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ABSTRACT 

 
 

In this thesis, different approaches are investigated for improving inertial error modeling 

to obtain better accuracy in SINS stand-alone and SINS/DGPS applications. The SINS 

error model contains deterministic as well as stochastic errors. Position, velocity and 

attitude errors are usually modeled as deterministic errors while the SINS sensor residual 

biases are often modeled as stochastic errors. The current SINS deterministic error model 

is obtained by linearizing the SINS mechanization equations and neglecting all second-

order terms. The SINS stochastic biases are often represented by a first-order Gauss-

Markov process. To improve SINS error models, both error types are handled in the 

thesis. 

 

Different stochastic processes for modeling SINS sensor errors are discussed. The actual 

behavior of SINS sensor random errors is investigated by computing the autocorrelation 

sequence using long data records. Autoregressive (AR) processes are introduced as an 

alternative approach in modeling SINS sensor residual biases. Different methods for the 

optimal determination of the AR model parameters are studied. Compared to the other 

discussed random processes, results showed that the implementation of AR models 

improves the results by 40% - 60% in SINS stand-alone positioning and by 15% - 35% in 

SINS/DGPS applications during DGPS outages.  

 

De-noising SINS sensor measurements using wavelet decomposition is presented as a 

method to cope with random noise. Wavelet de-noising is performed on static SINS data 

for an accurate estimation of the AR model parameters and for the determination of 

autocorrelation sequences. De-noising is applied on kinematic SINS data to reduce 

position errors. Testing results showed that the positioning performance using de-noised 

data improves by 55% in SINS stand-alone positioning and by 35% during DGPS 

outages in SINS/DGPS applications.  In addition, a combination procedure using SINS 
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data de-noising together with AR modeling of sensor errors is performed. This gives a 

further improvement of 10% - 45%. 

 

For the SINS deterministic errors, another error model is derived that considers all 

second-order terms. Errors computed by the linearized current SINS error model and the 

new derived second-order error model are compared using kinematic data. The results 

show that none of the second-order terms has a significant effect. To improve positions 

obtained during DGPS outages in SINS/DGPS applications, two different bridging 

methods are considered, backward smoothing and SINS parametric error modeling. In the 

thesis, the backward smoothing equations are modified while the SINS parametric error 

model is developed. When applying either one of the bridging approaches during DGPS 

outages, position errors are decreased by 85% - 93%.  
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k
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ie )hdeg/04106853.15,0,0()ω,0,0(ω ==   

 

2.3 Body Frame (b-frame) 
 
- Origin: at the center of the orthogonal IMU accelerometer triad. 
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CHAPTER 1 

 
Introduction 

 

 

1.1 Background 
 

The integration of the Differential Global Positioning System (DGPS) with a Strapdown 

Inertial Navigation System (SINS) has been investigated for several years in different 

applications. In all of these applications, the integrated SINS/DGPS system is used for 

providing the navigation information (position and orientation) for the system carrier. In 

general, GPS provides highly accurate position, velocity and time data, but does not 

provide attitude information except when a multi-antenna system is used. Even then, such 

a system will not be accurate enough for many applications (Schwarz and Wei, 1995). 

Cycle slips caused by loss of lock between the receiver and a satellite are one of the 

limitations of GPS. These cycle slips can significantly degrade the positioning accuracy 

in kinematic applications. In addition, some applications require a very high data rate, but 

the present GPS data rates are generally from 0.1 to 10 Hz, which means that the GPS 

cannot sense dynamic changes rapidly enough for some applications.  

 

On the other hand, SINS is a self-contained system, which in the short term, provides 

accurate position, velocity and attitude information at a very high data rate (generally 

above 50 Hz), but has time dependent error growth when operated in a stand-alone mode. 

Zero Velocity Update (ZUPT) measurements constrain the error accumulation but cannot 

be applied in airborne or marine applications. Therefore, the two systems are 

complementary. In standard SINS/DGPS operation, the primary function of the DGPS is 

to provide position information while the primary function of the SINS is to provide 

orientation information. As a secondary function, the DGPS can be used for the in-

motion calibration of inertial sensors, while the SINS can be used for the bridging of 
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DGPS outages. Finally, the short-term position accuracy of the SINS can be used to 

detect and correct cycle slip problems in the GPS carrier phase data.  

 

For mobile mapping purposes, the SINS/DGPS navigation information can be provided 

to an imaging sensor mounted on the same carrier. The imaging sensor can be a frame-

based (analog) aerial camera, a Charge Coupled Device (CCD) digital camera, a laser 

scanner, a pushbroom scanner or a Synthetic Aperture Radar (SAR). This approach is 

called direct georeferencing. Another application of SINS/DGPS that has received the 

attention of geodesists in the last decade is airborne gravimetry. Using the SINS/DGPS 

navigation solution (for the computation and compensation of the system errors) and 

subtracting the aircraft acceleration (obtained by twice differentiating DGPS positions) 

and the total sensed acceleration (obtained by SINS accelerometer specific force 

measurements), the gravity field can be determined with high accuracy. The principle of 

gravity determination by INS ZUPTs was applied extensively in the eighties using land-

based vehicles, see Schwarz (1987) for a detailed description of the method. Currently, 

the same concept is considered for supplementing seismic surveys with gravity.  

 

 

1.1.1 Current SINS/DGPS Obtained Results 
 
In the following paragraphs, results obtained using SINS/DGPS for both direct 

georeferencing and airborne gravimetry will be summarized. The accuracies for the 

different systems are the Root Mean Square (RMS) values of the differences between the 

SINS/DGPS solution and a reference solution. The reference solution for georeferencing 

is provided by well-known established Ground Control Points (GCPs), whereas the 

reference solution for airborne gravimetry is obtained from upward continued ground 

gravity data. 

 

In airborne mapping applications, the obtained accuracy using SINS/DGPS/imaging 

sensor configuration depends mainly on the scale of photography (i.e. flight height). 
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Using frame-based aerial cameras, the reported accuracies are 10-20 cm for easting and 

northing and 8-32 arcseconds for attitude angles (roll, pitch and azimuth). The 

corresponding height accuracy is 10-30 cm, see Ŝkaloud (1995); Abdullah (1997); Hutton 

et al. (1997); Reid and Lithopoulos (1998); Reid et al. (1998); Ŝkaloud (1999); Cramer et 

al. (2000). In case of CCD digital cameras, the accuracy for airborne applications also 

depends on the camera resolution. The results given in Grejner-Brzezinska and Toth 

(1998) using a high-resolution 4k*4k CCD camera showed positional accuracies of 19, 

20 and 32 cm in X, Y and Z directions, respectively. Using dual (nadir and oblique) CCD 

cameras, Mostafa and Schwarz (1999) reported accuracies of 54, 61 and 78 cm in X, Y 

and Z coordinates using a single stereopair of a nadir and oblique images. With the same 

system of dual cameras, Mostafa (1999) showed after using a 3*3 block of nadir and 

oblique images corresponding accuracies of 22, 24, and 34 cm, respectively.  

 

Laser scanners, another class of airborne remote sensing devices, are used for generating 

Digital Terrain Models (DTMs) & Digital Elevation Models (DEMs) and for mapping 

forests, vegetation and urban areas. The reported accuracies are in the range of 20-60 cm, 

20-60 cm and 10-25 cm for easting, northing and height, respectively. See for instance 

Kimura et al. (1999); Baltsavias (1999) and Mohamed et al. (2001). With CCD cameras 

in land-based vehicle applications, El-Sheimy (1996) reported positional accuracies of 16 

cm in horizontal coordinates and 7 cm in height using the VISAT van. The results given 

in He et al. (1994) for the GPSVan system showed accuracies of 32 cm horizontally and 

13 cm vertically. Finally, Strenberg et al. (2001) reported a Three Dimensional (3-D) 

position accuracy of 60 cm for the KiSS van. 

 

Pushbroom linear scanners have very weak geometry since each line has a different set of 

orientation parameters, and thus, they are used in applications that require an accuracy of 

2.5m-10m (Alamús and Talaya, 2000). This was confirmed by Cosandier (1999) who 

obtained accuracies of 2.5m - 3.5m for each channel with the Compact Airborne 

Spectrographic Imager (casi) system. With interferometric SAR systems, the accuracy 

required is 1-4m for positioning and 10-40 arcseconds for attitudes (Schwarz et al., 
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1994). Their main usage is the determination of DEMs, especially in areas with heavy 

vegetation. Arbiol and González (2000) showed planimetric accuracy of 8.7m and 

vertical accuracy of 5.7m. Specifications given for the DEMs generated by the Intermap 

Technologies Ltd. STAR-3i airborne system confirmed obtained accuracies in the order 

of 0.5-4m (post spacing of 5m) with a corresponding horizonta1 accuracy of 1.25-2.50m 

on slopes less than 20° (Intermap Technologies, 2001).  

 

During the last 8 years, major progress has been made in the development of Strapdown 

Inertial Scalar Gravimetry (SISG) at the University of Calgary (U of C). Three flight 

testes were carried out in June 1995, September 1996 and June 1998. For the first flight 

test of June 1995, the results showed an internal consistency of 2 mGal (for a half 

wavelength of 7 km) and an external accuracy of 3 mGal (Wei and Schwarz, 1996). 

Results of the September 1996 test showed accuracies of 2.8 mGal and 1.1 mGal at flight 

heights of 4350 and 7300 m, respectively (Glennie, 1999). The June 1998 test compared 

SINS/DGPS to the LaCoste & Romberg (LCR) gravimeter. The two systems agreed at 

the 2-3 mGal level, which is close to the combined expected noise levels of the two 

systems. By using the same system in flight tests carried out in Ottawa during April and 

May 2000, Bruton (2000) reported a 1.5 mGal accuracy for a resolution of 2 km and 2.5 

mGal for a resolution of 1.4 km. Similar results have been reported by Salychev and 

Schwarz (1995); Ferguson and Hammada (2000) for stable platform INS systems; Wei 

and Tennant (2000) for Strapdown INS; and Forsberg et al. (1996); Brozena et al. (1997); 

Keller et al. (2001) for LCR gravimeters.  

 

 

1.1.2 Improving SINS or SINS/DGPS Integration Accuracy 
 
To improve the accuracy obtained from stand-alone SINS or SINS/DGPS integration, a 

number of factors have to be considered:  

- The first one is to improve the quality of the obtained DGPS data since the GPS is the 

main source of update information. This can be performed by using: multiple reference 
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GPS stations (Cannon, 1991; Cramer, 2001), minimum banking angles, short master-

rover baseline (Schwarz et al., 1994), better ionospheric and tropospheric correction 

models (Abdullah, 1997), improved clocks, and using the available GPS/GLONASS 

receivers for providing more satellite measurements (El-Sheimy, 1996; Mostafa, 1999).  

- A second factor is the utilization of high quality inertial sensor technologies, especially 

in airborne gravimetry (Bruton, 2000).  

- The third one is to apply an optimal procedure for the overall system calibration and 

sensor placement, especially in direct georeferencing applications (Ŝkaloud, 1999). 

This includes optimal calibration of SINS and GPS constant errors (accelerometer and 

gyro biases and scale factors, GPS systematic errors, etc.), optimal determination of the 

GPS and SINS time synchronization, and optimal determination of the SINS-imaging 

sensor relative orientation.  

- The fourth factor is to optimize the SINS mathematical modeling and error 

compensation, especially in SINS stand-alone applications and SINS/DGPS 

applications that have frequent DGPS outages. In this thesis, the optimal error modeling 

of SINS as well as the proper estimation of inertial sensor errors will be investigated.      

 

 

1.2 Problem Statement 
 
The mathematical modeling of SINS is performed by solving a system of first-order 

differential equations, which contains deterministic and random errors. These errors 

should be determined and a compensation of them should be performed. The 

deterministic errors are modeled by linearizing the differential equations. The SINS 

sensor errors consist of a constant part (determined by calibration) and a stochastic part 

that constitutes the above random errors. The current SINS error model that is used in 

most SINS stand-alone and SINS/DGPS integration applications has some limitations, 

which in turn affect the overall system accuracy. 
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The first limitation is generated by the linearization. Linearization will work well when 

frequent DGPS measurements are available. In some applications, however, DGPS 

updates are not frequent and second-order errors may start to play a role. The second 

limitation is the modeling of stochastic SINS sensor errors. For most existing SINS 

systems, they are modeled by a first order Gauss-Markov (GM) process. Preliminary 

testing results of inertial data showed that the actual autocorrelation sequence is not 

always well represented by such a process, where the computed autocorrelation 

sequences have higher order terms. The approximation of such higher-order processes by 

a first-order GM process can lead to a significant accuracy degradation. 

 

In addition, one of the major issues that limit the accuracy of SINS is the level of sensor 

noise. The problem with inertial data is that the required sensor signal is buried into a 

large window of high frequency measurement noise. If the high frequency noise 

component could be separated (or removed) from the inertial sensor signal, the 

performance of inertial sensor measurements is expected to improve considerably, which 

in turn will improve the overall inertial navigation accuracy.  

 

Finally, during GPS outages (satellite signals loss of lock), the SINS is used to predict 

positions and hence the positioning errors increase rapidly with time. For accurate 

positioning during these outages, bridging algorithms are needed to estimate improved 

positions for these periods. 

 

 
1.3 Research Objectives 
 
The main objective of this thesis is to improve SINS error modeling such that a major 

improvement of navigation parameter estimation could be obtained in different SINS 

stand-alone and SINS/DGPS integration applications. To achieve this, the following tasks 

need to be addressed:  
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1- Implementing better inertial sensor error models. 

2- Finding and developing a standard method for SINS sensor error model identification 

from a time series of sensor measurements. 

3- Investigating the effect of second-order terms in the inertial error model. 

4- De-noising SINS sensor data as a key for reliable estimation of inertial error model 

parameters and reducing navigation errors in kinematic applications. 

5- Bridging DGPS outages with high accuracy in SINS/DGPS kinematic applications. 

 

 

1.4 Thesis Outline 
 
In Chapter 2, the different current possible random processes for stochastic modeling of 

inertial sensor errors are discussed. These random processes include white noise; random 

constant (random bias); random walk; Gauss-Markov (first and higher orders) and 

periodic random processes. Also, the actual behavior of inertial sensor residual errors is 

investigated for different inertial sensor categories (high, medium and low quality). This 

will be carried out by computing the actual Autocorrelation Sequence (ACS) of long 

records of experimental inertial data. A comparison between the actual ACS and the 

theoretical ACSs provided by the discussed random processes is performed. Finally, the 

validity of the currently used SINS error models in describing sensor residual errors is 

investigated. 

  

 

In Chapter 3, Autoregressive (AR) processes are introduced as a new tool for modeling 

inertial sensor errors. Three methods for the adaptive estimation of the AR model 

parameters are studied, namely: the Yule-Walker (autocorrelation) method, the 

covariance method and Burg’s method. The best method will be selected after testing the 

three algorithms using different AR model orders with real SINS data. The obtained 

SINS positioning errors using AR models and the other random processes discussed in 
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Chapter 2 are compared and analyzed in case of SINS stand-alone positioning and during 

DGPS outages in SINS/DGPS applications. 

 

Chapter 4 focuses on de-noising inertial sensor data using wavelet multi-resolution 

decomposition techniques. In this context, the wavelet transform is discussed in both 

continuous and discrete time domains. For wavelet multi-resolution analysis, the adaptive 

choice of the decomposition level is discussed using static and kinematic data. Finally, a 

comparison between the obtained SINS position errors, using the original and the de-

noised SINS kinematic data, is performed considering SINS stand-alone navigation and 

also SINS/DGPS integration during DGPS outages. 

 

In Chapter 5, the effect of the neglected second-order errors in the current SINS 

deterministic error model is studied. For this purpose, a second-order SINS error model is 

derived. First, the second-order error effects neglected in the linearization process are 

considered. Second, the neglected second-order error terms in the Taylor expansion are 

derived. To investigate numerically the effect of the derived second-order terms, the 

predicted positioning errors using the derived second-order error models are compared to 

the corresponding first-order error model predicted positioning errors.  

 

Chapters 6 and 7 are devoted to the subject of bridging DGPS outages in SINS/DGPS 

integration applications. In Chapter 6, optimal backward smoothing will be applied as the 

bridging method. The modifications of the backward smoothing equations required for 

the case of bridging DGPS outages will be shown. In Chapter 7, a new bridging 

algorithm is presented. In this case, bridging DGPS outages will be carried out by 

deriving a new SINS parametric error model to be used during DGPS outage periods. The 

performance of both bridging methods will be analyzed and compared using real 

kinematic SINS/DGPS data sets.  
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In Chapter 8, the tasks addressed in the thesis are summarized. The main conclusions, as 

extracted from the obtained results and performed analysis, are presented. In addition, 

recommendations concerning the future research work will be given.  

 

Some of the material presented in the thesis has been either previously published or 

submitted for publication. In those cases where the candidate has been the author or the 

first co-author of these publications, quotations are not indicated but the work is simply 

referenced. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 10

CHAPTER 2 

 
Stochastic Modeling of Inertial Sensor Errors 

 

 

The accelerometer and gyro sensor errors of a Strapdown Inertial Navigation System 

(SINS) consist of two parts: a constant (or deterministic) part and a stochastic (or 

random) part. The deterministic part includes biases and scale factors, which are 

determined by calibration and then removed from the raw measurements. The stochastic 

part is basically due to the random variations of the SINS sensor errors (biases) over time. 

These random errors are modeled stochastically and then included in the SINS error 

model so that they can be estimated by a Kalman Filter (KF).  

 

The inertial sensor random errors can be expressed as: white noise, random constant 

(random bias), random walk, Gauss-Markov (first and higher orders) or periodic random 

processes. For most of the navigation-grade SINS systems (gyro drift 0.005-0.01 deg/h), 

a 1st order Gauss-Markov (GM) model is used to describe the random errors associated 

with inertial sensors. This is also true for low-cost inertial systems (gyro drift 100-1000 

deg/h) although sometimes a white noise process instead of a 1st order GM model is 

utilized.  

 

In this Chapter, an overview of the different possible random processes for stochastic 

modeling of inertial sensor errors is presented. Then, the actual behavior of SINS sensor 

random errors using long records data sets will be investigated. This will be performed by 

computing the actual Autocorrelation Sequence (ACS) of experimental data, collected by 

Inertial Measuring Unit (IMU) sensors of different quality (high, medium and low).   
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2.1 Random Processes for Modeling Inertial Sensor Residual Errors 
 
In most of the currently used SINS error models, the inertial sensor random errors 

(residual biases b) are described by a random process, where the process is considered to 

be stationary in general, i.e. its statistical quantities are invariant with time (it will be 

shown later that this assumption is not always valid). Considering a stationery process, it 

is assumed that the process can be completely defined by its Autocorrelation Function 

(ACF) specifications (Brown and Hwang, 1992). This is due to the fact that the ACF of 

random data describes the general dependence of the data values at one time on the 

values at another time (Bendat and Piersol, 1971). For stationary random processes, the 

ACF of the process b(t) is defined as the average value of the product b(t).b(t + τ), i.e.: 
 

                     







+=+= ∑

∞
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bb )τt(b).t(bmean)]τt(b).t(b[)τ( ER                           (2.1a), 

 

where )τ(bbR  is the ACF of the residual bias b, E[] is the mathematical expectation 

operator, t is an arbitrary sampling time ant τ is the time lag (shift) between samples.  

Since we are dealing with discrete-time inertial signals, the Autocorrelation Sequence 

(ACS) is computed instead of the ACF. The ACS is defined by replacing the sampling 

time t in Equation 2.1a by a sampling sequence kt or simply k and the time lag τ by a 

sampling lag m, and hence: 
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However, the values of )m(bbR  are known as the ensemble autocorrelations since it 

assumes infinite data records. In practice, the ACS is computed using a block of finite 

data of length N, and thus, )m(bbR  in reality is replaced by the sample autocorrelations 

)m(bbR  (Orfanidis, 1988). Therefore, for a time-series of measurements b(k), k = 1, 2, 3, 

…, N, the sample ACS is determined by: 
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The value of the ACS at lag m = 0 is given as: 

 

             2
b

2
b

2
b

N

1k

22
bb υµσ)k(b

N
1)]k(b[)0( =+=== ∑

=
ER                   (2.3), 

 

where bσ , bµ  and bυ  are the standard deviation, mean and mean-squared value (power) 

of the residual bias b, respectively. To compute the ACS of the SINS sensor residual 

biases, these residual biases should be obtained first. This can be obtained from a long 

sequence of SINS sensor measurements of static data after removing the mean value of 

such measurements (i.e. the mean of the residual measurements bµ will be zero). In this 

case, the value of Rbb(0) computed by Equation 2.3 is simply the variance of the residual 

bias 2
bσ . The Fourier transform (continuous or discrete) of the (ACF or ACS) is called the 

Power Spectral Density (PSD) Sbb. Therefore, the PSD of continuous and discrete signals, 

respectively, is given by: 
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In simple words, the PSD describes how the power (or variance in our case) of a time-

series of measurements is distributed in the frequency domain. In turn, the ACF and ACS 

are determined, respectively, by the inverse Fourier transform of the PSD, such that: 
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2.2 White Noise  
 
A white noise process usually has a zero mean and when stationary, it has a constant PSD 

Sbb = Sbb(0) (Anderson and Moore, 1979). Considering this in Equations 2.5a and 2.5b, 

the ACF and ACS of a stationary white noise process are determined as: 
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where ()δ  is the delta function (Dirac-delta function )τ(δ  for continuous-time and unit-

impulse function )m(δ  for discrete-time) and is defined as (Andreyev, 1969; Oppenheim 

and Schafer, 1999): 

 

 




=∞
≠

=
,0τfor
,0τfor0

)τ(δ ;          1τd)τ(
ε

ε
=∫

−

δ    for an arbitrary ε > 0            (2.7a) 

 





=
≠

=
,0mfor1
,0mfor0

)m(δ                                          (2.7b) 

 



 14

Recalling Equation 2.3 and considering the definition of )m(δ  into Equation 2.6b: 

 

   )m(.)m()0((0).)]k(b[)0( 2
bbbbb

2
b

2
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Thus, the ACF (or ACS) of a white noise process indicates zero correlation for all lag 

values except at lag = 0 since it involves a δ  function. Therefore, a white noise process is 

called sometimes a pure random process (Bryson, Jr. and Ho, 1975). The ACF and PSD 

of a white noise process are shown in Figure 2.1.  

 
 

 τ    -τ 

)0((0).bbbb δSR =

 ω   -ω 

Const.SS == (0)bbbb

Fig.2.1 Autocorrelation Function (ACF) and Power Spectral Density (PSD) of A 
White Noise Process 

 

Finally, and taking into account the above definition of the Dirac-delta function )τ(δ , the 

variance of a white noise process is infinite. This implies that such a process is only a 

theoretical concept (Andreyev, 1969; Newland, 1975) or that the process is not physically 

realizable (Gelb, 1974). In spite of that, however, white noise can be used successfully to 

approximate some physical processes. Moreover, and as will be discussed in the 

following Section, some other random processes are generated by passing a white noise 

sequence through linear filters.   
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2.3 Shaping Filters 
  
As will be shown later in Section 2.4, the computed ACS of the residual SINS sensor 

errors (after removing the deterministic bias part) does not represent a white sequence 

process. Instead, the SINS residual random error component can be appropriately 

modeled by passing a white noise w(t) of zero-mean (i.e. 0µ w = ) through a certain 

shaping filter (linear dynamic system) to yield an output of time-correlated (or colored) 

noise. This will change the correlation characteristics of the input sequence to fit the 

actual residual error component of the inertial sensor. The values of such shaping filter 

parameters are optimally estimated through the minimization of the differences between 

the output of the shaping filter and the actual noise sequence of the inertial sensor output 

in a least-squares sense (see Figure 2.2). As mentioned before, the residual (random) 

component utilized in Figure 2.2 is determined from a long series of SINS sensor static 

data measurements after removing its mean value. In the following subsections, some 

random processes that are generated from passing a white sequence through shaping 

filters are discussed. Special attention will be given to Gauss-Markov processes. 

 

 

Shaping Filter

Residual Random 
Component of Inertial 
Sensor Measurement 

b(t) 

White Sequence 
 Input  
w(t) 

Optimal 
Estimation
(Learning)
Technique

+ _ 

 
 
Fig.2.2 Determination of Shaping Filter Parameters to Model the Residual Random 

Component of Inertial Sensor Biases 
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2.3.1 Random Bias (Random Constant) 
 
The random bias (or constant) is an unpredictable random quantity with a constant value 

(Papoulias, 2001). In this case, the inertial sensor residual bias error b(t) is defined by the 

following differential equation: 

 

    0)t(b =&                                                            (2.9a) 

 

The discrete form of the above equation is represented by the difference equation: 

 

                           k1k bb =+                                                        (2.9b), 

 

where b(k) is written as bk for simplicity. Substituting Equation 2.9b into Equation 2.2 

results in: 
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2
kbb === RER                              (2.10) 

 

Thus, the random constant is the special case of a shaping filter with a random initial 

condition. It is not really a filter, since it is an integration output with no input (Grewal 

and Andrews, 2001). 

 

2.3.2 Random Walk 
 
For a Random Walk (RW) process, the difference )bb( k1k −+ is a purely random (white) 

sequence kw  (Shan, 2002), i.e.: 

 

                           kk1k wbb +=+                                              (2.11a), 

or 

                           )t(w)t(b =&                                                     (2.11b) 
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Thus, for a very large number of data samples, Equation 2.11a converges to: 
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From Equation 2.11b, the RW process is generated by integrating uncorrelated random 

sequences. The name random walk took its name from considering an analogy with a 

person walking with a fixed step length (distance) in arbitrary directions. Using Equation 

2.12, the mean bµ  of an RW process is provided by: 
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Taking into account that wi are uncorrelated sequences, the variance 2
bσ  is computed as: 
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Therefore, the RW process is not stationary since its variance is changing linearly with 

the number of samples, and hence, the characteristics of the ACS cannot be used to 

completely define the process (Brown and Hwang, 1992). Even though, the difference 

)bb( k1k −+ itself is stationary. However, an RW process can be considered stationary 

within small time intervals (Mohamed, 1999). 

 

2.3.3 Gauss-Markov Processes 
 
Gauss-Markov (GM) random processes are stationary processes that have exponential 

autocorrelation functions. GM processes are useful in many engineering applications 

since they can describe many physical random processes with good approximation 
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(Brown and Hwang, 1992; Bethel et. al., 2000). Most of the present inertial systems 

model the sensor residual errors as a 1st order GM process with a fairly large correlation 

time (Schwarz and Wei, 2001). The ACF of a zero-mean 1st order GM process is defined 

by a decaying exponential of the form: 
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1
eσ)τ( −=R                                               (2.15), 

 

where σb is the sensor measurement standard deviation and β1 is the reciprocal of the 

process correlation time 
1cτ  ( 2

bbbc σ
e
1)τ(atττ

11
== R  ). This ACF is shown in Figure 

2.3. The shaping filter in this case is a first-order closed loop system, which is shown in 

Figure 2.4.  As Figure 2.3 indicates, the correlation between data samples of a 1st order 

GM process decreases with the increase of the time shift between samples and 

approaches zero at ∞=τ . A 1st order GM process is widely used for modeling the 

inertial sensor residual errors since it has a very simple mathematical description, which 

makes it easy to implement in the inertial error model.  
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Fig.2.3 The ACF of A 1st Order Gauss-Markov (GM) Process 
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Using a 1st order GM model, the inertial sensor residual bias error is defined by the 

following first-order differential equation (Salychev, 2000): 

 

                                                )t(wσβ2)t(bβ)t(b 2
b11 +−=&                                      (2.16) 

 

The discrete form of the above equation is included inside the error model of the inertial 

system using the difference equation: 

 

               ( ) k
2
b1k11k wt∆σβ2bt∆β1b +−=+                         (2.17), 

 

where ∆t is the sensor data-sampling interval. However, it should be clarified here that 

the ACF expression of a 1st order GM process (Equation 2.15) was derived by 

implementing Equation 2.1a on Equation 2.17 with considering τ = ∆t and µb = µw = 0. 

 

 w(t) ∫ b(t) 

_
+

 β1 

b(0)

 
 

Fig.2.4 Closed Loop System Representing A 1st Order GM Process 
 

A family of higher-order GM processes can be generated using the basic exponential 

ACF (Equation 2.15). The ACF general formula for a GM process of order p is given in 

Gelb (1974) as: 
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However, it should be mentioned here that a term, “ )!1np( −+ ”, is missing in the 

numerator of the above Equation. The correct ACF formula for GM processes is 

represented by:  
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Thus, the ACF of a GM process of any required order can be obtained from Equation 

2.18b. For example, the ACF of a 2nd order GM process (p = 2, n = {0,1}) is represented 

by: 

 |)τ|β1(eσ)τ( 2
|τ|β2

bbb
2

2
+= −R                                    (2.19) 

 

To compute the correlation time 
2cτ  in this case, Equation 2.19 is solved analytically 

with the condition 2
bcbb σ

e
1)τ(

22
=R  , and hence: 
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                         1
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2c2 −− =+⇒                                        (2.20b) 

                         1|)τ|β1ln(|τ|β
22 c2c2 −=++−⇒                            (2.20c)  

                         01|τ|β|)τ|β1ln(
22 c2c2 =+−+⇒                         (2.20d) 

 

The solution of (2.20d) results in 
2

c β
1461945.2τ

2
= . A random residual inertial bias 

modeled by a 2nd order GM process is represented by a differential equation of the form: 
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    )t(w)t(bβ)t(bβ2)t(b 2
22 +−−= &&&                                            (2.21) 

 

The corresponding discrete form is expressed by the following two difference equations: 
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The ACF and the corresponding correlation time values for the GM process family are 

summarized in Table 2.1.   

 

Table 2.1 
The ACF and Corresponding Correlation Time for Different Order GM Processes 
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It can be seen that two special cases exist. The first one is the zero-order GM process 

(which means that the process value at any time does not depend on any past values, i.e. 

no correlation). Hence, the process in this case tends to be a white noise process. The 

second special case exists when the order of the GM process is very high (i.e. ∞→p ). In 

this case, the summation in Equation 2.18 will be |τ|βe , which yields a constant ACF of 
2
bσ  and thus the process tends to be a random bias (random constant). To show the 

graphical characteristics of the ACF of different orders of GM processes, first a constant 

correlation time is assumed for all orders. Hence, the corresponding βp is computed for 

each order p using the formulae in Table 2.1. Then an ACF is generated for each order 

using Equation 2.18. Assuming a data length of 8 hours, Figures 2.5a-2.5d show the ACF 

of 1st to 5th order GM processes with a different assumed correlation time for each figure.     

 

Fig.2.5 The Generated ACF for Different Orders of GM Processes  
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2.3.4 Periodic Random Processes 
 
The ACF for random processes that are known to have periodic behavior is represented 

by an exponential and periodic functions, such as: 

 

        |)τ|αcos(.eσ)τ( |τ|β2
bbb

−=R                                      (2.23), 

 

where β and α  are positive quantities,  have the same dimension (1/time) and their values 

are chosen to fit an empirical (computed) ACS of the actual process experimental data. In 

contrast with the ACFs of GM processes that assume positive values only, the ACF of a 

Periodic Random (PR) process (Equation 2.23) assumes negative values as well, which 

makes it a more general ACF that can correspond to a broader class of random variables 

(Andreyev, 1969). Similarly as for the GM processes, ACFs are generated for PR 

processes using Equation 2.23 assuming 8 hours of data and variable values for β and α. 

These ACFs are shown in Figures 2.6a-2.6f.  

 

Since the PR process is defined by two parameters (β and α), two state variables (i.e. two 

1st order differential equations) are required to represent the process, and hence, a PR 

process can be considered as a 2nd order process.  Moreover, the ACF formulae of both 

PR and GM processes involve an exponential. Therefore, sometimes a 2nd order GM 

process is generalized by combining it with a PR process. One example of such 2nd order 

GM general ACF is given in Grewal and Andrews (2001). It is of the form:  

 

           )α|τ|βcos(eσ
αcos

1)τ( |τ|β2
bbb −= −R                              (2.24), 

 

where β and α are determined to fit a computed ACF of the actual process. A graphical 

representation of Equation 2.24 with variable values of β and α is shown in Figures 2.7a-

2.7d. Compared to Figures 2.5 and 2.6, Figure 2.7 indicates clearly that the ACF of the 
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generalized 2nd order GM process is a compromise between the ACF of GM and PR 

processes. 

 

 

 

 
Fig.2.6 The Generated ACF for Different Periodic Random (PR) Processes  

 

 
2.3.5 Possible Combinations of Random Processes 
 
Beside the random processes discussed above, a random process can be generated by 

combining two or more of such random processes. For example, a random constant and a 
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Random Walk (RW) processes can be combined in one random process represented by 

only one variable state (see Figure 2.8). Another example, is the combination between a 

random constant, an RW and a 1st order GM processes in one single process as shown in 

Figure 2.9. In this case, the process is represented by the following system of differential 

equations: 
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However, the choice of any possible combination of random processes is based on the 

characteristics and behavior of the underlying random process to be studied. 

 

 

 
Fig.2.7 The Generated ACF for A Combined 2nd Order GM and Periodic Random 

Processes  
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w(t) ∫ b(t) 

b(0)

 

Fig.2.8 Combined Random Constant and RW Processes (Gelb, 1974)  
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b2(t)

  b1(t) + b2(t) 
∫    b(t) 

 
Fig.2.9 Combined Random Constant, RW and 1st Order GM Processes (Gelb, 1974)   

 

 

2.4 Determination of the Autocorrelation Sequence of Inertial Experimental Data 
 
In the previous two Sections, the ACFs of a number of random processes have been 

shown. As indicated before, the sensor residual errors of most of the current inertial 

systems are assumed to follow a 1st order GM process. To investigate the validity of such 

an assumption, or in other words, to determine the appropriate random process for 

modeling inertial sensor residual biases, the ACS of some of the noise sequences of real 

inertial measurements has been studied. Three inertial IMUs are used for this purpose: a 



 27

navigation-grade (high accuracy) IMU (Litton LTN 90-100 with a gyro drift of 0.01 

deg/h), a high-end tactical-grade (medium accuracy) IMU (Honeywell HG1700 with a 

gyro drift of 1.0-10.0 deg/h) and a low-cost (low accuracy) IMU (Crossbow 

AHRS400CC-100 with a gyro drift of 200 deg/h). For each IMU, 8 hours of static data 

was collected. After subtracting the mean of the measurements for all sensors, the data 

was used for generating an ACS for each sensor. However, due to the fact that inertial 

sensors suffer from high measurement noise, a data de-noising was performed first using 

wavelet decomposition to an appropriate level (wavelet de-noising will be discussed in 

Chapter 4). Then, the de-noised data for each sensor was used for the ACS generation. 

Two sensors from each IMU (one accelerometer and the corresponding axis gyro) are 

chosen to illustrate the obtained ACSs. For the rest of the sensors, similar ACSs were 

obtained.  

 

Figures 2.10a-2.10f show the computed ACS for one accelerometer and one gyro of each 

IMU. The Figures show that the obtained ACSs have some similarities and some 

differences from each other, depending on the sensor type (accelerometer or gyro) and 

the sensor quality (high, medium or low). In case of the AHRS400CC-100 IMU for 

example, the ACS for the accelerometer (Figure 2.10e) and the gyro (Figure 2.10f) are 

almost identical. This is due to the fact that both sensors are using the same technology: 

Micro-Electro Mechanical Systems (MEMS). This is not the case for the other two IMUs, 

where the LTN 90-100 uses pendulous accelerometers and Ring Laser Gyros (RLGs) and 

the HG1700 utilizes resonating beam accelerometers and RLGs.  

 

Figures 2.10 indicate clearly that a 1st order GM process may not be adequate in all cases 

to model such inertial residual error behavior. The shape of the ACS is often different 

from that of a 1st order GM process (Figure 2.3). By inspection of Figure 2.10, it appears 

that most of the computed ACSs fall into the category of higher-order generalized GM 

processes (see Figure 2.7) or PR processes (see Figure 2.6). As mentioned before, the 

required parameters for GM or PR process models (β and/or α) are determined based on 

the actual experimental data, i.e. by fitting an empirical ACS. However, Figure 2.10 
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shows that the determination of an accurate ACS from experimental data is rarely done 

due to the fact that the data collected is limited and finite. In turn, the obtained values for 

β or α will change with the change in data length used for computing the ACS.  

 

 

 

 
Fig.2.10 The Computed ACS for High, Medium and Low-Cost Inertial Sensor Data 
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A more serious problem than the numerical difficulties is, however, a theoretical problem 

pointed out by Bendat and Piersol (1971) and further discussed by Brown and Hwang 

(1992). For a Gaussian zero-mean random process, the following relation is satisfied: 

 

                                             τd)τ(
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0

2
bb

2
)τ(bb ∫

∞
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R R                                               (2.26), 

 

where: 

 
 2

)τ(bb
σR  …. is the variance of )τ(bbR , where )τ(bbR is the ACF determined from

a finite record of experimental data (i.e. the sample ACF). 

  T …. is the total time length of the experimental data. 

 )τ(bbR  …. is the real (theoretical) ACF of the process  (i.e. the ensemble ACF). 

 

The above Equation can be used to get a “rough” estimate of the needed amount of data 

to reach a certain desired accuracy (uncertainty level) of the determined sample ACF. 

Obviously, Equation 2.26 is valuable only if the true ACF of the process “ )τ(bbR ” is 

known. Therefore, to illustrate the following analysis, a 1st order GM process will be 

assumed [ |τ|β2
bbb

1eσ)τ( −=R ]. Substituting this value of )τ(bbR  in Equation 2.26 yields: 
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where 
1cτ  is the 1st order GM process correlation time. The accuracy (or uncertainty 

level) of the determined )τ(bbR  is defined as the ratio of the standard deviation of 

)τ(bbR  (i.e. )τ(bb
σR ) to the variance of the process (i.e. 2

bσ ), see Figure 2.11.  
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Fig.2.11 Accuracy Determination of Experimental ACSs (Brown and Hwang, 1992) 

 

By rearranging Equation 2.27a and taking into account the above definition of accuracy, 

we get: 
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Therefore, if the desired uncertainty level is 10% for example, the required time length of 

collected data T will be approximately equal to 2
c

2
c )10.0(τ2)accuracy(τ2

11
≈  

1cτ200≈ , i.e. 200 times the correlation time of the process. Assuming a reasonable 

correlation time of 1.0 hour, this means that 200 hours of data is required for estimating 

the ACS of inertial sensor errors with an accuracy of 10%. Taking into account the high 

data rate of inertial sensors (up to 100 Hz), it is unlikely that this requirement will be used 

in any practical work. The above analysis can be also performed for PR processes and 

GM processes of any order and it will lead to the same conclusion. For example, in case 

of a 2nd order GM process [ |)τ|β1(eσ)τ( 2
|τ|β2

bbb
2 += −R ], applying Equation 2.26 will 

result in the following expression: 
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which agrees with the 1st order GM expression of Equation 2.27a.  

 

On the other hand, Equation 2.26 can be used to give an approximate estimation of the 

accuracy of the ACS obtained from experimental data of known finite length T. In this 

case, )τ(bbR  is assumed to be known and the process parameters (β and/or α) are 

estimated from the obtained ACS )τ(bbR . To estimate the accuracy of the obtained 

ACSs in Figure 2.10 (T = 8 hours), an )τ(bbR  is assumed first. Again, a 1st order GM 

process will be assumed for the analysis. With a GM process assumption, Figure 2.10 

shows that the estimated correlation times are: 5/6, 4/5, 4/3, 1, 7/4 and 5/3 hours for 

Figures 2.10a-2.10f, respectively. The accuracy is computed then using Equation 2.27a 

as: accuracy
111 ccc τ5.08τ2Tτ2 ≈≈≈ . Substituting the above estimated 

correlation times, the approximate accuracy of the obtained ACSs in Figures 2.10a-2.10f 

are obtained as: 46%, 44%, 58%, 50%, 66% and 64%, respectively.  These numbers 

indicate that it is very difficult to obtain an accurate ACS from experimental data.  

 

If, in the above computations of ACS accuracy determination, higher-order GM 

processes were assumed instead of a 1st order GM one, the computed ACS accuracies 

will be even worse. This can be concluded by comparing Equations 2.27 and 2.28, which 

represent a 1st order and a 2nd order GM processes, respectively. Finally, it has been 

shown in Gelb (1974) that due to the limitation of experimental data, the computed ACS 

for processes known to completely satisfy a 1st or higher order GM processes will have a 

behavior that is similar to the one shown in Figures 2.6, 2.7 and 2.10 (i.e. the obtained 

ACS will have positive as well as negative values).  

 

Therefore, it is unlikely that the inertial sensor errors can be accurately estimated by 

using the parameters of an ACS that has been determined from actual inertial data. 

Hence, other methods rather than computing the ACS should be investigated to identify 

sensor error model parameters. This will be discussed in the next Chapter. 
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CHAPTER 3 

 
Autoregressive (AR) Processes For Modeling Inertial Sensor 

Random Errors 
 

 

To avoid the problem of inaccurate modeling of inertial sensor random errors due to 

inaccurate Autocorrelation Sequence (ACS) determination, another method for 

estimating inertial sensor errors will be introduced in this Chapter. The method, known as 

Autoregressive (AR) process modeling, has been introduced almost 50 years ago but it 

has not been used for modeling inertial sensor errors. Its main known applications are 

speech identification, music, geophysical sounding applications and lately, handling new 

gravity satellite data. Compared to the random processes discussed in Chapter 2, AR 

processes have more modeling flexibility since they are not always restricted to only one 

or two parameters. In addition, AR models can cover a large number of known random 

processes (Chapter 2) by constraining the AR model parameters to take certain values. 

 

Three different methods for the adaptive estimation of the AR model parameters are 

investigated, namely: the Yule-Walker (autocorrelation) method, the covariance method 

and Burg’s method. The three algorithms will be tested using different AR model orders 

with real SINS data. The obtained results of SINS positioning errors using AR models 

and the commonly used 1st order GM model, as well as the other random processes 

discussed in Chapter 2, will be presented and analyzed using real static SINS, kinematic 

SINS and kinematic SINS/DGPS data sets. 

 

In many applications with quantities that involve time series of measurements, AR 

processes are used to model (estimate) the stochastic part of such quantities (Box and 

Jenkins, 1976; Granger and Andersen, 1978; Young, 1984; Klees and Broersen, 2002). 

The inertial sensor data is a time series of measurements that contain both systematic and 
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stochastic error parts. In this Chapter, AR models will be used to describe the inertial 

stochastic errors. As will be shown, GM processes of any order can be represented using 

an AR process of an appropriate order. For example, the 1st order GM process given by 

Equation 2.17 represents also an AR process of 1st order.  

 

Based on the obtained ACSs of inertial sensor residual errors in Chapter 2 (Figure 2.10), 

it has been decided to model the randomness of the inertial sensor measurements in this 

Chapter using an AR process of order higher than one. With the present computational 

efficiency of microprocessor systems, efficient modeling of SINS residual biases can be 

realized, and thus, accurate prediction and estimation of such errors can be provided. The 

reason for this choice is that the AR model parameters can be determined by solving a set 

of linear equations. The utilization of an Autoregressive Moving Average (ARMA) 

process instead of an AR process requires solving a set of non-linear equations to 

determine the ARMA model parameters, which will be much more involved 

computationally. In addition, the model complexity is definitely increased in this case 

(Jackson, 1996; Wu, 2001). 

 

 

3.1 Autoregressive (AR) Processes 
 
Considering first Autoregressive Moving Average (ARMA) processes, ARMA modeling 

is based on the mathematical modeling of a time series of measurements assuming that 

each value of such series is dependent on: (a) a weighted sum of the “previous” values of 

the same series (AR part) and, (b) a weighted sum of the “present and previous” values of 

a different time series (MA part). The ARMA process can be described using a pole-zero 

(AR-MA) transfer function system H(z) as follows (Box and Jenkins, 1976): 
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where X(z) is the z-transform of the input x(k), Y(z) is the z-transform of the output y(k), 

p is the order of the AR process, q is the order of the MA process and α1, α2, ……, αp 

and β1, β2, ……, βq are the AR and MA process parameters (weights), respectively. The 

AR process is a special case of an ARMA process, where q in Equation 3.1 will be zero 

and thus H(z) will be an all-pole transfer function of the form: 
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Therefore, the name “Autoregressive” comes from the fact that each signal sample is 

regressed on (or predicted from) the previous values of itself. In the time domain, the 

above AR transfer function relationship can be obtained after applying the inverse z-

transform to Equation 3.2. The resultant equation is written as: 
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i.e. 
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The above input-output relationship in both frequency and time domains is shown in 

Figure 3.1. 
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Fig.3.1 The Input-Output Relationship of An Autoregressive (AR) Process 
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To apply AR models for estimating the inertial random errors, and in analogy with the 

previously discussed shaping filters (Section 2.3), the input to the AR model x(k) will be 

a sequence of zero-mean uncorrelated measurements (white sequence) wk while the 

output y(k) will be the inertial sensor residual bias bk (Nassar et al., 2003). The problem 

in this case is to determine the values of the AR model parameters (predictor coefficients) 

αn that optimally represent the random part of the inertial sensor errors. This is performed 

by minimizing the prediction error ek between the original signal bk represented by the 

“AR process” of Equation 3.3 and the estimated signal kb̂ , which is estimated by an “AR 

model” of the form: 
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The cost function for this minimization problem is the sum of squared errors kε  of ke , 

which is obtained as: 
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In this case, and assuming a unity variance white sequence, the prediction mean-square 

error (or the variance since the mean of ek is zero) 2
eσ   is obtained by: 
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Therefore, 2

0β  represents the estimated variance of the white noise input to the AR model, 

or more generally, the AR model prediction mean-square error.  

 

 

3.2 Modeling Methods for AR Processes 
 
Several methods have been reported to estimate the αn parameter values by fitting an AR 

model to the input data. Three methods are considered in this thesis, namely: the Yule-

Walker method, the covariance method and Burg’s method. As will be shown, these 

estimation techniques have different features. However, if fairly large data samples are 

used, some of these methods will lead to comparable values of the estimated AR model 

parameters (De Hoon et al, 1996). 

 

 

3.2.1 The Yule-Walker Method 
 
The Yule-Walker (YW) method, which is also known as the autocorrelation method 

determines first the sample Autocorrelation Sequence (ACS) )m(bbR of the actual input 

signal (inertial sensor residual bias in our case). Then, the AR model parameters are 

optimally computed by solving a set of linear normal equations. These normal equations 

are obtained by minimizing kε  with respect to the model parameters nα  (Hayes, 1996), 

i.e.: 
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Using the third line of Equation 3.5 as a starting point, one obtains: 
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Applying Equation 3.7 to 3.8 yields: 
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The YW method assumes that the summation ∑
k

is performed for an infinite data set 

(i.e. ∞<<∞− k ), and thus Equation 3.9b becomes (Makhoul, 1975): 

 

                           pi1),n()in(α bbbb

p

1n
n ≤≤−=−∑

=
RR                       (3.10), 

 

where )n(bbR is the ensemble ACS and )in(bb −R  are the coefficients of the ensemble 

autocorrelation matrix. Recalling the discussion of the ACS in Section 2.4, and due to the 

fact that the available data is of a finite length N, the summation ∑
k

2
ke cannot be obtained 

for k > N. To overcome this problem in the YW method, the data for k > N is set to zero 

by applying a data window to the data, and then the ACS is computed for the windowed 

data, which in this case will be the sample ACS )n(bbR (Orfanidis, 1988). Therefore, 

replacing )n(bbR  by )n(bbR  in Equation 3.10 leads to the following set of normal 

equations expressed in matrix form: 

 

                 bbbb . rαR −=         ⇔         bb
-1
bb .rRα −=                             (3.11), 

 

where:  
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Finally, the prediction mean-square error 2
eσ  is determined by solving: 
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Equations 3.11 and 3.13 are known as the Yule-Walker (YW) equations (Makhoul, 1975; 

Kay and Marple, Jr., 1981; Orfanidis, 1988; Jackson, 1996). From Equation 3.12c, it can 

be seen that the Rbb matrix is symmetric and also has a Toeplitz structure (all the matrix 

elements are equal along each diagonal). Therefore, instead of solving Equation 3.11 

directly (i.e. by first computing 1
bb
−R ), it can be efficiently solved using the Levinson-

Durbin (LD) algorithm. The LD algorithm is an iterative technique that computes the 

next prediction coefficient (AR model parameter) from the previous one by proceeding 

recursively to compute α1, α2, ….. , αp and 2
eσ . This LD recursive procedure can be 

summarized in the following (Makhoul, 1975): 
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1nn k

2
nk εε )γ1(

−
−=                                                                     (3.14e) 

 

Equations 3.14b - 3.14e are solved recursively for n = 1, 2, ….., p and the final solution 

for the AR parameters is provided by: 

 

                                                p,ii αα =                              pi1 ≤≤                            (3.14f) 

 

Therefore, the values of the AR prediction coefficients in the YW method are provided 

directly based on minimizing the forward prediction error )k(ef  in a least-squares sense. 

The intermediate quantities γn represented by Equation 3.14b are known as the reflection 

coefficients. In Equation 3.14e, both energies 
nkε and 

1nkε −
 are positive, and thus, the 
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magnitude of γn should be less than one to guarantee the stability of the obtained all-pole 

filter. However, the YW method performs adequately only for very long data records 

(Jackson, 1996). The inadequate performance in case of short data records is usually due 

to the data windowing process. Moreover, the YW method may introduce a large bias in 

the AR estimated coefficients since it does not guarantee a stable solution of the model 

(Erkelens and Broersen, 1997; Klees and Broersen, 2002). 

 

 

3.2.2 The Covariance Method 
 
The covariance method is similar to the YW method in that it minimizes the forward 

prediction error in the least-squares sense. However, the covariance method does not 

consider any windowing of the data. Instead, the windowing is performed with respect to 

the prediction error to be minimized such that the summation ∑
k

is performed within the 

available finite data (i.e. Nk1 ≤≤ ). Taking this into account and applying Equation 3.7, 

Equation 3.9b tends to (Makhoul, 1975): 
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where )n,0(bbC  is the sample covariance sequence and )i,n(bbC  are the coefficients of 

the sample covariance matrix. In this case, and in analogy with the YW equations, the 

matrix form of the obtained linear covariance normal equations is represented as (Wu, 

2001): 
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Since there is no performed data pre-windowing in this method, the AR model obtained 

by the covariance method is typically more accurate than the one obtained from the YW 

method (Hayes, 1996). However, the covariance method utilizes the covariance sequence 

instead of the ACS utilized in the YW method. In this case, the bbC  matrix, even if it is 

symmetric, has no Toeplitz structure. Therefore, the LD algorithm cannot be used to 

solve the covariance normal equations for computing the AR model parameters. To 

achieve an efficient computation of 1
bb
−C  in this case, Cholesky factorization is typically 

utilized (Jackson, 1996). In general, the covariance method provides more accurate 

estimates than the YW method, especially for short data records. However, the 

covariance method may lead to unstable AR models since the LD algorithm is not used 

for solving the covariance normal equations (De Hoon et al, 1996). 

 

 

3.2.3 Burg’s Method 
 
Burg’s method was introduced in 1967 to overcome most of the drawbacks of the other 

AR modeling techniques by providing both stable models and high resolution (i.e. more 

accurate estimates of the AR model parameters) for short data records (Burg, 1975). 

Burg’s method tries to make the maximum use of the data by defining both a forward and 

a backward prediction error terms, )k(ef  and )k(eb . The energy to be minimized in this 

case (
Burgkε ) is the sum of both the forward and backward prediction error energies, i.e. 
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where )k(ef  and )k(eb  are defined as: 

 

  )pk(bα.....)2k(bα)1k(bα)k(b)k(e p21f −++−+−+=                  (3.18a)  

  )k(bα.....)2pk(bα)1pk(bα)pk(b)k(e p21b +++−++−+−=      (3.18b) 

 

The forward and backward prediction error criteria are the same, and hence, they have the 

same optimal solution for the AR model coefficients (Orfanidis, 1988). Considering the 

energies in Equation 3.14e to be 
Burgkε , the forward and backward prediction errors can, 

therefore, be expressed recursively as: 

 

      )1k(eγ)k(e)k(e
1n1nn bnff −+=

−−
                               (3.19a)                       

      )k(eγ)1k(e)k(e
1n1nn fnbb −−

+−=                                 (3.19b) 

 

These recursion formulae form the basis of what is called Lattice (or Ladder) realization 

of a prediction error filtering (see Figure 3.2).  As has been shown for the YW method, 

the accuracy of the estimated parameters α1, α2, ….. , αp and 2
eσ  depends mainly on 

accurate estimates of the ACS Rbb(τ), which is rarely achieved due to the pre-windowing 

of data or the existence of large measurement noise (Pimbley, 1992). To avoid the 

difficulties of the ACS computations, Burg in his method estimated first the reflection 

coefficients γn but not using Equation 3.14b. Instead, he substituted Equation 3.19 into 

Equation 3.17 and then set the derivative of 
Burgkε with respect to γn (instead of αn in the 

YW and covariance methods) to zero. This leads to the form (Burg, 1975): 
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which shows clearly that the magnitude of γn is forced (guaranteed) to be less than one, 

and thus the obtained AR model is guaranteed to be stable. Both Equations 3.19 and 3.20 

form the recursive structure of Burg’s Lattice filter, which is shown in Figure 3.2 with the 

initial conditions of )k(b)k(e)k(e
00 bf == . Finally, the prediction coefficients αn are 

obtained by constraining them to satisfy Equation 3.14d in the LD algorithm. Therefore, 

the utilization of Equations 3.14d and 3.20 together will always ensure the stability of 

Burg’s method solution (Marple, Jr., 1987). Moreover, the utilization of both forward and 

backward prediction error minimization usually yields better estimation results than using 

only the forward prediction approach used in the previous two methods. Finally, it has 

been reported by Rezek and Roberts (1997) that Burg’s method generally provides better 

residual estimates than the YW method. 
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Fig.3.2 The Forward-Backward Prediction Error Lattice Filter Structure  
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3.3 Estimation of the AR Model Parameters (Predictor Coefficients) 
 
SINS sensors suffer from relatively high measurement noise. For navigation-grade IMUs, 

the Signal to Noise Ratio (SNR) is very poor (SNR = 10 log [signal amplitude / noise 

standard deviation]) and can have values in the range of  –20 db (El-Sheimy et. al., 2003). 

This level of sensor noise affects the accurate estimation of the AR model coefficients 

negatively since the required signal to be modeled is completely buried in the sensor 

noise. One of the traditional methods to overcome this problem in AR processes is to 

increase the AR model order to a very large number (e.g. up to 500 for example). 

However, this solution is not practical in the SINS sensor case because: (a) it will make 

the AR model too complex and (b) it will make the use of a Kalman Filter (KF) for the 

estimation of the sensor errors impossible because each increase in the order of the AR 

model will increase the number of KF error states by 6 (since we have 6 sensors, 3 

accelerometers and 3 gyros). Therefore, for large AR model orders, the KF will be most 

likely unstable. 

 

To overcome this problem, it is proposed to estimate the AR model parameters after 

reducing the SINS sensor measurement noise using wavelet de-noising techniques (more 

details about wavelet decomposition will be presented in Chapter 4).  The main 

advantage of using wavelet analysis compared to other signal processing techniques is 

that it is capable of compressing (or de-noising) a signal without appreciable degradation 

of the original signal (Strang and Nguyen 1996). However, the AR model parameters are 

estimated using inertial static data. In this case, the system dynamics are represented by 

the very low frequency (almost zero-frequency) portion of the sensor measurements, and 

hence, the wavelet transform can be used to separate these frequencies from all other 

disturbances. The input signal (sensor static data) to the wavelet transformation is 

basically decomposed into two parts. In wavelet terminology, the first part is called the 

approximation of the input signal (includes Earth gravity and Earth rotation rate 

frequency components and some highly attenuated noise components) while the second 
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part is called the details of the input signal (contains the high frequency noise component 

of the sensor signal and other disturbances).  

 

As will be shown in Chapter 4, the decomposition process can be iterated with successive 

approximations being decomposed in turn so that the signal is broken down into many 

lower-resolution components (Misiti et. al. 2000). This procedure is known as the 

wavelet multiple Level Of Decomposition (LOD). Therefore, if several levels of 

decomposition are utilized, the required signal for estimating the AR model parameters 

can be separated successfully from the white noise component.  For an appropriate choice 

of the proper LOD, a multiple level wavelet decomposition is applied to the inertial data 

and the Standard Deviation (STD) of the measurement noise is computed after applying 

each level. The proper LOD will be the one representing the end of the STD 

convergence.  

 

To show the analysis of AR parameter determination, one set of the three static data sets 

used in Section 2.4 (LTN 90-100, HG1700 and AHRS400CC-100) for computing the 

ACS will be utilized. The chosen set is the 8 hours LTN 90-100 IMU data (with a 64 Hz 

data rate), however, similar results were obtained for the other two IMUs. Also, one 

sensor was selected as an example for the analysis illustration (y-accelerometer). The 

STD of the original raw data and the STDs of 10 successive levels of wavelet 

decomposition for the selected sensor are shown in Figure 3.3. The figure indicates that 

the STD remains almost constant after applying the 6th LOD. The pattern of Figure 3.3 

repeats itself for all other sensors. Thus, for the used LTN 90-100 data, the AR model 

parameters will be estimated using the 6th LOD de-noised inertial data.  

 

Figure 3.4 depicts the original sensor noise (a) and the noise remaining after applying the 

wavelet 6th LOD (b). The noise reduction is about 45 times (in terms of STD). It should 

be mentioned here that the ACS represented in Figure 2.10a was computed using this y-

accelerometer de-noised data. The AR model parameters were then estimated as well as 

the corresponding prediction Root Mean Square Error (RMSE) for all sensors using the 
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three methods: Yule-Walker, covariance and Burg’s methods. Different AR model orders 

are used in the analysis. Again, the LTN 90-100 y-accelerometer was chosen to illustrate 

this analysis. The other sensors gave similar results. The prediction RMSE for the y-

accelerometer signal using the above three AR modeling techniques with different AR 

model orders (1 to 7) are summarized in Table 3.1 and are plotted in Figure 3.5.  

 

 
Fig.3.3 The Standard Deviation of the LTN 90-100 Y-Accelerometer Data After 

Applying Successive Levels of Wavelet Decomposition 
 

 
Fig.3.4 LTN 90-100 Y-Accelerometer Specific Force Measurements 

(a) Before Wavelet De-noising 
(b) After Applying the Wavelet 6th LOD 
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Table 3.1 LTN 90-100 Y-Accelerometer Prediction RMSE Using Different AR 
Modeling Techniques 

 

AR Model Prediction RMSE (m/s2) AR Model 
Order Yule-Walker Covariance Burg 

1st Order 3.38 E-6 2.97 E-6 2.97 E-6 
2nd Order 2.13 E-6 1.22 E-7 1.22 E-7 
3rd Order 1.92 E-6 8.50 E-9 8.50 E-9 
4th Order 1.84 E-6 6.03 E-9 6.02 E-9 
5th Order 1.80 E-6 5.87 E-9 5.88 E-9 
6th Order 1.78 E-6 5.77 E-9 5.76 E-9 
7th Order 1.76 E-6 5.33 E-9 5.33 E-9 

 

 
Fig.3.5 LTN 90-100 Y-Accelerometer Prediction RMSE Using Yule-Walker, 

Covariance and Burg’s AR Modeling Methods 
 

The results listed in Table 3.1 and graphically presented in Figure 3.5 show that the Yule-

Walker method has higher RMSE values than the other two methods. This indicates, as 

expected, a biased estimate of the AR model parameters. Both the covariance and Burg’s 

methods give almost the same results, which is not surprising since the data sample used 

is very large (N = 8*3600*64 = 1,843,200 samples). However, since Burg’s method 

always guarantees the stability of the estimated AR model, the parameters estimated by 

Burg’s method will be the ones to be used in the following analysis. Finally, the results in 
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Table 3.1 indicate that the RMSE values obtained from the two methods (covariance 

method or Burg’s method) are close to their minimum value after applying only a 3rd 

order AR model. This is very important from a numerical point of view. The addition of 

the corresponding SINS sensor error states in this case (up to 18 extra states) into the 

used KF algorithm will not affect its stability. 

 

 

3.4 AR Model Testing Results 
 
Errors in the SINS navigation states (position, velocity, attitude) as well as the SINS 

sensor errors (gyro residual biases and accelerometer residual biases) are estimated by a 

KF. In case of modeling the gyro and accelerometer residual biases using AR models, the 

AR model of Equation 3.3 is implemented. Therefore, to estimate the SINS sensor 

residual biases by the KF, the AR model is incorporated into the KF state transition 

matrix (Φ-matrix). This is performed by converting the AR model to the standard state-

space representation. Thus, for each sensor modeled by an AR model of order p, the 

following converted AR state-space form is included in the KF transition matrix (Brown 

and Hwang, 1992; Wu, 2001): 
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To test the efficiency of the suggested AR models, whose parameters are estimated by 

Burg’s method with different orders (i.e. different number of KF states), four data sets 

will be used. The first two data sets are SINS static data collected in a lab environment 

while the other two data sets are SINS/DGPS kinematic data collected using road 
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vehicles. The test results for static SINS, kinematic SINS and kinematic SINS/DGPS data 

are summarized in the following subsections. 

 

 

3.4.1 AR Model Testing Using Static SINS Data 
 
To test the AR models with stationary data, another one hour of static data (rather than 

the 8 hours data used before) was collected by both the LTN 90-100 and the HG1700 

IMUs. The first 20 minutes of each data set were used for alignment while the last 40 

minutes were used for testing. For each IMU, the raw data (i.e. without any wavelet de-

noising) was processed using two modes of operation. The first mode is continuous 

updates for the KF and the second mode is continuous updates with some simulated 

periods of SINS free navigation (prediction). In both cases, the updates for the KF were 

Zero Velocity Updates (ZUPTs).  

 

For each operation mode, the sensor residual biases are modeled first by one of the 

random processes previously discussed in Chapter 2 (white noise, random constant, 

random walk) as well as by the commonly used 1st order GM process. In addition to these 

processes, a combined random walk and 1st order GM processes is used. Then, these 

sensor residual biases are modeled by AR processes of different order (1 to 4). The 

residual position errors are then computed for each model. The statistical parameters of 

the LTN 90-100 and HG1700 position errors obtained from each model in the first 

processing mode (using continuous ZUPTs) are given in Table 3.2. Figure 3.6 shows the 

LTN 90-100 position errors obtained in the same case from the 1st order GM model and 

AR models of different orders. 

 

From Table 3.2, it is clear that a white noise process is not adequate for modeling inertial 

sensor biases of both IMUs. This fact agrees with the obtained ACSs of Figures 2.10, 

where all figures indicated a correlation between residual biases. For the LTN 90-100 

IMU, Table 3.2 shows that a random constant process is not adequate also. Moreover, for 
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both IMUs, Random Walk (RW) and 1st order GM processes provide similar results. 

However, this can be explained by comparing the coefficients of bk in Equation 2.11a 

(RW) and Equation 2.17 (1st Order GM) and taking into account that the correlation time 

of the 1st order GM process is fairly large and the inertial data has a high data rate (64 

Hz). Therefore, the term ( )t∆β1 1−  of Equation 2.17 will be very close to 1.0, which is 

equivalent in this case to a random walk process.  

 

Table 3.2 SINS Static Mode Position Errors Using Different Stochastic Processes for 
Modeling Sensor Errors (Case of Continuous ZUPTs) 

 

LTN 90-100 IMU HG1700 IMU 
Error Statistics (m) Error Statistics (m)Sensor Bias    

Model Type 
Mean Max RMS

 

Mean Max RMS
White Noise 0.892  1.573  0.969 0.905  1.5104 0.957

Random Constant 0.087  0.179  0.099 0.419  0.877  0.438
Random Walk (RW) 0.039  0.079  0.044 0.418  0.877  0.438

1st Order GM 0.038  0.079  0.043 0.419  0.877  0.438
RW + 1st Order GM 0.029  0.065  0.033 0.853  1.575  0.906

1st Order AR 0.039  0.080  0.044 0.418  0.877  0.437
2nd Order AR 0.014  0.029  0.016 0.230  0.906  0.264
3rd Order AR 0.012  0.027  0.013 0.227  0.669  0.257
4th Order AR 0.041  0.086  0.046

 

0.410  1.093  0.449
 

For the HG1700 IMU, the random constant process gave similar results to RW and 1st 

order GM processes. In this case, and since these three processes are 1st order shaping 

filters, this means that the addition of a driving white sequence for 1st order random 

processes does not have a major effect for the HG1700 IMU. In case of using a combined 

RW and 1st order GM process, and compared to the position errors obtained from the 

individual RW or 1st order GM processes, the LTN 90-100 results are improved by 23% 

while the HG1700 results are worse by a factor of two. As shown before in Chapter 2, the 

obtained ACSs in Figure 2.10 had higher-order terms. Hence, if the inertial sensors are 

characterized by some RW effects in addition to the GM behavior, better results may be 

expected in case of the combined 2nd order process (RW + 1st order GM) and vice versa.  
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Fig.3.6 LTN 90-100 Position Errors Using Different Stochastic Processes for 

Modeling Sensor Errors (Case of Continuous ZUPTs) 
 

For both the LTN 90-100 and HG1700 IMUs, 1st order GM and 1st order AR models 

provide the same numerical results. This is expected, since both GM and AR models are 

of the same order. Compared to the 1st order GM and AR model results, the LTN 90-100 

position errors are improved by 64% and 70%, respectively, after applying AR models of 

2nd and 3rd orders. In case of the HG1700, the improvement is 40% and 42%, 

respectively. This indicates the efficiency of the AR models of orders higher than one. 

However, the worst AR model results are obtained from the 4th order AR model. This 

could be the result of two possible causes. The first one is that the KF starts to diverge 

due to the instability and model complexity resulting from adding more error states. The 

second cause is that the 4th order AR model does not decrease the prediction RMSE 

obtained from the 3rd order AR model (recall Figure 3.5). This could result in an over-

parameterization of the model introducing oscillating features into the solution.  

 

In the second processing mode, the SINS data was divided into equal periods of 

prediction and ZUPT intervals. Two cases are implemented.  In the first case, prediction-

ZUPT intervals of 60 s are used whereas 120 s intervals are used in the second case. 

Table 3.3 summarizes the statistics of the position errors obtained in the two cases for 

both IMUs. Also, Figure 3.7 shows the LTN 90-100 position errors for the 120 s 
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prediction-ZUPT intervals. In Figure 3.7, note that the signature of the 1st order GM 

position errors (black dashed line) does not show up clearly, where it is hidden under the 

corresponding 1st order AR model results (blue solid line) since both models provide the 

same numerical results (Table 3.3).  

 

Table 3.3 SINS Static Mode Position Errors Using Different Stochastic Processes for 
Modeling Sensor Errors (Case of Successive Prediction and ZUPT Periods) 

 

LTN 90-100 IMU HG1700 IMU 
Error Statistics (m) Error Statistics (m)

Prediction - 
ZUPT 

Interval 

Sensor Bias 
 Model Type 

Mean Max RMS

 

Mean Max RMS
White Noise 1.60   6.06   2.07 2.95   15.21  3.46 
Rand. Const. 0.18   0.64   0.23 2.75   14.36  3.18 

Rand. Walk (RW) 0.11   0.48   0.14 2.74   14.36  3.18 
1st Order GM 0.11  0.48   0.14 2.74   14.37  3.18 

RW + 1st Order GM 0.11   0.53   0.13 3.74   14.88  4.39 
1st Order AR 0.11   0.48   0.14 2.74   14.36  3.18 
2nd Order AR 0.08   0.42   0.10 1.98   9.94   2.44 
3rd Order AR 0.07  0.32   0.09 2.28   11.90  2.73 

 

60 s 

4th Order AR 0.22   0.76   0.25 

 

2.76   11.73  3.22 
 

White Noise 5.24   18.15 6.61 8.42   48.24  10.67
Rand. Const. 0.54   1.95   0.67 6.56   45.83  8.81 

Rand. Walk (RW) 0.26   1.50   0.35 6.56   45.84  8.81 
1st Order GM 0.27   1.46   0.35 6.56   45.86  8.81 

RW + 1st Order GM 0.27   1.70   0.36 9.49   49.20  12.59
1st Order AR 0.26   1.50   0.35 6.56   45.85  8.81 
2nd Order AR 0.20   0.97  0.26 6.55   33.97 8.73 
3rd Order AR 0.22   0.79   0.26 6.72   38.15  8.83 

 

120 s 

4th Order AR 0.65   2.51   0.77 

 

9.04   36.95  11.07
 

The results in Table 3.3 indicate that both cases (60 s and 120 s prediction-ZUPT 

intervals) are similar and generally agree with the previous results of continuous ZUPTs. 

However, for both cases, the LTN 90-100 results obtained by the combined RW and 1st 

order GM process are the same as the individual RW and 1st order GM process results. 

Using 60 s prediction-ZUPT intervals, the LTN 90-100 position errors obtained from 1st 

order GM and AR models are improved by 28% and 33% after applying 2nd and 3rd order 
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AR models, respectively. The corresponding improvement in case of 120 s intervals is 

27% for both 2nd and 3rd order AR models. For the HG1700 data, the corresponding 

improvement using a 2nd and 3rd order AR model is 23% and 14% for the 60 s intervals. 

However, there is no major improvement in the 120 s case, where it is only 1% using the 

2nd order AR model and the AR results start to be worse after using higher orders. This 

can be explained by the fact that the HG1700 IMU is of lower quality than the LTN90-

100 IMU. Therefore, for long prediction periods, the effect of using better sensor error 

models in case of the HG1700 IMU will be hidden in the overall system errors. As 

expected, and similar to the first approach of continuous ZUPTs, the 4th order AR model 

gives the largest AR position errors for both IMUs. 

 

 
Fig.3.7 LTN 90-100 Position Errors Using Different Stochastic Processes for 

Modeling Sensor Errors (Case of 120 s Prediction-ZUPT Intervals) 
 

 

3.4.2 AR Model Testing Using Kinematic SINS and SINS/DGPS Data 
 
As mentioned earlier, two van SINS/DGPS kinematic data sets will be used in the 

analysis. The first data set was collected in Laval, Québec, using Ashtech Z12 GPS 

receivers and a navigation-grade SINS (Honeywell LRF-III) installed in the VISAT van. 

For a full description of the VISAT van, consult El-Sheimy (1996).  The surveyed 

trajectory of this van test is illustrated in Figure 3.8a. The second test was performed in 
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Calgary, Alberta using a NovAtel Black Diamond System (BDS) installed in one of the 

University of Calgary (U of C) vans. The NovAtel BDS is a tightly integrated SINS/GPS 

system that consists of a NovAtel OEM4 GPS receiver and a tactical-grade IMU 

(Honeywell HG1700). The Calgary van trajectory is shown in Figure 3.8b. For both tests, 

van stops (ZUPTs) were performed every 20-80 seconds. The characteristics of both the 

Laval and Calgary SINS/DGPS kinematic tests are summarized in Table 3.4. 

 

Fig.3.8 SINS/DGPS Van Test Trajectories 

 

Table 3.4 Summary of Performed SINS/DGPS Van Kinematic Tests Conditions 
 

Kinematic Test Laval, Québec 
LRF-III IMU 

Calgary, Alberta
HG1700 IMU 

Static Initialization Time (minute) 15 18 
Average Van Speed (km/h) 50 65 
Number of Performed ZUPTs 19 35 
Minimum Number of Available Satellites 7 5 
Average Number of Available Satellites 8 6 
Average PDOP 1.5 1.8 
Maximum Rover-Master Distance (km) 4.0 6.0 
GPS Data Rate (Hz) 1.0 1.0 
SINS Data Rate (Hz) 50 100 

 

To test the performance of AR models with kinematic data, two modes of processing 

were applied on both data sets. The first mode of processing is SINS stand-alone 

positioning with frequent ZUPTs while the second mode of processing is SINS/DGPS 
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integration but with some intentionally induced DGPS outage periods. For each data set, 

the reference solution is obtained by processing the data in a complete SINS/DGPS 

integration mode. 

 

Testing AR Models With SINS Stand-Alone Kinematic Data 
 
To investigate the efficiency of AR models with SINS kinematic data, both data sets were 

processed using only the SINS data with ZUPTs as updates. The data was processed 

using different error models (the same ones used in Section 3.4.1) for the SINS sensor 

residual bias estimation. Then, the resulting positioning errors were computed by 

subtracting the SINS stand-alone solution from the reference solution. The magnitudes of 

these position errors are shown in Figure 3.9 while their statistics are given in Table 3.5. 

The results in Table 3.5 are consistent in general with the results obtained from SINS 

static data (Table 3.3) and confirm the efficiency of using AR models. For the LRF-III 

data, SINS position errors are reduced by 27% and 36% using AR models of 2nd and 3rd 

orders, respectively. For the HG1700 data, the utilization of a 2nd order AR model 

improved the results by 12%. However, the HG1700 IMU AR results start to get worse 

after using AR models of orders higher than 2. In case of the LRF-III IMU, the results of 

AR models of orders 4 to 10 are worse than those obtained with a 3rd order AR model. 

However, they are still better than the 1st order solution by 12% to 26%.  
 

Fig.3.9 SINS Stand-Alone Kinematic Position Errors Using Different Stochastic 
Processes for Modeling Sensor Errors  
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Table 3.5 Stand-Alone SINS Kinematic Mode Position Errors Using Different 
Stochastic Processes for Modeling Sensor Errors  

 

Error Statistics (m) Kinematic  
Test 

Sensor Bias  
Model Type Mean Max RMS 
White Noise 2.28    8.67     2.95 

Random Constant 3.69    9.09     4.49 
Random Walk 1.75    4.44     1.97 
1st Order GM 1.76    4.49     1.98 

Random Walk + 1st Order GM 2.36   9.19 3.01 
1st Order AR 1.75   4.44     1.96   
2nd Order AR 1.20    5.07     1.44 
3rd Order AR 0.96    5.13     1.27 
4th Order AR 1.24    4.63     1.48 

: 
: 

: 
: 

: 
: 

: 
: 

 

 
 

Laval, Québec 
LRF-III IMU 

10th Order AR 1.52    4.45     1.74 
 

White Noise 50.67  176.02   58.50 
Random Constant 44.03  148.69   52.90 

Random Walk 42.90  147.83   52.46 
1st Order GM 43.72  148.78   53.11 

Random Walk + 1st Order GM 36.04  300.80   52.02 
1st Order AR 42.93  147.88   52.50 
2nd Order AR 38.37   137.86   46.92 

 

 
Calgary, Alberta 

HG1700 IMU 

3rd Order AR 46.60  155.04   56.99   
 

 
Testing AR Models With SINS/DGPS Kinematic Data 
 
In this test scenario, the data is processed using SINS/DGPS integration but with some 

simulated DGPS outages. These outages are simulated ones because full DGPS data 

coverage was available at all times, and hence the SINS solution was computed as if an 

outage had occurred during these periods. In this case, the state vector of the SINS/DGPS 

solution at the beginning of each outage was used to define the initial conditions for the 

inertial data integration. To obtain positioning errors accumulated during outage periods, 

the reference solution was subtracted from the SINS solution at these periods. For the 

first data set (LRF-III IMU), a total number of 10 DGPS outages were selected, while 11 

outages were chosen for the second data set (HG1700 IMU). The selected outage 
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intervals represent the van in pure kinematic mode, covered the whole mission, did not 

include turns and ranged from 70 s to 100 s (LRF-III) and from 70 s to 180 s (HG1700). 

As performed before with the SINS stand-alone data, in each mode of kinematic data 

processing, the sensor residual biases are modeled first by a white noise, random 

constant, RW, 1st order GM, a combined RW and 1st order GM models and then by AR 

models of different orders. Then, the magnitude of the accumulated position errors during 

the selected DGPS outages of both data sets were computed for each model. These 

position errors are shown in Figure 3.10, while the values of such position errors at the 

end of the outage periods are summarized in Tables 3.6 and 3.7.   

 

Fig.3.10 SINS Kinematic Position Errors During DGPS Outages Using Different 
Stochastic Processes for Modeling Sensor Errors  

 

These results agree with the results obtained using SINS stand-alone kinematic data 

(Table 3.5) in demonstrating the efficiency of AR models of orders higher than one over 

other random processes. For the LRF-III position errors during DGPS outages, the 1st 

order results are improved by 10% and 14% when using AR models of 2nd and 3rd orders, 

respectively. In addition, the obtained position errors remain almost constant after using 

AR models higher than 3 (4 to 10). This indicates that a 3rd order AR model is sufficient 

to obtain a converging solution, which agrees with the results obtained before in Figure 

3.5. In contrast to the SINS stand-alone AR results, the LRF-III errors during DGPS 

outages did not get worse after increasing the AR model order from 3 to 10. This can be 

explained by the fact that the position errors during any outage are independent of the 
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other outages (since DGPS position and velocity updates are available between outage 

intervals). This is not the case in SINS stand-alone mode with ZUPTs as updates where 

position errors are accumulated for the whole test duration. Therefore, in case of DGPS 

outages, the additional increase of AR model orders (from 3 to 10) did not affect the KF 

stability.  

 

In case of the HG1700 data, the 2nd order AR model results are better than the 1st order 

results by 35%. Similar to the kinematic SINS stand-alone case, the 3rd order AR results 

are worse than the 2nd order AR ones, however, they are still better than the 1st order 

results by 12%. Unlike the LRF-III solution during DGPS outages, the increase of AR 

model orders (above 2) in the HG1700 case results in poorer accuracy. However, taking 

into account that the LRF-III IMU is a high quality IMU while the HG1700 is a medium 

quality one, and also that the selected outage periods for the HG1700 are much longer 

than the corresponding ones of the LRF-III, it can be expected that the KF in case of the 

HG1700 may diverge due to the addition of more error states. 

 

Table 3.6 LRF-III IMU Kinematic Position Errors During DGPS Outages Using 
Different Stochastic Processes for Modeling Sensor Errors  

 

Outage 

No. Length
(s) 

White 
Noise 

Rand. 
Const. 

Rand.
Walk
(RW)

1st  
Ord.
GM 

RW
+ 
1st 

GM

1st 
Ord.
AR

2nd  
Ord.
AR 

3rd  
Ord. 
AR 

4th  
Ord. 
AR  

 
… 

10th 
Ord.
AR 

1 90 1.47 1.27 1.21 1.23 1.18 1.23 1.03 0.99 0.95 … 0.98 
2 100 1.86 1.76 1.67 1.69 1.18 1.69 1.58 1.38 1.38 … 1.32 
3 70 1.73 1.82 1.78 1.84 1.73 1.85 1.60 1.4 1.46 … 1.48 
4 85 0.67 0.87 0.61 0.63 0.40 0.63 0.38 0.84 0.85 … 0.85 
5 70 1.75 1.53 1.44 1.56 0.95 1.55 1.47 1.17 1.19 … 1.21 
6 85 2.02 2.12 1.94 2.05 2.58 2.05 1.75 1.64 1.64 … 1.66 
7 85 1.02 1.26 0.89 0.96 1.31 0.95 0.87 0.98 0.99 … 0.99 
8 85 0.53 0.86 0.51 0.56 1.10 0.56 0.56 0.57 0.57 … 0.57 
9 70 1.72 1.71 1.75 1.86 2.27 1.85 1.86 1.63 1.64 … 1.62 
10 75 1.79 1.47 1.03 1.13 2.19 1.10 1.08 0.99 1.05 … 1.05 

         

 Mean (m) 1.46 1.47 1.28 1.35 1.49 1.35 1.21 1.16 1.17 … 1.17 
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Table 3.7 HG1700 IMU Kinematic Position Errors During DGPS Outages Using 
Different Stochastic Processes for Modeling Sensor Errors  

 

Outage 

No. Length  
(s) 

White  
Noise 

Rand. 
Const.

Rand. 
Walk 
(RW) 

1st  
Order
GM 

RW 
+ 

1st GM

1st  
Order 
AR 

2nd  
Order 

AR 

3rd  
Order 

AR 

1 70 32.98 14.20 14.09 13.83 37.53 13.93 16.87 19.06 
2 125 31.24 30.12 30.13 30.23 20.63 30.17 19.12 12.34 
3 110 13.34 15.44 15.56 15.49 6.66 15.60 2.98 13.74 
4 155 23.33 23.95 23.96 24.04 21.78 24.06 28.31 37.87 
5 160 25.45 30.67 30.99 30.89 17.33 31.12 12.42 41.93 
6 130 11.95 12.86 13.01 12.89 30.89 12.96 24.27 29.37 
7 180 62.77 59.54 59.01 59.32 63.88 59.15 29.79 10.94 
8 130 16.78 21.10 22.02 21.70 16.77 22.11 04.48 18.78 
9 130 59.21 36.24 40.19 38.55 29.39 39.96 30.11 33.21 
10 120 28.47 25.46 23.81 24.11 8.76 23.98 09.67 22.72 
11 70 10.93 10.30 9.990 10.03 9.30 10.01 05.13 05.59 

         

 Mean (m) 28.77 25.45 25.71 25.55 23.95 25.73 16.65 22.32 
 

 

3.5 Stability of the Estimated AR Model Parameters 
 
In the previous Section, all the obtained results showed that the performance of AR 

processes of an appropriate order is better than the performance of all other implemented 

random processes, including the most widely used 1st order GM process. As mentioned 

before, AR processes have the advantage over other random processes that they have 

more modeling flexibility. However, AR processes and the other random processes used 

have the common problem that the process model coefficients (parameters) are estimated 

from experimental data. In Chapter 2, it has been addressed that the obtained values of 

the parameters of the other random processes (especially GM processes) will change with 

the change in data length used for their computation. Therefore, the question arises if this 

is also true for the estimated parameters of AR processes.  

 

To answer this question, the AR model parameters should be computed using different 

data time lengths. For this purpose, the measurements of one sensor of the three static 
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data sets used in Chapter 2 (LTN 90-100, HG1700 and AHRS400CC-100) are chosen for 

the analysis. The selected sensor measurements are the 8-hour data span of LTN 90-100 

y-accelerometer. All other sensors show similar results. For the analysis, a 3rd order AR 

model is assumed, and hence 3 coefficients (α1, α2 and α3) are estimated for different 

time lengths of the data (1, 2, 3, 4, 5, 6, 7 and 8 hours). Therefore, for each coefficient, 8 

values are computed. To check the stability of the AR model coefficients, the computed 

values of each coefficient (8 values in our case) are compared to a reference value of such 

coefficient. The reference value here is the one used in the analysis performed in the 

previous Section, i.e. the value that corresponds to 8 hours. The comparison is performed 

by obtaining the % percentage resulting from dividing the 8 values of each coefficient by 

its reference value. The results of such analyses are shown in Figure 3.11. 

 

 
Fig.3.11 Variation of the 3rd Order AR Model Parameters with the Variation of the 

Data Time Length Used for Their Computation 
 

Figure 3.11 indicates that the variations between the values of each AR model parameter, 

obtained using different data time lengths, are very small. The maximum variation occurs 

in α3 with an amount of 0.0062%, which is obviously negligible. In addition, the 

maximum variation in α1 (which is the most important coefficient in the AR model) is 

only 0.001%. Moreover, Figure 3.11 shows for all coefficients (α1, α2 and α3) that their 

values start to converge after using 5 hours of data and are almost constant after using 7 

hours of data. This fact is very important since it confirms that there is no need to use 
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larger data sets for computing the AR model parameters. Finally, to assess that this is not 

the case for other random processes discussed in Chapter 2, the same analysis is 

performed using the same sensor data and assuming a 1st order GM process. As shown in 

Chapter 2, the 1st order GM model parameter β1 is obtained from the ACS that is 

computed using the sensor data such that 
1c1 τ1β = , where 

1cτ  is the estimated 

correlation time.  

 

To investigate the variation of β1 in this case, the ACS is computed using different time 

lengths of data (i.e. 1, 2, 3, 4, 5, 6, 7 and 8 hours, respectively), and then β1 is obtained 

for each time length. Similar to the AR model analysis, the comparison between the 8 

values of β1 is performed by dividing each value by the value of β1 obtained at 8 hours 

(reference value). The resultant % percentages are shown in Figure 3.12. Compared to 

Figure 3.11, Figure 3.12 depicts that the variation level of β1 is very large and more data 

is needed to reach the convergence level. This agrees with the results obtained before in 

Chapter 2. This difference is the main reason why the AR model has been used in the 

following. 

 

 
Fig.3.12 Variation of the 1st Order GM Model Parameter with the Variation of the 

Data Time Length Used for its Computation 
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CHAPTER 4 

 
Wavelet Decomposition For De-Noising Inertial Sensor Data 

 

 

It is a well-known fact in inertial navigation that all gyro and accelerometer technologies 

suffer from relatively high measurement noise. In Chapter 3, it was shown for static SINS 

data that an accurate estimation of the Autoregressive (AR) model parameters, for 

modeling inertial sensor residual biases, is possible only if de-noised inertial data are 

used.  The noise affecting inertial sensors contains two parts: a low frequency (long-term) 

component and a high frequency (short-term) component. Both noise components are 

combined together and affect the inertial sensor measurement accuracy. The high 

frequency component has white noise characteristics while the low frequency component 

is characterized by correlated noise.  

 

As shown in the results of Chapter 3, the correlated noise components can be modeled 

with sufficient accuracy using random process error models, whereas the white noise part 

cannot. The problem with inertial data is that the required sensor signals (accelerometer 

specific forces and gyro angular rates) are buried in high frequency measurement noise. 

Therefore, if the white noise component could be separated (or removed) from the inertial 

sensor signal, it can be expected that the performance of inertial sensors measurements 

will be improved, which in turn will improve the overall inertial navigation accuracy. 

 

The separation of the high and low frequency inertial sensor noise components can be 

done by de-noising the inertial measurements. As indicated in Chapter 3, to obtain 

accurate AR model coefficients from inertial static data, the wavelet de-noising technique 

was selected for reducing the unmodeled sensor noise (white noise). Then, the AR 

parameters were computed from the de-noised data. On the other hand, the same 

procedure can also be applied in inertial kinematic applications such as SINS stand-alone 

navigation or SINS/DGPS integration applications that have frequent DGPS outages. In 



 63

SINS/DGPS kinematic applications, de-noising of SINS data signals by wavelet 

decomposition techniques has been successfully used in reducing estimated attitude 

errors considerably; see Ŝkaloud, (1999) for more details. It also has been used to 

improve the estimation of airborne gravity disturbance values, using SINS data de-noised 

by wavelets, see Bruton et al. (2000) for details. In this case, the improvement was rather 

minimal, however.   

 

Since the SINS sensor outputs contain effects of actual vehicle motion and sensor noise, 

the resulting position errors will be proportional to the existing inertial sensor noise and 

vehicle vibrations. Wavelet techniques can be applied for removing the high frequency 

noise in order to minimize the undesirable effects of sensor noise and other high 

frequency disturbances. In such situations, it is expected that the position errors obtained 

from de-noised SINS data will be smaller than the ones obtained from the original data. 

 

In this Chapter, the Wavelet Transform (WT) will be presented first. After that, the 

principle of wavelet multi-resolution analysis (multiple levels of wavelet decomposition) 

will be introduced and then discussed considering both static and kinematic mode 

situations. The effect of de-noising SINS kinematic data will be analyzed after comparing 

the obtained position errors, using both the original and the de-noised SINS data in 

kinematic stand-alone SINS navigation and SINS/DGPS integration with some existing 

DGPS outages. Finally, and based on the performance of the de-noised SINS sensor data, 

a combined approach of de-noising inertial data and modeling sensor residual biases 

using Autoregressive (AR) processes (Chapter 3) will be implemented and tested. 

 
 
4.1 Wavelets and The Wavelet Transform (WT) 
 
Wavelets, as a mathematical tool, have received extensive attention in the engineering 

profession during the last two decades. From the mid 1980s till now, wavelet techniques 

have been implemented in many applications such as: image processing, medical 

diagnostics, geophysical signal processing, pattern recognition, electromagnetic wave 
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scattering, boundary value problems,…etc. (Goswami and Chan, 1999). A number of 

scientists have contributed to the development of wavelet analysis techniques. Jean 

Morlet was the first one to propose the concept of wavelets. After that, the methods of 

wavelet analysis have been developed by Yves Meyer. Then, these methods were 

remarkably enhanced by Stephane Mallat and Ingrid Daubechies. Wavelet techniques are 

based on analyzing a signal through signal windowing but with variable window sizes. 

This gives an advantage to wavelets over other signal processing techniques in that it is 

capable of performing local analyses, i.e. analyzing a localized portion of a large signal 

(Polikar, 1996). This is possible since wavelets allow the use of narrow windows (short-

time intervals) if high frequency information is needed and wide windows (long-time 

intervals) if low frequency information is required.  

 

 

4.1.1 The Continuous Wavelet Transform (CWT) 
 
The Continuous Wavelet Transform (CWT) C

ν,µX  of a continuous-time domain signal 

)t(x  is defined as the inner product of the signal sequence with a family of functions 

)t(ν,µψ , such as: 

 

)t(,)t( ν,µ
C
ν,µ ψxX =                                       

        dt)t()t( ν,µ∫
∞

∞−

∗= ψx                                     (4.1a), 

 

where the ∗  indicates complex conjugation and the family )t(ν,µψ  is defined by 

continuous scaling (dilation or compression) parameters µ  and translation parameters ν  

of a single analyzing function )t(ψ  such that: 

 

0µ,
µ
νt

µ
1)t(ν,µ >








=

-ψψ                     (4.1b) 
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Substituting Equation 4.1b into Equation 4.1a, we obtain: 

 

.dt
µ
νt)t(

µ
1C

ν,µ ∫
∞

∞

∗








=

-

-ψxX                              (4.1c) 

 

Therefore, the wavelet transformation of a time-domain signal, in general, is defined in 

terms of the projections of this signal onto a family of basis functions that are generated 

by dilations (or compressions) and translations of a single function. The single analyzing 

function is called the “mother or prototype wavelet” while the basis functions are called 

“daughter wavelets”. From Equation 4.1c, the results of the CWT C
ν,µX  are many wavelet 

coefficients CX  that are functions of the dilation and translation parameters µ  and ν .  

 

Two conditions must be satisfied for ψ  to be a window function and also to give the 

ability to recover (or reconstruct) the signal )t(x  from C
ν,µX . The first condition is that ψ  

must be short and the second one is that it must be oscillatory, i.e. ψ  must have zero-

mean and decay quickly at both ends (Osman, 2003). However, these two conditions will 

be fulfilled if (Strang and Nguyen, 1996; Goswami and Chan, 1999; Keller, 2000): 

 

    0dt)t()0( == ∫
∞

∞−

ψψ)                                          (4.2), 

 

where the hat indicates a Fourier transform. These conditions will give ψ  the nature of 

small waves, and hence, they were named wavelets. Figure 4.1 shows some examples of 

the existing mother wavelets that satisfy these two conditions. A wavelet is therefore 

defined in Misiti et al. (2000) as “a waveform of effectively limited duration that has an 

average value of zero”. Moreover, and considering a wavelet that satisfies Equation 4.2, 

the wavelet transform is in fact a band-pass filter (Keller, 2000).  
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Symlets (sym8)  Daubechies (db2)  Coiflets (coif1)  Daubechies (db8) 

Fig.4.1 Examples of Some Existing Mother Wavelets (Misiti et al., 2000) 

 

As mentioned before, wavelets offer the capability of detecting variable frequency 

components in a signal as well as the time of their existence. As will be shown, this is 

obtained through the dilation and translation parameters µ  and ν . In Equation 4.1c, by 

changing the value of µ  in 







µ
νt -ψ* , the time (or window) support of ν,µψ  will also be 

changing. In other words, if µ  is reduced, the time window of )t(ν,µψ will narrow, and 

thus, high-frequency information could be detected. The opposite is true when µ  is 

increased. Therefore, the parameter µ1  is a measure of frequency and hence µ  can be 

considered as a “scale” that determines the oscillating behavior of a particular daughter 

wavelet )t(ν,µψ , see Figure 4.2.  

 

For each used scale parameter µ , the result of the integral of Equation 4.1c is multiplied 

by the “constant” number µ1  to normalize the energy of the transformed signal (i.e. to 

ensure energy preservation), and hence, the energy of the transformed signal will be 

constant for all scales (Polikar, 1996; Mallat, 1998; Goswami and Chan, 1999). On the 

other hand, the translation parameter ν  indicates the time location of the wavelet window 

(i.e. the “shift” of the wavelet along the time axis), which provides the time localization 

information of the original signal. Thus, and considering Equations 4.1, the CWT of a 

signal is obtained through the inner product of the original signal with “scaled” and 

“shifted” versions of the analyzing mother wavelet. 
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Direction of
Increasing 
The Scale  

""µ  

Fig.4.2 The Effect of Changing the Dilation (or Compression) Parameter µ  on the 
Mother Wavelet 

 

From Equation 4.1c, the resultant CWT coefficients, produced at different scales and 

different time locations of the signal, are considered to be a measure of correlation 

(similarity) between the used wavelet function and the signal itself. In other words, if the 

signal at one of its locations has a spectral component that is closely related to the current 

value of the scale µ , the computed coefficient at this point will have a relatively large 

value, and vice versa (Polikar, 1996). The computation of the CWT coefficients starts at 

the beginning of the signal using the most compressed wavelet that can detect the highest 

frequencies existing in the signal. This is performed by choosing a scale value that 

represents the original signal. Then, the wavelet is shifted by ν  along the time axis until 

the end of the signal. The next step is to increase the scale µ  by some amount (thus 

expanding the wavelet window to detect lower frequencies) and repeat the shifting 
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procedure. The whole procedure is repeated for each value of µ  until some “maximum” 

desired value of µ  is reached. 

 
 
4.1.2 The Discrete Wavelet Transform (DWT) 
 
Since we are dealing with discrete-time inertial sensor signals, the Discrete Wavelet 

Transform (DWT) is implemented instead of the CWT. In this case, the basis functions 

are obtained by discretizing (sampling) the continuous parameters µ  and ν . In the CWT, 

it was shown that the wavelet coefficients are calculated for every possible scale, which 

will lead, of course, to a large amount of work and will yield a lot of redundant 

information. Therefore, in the DWT, the sampling of µ  and ν  is based on powers of 

some constant number α , and thus, the coefficient computations will be performed at 

specific scales and locations. Hence, the sampling of µ  and ν  in the DWT takes the 

form:  
 

 nαµ =                                                          (4.3a) 

nαmν =                                                       (4.3b), 
 

where n and m are integer numbers representing the discrete dilation and translation 

indices. Moreover, and from the practical aspects of the wavelet theory analysis, it has 

been found that the most efficient way of determining µ  and ν  is the “dyadic” one, i.e. 

to take the value of α  to be 2. By substituting Equations 4.3 into Equation 4.1c, the CWT 

will take the form: 

 

∫
∞

∞

− −=
-

ψxX dt)mαt()t(
α

1 n
n

C
ν,µ                             (4.4) 

 

Then, by discretizing )t(x  to )k(x  assuming a sampling rate of 1 (i.e. k = t) and 

considering 2α = , the DWT D
m,nX  of a discrete-time signal )k(x can be described by the 

two integers n and m as: 
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)m2k()k(
2

1 n

kn
D

m,n −= −∑ ψxX                            (4.5) 

 
For many signals (especially SINS sensor data), the low frequency component of the 

signal is the one of interest since it gives the signal its identity. On the other hand, the 

high frequency component usually constitutes the signal noise. In wavelet terminology, 

the low frequency component of a signal is called the “approximation part” while the 

high frequency component is called the “details part”. In the implementation of the DWT, 

the wavelet coefficients of a signal are computed by passing such a signal through two 

complementary half-band filters: a Low-Pass (LP) filter and a High-Pass (HP) filter. 

Therefore, the input signal in case of implementing the DWT will be decomposed into 

two parts. The first part will be the output of the HP filter (i.e. the details) while the 

second part will be the output of the LP filter (i.e. the approximation), see Figure 4.3. In 

the figure, if the input signal has n samples, each of the LP and HP filters will output n 

samples (i.e. a total of 2n samples will be provided). Thus, the LP and HP filter outputs 

are downsampled by 2 to provide approximation and details parts (each of length n/2). 
 

 SINS 
Sensor 
Signal 

      Lowpass Filter 

        Half-Band 
          Filters 
 

     Highpass Filter 

Approximation 
Part 

Details 
Part 

 
 

Fig.4.3 Signal Decomposition by the Discrete Wavelet Transform (DWT) 
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In the above discussion, it has been shown how the DWT can be used to analyze (or 

decompose) a signal into its approximation and details components. However, as in any 

application that involves transforming a signal from its time-domain to another domain, 

the requirement after that is the reconstruction of the signal back into its original domain 

without loosing any information. Basically, in the case of wavelets, this will be obtained 

by applying the Inverse Discrete Wavelet Transform (IDWT) on the previously computed 

wavelet coefficients. In wavelet theory terms, the application of the DWT is called the 

analysis (or decomposition) process, while the application of the IDWT is called the 

reconstruction (or synthesis) process.  

 

To reconstruct a signal from its wavelet coefficients, the approximation and details 

coefficients (after upsampling by 2 in this case) are passed separately through another LP 

and HP filters. The decomposition LP and HP filters and the associated reconstruction LP 

and HP filters are not identical but are closely related, and they form a known system in 

the signal processing literature that is called “quadrature mirror filters” (Misiti et al., 

2000). For more details about the design of the decomposition and the corresponding 

reconstruction LP and HP filters, see Strang and Nguyen (1996).  

 
 
4.2 Wavelet Multiple-Level of Decomposition (Multi-Resolution Analysis) 
 
Based on the Nyquist theorem, if a signal has a sampling frequency of fs, the highest 

frequency component that the signal would represent is fs/2 (Oppenheim and Schafer, 

1999). By applying the DWT to decompose a signal and recalling that the LP and HP 

filters (shown in the filter bank of Figure 4.3) have half-band characteristics, then the 

cutoff frequency of the LP filter is exactly at one half of the maximum frequency 

appearing at the signal. Hence, if the DWT is applied on an inertial data of sampling 

frequency fs, the approximation part will include those inertial signal components that 

have frequencies of less than fs/4 while the details part will include the components of 

frequencies between fs/4 and fs/2. To obtain the lower resolution frequency components 

(i.e. that are less than fs/4), the approximation part can be decomposed using the same 
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process into two other approximation and details components. In this case, the second 

approximation part will include all frequency components of less than fs/8 while the 

second details part will include frequencies between fs/8 and fs/4. 

 

Therefore, to obtain finer resolution frequency components of a specific signal, the signal 

is broken down into many lower-resolution components by repeating the DWT 

decomposition procedure with successive decompositions of the obtained approximation 

parts. This procedure is called either wavelet multi-resolution analysis or wavelet 

multiple Level of Decomposition (LOD) or wavelet decomposition tree (see Figure 4.4). 

However, this capability of representing a signal at several levels of resolution constitutes 

one of the major powerful facilities of wavelets over other signal processing techniques. 

Using wavelet multi-resolution analysis, the signal can be represented by a finite sum of 

components at different resolutions, and hence, each component can be processed 

adaptively depending on the application at hand (Goswami and Chan, 1999). 

 

 

1st Level of 
Decomposition 

2nd Level of 
Decomposition 

3rd Level of 
Decomposition 

SINS Signal   

A1 D1   

A2 D2

A3 D3

A: Approximation
D: Details   

 
Fig.4.4 Wavelet Multiple Level of Decomposition (Wavelet Decomposition Tree) 

 

As mentioned before, the signal is reconstructed by applying the IDWT on its computed 

wavelet coefficients. From Figure 4.4, the SINS signal can be represented as: 
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SINS Signal  =  A1  +  D1 

                      =  A2  +  D2  +  D1 

                      =  A3  +  D3  +  D2  +  D1 

                      =  …………………………                                   

                      =  An  +  Dn  +  Dn-1  +   ………  +  D1               (4.6), 

 

where A and D represent the signal approximation and details components, respectively, 

and n = 1, 2, 3,…. is the wavelet LOD. Since the application at hand is SINS sensor data 

de-noising, the desired reconstructed signal is obtained by passing the coefficients of the 

selected approximation level through the IDWT LP filter and resetting the coefficients of 

all subsequent details to zero before passing them through the IDWT HP filters.   

 
 
4.2.1 Selection of the Appropriate Wavelet Level of Decomposition (LOD) 
 
In theory, the decomposition process can be continued indefinitely, but in reality it can be 

performed only until the individual details consist of a single sample. Practically, an 

appropriate Level of Decomposition (LOD) is chosen based on the nature of the signal or 

on a specific criterion (Misiti et al., 2000). In our case of SINS sensor data, we have two 

modes of operation: static and kinematic. For both operation modes, the selection of an 

appropriate LOD is based on removing the high-frequency noise but with keeping all the 

useful information contained in the signal.  

 

For static inertial data, the sensors outputs contain the following signals: the Earth gravity 

components, the Earth rotation rate components and the sensors long-term errors (such as 

biases). These signals have very low frequency, and hence, they can be separated easily 

from the high frequency noise components by the wavelet multi-resolution analysis. To 

select an appropriate LOD in this case, several decomposition levels are applied and the 

Standard Deviation (STD) is computed for each obtained approximation component. As 

shown in Chapter 3, the proper LOD will be the one after which the STD reaches its 

minimum value, recall Figures 3.3 and 3.4.     
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In case of kinematic inertial data de-noising, the output of the sensors contains both 

effects of the actual vehicle motion dynamics and the sensor noise as well as some other 

undesirable effects (e.g. vehicle engine vibrations). Therefore, the criterion for the 

selection of the appropriate LOD will be different from the static data case. Before 

applying the wavelet multi-resolution analysis on kinematic SINS data, it should be 

ensured that the decomposition or de-noising process does not remove any actual motion 

information. To satisfy this condition, a spectral analysis of the used kinematic SINS 

sensor raw data should be performed first. In Geomatics engineering of shipborne, 

airborne and land vehicle applications, the vehicle motion dynamics is usually in the low 

frequency portion of the spectrum. Therefore, by analyzing the raw data in the frequency 

domain, the low frequency range of the actual vehicle motion can be detected. Then, the 

appropriate LOD can be selected in such a way that the decomposition process will 

remove only the components that have frequencies higher than the detected motion 

frequency range.         

 

 
4.3 Kinematic SINS and SINS/DGPS Data Testing Using De-noised SINS Data 
 
To test the effect of de-noising inertial sensor data, the positioning performance of SINS 

stand-alone navigation or SINS/DGPS integration during DGPS outages is analyzed for 

the same two van data sets described in Chapter 3. For both data sets, a spectral analysis 

is performed first for the original SINS raw data to choose the appropriate wavelet LOD 

that removes only the undesirable sensor noise and other vibrations and also maintains 

the actual motion dynamics. As mentioned before, the maximum frequency that can 

appear at the SINS raw signal is fs/2, where fs is the data sampling frequency (data rate in 

Hz). The data rates of the used IMUs are 50 Hz (LRF-III test, Laval, Québec) and 100 Hz 

(HG1700 test, Calgary, Alberta). Therefore, the data highest visible (or detected) 

frequency will be 25 Hz for the first data set and 50 Hz for the second data set, 

respectively.  
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To show the performed spectral analysis, the spectrum of one set of sensor data from 

each test is shown. For the rest of the IMU sensors, the spectrum characteristics are quite 

similar. Figures 4.5 show the spectrum of one of the used gyros for each IMU. The 

figures clearly indicate that the bandwidth that contains the majority of the motion 

dynamics for both tests falls in the low frequency portion of the spectrum with a cutoff 

frequency, somewhat below 3 Hz.  

 

However, a peak in the amplitude spectrum between 11 Hz and 13 Hz is observed in 

Figure 4.5b (HG1700 gyro). This is most probably due to the van engine vibrations, i.e. it 

is considered as undesirable noise in terms of motion detection. To check this 

assumption, a spectral analysis for the gyro alignment static data is performed since the 

van engine was on during the initial static (alignment) period. The obtained spectrum for 

the static data is shown in Figure 4.6. The figure shows a peak that is similar to the one 

obtained in Figure 4.5b with the same magnitude and same frequency band. This 

confirms that engine vibration noise is the most likely cause for the peak in the spectrum.  

 

 

Fig.4.5 The Spectrum of One Gyro of Van Kinematic Data 

 

For the selection of the proper wavelet LOD for each data set, the highest visible 

frequency values for both data sets after applying five successive levels of wavelet 

decomposition are computed and are listed in Table 4.1. From the figures in Table 4.1, 

the expected maximum wavelet LOD that can be applied safely in this case is level three 
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for the LRF-III data and level four for the HG1700 data. This will remove any frequency 

component that is greater than 3.125 Hz. To show graphically the spectrum of the de-

noised data, the LRF-III gyro data has been used. The spectra of the selected gyro for 

four levels of wavelet decomposition are shown in Figures 4.7a-4.7d. Figure 4.7d is 

compatible with the computations performed in Table 4.1 since it indicates that after 

applying the 4th LOD, some motion dynamics are removed from the required bandwidth 

and also the amplitude spectrum is reduced for the rest of the needed components. 

Similar results were obtained for the HG1700 gyro data after applying the 5th LOD.  

 

 
Fig.4.6 The Spectrum of One Gyro of Van Static Alignment Data 

 

Table 4.1 Maximum Visible Frequency in Kinematic Inertial Data Before and After 
Successive Levels of Wavelet De-noising 

 

Maximum Frequency  
Detected in Data (Hz) Type of  

Inertial Data 
Maximum 
Frequency 

Appears in Data Laval, Québec 
LRF-III IMU 

HG1700 IMU 
Calgary, Alberta 

Original Data fs/2    25 50 
After Wavelet 1st LOD fs/4    12.5 25 
After Wavelet 2nd LOD fs/8    6.25 12.5 
After Wavelet 3rd LOD fs/16  3.125 6.25 
After Wavelet 4th LOD fs/32  1.5625 3.125 
After Wavelet 5th LOD fs/64 0.78125 1.5625 
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Fig.4.7 The Spectrum of LRF-III Gyro Van Kinematic Data After Successive 
Wavelet Levels of Decomposition  

 

To illustrate the kinematic data analysis performed in the sequel of this Section, the 

inertial sensor residual biases are modeled by a 1st order GM process. However, in the 

next Section, AR processes of an appropriate order will be implemented. Using SINS 

stand-alone navigation with ZUPTs as updates, the position errors obtained using the 

original raw SINS data (before de-noising) as well as the de-noised data with different 

wavelet LOD were computed. The statistics of such position errors are given in Table 4.2 

while the position error RMS values are shown in Figures 4.8a and 4.8b.  

 

From Table 4.2 and Figures 4.8, it is clear that de-noising the SINS sensor data by 

wavelet decomposition remarkably reduces the SINS stand-alone position errors. 

Compared to the original data results, the LRF-III position errors (RMS) are decreased by 

63% (using the 2nd LOD) while the HG1700 position errors (RMS) are decreased by 46% 



 77

(using the 4th LOD). As expected, the obtained positioning errors start to get worse after 

applying decomposition levels that remove frequency components between 1.5625 Hz 

and 3.125 Hz (4th LOD in case of LRF-III and 5th LOD in case of HG1700). Although the 

position errors after applying these decomposition levels are larger than those obtained 

from the previous levels, they are still better than the errors obtained from the original 

data. This can be explained by the fact that at this point, there is some kind of a 

compromise between removing additional noise and removing some motion information. 

 

Table 4.2 Stand-Alone SINS Kinematic Mode Position Errors Before and After 
Wavelet De-noising of Inertial Sensor Measurements 

 

Error Statistics (m) Kinematic  
Test 

Type of  
Inertial Data  Mean Max RMS 

Original Data 1.76    4.49     1.98 
After Wavelet 1st LOD 0.64    3.40     0.76 
After Wavelet 2nd LOD 0.58    3.16     0.73 
After Wavelet 3rd LOD 0.62    3.06     0.79 

 

Laval, Québec 
LRF-III IMU 

After Wavelet 4th LOD 1.57    4.67     1.76 
 

Original Data 43.72  148.78   53.11 
After Wavelet 1st LOD 37.83  138.55   46.70 
After Wavelet 2nd LOD 34.00  134.23   42.15 
After Wavelet 3rd LOD 24.48  132.25   29.98 
After Wavelet 4th LOD 24.19  130.51   28.91 

 
 

Calgary, Alberta 
HG1700 IMU 

After Wavelet 5th LOD 32.69  218.52   38.57 
  

 
Fig. 4.8 Stand-Alone SINS Kinematic Mode Position Errors Before and After 

Wavelet De-noising of Inertial Sensor Measurements 
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Moreover, and by examining the LRF-III test results, it can be seen that most of the 

improvement occurred just after applying the 1st LOD. This indicates in this case that the 

1st LOD was capable of removing most of the undesirable noise in the LRF-III data. On 

the other hand, this is not the case for the HG1700 results where the improvement 

occurred gradually from the 1st LOD to the 4th LOD. This could be the result of two 

different causes. The first one is that the HG1700 is a tactical-grade IMU while the LRF-

III is a navigation-grade IMU. Hence, the noise level (amplitude) of the HG1700 sensors 

is much larger, which in turn implies that more decomposition levels are required to 

remove or minimize the HG1700 noise. The second cause is that the HG1700 data rate 

(100 Hz) is higher than the LRF-III data rate (50 Hz), and thus, more decomposition 

levels are required to remove the high frequency components.  

 

For the SINS/DGPS integration, the same induced DGPS outages used in Chapter 3 (10 

outages for the LRF-III Laval test and 11 outages for the HG1700 Calgary test) were 

analyzed. The magnitude of position errors at the end of outage periods using the original 

and de-noised SINS data are summarized in Table 4.3, while the average values of these 

errors are shown in Figures 4.9a and 4.9b. These results agree with the obtained SINS 

stand-alone results in Table 4.2 and Figure 4.8. During DGPS outages, using de-noised 

inertial data, the obtained position errors are improved by 34% in the case of the LRF-III 

data (using the 2nd LOD) and by 13 % in case of the HG1700 data (using the 4th LOD).  

 

However, it can be seen that the level of position error improvement in case of the 

SINS/DGPS integration with DGPS outages is less than the corresponding improvement 

level in case of stand-alone SINS navigation. This is due to the fact that the navigation 

mode and the type of available updates for SINS only and SINS/DGPS integration during 

DGPS outages are different. In SINS stand-alone positioning, updates are available only 

through frequent ZUPTS, and hence navigation is performed in a prediction mode except 

at the ZUPT periods. Moreover, during any ZUPT interval, positioning errors are not 

reset to zero, and thus the obtained positioning errors are accumulated for the whole 

mission.  
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On the other hand, in SINS/DGPS positioning, navigation is performed in a regular 

(frequent) update mode (using DGPS position and velocity updates) except at the DGPS 

outage intervals where prediction is utilized. Also, before and after any DGPS outage, 

positioning errors are reset almost to zero. Therefore, the obtained positioning errors 

during any outage are independent of the other outages (i.e. position errors are not 

accumulated along the whole trajectory). As a result, SINS only positioning is much 

more affected by the system noise than SINS/DGPS positioning during DGPS outages. 

Consequently, removing or minimizing inertial sensor noise will improve SINS stand-

alone position errors more than the obtained SINS/DGPS position errors during DGPS 

outages. 

 

Table 4.3 SINS Kinematic Mode Position Errors During DGPS Outages Before and 
After Wavelet De-noising of Inertial Sensor Measurements 

 

Van  
Test 

LRF-III IMU Errors (m)  
(Laval, Québec) 

 HG1700 IMU Errors (m)   
(Calgary, Alberta) 

In
er

tia
l D

at
a 

T
yp

e 

O
ut

a g
e 

N
o.

 

O
ri

gi
na

l E
rr

or
s 

A
ft

er
 1

st
 L

O
D

 

A
ft

er
 2

nd
 L

O
D

 

A
ft

er
 3

rd
 L

O
D

 

A
ft

er
 4

th
 L

O
D

 

O
ut

ag
e 

N
o.

 

O
ri

gi
na

l E
rr

or
s 

A
ft

er
 1

st
 L

O
D

 

A
ft

er
 2

nd
 L

O
D

 

A
ft

er
 3

rd
 L

O
D

 

A
ft

er
 4

th
 L

O
D

 

A
ft

er
 5

th
 L

O
D

 
1 1.23 0.54 0.73 0.67 0.93  1 13.83 13.72 12.04 10.76 13.26 18.95
2 1.69 1.42 2.10 2.31 0.90  2 30.23 37.73 39.77 40.70 39.37 40.75
3 1.84 1.06 0.78 0.77 1.13  3 15.49 18.35 19.57 21.25 22.32 21.64
4 0.63 0.30 0.35 0.47 0.42  4 24.04 16.80 24.78 22.37 23.16 24.25
5 1.56 1.56 1.47 1.25 0.74  5 30.89 27.41 29.59 16.01 14.79 37.05
6 2.05 1.19 0.84 0.63 0.66  6 12.89 13.18 9.30 18.41 18.30 11.23
7 0.96 1.32 0.69 1.10 1.45  7 59.32 57.43 46.11 35.17 33.92 34.66
8 0.56 0.53 0.36 0.33 0.45  8 21.70 14.73 12.91 8.21 9.05 10.36
9 1.86 1.04 1.09 0.97 0.58  9 38.55 33.98 31.46 35.56 34.76 35.64

10 1.13 0.78 0.48 0.72 2.19  10 24.11 25.38 23.64 19.71 19.06 19.50

 

       11 10.03 11.63 13.19 16.32 16.47 16.57
               

Mean  1.35 0.97 0.89 0.92 0.95   25.55 24.58 23.85 22.23 22.22 24.60
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Fig. 4.9 SINS Kinematic Position Errors During DGPS Outages Before and After 

Wavelet De-noising of Inertial Sensor Measurements 
 

 

4.4 Combination of SINS Sensor Data De-noising and Autoregressive (AR) 
      Modeling of SINS Sensor Errors 
 
As shown in the previous Section, the SINS positioning accuracy in SINS stand-alone 

navigation or during DGPS outages in SINS/DGPS applications is improved when using 

de-noised SINS sensor data. From the results in Chapter 3, the same is true after 

modeling inertial sensor errors using Autoregressive (AR) processes of orders higher than 

one. Therefore, both approaches (de-noising and AR modeling) could be combined 

together for better results. From Tables 4.2 and 4.3, the LRF-III and HG1700 best results 

were obtained after the 2nd and 4th levels of wavelet de-noising, respectively. Recalling 

the AR modeling results of the same two van tests (Tables 3.5-3.7), the LRF-III and 

HG1700 best results were achieved using AR processes of 3rd and 2nd orders, 

respectively.  

 

Consequently, for a best combination of de-noising and AR modeling, both van data sets 

are processed again using: (1) a 2nd level of wavelet de-noising + a 3rd order AR model 

for the LRF-III data and (2) a 4th level of de-noising + 2nd order AR model for the 

HG1700 data. Table 4.4 summarizes the results of de-noising only, AR modeling only 

and the combined case for SINS stand-alone positioning errors, while the corresponding 
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accumulated position errors at the end of the DGPS outage periods are given in Tables 

4.5 and 4.6.   

 

Table 4.4 Stand-Alone SINS Kinematic Mode Position Errors Before and After 
Wavelet De-noising of Sensor Measurements and Autoregressive Modeling of 

Sensor Errors 
 

Error Statistics (m) Kinematic  
Test 

Type of  
Inertial Data  Mean Max RMS 

Original Data  
(Using 1st Order GM Modeling) 

1.76    4.49    1.98 

Original Data  
(Using 3rd Order AR Modeling) 

0.96    5.13    1.27 

De-noised Data 
(After Wavelet 2nd LOD) 

0.58    3.16    0.73 

 

Laval, Québec 
LRF-III IMU 

After Wavelet 2nd LOD 
+ 

3rd Order AR Modeling 
0.51    3.50    0.66 

 

Original Data  
(Using 1st Order GM Modeling) 

43.72   148.78  53.11 

Original Data  
(Using 2nd Order AR Modeling) 

38.37   137.86  46.92 

De-noised Data 
(After Wavelet 4th LOD) 

24.19   130.51  28.91 

 
 

Calgary, Alberta 
HG1700 IMU 

After Wavelet 4th LOD 
+ 

2nd Order AR Modeling 
20.52   112.69  25.66 

 
From Tables 4.4-4.6, it is obvious that the combined case of sensor data de-noising and 

sensor error AR modeling provides better results than the individual de-noising or AR 

modeling approaches. For the LRF-III data, the combined SINS stand-alone solution is 

better than the de-noised data and AR modeling solutions by 10% and 48%, respectively. 

During DGPS outages the corresponding ratios are 10% and 31%. For the HG1700 data, 

the combined solution is better by 11% and 45% in case of SINS stand-alone positioning 

and by 31% and 8% during DGPS outages.    
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Table 4.5 LRF-III IMU Position Errors During DGPS Outages Before and After 
Wavelet De-noising of Sensor Measurements and Autoregressive Modeling of 

Sensor Errors 
 

 

Outage 
No. 

Original Data 
  

Using 1st Order 
GM Modeling 

 Original Data 
 

Using 3rd Order 
AR Modeling  

 De-noised Data 
 

After Wavelet  
2nd LOD  

 After Wavelet  
2nd LOD 

+ 
3rd Order  

AR Modeling 
1 1.23  0.99  0.73  0.53 
2 1.69  1.38  2.10  2.10 
3 1.84  1.40  0.78  0.53 
4 0.63  0.84  0.35  0.60 
5 1.56  1.17  1.47  0.62 
6 2.05  1.64  0.84  0.54 
7 0.96  0.98  0.69  0.80 
8 0.56  0.57  0.36  0.26 
9 1.86  1.63  1.09  1.14 

10 1.13  0.99  0.48  0.84 
        

Mean 1.35  1.16  0.89  0.80 
 

 

Table 4.6 HG1700 IMU Position Errors During DGPS Outages Before and After 
Wavelet De-noising of Sensor Measurements and Autoregressive Modeling of 

Sensor Errors 
 

 

Outage 
No. 

Original Data 
  

Using 1st Order 
GM Modeling 

 Original Data 
 

Using 2nd Order 
AR Modeling  

 De-noised Data 
 

After Wavelet  
3rd LOD  

 After Wavelet  
3rd LOD 

+ 
2nd Order  

AR Modeling 
1 13.83  16.87  10.76  16.07 
2 30.23  19.12  40.70  14.04 
3 15.49  2.98  21.25  3.87 
4 24.04  28.31  22.37  21.58 
5 30.89  12.42  16.01  8.06 
6 12.89  24.27  18.41  23.77 
7 59.32  29.79  35.17  28.94 
8 21.70  4.48  8.21  5.89 
9 38.55  30.11  35.56  29.99 

10 24.11  09.67  19.71  10.19 
11 10.03  05.13  16.32  5.48 

        
Mean 25.55  16.65  22.23  15.26 
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CHAPTER 5 

 
SINS Second Order Errors For SINS Error Modeling  

 

 

Mathematical modeling of kinematic systems such as SINS is commonly done in the 

framework of linear dynamic systems. The dynamic behavior of such systems can be 

described using a state-space representation. For this purpose, a system of non-linear 

first-order differential equations (mechanization equations) is used and then kinematic 

measurements are used to solve it to provide positions, velocities and attitudes. In the 

local-level frame (l-frame), this state vector for SINS mechanization is represented by  

(Schwarz and Wei, 2001): 

 

                             
















−
++−=

















=

−

)(
()t(
l
b

lll
b

l1

l
b

l

l

1
b
il

b
ib

l
el

l
ie

b 2

ΩΩR
g)vΩΩfR

vD

R
v
r

x
&

&

&

&                       (5.1), 

 

where r is the position vector; v is the velocity vector; l
bR  is the rotation matrix between 

the SINS body frame (b-frame) and the l-frame; bf  is the vector of accelerometer 

specific force measurements and b
ibΩ  is the skew-symmetric matrix of the gyro angular 

rate measurements. All other matrices and vectors are defined in Appendix A.   

 

Due to SINS sensor errors, the solution of the above system of differential equations 

contains errors, which can be deterministic (systematic) or random (stochastic) in nature. 

Therefore, these two types of errors are determined first through error models and then 

compensation for them is performed through Kalman filtering. The SINS deterministic 

error models are defined by linearizing the above non-linear equations (Equations 5.1) to 

obtain another set of first order differential equations that contains position, velocity and 

attitude errors. On the other hand, the SINS stochastic error models, which represent the 
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SINS sensor errors, are defined by a set of stochastic differential equations using one of 

the methods discussed in Chapters 2 and 3. Thus, the combined deterministic and 

stochastic error state vector in the l-frame will take the form: 

 

 T
21 )(t)δ,(t)δ((t)δ xxx &&& =    

            Tbblll ),ε,δ,δ( d,bvr &&&&&=  

            TzyxzyxUNEUNE )d,d,d,b,b,b,ε,ε,ε,vδ,vδ,vδ,hδ,λδ,φδ( &&&&&&&&&&&&&&&=            (5.2), 

 

where Tlll
1 ) ,δ ,δ(t)δ εvrx (=  represents the deterministic part and Tbb

2 ) ,(t)δ dbx (=  

represents the random part of the error model. In Equation 5.2, δrl is the vector of 

position errors (latitude φ , longitude λ  and height h); δvl is the vector of velocity errors 

(north, east and up); εl is the vector of misalignment errors for the transformation 

between the b-frame and the l-frame, bb and db are the accelerometer and gyro residual 

biases in the b-frame. 

 

The current SINS error model that is used in most SINS/DGPS applications was derived 

by linearizing Equation 5.1 using a Taylor series expansion to first order. In addition, all 

second-order error effects in the linearized error model terms (i.e. error terms that involve 

δ*δ ) were neglected. This will work very well when frequent DGPS measurements 

(updates) are available. In some applications, however, DGPS updates are not frequent 

and second-order errors may start to play a role.  

 

Therefore, to investigate the effects of such second-order errors, a second-order SINS 

error model will be derived in this Chapter. This will be obtained in two steps. First, the 

second-order error effects neglected in the linearization process will be considered. 

Second, the second-order error terms in the Taylor series expansion will be derived. 

Then, the predicted SINS errors computed using the second-order and the common first-

order error models will be compared. This will be performed using a long DGPS outage 

for two SINS/DGPS van data sets that utilized navigation and tactical grade IMUs.  
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5.1 Linearized SINS Error Model 
 
Recalling Equation 5.1 that represents the SINS mechanization, it can be rewritten using 

the form:  
 
                               ))t(,)t(())t(()t( 211 xxfxfx ==&                                (5.3) 

 
As mentioned above, the deterministic part of the SINS error model is determined by 

linearizing the SINS mechanization equations. Therefore, using a Taylor expansion to 

first order, the linearized deterministic error model in a vector-matrix form will be: 
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                                       )t(δ.)t()t(δ.)t( 2111 xBxA +=                                      (5.4) 

 

Recalling the stochastic error models investigated in Chapters 2 and 3, and in analogy 

with Equation 5.4, the differential equation of sensor stochastic errors takes the form: 

 

                                               )t(.)t(δ.)t()t(δ 22 wGxCx +=&                            (5.5), 
 

where w(t) represents the system input white noise and G is the associated coefficient 

matrix. Combining Equations 5.4 and 5.5, the complete linearized SINS error model is 

represented by: 
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                                         )t(.)t(δ).t( wGxF +=                                                  (5.6), 

 

where F is called the system dynamics matrix. Using the above methodology and 

neglecting all δ*δ  terms and considering a 1st order GM process for sensor errors 



 86

modeling, the elements of the F-matrix were computed in Wong (1988) and Schwarz and 

Wei (2001) and are given in Appendix B. 

 

 

5.2 SINS Second-Order Error Models 
 
As shown in the previous Section, the current SINS error model linearization process 

neglects two groups of errors: (1) Taylor expansion second-order terms and (2) all 

second-order error δ*δ  effects of the first-order Taylor expansion. In the following two 

subsections, these neglected error groups will be considered.  

 

5.2.1 Second-Order Error δ*δ  Effects of the Linearized SINS Error Model 
 
The purpose here is to determine the elements of the submatrices A1 and B1 of the F-

matrix considering all δ*δ  effects and neglecting other higher order effects. This will be 

done by linearizing the SINS mechanization equations through a Taylor expansion to the 

first order. Moreover, in Equation 5.1, the true values of the state vector )t(1x  are not 

known. What is known is an approximation of )t(1x , denoted by )t(δ)t()t( 111 xxx += . 

This approximation state vector is obtained by integrating the SINS sensor outputs to 

provide a reference trajectory (Schwarz and Wei 2001). Therefore, in the following, all 

quantities in Equation 5.1 will be considered to be the computed approximate values 

before starting the linearization process.   

 

Position Error States 

Starting with the first Equation of Formula 5.1, it can be reformulated as: 

 

                                               )δ()δ( ll1l vvDDr ++= −&                                             (5.7), 

 

(see Appendix A for a definition of terms). In Equation 5.7, the term 1)δ( −+ DD  can be 

rewritten as: 
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                   111111 )()]([)( −−−−−− δ+=δ+=δ+ DDDIDDIDDD                        (5.8a) 

 

Neglecting terms of second-order and higher, the term )( 1 DDI δ+ −  can be written as 

DD δ−1

e , and hence, Equation 5.8a tends to: 

 

  111111111 ])([e)e()(
11 −−−−−−δ−−−δ− δ−=δ−===δ+

−−

DDDDDDDIDDDD DDDD        (5.8b) 

 

By substituting Equation 5.8b into Equation 5.7 and then linearizing, we obtain: 

 

                            l11l111l )( vDDDvDDDDr −−−−− δ−δδ−=δ&     

                                  l1l111 )( rDDvDDDD &δ−δδ−= −−−−                                         (5.9), 

 

To relate lδr&  to lδr  in Equation 5.9, the term l1- rDD &δ−  is rewritten as: 

 

                                                  l
r

l1- rDrDD δ=δ− &                                                    (5.10a) 

                                l
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l111l )( rDvDDDDr δ+δδ−=δ⇒ −−−&                              (5.10b) 

 

Substituting the quantities -1D , Dδ , lr& , lδr  into 5.10a yields: 
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Finally, substituting -1D , Dδ  and rD  into Equation 5.10b, we obtain: 
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Velocity Error States 

Considering the second Equation of Formula 5.1 after replacing the true gravity vector lg  

by its corresponding normal gravity vector lγ , it can be reformulated as: 
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where bδf  is the accelerometer residual bias vector bb . In the above Equation, the 

transformation matrix errors l
bδR  can be expressed as l

b
ll

b .δ RER = , where lE  is the 

skew-symmetric matrix of the misalignment angle errors TUNEl )ε,ε,ε(=ε . Linearizing 

Equation (5.13) yields: 
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The first and third rows of Equation 5.14 can be rewritten as: 
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where lF , lB  and lV  are the corresponding skew-symmetric matrices of lf , lb  and lv , 

respectively.  Substituting all quantities of 5.15a, we obtain the first row of 5.14 as: 
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The second row of 5.14 is easily written as: 
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For the third row in 5.14, the quantities of 5.15b are derived in the following manner: 
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Adding the quantities l
ieδ2 ω  and l

elδω  of 5.15b from 5.18a and 5.18b yields: 
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Substituting the value of the vector T)hδλδφδ( &&& from Equation 5.12 into 5.18c, we get: 
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Finally, multiplying lV  by 5.18d, the third row of Equation 5.14 is obtained as:  
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The fourth row of Equation 5.14 is obtained by computing the following: 
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Substituting the values of φδ &  and λδ&  from Equation 5.12 into Equation 5.20b and then 

adding ]δδ22[ l
el

l
el

l
ie

l
ie ΩΩΩΩ −−−− , the fourth row of Equation 5.14 is obtained as: 
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                                                                                                                                      (5.21) 

 

To obtain the fifth row of 5.14, the normal gravity vector ( )TUl γ00=γ  is used. The 

formula for Uγ  is given in Schwarz and Wei (2001) by: 
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where the coefficients 1a  to 6a  are known constants for each reference ellipsoid. 

Therefore, by computing lδγ , the fifth row of 5.14 will have the form: 
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                                                                                                                                      (5.23) 

 

 

Attitude Error States 

The third Equation in expression 5.1 is: 
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Hence, we have: 
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With )( l
b
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b

l
b RERR += , we obtain: 
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Equating 5.24c and 5.24b and substituting for l
bR&  from 5.24a, we obtain: 
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The formula for l
lbδω  is given in Schwarz and Wei (2001) as: 
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Substituting Equation 5.26 into 5.25, the final formula for attitude errors is obtained as: 
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Therefore, the first and second terms of Equation 5.27 are obtained as: 
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                                                                                                                                      (5.29) 

 
To get the third term of 5.27, we derive l

ilδω−  first as follows: 
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Then, substituting the vector T)hδλδφδ( &&& from Equation 5.12 into 5.30a, we get: 
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Finally, multiplying lE  by 5.30b and neglecting all third-order effects, the third term of 

5.27 is obtained as: 
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                                                                                                                                      (5.31) 

 

Combining Equations 5.12, 5.16, 5.17, 5.19, 5.21, 5.23, 5.28, 5.29 and 5.31, the elements 

of the corresponding dynamics matrix are obtained. Again, assuming a 1st order GM 

process for modeling sensor errors, this dynamics matrix is given in Appendix B. 

 

 
5.2.2 Taylor Expansion Second-Order Error Terms of the SINS Error Model 
 
As shown in Section 5.1, the linearized SINS deterministic error model is obtained by 

applying a Taylor expansion to first order on Equation 5.3. In this Section, to account for 

the second-order error terms, the expansion will be extended to the second order. By 

performing this, Equation 5.4 will take the form: 
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Hence, Equation 5.6 becomes: 
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Compared to the linearized SINS error model (Equation 5.6), the additional objective 

here is the determination of the elements of the submatrices A2 and B2 of the J-matrix. 

This will be carried out by differentiating the elements of the F-matrix (of the linearized 

SINS error model) with respect to the corresponding error states. Following this 

procedure, the J-matrix was computed and is given in Appendix B.  

 

 

5.3 SINS Second-Order Error Models Test Results 
 
To investigate the effect of the second-order error terms derived in the previous two 

subsections, the obtained SINS position errors during long DGPS outages are compared 

using both second-order error models as well as the original first-order error model. For 

this purpose, the two SINS/DGPS van data sets used in Chapters 3 and 4 are utilized. As 

a reminder, the inertial data in the first test was collected using a navigation-grade IMU 

(Honeywell LRF-III) while in the second test a tactical-grade IMU (Honeywell HG1700) 

was used. For each data set, a 20 minutes DGPS outage was implemented and the 

predicted position errors were computed for each error model at the end of this period.  

 

The obtained position error from the first-order error model, the difference between this 

position error and the corresponding ones obtained from each second-order error model, 

and the % percentage of these position differences with respect to the position error of the 

first-order error model, are listed in Table 5.1. The results clearly show that none of the 

derived 2nd order error terms has any significant effect when compared to the 1st order 

linearized error model. To confirm these results, some of the largest derived second-order 

error terms are selected and compared to the corresponding error terms of the first order 

linearized error model using an independent testing scenario. In this case, the following 

parameters are assumed: °= 70φ , h = 1000m, 70vv NE ==  km/h, 2vU =  km/h, 

m500hδδφ == , 06εε NE ′′== , 03εU ′= . The results of such comparison are given in 

Table 5.2. These results agree with the results obtained in Table 5.1. Therefore, the 
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linearized SINS error model will be used for all further data processing in the following 

Chapters, which include SINS stand-alone positioning and SINS/DGPS integration with 

some DGPS outages. 

 

 

Table 5.1 Effects of SINS Second-Order Errors Using Kinematic Van Data 
 

Differences Between 2nd Order and 1st Order  
Error Models Position Errors 

2nd Order δ*δ  
Error Effects 

2nd Order Taylor  
Expansion Error Terms 

Kinematic  
Test IMU 

Used 

1st Order  
Error Model 

Position Error 
(m)  Value 

(m) 

% of 1st Order 
Error Model 

Position Error 

Value 
(m) 

% of 1st Order 
Error Model 

Position Error 
LRF-III 510.73 0.01 0.002 0.04   0.008 

 
HG1700 2654.62 0.18 0.007 0.37   0.014 

  

 

Table 5.2 Effects of Some of the Derived SINS Second-Order Error Terms 
 

1st Order 
Linearized 

Error Term 
Fi,j 

Effect of 2nd Order 
δ*δ  Error Term 

( ) %FFδ)*(δF ji,ji,ji, −

 1st Order 
Linearized 

Error Term
Fi,j 

Effect of 2nd Order Taylor 
Expansion Error Term 

( ) %Fδx0.5J ji,jji,  

F1,5 0.008  F1,3 0.008 

F2,4 0.014  F2,1 0.023 

F4,4 0.014  F4,1 0.000 

F5,1 0.025  F5,1 0.000 

F6,3 0.098  F6,3 0.008 

F7,3 0.791  F9,1 0.006 

F8,1 0.031   

F9,4 0.024   
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CHAPTER 6 

 
Optimal Backward Smoothing For SINS/DGPS Integration 

 

 

In the standard operation of SINS/DGPS, the DGPS is used for positioning and the SINS 

is used for orientation. In case of DGPS outages that are caused by GPS signal blockages, 

the SINS is used for positioning until the standard DGPS mode is available again. In the 

SINS/DGPS integration mode, the initial trajectory is obtained by integrating the output 

of the SINS gyro and accelerometer sensors. The position and velocity of this solution are 

compared to the corresponding DGPS position and velocity. The differences between 

both solutions are used to estimate the SINS systematic errors through a Kalman Filter 

(KF), see Figure 6.1.  

 

   

Integration of SINS   
Sensor Outputs   
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Position, Velocity   

SINS   
Systematic   

Errors   

P DGPS  , V  DGPS  
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∆P

∆V
K.F

_ +  

Integrated
System
SolutionP SINS      VSINS

VSINS ,  P SINS  , Att SINSV SINS  , P SINS  , Att SINS   

 
Fig.6.1 Standard SINS/DGPS Integration Scheme 

 

This means that the DGPS position and velocity are considered as updates for the KF, 

and thus, they have a higher weight in the filter design. Consequently, the position and 

velocity errors as well as the covariance information of the integrated SINS/DGPS 

solution will be very small at both the beginning and the end of DGPS outages. As a 

solution to the positioning problem during DGPS outages, only the SINS is used for 

positioning without any updates until the GPS signal is re-acquired with sufficient 
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accuracy. This mode of SINS stand-alone positioning is essentially a prediction process. 

In this case, the position errors and their covariance increase with time at the beginning of 

the outage and finally drop back again to minimum at the end of the outage interval. 

Figure 6.2 shows a typical error behavior of SINS positioning during DGPS outages.  

 

 

 

Time 

Errors Close 
   To Zero 

Beginning of 
GPS Outage 

Position 
 Error 

End of GPS 
   Outage 

Accumulated  
      Errors 

Errors Close 
   To Zero 

 
Fig.6.2 SINS Positioning Error Behavior During DGPS Outages 

 
 

If accurate positions are required during these outages, some bridging algorithms must be 

used for estimating improved positions for these periods (Nassar, 2002). In this Chapter, 

the bridging method that will be applied is one of the optimal Backward Smoothing (BS) 

algorithms. First, a brief description of the SINS/DGPS KF is given. Then, an overview 

of the different types of BS algorithms is presented. Based on the properties and 

requirements of the presented BS types, one algorithm will be chosen to be applied for 

SINS/DGPS integration applications. Finally, the performance of the chosen BS 

algorithm in bridging DGPS outages will be analyzed with real kinematic SINS/DGPS 

data sets using high and medium grade IMU categories. 
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6.1 SINS/DGPS Kalman Filter 
 
As discussed before in Chapter 5, the mathematical modeling of inertial systems is 

usually performed in the framework of linear dynamic systems using a state-space 

representation. In this case, a system of non-linear first-order differential equations is 

implemented and the solution of it is provided through available kinematic 

measurements. The solution of such differential equations will provide the position, 

velocity and attitude of the inertial system carrier. Typically, the provided solution will 

contain errors due to the existing inertial sensor errors. Hence, these errors are 

determined first through error models and then compensation for them is carried out. In 

our case, the dynamic behavior of SINS errors is represented in matrix form by a discrete 

state-space representation of the form: 

 

                            kkkk,1k1k wGxΦx += ++                                         (6.1) 

                            1k1k1k1k ++++ += νxHy                                           (6.2), 

where: 
 

1k+x  ……... is the system error state vector to be estimated at time tk+1 

k,1k+Φ  ……... is the system state transition matrix  

kw  ……... is the vector of the system input random noise 

kG  ……... is the coefficient matrix associated with the system input noise 

1k+y  ……... is the vector of the system observations (updating measurements)

at time tk+1 

1k+H  ……... is the design matrix relating the system measurements to the

system error states 

1k+ν  ……... is the vector of measurements random noise 

 

As mentioned before, for the optimal estimation of the SINS error state vector 

components, a KF is usually used. The discrete KF algorithm can be summarized as:    
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          k,kk,1kk,1k ˆˆ xΦx ++ =                                                                    (6.3) 

          T
kkk

T
k,1kk,kk,1kk,1k GQGΦPΦP += +++                                 (6.4) 

 

          )ˆ(ˆˆ k,1k1k1k1kk,1k1k,1k +++++++ −+= xHyKxx                  (6.5) 

          1
1k

T
1kk,1k1k

T
1kk,1k1k )( −

+++++++ += RHPHHPK                  (6.6) 

          k,1k1k1k1k,1k )( +++++ −= PHKIP                                        (6.7), 

where: 
 

k,1kˆ +x  ……... is the optimal predicted estimate of the system error state vector 

at time tk+1 

1k,1kˆ ++x  ……... is the optimal estimate of the system error state vector at time tk+1

k,1k+P  ……... is the covariance matrix of the errors of the predicted estimates 

k,1kˆ +x   

1k,1k ++P  ……... is the covariance matrix of the errors of the updated estimates 

1k,1kˆ ++x  

kQ  ……... is the covariance matrix of the system input noise kw  

1k+K  ……... is the Kalman gain matrix 

1k+R  ……... is the covariance matrix of the measurement noise 1k+ν  

 

The derivation of the above equations is given in detail in Gelb (1974). Equations 6.3 and 

6.4 are called the prediction algorithm while Equations 6.5 to 6.7 are called the update 

algorithm. This is consistent with the subscript implementations, where the subscript 

(k+1, k) refers to estimates at epoch k+1 based on estimates of the previous epoch k 

while the subscript (k+1, k+1) stands for estimates at epoch k+1 using measurement 

updates of the same epoch.  

 

In case of SINS/DGPS integration, the state vector estimates x̂  define the system output 

errors whereas the measurement updates y are the differences between the DGPS and 
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SINS solutions. In case of a DGPS outage, no GPS measurement updates are available. 

Therefore, the covariance matrix Rk+1 in Equation 6.6 can be considered to equal ∞ , and 

hence the Kalman gain matrix Kk+1 in the same Equation will be zero. Consequently, 

during DGPS outage intervals, the update Equations 6.5 and 6.7 will take the following 

forms: 

                               k,1k1k,1k ˆˆ +++ = xx                                                    (6.8) 

                               k,1k1k,1k +++ = PP                                                   (6.9), 

 

Substituting Equations 6.8 and 6.9 into Equations 6.3 and 6.4 explicitly implies time-

dependent error growth until DGPS updates are available again.  

 

 

6.2 Backward Smoothing Algorithms 
 
In the previous Section, it has been shown that the optimal estimate of a state vector at 

epoch k ( kx̂ ), provided by the KF, is obtained using measurements (updates) that are 

only available up to epoch k. On the other hand, optimal Backward Smoothing (BS) 

allows an optimal smoothed estimation of the state vector at epoch k ( s
kx̂ ) using all or 

some of the measurements that are available after epoch k. The smoothed estimate s
kx̂  

could be considered to be an optimal combination of a forward estimate and a backward 

estimate. The forward estimate is obtained by using all measurements up to k, and thus, it 

is the estimate provided by the KF. The backward estimate is obtained by using all (or 

some) of the measurements after k. Therefore, since more measurement updates are used 

for the estimation, the BS estimates in general, if not more accurate, can never be worse 

than the filtered estimates (Gonthier, 1984; Jansson, 1998). However, smoothing is 

performed after the filtering stage. Hence, all smoothing algorithms will be dependent on 

the obtained filtered solution. Thus, accurate filtering is required for accurate smoothing 

(Gelb, 1974).  

 



 105

To discuss the different BS algorithms, let us start with the general case of SINS/DGPS 

integration, where DGPS measurements are available at each epoch for the whole 

mission of time span N. Also, the filtered solution estimates are obtained from the KF at 

each epoch k ( k,kx̂ ), where k = 0, 1, 2, ….., N (see Figure 6.3a). At this stage, any BS 

algorithm could be applied. Depending on where and when the smoothed estimates are 

required, the corresponding BS algorithm is utilized. Three classes of BS algorithms are 

categorized, which are: fixed-interval smoother, fixed-point (single-point) smoother and 

fixed-lag smoother (Meditch, 1969; Gelb, 1974; Brown and Hwang, 1992).  

 

In the fixed-interval smoother, the initial and final time epochs of the whole interval of 

measurements (i.e. 0 and N) are fixed. The requirement here is the optimal smoothed 

estimate at all epochs k in the interval between 0 and N (Figure 6.3b). In this case, all 

measurement updates between 0 and N are used, and hence, the optimal smoothed 

estimate at epoch k is termed s
N,kx̂ . Obviously, this type of smoothing can only be carried 

out in post-mission since it requires the availability of all measurements up to N. 

 

In fixed-point (single-point) smoothing, the requirement is the optimal smoothed estimate 

at a single fixed epoch k using all available measurements up to an arbitrary epoch j, 

where j can take the values k+1 until N. Since j is an arbitrary epoch between k+1 and N, 

the smoothed estimate at k using fixed-point smoother is denoted by s
j,kx̂  (Figure 6.3c). 

In addition, this smoother can be used, if desired, in real-time (practically in near real-

time) since the only requirement for j is to be > k. This type of smoother is usually used 

in applications where the smoothed estimate is desired at a particular point only, which is 

the case for example of determining: the initial condition of a noisy trajectory (Brown 

and Hwang, 1992); the satellite initial conditions immediately after the termination of 

thrust (Rauch, 1963) and the initial concentrations of the reacting materials in a chemical 

process (Meditch, 1969). 
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 (a) Available KF Estimates Before Backward Smoothing 
 

0,0x̂  1,1x̂  NN,x̂-1N-1,Nx̂

   0           1           2        ……………… ………..   N-2      N-1       N    

 Filtered Solution

  Time Epoch k 

2,2x̂  2-N2,-Nx̂

…… ………..     Filtering Sequence

……………………… ..   

(b) Fixed-Interval Smoothing 
 

N0,x̂  N1,x̂  NN,x̂N-1,Nx̂

   0           1           2        …… … ……… ………..   N-2      N-1       N    

 Smoothed Solution

  Time Epoch k 

N2,x̂ N2,-Nx̂

… …… ………     Smoothing Sequence 

… …… ……… ……… ..   

(c) Fixed-Point (Single-Point) Smoothing 
 

   0   … … … .  k        k+1       k+2 … … … ..  j-1        j   … … … ...     N    

 Sm oothed Solution

  T im e E poch k 

jk,x̂  

… … …  

 Sm oothing Sequence

(d) Fixed-Lag Smoothing 
 

   0   … … … .  k        k+1       k+2   … … … .   k+m      k+m +1  … … … .  N    

 Sm oothed Solution

  T im e E poch k  

mkk,x +ˆ  

 Sm oothing Sequence

m1k1,kx +++ˆ  

 S liding W indow  of Length m

 … ..  
 … ..   R equired 

 S moothed 
 Estim ates 

Fig.6.3 Optimal Backward Smoothing Algorithms 
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In the fixed-lag smoother, it is required to obtain the smoothed estimate at epoch k using 

only available measurements between k and k+m, where m is a fixed number of epochs 

(fixed-lag) and Nmkk ≤+< . Therefore, for each smoothed estimate s
mk,kˆ +x , a window 

of m measurements is used. However, to obtain s
mk,kˆ +x , intermediate but unwanted 

estimates at the heading epochs k+1, k+2,…., k+m-1 are computed first (see Figure 6.3d). 

For the smoothed estimate at k+1 ( s
1mk,1kˆ +++x ), the measurement at k+1 is removed from 

the previous window while the measurement at k+m+1 is added. Thus, the smoothed 

estimates for all epochs are obtained through a sliding window of size m. As in the case 

of fixed-point smoother, the fixed-lag smoother can be used in near real-time. From 

Figure 6.3, it is obvious that the fixed-lag smoother is, in general, more complicated than 

the other two smoother types. However, fixed-lag smoothing can be effectively 

performed in case of a small lag m. Typical applications of this smoother are in 

communication and telemetry data, where there is a lag between the transmitted and 

received signals (Meditch, 1969, Gelb, 1974).   

 

From the above discussion of different BS algorithms, the choice of a specific smoother 

for bridging DGPS outages will depend on the application at hand. If the smoothed 

estimates of the SINS/DGPS solution are required for all trajectory points in post-mission 

(including DGPS outages intervals), the fixed-interval BS algorithm will be the best 

choice. On the other hand, if the smoothed estimates are required in near real-time 

(especially for DGPS outage periods), the fixed-lag smoother, even if it is complicated, 

should be utilized. However, in most Geomatics applications, the estimates are required 

in post-mission for the whole trajectory. Therefore, the fixed-interval smoother will be 

the one to be considered in the sequel analysis of this Chapter.  

 
 

6.3 Fixed-Interval Backward Smoothing  
 
The fixed-interval smoothing algorithm that will be used for bridging DGPS outages is 

the Rauch-Tung-Striebel (RTS) backward smoother. Compared to other fixed-interval 
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smoothers, the RTS algorithm has the advantage to be the easiest and simplest in 

implementation (Meditch, 1969; Gelb, 1974; Brown and Hwang, 1992; Jansson, 1998). 

One drawback of this algorithm is that a matrix inversion has to be performed at each 

epoch, which is obviously not a major concern with the existing advanced computers. 

The RTS smoother consists of a forward sweep and a backward sweep. The forward 

sweep is the common Kalman filter (represented by Equations 6.3 to 6.7) with all 

predicted and updated estimates and corresponding covariance saved at each epoch of the 

whole mission. The backward sweep begins at the end of the forward filter (i.e. at epoch 

N) with the initial conditions of N,N
s

N,N ˆˆ xx =  and N,N
s

N,N PP = . The RTS algorithm 

equations were derived by Rauch et al. (1965) as: 

 

              )ˆ-ˆ(ˆˆ k,1k
s

N,1kkk,k
s

N,k +++= xxAxx                            (6.10) 

                1
k,1k

T
k,1kk,kk .. −

++= PΦPA                                                   (6.11) 

 

where s
N,kx̂  is the smoothed estimate of the state vector, Ak is the smoothing gain matrix 

and k  =  N-1 ,  N-2  ,  ……….  ,   0. If the covariance matrix of the smoothed estimates 

is also required, it is computed by: 

 

              T
kk,1k

s
N,1kkk,k

s
Nk, )( AP-PAPP +++=                   (6.12), 

 

From Equations 6.10 and 6.11, the RTS smoothed estimate at any epoch k is computed as 

a linear combination of the filtered estimate at that epoch and the smoothed estimate at 

the heading epoch k+1. Thus, the RTS smoothed estimate can be considered as updating 

the forward filtered solution for obtaining improved estimates. In other words, the RTS 

smoother is refining the filtered solution by adding the correction term 

)ˆ-ˆ( k,1k
s

N,1kk ++ xxA . By examining Equations 6.10 and 6.11, the computation of the 

smoothed estimate at each epoch requires the storage of the KF predicted and updated 

(filtered) estimates and their corresponding covariance at each epoch. This is the case in 



 109

SINS/DGPS integrated solution, when uninterrupted data streams are available. In case of 

DGPS outages, only predicted estimates and covariance are available, and thus, 

theoretically, the BS algorithm should not be used in such outage situations. However, 

recalling Equations 6.8 and 6.9, it was shown that the filtered estimates are identical to 

the corresponding predicted ones during DGPS outage intervals. Therefore, to apply BS 

for bridging DGPS outages, the filtered solution (during outage intervals only) is reset to 

the predicted solution first and then BS is carried out. The computational procedure of the 

RTS smoother in case of a DGPS outage is illustrated in Figure 6.4. 

 

 

Time 

Errors Close  
   To Zero 

Beginning 
of Outage 

  Position 
   Errors 

End of 
Outage

Forward Filter 
Accumulated  
      Errors 

Errors Close  
   To Zero 

Smoothing 
Residual Errors

 
Fig.6.4 The Effect of the RTS Smoother on SINS Positional Errors During DGPS 

Outages 
 

 

6.4 RTS Backward Smoothing Test Results 
 
One airborne and two van kinematic data sets are used to test the performance of the used 

Backward Smoothing (BS) algorithm in bridging DGPS outages. The two van tests are 

the same ones described before in Chapter 3 (Honeywell LRF-II IMU test in Laval, 

Québec and Honeywell HG1700 IMU test in Calgary, Alberta). In the airborne test, two 

Ashtech Z12 GPS receivers and a navigation-grade IMU (Honeywell LRF-III) were used 
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for data collection. The test was performed in 1995 in the Kananaskis area, Alberta. It 

consisted of three repeated E-W flight lines with average flying height of 5540 m. The 

flight trajectory of this test is shown in Figures 6.5. 

 

 
Fig.6.5 SINS/DGPS Airborne Test Trajectory 

 

To obtain suitable data sets for testing the BS algorithm, all data sets were processed 

twice, once in a full SINS/DGPS integration mode to obtain a reference solution and the 

second time in SINS/DGPS integration mode but with some simulated DGPS outages. As 

performed in Chapter 3, positioning errors accumulated during outage periods are 

obtained by subtracting the first solution (reference solution) from the second solution 

(outages solution). Moreover, to illustrate the analysis in this Chapter, a 1st order GM 

process is used for modeling sensor residual biases. 

 

 

6.4.1 Testing Backward Smoothing with Airborne Data 
 
In the airborne case, DGPS outages were created for each one of the three flight lines. 

These airborne outages have time periods of 60, 120, 180, 240 and 300 seconds. 

Therefore, for each chosen time period, three airborne outages will be analyzed. To 

illustrate the actual behavior of the SINS positioning error during airborne outage periods 

(before smoothing) as well as the effect of BS on these errors, one of the 180 s outages 

has been selected as an example.  
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The coordinate differences between the SINS solution and the SINS/DGPS reference 

solution for the chosen outage period are given in Figure 6.6a. The residual position 

errors for the same outage interval after BS are shown in Figure 6.6b. Comparing the two 

figures indicates the efficiency of BS in removing most of the accumulated errors during 

DGPS outages. To show the same analysis for all outage periods, the magnitudes of the 

SINS position errors, at the end of all outage periods of the three flight lines, were 

computed and are shown in Figure 6.7a. Also, the corresponding RMS values of the 

residual position errors after applying BS are given in Figure 6.7b. 

 

Fig.6.6 SINS Position Errors for One Airborne DGPS Outage Interval 
(a) Before Smoothing 
(b) After Smoothing (Note Change in Scale) 

 

Fig.6.7 SINS Position Errors for All Airborne DGPS Outages 
(a) Before Smoothing 
(b) After Smoothing (Note Change in Scale) 
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To evaluate the overall efficiency of BS, the average values of the position errors of 

Figure 6.7a and the BS residuals of Figure 6.7b are computed for each outage interval (60 

s to 300 s). This was performed by taking the RMS of the corresponding quantities for all 

three flight lines. These values are shown in Figure 6.8 and are summarized in Table 6.1. 

The values of the remaining BS residuals in Figure 6.8 and Table 6.1 show that the BS is 

quite efficient in removing SINS systematic errors during airborne DGPS outages. The 

average percentage of error removal equals 88%. 

 

 
Fig.6.8 Overall RMS of Airborne Positional Errors During DGPS Outages Before 

and After Backward Smoothing 
 

 
Table 6.1 Performance Summary of Backward Smoothing in Bridging DGPS 

Outages Using SINS/DGPS Airborne Data 
 

Outage  
Interval (s) 

Original 
Errors (m) 

BS Residual 
Errors (m) 

% Error  
Removal 

60 3.16 0.42 (87%) 
120 12.94 1.34 (90%) 
180 30.06 3.36 (89%) 
240 54.15 6.67 (88%) 
300 88.06 10.81 (88%) 

    

Mean   88% 
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6.4.2 Testing Backward Smoothing with Van Data 
 
For the two van data sets, the chosen DGPS outages are the same ones utilized in 

Chapters 3 and 4 (10 outages for the LRF-III Laval test and 11 outages for the HG1700 

Calgary test). The overall original and residual position errors obtained in both van tests 

for all outage periods, before and after smoothing, are summarized in Table 6.2 and are 

shown in Figure 6.9. Clearly, Table.6.2 and Figure 6.9 show that BS removed most of the 

SINS errors accumulated during DGPS outages. Moreover, the results confirm the 

airborne results obtained in the previous Section. 

 

 

Table 6.2 Performance Summary of Backward Smoothing in Bridging DGPS 
Outages Using SINS/DGPS Van Data 

 

LRF-III IMU (Laval, Québec) HG1700 IMU (Calgary, Alberta)Kinematic 
Van  
Test 

Out. 
No. 

Original 
Errors  

(m) 

BS Resid.
Errors 

(m) 

%  
Error  

Removal

 
Out.
No.

Original 
Errors  

(m) 

BS Resid. 
Errors 

(m) 

% 
Error 

Removal
1 1.23 0.21 ( 83% ) 1 13.83 2.42 ( 83% ) 
2 1.69 0.21 ( 88% ) 2 30.23 7.36 ( 76% ) 
3 1.84 0.16 ( 91% ) 3 15.49 3.15 ( 80% ) 
4 0.63 0.08 ( 87% ) 4 24.04 4.82 ( 80% ) 
5 1.56 0.28 ( 82% ) 5 30.89 7.37 ( 76% ) 
6 2.05 0.22 ( 89% ) 6 12.89 2.62 ( 80% ) 
7 0.96 0.07 ( 93% ) 7 59.32 7.15 ( 88% ) 
8 0.56 0.16 ( 71% ) 8 21.70 4.41 ( 80% ) 
9 1.86 0.26 ( 86% ) 9 38.55 6.19 ( 84% ) 
10 1.13 0.23 ( 80% ) 10 24.11 4.20 ( 83% ) 

 

    

 

11 10.03 1.29 ( 87% ) 
 

Mean  1.35 0.19 ( 85% )  25.55 4.63 ( 82% ) 
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Fig.6.9 Overall Position Errors and Backward Smoothing Residual Errors During 
Van DGPS Outages  
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CHAPTER 7 

 
SINS Parametric Error Modeling For Bridging DGPS Outages 

In SINS/DGPS Kinematic Applications 
 

 

In the previous Chapter, the Backward Smoothing (BS) algorithm was utilized for 

bridging DGPS outages in SINS/DGPS kinematic applications. Although BS works well, 

it has some drawbacks. The main drawback of BS is that large amount of data have to be 

stored (navigation parameters and their covariance at all points). Moreover, BS results are 

only available post-mission. For these reasons, a second method for bridging DGPS 

outages in SINS/DGPS applications has been developed in this research and will be 

presented in this Chapter. The proposed algorithm does not need excessive data storage 

and can be applied in near real-time. As shown before in Chapter 6, DGPS position errors 

(and hence SINS/DGPS position errors) are very small and can be determined very 

accurately at both the beginning and the end of DGPS outages (i.e. when DGPS is 

available with high precision). 

 

The new developed method is based on the fact that the SINS position error during DGPS 

outages (Figure 6.2) is mainly dependent on a constant acceleration error term. This term 

consists of a number of error components in the SINS error model. By making position or 

velocity error measurements at the beginning and the end of the outage period, a 

simplified parametric SINS error model can be used to model such constant acceleration 

terms. In this Chapter, the original SINS acceleration error model will be analyzed first. 

Based on this analysis, the SINS Parametric Error Model (PEM) during DGPS outages 

will be derived. Then, the developed algorithm will be tested for bridging DGPS outages 

with the same van and airborne SINS/DGPS data sets used in Chapter 6. Finally, the 

results of BS obtained in Chapter 6 and the PEM results will be compared and discussed. 
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7.1 SINS Acceleration Error Model   
 
The model of the SINS acceleration error lvδ&  in the local-level frame (l-frame) is derived 

in Schwarz and Wei (2001) by linearizing the second row of Equations 5.1. In addition, if 

the effects of accelerometer scale factor errors and residual bias errors are separated, this 

acceleration error model can be represented as: 

 
lll εFvδ −=&  

            ll
el

l
ie )2( δvΩΩ +−  

            )2( l
el

l
ie

l δωδωV ++  

            lδγ+   

            bl
bbR+                      

            bb
21

l
b )( ffSSR ++                                                (7.1), 

 
where: 
 

lvδ&  ……... is the vector of acceleration errors in the l-frame. 

fb ……... is the accelerometer measured specific force vector in the IMU 

body frame (b-frame). 

Fl ……... is a skew-symmetric matrix containing the components of the 

specific force vector fl. 
lε  ……... is the vector containing the misalignment angle errors of the b-

frame with respect to the l-frame. 
l
ieΩ  ……... is a skew-symmetric matrix of Earth rotation angular rate ωe. 

l
elΩ  ……... is a skew-symmetric matrix of vehicle transportation angular rate.

δvl ……... is the vector of velocity errors. 

Vl ……... is a skew-symmetric matrix containing the components of the 

velocity vector vl. 
l
ieδω  ……... is the error in the Earth angular rate. 
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l
elδω  ……... is the error in the vehicle angular rate. 

lδγ  ……... is the error in computing normal gravity lγ . 

l
bR  ……... is the rotation matrix from the b-frame to the l-frame. 

bb ……... is the vector of accelerometer residual biases in the b-frame. 

S1 ……... is a diagonal matrix representing the accelerometer linear scale 

factor errors. 

S2 ……... is a diagonal matrix representing the accelerometer non-linear 

scale factor errors. 

 

Typically, the SINS positioning errors during DGPS outages (shown before in Figure 6.2) 

are resulting from the double integration of Equation 7.1. The effect of each single error 

term in Equation 7.1 has been investigated in Schwarz and Nassar (2001) for the case of a 

moving van to determine how much of the acceleration error would remain constant 

during DGPS outages. A similar analysis was performed in Nassar and Schwarz (2001) 

for the case of a fixed-wing aircraft. Both investigations were performed assuming a 

navigation-grade IMU. These studies showed that for DGPS outages that do not contain 

large dynamics (i.e. frequent sudden accelerations or decelerations) and for which the 

movement is essentially along a straight line, the SINS acceleration error lvδ&  in each 

direction (north, east or up) is mainly a constant value for a single outage interval. 

 

The value of such acceleration error will be dominated by the first and the fifth terms in 

Equation 7.1 (i.e. llεF−  and bl
bbR ) while the other terms will be small in comparison. 

To give an order of magnitude for the two dominant error terms in case of a navigation-

grade IMU, the first term can range from 50 to 100 mGal (1 mGal = 10-5 m/s2) depending 

on the quality of the SINS initial alignment and the DGPS in-motion calibration 

(updating) of the SINS errors before the outage. The fifth term typically ranges from 20 

to 50 mGal for a well-calibrated SINS system. These analyses were taken as the basis for 

developing the bridging algorithm that will be presented in the next Section. However, it 
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is expected to have some deviations from a constant acceleration error value for a single 

outage period if high dynamics have occurred. These deviations will be in the order of a 

few mGals. In addition, the constant acceleration error will change from one outage 

interval to the next depending on the vehicle dynamics and the DGPS quality before and 

after the outage. 

 

 

7.2 Simplifying the SINS Error Model During DGPS Outages 
 
As mentioned earlier, the differences between the integrated SINS/DGPS solution and the 

‘SINS only’ solution will be minimum at the beginning of a DGPS outage period. When 

the GPS signal is available again at the end of this period and a DGPS solution is 

provided with high precision, the position error built up in the SINS solution (Figure 6.2) 

can be determined very accurately. Consequently, at both the beginning and the end of 

the outage period, the differences between the SINS and the DGPS position vectors are 

available with an accuracy that is very close to the DGPS accuracy itself.  

 

The differences between the SINS and DGPS position error vectors at the outage 

endpoints will be used to compute a simplified SINS Parametric Error Model (PEM), see 

Figure 7.1. Note that the line representing the actual position error between the outage 

endpoints in this figure (solid line) is drawn for illustration only. Using the DGPS 

positions at the endpoints of the outage interval, a constant acceleration error can be 

modeled by one parameter “a” in each direction (north, east or up). The computation of 

this acceleration error parameter during DGPS outages is obtained as: 

 

2
be

ii
i )tt(

)r∆r∆(2
a be

−

−
=                                                         (7.2), 

 

where ∆r is the coordinate difference between the SINS and the DGPS at the same point 

(i.e. SINS coordinate position error), the subscripts b and e stand for the beginning and 
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end of the outage period, i refers to one of the three coordinates (north, east or up), and t 

is the time. The position error during the outage can then be modeled by:  

 

     2
beii )tt(.a

2
1PEM −=                                              (7.3) 

 

Therefore, the PEM (dashed line in Figure 7.1) can be applied backward in time, just 

after acquiring DGPS signals again with high accuracy at the end of the outage period. It 

is clear from Equations 7.2 and 7.3 that the parameter ai is assumed to be constant for 

each outage period. This is generally true for profile measurements performed at near 

constant velocity using an aircraft or a land-based vehicle. 
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Fig.7.1 SINS Parametric Error Model (PEM) During DGPS Outages 

 

Due to the known relation between position and velocity, the acceleration error parameter 

“ai” can also be computed using velocity error measurements at the outage endpoints. In 

this case, the parameter “ai” is computed by: 
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be

ii
i tt

v∆v∆
a be

−

−
=                                                       (7.4), 

 

where ∆v is the SINS and DGPS velocity difference (SINS velocity error) at the same 

point. However, since DGPS positions are, relatively speaking, more accurate than DGPS 

velocities, it is expected that the parameter “ai” computed from Equation 7.2 is more 

accurate than the one computed from Equation 7.4. 

 

In addition, in case of land-vehicle kinematic tests, the values of ∆v at the outage 

endpoints can be obtained if ZUPTs are performed before and after the outage period. In 

this case, the values of ∆v at the outage endpoints are provided by averaging the velocity 

outputs of the SINS (of each direction) at these ZUPT periods. However, it has been 

shown in Schwarz and Nassar (2001) that the PEM results obtained from DGPS-SINS 

position differences are better by 50% than those obtained from SINS ZUPT velocity 

error measurements. Therefore, the following PEM analysis will be performed using the 

first two discussed cases: DGPS-SINS position error measurements and DGPS-SINS 

velocity error measurements. In the sequel, the former will be called Position PEM (P-

PEM) and the latter will be called Velocity PEM (V-PEM). 

 

 

7.3 SINS Parametric Error Model (PEM) Test Results 
 
To test the performance of the SINS PEM in bridging DGPS outages, the same three data 

sets used in Chapter 6 for BS testing with the same analysis scenarios are utilized here: 

- One airborne data consists of three flight lines with 5 created DGPS outages per line 

(60, 120, 180, 240, 300) seconds, navigation-grade IMU (Honeywell LRF-III).  

- One van data with 10 DGPS outages, navigation-grade IMU (Honeywell LRF-III). 

- One van data with 11 DGPS outages, tactical-grade IMU (Honeywell HG1700). 

The same 180 s outage interval, used in Chapter 6, is selected for the airborne case to 

illustrate the PEM performance analyses.  
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Recalling Figure 6.6a, the coordinate differences between the SINS solution and the 

SINS/DGPS reference solution for the chosen 180 s outage is shown again in Figure 7.2a. 

As the figure indicates, the general shape of the actual position error curves (represented 

by the solid lines) follows a ∆t2-pattern. This shows that the assumptions made to derive 

the constant acceleration term “a” (Equation 7.2) and then constructing the SINS P-PEM 

of Equation 7.3 (represented by the dashed lines) are well approximated by the actual 

coordinate differences. This general pattern of Figure 7.2a repeats itself for all other 

outage periods. Figure 7.2b shows position errors for the same outage as well as the 

corresponding SINS V-PEM, which is constructed this time using the acceleration term 

obtained from velocity error measurements (Equation 7.4).  

 

Fig.7.2 SINS Position Errors for One Airborne DGPS Outage Before PEM Bridging 
(a) Position Error Measurements (P-PEM) 
(b) Velocity Error Measurements (V-PEM) 

 

As indicated by Figures 7.2a and 7.2b, the PEM representation of the actual error curves 

is much better in case of using position error measurements (P-PEM) rather than using 

velocity error measurements (V-PEM). For the same 180 s outage interval, the position 

residual errors after PEM bridging using position or velocity measurements are shown in 

Figures 7.3a and 7.3b, respectively. They confirm the higher accuracy of the P-PEM over 
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the V-PEM. In addition, Figure 7.3a depicts the excellent performance of the P-PEM in 

removing most of the SINS position errors that occurred during DGPS outages. 

 

Fig.7.3 SINS Position Errors for One Airborne DGPS Outage After PEM Bridging 
(a) Using Position Error Measurements (P-PEM) 
(b) Using Velocity Error Measurements (V-PEM) 

 
 
To show the efficiency of PEM bridging for all outage intervals of the three flight lines, 

the residual position errors after PEM bridging are computed for each outage. These 

residual errors are shown in Figures 7.4a and 7.4b for the PEM bridging using position 

and velocity error measurements, respectively. Finally, the overall performance of the 

PEM is obtained by computing the RMS of the flight line errors before and after applying 

PEM for each outage period (60 s, 120 s, 180 s, 240 s, 300 s). These RMS values are 

shown in Figure 7.5 and are also given in Table 7.1.  

 

The numerical values of the PEM residual errors shows that the algorithm is working 

very well in reducing SINS position errors during DGPS outages. The average percentage 

of position error removal is 84% in case of V-PEM and 93% in case of P-PEM. The 

results of the P-PEM are better than the V-PEM results by an average factor of 3 (see 

Table 7.1).   
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Fig.7.4 SINS Position Errors for All Airborne DGPS Outages After PEM Bridging 
(a) Using Position Error Measurements (P-PEM) 
(b) Using Velocity Error Measurements (V-PEM) 

 
 

 
Fig.7.5 Overall RMS of Airborne Positional Errors During DGPS Outages Before 

and After PEM Bridging 
 

Using the same van data utilized in Chapter 6, and considering only the PEM constructed 

from position error measurements, the overall positional errors obtained in both van tests, 

before and after P-PEM bridging, are given in Table 7.2. Again, and similar to the 

airborne data analysis, the van results show that the P-PEM removed most of the SINS 

position errors accumulated during DGPS outages. In addition, the P-PEM average 
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RMSE in case of the navigation-grade IMU (LRF-III) is only 10 cm, which is close to the 

accuracy expected from kinematic DGPS. 

 

Table 7.1 Performance of the SINS PEM in Bridging Airborne DGPS Outages  
 

RMS of PEM Residual Errors (m) 
Outage  
Interval  

(s) 

Original 
Errors 

(m) 

Using Position 
Measurements 

(P-PEM) 

% Error 
Removal 

Using Velocity  
Measurements 

(V-PEM) 

% Error 
Removal 

60 3.16 0.28   ( 91% ) 0.60  (81%) 
120 12.94 0.88 ( 93% ) 2.10 (84%) 
180 30.06 1.72 ( 94% ) 4.60 (85%) 
240 54.15 3.06 ( 94% ) 7.88 (85%) 
300 88.06 4.04 ( 95% ) 

 

14.54 (83%) 
       

Mean   93%   84% 
 
 
 

Table 7.2 Performance of the SINS P-PEM in Bridging Van DGPS Outages  
 

LRF-III IMU (Laval, Québec) HG1700 IMU (Calgary, Alberta)

Van 
Test Out. 

No. 

Original 
Errors  

(m) 

RMS of  
PEM  

Residual 
Errors 

(m) 

%  
Error  

Removal

 

Out.
No.

Original 
Errors  

(m) 

RMS of 
PEM  

Residual 
Errors 

(m) 

% 
Error 

Removal

1 1.23 0.04  ( 97% ) 1 13.83 0.46 ( 97% ) 
2 1.69 0.04 ( 98% ) 2 30.23 1.41 ( 95% ) 
3 1.84 0.12 ( 93% ) 3 15.49 0.78 ( 95% ) 
4 0.63 0.07 ( 89% ) 4 24.04 1.52 ( 94% ) 
5 1.56 0.06 ( 96% ) 5 30.89 2.48 ( 92% ) 
6 2.05 0.16 ( 92% ) 6 12.89 0.96 ( 93% ) 
7 0.96 0.10 ( 90% ) 7 59.32 4.60 ( 92% ) 
8 0.56 0.16 ( 71% ) 8 21.70 1.68 ( 92% ) 
9 1.86 0.14 ( 92% ) 9 38.55 3.40 ( 91% ) 
10 1.13 0.06 ( 95% ) 10 24.11 0.65 ( 97% ) 

 

    

 

11 10.03 0.29 ( 97% ) 
 

Mean  1.35 0.10 ( 92% )   25.55 1.66 ( 94% ) 
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7.4 Comparison Between Backward Smoothing and SINS Parametric Error 
Modeling 

 
In this Chapter, the SINS PEM algorithm was used for bridging DGPS outages. In 

Chapter 6, optimal Backward Smoothing (BS) was implemented as a bridging method. 

Both methods were applied on the same data sets. For the airborne and van data that used 

a navigation-grade IMU (Honeywell LRF-III), the PEM bridging results (using position 

error measurements at outages endpoints, i.e. P-PEM) were better than the BS results by 

an average factor of two, see Tables 6.1, 7.1, 6.2 and 7.2. In case of the van data that used 

a tactical-grade IMU (Honeywell HG1700), the same is true but with an improvement 

factor of about three, see Tables 6.2 and 7.2. Taking into consideration that only near 

straight-line profiles have been used for the outages, this might be thought as a rather of 

special case that is largely responsible for the better performance of PEM over BS. 

 

To investigate the generality of the above results, it has been decided to apply both 

bridging methods to the case of curved profiles. It can be expected in this case that the 

bridging accuracy obtained by both algorithms will be worse than that obtained from 

straight-line profiles. The Laval van data (LRF-III IMU) have been used for this analysis. 

Four curved profile situations (turns) were available in this test, and hence, four DGPS 

outages could be simulated, ranging from 75 s to 115 s. These selected DGPS outage 

periods are shown in red and green solid lines in Figure 7.6.  

 

To illustrate the behavior of the SINS position errors during DGPS outages that occur in 

curved profiles, outage No.1 in Figure 7.6 was selected and is shown in Figure 7.7. As 

expected, the figure indicates that the actual error curves do not follow completely the 

∆t2-pattern that was obtained before in the case of straight-line outages (see Figure 7.2a). 

As before, the SINS accumulated position errors during the four outages as well as the 

RMS of residual errors after applying BS and P-PEM bridging algorithms were 

computed. The values of all these errors are given in Table 7.3. 
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Fig.7.6 The Selected DGPS Outages in Van Curved Profile Situations 

 

 
Fig.7.7 SINS Position Errors for One DGPS Outage During A Van Turn Before  

P-PEM Bridging 
 

Comparing the bridging results of Table 7.3 with the results of Tables 6.2 and 7.2, it is 

evident that the BS and P-PEM bridging performance is better in case of straight-line 

profile outages than in the case of curved profile outages. For BS, the straight-line results 

are better by 39% while for P-PEM they are better by 50%. Moreover, from Table 7.3, 

the P-PEM results are still in general better than the BS results by an average factor of 1.5 

(instead of 2 in case of straight line profiles). The only curved outage interval where BS 
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performance was slightly better than the P-PEM performance is outage No.3 (better by 

12%). Therefore, even for curved trajectories, the performance of the P-PEM will in 

general be better than that of the BS.    

 

Table 7.3 Performance of Backward Smoothing and SINS P-PEM in Bridging 
DGPS Outages During Van Curved Profiles  

 

Test LRF-III IMU (Laval, Québec) 

Outage RMS of Bridging Residual Errors 

No. Length 
(s) 

Original
Position
Errors 

(m) 

BS  
Residual
Errors 

(m) 

%  
Error  

Removal

 P-PEM  
Residual 
Errors 

(m) 

%  
Error  

Removal

1 85 1.50 0.45 ( 70% ) 0.23 ( 85% ) 
2 115 1.54 0.21 ( 86% ) 0.20 ( 87% ) 
3 100 0.69 0.23 ( 67% ) 0.26 ( 62% ) 
4 75 1.51 0.33 ( 78% ) 0.10 ( 93% ) 

 

       
Mean   1.31 

 

0.31 ( 75% ) 

 

0.20 ( 82% ) 
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CHAPTER 8 

 
Summary, Conclusions and Recommendations 

 

 

8.1 Summary 
 
The overall objective of this research was to improve the accuracy obtained in SINS 

stand-alone and SINS/DGPS integration applications by improving SINS error modeling. 

To accomplish such objective, detailed analyses of different approaches have been 

investigated and implemented in this thesis. For all investigated approaches, theoretical 

aspects were covered and real data testing was performed.  From the results achieved 

throughout the thesis, the main objective of the research has been met. The following 

tasks have been covered in the dissertation:  

 

(1) Investigating the actual behavior of SINS sensor errors: 
 
This has been achieved by computing the Autocorrelation Sequence (ACS) of long 

records of inertial sensor data, collected by different IMU categories (navigation-grade, 

medium-grade and low-cost). In this context, different random processes of known 

theoretical ACS behavior were discussed and compared to the actual obtained ACSs. 

Numerical analyses have been performed to approximately estimate the accuracy of the 

ACSs obtained from the used experimental data. In addition, the variation of the 

parameters of Gauss-Markov (GM) processes that are estimated from an actual ACS was 

studied by computing the ACS using different data time lengths. 

 

(2) Investigating and implementing better SINS sensor error models: 
 
For this purpose, Autoregressive (AR) processes were introduced as an alternative 

approach for modeling inertial sensor errors. Compared to the currently used SINS sensor 

error models, AR models have more modeling flexibility since they are not restricted to 

only one or two parameters and can cover a large number of known random processes by 
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constraining the AR model parameters to take certain values. Three different methods 

were investigated for the optimal estimation of the AR model parameters namely: the 

Yule-Walker (autocorrelation) method, the covariance method and Burg’s method. AR 

models of different orders (one to four) were implemented into the SINS sensor error 

model inside the Kalman filter. Then, SINS position errors were computed using SINS 

static data, SINS kinematic data and SINS/DGPS kinematic data with DGPS outage 

periods. Two IMU categories were used for data testing, a navigation-grade IMU and a 

tactical-grade IMU. 

 
(3) De-noising SINS sensor measurements: 
 
All inertial sensors suffer from relatively high measurement noise. De-noising of inertial 

static sensor data was performed using wavelet multi-resolution analysis (multiple level 

of decomposition) for an accurate estimation of the AR model parameters. Wavelet 

decomposition has the advantage over other signal processing techniques that it is 

capable of performing local analysis, i.e. analyzing a localized portion of a large signal. 

Wavelet de-noising was applied also on SINS kinematic data to reduce position errors. In 

this case, a frequency analysis was performed on the original and de-noised SINS 

kinematic data after each applied wavelet level of decomposition for an appropriate 

choice of the decomposition level to be used.  

 
(4) Combination of de-noising SINS sensor measurements and AR modeling of SINS 

sensor errors: 
 
A combination of approaches (2) and (3) in one procedure was performed, i.e. de-noising 

of SINS sensor measurements and also modeling SINS sensor residual biases using AR 

processes of second and third orders. The combined approach was tested using the same 

kinematic SINS and SINS/DGPS sets used in (2) and (3). 

 
(5) Developing and testing a new SINS error model for deterministic errors that contains 

all second-order errors:  
 
Two independent second-order error models for SINS deterministic errors (position, 

velocity and attitude) were derived. The first one considers the second-order errors 
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neglected in the linearization process while the second one considers the second-order 

error terms in the Taylor expansion. The predicted SINS deterministic errors computed 

using both second-order error models and the common first-order error model were 

compared for a 20 minutes DGPS outage. Two SINS/DGPS van data sets that utilized 

navigation and tactical grade IMUs were used for the computations.  

 
(6) Bridging DGPS outages in SINS/DGPS applications  
 
Two different approaches were implemented for this purpose, optimal Backward 

Smoothing (BS) and SINS Parametric Error Modeling (PEM). Different BS algorithms 

were discussed and it has been found that the fixed-interval smoother is the best choice 

for bridging DGPS outages. The Rauch-Tung-Striebel (RTS) fixed-interval smoother was 

chosen since it has the advantage to be the easiest and simplest in implementation 

compared to other fixed-interval smoothers. The BS original equations are based on the 

availability of two estimates at each epoch: prediction and update. In case of DGPS 

outages, only prediction estimates are available, and thus, the BS equations were 

modified in this thesis so that they can be applied successfully during such periods. The 

SINS PEM algorithm was developed in the thesis. The PEM is based on making only 

position or velocity error measurements at the beginning and the end of the DGPS outage 

period.   

 

 

8.1 Conclusions 
 
From the work performed in this thesis, the following conclusions can be drawn: 
  
1- The parameters of any random process that are estimated based on an actual 

Autocorrelation Sequence (ACS) are changing with the change of the data length 

used for computing such ACS. Therefore, it is not possible to estimate the inertial 

sensor errors accurately using the parameters of an ACS that has been determined 

from actual data. 
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2- When studying the ACS of inertial sensor data, it appears that the currently used first-

order Gauss-Markov process is not always adequate for modeling inertial sensor 

residual errors. 

 
3- Compared to the currently used SINS sensor error models, Autoregressive (AR) 

model parameters are more accurately determined when using de-noised inertial 

sensor measurements.  

 
4- Testing results showed that Burg’s method and the covariance method give the best 

performance for all AR processes of different orders. 

 
5- Compared to a first-order Gauss-Markov (GM) model, frequently used today, the 

obtained SINS position errors (RMS) using AR models of second and third orders 

were better by: 

- 40% - 70% using static SINS data with continuous ZUPTs. 

- 23% - 33% using static SINS data with 60 s - 120 s prediction-ZUPT intervals. 

- 12% - 36% using van kinematic SINS data with frequent ZUPT periods. 

In addition, using AR models of second and third orders, the accumulated SINS 

position errors at the end of DGPS outages were reduced by 14% - 35% using van 

kinematic SINS/DGPS data with 10 - 11 DGPS outages ranging from 70 s - 180 s. 

 
6- In general, position errors start to increase after applying AR models of orders higher 

than three. This is mainly due to the increase in the number of the Kalman Filter (KF) 

error states (each increase in the order of the AR model will increase the number of 

KF error states by 6 since we have 6 sensors, 3 accelerometers and 3 gyros). 

Therefore, for large AR model orders, the KF will most likely be unstable. 

 
7- Due to the high level of existing noise in all inertial sensor measurements, de-noising 

of inertial sensor data is crucial for an accurate determination of the AR model 

parameters. 
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8- Before applying wavelet de-noising of SINS sensor kinematic measurements, a 

frequency analysis must be carried out first for an appropriate choice of the used 

decomposition level. This technique guarantees the removal of undesirable signal 

noise and the preservation of the vehicle motion dynamics. 

 
9- Compared to the position errors (RMS) obtained in a van SINS kinematic 

applications (with frequent ZUPTs as updates) using the original SINS data, the de-

noised SINS data results were better by 46% - 63%. Using de-noised SINS data in 

van SINS/DGPS kinematic positioning during DGPS outages, the accumulated 

position errors at the end of the DGPS outages were reduced by 13% - 34%. 

 
10- Using a combined approach of inertial data de-noising and inertial sensor errors AR 

modeling, the position errors (RMS) of SINS kinematic positioning were improved 

by 52% - 67%. At the end of DGPS outages, the accumulated position errors were 

reduced by 40% - 41%.     

 
11- Compared to the results of the individual approaches of inertial data de-noising (9) 

and inertial sensor errors AR modeling (5), the combined approach solution is better 

by 10% - 45%. 

 
12- The results showed that none of the derived second-order SINS error models has 

significant differences compared to the commonly used first-order error model. Thus, 

the first-order linearized error model is adequate for all cases considered here. 

 
13- Using airborne and van SINS/DGPS kinematic data, 82% - 88% of the SINS position 

errors occurring during DGPS outages (ranging from 60 s to 300 s) were removed 

after applying Backward Smoothing (BS) for bridging. 

 
14- When the Parametric Error Model (PEM) is used for bridging DGPS outages, the 

results showed that the PEM bridging accuracy using position error measurements (P-

PEM) is much better than the case of using velocity error measurements (V-PEM). 
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15- After applying the PEM bridging algorithm (using position error measurements), 92% 

- 94% of the airborne and van DGPS outage position errors were removed. 

 
16- In case of near straight-line profile outages, the PEM bridging results are in general 

better than the BS results by a factor of 2 - 3. This is also true in curved profile 

outages but with a factor of 1.5.  

 
17- The PEM algorithm has the advantage over the BS algorithm that it does not need 

excessive data storage and can be applied in near real-time. 

 

 
8.2 Recommendations 
 
The following recommendations for future work are proposed: 

 
- In the thesis, all implemented approaches for improving SINS error modeling were 

tested with navigation-grade and tactical-grade IMU data sets. Therefore, these 

different approaches should be tested also with low-cost inertial systems data. 

 
- De-noising of the inertial sensor data was performed using wavelet decomposition 

without applying any coefficient thresholding techniques. In some kinematic 

applications, the details component of the decomposed signal may contain motion 

frequencies mixed with noise components in a specific frequency bandwidth. Thus, de-

noising using wavelets with different thresholding algorithms could be also 

investigated. 

 
- The RTS fixed-interval backward smoother was used for bridging DGPS outages in 

post-mission. However, other smoothing algorithms such as the fixed-lag smoother 

should be also tested for the bridging problem in near real-time applications. 

 

The additional research recommended above might lead to minor improvement of the 

results presented here, but will not change the main conclusions of this thesis. 
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APPENDIX A 
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APPENDIX B 
 

 

(1) Dynamics Matrix of the Linearized SINS Error Model in the Local-Level Frame 
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(2) Dynamics Matrix of the Second-Order Error Effects of the Linearized SINS 

Error Model in the Local-Level Frame 
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(3) Taylor Expansion for the Second-Order Design Matrix of the Linearized SINS 

Error Model in the Local-Level Frame 
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