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ABSTRACT

The Global Positioning System (GPS) double-difference (DD) operations can effectively
reduce or eliminate many errors innate to raw undifferenced carrier-phase observables,
such as the atmospheric effects and satel lite orbital error. Although the DD carrier phase
is a much more precise observable than the pseudorange, it is ambiguous because of the
constant, but unknown, initial integer number of carrier cycles. In order to fully exploit
the carrier phase observableto achieve centimetre-level accuracy, this ambiguity needs to
be resolved. For most real-time kinematic (RTK) applications, the main obstacle to
successful ambiguity resolution is the DD ionospheric error. This issue is more notable
during the time of a solar maximum when the DD ionospheric error may increase by a
factor of three. Ambiguity resolution under the influence of the ionosphere has been
under extensive investigation for the past decade, and numerous resolution strategies

have been proposed.

In this research, several representative ambiguity-resolution strategies are compared. As a
result, eight different ambiguity resolution strategies are implemented and investigated
with an emphasis on the impact of the ionospheric error on postioning accuracy and
ambiguity resolution. These eight strategies include the L1-only ambiguity resolution,
widelane (WL) ambiguity resolution, combined L1 and L2 ambiguity resolution,
ambiguity resolution using of ionospherefree (IF) combination, and stochastic
ionosphere modelling ambiguity resolution. All eight strategies are tested on three

baselines ranging from 13 km to 43 km. In general, strategies that take the ionospheric
iii



error into account in their estimation models give much better position and ambiguity
results than those that do not, and the stochastic ionosphere modelling ambiguity
resolution strategies give best performance in both the ambiguity and position domains.
The impact of the different parameterization schemes is also investigated and it is found
that parameterizing the L1 and L2 observables with respect to L1 and WL ambiguities
versus L1 and L2 ambiguities does not bring significant gain in the ambiguity domain,

whileit doesin the position domain.
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CHAPTER 1

INTRODUCTION

1.1 Background and Objectives

The Globa Postioning System (GPS) Standard Positioning Service (SPS) provides
positioning accuracies of approximately 13 m in the horizontal and 22 m in the vertical at
a 95% probability level (U.S. Department of Defense, 2001). However, many civil
applications such as dredging, harbour guidance, and offshore oil exploration require
accuracies in the metre to sub-metre levels (Lachapelle, 2000). This cannot be met by the

SPS of GPS.

To meet the aforementioned accuracy specifications, differential GPS (DGPS) is used in
which relative podtioning between two GPS receivers usng GPS pseudorange
observables is performed. The differencing operation in DGPS effectively removes many
errors from the raw GPS pseudorange observables since most of these errors are highly
correlated between recelvers. As a result, the eccuracy and precision of the SPS can be
dramatically increased. Figure 1.1 shows the usual configuration of a DGPS system. The
reference GPS station and the rovers (e.g. ship, surveyor) al track the same satellites. The
error can be computed for the reference station observable to each satellite if the

coordinates of the reference station are known. The rover observables will have



approximately the same level of error as those at the reference station because the error
sources between the reference station and the rover station are strongly correlated. The
reference station then transmits the computed errors (corrections) to the rover to
compensate for the errors in the rover’s observations. This results in a better position

solution. DGPS gresatly enhances the accuracy that a user can obtain with GPS.

. | corrections B
e
P e — f—

Ly
e —
M

user Dats Link

Figure 1.1 Typical DGPS Configuration

More civil communities are no longer satisfied with the performance of pseudorange
based DGPS and are requiring higher accuracies at the centimetre level. For example,
dam deformation monitoring and earthquake prediction both require the positioning
accuracy to be at the centimetre or even millimetre level (Behr and Hudnut, 1998), and 3-
Dimeniona navigation in navigation channels requires better than 10-centimetre
positioning accuracy (Lachapelle, 2000). The pseudorange based DGPS cannot meet
these stringent accuracy requirements due to the accuracy limitations of the pseudorange

observables (Langley, 1996).



In order to achieve centimetre or millimetre level accuracies, the doubledifferenced
(DD) carrier phase observable must be used, which means that the DD integer carrier
phase ambiguities need to be resolved. Unlike pseudorange-based DGPS, where the
dominant accuracy-limiting factor is code multipath and receiver noise, the dominant
accuracy-limiting factor for carrier phase based positioning is the differential ionospheric
error, the differential tropospheric error, the differential satellite orbital error and

multipath.

The tropospheric delay is caused by the Earth’s troposphere and can generdly be well
modelled using most tropospheric delay models (Spilker, 1994). The residua
tropospheric error for basdines ranging up to 30 to 40 km may be negligible and the
differential satellite orbital error also tends to cancel for short to medium baselines. The
real difficulty liesin the differential ionospheric error because, unlike the troposphere, the

ionosphere cannot be easily modelled (Klobuchar, 1996).

The differentia ionospheric error is dependant on baseline length and the level of the
ionospheric activity. For very short baselines, the differential ionospheric errors tend to
cancel and L1 or L2 ambiguity resolution is straightforward. With an increase of the
basdline length, the differential ionospheric error tends to increase as well, thus making it
difficult or sometimes impossible to resolve the DD carrier phase integer ambiguities.
The resolution of the ambiguities is likely to be successful as long as the distance to the
nearest reference receiver is less than 10-30 km, depending on geographic location, time

of day, and location in the 11-year sunspot cycle (Colombo, 1998).



Ambiguity resolution under the influence of the ionosphere has long been a fertile
research topic, particularly during a solar maximum, which is the case at the time of this
thesis. A lot of research has been carried out in this field to ensure correct ambiguity
fixing under active ionospheric conditions. As a result, many ionospheric models have
been developed. Klobuchar (1986) introduced an ionospheric error model that is being
used by the GPS control centre as part of the navigation message broadcast by the GPS
satellites. This moddl consists of a cosine representation of the diurna ionospheric error
curve, which will vary in amplitude and period depending on the user’s latitude. It has
been shown to be effective in removing around 50% of the total RM S (root-mean-square)
error. Applying this model will obvioudy help the SPS performance. However, to reach
centimetre level positioning performance, this model is not sensitive enough. Another
model is the global ionosphere map produced by the Centre for Orbit Determination in
Europe (CODE) (Schaer, 1999). These maps are only available for postprocessing and
cannot be used in rea time. Other models include the United Sates Wide Area
Augmentation System (WAAYS) ionospheric grid model. This model estimates the
ionospheric error at the fixed grid points in rea time, using a Kalman filter technique
(Skone, 1998). Unfortunately, this grid model still does not have sufficient sensitivity to

provide centimetre-level positioning performance (FAA, 1997).

Other research efforts examine the use of frequency combinations to combat the
increased ionospheric effect. One countermeasure to a high ionospheric effect is to form
the widelane (WL) observable since the WL has a much smaller ionosphere/wavelength

ratio than L1 or L2 so it is more resistant to ionospheric error. Examples can be found in



Hatch (1982, 1989), Allison (1991), Euler and Landau (1992), Goad (1992), and Seeber
(1993). Other well-known countermeasures include forming the ionospherefree
combinations to remove the first order ionospheric effect (Blewitt, 1989). Teunissen
(1997) proposed an original method that estimates the ionospheric error explicitly

through stochastic modelling.

With so many methods for ambiguity resolution, it is sometimes difficult to determine
which method best fits an application. It is not clear whether these methods have the
same ambiguity resolution and positioning performance or whether one is significantly
better than the others, depending on the conditions. Even with the same ambiguity
resolution method, different parameterization schemes may be used. For example, it is
popular practice to parameterize the dua frequency carrier phase observable with respect
to the L1 and WL ambiguitiesin contrast to the L1 and L2 ambiguities, e.g. Goad (1992),
Bock (1996), and Liu (2001). The reasons and benefits (if any) for this practice are not

clear.

Another emergi ng technique to facilitate successful ambiguity resolution under a severe
ionosphere is to use a network of GPS reference stations to model the ionospheric error
explicitly. The University of Cagary has developed a very promising approach called
MultiRef™ (Multiple Reference Station) (Raguet, 1998; Fortes, 2002). This approach
can model and correct differentia errors (mainly the ionospheric error) between various
reference stations for transmission to a user in the network. With less residual differentid

errors, ambiguity resolution performance can be improved.



Based on these developments, the following objectives form the basis of the thesis
research:
Implement various ambiguity resolution strategies. These strategies include the
well known ionosphere-free combination ambiguity resolution strategy, stochastic
ionospheric modelling strategy, widelane ambiguity resolution strategy and L1
only ambiguity resolution strategy.
Investigate the implemented ambiguity resolution strategies to access how the
sdection of observation types and combinations, different parameterization
schemes, and estimation model impact the ambiguity resolution and positioning
performance.
Evauate the impact of the ionospheric error on ambiguity resolution and
positioning performance.
Implement a real-time system to evaluate the MultiRef™ approach when using

various ambiguity resolution strategies.

Considering that ambiguity resolution is a very broad and complicated topic that depends
on many different factors such as rover dynamics, baseline length etc., the scope of this
thesisisrestricted to norma RTK practice. Norma RTK practice means that the basdline
separation is usualy less than 50 km, and the rover receiver is assumed to be in kinematic
mode.

In fulfilling the above objectives, the author has significantly enhanced the University of

Calgary software FLYKIN™. The latest FLYKIN+™ and FLYKINRT+"" software can



operate in both post mission and red -time modes within a single software package. It can
process the data in either static or kinematic mode with various ambiguity resolution

strategies that will be discussed in detail in thisthess.

1.2 Thesis Outline

Chapter 2 describes the genera differential GPS positioning concepts. The basic
equations relating DD GPS observables and their unknown parameters are presented.
Various differential error sources are introduced, and the impact of the ionosphere on

relative carrier phase positioning is investigated.

Chapter 3 discusses ambiguity resolution techniques. Centimetre positioning accuracy
can be achieved only when the integer carrier phase ambiguities are correctly fixed.
Ambiguity resolution is the core of the carrier phase relative positioning. There are
various ambiguity resolution techniques available, and ths chapter investigates several

commonly used ones.

Chapter 4 is the core of this thesis. It contains two parts. The first part investigates
various ambiguity resolution strategies utilizing different carrier phase combinations,
parameterizations, and estimation models. The observation equations for these strategies
are presented in this chapter. Test results for these strategies are shown in Chapter 5. The
second part of this chapter discusses the software redization of these ambiguity

resolution strategies, namely the development process of the FLYKIN+"™ software. Most



of the research work done for this thesis is on the development of FLYKIN+™, so it is
relevant to discuss some issues related to the software development. The general software

functionality and architecture are presented in this chapter.

In Chapter 5, results for the various ambiguity resolution strategies introduced in Chapter
4 are shown for single and multiple reference station scenarios. The test methodology and
parameters are presented. The performance is compared in terms of positioning, time to
ambiguity resolution, and percentage of correctly resolved ambiguities. Finally,

advantages and disadvantages of various ambiguity resolution strategies are outlined.

Chapter 6 concludesthe thesis and envisages further research.



CHAPTER 2

GPSOBSERVABLESAND ERROR SOURCES

2.1 Basic GPS Observables

Many GPS receivers output two primary GPS observables: pseudorange and carrier

phase.

The pseudorange observable is generated by measuring the difference between the
transmission time and reception time of the GPS Pseudo-Random Noise (PRN) signal.
The observation equation relating the pseudorange observableP in metres and unknown

parametersis expressed as (Parkinson, 1996):

P=r =c(T,- T (2.2)

wherer :\/(xs- X )2+ (Y - y)*+(Z - z) (the true range between the GPS satellite
and receiver antenna phase centre), (x°,¥°,Z°) is the satellite coordinate, and (x ,y ,z )

is the receiver antenna phase centre coordinate which is to be estimated. Both satellite

and recelver coordinates are refered to the Earth-Centred-Earth-Fixed reference frame

(WGS84). T, is the time of reception in seconds, T°®is the time of transmission in

seconds, and ¢ isthe speed of light in metres per second.
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Equation (2.1) holds only in theory. In practice the GPS signd is corrupted by many error
sources. These error sources include satellite clock error, satellite coordinate error, and
atmospheric effects (including tropospheric and ionospheric components); therefore the
complete equation relating the pseudorange in metres and unknown parameters is
expressed as

P=r +dr +T+1 +¢(dT’-dT)) +e, (2.2)
where dr isthe satellite orbital error in metres, T isthe tropospheric delay in metres, |
is the ionospheric delay in metres, dT,is the receiver clock offset in seconds, dT;is the

satellite clock offset in seconds, and e, is the combined effect of pseudorange multipath

and recelver measurement noise in metres.

Similarly, the observation equation for the carrier phase observable, CP, in cyclesis

defined as
CP=[r +dr +T-1 +¢(dT’-dT.)]/l +N+eq (2.3)
wherel is the L1 or L2 carrier wavelength in metres, N is an arbitrary number

representing the unknown, but constant, initial phase ambiguity, and e, isthe combined

effect of multipath and recelver measurement noise in cycles. The carrier phase
observation equation is very similar to that of the pseudorange except that it contains an
extra parameter, N . The ionospheric error for the carrier phase observable is the same as
the pseudorange observable in units of metres but they differ in sign, as the ionosphere
causes an advance to the carrier and a delay to the pseudorange (Klobuchar, 1996). In the

context of this thesis, the double differenced (DD) processing technique is used. The
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double differenced observable equation and error sources are therefore discussed in more

detail.

Figure 2.1 depicts atypical DD set-up. By taking the difference between observations to
the same satellite from the rover and reference GPS receiver, the satellite clock error,
tropospheric error, ionospheric error, and satellite orbital error are significantly reduced.
The amount of reduction depends on the spatial separation between the reference and
rover GPS receivers. The derived observable is known as the single difference (SD)
observable between receivers. By further differencing the SD observable between
satellites (see Figure 2.1), the receiver clock errors are eliminated completely. DD

processing is performed to reduce the errorsin Equations (2.2) and (2.3).

rover
g g reference

Figure 2.1 Double Differencing Concept
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The DD pseudorange and carrier phase observation equations are respectively expressad
as:
NDP =RNDr +NDdr +NDT +NDI - NDdT; +NDe,, (2.4)
NDCP =[NDr +NDdr +NDT - NDI - NDdT;]/I +NDN +NDe,, (25)

where NDis the double differenced (DD) operator.

Double differenced observables have many advantages over undifferenced observables.

First, the receiver clock offset is removed. Second, it is well known that the satellite
clocks are highly stable (Kaplan, 1996), thus the value NDdT, tends to cancel as long as
the observations are differenced at approximately the same time at both reference and
rover stations. That means Equations (2.4) and (2.5) can be further smplified as:
NDP =NDr +NDdr +NDT +NDI +NDe, (2.6)
NDCP =[NDr +NDdr +NDT - NDI]/l +NDN +NDe, 27
Third, the scaes of the DD tropospheric error, DD satellite orbital error, and DD

ionospheric error are much smdler than the undifferenced values.

The double difference observable has some disadvantage over the undifferenced
observable. The most significant effect is that the noise level of the DD observable

increases sinceit isalinear combination of the carri er phase observable.

To fully understand Equations (2.6) and (2.7), it is worthwhile to look at the individua
terms on the right-hand side of the two equations, especially the double differenced error

terms.
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2.2 GPS Error Sources

The DD errors can be classified into two categories, spatialy correlated and nonspatially
correlated. Spatialy correlated errors are those that tend to cancel between a reference
receiver and a rover receiver but increase in relation to the baseline length. These errors
include

Satellite orbital error

Tropospheric error

lonospheric error

Non-spatidly correlated erors are those that are unique to each receiver or its
environment. They are not related to the basdline length and therefore will not cancel
through DD processing. These errors are

Multipath

Measurement noise

All of the above mentioned error sources are discussed in detail later in thisthesis.

2.2.1 Satellite Orbital Error

In order to compute a receiver position using GPS measurements, the coordinates of the
GPS satellites must be known. These coordinates are normally expressed in terms of an
ephemeris, which gives a mathematical description of where a satellite is at a given time

(Roulston et a., 2000). In order to provide users with an ephemeris for real-time
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applications, the GPS design group came up with what is known as broadcast ephemeris,
which is in the form of a navigation message that is modulated on the L1 and L2 carrier
that are transmitted to users (Seeber, 1993). The satellite orbital error is a result of the
discrepancy between the computed coordinate using the broadcast ephemeris and its
actual value. According to IGS (2001), the satellite orbital computed from the broadcast
ephemeris has an RMS eror of 2 m. However according to Wells et a. (1986), in

differential positioning, the following general rule holds:

d_dr (2.8)

where db is the total error in the length of the baseline b, dr is the total eror in the
coordinates of a satellite position, and r is the mean distance from the stations to the

satdlite.

Equation (2.8) shows that the actual influence of the satellite orbital error on the baseline
is limited. Assuming an RMS satellite orbital error of 2 m and an average satellite
receiver range of 20200 km, the contribution of the orbital error to the differentia
positioning error budget is a 0.19 ppm. Figure 2.2 shows the relationship between

admissible SV orbita errors dr with respect to baseline length b for the given baseline

error thresholds db =0.5cmand 1 cm. From this figure, it can be concluded that the
baseline error caused by satellite orbital errorsislessthan 1 cm for baselines up to 50 km,

and is negligible assuming anominal satellite orbital error of 2 m.



15

8 ;
acceptable orbit error versus baseline length
7 -
6 -
[
2
g 5| —lcm baseline error threshold |
< :
S
E 4 .............................................. -
§
°3 5
0.5cm baseline error
threshold
2 [ B
1 1 I 1 1 | 1
30 40 50 60 70 80 90 100

baseline length in km

Figure 2.2 Orbit Error vs. Basdline Lengthsfor Certain SV Orbit Induced Error
Thresholds

2.2.2 Tropospheric Error

The troposphere is the portion of the atmosphere extending up to 60 km above the Earth’s
surface. When the GPS signal travels through the troposphere, its path will bend dightly
due to the refractivity of the troposphere. The change of the refractivity from free space
to the troposphere causes the speed of the GPS signal to slow down, which causes adelay
in the GPS signd. This tropospheric delay is a function of temperature, pressure, and
relative humidity. Measurement of these quantities at widely spaced monitoring stations

would be ineffective owing to their short spatial correlations (Kaplan, 1996).

The atmosphere consists of dry and wet components. These components affect the
propagation delay of the radio frequency signals quite differently. The dry component

causes a delay around 2.3 m in the zenith direction which varies with loca temperature
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and pressure. The dry component induced delay is quite constant and may vary only 1%
in a few hours. This dry zenith delay can be predicted very well using existing models.
The wet component of the zenith delay is generally much smaller, between 1 and 80 cm
a the zenith, and is very unpredictable. It may change by as much as 10% to 20% in a

few hours (Spilker, 1994).

Generaly, tropospheric delay can be modeled very well. It was found that the
contribution of the troposphere to the differential positioning error budget varies typically
from 0.2 to 0.4 parts per million (ppm), after applying a model (Lachapelle, 2000).
Assuming a nomina vaue of 0.4 ppm, the baseline errors after applying a model are
tabulated below for different baseline lengths. From Table 2.1 one can conclude that for
basdlines beyond 25 km, the residual tropospheric delay is larger than 1 cm. For a
basdline of 100 km, the residual tropospheric error is as high as 4 cm. In order to achieve
a one-centimetre level of positioning accuracy, ether the residua tropospheric delay

must be modelled explicitly or corrections have to be made to compensate for it.

Table2.1 Basdline Errorsdueto Residual Tropospheric Error

Basdline length (km) Basdline errors (cm)
5 0.2
10 04
25 1.0
50 2.0
100 4.0
500 20.0
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There are quite a number of tropospheric delay models available, e.g. Hopfield (1970,
1972), Saastamoinen (1972), and Lanyi (1984). The Hopfield tropospheric delay model
and Saastamoinen tropospheric model are the most frequently used and they give
comparable results in most Situations. For low elevation satellites, the Saastamoinen

model produces dightly better results than the Hopfield model (Spilker, 1994).

2.2.3 lonospheric Error

The ionosphere is the layer of the atmosphere that extends from 60 to over 1000 km of
height above the Earth’s surface. The ionosphere is an important source of range and
rangerate errors for users of the GPS who require high-accuracy measurements. At
times, the range errors of the troposphere and the ionosphere can be comparable, but the
variability of the earth’s ionosphere is much larger than that of the troposphere, and it is
more difficult to model (Klobuchar, 1996). The first-order carrier phase error | (in
metres) caused by the ionosphereis given as (Skone, 1998):

403

| =- =5 TEC (2.9)

where 40.3 is an empiricaly derived constant with units of m’/s/electrons, TEC
represents the Total Electron Content along the signal path in units of electrons/m?, and
fis the L1 or L2 carrier frequency. From Equation (2.9), it can be seen that the
magnitude and variability of the ionospheric error is a function of TEC. The TEC values
depend on the rate of ionization, recombination and transport processes (Skone, 2001).
The rate of ionisation in a globa sense is a function of the solar activity, which follows

cycles of approximatey 11 years in duration (Klobuchar, 1996). The TEC vaues have
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been observed to increase by a factor of three during a solar maximum versus a solar
minimum (Klobuchar et a., 1995). In addition to the large-scale global increase in the
absolute value of TEC during solar maximum, an increase in the frequency and
magnitude of magnetic storms accompanies the enhanced solar flare activity (Skone,
1998). The latest solar maximum occurred during the year 2000-2001. The data set used
in this thesisis collected in early 2002, one year after the solar maximum, which means

thereis still a strong ionospheric signature in the data.

The pseudorange and carrier phase measurements include ionospheric range errors of
equal magnitude in metres and opposite sign (Skone, 1998). This causes trouble to users
of single frequency GPS receivers who want to smooth the pseudorange with the carrier
phase observation, as the smoothing process must be restarted at certain intervals to avoid

the divergence caused by the ionosphere on pseudorange and carrier phase.

There are some ionospheric models available. Klobuchar (1986) introduced a model that
is being used by the GPS control centre as part of the navigation message broadcast by
the GPS satdlites. This model consists of a cosine representation of the diurnal
ionospheric error curve which will vary in amplitude and period depending on the user’s
latitude. 1t has been shown to be effective in removing around 50% (RMS) of the total
error. Applying this modd will help the SPS performance. However, to reach centimetre
level positioning performance, this modd is not sensitive enough. One such effort tries to
develop efficient globa ionosphere maps. The most representative of these maps are the

Global 1onosphere Maps produced by the Gentre for CODE (Schaer, 1999). These maps
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are only available for post processing and cannot be used in real-time. Other models
include the United Sates WAAS ionospheric grid model. This model estimates the
ionospheric TEC vaues a the fixed grid points in real time using a Kaman filter
technique. Estimates are made of satellite and receiver L1-L 2 interchannel biases, which
must be included in ionospheric delay caculations, in addition to parameters
characterizing the vertical TEC. Model parameters are generally approximated as Gauss
Markov or random walk stochastic processes (Skone, 1998). Unfortunately, this model
still does not have sufficient sensitivity to provide centimetre level positioning

performance.

Although the ionospheric error is hard to compensate for by applying models like the
troposphere, there are several good properties about the ionospheric error that enable its
direct estimation from the carrier phase and pseudorange measurements. The first
property is that the ionosphere is a dispersive medium (Klobuchar, 1996). From Equation
(2.9), it can be seen that L1 and L2 will encounter different ionospheric errors. Skone
(1998) showed estimation of the ionospheric error on L1 through data from a dud
frequency receiver. This dispersive property aso alows forming a very important carrier
phase combination, the ionosphere-free combination. The ionospheric error is removed in

this combination.

Another property of the ionospheric error isthat it has very good temporal characteristics.

Skone (1998) has shown that a first order Gauss-Markov process is consistent with the
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observed tempora correlations in TEC. The following system model was employed to

describe the evolution of the TEC.

-dt

VTEC(t,,,) = VTEC(t,) +W(t,) (2.10)
where VTEC is the TEC ontent in the zenith direction, T, is the correlation time and

dt=t,, - t;. This property alows estimation of the ionospheric error through a Kalman

filter. This approach will be demonstrated in Chapter 4.

The contribution of the ionosphere to the differential positioning error budget is estimated
to be at 1-2 ppm (Seeber, 1993), and this figure is generated at the time of a solar
minimum. In time of solar maximum, the contribution of the ionosphere to the
differential positioning error budget increases by a factor of three. This figure can be
even higher in regions of frequent magnetic storms which cause a sharp increase of the
TEC vaue. Wanninger (1993) reported up to 40 ppm DD ionospheric error in the
equatorid regions. In addition, the ionospheric scintillation (Wanninger, 1993) which
may aso be severe in equatorial regions (geomagnetic equator £15°) can easly cause
semicodeless receivers to lose tracking of the L2 carrier signals (Hegarty et al., 2001),
and this will cause additional difficulty to those semicodeless dua frequency receiver
users. In practice, the ionospheric error is usualy the most detrimental error source for

medium to long baseline carrier phase positioning.
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2.2.4 Multipath

Multipath is the interference of a reflected GPS signa with the line-of-sight GPS signal.
It distorts the signal modulation and thus degrades the measurement accuracy (Braasch,
1996). For a system using GPS pseudorange observables, signal degradation attributable
to multipath can be very severe as the magnitude of the multipath error is usually not
insgnificant. Multipath is not spatially correlated sinceiit is highly dependent on the local
receiver environment. Multipath sources that affect a reference station do not necessarily
cause errors in the rover receiver provided that they are not spaced very close to each
other. Similarly, multipath sources that affect the rover receiver do not necessarily affect
the reference station. The C/A pseudorange multipath can be haf of a C/A code chip,
whichis equivalent to 150 m. The carrier phase multipath is much smaller than that of the
pseudorange, with a maximum magnitude of one quarter of a carrier wavelength, i.e 5 cm
for L1 and 6 cm for L2 (Cannon, 2002). However, in practical applications, the reflected
signd is attenuated to some extent and the typical phase multipath values are more on the
order of 1 cm or less (Lachapelle, 2000). To reduce the impact of multipath, the simplest

way isto carefully select the antenna site to avoid any potentid reflectors.

On very short baselines such as the case in attitude determination, where the spatialy
correlated errors (ionospheric error, tropospheric error, orbital error) are mostly removed
by double differencing, multipath is the mgor error source for carrier phase based
positioning (Lu, 1995). Compared to the ionospheric error, multipath is not assumed to be
amajor error source in this research since the shortest baseline used in this thesisis over

10 km.
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2.2.5 Measurement Noise

Measurement noise is generated by the receiver in the process of taking code or phase
measurements. The noise is primarily due to tracking loop “jitter” (Raquet, 1998). For
moderate to strong signals, the standard deviation of the C/A pseudorange measurement
noise is around 1 m, and this figure can be reduced to 0.4 m or less for receivers which
use narrow correators; the standard deviation of the L1 carrier phase measurement noise
is0.2 mm (Langley, 1996). The measurement noise can be effectively estimated through
the use of a zero-baseline test (Cannon, 2002). In this test, the GPS signa from one
antenna is split to two receivers. All the error sources are eiminated in the double
differencing process except the measurement noise. The satellite-receiver geometry term
is also absent as a common antenna is used. The double differenced measurement can be

used as an efficient observable to estimate the magnitude of the measurement noise.

2.3 Phase Combinations

For most carrier-phase relative positioning applications with short to medium basdine
separation, the satellite orbital error tends to cancel completely and the tropospheric error
after applying a troposphere model is generally negligible. Yet, there is no effective and
reliable modd at this stage to effectively compensate or reduce the ionospheric error.
Since the work of this research is done under the “short to medium baselineg” assumption,
the ionosphere is then considered to be the only remaining dominant error source. Thus
Equation (2.7) can be rewritten as

CP=[r- 1]/l +N+e 2.12)

where e contains mainly noise, multipath, and residual tropospheric error. The DD

operator ND in above equation has been omitted for simplicity.
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Following Equation (2.12), the observation equation for the L1 and L2 carrier phase
observables can be written as:

CP=[r-1,]/1,+N,+¢

CP,=[r - LI/l ,+N,+e (213)

where 1,1, are the ionospheric errors in units of metres on L1 and L2, respectively.

Because the ionosphere is dispersive, the following relationship holds between 1,and |, :

I
I2:(|—22)Il (2.19)
1
So Equation (2.13) can be rewritten as
rl
CR=7-7 *N.+e
rl 1| | (2.15)
CPz—_'(lz) 1+N2+E‘2

It is aso possible to form phase combinations using the basic L1 and L2 carrier phase
observations. Assume that both double differenced L1 and L2 carrier phase observables,

cp, adcp,, are available, then a generic linear phase combination can be formed as

(Seeber, 1993):
CP, =iCR + jCPR, (2.16)

The wavelength of CP ;isexpressed as

| = _+_”+ with ambiguity N, =iN +jN, (2.17)
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wherel , and |, are the wavelengths of L1 and L2 in metres, and N,and N, arethe L1
and L2 integer carrier phase ambiguitiesin cycles. Thus, cr can be seen as a specid case
of @, with i=1j=0,while cp, hasi=0,j=1.

Following Equation (2.12), the observation equation for CR ; can bewritten as

r A
CR; :|—+Ni'j - (i +j|—2)|—1+e (2.18)
i 1 1

wherel, isthe ionospheric biason L1 (in metres).

There are many possible carrier phase combinations. The following section will discuss

severd popular combinations. These are the widelane, narrowlane, and ionosphere-free

combinations.

2.3.1 Widelane Combination (\WL)

The observation equation for the WL observable (i =1, j =- 1) (Seeber, 1993) is:

CR, =CPR,- CR,
Ny, =N,- N, (2.19)
r 171
CP. = +N, +—-1+
" WL " 60 I 1

The wavelength of the widelane phase observable is | 1+2| (0.86 m). As can be seen,

1 2

the ionospheric error in units of cycles has been reduced to %of a wavelength. To

illustrate the advantages of this, assume there is an ionospheric bias equivalent to one L1
cycle, then the corresponding error for the WL observable would only be 17/60 of a

cycle. It is therefore clear that the widelane combination is more resistant to ionospheric
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error (in cycles) than L1 and thus, it is more reliable to resolving widelane ambiguities
under adverse ionospheric conditions. Another property of the widelane observable is that
it isalso more resistant to position errors. For example, it takes a minimum position error
of only 19 cm to introduce a one-cycle error on L1, but a minimum position error of 86

cm to introduce a one-cycle error for widelane.

Although the widelane combination reduces the impact of the ionospheric bias in cycles,

it actually amplifies its effect in metres, which is the unit used for position estimation.

I
Y, 7 The

Specificaly, the ionospheric bias for the widelane in metres is :
6o, WL 601

noise is also amplified in the widelane observable compared to the L1 and L2 raw
observables in metres. Thus it is expected that the position estimate derived using the
widelane linear combination will have a higher position error than the position errors
determined with the L1 observable, assuming the integer ambiguities are resolved

correctly for both.

2.3.2 Narrowlane Combination (NL)
The observation equation for the narrowlane combination (i =1, j =1) (Seeber, 1993) is:

CR, =CR +CP,
Ny =N, +N, (2.20)
Chw :r_+NNL te

I

The wavelength of the narrowlane combination is . (20.7 cm). This wavelength is

I1+|2

much shorter than that of the WL. Narrowlane has the same magnitude of noise as WL
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does in cycles. However, due to its relatively short wavelength, narrowlane has lower
noise compared to L1, WL or IF in metres. As a result, the narrowlane should give better
positioning results than L1, WL and IF does, provided the ionospheric error is negligible.
However, narrowlane has the same amount of ionospheric error as WL doesin metres. So
in situations when the ionospheric error is not negligibl e, the narrowlane suffers from the
ionosphere the same as the widelane does. Furthermore, the short wavelength also makes
it difficult to resolve the narrowlane ambiguities. In this research, al data have strong

ionospheric signature, thus the narrowlane is not investigated further.

2.3.3 lonosphere-free Combination (IF)

The observation equation for the ionosphere-free combination (i =1, =- :—1) (Raquet,

2
1998) is:

CRe =CR- 1*CP,

(2.21)

CRe =~ +Nyc +e

IF
The main advantage of the ionosphere-free combination is the removal of the first order
effects of the ionosphere. As a result, the level of ionospheric activity is of less
significance. The disadvantage of this combination is that the IF ambiguity is no longer
an integer. Also the IF combination is noisier than L1 and L2 since it is a combination of

Lland L2
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Table 2.2 summarizes the magnitude of the ionosphere and noise erors for the

undifferenced L1, L2, WL, NL and IF observables in both metres and cycles. In this

research, two combinations are examined extensively in additionto L1 and L2. Oneisthe

widelane combination and the other is the ionosphere-free combination as both have

shown good performance in combating the ionospheric error.

Table2.2 L1Y/L2/WL/NL/IF Combination Properties

N ) . l. . lonospheric Error | Noise (1-sigma)
Combination | | J ) i
(cm) m cycle m cycle
19 I
L1 1 0 Ny l, ﬁ 19, S,
2
16 771, X
L2 1 24 N ey —-1 | 24s s
0 2 86()@ Il 60 | L 1 1
77 17 |
WL 1 -1 86 N,- N -—1 —-1 | 1215, | 141s
172 | "0 | 60l ' '
77 137 |
NL 1 1 | 107 | Ny*+N, — 1, Eﬁ 15s, | 1.41s,
| |
IF 1 I—l 48 Nl-l—lN2 0 0 60s, | 1.26s,
2 2

" Assume the standard deviation (1-sigma) of the observation noise on L2 carrier isthe

same asL1 in unitsof cycles.

To demonstrate the impact of the ionospheric error on different carrier phase and phase

combinations, a medium distance baseline (21.6 km) from a network in Italy has been

processed with the four scenarios in Table 2.2. The data is 24hour long with a 1 Hz

sampling rate, collected in February, 2002. The DD ionospheric error on L1 isdepicted in

Figure 2.3. It is clear that the ionospheric error is high between 08:00-16:00 local time.




Figure2.3 DD lonospheric Error on L1 for a21.6 km Basdlinein Italy
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The data is processed a a 1 Hz interval to determine position estimates but with

ambiguity parameters constrained to known values that had been determined a priori.

This was done so that the positioning accuracies of the various approaches could be

directly compared. Therefore only the baseline components were estimated. Table 2.3

shows the RMS position errors for al four combinations. It can be seen that the IF

combination gives the smallest RMS error for al three axes. This indicates that the

ionospheric error is the dominant error source for this basdline data.

Table 2.3 RM S Position Errors(cm) with Bernese Ambiguities, 26 km Baseline

Combination
Componen
L1 L2 WL IF
East 7 12 9 5
North 4 6 5 2
Height 10 18 14 8
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Figures 2.4 to 2.7 show the position error for the four different combinations. The
ionospheric impact on the position is evident in Figures 2.4, 2.5 and 2.6. All three figures
show large position errors in the middle of the data set when the ionosphere is very
active. The position error is small a the beginning and end of the data set when the
ionospheric activity is low. It isinteresting that the position error using L2 is worse than
the WL combination for this data set, even though the WL combination is five times
noisier than L2. This is because L2 contains more ionospheric error than WL asL2 is a
lower frequency. The ambiguities are resolved using the Bernese Software (Universitét
Bern, 2000). This software does not solve al the ambiguities at some gochs due to
certain interna software mechanisms, in which case a reduced geometry results, which

has caused severd large spikesin Figures 2.4 to 2.7.

Based on the above results, the following conclusion can be drawn: Assuming that both
L1, L2 and WL ambiguities are correctly resolved, then the L1 phase only solution will
always give better positioning RMS than the WL because L1 contains less ionosphere
and noise in centimetres than WL does; whether L2 can give a better position RMS than
WL depends on the DD ionospheric error. Further details on various ambiguity resolution
strategies that use the L1, L2 and/or WL observations are presented in the following

chapter.
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CHAPTER 3

GPSAMBIGUITY RESOLUTION

3.1 Introduction

Before discussing various ambiguity resolution strategies that involve various frequency
combinations, parameterization schemes, and modelling methods, it is worthwhile to
investigate basic ambiguity resolution techniques. From Equation (2.12) in the previous
chapter, the DD carrier phase observation equation is

CP=[r - 1]/l +N+e (31
wherer isthe DD satellite-receiver range containing the baseline information that is to be

estimated, and N is the unknown DD integer carrier phase ambiguity. In order to solve
the baseline component, the ambiguity term, N , has to be olved first. The process of
estimating the correct carrier phase integer ambiguity is called GPS ambiguity resolution.
Successful ambiguity resolution is the key to high precision positioning using the carrier
phase observable. In order to reach centimetre level postioning accuracies, this

ambiguity term must be determined correctly.

Figure 3.1 shows the flowchart for using the DD carrier phase observable in GPS

positioning. In generd, there are three procedures involved. These are the float filter
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procedure ([1] in Figure 3.1), ambiguity resolution ([2a] in Figure 3.1) and validation

procedure ([2b] in Figure 3.1), and the fixed solution procedure ([3] in Figure 3.1).

yes

Estimate “fixed”
—  ambiguity position

=,

Estimate
“float” position
and
“float’
ambiguities

[1]

yes

using ‘known’ integer
ambiguities

[3]

\ 4

Integer ambiguity
resolution
technique

Ambiguity
validated?

[2b]

no

Figure3.1 DD Carrier Phase Positioning Flowchart (Cannon, 2002)

3.1.1 Float Filter Procedure

The float filter procedure is usually implemented through a Kalman filter and Figure 3.2

shows the usua steps. Kaman filtering usualy contains four steps. prediction,

computation of the innovation sequence, computation of the Kalman gain, and update. In

Figure 3.2, x, is the state vector estimated at epoch k, C,is the variance-covariance

matrix of the state vector x, at epoch k, z isthe observation vector at epoch k, F isthe

transition matrix, Q, is the system process noise matrix a epoch k, R isthe variance
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covariance matrix of the observation vector z , | is an identity matrix, and H is the

design matrix which is the matrix computed by taking the derivatives of the observables
with respect to the estimated states. The - sign is used with any matrix or state vector
before the “Update” step, while the + sign is used with any matrix or state vector after the

“Update’ step. More on Kalman filtering can be found in Brown and Hwang (1992).

Innovation Sequence

v =z, —H,x,

C,=HC,H" +R,

Predict Kalman + Gain

- _ +
x, = Ox; |

T — 7T -1
O 00 40, K=CH (HCH" +R,)

A

Update

S
x, =x, +Kv

G = -KH);

rF 3

Figure 3.2 Linearized Kalman Filter Loop (Brown and Hwang, 1992)

A Kaman filter contains two sets of models (Axelrad et a., 1996). The first one is a
dynamic model that describes how the state vector transforms from one epoch to the next,
and how the variance covariance matrix of the state vector evolves from one epoch to the
next. The other one is a measurement model that relates the observations to the state

vector through the design matrixH . These two models are described below.



3.1.1.1 Kaman Filter Dynamic Model

Specific to DD carrier phasebased GPS RTK positioning, the state vector usualy
contains the three position states (j ,I ,h) (latitude in units of radians, longitude in units
of radians, height in units of metres, respectively), three velocity states (j°,1 ,h) (latitude
rate in units of radians per second, longitude rate in units of radians per second, and

height rate in units of metres per second, respectively), and the DD ambiguity state N (in
units of cycles) for each satellite-receiver pair. Assuming n DD ambiguities are available,

the complete state vector is

x=(,1,hj I, AN, N, N, N,) (3.2)

For most navigation problems, the dynamics of the system are modelled using a random

wak modd or a GaussMarkov model, thus the transition matrix is easily obtained
Brown and Hwang, 1992). Assume a random walk model for the velocity state (j°,1',h)
with corresponding driving noise vector (w ,w ,w,), the transition matrix for the

position and velocity state vector is derived as

g 0 0 dt 0 0Q
é100dt03
- @0 010 0 di 3
Y9 001 0 o0y '
@ 000 1 00
© 000 0 1y

where dtis the transition time interval in seconds. The equations relating the white

driving noise and the three velocity states are as follows:
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(3.4)

Assume a spectral density for the driving noise vector of (P ,S0 , SP,,) (@l in units of

m?/s’), the subsystem noise matrix for the position and velocity state vector is derived as

AS

Pate o 0

é

¢ o Fager o

€ 3

e

go 0 %dt?’
Q=g

e gz o 0

&2

e

e 0 Fage o

a 2

&

g o 0 %dtz

9

2

0

0

dt?

0

sp,dt

aooooooocooooooooooooaooc

e

[(@.cm

(35)

The ambiguity states are modelled as random constants since ambiguity states will not

change unless there is a loss of phase lock. So the transition matrix for the ambiguity

state vector is derived as

T
1
O O B+, O

0

N
(D> (D> DD @ D> D> D
P D DD B D> B

The subsystem noise matrix for the position and velocity state vector is derived as

"o O O

0

", 0o 0O

0

o o oo
So oL

0

(36)
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60 0 000
000 00 0
o 80 0 0 0 0 a7
2~ € U -
O 0 0 0 0 0
é i i
90 000 0 Q
The complete transition matrix is
) 00
F=g1s o8 39)
60 F,q
and the complete system noise matrix is
€ 0q
Q=¢ Y (3.9)
é0 QzH

The above derivations show the eguations for the basic system dynamic mode in GPS
RTK positioning. In case the user wants to estimate additiona states, like the DD

ionospheric errors, the state vector can be expanded as follows:

x=G 0,01 AN NG, N N T Tgeee, ) (3.10)
where |.is the DD ionospheric error in metres between the ith satellitereceiver pair.
Assuming afirst order Gauss-Markov process for the DD ionospheric error state |, with

a driving noise w, of spectral density sp,in units of m?/s, and time congtant T, in

seconds, the continuous state space equation for |, is derived as
PR g (3.12)
TO
The discrete form of the above equation is

dt
I ik+l —e To I ik + Vvik,k+l (3'12)



thtt J L ey

Oe™  wt)dt , dt=t“"-t*, and the variance of the discrete white
tk

Where V\/ik'k+1 -

- 24t
noise w**"is iz-r"[l- e® ].

The subtransition matrix for the complete DD ionospheric eror state vector

(1,,1,,15-++,1,) isthen derived as

g & 0
ee®™ 0 0 0 0y
¢ a
€0 e* 0 0o ol
e u
F,=é & u (3.13)
60 0 e 0 00y
é : - u
é - U
é deg
B0 0 O 0 e"§

The subsystem noise matrix for the DD ionospheric error state vector is derived as
é - 24t u
Pl o 0 0 0 0 a
e 2 U
é T —Edt u
& 0 Pl g™ 0 0 0 G
é 2 y

Q,=¢ 2 U(3.14)
- 0 0 Pl %] 0 0 ¥
é 2 a
é : a
e , u
e -—dt U
g O 0 0 0 &;TO[L el

In the expanded state vector case, the complete transition matrix is denoted as
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e, 0 0Ou
_e u

F=g0 F, Oy (3.15)
80 0 F.f

and the complete system noise matrix is derived as

Q 0 0y
Q=go Q, og (3.16)
80 0 Q4

3.1.1.2 Kaman Filter Measurement Model

The dynamic model in a Kaman filter describes the evolution of the states. The
measurement model relates the state vector to the GPS observations through the design
matrix H . For information on how to compute the design matrix H , see Cannon (1991).
Regular updates by the measurement into the state vector is crucial as the system will
diverge if there is no measurement provided over a long period of time, driven by the
system input noise. These observations for the float filter can be DD carrier phase
observables (CP) only, or DD carrier phase plus DD pseudorange observables
(CPand P). The pseudorange observables are used most of the time because the position
states are not directly observable by the DD carrier phase observable because of the
existence of the DD ambiguity terms, but they are directly observable by the DD
pseudorange observations. Providing the DD pseudorange observation can reduce the
time for the Kalman filter to converge. In thisthesis, DD C/A pseudorange P isused in
every ambiguity resolution strategy to speed up the filter convergence. The selection of
the carrier phase observable is a little complicated, and more on this topic is covered in

Chapter 4.



3.2 Ambiguity Resolution

The output of the float filter procedure is the current position component estimates, the

velocity component estimates, and the float-valued DD ambiguities N (the Kaman filter
does not take the integer property of the DD ambiguities into account in the float filter

procedure, so the estimated DD ambiguities are floating valued), and the variance

covariancematrix Cg for N.

The second procedure in Figure 3.1 is the ambiguity search or resolution and valicktion
procedure. It is in this procedure that the integer property of the DD ambiguities is
applied in certain search agorithms to find the correct DD integer ambiguities. Usually

these search agorithms are carried out in the ambiguity domain, based on the output of

the float filter procedure, N and Cy - To date, there are numerous ambiguity search

methods available. The most prominent methods among them are:
Ambiguity function method (Counselman et al., 1981)
L east-squares ambiguity search technique (Hatch, 1990; 1991)
Fast ambiguity resolution approach (FARA) (Frei, 1991)
Least-squares ambiguity decorrelation adjustment method (LAMBDA)
(Teunissen, 1993)
Fast ambiguity search filter (FASF) (Chen and Lachapelle, 1994)

Sequentia integer rounding (Bootstrapping Method) (Blewitt, 1989; Teunissen,

19983)



41

In this research, two ambiguity resolution schemes are investigated thoroughly. They are
the Bootstrapping method and the LAMBDA method. Although the ambiguity search
algorithm in the FASF is more complicated and robust than the Bootstrapping method,
they both utilize the basic techniques, even though FASF does *“bootstrapping”
recursively. Thus, in this chapter, only the LAMBDA and Bootstrapping methods are

discussed.

3.2.1 LAMBDA Method

LAMBDA dands for Least-squares AMBIguity Decorrelation Adjustment. It was
proposed by Teunissen (1993). Assuming an n-dimensional ambiguity state vector, the

LAMBDA ambiguity resolution method is based on the following princige

min(N - N)C; *(N- N)T,withNT Z" (3.17)
whereZ" means an ndimensional integer space. Equation (3.17) tries to find the integer
ambiguity vector N that makes the above quadratic product minimum. Teunissen (1998a)

has proven that the success rate of using the LAMBDA method to estimate integer

ambiguitiesis aways greater than or equal to any other integer ambiguity estimator.

Another important procedure in carrier phase positioning is the ambiguity validation,
shown in Figure 3.1. With the LAMBDA method, a set of integer ambiguities can dways
be generated that satisfy Equation (3.17). However, the biggest limitation for LAMBDA
is not whether an ambiguity solution can be generated, but instead how the ambiguities

generated from Equation (3.17) can be validated. Usually this validation process is done
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by a ratio test that compares the smallest sum of sgquared ambiguities residuals to the

second smallest. Theratio test is (Han and Rizos, 1996a):

N- N,)C.}(N- N,)T
ratioz( ~ 2) N_l(A 2)T >=d (3.18)
(N' Nl)C,(, (N' Nl)

where N, isaset of integer ambiguities that makes Equation (3.17) result in the smallest
sum of squared ambiguitiesresiduals, N, is another set of integer ambiguities that makes

Equation (3.17) result the second smallest sum of squared ambiguities residuals. Usualy
the value of the ratio,d, is dependant on the dimension of the ambiguity vector; the
larger the dimension of the ambiguity vector, the smaller the value of d . At this stage,

thereis no better measure than thisratio test to validate the resolved integer ambiguities.

3.2.2 Bootstrapping Method

The smplest way of integer ambiguity resolution is to round the float ambiguity to its
closest integer regardiess of the ambiguity variance-covariance matrix. The integer
bootstrapping is very similar to integer rounding except that it takes the correlation
between ambiguities into account. The bootstrapping method follows from a sequential
conditional least squares adjustment and it is computed as follows. If n ambiguities are

available, the bootstrapping method starts with the first ambiguity Nl, and rounds its

value to the nearest integer. Having obtained the integer value of this first ambiguity, the
red -valued estimates of al remaining ambiguities are then corrected by virtue of their
correlation with the first ambiguity. Then the second, but now corrected, real -valued
ambiguity estimate is rounded to its nearest irteger, and the real-vaued estimates of all

remaining n- 2 ambiguities are again corrected, but now by virtue of their correlation
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with the second ambiguity. The process is continued until al ambiguities are considered.

The components of the bootstrapped ambiguities are given as (Teunissen, 1998a):

, ~

Ny = gN:H
—éN U=6éN - 2 (N . 0|
N, = &No [= &N2 S 1S (N1 Nl)a
(3.19)
AN \_é" %1 2 ~ l:l
N”_SN”“HH_gNn-al'SNanusNil( il N')H

where the shorthand notation Ni“ and s % stands for the ith least squares ambiguity and

its standard deviation obtained through conditioning on the previous | :{1---,(i -1)}

sequentially rounded ambiguities. The success rate of any bootstrapped ambiguity can be

computed as (Teunissen, 1998a):

A ® 4 o
(N, =N,)=2Fg_~—-1% (3.20)
%23 Q +
[ 4]
with F(x) = ;‘)iexp(- lyz)dy (3.21)
“N2p 2

where F (x) is the cumulative distribution function of a normal Gaussian distribution. It

can be seen that the smaler the conditiona variance of the ambiguity, the higher the
probability is of fixing the ambiguity correctly. Thus, for the integer bootstrapping
method, it is better off to start with the ambiguity with the smallest variance, then the
second smallest, then the third, and so on. The success rate can be used as a validation
measure in the Bootstrapping ambiguity resolution method. Normally in Bootstrapping
ambiguity resolution, a check must be made on the standard deviation of the float

ambiguity to ensureit issmall enough to yield a sufficiently high successrate.



3.3 Testsand Results

To show the effectiveness of both the Bootstrapping and LAMBDA ambiguity resolution
techniques, the same 24-hour baseline data used in Chapter 2 is processed in kinematic

mode with different ambiguity resolution strategies.

3.3.1 Resultswith LAMBDA

The data is processed with the software FLYKIN+™ (This software is discussed in detail
in Chapter 4) using the LAMBDA ambiguity resolution module and position estimates
given at every epoch. The observables used are the C/A pseudorange and WL carrier
phase observables. FLYKIN+™ isa software package capable of processing GPS datain
static or kinematic modes, and allows users to select from a wide range of processing
options. However, it was stated in Chapter 1 of this thesis that the research is focused on

normal RTK practices, so the software FLY KIN+"™ was always used in kinematic mode.

The position domain results are presented in Figure 3.3. Green in the figure means that all
ambiguities have been fixed, red means none of the ambiguities have been fixed, blue
means al ambiguities except one have been fixed, and yellow means more than one
ambiguity cannot be fixed. The overall position errors show the LAMBDA method works
very well. This basdline is also processed with Bernese Software in batch processing
mode. The Bernese software is well tuned for processing static data in batch mode and
the ambiguity output from the Bernese software is assumed to be correct. The ambiguities
output by Bernese are compared to the ambiguities output by FLYKIN+™. Their

difference in absolute value is shown in Figure 3.4. The difference is zero for the entire
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data set, indicating that the ambiguities resolved with LAMBDA method is 100%

accurate.
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3.3.2 Results with Bootstrapping

To evauate the performance of the Bootstrapping method, the data was also processed
with FLYKIN+™ using the Bootstrapping ambiguity resolution module, and position
estimates were again determined at every epoch. The position domain results are
presented in Figure 3.5. It is clear that the position error is bounded very well, indicating

that the Bootstrapping ambiguity resolution is functioning well in this case.
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Figure 3.5 Position Errorswith Bootstrapping M ethod

Figure 3.6 shows the difference between Bootstrapped ambiguities and Bernese
generated ambiguities. The difference is zero for the entire data set, also indicating a

100% success rate for Bootstrapping ambiguity resolution method.
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Figure 3.6 Ambiguity Differences between Bootstrapping and Bernese Appr oaches

Table 3.1 summarizes the performance for the LAMBDA and Bootstrapping ambiguity
resolution methods for this data. Both methods result in the same position estimate RMS
error in the north east and up axes, which is understandable since Figure 3.4 and Figure
3.6 demongtrated that there are no inaccurately resolved ambiguities. In Table 3.1, “All
Fixed Percentage’” means the percentage of those epochs in the 24-hour period when al
of the ambiguities are resolved to integers, and “All Float Percentage” means the
percentage of those epochs in the 24-hour period when none of the ambiguities are
resolved to integers. Table 3.1 reports 0.1% and 0.04% for the Bootstrapping and
LAMBDA method in the “All Float Percentage’ category respectively, which suggests a
high efficiency for both the LAMBDA and Bootstrapping methods. In the “All Fixed
Percentage’ category, Bootstrapping reports 10% less than LAMBDA, which can be
explained by the fact that a more rigorous constraint is enforced on the standard deviation

of the float ambiguities in the Bootstrapping method.



Table3.1 LAMBDA and Bootstrapping Comparison

Category Bootstrapping LAMBDA
North 9 9
ErrF(Q)IrVI(Sm) Eest 4 4
Up 12 12
All Fixed Percentage 48% 58%
All Float Percentage 0.1% 0.04%

3.4 Suggested Ambiguity Resolution Method

Teunissen (1998a) has proven that the success rate of usng the LAMBDA method to
edtimate integer ambiguities is dways greater than or equal to any other integer
ambiguity estimator. Thus the LAMBDA method is a preferred method for ambiguity
resolution. However since the validation procedure for the LAMBDA method employs a
ratio test and this has turned out to have limitations which may cause problems. The
above ratio test can provide a high degree of reliability, but it does not provide a high
degree of efficiency, especidly if there is frequent loss of tracking to some satellites. If a
new satellite is included in a solution, the standard deviation for the ambiguity of the new
satellite is usually very high, and this will push the result of the ratio test close to avalue
of one. More observations are needed to drive down the standard deviation of the newly
included ambiguity parameter to increase the computed raio. Thisis aloss of efficiency.
The satellites that have been observed for an extended amount of time, and with their

associated ambiguities fixed, should aso have reatively small standard deviations. It
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does not make sense then, to carry out the ambiguity resolution process for al the
satellites when a new ambiguity parameter lowers the ratio value. In order to avoid this
problem, a combined ambiguity resolution scheme is investigated and employed in the
software FLYKIN+"™. First the software uses LAMBDA to solve for al the ambiguities.
If the ratio does not exceed the threshold, then the software examines the float ambiguity
value and the standard deviation of each individual ambiguity. If the standard deviation
of an ambiguity is too large (for example: = 0.1 cycle), then the software will not fix this
ambiguity, otherwise it carries out a search using the float ambiguity and its associated

standard deviation viathe procedures below. Assuming the value of the float ambiguity is

N , and the standard deviation of the ambiguity is s v » asearch space (SS) is determined
into which the integer ambiguity should fall. This search spaceis.

SS:%N—:SN,N +3 \H
Depending on the value of the float ambiguity, N, and standard deviation,s v » there are

three possible scenarios.

Scenario I: Thereis exactly one integer ambiguity in (SS) and the float ambiguity is very

closeto aninteger.

&
T
&

N-1 N N +1
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Thisis the idea scenario. The only integer in (SS)is regarded as the correct ambiguity

vaue.

Example:
IN =095 ) )
| P (SS):[0.95- 3" 0.04,0.95+3" 0.04]
iS4 =004

There is only one integer value, 1, within the (SS). This float ambiguity has converged

because the standard deviation of this float ambiguity is only 0.04. Unless there is cycle
dip, the value of this float ambiguity will not change dramatically. Thus, 1 is deemed the

correct integer ambiguity.

Scenario Il: There is more than one integer ambiguity in (SS) because the standard

deviation of the float ambiguity istoo large.

N -1 N N +1

Thisis the case when the ambiguity has not been observed for enough time. The standard
deviation is too large. More observations are needed to increase the precision of the float
ambiguities.

Example:

N =0.
1. Oogjp (SS):[0.95- 3" 0.4,0.95+3" 0.4]

N .
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Therearethreeintegers{0, 1, 2} in (SS). It ishighly risky to fix the ambiguity in this

case.

Scenario I11: Thefloat ambiguity isfar off any integer value.

&
I )
&

N-1 N N +1
This is the case when there are unmodelled error sources such as ionospheric error a
multipath. It is safer to keep the ambiguity as a float value rather than to forcefully fix
them with a high risk. Fixing to a wrong value is much worse than keeping the ambiguity
float, asfixing incorrectly will introduce alarge bias into the observations.
Example:

IN =055
ts . =004

N

P (SS):[0.55- 3" 0.04,0.55+3" 0.04]

There are no ambiguities in (SS), and N is nowhere near an integer; keep the

ambiguities as float values and wait until the multipath or ionospheric error subsides.

The suggested ambiguity resolution method makes sense in practice. Usudly it turns out
that the ambiguity of the high elevation satellites will converge much faster than that of
the low elevation satellites. It is reasonable to resolve the high elevation ambiguity first
and leave the low eevation ambiguity float (Partial fixing). With fixing of high elevation
satellite, the solution is strengthened and it is more efficient to fix the remaining float

ambiguities.
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This suggested ambiguity resolution technique is also implemented in the FLYKIN+™
software. It is recommended that for very short baseline RTK operations, this ambiguity
resolution technique should be used. It is expected to be more efficient than the
LAMBDA only method as the suggested algorithm can operate well in partia fixing
mode. One important restriction applies to the suggested ambiguity resolution method.
The combined method contains the Bootstrapping method, which is reliable only when
the estimator that estimates the float ambiguity is unbiased or dightly biased. A Large
bias due to unmodelled error sources like the high ionospheric error will bias the
estimated float ambiguities and Bootstrapping will then result in erroneous integer
ambiguities. It isrecommended that this suggested ambiguity resolution approach should

be tested extensively.



CHAPTER 4

AMBIGUITY RESOLUTION STRATEGIES

4.1 Introduction

Chapter 3 introduced the float filter, which serves as the starting point for ambiguity
resolution. Once the float -valued ambiguities and the corresponding variance-covariance
matrix are output from the float filter, an ambiguity resolution technique (LAMBDA,
Bootstrapping, FASF, FARA, etc.) can be applied to resolve the correct integer
ambiguities. However, how to generate the float-vaued ambiguities and the

corresponding variance-covariance matrix is not so straightforward.

It was shown in Chapter 3 that the float filter is implemented through a Kaman filter
which contains both a dynamics model and a measurement model. The dynamics model
dictates what states are estimated and the measurement model dictates what observations
or observation combinations are used. The estimated states usudly include position,
velocity, ambiguities, and the DD ionospheric error (if estimated). The ambiguity staes
can be L1 ambiguity only, L2 ambiguity only, WL ambiguity only or any combination
between L1, L2, and WL ambiguities. The observations can be L1 phase only, L2 phase
only, L1 and L2 phase together, WL phase only, or IF phase only. The use of dua

frequency GPS data facilitates a wide variety of possible dynamics and measurement
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models. However, this “variety” also means that it is sometimes difficult to determine
which dynamics and measurement models best fits an application. It is not clear whether
they have the same ambiguity resolution and positioning performance or whether one is

significantly better than the others.

In this chapter, eight processing strategies were formulated that combine different choices
of observables (measurement model), parameterization schemes (dynamics model), and
estimation models. All eight strategies were tested extensively in Chapter 5. This chapter

will present the detailed formulation of each strategy.

4.2 Strategy Formulation

Table 4.1 summarizes al eight strategies in terms of ambiguities estimated and

observables used, where N, isthe L1 ambiguity, N, isthe L2 ambiguity, N,, isthe WL
ambiguity, and N, is the float valued IF ambiguity. CR, is the L1 carier phase
observable, CP,is the L2 carrier phase observable and P is the L1 C/A pseudorange

observable. The P observableis used in every strategy. Chapter 2 has explained that the
pseudorange observable is needed to speed up the convergence of the ambiguity statesin

the float filter.

Strategies 1 through 4 do not take the ionospheric error into account, i.e. the model
assumes that it has been eliminated through the DD process. In contrast, Strategies 5

through 8 will deal with the ionospheric error by either removing it through forming the
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IF observable (Strategies 5 and 6) or by estimating it with stochastic ionospheric

modelling techniques (Strategies 7 and 8). For every strategy, the state vector always
includes the three position states (j ,I ,h) and the three velocity states (j°,1 ,h). The

velocity states are modelled as random wak processes. Each strategy also includes
additional ambiguities states, determined by the parameterization schemes of the
observations. The ambiguity states are modelled as random constants. In Strategies 7 and
8 where the DD ionospheric error is modelled and egimated, afirst order GaussMarkov

processis used. Each of the strategiesis discussed in detail below.

Table4.1 Strategy Summary
Strategy Ambiguity Observables lonosphere
1 N, CR,P
2 N CB,CR,P Not
3 NN, CR,CP, P Parameterized
4 Ny, Ny CR,CR,P
5 N, , Ny, (IF Fixed) CB,CR,P |onosphere-Free
6 N, (IF Float) CR,CP, P Combinations
7 N, N, CR.CR,P Stochastic lonosphere Modelling
8 N, , Ny CR,CR,P :

4.2.1 Srategy 1 (use CP,, CP, and P):

The observation equations for this strategy can be written as.
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CR={-+N, +e(cp)
I (4.2)

P=r +¢(P)

This is the smplest strategy, where only the L1 carrier phase and pseudorange
observables are used. Correspondingly, only the L1 ambiguity is estimated. This is the
typical scenario for most short baselines (say, < 5 km). The first advantage of this
strategy is its smplicity, since only the L1 carrier phase observation is used and no
observation combination is formed. The second advantage is its low noise and
ionospheric error characteristics compared to WL and L2. Chapter 2 has shown that the
ionospheric error and measurement noise on L1 in metres is the lowest compared to L2
and WL. If the L1 ambiguities are fixed correctly, then better position solution will be
achieved compared to L2 and WL. The disadvantage is that this strategy will have
problems resolving the L1 integer ambiguities in period of high ionospheric error,
considering the relatively short wavelength of L1 carrier, 19 cm. |If the ionospheric error
is around or bigger than haf of the wavelength, 10 cm, then this ambiguity resolution
strategy can eadsily run into trouble. However, for most single frequency receivers,
Strategy 1 is the only choice that can offer centimetre level positioning accuracy, but the

success will be dependant on several factorsincluding the ionospheric level.

4.2.2 Srategy 2 (use CP,, CP, and P):

The observation equations for this strategy can be written as:
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4.2)

In this strategy, the WL carrier phase observable is used, and the WL ambiguity is
estimated in the filter. Chapter 2 discussed the property of the WL observable. It is
expected that Strategy 2 should have better ambiguity resolution performance than
Strategy 1 considering the large wavelength (86¢cm) to ionospheric error (in cycles) ratio.
However, it was also demonstrated in Chapter 2 that the ionospheric error in metres for
the WL actudly increased, plus the fact that the WL contains nearly six times the noise
than the L1 in metres, so Strategy 2 is expected to give a position estimate which contains

high noise and ionospheric error signature.

4.2.3 Srategy 3 (use CP,, CP, and P):

The observation equations for this strategy can be written as:
r
R =N +e()
1

r
xR =|—+Nz+€(q32) (4.3)
2
P=r +gP)
This strategy is Smilar to Strategy 1. However, besides the L1 ambiguities, additional L2

ambiguities are estimated in the filter using the L2 carrier phase observations. A dua
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frequency receiver output both L1 and L2 carrier phase observables, thus it does not

make sense to use only L1 data to estimate the positions as Strategy 1 does.

The first advantage of Strategy 3 is that more system redundancy is achieved with the
inclusion of the L2 data. The second advantage is that, unlike Strategy 2, the carrier phase
noise is kept minimum since no frequency combination is formed between L1 and L2.
However, it was shown in Chapter 2 that L2 has more ionospheric error than either the
L1 or the WL. It is expected that this strategy will suffer significantly from ionospheric
error in periods of high ionospheric activity, while it is expected to perform better than
Strategy 1 in periods of very low ionospheric error since there is an increase in system

redundancy.

4.2.4 Srategy 4 (use CP,, CP, and P):

The observation equations can be written as:
r
CH :|— +N, +e(cp)
1

OB, == +N;-N,, +e() @)
P=r +e(P)

This strategy is very smilar to the previous strategy except that the WL and L1
ambiguities are estimated in the filter rather than the L1 and L2 ambiguities. Compared to
Strategy 1, this strategy has the same kind of advantages and disadvantages as Strategy 3.

However, this strategy has an additional advantage brought by the parameterization
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scheme in Equation (4.4): WL and L1 ambiguities are estimated in Equation (4.4) instead
of the L1 and L2 ambiguities in Equation (4.3). It is expected that the WL ambiguities
will converge very fast and be resolved to integers easily, while more data is needed to
resolve the L1 ambiguities. Thus in this strategy, an attempt is first made to resolve the
WL ambiguities; after that is done, an attempt is made to resolve the L1 ambiguities. It is
expected that more data is needed for the L1 ambiguities to converge after the WL
ambiguities are resolved since WL ambiguities are expected to converge much faster than
L1 ambiguities. This strategy is included to compare the impact of different model

parameterizations.

4.2.5 Srategy 5 (use CP,, CP, and P):

Strategy 5 is a cascading scheme and it involves two sets of observation equations. The
first set of observation equations (Equation (4.5)) is the same as the one used in Strategy

2.

-
Chu = L + Ny *+&(Ch ) (4.5)

P=r +e&P)
Equation (4.5) uses the WL observables to estimate the WL ambiguities. After the WL

ambiguities are resolved, a modified IF observation CP, -ll—lcP2 :—1 N, isformed and a

2 2

new set of observation equations is constructed as shown below

CFi'l_lCPZ':_lNM:r_"'lz-llNl"'e(CplF) (4.6)
2

I e P
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where | . isthe IF wavelength (48cm). Equation (4.6) uses the modified |F observation

cP.- l'—lcpz : I'—l N,,, to estimatethe N, ambiguity. It should be noted thet in this case, the

2 2

effective L1 wavelength is | . li# (10.7 cm) instead of |, (19 cm). The advantage of

2
this strategy is that is will not suffer from the ionospheric error given that this effect is
removed. However, there are severad disadvantages of this strategy. The first
disadvantage is the noise characteristics of the modified IF observation

C|31-||—1CP2 -:—1NWL. Chapter 2 shows that the IF has a noise level which is three times

2 2
higher than on L1 in metres. It is thus expected that the position estimate of the strategy
will show a strong noisy signature. The second disadvantage of this strategy is that the

effective wavelength of N, is very small, only 10.7 cm. This will pose a problem when
trying to resolve the N, directly. N, may be resolved correctly provided that the

combined residua tropospheric error and the position estimate error is not significant (<
5 cm). This condition may not be fulfilled easily in practice. The short wavelength of

10.7cm also means a much longer convergence time for the N, ambiguities is needed.

After the L1 ambiguities are estimated and resolved as integers, the ionosphere-free fixed
(IF Fixed) position estimates can be computed and the ionospheric error can also be

computed based on the L1 and L2 carrier phase observables using the following equation

|.CP-1.CP, 12
NN, T2 (4.7
tWNp =Ny 1y =1
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The term “IF Fixed” is derived because in this strategy, both L1 and L2 (or WL)
ambiguities have been fixed to integer values. Blewitt (1989) discussed a similar

approach to resolving ambiguities for long inter-station baselines.

4.2.6 Srategy 6 (use CP,, CP, and P):

The observation equations for this strategy can be written as:

r
CR-21CR=—+N;+
1 |2 2 lIF IF deF) (4.8)

P=r +&P)

In this strategy, the IF ambiguities N, are estimated using the IF observations. By
nature, N - are floating values. This is a specia strategy where ambiguities are estimated

but need not be resolved to integers. The argument behind this strategy is that as long as
all other observation errors (e.g. tropospheric error, satellite coordinates, multipath) are
properly accounted for, the float-valued IF ambiguity should be errorless. The position
estimates based on these float-valued |F ambiguities are named the “IF Float” solutions.
This term is used because in this strategy no attempt is made to resolve the L1 and L2 (or
WL) integer ambiguities. The advantage of this strategy is that no ambiguity resolution is
needed and it is still expected to give a fair good position estimate since the ionospheric
error is removed when forming the IF observation. The disadvantage of this strategy is

its noise characterigtics, asthe |F observation isthree times asnoisy asL 1 in metres.
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4.2.7 Srategy 7 (use CP,, CP, and P):

The observation equation for this strategy is:

r
CR=1=+N,- |, +&(p)
1
r |

CP2:|_+N2'I_22|1+e(sz)
2 1
P =r+l,+eP) (4.9
b = 1
l,~(0,s2)

Chapter 2 has shown that a first order Gauss-Markov process is consistent with the
observed tempora correlations for ionospheric eror, thus it is feasible to model and
estimate the ionospheric error in a Kalman filter. The previous state vector containing
only position, velocity and ambiguity states in Strategies 1-6 is now expanded to include
the DD ionospheric error, which is modelled as a first order Gauss-Markov process in

this strategy.

The first advantage is that now the estimator in Strategy 7 is largely unbiased given the
DD ionospheric error is modelled explicitly. It is expected that the position estimate will
not be influenced by the ionospheric error. The other advantage of this strategy is that no
frequency combination is made in modelling the ionospheric error between L1 and L2,
unlike the previous two strategies where IF is formed to remove the ionospheric error,
thus the observation noise is kept minimum. It is thus expected that the position estimate
of this strategy will outperform the previous two strategies if ambiguities are resolved
correctly in both Strategies 5 and 7. The advantage of this strategy is that the solution is

weak since additional states are estimated in the filter. It is expected that the filter in this
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strategy may take a longer time to converge compared to Strategies 3 and 4 even dl three
strategies use the observations of the same type and number. It is also expected that the

filter may not distinguish between the N, and N, ambiguity states and the ionospheric

error state at the initia filtering phase, causing extra delay in filter convergence and

unreasonable DD ionospheric error estimate.

It is well known that the DD ionospheric error is usualy bounded around zero. To help

strengthen the solution and speed up the convergence, a pseudo-ionospheric error

observable, 1, with avalue of zero and variance of s ? is also added for each ionospheric

error. The selection of the s 2 is dependant on the highest level of the DD ionospheric

error. This pseudo-observable will help constrain the DD ionospheric error to reasonable
value during the initial phase of the filter, and force the filter to distinguish between the
ionospheric error states and the ambiguity states. This strategy was first seen in (19974)

and applications of this strategy can be found in Odijk (2000).

4.2.8 Srategy 8 (use CP,, CP, and P):

The observation equations for this strategy are:

CR=1-+N,- I +e(cp)
CPy =1+, Ny 121, +(cp)

P =r+l+¢€P) (4.10)
I, = |

0

Io ~(0s g)

1
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This strategy is very similar to the Strategy 7 except that the WL and L1 ambiguities are
estimated in the filter rather than the L1 and L2 ambiguities. Besides the advantages and
disadvantages discussed in Strategy 7, this strat egy has an additiona advantage brought
by the parameterization scheme in Equation (4.10): WL and L1 ambiguities are estimated
in Equation (4.10) instead of L1 and L2 ambiguities in Equation (4.9). It is expected that
the WL ambiguities will converge very fast and resolved to integers easily, while more
data is needed to resolve the L1 ambiguities. Thus in this strategy, first an attempt is to
resolve the WL ambiguities, after the WL ambiguities are resolved, an attempt is made to
resolve the L1 ambiguities. It is expected that more data is needed for the L1 ambiguities
to converge after the WL ambiguities are resolved since WL ambiguities are expected to
converge much faster than L1 ambiguities. This strategy is included to compare the

impact of different model parameterizations.

4.3 Software Realization

Previous sections examined various ambiguity resolution strategies. These processing
drategies are implemented in the FLYKIN+™ software package. Before testing the
strategies, it is appropriate to discuss some issues related to the FLYKIN+™ software
development. The latest FLYKIN+™ is a powerful GPS processing software package
and it outperforms its predecessor FLYKIN™ (Lu et al., 1994) in many ways. Table 5.1

gives acomparison of these two versions.
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Besides the differences shown in the table, the latest edition has some of the following
advantages over its previous counterpart: The previous version used a fixed estimation
model, which estimated position and velocity, and modelled the velocity as a random
walk process; the user had no control of the states estimated and the model used. In the
latest version of FLYKIN™, the user has the freedom of choosing which states are to be
estimated, be they position, position + velocity, or position + velocity + acceleration. The
user aso has the freedom of choosing what model is to be used, be it Kalman filtering, or
sequential least squares. Finaly, users can now choose the observable or observation
combination, such as pseudorange only, L1 phase only, L2 phase only, L1+L 2 phase, or

WL phase combination.

Table 4.2 Softwar e Functionality

Functionality FLYKIN+™ FLYKIN™
Process data in kinematic mode Yes Yes
WL fixing Yes Yes
IF float Yes No
IF fixed Yes No
Process data in static mode Yes No
Estimate acceleration Yes No
Integrated real time/post mission Yes No
Height fixing Yes No
Stochastic ionosphere modelling Yes No
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The latest FLYKIN+™ is developed based on the idea of Object-Oriented Programming
(OOP). The benefits of OOP- style programming include code reusing and high
modularization. In OOP, each object (a physical process, mathematical model, or a
physical entity, etc.) is represented by a class, and smilar objects are connected by virtue
of inheritance. Specific to the domain of GPS software, the objects are raw observation
data objects, satellite ephemeris objects, tropospheric delay model objects, and
processng method (single point processing, single difference processing, double
difference processing) objects. The software FLYKIN+"™ used in this thesis is developed
based on a GPS C++ library developed by the Navigation Lab at the Department of
Geomatics Engineering, University of Calgary. To illustrate the OOP concept used in the
FLYKIN+™ software, the troposphere class is used as an example as shown in Figure
4.1. There are numerous tropospheric delay models. The most frequently used is the
modified Hopfield and Saastamoinen tropospheric delay model. By using the OOP style,
the software can easily incorporate new models into the existing software with minimal

change to the existing code.

Figure 4.1 shows the troposphere model class hierarchy. All the tropospheric models are
derived from the same base class NTropoModel. This class encapsulates al the common
functionalities of any troposphere model. There are several child classes of the base class
NTropoModel. The class NhopfieldTropoModel implements the functionality specific to
the modified Hopfield troposphere model. The class NsaasTropoMode implements the
functionality specific to the Saastamoinen Model. If in the future a better troposphere

model becomes available, a class called OtherTropoModel can be derived from the
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NTropoModel to implement specific functiondity of the new troposphere model. In this

way, the change to the software module interface is minimized.

Figure4.1 Tropospheric Delay M odel Classes

To further illustrate the OOP programming style in FLYKIN+™ another data handling
class example is discussed next. Figure 4.2 shows the data handling class hierarchies. The
class NUDData handles the undifferenced data object. It acts as a pre-processor to the
single point positioning module. The class NSDData derives from the class NUDData
and it acts as a pre-processor to the single differenced positioning module. The class
NDDData derives from the class NSDData and it acts as a pre-processor to the double

differenced positioning module.



Figure4.2 Data Handling Class
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CHAPTERS

SINGLE AND MULTIPLE REFERENCE STATION TESTSAND RESULTS

5.1 Introduction

In Chapter 4, eight different ambiguity resolutions strategies were introduced. This
chapter tests these eight strategies in both single and multiple reference station scenarios.

The test methodology and results for each scenario are presented below.

5.2 Single Reference Station Tests and Results

As stated in Chapter 1, the scope of this research is restricted to norma RTK practice, so
a kinematic mode for the rover is assumed. The dynamics model and measurement model
discussed in Chapter 3 are used. However, the reduction of rea kinematic data is
difficult due to the lack of reference trgjectory (truth data). For easy comparisons of the
position estimate, three static baselines have seen selected and processed in a“simulated”
kinematic mode. Because the data is static, a small spectra density (0.0001 m’/s) is set
on the process noise that is driving the velocity states. The means the results are
representative of one true kinematic case only when the rover has a constant velocity. For
rovers that have significant accelerations, the results presented here are optimistic and

they may not represent the real kinematic case. This means that a dight advantage is
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gained from the fact that the rover receiver is actually static. All results shown here were
obtained using the University of Calgary’s new FLYKIN+™ software package described

in the previous chapter.

In order to obtain a reference estimate for the L1 and L2 ambiguities, the data were first
processed with the University of Bern's Bernese Software. The ambiguity estimates
obtained from FLYKIN+™ can then be compared with those from Bernese to evauate
the performance of a given processing strategy. In total, two different tests were
conducted. For both tests, FLYKIN+™ uses the LAMBDA technique to resolve the

integer ambiguities.

In Test 1, the entire data set is processed with FLYKIN+™ with ambiguities and
positions being estimated at each epoch. The rover position estimate is compared to the
known position of the rover, and the RMS eror is computed. Also, the integer

ambiguities estimated by FLYKIN+"™ are compared with those from Bernese.

In Test 2 the data set is divided into independent even intervals, and each interval is
processed with FLYKIN+™ to check the ambiguity resolution performance and position
accuracy for each strategy. Once the ambiguity is resolved, a fixed position solution is
recorded and the software will re-initialize the filter and go to the beginning of next

interval to try and resolve the ambiguities again. The purposes of Test 2 are to:
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1) Determine how fast each strategy is able to resolve the ambiguities (time to fix
ambiguities); and
2) Assess the accuracy of the fixed ambiguities (percentage of correctly fixed

ambiguities).

In conjunction with this, this test will aso help determine whether fixing WL first can
reduce the position errors even if the L1 ambiguities cannot be fixed, athough the
ultimate goal isto fix the L1 ambiguities. Figure 5.1 showsthe set-up for this purpose. In
the figure, the upper bar chart represents Strategies 4 and 8 whereby the L1 and WL
ambiguities are estimated. The lower bar chart represents Strategies 3 and 7 where the L1
and L2 ambiguities are estimated. The red segment (T2/T4) means that no integer
ambiguities are resolved, and the yellow segment (T3) means only WL ambiguities are
resolved (in Strategies 4 and 8 only). The green segment (the end) means that all
ambiguities have been resolved. This test will compare whether the time needed to fix
both L1 and WL (T1) is comparable to the time (T4) required to fix both L1 and L2
ambiguities. This test also will compare the position error RMS during T3 (only WL

integer ambiguities are resolved) and T4 (both L1 and L2 ambiguities are not resolved).

Figure 5.1 Test Set-up
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Table 5.1 lists the variances of the different observations used in the processing of each
strategy for al three baselines. To make the comparisons consistent, the variance given to
the pseudoranges for al drategies is the same. The variance given to the L1 and L2
carrier phase for Strategies 1 to 6 isthe same. The variance giventothe L1 and L2 carrier

phase for Strategies 7 and 8 isthe same.

Table5.1 Observation Standard Deviations

Observation Standard Deviation
Strategy CP CP |

P (m) 1 2 0

(cycle) (cycle) (m)
1 05 0.04 N/A N/A
2 05 0.04 0.04 N/A
3 05 0.04 0.04 N/A
4 05 0.04 0.04 N/A
5 05 0.04 0.04 N/A
6 05 0.04 0.04 N/A
7 05 0.01 0.01 S,
8 05 0.01 0.01 S,

Since Strategies 7 and 8 models the DD ionospheric error explicitly, the L1 and L2 phase

observable variances are smaller than any of the other six strategies. The value of the
ionospheric error pseudo-observables is zero. The standard deviation s, for the pseudo-

ionosphere observable for the first two baselinesis 0.2 m and 0.3 m for the third baseline

because the third baseline has a much higher ionospheric error than the first two.
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5.2.1 Results

The test results are presented on a baseline by-baseline basis following the order of the

basdline lengths. The 13-km Calgary basdline is presented first.

)] Basdine .

The firg data processed is a 13km basdline in Cagary, Canada. The data set is 24 hours
long with a sampling rate of 1Hz, collected in May 2002 with a pair of NovAtel
Modulated Precison Clock (MPC) receivers. The cut-off elevation angle is 15°. The
following figure depicts the DD ionospheric error on L1 for the 24-hour period which

shows that the DD ionospheric error reaches 11 ppm.

50

30¢r 8

-30 1 I 1
0 14400 28800 43200 57600 72000 86400
18:00 22:00 02:00 06:00 10:00 14: 18:

GPS Time (sec) Local Time (h)

Figure5.2 DD lonospheric Errorson L1, 13 km Basdline

The following sub-sections analyze the results of the various strategies on a test-by-test

basis.
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1) Test 1 Result, 24-hour-run Test.

The left column of each strategy in Table 5.2 summarizes the position RMS error results
and the left column of each strategy in Table 5.3 summarizes the ambiguity results for the
eight strategies in Test 1. Strategies 5, 6, 7 and 8 clearly outperform Strategies 1, 2, 3 and
4, Strategies 1, 3, 4 where attempts are made to resolve the L1 ambiguities show the
worst RMS position error in general, indicating the limitation of the L1 ambiguity
resolution under an active ionosphere. Although Strategy 2 (WL) shows excellent
ambiguity resolution performance (100% correct), it does not provide the least RMS
error, as expected. The above Test 1 results are generated using a small spectral density
on the process noise. To demonstrate the impact of the magnitude of the spectral density
on positioning results, a larger spectral density of the process noise (1 nf/s®, a typical
value for most land vehicles) is used and Test 1 is performed again on the same baseline.
The right column (shaded column) of each strategy in Table 5.2 summarizes the new
position RMS error results and the right column (shaded column) of each strategy in
Table 5.3 summarizes the new ambiguity results. In genera, position and ambiguity
results for each strategy become poorer because of the large spectral density used, as
expected. However, the change of statistic is not significant. One can see that Strategies
2, 5 and 6 generates the same position and ambiguity results. Even though Strategy 8
resolves 0.3% of the L1 ambiguities wrong, it still generates the least RMS position
errors among all the strategies. Therefore, the small process noise spectral density 0.0001

m?/s’ isused in al the following tests.
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Table5.2 24-hour-run Position Estimate RM S (cm) for Test Baseline 1

Strategy

AXis
1 2 3 4 5 6 7 8

Bt | 6] 9(4|4|10/15 46| 3|3 (4|4 3|3 |2]|2

North | 5| 7|22 |65 3|3 (2|2 |2|2|2|2|1]2

Height | 16|19 | 6 | 6 |26({21 8 | 9 | 4 | 4 | 4|4 (3|5 | 3|4

Table 5.3 Per centage of Ambiguities Resolved Correctly (%)

Ambiguity Strategy
1 2 3 4 5 6 7 8
N, 76.5729] N/A [85.7{80.4(85.983.2(100 100| N/A [10099.5 100(99.7
N, N/A N/A 94.890.3 N/A N/A N/A 100995 N/A
N N/A 100100, N/A |97.396.8/100 100| N/A N/A 100|100

11) Test1, Strategy 1 Results
Figure 5.3 contains the position errors (top) and ambiguity errors (bottom) which are
defined as the sum of absolute ambiguity difference as compared with the ambiguity

output from Bernese.
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Figure5.3 Position Errorsand Ambiguity Comparison, Strategy 1

From the figure, it can be seen that the ambiguities are fixed correctly except from 18:00
to 02:00 local time, during which the ionospheric error is high. This result reinforces the
fact that the ionosphere is the dominant error source hindering successful ambiguity

resolution for L1. The poor ambiguity resolution performance during periods of high
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ionospheric activity is coupled with poor position estimates. The top graph in Figure 5.3

and the ambiguity statisticsin Table 5.3 aso support these findings.

12) Test1, Strategy 2 Results.

Figure 5.4 shows the position results for Test 1 using Strategy 2. Table 5.3 shows that
the WL ambiguity is resolved 100% of the time correctly, despite the high ionospheric
error a the beginning of the data. This is reasonable considering the large
wavelength/ionosphere ratio (expressed in cycles) for WL. Although the WL ambiguities
are resolved correctly, the position estimates are till influenced by the ionospheric error
with errors up to 30-50 cm in some axes even when al ambiguities have been fixed
correctly, as discussed above. Figure 5.4 clearly shows the position estimate variations

caused by the ionosphere during the peak of ionospheric activity.
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Figure 5.4 Position Errors, Strategy 2
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13) Test 1, Strategy 3 Resullts.
Figure 5.5 shows the Test 1 results using Strategy 3. Ambiguity resolution for L1 and L2
is good after the beginning of the data set when the ionospheric error is high. This

suggests that the introduction of L2 phase data still cannot help much during periods of

high ionosphere if the ionospheric error is not modelled adequately.
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Figure 5.5 Position Errorsand Ambiguity Comparison, Strategy 3
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14) Test 1, Strategy 4 Resullts.

Figure 5.6 shows the position and ambi guity resultsfor Test 1 using Strategy 4.
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Figure 5.6 Position Errorsand Ambiguity Comparison, Strategy 4

Recall that Strategy 4 used the same observations as Strategy 3 except that the L1 and

WL ambiguities are estimated in the filter instead of the L1 and L2 ambiguities. As the
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bottom graph in Figure 5.6 shows, athough the WL ambiguities are fixed correctly at the
beginning of the data set, a large quantity of L1 ambiguities are fixed incorrectly. This
means that fixing of the WL ambiguities first during periods of high ionospheric activity

does not aid the fixing of L1 ambiguities.

15 Test ], Strategy 5 Resullts.

Figure 5.7 shows the position results for Test 1, Strategy 5.
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Figure5.7 Position Errors, Strategy 5

Table 5.3 shows that the WL and L1 ambiguities for Strategy 5 are fixed correctly 100%
of the time. The position error RM S values for Strategy 5 in Table 5.2 clearly outperform
Strategies 1 through 4. Recall that this strategy uses a combination of L1 and L2 carrier
phase observables. Athough the ionospheric error is absent, the noise characteristic is

evident in this strategy. Comparing the position error plots of both Figures 5.3, 5.5, 5.6
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and 5.7 from 04:00 to 18:00 loca time, when al three strategies fixed L1, L2 and WL
ambiguities correctly most of the time, the position errors in Figure 5.7 shows a much

noisier behavior, especialy in height.

16) Test1l, Strategy 6 Results.

Figure 5.8 shows the position results for Test 1 using Strategy 5. Table 5.2 shows that the
RMS of the position errors for Strategy 6 is worse than for Strategies 5, 7 and 8, but is
still better than Strategies 1 through 4. In this Strategy, there is no risk of resolving the
ambiguity to the wrong integer, thus it is a reliable method. However, there is one
limitation with this method, namely the time needed for the ionosphere-free ambiguity to
converge is significant. Figure 5.8 shows that it takes around 1 hour to converge based on

the convergence of the position error towards zero.
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Figure 5.8 Position Errors, Strategy 6
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17) Testl, Strategy 7 Resullts.
Figure 5.9 shows the position results for Test 1 using Strategy 7. From the figure and
Table 5.2, it can be seen that this strategy gives the best positioning performance

compared to al previous strategies.
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Figure5.9 Position Errors, Strategy 7

1.8) Typel, Strategy 8 Results.

Figure 5.10 shows the position results for Test 1 using Strategy 8. The observables used
in this stirategy are the same as in Strategy 7. The difference is that L1 and widelane
ambiguities are estimated in the filter instead of L1 and L2 ambiguities. Figure 5.10 is
very smilar to Figure 5.9. The only obvious difference is that the position error of
Strategy 8 is50% smaller for the north and 100% for the east axes than that of Strategy 7.

This is attributed to the fact that the widelane ambiguities can be fixed must faster than
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the L1 ambiguities and the fixing of widelane ambiguities improves the position estimate.

See theresults of Test 2 for more details.
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Figure5.10 Position Errors, Strategy 8

2) Test 2 Result, 600-second-interval Tests.

In this test, the 24-hour data set is divided into equal 600-second intervals, and each
interval is processed with FLYKIN+™ for al the strategies in Table 4.1 to assess the
ambiguity resolution performance and position accuracy. Once the ambiguities are
resolved, a fixed position solution is recorded and the FLYKIN+™ software will re
initialize the filter and go to the beginning of the next 600-second interval to try and

resolve the ambiguities again.
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Table 5.4 shows the 600-second-run statistics for al the strategies. The shaded block
containing the statistics for the WL shows that the WL ambiguity is both reliable and
stable in terms of time to fix and percentage correct. Also, comparing the statistics for
Strategies 3 and 4, where the same observations are used, the only difference being that
in Strategy 3, the L1 and L2 ambiguities are estimated in thefilter, whilein Strategy 4 the
L1 and WL ambiguities are estimated. The statistics show that it takes comparable time
to fix L1 ambiguities for both approaches (78 seconds for Strategy 3 and 80 seconds for
Strategy 4) and the percentage correct is aso comparable (93.5% for Strategy 3 and
91.9% for Strategy 4). The percentage fixed within the 600-second-interval is also
comparable (83% for Strategy 3 and 80% for Strategy 4). The same is true for Strategies
7 and 8. Comparing the statistics for Strategies 7 and 8, where the same observations are
used, the only difference being that in Strategy 7, the L1 and L2 ambiguities are
estimated in the filter, while in Strategy 8 the L1 and WL ambiguities are estimated. The
statistics show that it takes comparable time to fix L1 ambiguities for both approaches
(216 seconds for Strategy 7 and 225 seconds for Strategy 8) and the percentage correct is
also comparable (83% for Strategy 7 and 78.5% for Strategy 8). The percentage fixed
within the 600-second-interval is aso comparable (53% for Strategy 7 and 57% for

Strategy 8).

For this data, estimating L1 and WL ambiguities in the same filter instead of L1 and L2
ambiguities does not bring much improvement as far as L1 ambiguity resolution is

concerned.



Table 5.4 600-second-run Statistics, 13 km Basdine

Strategy

Measure
1 2 3 4 5 7 8

N, FwWI* 76% | N/A | 83% | 80% | 27% |53% | 5/%

N,PCFA? | 77.6% | N/A |935% |91.9% | 526 | 83% | 78.5%

NlM'I_I'F3 277s | N/A | 78s | 80s | 530s |216s| 225s

N, FWI N/A | N/A | 83 | N/A | N/A |53 | N/A

N, PCFA | N/A | N/A |935% | N/A | N/A | 8% | N/A

N, MTTF | N/A | N/A 87 N/A | N/A | 219 | N/A

Ny, FWI N/A | 99% | N/A | 99% | 9% | N/A | 9%

Ny PCFA | N/A |97.4% | N/A |96.4% | 97.4% | N/A | 98.7%

N, MTTF | N/A | 30s | N/A | 30s | 30s | NNA | 32s

! PWI: Fixed Within 600-s Interval (%)
% PCFA: Percentage of Correctly Fixed Ambiguities (%)

* MTTF: Mean Time To Fix (9)

However, estimating L1 and widelane ambiguities in the filter instead of L1 and L2
ambiguities does have a benefit in the position domain. Table 5.5 shows the position error
RMS for Strategies 3, 4, 7, and 8. The position error for Strategies 4 and 8 after the WL
ambiguities are resolved are significantly lower than for Strategies 3 and 7 where both L1
and L2 ambiguities cannot be resolved. Therefore estimating WL and L1 ambiguities

instead of L1 and L2 has a benefit on position estimation provided that the WL ambiguity



86

resolution is reliable and fast. Another phenomenon worth noting is the overal position

accuracy improvement of the stochastic ionosphere modelling which can be seen by

comparing the RM S position error between Strategies 3, 4 and Strategies 7, 8.

Table5.5 Position RM S (cm) for 600-second-run, 13 km Basdline

Strategy
Axis 3 4 7 8
. Only WL o Only WL
NOATOGUY  Ambiguity | NOATOIY | Ampiguity
Fixed Fixed
East 37 8 19 °
North 16 5 13 3
Height 51 20 26 °
1) Baselinell

This second baseline was collected on February 7, 2002 from the Campania network in

Italy. Dua frequency data were collected at a rate of 1 Hz for 24 hours. The cut-off

elevation angleis aso 15 degrees. The data were processed once for each of the strategies

listed in Table 4.1. As shown in Figure 5.11, the ionospheric error on L1 at the beginning

and end of the data set is amall, 2-5 ppm, while it is very high in the middle of the data

(08:00 16:00 local time), up to 15 ppm.
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Figure5.11 DD lonospheric Errorson L1, 26 km Baseline

The following sub-sections analyze the results of the various strategies on a test-by-test

basis.

1) Test 1 Result, 24-hour-run Tests.

Table 5.6 summarizes the position RMS and Table 5.7 summarizes the ambiguity result
for the eight strategies in Test 1. Again, Strategies 5, 6, 7 and 8 outperform Strategies 1,
2, 3 and 4. Strategies 1, 3, 4 where attempts are made to resolve the L1 ambiguities show
the worst position RMS eror in general, due to the limitation of the L1 ambiguity
resolution under active ionosphere. Although Strategy 2 (WL) shows excellent ambiguity
resolution performance (100% correct), the RMS position error is dwarfed compared to

the last four strategies. Thisis the expected behaviour of WL.



Table 5.6 24-hour-run Position Estimate RM S (cm) for Test Baseline 2

Strategy
AXis
1 2 3 4 5 6 7 8
East 35 9 13 11 4 5 2 2
North 16 4 12 16 2 4 2 1
Height 33 12 27 34 9 11 6 3

Table5.7 Per centage of Ambiguities Resolved Correctly (%), 26 km Baseline

Strategy
Ambiguity
1 2 3 4 5 6 7 8
N, 69.5 N/A | 974 92 100 N/A 100 100
N, N/A N/A | 981 N/A N/A N/A 100 N/A
¥ N/A 100 N/A 100 100 N/A | N/A 100

11) Test1, Strategy 1 Results

Figure 5.12 contains the position errors (top) and ambiguity errors (bottom). From the
figure, it can be seen that the ambiguities are fixed correctly except from 08:00 to 16:00
local time, during which the ionospheric error is high. This result reinforces the fact that
the ionosphere is the dominant error source hindering successful ambiguity resolution for

L1. The bad ambiguity resolution performance during periods of high ionospheric
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activity is coupled with bad position estimates. The top graph in Figure 5.12 and the

statistics in Table 5.7 also support these findings.
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Figure5.12 Position Errorsand Ambiguity Comparison, Strategy 1

Test 1, Strategy 2 Results.
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Figure 5.13 shows the position result for Test 1 using Strategy 2. Table 5.7 shows that
the WL ambiguity is resolved 100% correctly, despite the high ionosphere in the middle
of the data. This is reasonable considering the long wavelength of the WL, relative to the
ionospheric error (expressed in cycles). Although the WL ambiguities are resolved
correctly, the position estimate is still influenced by the ionospheric error with errors up
to 40cm in al three axes even when al ambiguities have been fixed correctly, as
discussed above. Figure 5.13 clearly shows the position estimate variations caused by the

ionosphere during the period of high ionospheric activity.
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Figure5.13 Position Errors, Strategy 2

13) Testl, Strategy 3 Resullts.
Figure 5.14 shows the Test 1 results using Strategy 3. Ambiguity resolution for L1 and
L2 is good at the beginning and end of the data set when the ionospheric error is small.

However, errors become evident starting at 08:00 loca time when the ionospheric
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activity increases. This suggests that the introduction of L2 phase data till cannot help

much during periods of high ionosphere if the ionospheric error is not modelled

adequately.
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Figure 5.14 Position Errorsand Ambiguity Comparison, Strategy 3
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14) Teds 1, Strategy 4 Resullts.

Figure 5.15 shows the position and ambiguity resultsfor Test 1 using Strategy 4.
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Figure5.15 Position Errorsand Ambiguity Comparison, Strategy 4

Recall that Strategy 4 used the same observations as Strategy 3 except that the L1 and

WL ambiguities are estimated in the filter instead of the L1 and L2 ambiguities. As the
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bottom graph in Figure 5.15 shows, athough the WL ambiguities are fixed correctly
100% of the time, the percentage of L1 ambiguities fixed correctly is lower than for
Strategy 3. This means that fixing of the WL ambiguities first during periods of high
ionospheric activity does not significantly aid the fixing of L1 ambiguities. Comparing
these results to Strategy 3 shows fewer L1 ambiguities are fixed correctly and the

position error islarger.

15 Test 1, Strategy 5 Results

Figure 5.16 showsthe position resultsfor Test 1, Strategy 5.
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Figureb.16 Position Errors, Strategy 5

Table 5.7 shows that the WL and L1 ambiguities for Strategy 5 are fixed correctly 100%
of the time. The podtion error RMS vaues for Strategy 5 in Table 5.6 clearly
outperforms Strategies 1 through 4. Recadl that this strategy uses a combination of L1

and L2 carrier phase observables. Although the ionospheric error is absent, the noise
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characterigtic is evident in this strategy. Comparing the position error plots of both
Figures 5.15 and 5.16 from 00:00 to 08:00 loca time and 16:00 to 00:00, when both
strategies fixed L1 and WL ambiguities correctly, the position errors in Figure 5.16

shows a much noisier behavior than that of Figure 5.15.

16) Test1, Strategy 6 Results.

Figure 5.17 shows the position results for Test 1 using Strategy 5. Table 5.6 shows that
the RMS of the position errors for Strategy 6 isworse than for Strategies 5, 7 and 8, but is
still better than Strategies 1 through 4. In this Strategy, there is no risk of resolving the
ambiguity to the wrong integer, thus it is a reliable method. However there is one
limitation with this method, namely the time needed for the ionosphere-free ambiguity to

converge is significant. Figure 5.17 shows that it takes around 2 hours to converge based

on the convergence of the position error towards zero.
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Figure5.17 Position Errors, Strategy 6
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17) Testl, Strategy 7 Resullts.
Figure 5.18 shows the position results for Test 1 using Strategy 7. From the figure and
Table 5.7, it can be seen that this strategy gives the best positioning performance

compared to al previous strategies.
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Figureb5.18 Position Errors, Strategy 7

18) Typel, Strategy 8 Resullts.

Figure 5.19 shows the position results for Test 1 using Strategy 8. The observables used
in this stirategy are the same as in Strategy 7. The difference is that L1 and widelane
ambiguities are estimated in the filter instead of L1 and L2 ambiguities. Figure 5.19 is

very similar to Figure 5.18. The only obvious difference is that the position error of
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Strategy 8 is 50% smaller than that of Strategy 7 for the north and east axes. Again, thisis
attributed to the fact that the widelane ambiguities can be fixed must faster than the L1

ambiguities and the fixing of widelane ambiguities improves the position estimate.
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Figureb.19 Position Errors, Strategy 8

2) Test 2 Result, 600-second-interval Tests.

In this test, the 24-hour data set is divided into equal 600-second intervals, and each
interval is processed with FLYKIN+™ for al the strategies in Table 4.1 to assess the
ambiguity resolution performance and position accuracy. Once the ambiguity is resolved,
a fixed position solution is recorded and the ALYKIN+™ software will redinitialize the
filter and go to the beginning of next 600-second interva to try and resolve the

ambiguities again.
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Table 5.8 shows the 600-second-run statistics for al the strategies. The shaded block
containing the statistics for the WL shows that the WL ambiguity is both reliable and
stable in terms of time to fix and percentage correct. Also, comparing the statistics for
Strategies 3 and 4, where the same observations are used, the only difference being that
in Strategy 3, the L1 and L2 ambiguities are estimated in thefilter, while in Strategy 4 the
L1 and WL ambiguities are estimated. The statistics show that it takes comparable time
to fix L1 ambiguities for both approaches (116 seconds for Strategy 3 and 113 seconds
for Srategy 4) and the percentage correct is also comparable (94% for Strategy 3 and
90% for Strategy 4). The percentage of fixing the L1 ambiguities within the 600-second
interval is also comparable (54% for Strategy 3 and 47 for Strategy 4). The same is true
for Strategies 7 and 8. Comparing the dtatistics for Strategies 7 and 8, where the same
observations are used, the only difference being that in Strategy 7, the L1 and L2
ambiguities are estimated in the filter, while in Strategy 8 the L1 and WL ambiguities are
estimated. The statistics show that it takes comparable time to fix L1 ambiguities for
both approaches (144 seconds for Strategy 7 and 155 seconds for Strategy 8) and the
percentage correct is also comparable (90% for Strategy 7 and 91% for Strategy 8). The
percentage fixed within the 600-second-interval is a'so comparable (70% for Strategy 7
and 68% for Strategy 8).

For this data, estimating L1 and WL ambiguities in the same filter instead of L1 and L2
ambiguities does not bring much improvement as far as L1 ambiguity resolution is

concerned.



Table 5.8 600-second-run Statistics, 26 km Basdine

Strategy

Measure
1 2 3 4 5 7 8

N, FWI 44% | NIA | 4% | 47% | 26% | 70% | 68%

N,PCFA | 36% | N/A | 94% | 90% | 78% | 90% | 91%

N,MTTF | 244s | N/A | 116s| 113s| 326s | 144s| 155s

N, FWI N/A | N/A | 54% | N/JA | N/A | 70% | N/A

N, PCFA | N/A | N/A | 9%% | N/A | N/A | 91% | N/A

N, MTTF | N/A | N/A | 116s| N/A | N/A | 144s| N/A

N, FWI N/A | 99% | N/A | 93% | 99% | N/A | 9%

N, PCFA | N/A | 100% | N/A | 98% | 100% | N/A | 100%

N, MTTF | N/A | 17s | N/A | 19s | 17s | N/A | 17s

However, estimating L1 and widelane ambiguities in the filter instead of L1 and L2
ambiguities does have a benefit in the position domain. Table 5.9 shows the position error
RMS for Strategies 3, 4, 7, and 8. The position errors of Strategies 4 and 8 in dl three
axes after the WL ambiguities are resolved are significantly lower than for Strategy 3 and
Strategy 7 where both L1 and L2 ambiguities cannot be resolved. Therefore estimating
WL and L1 ambiguities instead of L1 and L2 has a benefit on position estimation
provided that the WL ambiguity resolution is reliable and fast. Again there is overal
position accuracy improvement brought by the stochastic ionosphere modelling

comparing the position RMS between Strategies 3, 4 and Strategies 7, 8 in Table 5.9.



Table 5.9 Position RM S (cm) for 600-second-run, 26 km Basdline

AXis 3 4 8
o Only WL _ Only WL
No Ar_nblgwty Amtﬁ quity No Ambiguity Amg; quity
Fixed Fixed Fixed

East 49 18 9
North 26 8 5
Height 76 15 12

lll)  Basdinelll

This baseline was collected on the same day and from the same network as basdline I1.
However, the basdline length is much longer in this case, 43 km. The cut-off elevation
angleis 15 degrees. Figure 5.20 shows the estimate of the DD ionospheric error on L1 for

the 24-hour period. The DD ionospheric error goes as high as 50 cm for certain satellites

during the peak of the ionospheric activity.
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Figure 5.20 DD lonospheric Errorson L1, 43 km Basdline
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1) Test 1 Result, 24-hour-run Tests.

Table 5.10 summarizes the position RMS and Table 5.11 summarizes the ambiguity
result for the eight strategies in Test 1. Once again, Strategies 5, 6, 7 and 8 clearly
outperform Strategies 1, 2, 3 and 4. Strategies 1, 3, 4 where attempts are made to resolve
the L1 ambiguities show the worst position RMS error in genera, indicating the
limitation of the L1 ambiguity resolution under active ionosphere. Although Strategy 2
(WL) shows excellent ambiguity resolution performance (100% correct), it does not

provide the least RM S error, as expected.

Table5.10 24-hour-run Position Estimate RM S (cm) for Test Baseline 3

Strategy
AXxis
1 2 3 4 5 6 7 8
East 12 10 25 22 8 5 5 2
North 13 11 19 15 6 4 3 2
Height 22 14 35 43 14 6 9 5

Table 5.11 Percentage of Ambiguities Resolved Correctly (%), 43 km Baseline

Strategy
Ambiguity
1 2 3 4 5 6 7 8
N, 57 N/A | 516 70.1 83 N/A | 99.8 100
N, N/A N/A | 514 N/A N/A N/A | 998 | N/A
Ny N/A 100 N/A 90.2 100 N/A | N/A 100

For this basgline, however, Strategy 5 only resolved L1 ambiguities 83% correctly, which

may be attributed by the fact that the baseline length is too long in this case (43km) and
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the resdua tropospheric error cannot be neglected any more. The following results are

presented on a strategy-by-strategy basis.

11) Test1, Strategy 1 Results.

Figure 5.21 contains the L 1-solution position errors (top) and ambiguity errors (bottom).
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Figure 5.21 Position Errorsand Ambiguity Comparison, Strategy 1
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From the figure, it can be seen that the ambiguities are fixed correctly except from 08:00
to 16:00 local time, during which theionospheric error is high. Thisresult isin agreement
with previous L1 results in that the Strategy 1 ambiguity resolution is bad during periods
of high ionospheric error. Poor position performance comes as a direct result of bad
ambiguity resolution. The top graph in Figure 5.21 and the dtatistics in Table 5.11 aso

support these findings.

12) Testl, Strategy 2 Resullts.

Figure 5.22 shows the position results for Test 1 using Strategy 2. Table 5.11 shows that
the WL ambiguity is resolved 100% of the time correctly, despite the high ionospheric
activity in the middle of the data. Although the WL ambiguities are resolved 100%
correctly, the position estimate is ill influenced by the ionospheric error with large
errors at the middle in al three axes. Figure 5.22 clearly shows the postion estimate

variations caused by the ionosphere during the period of high ionospheric activity.
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Figure5.22 Position Errors, Strategy 2
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13) Test 1, Strategy 3 Resullts.

Figure 5.23 showsthe Test 1 results using Strategy 3.
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Figure5.23 Position Errorsand Ambiguity Comparison, Strategy 3

Ambiguity resolution for L1 and L2 isgood at the beginning and end of the data set when
the ionospheric error is small. However, errors become evident starting at 08:00 local

time when the ionospheric activity increases. This suggests that the introduction of the L2
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phase data still cannot help much during periods of high ionospheric activities if the

ionospheric error is not modelled adequately.

1.4)

Figure 5.24 shows the position and ambiguity results for Test 1 using Strategy 4.

Test 1, Strategy 4 Resullts.
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Recall that Strategy 4 used the same observations as Strategy 3 except that the L1 and
WL ambiguities are estimated in the filter instead of the L1 and L2 ambiguities. As the
bottom graph in Figure 5.24 shows, both the WL and L1 ambiguities suffer from the

ionosphere from the middle of the data set.

15 Test ], Strategy 5 Resullts.

Figure 5.25 gives the position results for Test 1, Strategy 5.
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Figure5.25 Position Errorsand Ambiguity Comparison, Strategy 5
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Figure 5.25 shows that the WL ambiguities for Strategy 5 are fixed correctly 100% and
83% of the time for the L1 ambiguities. The position error RMS values for Strategy 5 in
Table 5.10 clearly outperform Strategies 1 through 4. This time the L1 ambiguities are
fixed for 83% of the time, not 100%. The possible reason is that in this case, the residual
tropospheric error can not be neglected due to the much longer basdline length, i.e. 43

km.

16) Test 1, Strategy 6 Results.

Figure 5.26 shows the position results for Test 1 using Strategy 6. Table 5.10 shows that
the RMS of the position errors for Strategy 6 is better than Strategies 1 through 4.
Nevertheless, this time Strategy 6 gives better RM S than Strategy 5 because there is 17%

wrong L1 ambiguity fixesfor Strategy 5.
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Figure5.26 Position Errors, Strategy 6
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In this Strategy, there is no risk of resolving the ambiguity to the wrong integer, thusit is
a reliable method. However there is one limitation with this method, namely the time
needed for the ionosphere-free ambiguity to converge is significant. Figure 5.26 shows
that it takes around 1 hour to converge based on the convergence of the position error

towards zero.

17) Testl, Strategy 7 Resullts.
Figure 5.27 shows the position results for Test 1 using Strategy 7. From the figure and
Table 5.11, it can be seen that this strategy gives the best positioning performance

compared to al previous strategies.

18 Teds 1, Strategy 8 Results.

Figure 5.28 shows the position results for Test 1 using Strategy 8. The observables used
in this dtrategy are the same as in Strategy 7. The difference is that L1 and widelane
ambiguities are estimated in the filter instead of L1 and L2 ambiguities. Figure 5.28 is
very similar to Figure 5.27. The only obvious difference is that the position error of
Strategy 8 is much smaller than that of Strategy 7 for the north and east axes. This is
explained by two reasons. First, Strategy 7 has two 0.2% incorrect L1 and L2 ambiguity
fixes. Second, in Strategy 8, the widelane ambiguities can be fixed must faster than the
L1 ambiguities and the fixing of widelane ambiguities improves the position estimate

accuracy.
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Figure5.28 Position Errorsand Ambiguity Comparison, Strategy 8

2) Test 2 Result, 900-second-interval Tests.

In this tet, the 24-hour data set is divided into equal 900-second intervals, and each

interval is processed with FLYKIN+™ for al the strategies in Table 4.1 to assess the
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ambiguity resolution performance and position accuracy. A 900-second interval instead
of 600-second is chosen because extra time is needed for the filter to converge, given the
much longer baseline length this time. Once the ambiguity is resolved, a fixed position
solution is recorded and the FLYKIN+™ software will re-initialize the filter and go to

the beginning of next 900-second interval to try and resolve the ambiguities again.

Table 5.12 shows the 900-second-run datistics for al the strategies. The shaded block
containing the statistics for the WL shows that the WL ambiguity is both reliable and
stable in terms of time to fix and percentage correct. Also, comparing the statistics for
Strategies 3 and 4, where the same observations are used, the only difference being that
in Strategy 3, the L1 and L2 ambiguities are estimated in the filter, while in Strategy 4 the
L1 and WL ambiguities are estimated. The statistics show that it takes comparable time
to fix L1 ambiguities for both approaches and the percentage correct is also comparable.
The same is true for Strategies 7 and 8. It can be concluded that estimating L1 and WL
ambiguities in the same filter, instead of L1 and L2 ambiguities, does not bring much

improvement in terms of L1 ambiguity resolution for this data set.



Table5.12 900-second-run Statistics, 43 km Basdine

Strategy
Measure
1 2 3 4 5 7 8

N, FwI* 31% | N/A | 13% | 19% | 27% | 35% | 32%
N, PCFA? | 43% | N/A | 84% | 79% | 68% | 74.2% | 7T5%
N, MTTF® | 337s| N/A | 165s| 154s| 340s | 274s | 281s

N, FWI N/A | N/A | 13% | N/A | N/A 35% N/A
N, PCFA | N/A | N/A | 8% | N/A | N/A | 742% | N/A
N, MTTF | N/A | N/A | 165s| N/A | N/A | 274s | N/A

N, FWI N/A | 80% | N/A | 8% | 80% N/A | 97%
Ny, PCFA | N/A | 100% | N/A | 96% | 100% | N/A | 100%
N, MTTF | N/A | 133s | N/A | 92s | 133s| N/A | 54s
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However, estimating L1 and WL ambiguities in the filter instead of L1 and L2

ambiguities does have a benefit in the position domain. Table 5.13 shows the position

error RMS for Strategies 3, 4, 7, and 8. The position error after the WL ambiguities are

resolved are significantly lower than for Strategy 3 where both L1 and L2 ambiguities

cannot be resolved. Therefore estimating WL and L1 ambiguities instead of L1 and L2

has a benefit on position estimation provided that the WL ambiguity resolution is reliable

and fast.



Table 5.13 RM S Position (cm) for 900-second-run, 43 km Basdline

Strategy
Axis 3 4 ! 8
No Ar_nbi guity f mngg\lll\f;y No Ar_nbi guity A(\)mngg\ﬁlt_y
Fixed Fixed Fixed Fixed
East 38 27 9 6
North 25 13 12 13
Height 65 41 18 11

5.3 Multiple Reference Station Tests and Results.

Previous sections in this chapter tested eight different ambiguity resolution strategies. It
was found that the last four strategies (Strategies 5, 6, 7 and 8) gave better ambiguity
resolution and positioning performance than the first four strategies (Strategies 1, 2, 3 and
4) because the former takes the ionospheric error into account through either forming the
IF combination or stochastic ionosphere modelling. This means that in order to achieve
optimal ambiguity resolution performance under an active ionogphere, the rover can not
implement the two widely used Strategies 1 and 2. Instead the rover has to implement a
complicated algorithm such as Strategy 5, 6, 7 and 8. This may not be feasible for all

users.

There is an emerging aternative technique that can predict the ionospheric error and then
correct such errors using a network of GPS reference stations. The network models the

ionospheric error and transmits the corrections to the rover, so the rover can have
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improved ambiguity resolution and positioni ng performance even with Strategies 1, 2, 3

and 4 because the ionospheric error has been properly taken into account by the network.

Driven by the demand of high precision positioning from the civil community, the use of
a GPS multiple reference dation network to generate carrier phase observation
corrections, to compensate the differential errors over a large area and increase the
maximum distance at which reliable ambiguity resolution can go ahead, has been under
intensive research in recent years (Wanninger, 1995; Han and Rizos, 1996b; Wubbena et
a., 1996; Raquet, 1998). According to Fotopoulos (2000), the methods developed up to
date can be classified into four categories.

Partial derivative algorithms (Wubbenaet al., 1996; Varner et d., 1997)

Linear interpolation algorithms (Wanninger, 1995;Gao et d., 1997; Han and Rizos,

1996b)

Condition adjustment algorithm (Raquet, 1998)

Virtua reference station algorithm (Wanninger, 1995, van der Marel, 1998)

Among al mentioned methods, the one derived at the University of Calgary by Raguet
(1998), is one of the most rigorous from an optimal estimation theory point of view
(Fortes, 2002). This method is referred to as MultiRef in thisthesisand it is schematically
illustrated in Figure 5.29. The four reference stations at each corner collect measurements
and transmit these measurements to the control centre (The one shown in the middie of

the figure). The centra GPS reference station will generate carrier phase corrections
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based on these measurements. These corrections are then transmitted to the user (ship,

surveyor, etc...) to facilitate areal time carrier phase based positioning.

carrier carrier
phase ——""phase
corrections corrections

Dt Link

Aefarance

Figure5.29 A GPS MultiRef Network

The MultiRef approach is based on Least-Squares collocation (Fortes, 2002). By
estimating the differential errors between those reference receivers, the differentia errors
between the rover station and any reference station can be predicted, thus corrections can
be applied to the raw observables at the rover to compensate these differentia errors.
With fewer differentid errors, the rover, in theory, should have a higher probability in
successfully in resolving integer ambiguities and providing high accuracy position

estimates.

MultiRef was initially designed for rea-time operation. A lot of results have been

presented in the past to show the effectiveness of the MultiRef approach in post mission.
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Fotopoulos (2000) has conducted research on the correction generation and dissemination
scheme, and tested these schemes with data from the Swedi sh Network. However, no real
time test was carried out. Another objective of thisthesisisto develop ared time system
and evauate the performance of the system in real conditions. The real time test is

explained below.

5.3.1 Test Setup

Figure 5.30 shows the real time test set-up where the GPS reference stations are enclosed
in the elipse. Each reference station makes measurement and sends the measurements to
a control centre using high bandwidth Internet with TCP/IP protocol. The control centre
then processes data from all the reference stations, solving the integer ambiguities

between the reference stations and generating corrections.

/

:

RTCM 18/19
- L
Novatel OEM Format ‘
control
center =] rover
GPGGA

Figure5.30 Real Time Test Flow Chart
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In the present case the real time test is carried out as follows. The rover sends an NMEA
0183 message GPGGA to the control centre via the Internet using TCP/IP protocol. The
GPGGA message contains the approximate position of the rover. Based on this
approximate rover position, the control centre will generate the corrections for this rover
position and apply the corrections to a Virtual Reference Station’s (VRS) observation
data and send the corrected VRS observation to the rover in NovAtel OEM format via the

Internet.

A smal MultiRef network has been set up in Cdgary, Alberta (Figure 5.31). This
network consists of six stations with a NovAtel MPC receiver employed at each station.
The raw data collected at each station is sent to acontrol centre located in the Department
of Geomatics Engineering Satellite Observatory. Two reference stations (MPC4 and
MPCb) are set up very close to each other. The reason is that MPC5 will eventudly be
deployed somewhere around Cochrane near Calgary. The longest basdline in this
Network is 24.3 km. The size of the Calgary network is small, which leads the magnitude

of the most corrections to be under 2 cm.

In this test, the university station MPC-UofC is excluded from the MultiRef network and
used as arover. The nearest reference station to the rover MPC-UofC is 5.4km. Under the
MultiRef environment, it does not matter which reference station acts as the reference to
do position estimate for the MPC-UofC rover because of the data encapsulation effect of

the MultiRef. An epoch-by-epoch RTK solution is computed for the station MPC-UofC.
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Figure5.31 Calgary MultiRef Network Configuration

The ambiguity resolution strategies used are Strategies 1, 2, 3, 4, 7 and 8. Each strategy
was run for one hour consecutively in real time generating a position solution at every
second. The cut-off elevation angle is 5 degrees and at least five satellites are observed
for the entire test period. The position error plots for each strategy are shown in Figures
5.32 to 5.37. The position datistics are shown in Table 5.14 to Table 5.19 for each

strategy.
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5.3.2 Reaults

1) Result for Strategy 1

The 1-hour position error for Strategy 1 is shown in Figure 5.32. There are severa red
dots (float solution) at the beginning due to the filter convergence. The L1 ambiguities
are resolved within thirty seconds. The distance of the rover to the closest reference
station is 6.4km. Considering the time of the day thistest is carried out (13:30-14:30 local
time), this indicates very good performance of MultiRef approach in rea time. The blue

segment in the plot is caused by one float ambiguity that just entered the solution.
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Figure 5.32 Real Time Position Errorswith Strategy 1
Table 5.14 shows the position RMS error for Strategy 1. The RM S for the All Fixed (All

the ambiguities have been fixed) caseis 1 cm, 0 cm and 2 cm for east, north and up axis.

During 96.8% of all the epochsin this 1-hour test, all ambiguities are fixed.
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Table5.14 RM SPosition Errors, Strategy 1

RMS (cm)
All Points (100%)| All Fixed (96.8%)| Partial Fixed (2.1%)| All Float (1.1%)
Min |Max| RMS| Min [Max | RMS| Min | Max| RMS| Min | Max | RMS
East 2 18] 1 2| 0| 1 -2 0 2 2 | 8 5

AXis

North | -1 | 42| 4 -1 0 0 -1 0 0 40 | 42 | 41

Heght | -3 | 37 | 4 -3 0 2 -2 0 1 30 | 37| 35

2) Result for Strategy 2

The 1-hour position error for Strategy 2 is shown in Figure 5.33. The noise property of
Strategy 2 (WL) is clearly shown in this figure. Float ambiguities (blue) cause large
position variations in the middle of the test. Table 5.15 shows the position RMS error for
Strategy 2. The RMS for the All Fixed caseis 3 cm, 2 cm and 3 cm for east, north and up
axis. All ambiguities are fixed 71.4% of the time. This relatively low percentage
compared to all other strategies is caused by the long time span of the float ambiguity in

the middle of the 1-hour test.
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Figure 5.33 Real Time Position Errorswith Strategy 2

Table5.15 RM S Position Errors, Strategy 2

120

RMS (cm)
| All Points (100%)| All Fixed (71.4%)|Partial Fixed (28.2%) All Float (0.3%)
s Min |Max| RMS| Min [Max | RMS| Min | Max | RMS| Min | Max | RMS
East -6 |10 | 4 4 | 8| 3 -1 | 10 6 6| 0| 4
North | -2 | 28 | 2 2 | 5] 2 -2 2 1 24 | 28 | 26
Height | -7 |27 | 4 -7 9 3 -5 15 5 19 | 27| 21

3) Result for Strategy 3

The 1-hour test position error for Strategy 3 is shown in Figure 5.34. Table 5.16 shows

the position RMS error for Strategy 3. The RMS for the All Fixed caseis 1 cm, 0 am and
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3 cm for east, north and up axis. During 99.1% of al the epochs in this 1-hour test, all

ambiguities are fixed, and the remaining 0.9% contains epochs when no ambiguities are

fixed when thefilter is converging.
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Table5.16 RM SPosition Errors, Strategy 3

Figure 5.34 Real Time Position Errorswith Strategy 3

RMS (cm)
Axis All Points (100%)| All Fixed (99.1%)| Partia Fixed (0%) | All Float (0.9%)
Min |Max| RMS| Min [Max | RMS| Min | Max | RMS| Min | Max | RMS
Bt | -17 | 1 2 -3 1 1 N/A | N/A| N/A| -17 | -15| 16
North | -1 | 24| 2 -1 1 0 N/A | NJA| NJA| 20 | 24 | 22
Height | -21 | 1 3 -5 1 3 N/A | NJA| N/A| -21 | -17| 19




4) Result for Strategy 4
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The 1-hour position error for Strategy 4 is shown in Figure 5.35. Table 5.17 shows the

position RMS eror for Strategy 4. The RMS for the All Fixed caseis1 cm, 1 cmand 3

cm for east, north and up axis. During 99.1% of all the epochs in this 1-hour test, all

ambiguities are fixed, and the remaining 0.9% contains epochs when no ambiguities are

fixed when thefilter is converging.

Table5.17 RM S Position Errors, Strategy 4

RMS (cm)
Axis All Points (100%) | All Fixed (99.1%)| Partia Fixed (0%) | All Float (0.9%)
Min | Max| RMS| Min |[Max|RMS| Min | Max RMS | Min | Max| RMS
East -5 1 1 -2 1 1 N/A | N/A  N/A S | -1 4
North | -1 | 16 | 2 -1 2 1 N/A |N/A NA | 12 | 16| 14
Height | -5 | 44| 5 -5 0 3 N/A | N/A N/A | 41 | 44| 43

East Error

E0
st
North Error
5 -
Eo
All fixed
-5 1 Float
+ 2+ Float Height Error
Sr All Float :
Eo0
-5

431733 432333 432933 433533 434133 434733
17:06 17:16 17:26 17:36 17:46
GPS Time (sec) Local Time (h)

Figure 5.35 Real Time Position Errorswith Strategy 4
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The 1-hour position error for Strategy 7 is shown in Figure 5.36. Table 5.18 shows the

position RMS eror for Strategy 7. The RMS for the All Fixed caseis1 cm, 1 cmand 3

cm for east, north and up axis. During 98.9% of all the epochs in this 1-hour test, al

ambiguities are fixed, and during 0.2% of al the epochs, there is not ambiguity being

fixed. The remaining 0.9% contains epochs when al but one ambiguity is fixed.

East Error

EQ0
-5
Narth Error
5_ .......... e
E O Iy a N s - s
S5 All fixed
1 Float Height Error
[ « 2+ Float e e e et et s
All Float
E OF SSUSAUSE. AORRSURURSRURS SRS SRS, SRR ST SRR
L — Ly

-5 L — ¢ L 1
454657 455257 455857 456457
23:18 23:28 23:38 23:48

i
457057
23:58

GPS Time (sec) Local Time (h)

I
457657
00:08

Il
458257
00:18

Figure 5.36 Real Time Position Errorswith Strategy 7

Table5.18 RM S Position Errors, Strategy 7

RMS (cm)
Axis All Points (100%) | All Fixed (98.9%)| Partial Fixed (0.2%)| All Float (0.9%)
Min |Max| RMS| Min [Max | RMS| Min | Max | RMS| Min | Max | RMS
East -3 18| 2 -3 3 1 -2 0 1 12 | 18 | 16
North | -2 | 26 | 2 -2 1 1 0 0 0 24 | 26 | 25
Height | -44 | 1 5 -8 1 3 -2 0 2 -44 | -39 | 43
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The 1-hour position error for Strategy 8 is shown in Figure5.37. Table 5.19 shows the

position RMS error for Strategy 8. The RMS for the All Fixed caseis 1 cm, O cm and 2

cm for east, north and up axis. All the ambiguities are fixed 98.9% of the time.

Table5.19 RM S Position Errors, Strategy 8

RMS (cm)
i All Points (100%)| All Fixed (98.9%)| Partial Fixed (0.2%)| All Float (0.9%)
XIS
Min | Max| RMS| Min [Max | RMS| Min | Max| RMS| Min | Max | RMS
East -2 | 29 3 -2 1 1 -1 0 1 2 | 29| 28
North | -1 | 42| 4 -1 1 0 0 0 0 38 | 42 | 38
Height | -33 1 4 -5 1 2 -2 0 1 -33 | -31| 32
East Error
5 .......................................................................
g (0| g prtman Y oaoRan0aD JRHa T gy QAaOaags
-5
North Error
5,
EO0
All fixed
-5 1 Float
2+ Float Height Error
5 All Float :
g (0] Se5eaasa0ap-pacacansa ................... ........................ ............
47558272 458i872 459‘472 460I072 460672 461i272 461‘872
00:18 00:28 00:38 00:48 00:58 01:08 01:18

GPS Time {sec) Local Time (h)

Figure 5.37 Real Time Position Errorswith Strategy 8
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5.4 Summary

Based on the tests and results achieved in this chapter, the following summaries can be
made;
1. WL ambiguity is both reliable and easier to resolve than the L1 and L2
ambiguities. In periods of high ionospheric activity, the ionospheric bias is
actualy amplified in the WL observable in units of metres, thus WL combinations

do not necessarily give the optimal position resultsin terms of accuracy.

2. During periods of high ionospheric activity, in order to achieve an optima
position solution, the ionospheric bias must be dedt with explicitly by ether

forming the | F observable or through stochastic modelling.

3. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2
ambiguities, does not help to resolve the L1 ambiguities faster or more accuratel y,
but it can decrease the position errors if the WL is fixed correctly. Thisis relative
to the dtrategies where the L1 and L2 ambiguities remain as floating values.
Results may be different for very short baselines where the ionosphere is less

significart.

4. Stochastic ionospheric modelling gives the best positioning results among all of

the strategies used for this data set.
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In Strategy 5 (IF Fixed), the WL ambiguities are usualy fixed quickly, while the
L1 ambiguities require a longer time to fix because of their reduced wavelength
(20.7cm). This may hinder the real time use of Strategy 5. Nevertheless, even if
the L1 ambiguities are not fixed, an ionosphere-free float solution results, which,

as demonstrated by Strategy 6, can still give reasonable position estimates.

This chapter aso presented a system to evauate the MutliRef™ approach in real
time conditions. For each strategy, test results are impressive with position RMS
values less than 3 cm in All Fixed cases for al three axes. The results obtained
clearly show that the system works very well. Considering the baseline between
the nearest reference station to this ‘rover’ is 6.4 km, the effectiveness of the

MultiRef™ approach is demonstrated.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This research investigated various ambiguity resolution strategies. It gave adetailed
andysis of the impact of observation types and combinations, and model
parameterization on carrier phase ambiguity resolution and position accuracy under
operational conditions. The thesis began with a thorough investigation into the
differential error sources for carrier phase relative postioning. It stated that for
medium basdlines, the differential ionospheric error is usualy the dominant error
source preverting the user from achieving successful ambiguity resolution, and high
precision position results. To examine the impact of the differential ionospheric error
on ambiguity resolution, a total of eight ambiguities resolution strategies were
implemented in the FLYKIN+™ software package. All those eight strategies have
been tested using three baselines from Calgary, Canada and Campania, Italy. The
baseline length ranges from 10 km to 43 km. All of the data was collected near the
peak of the 11-year sunspot cycle and the differential ionospheric error reaches as
high as 15 ppm for some baselines. This thesis aso presented a system to evaluate
the MutliRef™ approach in real time conditions. Test results are impressive with

RMS position valueslessthan 3 cmin All Fixed casesfor al three axes.
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Based on the tests and results achieved in this chapter, the following conclusions can be
made;

1. The sdection of the observation types and combinations, and modd

parameterization, and estimation model directly impeact carrier phase ambiguity

resolution and positioning accuracy under active ionospheric conditions.

2. WL ambiguities are both reliable and easy to resolve. It was demonstrated that
WL ambiguities are fixed 100% of the time correctly for all three baselines.
Tables 5.4, 5.8 and 5.12 have shown that the mean time to fix the WL ambiguities

is much shorter than the mean timeto fix the L1 or L2 ambiguities.

3. In periods of high ionospheric activity, the ionospheric bias is actually amplified
in the WL observable in units of metres, thus WL combination does not
necessarily give the optimal position results in terms of accuracy. Testsin Chapter
5 have shown that position errors under active ionosphere can reach more than 50

cm even the WL ambiguities are fixed correctly.

4. Edimating L1 and WL ambiguities in the same filter, instead of L1 and L2
ambiguities, does not help to resolve the L1 ambiguities faster or more accurately.
This is relative to the strategies where the L1 and L2 ambiguities remain as
floating values. It was demonstrated in Tables 5.4, 5.8 and 5.12 that the mean

timeto fix the L1 ambiguities is comparable.
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5. Estimating L1 and WL ambiguities in the same filter, instead of L1 and L2 can
decrease the position errors if the WL is fixed correctly. It was demonstrated in
Tables 5.5, 5.9 and 5.13 that the position RMS errors in Strategies 4 and 8 after
the WL ambiguities are fixed correctly are significantly better than the position

erorsin Strategies 3 and 7 when both L1 and L2 ambiguities are not fi xed.

6. During periods of high ionospheric activity, in order to achieve an optima
position solution, the ionospheric bias must be dedt with explicitly by either
forming the IF observable or through stochastic modelling. It was demonstrated
that the performance of Strategies 1, 2, 3 and 4 (in which the ionospheric error is
assumed to be absent) are largely dependant on the DD ionospheric errors. They
are capable of centimetre positioning under alow DD ionospheric error condition.
However, this capability is severdy compromised with an increased DD

ionospheric error.

7. The stochastic ionosphere modelling strategies gives the best position estimate
compared to al others. Less than 10 cm position RMS errors are reported by the

stochastic ionosphere modelling strategies for al three baselines.

8. The red-time system implemented has clearly demonstrated centimetre level
positioning accuracy capability for the Calgary Network. All the strategies tested

reported less than 3 cm RM S position error.
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Based on the results and conclusions of this research, the following recommendations

regarding the use and further investigations of various ambiguity resolution strategies can
be made:

1. Thetest results for various ambiguity resolution strategies in Chapter 5 show that

Strategies 7 and 8 (the two stochastic ionosphere modelling strategies) gives

better positioning results than Strategies 5 and 6 (the two ionosphere free

combination strategies). Further research can be done to explain this phenomenon.

2. The test results in Chapter 5 are based on certain input parameters. These input
parameters include data rate, observation variances, the magnitude of the noise
spectral density driving the velocity and position states, and the magnitude of the
pseudo-ionosphere observable variance. The impact of these input parameters on
the output is not investigated in this thesis. The relation between these input
parameters and output parameters is important, as it is expected that the dight

change in the input parameters should not s gnificantly change the output.

3. The author implements a suggested ambiguity method in the software
FLYKIN+™. Very limited tests have been done to test the efficiency of this
method. It is recommended that this method should be tested more extensively for

RTK applications.

4. The detection of multiple cycle dips a the same epoch is very critical for the

success of any kinematic software. There is alarge possibility that multiple cycle
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dipswill occur a the same time. One obvious example is that there is a cycle dip
on the reference satellite. The appendix of this thesis has shown the basic
measures to detect and remedy the cycle dips. More work is required in this area

to increase the robustness of the FLY KIN+™ software.

Overdl, this thesis clarifies the pros and the cons of all the introduced ambiguity
resolution strategies. With this knowledge, the ambiguity resolution process can be

better understood and the optimal scheme for an application can be chosen.
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APPENDIX: QUALITY CONTROL IN GPSCARRIER PHASE POSITIONING

GPS signds travel an average distance of 20200 km to reach the receiver. During this
long journey, the signa attenuation due to the atmosphere results in various measurement
biases, such as troposphere error and ionosphere error. The magnitude of these errors is
generally dependent on the elevation angle of the satellite. The higher the elevation, the
less those biases are. Because of this, the eevation dependant variance-covariance
modelling is employed in the software. A mapping function is used to relate the precision

of the measurement made at the zenith direction to any elevation. The smplest mapping

functionis sin(E), where E isthe devation angle.

Besides the atmospheric biases, the measurement is also susceptible to blunders. The
most two common blunders are carrier phase cycle dips and code multipath. In carrier
phase based double differenced positioning, the code multipath is generally less critical
than carrier phase cycle dips, as the precision of the carrier phase far outweighs that of
the code observables. Carrier phase cycle dips are very critica in carrier phase based
positioning as undetected cycle dips will cause a discrepancy between measurement and
states being estimated and will lead to large position error. Cycle dips can occur as a
consequence of serveral reasons, such as obstruction between recelver antenna and
satellite, high dynamics of the receiver carrier, and ionospheric scintillation, to name a
few. The detection of the cycle dip used in the software FLYKIN+™ is based on the

Kaman filter’ sinnovation sequence testing (Teunissen, 1998b).
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Figure A1 shows a standard linearized Kalman filter loop. The innovation sequencev is
generated by subtracting the predicted measurement from the actual measurement. A
property of the Kalman filter is that if the system driving noise is white, then innovation

sequence v will follow a zero mean Gaussian distribution with dispersion C,, namely

v~(0,C,) @

Based on the property of the innovation sequence, two hypotheses can be made.

H,:E{v}=0

H,:E{v} =N 4

where N represents the model error vector(cycle dips, multipath, etc.).

Based on the null hypothesis H ,and the alternative hypothesis H,, a test statistic can be

constructed. Thetest statistic reads

t=—n 3

where misthe number of observables in the Kalman filter.

The expectation of this test statistic is 1 if the null hypothesis is true. Thus if the

following inequality holdstrue, then the alternative hypothesis will be accepted instead of
the null hypothesis.

T>F,(m¥,0) 4)

where F isthe fisher distribution with the chosen significance level a .
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Innovation Sequence

=z H, X,

C

\Y
C,=HPH™ +R,

Prediction Kaman Gain

X =Fx,., K=RHT(HRH+R)"

R =FRF'+Q,

Update

X, =X, +Kv
P =(- KH)R

Figure Al Linearized Kalman Filter L oop

If the test statistic alerts that the null hypothesis is wrong and the alternative hypothesis
should be used, then further steps are needed to identify which observable is the problem.

Another test dtatistic should be used. Assume that there is only one observable bias at one
epoch, this statistic reads

c'C, v

- ©)

tk =__X vV
VG, TKI[K]
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where ¢ ={0,0,...0,1,..0,0 means the kth observable is tested against possible
measurement biases. t* followsa N(0,1) distribution if all the observables at this epoch
are free of any biases. Thistest is repeated for every observable k=212....,m. The largest

‘tk‘ will indicate the most likely biased observable. The test statistics is then compared
with the critical value of N,,,(0,1), where a is the chosen level of significance. If the

largest ‘tk‘ exceeds the critical value, then that observable is to be rgected. The power of

thistest statisticsis dependant on its minimum detectable bias (MDB), which reads

MDB = /1'—0 (6)
C, TKI][K]

where |, isafunction of the chosen level of significance a , the power of thetest b, and

the degrees of freedom in the estimation model.

A numerical example is shown below to demonstrate this method. A three-minute single
frequency GPS data was processed. Figure A2 shows the sky plot during that three
minute interval. The data have been anadyzed and no actua carrier phase cycle dip was
found. Six artificia cycle dips were added to the data at GPS Time 21, 41, 61, 81, 101,
and 121. The magnitude of these artificial cycle dips is al -1. Both baseline and
ambiguity states were estimated using L1 carrier phase observable. The leve of

significance, a , was chosen as 0.001 and the power of the testb was set to 0.8 for the
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test. The identification results are depicted in Figure A3. The six spikes represent that all

of the cycle dipswere correctly identified.
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Table A1 shows the simulated cycle slip N , its estimated value N and the MDB. MDB
is dependant on many factors, such as the precision of the measuring equipment and the
geometry. It is clear that from the table that the MDB is highly corrdlated with the

elevation. The higher the satellite elevation is, the smaller theMDB is.

Table Al Carrier Phase Cycle Slips Detection Summary

Epoch(sec) PRN N (cycle) | N (cycle) | MDB(cycle) | Elevation
21 3 -1 -1.00 0.47 19
41 9 -1 -0.95 0.35 29
61 14 -1 -1.03 0.26 59
81 15 -1 -1.05 0.56 17
101 18 -1 -1.02 0.28 36
121 31 -1 -0.95 0.54 29

This innovation test usualy assumes that there is at most one cycle dip at the same
epoch. If there are two cycle dips at the same epoch, this method may not give correct
results. To demondtrate this, the same data was used. Instead of adding one cycle dip at
one epoch, two simultaneous cycle dips were added to two different satellites. The

magnitude of these cycle dipsis al —1. The table below shows the actua cycle dip and

corresponding epochs.

Table A2 Smulated Cycle Slips

Epoch(sec) PRN N (cycle) PRN N (cycle)

21 3 -1 9 -1
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41 9 -1 14 -1

61 14 -1 15 -1

81 15 -1 18 -1
101 18 -1 31 -1
121 31 -1 3 -1
121 21 -1 N/A N/A

The table below shows the identification process. The identification result is not good at
all. For example, at epoch 21, it is PRN 3 and PRN 9 that contains the cycle dips, while
the innovation test reports PRN 31 to contain a cycle dip. The cycle dip of PRN 9 is
detected at epoch 24, which is 4 epochs past the actud time. The cycle dip of PRN 3 is
never detected. Another interesting thing to note is that at epoch 141 a cycle dip with
magnitude of -1 is added to the reference PRN 21 (which means all the DD ambiguities
suffer from cycle dips). The innovation sequence statistics report that PRN 14 is biased
at epoch 141 and PRN 9 is biased at epoch 142. The limitation of this innovation testing

isclearly exemplified.

Table A3 Detected Cycle Slips

Epoch PRN Identified N (cycle) MDB
21 31 1.82 0.57
24 9 -04 0.43

41 14 -1.48 0.26




42 9 -0.83 0.46
61 14 -0.75 0.26
62 15 -1.06 0.65
81 9 1.02 0.35
82 14 -0.38 0.35
101 18 -1.15 0.27
102 15 -0.72 0.74
121 14 0.24 0.26
141 14 0.9 0.26
142 9 -0.48 0.47
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