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ABSTRACT

The research reported in this thesis investigates the
suitability of Kalman filtering and optimal smoothing for the data
measured by the Ferranti Inertial Land Surveyor (FILS). The
development of such a filter-smoother consists of four major steps.
First the dynamics matrix for the system of interest is derived
from the general error equation of a local level inertial survey
system (LLISS). The next step is the derivation of the transition
matrix either by analytical or numerical methods for the propaga-
tion of the state errors. The third step is the implementation of
the Kalman filtering and backward smoothing equations. The final
step is the testing of the Kalman filter-smoother with actual data
and the assessment of the correctness of initial variances and error
asgumptions,

Results of this research show that Kalman filtering and opti-
mal smoothing is a viable alternative to the method used, at present,
in the FILS-software. It provides not only the coordinates but also
their estimated accuracy. The filter can be modified for real-time
applications and cazn be used to integrate the LLISS with other sur-
veying systems. The Kalman filter-smoother was tested with inertial
survey data gathered over a 42 km L-shaped base line near Calgary.
Analysis of the results indicates that coordinates can be determined
with sub-metre (lo) accuracy, which is about the same as the accuracy

of the control coordinates of the base line.
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Notations

Frequently used notations in this thesis are listed below:
geodetic latitude
geodetic leongitude
height
time derivative
quantity in the inertial system
quantity in the average geodetic system
quantity in the local level system
quantity in the platform system
quantity in the accelercmeter system
matrix that transforms quantities from the i-system to
the j-system
angular velocity of the j-system with respect to the
i-system coordinatized in the m-system
skew systematic matrix of mij
earth rate of rotation (rad/s)
G+ w,)
mean radius of the earth
normal gfavity

-2

specific force (m- s °)

east component of the deflection of the vertical (rad.)
north component of the deflection of the vertical (rad.)
gravity anomaly (m - 5_2)

dynamics matrix

ix






(=)
(+)

transition matrix

state vector

variance matrix of the state vector
design matrix

Kalman gain matrix

observation noise in the control measurements

variance matrix of the control measurements

a state vector, used in smoothing as an intermediate quantity

variance matrix of y

symbolizes a measured quantity
symbolizes a computed quantity
symbolizes quantities before update
symbolizes quantities after update
symbolizes quantities after smoothing

symbolizes the error in a quantity






Chapter 1

INTRODUCT ION

In recent years, inertial survey systems have become one of
the widely used surveying devices in Canada. Many difficult survey-
ing tasks that were previously carried out with conventional survey
tools can now be accomplished in much less time with an inertial
survey system. The cost of inertial surveys, in both ground vehicle
and helicopter modes, can be as low as one-half of the cost of the
conventional survey methods (Babbage, 1977; 1981). Ordinarily, these
systems can give geodetic positions with second-order or higher
accuracy if proper estimation techniques are employed to determine
the error states of the systems (Schwarz, 1980a).

There are three types of inertial survey systems: space
stabilized, local level, and strapdown. In all three system types
the major sensors are the three orthogonal accelerometers. The
accelerometers measure the specific force acting on the system.

From the sensed forces, the accelerations of the system are computed
and integrated mechanically into velocities which are then integrated
into changes in position of the system by the on board computer., The
integrated velocity information is also used by the computer to con-
trol the gyros that align the platform of the system. The three
types of inertial survey systems mentioned above are distinguished
by the manner in which they control their platform. In the space

stabilized system, the three orthogonal axes of the platform are kept



by the gyros in fixed orientations with respect to an inertial coordi-
nate system. The local level system has a platform perpendicular to
the local normal of the reference ellipsoid. One of its horizontal
axes is always pointing towards north. The strapdown system follows
all movements of the vehicle. The platform rotations are sensed and
taken into account computationally, therefore, the system needs a

much more powerful computer than the other types of system. The final
outputs from these inertial systems are usually geodetic curvilinear
coordinates. Details on the mechanizations of these systems can be
found in Britting (1971).

The system of interest in this research is the local level
inertial survey system (LLISS). Systems of this type available in
Canada are the Litton Autosurveyor (ISS) and the Ferranti Inertial
Land Surveyor (FILS). At present, the manufacturer of the ISS sup-
plies an estimation package that contains a Kalman filter. This
package is built into the system therefore the model for the Kalman
filter is difficult to determine. The FILS predicts its position
errors with a quadratic polynomial fitting technique (Deren and
Hagglund, 1981). The prediction technique does not provide to the
user the variances of the predicted coordinates. Also, neither of
these two systems uses the linear optimal smoothing technique to
process their data post-mission. The objectives of this research are
the development of an optimal Kalman filter-smoother for the FILS,
and the implementation of the optimal equations for computing the

cross-variances between the coordinates of the different points in the



same mission after filtering.

Most of the error models, as well as the Kalman filtering
and smoothing equations used in this thesis can be found in the
literature on inertial navigation and linear optimal estimation,
e.g. Britting (1971) and Gelb (1974). The adaptation of these
general equations to the specific case of an LLISS is the major
concern in this thesis. This includes the formulation of the
transition matrix and the application of Kalman filtering and
optimal smoothing equations in estimating the error states of the
FILS with velocity errors and known coordinate control measure—
ments. Tests of the derived filter-smoother are done with the
FILS data gathered at an L-shaped base line where accurate coordi-
nates are available for comparison.

In order to clarify the error equations used in this re—
search, Chapter 2 is devoted to the definitions of the different
coordinate systems and the transformations that relate the gquantities
measured by an LLISS to an inertial coordinate system. Chapters 3
and 4 deal with the derivation of the dynamics and transition matrices,
and Chapter 5 lists the Kalman filtering and backward smoothing
equations and discusses their implementation. The results of the
tests, the error analysis and recommendations are given in the last

two chapters of this thesis.




Chapter 2
COORDINATE SYSTEMS

The sensors in the ILISS are aligned to a locally defined
geodetic system which is topocentric in nature. The measurements
and computations are performed in this local level geodetic frame.
The coordinates most users require are referred to a geodetic ellip=~
soid (geodetic system) which can be linked to the right ascension
system. Theoretically, the right ascension system is not inertial
because it moves with respect to the distant galaxies. Ignoring
such movement will introduce errors of the order of 2- 10_-8 deg/hr
(Kayton, 1961) which is about 5 orders of magnitude higher than the
accuracy of the sensors in the LLISS. Therefore, for all practical
purposes, it can be regarded as an inertial system. The conversion
of the quantities determined by the LLISS to the geodetic system in-
volves a series of transformation through several different coordinate
systems. These transformations and the definitions of the different
coordinate systems dictate the formulation of the error models of
the LLISS. There are several definitions of local level coordinate
systems in the literature on inertial survey error analysis. To
avoid any confusion of the error equations given in the next chapter
with other similar equations, all the coordinate systems used in this
research are defined here in peoint form.

2.1 Inertial System (i)

(i) 3-D Cartesian frame
(ii) Heliocentric

(iii) Tertiary axis passes through the north celestial pole



(iv) Primary axis passes through the vernal equinox

(v) Right-handed.

2.2 Average Geocentric System (e)

(i) 3-D Cartesian frame
(ii) Geocentric
(1ii) Tertiary axis coincides with earth mean spinning axis
(iv) Primary axis is the intersection of the Greenwich
meridian and the equator

(v) Right-handed.

2.3 TLocal Level System (22)

(i) 3-D Cartesian frame
(ii) Origin at the system location
(iii) Tertiary axis orthogonal to the reference ellipsoid
and pointing outward
(iv) Primary axis pointing east

(v) Right-handed.

Figure 2-1 shows the relationship between the average

geocentric and local level system.

2.4 Platform system (p)

For error analysis purposes, the platform system can be
defined in two ways. Its axes can be assumed orthogonal and linked
to the accelerometer axes by their angular non-orthogonalities, or
they can be treated as coincident with the accelerometer axes. The

FILS corrects for the non-orthogonalities of its accelerometers,
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Figure 2-1 : Relationship between average geocentric
and local level systems

therefore the former case is adopted here. The platform system is
defined as
(i) 3-D Cartesian frame,
(ii) origin is the same as the &t%-system,
(iii) all axes are assumed to be aligned with the corres-
ponding axes of the local level system and
(iv) right-handed.
Mathematically, the quantities in the f&-system can be

transformed to the e-~system with the well knowvm matrix



cos A -sin¢ sinA cosd sin A
CER = | sin A sind¢ cosA -cos¢ cos A s (2-1)
0 cos ¢ sin ¢ J

see Vanicek and Krakiwsky (1982). Here, ¢ and A are the geodetic
latitude and longitude of the LLISS, The transformation matrix

between the average geocentric and the inertial system is

~

cos(wegt + GAST)  -sin(w,t+ GAST) O

C. = | sin(w,t+ GAST)  cos(ugt+ GAST) 0 | , (2-2)

m

0 0 1

i

where 0, is the comstant angular velocity of the earth (for small t),
t is the elapsed time since the beginning of the mission and
GAST is the Greenwich Apparent Siderial Time at t = 0.

For error analysis purposes, GAST can be chosen to be zero.
The angular wvelocity of the local level system (designated by

subscript R2) with respect to the imertial system coordinatized in the

local level system (designated by superscript 22) is

‘”ilu = {4, 2 cosd, 2 sin¢ }* , (2-3)

where

. (2-4)

This relation is shown in Figure 2-2.
Expressing the angular velocity of the earth with respect to
the inertial frame in the local level system, yields

2L

R T
Wi {0, w, cos ¢, w, sing 1. (2-5)



Figure 2-2 : Angular Rotation of the
Local Level System

The difference between equations (2-3) and (2-5) is the angular
velocity

22 _ o s T _
0. 5y = {-¢, X cos¢$, Asin¢} . (2-6)

The derivations of the LLISS error equations in the next
chapter involve taking the cross products of these vectors with
other quantities. In order to simplify this kind of operation, the

following equivalence is used
wXTr=Qr , (2-7)

where { is the skew symmetric matrix of the angular velocity vector u.

. . ‘o £
The skew symmetric matrices of the two angular velocities m% and

ie
L8

we 28 are



ot
le

and

e
etl

W
e

=
e

The addition of the

e _
iag

-

sindg

cos ¢

0 -
sin¢

cos ¢

two matrices

sin¢

cos ¢

2.5 Accelerometer System (a)

sind

yields

sin ¢

0

-

w_ cos
o ¢

L cos¢

=Y

(2-8)

(2-9)

(2-10)

The accelerometer system is another system that should be men-

tioned here.

coordinate frame that has the following characteristics:

(1)
(11)

(1ii)

The three accelerometers of the LLISS together form a

the origin is the intersection of the accelerometer axes,

the axes are usually non-orthogonal and

it is upright and right-handed.

If the six angular deviations between the accelerometer and platform

axes are small, the non-orthogonal transformation from the accelero-

meter system to the orthogonal platform system can be expressed in the

general form (Britting, 1971)



where
0 ~8 8
¥z 2y
acP = 6 0 -8
a ®Z ZX
-8 3] 0
Xy vX

(2-11)

. (2-12)

The small angle Bij is the component of the angular deviation between

the 1 and j axes along the direction of the third axis. These angles

in the FILS are regularly determined from calibration data.

They are

treated as known and constant between calibrations.
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Chapter 3

ERROR EQUATIONS

Due to the imperfections in the instruments and the align—
ment of the system, the geodetic measurements given by the LLISS are
always contaminated by both systematic and random errors. Under
normal conditions, the same type of systematic and random errors are
present in the system. Constant system errors can be accurately
removed by regular calibrations. The errors that are random from
mission to mission but are systematic during the same mission are
known as state errors. These errors in the sensors induce errors in
the integrated velocities and position coordinates which are, in turn,
used to command the gyros. Thus, the state errors have an interwoven
relationship with each other. For a first order error analysis, this
relationship can be mathematically described by a set of linear dif-
ferential equations that expresses the time rate of change of these

state errors. This chapter is devoted to the derivation of this set

of equations.

3.1 Error Sources

The system errors in the LLISS can be identified by looking
into the different sources of error, The accelerometers measure the
specific force that acts on the system. The instruments are imperfect

therefore the accelerations determined from the measurements given by
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accelerometers are usually biased. The instrument errors and uncer-
tainties in the predicted velocities and positions make it very
difficult to align the platform perfectly with the local level frame.
The misalignments introduce errors into the measured components of
the specific force. The accelerometers are designed to sense any
forces regardless of their source, therefore the sensed forces contain
the accelerations of the wehicle with respect to the inertial frame
as well as gravitational attraction. The accelerations cannot be
accurately determined unless the gravity field along the survey line
is known. Since we do not have such information prior to a survey,
the normal gravity field is usually chosen as a first approximation.
This approximation is another source of error if the gravity distur-
bances on the survey line are large. For a more detailed discussion

of these errors, see Britting (1971) and Schwarz (1978, 1980c).

3.1.1 Acceleration Error Equations

The specific force equation for an LLISS is well documented,
e.g. Britting (1971) and Herrewegen (1980). The equation coordina-

tized in the local level system is

LR « 8

Le
£ L3O (922 LE L2 (3-1)

el + ZQie) v -8 '

Here, fRQ is the specific force vector, v is the velocity vector and
g is the gravity vector. Tor a first order error‘analysis, the

velocity vector of the system can be written as
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v L
N

V.

- (3-2)

]
2]
=

“

Yu
where r is the mean radius of the earth and h is the ellipsoidal
height. The acceleration error equation for the LLISS can be derived
by taking the total differential of equation (3-1) and then ordering

with respect to 6622. The result is

svtt = et (Qilu“L zsz“ig’e) svit + v“(amip‘lf 2w§:2e) + st
(3-3)

where § symbolizes errors. Equation (3-3) shows that the errors in
the accelerations determined by the system are a function of the
measured specific force, the gravity disturbances, the velocities and
the computed angular velocity vectors. The specific force measurements
contain instrument errors and errors incurred by the misalignment of
the platform. If the non-orthogonality of the accelerometers are not

compensated for, then the outputs of the accelerometers in the platform

system are

=P s ) P s 2 r () 2 (3-4)
where ACz is defined by (2-12),
symbolizes the measured quantities,
Sa is the scale factor matrix and
and {u) £2is the white or coloured noise.
Due to the different errors in the gyros and their torquing commands,

the inertial platform is misaligned with respect to the local level
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system. The three angular misalignments between axes of the two
systems are called the attitude or misalignment errors. They are

denoted by

{EE, ey EU}M ) (3-5)
where

€, 1is the misalignment of the east axis,

> is the misalignment of the north axis, and

€ is the misalignment of the wvertical axis.

The outputs of the accelerometers given in the equation (3-4) can be

transformed to the local level system by use of the transform matrix

o gt (3-6)
P
where
C ~€y N
28
E7" = £ 0 ~eg . (3-7)
—EN €E 0
5 p

Since the system assumes that the platform is perfectly aligned with
the local level frame, the sensed specific force coordinatized in the

2o-frame becomes (Britting, 1971)

A R (IR T S S O R (3-8)
Since
2 RR
£ =(q-8" £, (3-9

the sensed force can be rewritten as

T 2

RO R NI S VR sgv* . (3-10)

AR U Y R ¥
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The terms in the bracket in equation (3-10), represent the error
6fEg in equation (3-3).
The vector (SgRE in equation (3-3) is the difference between

the normal gravity vector

0

v = 0 , (3-11)
3y

-~ + 2 h

YO oh

.. .

and the actual gravity vector

- -
ng
Le
g = £g s (3-12)
-y = A
YO B
L -
where
Yo is the normal gravity on the reference ellipsoid,

h is the height above the ellipsoid,
N is the east component of the deflection of the vertical,
3 is the north component of the deflection of the vertical and

Ag is the gravity anomaly.

Using the normal gravity as a good approximation to the value of 2,

the errors caused by the gravity disturbances can be rewritten as

o -

ny

sgtt = EY . (3-13)
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This equation shows that the height state error has a very strong
effect on the accuracy of the vertical velocity if the uncorrected
height is used to compute the normal gravity. This effect may be
dampened if the state error of the uncorrected height is both predic-
ted in real-time and used in the computation of the normal gravity.

In some air-borne applications, external height information is
available. 1In that case, the normal gravity can be computed with a
weighted mean value of the uncorrected and the external height,

(ho’ hex) (see Britting, 1971). If the mean height is computed by

the formula

po=p d-a) 4o , (3-14)

m o ex

where o is the weighting factor, then

ny
sg¥t = EY . (3-15)
SO g
r a

Thus equation (3~3) may be rewritten in terms of the known

errors as

28 2L
(SVM'= - Efu'« (Q“’ + 29%2) 6v£2+vu’(6mi L9 + 2(Smi e)
ely ie
T (ACz)T A S Y Sl (3-16)

3.1.2 Attitude Error Equations

The angular misalignment between the axes of the inertial

platform and the local level system are caused by the errors in the
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computer commands that steer the gyros, by the gyro biases and the
noise in the devices themselves. Descriptions of the different kinds
of biases in various types of gyro mechanization can be found in
Savage (1978). For a first order error analysis, the sum of all biases
is usually treated as being constant. Its influence on the computed co-
ordinates is a systematic function of time. The errors in the computer
commands are caused by the inaccuracies, i.e. state errors, in the
integrated velocities and positions given by the LLISS. The influences
of these errors on the angular velocities between the inertial system
and the local level system can be analyzed in the following way.

In the local level system, we have

L e 28

Suign ™ D590~ 9ige o

(3-17)

~

where ~ symbolizes a computed quantity. Due to the biases in the gyros

and. 6m%£

TE the actual angular velocity between the platform and the

inertial system coordinatized in the platform system may be written as

p o_ 2L P -
mip wiRJL+ Gwip ’ (3-18)

where Smgp is the total platform angular velocity error. The biases
which include the gyro scale errors and the misalignment of gyro axes
are commonly grouped together and are called gyro drift. Denoting the
drift as &d, the error Gmgp can be expressed by the equation

P _ . 80 %2 22 _
By = Sw o+ 84 + (u) Wl - (3-19)

Together with equation (3-17), these equations outline the sources

of the attitude errors in the LLISS.
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The attitude error equations for the LLISS express the time
rate of change of the attitude errors by way of the time derivative
s . Le .
of the transformation matrix CP , 1.e.

TR T

3-20
P P %P ( )

The rate of change of the corresponding angular velocity vector is

&ii , = (T g) wh . (3-21)
Replacing the MER b as

9o p 6“Ep4‘ERR miiz ’ (3-22)
and denoting the vector of attitude error as ¢ yields

gl e el satt b ) Wl (3-23)

A more detailed derivation of equation (3-23) can be found in Appendix
A. A similar derivation is also given in Britting (1971).

Error equations (3-10), (3-15) and (3-23) describe the time
rate of change of the systematic errors that dominate the error states
of an LLISS. They show that there are three types of errors present in
the system. The attitude, velocity and position errors form the basic
state errors that must be considered in an error analysis because they
change with respect to time and influence mainly the accuracies of the
computed quantities in the system. The second type of error comprises
the biases in the instruments., They are normally treated as time
independent in a first order error analysis,but their effects on the

size of the basic state errors are systematic as functions of time.
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The remaining non-random errors, namely the gravity disturbances,
are position dependent. Therefore they are not affected by the
error state in the system and they can be determined before the

survey mission,

3.2 Dynamics Matrix

The error equations given in the last section are linearized
for first order error analysis. The mathematical functions involved
are derived here for a more detailed analysis of the behaviour of the
errors. The inter-relatiomship of these errors can be seen by ex-

pressing them in matrix form.

3.2.1 Attitude Error Equations in Matrix Form

To derive the attitude error equations in matrix form, they

L

have to be treated individually., The Gmilﬁ

term in equation (3-23)

is obtained by differentiating miz with respect to the state

L8

errors, i.e.

0 0 -1 0 ¢
5&22 = -4 sing O 0 cos b S . (3-24)
ige
L cos ¢ 0 0 sin ¢ G$
82
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Substituting this equation and equation (2-9) into equation (3-23),

we get

€g 0

éN =| ~%sin¢

éU Lcosd
+ sa**

2 sing
0 -4
b 0
L
+ {(u) Wige

-k cos ¢

0

-2 sin ¢

Rcosd

0 -1
g 0
0 0

cos ¢

sin ¢

3.2.2 Acceleration Error Equations in Matrix Form

SA

6¢

S

(3-25)

Many of the terms in the acceleration error equation (3-13)

have either been given or defined in previous sections.
. - 22
ing terms to be derived here are Gwe

derivations of mlg
el

28
e i

and

LR
ie

0
-X sing

i cos ¢

L

-5 sin
e b

w _COS
o ¢

and w%g
ie

and Sm.g
ie

The remain-

Taking the partial

the two terms in matrix form become:

0o -1
0 0
0 0
0 0
0 0
0 0

cos ¢

sing

= M

8¢

(3-26)

(3-27)
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In the FILS,the corrected coordinates are used to calculate the

28
1 .
angular velocity Weog

in computer program.

+ These coordinates are predicted by a built-

Their errors are much smaller than the position

state errors, therefore the influences of §A and §¢ can be neglected.

After premultiplying the Gml

2
el

by the skew-symmetric matrix of v

249,

the third term of equation (3-16) in geodetic curvilinear coordinates

can be rewyritten as

v“’ 24 + 260.)“'

(Sme L8 i e)

Finally, by expanding the other terms in equation (3-16), the accelera-

tion error

become:
-1 T fu
8¢ - 0
A |= 0 _f—Nsec¢
r
Sh| |-fN fE
Ty
+ ny
Ag

0 0 0

h
o 0 -2
0 0 ré

ik 0
r

N

- sec ¢ 0O
0 0

p.T .a a
+ (ACa) £+ S, f

&) tan ¢ —%

1. .
m-é-w\ sin 2¢

r }L cos 24:

0 0
0 28tand¢

2rrfa 2ricos?¢ -Z?Y—(l—a)

+ (u) £2

-

-4 sin2¢

0

0

0

-2%
S
- (A+2umg)

r
0

(3-28)

equations in terms of geodetic curvilinear coordinates

(3-29)

8A
8¢
8k
sh

§h
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where fE, fN and fU are specific force components in the east, north
and vertical directions. The vertical velocity is eliminated because,
in the ground vehicle mode, it is small compared to the horizontal
velocities. Its effect on the error propagation becomes negligible
compared to the other terms. A complete derivation of the accelera-
tion error equations is given in Appendix B.

Equations (3-25) and (3-29) together form a matrix that
describes the inter-relationship of the basic state errors. In the
estimation literature, this matrix is commonly known as the dynamics
matrix., The dynamics matrix derived here is printed in Figure 3-1,

A similar matrix is also given in Schmidt (1978).
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Chapter 4
TRANSITION MATRIX

The error equations derived in the last chapter are a set
of inhomogeneous linear differential equations. Denoting the state

vector as x, this set of equations becomes (Hochstadt, 1975)

x(t) = F(t) x(t) + G(t) ulc) , (4-1)
with initial conditions

x{o) = constant . (4-2)

The term G(t) u(t) is called the forcing function and represents
the unmodelled terms in equations (3-25) and (3-29) as stochastic

quantities. The solution of equation (4-1) is (Gelb, 1974)
t

x(t)=¢(t,0) x(o) + J @ (t,o) @nl(T,o) G(t) u(t) dr , (4-3)
o

where
®(t,0) is the transition matrix of the time interval of
t seconds computed at o.
The complexity of equation (4-3) makes it very difficult, if not
impossible, to determine anm amalytical solution for the LLISS. A
good approximation to this solution can be obtained if the differen-—
tial equations are assumed to be homogeneous, i.e. if the forcing

function is assumed zero and the solution becomes
x(t) = #(t,0) x(o) , (4-4)

with the transition matrix yet to be determined.
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The error of this approximation is the mean of the random noise
accumulated over the time interval of t seconds.

The changes of the elements in the matrix F given in Figure
3-1 over a short time interval are usually very small compared to
the size of these elements. Thus, the matrix can be assumed con-
stant over a short period of time. There are several ways to compute
the transition matrix of a constant dynamics matrix. The most com—
monly used, simple but time consuming numerical method is the expan-—

sion of the matrix exponential

2
#(t,0) = I + Ft + F2 -%— + ... (4~5)

For application in the LLISS, the time interval may be chosen so small
that the exponential can be replaced by a Taylor series truncated

after the second term
${r,0) = I + Ft . (4-6)

Another useful method to compute the transition matrix is by
way of the inverse Laplace transform technique. The solution of the

transition matrix may be written as (Hochstadt, 1975)

3(t,0) = L (sI - F) (4-7)
where

L—1 is the inverse Laplace transformation,

I is the identity matrix, and

s is the Laplace transform variant.

The transition matrix derived from equation {(4-7) gives the analyti-

cal expression of the influences of each state error om the other
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errors, thus it is called the analytical transition matrix here.

The analytical transition matrix can also be obtained by the matrix
exponent expansion method given by equation (4-5). To derive the
expressions by expansion of the matrix exponential, one has to expand
the series to many terms such that each element in the transition
matrix is a sum of the corresponding elements in the matrices of the
series. The analytical expressions may then be formed by inspecting
the sums. This method is not used in this research because each sum
has to be expanded to many terms before we can recognize what func-
tion it represents if it is recognizable at all,

The functions in the analytical transition matrix are useful
in the study of the behaviour of the state errors over a given time
interval, but the derivations of these functions are very lengthy and
difficult. In this case, the inverse Laplace transform method is
applicable but it involves the analytical inversion of a large matrix
(at least 7x7), and it has to be repeated whenever there is a change
in elements of the dynamics matrix. The analytical solution to the
dynamics matrix given in Figure 3-1 is derived in the following sec~
tions. It will be used for the error propagation and analysis of the
growth of the basic state errors in an LLISS over a time interval
short enough to assume the dynamics matrix as constant. The deriva-
tion consists of two parts: the inversion of the matrix (sI - F)

and the solution by the inverse Laplace transform.
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4.1 Inversion by Partitioning Method

The inversion of the matrix (sI - F)} in equation (4-7) can
be accomplished by the partitioning method described by Faddeev and
Faddeeva (1963). The method inverts a matrix in the following way.
Given a matrix

J=(l-F), (4~8)

partitioned into

Ay
. I )
Ay | By
c i D,
Co Dy
L A

the inverse of J can then be written as

02
— ' -
0, I Ly
It = - — 1, . (4-10)
M, | N,
]
MZ N2
— .
where
N, =(, -¢c, A_Y 57! (4-11)
i i i i 4
) - _1 —
L; = -A; B, N, , (4-12)
M, = -N, C. AL', (4-13)
1 1 1 1

and 0, =a"! +a7 B, N, c. AT . (4-14)
1 1 1 1 1
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In this way, the matrix J can be inverted, analytically, part by

part. The inversion may begin with 2x 2 sub-matrix in the upper
left-hand corner and expands one row and one column at a time using
the recursive equations (4-11) to (4~14) until the entire matrix is
inverted. In this case, the dynamics matrix of the basic state errors
is a 9x9 matrix, and the inversion is done in two steps. First, the
top left 7 x 7 sub-matrix pertaining to the errors in the horizontal
channels is inverted. A similar inverted matrix is given in Wong and
Schwarz (1979). Second, the remaining parts of the J-matrix are

added and inverted together with the first sub-matrix, If the dynamics
matrix is extended to include other systematic errors, the expanded
J-matrix can be inverted the same way using the inverted 9x & basic

matrix as the starting sub-matrix.

4.2 Inverse Laplace Transform Technique

Once the J-matrix has been inverted, the analytical expres-
sion for every element in the transition matrix may be obtained using
the inverse Laplace transform technique. Sometimes, taking these
inverse transforms is a very lengthy process. Often, the convolution

theorem (Sokolaikoff and Redheffer, 1966)
t

L7HE (s), £,(s) =J F (t-1) F,(0) dr (4-15)
o]

has to be applied to simplify the derivations. The elements in Jul
are mostly high degree polynomials of s, They have to be reduced to

the products of two or more lower degree polynomials whose inverse
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Laplace transform Fi can be found in tables, (e.g. McCallum and
Brown, 1965). Integrating the analytical expressions on the right
hand side of equation (4~15) may also be difficult. Fortunately,
the lengthy integrals in these expressions can usually be found in
mathematical handbooks, e.g. Spiegel (1968). Examples of such

integrated expressions are given in Wong and Schwarz (1979).

4.3 Additional State Errors

Systematic errors in the instruments, if not corrected, can
be included in the state errors. The transition matrix for the
extended state vector is a derivative of the basic matrix mentioned
in the previous section. For errors such as drift rates and biases,
the additional rows and columns of the extended dynamics matrix con-
tain only zeros, except for the rows associated with the basic errors
they influence. In this case, the lower right sub-matrix of J per-—
taining to the additional errors consists of s whose inverse Laplace
transform is 1. The Mi part of J_l is null because the basic state
errors have no influence on the instrument errors.

As an example, the dynamics and transition matrix of an

extended state vector that contains a drift rate of the vertical axis

is shown here. The dynamics matrix has the form

= F

Flox 10 9x9 (4~16)

(from Figure 3-1)

O R OO

0 0 0.......] 0
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and its J matrix is

J =
10 % 10 9% 9

000 .... s

b ul

Since the C, part of this matrix (see equation (4-9)) contains only

zeros, the N2 and L2 of the inverted J can be written as

N, =%, (4-18)
2 s
and " .
0
-1 0
Ly = -Jg, 4 lés . (4-19)
0
l =

-1 .
The M, and 0, of JIOx 19 can be reduced to zero and J9X g respective-

2

1y because 02 is zero. By combining the inverse Laplace transforms
of equations (4-18) and (4-19) and the 9x 9 ¢-matrix mentioned in the

previous section, the analytical transition matrix of the 10x 10

dynamics matrix can be obtained as

- N -
J $(1,3)dr
0
t
¢10x o = °9x 5 Jo $(2,3)dr .
000... 1.0

The amalytical expressions for this 10x 10 transition matrix are

listed in Appendix C.
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Chapter 5

KATLMAN FILTERING AND SMOOTHING

A properly designed transition matrix can predict the
changes of the state errors over a given time interval but it does
not produce any estimate on the size of the random noise accumu-
lated in the system. The initial conditions x(o) of the linear
system described by equation (4-1) are usually unknown. The size
of the initial state errors of an LLISS can only be described statis-—
tically. They change from one alignment of the system to the next
and therefore they cannot be predicted before the survey. They can
be estimated, however, when external control measurements become
available. Any external measurement that can be expressed as a
linear function of one or more of the state errors is usable. These
measurements also help us to check the growth of uncertainties in
the predicted state errors. For a land vehicle mode LLISS, the
simplest control measurements available are the velocity errors
detected in the system at vehicle stops. The velocity outputs given
by the system when it is not moving represent the velocity state
errors of the LLISS.

There are different methods available for utilizing the
velocity observations as a means to estimate the state errors. The
method used here is Kalman filtering. An optimal Kalman filter to
estimate the position coordinates and their variance-covariances for

the measurements given by the FILS is developed in this chapter.
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5.1 Filtering Equations

The derivation of the optimal Kalman filtering equations is
well documented, e.g. Gelb (1974), therefore only a summary of for-
nulae and the implementation of the equatioms in inertial surveying are
discussed here. Given that the solution of a set of linear differen-

tial equations that describe the dynamics of an LLISS is of the form
x(t) = &(t,0) x(o) , (4-4)

and the control measurements cbtained at epoch k are

Zk = H-kxk + Y].{ 3 (5"1)
where
H is the design matrix 3z
k sie 3%
and Vi is the measurement ncise.

The state vector and its variance matrix can be updated, i.e.

improved in terms of accuracy, by the equations:
x(2) =2 ) e (=) ; (5-2)

T ; (5-3)

Py =2 1 P O ey TS

x(+) = x () - K (Ex () - 2) 3 (5-4)

P(H) = (T-KH) PG ; (5-5)

K, = P () H (HP () B + &) (5-6)
B ™ Bl _

% = J Tegkmr @ Pkt (5-7)
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where

is the Kalman gain matrix,

e

o
o

is the variance matrix of the state vector,

is the variance matrix of the control measurements,

.O!?‘_Fj

is the spectral density matrix of the noise in the system,
(-) symbolizes the quantities before update, and
(+) symbolizes the quantities after update.
With this set of equations, all the information gathered since the
beginning of the survey is used to estimate the state vector at epoch
k. The function of the transition matrix is the propagation of the
information to the epoch in question for the measurement update.
There are questions about the transition matrix and the update equa-
tions which must be answered before these quantities can be imple-
mented as linear estimation tools. The following information is
needed before implementation: the size of the state vector; the
characteristics of the design matrix; the initial variance matrix

P(o) and the changes in the dynamics matrix in between updates.

5.1.1 The State Vector

Many of the instrument errors in the FILS are internally cor-
rected by the system. These errors are the three drift rates, the
scale errors in the horizontal channels and the non-orthogonality of
the accelerometers. They are regularly determined from survey data
obtained from calibration runs over accurately established base lines.

The errors are fed into the system prior to an inertial survey so
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that the effects of the time invariant errors can be removed from
the data before they are recorded. The calibration errors are
usually good approximations to the actual errors because the remain-
ing errors are small compared to both basic errors and the white
noise in the system. Thus, taking the remaining errors in the state
vector usually does not improve the accuracy of the estimates but

it can increase the computation time considerably. The results of
the calibration runs show that the size of the drift rate of the
vertical axis 6dU is comparatively large relative to other drift
rates; therefore its remaining error is expected to be larger.

Based on all the considerations mentioned, the state vector used in
the reported research is

T

x=1{¢ 54, Sr, 64, 84, oh, Sh, &d.} (5-8)

B° N fpe U
The gravity disturbances are not modelled here because the survey
data used for testing the filter were obtained from a base line on
gentle terrain where the sizes of the deflections of the vertical
and the gravity anomaly are small and they do not change drastically
with distance. The gravity anomaly at the initial point is normally

observed during the alignment and removed from the specific force

sensed by the system along the survey traverse.

5.1.2 Initial Weighting

The sizes of the initial errors are dependent on how accurately
the system is aligned at the starting point of the survey. With a

properly calibrated system these errors are random from one survey to
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the next. Statistically, the mean value of the initizl state vector

between surveys is
E[x(0}] = 0 (5-9)
with variance matrix
T
P(o) = E[x{(o) x(o)"} . (5-10)

The variances in P(o) are normally determined from a priori information
about the accuracy of the alignment, of the control coordinates and

of the system itself. Data from calibration runs can give a good
indication on the accuracy of the aligmment, The attitude errors are
usually treated as uncorrelated quantities because the alignments of
the three platform axes may be considered as independent. The veloci~
ties in the system are always equal to zero at t = (0. Obviously they
are not correlated with other state errors. The variances of the posi-
tion errors are dependent only on the accuracy of the input coordinates.
The constant remaining drift rate can be as large as the input drift
rate computed in the calibration adjustment (see Deren and Hagglund,
1981 for details on the adjustment). Based on the velocity data and
considerations mentioned above, the initial weighting for the Kalman
filter developed in this research is tabulated in Table 5-1. The

error £, has a much larger lc value because gyrocompassing is less
accurate than levelling. The 10 m and the 1 cm/s deviations for the
input coordinates and velocities may be too pessimistic but, in post-
mission filtering,control coordinates and velocities and their
variances can be introduced into the estimate through control measure-

ment updates at the starting point.
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state errors lg

g 5 arc sec
Eq 5 arc sec
£y 100 arc sec
5 10 m

S 10 m

6$ 0.01 m/sec
84 0.01 m/sec
Sh 10 m

sh 0.01 m/sec
GdU 0.5 arc sec/sec

Table 5-1 : Standard Deviation of the Initial State Vector

Another important weighting process is the choice of the
spectral density for the matrix a. The matrix is a diagonal matrix
whose non~zero elements represent the stochastic expectations of the
square of the noises accumulated in the corresponding state errors
per unit of time. Their sizes are dependent on the average magni-
tudes of the random uncertainties in the sensors which cannot be
systematically predicted by the transition matrix. The values of
these elements can be obtained from the results of calibration tests
or experiments in the laboratory. Due to the lack of this kind of
information, the wvalues of the non-zerc elements selected for this

research are based on values implemented in other local level systems.
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They are then compared with the actual errors fed back from the test-
. s . . -6 -3
ing. The estimated noise densities used here are 2.25 - 10 "m? + sec
for velocity noise and 0.003 arc sec? -seu:m1 for attitude error noise.

The results of the comparison of these numbers with actual errors

after filtering will be discussed in the next chapter.

5.1.3 Error Propagation

The analytical expressions of the transition matrix are derived
under the assumption that the dynamics of the system is constant. To
satisfy this condition, the error propagation interval At has to be
chosen small enough so that changes in velocity and position of the
vehicle are negligible compared to the quantities themselves. Since
the vehicle has to move from point to point, it is impossible to main-
tain the constant dynamics condition between velocity updates. The
total transition matrix between the update epochs k-1 and k has to be

computed from the equation

n-1
ety 6 ) = II o +at, ) (5-11)
i=0
where
t, -t
n= ——-—————k k_l (5_12)
At
and
t, =t t @ +0.5) A . (5-13)
The value of At does not have to be constant. The FILS dumps

velocity data at different time intervals during different stages of
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the survey. The system records velocity data at approximately
every 0.6 seconds during the update period and increases the inter-
val to 10 seconds while travelling. Thus, equation (5-11) can still
be applied but the value of n is the number of velocity data records
available between updates.

The propagation of the noise variance matriz Qk is described
by equation (5-6). Again, it can be performed either numerically or
analytically. The analytical approach was chosen in this case because
it is less time conmsuming. The derivation of the analytical expres-
sion of the variances and covariances in Qk is a lengthy process.
Fortunately, many of the correlations in the matrix are very weak for
a small time interval. Their magnitudes are of the order of 1072 for
At £ 10 seconds, therefore they can be neglected. The expressions for
other variances and covariances, for a small time interval, are given

in Appendix D.

5.1.4  Control Measurement Updates

There are three types of control information which can be
used to update the error state of a land vehicle mode LLISS: the
velocity errors, the position errors, and the gravity disturbances
if they are modelled in the state vector. In most surveying applica-
tions, the gravity information of the area of interest is not avail-~
able. Users normally have to rely on the velocity and coordinate
updates to improve the accuracies of the LLISS estimates. Since
gravity anomalies and deflections of vertical are not part of the
state vector in this research, only the velocity and coordinate up-

dates are discussed in this section.
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5.1.5 Design Matrix

The optimal Kalman filter described in section 5.1 accepts
any type of measurements to update its error states provided the
measurements can be expressed in the explicit form given by equation
(5-1). The land vehicle mode LLISS stops regularly to gather velo-
city information to update its state vector. The process is commonly
known as a zero velocity update (ZUPT), The 3 velocities (é, i, ﬁ)
given by the system at a stop are the velocity errors accumulated in

the course of the survey. The design matrix that links them to the

state errors has the simple form

0 00O 0O 1 0 00 0
H= | 0 0 0 0 0 01 0 0 0 . (5-14)

0 0 00O OO0ODOTIL1ODO

Coordinate information can also be used as control measurements
during zero velocity update. 1In that case, the vector zZ) contains
the differences between the control coordinates and the uncorrected
coordinates given by the LLISS. The design matrix is just as simpile
as equation (5-14) with the unit values in position H(1,4), H(2,5)

and H(3,8),.

5.1.6 Velocity and Coordinate Updates

In general, the zero velocity update period of an LLISS is
between 25 and 30 seconds. The FILS dumps up to 30 velocity readings
in this period. Since the period is so short, the 3 velocity measure-

ments have very little effect on each other, and the correlations
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between them are practically zero. Based on this assumption, the
update process may be carried out with one velocity measurement at
a time, The computations are simpler in this case because the

inversion in equation (5-6) is reduced to a division. As shown in

Appendix E, the gain matrix may be computed by
K@i, 1) = P(d, 1)/ (PG, 3) +R) (5-15)

where P(j, j) is the variance of the velocity state error and R
becomes the variance of the observed velocity. The same approach is
also applicable for coordinate updates if the control coordinates are
treated as uncorrelated quantities.

The control measurement update 1is usually done at the end of
the update period. A simple adjustment program has been developed to
compute the velocities at the end of the update period using all the
30 to 32 velocity outputs. The program assumes that the velocity
errors are observed independently and the acceleration errors in the
update period are constant. The velocities at the end of the update

can be computed by the equation

m m m m
2, ° ) ~
) El at2 12 v, 1231 At ?:‘1 ae, b,
Vj = . {5-16)
m m m
m P, a2 - 3 At ¢ Q2 At
=] i=1 1 i=1 1

Their variance is
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m
o2 D, .f_\.t2i
o2 = = , (5-17)
J m m m
m X A2 - D, At v D) ot
i=1 T i= i=1

where
m is the number of velocity measurements and

At = £, — £t -
i m

The quantity c%i is the variance of a single velocity measurement
which can be estimated from the a posteriori variance factor of the

adjustment.

5.2 Cross—Variance Equation

The Kalman filter equations given in section 5.1 yield only
the variance-covariance between coordinates of the same point. Since

the vector xk(—) is directly related to the vector x (+), it is not

k-1
difficult to see that the coordinates between two neighbouring points
on the same traverse are strongly correlated. The equation for com-
puting the cross-variances between any two points is given in

Schwarz (1980b):

i
— T T
Pty = B I gy s (T - Kty L (5-18)
i=1

This equation is used to study the effects of velocity and coordinate
updates on the correlations between coordinates of different points

in an inertial survey.
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5.3 Smoothing Equations

The derivations of the optimal smoothing equations are well
documented in Gelb (1974). Basically, the smoothing equations take
all the information collected after the epoch in question to improve
the estimates given by the filter. The original smoothing equations
involve the inversion of a matrix of the size of the matrix P. They
can become very time consuming and unstable when the size of the
state vector is very large. A set of recursive optimal smoothing
equations that avoids such inversions has been given by Bierman (1973).
The smoother developed in this research uses this set of equations to

back-smooth the results of the filtering. The equations are

X () = x () =B (D), P, (5-19)
PP(H) = P (#) - B, (H) X () P (D) > (5-20)
X () = ¢E+1,k Xip1 ) (5-21)
X h = ¢i+1,k K ) e e (5-22)
X () = (1= KH)T () + H D (Hx () - z) 5 (5-23)

T T -1
Xk(—) (I ~ Kka) Xk(+) (I - Kka) + Hk Dk Hk ’ (5-24)
_ T
and D= (M P (=) B +R) , (5-25)
where the superscript s symbolizes quantities after smoothing. The

smoothing starts at the end of the inertial survey mission by initiali-

zing

<
Camn)
L
n
S
o

(He xe(~) - ze) (5-26)

<
~
H
o
Il
=
w]
==

and (5-27)
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where e is the last epoch of measurement update. The data needed
for smoothing are the state vectors and their variance matrices
before and after updates, the control measurements and their

variances, the type of control measurements (velocity or coordinate),

and the total transition matrices between updates.
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Chapter 6

TESTING AND RESULTS

Three Fortran computer programs were written for the imple-
mentation of the Kalman filter, the cross-variance equations and
the optimal smoother developed in this research. Data collected by
different FILS-systems over a base line established by Sheltech
Canada near Calgary were used to test the Kalman filter-smoother.
The accuracies of the control coordinates (lo < 1 m) were considered
to be superior to the measurement accuracy of the FILS. Results of

the testing are presented and analyzed in this chapter.

6.1 Descriptions of the Software

The Kalman filtering program developed here was designed for
post-mission use. It filters the raw velocity and coordinate data
gathered by the FILS and computes the coordimates of the stations
on a survey line. The package consists of a main program called
MAIN and 11 sub-programs. The functions of the main program are to

(i) read the control information and weights;

(ii)} read the FILS data;

(iii) propagate the state vector and its variance matrix;

(iv) update the state vector and its variance matrix; and

(v) store the data needed for optimal smoothing.

The 8 sub-programs listed below were written to support the main

program.
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(i) UNIT converts the state vector and its variance matrix
into proper units (e.g. radian to arcsec) for different
computation and storage purposes.

(ii) TUPDATE updates the state vector and its variance matrix
with one control measurement at a time.

(iii) TMFLT generates the transition matrix with the analy-
tical expressions derived in this research.

(iv) XYZNE was supplied by Sheltech Canada for computing
position differences between the instrument origin and
the protractor on the vehicle in the north and east
directions.

(v) OFFST, also supplied by Sheltech Canada, computes the
offset of the survey point from the protractor with the
distance, horizontal angle and height difference measured
during zero velocity update.

(vi) MOUTP reads and writes filtered data from or to storage
files in special formats so that they can be easily read
by the optimal smoothing program.

(vii) NORGRA computes the normal gravity at a given latitude
and height.

(viii) RADIUS computes the distance to the centre of the earth
with a given latitude and height.

The utility subroutine MOUTD prints the results of the fil-

tering such as the vector x and the matrix P. The subroutine RTDMS
converts radians to degrees, minutes and seconds. The function DMSTR

converts degrees, minutes and seconds to radians. The linkage
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between the main program and the sub-programs is shown in Figure 6-1.

After filtering, the order of the data file created by program
MAIN must be reversed by a simple Fortran program called REARR before
it can be used for computing the cross—variances or for optimal smooth-
ing. The inversion requires a lot more storage space than the filtering
program and it can only be done at the end of the filtering, therefore
the program REARR was written as a separate utility program. The com-
putation of the cross-variances and the optimal smoothing are performed
by two separate main programs. Both programs can use the same data
file mentioned above.

The program CROSS computes the cross—variance between a state
vector element at any point of the survey with another state vector
element at a different point of the survey.

The program SMOOTH, smooths the data after filtering with
the recursive smoothing formulae given in chapter 5. The program
back-smoothes the updated state vector three measurements at a time.

In this way, the size of the data file generated by the filter is
much smaller but the 3x 3 inversion of the matrix D becomes unavoidable,
INV is a simple utility subroutine written for inverting such a matrix.

The author's major comsideration when writing these programs
was the storage space requirement. The filtering package was designed
to use up as little space as possible so that it can easily be modi-
fied for real-time application in a small on-board computer. The
cross—variance computation and smoothing programs were written under
the assumption that a more powerful computer is available in post-

mission computation.
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Figure 6-1 :

Flow Chart of the Filtering Program
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6.2 Tests

The test data used were collected with the FILS owned by
Sheltech Canada. The surveys were part of their calibration programs
which are carried out periodically to determine the instrument errors
in the systems. Normally, several surveys are conducted over an L-
shaped base line near Calgary. The error parameters (i.e. scale errors,
drift rates and non-orthogonality) can be determined from an external
adjustment with the velocity and coordinate data gathered in the first
couple of runs. They are then fed back into the system at the beginning
of the remaining surveys to correct for the effects of these instrument
errors. The corrected velocity and coordinate data were used
in this research because the transition matrix is derived under the
assumption that instrument errors are corrected internally in the
LLISS. Three such sets of calibration data were obtained from Sheltech
Canada for the testing of the Kalman filter-smoother.

The base line is a 42 km L-shaped traverse which consists of
14 control points. The average height of the points is about 1 600 m
and the maximum height difference between any two points is less than
90 m. The control coordinates were determined by conventional survey
methods to second-order accuracy. Figure 6-2 shows the general con-

figuration of the L-shaped base line.

6.3 Results
The data of the inertial surveys on the base line were fil-

tered and smoothed in two contreol point modes:
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Backward

Forward

Figure 6-2 : Base Line

(1) control coordinate updates at both ends of the
base line, i.e. three coordinate updates in one
complete mission (forward and backward);

(ii) control coordinate updates at both ends and at the
corner point of the L-shaped base line, i.e. five
coordinate updates in one complete mission.

The surveys began at the west end of the base line. Each complete
survey mission cénsists of a forward and backward run. The dif-
ference between the filtered or smoothed coordinates and the control
coordinates not used in the coordinate updates were considered as the
errors in the coordinates. The changes of these errors with respect

to time or distance from the west end of the base line are presented

in Figure 6-3 to Figure 6-20.
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6.3.1 Two Control Points

Figures 6-3, 6-4 and 6-5 show the latitude, longitude and
height errors in the filtered coordinates assuming that only the
control points at the ends of the base line are known. The hori-
zontal errors in these surveys are less than 10 m and the error
curves are non~linear. The arrow heads indicate the epochs at which
the FILS reached the corner point of the base line. Many of the
curves bend at these epochs indicating that azimuth-dependent errors
are present in the horizontal coordinates, which may either be due to
the effects of the uncorrected residual scale errors or caused by
the inaccuracy in the azimuth predicted by the Kalman filter. The
height errors are less than 4 m and they grow linearly with time.
These errors are smaller than the horizontal coordinate errors because
the height differences between points are much smaller than their
differences in latitude and longitude. Thus, scale factor errors are
negligible, The variances of ¢ and ) given by the filter are quite
compatible with the actual size of the horizontal coordinate errors but
the height variances are, in many points, slightly pessimistic. The
height variances can be reduced to a realistic size by choosing a
small spectral variance density for vertical velocity, i.e. in element
Q(9,9).

The errors in the smoothed coordinates are plotted in Figures
6-6, 6-7 and 6-8. After smoothing, the latitude errors are reduced to
the metre range. The results of the back runs are, in general, better
than the forward runs indicating that the coordinate update at the

end of the forward runs improves the accuracies of the predicted
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azimuths. The smoothed longitudes are less accurate than the lati-
tudes and the accuracies of the backward runs are not much different
from the forward runs. The signs of the horizontal coordinate

errors, with the exception of the longitude in the first survey,

change when the system turns around. Obviously, some azimuth or

scale factor related errors were not completely removed by smoothing.
The height errors, after smoothing, are down to sub-metre range but
most of them are negative. The smoothed position variances are,in
general, slightly pessimistic. More realistic variances can be
obtained by reducing the elements Q(6,6) and Q(7,7) to 1.0 'lO_6m2 's-3
and 6(9,9) to 0.49 10 ° - m2 . 5—3. Table 6-1 shows the maximum coordi-

nate variances before and after changing Q.

original (m2) reduced (m?)

max
filtered smoothed filtered smoothed
24.0 6.0 5.0 2.0
2 37.0 8.0 25.0 3.0
d A

Table 6-1 : Maximum Variances Before and After

Changes in Q matrix (2 controls)

The weighted means of the smoothed forward and backward runs
are shown inFigures 6-~9, 6-10 and 6-11 as function of distance from

the first point. The reciprocals of the variances were used as the
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weights. The latitude and height errors are less than 1 m but mostly
negative. In general, the accuracy of the longitudes is slightly

worse than that of the other coordinates. The results indicate that

the Kalman filter-smoother can yield sub-metre accuracy (lo) in a 42 km,
two control points, L-shaped traverse which takes two hours to survey,

if a well calibrated FILS is available.

80r~(m)
4.0
o) ¥ ¥ ]
60 \"\/IZO(minJ
-40}-
-6.0-

Figure 6-3 : Latitude Errors After Filtering (1St case)
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Figure 6-4 : Longitude Errors After Filtering (lSt case)
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Figure 6-5 : Height Errors After Filtering (lSt case)
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Figure 6-6 : Latitude Errors After Smoothing (15t case)
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Figure 6-7 : Longitude Errors After Smoothing (lSt case)
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Figure 6~8 : Height Errors After Smoothing (1St case)
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Figure 6-11 : Mean Height Errors (lst case)
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6.3.2 Three Control Points

The three sets of data mentioned in the previous section
were also filtered and smoothed by considering the point at the
corner of the base line as known. As shown in Figures 6-12, 6-13
and 6-14, the error curves between control points are linear. The
growth of the errors in the filtered coordinates is slightly smaller
than in the case of two control points. The slopes of the latitude
and longitude error curves become very gentle in the last leg.

This shows that after a few coordinate updates the filter gains
better control over the azimuth related errors. The additional
coordinate control cannot change the time-dependent pattern of the
height errors,

After smoothing, the latitude and height errors, as shown in
Figures 6-15 and 6-~17 are sub-metre in magnitude and they have become
more random. The longitude erxors in the backward runs are also less
than 1 m but the errors in the forward runs are still in the metre
range. The weighted mean errors in coordinates are all less than
1l m except three longitudes determined from the first set of data
which are slightly above 1 m. The latitude and height errors have
become completely random. As in the two control point mode, the
variances given by the filter-smoother were too pessimistic, i.e.
usually larger than the actual errors. Again, as shown in Table 6-2,
they can be brought down to a more realistic level by reducing the

spectral variance density of the velocities.
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original {(m )} reduced (m )
max,
filtered smoothed filtered smoothed
uh2 10.0 4.0 4.0 1.0
2 2
g & o 25.0 4.0 8.0 2.0
] A
Table 6-2 : Maximum Variances Before and After
Changes in Q Matrix (3 controls)
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Figure 6-12 : Latitude Errors After Filtering (2nd case)
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Figure 6-15 : Latitude Errors After Smoothing (2nd case)
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Figure 6~16 : Longitude Errors After Smoothing (2nd case)
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Figure 6-17 : Height Errors After Smoothing (2nd case)
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6.3.3 Cross-Variances

The cross-variances between the state vectors of different
updates were also computed from the filtered data. The results
indicate that the position errors between two state vectors in
between coordinate updates have a strong positive correlation. The
correlation diminishes when the distance between the two points in-
creases. Figure 6-21 is an example of the correlations between

latitudes of a backward run.

%1.00

0.03  1.00

0.03 0.93 1.00

0.02 0.8 0.90 1.00

0.02 0.71 0.76 0.85 1.00

0.01 0.54 0.58 0.65 0.77 1.00

0.01 0.39 0.42 0.47 0.57 0.75 1.00
0.00 0.03 0.03 0.03 0.04 0.06 0.08 #*1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.0

1.00
0.96 1.00

Figure 6-21 : Cross—correlations Between
Latitudes at the Backward Rum

The asterisks in Figure 6-21 indicate the epochs at which coordinates
are updated. Correlations between points of different legs are separa-
ted by dashed lines. The strong correlations are quite consistent with
the pattern of the error curves shown in the last two sections. The

errors in the filtered coordinates of the neighbouring points are
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correlated in terms of magnitude and direction. The strong positive
correlation means that, even though the absolute accuracies of the
filtered coordinates are low, the relative accuracies between points
which are short distances apart are still very high.

The control coordinates used in the filtering were consi-
dered as uncorrelated quantities, therefore all the correlations are
the longest dashed line in Figure 6-21 are very small, They show
that the correlation between points of different legs are negligible.
Thus the same position determined in the forward and backward runs

may be treated as uncorrelated quantities.

6.3.4 Initial State Vector

One of the unknown quantities in filtering is the initial
state vector, x(o). Normally, the starting epoch (t=0) of an iner-
tial survey is the beginning of the first zero velocity update
period at the first point of traverse. Since this period is only
30 seconds, the state vector at the end of this period, when the
velocity update is performed, is a good approximation to the initial
state vector. The optimal estimate of this state vector, xf(+) is
obtained at the end of the optimal smoothing.

The results from the smoothing show that the initial mis-
alignment of the vertical platform axis is much larger than that of
the horizontal axes. The initial ey of the first two sets of data
are approximately 100 and 90 arcsec, respectively, which is close to

the 100 arcsec standard deviation that the author initially estimated.
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The initial EU of the third set of data is about 30 arcsec, much
smaller than the other two sets. The initial misalignments of the
horizontal axes of the first surveys are less than the 5 arcsec
standard deviation that the author used to estimate the initial
variance matrix, but the o of the second and third survey at the
initial point are 8 and 9 arcsec, which perhaps explains the large
change of the errors in the filtered longitudes in the third survey
(>7 m in the backward run); see Figure 6-4.

These initial state vectors indicate that, in general, the ini-
tial assumptions on the variances are quite realistic. However, the 100
arcgec initial misalignment of the vertical axis is still too large.
Since the filter requires at least two coordinate updates at dif-
ferent points on the traverse before it can obtain a reasconable estimate
on the azimuth error, the azimuth-dependent errors in the first leg
of the survey mission can only be controlled by improving the
accuracy of the initial alignment.

Since there were large differences between the estimated
standard deviations of the attitude errors and their initial values
predicted by smoothing, the third set of FILS data was filtered and
smoothed again using a new set of initial variances. The original
initial variances given in Table 5-1 were modified such that they
fit more closely the errors predicted for the initial state vector
of the third survey. The modifications were 100" to 30" for €y and
5" to 9" for .. The results show that the changes in the initial

N

variances did not make any significant difference in the size and
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pattern of the errors in the filtered and smoothed coordinates or
their estimated variances. The changes in weighting were perhaps
not large enough to bring any first order error changes to the
estimated variances. The accuracies of the survey cannot be im-
proved by varying the initial variances if they are reasonably

accurate.
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Chapter 7

CONCLUSTONS AND RECOMMENDAT IONS

A Kalman filter-smoother for a local level inertial survey
system (LL.ISS) has been developed in this research. It has two
advantages over other estimation techniques avallable today. First,
the filter-smoother estimates not only the systematic errors, i.e.
state errors, in the LLISS but also their variances and covariances.
Second, it accepts any measurement that can be expressed as a
function of the state errors to improve its estimates. Although
the estimation package has been designed for, and tested with the
data collected by the Ferranti Inertial Land Surveyor (FILS), it
can be easily modified to process data obtained from other local
level inertial survey systems. The package utilizes the recursive
Kalman filtering and backward smoothing equations. Thus, the filter
may be used for real-time application and the large matrix inversions
in the smoothing phase are avoided. The development of the optimal
Kalman filter—smoother is divided into four major steps:

(1) the derivation of a dynamics matrix for the FILS

from the general error equations;
(ii) the derivation of the analytical transition matrix
from the dynamics matrix for error propagatiom;
(iii) dimplementation of the optimal Kalman filtering and
backward smoothing equations for the estimation of

the state errors in the FILS, and the
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{iv) testing of the Kalman filter—smoother with the

velocity and coordinate data gathered by a FILS.
Steps (i) and (ii) are more theoretical; therefore they are similar
for all LLISS while the results of steps (iii) and (iv) are more
dependent on the type of system used.

The first step involves the derivation of a set of differen—
tial equations which describe the time rate of change of the errors
in the FILS. The general form of these equations is well documented.
The special form of the dynamics matrix (given in Figure 3-1) to be
used with the FILS was derived from these error equations. Its
elements are the partial derivatives of the state errors with respect
to other state errors. In this case, the 10x 10 dynamics matrix was
derived under the assumption that the system has been well calibrated.
Thus, the state errors to be estimated are the 9 basic state errors
and the residual drift rate of the vertical platform axis. The drift
rate is included because results of calibrations indicate that it
can be much larger than the residuals of the other two drift rates,
Other constant instrument errors, e.g. drift rates and scale factors,
can be included by extending the dynamics matrix. Such extensions
may be necessary when the system is not well calibrated.

The second step, the derivation of the transition matrix has
been accomplished by using the inverse Laplace transform technique.
The derivation is a lengthy process, and it has to be repeated when-
ever the elements in the dynamics matrix are changed. Therefore it
should only be used when the structure of the dynamics matrix is known.

Otherwise, numerical techniques provide a higher degree of flexibility
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in the derivation. The analytical approach was adopted in this

case because it gives the analytical expressions for the influence

of the individual state error on other state errors. These expres-—
sions are useful tools in the error analysis of an LLISS. Moreover,
the expressions are less time consuming for genmerating the tramsitiom
matrix than the numerical method, i.e. the truncated series expression
approach, for propagation loop intervals 2 0.1 seconds,

In the third step, the major problem in the implementation
of the Kalman filter-smoother is the selection of the initial
variances of the state errors and their spectral variance density
(see Chapter 5). 1In this case, the selection of the initial vari-
ances of the attitude errors and all the spectral variance densities
were based on the experiences that the author gained by analyzing
other LLISS. The initial variances for the coordinates and veloci-
ties were obtained by inspection of the survey data. Since these
variances are normally updated with known coordinates and measured
velocities at the beginning of the survey, their correctness is
less critical than the variances for the attitude errors. Any
selected set of variances must be finely tuned with actual data
before they are acceptable for practical applications.

In the fourth step, tests were conducted with 3 data sets
collected over a 42 km, L-shaped base line. The results after
filtering indicated that, when only two end points are known, the
maximum errors in the horizontal coordinates were less than 10 m

and the maximum height error was below 4 m. The errors in latitudes
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and longitudes were mostly azimuth dependent. Results after smooth-
ing indicate that mean coordinates of a two way L-shaped survey
with sub-metre lo accuracy can be obtained with a well calibrated
system. When the cormer point was treated as known, the results
after filtering were more accurate in general and the error curves
between known points became very linear, Errors in latitude and
longitude were reduced to the 5 m range and the errors in the
heights were less than 2 m. After smoothing, all errors were found
to be at the metre range. The accuracies of the mean coordinates
are better than 1l metre with the exception of a few longitudes in
the first set of data. 1In general, the forward runs were less
accurate than the backward rums,indicating that coordinate updates
improved the accuracy of the predicted azimuths.

The variances generated by the filter and smoother were too
pessimistic as compared to the actual errors. Further tests showed
that they can be reduced to a more realistic level by selecting the
spectral variance density of the horizontal and vertical velocities
as 1.0~ 10_6n1» s} and 0.49 10_6n1°s—1, respectively. Comparison
between the selected initial standard deviation for the state errors
and their actual values obtained from backward smoothing showed that the
variances were quite realistic except for the attitude errors in the
third set of data. There was no significant change in the results
when this set of data was filtered and smoothed,again using a modi-

fied and less homogeneous set of initial variances. This indicates

that changes in the initial variances do not bring any first-order
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error changes to the estimated coordinates if the original variances
are reasonably accurate. The variances given in Table 5-1 should be
used for filtering until more tests with the FILS can be performed
to obtain a better set of initial wvariances.

The cross-variances between the state errors at different
points on the surveys were also computed. The correlations between
the coordinates of the points between two coordinate updates were
very strong and diminishing as the distance between the points
increased. This showed that although the absolute errors in the co-
ordinates are large, the relative accuracy between two positions
determined by an LLISS is very high. When the coordinates were
updated at a known point with uncorrelated control coordinates,
the correlations between coordinates determined before and after the
update vanish. This means that the coordinates of the same points
in a two-way run with coordinate update at the end of the forward
run can be treated as independent quantities. Comparison of the
cross-variances with results of filtering showed that they are, in
general, realistic. Therefore, they are important in the adjustment
of a network of filtered coordinates (Schwarz and Gonthier, 1982).
The effect of these correlations in such an adjustment needs further
investigation.

The error model used in this research is based on the assump-
tion that the gravity disturbances in the survey areas are small and
do not change drastically from point to point. More research effort
is needed to develop a refimed gravity disturbance model for extending

the filter to predict these errors. Another open question is the
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derivation of a set of recursive equations for computing the cross—
variances between smoothed state errors. These are important in
inertial network adjustments that utilize the smoothed coordinates.
Finally, the filter developed in this thesis can be modified for
real-time application. The filter coordinates are accurate enough
to maintain the linearity condition for the dynamic system. Since
the filter can accept different types of measurements to improve the
accuracy of the estimated state errors, it can be used to integrate
the local level inertial survey system with other surveying systems.
Examples are the aerial camera for photogrammetric mapping and the
NAVSTAR/Global Positioning System in offshore positioning. The
theoretical as well as the practical aspects of the integration and

implementation of these hybrid systems need further investigations.
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APPENDIX A

The step by step derivation of the attitude error equations

is given in this appendix.

Given that
cl’;ﬂ =1+ g%t (3-6)

and
AL AL p
¢, =C 0

(3-20)
the time rate of change of the computed angular velocity between

the platform and local level systems can be written as

t:‘JUL
Lep

L8 P

= (I + E) ngp

(3-21)

The angular velocity mgg

22 p can be computed by the following steps

P =P _ P
“oup T %ip T Y5
=P _ P A
=9 T G i
- P _ _ L2 L4
wip ~ T =B wg,
P L2 2L 28
= - + -1
Cip T Ui T BT w5y (a-1)
‘o P L8
Also, the two angular velocities mip and W'o, May be expressed by
S A AN 5 ) _
“1ag T Yige T %y (A-2)
and
wf =ttty swP . (A-3)
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The platform is terqued by the gyros to be aligned with the local
level system,therefore the angular velocity difference between the
two systems is the combined effect of the uncertainties in the gyros

and the computed gquantity Biﬂ . Equation (A-3) may be expanded to

22
give
“’Ep - “’igu 6“’513
= &iiﬂ + r‘}d‘M + (u) wi%l
= wi%&’ + Gmiiz + a4+ (u) miig (A-4)

Substituting equation (A-1) into equation (A-4) after switching the

s L P .
position of 000 and mﬂﬂp yields
e oL L LL e L2
“yip =E7 0l .t Gmigg + 8477 + (u) 00 (A-5)

After substituting equation (A-5) into equation (3-21), the time

rate of change of miip becomes

-2

& 2
L2 p

Rﬂmﬂl .

B 28
= (T+E)™ (B w0y, i

L L + L
08 &d ) (u)w.

ige (A~6)

The products of the small angle matrices in equation (A-6) are
second-order effects which can be eliminated in a first-order error
analysis. Since the attitude error EER is the only time dependent

, , 2 . . .
quantity in mzip » the attitude error equation may be rewritten as

éRR - mQRQ ERR I e 4 Gdﬂl

© A
ik ige

L
+ (u)wi T (3~-23)
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8
Usi t f w,
sing the components o ml T

8 » . T
W e T {~¢, Lcosd, 2sing}” ,

the following matrix is formed:

0 L sin ¢ -% cos ¢
L8 , .
QiM,— - -4 sing¢ 0 -0
% cos ¢ ¢ 0

(2-3)

. (2-10)

Substituting (3-24) and (2-10) into equation {3-23) the attitude

error equation in matrix form becomes

= b »
éE 0 Lsingd Lcosd 0 0 -1
ey | = |-%sing 0 -4 -%sin¢ 0 O
éU L cos ¢ $ 0 Lcos¢ O O
+ sa** &+ (u) wrt .

i

cos ¢ [

singd €
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APPENDIX B

The different terms in the acceleration error equations for
a local level inertial survey system are derived here.
From equation (2-7) and (2-8) we can write the second term

in equation (3-16) as

. . 17 .7
—r(A+2me)sin¢ 0 (l+2me)cos¢ 8o
LR L, 42 T, . : -
(Qe22-+ 2Qie)V = - 0 E{A+2we)51n2¢ b §x
~r$ r(i+2we)cosz¢ 0 sh
(B-1)
Premultiplying the skew-symmetric matrix of VRR
0 "VU VN
v - 0 (B-2
- Vi Vg ~2)
"VN VE 0
. -
. oL 8 . , o
into the sum (8w + 2 8w.”), the third term is obtained:
ell ie
Qi+2m Y(V sing+V cosd) 0O O -V _cosd+V sin&
e u N U N
L8, 2 Ry _ : .
v (6me224-26mie) = ~(A+2me)VEcos¢ 0 —VU —VE51n¢
] (A+2me)VE51n¢ 0 Vi VEcos¢

(B-3)
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After eliminating all the products of velocities (see section 3.2.2

for explanation) and rewriting every term in equation (B-3) in geo-

detic curvilinear coordinates,

|5 LR

)

LR

+ 2 8w,
ie

(8

the equation becomes

$tan¢—h cScp.1
r
_Lisin2e || &
2
r i cos?¢ 6$
§x

(3-27)

Substituting equations (3-15), (B-1) and (3-28) into equation (3-16)

and assuming that VM

be written as

<< 2w
e

5&; ﬂ 0 "EE
r T
& 1=l o —fUsecy fNsecq
T r
sh - £N fE 0
gy
+ | ny + (A Cz)T fll
Ag

0

0 0
0 2%tand
0 2r$

- sin2é¢

2r2c052¢

+ Safa + (0 £2 .

2Y (1-a)

, the acceleration error equations may

-
[

0 -i

r

—(5\+2m_e_)
r

0

0
r

(3-29)

8¢

8A
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APPENDIX C

The analytical expressions for elements in the transition

matrix of the ten state errors for a small time interval t are given

below:

$(1,1)
$(1,2)
©(1,3)
9(1,4)
2(1,5)
9(1,6)
¢(1,7)
$(1,8)
3(1,9)
%(1,10)
2(2,1)
$(2,2)
$(2,3)

®(2,4)

]

it

cosut
Lt sing cosut
e . g,
— (cosit - cosput) = %-cos¢ (sinpt - E-51n£t)

. 2 22t . 9 .
—E-(cosut -~ coslt) (1 - 2sin?y) - —Jm-51n $ sinpt

-sinut
U

Lt . . fe . .
— sin2¢ sinpt + ——§-51n¢ (sinut - ut cosut)

2u 2

£ (¢ ek2 - 22 sin2p sul)

% (6 ekl - 22 sin2¢ su2)

gg_(sinzt N sinut)
2 2 H

=

sing [2t (1 - cosut) - sinft]

cosut

fn  22sin? 22¢

(— - h—————iﬂ(coslt - cosput) + 55— sin2¢ sinpt
u? 2u2 2

2 . . .
v sing q% sinft - sinut)




©(2,5)

®(2,6)

$(2,7)

©(2,8)

0(2,9)

$(2,10)

¢(3,1)

$(3,2)

©(3,3)

$(3,4)

$(3,5)

®(3,6)

3(3,7)

¢(3,8)

(3,9

$(3,10)

$(4,1)

0(4.2)

il

fl

fl

Lt

c2

:r-sin¢ sinpt

cos$ sinut
u

EL (44 sing
= (4 sing
c(t)

secd (sinft
tand (cosut
cosit

secd (sinft

tanpy 9(2,6)

sing sinpt
"

tang ¢(2,8)

tany $(2,9)

sinft
2

sul + 2cosd ek2)

su2 + 2cos¢ ekl)

- ¢t sin2¢$ cosut)

- cosit)

- %—sin2¢ sinpt)

coslt -~ cosut

sing (sintt

- &t cospt)
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%(4,3) = :ﬁf-(coslt - cosut) - cosp (sintt - %—sinut)
u
¢(4,4) = cosit

o(4,5) =0

5(4,6) = sinpt

U
@(4,7) = —(IJ(]_,?)
‘I’(Z“,B) = _CI)(]-:B)
@(4,9) = “(D(lsg)
-fe ,sinft sinut
®(4,10) = ( - )
112 2 H

?(5,1) = 2fn(ul0 + 2 su2) + 2u? tand (ul0 + 2 uud)

©(5,2) = sec$ (cospt ~ cos?¢ - sin?¢ costt)
2

2(5,3) = fn zeCQ {cosft ~ cosut) - sing (1 - cosit - &;E-sinut)

u
©(5,4) = E;‘(uz tang + fn)(srm?“t - 51nut)

2 2 M

u

#(5,5) =1

®(5,6) = secod 9(2,6)

©(5,7) = secd ¢(2,7)

#(5,8) = sec¢ 9(2,8)

]

$(5,9) sec¢ ©(2,9)

fn ,sintt sinut
secp — (

®(5,10)
u2 ') U

Il




6(6,1)

(6,2)

3(6,3)

2(6,4)

9(6,5)

?(6,6)

®(6,7)

2(6,8)

$(6,9)

$(6,10)

e(7,1)

$(7,2)

9(7,3)

®(7,4)

Il

[

1l

C4

. . . . f
H sinut+ % 51n2¢(51n2t-§-51nut) - ~§ 2 cos¢ (coskt —~ cosut)
u

2 sin¢(costt - cosut + ut sinut)

%E-ﬂt sing sinpt - %F—(sinut - %-sinlt) - & cosp (cosit

~ cospt - 2 u22? sin2¢ ul22)

%—(2 sinpt - y sinft) - EE—Q cosd (cosit - cosut)
2
u

2
+ &—g-sin2¢ (u2 tang -+ fn) (sinut - pt cospt)
2u

0

cosut

L . . fe . .
ﬁ-51n¢ cos¢ (sinut + pt cosut) - Ea-t sing sinpt

-2z

- (6 ekl - 22 sin2¢ su?)

:%‘($ eu2 - 22 sin2¢ su3)

£§-(cosut - cosit)

u2

fn 2

— &(cosit ~ cosut + 2 p“ su3) + & tand (cosft - cosut
2

i

+ ut sinupt)
s ) . L.
-u secd [sinut -+ a-51n ¢ (sinft - a-81nut)]

in sec¢ (u sinpt -~ £ sinft) + £ sind (Rt cosut - sinft)
2
u

_ fe

gy Lt cosd sinut

&;-(uz tan¢ + fn)(coskt - cosut)
U



%(7,5)

®(7,6)

e(7,7)

$(7,8)

$(7,9)

¢(7,10)

(8,1

(8,2)

2(8,3)

©(8,4)

9(8,5)

#(8,6)

®(8,7)

2(8,8)

©(8,9)

¢(8,10)

2(9,1)

I

C5

%—tan¢ (sinut + pt cosut)

cosut

:%E-(Q ekl + 2$2 tang su2)

—;—(2 eu + 2&2 tany su3)

f
= secd (coslt -~ cospt)

]-12
r(2$u2 el2 - fn el3 - fe 2% sing elQ)
r{fe el3 + % el2 (fn sing — 2u? cosd) |

r(3 fn ¢ cosp el2 - 2 fe ¢ el2)

r(u2g? sin2¢ ell - fe & sing el2)

r(2$ ekl + fn ek2 + 232 sin2¢ su2)
r(2% cos?¢ ekl + fe cosp ek2 - 2¢% sin2¢ su2)

cosh /g t

sinh vz t
c

o(t)

r(2$u2 el3d - fep?yg sing el2 - fn el4)




$(9,2)

$(9,3)

2(9,4)

®(9,5)

$(9,6)

$(9,7)

$(9,10)

¢(10,1)

$(10,2)

$(10,3)

$(10,4)

$(10,5)

$(10,6)

8(10,7)

$(10,8)

$(10,9)

Cé

r[fe els + & el3 (fn sing - 2 u? cos$)]
r(3fn % cos¢ eld - 2fe ¢ el3)

r(u?4e? sin2$ el2 - fe £ sing el3)

r(Zé eu2 + fn ekl + 202 sin2¢ su3)
r(222 cos?y eu2 + fe cosd ekl ~ 2@ 4 sin2¢ su3)

o(t)

$(10,10) = 1
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where
fe = fE

T
ey = N

T

= 2 _

4 2y k,
ul0 = 1 (S:L;lp..t _ sinut,

1.12 H

L .

uul) = —— (sinut - ut cospt)

2113
ul?2? = sinut + sin?t __t cosut + sinpt — sinflt

Gu (u+2)2 21?2 Au (n-8)?

ekl = 1 [u sinut - a(cosut»—eat) _ M sinut - b(cosut—ebt)]

a-b a2 + 2 b2 + 2
ek? = 1 [u (cosut—ebt) +b sinut_u(cosut—eat) +a sinut]

u (a-b) (b2 + 12) (@ + u?)
cu? = 1 [au sinut—az(cosut—eat) _bu sinut—bz(cosut—ebt)]

a-b a2 + 32 b2 4+ 2
sul = 1 [t(b sinut+ p cosut) + (b2—u?) sinut+ 2bu(cosut - ebt)

2u(a-b) 'b2 + Uz (bZ + ]-12)2

. 2_.2 . at
_ t(a sinpyt+ pcosut _ (a%-p?4) sippt + 2ap(cosut-e )]
a2 + 2 (a2 + 12)2
. _ 2 .2 . _ bt

su? = 1 {b[t(b sinut ~ cosut+(b u<) sinpt+ 2bu(cosut - e )]

2u(a-b) b2 4 2 (b2 + 42)2

, . a
t(a sinpt -y cosut) + (a2-u2) sinut+ 2ap(cosut - e t)
a2 + 2 (aZ + u2)2

....a{

11




c8

_ 1 pt (- sinut + a cospt) + a sinut + p cospt
suj = 5 (ah) [
H a? + p?
4 p(a2-u?) cospt — 2ap? sinpt - 2a2p e——at ia
B [ut(b cospt - p sinpt) + b simpt + p cospt
(b2 + p?)
2_.2 2 2., o-bt
_ p(b%-p®) cospt — 2bu‘ sinut - 2b%p e 1b}
(b2 + p2)2
ell = 1 [ singt — b(cosut—ebt) _ % sintt - b(cosﬁlt-ebt)
u2(a-b) b2 + 2 b2 + 22
_u osinut - a(cospt - eat) 4 £ sinft - a(cosﬁlt—-eat)
a? + p? a? + 22
el2 = 1 [ub sinmut + uz(cosut - ebt) _%b sinft + 22 (cosit - ebt)
u? (a-b) b2 + p2 b2 + 22
_ ka sinpt + uz(cosut—eat)+£a sintt + £2(cosit - eat)
a2 + uz a2 4+ 22
1 pb sinpt + p?(cosut - ebt) ¢b singt + 22(cosit - ebt)
el3 = {b[ - ]
u?(a-b) b2 + p? b2 + g2
_ a{ua simpt + uz(cosuthat) + fa sinft + Ez(cosﬂ.t—eat)]}
a2 + u2 a2 + g2
b . bt , bt
alt = (usinut — b(cosut — e )) _ 4(b sintt + 2{cosit -~ e 1))
(a-b) (2 + b?) (a-b) (22 + p?)
_a(psinut - a(cosput - eat)) + 2(a singt + 2(cosit - eat))
(a~b) (u? + a?) (a-b) (82 + n?)

a= Yt
-V

o
i)
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APPENDIX D

The analytical expression for the elements in the Q matrix
can be derived from equation (5-7). Many of the values of these
elements are relatively constant and very small over a small time
interval t, therefore some of the complex integrations of the higher
order terms are assumed negligible in this research. The elements

of the upper triangle of Q in the filter are:

Q(1,1) = q1(0.5t + EiE%HEO +'E§{0-5t - Sin2ut)
Q(1,3) = q7 sin2¢ —— sin2$(0.5¢ — SIDALE
2u2 by

Q(1,4) = ql simt _ Q(1,1)
n

: 2
Q(J—,G) = (q 11-1 - _9__6_) M
U P!

Q(1,8) = ~-r ql fn cel3

Q(l,9) = =T ql fn celd

Q(2,2) = ql(O,St + M) + ﬂ SEC2¢(O.5t _ SlIIz].lt)
4 2 f

i i q7 ;
sec [q1(0.5t + sin2pt _siny t) + 2L 00824 (0.5t - 51n2ut) 1

(2,5
? ) fy U 12 4y




Q(2,7)

Q(2,8)

Q(2,9)

Q(3,3)

Q(3,4)

Q(3,5)

Q(3,6)

Q(3,7)

Q(4,4)

Q(4,6)

= q3(

)

)

i

Cﬂz cosp — gl u secd)
i
r fe q2 cell

r fe q2 cel4h

sin2%t
44,

-fe 3[Sin t sinpt sinit

D2

Sinzut

7
+ 0.5t) + EE-sin¢ sing (0.5t -
U

2u

sin2ut)
4

+ 2 (1 - cosut cosit)]

" 2 I n2
+ 38 p(o.50 - SEDAL,
2 4y
u
fn q3 fn sec¢E81nRt-—Slnut sintt + 2 {1 - cosut cosit) ]
UZ " u2
7 'S
+ S—~sin¢(0.5t - E-:EI—IZE-';)
2
u
sinzut fe
g6 %t siny tanp ——— —~ — g3(cosit - cosut)
2112 1-12
s 2
fn g3{cosit ~ cospt) + q7 singd sinut
2 22
. 2
98 (o.5¢ - Emf—“t) +(ql + a3 £89 (1.5t - 2 simut
2 1 I —
H H H
4 51n2ut)

4n

.2
= q6 SBUE 4 (41 + o3

2u?

fe?

u

q) (1 - cosut - 0.5 sin?ut)
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s 2
Q(5,5) = —‘% (0.5t - 5*—23]—42—35) + sec29 (g2 + q3 f“—q) (1.5t ~
H H

2 sinpt n sinZyt

U 4u)

. 2 £n2
Q(5,7) = ﬂﬁ;‘-—ﬁ - sec2¢(q2 - q3 —n—z-) (1 - cosut — 0.5 sin?ut)
H H

i 2 .
Q(6,6) = g6 (M+ 0.5t) + u2(ql + q3 feu) (0.5¢ - 51n2ut)

%
4u . "
s 2
Q(6,7) = 2(2 qb tanp - q7 sin2¢) =D HE
2u?
i 2 s
Q(7,7) = q7(0.5t + ﬁz—”—t—) + 12 sece (q2 + g3 fn )y (0.5t - SinZut
b ]Jl“ 4u
e2at - Eth - 4at

Q(8,8) = q9(

)
2a(a-b)(a-b)

2at 2e(a+b)t + eth

8,9) = q3(S )
2(a~b)(a=~b)
2at 2bt
Q9,9) = q9 a(E—Fhab-e
2(a-b)(a-1D)
where
ql, q2, ... q9 are the diagonal elements
Q(1,1), Q(2,2), ... §(9,9)
celd =1 b esut + p(ccut - cx2) + be b eslt + L(ecle - cl2)
u(a-b) (b2 + u2) u2(a-1b) (b2 + u2)

+ oag 2 cslt + (celt - cll) _ g & csut + U (ccut - ecxl)
n2(a-1b)(a2+u?2) u(a-b) (a2 +u?)
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celd = afi)[u cspt - a(ccut - cxl)
(a? + u?)
2
_ (&0 % cslt - alcclt - cll)]
H (a2 + 22)
__b [p csut — b{eccut - cx2)
a-? (b2 + u?)
2
. C&? % eslt -~ b{ecelt - c12)]
H (-b2 + 22)
ccut = 0.5t + sinZyt
bu
s 2
csut = iUt
2y
cslt = Ssinut sintt +-£L {1 - cosut cosit)
M p2
celt = Loskt simit & sinlt cosut
eat(a cosut + sinut) — a
cxl = M |4 H
a2 + p2
bt ,
ex2 _e (b cosuyt + y sinput) —~b
b2 + uz
at .
ell _ € {a coglt + & sinlt)-a
a2 + g2
and
ebt(b cosit + & sinlt)-b
cl2 =

b2 + 22

All other elements in the upper triangle of the Q matrix are assumed

to be zero because they are relatively constant and very small.
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APPENDIX E

Due to the simple structure of the design matrix used in
zero velocity and coordinate updates, the gain matrix may be com-—

puted by the equation
K@i, 1) = P, 1)/ (P, ) + R) (5~15)

when the observations are considered as uncorrelated guantities and
are used one at a time to update the filter estimates. In this
appendix, an example is used to explain the formulation of equation
(5-15).

Assume that the velocity é is observed at a vehicle stop.
This observed velocity is equal to the state error G$ because the
vehicle is not moving with respect to the earth. Thus the obser—

vation

¢ =8 +y, (E~1)
where y is the measurement noise, and the design matrix

H=[0 ¢ 0 0 0 1 0 0 0 0] . (E~2)
The quantity

T

HPH™ = P(6, 6) , (E-3)

.th T .
and the i element of the vector PH is

pPHY (i, 1) = P(i, 6) . (E-4)

Let R be the variance of the observed $ and substituting equations

(E-3) and (E-5) in equation (5-6), it becomes obvious that the ith
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element of the gain matrix (vector in this case)

K(i, 1) = P(i, j) (P(6, 6) + R) ™ (E-5)
or

K(i, 1) = P(i, 1)/ (P(3, j) + R) (5-15)
for j = 6. |

The other two observed A and h can be used to update the

filter estimate in the same way by setting

i=7T, (E-7)
and

j=9. (E~9)

This approach can replace the update procedure that uses the full
gain matrix, i.e. a 10 x 3 matrix, by 3 separate velocity updates
with a (10, 1) gain vector each. Since the velocities are observed
at the same time, the transition matrices between the 3 separate
velocity updates are unit matrices. The main objective of this
approach is to avoid the matrix inversion in equation (5-6) so that
the filter can process a larger number of observations for less

strain on the computer.



