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Abstract 

 
Accelerations derived from GPS are usually derived by twice time differentiating 

positions.  In airborne gravimetry, the accuracy of accelerations obtained this way is 

limiting the achievable accuracy and resolution of the measured gravity field.  Therefore, 

alternative methods of acceleration estimation need to be investigated.  The current 

process, referred as the position method herein, has operation constraints, in addition to 

being unable to supply the desired accuracy.   

 

An alternative method, referred to as the carrier method, is developed, implemented and 

evaluated.  The carrier method estimates acceleration directly from the carrier phase 

measurements.  A covariance model is developed and applied in the carrier method 

estimation process.   

 

Testing is conducted using data from an airborne gravimetry campaign flown near 

Ottawa, Canada in the spring of 2000.  An independent reference gravity field is available 

for the test area.  Both methods of acceleration determination are used to estimate scalar 

gravity disturbances for approximately 720 km of flight lines.   

 

Based on the analysis of the results, the carrier method offers a slight improvement 

(approximately 15% at 1.4 km resolution) in overall accuracy, as compared to the 

position method.  In terms of robustness under operational conditions, the carrier method 

is shown to be better than the position method.  Namely, positioning accuracies can be 

relaxed to the order of meters and changes in the visible GPS constellation do not 

adversely affect the estimated accelerations.   
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Notation, Symbols and Acronyms 

Notation 

Vectors and matrices are bold typeface, while scalars are normal typeface.  Dots above a 

variable indication time differentiation.  The remote (roving) receiver is referred to as 

receiver �m�, and the base (static) receiver is receiver �k�.   

 

Symbols 

Symbols are defined as they are used within the text.  Commonly used symbols are given 
below for quick reference. 
 
δg gravity disturbance 

δgu gravity disturbance in the upward direction  
p

mφ   carrier phase measurement from satellite �p� to receiver �m� 

p
mρ  geometric range from satellite �p� to receiver �m� 

p
me  unit direction vector from receiver �m� to satellite �p� 

p
mx  relative position vector from receiver �m� to satellite �p� 

p
mx�  relative velocity vector from receiver �m� to satellite �p� 

mx��  receiver antenna acceleration 

 

Acronyms 

The following acronyms are used frequently.  Their corresponding meanings are given 

below.   

 

C/No Carrier to noise ratio, measured by the receiver for GPS carrier 

phase measurements 

DGPS Differential Global Positioning System, referring the technique of 

differencing GPS measurements to reduce correlated errors 

FIR Finite Impulse Response 

IF Ionospheric Free 



 xv

GNSS   Global Navigation Satellite System 

GPS   Global Positioning System 

GREATGUN   Gravity Estimates from Airborne Techniques for Geoidal 

Undulations, a software package developed at the University of 

Calgary 

INS   Inertial Navigation System 

L1, L2   GPS carrier signals  

LCR   LaCoste Romberg 

PRN   Pseudo Random Number, used to identify GPS satellites 

SP3   file format of precise ephemeris for GPS satellites 

 



 

 

1

Chapter 1 

Introduction 

 

Knowledge of the gravity field is valuable in many scientific areas.  Geodesy, 

geophysics, and oceanography use the gravity field to measure heights, to reflect the 

Earth’s interior, and to study the movement of water in the oceans.  Gravity measurement 

techniques have progressed from terrestrial point measurements, to shipborne 

measurements, to deriving gravity from the perturbations of satellite orbits, and most 

recently to airborne gravity measurements.  As the capabilities of the measurement 

techniques increase, the demand for higher accuracy and resolution also increases, 

although it is tempered by operational constraints such as the cost and time required to 

obtain gravity information.  Airborne gravimetry is a comparatively economical and 

efficient measurement technique, which can be employed anywhere aircraft can fly.  It is 

well suited to large, inaccessible and remote areas, where it fills in many of the gaps, 

such as in coastal and polar regions, left by other measurement techniques.  In under a 

decade of having operational status, airborne gravimetry has met most medium resolution 

requirements, and has the potential to meet the highest.  As airborne gravimetry matures 

as a technology, the major challenge remaining is to improve the accuracy and resolution 

of the measured gravity field.   

 

Airborne gravimetry combines two measurement systems to estimate the gravity field.  

Total acceleration of the aircraft is measured by a gravimeter, or an Inertial Navigation 

System (INS).  Accelerations due to the movement of the aircraft are measured with 

signals from the Global Positioning System (GPS).  The difference of these two 

acceleration measurements is the effect of the gravity field.  As the aircraft travels, a time 

series of georeferenced gravity estimates results.  Lower flight speeds lead to higher 

resolution gravity field estimates.  Herein, resolution is defined as the minimum 

recoverable half wavelength.  To minimize attenuation of the gravity signal, flight heights 

are kept low as well.  Figure 1.1 illustrates the basic concept of airborne gravimetry. 
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g = gravity

a = aircraft acceleration

f = specific force

 

Figure 1.1 Illustration of the airborne gravimetry concept 

 

While vector gravimetry is possible (Schwarz et al., 1991), scalar gravimetry is most 

common.  Usually, scalar gravity disturbances are the first quantity derived, according to 

the following equation in the local-level frame (Schwarz and Wei, 1994): 

 

u
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eie
e

uuu hR
v

v
hR

v
fvg γϕωδ −

+
−��

�

�
��
�

�
+

+
−−=

2

2

1

cos2�    (1.1) 

 

where a dot above a variable denotes time differentiation, 

ugδ  is the gravity disturbance in the upward direction, measured in mGal (10-5 

m/s2), 

uv�  is the upward aircraft acceleration computed from Differential GPS (DGPS) 

techniques, 

 uf  is the specific force measured by the gravimeter or INS, 

 ne vv , are aircraft velocities in the east and north directions, 

 21, RR  are the prime vertical and meridian radii of curvature, 

 ieω  is the rotation rate of the Earth, 

h  is height above the ellipsoid, 

 ϕ  is the ellipsoidal latitude, and 
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 uγ  is upward component of normal gravity. 

 

Different airborne gravimetry system concepts exist, and Equation (1.1) is implemented 

differently in each system type due to different mechanizations to realize the local-level 

frame and different hardware.  The three currently available types are: strapdown, 

damped two-axis platform, and stable platform.  Details of the first two system concepts 

are given in Schwarz and Li (1996b), while details of the third system concept are in 

Czompo and Ferguson (1995).   

 

Depending on the application, the gravity disturbances are either used directly, as for 

instance in geophysical exploration, or they are used to compute a geoid of the area 

flown.  The accuracy and resolution required of the measured gravity field also depends 

on the application.  For local or regional geoid computation at the centimeter level, 

gravity measurements are required at five kilometer resolution for mountainous areas, 

and 14 kilometer resolution for flat areas (Schwarz and Li, 1996).  The accuracy of these 

gravity measurements should be approximately 2 mGal  (Timmens et al., 2000, Schwarz 

and Li, 1996a).  For coastal oceanography applications, like sea surface topography, a 

geoid with an accuracy of at least 5 centimeters is required (Timmens et al., 2000).   

 

Geophysical applications often use gravity disturbances or closely related measures like 

gravity anomalies, free-air anomalies or Bouguer anomalies.  In these applications, the 

measured gravity field indicates density variations within the Earth’s crust, due to 

geological features and geodynamical processes.  The required accuracies and resolutions 

for studying various geophysical features and applications are given in Figure 1.2 (NRC, 

1995, Hein, 1995, Johnson, 1998). 

 

Today’s airborne gravimeter systems are capable of meeting many of these requirements.  

To name a few examples, airborne gravimetry has been successfully used for local and 

regional geological studies and sub-ice topography (Bell et al., 1999), coastal 

oceanography (Forsberg et al, 2000), and some exploration geophysics applications 

(Salychev and Schwarz, 1995, Ferguson and Hammada, 2000).  Although the accuracy of 
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these systems varies, the most accurate are currently able to measure gravity with a 

standard deviation of between 0.5 and 1.5 mGal at a spatial resolution of about 2 km (half 

wavelength).   

 

Rifts

21 3

Sub-ice Topography10 km

Volcano Morphology

Plate Motion
Volcano Dynamics

Sedimentary Basins

5 km

Mineral Prospecting

2-3 km

0.2 - 1 km
Petroleum Prospecting1 km

mGal  

Figure 1.2 Gravity accuracy and resolution requirements for geophysical applications: accuracy in 
mGal is denoted on the horizontal axis, with resolution on the vertical 

 

The common resolution limiting factor is the quality of aircraft acceleration estimates. 

Errors in the DGPS accelerations used for motion compensation are one of the main 

obstacles to achieving greater accuracy at higher resolutions.  While INS errors also 

contribute to the overall error of the gravity estimates, the DGPS acceleration errors are 

dominant, especially at higher frequencies.  Bruton (2000) investigated the effect of 

DGPS errors on a strapdown airborne gravimetry system.  Figure 1.3, taken from Bruton 

(2000), shows the error spectra of gravity estimates from a morning and an afternoon 

flight, along with the error spectra of the INS errors.   

 

Figure 1.3 highlights how critical good quality DGPS accelerations are to the results of 

airborne gravimetry, and how much larger the GPS errors are relative to the INS errors.   
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Figure 1.3 Error spectra of two estimates of the gravity field and INS errors, from Bruton (2000) 
 

The comparison of the morning and afternoon flights shows the latter has increased error 

in the gravity estimates.  Ionospheric activity typically has a diurnal maximum in mid-

afternoon.  This increased ionospheric activity degrades the received GPS signals, and the 

corresponding accelerations estimated from GPS, leading to the higher level of error in 

the gravity estimates from the afternoon flight.   

 

When GPS first became operational in the late 1980s and early 1990s, its applicability to 

airborne gravimetry was immediately recognized.  The content of this thesis assumes a 

thorough understanding of GPS concepts.  The reader who is unfamiliar with GPS is 

referred to Parkinson and Spilker (1996) for a comprehensive GPS reference.  The 

accuracy of accelerations derived from GPS was analyzed by Brozena et al. (1989), 

Kleusberg (1990), Wei et al. (1991), Czompo (1993), and Van Dierendonck et al. (1994).  

For these studies the desired resolution limit ranged from 2 to 10 km.  The most 

optimistic result was 0.5 mGal at a 120 s filtering period, achieved with static data 

(Kleusberg, 1990).  However, this is not realistic because the motion error is considered 

as zero.  Using airborne data, and radar as a reference, Brozena et al. (1989) found GPS 

vertical accelerations to be accurate to 2 mGal over 20km. Also with airborne data, and 

laser altimetry as a reference, vertical accelerations of 1.5 mGal at 10 km, 4 mGal at 5 km 

(Czompo, 1993) and 1.5 mGal at 2 km resolution (Van Dierendonck, 1994) were 
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achieved.  Wei et al. (1991) reported GPS acceleration accuracy to be 1 mGal at 3 km 

resolution.  In this study, a reference trajectory, with height standard deviations of 

maximum 1.5 cm, was provided by a vertical motion machine.  In all cases, the authors 

concluded that accelerations derived from GPS had low error at low frequencies and that 

errors increased sharply as frequency increased.  Each of these studies clearly states that 

low pass filtering is necessary to produce acceptable vertical accelerations for airborne 

gravimetry. 

 

Recently, the focus of airborne gravimetry has shifted to high resolution applications in 

geophysical prospecting and exploration.  An often-quoted requirement is 1 mGal 

accuracy at 1 km resolution (NRC, 1995).  From this perspective, low pass filtering is not 

a viable means of removing high frequency noise from the vertical accelerations, as it 

also limits the resolution of the recovered gravity field.  Since previous investigations 

have focused on half-wavelengths above 3 km, the question remains as to whether GPS 

can provide accelerations of higher accuracy at higher frequencies.  Schwarz and Li 

(1996a) identified improving GPS kinematic accelerations as a critical factor to 

improving the performance of airborne gravimetry in the high frequency part of the 

spectrum. 

 

Improvements in vertical accelerations would benefit all three types of currently available 

airborne gravimetry systems: strapdown, damped two-axis platform, and stable platform.  

Bell et al. (1999) employed a damped two-axis platform system and cited GPS 

accelerations as limiting the accuracy of airborne gravimetry.  With respect to results 

from an inertial platform system, Bruton et al. (2001a) reports the current quality of 

vertical aircraft accelerations is curbing the potential of the system for very short 

wavelength recovery.  Since strapdown gravimeters do not have hardware imposed 

filtering, their potential for providing high resolution data is very good.  However, they 

are especially hampered by the quality of vertical accelerations derived from GPS, as it is 

their main limiting factor (Bruton, 2000).  
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The preferred method of deriving acceleration from GPS is to twice time differentiate 

GPS positions. This method will be referred to as the position method.  Exceptions are 

Kleusberg (1990), Peyton (1990), and Jekeli and Garcia (1997).  For 1 mGal accuracy, 

GPS positions at the meter level are required for the computation of normal gravity, and 

GPS velocities at the cm/s level are needed to calculate the Eötvös correction.  However, 

to achieve 1 mGal accuracy in accelerations estimated by differentiating GPS positions, 

those positions must be accurate to the centimeter level (Wei et al., 1991), if a 60 s filter 

is applied.  Kinematic positioning at the centimeter level in an airborne environment is 

achievable only under optimal conditions, and with careful processing.   

 

Aircraft accelerations are computed from the position trajectory by numerical 

differentiation.  Consideration must be given to the spectral properties of both the 

positions and the differentiator.  Essentially, the task of differentiating the DPGS 

positions is a discrete time signal processing problem and the chosen filter should not be 

chosen blindly.  In Bruton et al. (1999) the performance of various differentiating filter 

designs were examined with respect to their frequency responses, and the frequency 

content of the signals they were applied to.  It was concluded that differentiator 

bandwidth should match the bandwidth of the signal to produce the best estimation of the 

derivative.  Current results give the accuracy of accelerations derived from GPS positions 

to be 1.5 mGal at 2 km and 2.5 mGal at 1.4 km resolution when appropriate GPS 

processing and differentiators are applied (Bruton, 2000).   

 

Appropriate GPS processing for precise acceleration determination via the position 

method requires meticulous care, beyond standard procedures for precise position 

processing. If a discontinuity exists in the position trajectory, the velocity and 

acceleration estimates resulting from differentiating the positions will be corrupted by 

edge effects.  Discontinuities due to aircraft motion are not expected during a typical 

airborne gravimetry flight.  Aircraft velocity and height are kept very close to constant.  

However, sudden jumps in the position trajectory can be caused by incorrect ambiguity 

fixes, and the gain or loss of a satellite (Bell et al., 1999, Brozena and Childers, 2000, 

Bruton, 2000).  Changes in the positional variance, resulting from the inclusion of a low 
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elevation satellite or switching between float and fixed ambiguity mode, can also cause 

edge effects in the estimated accelerations.  Thus, the user must carefully process the 

DGPS positions.  This usually entails processing flights lines forwards and backwards in 

time and comparing the position trajectories to detect errors resulting from satellite 

introduction or elimination.  The satellite set used must be monitored and often 

controlled, increasing the amount of user input and disregarding available satellites.   

 

Since the position method of estimating accelerations is not meeting the accuracy 

requirements necessary at higher frequencies and requires intensively monitored 

processing, other options need to be explored.  Kleusberg (1990), Peyton (1990), Jekeli 

(1994) and Jekeli and Garcia (1997) proposed estimating accelerations directly from 

carrier phase measurements.  The benefits of this approach are: very precise positions are 

no longer required, algorithmic advantages to cope with less than optimal data collection 

conditions, and a solution optimized in the acceleration domain.  A minimization of 

errors in the position domain may not necessarily remain optimal once it is differentiated 

into the acceleration domain.  Operational results with this type of algorithm, and 

comparison with the position method, were first presented in Kennedy et al. (2001).  

They show preliminary promise of being better suited to acceleration estimation in 

airborne gravimetry.   

 

1.1 Statement of Problem 

As a mature technology, airborne gravimetry needs to be refined in order to meet the 

stringent requirements of some geophysical applications.  While DGPS made operational 

airborne gravimetry possible in the early to mid 1990s, it has emerged as a main limiting 

factor in achievable accuracy and resolution.  The question arises if current processing 

methods optimally derive acceleration from GPS measurements.  The standard method of 

estimating accelerations from GPS is to twice time differentiate aircraft positions.  This 

method is convenient as aircraft positions are already required for gravity disturbance 

estimation.   
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However, it has been shown to be insufficient for very high resolution applications, even 

when processed as carefully as possible.  GPS positioning packages are optimized in the 

position domain, but optimality in the acceleration domain is both defined and achieved 

differently.  In terms of positioning, biases are not considered tolerable; whereas, small 

jumps in position may be.  When differentiating into the acceleration domain, the reverse 

is true.  A constantly biased, but smooth, estimated trajectory is perfectly acceptable 

when estimating acceleration with the position method.  Therefore, alternative processing 

schemes need to be investigated, to determine if there is another way to derive aircraft 

accelerations from GPS that is more suited to airborne gravimetry.   

 

One such alternative estimates accelerations directly from carrier phase measurements, 

which will be referred to as the carrier method herein.  This allows for errors to be 

minimized in the acceleration domain.   It can also provide control over which satellites 

are used and how they are used in the acceleration solution.  In addition, position 

accuracy requirements are the same as they are for normal gravity calculation, on the 

order of meters, which relaxes the need for very precise positions, simplifying the GPS 

processing required.   

 

1.2 Research Objectives 

The objective of this research is to develop and evaluate an alternative processing scheme 

for deriving accelerations from GPS.  This alternative processing scheme estimates 

accelerations directly from carrier phase measurements.  The results obtained with the 

alternative processing scheme will be compared to the position method results, with both 

methods using agreement to an independent reference gravity field to quantify their 

accuracy.  The aim is to answer the following questions: 

 

1. Does estimating accelerations directly from carrier phase measurements 

provide any improvement in the accuracy of vertical accelerations required for 

airborne gravimetry, over the full range of conditions encountered in practice? 
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2. Does this method provide any algorithmic advantages specifically for airborne 

gravimetry, making it comparatively superior in implementation? 

 

Since the goal is a direct comparison of the position and carrier phase methods of 

determining accelerations from GPS, both methods must be tested under identical 

conditions, representative of an operational airborne gravimetry campaign.  To satisfy 

these requirements, the same datasets are used for computations with both methods.  The 

criterion for evaluation is agreement with a reference field.  Two sets of gravity 

disturbances are computed: one using aircraft accelerations from the position method and 

the other using aircraft accelerations from the carrier phase method.  The same specific 

force measurements are used in both gravity disturbance estimates.   

 

Data from an airborne gravimetry campaign flown over the Alexandria area (near 

Ottawa, Canada) in the spring of 2000 is used.  This campaign has several days of flying, 

under varying conditions, with repeat passes of the same lines.  A reference gravity field 

is available for the area as well, computed from ground measurements and upward 

continued to flight level.   

 

The algorithm for estimating accelerations from carrier phase measurements presented in 

Jekeli and Garcia (1997) is used as the base for the processing scheme developed.  This 

original carrier phase method is modified to create a more robust and sophisticated 

algorithm, which uses all available satellite measurements.  The original carrier phase 

method is a unique acceleration solution, restricting the user to measurements from only 

four satellites.   

 

The modified carrier phase method incorporates a least squares solution with a full 

covariance model, allowing for the use of all available satellites and weighting their 

contribution to the solution.  The covariance model has been specifically developed for 

carrier phase measurements and their derivatives and is an expansion of the model 

presented in Radovanovic et al. (2001).  It models ionospheric and tropospheric 

variances.  Physical and mathematical correlations are taken into account, resulting in the 
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use of a fully populated covariance matrix in the solution.  The modified carrier phase 

method is compared to the original carrier phase method, to show that the modifications 

improve performance. 

 

Following this, the modified carrier phase method is compared to the position method.  

Differences in performance are analyzed under varying conditions.  Each method’s 

response to low quality positions, low satellite availability, high ionospheric conditions, 

and satellite constellation changes is evaluated.  These different scenarios are 

representative of conditions that would be encountered in an operational flight. 

 

Based on analysis and interpretation of the results from the above comparisons, a 

summary of the strengths and limitations of the modified carrier phase method is 

presented.  Conclusions as to whether or not it is superior to the position method, in terms 

of accuracy and algorithmic or operational advantages, are made in response to the 

questions posed as the research objectives.   
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Chapter 2 

Acceleration Estimation in Airborne Gravimetry 

 
Aircraft accelerations are required in airborne gravimetry for motion compensation.  The 

accuracy of the accelerations, derived from GPS, is key to the accuracy of the estimated 

gravity field.  As cited in Section 1.0, the currently achieved accuracy of GPS 

accelerations is limiting the resolution of airborne gravimetry systems and thus their use 

in high resolution applications.  This problem is common to all three types of airborne 

gravimetry systems currently available: strapdown, 2-axis damped, and stable platform.  

Although there are differences in the methodology and hardware of each system type, the 

common major obstacle impeding their use for very high resolution work (e.g. below 3 

km) is errors in the DGPS accelerations.  For recent results obtained with these system 

concepts, see Ferguson and Hammada (2000), Bruton et al. (2001a), and Williams and 

MacQueen (2001).  In scalar gravimetry, the effect of errors in the upward aircraft 

accelerations is the same for each system, which can be seen by reviewing the error 

models for each system.   

 

The error model for strapdown scalar gravimetry is given in Schwarz and Wei (1994), 

Schwarz and Li (1996b), and Glennie (1999).  For the damped 2-axis approach, used in 

the LaCoste Romberg (LCR) systems, the error model is given in Olesen et al. (1997) and 

Glennie et al. (2000).  For the stable platform gravimetry, the error model is given in 

Czompo and Ferguson (1995).  The basic error model equation for an airborne 

gravimetry system can be summarized as follows: 

 

timentmisalignmeforcespecificu dddvdgd +++−= _�δ    (2.1) 

 

where  gdδ is the error of the estimated gravity disturbance, 

uvd �  is the DGPS aircraft acceleration error in the upward direction, 

 forcespecificd _  represents the errors due to errors in the specific force measurements, 

 ntmisalignmed  represents the error due to misalignment (including gyro drift), and 
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timed  is the error caused by the time synchronization error between the INS and 

GPS data streams. 

 

The form of the specific force and misalignment errors is slightly different for each 

system type, due to hardware and mechanization differences.  However, the effect of 

upward DGPS acceleration errors is the same for all system types, as can be seen in 

Equation (2.1).  The terms of Equation (2.1) that vary with system type are presented in 

the following, for completeness. 

 

With a strapdown system, the effect of the specific force measurement errors on the 

estimated gravity disturbance is given as: 
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where φθ ,  are the pitch and roll angles of the body to local level frame transformation 

and 

 b
z

b
y

b
x dfdfdf ,,  are the specific force errors in the body frame. 

 

In a strapdown system, alignment with the local level frame is achieved computationally, 

rather than realized physically.  This alignment is not perfect, resulting in a misalignment 

error that is conceptually similar to a tilt error in a stable platform system.  The 

misalignment error is due to horizontal acceleration errors, as well as specific force 

measurement errors.  For scalar airborne gravimetry, misalignments about the north and 

east axes are of concern, while a misalignment about the up axis does not have an effect.  

The error in the estimated gravity disturbance due to the misalignment of the strapdown 

airborne gravimeter is given as: 

 

nEeNntmisalignme ffd εε −=      (2.2b) 



 14

 

where EN εε ,  are the misalignments about the north and east directions and 

 ne ff ,  are the specific force measurements in the east and north directions. 

 

With the damped 2-axis approach, the local level frame is physically approximated by the 

system platform.  The horizontal and vertical specific force errors are considered 

somewhat separately, as the horizontal specific force errors contribute to the 

misalignment error.  With respect to the gravity disturbance estimated in the local level 

frame, the specific force error for the damped 2-axis approach is: 

 

uforcespecific dfd =_       (2.3a) 

 

where  udf  is the upward specific force error. 

 

The damped 2-axis system has another error term, which is particular to this system type 

and the manner in which the local level approximation is physically realized.  There is a 

cross coupling correction applied to the upward specific force measurement in the gravity 

disturbance estimation with the damped 2-axis system.  Hence, the error in this cross 

coupling correction should be included in the specific force error given in Equation 

(2.3a).  To highlight the similarities between the system types, the cross coupling 

correction error is shown separately in Equation (2.3b) below.  

 

ybbxbxbcouplingcross dfvapadfvafvad )()2( 4253_ +++=      

bybxyxb dpfadvfafafava )()2( 2
2

5431 ++++            

5
2

4321
2 )()()()()( davfdavfdavfdapfdav bxbybxbyb ++++     (2.3b) 

 

where yx ff ,  are the cross-track and along-track specific force measurements, 

yx dfdf , are the errors in those measurements, 

bb dvv , are the beam velocity and its error, 
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 bb dpp , are the beam position and its error, and 

5151 ...,... dadaaa  are statistically or empirically derived coefficients, and their 

errors. 

 

The cross coupling correction does not appear in the error models for strapdown or stable 

platform systems.  In a strapdown system, it is taken care of computationally, as the local 

level frame is not realized physically.  In a stable platform system, the cross coupling 

correction is mechanically approximated and the platform is very closely aligned to the 

local level frame.   

 

The error caused by misalignment for the damped 2-axis system is given as: 
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where g is the magnitude of gravity 

ne vv �� , are the DGPS aircraft accelerations in the east and north directions, and 

 ne vdvd �� ,  are the errors in those aircraft accelerations, and  

all other terms are as defined previously. 

 

Lastly, the stable platform system has specific force and misalignment errors very similar 

to the damped 2-axis platform, as it also approximates the local level frame, but much 

more accurately.  The upward accelerometer can be expected to be aligned to within one 

arc minute, or better, of the gravity vector which is why the upward specific force 

measurement is used in the misalignment error term, rather than the magnitude of gravity.  

(In the damped 2-axis system, the upward accelerometer may be misaligned with the 

gravity vector by up to one degree.)  The error in the estimated gravity disturbance due to 

specific force errors in the stable platform system is: 

 

 uforcespecific dfd =_       (2.4a) 
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where udf  is the error in the upward specific force measurement, as before.   

 

The misalignment error for the stable platform system is: 
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where all terms are as defined previously. 

 

Since the effect of the DGPS acceleration errors is identical in all systems, improvements 

in the DGPS accelerations will benefit all systems.  Especially in the 2-axis damped 

platform systems, the benefit will be limited by any low pass filtering inherent in the 

hardware.  Research is being conducted to attempt to reduce the amount of low pass 

filtering (Childers, 1999), but a significant amount is still required, which limits the 

resolution of the 2-axis damped platform systems.  In these systems, improvements in the 

DGPS accelerations above the cut-off frequency of the low pass filtering will not be of 

benefit.  However, with strapdown gravimeters there is no low pass filtering imposed by 

the hardware.  If the level of low pass filtering required to remove noise from the DGPS 

accelerations can be reduced, the high frequency performance of strapdown systems will 

be dramatically improved. 

 

As the current method of obtaining DGPS accelerations does not provide the desired 

accuracy and has operational constraints, alternative methods must be investigated.  The 

current method of differentiating positions is reviewed in Section 2.1.  The basic 

methodology of estimating accelerations directly from carrier phases is presented in 

Section 2.2, and extended in Chapter 3 to form the modified carrier method. 

 

 



 17

2.1 The Position Method of Acceleration Estimation 

The most widely accepted method of determining aircraft accelerations from DGPS is to 

twice time-differentiate the aircraft trajectory.  Many issues surrounding the position 

method are examined in Bruton (2000), to which the reader is referred for a 

comprehensive reference.  The position method is convenient as positions are already 

required for the normal gravity calculation.  The differentiation is usually performed by 

applying a differentiating filter in cascade, as velocities are also required for the Eötvös 

correction.  DGPS positioning accuracy and differentiator selection determine the 

accuracy and bandwidth of the estimated accelerations.  This relationship is defined in 

Wei et al. (1991), and quantified by the following equation: 

 

hca f σπσ 2/5
2

5
4=  (2.1.1) 

 

where ha σσ ,  are the standard deviations of the acceleration and height errors, 

respectively, and  

cf  is the cut-off frequency of whatever filter has been applied to the heights. 

 

The cut-off frequency in Equation 2.1.1 is the extent of the effective bandwidth of the 

chosen differentiator, or the cut-off frequency of an applied low pass filter.  Realizable 

differentiators, of the type normally applied in airborne gravimetry, have a cut-off 

frequency.  They only approximate the ideal differentiator over a specific bandwidth, and 

behave similarly to a low pass filter beyond their bandwidth.  The quality of the estimated 

derivative is very dependent on the chosen differentiator, as shown in Cannon et al. 

(1997), Ryan et al. (1997), and Bruton et al. 1999).  As concluded in Bruton (2000), the 

differentiator bandwidth should match the frequency range of the dynamics of the 

aircraft.  Further discussion of differentiators is left to Section 3.1.   

 

The other, and most important, factor in the accuracy of accelerations is the accuracy of 

the positions used to estimate them.  Using Equation (2.1.1), with a cut-off frequency 



 18

equivalent to 1.4 km resolution (flight speed of 45 m/s), the position accuracy must be at 

the centimeter level for sub-mGal acceleration accuracy.  With the current GPS 

constellation and operational conditions in airborne gravimetry, reliably positioning at the 

centimeter level in height is not possible.  This was well illustrated in a recent 

comparison of commercial GPS processing packages in Bruton et al. (2001b) that showed 

meter level differences on the same kinematic data set.  Baselines in airborne gravimetry 

are rarely less than 50 km and often are hundreds of kilometers long, due to the typically 

large and remote areas covered.  Additionally, timing of flights cannot always be planned 

to avoid diurnal highs in ionospheric activity.  Under these conditions, only decimeter 

level positioning can be realistically expected.  Improvements in positioning accuracy are 

expected with the planned modernization of GPS.  This will certainly help, but the 

modernized system is not projected to be fully available until approximately 2012 (Shaw 

et al., 2000).  

 

GPS processing in airborne gravimetry is not a blind process.  Changes in the visible 

constellation often produce jumps in the position trajectory (Bell et al., 1999, Bruton, 

2000, Brozena and Childers, 2000).  While not posing a problem in the position domain, 

these small discontinuities translate into large acceleration errors once differentiated.  The 

inclusion of low elevation satellites can also degrade the position solution, which also 

produces acceleration errors (Bruton, 2000).  To achieve optimal results, for airborne 

gravimetry, the satellite constellation used in the position solution must be carefully 

controlled, to avoid the loss or gain of satellites while on the same flight line and to 

cautiously use low elevation satellites.  This can result in using far fewer satellites than 

available, which is also not ideal.   

 

Also of concern is ambiguity fixing.  Reliably fixing ambiguities is difficult over long 

baselines, but if possible the L1 fixed solution provides the best results for airborne 

gravimetry (Bruton, 2000).  The danger lies in an incorrect set of ambiguities being fixed, 

and then reset once residual testing shows the set to be in error.  The reset can lead to 

discontinuities in the position solution, which will corrupt the acceleration solution.  
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Using the ionospheric free solution is often necessary, and avoids the problem of sudden 

changes in the ambiguities, but also increases the noise level, thus lowering the accuracy. 

 

In summary, the position method hinges on excellent positioning accuracy, which may 

not be consistently acheivable under operational conditions.  The accuracy of DGPS 

accelerations derived in this manner is the main limiting factor of airborne gravimetry.   

 

2.2 The Carrier Method of Acceleration Estimation 

An alternative to the position method of estimating accelerations from GPS is to estimate 

accelerations directly from the carrier phase measurements, and their derivatives.  This 

method was proposed by Kleusberg et al. (1990), Peyton (1990), and Jekeli (1994).  

Kleusberg et al. (1990) and Peyton (1990) presented only static results in the acceleration 

domain.  The work in Jekeli (1994) was continued in Jekeli and Garcia (1997), with 

kinematic acceleration results presented.  Preliminary, promising results in the gravity 

domain were first presented in Kennedy et al. (2001).  The most extensive testing and 

evaluation of the method to date is presented in this thesis.  One of the main advantages 

of the carrier method is positioning accuracy can be relaxed to the order of meters.   

 

The algorithm of the carrier method presented in this section can be found in Jekeli and 

Garcia (1997).  While all the equations presented in this section stem from that source, 

they are presented here in a different manner for clarity.  Additional commentary is also 

provided herein, to allow for better comprehension of the implementation of the carrier 

method. 

 

2.2.1 Review of the Carrier Phase Observable 

Basically, the acceleration of a GPS antenna can be determined by differentiating carrier 

phase measurements with respect to time to determine line of sight range rates and range 

accelerations.  It is useful to review the carrier phase observable, to examine the error 

sources and the effect differentiation has on them.  The carrier phase observable between 

satellite ‘p’ and receiver antenna ‘m’, in meters, is given as: 
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where  p
mρ  is the geometric range between satellite ‘p’ and receiver antenna ‘m’, 

ρd  is the orbital error, 

c is the speed of light in m/s, 
pdt  is the satellite clock error in seconds, 

 mdT  is the receiver clock error in seconds, 

 Nλ  is wavelength multiplied by the ambiguity, 

 iond  is the ionospheric error, 

 tropd  is the tropospheric error, 

 multid  is the multipath error, and 

 φε  is the noise. 

 

A thorough review of the behavior and magnitude of each error source can be found in 

Racquet (1998) or Bruton (2000).  The latter considers the errors sources and their effects 

in the context of airborne gravimetry specifically. 

 

Differentiating the carrier phase observable gives line of sight velocity and, if performed 

a second time, acceleration.  This has some advantageous effects.  Namely, all constant 

terms will be removed in both the first and second carrier phase derivatives; therefore, the 

ambiguity term vanishes.  The second derivative will also have all first-order terms 

removed, which will reduce all error sources.  This is potentially useful when one bears 

in mind that the L1/L2 ionospheric free combination can also only remove first order 

effects of the ionosphere.  With the assumption that higher order orbital errors, 

ionospheric and tropospheric errors, and the multipath error are absorbed into the noise 

term, the first and second carrier phase derivatives are as follows: 
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where the terms are as defined before, with the superscript dots indicating time 

differentiation. 

 

The remaining clock terms can be eliminated by double differencing, which will further 

reduce the ionospheric and tropospheric terms.  In this way the carrier phase derivatives 

approximate the range rate and range acceleration between the satellite and receiver 

antenna, as the following approximation holds: 

 

     qp
km

qp
km

,
,

,
, ρφ ≅  .    (2.2.4) 

 

At this point it should be noted that while differentiation has benefits in reducing some 

error sources, differentiation demands careful cycle slip detection.  Cycle slips must be 

corrected or large edge effects will result from the differentiating filter passing over the 

discontinuity in the carrier phase measurements.  Figure 2.2.1 illustrates edge effects 

created by a differentiating filter comprised of five samples applied to data simulating 

carrier phase measurements with a cycle slip.  Issues surrounding the differentiation 

process will be discussed in Section 3.1. 
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Figure 2.2.1 Edge effects caused by applying a differentiator of length 5 to data simulating carrier 
phases with a cycle slip 

 

2.2.2 Fundamental Equations of the Carrier Method 

In the following, satellites are indicated in the superscript and receivers in the subscript.  

The base receiver is indicated as receiver ‘k’, while the rover is receiver ‘m’.  Bolded 

quantities indicate vectors or matrices.  Superscript dots indicate time differentiation. 

 

In Section 2.2.1, it has been shown that measurements of the range rate and acceleration 

can be obtained, allowing the carrier method to be derived.  Since it is a relative process, 

the following equations can be realized in any frame that is convenient, provided the 

proper corrections are applied to the final acceleration solution if it is transformed into 

another frame (Schwarz and Wei, 2000).  The carrier method is based on the geometric 

relationship shown in Figure 2.2.2 and given in Equation (2.2.5). 
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Figure 2.2.2 Relative geometry between receiver ‘m’ and satellite ‘p’ 
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m ex ρ=       (2.2.5) 

 

where p
mx  is the relative position vector between receiver antenna ‘m’ and satellite ‘p’ 

 p
mρ  is the geometric range between receiver antenna ‘m’ and satellite ‘p’ 

 p
me  is the unit direction vector from receiver antenna ‘m’ to satellite ‘p’ 

If Equation (2.2.5) is differentiated, it becomes: 

 

    p
m

p
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p
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p
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p
m eex ��� ρρ +=      (2.2.6) 

 

which will be useful in further derivations.  Closely related to Equation (2.2.5) is: 

 

    p
m

p
m

p
m xe ⋅=ρ        (2.2.7)  

 

This is the fundamental equation of the carrier method.  The geometric range between 

satellite ‘p’ and receiver ‘m’ establishes the line-of-sight relationship.  Once 

differentiated, it gives the line-of-sight range rate, which is analogous to the Doppler 

measurement from the receiver or can be derived by differentiating the carrier phases.   



 24

 
p
m

p
m

p
m

p
m

p
m xexe ��� ⋅+⋅=ρ      (2.2.8a) 

 

The first term on the right side of Equation (2.2.8a) is zero.  Recalling Equation (2.2.5) 

and that the derivative of a vector lies perpendicular to it, the inner product of the first 

term is zero, as p
me�  and p

mx are normal to each other.  Equation (2.2.8a) becomes: 

 
p
m

p
m

p
m xe �� ⋅=ρ       (2.2.8) 

 

Differentiating once more gives the acceleration between the receiver and the satellite. 

 
p
m

p
m

p
m

p
m

p
m xexe ������ ⋅+⋅=ρ     (2.2.9) 

 

This range acceleration resembles the curvilinear acceleration equation where the total 

acceleration is the sum of the acceleration normal and tangent to the path of travel.  

Figure 2.2.3 shows this graphically.   
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Figure 2.2.3 Relative receiver-satellite acceleration 
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The solution of Equation (2.2.9) for receiver acceleration requires an expression for p
me�  in 

terms that are known for easy computation.  This expression can be found by rearranging 

(2.2.6) to give: 
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Then, forming the dot product of p
me� and p

mx� , the second term on the right of Equation 

(2.2.9), is: 
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Substituting in Equation (2.2.6) for p
mx�  gives: 
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Moving the scalar p
mρ�  through the brackets, recalling that p

me�  and p
me  are normal to each 

other, and that p
me  is a unit vector, such that 1

2
==⋅ p

m
p
m

p
m eee , this reduces to: 
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Using Equation (2.2.11) and vector subtraction to separate p
mx�� , Equation (2.2.9) can be 

written as: 
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The remaining unknown, besides receiver acceleration, in Equation (2.2.12) is the 

relative receiver-satellite velocity p
mx� .  It is solved for using Equation (2.2.8) and is the 

first step towards the acceleration solution presented in Section 2.2.3.   

 

2.2.3 Model for Acceleration Estimation by the Carrier Method 

The original carrier method utilizes measurements from four satellites, resulting in a 

unique solution for the receiver acceleration, as differencing is employed.  The satellites 

are denoted by ‘p’, ‘q’, ‘r’, and ‘s’, the remote receiver by ‘m’, and the base receiver by 

‘k’.  In addition the carrier phase derivatives, satellite positions, velocities and 

accelerations must be known, as well as the receiver antenna positions.  Details on how to 

obtain these quantities are given in Section 3.4. 

 

The goal is to solve Equation (2.2.12) for mx�� .  Before this can be done the relative 

receiver-satellite velocity term must be solved for.  Equation (2.2.8) is between-satellite 

differenced to give: 
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To solve for p
mx� , three equations are required.  In each equation, the relative velocity 

terms must be put in terms of p
mx� .  Using the vector addition shown in Figure 2.2.4, this 

can be done. 
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Figure 2.2.4 Relative velocity vectors 
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Repeating Equation (2.2.13a) for the remaining two satellites, using vector addition to put 

each in terms of satellite ‘p’, and rearranging to isolate the unknown p
mx�  gives: 
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This system of equations can be rewritten as: 

      

  p
mxEb �=       (2.2.14) 

 

where E is a matrix with three rows and columns comprised of the transposed, 

differenced direction vectors in (2.2.13), and b a matrix with three rows made up of the 

left hand side of (2.2.13). 

 

Equation (2.2.14) can be solved as: 

     

bEx 1−=p
m�       (2.2.15) 

 

A solution for all four receiver-satellite velocities must be obtained, using the system of 

equations in (2.2.13) with each satellite as the base satellite.  It must be noted that qp
m

,ρ� is 

the result of double differencing p
mφ� , q

mφ� , p
kφ� , and q

kφ�  (to remove all clock terms and 

reduce spatially correlated errors), and then adding qp
k

,φ� , computed from Equation (2.2.8) 

using the knowledge that pp
k xx �� = , since 0=kx� , as the base station is stationary.  

 

Before moving onto the acceleration solution, it is worthwhile to examine the system of 

equations in (2.2.13) to evaluate which terms are most critical in determining the 
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accuracy of the relative velocity solution.  As explained in Jekeli (1994) the quality of the 

satellite and receiver positions is not crucial because they are used to compute direction 

vectors between the GPS antenna and satellite.  Considering that the distance between 

them is over 20,000 km, even 10 m of positional error is acceptable for sub-mGal 

accuracies.  Errors in the qp
m

,ρ�  terms and satellite velocities will have a greater impact on 

the relative velocity solution.   

 

With all four relative velocities now solved, a system of equations based on Equation 

(2.2.12) can be formed by single differencing between satellites.   
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This system of equations can be written as: 

 

    maxEa ��=      (2.2.17) 

 

where aE  is a matrix with three rows and three columns comprised of the transposed, 

between satellite differenced direction vectors in (2.2.16), and a is a vector with three 

rows comprised of the left hand side of (2.2.16).    

 

Equation (2.2.17) can be solved as: 

 

aEx 1−= am��       (2.2.18) 
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Again, note that the qp
m

,ρ��  terms were computed by double differencing p
mφ�� , q

mφ�� , p
kφ�� , and 

q
kφ��  and adding single difference on receiver ‘k’ calculated with Equation (2.2.9), 

remembering that the acceleration of the base receiver ‘k’ is zero.  With Equation 

(2.2.18) the unique solution for the receiver antenna acceleration is acquired.   

 

Taking a qualitative look at the system of equations in (2.2.16), it can be seen that the 

errors in relative velocity are attenuated by the division by the receiver-satellite range.  

Thus, errors in the relative velocity solutions can be well tolerated.  Also note that since 
p
mφ�  will be corrupted by satellite and receiver clock terms, the p

mρ�  term in the centrifugal 

terms is computed using the relative velocity solution and Equation (2.2.7).  Since the 

magnitude of the satellite accelerations is quite small, errors in their measure are of 

concern. Errors could be proportionally large and will be propagated with no reduction 

through the inner product with the direction vector.  Errors in p
mρ��  ( p

mφ�� ) are also of 

concern, but are mitigated by the double differencing process.   

 

In summary, the carrier method as presented in Jekeli and Garcia (1997) uses only four 

satellites in the acceleration solution.  While the equations shown imply that only 

between-satellite differencing is done, double differencing is in fact applied, with the 

single difference being manufactured from calculations.  The double differencing is 

necessary to eliminate the clock terms and to reduce errors from atmospheric delays.  

Differentiation of the carrier phases eliminates the carrier phase ambiguity, as it is 

constant.  Cycle slips must be corrected, or else the derivative will be corrupted by edge 

effects around the discontinuity in the carrier phases, caused by the cycle slip.  The 

quality of receiver positions used is not critical, with 10 m accuracy being tolerable.  

However, the quality of satellite velocities and accelerations are important and should be 

derived carefully from the precise ephemeredes for the highest possible accuracy.   
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Chapter 3 

Modification of the Carrier Method 

 

The carrier method, as presented in Section 2.2, provides an alternative to the position 

method of estimating accelerations.  However, it can be improved upon, to increase its 

robustness.  Limiting it to a unique solution does not allow for error minimization, 

meaning all errors remaining in the carrier phase derivatives and satellite information will 

map directly into the acceleration estimates.  According to estimation theory, more 

measurements should lead to better estimates, particularly if the measurements are 

weighted properly.  Therefore, the carrier method is modified to utilize a least squares 

solution, such that all available measurements are used.  In addition, since the quality of 

the carrier phase measurements from different satellites varies, a covariance model was 

also developed and incorporated in the least squares solution.   

 

This modified carrier method should provide some advantages over the position method.  

Namely, it will allow for a minimization of errors in the acceleration domain.  Tracing 

the effect of measurements from one satellite into the acceleration solution is simplified, 

as the algorithm directly combines carrier phase measurements to estimate acceleration. 

As with the original carrier method, positioning requirements are relaxed, matching the 

level required for normal gravity computations.  Also, using a least squares solution 

potentially allows for quality measures to be provided with the acceleration estimates.   

 

In this chapter, the modification of the carrier method will be presented.  In Section 3.1, 

Equations (2.2.15) and (2.2.18) are extended to provide a least squares solution for the 

relative remote station-satellite velocity and remote station acceleration.  To provide 

appropriate weighting of the measurements, a covariance model is developed and is 

presented in Section 3.3.  The model is applicable to both carrier phases and their 

derivatives.  A technique for propagating carrier phase variances through the 

differentiation process is presented.  Since this technique requires an understanding of the 

differentiation process, Section 3.2 first addresses issues surrounding differentiation of 
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the carrier phases and details the differentiating filter used herein.  Section 3.4 provides 

justification that the modified carrier method is indeed an improvement over the original. 

 

3.1 Least Squares Realization of the Carrier Method 

To use all available measurements, from ‘n’ satellites, Equations (2.2.15) and (2.2.18) 

can be modified to create a least squares solution.  Using the least squares technique 

(Mikhail, 1976), the relative velocity and acceleration solutions can be realized with a 

parametric model.  Since both solutions are linear with respect to the parameters, no 

iteration is required.  The relative velocity solution becomes: 

 

bCEECEx 111 )( −−−= φφ ��
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T
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m      (3.1.1) 

 

where φ�DDC  is the covariance matrix of the double differenced first carrier phase 

derivatives, and all other quantities are as defined in Equation (2.2.15).   

 

The remote station acceleration becomes: 
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where φ��DDC  is the covariance matrix of the double differenced second carrier phase 
derivatives, and all other terms are as defined in Equation (2.2.18). 
 
 
3.2 Differentiator Selection  

The first step in processing is obtaining the carrier phase derivatives.  The carrier phase 

derivatives are the measurements in the carrier method, and their quality determines the 

quality of the acceleration estimate.  The choice of differentiator is a very important 

consideration.  FIR filters are considered exclusively, as a constant phase delay over all 

frequencies is required to time tag the data properly.  Additionally, only odd length 
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differentiating filters are used to maintain an integer time delay (Oppenheim and Schafer, 

1999).  A non-integer time delay would require interpolation. 

 

When applying a differentiator, consideration must be given to the spectral properties of 

both the signal and the differentiator.  While the ideal differentiator amplifies with 

increasing frequency, realizable FIR differentiators of odd length can only approximate 

the ideal case within a certain bandwidth, above which it attenuates the signal.  This 

practical constraint of differentiator design is useful, as it can be used to suppress noise, 

particularly in low dynamic applications.  Figure 3.2.1 illustrates the frequency responses 

of various orders of Taylor approximation differentiators, which are also referred to as 

central difference equations, at a 1 Hz sampling rate.  (The filter order herein is the 

number of samples on either side of the central sample used in the differentiator, and is 

consistent with GPS literature.  In signal processing literature, the filter order is defined 

as the filter length minus one.) 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

Frequency (Hz)

M
ag

ni
tu

de

Ideal

5th Order 

3rd Order 

1st Order 

 

Figure 3.2.1 Magnitude of the frequency responses of various orders of Taylor approximation 
differentiators, and the ideal differentiator, with 1 Hz sampling rate 

 
As can be seen in Figure 3.2.1, a differentiating filter can also act as a low pass filter for 

frequencies above its effective bandwidth.  The bandwidth of the differentiator must 
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approximate the ideal case in the bandwidth corresponding to the motion of the aircraft, 

but can be designed to suppress noise if its bandwidth is no wider than necessary.  The 

danger in using a differentiator with a very narrow bandwidth, or smoothing before 

differentiation, is that higher frequency motion of the aircraft may not be captured, 

resulting in a poor estimate of the derivative.  Using a wider bandwidth ensures that all 

aircraft motion will be retained, but more noise will also be allowed to pass into the 

derivative.  Figure 3.2.2 illustrates this in the frequency domain. 
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Figure 3.2.2 Frequency domain representation of the effect of narrow and wide differentiator 
bandwidths 

 
As a compromise between sufficient bandwidth, simplicity, and noise suppression, a 5th 

order Taylor approximation differentiator was chosen.  To compute the carrier phase 

derivatives, the carrier phases were convolved with the impulse response of the 5th order 

Taylor approximation.  Beyer (1980) provides closed form formulas for the computation 

of higher order Taylor approximation impulse responses.  The impulse response for the 

5th order Taylor approximation is: 
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where T is the sampling rate of the data to be differentiated. 

 

Uniform sample spacing is required for the application of the differentiator.  Careful 

receiver selection, or extra data processing, is required to meet this requirement.  

Nominally, the carrier phases are logged with uniform time spacing (i.e. 1 Hz data).  

However, this assumption may not hold when the receiver clock resets to GPS time.  The 

reset to GPS time changes the receiver clock offset by up to one millisecond, most 

commonly, but the reset can be larger.  If the reset is large (i.e. 1 millisecond), the 

integration period over which the carrier phase measurement is formed is shorter or 

longer than the nominal output rate by the amount of the receiver clock reset.  This 

results in the carrier phase measurement being either too large or too small by the amount 

of the receiver clock reset multiplied by the Doppler.  If the Doppler on a satellite is high, 

a “mini” cycle slip is created.  For example, if the receiver is measuring a Doppler of 

3000 Hz on a satellite, and the clock reset is 1 ms, the carrier phase measurement will be 

off by 3 cycles.  These “mini” cycle slips can be corrected as the size and time of the 

clock reset is known.  If they are not corrected, edge effects will occur in the carrier 

phase derivatives. 

 

GPS receivers generally fall into two groups with respect to how the clock resets are 

implemented.  One group allows the receiver clock offset to drift as much as 1 

millisecond and then resets in one epoch.  If this type of receiver is used, the extra data 

processing described above is required.  The other group uses clock steering and adjusts 

the clock offset at each epoch, by much smaller increments, on the order of hundreds of 

nanoseconds.  With receiver clock resets of this size, the sample spacing can be 

considered uniform as the effect on the measured carrier phases is very small.  Figure 

3.2.3 shows the receiver clock offsets of an Ashtech Z-12 receiver, while Figure 3.2.4 

shows the receiver clock offsets of a NovAtel MiLLennium receiver, which implements 

epoch-to-epoch clock steering as a user selected option.  Note the different scale in each 

plot on the vertical axis, which shows the clock offset in terms of meters, calculated as 

the speed of light multiplied by the clock offset in seconds.   
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Figure 3.2.3 Ashtech Z-12 receiver clock offsets 
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Figure 3.2.4 NovAtel MiLLennium receiver clock offsets 
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3.3 Covariance Model 

GPS signals from different satellites do not have uniform quality.  With an appropriate 

covariance model, poor quality signals can still be used, with much lower weighting than 

higher quality signals.  Atmospheric effects on GPS measurements are a major error 

source.  Measurements from low elevations satellites suffer the most degradation due to 

the atmosphere, as their path length through the atmosphere is longest.  Elevation based 

weighting is commonly employed to assign increasing variance with decreasing 

elevation.  What is not often incorporated is the covariance between measurements.  

Signals traveling similar paths through the atmosphere will have correlated atmospheric 

errors and this characteristic is exploited in double differencing, which also removes the 

clock errors.  The covariance model developed for the modified carrier method uses 

elevation based weighting and models the covariance between measurements due to 

tropospheric and ionospheric variances.  Physical and mathematical correlations are taken 

into account. 

 

Further refinements in the covariance model are definitely possible.  However, the focus 

of this thesis is the comparison of the carrier and position methods of acceleration 

determination.  An adequate, but not necessarily ideal, covariance model is required for 

testing the carrier method.  The covariance model developed herein provided reasonable 

results and was deemed adequate for the purposes at hand. 

 

 The tropospheric modeling is patterned after the method presented in Radovanovic et al. 

(2001).  A similar scheme is added for ionospheric error variances, using the ionospheric 

mapping function outlined in Skone (1998).  The variance of a single measurement, from 

one satellite to one receiver is modeled as: 

 

222222 )()( multiIpITpT
p

k mm σσεσεσ ++=     (3.3.1) 

 

where  2
Tσ , 2

Iσ  are the tropospheric and ionospheric variances, respectively, 

 2
multiσ  is the multipath variance, 
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 pε  is the elevation angle to satellite ‘p’, 

Tm  is the tropospheric mapping function, from the UNB3 model (Collins, 1999), 

and  

Im  is the ionospheric mapping function (Skone, 1998) and given as: 

2
1

21 ]])1([cos1[)(
−−+−=

e
I R

hm εε      (3.3.1a) 

 

where h is the height of the ionospheric shell (350 km) and Re is the Earth’s radius.   

 

Figure 3.3.1 shows the mapping function values with respect to elevation angle for both 

the ionospheric and tropospheric mapping functions. 
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Figure 3.3.1 Tropospheric and ionospheric smapping functions 

 

The covariance between measurements to two satellites from one receiver is modeled as: 

 
22 )/exp()()()/exp()()( IqIpITqTpT

pq
m mmmm σθεεσθεεσ Ω−+Ω−=  (3.3.2) 

 

where θ  is the separation angle between satellites ‘p’ and ‘q’, and is calculated as: 
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 Ap, Aq are the azimuths to satellites ‘p’ and ‘q’ and  

 Ω  is the correlation angle. 

 

The correlation angle controls the amount of covariance modeled.  As the angular 

separation of two satellites approaches, and exceeds, the value of the correlation angle, 

the magnitude of the calculated covariance decreases.  The correlation angle value is 

chosen based on empirical testing of the specific dataset, as in Radovanovic et al. (2001). 

 

A multipath term is not included in the covariance terms.  Multipath is considered 

uncorrelated between different measurements in this covariance model.  The base station 

antenna utilized a choke ring to minimize multipath.  The multipath environment of the 

airborne receiver is difficult to quantify, since it is kinematic.  Bruton (2000) estimates 

the effect of multipath in a typical airborne gravimetry environment to be approximately 

0.3 cm, which is much smaller than the tropospheric and ionospheric effects, which may 

reach 10-15 cm and 1-2 m, respectively.  The focus of this thesis was to compare the 

methods of acceleration determination rather than to develop a rigorous covariance 

model.  Thus, the modeling of correlated multipath error is left to future work.   

 

Figure 3.3.2 shows the calculated covariance from Equation (3.3.2) between satellite 

pairs at low, mid, and high elevation angles, where 2
Tσ  = 0.022 m2, 2

Iσ =0.052 m2 and Ω = 

40o. 
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Figure 3.3.2 Covariance values for measurements from one receiver to two satellites 

 

The covariance between measurements on two receivers from one satellite is modeled as: 

 
2222 )/exp()()/exp()( IpITpT

p
mk DdmDdm σεσεσ −+−=    (3.3.3) 

 

where  d is the separation distance between receivers and 

D is the correlation distance. 

 

Similarly to the correlation angle, the correlation distance limits the covariance between 

measurements to one satellite from two receivers.  The correlation distance is often taken 

to be 350 km (Radovanovic et al., 2001), but other values could be used, based on either 

empirical testing of the data or atmosphere models.  If the receiver separation is more 

than the correlation distance, the covariance computed from Equation (3.3.3) will not be 

significant.   

 

Figure 3.3.3 shows the covariance computed, using Equation (3.3.3), the same 

ionospheric and atmospheric variances as in Figure 3.3.2, and D = 350 km. 
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Figure 3.3.3 Covariance values computed for measurements from one satellite to two receivers, 
separated by the values on the horizontal axis 

 

The covariance between two measurements, each to a different satellite from a different 

receiver is: 

 
2)/exp()/exp()()( TqTpT
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Figure 3.3.4 shows the covariance values from Equation (3.3.4) for two measurements 

from different receivers to different satellites, with the same ionospheric and tropospheric 

variances as before and receiver separation of 100 km, which is a typical baseline length 

in airborne gravimetry.   
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Figure 3.3.4 Covariance values computed for two measurements from different satellites to different 
receivers, separated by 100 km 

 

A fully populated, symmetric covariance matrix results from using Equations (3.3.1) 

through (3.3.4).  For example, the case of measurements from three satellites on two 

receivers would have a covariance matrix of the form: 
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When the measurements are differenced, the mathematical correlations must be 

accounted for.  A new covariance matrix is formed by propagating the variances of the 

individual measurements into the differenced measurements.   

 
T
DDDDDD BCBC φφ =      (3.3.6) 
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where each row of the DDB  matrix contains the coefficients of the differencing equation 

used to form the double differences.   

 

However, it is carrier phase derivatives that are double differenced in the carrier method.  

The carrier phase derivatives calculated with an FIR filter are just linear combinations of 

the carrier phases.  Therefore, the variance of the carrier phase derivatives can be related 

to the variance of the carrier phases using the same variance propagation technique used 

for differenced carrier phases.  The equation for propagating the carrier phase variances 

into the derivatives is:   

 
TBCBC filterlengthfilterfilter −−= φφ�     (3.3.7) 

 

The rows of filterB  contain the impulse response of the chosen differentiator, padded with 

zeros such that it only operates on the time series of one measurement.  lengthfilter−−φC  is a 

block diagonal matrix, with the blocks made up of the covariance matrices for a 

measurement set for one epoch.  The variances and covariances for a measurement set for 

one epoch are based on elevation.  If changes in elevation can be considered insignificant 

over half the length of the filter, the computations can be simplified.  With typical 

kinematic data rates being a minimum of 1 Hz, this is a valid assumption.  Each block in 

lengthfilter−−φC  will be identical, as the changes in the elevation-based variances can be 

considered negligible.  It can be shown that: 

 

φφ ChC �=
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n
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2][�      (3.3.8) 

φφφ ChChC �� ==
nn
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22

0

2 )][(][ ���    (3.3.9) 

 

To illustrate this, consider the case of measurements from two satellites to two receivers, 

with the 1st order Taylor approximation used as the differentiator.  The first-order Taylor 

approximation impulse response with unit sample spacing (1 Hz) is: 
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[ ]5.005.0][1 −=nh     (3.3.10) 

 

filterB , using the 1st order Taylor approximation impulse response, is: 

 

�
�
�
�

�

�

�
�
�
�

�

�

−
−

−
−

=

5.000000005.0000
05.000000005.000
005.000000005.00
0005.000000005.0

)12,4(filterB  

(3.3.11) 

 

In this case lengthfilter−−φC  is: 

 

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

=−−

q
k

qp
k

q
km

qp
km

pq
k

p
k

pq
km

p
km

q
mk

qp
mk

q
m

qp
m

pq
mk

p
mk

pq
m

p
m

q
k

qp
k

q
km

qp
km

pq
k

p
k

pq
km

p
km

q
mk

qp
mk

q
m

qp
m

pq
mk

p
mk

pq
m

p
m

q
k

qp
k

q
km

qp
km

pq
k

p
k

pq
km

p
km

q
mk

qp
mk

q
m

qp
m

pq
mk

p
mk

pq
m

p
m

xlengthfilter

2

2

2

2

2

2

2

2

2

2

2

2

)1212(

00

00

00

σσσσ
σσσσ
σσσσ
σσσσ

σσσσ
σσσσ
σσσσ
σσσσ

σσσσ
σσσσ
σσσσ
σσσσ

φC

 

(3.3.12) 

 

Multiplying T
filterfilter BCB φ  gives: 
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For the second derivative, the same process is repeated, as the filter is applied in cascade.  

This technique of propagating variances is valid for any FIR filter.  The pre-multiplier for 

φ�C  and φ��C  will change for each differentiating filter applied.   

 

It is interesting to note that the scale factor increases as the bandwidth of the 

differentiator increases.  The scale factor for the fifth-order Taylor approximation is 1.51, 

which is larger than the first-order scale factor of 0.50, and the third-order scale factor of 

1.17.  At first it seems counterintuitive that the first-order Taylor approximation of the 

differentiator reduces variance.  However, a look at the frequency response of the first-

order Taylor differentiator, in Figure 3.2.1, confirms it is similar to a low pass filter – at 

no point does the gain exceed unity.  Also, the scale factor derived from the variance 

propagation corresponds to the magnitude of the frequency response when the 

differentiator begins to diverge from the ideal.   

 

Any covariance model developed for carrier phases can be used for the carrier phase 

derivatives by applying the derivative variance propagation explained above.  If 

improved covariance models are available, they can be easily implemented in the carrier 

method of acceleration determination. 

 

Lastly, DDφ�C  and DDφ��C  can be formed in the same way DDφC  was formed in Equation 

(3.3.6), having found expressions for φ�C  and φ��C . 

 

If only the parameter estimates are of interest φC  can be used as φ�C  and φ��C  to increase 

computational efficiency.  The scale factor due to the differentiation could be applied 

similarly to an a priori variance factor.  Changing the a priori variance factor will not 
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change the parameter estimates.   It will affect the accompanying statistical quantities, 

like the estimated parameter variances and the residuals, which could be computed with 

the a priori variance factor, if these quantities were of interest. 

 

Least square statistical quantities, such as the estimated acceleration variance and the 

residuals, have not been used to evaluate the acceleration estimates in this thesis, as 

comparison to the independent reference gravity field was used for the accuracy 

evaluation.  The calculated parameter variances potentially could be used for quality 

control, indicating periods when the acceleration estimates are poor, thus allowing the 

user to view the gravity disturbance estimates critically.  In the covariance modeling 

presented, the tropospheric and ionospheric zenith variance remain constant.  The 

parameter variances would reflect the geometry of the solution.  There is no mechanism 

to check if the signal quality has degraded beyond what was modeled.  Carrier to Noise 

(C/No) measurement made by the receiver have been used in covariance modeling 

(Hartinger and Brunner, 1999).  C/No is a receiver dependent quantity and is a relative 

measure only.  A possible use in this instance would be to increase the variance of 

measurements further if the C/No measure changed suddenly, which could indicate a 

change in signal quality.   

 

3.4 Implementation Details 

To clarify how the carrier method can be implemented in practice, the details of the 

processing will be presented in this section.   

 

The algorithm and covariance model described in Sections 3.1 to 3.3 is realized in a 

software package called CABA (CArrier Based Accelerations) developed entirely by the 

author in C++, with some utilities in Matlab™.  It is a self contained program requiring 

the precise ephemeris file in SP3 format, a text file of remote receiver positions, and raw 

GPS files for the master and remote stations in GPB format, which is used by the 

KINGSPAD software package developed at the University of Calgary.   
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Figure 3.4.1 shows the processing flow of the modified carrier method as implemented in 

CABA, with a detailed description of each processing step in the following text. 

 

 

 

Figure 3.4.1 Flowchart of modified carrier method of acceleration estimation 

 

There are two main modules within CABA.  The first module performs the preprocessing 

and differentiation. Before the modified carrier method algorithm can be implemented, 

the carrier phases require preprocessing, which includes checking for cycle slips and 

receiver clock resets, along computing a value for the ionospheric variance.  Cycle slips 

must be detected and corrected.  The velocity trend, or range rate, method was used 

(Hoffmann-Wellenhof, 2001).   
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However, correcting cycle slips is not a trivial matter.  The carrier method proved to be 

an excellent test as to whether a cycle slip was properly identified and corrected.  If a 

cycle slip is incorrectly fixed, the resulting receiver acceleration estimate clearly shows 

this, with a large spike at the time of the improper fix.  While processing, slips of several 

cycles were found and “fixed”, but spikes in the acceleration estimates showed that the 

apparent slips were in fact due to motion, as leaving them unmodified removed the 

acceleration spike problem.  Figure 3.4.2 shows an example of the acceleration spikes 

caused by an incorrect cycle slip detection and fix.   

 

Figure 3.4.2 Acceleration spikes caused by incorrect cycle slip fixing: the left hand plot shows the 
receiver accelerations when apparent cycle slips were fixed, while the right hand plot shows the 

accelerations computed without any cycle slip fixing 

 

The threshold used for cycle slip detection has to be selected specifically for flight 

conditions, being much higher during turbulent flights than during smooth flights.  Cycle 

slips due to signal blockage are not a concern, as knowledge of the ambiguities is not 

needed in the carrier method.   

 

0 100 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 x 105

m
G

al

Time into Flight line (s)
0 100 200

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 x 105

Time into Flight line (s)

= Time of Cycle Slip = Time of Cycle Slip 



 48

To avoid dealing with cycle slips and eliminate one level of differentiation, one might 

consider using the raw Doppler as the first carrier phase derivative.  The raw Doppler can 

be much noisier than a derived Doppler (Cannon et al., 1997, Szarmes et al., 1997).  

However, the first carrier phase derivatives are only used to compute the relative velocity 

solution, which does not have to be extremely accurate.  Recalling the discussion in 

Section 2.2, the magnitude of relative velocity squared is divided by the receiver satellite 

separation distance in the acceleration Equation (2.2.16).  For mGal accuracy 

accelerations, the error in the relative velocity magnitude could be up to 10 m/s.  The 

problem lies in obtaining the second carrier phase derivatives by differentiating the 

noisier raw Doppler measurements.  Low pass filtering could be applied; although, this 

would have to be investigated to insure it would leave the aircraft motion signal intact 

while still removing the noise.  The dynamics of airborne gravimetry are generally quite 

low, making cycle slips a rare occurrence.  In this testing, cycle slips were not a problem 

and the most accurate carrier phase derivatives were desired, such that the best possible 

acceleration estimates could be obtained.  Hence, carrier phase derivatives were 

computed from the carrier phase measurements rather than the Doppler measurements.   

 

Receiver clock resets are also of concern, as explained in Section 3.1.  For this reason, 

NovAtel MiLLennium receivers were used in this research, because they implement 

clock steering.  If receivers without clock steering are used, the receiver clock reset times 

and the magnitude of the resets need to be known.  Using the Doppler measurement on 

each satellite and the size of the clock reset, the phase data could be corrected in a similar 

fashion to a cycle slip.  CABA currently does not include this option, but it could be 

added without much difficulty.   

 

The final step in preprocessing is estimating the ionospheric variance, for use in the 

covariance model.  The ionosphere changes frequently so this variance is computed for 

each flight line.  Dual frequency data was collected, allowing for the computation of the 

first order ionospheric error.  To quantify the ionospheric error variation from epoch to 

epoch (1 Hz data rate) the L1 and IF phase measurements were converted to meters.  The 

two were then differenced to give the first order ionospheric error.  A line of best fit was 
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removed from this difference to leave only the variations from first order.  This quantity 

gives the second and higher order effects of the ionosphere and the carrier phase noise, 

increased by the differencing and formation of the IF measurement.  The variance of it is 

used as the ionospheric variance, which will be pessimistic given the increased noise 

level and inclusion of multipath.  The highest elevation satellite for each flight line is 

selected and its computed ionospheric variation is mapped to the zenith, using the 

mapping function given in Section 3.2. 

 

The tropospheric variance was not changed for each flight line.  It remained constant, at 

0.022 m2.  The multipath variance was also held constant at 0.0052 m2.  The correlation 

angle was 40 degrees for all flight lines, while the correlation distance was 350 km.  

These values were chosen based on Radovanovic et al. (2001).  They could likely be 

refined to improve the covariance model, but provided reasonable results for the 

objectives of this research. 

 

After the preprocessing is complete, differentiation can be performed.  The carrier phase 

data is convolved with the impulse response of the differentiator.  In this case, a fifth-

order Taylor approximation was used, as discussed in Section 3.1.  Care must be taken to 

properly time tag the derivatives.  The time of the derivative is the time of the carrier 

phase measurement that the central sample of the differentiator lies upon.  For example, 

when using the fifth-order Taylor differentiator, the first valid derivative would be time 

tagged to match the sixth carrier phase measurement.  This differentiation, and 

corresponding time tagging, is performed via convolution with the impulse response of 

the chosen differentiator as the final step in the first module of CABA.   

 

The other differentiation that occurs in the modified carrier method is that of the satellite 

positions.  Precise ephemeris provides the satellite positions and clock offsets every 15 

minutes.  The satellite positions are required at each computation epoch, which in this 

work was every second.  Lagrange polynomials (9th order) are used to interpolate the 

satellite positions, as in Hoffmann-Wellenhof (2001).  The satellite velocities and 

accelerations are also required at each computation epoch.  Numerical differentiation is 
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not very practical in this circumstance, as it would require several satellite positions to be 

interpolated.  The Lagrange polynomials can be analytically differentiated.  Their form is 

known and the chain rule can be applied (and programmed) to produce their derivative 

function, which then is evaluated at the computation epoch.  This functionality is part of 

the second module of CABA, which performs the modified carrier method algorithm. 

 

With all the data sources explained, the relative velocity and receiver acceleration 

computations can be performed as shown in Figure 3.4.1 and described in Equations 

(2.2.13), (2.2.16), (3.1.1) and (3.1.2).  This final step is the main purpose of the second 

module of CABA. 

 

3.5 Justification of the Modifications to the Carrier Method 

Testing proved that the modifications to the carrier method were indeed improvements 

over the original carrier method. On every flight line tested the modified carrier method, 

with its least squares solution and covariance model, performed better than the unique 

solution of the original carrier method.  Chapters 4 and 5 present the test methodology 

and results.  Appendix A contains the results of the modified carrier method, which can 

be contrasted with the results from using a unique solution only, found in Appendix B.  

The unique solution performance is also discussed in Section 5.3.  As well, when using 

all available satellites, the covariance model employed always improved the solution. 
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Chapter 4 

Test Description 

 

To compare the modified carrier and position method, testing under operational 

conditions was conducted.  To be certain that differences were due purely to the method 

itself, both methods were tested using the same data.  Since the goal was improved 

performance at the operational level, data from an airborne gravimetry campaign was 

used. 

4.1 Test Area 

The campaign was flown during the spring of 2000, over the Alexandria area between 

Montreal and Ottawa, Canada.  The topography of the approximately 70 km by 120 km 

test area is minimal.  Hence the gravity variations are due to density changes, making the 

field typical of areas where resource exploration would be pursued.  There are significant 

variations in the gravity field, with disturbances ranging from -41 to 19 mGal at flying 

height.  These values are given by the reference field, which was provided by Sander 

Geophysics Ltd.  Figure 4.1.1 shows the reference gravity field for the test area, in 

contours.   

 

The reference field was computed from upward continued ground measurements, which 

had an average spacing of three kilometers.  The ground measurements were gridded on 

the ellipsoid and upward continued using a Fourier Transform technique.  The accuracy 

of the reference field is expected to be at the mGal level.  For more details about the 

reference field and the upward continuation method used, see Bruton (2000).  
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Figure 4.1.1 Reference gravity field for the Alexandria test area 

 

4.2 Flight Conditions 

During this campaign, the flight height was approximately 500 meters above the ground 

with a flying speed of 45 m/s, on average.  Each flight line was about 90 km in length.  

Herein, four flight lines were selected for testing.  They were chosen because they were 

repeated on two days of flying that had contrasting GPS measurement conditions, giving 

a total of eight lines for analysis.  Increased levels of ionospheric activity degrade GPS 

signals.  The ionosphere follows a diurnal pattern of activity, with the peak occurring 

around 14:00, local time.   

 

On the first day, April 19, the flights took place from 11:00 and 15:00, local time, when 

the ionosphere was very active.  The second day’s flights, on May 4, were flown in the 
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early morning, from 04:30 to 07:30, when the ionosphere activity was quite low.  The 

different flight times allow for comparison under different ionospheric activity levels, as 

the ionosphere is most active in the early afternoon and quite calm during the early 

morning.  Levels of ionospheric activity were verified in two ways.  Firstly, dual 

frequency data was collected and the ionospheric free observable was formed and 

compared to the L1 measurements.  Secondly, geomagnetic data from the Ottawa 

observatory, located immediately east of the city, was checked and it confirmed the 

conclusions drawn from the GPS data.   

 

In addition, the April 19 flights experienced moderate to high flight turbulence, while the 

May 4 flights had extremely smooth flying conditions.  The overall conditions of April 

19 would generally be considered too extreme for a high quality, operational airborne 

gravimetry flight.  However, this data provides an opportunity to examine the effect of 

the ionosphere and flight turbulence on the estimated gravity disturbances.  Figure 4.2.1 

shows the flight lines used in this analysis.  The GPS base station is located at the Ottawa 

airport.  Baseline lengths did not exceed 70 km. 
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Figure 4.2.1 Flight lines 

 

4.3 Equipment 

An off-the-shelf SINS, a Honeywell LRF III, was used as the gravimeter.  For the 

technical specifications of the LRF III, see (Glennie, 1999).  Dual frequency NovAtel 

MiLLenium receivers collected 10 Hz data on the aircraft and at the base station, which 

was provided by Sander Geophysics Ltd.  This data was downsampled to 1 Hz for 

processing.  The aircraft was a Cessna Caravan.   GPS data was also collected with 

Ashtech Z-12 receivers.  The two receivers shared the same antenna.   

4.4 Processing 

The aircraft positions were processed by A. Bruton and results are discussed in Bruton, 

(2000).  The position estimates resulted from differential carrier phase processing, with 

ambiguities fixed in widelane mode, using the GrafNav™ software package.  These 
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position solutions are the best possible, in the context of airborne gravimetry and the 

length of the baselines.  The available satellite constellation was closely monitored and 

controlled, to prevent any discontinuities in the position trajectory.  Forward and reverse 

time position solutions were processed and compared to show errors caused by the 

initialization or loss of satellites.   

 

The raw GPS data for the position solution was collected with Ashtech Z-12 receivers.  

The carrier method processing used raw GPS data from NovAtel MiLLennium receivers.  

The receivers collecting data on the aircraft and the base station shared the same antenna, 

meaning they collected the same signals.  The differences in noise level in the two 

receivers should not be significant in this testing, as they are of the same grade.   

 

For each flight line, two sets of aircraft accelerations were estimated: one with the 

position method and one with the modified carrier method.  The modified carrier method 

is realized in a software package developed by the author called CABA, which was 

described in Section 3.4. This package consists of two modules.  The first performs the 

preprocessing, which includes cycle slip detection and fixing, and differentiation of the 

carrier phase measurements.  The second module implements the modified carrier 

method, as described in Chapter 3 and shown in Figure 3.4.1.   

 

With these two sets of accelerations, two sets of gravity disturbances were computed, 

using the AGFILT module of the GREATGUN software package developed at the 

University of Calgary.  This process is shown below in Figure 4.4.1.   
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Figure 4.4.1 Flowchart of the processing to compare the modified carrier and position methods of 
acceleration estimation 

 

Several sets of gravity disturbances were generated as the output of the above process, 

with filtering periods of 30, 60, 90 and 120 seconds.  The spatial resolutions 

corresponding to these filtering periods, and the campaign flight speed of 45 m/s, are 

given in Table 4.4.1.   

Table 4.4.1 Spatial Resolutions corresponding to filtering period 
 

1/fc (s) 30 60  90 120 
Spatial 
Resolution 
(km) 

0.7 1.4 2.0 2.7 
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4.5 Evaluation Criteria 

The error in the estimated gravity field is dominated by the errors in the GPS 

accelerations; therefore, comparison to the reference gravity field gives an indication of 

the accuracy of the GPS accelerations.  The gravity disturbances computed with both 

methods of acceleration determination were evaluated with respect to agreement to the 

reference field, which shows accuracy differences.  The reference field also contains error 

and this will be included in the error attributed to the gravity disturbance estimates.  

Moreover, a portion of the error attributed to the estimates at high frequency is due to 

their higher frequency content, which the reference does not contain.  Hence, the errors 

given for the gravity disturbance estimates are somewhat pessimistic. 

 

Since the emphasis of this research is on high frequency performance, a linear trend, with 

respect to the reference, was removed from the gravity disturbance estimates.  The 

reported error is given by the standard deviation of differences between the estimated 

gravity disturbances and the reference.  Better agreement is indicated by a lower standard 

deviation.   

 

Before continuing on to the numerical results, it is useful to compare both methods of 

acceleration estimation at the conceptual level.  Figure 4.5.1 shows a schematic of the 

position method, while Figure 4.5.2 shows the schematic of the carrier method. 

 

 

Figure 4.5.1 Schematic of Position Method of Acceleration Estimation 
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Figure 4.5.2 Schematic of Carrier Method of Acceleration Estimation 

 
 
Comparison of Figures 4.5.1 and 4.5.2 shows that there is no conceptual difference in the 

two methods of acceleration estimation.  Viewing the two methods from a signal 

processing perspective, if least squares estimation and differentiation can both be 

considered linear time invariant filters, there should be no difference in the final output, 

whatever the order of application.  Therefore, the differences between the results of the 

position and carrier methods are not expected to be large.  However, a numerical 

comparison is necessary to examine any differences under operational conditions.   
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Chapter 5 

Results and Analysis 

 
In this section, results showing the modified carrier phase method’s performance under 

various conditions are presented.  The performance of the modified carrier phase method 

is tested under conditions of changing satellite constellations, low quality positions, low 

satellite availability, and varying levels of ionospheric activity.  Additionally, the effect 

of differentiator bandwidth is discussed in Section 5.5.  For clarity, representative results 

are selected and presented in the text, while the complete set of results are provided in the 

Appendices.  Evaluation of the results is based on comparison with the position method 

and the reference gravity field, as described in Chapter 4.     

 

5.1 Effect of Changing Satellite Constellation  

In previous work (Bell et al., 1999, Bruton, 2000, Brozena and Childers, 2000), it has 

been shown that the gain or loss of a satellite can degrade the position solution.  In turn, 

this affects the acceleration solution derived by differentiating the series of estimated 

positions.  Often the effect of this change in geometry is a jump in the position trajectory.  

Although this does not pose a problem in the position domain, even small discontinuities 

cause large edge effects once differentiated into the acceleration domain.   

 

To avoid this problem when using the position method, the user must carefully process 

the GPS positions to hold the constellation constant throughout a flight line.  Not only 

does this increase the amount of user input required for processing, it also disregards 

available satellites that should be able to contribute to the solution.  Since the rise or fall 

of a satellite is a common occurrence, and affects the quality of the acceleration solution 

derived from differentiating positions, the effect on the modified carrier phase method is 

of interest.  If the modified carrier method can smoothly accommodate changing 

geometry, while matching or improving agreement to the reference field, it has a 

significant operational advantage over the position method. 

 



 60

Tables 5.1.1, 5.1.2, and 5.1.3 show the error of the scalar gravity disturbances computed 

with modified carrier phase method, with respect to the reference gravity field, on flight 

lines T1002 and T1003 flown on April 19, 2000 and flight line T1003 flown on May 4, 

2000.  All three flight lines had changes in the visible satellite constellation in the 

modified carrier method processing.  The position method results were processed to 

avoid constellation changes during the flight line.   

 

Table 5.1.1 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1002 flown 
on April 19, 2000 

Method 30s 60s 90s 120s 

Carrier 9.28 2.63 1.63 1.38 

Position 11.26 2.73 1.88 1.54 

 

Table 5.1.2 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1003 flown 
on April 19, 2000 

Method 30s 60s 90s 120s 

Carrier 27.74 4.83 1.97 1.52 

Position 27.76 4.81 2.00 1.52 

 

Table 5.1.3 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1003 flown 
on May 4, 2000 

Method 30s 60s 90s 120s 

Carrier 6.28 2.38 2.02 1.89 

Position 8.85 3.07 2.23 1.95 

 

 

Figures 5.1.1, 5.1.2 and 5.1.3 correspond to Tables 5.1.1, 5.1.2 and 5.1.3, graphically 

showing the results for the 90s filtering period.   
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Figure 5.1.1 Error of estimated δgu, with respect to the reference field, for T1002 on April 19, 2000 
with a 90s filter applied 
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Figure 5.1.2 Error of estimated δgu, with respect to the reference field, for T1003 on April 19, 2000 

with a 90s filter applied 
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Figure 5.1.3 Error of estimated δgu, with respect to the reference field, for T1003 on May 4, 2000 
with a 90s filter applied 
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T1002 and T1003 of April 19 illustrate this well.  Figure 5.1.4 shows the results of T1002 

of April 19, processed without using the covariance model in the aircraft acceleration 

computations. 

 

Figure 5.1.4 Error of estimated δgu, with respect to the reference field, for T1002 on April 19, 2000 
with a 90s filter applied and carrier method accelerations computed without a covariance model 
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solution was six.  The loss of PRN 11 dropped the number to five for 20 seconds, until 

the gain of PRN 24.  Processing T1002 without the covariance model, with the low 
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T1003 of April 19, processed without a covariance model used in the aircraft acceleration 

estimation, provides a good example of the lessened effect of geometry changes when 

there is high satellite availability.  Figure 5.1.5 shows the results of processing the 

accelerations without the covariance model for T1003 of April 19.   

 

0 250 500 750 1000 1250 1500
-20

-15

-10

-5

0

5

10

Time into Flight Line (s)

m
G

al

Position Method
Carrier Method 

Loss of PRN 11 

Gain of PRN 24 



 64

Figure 5.1.5 Error in estimated δgu, with respect to the reference field, for T1003 on April 19, 2000 
with a 90s filter applied and carrier method accelerations computed without a covariance model 
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positioning accuracies with GPS, a differential, fixed ambiguity carrier phase solution is 

required.   

 

Fixing ambiguities properly and reliably is not a trivial matter, entailing complex 

processing.  For airborne gravimetry, abrupt changes in the position solution are not 

acceptable.  The danger in fixing ambiguities is that a set may be chosen, used for 

sometime, and then residual tests will reveal that the chosen set is in fact incorrect.  Then 

the ambiguity set must be re-estimated, resulting in a reversion to a float solution until 

fixing is again possible.  This process can lead to jumps in position, or at the very least, a 

change in the estimated positions’ standard deviation.  Both effects will upset the 

acceleration solution derived from differentiating positions.  Bruton (2000) recommended 

a float solution be used, except in circumstances of high resolution requirements and 

favorable GPS conditions.   

 

In terms of processing, the differential code solution is easiest to obtain.  There are no 

ambiguities to estimate.  But the resulting position estimates are quite poor, with 

accuracies at best at the meter level, and realistically expected to be at the several meter 

level over longer baselines (i.e. 50 km and longer).  This makes them unacceptable for 

use in the position method but not the carrier phase method, which has much lower 

positional accuracy requirements.   

 

To test the response of each method to the use of lower quality positions, differential 

code positions were computed.  On average the reported accuracy, by the processing 

software, of these code positions was 3-5 meters, with baselines not exceeding 65 km.  

Gravity disturbances were estimated using the code positions, in both the position method 

and the modified carrier phase method. In addition to comparing the methods, the results 

when using the best possible position solution (widelane fixed with no constellation 

changes), are also provided.  Tables 5.2.1 and 5.2.2 show the results for each method, 

with both position solutions, on T1002 flown on April 19 and May 4, respectively. 
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Table 5.2.1 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1002 flown 
on April 19, 2000, using high and low quality positions 

Method 30s 60s 90s 120s 

Carrier, with code positions 9.27 2.62 1.64 1.38 

Carrier 9.28 2.63 1.64 1.38 

Position, with code positions 394.40 116.83 42.20 21.19 

Position 11.26 2.73 1.88 1.53 

 

 

Table 5.2.2 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1002 flown 
on May 4, 2000, using high and low quality positions 

Method 30s 60s 90s 120s 

Carrier, with code positions 8.34 1.69 1.24 1.16 

Carrier 8.32 1.66 1.24 1.16 

Position, with code positions 330.80 94.66 43.29 23.11 

Position 7.43 2.47 1.30 1.17 

 

 

These results clearly show that using code positions in the position method is 

unacceptable, as the errors increase by an order of magnitude.  This was expected, as 

predicted by Equation (2.1.1), which relates positioning accuracy to acceleration 

accuracy.  The position method using code positions was only processed on these two 

flight lines, since the results are not very meaningful beyond comparative purposes.   

 

The carrier method performs equivalently with both position solutions.  Appendix E 

contains the carrier method results with code position solutions for all flight lines, while 

Appendix A contains the results with the high quality position solutions for all flight 

lines.  When using the carrier method the quality of the position solution is not critical, 

allowing the user to simplify his/her processing.   

 

It must be noted that the carrier phase method does require carrier phase measurements of 

good quality.  The carrier phase method provides the opportunity to use lower quality 

positions that result from less complex processing.  However, if poor signal quality is the 
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cause of the low quality positions, the carrier phase method will not provide a good 

acceleration estimate. 

 

5.3 Performance Under Low Satellite Availability 

Under operational conditions, low satellite availability may be encountered.  Even under 

these conditions, the quality of acceleration estimates should be maintained.  The 

question is whether one method of acceleration determination is superior to the other 

during this situation.   

 

To compare the position and carrier methods under low satellite availability, a unique set 

of four satellites was chosen for each flight line.  The selection criteria for the satellite set 

was based on continual availability throughout the flight line, and best possible Dilution 

of Precision (DOP) values, which means as small as possible.  Positions were processed 

using these four satellites to obtain a float solution, as it is not possible to fix ambiguities 

in this case.  These positions were then used in both the position method and the carrier 

method to determine acceleration.   The carrier method processing used the same four 

satellites used for the position solution.   

 

From a total of eight flight lines, a direct comparison between the position and the carrier 

methods was only possible on seven of them.  It was not possible to compute a unique 

position solution on T1001 of April 19, 2000 as GrafNav™ would not use one of the 

satellites due to poor signal quality for part of the line.  Of the remaining seven flight 

lines, the carrier method performed better than the position method on six lines.  The 

reason for the position method’s comparatively better performance on the seventh line 

(T1004 of April 19) is unclear.  On other flight lines with similar conditions, in terms of 

PDOP, VDOP and ionospheric activity, the carrier method fared better than the position 

method.   

 

Table 5.3.1 shows the average performance, over all flight lines except T1001 of April 

19, of both methods.  Individual flight lines results are given in Appendix B. 
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Table 5.3.1 Average errors (1 σ) of estimated δgu with respect to the reference field (mGal) over all 
lines, except T1001 of April 19, with a unique solution 

Method 30s 60s 90s 120s 

Carrier 24.24 6.11 2.86 2.03 

Position 25.55 7.56 4.26 3.37 

 

 

Although the carrier method generally performed better than the position method, it is not 

a reliable solution.  In some instances, the acceleration estimate from the carrier method 

was grossly incorrect, and easily identifiable as such.  One epoch’s estimate could be up 

to two orders of magnitude in error.  Inspection of the input data did not provide any 

indication of bad measurements or other disturbances that would cause such an erroneous 

estimate.  It occurred on flight lines with varying conditions, making it impossible to 

isolate the conditions that caused the problem.   

 

T1002 of April 19 provides a good example of this phenomenon, shown in the upward 

accelerations computed with different satellite sets in Figure 5.3.1.  The top plot shows 

the accelerations computed with the unique satellite set of PRNs 2, 4, 9 and 16.  The 

middle plot is a unique acceleration solution as well, with PRN 9 replaced by PRN 7.  

The bottom plot shows the accelerations computed with one degree of freedom, using 

PRNs 2, 4, 7, 9 and 16.  Note the different scale used in the top plot on the vertical axis. 
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Figure 5.3.1 Upward aircraft accelerations computed with three satellite sets, as indicated on each 

plot, for T1002 of April 19, 2000 
 
 
In the top plot of Figure 5.3.1, the erroneous acceleration estimates must be caused by 

PRN 9, as when it is replaced by PRN 7, in the middle plot, the problem disappears.  This 

indicates a problem with the measurements on PRN 9, but none was apparent when 

examining these measurements.   

 

In all cases, changing the satellite set allowed the flight line to be processed without the 

“spiking” problem.  Also, as shown in the bottom plot of Figure 5.3.1, the addition of 

another satellite, to bring the total to just five, eliminated the problem as well.  These last 

two observations suggest that the carrier method of estimating accelerations is very 

sensitive.  When it is a unique solution, there is no way to minimize the errors and even a 

small error has a large impact on the estimated accelerations.  The qualitative error 

analysis in Section 2.2 indicated that small errors in range accelerations computed from 

the carrier phases were of concern.  The “spiking” problem in the case of a unique 

solution underlines the need for good signal quality in the carrier method. 
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5.4 Effect of Different Levels of Ionospheric Activity 

The flights of April 19 and May 4 took place during mid-day and early morning, 

respectively.  These two days of the campaign were chosen because of the flight times 

and the need to evaluate both methods under varying ionospheric conditions.  Dual 

frequency data was collected, allowing for the computation of the first-order ionospheric 

error.  To quantify the ionospheric error variation from epoch to epoch (1 Hz data rate) 

the L1 and IF phase measurements were converted to meters.  The two were then 

differenced to give the first order ionospheric error.  A line of best fit was removed from 

this difference to leave only the variations from first-order.  This final quantity gives the 

second and higher order effects of the ionosphere and the carrier phase noise, increased 

by the differencing and formation of the IF measurement.  The standard deviation of this 

quantity was computed for each satellite over each flight line.  By taking the average of 

all satellites from a given flight line, an indication of the ionospheric activity was 

estimated.   

 

The eight flight lines were grouped into two main categories of ionospheric activity, with 

one more extreme case.  The T1001, T1002, and T1004 of May 4 formed the low 

ionospheric activity group, with an ionospheric standard deviation of 0.03 m, computed 

as described in the previous paragraph.  T1003 of May 4, along with T1002, T1003 and 

T1004 of April 19, formed the moderate ionospheric activity group, with an ionospheric 

standard deviation of 0.05-0.06 m.  T1001 of April 19 had a very high ionospheric 

standard deviation of 0.13 m.  Table 5.4.1 summarizes the grouping according to 

ionospheric activity, as quantified by the ionospheric standard deviation.  These 

categories correspond to the range of ionospheric activity encountered during this testing.  

What is considered “high” herein is not the highest possible level of ionospheric activity, 

but it is approaching the maximum level of tolerance for an airborne gravimetry flight.   
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Table 5.4.1 Flight lines grouped according to ionospheric activity level 

High 
(0.13 m) 

Moderate 
(0.05-0.06 m) 

Low 
(0.03 m) 

April 19: T1001 April 19: T1002 
               T1003 
               T1004 

 

 May 4: T1003 May 4: T1001 
T1002 
T1004 

 

 

When the ionospheric variation was moderate to high, the carrier method consistently 

performed better than the position method at all filtering levels.  Tables 5.1.1 and 5.4.2 

show the results from two flight lines with moderate ionospheric activity – T1002 and 

T1004 on April 19, respectively.  The amount of improvement was quite small, and 

limited statistical testing showed that the differences between the carrier and position 

methods were not significant at a 95% confidence level.  This was expected, given the 

conceptual similarity of the two methods of acceleration determination presented in 

Section 4. 5.  However, the carrier method results from all the flight lines in the moderate 

and high ionospheric activity groups either matched the position method results or 

showed an improvement, albeit slight, at every filtering period.  If the differences were 

due only to the noise level, one would expect the results to be worse as often as they were 

better.   

 

Table 5.4.2 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1004 flown 
on April 19, 2000: ionospheric variation = 0.062 m2 

Method 30s 60s 90s 120s 

Carrier 21.59 3.10 1.23 0.98 

Position 21.99 3.11 1.39 1.09 

 

 

When the ionospheric variation was low, the carrier results were not consistently better 

over all filtering periods, as seen in the results from T1002 and T1001 on May 4 given in 

Tables 5.4.3 and 5.4.4, respectively.   
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Table 5.4.3 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1002 flown 
on May 4, 2000: Ionospheric Variation = 0.032 m2 

Method 30s 60s 90s 120s 

Carrier 8.32 1.66 1.24 1.16 

Position 7.43 2.47 1.30 1.17 

 

 

Table 5.4.4 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1001 flown 
on May 4, 2000: Ionospheric Variation = 0.032 m2 

Method 30s 60s 90s 120s 

Carrier 9.77 2.28 1.69 1.54 

Position 9.99 2.27 1.51 1.46 

 

 

It can be seen from Table 5.4.3 that the carrier method performed worse than the position 

method at the 30s filtering period, while Table 5.4.4 shows poorer carrier method 

performance over the longer filtering periods.  Again, the difference in the performance 

of the carrier and position methods is small and arguably not significant.  However, it is 

of note that carrier method results from periods of high ionospheric activity are always 

equal to or better than the position method.  During periods of low ionospheric activity, 

the performance trend of the carrier method from the higher ionospheric conditions does 

not continue. 

 

The T1001 of May 4 flight line had optimal conditions for GPS positioning.  The 

ionospheric activity was extremely low.  The PDOP was nearly constant at 1.06, with 

nine satellites available throughout the flight, with three satellites having elevations 

above 45˚.  The appropriateness of the covariance model under these conditions was 

questioned.  With such low ionospheric activity, the physical correlation between 

measurements may have been insignificant.  However, the line was reprocessed without 

the covariance model, and results did not improve. 

 

On the other hand, when conditions were less than optimal for GPS positioning, the 

carrier method provided better results than the position method.  For example, during 
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T1002 of April 19, a maximum of six satellites was available throughout the flight line.  

Five satellites had elevations of less than 45˚.  PDOP values ranged from 1.29 to 1.80.  

The greater percentage of low elevation satellites, combined with a higher level of 

ionospheric activity, created undesirable positioning conditions, which shows in the 

relatively poorer results of the position method.  The relationship between the level of 

ionospheric activity and the performance of the carrier method is discussed further in 

Section 5.6. 

 

5.5 Effect of Differentiator Bandwidth 

To further examine the performance of the carrier method on T1001 of May 4, the 

differentiator bandwidths were investigated.  In the carrier method, a fifth-order Taylor 

differentiator was used, which has a cut-off frequency of approximately 0.3 Hz.  The 

differentiator in the position method had a cut-off frequency close to 0.1 Hz.   

 

Initially, it was suspected that the differences between the two methods of acceleration 

determination were due mainly to the bandwidths of the differentiators.  Since the flights 

from April 19 experienced moderate turbulence, it follows that a differentiator with a 

higher cut-off frequency could better capture higher frequency motion of the aircraft.  

Conversely, during the May 4 flights, which had minimal turbulence, the wider 

bandwidth would merely pass more noise, resulting in the carrier method’s poorer 

performance.   

 

To test this, the fifth-order Taylor differentiator was implemented in the position method.  

If the bandwidth argument was correct, the position method should then perform better 

during the turbulent flights, like T1002 of April 19, and worse during the smooth flights, 

as in T1001 of May 4.  In fact, this was not the case.  Tables 5.5.1 and 5.5.2 show the 

results from the carrier method and the position method using the fifth-order Taylor 

differentiator, along with the results from the position method using the standard 

differentiator, for comparison.   
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Table 5.5.1 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1002 flown 
on April 19, 2000: the (*) on the first position method results indicates the use of the fifth-order 

Taylor differentiator 

Method 30s 60s 90s 120s 

Carrier  9.28 2.63 1.64 1.38 

Position* 11.70 3.65 2.51 1.98 

Position 11.26 2.73 1.88 1.53 

 

 

Table 5.5.2 Errors (1 σ) of  estimated δgu with respect to the reference field (mGal) for T1001 flown 
on May 4, 2000: the (*) on the first position method results indicates the use of the fifth-order Taylor 

differentiator 

Method 30s 60s 90s 120s 

Carrier  9.77 2.28 1.69 1.54 

Position* 9.99 2.26 1.53 1.47 

Position 10.00 2.26 1.52 1.46 

 

 

Increasing the differentiator bandwidth in the position method worsened the solution 

during the turbulent T1002 flight on April 19 and made very little difference to the results 

from the smooth T1001 flight of May 4.  From these results, it can be concluded that the 

difference in performance between the carrier and position methods is not due to the 

bandwidth of the applied differentiators.  This conclusion is valid when both applied 

differentiators are a good approximation of the ideal differentiator over the frequency 

range containing aircraft motion.  A differentiator with a very narrow bandwidth would 

cause significant performance differences.   

 

5.6 Discussion of Results 

In the previous sections, it has been shown that: 

 

• Low accuracy positions, up to 10 meters, can be used in the carrier method to 

produce the same results as when positions accurate to the decimeter level are 

used. 
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• A unique solution is not recommended for either method, because achievable 

accuracy is lower.  In this situation, the carrier method can provide better 

accuracies than the position method, but it is very sensitive to errors in the carrier 

phase derivatives; therefore, the carrier method is not reliable when only four 

satellites are available. 

• The carrier method can accommodate changes in geometry without adversely 

impacting the estimated accelerations. 

• The carrier method performs better than the position method in less than optimal 

positioning conditions, in particular during increased ionospheric activity and 

with a majority of low elevation satellites. 

• Differences in differentiator bandwidth do not explain the differences between 

the carrier and position methods of acceleration estimation.   

 

The first two points will be briefly discussed first.  The last three points are closely 

related and require further discussion to explain the observed performance of both 

methods under conditions of changing geometry and varying levels of ionospheric 

activity, along with differences in differentiator bandwidth. 

 

To begin, it has been shown that poor quality positions yield acceleration results 

equivalent to higher quality positions.  The testing verified the expected result, as the 

receiver and satellite positions are only used to compute the direction of the vector 

between them.  This allows for simplified position processing, with required accuracies at 

the same level as for the normal gravity computation.  This is only true if the low quality 

positions are due to the processing scheme, not the signal quality.  Good signal quality is 

essential to both methods.  Errors in the range accelerations, derived from the carrier 

phases, translate directly into the receiver acceleration estimates, but can be minimized in 

the least squares process.   

 

When only four satellites are available, errors in the range accelerations from one satellite 

can cause very large errors in the acceleration estimates, as there is no opportunity for 

error minimization.  Measurements to one additional satellite are sufficient to mitigate the 
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errors seen in the unique case.  Therefore, the carrier method is considered reliable with 

five or more satellites only.  Neglecting the “spiking” incidences, the carrier method 

performed better than the position method when the satellite set was restricted to four, 

inferring it is a better choice during low, but not minimal, availability. 

 

The covariance model was shown to be critical to the carrier method’s tolerance of 

changing satellite geometry.  When satellite availability is low, introducing or losing a 

satellite causes large errors when the covariance model is not applied in the acceleration 

estimation.  Conversely, when many satellites were used in the solution, the effect of 

visible constellation changes was more subtle.  Even in this case, errors were reduced 

when the covariance model is used.  These results can be explained from a least squares 

perspective.  If measurements are equally weighted, each contributes very little when 

many are available.  With few available measurements, the contribution of each is much 

larger, and not taking differences in quality into account in the weighting process will 

skew the estimated solution.   

 

These observations based on the carrier method results imply that the difficulties in the 

position method due to geometry changes could also be overcome by applying a more 

appropriate covariance model.  The jumps in the position solution when a satellite is 

gained or lost are very similar to the upsets in the carrier method acceleration solution 

when no covariance model is applied.   

 

Recall the conceptual similarity between both methods presented in Section 4.5.  The 

position method and the carrier method are essentially the same signal processing 

scheme, with the order of the filters switched.  It has been shown in Section 5.5 that when 

applying the same differentiator in both the position method and carrier method, the 

results differ.  Therefore, the differences must come from the least squares estimation 

processes.  However, if both least squares estimation processes were equivalent, there 

should be no significant difference between the results of either method.   
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One difference between the position least squares estimation and the acceleration least 

squares estimation is the covariance model.  In most commercial GPS processing 

packages, the position least squares estimation puts the emphasis on correcting errors, 

rather than modeling their variances.  A troposphere model is applied and double 

differencing reduces remaining atmospheric errors.  Unless an ionospheric free solution is 

utilized, the ionospheric errors remain unmodeled.  The measurements are assumed to be 

independent, with only mathematical correlations taken into account.  When the 

measurement conditions do not match the assumptions of the covariance model, the 

minimization of errors may not be done correctly.  This would explain the jumps in the 

position trajectory when the satellite constellation changes, and the degraded position 

solutions after the inclusion of low elevation satellites. 

 

The acceleration least squares estimation uses a satellite elevation angle based covariance 

model that incorporates physical correlations between measurements due to ionospheric 

and tropospheric variances.  This covariance model appears to be more appropriate, as 

low elevation satellites can be included in the solution and poor geometry can be 

tolerated without negative effects.  Differentiating the carrier phases removes constant 

and first order terms.  Combined with double differencing, this process provides the 

justification for not applying corrections from a troposphere model.  An ionospheric free 

solution, with L1 and L2, can only remove first order effects of the ionosphere, which 

differentiation already does, generating an effectively ionospheric free solution.  

 

The covariance model influences how well the errors are minimized in the least squares 

estimation.  When conditions match the assumptions made in the covariance model in the 

position estimation, the resulting solution has optimally minimized errors.  If the 

conditions are less than ideal, the minimization of errors is not done correctly, producing 

a poorer quality position solution.  The former situation occurs in the T1001 flight of 

May 4, which has low ionospheric activity, and the latter in the T1002 flight of April 19, 

which has high ionospheric activity.  Also during the T1001 flight of May 4, which was 

very smooth, the application of a wider bandwidth differentiator did not significantly 

increase the error of the estimated gravity disturbance.  In the turbulent T1002 flight of 
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April 19, the wider bandwidth differentiator significantly increased the errors.  This 

implies that if the minimization of errors in the position solution is optimal, an increased 

differentiator bandwidth will not increase the noise level of the gravity disturbances.   

 

The question remains as to why the carrier method, even with its more appropriate 

covariance model, performed worse than the position method on T1001 of May 4.  Given 

the explanation above, the carrier method should have been able to at least match the 

performance of the position method.  What was not mentioned before is that the position 

estimation is not purely a least squares estimation which uses measurements from the 

current epoch alone, like the acceleration least squares estimation is.  The carrier phase 

ambiguities are estimated with a Kalman Filter, meaning all measurements since the 

initialization of the filter contribute to the estimate.  The position vector is estimated 

using these ambiguity estimates, allowing each epoch’s position solution to utilize more 

information than what is available at the current epoch. The acceleration estimation does 

not have the benefit of any information or measurement beyond the current epoch.  For 

this reason, when the assumptions of its covariance model are correct and measurement 

conditions are ideal, the position method can perform better than the carrier method. 

 

The common limiting factor in both the position and carrier method of acceleration 

estimation is the noise level of the GPS measurements.  Double differencing is required 

in both methods.  Schwarz and Wei (1994) identified carrier phase noise to be the 

dominant error in higher frequencies from 0.005 to 0.02 Hz, which corresponds to 

resolutions of 1.1 km to 4.5 km, with a 45 m/s flying speed.  The carrier method, while 

offering operational advantages, does not offer the amount of accuracy improvement 

needed to meet the requirements of high-resolution geophysical applications.  The same 

measurements are used in both the carrier and position methods, which are conceptually 

equivalent.  The carrier method is hampered by the carrier phase noise in the same way 

that the position method is, preventing GPS derived accelerations from providing the 

desired accuracy at high frequencies.   
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In summary, the carrier method performs slightly better than the position method when 

measurement conditions are less than ideal.  This improved performance is due to the 

carrier method’s more appropriate covariance model.  Theoretically, both the carrier 

method and the position method should yield equivalent results if the least squares 

estimation in both were equivalent.  The carrier method requires good quality carrier 

phase measurements, but can tolerate position error of up to 10 meters.  When only four 

satellites are available, the carrier method generally provides better acceleration estimates 

than the position method does, shown by the lower error level in estimated gravity 

disturbances.  It is still not recommended in this case as the carrier method appears to be 

quite sensitive to a unique solution, when small errors in the carrier phase measurements 

occasionally cause large errors in the acceleration estimates.  The carrier phase method is 

recommended if there is a minimum of five satellites available, which eliminates the 

incident of extreme outliers in the acceleration estimates.  Ultimately, the carrier method 

is based upon the same GPS phase measurements, with the same noise level, as the 

position method.  The position method and the carrier method will share the same upper 

bound in high frequency performance, because the noise level of the carrier phase 

measurements becomes the dominant error source in this part of the frequency spectrum. 

 

5.7 Strengths and Limitations of the Modified Carrier Method 

The results and discussion presented previously in this chapter have shown that using the 

modified carrier method has operational and algorithmic advantages over the position 

method.  However, the amount of accuracy improvement is not enough to achieve the 

accuracies required for high-resolution geophysical applications.  Therefore, the strength 

of the carrier method lies in its operational advantages.  It offers the same quality of 

accelerations, or slightly better, with more straightforward processing, when five or more 

satellites are available. 

 

Processing positions for use in the position method entails careful control of which 

satellites are used.  This requires much input from the user, who must examine the status 

of each satellite, avoid constellation changes, and keep the elevation mask high enough to 

avoid inclusion of lower quality, low elevation satellites.  Operationally, this is time 
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consuming, and also reduces the total number of usable satellites, which in some 

instances may lead to a unique solution, which is not desirable.  Since the modified 

carrier method can accommodate constellation changes, and benefits from the inclusion 

of all available satellites, it can be implemented without such a high level of user input.  

Moreover, a differential code solution is all that is required for positions, meaning less 

sophisticated software can be utilized and ambiguity estimation is not required. 

 

In the modified carrier method, the acceleration estimate comes directly from carrier 

phase derivatives.  The effect of individual satellites on the acceleration solution can be 

easily identified.  For example, during processing for T1004 of May 4, it was observed 

that the addition of PRN 3 worsened the solution.  Upon investigation of the GPS satellite 

status advisories provided by the United States Coast Guard Navigation Center, it was 

discovered that PRN 3 had been unavailable for use, due to forecast maintenance, until 

just a few hours previous.  Re-processing without PRN 3 improved the solution, inferring 

that this PRN may still have been experiencing effects from its “unusable” period.  In the 

case of poor signal quality from a satellite, the modified carrier method allows for easy 

identification and removal of that satellite.  Individual signal variances are propagated 

directly into the acceleration solution.  With the position method, errors caused by one 

satellite’s contribution are first mapped into the position domain and then differentiated 

into the acceleration domain, making the exact source of those errors less obvious in the 

acceleration estimate.   

 

While the modified carrier method offers advantages in terms of simplified processing, 

and ease of variance propagation, it does have limitations.  Firstly, cycle slips are a 

concern, just as in carrier phase positioning.  The sharp discontinuity caused by a cycle 

slip causes edge effects in the carrier phase derivative.  Cycle slips must be detected, and 

either fixed or the flight line must be broken into two segments at the cycle slip.  (The 

edge effects will last the length of the differentiating filter, and then be further spread by 

the low pass filter applied to the gravity estimates.)  Fixing cycle slips is not a trivial 

matter, and must be done correctly.  An improper cycle slip fix will cause incorrect 

acceleration estimates, as shown in Section 3.4, again causing edge effects in the gravity 
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disturbance estimates.  However, it should be kept in mind that the dynamics of airborne 

gravimetry flights are quite smooth and cycle slips are not common.  Raw Doppler 

measurements could potentially be used to avoid the cycle slip problem.  Since the 

accuracy of the relative velocity estimates is not crucial, the Doppler measurements from 

the receiver could be used as the first carrier phase derivative.  The range accelerations 

would need to be derived from the raw Doppler measurements, with a low pass filtering 

scheme to meet the low error requirement on the range accelerations.  This approach 

needs further investigation before it can be recommended.   

 

Secondly, the modified carrier method requires either careful receiver selection or extra 

data processing due to receiver clock resets.  As explained in Section 3.2, the problem 

with receiver clock offsets comes when differentiating the carrier phase measurements.  

An FIR differentiator requires uniformly spaced samples.  When the receiver clock resets 

to GPS time, the sample spacing cannot be considered uniform if the reset is large.  If the 

reset is large, the integration period over which the carrier phase measurement is formed 

is shorter or longer than the nominal output rate by the amount of the receiver clock 

offset.  This results in the carrier phase measurement being either too large or too small 

by the amount of the receiver clock offset multiplied by the Doppler.  This effect can be 

corrected in the same way as a cycle slip, with the time and magnitude of the receiver 

clock reset known. 

 

The final limitation of the carrier phase method is its instability when using a unique 

solution.  Although caution should also be exercised when using the position method with 

only four satellites, the effects are not as large in this case. 

 

From the data processed herein, and the accompanying analysis, the carrier phase method 

is recommended: 

 

• During conditions of low, but not minimal, satellite availability 

• When the majority of available satellites are below 45 degrees elevation 

• During periods of moderate to high ionospheric activity 
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• When satellites are introduced or lost during a flight period 

• When the direct effect of individual satellite signals on acceleration have to be 

analyzed. 

 

The position method, used with commercial GPS positioning packages and the current 

GPS constellation, is recommended: 

 

• During ideal positioning conditions: low ionospheric activity, majority of 

available satellites having high elevation, and good satellite availability 
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Chapter 6 

Summary, Conclusions and Recommendations 

 
 
To investigate whether higher accuracy GPS accelerations can be achieved, an alternative 

method for deriving accelerations from GPS has been presented and evaluated.  This 

method estimates accelerations directly from carrier phase derivatives, and is based on 

the method presented in Jekeli and Garcia (1997).  The original carrier method was 

expanded upon to incorporate a least squares solution and a covariance model.  

Tropospheric and ionospheric variances are modeled, as well as physical correlations 

between measurements due to these errors.  This modified carrier method is an 

improvement over the original (ibid), resulting in higher accuracy acceleration estimates.   

 

The modified carrier method was evaluated with respect to the current standard method 

of acceleration determination from GPS, which is twice differentiated positions.  To 

provide a benefit to airborne gravimetry systems, the modified carrier method must be 

shown to be superior to the current method, either in terms of accuracy or in terms of 

operational or algorithmic advantages.   

 

For a fair comparison, the position method and the modified carrier method were tested 

under identical, operational conditions.  Data from an airborne gravimetry campaign 

flown over the Alexandria, Canada area in the spring of 2000 was used.  A reference 

gravity field for the area, computed from ground gravity measurements, was available.  

The GPS data was processed using both methods to provide two sets of aircraft 

accelerations which were used to compute two sets of gravity disturbances.  The 

estimated gravity disturbances were then compared to the reference gravity field.  The 

differences between the two sets were due to the acceleration estimation method used, as 

all other error sources are shared.  Comparison to the reference gave an accuracy check to 

verify whether the differences were improvements.   
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Eight flight lines, totaling nearly 720 km, were processed with both acceleration 

determination methods.  The same four flight lines were flown on two days.  The first day 

had less than optimal conditions: moderate flight turbulence was encountered, there were 

periods of low satellite availability, and the ionospheric activity was significant.  The 

second day of flying was close to ideal: nearly no flight turbulence was experienced, and 

ionospheric activity was extremely low.  These two days allowed for an excellent 

comparison of how the position method and the modified carrier method performed under 

varying conditions.   

 

Analysis of the results provided the following conclusions: 

 

1) The modified carrier method is superior to the original carrier method, in terms of 

achievable accuracy and robustness.  This is due to the use of all available 

satellites, rather than being restricted to four, and to the covariance model 

employed.   

 

2) As part of the development of the modified carrier method, it has been shown that 

carrier phase variances can be propagated through the differentiation process.  

The variance propagation technique presented is applicable to any FIR filter.   

 

3) The use of an elevation based covariance model that models physical correlations 

between measurements due to tropospheric and ionospheric errors has proven to 

be effective in allowing the use of low elevation satellites, poor satellite geometry, 

and the introduction or loss of a satellite without degrading the acceleration 

solution. 

 

4) The modified carrier method performs best during conditions of: 

a.  moderate ionospheric activity 

b.  low, but not minimal, satellite availability 

c. poor geometry, or a large percentage of low elevation satellites 

d. rising or falling satellites (i.e. geometry changes) 
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5) The position method performs best during conditions of: 

a. low ionospheric activity 

b. constant satellite constellation (no losses or gains during a flight period) 

c. good geometry, with a large percentage of high elevation satellites 

 

6) Overall the modified carrier method provides a slight improvement (~5%) in the 

accuracy of accelerations derived from GPS over all filtering periods, with the 

largest improvements (~15% at 30s and 60s filtering periods) during less than 

optimal conditions, as described in 4).  These improvements in accuracy are quite 

small, and statistically speaking they are not significant, but they are consistent 

during less than optimal conditions.  The carrier method results being consistently 

better, though only slightly, is of note, as differences due purely to the noise level 

would be expected to be negative as often as they are positive.   

 

7) The modified carrier method provides operational and algorithmic advantages 

over the position method: 

a. Satellites can be gained or lost without any adverse effect on the estimated 

accelerations. 

b. Low elevation satellites can be included in the acceleration solution 

without degrading accuracy. 

c. Lower accuracy positions used in the modified carrier method produce the 

same quality of results as higher accuracy positions.  This eliminates the 

need for ambiguity resolution, and the sophisticated processing it entails.   

d. The effect of one satellite’s signal on the solution can be directly seen, 

allowing for easy elimination of satellites with low signal quality, for 

instance in the case of poor satellite health.   

 

8) For the reasons given in 7), the modified carrier method is recommended for use 

in operational airborne gravimetry campaigns.  It is at the very least equivalent to 
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the position method in terms of accuracy.  Additionally, the modified carrier 

method allows for less intensive monitoring of the GPS data processing. 

 

9) With the current GPS constellation and available signals, accelerations from GPS 

do not provide the accuracy required for very high-resolution gravity field 

estimation.  Less than 1mGal at 1 km resolution has not been reliably achieved 

with either the modified position method or the carrier method.   

 

6.1 Recommendations 

The problem of higher accuracy motion compensation in airborne gravimetry is not yet 

solved.  Future research must still be directed to this area in order to achieve the desired 

resolutions.   It is recommended that the following areas be considered: 

 

1) The completion and availability of the Galileo Global Navigation Satellite System 

(GNSS) may provide new levels of positioning accuracy, particularly since the 

combination of GPS and Galileo will increase the number of observations 

available.  More observations should lead to better acceleration estimates with the 

carrier method.  The planned modernization of GPS will impact its performance 

as well, partly because it will provide access to more signals for observation.  

These two developments could increase the accuracy of both GPS positions and 

accelerations.  Their effect should be examined within the context of airborne 

gravimetry. 

 

2) An investigation into the availability and feasibility of alternative height sensors 

with a lower noise level than GPS measurements should be done.   

 

3) Refinement of the covariance model used in the modified carrier method should 

be considered.  Ideally, C/No or Signal to Noise Ratio (SNR) measures from the 

receiver could be incorporated to give a time varying indication of signal quality.   

 



 87

4) The statistics from the least squares solution could be used for quality control in 

an operational flight.  This would be a first step towards providing accuracy 

measures of the estimated gravity disturbances in operational campaigns when no 

reference is available.  Currently these could be provided, but would only reflect 

the geometry of the solution, since the tropospheric and ionospheric zenith values 

are constant.  If the recommendation in 4) is realized, warnings based on temporal 

disturbances in signal quality could also be provided. 
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Appendix A 

Results with the Modified Carrier Method and Flight Line Data 

 

The following tables contain the error of the estimated gravity disturbances, using the 

modified carrier method, with respect to the reference field, low pass filtered with cut-off 

frequencies corresponding to the time periods given.  These results are the best attained, 

using high quality positions, all available satellites and the covariance model developed.  

Information about each flight line is also provided.  The mean ionospheric variance is 

calculated as described in section 5.4.  The turbulence measures were taken from the 

pilot’s notes.   
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Flight Line:    T1001 April 19, 2000 

Flight Time:    317674 – 319750 (GPS seconds of week) 

     11:14 – 11:49 (Local time) 

Mean Ionospheric Variance:  0.132 m2 

Turbulence:    Moderate 

 

Total Number of Available PRNs: 7 

Gains:     0 

Losses:    PRN 8 at 318421 

Average PDOP:   1.18 

Average VDOP:   0.67 

 

Table A.1 Available PRNs and average elevation angles for T1001 of April 19, 2000 

PRN Average Elevation (o)

2 75 

4 25 

7 65 

8 12 

9 16 

11 28 

16 20 

 

 

Table A.2 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1001 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 10.58 3.95 3.30 3.06 
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Flight Line:    T1002 April 19, 2000 

Flight Time:    320414 – 322094 (GPS seconds of week) 

     12:00 – 12:39(Local time) 

Mean Ionospheric Variance:  0.062 m2 

Turbulence:    Moderate 

 

Total Number of Available PRNs: 7 

Gains:     PRN 24 at 321853 

Losses:    PRN 11 at 321834 

Average PDOP:   1.55 

Average VDOP:   0.77 

 

Table A.3 Available PRNs and average elevation angles for T1002 of April 19, 2000 

PRN Average Elevation (o)

2 55 

4 45 

7 77 

9 20 

11 12 

16 37 

24 10 

 

Table A.4 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1002 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 9.28 2.63 1.64 1.38 

 

 



 95

Flight Line:    T1003 April 19, 2000 

Flight Time:    332174 – 334472 (GPS seconds of week) 

     15:16 – 15:54 (Local time) 

Mean Ionospheric Variance:  0.062 m2 

Turbulence:    Moderate 

 

Total Number of Available PRNs: 11 

Gains:     PRN 6 at 332748 

Losses:    PRN 1 at 333353 

     PRN 7 at 333473 

     PRN 16 at 332995 

Average PDOP:   1.08 

Average VDOP:   0.56 

 

Table A.5 Available PRNs and average elevation angles for T1003 of April 19, 2000 

PRN Average Elevation (o)

1 10 

4 45 

5 30 

6 15 

7 15 

10 53 

13 29 

16 12 

18 30 

24 75 

30 30 

 

Table A.6 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1003 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 27.74 4.84 1.97 1.52 
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Flight Line:    T1004 April 19, 2000 

Flight Time:    329367 – 331641 (GPS seconds of week) 

     14:29 – 15:07 (Local time) 

Mean Ionospheric Variance:  0.062 m2 

Turbulence:    Moderate 

 

Total Number of Available PRNs: 9 

Gains:     PRN 13 at 330197 

Losses:    0 

Average PDOP:   1.09 

Average VDOP:   0.59 

 

Table A.7 Available PRNs and average elevation angles for T1004 of April 19, 2000 

PRN Average Elevation (o)

1 16 

4 60 

5 38 

7 30 

10 30 

13 12 

16 25 

24 65 

30 21 

 

Table A.8 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1004 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 21.59 3.10 1.23 0.98 
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Flight Line:    T1001 May 4, 2000 

Flight Time:    388329 – 390337 (GPS seconds of week) 

     06:52 – 07:25 (Local time) 

Mean Ionospheric Variance:  0.032 m2 

Turbulence:    Low 

 

Total Number of Available PRNs: 9 

Gains:     0 

Losses:    PRN 18 at 389747 

Average PDOP:   1.06 

Average VDOP:   0.57 

 

Table A.9 Available PRNs and average elevation angles for T1001 of May 4, 2000 

PRN Average Elevation (o)

2 15 

3 28 

8 55 

11 30 

13 27 

15 37 

18 15 

19 55 

27 65 

 

Table A.10 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1001 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 9.77 2.28 1.69 1.54 
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Flight Line:    T1002 May 4, 2000 

Flight Time:    385721 – 387602 (GPS seconds of week) 

     06:08 – 06:40 (Local time) 

Mean Ionospheric Variance:  0.032 m2 

Turbulence:    Low 

 

Total Number of Available PRNs: 9 

Gains:     PRN 11 at 386359 

Losses:    0 

Average PDOP:   1.27 

Average VDOP:   0.59 

 

Table A.11 Available PRNs and average elevation angles for T1002 of May 4 

PRN Average Elevation (o)

3 46 

8 35 

11 14 

13 30 

15 28 

18 29 

19 75 

22 16 

27 49 

 

Table A.12 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1002 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 8.32 1.66 1.24 1.16 
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Flight Line:    T1003 May 4, 2000 

Flight Time:    382924 – 385046 (GPS seconds of week) 

     05:21 – 05:57 (Local time) 

Mean Ionospheric Variance:  0.052 m2 

Turbulence:    Low 

 

Total Number of Available PRNs: 9 

Gains:     PRN 15 at 383682 

Losses:    0 

Average PDOP:   1.14 

Average VDOP:   0.57 

 

Table A.13 Available PRNs and average elevation angles for T1003 of May 4, 2000 

PRN Average Elevation (o)

1 35 

3 60 

8 16 

13 23 

15 15 

18 40 

19 75 

22 32 

27 30 

 

Table A.14 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1003 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 6.28 2.38 2.02 1.89 

 



 100

Flight Line:    T1004 May 4, 2000 

Flight Time:    381270 – 382251 (GPS seconds of week) 

     04:55 – 05:11 (Local time) 

Mean Ionospheric Variance:  0.032 m2 

Turbulence:    Low 

 

Total Number of Available PRNs: 7 

Gains:     PRN 13 at 380316 

Losses:    0 

Average PDOP:   1.79 

Average VDOP:   0.58 

 

Table A.15 Available PRNs and average elevation angles for T1004 of May 4, 2000 

PRN Average Elevation (o)

1 50 

3 62 

13 11 

18 47 

19 55 

22 47 

27 15 

 

Table A.16 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with 
accelerations from the modified carrier method, for T1004 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 8.05 2.59 1.49 0.84 
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Appendix B 

Results with the Unique Carrier Phase Method 

 

The following tables contain the error of the estimated gravity disturbances, using the 

unique carrier phase method, with respect to the reference field, low pass filtered with 

cut-off frequencies corresponding to the time periods given.  These results were obtained 

with the set of four satellites indicated under each Table, along with the PDOP and 

VDOP values.   

 

 

Flight Line:  T1001 April 19, 2000 

Table B.1 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1001 of April 19, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 33.40 9.89 5.48 4.11 

 

PRNs used:  4, 9, 11, 16 

Average PDOP: 1.72 

Average VDOP: 1.30 

 

 

Flight Line:  T1002 April 19, 2000 

Table B.2 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1002 of April 19, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 13.09 3.37 1.92 1.63 

 

PRNs used:  2, 4, 7, 16 

Average PDOP: 2.03 

Average VDOP: 0.82 
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Flight Line:  T1003 April 19, 2000 

Table B.3 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1003 of April 19, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 35.97 6.17 2.32 1.50 

 

PRNs used:  4, 10, 18, 24 

Average PDOP: 2.62 

Average VDOP: 0.71 

 

 

Flight Line:  T1004 April 19, 2000 

Table B.4 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1004 of April 19, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 35.87 9.69 4.07 2.66 

 

PRNs used:  1, 4, 16, 24 

Average PDOP: 5.63 

Average VDOP: 1.55 

 

 

Flight Line:  T1001 May 4, 2000 

Table B.5 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1001 of May 4, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 27.91 9.00 4.09 2.65 

 

PRNs used:  2, 8, 13, 27  

Average PDOP: 4.80 

Average VDOP: 1.49 
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Flight Line:  T1002 May 4, 2000 

Table B.6 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1002 of May 4, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 36.39 6.58 2.49 1.73 

 

PRNs used:  8, 13, 19, 27  

Average PDOP: 8.33 

Average VDOP: 1.67 

 

 

Flight Line:  T1003 May 4, 2000 

Table B.7 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1003 of May 4, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 7.44 2.88 2.04 1.88 

 

PRNs used:  3, 18, 19, 27  

Average PDOP: 2.25 

Average VDOP: 0.71 

 

 

Flight Line:  T1004 May 4, 2000 

Table B.8 Errors (1 σ) of  estimated δgu with respect to reference (mGal), calculated with 
accelerations from the unique carrier method, for T1004 of May 4, 2000 

Method 30s 60s 90s 120s 
Carrier, 4 satellites 13.01 5.07 3.12 2.17 

 

PRNs used:  1, 18, 19, 27  

Average PDOP: 3.59 

Average VDOP: 0.65 
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Appendix C 

Results with the Position Method 

 
The following tables contain the error of the estimated gravity disturbances, using the 

position method, with respect to the reference field, low pass filtered with cut-off 

frequencies corresponding to the time periods given.  The position solution was obtained 

in widelane fixed mode, using GrafNav™.  The positions were carefully processed to 

avoid visible constellation changes during the flight lines.  

 

Flight Line: T1001 April 19, 2000 
Table C.1 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 

acceleration solution derived from positions, for T1001 of April 19, 2000 

Method 30s 60s 90s 120s
Position 10.49 4.06 3.37 3.13 

 

 
Flight Line: T1002 April 19, 2000 

Table C.2 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1002 of April 19, 2000 

Method 30s 60s 90s 120s
Position 11.26 2.73 1.88 1.53 

 

 
Flight Line: T1003 April 19, 2000 

Table C.3 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1003 of April 19, 2000 

Method 30s 60s 90s 120s
Position 27.76 4.81 2.00 1.52 

 

 
Flight Line: T1004 April 19, 2000 

Table C.4 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1004 of April 19, 2000 

Method 30s 60s 90s 120s
Position 21.99 3.11 1.39 1.09 
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Flight Line: T1001 May 4, 2000 

Table C.5 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1001 of May 4, 2000 

Method 30s 60s 90s 120s
Position 9.99 2.27 1.51 1.46 

 
 

Flight Line: T1002 May 4, 2000 

Table C.6 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1002 of May 4, 2000 

Method 30s 60s 90s 120s
Position 7.43 2.47 1.30 1.17 

 
 

Flight Line: T1003 May 4, 2000 

Table C.7 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1003 of May 4, 2000 

Method 30s 60s 90s 120s
Position 8.85 3.07 2.23 1.95 

 
 

Flight Line: T1004 May 4, 2000 

Table C.8 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated from an 
acceleration solution derived from positions, for T1004 of May 4, 2000 

Method 30s 60s 90s 120s
Position 9.19 2.52 1.49 1.07 
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Appendix D 

Results with the Unique Position Method 

 
The following tables contain the error of the estimated gravity disturbances, using the 

unique position method, with respect to the reference field, low pass filtered with cut-off 

frequencies corresponding to the time periods given.  The position solution was obtained 

in L1 float mode, using GrafNav™.  The processing was restricted to the same set of four 

satellites used in the unique carrier method of acceleration determination.   

 

 

Flight Line: T1002 April 19, 2000 

Table D.1 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1002 of April 19, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 16.86 6.59 5.09 4.11 

 

PRNs used:  2, 4, 7, 16 

Average PDOP: 2.03 

Average VDOP: 0.82 

 

Flight Line: T1003 April 19, 2000 

Table D.2 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1003 of April 19, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 35.66 6.21 2.24 1.61 

 

PRNs used:  4, 10, 18, 24 

Average PDOP: 2.62 

Average VDOP: 0.71 
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Flight Line: T1004 April 19, 2000 

Table D.3 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1004 of April 19, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 23.29 4.34 2.28 1.77 

 

PRNs used:  1, 4, 16, 24 

Average PDOP: 5.63 

Average VDOP: 1.55 

 

Flight Line: T1001 May 4, 2000 

Table D.4 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1001 of May 4, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 51.35 16.12 6.54 4.29 

 

PRNs used:  2, 8, 13, 27  

Average PDOP: 4.80 

Average VDOP: 1.49 

 

Flight Line: T1002 May 4, 2000 

Table D.5 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1002 of May 4, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 28.22 8.23 5.66 5.26 

 

PRNs used:  8, 13, 19, 27  

Average PDOP: 8.33 

Average VDOP: 1.67 
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Flight Line: 1003 May 4, 2000 

Table D.6 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1003 of May 4, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 11.02 4.52 2.93 2.21 

 

PRNs used:  3, 18, 19, 27  

Average PDOP: 2.25 

Average VDOP: 0.71 

 

Flight Line: T1004 May 4, 2000 

Table D.7 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with unique 
position method accelerations, for T1004 of May 4, 2000 

Method 30s 60s 90s 120s 
Position, 4 satellites 9.95 5.41 306 2.31 

 

PRNs used:  1, 18, 19, 27  

Average PDOP: 3.59 

Average VDOP: 0.65 
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Appendix E 

Results with the Modified Carrier Method Using Low Quality Positions 

 
The following tables contain the error of the estimated gravity disturbances, using the 

modified carrier method with code positions, with respect to the reference field, low pass 

filtered with cut-off frequencies corresponding to the time periods given.  GrafNav™ was 

used to compute a differential code solution for the positions.  The estimated accuracy of 

the positions, as reported by GrafNav™, is approximately 3 – 5 meters. 

 

Flight Line: T1001 April 19, 2000 
Table E.1 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 

method aircraft accelerations using poor quality positions, for T1001 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 10.55 3.95 3.31 3.06 

 

Flight Line: T1002 April 19, 2000 
Table E.2 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 

method aircraft accelerations using poor quality positions, for T1002 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 9.27 2.62 1.64 1.38 

 

Flight Line: T1003 April 19, 2000 
Table E.3 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 

method aircraft accelerations using poor quality positions, for T1003 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 27.74 4.84 1.97 1.52 

 

Flight Line: T1004 April 19, 2000 
Table E.4 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 

method aircraft accelerations using poor quality positions, for T1004 of April 19, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 21.57 3.10 1.23 0.98 
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Flight Line: T1001 May 4, 2000 

Table E.5 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 
method aircraft accelerations using poor quality positions, for T1001 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 9.87 2.28 1.72 1.56 

 
 
Flight Line: T1002 May 4, 2000 

Table E.6 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 
method aircraft accelerations using poor quality positions, for T1002 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 8.34 1.69 1.24 1.16 

 
 
Flight Line: T1003 May 4, 2000 

Table E.7 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 
method aircraft accelerations using poor quality positions, for T1003 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 6.21 2.36 2.01 1.88 

 
 
Flight Line: T1004 May 4, 2000 

Table E.8 Errors (1 σ) of estimated δgu with respect to reference (mGal), calculated with carrier 
method aircraft accelerations using poor quality positions, for T1004 of May 4, 2000 

Method 30s 60s 90s 120s 
Modified Carrier, all available satellites 8.09 2.46 1.45 0.87 
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