing is performed to reduce the errors in Equations (2.2) and (2.3). 

 

 

Figure 2.1 Double Differencing Concept 
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The DD pseudorange and carrier phase observation equations are respectively expressed 

as: 

0
s

PP d T I dTρ ρ ε∇∆ = ∇∆ +∇∆ +∇∆ +∇∆ −∇∆ +∇∆     (2.4) 

0[ ] /s
CPCP d T I dT Nρ ρ λ ε∇∆ = ∇∆ +∇∆ +∇∆ −∇∆ −∇∆ +∇∆ +∇∆     (2.5) 

where ∇∆ is the double differenced (DD) operator.  

 

Double differenced observables have many advantages over undifferenced observables. 

First, the receiver clock offset is removed. Second, it is well known that the satellite 

clocks are highly stable (Kaplan, 1996), thus the value sdT0∆∇ tends to cancel as long as 

the observations are differenced at approximately the same time at both reference and 

rover stations. That means Equations (2.4) and (2.5) can be further simplified as: 

PP T Iρ δρ ε∇∆ = ∇∆ +∇∆ +∇∆ +∇∆ +∇∆      (2.6) 

[ ] / CPCP T I Nρ δρ λ ε∇∆ = ∇∆ +∇∆ +∇∆ −∇∆ +∇∆ +∇∆    (2.7) 

Third, the scales of the DD tropospheric error, DD satellite orbital error, and DD 

ionospheric error are much smaller than the undifferenced values.  

 

The double difference observable has some disadvantage over the undifferenced 

observable. The most significant effect is that the noise level of the DD observable 

increases since it is a linear combination of the carrier phase observable.  

 

To fully understand Equations (2.6) and (2.7), it is worthwhile to look at the individual 

terms on the right-hand side of the two equations, especially the double differenced error 

terms.  
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2.2 GPS Error Sources 

 

The DD errors can be classified into two categories, spatially correlated and non-spatially 

correlated. Spatially correlated errors are those that tend to cancel between a reference 

receiver and a rover receiver but increase in relation to the baseline length. These errors 

include 

• Satellite orbital error  

• Tropospheric error 

• Ionospheric error 

 

Non-spatially correlated errors are those that are unique to each receiver or its 

environment. They are not related to the baseline length and therefore will not cancel 

through DD processing. These errors are 

• Multipath 

• Measurement noise 

All of the above mentioned error sources are discussed in detail later in this thesis.  

2.2.1 Satellite Orbital Error 

In order to compute a receiver position using GPS measurements, the coordinates of the 

GPS satellites must be known. These coordinates are normally expressed in terms of an 

ephemeris, which gives a mathematical description of where a satellite is at a given time 

(Roulston et al., 2000). In order to provide users with an ephemeris for real-time 
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applications, the GPS design group came up with what is known as broadcast ephemeris, 

which is in the form of a navigation message that is modulated on the L1 and L2 carrier 

that are transmitted to users (Seeber, 1993). The satellite orbital error is a result of the 

discrepancy between the computed coordinate using the broadcast ephemeris and its 

actual value. According to IGS (2001), the satellite orbital computed from the broadcast 

ephemeris has an RMS error of 2 m. However according to Wells et al. (1986), in 

differential positioning, the following general rule holds: 

db d
b

ρ
ρ

=      (2.8) 

where db  is the total error in the length of the baseline b , dρ  is the total error in the 

coordinates of a satellite position, and ρ  is the mean distance from the stations to the 

satellite. 

 

Equation (2.8) shows that the actual influence of the satellite orbital error on the baseline 

is limited. Assuming an RMS satellite orbital error of 2 m and an average satellite-

receiver range of 20200 km, the contribution of the orbital error to the differential 

positioning error budget is at 0.19 ppm. Figure 2.2 shows the relationship between 

admissible SV orbital errors dρ  with respect to baseline length b  for the given baseline 

error thresholds 0.5db = cm and 1 cm. From this figure, it can be concluded that the 

baseline error caused by satellite orbital errors is less than 1 cm for baselines up to 50 km, 

and is negligible assuming a nominal satellite orbital error of 2 m.  
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 Figure 2.2 Orbit Error vs. Baseline Lengths for Certain SV Orbit Induced Error 
Thresholds 

2.2.2 Tropospheric Error 

The troposphere is the portion of the atmosphere extending up to 60 km above the Earth’s 

surface. When the GPS signal travels through the troposphere, its path will bend slightly 

due to the refractivity of the troposphere. The change of the refractivity from free space 

to the troposphere causes the speed of the GPS signal to slow down, which causes a delay 

in the GPS signal. This tropospheric delay is a function of temperature, pressure, and 

relative humidity. Measurement of these quantities at widely spaced monitoring stations 

would be ineffective owing to their short spatial correlations (Kaplan, 1996).  

 

The atmosphere consists of dry and wet components. These components affect the 

propagation delay of the radio frequency signals quite differently. The dry component 

causes a delay around 2.3 m in the zenith direction which varies with local temperature 
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and pressure. The dry component induced delay is quite constant and may vary only 1% 

in a few hours. This dry zenith delay can be predicted very well using existing models. 

The wet component of the zenith delay is generally much smaller, between 1 and 80 cm 

at the zenith, and is very unpredictable. It may change by as much as 10% to 20% in a 

few hours (Spilker, 1994).  

 

Generally, tropospheric delay can be modelled very well. It was found that the 

contribution of the troposphere to the differential positioning error budget varies typically 

from 0.2 to 0.4 parts per million (ppm), after applying a model (Lachapelle, 2000). 

Assuming a nominal value of 0.4 ppm, the baseline errors after applying a model are 

tabulated below for different baseline lengths. From Table 2.1 one can conclude that for 

baselines beyond 25 km, the residual tropospheric delay is larger than 1 cm. For a 

baseline of 100 km, the residual tropospheric error is as high as 4 cm. In order to achieve 

a one-centimetre level of positioning accuracy, either the residual tropospheric delay 

must be modelled explicitly or corrections have to be made to compensate for it. 

 

Table 2.1 Baseline Errors due to Residual Tropospheric Error 

Baseline length (km) Baseline errors (cm) 

5 0.2 

10 0.4 

25 1.0 

50 2.0 

100 4.0 

500 20.0 
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There are quite a number of tropospheric delay models available, e.g. Hopfield (1970, 

1972), Saastamoinen (1972), and Lanyi (1984). The Hopfield tropospheric delay model 

and Saastamoinen tropospheric model are the most frequently used and they give 

comparable results in most situations. For low elevation satellites, the Saastamoinen 

model produces slightly better results than the Hopfield model (Spilker, 1994).  

 

2.2.3 Ionospheric Error 

The ionosphere is the layer of the atmosphere that extends from 60 to over 1000 km of 

height above the Earth’s surface. The ionosphere is an important source of range and 

range-rate errors for users of the GPS who require high-accuracy measurements. At 

times, the range errors of the troposphere and the ionosphere can be comparable, but the 

variability of the earth’s ionosphere is much larger than that of the troposphere, and it is 

more difficult to model (Klobuchar, 1996). The first-order carrier phase error I  (in 

metres) caused by the ionosphere is given as (Skone, 1998): 

2

40.3
I

f
= − TEC    (2.9) 

where 40.3 is an empirically derived constant with units of m3/s2/electrons, TEC 

represents the Total Electron Content along the signal path in units of electrons/m2, and 

f is the L1 or L2 carrier frequency. From Equation (2.9), it can be seen that the 

magnitude and variability of the ionospheric error is a function of TEC. The TEC values 

depend on the rate of ionization, recombination and transport processes (Skone, 2001). 

The rate of ionisation in a global sense is a function of the solar activity, which follows 

cycles of approximately 11 years in duration (Klobuchar, 1996). The TEC values have 
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been observed to increase by a factor of three during a solar maximum versus a solar 

minimum (Klobuchar et al., 1995). In addition to the large-scale global increase in the 

absolute value of TEC during solar maximum, an increase in the frequency and 

magnitude of magnetic storms accompanies the enhanced solar flare activity (Skone, 

1998). The latest solar maximum occurred during the year 2000-2001. The data set used 

in this thesis is collected in early 2002, one year after the solar maximum, which means 

there is still a strong ionospheric signature in the data.  

 

The pseudorange and carrier phase measurements include ionospheric range errors of 

equal magnitude in metres and opposite sign (Skone, 1998). This causes trouble to users 

of single frequency GPS receivers who want to smooth the pseudorange with the carrier 

phase observation, as the smoothing process must be restarted at certain intervals to avoid 

the divergence caused by the ionosphere on pseudorange and carrier phase.  

 

There are some ionospheric models available. Klobuchar (1986) introduced a model that 

is being used by the GPS control centre as part of the navigation message broadcast by 

the GPS satellites. This model consists of a cosine representation of the diurnal 

ionospheric error curve which will vary in amplitude and period depending on the user’s 

latitude. It has been shown to be effective in removing around 50% (RMS) of the total 

error. Applying this model will help the SPS performance. However, to reach centimetre-

level positioning performance, this model is not sensitive enough. One such effort tries to 

develop efficient global ionosphere maps. The most representative of these maps are the 

Global Ionosphere Maps produced by the Centre for CODE (Schaer, 1999). These maps 
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are only available for post processing and cannot be used in real-time. Other models 

include the United Sates WAAS ionospheric grid model. This model estimates the 

ionospheric TEC values at the fixed grid points in real time using a Kalman filter 

technique. Estimates are made of satellite and receiver L1-L2 interchannel biases, which 

must be included in ionospheric delay calculations, in addition to parameters 

characterizing the vertical TEC. Model parameters are generally approximated as Gauss-

Markov or random walk stochastic processes (Skone, 1998). Unfortunately, this model 

still does not have sufficient sensitivity to provide centimetre level positioning 

performance. 

 

Although the ionospheric error is hard to compensate for by applying models like the 

troposphere, there are several good properties about the ionospheric error that enable its 

direct estimation from the carrier phase and pseudorange measurements. The first 

property is that the ionosphere is a dispersive medium (Klobuchar, 1996). From Equation 

(2.9), it can be seen that L1 and L2 will encounter different ionospheric errors. Skone 

(1998) showed estimation of the ionospheric error on L1 through data from a dual 

frequency receiver. This dispersive property also allows forming a very important carrier 

phase combination, the ionosphere-free combination. The ionospheric error is removed in 

this combination.  

 

Another property of the ionospheric error is that it has very good temporal characteristics. 

Skone (1998) has shown that a first order Gauss-Markov process is consistent with the 
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observed temporal correlations in TEC. The following system model was employed to 

describe the evolution of the TEC.  

0
1( ) ( ) ( )

t
T

j j jVTEC t e VTEC t w t
δ−

+ = +    (2.10) 

where VTEC is the TEC content in the zenith direction, 0T  is the correlation time and 

1j jt t tδ += − . This property allows estimation of the ionospheric error through a Kalman 

filter. This approach will be demonstrated in Chapter 4.  

 

The contribution of the ionosphere to the differential positioning error budget is estimated 

to be at 1-2 ppm (Seeber, 1993), and this figure is generated at the time of a solar 

minimum. In time of solar maximum, the contribution of the ionosphere to the 

differential positioning error budget increases by a factor of three. This figure can be 

even higher in regions of frequent magnetic storms which cause a sharp increase of the 

TEC value. Wanninger (1993) reported up to 40 ppm DD ionospheric error in the 

equatorial regions. In addition, the ionospheric scintillation (Wanninger, 1993) which 

may also be severe in equatorial regions (geomagnetic equator ±15°) can easily cause 

semicodeless receivers to lose tracking of the L2 carrier signals (Hegarty et al., 2001), 

and this will cause additional difficulty to those semicodeless dual frequency receiver 

users. In practice, the ionospheric error is usually the most detrimental error source for 

medium to long baseline carrier phase positioning. 
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2.2.4 Multipath  

Multipath is the interference of a reflected GPS signal with the line-of-sight GPS signal. 

It distorts the signal modulation and thus degrades the measurement accuracy (Braasch, 

1996). For a system using GPS pseudorange observables, signal degradation attributable 

to multipath can be very severe as the magnitude of the multipath error is usually not 

insignificant. Multipath is not spatially correlated since it is highly dependent on the local 

receiver environment. Multipath sources that affect a reference station do not necessarily 

cause errors in the rover receiver provided that they are not spaced very close to each 

other. Similarly, multipath sources that affect the rover receiver do not necessarily affect 

the reference station. The C/A pseudorange multipath can be half of a C/A code chip, 

which is equivalent to 150 m. The carrier phase multipath is much smaller than that of the 

pseudorange, with a maximum magnitude of one quarter of a carrier wavelength, i.e 5 cm 

for L1 and 6 cm for L2 (Cannon, 2002). However, in practical applications, the reflected 

signal is attenuated to some extent and the typical phase multipath values are more on the 

order of 1 cm or less (Lachapelle, 2000). To reduce the impact of multipath, the simplest 

way is to carefully select the antenna site to avoid any potential reflectors. 

 

On very short baselines such as the case in attitude determination, where the spatially 

correlated errors (ionospheric error, tropospheric error, orbital error) are mostly removed 

by double differencing, multipath is the major error source for carrier phase based 

positioning (Lu, 1995). Compared to the ionospheric error, multipath is not assumed to be 

a major error source in this research since the shortest baseline used in this thesis is over 

10 km.  
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2.2.5 Measurement Noise 

Measurement noise is generated by the receiver in the process of taking code or phase 

measurements. The noise is primarily due to tracking loop “jitter” (Raquet, 1998). For 

moderate to strong signals, the standard deviation of the C/A pseudorange measurement 

noise is around 1 m, and this figure can be reduced to 0.4 m or less for receivers which 

use narrow correlators; the standard deviation of the L1 carrier phase measurement noise 

is 0.2 mm (Langley, 1996).  The measurement noise can be effectively estimated through 

the use of a zero-baseline test (Cannon, 2002). In this test, the GPS signal from one 

antenna is split to two receivers. All the error sources are eliminated in the double 

differencing process except the measurement noise. The satellite-receiver geometry term 

is also absent as a common antenna is used. The double differenced measurement can be 

used as an efficient observable to estimate the magnitude of the measurement noise.  

2.3 Phase Combinations 

For most carrier-phase relative positioning applications with short to medium baseline 

separation, the satellite orbital error tends to cancel completely and the tropospheric error 

after applying a troposphere model is generally negligible. Yet, there is no effective and 

reliable model at this stage to effectively compensate or reduce the ionospheric error. 

Since the work of this research is done under the “short to medium baseline” assumption, 

the ionosphere is then considered to be the only remaining dominant error source. Thus 

Equation (2.7) can be rewritten as 

[ ]/CP I N eρ λ= − + +      (2.12) 

where e  contains mainly noise, multipath, and residual tropospheric error. The DD 

operator ∇∆  in above equation has been omitted for simplicity. 
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Following Equation (2.12), the observation equation for the L1 and L2 carrier phase 

observables can be written as: 

1 1 1 1 1

2 2 2 2 2

[ ]/

[ ]/

CP I N e

CP I N e

ρ λ
ρ λ

= − + +
= − + +

    (2.13) 

where 1 2,I I  are the ionospheric errors in units of metres on L1 and L2, respectively. 

Because the ionosphere is dispersive, the following relationship holds between 1I and 2I : 

 
2

2
2 12

1

( )I I
λ
λ

=      (2.14) 

So Equation (2.13) can be rewritten as 

1
1 1 1

1 1

2 1
2 2 2

2 1 1

( )

I
CP N e

I
CP N e

ρ
λ λ
ρ λ
λ λ λ

= − + +

= − + +
    (2.15) 

 

It is also possible to form phase combinations using the basic L1 and L2 carrier phase 

observations. Assume that both double differenced L1 and L2 carrier phase observables, 

1CP  and
2CP , are available, then a generic linear phase combination can be formed as 

(Seeber, 1993): 

, 1 2i jCP iCP jCP= +                   (2.16) 

The wavelength of ,i jCP is expressed as  

             ,
1 2

1
i j

i jλ
λ λ

− 
= + 

 
  with ambiguity , 1 2i jN iN jN= +        (2.17) 
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where 1λ  and 2λ  are the wavelengths of L1 and L2 in metres, and 1N and 2N  are the L1 

and L2 integer carrier phase ambiguities in cycles. Thus, 1CP can be seen as a special case 

of ,i jCP  with 1, 0i j= = , while 
2CP  has 0, 1i j= = .  

Following Equation (2.12), the observation equation for ,i jCP  can be written as  

2 1
, ,

, 1 1

( )i j i j
i j

I
CP N i j e

ρ λ
λ λ λ

= + − + +                                       (2.18) 

where 1I is the ionospheric bias on L1 (in metres). 

 

There are many possible carrier phase combinations. The following section will discuss 

several popular combinations. These are the widelane, narrowlane, and ionosphere-free 

combinations.  

2.3.1 Widelane Combination (WL) 

The observation equation for the WL observable ( 1, 1)i j= = −  (Seeber, 1993) is: 

1 2

1 2

1

1

17
60

WL

WL

WL WL
WL

CP CP CP

N N N
I

CP N e
ρ

λ λ

= −

= −

= + + +

                         (2.19) 

The wavelength of the widelane phase observable is 1 2

1 2

λ λ

λ λ− +
(0.86 m). As can be seen, 

the ionospheric error in units of cycles has been reduced to 
60
17 of a wavelength. To 

illustrate the advantages of this, assume there is an ionospheric bias equivalent to one L1 

cycle, then the corresponding error for the WL observable would only be 17/60 of a 

cycle. It is therefore clear that the widelane combination is more resistant to ionospheric 
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error (in cycles) than L1 and thus, it is more reliable to resolving widelane ambiguities 

under adverse ionospheric conditions. Another property of the widelane observable is that 

it is also more resistant to position errors.  For example, it takes a minimum position error 

of only 19 cm to introduce a one-cycle error on L1, but a minimum position error of 86 

cm to introduce a one-cycle error for widelane.  

 

Although the widelane combination reduces the impact of the ionospheric bias in cycles, 

it actually amplifies its effect in metres, which is the unit used for position estimation. 

Specifically, the ionospheric bias for the widelane in metres is 17 771
160 601

I
IWLλ

λ
= .  The 

noise is also amplified in the widelane observable compared to the L1 and L2 raw 

observables in metres. Thus it is expected that the position estimate derived using the 

widelane linear combination will have a higher position error than the position errors 

determined with the L1 observable, assuming the integer ambiguities are resolved 

correctly for both.  

2.3.2 Narrowlane Combination (NL) 

The observation equation for the narrowlane combination ( 1, 1)i j= =  (Seeber, 1993) is: 

1 2

1 2

NL

NL

NL NL
NL

CP CP CP

N N N

CP N e
ρ

λ

= +

= +

= + +

                    (2.20) 

The wavelength of the narrowlane combination is 1 2

1 2

λ λ

λ λ+
(10.7 cm). This wavelength is 

much shorter than that of the WL. Narrowlane has the same magnitude of noise as WL 
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does in cycles. However, due to its relatively short wavelength, narrowlane has lower 

noise compared to L1, WL or IF in metres. As a result, the narrowlane should give better 

positioning results than L1, WL and IF does, provided the ionospheric error is negligible. 

However, narrowlane has the same amount of ionospheric error as WL does in metres. So 

in situations when the ionospheric error is not negligible, the narrowlane suffers from the 

ionosphere the same as the widelane does. Furthermore, the short wavelength also makes 

it difficult to resolve the narrowlane ambiguities. In this research, all data have strong 

ionospheric signature, thus the narrowlane is not investigated further. 

2.3.3 Ionosphere-free Combination (IF) 

The observation equation for the ionosphere-free combination 1

2

( 1, )i j
λ
λ

= = −  (Raquet, 

1998) is: 

1
1 2

2

1
1 2

2

IF

IF

IF IF
IF

CP CP CP

N N N

CP N e

λ
λ

λ
λ

ρ
λ

= −

= −

= + +

                    (2.21) 

The main advantage of the ionosphere-free combination is the removal of the first order 

effects of the ionosphere.  As a result, the level of ionospheric activity is of less 

significance. The disadvantage of this combination is that the IF ambiguity is no longer 

an integer. Also the IF combination is noisier than L1 and L2 since it is a combination of 

L1 and L2. 
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Table 2.2 summarizes the magnitude of the ionosphere and noise errors for the 

undifferenced L1, L2, WL, NL and IF observables in both metres and cycles. In this 

research, two combinations are examined extensively in addition to L1 and L2. One is the 

widelane combination and the other is the ionosphere-free combination as both have 

shown good performance in combating the ionospheric error. 

Table 2.2 L1/L2/WL/NL/IF Combination Pro perties 

Ionospheric Error Noise (1-sigma) 
Combination i  j  ,i jλ  

(cm) 
,Ni j  

m cycle m cycle 

L1 1 0 19 
1N  

1I  1

1

I
λ

 119σ  1σ  

L2 0 1 24 2N  
2

1
77
60

I
 
 

 1

1

77
60

I
λ

 124σ  1σ * 

WL 1 -1 86  1 2N N−  
1

77
60

I−  1

1

17
60

I
λ

 1121σ  11.41σ  

NL 1  1 10.7  1 2N N+  
1

77
60

I  1

1

137
60

I
λ

 15 1σ  11.41σ  

IF 1 1

2

λ
λ

−  48 1

2
1 2N N

λ
λ

−  0 0 160σ  11.26σ  

* Assume the standard deviation (1-sigma) of the observation noise on L2 carrier is the 

same as L1 in units of cycles. 

 

To demonstrate the impact of the ionospheric error on different carrier phase and phase 

combinations, a medium distance baseline (21.6 km) from a network in Italy has been 

processed with the four scenarios in Table 2.2. The data is 24hour long with a 1 Hz 

sampling rate, collected in February, 2002. The DD ionospheric error on L1 is depicted in 

Figure 2.3. It is clear that the ionospheric error is high between 08:00-16:00 local time. 
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Figure 2.3 DD Ionospheric Error on L1 for a 21.6 km Baseline in Italy 

 

The data is processed at a 1 Hz interval to determine position estimates but with 

ambiguity parameters constrained to known values that had been determined a priori.  

This was done so that the positioning accuracies of the various approaches could be 

directly compared. Therefore only the baseline components were estimated. Table 2.3 

shows the RMS position errors for all four combinations. It can be seen that the IF 

combination gives the smallest RMS error for all three axes. This indicates that the 

ionospheric error is the dominant error source for this baseline data.  

Table 2.3 RMS Position Errors (cm) with Bernese Ambiguities, 26 km Baseline 

Combination 
Component

L1 L2 WL IF 

East 7 12 9 5 

North 4 6 5 2 

Height 10 18 14 8 
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Figures 2.4 to 2.7 show the position error for the four different combinations. The 

ionospheric impact on the position is evident in Figures 2.4, 2.5 and 2.6. All three figures 

show large position errors in the middle of the data set when the ionosphere is very 

active. The position error is small at the beginning and end of the data set when the 

ionospheric activity is low. It is interesting that the position error using L2 is worse than 

the WL combination for this data set, even though the WL combination is five times 

noisier than L2. This is because L2 contains more ionospheric error than WL as L2 is a 

lower frequency. The ambiguities are resolved using the Bernese Software (Universität 

Bern, 2000). This software does not solve all the ambiguities at some epochs due to 

certain internal software mechanisms, in which case a reduced geometry results, which 

has caused several large spikes in Figures 2.4 to 2.7.  

 

Based on the above results, the following conclusion can be drawn: Assuming that both 

L1, L2 and WL ambiguities are correctly resolved, then the L1 phase only solution will 

always give better positioning RMS than the WL because L1 contains less ionosphere 

and noise in centimetres than WL does; whether L2 can give a better position RMS than 

WL depends on the DD ionospheric error. Further details on various ambiguity resolution 

strategies that use the L1, L2 and/or WL observations are presented in the following 

chapter.  
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Figure 2.4 L1 Position Errors 

 

 

Figure 2.5 L2 Position Errors 



 

 

31

 

 Figure 2.6 WL Position Errors 

 

 

Figure 2.7 IF Position Errors 
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CHAPTER 3 

GPS AMBIGUITY RESOLUTION 

 

3.1 Introduction  

 

Before discussing various ambiguity resolution strategies that involve various frequency 

combinations, parameterization schemes, and modelling methods, it is worthwhile to 

investigate basic ambiguity resolution techniques. From Equation (2.12) in the previous 

chapter, the DD carrier phase observation equation is  

[ ] /CP I N eρ λ= − + +        (3.1) 

where ρ is the DD satellite-receiver range containing the baseline information that is to be 

estimated, and N is the unknown DD integer carrier phase ambiguity. In order to solve 

the baseline component, the ambiguity term, N , has to be solved first. The process of 

estimating the correct carrier phase integer ambiguity is called GPS ambiguity resolution. 

Successful ambiguity resolution is the key to high precision positioning using the carrier 

phase observable. In order to reach centimetre level positioning accuracies, this 

ambiguity term must be determined correctly.  

 

Figure 3.1 shows the flowchart for using the DD carrier phase observable in GPS 

positioning. In general, there are three procedures involved. These are the float filter 
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procedure ([1] in Figure 3.1), ambiguity resolution ([2a] in Figure 3.1) and validation 

procedure ([2b] in Figure 3.1), and the fixed solution procedure ([3] in Figure 3.1).  

 

Figure 3.1 DD Carrier Phase Positioning Flowchart (Cannon, 2002) 

 

3.1.1 Float Filter Procedure 

The float filter procedure is usually implemented through a Kalman filter and Figure 3.2 

shows the usual steps. Kalman filtering usually contains four steps: prediction, 

computation of the innovation sequence, computation of the Kalman gain, and update. In 

Figure 3.2, kx is the state vector estimated at epoch k , kC is the variance-covariance 

matrix of the state vector kx at epoch k , kz is the observation vector at epoch k , Φ  is the 

transition matrix, kQ is the system process noise matrix at epoch k , kR is the variance 
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covariance matrix of the observation vector kz , I is an identity matrix, and H is the 

design matrix which is the matrix computed by taking the derivatives of the observables 

with respect to the estimated states.  The -  sign is used with any matrix or state vector 

before the “Update” step, while the + sign is used with any matrix or state vector after the 

“Update” step. More on Kalman filtering can be found in Brown and Hwang (1992). 

 

Figure 3.2 Linearized Kalman Filter Loop (Brown and Hwang, 1992) 

 

A Kalman filter contains two sets of models (Axelrad et al., 1996). The first one is a 

dynamic model that describes how the state vector transforms from one epoch to the next, 

and how the variance covariance matrix of the state vector evolves from one epoch to the 

next. The other one is a measurement model that relates the observations to the state 

vector through the design matrixH . These two models are described below.  
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3.1.1.1 Kalman Filter Dynamic Model 

Specific to DD carrier phase-based GPS RTK positioning, the state vector usually 

contains the three position states ( , ,hϕ λ ) (latitude in units of radians, longitude in units 

of radians, height in units of metres, respectively), three velocity states ( , ,hϕ λ& && ) (latitude 

rate in units of radians per second, longitude rate in units of radians per second, and 

height rate in units of metres per second, respectively), and the DD ambiguity state N̂ (in 

units of cycles) for each satellite-receiver pair. Assuming n DD ambiguities are available, 

the complete state vector is  

1 2 3
ˆ ˆ ˆ ˆ( , , , , , , , , , , )nx h h N N N Nϕ λ ϕ λ= & && L     (3.2) 

For most navigation problems, the dynamics of the system are modelled using a random 

walk model or a Gauss-Markov model, thus the transition matrix is easily obtained 

Brown and Hwang, 1992). Assume a random walk model for the velocity state ( , ,hϕ λ& && ) 

with corresponding driving noise vector ( , , hw w wϕ λ ), the transition matrix for the 

position and velocity state vector is derived as 

1

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

t
t

t

δ
δ

δ

 
 
 
 

Φ =  
 
 
 
 

    (3.3) 

where tδ is the transition time interval in seconds. The equations relating the white 

driving noise and the three velocity states are as follows: 
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h
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h w
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ϕ

λ

=

=

=

&
&
&

      (3.4) 

Assume a spectral density for the driving noise vector of ( , , )hsp sp spϕ λ (all in units of 

m2/s3), the subsystem noise matrix for the position and velocity state vector is derived as 

3 2

3 2

3 2

1
2

2

2

0 0 0 0
3 2

0 0 0 0
3 2

0 0 0 0
3 2

0 0 0 0
2

0 0 0 0
2

0 0 0 0
2

h h

h
h

sp sp
t t

sp sp
t t

sp sp
t t

Q
sp

t sp t

sp
t sp t

sp
t sp t

ϕ ϕ

λ λ

ϕ
ϕ

λ
λ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
   

  (3.5) 

The ambiguity states are modelled as random constants since ambiguity states will not 

change unless there is a loss of phase lock. So the transition matrix for the ambiguity 

state vector is derived as 

2

1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0 1

 
 
 
 

Φ =  
 
 
 
 

M M M M O M

    (3.6) 

The subsystem noise matrix for the position and velocity state vector is derived as 
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2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

Q

 
 
 
 

=  
 
 
 
 

M M M M O M

    (3.7) 

The complete transition matrix is 

1

2

0

0

Φ 
Φ =  Φ 

    (3.8) 

and the complete system noise matrix is  

1

2

0

0

Q
Q

Q
 

=  
 

     (3.9) 

The above derivations show the equations for the basic system dynamic model in GPS 

RTK positioning. In case the user wants to estimate additional states, like the DD 

ionospheric errors, the state vector can be expanded as follows: 

1 2 3 1 2 3
ˆ ˆ ˆ ˆ( , , , , , , , , , , , , , , )n nx h h N N N N I I I Iϕ λ ϕ λ= & && L L   (3.10) 

where iI is the DD ionospheric error in metres between the ith satellite-receiver pair. 

Assuming a first order Gauss-Markov process for the DD ionospheric error state iI  with 

a driving noise iw of spectral density isp in units of m2/s, and time constant 0T  in 

seconds, the continuous state-space equation for iI is derived as 

0

1
i i iI I w

T
= − +&     (3.11) 

The discrete form of the above equation is 

01 , 1
t

Tk k k k
i i iI e I w

δ−
+ += +     (3.12) 
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where 
1 1

0

1 ( )
, 1 ( )

k k

k

t t
Tk k

i

t

w e w d
τ

τ τ
+ +− −

+ = ∫ , 1k kt t tδ += − , and the variance of the discrete white 

noise , 1k k
iw + is 0

2
0 [1 ]

2

t
TispT

e
δ−

− .  

 

The subtransition matrix for the complete DD ionospheric error state vector 

1 2 3( , , , )nI I I IL is then derived as  

0

0

0

0

3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

t
T

t
T

t
T

t
T

e

e

e

e

δ

δ

δ

δ

−

−

−

−

 
 
 
 
 

Φ =  
 
 
 
 
  

M M M O M

    (3.13) 

The subsystem noise matrix for the DD ionospheric error state vector is derived as 

0

0

0

0

2
1 0

2

2 0

2
3 3 0

2
0

[1 ] 0 0 0 0
2

0 [1 ] 0 0 0
2

0 0 [1 ] 0 0
2

0 0 0 0 [1 ]
2

t
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t
T

t
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t
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e

sp T
e

δ

δ

δ

δ

−

−

−

−
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 −
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 −
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M M M O M

(3.14) 

 

In the expanded state vector case, the complete transition matrix is denoted as 
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1

2

3

0 0
0 0
0 0

Φ 
 Φ = Φ 
 Φ 

    (3.15) 

and the complete system noise matrix is derived as  

1

2

3

0 0
0 0
0 0

Q
Q Q

Q

 
 =  
  

    (3.16) 

3.1.1.2 Kalman Filter Measurement Model 

The dynamic model in a Kalman filter describes the evolution of the states. The 

measurement model relates the state vector to the GPS observations through the design 

matrix H . For information on how to compute the design matrix H , see Cannon (1991). 

Regular updates by the measurement into the state vector is crucial as the system will 

diverge if there is no measurement provided over a long period of time, driven by the 

system input noise. These observations for the float filter can be DD carrier phase 

observables ( CP ) only, or DD carrier phase plus DD pseudorange observables 

( CP and P ). The pseudorange observables are used most of the time because the position 

states are not directly observable by the DD carrier phase observable because of the 

existence of the DD ambiguity terms, but they are directly observable by the DD 

pseudorange observations. Providing the DD pseudorange observation can reduce the 

time for the Kalman filter to converge. In this thesis, DD C/A pseudorange P  is used in 

every ambiguity resolution strategy to speed up the filter convergence. The selection of 

the carrier phase observable is a little complicated, and more on this topic is covered in 

Chapter 4.  
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3.2 Ambiguity Resolution 

 

The output of the float filter procedure is the current position component estimates, the 

velocity component estimates, and the float-valued DD ambiguities N̂ (the Kalman filter 

does not take the integer property of the DD ambiguities into account in the float filter 

procedure, so the estimated DD ambiguities are floating valued), and the variance 

covariance matrix N̂C  for N̂ .  

 

The second procedure in Figure 3.1 is the ambiguity search or resolution and validation 

procedure. It is in this procedure that the integer property of the DD ambiguities is 

applied in certain search algorithms to find the correct DD integer ambiguities. Usually 

these search algorithms are carried out in the ambiguity domain, based on the output of 

the float filter procedure, N̂ and 
N̂C . To date, there are numerous ambiguity search 

methods available. The most prominent methods among them are: 

• Ambiguity function method (Counselman et al., 1981) 

• Least-squares ambiguity search technique (Hatch, 1990; 1991) 

• Fast ambiguity resolution approach (FARA) (Frei, 1991) 

• Least-squares ambiguity decorrelation adjustment method (LAMBDA) 

(Teunissen, 1993) 

• Fast ambiguity search filter (FASF) (Chen and Lachapelle, 1994) 

• Sequential integer rounding (Bootstrapping Method) (Blewitt, 1989; Teunissen, 

1998a) 
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In this research, two ambiguity resolution schemes are investigated thoroughly. They are 

the Bootstrapping method and the LAMBDA method. Although the ambiguity search 

algorithm in the FASF is more complicated and robust than the Bootstrapping method, 

they both utilize the basic techniques; even though FASF does “bootstrapping” 

recursively. Thus, in this chapter, only the LAMBDA and Bootstrapping methods are 

discussed.  

 

3.2.1 LAMBDA Method 

LAMBDA stands for Least-squares AMBiguity Decorrelation Adjustment. It was 

proposed by Teunissen (1993). Assuming an n-dimensional ambiguity state vector, the 

LAMBDA ambiguity resolution method is based on the following principle 

1
ˆ

ˆ ˆmin( ) ( ) ,T n
NN N C N N withN Z−− − ∈     (3.17) 

where nZ means an n-dimensional integer space. Equation (3.17) tries to find the integer 

ambiguity vector N
(

that makes the above quadratic product minimum. Teunissen (1998a) 

has proven that the success rate of using the LAMBDA method to estimate integer 

ambiguities is always greater than or equal to any other integer ambiguity estimator.  

 

Another important procedure in carrier phase positioning is the ambiguity validation, 

shown in Figure 3.1. With the LAMBDA method, a set of integer ambiguities can always 

be generated that satisfy Equation (3.17). However, the biggest limitation for LAMBDA 

is not whether an ambiguity solution can be generated, but instead how the ambiguities 

generated from Equation (3.17) can be validated.  Usually this validation process is done 
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by a ratio test that compares the smallest sum of squared ambiguities residuals to the 

second smallest. The ratio test is (Han and Rizos, 1996a): 

1
ˆ2 2

1
ˆ1 1

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

T
N

T
N

N N C N N
ratio

N N C N N
δ

−

−

− −
= >=

− −
   (3.18) 

where 1N is a set of integer ambiguities that makes Equation (3.17) result in the smallest 

sum of squared ambiguities residuals, 2N is another set of integer ambiguities that makes 

Equation (3.17) result the second smallest sum of squared ambiguities residuals. Usually 

the value of the ratio,δ , is dependant on the dimension of the ambiguity vector; the 

larger the dimension of the ambiguity vector, the smaller the value of δ . At this stage, 

there is no better measure than this ratio test to validate the resolved integer ambiguities. 

3.2.2 Bootstrapping Method 

The simplest way of integer ambiguity resolution is to round the float ambiguity to its 

closest integer regardless of the ambiguity variance-covariance matrix. The integer 

bootstrapping is very similar to integer rounding except that it takes the correlation 

between ambiguities into account. The bootstrapping method follows from a sequential 

conditional least squares adjustment and it is computed as follows. If n ambiguities are 

available, the bootstrapping method starts with the first ambiguity 1N̂ , and rounds its 

value to the nearest integer. Having obtained the integer value of this first ambiguity, the 

real-valued estimates of all remaining ambiguities are then corrected by virtue of their 

correlation with the first ambiguity. Then the second, but now corrected, real-valued 

ambiguity estimate is rounded to its nearest integer, and the real-valued estimates of all 

remaining n- 2 ambiguities are again corrected, but now by virtue of their correlation 
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with the second ambiguity. The process is continued until all ambiguities are considered. 

The components of the bootstrapped ambiguities are given as (Teunissen, 1998a): 

( )

( )

2 1 1

| |

1 1

-2
ˆ ˆ ˆ2 2|1 2 1 1

1
-2

ˆ ˆ ˆ| -1 |
1

ˆ

ˆ ˆ ˆ- -

ˆ ˆ ˆ- -
n i I i I

N N N

n

n n n n i I iN N N

N N

N N N N N

N N N N N

σ σ

σ σ
−

 =  
  = =   

  = =     
∑

M    (3.19) 

where the shorthand notation IiN |
ˆ and 

IiN |
ˆσ stands for the thi least squares ambiguity and 

its standard deviation obtained through conditioning on the previous }{1, ,( -1)I i= L  

sequentially rounded ambiguities. The success rate of any bootstrapped ambiguity can be 

computed as (Teunissen, 1998a): 

( )
|

ˆ

1ˆ 2 1
2

i I

i i

N

S N N F
σ

 
 = = −
  

    (3.20) 

with ( ) 2

-

1 1
exp( )

22

x

F x y dy
π∞

= −∫                  (3.21) 

where ( )F x is the cumulative distribution function of a normal Gaussian distribution. It 

can be seen that the smaller the conditional variance of the ambiguity, the higher the 

probability is of fixing the ambiguity correctly. Thus, for the integer bootstrapping 

method, it is better off to start with the ambiguity with the smallest variance, then the 

second smallest, then the third, and so on. The success rate can be used as a validation 

measure in the Bootstrapping ambiguity resolution method. Normally in Bootstrapping 

ambiguity resolution, a check must be made on the standard deviation of the float 

ambiguity to ensure it is small enough to yield a sufficiently high success rate.  
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3.3 Tests and Results 

To show the effectiveness of both the Bootstrapping and LAMBDA ambiguity resolution 

techniques, the same 24-hour baseline data used in Chapter 2 is processed in kinematic 

mode with different ambiguity resolution strategies.  

3.3.1 Results with LAMBDA 

The data is processed with the software FLYKIN+TM (This software is discussed in detail 

in Chapter 4) using the LAMBDA ambiguity resolution module and position estimates 

given at every epoch. The observables used are the C/A pseudorange and WL carrier 

phase observables. FLYKIN+T M is a software package capable of processing GPS data in 

static or kinematic modes, and allows users to select from a wide range of processing 

options. However, it was stated in Chapter 1 of this thesis that the research is focused on 

normal RTK practices, so the software FLYKIN+TM was always used in kinematic mode. 

 

The position domain results are presented in Figure 3.3. Green in the figure means that all 

ambiguities have been fixed, red means none of the ambiguities have been fixed, blue 

means all ambiguities except one have been fixed, and yellow means more than one 

ambiguity cannot be fixed. The overall position errors show the LAMBDA method works 

very well. This baseline is also processed with Bernese Software in batch processing 

mode. The Bernese software is well tuned for processing static data in batch mode and 

the ambiguity output from the Bernese software is assumed to be correct. The ambiguities 

output by Bernese are compared to the ambiguities output by FLYKIN+TM. Their 

difference in absolute value is shown in Figure 3.4. The difference is zero for the entire 
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data set, indicating that the ambiguities resolved with LAMBDA method is 100% 

accurate. 

 

Figure 3.3 Position Errors with LAMBDA Method 

 

 

Figure 3.4 Ambiguity Difference between LAMBDA and Bernese Approaches 
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3.3.2 Results with Bootstrapping 

To evaluate the performance of the Bootstrapping method, the data was also processed 

with FLYKIN+TM using the Bootstrapping ambiguity resolution module, and position 

estimates were again determined at every epoch. The position domain results are 

presented in Figure 3.5. It is clear that the position error is bounded very well, indicating 

that the Bootstrapping ambiguity resolution is functioning well in this case.   

 

 

Figure 3.5 Position Errors with Bootstrapping Method 

 

Figure 3.6 shows the difference between Bootstrapped ambiguities and Bernese 

generated ambiguities. The difference is zero for the entire data set, also indicating a 

100% success rate for Bootstrapping ambiguity resolution method. 
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Figure 3.6 Ambiguity Differences between Bootstrapping and Bernese Approaches 

 

Table 3.1 summarizes the performance for the LAMBDA and Bootstrapping ambiguity 

resolution methods for this data. Both methods result in the same position estimate RMS 

error in the north, east and up axes, which is understandable since Figure 3.4 and Figure 

3.6 demonstrated that there are no inaccurately resolved ambiguities.  In Table 3.1, “All 

Fixed Percentage” means the percentage of those epochs in the 24-hour period when all 

of the ambiguities are resolved to integers, and “All Float Percentage” means the 

percentage of those epochs in the 24-hour period when none of the ambiguities are 

resolved to integers. Table 3.1 reports 0.1% and 0.04% for the Bootstrapping and 

LAMBDA method in the “All Float Percentage” category respectively, which suggests a 

high efficiency for both the LAMBDA and Bootstrapping methods. In the “All Fixed 

Percentage” category, Bootstrapping reports 10% less than LAMBDA, which can be 

explained by the fact that a more rigorous constraint is enforced on the standard deviation 

of the float ambiguities in the Bootstrapping method. 
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Table 3.1 LAMBDA and Bootstrapping Comparison  

Category Bootstrapping LAMBDA 

North 9 9 

East 4 4 RMS 
Error (cm) 

Up 12 12 

All Fixed Percentage 48% 58% 
All Float Percentage 0.1% 0.04% 

 

 

3.4 Suggested Ambiguity Resolution Method 

 

Teunissen (1998a) has proven that the success rate of using the LAMBDA method to 

estimate integer ambiguities is always greater than or equal to any other integer 

ambiguity estimator. Thus the LAMBDA method is a preferred method for ambiguity 

resolution. However since the validation procedure for the LAMBDA method employs a 

ratio test and this has turned out to have limitations which may cause problems. The 

above ratio test can provide a high degree of reliability, but it does not provide a high 

degree of efficiency, especially if there is frequent loss of tracking to some satellites. If a 

new satellite is included in a solution, the standard deviation for the ambiguity of the new 

satellite is usually very high, and this will push the result of the ratio test close to a value 

of one. More observations are needed to drive down the standard deviation of the newly 

included ambiguity parameter to increase the computed ratio. This is a loss of efficiency. 

The satellites that have been observed for an extended amount of time, and with their 

associated ambiguities fixed, should also have relatively small standard deviations. It 



 

 

49

does not make sense then, to carry out the ambiguity resolution process for all the 

satellites when a new ambiguity parameter lowers the ratio value. In order to avoid this 

problem, a combined ambiguity resolution scheme is investigated and employed in the 

software FLYKIN+TM. First the software uses LAMBDA to solve for all the ambiguities. 

If the ratio does not exceed the threshold, then the software examines the float ambiguity 

value and the standard deviation of each individual ambiguity. If the standard deviation 

of an ambiguity is too large (for example: = 0.1 cycle), then the software will not fix this 

ambiguity, otherwise it carries out a search using the float ambiguity and its associated 

standard deviation via the procedures below. Assuming the value of the float ambiguity is 

N̂ , and the standard deviation of the ambiguity is Nσ , a search space )(SS  is determined 

into which the integer ambiguity should fall. This search space is: 

ˆ ˆ: - 3 , 3N NSS N Nσ σ +   

Depending on the value of the float ambiguity, N̂ , and standard deviation, Nσ , there are 

three possible scenarios. 

Scenario I: There is exactly one integer ambiguity in )(SS  and the float ambiguity is very 

close to an integer. 

 

 Nσ3     N̂         Nσ3  

 

                       N - 1  N  N +1 
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This is the ideal scenario. The only integer in )(SS is regarded as the correct ambiguity 

value.  

Example: 

 [ ]
ˆ

ˆ 0.95
( ) : 0.95 3 0.04,0.95 3 0.04

0.04
N

N
SS

σ

 = ⇒ − × + ×
=

 

There is only one integer value, 1, within the )(SS . This float ambiguity has converged 

because the standard deviation of this float ambiguity is only 0.04. Unless there is cycle 

slip, the value of this float ambiguity will not change dramatically. Thus, 1 is deemed the 

correct integer ambiguity. 

Scenario II: There is more than one integer ambiguity in )(SS  because the standard 

deviation of the float ambiguity is too large. 

 

 

 Nσ3     N̂         Nσ3  

 

                       N -1  N  N +1 

This is the case when the ambiguity has not been observed for enough time. The standard 

deviation is too large. More observations are needed to increase the precision of the float 

ambiguities. 

Example: 

 [ ]
ˆ

ˆ 0.95
( ) : 0.95 3 0.4,0.95 3 0.4

0.4N

N
SS

σ

 = ⇒ − × + ×
=
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There are three integers {0, 1, 2} in )(SS . It is highly risky to fix the ambiguity in this 

case.  

Scenario III:  The float ambiguity is far off any integer value. 

 

 Nσ3 N̂ Nσ3  

 

                       N -1                                        N                                          N +1 

This is the case when there are unmodelled error sources such as ionospheric error or 

multipath. It is safer to keep the ambiguity as a float value rather than to forcefully fix 

them with a high risk. Fixing to a wrong value is much worse than keeping the ambiguity 

float, as fixing incorrectly will introduce a large bias into the observations. 

Example: 

 [ ]
ˆ

ˆ 0.55
( ) : 0.55 3 0.04,0.55 3 0.04

0.04
N

N
SS

σ

 = ⇒ − × + ×
=

 

There are no ambiguities in )(SS , and N̂  is nowhere near an integer; keep the 

ambiguities as float values and wait until the multipath or ionospheric error subsides. 

The suggested ambiguity resolution method makes sense in practice. Usually it turns out 

that the ambiguity of the high elevation satellites will converge much faster than that of 

the low elevation satellites. It is reasonable to resolve the high elevation ambiguity first 

and leave the low elevation ambiguity float (Partial fixing). With fixing of high elevation 

satellite, the solution is strengthened and it is more efficient to fix the remaining float 

ambiguities.  
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This suggested ambiguity resolution technique is also implemented in the FLYKIN+TM 

software. It is recommended that for very short baseline RTK operations, this ambiguity 

resolution technique should be used. It is expected to be more efficient than the 

LAMBDA only method as the suggested algorithm can operate well in partial fixing 

mode. One important restriction applies to the suggested ambiguity resolution method. 

The combined method contains the Bootstrapping method, which is reliable only when 

the estimator that estimates the float ambiguity is unbiased or slightly biased. A Large 

bias due to unmodelled error sources like the high ionospheric error will bias the 

estimated float ambiguities and Bootstrapping will then result in erroneous integer 

ambiguities.  It is recommended that this suggested ambiguity resolution approach should 

be tested extensively. 
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CHAPTER 4 

AMBIGUITY RESOLUTION STRATEGIES 

  

4.1 Introduction 

 

Chapter 3 introduced the float filter, which serves as the starting point for ambiguity 

resolution. Once the float -valued ambiguities and the corresponding variance-covariance 

matrix are output from the float filter, an ambiguity resolution technique (LAMBDA, 

Bootstrapping, FASF, FARA, etc.) can be applied to resolve the correct integer 

ambiguities. However, how to generate the float-valued ambiguities and the 

corresponding variance-covariance matrix is not so straightforward.  

 

It was shown in Chapter 3 that the float filter is implemented through a Kalman filter 

which contains both a dynamics model and a measurement model. The dynamics model 

dictates what states are estimated and the measurement model dictates what observations 

or observation combinations are used. The estimated states usually include position, 

velocity, ambiguities, and the DD ionospheric error (if estimated). The ambiguity states 

can be L1 ambiguity only, L2 ambiguity only, WL ambiguity only or any combination 

between L1, L2, and WL ambiguities.  The observations can be L1 phase only, L2 phase 

only, L1 and L2 phase together, WL phase only, or IF phase only.  The use of dual 

frequency GPS data facilitates a wide variety of possible dynamics and measurement 
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models. However, this “variety” also means that it is sometimes difficult to determine 

which dynamics and measurement models best fits an application. It is not clear whether 

they have the same ambiguity resolution and positioning performance or whether one is 

significantly better than the others.  

 

In this chapter, eight processing strategies were formulated that combine different choices 

of observables (measurement model), parameterization schemes (dynamics model), and 

estimation models. All eight strategies were tested extensively in Chapter 5. This chapter 

will present the detailed formulation of each strategy.  

4.2 Strategy Formulation 

  

Table 4.1 summarizes all eight strategies in terms of ambiguities estimated and 

observables used, where 1N  is the L1 ambiguity, 2N is the L2 ambiguity, WLN is the WL 

ambiguity, and IFN  is the float valued IF ambiguity. 1CP  is the L1 carrier phase 

observable, 2CP is the L2 carrier phase observable and P  is the L1 C/A pseudorange 

observable. The P  observable is used in every strategy. Chapter 2 has explained that the 

pseudorange observable is needed to speed up the convergence of the ambiguity states in 

the float filter.   

 

Strategies 1 through 4 do not take the ionospheric error into account, i.e. the model 

assumes that it has been eliminated through the DD process. In contrast, Strategies 5 

through 8 will deal with the ionospheric error by either removing it through forming the 



 

 

55

IF observable (Strategies 5 and 6) or by estimating it with stochastic ionospheric 

modelling techniques (Strategies 7 and 8).  For every strategy, the state vector always 

includes the three position states ( , ,hϕ λ ) and the three velocity states ( , ,hϕ λ& && ). The 

velocity states are modelled as random walk processes. Each strategy also includes 

additional ambiguities states, determined by the parameterization schemes of the 

observations. The ambiguity states are modelled as random constants. In Strategies 7 and 

8 where the DD ionospheric error is modelled and estimated, a first order Gauss-Markov 

process is used. Each of the strategies is discussed in detail below. 

Table 4.1 Strategy Summary 

Strategy Ambiguity Observables Ionosphere 

1 1N  1,CP P  

2 WLN  1 2, ,CP CP P  

3 1N , 2N  1 2, ,CP CP P  

4 1N , WLN  1 2, ,CP CP P  

Not 
Parameterized 

5 1N , WLN  (IF Fixed) 1 2, ,CP CP P  

6 IFN        (IF Float) 1 2, ,CP CP P  

Ionosphere-Free 
Combinations 

7 1N , 2N  1 2, ,CP CP P  

8 1N , WLN  1 2, ,CP CP P  

Stochastic Ionosphere Modelling 
1I  

 

4.2.1 Strategy 1 (use CP1, CP2 and P): 

The observation equations for this strategy can be written as: 
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1 1 1
1

( )

( )

CP N e cp

P e P

ρ
λ

ρ

= + +

= +
      (4.1) 

 

This is the simplest strategy, where only the L1 carrier phase and pseudorange 

observables are used. Correspondingly, only the L1 ambiguity is estimated. This is the 

typical scenario for most short baselines (say, < 5 km). The first advantage of this 

strategy is its simplicity, since only the L1 carrier phase observation is used and no 

observation combination is formed. The second advantage is its low noise and 

ionospheric error characteristics compared to WL and L2. Chapter 2 has shown that the 

ionospheric error and measurement noise on L1 in metres is the lowest compared to L2 

and WL. If the L1 ambiguities are fixed correctly, then better position solution will be 

achieved compared to L2 and WL. The disadvantage is that this strategy will have 

problems resolving the L1 integer ambiguities in period of high ionospheric error, 

considering the relatively short wavelength of L1 carrier, 19 cm.  If the ionospheric error 

is around or bigger than half of the wavelength, 10 cm, then this ambiguity resolution 

strategy can easily run into trouble. However, for most single frequency receivers, 

Strategy 1 is the only choice that can offer centimetre level positioning accuracy, but the 

success will be dependant on several factors including the ionospheric level.  

 

4.2.2 Strategy 2 (use CP1, CP2 and P): 

The observation equations for this strategy can be written as:  
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1 2

1 2

-

-

( )

( )

WL

WL

WL WL WL
WL

CP CP CP

N N N

CP N e cp

P e P

ρ
λ

ρ

=

=

= + +

= +

                            (4.2) 

 

In this strategy, the WL carrier phase observable is used, and the WL ambiguity is 

estimated in the filter. Chapter 2 discussed the property of the WL observable. It is 

expected that Strategy 2 should have better ambiguity resolution performance than 

Strategy 1 considering the large wavelength (86cm) to ionospheric error (in cycles) ratio. 

However, it was also demonstrated in Chapter 2 that the ionospheric error in metres for 

the WL actually increased, plus the fact that the WL contains nearly six times the noise 

than the L1 in metres, so Strategy 2 is expected to give a position estimate which contains 

high noise and ionospheric error signature.  

 

4.2.3 Strategy 3 (use CP1, CP2 and P): 

The observation equations for this strategy can be written as:  

1 1 1
1

2 2 2
2

( )

( )

( )

CP N e cp

CP N e cp

P e P

ρ
λ

ρ
λ

ρ

= + +

= + +

= +

                                  (4.3) 

This strategy is similar to Strategy 1. However, besides the L1 ambiguities, additional L2 

ambiguities are estimated in the filter using the L2 carrier phase observations. A dual 
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frequency receiver output both L1 and L2 carrier phase observables, thus it does not 

make sense to use only L1 data to estimate the positions as Strategy 1 does.  

 

The first advantage of Strategy 3 is that more system redundancy is achieved with the 

inclusion of the L2 data. The second advantage is that, unlike Strategy 2, the carrier phase 

noise is kept minimum since no frequency combination is formed between L1 and L2. 

However, it was shown in Chapter 2 that L2 has more ionospheric error than either the 

L1 or the WL. It is expected that this strategy will suffer significantly from ionospheric 

error in periods of high ionospheric activity, while it is expected to perform better than 

Strategy 1 in periods of very low ionospheric error since there is an increase in system 

redundancy.  

 

4.2.4 Strategy 4 (use CP1, CP2 and P): 

The observation equations can be written as:  

1 1 1
1

2 1 2
2

( )

- ( )

( )

WL

CP N e cp

CP N N e cp

P e P

ρ
λ
ρ
λ

ρ

= + +

= + +

= +

     (4.4) 

 

This strategy is very similar to the previous strategy except that the WL and L1 

ambiguities are estimated in the filter rather than the L1 and L2 ambiguities. Compared to 

Strategy 1, this strategy has the same kind of advantages and disadvantages as Strategy 3. 

However, this strategy has an additional advantage brought by the parameterization 
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scheme in Equation (4.4): WL and L1 ambiguities are estimated in Equation (4.4) instead 

of the L1 and L2 ambiguities in Equation (4.3).  It is expected that the WL ambiguities 

will converge very fast and be resolved to integers easily, while more data is needed to 

resolve the L1 ambiguities. Thus in this strategy, an attempt is first made to resolve the 

WL ambiguities; after that is done, an attempt is made to resolve the L1 ambiguities. It is 

expected that more data is needed for the L1 ambiguities to converge after the WL 

ambiguities are resolved since WL ambiguities are expected to converge much faster than 

L1 ambiguities. This strategy is included to compare the impact of different model 

parameterizations. 

 

4.2.5 Strategy 5 (use CP1, CP2 and P): 

Strategy 5 is a cascading scheme and it involves two sets of observation equations. The 

first set of observation equations (Equation (4.5)) is the same as the one used in Strategy 

2.  

( )

( )

WL WL WL
WL

CP N e cp

P e P

ρ
λ

ρ

= + +

= +
    (4.5) 

Equation (4.5) uses the WL observables to estimate the WL ambiguities. After the WL 

ambiguities are resolved, a modified IF observation 1 1
1 2

2 2

- - WLCP CP N
λ λ
λ λ

 is formed and a 

new set of observation equations is constructed as shown below   

1 1 2 1
1 2 1

2 2 2

-
- - ( )WL IF

IF

CP CP N N e cp
λ λ ρ λ λ
λ λ λ λ

= + +          (4.6) 
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where IFλ  is the IF wavelength (48cm). Equation (4.6) uses the modified IF observation 

1 1
1 2

2 2

- - WLCP CP N
λ λ
λ λ

 to estimate the 1N ambiguity. It should be noted that in this case, the 

effective L1 wavelength is 2 1

2

-
IF

λ λ
λ

λ
 (10.7 cm) instead of 1λ  (19 cm). The advantage of 

this strategy is that is will not suffer from the ionospheric error given that this effect is 

removed. However, there are several disadvantages of this strategy. The first 

disadvantage is the noise characteristics of the modified IF observation 

1 1
1 2

2 2

- - WLCP CP N
λ λ
λ λ

. Chapter 2 shows that the IF has a noise level which is three times 

higher than on L1 in metres. It is thus expected that the position estimate of the strategy 

will show a strong noisy signature. The second disadvantage of this strategy is that the 

effective wavelength of 1N is very small, only 10.7 cm. This will pose a problem when 

trying to resolve the 1N  directly.  1N  may be resolved correctly provided that the 

combined residual tropospheric error and the position estimate error is not significant (< 

5 cm). This condition may not be fulfilled easily in practice. The short wavelength of 

10.7cm also means a much longer convergence time for the 1N  ambiguities is needed.  

After the L1 ambiguities are estimated and resolved as integers, the ionosphere-free fixed 

(IF Fixed) position estimates can be computed and the ionospheric error can also be 

computed based on the L1 and L2 carrier phase observables using the following equation 

2
1 1 2 2 1

1 2 2
1 1 2 2 1 2

-
- -

CP CP
I

N N
λ λ λ
λ λ λ λ

=     (4.7) 
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The term “IF Fixed” is derived because in this strategy, both L1 and L2 (or WL) 

ambiguities have been fixed to integer values. Blewitt (1989) discussed a similar 

approach to resolving ambiguities for long inter-station baselines. 

 

4.2.6 Strategy 6 (use CP1, CP2 and P): 

The observation equations for this strategy can be written as:  

1
1 2

2

- ( )

( )

IF IF
IF

CP CP N e cp

P e P

λ ρ
λ λ

ρ

= + +

= +
     (4.8) 

 
 
In this strategy, the IF ambiguities IFN  are estimated using the IF observations. By 

nature, IFN are floating values. This is a special strategy where ambiguities are estimated 

but need not be resolved to integers. The argument behind this strategy is that as long as 

all other observation errors (e.g. tropospheric error, satellite coordinates, multipath) are 

properly accounted for, the float-valued IF ambiguity should be errorless. The position 

estimates based on these float-valued IF ambiguities are named the “IF Float” solutions. 

This term is used because in this strategy no attempt is made to resolve the L1 and L2 (or 

WL) integer ambiguities. The advantage of this strategy is that no ambiguity resolution is 

needed and it is still expected to give a fair good position estimate since the ionospheric 

error is removed when forming the IF observation.  The disadvantage of this strategy is 

its noise characteristics, as the IF observation is three times as noisy as L1 in metres.  
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4.2.7 Strategy 7 (use CP1, CP2 and P): 

The observation equation for this strategy is: 

1 1 1 1
1

2
2 2 1 22

2 1

1

0 1

2
0 0

- ( )

- ( )

( )

~(0, )

CP N I e cp

CP N I e cp

P I e P

I I

I

ρ
λ
ρ λ
λ λ
ρ

σ
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= + +

= + +
=

                  (4.9) 

 
 
Chapter 2 has shown that a first order Gauss-Markov process is consistent with the 

observed temporal correlations for ionospheric error, thus it is feasible to model and 

estimate the ionospheric error in a Kalman filter. The previous state vector containing 

only position, velocity and ambiguity states in Strategies 1-6 is now expanded to include 

the DD ionospheric error, which is modelled as a first order Gauss-Markov process in 

this strategy.  

 

The first advantage is that now the estimator in Strategy 7 is largely unbiased given the 

DD ionospheric error is modelled explicitly. It is expected that the position estimate will 

not be influenced by the ionospheric error. The other advantage of this strategy is that no 

frequency combination is made in modelling the ionospheric error between L1 and L2, 

unlike the previous two strategies where IF is formed to remove the ionospheric error, 

thus the observation noise is kept minimum. It is thus expected that the position estimate 

of this strategy will outperform the previous two strategies if ambiguities are resolved 

correctly in both Strategies 5 and 7. The advantage of this strategy is that the solution is 

weak since additional states are estimated in the filter. It is expected that the filter in this 
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strategy may take a longer time to converge compared to Strategies 3 and 4 even all three 

strategies use the observations of the same type and number.  It is also expected that the 

filter may not distinguish between the 1N  and 2N  ambiguity states and the ionospheric 

error state at the initial filtering phase, causing extra delay in filter convergence and 

unreasonable DD ionospheric error estimate.   

 

It is well known that the DD ionospheric error is usually bounded around zero.  To help 

strengthen the solution and speed up the convergence, a pseudo-ionospheric error 

observable, 0I , with a value of zero and variance of 2
0σ  is also added for each ionospheric 

error.  The selection of the 2
0σ  is dependant on the highest level of the DD ionospheric 

error. This pseudo-observable will help constrain the DD ionospheric error to reasonable 

value during the initial phase of the filter, and force the filter to distinguish between the 

ionospheric error states and the ambiguity states. This strategy was first seen in (1997a) 

and applications of this strategy can be found in Odijk (2000).  

4.2.8 Strategy 8 (use CP1, CP2 and P): 

The observation equations for this strategy are:  
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This strategy is very similar to the Strategy 7 except that the WL and L1 ambiguities are 

estimated in the filter rather than the L1 and L2 ambiguities. Besides the advantages and 

disadvantages discussed in Strategy 7, this strat egy has an additional advantage brought 

by the parameterization scheme in Equation (4.10): WL and L1 ambiguities are estimated 

in Equation (4.10) instead of L1 and L2 ambiguities in Equation (4.9).  It is expected that 

the WL ambiguities will converge very fast and resolved to integers easily, while more 

data is needed to resolve the L1 ambiguities. Thus in this strategy, first an attempt is to 

resolve the WL ambiguities, after the WL ambiguities are resolved, an attempt is made to 

resolve the L1 ambiguities. It is expected that more data is needed for the L1 ambiguities 

to converge after the WL ambiguities are resolved since WL ambiguities are expected to 

converge much faster than L1 ambiguities. This strategy is included to compare the 

impact of different model parameterizations. 

 

4.3 Software Realization 

 

Previous sections examined various ambiguity resolution strategies. These processing 

strategies are implemented in the FLYKIN+TM software package. Before testing the 

strategies, it is appropriate to discuss some issues related to the FLYKIN+TM software 

development. The latest FLYKIN+TM is a powerful GPS processing software package 

and it outperforms its predecessor FLYKIN TM (Lu et al., 1994) in many ways. Table 5.1 

gives a comparison of these two versions. 
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Besides the differences shown in the table, the latest edition has some of the following 

advantages over its previous counterpart: The previous version used a fixed estimation 

model, which estimated position and velocity, and modelled the velocity as a random 

walk process; the user had no control of the states estimated and the model used. In the 

latest version of FLYKINT M, the user has the freedom of choosing which states are to be 

estimated, be they position, position + velocity, or position + velocity + acceleration. The 

user also has the freedom of choosing what model is  to be used, be it Kalman filtering, or 

sequential least squares. Finally, users can now choose the observable or observation 

combination, such as pseudorange only, L1 phase only, L2 phase only, L1+L2 phase, or 

WL phase combination. 

Table 4.2 Software Functionality  

Functionality FLYKIN+TM FLYKINTM 

Process data in kinematic mode Yes Yes 

WL fixing Yes Yes 

IF float Yes No 

IF fixed Yes No 

Process data in static mode Yes No 

Estimate acceleration Yes No 

Integrated real time/post mission Yes No 

Height fixing Yes No 

Stochastic ionosphere modelling Yes No 
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The latest FLYKIN+TM is developed based on the idea of Object-Oriented Programming 

(OOP).  The benefits of OOP- style programming include code reusing and high 

modularization. In OOP, each object (a physical process, mathematical model, or a 

physical entity, etc.) is represented by a class, and similar objects are connected by virtue 

of inheritance.  Specific to the domain of GPS software, the objects are raw observation 

data objects, satellite ephemeris objects, tropospheric delay model objects, and 

processing method (single point processing, single difference processing, double 

difference processing) objects. The software FLYKIN+TM used in this thesis is developed 

based on a GPS C++ library developed by the Navigation Lab at the Department of 

Geomatics Engineering, University of Calgary. To illustrate the OOP concept used in the 

FLYKIN+TM software, the troposphere class is used as an example as shown in Figure 

4.1. There are numerous tropospheric delay models. The most frequently used is the 

modified Hopfield and Saastamoinen tropospheric delay model. By using the OOP style, 

the software can easily incorporate new models into the existing software with minimal 

change to the existing code. 

 

Figure 4.1 shows the troposphere model class hierarchy. All the tropospheric models are 

derived from the same base class NTropoModel. This class encapsulates all the common 

functionalities of any troposphere model. There are several child classes of the base class 

NTropoModel. The class NhopfieldTropoModel implements the functionality specific to 

the modified Hopfield troposphere model. The class NsaasTropoModel implements the 

functionality specific to the Saastamoinen Model. If in the future a better troposphere 

model becomes available, a class called OtherTropoModel can be derived from the 
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NTropoModel to implement specific functionality of the new troposphere model. In this 

way, the change to the software module interface is minimized.  

 

 

Figure 4.1 Tropospheric Delay Model Classes 

 
To further illustrate the OOP programming style in FLYKIN+TM, another data handling 

class example is discussed next. Figure 4.2 shows the data handling class hierarchies. The 

class NUDData handles the undifferenced data object. It acts as a pre-processor to the 

single point positioning module. The class NSDData derives from the class NUDData 

and it acts as a pre-processor to the single differenced positioning module. The class 

NDDData derives from the class NSDData and it acts as a pre-processor to the double 

differenced positioning module.  
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Figure 4.2 Data Handling Class 
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CHAPTER 5 

SINGLE AND MULTIPLE REFERENCE STATION TESTS AND RESULTS 

 

5.1 Introduction 

 

In Chapter 4, eight different ambiguity resolutions strategies were introduced. This 

chapter tests these eight strategies in both single and multiple reference station scenarios. 

The test methodology and results for each scenario are presented below. 

 

5.2 Single Reference Station Tests and Results 

 

As stated in Chapter 1, the scope of this research is restricted to normal RTK practice, so 

a kinematic mode for the rover is assumed. The dynamics model and measurement model 

discussed in Chapter 3 are used.  However, the reduction of real kinematic data is 

difficult due to the lack of reference trajectory (truth data). For easy comparisons of the 

position estimate, three static baselines have seen selected and processed in a “simulated” 

kinematic mode. Because the data is static, a small spectral density (0.0001 m2/s3) is set 

on the process noise that is driving the velocity states. The means the results are 

representative of one true kinematic case only when the rover has a constant velocity. For 

rovers that have significant accelerations, the results presented here are optimistic and 

they may not represent the real kinematic case. This means that a slight advantage is 
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gained from the fact that the rover receiver is actually static. All results shown here were 

obtained using the University of Calgary’s new FLYKIN+™ software package described 

in the previous chapter.   

 

In order to obtain a reference estimate for the L1 and L2 ambiguities, the data were first 

processed with the University of Bern’s Bernese Software. The ambiguity estimates 

obtained from FLYKIN+™ can then be compared with those from Bernese to evaluate 

the performance of a given processing strategy. In total, two different tests were 

conducted. For both tests, FLYKIN+™ uses the LAMBDA technique to resolve the 

integer ambiguities.  

 

In Test 1, the entire data set is processed with FLYKIN+T M with ambiguities and 

positions being estimated at each epoch.  The rover position estimate is compared to the 

known position of the rover, and the RMS error is computed. Also, the integer 

ambiguities estimated by FLYKIN+T M are compared with those from Bernese.  

 

In Test 2 the data set is divided into independent even intervals, and each interval is 

processed with FLYKIN+TM to check the ambiguity resolution performance and position 

accuracy for each strategy. Once the ambiguity is resolved, a fixed position solution is 

recorded and the software will re-initialize the filter and go to the beginning of next 

interval to try and resolve the ambiguities again. The purposes of Test 2 are to: 
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1) Determine how fast each strategy is able to resolve the ambiguities (time to fix 

ambiguities); and 

2) Assess the accuracy of the fixed ambiguities (percentage of correctly fixed 

ambiguities). 

 

In conjunction with this, this test will also help determine whether fixing WL first can 

reduce the position errors even if the L1 ambiguities cannot be fixed, although the 

ultimate goal is to fix the L1 ambiguities.  Figure 5.1 shows the set-up for this purpose. In 

the figure, the upper bar chart represents Strategies 4 and 8 whereby the L1 and WL 

ambiguities are estimated. The lower bar chart represents Strategies 3 and 7 where the L1 

and L2 ambiguities are estimated. The red segment (T2/T4) means that no integer 

ambiguities are resolved, and the yellow segment (T3) means only WL ambiguities are 

resolved (in Strategies 4 and 8 only). The green segment (the end) means that all 

ambiguities have been resolved.  This test will compare whether the time needed to fix 

both L1 and WL (T1) is comparable to the time (T4) required to fix both L1 and L2 

ambiguities. This test also will compare the position error RMS during T3 (only WL 

integer ambiguities are resolved) and T4 (both L1 and L2 ambiguities are not resolved). 

Figure 5.1 Test Set-up 

 

T1 

N1 NWL 

N1 N2 

   T4 

   T3     T2 
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Table 5.1 lists the variances of the different observations used in the processing of each 

strategy for all three baselines. To make the comparisons consistent, the variance given to 

the pseudoranges for all strategies is the same.  The variance given to the L1 and L2 

carrier phase for Strategies 1 to 6 is the same. The variance given to the L1 and L2 carrier 

phase for Strategies 7 and 8 is the same.  

Table 5.1 Observation Standard Deviations 

Observation Standard Deviation 
Strategy 

P  (m) 1CP  
(cycle) 

2CP  
(cycle) 

0I  
(m) 

1 0.5 0.04 N/A N/A 

2 0.5 0.04 0.04 N/A 

3 0.5 0.04 0.04 N/A 

4 0.5 0.04 0.04 N/A 

5 0.5 0.04 0.04 N/A 

6 0.5 0.04 0.04 N/A 

7 0.5 0.01 0.01 0σ  

8 0.5 0.01 0.01 0σ  

 

Since Strategies 7 and 8 models the DD ionospheric error explicitly, the L1 and L2 phase 

observable variances are smaller than any of the other six strategies. The value of the 

ionospheric error pseudo-observables is zero. The standard deviation 0σ  for the pseudo-

ionosphere observable for the first two baselines is 0.2 m and 0.3 m for the third baseline 

because the third baseline has a much higher ionospheric error than the first two. 
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5.2.1 Results 

The test results are presented on a baseline-by-baseline basis following the order of the 

baseline lengths. The 13-km Calgary baseline is presented first.  

I) Baseline I. 

The first data processed is a 13km baseline in Calgary, Canada. The data set is 24 hours 

long with a sampling rate of 1Hz, collected in May 2002 with a pair of NovAtel 

Modulated Precision Clock (MPC) receivers. The cut-off elevation angle is 15°. The 

following figure depicts the DD ionospheric error on L1 for the 24-hour period which 

shows that the DD ionospheric error reaches 11 ppm.  

 

Figure 5.2 DD Ionospheric Errors on L1, 13 km Baseline 

 

The following sub-sections analyze the results of the various strategies on a test-by-test 

basis. 
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1) Test 1 Result, 24-hour-run Test. 

The left column of each strategy in Table 5.2 summarizes the position RMS error results 

and the left column of each strategy in Table 5.3 summarizes the ambiguity results for the 

eight strategies in Test 1. Strategies 5, 6, 7 and 8 clearly outperform Strategies 1, 2, 3 and 

4. Strategies 1, 3, 4 where attempts are made to resolve the L1 ambiguities show the 

worst RMS position error in general, indicating the limitation of the L1 ambiguity 

resolution under an active ionosphere. Although Strategy 2 (WL) shows excellent 

ambiguity resolution performance (100% correct), it does not provide the least RMS 

error, as expected. The above Test 1 results are generated using a small spectral density 

on the process noise. To demonstrate the impact of the magnitude of the spectral density 

on positioning results, a larger spectral density of the process noise (1 m2/s3, a typical 

value for most land vehicles) is used and Test 1 is performed again on the same baseline. 

The right column (shaded column) of each strategy in Table 5.2 summarizes the new 

position RMS error results and the right column (shaded column) of each strategy in 

Table 5.3 summarizes the new ambiguity results. In general, position and ambiguity 

results for each strategy become poorer because of the large spectral density used, as 

expected. However, the change of statistic is not significant. One can see that Strategies 

2, 5 and 6 generates the same position and ambiguity results. Even though Strategy 8 

resolves 0.3% of the L1 ambiguities wrong, it still generates the least RMS position 

errors among all the strategies. Therefore, the small process noise spectral density 0.0001 

m2/s3 is used in all the following tests.  
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Table 5.2 24-hour-run Position Estimate RMS (cm) for Test Baseline 1 

Strategy 
Axis 

1 2 3 4 5 6 7 8 

East 6 9 4 4 10 15 4 6 3 3 4 4 3 3 2 2 

North 5 7 2 2 6 5 3 3 2 2 2 2 2 2 1 2 

Height 16 19 6 6 26 21 8 9 4 4 4 4 3 5 3 4 

Table 5.3 Percentage of Ambiguities Resolved Correctly (%) 

Strategy 
Ambiguity 

1 2 3 4 5 6 7 8 

1N  
76.5 72.9 N/A 85.7 80.4 85.9 83.2 100 100 N/A 100 99.5 100 99.7 

2N  N/A N/A 94.8 90.3 N/A N/A N/A 100 99.5 N/A 

WLN  
N/A 100 100 N/A 97.3 96.8 100 100 N/A N/A 100 100 

 

1.1) Test 1, Strategy 1 Results 

Figure 5.3 contains the position errors (top) and ambiguity errors (bottom) which are 

defined as the sum of absolute ambiguity difference as compared with the ambiguity 

output from Bernese. 
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Figure 5.3 Position Errors and Ambiguity Comparison, Strategy 1 

 

From the figure, it can be seen that the ambiguities are fixed correctly except from 18:00 

to 02:00 local time, during which the ionospheric error is high. This result reinforces the 

fact that the ionosphere is the dominant error source hindering successful ambiguity 

resolution for L1. The poor ambiguity resolution performance during periods of high 
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ionospheric activity is coupled with poor position estimates.  The top graph in Figure 5.3 

and the ambiguity statistics in Table 5.3 also support these findings. 

1.2) Test 1, Strategy 2 Results. 

Figure 5.4 shows the position results for Test 1 using Strategy 2.  Table 5.3 shows that 

the WL ambiguity is resolved 100% of the time correctly, despite the high ionospheric 

error at the beginning of the data. This is reasonable considering the large 

wavelength/ionosphere ratio (expressed in cycles) for WL. Although the WL ambiguities 

are resolved correctly, the position estimates are still influenced by the ionospheric error 

with errors up to 30-50 cm in some axes even when all ambiguities have been fixed 

correctly, as discussed above. Figure 5.4 clearly shows the position estimate variations 

caused by the ionosphere during the peak of ionospheric activity.  

 

Figure 5.4 Position Errors, Strategy 2 
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1.3) Test 1, Strategy 3 Results. 

Figure 5.5 shows the Test 1 results using Strategy 3. Ambiguity resolution for L1 and L2 

is good after the beginning of the data set when the ionospheric error is high. This 

suggests that the introduction of L2 phase data still cannot help much during periods of 

high ionosphere if the ionospheric error is not modelled adequately.  

 

 

Figure 5.5 Position Errors and Ambiguity Comparison, Strategy 3 
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1.4) Test 1, Strategy 4 Results. 

Figure 5.6 shows the position and ambiguity results for Test 1 using Strategy 4.  

 

 

Figure 5.6 Position Errors and Ambiguity Comparison, Strategy 4 

Recall that Strategy 4 used the same observations as Strategy 3 except that the L1 and 

WL ambiguities are estimated in the filter instead of the L1 and L2 ambiguities. As the 
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bottom graph in Figure 5.6 shows, although the WL ambiguities are fixed correctly at the 

beginning of the data set, a large quantity of L1 ambiguities are fixed incorrectly. This 

means that fixing of the WL ambiguities first during periods of high ionospheric activity 

does not aid the fixing of L1 ambiguities.  

1.5) Test 1, Strategy 5 Results. 

Figure 5.7 shows the position results for Test 1, Strategy 5. 

 

Figure 5.7 Position Errors, Strategy 5 

 

Table 5.3 shows that the WL and L1 ambiguities for Strategy 5 are fixed correctly 100% 

of the time. The position error RMS values for Strategy 5 in Table 5.2 clearly outperform 

Strategies 1 through 4.  Recall that this strategy uses a combination of L1 and L2 carrier 

phase observables. Although the ionospheric error is absent, the noise characteristic is 

evident in this strategy. Comparing the position error plots of both Figures 5.3, 5.5, 5.6 
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and 5.7 from 04:00 to 18:00 local time, when all three strategies fixed L1, L2 and WL 

ambiguities correctly most of the time, the position errors in Figure 5.7 shows a much 

noisier behavior, especially in height. 

1.6) Test 1, Strategy 6 Results. 

Figure 5.8 shows the position results for Test 1 using Strategy 5. Table 5.2 shows that the 

RMS of the position errors for Strategy 6 is worse than for Strategies 5, 7 and 8, but is 

still better than Strategies 1 through 4. In this Strategy, there is no risk of resolving the 

ambiguity to the wrong integer, thus it is a reliable method. However, there is one 

limitation with this method, namely the time needed for the ionosphere-free ambiguity to 

converge is significant. Figure 5.8 shows that it takes around 1 hour to converge based on 

the convergence of the position error towards zero. 

 

Figure 5.8 Position Errors, Strategy 6 
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1.7) Test 1, Strategy 7 Results. 

Figure 5.9 shows the position results for Test 1 using Strategy 7.  From the figure and 

Table 5.2, it can be seen that this strategy gives the best positioning performance 

compared to all previous strategies. 

 

Figure 5.9 Position Errors, Strategy 7 

 

1.8) Type 1, Strategy 8 Results. 

Figure 5.10 shows the position results for Test 1 using Strategy 8. The observables used 

in this strategy are the same as in Strategy 7. The difference is that L1 and widelane 

ambiguities are estimated in the filter instead of L1 and L2 ambiguities. Figure 5.10 is 

very similar to Figure 5.9. The only obvious difference is that the position error of 

Strategy 8 is 50% smaller for the north and 100% for the east axes than that of Strategy 7. 

This is attributed to the fact that the widelane ambiguities can be fixed must faster than 
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the L1 ambiguities and the fixing of widelane ambiguities improves the position estimate. 

See the results of Test 2 for more details. 

 

 

Figure 5.10 Position Errors, Strategy 8 

 

2) Test 2 Result, 600-second-interval Tests. 

In this test, the 24-hour data set is divided into equal 600-second intervals, and each 

interval is processed with FLYKIN+TM for all the strategies in Table 4.1 to assess the 

ambiguity resolution performance and position accuracy. Once the ambiguities are 

resolved, a fixed position solution is recorded and the FLYKIN+TM software will re-

initialize the filter and go to the beginning of the next 600-second interval to try and 

resolve the ambiguities again. 
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Table 5.4 shows the 600-second-run statistics for all the strategies. The shaded block 

containing the statistics for the WL shows that the WL ambiguity is both reliable and 

stable in terms of time to fix and percentage correct.  Also, comparing the statistics for 

Strategies 3 and 4, where the same observations are used, the only difference being that 

in Strategy 3, the L1 and L2 ambiguities are estimated in the filter, while in Strategy 4 the 

L1 and WL ambiguities are estimated.  The statistics show that it takes comparable time 

to fix L1 ambiguities for both approaches (78 seconds for Strategy 3 and 80 seconds for 

Strategy 4) and the percentage correct is also comparable (93.5% for Strategy 3 and 

91.9% for Strategy 4). The percentage fixed within the 600-second-interval is also 

comparable (83% for Strategy 3 and 80% for Strategy 4). The same is true for Strategies 

7 and 8. Comparing the statistics for Strategies 7 and 8, where the same observations are 

used, the only difference being that in Strategy 7, the L1 and L2 ambiguities are 

estimated in the filter, while in Strategy 8 the L1 and WL ambiguities are estimated.  The 

statistics show that it takes comparable time to fix L1 ambiguities for both approaches 

(216 seconds for Strategy 7 and 225 seconds for Strategy 8) and the percentage correct is 

also comparable (83% for Strategy 7 and 78.5% for Strategy 8). The percentage fixed 

within the 600-second-interval is also comparable (53% for Strategy 7 and 57% for 

Strategy 8).  

 

For this data, estimating L1 and WL ambiguities in the same filter instead of L1 and L2 

ambiguities does not bring much improvement as far as L1 ambiguity resolution is 

concerned. 
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Table 5.4 600-second-run Statistics, 13 km Baseline 

Strategy 
Measure 

1 2 3 4 5 7 8 

1N FWI1 76% N/A 83% 80% 27% 53% 57% 

1N PCFA2 77.6% N/A 93.5% 91.9% 52% 83% 78.5% 

1N MTTF3 277 s N/A 78 s 80 s 530 s 216 s 225 s 

2N  FWI N/A N/A 83% N/A N/A 53% N/A 

2N  PCFA N/A N/A 93.5% N/A N/A 83% N/A 

2N  MTTF N/A N/A 87 N/A N/A 219 N/A 

WLN FWI N/A 99% N/A 99% 99% N/A 99% 

WLN PCFA N/A 97.4% N/A 96.4% 97.4% N/A 98.7% 

WLN MTTF N/A 30 s N/A 30 s 30 s N/A 32 s 
1 FWI: Fixed Within 600-s Interval (%) 

2 PCFA: Percentage of Correctly Fixed Ambiguities (%) 

3 MTTF: Mean Time To Fix (s) 

 

However, estimating L1 and widelane ambiguities in the filter instead of L1 and L2 

ambiguities does have a benefit in the position domain. Table 5.5 shows the position error 

RMS for Strategies 3, 4, 7, and 8.  The position error for Strategies 4 and 8 after the WL 

ambiguities are resolved are significantly lower than for Strategies 3 and 7 where both L1 

and L2 ambiguities cannot be resolved. Therefore estimating WL and L1 ambiguities 

instead of L1 and L2 has a benefit on position estimation provided that the WL ambiguity 
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resolution is reliable and fast. Another phenomenon worth noting is the overall position 

accuracy improvement of the stochastic ionosphere modelling which can be seen by 

comparing the RMS position error between Strategies 3, 4 and Strategies 7, 8. 

Table 5.5 Position RMS (cm) for 600-second-run, 13 km Baseline 

Strategy 

3 4 7 8 Axis 

No Ambiguity 
Fixed 

Only WL 
Ambiguity 

Fixed 

No Ambiguity 
Fixed 

Only WL 
Ambiguity 

Fixed 

East 37 8 19 5 

North 16 5 13 3 

Height 51 20 26 6 

 

II)  Baseline II 

 

This second baseline was collected on February 7, 2002 from the Campania network in 

Italy.  Dual frequency data were collected at a rate of 1 Hz for 24 hours. The cut-off 

elevation angle is also 15 degrees. The data were processed once for each of the strategies 

listed in Table 4.1. As shown in Figure 5.11, the ionospheric error on L1 at the beginning 

and end of the data set is small, 2-5 ppm, while it is very high in the middle of the data 

(08:00 16:00 local time), up to 15 ppm.   
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Figure 5.11 DD Ionospheric Errors on L1, 26 km Baseline 

 

The following sub-sections analyze the results of the various strategies on a test-by-test 

basis. 

1) Test 1 Result, 24-hour-run Tests. 

Table 5.6 summarizes the position RMS and Table 5.7 summarizes the ambiguity result 

for the eight strategies in Test 1. Again, Strategies 5, 6, 7 and 8 outperform Strategies 1, 

2, 3 and 4. Strategies 1, 3, 4 where attempts are made to resolve the L1 ambiguities show 

the worst position RMS error in general, due to the limitation of the L1 ambiguity 

resolution under active ionosphere. Although Strategy 2 (WL) shows excellent ambiguity 

resolution performance (100% correct), the RMS position error is dwarfed compared to 

the last four strategies. This is the expected behaviour of WL. 
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Table 5.6 24-hour-run Position Estimate RMS (cm) for Test Baseline 2 

Strategy 

Axis 
1 2 3 4 5 6 7 8 

East 35 9 13 11 4 5 2 2 

North 16 4 12 16 2 4 2 1 

Height 33 12 27 34 9 11 6 3 

 

Table 5.7 Percentage of Ambiguities Resolved Correctly (%), 26 km Baseline 

Strategy 

Ambiguity 
1 2 3 4 5 6 7 8 

1N  69.5 N/A 97.4 92 100 N/A 100 100 

2N  N/A N/A 98.1 N/A N/A N/A 100 N/A 

WLN  N/A 100 N/A 100 100 N/A N/A 100 

 

1.1) Test 1, Strategy 1 Results 

Figure 5.12 contains the position errors (top) and ambiguity errors (bottom). From the 

figure, it can be seen that the ambiguities are fixed correctly except from 08:00 to 16:00 

local time, during which the ionospheric error is high. This result reinforces the fact that 

the ionosphere is the dominant error source hindering successful ambiguity resolution for 

L1. The bad ambiguity resolution performance during periods of high ionospheric 
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activity is coupled with bad position estimates.  The top graph in Figure 5.12 and the 

statistics in Table 5.7 also support these findings. 

 

 

Figure 5.12 Position Errors and Ambiguity Comparison, Strategy 1 

1.2) Test 1, Strategy 2 Results. 
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Figure 5.13 shows the position result for Test 1 using Strategy 2.  Table 5.7 shows that 

the WL ambiguity is resolved 100% correctly, despite the high ionosphere in the middle 

of the data. This is reasonable considering the long wavelength of the WL, relative to the 

ionospheric error (expressed in cycles). Although the WL ambiguities are resolved 

correctly, the position estimate is still influenced by the ionospheric error with errors up 

to 40cm in all three axes even when all ambiguities have been fixed correctly, as 

discussed above. Figure 5.13 clearly shows the position estimate variations caused by the 

ionosphere during the period of high ionospheric activity.  

 

Figure 5.13 Position Errors, Strategy 2 

1.3) Test 1, Strategy 3 Results. 

Figure 5.14 shows the Test 1 results using Strategy 3. Ambiguity resolution for L1 and 

L2 is good at the beginning and end of the data set when the ionospheric error is small.  

However, errors become evident starting at 08:00 local time when the ionospheric 
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activity increases. This suggests that the introduction of L2 phase data still cannot help 

much during periods of high ionosphere if the ionospheric error is not modelled 

adequately.  

 

 

Figure 5.14 Position Errors and Ambiguity Comparison, Strategy 3 
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1.4) Test 1, Strategy 4 Results. 

Figure 5.15 shows the position and ambiguity results for Test 1 using Strategy 4.  

 

 

Figure 5.15 Position Errors and Ambiguity Comparison, Strategy 4 

 

Recall that Strategy 4 used the same observations as Strategy 3 except that the L1 and 

WL ambiguities are estimated in the filter instead of the L1 and L2 ambiguities. As the 
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bottom graph in Figure 5.15 shows, although the WL ambiguities are fixed correctly 

100% of the time, the percentage of L1 ambiguities fixed correctly is lower than for 

Strategy 3. This means that fixing of the WL ambiguities first during periods of high 

ionospheric activity does not significantly aid the fixing of L1 ambiguities. Comparing 

these results to Strategy 3 shows fewer L1 ambiguities are fixed correctly and the 

position error is larger.  

1.5) Test 1, Strategy 5 Results 

Figure 5.16 shows the position results for Test 1, Strategy 5. 

 

Figure 5.16 Position Errors, Strategy 5 

 

Table 5.7 shows that the WL and L1 ambiguities for Strategy 5 are fixed correctly 100% 

of the time. The position error RMS values for Strategy 5 in Table 5.6 clearly 

outperforms Strategies 1 through 4.  Recall that this strategy uses a combination of L1 

and L2 carrier phase observables. Although the ionospheric error is absent, the noise 
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characteristic is evident in this strategy. Comparing the position error plots of both 

Figures 5.15 and 5.16 from 00:00 to 08:00 local time and 16:00 to 00:00, when both 

strategies fixed L1 and WL ambiguities correctly, the position errors in Figure 5.16 

shows a much noisier behavior than that of Figure 5.15. 

1.6) Test 1, Strategy 6 Results. 

Figure 5.17 shows the position results for Test 1 using Strategy 5. Table 5.6 shows that 

the RMS of the position errors for Strategy 6 is worse than for Strategies 5, 7 and 8, but is 

still better than Strategies 1 through 4. In this Strategy, there is no risk of resolving the 

ambiguity to the wrong integer, thus it is a reliable method. However there is one 

limitation with this method, namely the time needed for the ionosphere-free ambiguity to 

converge is significant. Figure 5.17 shows that it takes around 2 hours to converge based 

on the convergence of the position error towards zero. 

 

 

Figure 5.17 Position Errors, Strategy 6 



 

 

95

1.7) Test 1, Strategy 7 Results. 

Figure 5.18 shows the position results for Test 1 using Strategy 7.  From the figure and 

Table 5.7, it can be seen that this strategy gives the best positioning performance 

compared to all previous strategies. 

 

 

Figure 5.18 Position Errors, Strategy 7 

 

1.8) Type 1, Strategy 8 Results. 

Figure 5.19 shows the position results for Test 1 using Strategy 8. The observables used 

in this strategy are the same as in Strategy 7. The difference is that L1 and widelane 

ambiguities are estimated in the filter instead of L1 and L2 ambiguities. Figure 5.19 is 

very similar to Figure 5.18. The only obvious difference is that the position error of 



 

 

96

Strategy 8 is 50% smaller than that of Strategy 7 for the north and east axes. Again, this is 

attributed to the fact that the widelane ambiguities can be fixed must faster than the L1 

ambiguities and the fixing of widelane ambiguities improves the position estimate.  

 

 

Figure 5.19 Position Errors, Strategy 8 

 

2) Test 2 Result, 600-second-interval Tests. 

In this test, the 24-hour data set is divided into equal 600-second intervals, and each 

interval is processed with FLYKIN+TM for all the strategies in Table 4.1 to assess the 

ambiguity resolution performance and position accuracy. Once the ambiguity is resolved, 

a fixed position solution is recorded and the FLYKIN+TM software will re-initialize the 

filter and go to the beginning of next 600-second interval to try and resolve the 

ambiguities again.  
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Table 5.8 shows the 600-second-run statistics for all the strategies. The shaded block 

containing the statistics for the WL shows that the WL ambiguity is both reliable and 

stable in terms of time to fix and percentage correct. Also, comparing the statistics for 

Strategies 3 and 4, where the same observations are used, the only difference being that 

in Strategy 3, the L1 and L2 ambiguities are estimated in the filter, while in Strategy 4 the 

L1 and WL ambiguities are estimated.  The statistics show that it takes comparable time 

to fix L1 ambiguities for both approaches (116 seconds for Strategy 3 and 113 seconds 

for Strategy 4) and the percentage correct is also comparable (94% for Strategy 3 and 

90% for Strategy 4). The percentage of fixing the L1 ambiguities within the 600-second 

interval is also comparable (54% for Strategy 3 and 47 for Strategy 4). The same is true 

for Strategies 7 and 8. Comparing the statistics for Strategies 7 and 8, where the same 

observations are used, the only difference being that in Strategy 7, the L1 and L2 

ambiguities are estimated in the filter, while in Strategy 8 the L1 and WL ambiguities are 

estimated.  The statistics show that it takes comparable time to fix L1 ambiguities for 

both approaches (144 seconds for Strategy 7 and 155 seconds for Strategy 8) and the 

percentage correct is also comparable (90% for Strategy 7 and 91% for Strategy 8). The 

percentage fixed within the 600-second-interval is also comparable (70% for Strategy 7 

and 68% for Strategy 8).  

For this data, estimating L1 and WL ambiguities in the same filter instead of L1 and L2 

ambiguities does not bring much improvement as far as L1 ambiguity resolution is 

concerned. 
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Table 5.8 600-second-run Statistics, 26 km Baseline 

Strategy 
Measure 

1 2 3 4 5 7 8 

1N FWI 44% N/A 54% 47% 26% 70% 68% 

1N PCFA 36% N/A 94% 90% 78% 90% 91% 

1N MTTF 244 s N/A 116 s 113 s 326 s 144 s 155 s 

2N  FWI N/A N/A 54% N/A N/A 70% N/A 

2N  PCFA N/A N/A 95% N/A N/A 91% N/A 

2N  MTTF N/A N/A 116 s N/A N/A 144 s N/A 

WLN FWI N/A 99% N/A 93% 99% N/A 99% 

WLN PCFA N/A 100% N/A 98% 100% N/A 100% 

WLN MTTF N/A 17 s N/A 19 s 17 s N/A 17 s 

 

However, estimating L1 and widelane ambiguities in the filter instead of L1 and L2 

ambiguities does have a benefit in the position domain. Table 5.9 shows the position error 

RMS for Strategies 3, 4, 7, and 8.  The position errors of Strategies 4 and 8 in all three 

axes after the WL ambiguities are resolved are significantly lower than for Strategy 3 and 

Strategy 7 where both L1 and L2 ambiguities cannot be resolved. Therefore estimating 

WL and L1 ambiguities instead of L1 and L2 has a benefit on position estimation 

provided that the WL ambiguity resolution is reliable and fast. Again there is overall 

position accuracy improvement brought by the stochastic ionosphere modelling 

comparing the position RMS between Strategies 3, 4 and Strategies 7, 8 in Table 5.9. 
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Table 5.9 Position RMS (cm) for 600-second-run, 26 km Baseline 

Strategy 

3 4 7 8 Axis 

No Ambiguity 
Fixed 

Only WL 
Ambiguity 

Fixed 

No Ambiguity 
Fixed 

Only WL 
Ambiguity 

Fixed 

East 49 18 15 9 

North 26 8 11 5 

Height 76 15 27 12 

 

III) Baseline III 

This baseline was collected on the same day and from the same network as baseline II. 

However, the baseline length is much longer in this case, 43 km. The cut-off elevation 

angle is 15 degrees. Figure 5.20 shows the estimate of the DD ionospheric error on L1 for 

the 24-hour period. The DD ionospheric error goes as high as 50 cm for certain satellites 

during the peak of the ionospheric activity.  

 

Figure 5.20 DD Ionospheric Errors on L1, 43 km Baseline 
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1) Test 1 Result, 24-hour-run Tests. 

Table 5.10 summarizes the position RMS and Table 5.11 summarizes the ambiguity 

result for the eight strategies in Test 1. Once again, Strategies 5, 6, 7 and 8 clearly 

outperform Strategies 1, 2, 3 and 4. Strategies 1, 3, 4 where attempts are made to resolve 

the L1 ambiguities show the worst position RMS error in general, indicating the 

limitation of the L1 ambiguity resolution under active ionosphere. Although Strategy 2 

(WL) shows excellent ambiguity resolution performance (100% correct), it does not 

provide the least RMS error, as expected.  

Table 5.10 24-hour-run Position Estimate RMS (cm) for Test Baseline 3 

Strategy 
Axis 

1 2 3 4 5 6 7 8 

East 12 10 25 22 8 5 5 2 

North 13 11 19 15 6 4 3 2 

Height 22 14 35 43 14 6 9 5 

Table 5.11 Percentage of Ambiguities Resolved Correctly (%), 43 km Baseline 

Strategy 

Ambiguity 
1 2 3 4 5 6 7 8 

1N  57 N/A 51.6 70.1 83 N/A 99.8 100 

2N  N/A N/A 51.4 N/A N/A N/A 99.8 N/A 

WLN  N/A 100 N/A 90.2 100 N/A N/A 100 

For this baseline, however, Strategy 5 only resolved L1 ambiguities 83% correctly, which 

may be attributed by the fact that the baseline length is too long in this case (43km) and 



 

 

101 

the residual tropospheric error cannot be neglected any more. The following results are 

presented on a strategy-by-strategy basis.  

1.1) Test 1, Strategy 1 Results. 

Figure 5.21 contains the L1-solution position errors (top) and ambiguity errors (bottom).  

 

 

Figure 5.21 Position Errors and Ambiguity Comparison, Strategy 1 
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From the figure, it can be seen that the ambiguities are fixed correctly except from 08:00 

to 16:00 local time, during which the ionospheric error is high. This result is in agreement 

with previous L1 results in that the Strategy 1 ambiguity resolution is bad during periods 

of high ionospheric error. Poor position performance comes as a direct result of bad 

ambiguity resolution. The top graph in Figure 5.21 and the statistics in Table 5.11 also 

support these findings. 

1.2) Test 1, Strategy 2 Results. 

Figure 5.22 shows the position results for Test 1 using Strategy 2.  Table 5.11 shows that 

the WL ambiguity is resolved 100% of the time correctly, despite the high ionospheric 

activity in the middle of the data. Although the WL ambiguities are resolved 100% 

correctly, the position estimate is still influenced by the ionospheric error with large 

errors at the middle in all three axes. Figure 5.22 clearly shows the position estimate 

variations caused by the ionosphere during the period of high ionospheric activity.  

 

Figure 5.22 Position Errors, Strategy 2 
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1.3) Test 1, Strategy 3 Results. 

Figure 5.23 shows the Test 1 results using Strategy 3.  

 

 

Figure 5.23 Position Errors and Ambiguity Comparison, Strategy 3 

Ambiguity resolution for L1 and L2 is good at the beginning and end of the data set when 

the ionospheric error is small.  However, errors become evident starting at 08:00 local 

time when the ionospheric activity increases. This suggests that the introduction of the L2 
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phase data still cannot help much during periods of high ionospheric activities if the 

ionospheric error is not modelled adequately. 

1.4) Test 1, Strategy 4 Results. 

Figure 5.24 shows the position and ambiguity results for Test 1 using Strategy 4.  

 

 

Figure 5.24 Position Errors and Ambiguity Comparison, Strategy 4 
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Recall that Strategy 4 used the same observations as Strategy 3 except that the L1 and 

WL ambiguities are estimated in the filter instead of the L1 and L2 ambiguities. As the 

bottom graph in Figure 5.24 shows, both the WL and L1 ambiguities suffer from the 

ionosphere from the middle of the data set. 

1.5) Test 1, Strategy 5 Results. 

Figure 5.25 gives the position results for Test 1, Strategy 5. 

 

 

Figure 5.25 Position Errors and Ambiguity Comparison, Strategy 5 



 

 

106 

Figure 5.25 shows that the WL ambiguities for Strategy 5 are fixed correctly 100% and 

83% of the time for the L1 ambiguities. The position error RMS values for Strat egy 5 in 

Table 5.10 clearly outperform Strategies 1 through 4. This time the L1 ambiguities are 

fixed for 83% of the time, not 100%. The possible reason is that in this case, the residual 

tropospheric error can not be neglected due to the much longer baseline length, i.e. 43 

km.  

1.6) Test 1, Strategy 6 Results. 

Figure 5.26 shows the position results for Test 1 using Strategy 6. Table 5.10 shows that 

the RMS of the position errors for Strategy 6 is better than Strategies 1 through 4. 

Nevertheless, this time Strategy 6 gives better RMS than Strategy 5 because there is 17% 

wrong L1 ambiguity fixes for Strategy 5.  

 

Figure 5.26 Position Errors, Strategy 6 
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In this Strategy, there is no risk of resolving the ambiguity to the wrong integer, thus it is 

a reliable method. However there is one limitation with this method, namely the time 

needed for the ionosphere-free ambiguity to converge is significant. Figure 5.26 shows 

that it takes around 1 hour to converge based on the convergence of the position error 

towards zero.  

1.7) Test 1, Strategy 7 Results. 

Figure 5.27 shows the position results for Test 1 using Strategy 7.  From the figure and 

Table 5.11, it can be seen that this strategy gives the best positioning performance 

compared to all previous strategies. 

 

1.8) Test 1, Strategy 8 Results. 

Figure 5.28 shows the position results for Test 1 using Strategy 8. The observables used 

in this strategy are the same as in Strategy 7. The difference is that L1 and widelane 

ambiguities are estimated in the filter instead of L1 and L2 ambiguities. Figure 5.28 is 

very similar to Figure 5.27. The only obvious difference is that the position error of 

Strategy 8 is much smaller than that of Strategy 7 for the north and east axes. This is 

explained by two reasons. First, Strategy 7 has two 0.2% incorrect L1 and L2 ambiguity 

fixes. Second, in Strategy 8, the widelane ambiguities can be fixed must faster than the 

L1 ambiguities and the fixing of widelane ambiguities improves the position estimate 

accuracy.  
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Figure 5.27 Position Errors and Ambiguity Comparison, Strategy 7 
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Figure 5.28 Position Errors and Ambiguity Comparison, Strategy 8 

 

2) Test 2 Result, 900-second-interval Tests. 

In this test, the 24-hour data set is divided into equal 900-second intervals, and each 

interval is processed with FLYKIN+TM for all the strategies in Table 4.1 to assess the 
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ambiguity resolution performance and position accuracy. A 900-second interval instead 

of 600-second is chosen because extra time is needed for the filter to converge, given the 

much longer baseline length this time. Once the ambiguity is resolved, a fixed position 

solution is recorded and the FLYKIN+TM software will re-initialize the filter and go to 

the beginning of next 900-second interval to try and resolve the ambiguities again.  

 

Table 5.12 shows the 900-second-run statistics for all the strategies. The shaded block 

containing the statistics for the WL shows that the WL ambiguity is both reliable and 

stable in terms of time to fix and percentage correct.  Also, comparing the statistics for 

Strategies 3 and 4, where the same observations are used, the only difference being that 

in Strategy 3, the L1 and L2 ambiguities are estimated in the filter, while in Strategy 4 the 

L1 and WL ambiguities are estimated.  The statistics show that it takes comparable time 

to fix L1 ambiguities for both approaches and the percentage correct is also comparable. 

The same is true for Strategies 7 and 8. It can be concluded that estimating L1 and WL 

ambiguities in the same filter, instead of L1 and L2 ambiguities, does not bring much 

improvement in terms of L1 ambiguity resolution for this data set. 
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Table 5.12 900-second-run Statistics, 43 km Baseline 

Strategy 

Measure 
1 2 3 4 5 7 8 

1N FWI1 31% N/A 13% 19% 27% 35% 32% 

1N PCFA2 43% N/A 84% 79% 68% 74.2% 75% 

1N MTTF3 337 s N/A 165 s 154 s 340 s 274 s 281 s 

2N  FWI N/A N/A 13% N/A N/A 35% N/A 

2N  PCFA N/A N/A 84% N/A N/A 74.2% N/A 

2N  MTTF N/A N/A 165 s N/A N/A 274 s N/A 

WLN FWI N/A 80% N/A 82% 80% N/A 97% 

WLN PCFA N/A 100% N/A 96% 100% N/A 100% 

WLN MTTF N/A 133 s N/A 92 s 133 s N/A 54 s 

 

However, estimating L1 and WL ambiguities in the filter instead of L1 and L2 

ambiguities does have a benefit in the position domain. Table 5.13 shows the position 

error RMS for Strategies 3, 4, 7, and 8.  The position error after the WL ambiguities are 

resolved are significantly lower than for Strategy 3 where both L1 and L2 ambiguities 

cannot be resolved. Therefore estimating WL and L1 ambiguities instead of L1 and L2 

has a benefit on position estimation provided that the WL ambiguity resolution is reliable 

and fast.  
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Table 5.13 RMS Position (cm) for 900-second-run, 43 km Baseline 

Strategy 

3 4 7 8 Axis 

No Ambiguity 
Fixed 

Only WL 
Ambiguity 

Fixed 

No Ambiguity 
Fixed 

Only WL 
Ambiguity 

Fixed 

East 38 27 9 6 

North 25 13 12 13 

Height 65 41 18 11 

 

5.3 Multiple Reference Station Tests and Results. 

Previous sections in this chapter tested eight different ambiguity resolution strategies. It 

was found that the last four strategies (Strategies 5, 6, 7 and 8) gave better ambiguity 

resolution and positioning performance than the first four strategies (Strategies 1, 2, 3 and 

4) because the former takes the ionospheric error into account through either forming the 

IF combination or stochastic ionosphere modelling. This means that in order to achieve 

optimal ambiguity resolution performance under an active ionosphere, the rover can not 

implement the two widely used Strategies 1 and 2. Instead the rover has to implement a 

complicated algorithm such as Strategy 5, 6, 7 and 8. This may not be feasible for all 

users.  

 

There is an emerging alternative technique that can predict the ionospheric error and then 

correct such errors using a network of GPS reference stations. The network models the 

ionospheric error and transmits the corrections to the rover, so the rover can have 



 

 

113 

improved ambiguity resolution and positioning performance even with Strategies 1, 2, 3 

and 4 because the ionospheric error has been properly taken into account by the network. 

 

Driven by the demand of high precision positioning from the civil community, the use of 

a GPS multiple reference station network to generate carrier phase observation 

corrections, to compensate the differential errors over a large area and increase the 

maximum distance at which reliable ambiguity resolution can go ahead, has been under 

intensive research in recent years (Wanninger, 1995; Han and Rizos, 1996b; Wubbena et 

al., 1996; Raquet, 1998). According to Fotopoulos (2000), the methods developed up to 

date can be classified into four categories. 

• Partial derivative algorithms (Wubbena et al., 1996; Varner et al., 1997) 

• Linear interpolation algorithms (Wanninger, 1995;Gao et al., 1997; Han and Rizos, 

1996b) 

• Condition adjustment algorithm (Raquet, 1998) 

• Virtual reference station algorithm (Wanninger, 1995, van der Marel, 1998) 

 

Among all mentioned methods, the one derived at the University of Calgary by Raquet 

(1998), is one of the most rigorous from an optimal estimation theory point of view 

(Fortes, 2002). This method is referred to as MultiRef in this thesis and it is schematically 

illustrated in Figure 5.29. The four reference stations at each corner collect measurements 

and transmit these measurements to the control centre (The one shown in the middle of 

the figure). The central GPS reference station will generate carrier phase corrections 
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based on these measurements. These corrections are then transmitted to the user (ship, 

surveyor, etc…) to facilitate a real time carrier phase based positioning.  

 

 

Figure 5.29 A GPS MultiRef Network 

 

The MultiRef approach is based on Least-Squares collocation (Fortes, 2002). By 

estimating the differential errors between those reference receivers, the differential errors 

between the rover station and any reference station can be predicted, thus corrections can 

be applied to the raw observables at the rover to compensate these differential errors. 

With fewer differential errors, the rover, in theory, should have a higher probability in 

successfully in resolving integer ambiguities and providing high accuracy position 

estimates. 

 

MultiRef was initially designed for real-time operation. A lot of results have been 

presented in the past to show the effectiveness of the MultiRef approach in post mission. 
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Fotopoulos (2000) has conducted research on the correction generation and dissemination 

scheme, and tested these schemes with data from the Swedish Network. However, no real 

time test was carried out. Another objective of this thesis is to develop a real time system 

and evaluate the performance of the system in real conditions. The real time test is 

explained below. 

5.3.1 Test Setup 

Figure 5.30 shows the real time test set-up where the GPS reference stations are enclosed 

in the ellipse. Each reference station makes measurement and sends the measurements to 

a control centre using high bandwidth Internet with TCP/IP protocol. The control centre 

then processes data from all the reference stations, solving the integer ambiguities 

between the reference stations and generating corrections.  

 

Figure 5.30 Real Time Test Flow Chart 
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In the present case the real time test is carried out as follows:  The rover sends an NMEA 

0183 message GPGGA to the control centre via the Internet using TCP/IP protocol. The 

GPGGA message contains the approximate position of the rover. Based on this 

approximate rover position, the control centre will generate the corrections for this rover 

position and apply the corrections to a Virtual Reference Station’s (VRS) observation 

data and send the corrected VRS observation to the rover in NovAtel OEM format via the 

Internet.  

 

A small MultiRef network has been set up in Calgary, Alberta (Figure 5.31). This 

network consists of six stations with a NovAtel MPC receiver employed at each station. 

The raw data collected at each station is sent to a control centre located in the Department 

of Geomatics Engineering Satellite Observatory. Two reference stations (MPC4 and 

MPC5) are set up very close to each other. The reason is that MPC5 will eventually be 

deployed somewhere around Cochrane near Calgary. The longest baseline in this 

Network is 24.3 km. The size of the Calgary network is small, which leads the magnitude 

of the most corrections to be under 2 cm.  

 

In this test, the university station MPC-UofC is excluded from the MultiRef network and 

used as a rover. The nearest reference station to the rover MPC-UofC is 5.4km. Under the 

MultiRef environment, it does not matter which reference station acts as the reference to 

do position estimate for the MPC-UofC rover because of the data encapsulation effect of 

the MultiRef. An epoch-by-epoch RTK solution is computed for the station MPC-UofC.   
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Figure 5.31 Calgary MultiRef Network Configuration 

 

The ambiguity resolution strategies used are Strategies 1, 2, 3, 4, 7 and 8. Each strategy 

was run for one hour consecutively in real time generating a position solution at every 

second. The cut-off elevation angle is 5 degrees and at least five satellites are observed 

for the entire test period. The position error plots for each strategy are shown in Figures 

5.32 to 5.37. The position statistics are shown in Table 5.14 to Table 5.19 for each 

strategy. 
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5.3.2 Results 

1) Result for Strategy 1 

The 1-hour position error for Strategy 1 is shown in Figure 5.32. There are several red 

dots (float solution) at the beginning due to the filter convergence. The L1 ambiguities 

are resolved within thirty seconds. The distance of the rover to the closest reference 

station is 6.4km. Considering the time of the day this test is carried out (13:30-14:30 local 

time), this indicates very good performance of MultiRef approach in real time. The blue 

segment in the plot is caused by one float ambiguity that just entered the solution. 

 

Figure 5.32 Real Time Position Errors with Strategy 1 

Table 5.14 shows the position RMS error for Strategy 1. The RMS for the All Fixed (All 

the ambiguities have been fixed) case is 1 cm, 0 cm and 2 cm for east, north and up axis. 

During 96.8% of all the epochs in this 1-hour test, all ambiguities are fixed. 
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Table 5.14 RMS Position Errors, Strategy 1 

RMS (cm) 

All Points (100%) All Fixed (96.8%) Partial Fixed (2.1%) All Float (1.1%) 
Axis 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

East -2 8 1 -2 0 1 -2 0 2 -2 8 5 

North -1 42 4 -1 0 0 -1 0 0 40 42 41 

Height -3 37 4 -3 0 2 -2 0 1 30 37 35 

 

2) Result for Strategy 2 

The 1-hour position error for Strategy 2 is shown in Figure 5.33. The noise property of 

Strategy 2 (WL) is clearly shown in this figure. Float ambiguities (blue) cause large 

position variations in the middle of the test.  Table 5.15 shows the position RMS error for 

Strategy 2. The RMS for the All Fixed case is 3 cm, 2 cm and 3 cm for east, north and up 

axis. All ambiguities are fixed 71.4% of the time. This relatively low percentage 

compared to all other strategies is caused by the long time span of the float ambiguity in 

the middle of the 1-hour test. 
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Figure 5.33 Real Time Position Errors with Strategy 2 

 

Table 5.15 RMS Position Errors, Strategy 2 

RMS (cm) 

All Points (100%) All Fixed (71.4%) Partial Fixed (28.2%) All Float (0.3%) 
Axis 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

East -6 10 4 -4 8 3 -1 10 6 -6 0 4 

North -2 28 2 -2 5 2 -2 2 1 24 28 26 

Height -7 27 4 -7 9 3 -5 15 5 19 27 21 

 

3) Result for Strategy 3 

The 1-hour test position error for Strategy 3 is shown in Figure 5.34. Table 5.16 shows 

the position RMS error for Strategy 3. The RMS for the All Fixed case is 1 cm, 0 cm and 
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3 cm for east, north and up axis. During 99.1% of all the epochs in this 1-hour test, all 

ambiguities are fixed, and the remaining 0.9% contains epochs when no ambiguities are 

fixed when the filter is converging. 

 

Figure 5.34 Real Time Position Errors with Strategy 3 

 

Table 5.16 RMS Position Errors, Strategy 3 

RMS (cm) 

All Points (100%) All Fixed (99.1%) Partial Fixed (0%) All Float (0.9%) 
Axis 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

East -17 1 2 -3 1 1 N/A N/A N/A -17 -15 16 

North -1 24 2 -1 1 0 N/A N/A N/A 20 24 22 

Height -21 1 3 -5 1 3 N/A N/A N/A -21 -17 19 
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4) Result for Strategy 4 

The 1-hour position error for Strategy 4 is shown in Figure 5.35. Table 5.17 shows the 

position RMS error for Strategy 4. The RMS for the All Fixed case is 1 cm, 1 cm and 3 

cm for east, north and up axis. During 99.1% of all the epochs in this 1-hour test, all 

ambiguities are fixed, and the remaining 0.9% contains epochs when no ambiguities are 

fixed when the filter is converging. 

Table 5.17 RMS Position Errors, Strategy 4 

RMS (cm) 

All Points (100%) All Fixed (99.1%) Partial Fixed (0%) All Float (0.9%) 
Axis 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

East -5 1 1 -2 1 1 N/A N/A N/A -5 -1 4 

North -1 16 2 -1 2 1 N/A N/A N/A 12 16 14 

Height -5 44 5 -5 0 3 N/A N/A N/A 41 44 43 

 

 

Figure 5.35 Real Time Position Errors with Strategy 4 
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5) Result for Strategy 7 

The 1-hour position error for Strategy 7 is shown in Figure 5.36. Table 5.18 shows the 

position RMS error for Strategy 7. The RMS for the All Fixed case is 1 cm, 1 cm and 3 

cm for east, north and up axis. During 98.9% of all the epochs in this 1-hour test, all 

ambiguities are fixed, and during 0.2% of all the epochs, there is not ambiguity being 

fixed. The remaining 0.9% contains epochs when all but one ambiguity is fixed. 

 

Figure 5.36 Real Time Position Errors with Strategy 7 

 

Table 5.18 RMS Position Errors, Strategy 7 

RMS (cm) 

All Points (100%) All Fixed (98.9%) Partial Fixed (0.2%) All Float (0.9%) 
Axis 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

East -3 18 2 -3 3 1 -2 0 1 12 18 16 

North -2 26 2 -2 1 1 0 0 0 24 26 25 

Height -44 1 5 -8 1 3 -2 0 2 -44 -39 43 
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6) Result for Strategy 8 

The 1-hour position error for Strategy 8 is shown in Figure5.37. Table 5.19 shows the 

position RMS error for Strategy 8. The RMS for the All Fixed case is 1 cm, 0 cm and 2 

cm for east, north and up axis. All the ambiguities are fixed 98.9% of the time. 

Table 5.19 RMS Position Errors, Strategy 8 

RMS (cm) 

All Points (100%) All Fixed (98.9%) Partial Fixed (0.2%) All Float (0.9%) 
Axis 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

East -2 29 3 -2 1 1 -1 0 1 22 29 28 

North -1 42 4 -1 1 0 0 0 0 38 42 38 

Height -33 1 4 -5 1 2 -2 0 1 -33 -31 32 

 

 

Figure 5.37 Real Time Position Errors with Strategy 8 
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5.4 Summary 

Based on the tests and results achieved in this chapter, the following summaries can be 

made: 

1. WL ambiguity is both reliable and easier to resolve than the L1 and L2 

ambiguities. In periods of high ionospheric activity, the ionospheric bias is 

actually amplified in the WL observable in units of metres, thus WL combinations 

do not necessarily give the optimal position results in terms of accuracy. 

 

2. During periods of high ionospheric activity, in order to achieve an optimal 

position solution, the ionospheric bias must be dealt with explicitly by either 

forming the IF observable or through stochastic modelling. 

 

3. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2 

ambiguities, does not help to resolve the L1 ambiguities faster or more accurately, 

but it can decrease the position errors if the WL is fixed correctly. This is relative 

to the strategies where the L1 and L2 ambiguities remain as floating values. 

Results may be different for very short baselines where the ionosphere is less 

significant. 

 

4. Stochastic ionospheric modelling gives the best positioning results among all of 

the strategies used for this data set. 
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5. In Strategy 5 (IF Fixed), the WL ambiguities are usually fixed quickly, while the 

L1 ambiguities require a longer time to fix because of their reduced wavelength 

(10.7cm).  This may hinder the real time use of Strategy 5.  Nevertheless, even if 

the L1 ambiguities are not fixed, an ionosphere-free float solution results, which, 

as demonstrated by Strategy 6, can still give reasonable position estimates. 

 

6.  This chapter also presented a system to evaluate the MutliRefT M approach in real 

time conditions. For each strategy, test results are impressive with position RMS 

values less than 3 cm in All Fixed cases for all three axes.  The results obtained 

clearly show that the system works very well. Considering the baseline between 

the nearest reference station to this ‘rover’ is 6.4 km, the effectiveness of the 

MultiRefTM approach is demonstrated. 
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  CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

This research investigated various ambiguity resolution strategies.  It gave a detailed 

analysis of the impact of observation types and combinations, and model 

parameterization on carrier phase ambiguity resolution and position accuracy under 

operational conditions. The thesis began with a thorough investigation into the 

differential error sources for carrier phase relative positioning. It stated that for 

medium baselines, the differential ionospheric error is usually the dominant error 

source preventing the user from achieving successful ambiguity resolution, and high 

precision position results. To examine the impact of the differential ionospheric error 

on ambiguity resolution, a total of eight ambiguities resolution strategies were 

implemented in the FLYKIN+TM software package. All those eight strategies have 

been tested using three baselines from Calgary, Canada and Campania, Italy. The 

baseline length ranges from 10 km to 43 km. All of the data was collected near the 

peak of the 11-year sunspot cycle and the differential ionospheric error reaches as 

high as 15 ppm for some baselines.  This thesis also presented a system to evaluate 

the MutliRefTM approach in real time conditions. Test results are impressive with 

RMS position values less than 3 cm in All Fixed cases for all three axes.  
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Based on the tests and results achieved in this chapter, the following conclusions can be 

made: 

1. The selection of the observation types and combinations, and model 

parameterization, and estimation model directly impact carrier phase ambiguity 

resolution and positioning accuracy under active ionospheric conditions.  

 

2. WL ambiguities are both reliable and easy to resolve. It was demonstrated that 

WL ambiguities are fixed 100% of the time correctly for all three baselines. 

Tables 5.4, 5.8 and 5.12 have shown that the mean time to fix the WL ambiguities 

is much shorter than the mean time to fix the L1 or L2 ambiguities.  

 

3. In periods of high ionospheric activity, the ionospheric bias is actually amplified 

in the WL observable in units of metres, thus WL combination does not 

necessarily give the optimal position results in terms of accuracy. Tests in Chapter 

5 have shown that position errors under active ionosphere can reach more than 50 

cm even the WL ambiguities are fixed correctly.  

 

4. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2 

ambiguities, does not help to resolve the L1 ambiguities faster or more accurately. 

This is relative to the strategies where the L1 and L2 ambiguities remain as 

floating values. It was demonstrated in Tables 5.4, 5.8 and 5.12 that the mean 

time to fix the L1 ambiguities is comparable.  
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5. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2 can 

decrease the position errors if the WL is fixed correctly. It was demonstrated in 

Tables 5.5, 5.9 and 5.13 that the position RMS errors in Strategies 4 and 8 after 

the WL ambiguities are fixed correctly are significantly better than the position 

errors in Strategies 3 and 7 when both L1 and L2 ambiguities are not fixed. 

 

6. During periods of high ionospheric activity, in order to achieve an optimal 

position solution, the ionospheric bias must be dealt with explicitly by either 

forming the IF observable or through stochastic modelling. It was demonstrated 

that the performance of Strategies 1, 2, 3 and 4 (in which the ionospheric error is 

assumed to be absent) are largely dependant on the DD ionospheric errors. They 

are capable of centimetre positioning under a low DD ionospheric error condition. 

However, this capability is severely compromised with an increased DD 

ionospheric error.  

 

7. The stochastic ionosphere modelling strategies gives the best position estimate 

compared to all others. Less than 10 cm position RMS errors are reported by the 

stochastic ionosphere modelling strategies for all three baselines.  

 

8. The real-time system implemented has clearly demonstrated centimetre level 

positioning accuracy capability for the Calgary Network. All the strategies tested 

reported less than 3 cm RMS position error.  
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Based on the results and conclusions of this research, the following recommendations 

regarding the use and further investigations of various ambiguity resolution strategies can 

be made: 

1. The test results for various ambiguity resolution strategies in Chapter 5 show that  

Strategies 7 and 8 (the two stochastic ionosphere modelling strategies) gives 

better positioning results than Strategies 5 and 6 (the two ionosphere free 

combination strategies). Further research can be done to explain this phenomenon.  

 

2. The test results in Chapter 5 are based on certain input parameters. These input 

parameters include data rate, observation variances, the magnitude of the noise 

spectral density driving the velocity and position states, and the magnitude of the 

pseudo-ionosphere observable variance. The impact of these input parameters on 

the output is not investigated in this thesis. The relation between these input 

parameters and output parameters is important, as it is expected that the slight 

change in the input parameters should not significantly change the output. 

 

3. The author implements a suggested ambiguity method in the software 

FLYKIN+TM. Very limited tests have been done to test the efficiency of this 

method. It is recommended that this method should be tested more extensively for 

RTK applications. 

 

4. The detection of multiple cycle slips at the same epoch is very critical for the 

success of any kinematic software. There is a large possibility that multiple cycle 
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slips will occur at the same time. One obvious example is that there is a cycle slip 

on the reference satellite. The appendix of this thesis has shown the basic 

measures to detect and remedy the cycle slips. More work is required in this area 

to increase the robustness of the FLYKIN+TM software. 

 

Overall, this thesis clarifies the pros and the cons of all the introduced ambiguity 

resolution strategies. With this knowledge, the ambiguity resolution process can be 

better understood and the optimal scheme for an application can be chosen.  
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APPENDIX: QUALITY CONTROL IN GPS CARRIER PHASE POSITIONING 

 

GPS signals travel an average distance of 20200 km to reach the receiver. During this 

long journey, the signal attenuation due to the atmosphere results in various measurement 

biases, such as troposphere error and ionosphere error. The magnitude of these errors is 

generally dependent on the elevation angle of the satellite. The higher the elevation, the 

less those biases are. Because of this, the elevation dependant variance-covariance 

modelling is employed in the software. A mapping function is used to relate the precision 

of the measurement made at the zenith direction to any elevation. The simplest mapping 

function is ( )sin E , where E  is the elevation angle.  

 

Besides the atmospheric biases, the measurement is also susceptible to blunders. The 

most two common blunders are carrier phase cycle slips and code multipath. In carrier 

phase based double differenced positioning, the code multipath is generally less critical 

than carrier phase cycle slips, as the precision of the carrier phase far outweighs that of 

the code observables. Carrier phase cycle slips are very critical in carrier phase based 

positioning as undetected cycle slips will cause a discrepancy between measurement and 

states being estimated and will lead to large position error. Cycle slips can occur as a 

consequence of serveral reasons, such as obstruction between receiver antenna and 

satellite, high dynamics of the receiver carrier, and ionospheric scintillation, to name a 

few. The detection of the cycle slip used in the software FLYKIN+TM is based on the 

Kalman filter’s innovation sequence testing (Teunissen, 1998b).  
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Figure A1 shows a standard linearized Kalman filter loop. The innovation sequence v  is 

generated by subtracting the predicted measurement from the actual measurement. A 

property of the Kalman filter is that if the system driving noise is white, then innovation 

sequence v  will follow a zero mean Gaussian distribution with dispersion vC , namely  

~(0, )vv C        (1) 

 

Based on the property of the innovation sequence, two hypotheses can be made.  

{ }
{ }

0

1

: 0

:

H E v

H E v

=

= ∇
     (2) 

where ∇ represents the model error vector(cycle slips, multipath, etc.). 

 

Based on the null hypothesis 0H and the alternative hypothesis 1H , a test statistic can be 

constructed. The test statistic reads 

1T
vv C vt

m

−

=       (3) 

where m is the number of observables in the Kalman filter. 

 

The expectation of this test statistic is 1 if the null hypothesis is true. Thus if the 

following inequality holds true, then the alternative hypothesis will be accepted instead of 

the null hypothesis. 

( , ,0)T F mα> ∞      (4) 

where F is the fisher distribution with the chosen significance level α . 
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Figure A1 Linearized Kalman Filter Loop 

 

If the test statistic alerts that the null hypothesis is wrong and the alternative hypothesis 

should be used, then further steps are needed to identify which observable is the problem. 

Another test statistic should be used. Assume that there is only one observable bias at one 

epoch, this statistic reads 

1

1[ ][ ]

T
k k v

v

c C vt
C k k

−

−
=      (5) 

Update 

( )
k k

k k

x x Kv

P I KH P

+ −

+ −

= +

= −
 

Innovation Sequence 

k k k

T
v k k

v z H x

C HP H R

−

−

= −

= +
 

Prediction

1

1

k k

T
k k k

x x

P P Q

− +
−

− +
−

= Φ

= Φ Φ +
 

Kalman Gain 

1( )T T
k k kK P H HP H R− − −= +

 



 

 

145 

where { }0,0,....0,1,...0,0kc =  means the kth observable is tested against possible 

measurement biases. kt follows a (0,1)N distribution if all the observables at this epoch 

are free of any biases. This test is repeated for every observable 1,2....,k m= . The largest 

kt  will indicate the most likely biased observable. The test statistics is then compared 

with the critical value of / 2(0,1)Nα , where α is the chosen level of significance. If the 

largest kt  exceeds the critical value, then that observable is to be rejected. The power of 

this test statistics is dependant on its minimum detectable bias (MDB), which reads 

 

0
1[ ][ ]v

MDB
C k k

λ
−=      (6) 

 

where 0λ  is a function of the chosen level of significance α , the power of the test β , and 

the degrees of freedom in the estimation model.  

 

A numerical example is shown below to demonstrate this method. A three-minute single 

frequency GPS data was processed. Figure A2 shows the sky plot during that three-

minute interval. The data have been analyzed and no actual carrier phase cycle slip was 

found. Six artificial cycle slips were added to the data at GPS Time 21, 41, 61, 81, 101, 

and 121. The magnitude of these artificial cycle slips is all -1. Both baseline and 

ambiguity states were estimated using L1 carrier phase observable. The level of 

significance, α , was chosen as 0.001 and the power of the test β  was set to 0.8 for the 
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test. The identification results are depicted in Figure A3. The six spikes represent that all 

of the cycle slips were correctly identified. 

 

Figure A2 Sky Plot 

 

Figure A3 Test Statistics kt  versus GPS Time 
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Table A1 shows the simulated cycle slip N , its estimated value N̂  and the MDB. MDB 

is dependant on many factors, such as the precision of the measuring equipment and the 

geometry. It is clear that from the table that the MDB is highly correlated with the 

elevation. The higher the satellite elevation is, the smaller the MDB is.  

Table A1 Carrier Phase Cycle Slips Detection Summary 

Epoch(sec) PRN N (cycle) N̂ (cycle) MDB(cycle) Elevation 

21 3 -1 -1.00 0.47 19 

41 9 -1 -0.95 0.35 29 

61 14 -1 -1.03 0.26 59 

81 15 -1 -1.05 0.56 17 

101 18 -1 -1.02 0.28 36 

121 31 -1 -0.95 0.54 29 

This innovation test usually assumes that there is at most one cycle slip at the same 

epoch. If there are two cycle slips at the same epoch, this method may not give correct 

results. To demonstrate this, the same data was used. Instead of adding one cycle slip at 

one epoch, two simultaneous cycle slips were added to two different satellites. The 

magnitude of these cycle slips is all –1. The table below shows the actual cycle slip and 

corresponding epochs.  

Table A2 Simulated Cycle Slips 

Epoch(sec) PRN N (cycle) PRN N (cycle) 

21 3 -1 9 -1 
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41 9 -1 14 -1 

61 14 -1 15 -1 

81 15 -1 18 -1 

101 18 -1 31 -1 

121 31 -1 3 -1 

121 21 -1 N/A N/A 

   

The table below shows the identification process. The identification result is not good at 

all. For example, at epoch 21, it is PRN 3 and PRN 9 that contains the cycle slips, while 

the innovation test reports PRN 31 to contain a cycle slip. The cycle slip of PRN 9 is 

detected at epoch 24, which is 4 epochs past the actual time. The cycle slip of PRN 3 is 

never detected. Another interesting thing to note is that at epoch 141 a cycle slip with 

magnitude of -1 is added to the reference PRN 21 (which means all the DD ambiguities 

suffer from cycle slips). The innovation sequence statistics report that PRN 14 is biased 

at epoch 141 and PRN 9 is biased at epoch 142. The limitation of this innovation testing 

is clearly exemplified.  

Table A3 Detected Cycle Slips 

Epoch PRN Identified N̂ (cycle) MDB 

21 31 1.82 0.57 

24 9 -0.4 0.43 

41 14 -1.48 0.26 
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42 9 -0.83 0.46 

61 14 -0.75 0.26 

62 15 -1.06 0.65 

81 9 1.02 0.35 

82 14 -0.38 0.35 

101 18 -1.15 0.27 

102 15 -0.72 0.74 

121 14 0.24 0.26 

141 14 0.9 0.26 

142 9 -0.48 0.47 

 

 




