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Abstract 

This dissertation describes improvements made to a system for airborne mapping of the 

gravity field of the Earth. The research is carried out using an airborne gravity system 

that is based on a Strapdown Inertial Navigation System (SINS) and receivers of the 

Global Positioning System in differential mode (DGPS). The objective of the research is 

to optimize the performance of the system, especially for geodesy and geophysics. 

An introduction to the field of airborne gravimetry is given and the state of current 

research in the field is surveyed. Data from recent airborne gravity campaigns is used to 

provide a detailed analysis of the DGPS error budget for airborne positioning, providing a 

realistic evaluation of the accuracy of current kinematic carrier phase techniques. A 

fundamental consideration of the various processes of differentiation is given and 

particular differentiating filters are proposed for the determination of high precision 

velocity and acceleration. A detailed analysis is given in the frequency domain of the 

DGPS error budget for acceleration determination. This provides an understanding of the 

characteristics of each of the relevant error sources for spatial resolutions up to 500 m 

and forms the basis for a set of recommendations regarding acceleration determination 

for airborne gravimetry. The limitations of the SINS gravimeter that are imposed by the 

accelerometer biases are analyzed and quantified. A thorough analysis is provided of the 

dynamics experienced by survey aircraft. The high-frequency errors affecting airborne 

gravimetry are analyzed in detail and methods for reducing them are proposed and 

implemented with success.  

An improvement to the performance of the system for medium-resolution applications is 

achieved and it is demonstrated for the first time that the SINS/DGPS system can be used 

for high-resolution applications. Major results include a demonstrated accuracy of 1.5 

mGal for a spatial resolution of 2.0 km and an accuracy of 2.5 mGal for a resolution of 

1.4 km. Improvements to processing methods have yielded slightly better performance 

than the LaCoste and Romberg gravimeter on a common flight. A method for removing 

the effect of the Phugoid motion has been proposed and implemented with success.  
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Notation, Symbols and Acronyms 

Notation  

In this section, mathematical notation and coordinate frames used in the dissertation are 

introduced. They are the same as those used in Schwarz and Wei (1997).  

Vectors are represented by letters that are lowercase and boldface. The most common 

uses of vectors herein are for the representation of position, velocity and angular velocity.  

The following orthogonal Cartesian coordinate frames are used in this dissertation: 

a) The Operational Inertial Frame (i-frame) is a reference frame in which Newton’s 

equations of motion apply. It is therefore not rotating or accelerating. For practical 

applications, it is defined as follows: 

origin:  at the centre of mass of the Earth 
z-axis:  parallel to the spin axis of the Earth 
x-axis:  pointing towards the mean vernal equinox 
y-axis:  completing a right-handed frame 

b) The Conventional Terrestrial Frame (e-frame) is fixed to the Earth. It is defined as 

follows: 

origin:  at the centre of mass of the Earth 
z-axis:  parallel to the spin axis of the Earth 
x-axis:  pointing towards the mean meridian of Greenwich 
y-axis:  completing a right-handed frame 

The e-frame rotates with respect to the i-frame by a nearly constant angular 

rotation about the z-axis. 

c) The Local-level (l-frame) is defined with respect to an Earth-fixed ellipsoid of 

revolution such that its axes point east, north and up, as follows: 

origin:  at the point of interest (e.g. the origin of the sensor frame) 
z-axis:  along the normal of the reference ellipsoid, pointing outward 
x-axis:  completing a right-handed frame  
y-axis: pointing towards geodetic north 

d) The Body Frame (b-frame) is fixed to the sensor platform. In principle, this 

coincides with the body of the host vehicle (or can be related to it by a translation 
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and rotation). Because it depends on the motion of the vehicle, it can have any 

orientation with respect to the Earth. It is defined as follows: 

origin: at the origin of the sensor platform 
z-axis: pointing upward 
x-axis:  completing a right-handed frame 
y-axis: point in the direction of travel 

A superscript is used to indicate the coordinate frame in which the components of a 

vector are given. For example, the position of an object with respect to the b-frame is 

given by: 

















=
b

b

b

b

z

y

x

r . 

An angular velocity vector is defined using a superscript and two subscripts. The 

superscript is used, as for any vector, to represent the coordinate frame in which the 

information is expressed. The rotation is from the frame given by the second subscript to 

the frame given by the first subscript. For example, the angular velocity between the i-

frame and the b-frame is expressed in the b-frame by:  
















=

z

y

x
b
ib . 

Matrices are represented by letters that are uppercase and boldface. The most common 

use of matrices herein is to represent the rotation from one coordinate frame to another. 

In this case, the original frame is represented by a superscript and the new frame is 

represented by a subscript. For example, the representation of a coordinate in the l-frame, 
lr , can be computed from its representation in the b-frame, br , as follows: 

 bl
b

l rRr = . 

It is useful to define the rotation matrix, l
bR , because it defines the attitude of a vehicle, 

i.e. the orientation of the vehicle with respect to the l-frame. It is given by: 
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















−
−+
+−−

=
ϕθθϕθ

ϕθψϕψθψϕθψϕψ
ϕθψϕψθψϕθψϕψ

coscossinsincos

cossincossinsincoscossinsincoscossin

cossinsinsincoscossinsinsinsincoscos
l
bR , 

where θϕ  ,  and ψ  are three Euler angles known as the roll, pitch and yaw of the host 

vehicle. They are positive counter clockwise rotations about the y, x and z-axes of the b-

frame, respectively.  

The angular velocity is also commonly expressed in the so-called skew symmetric form 

using a matrix, as in the following example: 

        
















−
−

−
=Ω

0

0

0

xy

xz

yz
b
ib . 

Finally, a dot is used above a vector to indicate the time derivative of that vector. For 

example, lv&  is the time derivative of lv . 

List of acronyms 

The following acronyms are used in the dissertation. 

Acronym Meaning 

AGEM Airborne Gravity for Exploration and Mapping, GEOIDE 

b-frame Body Frame 

DGPS Global Positioning System in differential mode 

DOP Dilution of Precision (in reference to satellite geometry) 

e-frame Conventional Terrestrial (or Earth Fixed) Frame 

EGM96 Earth Gravitational Model of 1996 

FIR Finite Impulse Response (for a discrete-time filter) 

GEOIDE Geomatics for Informed Decisions, Network Centre of Excellence 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

GSD Geodetic Survey Division of Geomatics Canada 

GREATGUN Gravity Estimates from Airborne Techniques for Geoid Undulations 
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i-frame Operational Inertial Frame 

IFSAR Interferometric Synthetic Aperture Radar 

IIR Infinite Impulse Response (for a discrete-time filter) 

INS  Inertial Navigation System 

Intermap Intermap Technologies Corporation 

ITC  Inertial Technology Center in Moscow 

KMS Kort & Matrikelstyrelsen (Danish National Survey and Cadastre) 

LRF-III Honeywell Laseref III inertial navigation unit 

l-frame Local-level Frame 

mGal milliGal = one thousandth of a Gal = 1 x 10-5 m/s2 

MUF Maximum Undistorted Frequency 

NCE Network Centres of Excellence 

NRL United States Naval Research Laboratory 

PDOP Position Dilution of Precision (in reference to satellite geometry) 

r-frame Reference Frame (for aircraft motion, see Chapter 7) 

RISG Rotation Invariant Scalar Gravimetry 

RMS Root Mean Square  

SAS Stability Augmentation System (aircraft autopilot) 

SI Système Internationale (units) 

SINS Strapdown Inertial Navigation System 

SISG Strapdown Inertial Scalar Gravimetry 

ZLS Zero-length spring gravimeter (produced or modified)  

List of symbols 

The following symbols are used in the dissertation. 

Symbol Meaning 

D  deflection caused by the aileron (on an aircraft) 

a unknown integer ambiguities 

A attenuation factor 

A ambiguity design matrix, GPS linear equation, Section 2.3.3 only 
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β inverse of the correlation period 

b accelerometer bias  

B baseline design matrix, GPS linear equation 

d error, with reference to a vector, e.g. dv 

d gyroscope biases 

H   deflection caused by the elevator (on an aircraft) 

εΦ      measurement delay due to carrier phase noise 

ε misalignment  

e measurement noise  

cf  cut-off frequency 

sf  sampling frequency 

f specific force 

pf  propulsive forces 

af  aerodynamic forces 

F skew symmetric form of the specific force 

rF  restoring force (of an accelerometer) 

lonF  characteristic equation of the natural longitudinal motion of an aircraft 

latF  characteristic equation of the natural lateral motion of an aircraft 

g magnitude of gravity 

δg an element of the gravity disturbance vector 

GMJ  gravity disturbance from a global geopotential model 

rJ  relative gravity disturbance 

δg gravity disturbance  

g gravity  

lonG  longitudinal control matrix (aircraft autopilot) 

latG  lateral control matrix (aircraft autopilot) 



 

  xviii 

h ellipsoidal height 

h impulse response  

H frequency response 

)ψH(  Hotine kernal function  

H angular momentum, Section 7.1 only 

H measurement design matrix, Section 7.4 only 

I measurement delay due to the ionosphere 

I instantaneous inertia tensor 

L1, L2 GPS carrier signals 

L torque 

m mass element (of an accelerometer) 

mΦ measurement delay due to carrier phase multipath 

fn  accelerometer noise 

n  gyroscope noise 

N   ambiguous integer carrier phase cycle 

N geoid undulation 

GMN  geoid undulation from a global geopotential model 

rN  relative geoid undulation 

fN  accelerometer non-orthogonalities 

N  gyroscope non-orthogonalities 

ρ true range between the satellite and the antenna 

δρ ephemeris error 

P covariance of the state vector 

Q process noise matrix 

U  deflection caused by the rudder (on an aircraft) 

r position  

r&&  inertial acceleration  



 

  xix 

R rotation matrix 

R measurement noise covariance matrix, Section 7.4 only 

s speed  

fS  accelerometer scale factor 

S  gyroscope scale factor 

W  deflection caused by the throttle (on an aircraft) 

T period (of time) 

T measurement delay due to the neutral atmosphere, Chapters 2, 3 and 5 

rv &=  velocity  

v eigenvector, Section 7.1 and Appendix D only 

 frequency (radians) 

s  sampling frequency (radians) 

c  cut-off frequency (radians) 

ω angular velocity  

x unknown misalignments 

z measurement vector, Chapters 2 and 7 

λ  eigenvalue, Section 7.1 and Appendix D only 

λ  wavelength of the carrier, Chapters 2 and 3  

σ sigma, with reference to standard deviation, e.g. 1-σ 

γ normal gravity  

ϕ  roll  

θ  pitch 

ψ  yaw 

∆∇  double difference, between satellites and receivers 

Φ carrier phase measurement 

Φ transition matrix 

Ω  skew symmetric form of the angular velocity vector 
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Introduction 

This dissertation describes contributions and improvements made by the author to a 

system for airborne mapping of the gravity field of the Earth. 

The research has been carried out using a system that is based on the combination of a 

Strapdown Inertial Navigation System (SINS) and receivers of the Global Positioning 

System (GPS) being used in differential mode (DGPS). Under the direction and 

supervision of Dr. K.P. Schwarz at the University of Calgary, the development of the 

SINS/DGPS system as a gravimeter has gone hand in hand with its development as a 

system for navigation and for image mapping.  

From concept to implementation, the use of a SINS for airborne gravimetry was 

pioneered in the early 1990s by researchers at the University of Calgary. The first 

SINS/DGPS test results, that became available in 1995, demonstrated the feasibility of 

the system as an accurate and relatively small and low cost alternative to all other 

available airborne gravity systems. Over the last five years, the SINS/DGPS system has 

undergone exciting phases of development and testing that have led to its acceptance as 

an airborne mapping system for use in a wide variety of applications. 

This dissertation describes some of the contributions that the author has made to the 

development and testing of that system since May 1996. The immediate goal of the 

reported research is to optimize the performance of the SINS/DGPS system, especially 

for applications in geodesy and geophysics. For these applications, the ultimate objective 

is to use airborne methods to measure the gravity field of the Earth with an accuracy of 

better than 1 mGal (which is about one part per million of the magnitude of the Earth’s 

gravity) and a spatial resolution of 1 km.  

This goal is shared by the Airborne Gravity for Exploration and Mapping (AGEM) 

project of the Canadian Network Centres of Excellence (NCE) known as Geomatics for 

Informed Decisions (GEOIDE). This NCE project was established in May 1999 and 

began with the objective of bringing together Canada’s best expertise in airborne 
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gravimetry. It includes members from Canadian industry, government and academia. 

This project is relevant to this dissertation because much of the research presented herein 

contributes to the AGEM project and also because the work in Chapters 3 and 5 was 

carried out by the author as a part of the project.  

Real SINS and DGPS data from a number of airborne gravity field campaigns is used 

throughout the research. These are described in Appendix A, where it is shown in Figure 

A-1, that they took place over the last four years in areas of the Canadian Rocky 

Mountains, Greenland and Southern Ontario and Quebec. They are the result of various 

national and international collaborative efforts and demonstrate the applicability of the 

University of Calgary system. 

This dissertation is divided into three parts, each containing a number of chapters. The 

objectives in Part 1 are to introduce the field of airborne gravimetry and to set the stage 

for the contributions that follow. In meeting these objectives, it answers the basic 

question of why gravity data is needed and addresses the role that airborne gravimetry 

plays in its collection. The specific objectives of the research are also included in Part 1. 

In Part 2, contributions are reported on the use of DGPS for positioning, velocity 

determination and motion compensation: three topics that are applicable to airborne 

gravity systems in general. The determination of position and velocity are also directly 

applicable to airborne navigation and mapping. The reported research includes a detailed 

study of the DGPS error budget, for both position and acceleration determination, and 

forms the basis for recommendations regarding the minimization of that error budget for 

use in an airborne gravity system. 

In Part 3, contributions are described that specifically apply to airborne gravity systems 

that are based on the SINS concept. The objectives of this part of the research are to 

characterize the inertial sensor errors that currently limit the bandwidth of such a system 

and to propose ways to minimize them. These errors are twofold. First are the biases that 

influence the low-frequency performance of the system and second are the high-

frequency errors that are induced by the dynamics of the aircraft. 
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PART 1: BACKGROUND AND JUSTIFICATION 

The objective of the two chapters in this first part is to introduce the field of airborne 

gravity mapping in order to set the stage for the contributions presented in the balance of 

the dissertation.  

In Chapter 1, a summary of the field is provided that includes a description of the needs 

for airborne gravity data as well as the accuracy and resolution requirements within each 

of the major application areas. It states the problems addressed herein and describes 

related research being carried out by others. The objectives of the research in this 

dissertation are described. 

In Chapter 2, the principle of SINS airborne gravimetry is formalized in terms of the 

basic equations used in subsequent chapters. The observables and the systems that are 

used to measure them are described and the equations relating the errors in the latter to 

those in the former are presented. Finally, the contributions in this dissertation are put 

into context using these error equations. 

No contributions to the field of airborne gravimetry are included in Part 1, other than the 

survey of the state of the art that is presented in Chapter 1 and a personal spin on the way 

material is presented in Chapter 2. 
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1 Background and Research Objectives 

There has been considerable growth in the field of airborne mapping using SINSs over 

the last decade. Although they have been available for use in navigation since the mid 

1970s, it was not until the GPS became fully operational in the early 1990s that many of 

the capabilities of SINSs could be exploited for mapping. The SINS/GPS sensor duo is 

now recognized as an important tool for accurate, rapid and cost efficient mapping from a 

moving platform such as an airplane.   

In typical airborne mapping applications, the airplane may be host to a variety of sensors 

such as optical or digital cameras, multi-spectral scanners, interferometric synthetic 

aperture radar and scanning lasers. These sensors take advantage of the excellent vantage 

point afforded by an airborne platform to efficiently measure the surface of the Earth. 

The SINS and GPS sensors are used together to define the origin in space and time of the 

measurements made by the mapping sensors. This process is known as direct 

georeferencing and results in knowledge of the position and attitude (i.e. orientation) of 

the measured objects with respect to a known and useful coordinate frame. In principle, 

as long as initial conditions are available, the SINS provides the position and attitude of 

the survey aircraft (and therefore the mapping sensor) in this frame. Unfortunately, while 

excellent over short time periods, the accuracy of the relative position information 

provided by the SINS is dominated by long-term errors (biases) that severely limit its 

performance. This implies the need for the GPS that provides an accurate measure of the 

absolute position and velocity of the aircraft, especially over the long-term. 

The overall accuracy of such a mapping system is a function of the accuracy of  

a) the navigation parameters provided by the SINS/GPS sub-system,  

b) the attitude provided by the SINS,  

c) the measurements made by the mapping sensors within the frequency band of 

interest, and  
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d) the knowledge of the spatial and temporal relationships between the mapping 

sensors, the SINS and the GPS.  

The research presented herein is based on such an airborne mapping system in which the 

goal is to make measurements of the gravity field.  

1.1 Gravimetry, airborne gravimetry and the SINS gravimeter 

In principle, gravity is measured using an accelerometer. The goal of this section is to 

define the basic operation of an ideal accelerometer and to describe some of the different 

practical forms it can take in systems designed to measure gravity, including the SINS 

gravimeter. 

The basic components of an ideal accelerometer include a proof mass that is restricted to 

movement along a single sensitive axis, a restraining device (e.g. a spring), and a 

housing. The mass is supported by the restraining device and it displaces with respect to 

an equilibrium position when subject to acceleration. The output of the accelerometer is 

an electrical signal that is proportional to the displacement. Because the relationship is 

known between the displacement and the restoring force applied to the mass, the 

accelerometer provides a measure of the force required to counter the force due to 

accelerations acting on the mass. In Newtonian mechanics, this can be expressed using 

the time derivative of the law of conservation of linear momentum as follows: 

rgF &&mm =+r ,                (1.1) 

assuming that the only forces acting on the proof mass, m, are the restoring force, rF , and 

the component along the sensitive axis of the forces due to its inertial acceleration, r&& , and 

gravity, g . This has units of force, e.g. kg m/s2 in the units of the Système Internationale 

(SI). Because m is known, this can be expressed in terms of the output of the 

accelerometer as follows: 

gr
F

f −== &&
m

r ,             (1.2) 

where f is the specific force that has units of acceleration, e.g. m/s2 in the units of the SI. 

Specific force is therefore the observable of an accelerometer.  

The simplest use of an accelerometer for measuring gravity arises when 0=r&& , a 

condition that is roughly approximated when it is stationary on the surface of the Earth. If 
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it is also level (i.e. oriented such that the sensitive axis coincides with the direction of the 

gravity vector), then the observable is the magnitude of gravity. Most modern terrestrial 

gravimeters are based on this principle.  

Despite the simplicity and relatively high accuracy of this approach, the concept of 

gravimetry from a moving platform such as an airplane is an attractive alternative 

because of the obvious potential for increased speed, greater range and significantly 

lower cost. However, the situation described above becomes considerably more complex 

when the accelerometer is moving. This is because the inertial acceleration, r&& , is no 

longer zero and because the instrument is not easily kept level. In principle then, an 

airborne gravity system requires several components: an accelerometer for measuring the 

specific force, a system for leveling that accelerometer (or for computing its attitude) and 

a system that measures the inertial acceleration of the airplane. The gravity vector is 

estimated by subtracting the measurements made by the accelerometer from the measured 

inertial acceleration, a process known as motion compensation. 

Although the concept of measuring the gravity field of the Earth using airborne 

techniques is not new, it has been revolutionized in recent years by the use of the GPS as 

an accurate and reliable system component and by the development of new gravity 

system concepts. For example, consider Figure 1.1 that summarizes the history of 

airborne gravity systems by showing their development over time since 1950 and how 

they have made use of enabling technologies for positioning and motion compensation. 

The accuracy of airborne gravity before the late 1980s was mainly limited by the 

inadequate positioning and motion compensation systems that were available. It is shown 

in Figure 1.1a that a number of such systems have been employed over time, many of 

which were of insufficient quality or limited geographical extent. Although these systems 

had varying levels of success prior to 1990, it is shown in Figure 1.1 that it was not until 

carrier phase DGPS became a reality that any airborne gravity system became fully 

operational (i.e. capable of large-scale surveys, anywhere in the world, at any time). As a 

result of the high accuracy and reliability afforded by the GPS, all airborne gravity 

systems now depend on carrier phase DGPS as their primary source of information for 

both positioning and motion compensation.  
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b) airborne gravity systems (solid lines indicate periods where fully operational)

Accelerometer triad

capable of resolving 
the 3D gravity vector

in principle

Code GPS

1950 60 70 80 90 2000

 

Figure 1.1 A brief history of airborne gravity mapping systems 
 

As shown in Figure 1.1b, the challenge of georeferencing gravity measurements has 

traditionally been met by using damped 2-axis platform systems that attempt to 

physically maintain a level platform (equivalent to the l-frame) onto which a single 

specific force sensor is mounted. The most common approach along these lines is the use 

of a shipborne gravimeter modified to work in the more turbulent airborne environment. 

As shown, systems of this type have been under development and in use since the first 

prototypes of the late 1950s and finally became fully operational shortly before 1990 
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when carrier phase DGPS became available. It is also shown that a number of other 

airborne gravity system concepts have been implemented since the GPS entered the 

scene. Among them are those that make use of 3-axis inertial platform systems, SINS and 

accelerometer triads. An outline of these system concepts can be found in Schwarz and Li 

(1996b) and an interesting theoretical comparison between them can be found in Czompo 

and Ferguson (1995). Details about currently available systems of each of these types are 

given in Section 1.3. 

The airborne gravity system currently used at the University of Calgary makes use of a 

SINS and DGPS. Its development as a gravity sensor has gone hand in hand with its 

developments as a system for navigation and for optical and digital image mapping over 

the last two decades. The Calgary system is the focus of the investigations reported in this 

dissertation.  

A SINS contains two sensor triads. The first is an orthogonal set of accelerometers that 

measure specific force and the second is an orthogonal set of gyroscopes that measure 

angular velocity. These triads are strapped to the body of the host vehicle and therefore 

go through the full range of motion experienced by the aircraft. The angular rates sensed 

by the gyroscopes are integrated to compute the attitude of the SINS with respect to the l-

frame. This permits the gravity measurements to be transformed numerically from the 

measurement frame (b-frame) to the l-frame, rather than the traditional approach in which 

a level platform is physically maintained. While the strapdown approach has the 

disadvantage of setting more stringent requirements for the performance of the sensors 

(e.g. larger dynamic range, higher resolution and better scale factor stability), it has 

several significant advantages including the facts that: 

a) an off-the-shelf SINS can be used that has been designed and sold for navigation 

purposes, and  

b) the gravity system can serve simultaneously as a system for georeferencing the 

measurements made by other mapping sensors.  

These advantages lead to a much smaller size, lower cost, lower power consumption and 

lower failure rate than other alternatives, while providing considerable flexibility. The 

strapdown approach is described in more detail in Chapter 2.  
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The magnitude of the gravity vector can also be estimated from the triad of 

accelerometers without knowledge of their attitude. Because a SINS contains a triad of 

accelerometers, the Calgary system is also used in this mode for gravity estimation.  

More details about airborne mapping and georeferencing can be found in Schwarz (1998) 

and a complete history of direct georeferencing is presented in Skaloud (1999). For more 

information about the history of airborne gravimetry and a more complete list of related 

references, the reader is referred to Schwarz and Li (1996b) and Gumert (1998). Schwarz 

and Li (1996b) also offers an introduction to the principles of airborne gravimetry using 

the SINS-based approach. 

1.2 Why are airborne gravity measurements needed? 

The gravity field of the Earth provides fundamental information for geoscientists. 

However, the current state of knowledge of the gravity field is insufficient for many 

applications. Generally speaking, low and medium-resolution information is essential in 

geodesy where the goal is to measure and represent the Earth and its gravity field. 

Medium and high-resolution components contain information that is used in geophysics 

to identify and characterize sub-terrain features that define the physics of the Earth. Each 

of these areas of application is treated in turn below.  

Throughout this dissertation, the terms high, medium and low-resolution refer to the parts 

of the gravity spectrum corresponding to spatial resolutions below 5 km, between 5 and 

150 km, and above 150 km, respectively. Further, because it is assumed that the reader is 

familiar with the concept of spatial resolution as it applies to an airborne gravity system, 

discussion of that topic is found in Appendix C.1. As discussed there, the terms spatial 

resolution and half-wavelength are used synonymously throughout this dissertation. More 

information about the spectral characteristics of the gravity field and of different sources 

of gravity information can be found in Schwarz (1984). 

Major applications in geodesy 

As mentioned above, the major task of geodesy is to measure and represent the Earth, 

including both its surface and its gravity field. Although these may seem like separate 

features of our planet, they are in fact inherently linked. For example, determination of 

the height of an object with respect to a meaningful reference surface depends on the 
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gravity field of the Earth. A major task of geodesy is therefore the determination of the 

equipotential surface of the gravity field that most closely corresponds to mean sea level. 

This surface, commonly known as the geoid, is used as a meaningful height reference. 

Mapping agencies currently make use of surface measurements and a combination of data 

obtained from satellites to determine the geoid; the satellite data provides the low-

resolution information and the surface data provides the high-resolution information. In 

the future, it is expected that low-resolution information will be provided by geophysical 

satellites that are dedicated to the collection of global gravity field information. This is 

discussed further in Section 6.1. 

In Figure 1.2, a number of geodetic applications of gravity data are depicted by the dotted 

lines, in terms of the ranges of geoid accuracy and spatial resolution required over areas 

of the planet in which accurate terrestrial gravity data are not already available. The 

limits of the resolution and accuracy that can be achieved using current global models, 

data from future dedicated-gravity satellite missions and airborne gravimetry are shown 

by the solid lines. Several observations follow. First, the use of present global models by 

themselves clearly does not meet the requirements for many geodetic applications. While 

this problem is not as great in areas of the world where surface gravity data of medium to 

high-resolution is available (as in North America, Europe, Japan and Australia), it is 

severe in areas where they are unavailable. The second observation is that although the 

data from future satellite missions is expected to greatly improve the situation in many 

cases, it will not meet the requirements for all applications. Most notable of these are the 

determination of local geoids and leveling by GPS.  

The major task of airborne gravimetry in geodesy is therefore summarized as a 

requirement to offer a fast, homogeneous, economical and potentially more accurate 

alternative to surface methods for the collection of high-resolution gravity data. 

It is important to note that although airborne gravity has the potential to provide very 

high-resolution information, the minimum spatial resolution required for ‘cm-level’ geoid 

determination is roughly 5 km, even in mountainous areas (Li (2000)). Also, because 

future satellite missions will provide an accurate estimate of the geoid for spatial 

resolutions greater than about 150 km, an estimate of the gravity field across the whole 
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spectrum may be obtained by combining the data from these missions with that from 

airborne gravimetry. In turn, the expected data from the satellite missions also imply that 

providing low-resolution information will no longer be a stringent requirement of 

airborne gravity systems (except at the poles where the satellite missions cannot provide 

data). Taken together, these observations imply that the major goal of airborne gravity 

researchers working in geodesy is to increase the accuracy of the systems within the 

bandwidth corresponding roughly to spatial resolutions between 5 and 150 km.  

The requirements and uses of airborne gravity data are discussed in more detail in 

Chapter 6. Further information can be found in Schwarz and Li (1996 a, b). 
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Figure 1.2 The required accuracy of the geoid for geodetic applications  
as a function of spatial resolution (After ESA (1999) and Schwarz and Li (1996a)) 

 

 



12 

   

Major applications in geophysics 

In the field of geophysics, a goal is often to investigate the crust and near-surface of the 

Earth for economic reasons. It has long been recognized that traditional methods of 

collecting gravity data for geophysical applications have limitations that can be overcome 

by airborne methods. Techniques that use stationary gravity meters to obtain data are 

relatively expensive and are usually of limited geographical extent. Applications of 

gravity data in geophysics are varied and depend on the accuracy and spatial resolution 

with which the data can be obtained. Figure 1.3 depicts a number of such applications in 

terms of gravity accuracy and spatial resolution requirements, along with an estimate of 

the best accuracy and resolution limit that airborne gravimetry can currently resolve.  

Clearly, airborne methods already meet the requirements for local and regional geological 

studies and arguably those of volcanology. As discussed in Reynolds (1997), gravity data 

collection is currently only considered to be one of the primary methods for hydrocarbon 

exploration and regional geological studies and is still considered to be a secondary 

method for the exploration of mineral deposits. The latter fact is unlikely to change 

before the accuracy and resolution of airborne gravity data reliably meet the levels of 

better than 1-2 mGal and 1-2 km, respectively. This implies that challenges remain for 

airborne gravity researchers working in the field of geophysics. They include 

simultaneously improving the accuracy and resolution of their systems so that data can 

better meet the requirements of high-resolution applications such as resource exploration.  

The use of airborne gravity data in geophysics is discussed further in Chapter 6. 

Information about the roles of gravity and other aero-geophysics data for resource 

exploration can be found in Sideris et al. (1992), Reynolds (1997) and Johnson (1998). 

Other applications 

By limiting the discussion in this section to geodesy and geophysics, a number of 

important applications have not been mentioned. They include the monitoring of ice 

dynamics, the monitoring of sea level and groundwater, understanding and predicting 

tectonics and studying the continental lithosphere. If the challenges described for geodesy 

and resource exploration can be met, then so will those of the above named applications. 
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Figure 1.3 The requirements for gravity data for geophysics (After NRC (1995)) 

1.3 Related research  

This section addresses key airborne gravity research being carried out worldwide. For 

brevity, remarks are concentrated on research that has been carried out since the mid 

1990s (which is roughly the time when the research presented in this dissertation began). 

Detailed accounts of some past and current research activities can be found in Hein 

(1995), Schwarz and Li (1996b) and Wei (1999).  

Recent activities can be classified in the following categories:  

a) improvement of traditional airborne gravity systems,  

b) development of new system concepts (based on inertial technology),  

c) optimization of DGPS processing methods,  

d) optimization of filtering and estimation methods, and  
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e) the application of airborne gravity data in various mapping and exploration 

applications.  

These are each treated below.  

Improving traditional scalar gravity systems 

Airborne gravimetry using damped 2-axis platform systems is a fully operational 

procedure and has gained acceptance as a standard method for obtaining low and 

medium-resolution gravity information (i.e. for half-wavelengths longer than 5 km). As 

a result of software and hardware considerations, typically available systems of this type 

have improved in accuracy since the mid 1990s from 5 mGal at half-wavelengths of 10 

km to roughly 2 mGal at shortest half-wavelengths of 6 km, see e.g. Brozena and 

Childers (2000) and Forsberg et al. (1999). An accuracy of 1 mGal at a half-wavelength 

resolution of 5 km is also reported in Harrison et al. (1995). The modified shipborne 

gravimeters that are used in these systems include LaCoste & Romberg, Bell Aerospace 

and Zero-Length Spring Corporation (ZLS) meters and cost upward of US$ 400,000 to 

purchase. Major players currently conducting research in this area include those who 

pioneered its use for wide-area surveys such as the group at the United States Naval 

Research Laboratory (NRL) and the group at the Danish National Survey and Cadastre 

(KMS). Extensive documentation of the activities of these groups over the last decade is 

available and recent reports can be found in Brozena and Childers (2000) and Forsberg et 

al. (1999), respectively. Other users of such systems include the Institute of Geodesy at 

the Swiss Federal Institute of Technology in Zurich, Switzerland, see Klingele et al. 

(1995), the British Antarctic Survey, see Jones (1997), and the Geodetic Survey Division 

of Geomatics Canada. Commercially available systems of this type include Carson 

Services, Inc., EDCON Aero Surveys Inc. (now offering the combined services of 

EDCON and Aero Surveys) and Fugro-LCT (now offering the services of the former 

LCT). 

Developing and improving novel system concepts 

New system concepts that have been under development over the last decade are all 

based on a combination of inertial technology with the DGPS. They are summarized 

below. 
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An inertially stabilized platform system was first tested by the Inertial Technology 

Center (ITC) in Moscow in cooperation with the University of Calgary and Canagrav 

Research Ltd. of Calgary (see Salychev et al. (1994) for details) and continues to be 

operated in airborne mode by the ITC. As discussed in Ferguson and Hammada (2000), 

development of another such system called AIRGrav that has been underway at Sander 

Geophysics Ltd. since the early 1990s was completed in 1999. Such systems usually 

require significant development or modification costs. Both of those named here are 

commercially available and have been demonstrated to yield medium and high-

resolution estimates of the gravity field with an accuracy of 0.5-1.5 mGal.  

The use of gravimeters based on Strapdown Inertial Navigation Systems was 

pioneered at the University of Calgary (see e.g. Schwarz et al. (1991)), where extensive 

development and testing continues. Such a system is physically very small, can be 

purchased off-the-shelf as a navigation system for between US$ 90,000 and 160,000 and 

requires no modification. Results of the first airborne test conducted in June 1995 are 

reported in Wei and Schwarz (1998), showing that relative gravity can be collected along 

a profile with an accuracy of 2-3 mGal at a half-wavelength resolution of 5 km. It was 

then demonstrated in Glennie and Schwarz (1999) that the same accuracy and resolution 

can be achieved in a 100 x 100 km area of the Canadian Rocky Mountains. Both of these 

results demonstrate the usefulness of the SINS for medium-resolution gravity 

estimation. Using the same system, it is shown in Bruton et al. (2000a) and herein, that 

the SINS approach can yield an accuracy of 1.5 mGal at a half-wavelength of 2 km and 

2.5 mGal at a half-wavelength of 1.4 km, therefore demonstrating its role in high-

resolution applications. Intermap Technologies Corporation (Intermap) of Calgary, 

Canada also uses the airborne gravity technology developed at the University of Calgary 

as a part of their commercially available airborne mapping systems. Interesting results 

have been obtained using a relatively low-cost SINS (US$ 60,000) by a group at the 

University of Porto in Portugal. See Bastos et al. (2000), where it is demonstrated that 

their system can be used to obtain rough estimates of the gravity field in a limited 

bandwidth (roughly 5-10 mGal for half-wavelengths between 10 and 100 km). Other 
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groups have recently begun developing airborne gravity systems based on SINSs, 

including KMS and the Ohio State University. 

The use of a triad of accelerometers for determining the magnitude of the gravity vector 

was first published and tested in Czompo (1994) and tests have since been described in 

Wei and Schwarz (1998) and Glennie and Schwarz (1999). To date, these have 

demonstrated that the performance of a triad of accelerometers is about 20-30% worse 

than a comparable SINS. Efforts have been underway since 1994 to test and develop such 

a system at the Bavarian Academy of Sciences and Humanities in Munich, see Boedecker 

(1998) for a recent description. 

It is discussed in Ferguson and Hammada (2000) that excellent long-term stability of an 

accelerometer can be achieved by precise custom temperature control. In theory, this can 

make systems based on the inertially stabilized platform, SINS and accelerometer triad 

concepts very applicable for low-resolution data collection. Although Sander Geophysics 

Ltd. has implemented this with great success, it has the drawback of increasing the cost 

and complexity of the system. Depending on the target application, this may not be 

deemed worthwhile, especially in the future when the low-resolution information from 

gravity satellite missions will be globally available. 

Two comparisons between the 2-axis damped platform, SINS and 3-axis inertial platform 

systems have been carried out in the last two years. See Glennie et al. (1999) for an 

example that compared the first two of these system concepts on a common airborne 

platform. Except during short periods where one or more of the systems was misbehaving 

for a known reason, this test served to demonstrate a good agreement between the 2-axis 

platform and SINS systems for medium-resolution applications. Improvements on the 

results given in Glennie et al. (1999) are presented in Appendix E. A recent comparison 

was also carried out within the AGEM project with the goal of comparing all three 

system concepts on the same flight. Results of that comparison are not yet available, but 

the campaign is discussed in Appendix A.3 and initial results are given in Section 5.5.  

Important developments that have not been mentioned above in this sub-section include 

those by Hein et al. (1990) and Segawa et al. (2000). 
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Vector gravimetry  

Of the system concepts named above, only those that make use of inertial technology are 

capable of delivering all three components of the gravity vector, i.e. SINS and inertial 

platform systems. Horizontal components (deflections of the vertical) are much poorer in 

accuracy than the vertical component due to gyroscope drifts. This is discussed in 

Schwarz et al. (1991) and studied in detail in Wei and Schwarz (1994). Estimates of the 

full vector have been obtained by Jekeli and Kwon (1999) using data form the University 

of Calgary SINS. They propose a method of estimating the full gravity vector for flight 

lines that have been surveyed at least twice and demonstrate an agreement of about 8 

mGal between the horizontal components and an independent reference. 

Deriving acceleration from DGPS 

By the mid 1990s, it was generally accepted, that when used in differential mode, the 

GPS has the potential to derive the acceleration of a moving platform with an accuracy of 

1-2 mGal under good environmental conditions within a bandwidth corresponding to a 

filtering period of 90 seconds (e.g. consider investigations such as those outlined in 

Brozena et al. (1989), Kleusberg et al. (1990), Hehl (1990), Czompo (1991), Wei et al. 

(1991) and Van Dierendonck et al. (1994)). Despite these demonstrations, errors due to 

DGPS in the bandwidth of interest for airborne gravimetry continue to pose a major 

challenge to researchers attempting to simultaneously increase the accuracy and 

bandwidth of their systems; good conditions are by no means guaranteed in practice and 

special care is needed as the bandwidth is widened. These facts imply the need for a 

better understanding of the behavior of the DGPS error budget for acceleration 

determination and for models and methods that best respond to the challenges of a 

widened bandwidth. 

Other methods of determining acceleration from GPS that have been proposed and tested 

over the last few years include Jekeli and Garcia (1997) who demonstrated that it is 

possible to derive aircraft acceleration directly from GPS phase accelerations and more 

recently Han et al. (2000) who proposed the use of absolute GPS positioning as an 

alternative method of determining acceleration (now that SA has been turned off). While 

both of these offer potential alternatives, they have not been shown to provide results that 
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are as accurate or reliable as the traditional technique under typical dynamic conditions, 

and therefore do not currently enjoy practical use. 

Filtering and estimation methods 

As the bandwidth of airborne gravity systems is increased, it is challenging to remove the 

sensor and dynamics-induced noise, while leaving the relatively small amplitude gravity 

signals intact. Extremely low signal-to-noise ratios and the dependence of noise on 

aircraft dynamics imply the need for sophisticated filtering and estimation techniques. A 

discussion of this problem and some approaches to its treatment are given in Schwarz and 

Li (1996b). A number of filtering methods (including both model and frequency domain 

approaches) were proposed in the first half of the nineties and thoroughly compared using 

a single data set in Hammada (1996). It was concluded there, that the deterministic 

frequency domain approach of the low-pass filter is the most appropriate because it 

makes no a-priori assumptions about the gravity field. Since then, common practice has 

confirmed this; band-limitation via low-pass filters is the most common approach to noise 

reduction in use today. The only known exception to this is the group at ITC who 

continue to enjoy success with model-based approaches, see Salychev and Schwarz 

(1995).  

The subject of designing low-pass filters for airborne gravimetry has been treated 

recently in a number of publications including Hammada (1997), Childers et al. (1999) 

and Forsberg et al. (1999). The first of these demonstrates that for a given bandwidth, 

finite impulse response (FIR) filters designed using optimality criteria outperform those 

designed using other methods (including windowing). Childers et al. (1999) confirms the 

importance of using a low-pass filter that has good characteristics within the bandwidth 

of interest and demonstrates that the cut-off frequency should not be below the highest 

frequency of the gravity signal (but should be as close to it as possible for a given 

survey). It also proposes the use of a filter that operates in the frequency domain, 

resulting in very little data loss due to edge effects. Forsberg et al. (1999) discusses the 

use of a recursive Butterworth filter with good results.  

A method to reduce noise in the bandwidth that remains after low-pass filtering is 

proposed and implemented in Bruton (1997). It resulted in improvements in the accuracy 
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and resolution of the University of Calgary airborne gravity system by removing GPS 

noise within the bandwidth of interest. 

Although most airborne gravity filtering methods involve generating the difference 

between the GPS and specific force data streams and then low-pass filtering them, two 

other approaches have recently been applied with success. These are described in Bruton 

and Schwarz (1997) and Cunha (1998). The first proposes and demonstrates the use of an 

adaptive filter for the estimation of the gravity disturbance and the second includes it in 

the state vector of the Kalman filter. Both approaches have been shown to remove in-

band noise but are not currently widely used outside of the respective research groups. 

Biases in gravity field estimates can arise when the specific force sensor is subject to 

long-term biases. They are usually very small for damped 2-axis meters, as demonstrated 

in Forsberg et al. (1999) for the LaCoste & Romberg; results achieved using their meter 

are often as good or better without using a crossover adjustment, for example. As 

mentioned earlier, Ferguson and Hammada (2000) demonstrate that no special post-

mission treatment of system biases is required for their AIRGrav system. However, 

accelerometer biases are typically a problem for the SINS and accelerometer triad 

approaches to airborne gravity. Glennie (1999) offers a good discussion of the problem 

and presents a number of attempts to estimate the effect of the accelerometer biases. This 

topic is dealt with in detail in Chapter 6. It is well-known that if the survey is flown such 

that the aircraft flies over the same points at different times, a crossover adjustment can 

be used to estimate these effects. Glennie and Schwarz (1997) show that this can be used 

to make a data set consistent (i.e. to reduce all flight lines to a plane in space). 

Applications of airborne gravity data 

Several national and international research projects are of interest because they have had 

the effect of improving airborne gravity methods by including them in broader strategies 

for mapping or exploration. Many of these projects have tackled the challenges of 

estimating the geoid from airborne gravity data; a process that includes refining the 

respective airborne gravity systems, representing the airborne data on a level surface 

through a process called downward continuation and using it in a numerical process to 

estimate the geoid (often by combination with other sources of gravity data).  
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The aerogeophysical program at NRL continues its pioneering role in the collection and 

application of airborne gravity data. Their concentration is on large area, medium-

resolution surveying on remote regions of the Earth and they have conducted several 

smaller, high-resolution surveys. They reported the continuing success of large-scale 

survey efforts in Greenland, West Antarctica and the Arctic, in Brozena et al. (1997). The 

NRL airborne gravity system has recently been used in a project to determine a local 

geoid for coastal oceanography. Results presented in Brozena et al. (2000) describe a 

relative geoid with an accuracy of approximately 3-5 cm and a spatial resolution of 10 

km. The accuracy of the corresponding absolute geoid is estimated to be 10 cm (J. 

Brozena, personal communication).  

As described most recently in Timmen et al. (2000), a large-scale Danish-German-

Norwegian-Portuguese cooperation called AGMASCO began in January 1996 with a 

planned duration of 38 months. It combined airborne gravity and altimetry systems with 

the goal of developing an airborne geoid mapping system for coastal oceanography. It has 

been demonstrated to derive relative geoids in coastal regions (Skagerrak, Fram Strait 

and Azores) accurate to 5 cm from airborne data with a spatial resolution of 6-7 km, 

Fernandes et al. (2000). 

As discussed most recently in Li and Schwarz (2000), researchers at the University of 

Calgary have continued their efforts to determine the geoid from airborne gravity data, 

resulting in a relative geoid accurate to 2 cm with a maximum spatial resolution of 4-5 

km in an area of the Canadian Rocky Mountains. In a partnership with the University of 

Calgary, a similar approach has been taken by Intermap Technologies Corporation, as 

discussed most recently in Wei and Tennant (2000). By directly referring their 

Interferometric Synthetic Aperture Radar (IFSAR)-based mapping products to a local 

geoid they determine, it has become part of the services they provide.  

In May 1999, a national project called Airborne Gravity for Exploration and Mapping 

(AGEM) began in Canada. It brings together research partners in Canadian universities, 

government and industry to develop methodologies and products to fully exploit the 

potential of airborne gravity for geoid mapping and resource exploration. It includes 

users and developers of gravimeters based on the 2-axis damped platform, SINS and 3-
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axis inertial platform concepts. A major thrust of the AGEM project is to refine Canadian 

airborne gravity systems to the point that they are of sufficient accuracy and resolution 

for geophysical exploration and high-resolution local geoid determination. In this case, 

the goal is to obtain high-resolution relative gravity information and has already resulted 

in high-resolution estimates of the gravity field (agreements with upward continued 

ground data of 2.5 mGal at a half-wavelength of 1.5 km when using a SINS-based 

gravimeter). Geoid determination using this data is underway and results are expected to 

be made available in 2001.  

Other Airborne Gravity Research 

Although not directly relevant to this dissertation, the following are included for 

completeness and because of their importance to the field of airborne gravity. As 

mentioned above, representing the gravity field on a suitable level surface (or on the 

surface of the Earth) using measurements taken in the air is not a trivial task. The 

downward continuation of airborne gravity data has been tackled recently in Forsberg and 

Kenyon (1995), Tscherning et al. (1997), Novak et al. (2000b), Li (2000), and Wei and 

Tennant (2000), among others. A detailed comparison of techniques for the downward 

continuation of airborne gravity data can be found in Novak et al. (2000a). Also, some 

very interesting work is going on the fields of absolute airborne gravimetry and airborne 

gravity gradiometry. Recent developments in these fields demonstrate the potential to 

make both of these measuring concepts more accessible and cost efficient over the next 

decade. For details, see Brown et al. (2000) and Bell et al. (1998), respectively.  

1.4 Statement of the problem 

By the mid 1990s, the use of a SINS for gravimetry was a novel technique gaining 

recognition as an accurate and relatively cheap means of estimating the medium-

resolution components of the gravity field of the Earth. This dissertation presents and 

discusses contributions and improvements made to an existing airborne gravity mapping 

system of this type. This section outlines its objectives and lists a number of assumptions 

that are made throughout. 
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1.4.1 Objectives 

The overall objective of the research presented herein is to simultaneously increase 

the accuracy and the bandwidth of the SINS gravimeter used by the University of 

Calgary. Specifically, this involves: 

• improving the performance of the system for medium-resolution applications such 

as geoid determination (i.e. for spatial resolutions corresponding to half-

wavelengths longer than 5 km and less than 150 km), and 

• widening the bandwidth of the system and in turn demonstrating its suitability for 

high-resolution applications such as resource exploration (i.e. for spatial 

resolutions corresponding to half-wavelengths shorter than 5 km), 

1.4.2 Assumptions 

The Honeywell Laseref III (LRF-III), owned by Intermap Technologies Corporation, is 

used for the evaluations presented herein. It is a high quality civilian grade SINS that falls 

approximately in the middle of the range of such systems that could be applied to 

airborne gravity. This implies that a higher quality SINS should yield better results. It is 

also assumed that the data acquisition process for this system is external to the scope of 

this dissertation. 

All research is carried out using scalar gravimetry. 

All surveys described are carried out from conventional fixed wing aircraft (vs. other 

platforms such as helicopters and balloons). This restriction is strictly financial. Because 

of the relatively high speeds of fixed wing aircraft, this is meant to imply that 

significantly higher resolution results might be obtained using the SINS if data could be 

collected from a slower, stable platform.  

Aircraft acceleration is derived from DGPS in all cases. Alternatives such as radar 

altimetry are not available for study at the University of Calgary. 

Since there is very little practical need to obtain the results of a gravity survey in real-

time, a post mission approach is taken for all computations. This is an industry standard 

that significantly increases the allowable complexity of an algorithm and permits the use 

of non-causal filtering methods.  
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The problems of downward continuation and geoid determination are considered to be 

external to the scope of this research; it is assumed that the performance of the system 

(and improvements made to it) can be assessed and characterized by the behavior 

exhibited at flying altitude. 

Proposed improvements to the system will be evaluated in part by comparing the gravity 

disturbances it estimates to independent estimates coming from ground gravity data that 

has been upward continued to the flying altitude. In all cases, real data will be used. 

Because the accuracy of such an independently determined gravity field is usually high, 

relative to that coming from the airborne gravity system, this comparison will be used as 

a basis for characterizing the behavior of the latter as a function of time and frequency. 

As confirmed in Wu and Sideris (1996), it is also assumed that characterization of system 

errors along profiles is sufficient information to approximately characterize it as a two-

dimensional function of space. When surveys are flown over the same point or along the 

same line at different times, repeatability at those places will also be used to assess the 

accuracy of the system. 

Low-pass filters that are used throughout have as sharp a transition band as possible. This 

means that values quoted to assess performance (such as root-mean-square (RMS) and 

standard deviation) will represent the true accuracy of the system within the bandwidth 

implied by the cut-off frequency of the filter. This avoids confusion arising from the use 

of filters with wide transition bands that simultaneously suppress both noise and signal 

(and therefore take advantage of the relatively low power of the gravity signal at high 

frequencies to imply that a solution contains relevant information at high frequencies).  

Although emphasis is on the use of the Calgary system for measuring the gravity field of 

the Earth, several of the contributions herein apply equally to its use as a system for 

navigation and direct georeferencing.  
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2 Airborne Gravimetry Using a SINS 

A brief review of the mathematical background relevant to the task of measuring gravity 

using a SINS and DGPS is provided in this chapter. In addition, the major sources of 

error caused by each of these measuring systems are reviewed and placed into the context 

of the contributions made later in the dissertation. Sections 2.1 and 2.2 closely follow 

developments in Schwarz and Li (1996b), which should be consulted for details. 

2.1 The measurement model of airborne gravimetry 

In airborne gravimetry, the goal of the integrated measurement system is to determine the 

gravity disturbance vector, lg , as a spatial function. The gravity disturbance vector is 

the difference between the actual gravity vector, lg , and the gravity vector given by the 

so-called normal model of the gravity field, l , at the same point in space: lll gg −= . 

The normal gravity vector is based on the gravity potential of an ellipsoid of revolution 

that has been chosen to best approximate the mass and rotation rate of the Earth, see 

Heiskanen and Moritz (1969) for details. In other words, an airborne gravity system 

measures the deviations of the actual gravity field from a global model of best fit. The 

gravity disturbance is related to the quantities derived from each of the sub-systems by 

Newton’s equation of motion. As shown in Schwarz and Li (1996b), the gravity 

disturbance can be expressed as follows in the l-frame (that has x, y and z axes pointing 

east, north and up, respectively): 
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where lv& and lv  are the acceleration and velocity of the aircraft derived from carrier 

phase DGPS, lf  is the specific force measured by an accurate inertial system (the sum of 

the gravity and the acceleration due to motion), and the third term is the Coriolis vector 

arising from two effects: 
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a) the angular rate of the e-frame with respect to an inertial frame of reference, l
ieΩ ,  

b) and the angular rate of the l-frame (centered at the aircraft) with respect to the e-

frame, l
elΩ .  

Strictly speaking, equation 2.1 describes the model of a gravity sensing system that uses a 

local-level platform (in which the orientation of the accelerometer(s) is realized by an 

electro-mechanical feedback system). As discussed in Section 2.3, the accelerometers and 

gyroscopes in a SINS undergo the same motion as the body of the aircraft, implying that:  

bl
b

l  fRf = ,              (2.2) 

where bf  is the vector of specific forces measured in the b-frame and l
bR  is the 

transformation matrix that relates them to the l-frame. Substituting equation 2.2 into 

equation 2.1 gives the following form of the measurement model for airborne vector 

gravimetry (Schwarz and Li (1996b)): 
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A subset of this is the scalar gravimetry case where only the third component of the 

above vector equation is of interest. When written out explicitly, the third component has 

the following form (Schwarz and Li (1996b)): 
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where ev , nv  and uv  are the east, north and upward components of the velocity vector, 

uv&  is the time derivative of uv , uf  is the upward component of the specific force vector, 

and , h, 1R  and 2R  are the geodetic latitude, ellipsoidal height and prime vertical and 

meridian radii of curvature (all with respect to an ellipsoid of revolution), respectively. 

The variables u  and ie  are the z-components of the vectors that represent the normal 

gravity model and the angular rotation rate of the Earth, respectively.  

The terms Strapdown Inertial Vector Gravimetry (SIVG) and Strapdown Inertial Scalar 

Gravimetry (SISG) are employed when a SINS is used to make the measurements of 

specific force needed to satisfy equations 2.3 and 2.4, respectively. These approaches are 

discussed and compared in detail in Wei and Schwarz (1998). 
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Not included in the above equations is a correction that is made to take into account the 

fact that the GPS antenna and the SINS cannot be located at exactly the same point in 

space. Practically, this can be done by either correcting the time series of positions and 

velocities obtained from DGPS to the center of the SINS using the spatial offset and its 

time derivative (prior to deriving the acceleration), or by deriving a correction term to be 

applied after estimating the acceleration. This is called the lever-arm correction and is 

implemented in the acceleration domain for the system used herein. 

In another approach to scalar gravimetry, the magnitude of the gravity disturbance vector 

is estimated more directly by deriving the magnitude of the specific force vector from a 

triad of accelerometers. Because the accuracy requirement for the orientation of the 

aircraft is relatively low in this case (it is only used to estimate the lever-arm correction), 

this approach is referred to as Rotation Invariant Scalar Gravimetry (RISG). It was first 

published in Czompo (1994) and is also described in Wei and Schwarz (1998). 

2.2 The error model of airborne gravimetry 

The error model for airborne gravimetry is obtained by linearizing equation 2.3. This is 

done in Schwarz and Li (1996b) to yield the following relationship between the errors in 

the gravity disturbance ld g  and the errors arising from the measuring systems: 

( ) ( ) ll
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lll ddd2d 2dd d VvvfRFg −+−Ω+Ω++−= & ,   (2.5) 

where l  represents errors in attitude (i.e. estimated vehicle orientation) due to initial 

misalignment and gyro measurement errors, bd f  represents accelerometer measurement 

errors, ldv  and ldv&  represent errors in the aircraft velocity and acceleration determined 

from DGPS, l
ied  and l

eld  are errors in angular velocity and ld are errors in the 

computation of the normal gravity vector. The matrices lF  and lV  are the specific force 

and velocity vectors in their skew-symmetric forms. As shown in Schwarz and Wei 

(1994), if the accuracy of the position and velocity derived from DGPS can be 

maintained below 50 cm and 5 cm/s (1-σ) respectively (which is a condition that is 

evaluated in Chapters 3 and 4), the last three terms in equation 2.5 can be neglected. 

Together with the inclusion of a term to reflect errors that result from imperfections in the 
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synchronization of the data coming from the GPS and SINS sub-systems, this results in 

the following simplified form of the gravity disturbance error model: 
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where dT represents the synchronization errors. For the scalar case, the third component 

of equation 2.6 is taken, as follows: 

dT )(vddf-f-fgd bb
uuenneu fAfA &&& +++=δ ,        (2.7) 

where as usual, the subscripts e, n and u represent the east, north and upward components 

of the vector component they follow and, as shown in Wei and Schwarz (1998), A and A&  

are row matrices of the form: 

]coscossinsincos[ ϕθθϕθ−=A  and         (2.8) 

]sincoscossincoscoscossinsin [ ϕθϕϕθθθθϕθϕϕθθ &&&&&& −−−=A .    (2.9) 

The variables ϕ  and θ  are the roll and pitch of the aircraft and the dots above the 

variables again represent the time derivatives. 

The error model for the RISG approach can be found in Wei and Schwarz (1998). 

2.3 The estimation process, the observables and the measuring systems 

Despite the seemingly simple relationships between the gravity disturbance and the 

quantities derived from the sub-systems presented in the last section, their practical 

implementation is quite involved. Figure 2.1 shows a summary of the process of using the 

raw measurements made by the sensors to derive the final estimate of the gravity 

disturbance. As shown in Figure 2.1c, equations 2.3 and 2.4 only constitute a part of the 

software package called GRavity Estimates from Airborne Techniques for Geoid 

UNdulations (GREATGUN), that in turn only constitutes one part of the overall process. 

The other steps shown in Figure 2.1 are necessary to derive the required quantities from 

the measurements and to remove the high levels of noise. Each noise source is discussed 

herein, after the following brief review of the entire process. 
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2.3.1 The process of estimating the gravity disturbance 

The first step shown in Figure 2.1a is to interpret and pre-filter the raw measurements 

coming from the data acquisition system. This can involve low-pass filtering the 

gyroscope and accelerometer measurements from the SINS (see Skaloud (1999)) and 

replacing the raw phase-rate measurements by more accurate measurements derived from 

the DGPS carrier phase (see Bruton et al. (1999) and Chapter 5).  
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Figure 2.1 A summary of the airborne gravity data processing procedure at the U of C 
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The second step is the derivation of the position, r, velocity, v, and attitude matrix, l
bR , 

of the aircraft from these filtered measurements. This is carried out using a software 

package called KINematic Geodetic System for Position and Attitude Determination 

(KINGSPAD) that was written prior to the start of the research presented herein, mainly 

by M. Wei. As discussed in El-Sheimy and Schwarz (2000), it implements a 

decentralized Kalman filter to integrate the SINS and DGPS measurements. The 

integration process corrects for cycle slips in the GPS measurements prior to using them 

to derive the position and velocity of the aircraft in a double difference approach. As 

implied by Figure 2.1b, the SINS filter uses DGPS to estimate and apply lumped error 

terms representing the biases in the accelerometer measurements, b, and drifts in the 

gyroscope measurements, d, before estimating the attitude of the vehicle.  

As shown, the GREATGUN package uses the estimated attitude of the aircraft to 

transform the corrected (and re-sampled) specific forces from the b-frame to the l-frame, 

according to equation 2.2. The position and velocity of the vehicle are then differentiated 

appropriately to obtain the acceleration of the vehicle. According to equation 2.3, this is 

used along with estimates of the Coriolis and normal gravity vectors to compensate for 

the motion of the vehicle and effectively isolate the gravity disturbance vector. Because 

the resulting signal is very noisy (see Sections 2.3.2 to 2.3.4 for details), its derivation is 

followed by a filtering step that removes most of the noise by low-pass filtering the data. 

The first version of GREATGUN consisted of 12 separate programs written by M. Wei. 

These 12 programs were combined into the current single software package by the author 

in January 1998 and underwent minor modifications by both C. Glennie and the author 

before December 1998. A number of more significant changes have been proposed and 

implemented by the author since that time (as discussed herein, in Part 3).  

The third and final step is to deal with remaining low-frequency errors in the estimated 

gravity disturbance (that are mainly the result of residual accelerometer biases). As 

shown in Figure 2.1d, there are two approaches to this. In the first approach, a crossover 

adjustment can be used to reduce the measurements to an arbitrary plane in space. See 

Glennie and Schwarz (1997) and Kennedy (1999) for details. The absolute orientation of 
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this plane in space can then be determined if the value of the gravity disturbance is 

known for at least three points in the vicinity of the airborne mission. In the second 

approach, only relative gravity field information is derived (e.g. for spatial resolutions 

higher than 150 km). The latter approach is described and compared to the crossover 

approach in Section 6.4 of Chapter 6. 

2.3.2 The SINS as a measuring system 

Sections 2.3.2 and 2.3.3 are included to briefly demonstrate the important characteristics 

of some crucial SINS and DGPS errors affecting the estimation of the gravity 

disturbance, i.e. those in equations 2.6 and 2.7. As discussed above, the sensors in a SINS 

include two orthogonal triads; three accelerometers and three gyroscopes that both 

undergo the full (rotational and translational) motion of the aircraft. The accelerometers 

measure the specific force, bf , that the body of the aircraft experiences and the 

gyroscopes measure its angular velocity, b
ib , both with respect to an inertial frame of 

reference. Each is affected by systematic and random errors, which tend to result in a 

combination of low and high-resolution errors, respectively, in estimates of the gravity 

field.  

As shown in equation 2.6, the errors in the specific force measurement contribute 

directly to the error budget of the gravity disturbance estimate. They can be expressed in 

the b-frame as follows: 

f
b

f
b

f
bd nfNfSbf +++= ,        (2.10) 

where b is a vector representing the lumped sum of the biases influencing the 

accelerometer measurement, fS  is a diagonal matrix representing scale factor errors, fN  

is a skew-symmetric matrix representing the non-orthogonality of the sensor axes and fn  

is a vector representing random errors. See Titterton and Weston (1997) for details about 

this error equation. Generally speaking, while scale factors, non-orthogonalities and some 

biases can be calibrated in the laboratory, see e.g. Titterton and Weston (1997) and Shin 

(2000), residual biases and random errors cannot. The result is a combination of a low-

frequency error (owing to the residual biases) and a broad-band error (owing to the 

random errors). The specifications for the accelerometers in the LRF-III SINS (that are 
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given in Appendix B) provide an indication of the magnitude of each of these errors for 

the airborne gravity system used at the University of Calgary. Consider Figure 2.2 that is 

included to demonstrate the errors affecting estimates of the scalar gravity disturbance by 

characterizing each of the errors in equation 2.7 as a function of frequency. The spectra in 

Figures 2-2 a, b and c have been shifted along the y-axis by an arbitrary amount so that 

they can be distinguished from one another. The figure is derived from results obtained in 

Chapters 5, 6 and 7.  

It is demonstrated in Figure 2.2d that the effect that the accelerometer errors has can be 

separated into two regions of the spectrum, with large bias-like errors below about 

0.00025 Hz and broad-band errors having a much smaller amplitude above 0.00025 Hz. 

Clearly, the biases present a major difficulty for estimating low-resolution components of 

the gravity field. They are treated in detail in Glennie (1999) and are attributed to an 

uncompensated temperature effect on the accelerometers. A general conclusion of that 

research is that the associated problems are unlikely to be resolved without the design and 

implementation of a system that uses higher quality, temperature compensated 

accelerometers. These low-frequency accelerometer errors are studied in detail in Chapter 

6. 

The effect that the errors in the gyroscopic measurements of angular velocity have on 

the errors in the gravity disturbance cannot be stated as simply. As discussed in Section 

2.1, the major role of those measurements in an airborne gravity system is to derive the 

orientation of the b-frame with respect to the l-frame so that the specific force 

measurements can be transformed from the former to the latter. As shown in equation 

2.6, the errors in the estimated gravity are a function of not only the errors, l , in this 

estimate of the attitude but also of the specific force experienced by the aircraft, lf . 

Formally, this is written as follows (see Schwarz and Li (1996b)): 
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where as usual, the subscripts e, n and u represent the east, north and upward components 

of the vector component they follow. 
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Figure 2.2 Spectra of samples of the errors affecting scalar gravimetry 
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Expressed in the l-frame, the errors in the estimated orientation of the aircraft can be 

approximated for time, kt , by the following equation (Schwarz and Li (1996b)): 

(t)dtd (t) b
ib

 t

 t
l
b

l
t

l
t

k

00k

R∫+= ,        (2.12) 

where the first term represents the errors due to the initial misalignment (including 

insufficiencies in the normal gravity model) and the second term represents integrated 

gyroscope measurement errors at time kt . The term b
ibd  represents the gyroscope 

measurement errors that are in turn given by: 

b
ib

b
ib

b
ibd nNSd +++= ,        (2.13) 

where d  is a vector representing the bias error that results in gyroscope drift, S  is a 

diagonal matrix representing scale factor errors, N  is a skew symmetric matrix 

representing the non-orthogonality of the sensor axes and n  is a vector representing 

random errors. More details about equation 2.13 can be found in Titterton and Weston 

(1997). The error in attitude is therefore the combination of a low-frequency oscillation 

owing to the initial errors and a faster changing component due to the interaction of 

aircraft dynamics with the constant and slowly varying gyroscope sensor errors. As 

shown in Skaloud (1999), the magnitude of the error in attitude for a navigation grade 

SINS is expected to be below 50 arc seconds (with standard deviations of less than 15 arc 

seconds, for any given flight line). This is discussed further in Chapter 7. An estimate of 

the effect of the errors in attitude on the upward component of the gravity disturbance 

(i.e. the third component of equation 2.11) is shown in Figure 2.2c for a sample flight in 

which it is large owing to high horizontal accelerations. The effect is periodic in nature 

and can have a peak amplitude of between 2 and 10 mGal at a central frequency 

anywhere above 0.01 Hz (depending on the aircraft dynamics and the flying speed). For 

typical flying speeds between 45 and 100 m/s, this causes a major difficulty in estimating 

medium and high-resolution components of the gravity field. This error source is treated 

in detail in Chapter 7. 

It should be observed that equation 2.11 explains why constant velocity conditions are 

favorable for airborne gravity surveying and why determination of the horizontal 



34 

   

components of the gravity vector is extremely challenging. If the flight azimuth and 

velocity are maintained nearly constant for a given survey line, then the specific force 

vector is approximately given by ]g0,0,[ , where g ~ -10 m/s2. It is easily seen that under 

these conditions, equation 2.11 becomes ],0g,g[ en− . That is, while maintaining a 

constant velocity drives the effect of the attitude error to a minimum (and towards zero 

for the vertical component), a portion of its effect in the horizontal components is always 

amplified by the magnitude of the gravity field. 

The models and algorithms for strapdown inertial navigation are well-documented and 

can be found for example, in Britting (1971) and Wei and Schwarz (1990). The process 

of attitude estimation is discussed further in Chapter 7 and described in detail in Schwarz 

(1998) and Skaloud (1999). 

2.3.3 The GPS as a measuring system 

This sub-section briefly describes the processes of estimating position, velocity and 

acceleration from the measurements made by the GPS receivers. This background 

information is then used to define the relationship between errors in those measurements 

and errors in the gravity disturbance. This discussion of DGPS positioning is based on a 

similar discussion in Teunissen and Kleusberg (1998b). 

The observables in the GPS include the pseudorange from each satellite in view to the 

user antenna and the carrier phase and phase rate (Doppler) measurements. More details 

about these can be found in Hoffmann-Wellenhof et al. (1994) and Langley (1998). In 

high accuracy DGPS, linear combinations of the carrier phase observable are formed that 

essentially become high accuracy range differences if the ambiguous number of cycles 

can be reliably estimated in a timely manner. While a number of linear combinations are 

possible, the single-frequency double-difference observable is introduced here because it 

provides a useful summary of the relevant error sources. The measurements made to each 

satellite from a stationary GPS receiver (located at a known point) are subtracted from 

those made to the same satellites by the moving receiver. This process, known as single-

differencing, eliminates errors due to the satellite clocks and (depending on the distance 

separating the GPS antennas) reduces the errors due to atmospheric propagation and 
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errors in the position of the satellite. The double-difference observable is then formed by 

taking the difference between two such single-differences that in turn essentially 

eliminates the receiver clock errors. This yields the following double difference 

observation equation for the carrier phase case (after Teunissen and Kleusberg (1998b)): 

∆∇ Φ  = ∆∇ ρ + ∆∇ δρ + λ ∆∇ N  + ∆∇ T - ∆∇ I + ∆∇ mΦ + ∆∇ εΦ ,           (2.14) 

in metres where the double difference symbol ∆∇  refers to differencing between 

satellites and receivers and where: 

   Φ   is the carrier phase (measurement) [m], 
 ρ   is the range between the satellite and the user antenna (observable) [m], 
δρ  is the ephemeris error [m], 
 λ   is the wavelength of the carrier [m/cycle], 
 N   is the ambiguous integer carrier phase cycle count [cycles], 

   T    is the measurement delay due to the neutral atmosphere [m], 
     I    is the measurement delay due to the ionosphere [m], 
  mΦ  is the measurement delay due to carrier phase multipath [m] and 
  εΦ   is the noise of the carrier phase measurement [m]. 

Such an observation equation can be formed for each pair of satellites, resulting in m 

equations (one equation less than the number of satellites) at each epoch. For the 

purposes of this discussion, it will be assumed that in order to solve for the unknown 

baseline between the master station and the aircraft, the errors due to noise and multipath 

can be treated as stochastic variables and that the errors owing to the atmosphere and 

broadcast ephemerides can be either modeled appropriately or neglected (especially over 

short and medium baselines). This leaves the m integer ambiguity terms and the 3 

components of the baseline between the master station and the aircraft as unknowns. The 

following linear system of equations can then be formed at each epoch using the double 

difference observation equations: 

z = Aa + Bb + e,            (2.15) 

where z is the vector of m (observed minus computed) double difference carrier phases, a 

is the unknown vector of integer ambiguities, b is the unknown vector of baseline 

components, A and B are the design matrices for the ambiguity and baseline components 

and e is the measurement noise vector. Note that it is standard to use other linear 

combinations that incorporate pseudorange, Doppler and dual frequency carrier phase 
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data into this system, see e.g. Teunissen and Kleusberg (1998b). After the ambiguity 

terms have been correctly solved for (or their real-valued estimates sufficiently well 

determined), these linear combinations permit the solution of an accurate baseline. The 

reader is referred to Teunissen (1998) for details about ambiguity resolution. The 

estimate of the baseline in turn permits the estimation of the position and velocity of the 

aircraft relative to the known position of the master station.  

When moving, the trajectory of the aircraft is often estimated in a recursive manner using 

a Kalman filter that plays the role of balancing new estimates of the position with 

estimates that it predicts based on past measurements and a model of the dynamics.  

Because the models of the measurements and the vehicle dynamics are not perfect, 

residual errors show up in the output of the system of equations given by equation 2.15. 

These errors each play a direct role in the accuracy of the estimated trajectory. This issue 

is the topic of Chapter 3.  

In airborne gravimetry, where a major role of the GPS system is to provide estimates of 

the acceleration of the aircraft, differentiation of the estimated position (or velocity) is 

required. The residual errors in equation 2.14 also play a role in the quality of the 

estimate of acceleration, as does the process of differentiation itself. Consider Figure 2.2a 

that shows the error spectrum of the acceleration of an aircraft determined from the GPS 

data collected in a recent airborne gravity survey. The errors are clearly small for 

frequencies below 0.01 Hz, but increase very significantly as a function of frequency. 

This represents one of the biggest challenges to widening the bandwidth of any existing 

airborne gravity system. Investigations of the differentiation process and the effects of 

each of the error sources for determining acceleration are presented in Chapters 4 and 5, 

respectively. 

For information about the kinematic models and the Kalman filter used for trajectory 

determination, see Schwarz et al. (1989) and Tiberius (1998). For a discussion about the 

determination of acceleration from DGPS and a list of further reference material, see 

Schwarz and Li (1996b). 
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2.3.4 The effects of other sources of error on gravity disturbance estimation 

Errors that have not already been treated are now considered. As shown in equation 2.6, 

errors due to imperfections in the synchronization of the SINS and DGPS data streams 

play a role in the accuracy of the estimated gravity disturbance. For the data acquisition 

system used at the University of Calgary, the time synchronization errors, dT, can be as 

high as 0.5 ms. They are due to registration errors that occur in the data acquisition 

system (when the data registration and time tagging process is blocked by other processes 

with higher priority). See Schwarz and Li (1996b) for more details about this. Clearly, 

these have a larger effect as the bandwidth of the system is increased, implying the need 

for a better data acquisition system. Consider Figure 2.2b that gives an approximate 

worst-case error spectrum for these errors, derived for a survey in which the rotational 

and translational dynamics are large. 

For simplicity, dither, quantization and second-order scale factor errors have been 

neglected in equations 2.10 and 2.13. Their treatment can be found for example in Wei 

and Schwarz (1994) and Titterton and Weston (1997).  

Beyond the inclusion of equations 2.10 and 2.13, demonstration of the dependence and 

magnitude of the uncalibrated scale factor and non-orthogonality errors on aircraft 

dynamics has also been neglected.  

2.4 Contributions of this dissertation  

In the last three sections, it has been described how the raw SINS and DGPS 

measurements are used to estimate the gravity disturbance and real data is used to 

demonstrate how the major errors in those measurements affect the latter as a function of 

frequency. It is shown in the above that the resolution of the system is primarily limited 

by accelerometer biases on the low-resolution end of the spectrum and by a combination 

of attitude and DGPS errors (and to some extent synchronization errors) at the high-

resolution end of the spectrum. It is also shown that the current accuracy of the system 

for medium resolutions is a function of both the accelerometer and DGPS errors.  

The above is summarized in Figure 2.3 using an approximate spatial scale corresponding 

to an assumed flying speed of 100 m/s. Two observations emerge from Figure 2.3. First, 
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the relationship between the spatial requirements of gravity data and the challenges 

described in this section are evident. Second, the research presented herein may be placed 

into context as follows. Recall from Chapter 1 that the overall objective of the research 

presented herein is to simultaneously increase the accuracy and the bandwidth of the 

SINS gravimeter used by the University of Calgary. Because they are common to 

airborne gravity systems of all types, the errors owing to the DGPS error budget are 

investigated in Part 2 of this dissertation. By means of detailed analyses of the errors in 

position, velocity and acceleration, it will be shown that the errors in the estimate of the 

required gravity disturbance due to the GPS can be significantly reduced, both within the 

current bandwidth and especially for higher frequencies.  

Errors due to the SINS are treated in Part 3. The low-frequency errors arising from the 

accelerometers are investigated in Chapter 6. The dynamics of survey aircraft are studied 

in detail in Chapter 7, both from a theoretical point of view and empirically by using data 

collected on two survey aircraft. This leads to the proposal of a method for estimating and 

removing most of the effect of attitude induced errors, effectively removing one of the 

major barriers to high-frequency gravity field estimation. 

0.010.0010.0001
550500

0.04
1.25

Geophysics

Geoid determination
b) requirements 
    by application

frequency (Hz)
full wavelength (km)

300 km

SINS
biases GPS

attitude errors
(natural motion)

in-band noise

current 
bandwidth

a) errors that limit 
    the system and
    the resulting 
    bandwidth

Exploration

 

Figure 2.3 The applications of airborne gravity and the research challenges 
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PART 2: DGPS FOR AIRBORNE GRAVITY MAPPING 

The objectives in Part 2 are to evaluate the capabilities of carrier phase DGPS for 

airborne mapping applications and to recommend methods for its use, with emphasis on 

airborne gravimetry.  

In Chapter 3, an investigation is reported on the limits of the accuracy with which DGPS 

can be used for positioning an aircraft in flight. This research is carried out entirely from 

the point of view of a user who is working in the field of airborne mapping, i.e. existing 

commercial software has been used. This work contributes to research in the field by 

using real data from several well-chosen data sets, along with various data processing 

strategies to isolate and quantify each relevant component of the DGPS error budget. This 

part of the research is based on the contributions made by the author to Bruton et al. 

(2000b). 

In Chapter 4, the estimation of high precision velocity and acceleration are considered. 

This is done by means of a fundamental consideration of the concept of differentiation. A 

number of alternative methods for the differentiation of GPS data are reviewed for 

deriving a Doppler measurement from the carrier phase measurements and for 

differentiating positions that are estimated by DGPS software. Using this approach, real 

data is used from a number of experiments that represent varying dynamics (e.g. static, 

low and high frequency dynamics).  This research is based on Bruton et al. (1999).  

In Chapter 5, a detailed study is presented of the DGPS error budget for acceleration 

determination, within the bandwidth that is relevant to airborne gravimetry. Each of the 

residual error sources is categorically isolated and characterized as a function of 

frequency. Using this, data processing strategies are recommended for both of the major 

application areas (i.e. geoid determination and resource exploration). It is demonstrated 

that very accurate estimates of the gravity field can be obtained for high-frequency 

applications such as resource exploration. The research presented is based entirely on the 

contributions made by the author to Bruton et al. (2000a). 
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3 On the Positioning Accuracy of Kinematic Carrier Phase DGPS  

In static applications, carrier phase DGPS can be used to determine the position of an 

object to the centimetre and even millimetre level with respect to a fixed master station, 

depending on the extent of the data processing that is done and the occupation time. 

However, this level of accuracy cannot be expected for a moving vehicle, especially 

under typical dynamics and environmental conditions and as the distance separating the 

vehicle and the master station increases. Errors in the estimated absolute position of the 

survey aircraft obviously play a critical role in the performance of airborne mapping 

systems. The goal of this chapter is to comment on the accuracy with which carrier phase 

DGPS positioning of an airborne platform can be achieved. Although the emphasis is on 

meeting the somewhat more forgiving positioning requirements of airborne gravimetry, 

the findings are also related to the requirements of other airborne mapping applications. 

3.1 Background 

An airborne gravity system depends on the estimated position of the aircraft in several 

ways. The most obvious dependence arises from the process of determining acceleration 

via discrete-time differentiation of the relative position. An airborne gravity system also 

depends on position to compute the normal gravity vector and the relationship between 

the l-frame and e-frame. The latter computations depend on the estimated absolute 

position.  Recall from Section 2.2 that if the errors in position can be kept below 50 cm 

(1-σ), they will cause negligible degradation of the performance of an airborne gravity 

system. Although at first thought, meeting this accuracy requirement may seem like a 

trivial task when using DGPS, it cannot always be guaranteed in practice.  

3.1.1 A comparative study of current DGPS software 

Two studies that were recently carried out within the AGEM project of the GEOIDE 

Network are relevant to this topic. The first is discussed in Bruton et al. (2000b) and 

shows that an accuracy of 50 cm is not a certainty. The study involved the comparison of 
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eight industrially relevant DGPS software packages that make up a representative cross-

section of the DGPS engines that are currently available in industry and in academia. 

Each participant was given exactly the same airborne data sets for processing and the 

only instruction was to provide the best possible solution. For this reason, the comparison 

of results made therein represents a realistic evaluation of the capabilities and consistency 

of currently available software. Because the accuracy of this type of kinematic 

positioning is often quoted to be at or below the decimetre level, it was somewhat 

surprising to find that the solutions calculated using each of the packages differed from 

each other by as much as 2 metres. Unfortunately, no independent truth was available to 

evaluate the solutions on an absolute scale, meaning that the reasons for the large 

differences are not known in all cases. It is concluded that the results of that initial study 

do not establish the accuracy of airborne DGPS, but instead outline how inaccurate it can 

be. Errors in position at the metre-level cause enormous problems for any high 

performance airborne mapping or airborne gravity system. This motivates the need for 

the further study reported in this chapter. 

3.1.2 A study of the accuracy of airborne DGPS positioning 

The work reported in this chapter responds to the above need by addressing the accuracy 

of kinematic carrier phase DGPS in an airborne environment. It describes a new study 

that was carried out by the author within the AGEM project. By using a single software 

package and various processing strategies, each of the DGPS error sources that were 

discussed in Section 2.3.3 are isolated and roughly quantified using examples drawn from 

available data sets. Included are the effects of receiver noise and multipath (on the ground 

and in the aircraft environment), as well as the influence of the unmodeled portions of the 

ionosphere, troposphere and broadcast ephemerides. The effects of using dual frequency 

measurements for ambiguity resolution and ionospheric-free processing are also 

discussed and their importance is outlined in light of various realistic airborne conditions.  

Although brief definitions of the error sources are given whenever possible, more 

comprehensive information about the GPS and its error sources can be found in related 

publications. Many details can be found in Parkinson and Spilker (1996) and a 

comprehensive look at the use of the system in geodesy can be found in Teunissen and 
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Kleusberg (1998a). A good study of the characteristics of DGPS errors is described in 

Raquet (1998) and other recent analyses that treat various aspects of the relative and 

absolute accuracy of airborne DGPS positioning can be found for example in Cannon et. 

al (1992), Shi (1994), Tiemeyer et al. (1994) and Han et al. (1998).  

3.2 On the DGPS error budget for airborne positioning 

Because all of the analyses contained herein are empirical in nature and therefore depend 

on the data that is used, the data sets have been carefully chosen. They permit the 

isolation and emphasis of the different error sources, paying particular attention to the 

atmospheric effects. The first data set was collected on September 10 1996, during an 

airborne gravity campaign that was carried out by the University of Calgary. It is 

described in Appendix A.1 and referred to there as the Kananaskis field campaign. It is 

used here because it was flown at night and at a high altitude, implying that the effect of 

the ionosphere on the data is small and the effect of the differential troposphere is 

relatively large. The time of the flight was between 00:00 and 06:00 local time and the 

average ellipsoidal flying height was 4357 m. The Trimble 4000 SSI receiver on the 

aircraft and those at the master stations in Banff and Invermere will be employed in this 

chapter.  

The second data set was collected on June 6th 1998 and is described in Appendix A.2. It 

was collected during an airborne gravity survey carried out over Greenland and is used 

herein to complement the Kananaskis data set because it was flown in the afternoon 

(between 15:00 and 18:00 local time), during a period of high ionospheric activity. The 

average flying height above the master station was only 300 m, implying that the effect of 

the differential troposphere is small. The two Trimble SSI receivers on the aircraft and 

the one at the Aasiaat station are used. The receivers on the aircraft each used their own 

antennas that were mounted on the fuselage and separated by over 3 m.  

The overall methodology used in the following takes advantage of a number of 

operational and data processing strategies to evaluate the effect that each portion of the 

error budget has on the estimated position; it studies each of the errors that were 

introduced in equation 2.14. In order to control the experiment, the use of a single 

software package was necessary and Version 6.02 of GrafNav (provided to the author by 
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Waypoint Consulting Ltd.) was selected for two reasons. The first reason is that it permits 

a large number of variations in the data processing strategy. (Although most of the same 

conclusions were reached using KINGSPAD, the latter is not currently capable of 

carrying out an ionospheric-free linear combination and cannot use precise ephemerides, 

two components of the analyses that are useful for demonstrating certain points). The 

second reason is that GrafNav is a commercial DGPS software package that enjoys wide 

use and respect in the fields of airborne navigation and mapping.  

The specific methodologies used for the evaluation and characterization of each error 

source are introduced in the following, as necessary for an understanding of the 

experiments. 

3.2.1 Errors due to the broadcast ephemerides 

Because positions calculated using GPS are based on the range measured between the 

user and each satellite, the assumed location of the satellites is of fundamental 

importance. The ephemeris information that is broadcast by the satellites themselves is 

currently the only means of obtaining this information in real time. On the other hand, 

more precise orbital information is available from a number of organizations between one 

day and four weeks after a survey. Errors in the positions of the satellites will result in an 

error, ∆∇ δρ, in the double difference measurement that will be small for short baselines, 

but increasingly problematic as the baseline length increases. (Note that the error sources 

are often referred to in this chapter by using the notation that was introduced in Section 

2.3.3.) 

The effect of errors in the broadcast ephemeris can be evaluated in post-mission by using 

it to compute a position solution and comparing the result to one obtained using precise 

ephemeris information. Figure 3.1 shows the magnitude of this difference over the area 

flown for the Kananaskis field campaign, viewed from the north-east. The surface plot is 

generated from the time series of position differences for each flight line. As expected, 

the differential error grows as a function of distance from the master station. It is clear 

from the figure that the errors due to the broadcast information can be significant, 

reaching values of over 5 cm for distances of 120 km. The time dependence of the 
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broadcast ephemeris error can be observed by noting the saw-tooth pattern that shows up 

in Figure 3.1 when going from east to west. The pattern is the result of an update of the 

broadcast ephemeris that was made as the aircraft flew south along a line about 40 km 

west of the master station. Given the current accuracy of the GPS broadcast ephemeris, 

the range of position errors in Figure 3.1 agrees roughly with the estimated worst-case 

user position error of 5-10 cm for each 10 m orbital error over a baseline of 100 km that 

is given in Parkinson and Enge (1996).  

Because the errors in position due to broadcast ephemerides are low-frequency in nature 

and smaller than 10 cm for typical baselines, they are unlikely to pose a threat to the 

performance of an airborne gravity system. They may make up a significant portion of 

the error budget of an accurate airborne mapping system, however, a topic that will be 

discussed further in Section 3.4. 
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Figure 3.1 Error in position due to the broadcast ephemeris in a 100 by 150 km area 
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3.2.2 The importance of resolving the integer ambiguity term 

The carrier phase observable is a measure of the difference between the phase of the 

carrier signal received from the satellite and a nominal carrier generated by the GPS 

receiver. These are related to each other by the time it takes for the signal to propagate 

from the satellite to the receiver, and the observable is therefore directly related to the 

range between them. Unfortunately, a GPS receiver only measures the fractional part of 

this phase difference, meaning that the range between the user and a given satellite 

cannot be determined unless the initial integer number of cycles, N, is known. Further, 

this ambiguity remains after differencing and must be estimated along with the other 

unknown parameters.  

While this study puts no emphasis on how the ambiguity term, ∆∇ N, is estimated, it is 

highly relevant to consider the importance of using a valid estimate of this ambiguity. 

The goals here are to relate the observed importance of dual frequency data for ambiguity 

resolution and to demonstrate how much a solution based on real-valued (or float)  

ambiguity estimates can deviate from the corresponding fixed integer solution in typical 

applications. Experiences drawn from processing the Kananaskis data set provide a very 

useful example of this. Because of the length of the baselines flown during that 

campaign, it is not possible to reliably estimate the integer ambiguity terms using only 

measurements of the L1 carrier phase. In other words, only a float estimate of those terms 

is possible when using single frequency data. Integer estimates can be obtained, however, 

by forming the widelane observable through a linear combination of the L1 and L2 phase 

measurements. Teunissen (1998) can be consulted for more details about the widelane 

observable and its use in ambiguity resolution.  

Generally speaking, a float solution should agree with the corresponding fixed solution at 

or below the 5-10 cm level for kinematic surveys over short and medium baselines, 

Lachapelle (1998). Consider Figure 3.2, however, that shows how the float solution 

diverges considerably more than this for the Kananaskis data, yielding errors in position 

that are greater than half a metre. Figure 3.2a shows the difference between the single 

frequency (L1) float solution and the corresponding (widelane) fixed solution and Figure 

3.2b shows the horizontal distance separating the master station and the aircraft for the 



46 

   

same time period. It is interesting and important to note that there is little growth in the 

error over the first 6000 s, the time period during which the aircraft passes close to the 

master station for every flight line. As the shortest separation distance increases however, 

so does the error in position. It is likely that this occurs because, as time passes, the float 

estimates of the ambiguity absorb errors that are not correlated between the master and 

remote stations. 

This is an important observation because although reliable integer ambiguity estimation 

can be achieved for the Kananaskis data set, conditions may not permit it in all cases. In 

such situations, a float solution may be the only alternative (it is seen later that this is the 

case for the Greenland data set), perhaps having a considerable influence on the error 

budget of an airborne mapping system. Even in airborne gravimetry where the 

requirements are often much more forgiving, errors of this magnitude might cause errors 

in the output that reach significant levels. 
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Figure 3.2 The accuracy of a float solution and the baseline length 
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3.2.3 Errors owing to the neutral atmosphere 

It is well known that, as the GPS signals propagate through the atmosphere on their way 

to receivers on the Earth, their speeds are decreased by the variability of the refractive 

indices in the troposphere, the tropopause and the stratosphere (the portions of the 

atmosphere below 10 km, between 10 and 16 km and between 16 and 50 km above the 

surface). The combined effect that this variability has on the signals is usually referred to 

as the tropospheric delay. When derived using (code and) carrier phase measurements, it 

causes the ranges between the satellites and the user to appear between 2 and 25 m longer 

than the true distance, Lachapelle (1998). For the range measured to each satellite, this 

delay is usually modeled in terms of the wet and dry components, which account for 

about 20 and 80 % of the total delay, respectively. The models are applied in the zenith 

and projected onto the line of sight using an elevation mapping function, Lachapelle 

(1998). The key parameters in most models are pressure, temperature and relative 

humidity. Even after differencing, residual (i.e. unmodeled) portions of the delay, ∆∇ T, 

can cause significant errors in the estimated position that show up primarily in the height 

component. Although the accuracy of available models varies, the dry portion can be 

modeled to the centimetre or even millimetre level, while errors in modeling the wet 

portion can reach the decimetre level and continue to be a challenge for GPS users, see 

Mendes and Langley (1998) for details. Airborne mapping applications are especially 

susceptible to this error because of the large vertical separation between the master 

station and the aircraft and because it often does not show up in typical measures used for 

quality control (such as adjustment residuals). For example, note that large parts of the 

observed differences between solutions in Bruton et al. (2000b) were attributed to 

different treatments of the tropospheric effects. The goal of the next few paragraphs is to 

use a data set with a very large vertical separation to demonstrate the magnitude of the 

effect of the tropospheric delay on the GPS measurements and the estimated positions 

and to roughly quantify the accuracy with which the delay can be estimated by comparing 

the performance of different models. Because this is done empirically using a single data 

set, the result should be interpreted as no more than an example of the effect. Similar 

recent examples that have made efforts to highlight the importance of the troposphere can 
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be found in Tiemeyer et al. (1994) and Shi (1994). A thorough investigation of the 

absolute accuracy of many different tropospheric models can be found in Mendes (1998) 

and for a more rigorous discussion of the topic in view of airborne navigation, Mendes 

and Langley (1998) should be consulted. Comparisons made later, in Section 3.3, also 

treat the absolute accuracy of the tropospheric delay in more detail. 

Recall that the Kananaskis data set was chosen for use in this work because it was 

collected at a very large flying height and is therefore subject to large differential 

tropospheric delays (the average vertical separation between the Banff master station and 

the aircraft was 3035 m during the survey). Consider Figure 3.3 that is borrowed from the 

more detailed discussion of this topic found in Bruton et al. (2000b). The data used to 

generate it was derived by T. Beran and R. Langley of the University of New Brunswick. 

Figure 3.3a shows the magnitude of the tropospheric delay as a function of height 

difference in the zenith and at an elevation of 10 degrees. Figure 3.3b shows the 

agreement between two models (Hopfield and Saastamoinen) for estimating that delay. 

Together these verify that, for a large vertical master-remote separation, the total relative 

delay can reach about 7 m for low elevation satellites and that, at worst, two different 

models agree to about 10 cm in their estimation of that delay.  

This result does not necessarily quantify the absolute error in the delay estimated by 

models commonly used in differential positioning (both could be biased by some amount 

from the true delay), but it does provide a rough idea of how inaccurate at least one of 

them could be. For example, two packages each employing one of these models could 

obviously not both be correct. It is important to consider the impact of such an error on 

the estimated position. The vertical position error resulting from unmodeled tropospheric 

delays is approximately equal to the magnitude of the largest unmodeled delay in the 

system (and will usually correspond to periods dominated by low elevation satellites), R. 

Langley, personal communication. Given that, a height error of 10 cm might be expected 

in this case. 
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Figure 3.3 Relative delay as a function of height difference 

 

The graphical data in Figure 3.4 is generated to show the approximate effect of the 

measurement domain quantities (shown in Figure 3.3) on the estimated position. Figure 

3.4a shows the effect of the troposphere on the estimate of aircraft height during the 

period of ascent for the Kananaskis data. It is generated by comparing the position 

solutions obtained by processing with and without the use of a tropospheric model. It is 

also borrowed from Bruton et al. (2000b) and is based on data provided by A. Simsky of 

Sander Geophysics. It shows that the error in position, corresponding to the tropospheric 

delay, reaches nearly 1.5 metres for this data set. Finally, it is of interest to observe the 

large differences in position for solutions that have been generated using different 

tropospheric models for the same data. Figure 3.4b is generated using solutions derived 

using the two different tropospheric models available in GrafNav (Saastamoinen and 

Black in this case). The figure shows that the difference in height estimated using these 

models reaches nearly 15 cm as the aircraft ascends.  
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Although comparing the results obtained from these two models can be used to roughly 

quantify the residual error, it is important to realize that other factors, such as the 

meteorological parameters that feed the model, may play an important role in the absolute 

accuracy of such a model. While not directly indicating the accuracy of either model on 

its own, this approach does indicate how inaccurate at least one of them might be. 

On its own, a bias-like error with a magnitude of 10-15 cm is unlikely to be a problem in 

airborne gravimetry. It may be problematic, however, for high-end navigation and 

mapping systems, in which case, it might be important to make meteorological 

measurements on the ground or in the air throughout the survey. Errors due to the neutral 

atmosphere are discussed further in Section 3.3. 
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Figure 3.4 Difference in position between two tropospheric models during the ascent 

 

3.2.4 An estimate of the effect of the ionosphere 

The ionosphere (the portion of the atmosphere between 50 and about 1500 km above the 

surface of the Earth) has a significant effect on the propagation of the GPS signals; the 
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carrier phase is advanced by an amount proportional to the density of electrons and 

causes the measured ranges to appear shorter than they really are. Fortunately, the 

ionosphere is dispersive, meaning that the effect it has on a signal is a function of its 

frequency. In turn, this means that the effect of the ionosphere can be estimated by using 

a combination of the carrier phase observables on the L1 and L2 frequencies. 

The goal of Section 3.2.4 is to demonstrate the potentially devastating effects of the 

ionosphere by employing an example where it is particularly active. Recall that the 

Greenland data set was selected for this study because it was known to have been 

collected during a period of high ionospheric activity and because the effect of the 

troposphere is relatively small. Because this ionospheric activity only permitted the 

reliable estimation of the integer ambiguities for a portion of this data set, the following 

analysis only treats float solutions.  

Figure 3.5a shows the difference between solutions obtained using both the L1 and 

ionospheric-free observable (the latter is one of the possible linear combinations of the 

L1 and L2 phase measurements). As discussed in Klobuchar (1996), the ionospheric-free 

combination takes advantage of the dispersive nature of the ionosphere to remove all of 

its first-order effects, which account for over 99.9% of the total effect. See Teunissen and 

Kleusberg (1998b) for details about how the ionospheric-free observable is formed. 

Figure 3.5a therefore represents the error in position caused by first-order effects of the 

ionosphere, ∆∇ I. Figure 3.5b shows the horizontal distance separating the master station 

and the aircraft for the same time period. The effect of the ionosphere clearly increases as 

the baseline length increases, reaching values greater than one metre in each component 

for distances greater than 100 km. It is also interesting to notice that, although the effect 

of the ionosphere is reduced as the aircraft returns to the master station (after about 6500 

s), the position solution is heavily biased, especially in the height component. A 

comparison of each solution to that obtained from a static period at the end of the survey 

confirms that the ionospheric-free solution is the correct one.  

Based on the evidence presented herein, there is no doubt that under conditions of high 

ionospheric activity, such as those observed during collection of the Greenland data set, a 

single frequency approach is not sufficiently accurate. If errors like those observed in 
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Figure 3.5a are not corrected for, by using a dual frequency approach, the results could be 

disastrous for any mapping system. 
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Figure 3.5 Errors caused by first-order ionospheric effects, and the baseline length 

3.2.5 The effects of multipath and receiver measurement noise 

The multipath effect is the result of a GPS signal arriving at an antenna from more than 

one direction (due to reflection) and receiver measurement noise is defined as the noise 

resulting from the process of taking the carrier phase measurements. Because it is 

extremely difficult to develop appropriate models of multipath and noise, they usually 

dictate limits on the accuracy of carrier phase positioning, especially in kinematic mode. 

Carrier phase multipath results in low and medium-frequency errors in the estimated 

range to a satellite. Such errors can have a maximum phase error of a quarter of a 

wavelength (i.e. about 5 cm for the carrier on L1). See Ray (2000) and the references 

made therein for good discussions of carrier phase multipath effects. GPS receiver noise 
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is usually a broad-band, white noise sequence. Its amplitude is typically at or below the 

millimeter-level for each measured range and increases for each level of differencing 

performed, Lachapelle (1998). It is also a function of the bandwidth of the tracking loop 

of the receiver, and therefore the dynamic of the vehicle. 

Noise and multipath on the ground 

While multipath and measurement noise each have an effect at the master station and at 

the airplane, it is relatively straightforward to quantify this effect for an antenna-receiver 

configuration on the ground. As an example, consider Figure 3.6 that was generated using 

the data on the L1 carrier coming from a triplet of Trimble 4000 receivers and two 

antennas at the University of Calgary. The antennas were arranged 754 m apart, one on 

the roof of the Engineering building, which is considered to be a medium multipath 

environment (see Ray (2000)), and one in a nearby field where the multipath is 

considered to be low. The signal from the antenna on the roof of the Engineering building 

was split to two of the receivers while the third receiver was used at the station in the 

field. Because the true range is known, the ambiguities are easily fixed and because 

residual ephemeris and atmospheric errors are negligible over such a short baseline, 

Figure 3.6a is a plot of the combined effects of double difference noise and multipath 

( ∆∇ mΦ + ∆∇ εΦ). As shown, the combined magnitude of the error in position caused by 

the multipath and noise from the signals on L1 is at the level of 0.4 cm ( 1- ) with a 

maximum error of about 2.0 cm. Figure 3.6b is a plot of the error in position over a zero-

baseline (i.e. all errors except noise cancel completely) and shows that receiver noise on 

the L1 carrier only contributes an error in position at around the 1 mm-level ( 1- ) with a 

maximum contribution of 3 mm for the same time period. Processing was done in 

kinematic mode in all cases. Although these analyses are empirical in nature and may 

vary with many factors (such as the environment around the antenna, receiver type, 

satellite elevation and strength of the geometry), they agree well with observations made 

in the more statistically meaningful studies carried out by Raquet (1998) and Bona and 

Tiberius (2000). 
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Because the ionospheric-free observable is used in many places in Chapters 3 and 5, it is 

important to roughly quantify the level of noise associated with it. As mentioned above, 

because noise should not be correlated from signal to signal or on either carrier 

frequency, it increases with each level of differencing done. As shown in Shi (1994), the 

expected noise level for the ionospheric-free combination, freeiono− , can be calculated as 

a function of the noise level on the L1 carrier, L1 , through the laws of error propagation. 

It yields the following relationship: 

L1freeiono  09.4=− .             (3.1) 

In other words, while the ionospheric-free combination removes all first-order effects of 

the ionosphere, it increases the noise level by about a factor of 4 on each measured range. 

After differencing, the noise term, ∆∇ εΦ , would therefore be increased by a factor of 

eight. Figure 3.6c was generated in the same way as Figure 3.6b except that the 

ionospheric-free observable was used instead of the L1 carrier phase observable. It shows 

that the same increase in noise can be expected in the estimated position. 

Noise and multipath at the aircraft 

Estimating the effect of multipath in the airborne environment is more difficult than in 

the static case because the true position of the antenna is not known. It is possible to 

roughly quantify it, however, by knowing the true distance between the two antennas that 

were mounted on the aircraft during collection of the Greenland data set. Figure 3.7 is a 

plot of the error in the length of that baseline due to the combined effect of receiver noise 

and multipath at each of the antennas on the aircraft. It was generated by taking the 

difference between the two L1-only position solutions derived using one master station 

and each of the antennas, i.e. there were no constraints placed on either solution. The 

ambiguities were reliably fixed for both solutions and the satellite constellation did not 

change during the period shown (i.e. no satellites rose or fell from view). Also, because 

the antennas are closely spaced, the atmospheric and orbital effects are the same, 

meaning again that only the effects of the terms ∆∇ mΦ and ∆∇ εΦ remain. This method 

assumes that the multipath is uncorrelated from one antenna to the other. 
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Figure 3.6 The errors caused by multipath and measurement noise on the ground 
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Figure 3.7 The combined effect of noise and multipath at the aircraft 
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As shown, the combined effect of noise and multipath for both antennas is at the level of 

roughly 0.4 cm ( 1- ). Assuming that the effect due to multipath is equal in magnitude at 

both antennas but uncorrelated between them, this corresponds to a value of multipath 

and noise at each airborne antenna of about 0.3 cm ( 1- ). This can be compared to the 

value of 0.4 cm ( 1- ) that was observed above for multipath and noise on the ground. 

Visual inspection of Figure 3.6a and Figure 3.7 implies that medium to high-frequency 

multipath is averaged out, while much of the low-frequency content remains. Notice that 

the plots use different time scales. This supports the common perception that the 

changing orientation of the vehicle in a moving environment tends to average multipath. 

A complete study of this would include significantly longer data sets and a comparison of 

the various multipath mitigation technologies that are employed in today’s receivers. 

3.2.6 Errors due to changes in geometry 

The reliability of a DGPS solution depends largely on the geometry implied by the 

satellite constellation; two periods of different geometry can yield different position 

solutions under otherwise equivalent conditions. Changes in geometry may result from 

the rising and setting of satellites, the obstruction of signals and in the case of an aircraft, 

from the banking that occurs during turns and other maneuvers. Even more dangerous is 

the situation where the elevation mask coupled with vehicle maneuvers cause drastic 

changes in the observed geometry. The goal of this section is to demonstrate some of 

these problems, again drawing on examples. 

Up to this point, all computations have been performed using an elevation mask of 10o. 

For the Kananaskis data set, increasing the elevation mask from 10o to 15o makes it 

impossible to reliably maintain estimates of the ambiguities through the turns, meaning 

that a solution that uses float estimates becomes the only option for at least some periods 

of time. Figure 3.8a is a plot of the difference between solutions obtained using elevation 

masks of 10o and 15o for the first data set (i.e. the difference between the solution 

obtained using a mask of 15o and the fixed L1/L2 solution that was discussed in Section 

3.2.3). Figure 3.8b and Figure 3.8c show the observed PDOP and number of satellites in 

each case, for the same time period.  
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Figure 3.8 The effect of changing the elevation mask on position 
 

Clearly, the observed satellite geometry makes a large difference following the turn that 

occurs at approximately 1200 s. Increasing the mask by an extra 5o forces the exclusion 

of satellites from the solution during that turn, bringing the total number to 4 for a short 

period. Reliable floating estimates of the ambiguities clearly become more difficult to 

achieve as the geometry worsens. Although this simulation is artificial, consider the fact 
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that a user would not have known any differently if those satellites had not been available 

in the first place due to poor health or other reasons. 

Generally speaking, more satellites in more portions of the sky will imply a better 

geometry and a better estimate of position. Consider Figure 3.9, however, that shows an 

example in which this is not true. It shows the error in the same baseline that was shown 

in Figure 3.7 except that it was calculated by allowing one of the solutions to include an 

extra (low elevation) satellite for the period after 190 s. Recall that the true length of the 

baseline is known. Although the ambiguities remain fixed, the observed geometry 

improves as a result of the extra satellite. The level of multipath appears to remain 

roughly the same. It is interesting, however, that the estimated length of the baseline 

becomes biased by about 1 cm. This increases the maximum error from under 1 cm to 

nearly 2 cm, implying that it may not always be best to include a satellite in an effort to 

improve the geometry. In this case, the observed bias may come from residual 

tropospheric delay on the low elevation satellite which would give strong support for 

methods such as those outlined in Hartinger and Brunner (1999) that weight the carrier 

phase measurements according to the signal-to-noise ratio, the elevation of the satellite or 

the time since lock. 
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Figure 3.9 The effect of the inclusion of a low elevation satellite 
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3.2.7 Other sources of error 

For completeness, it is important to point out that there are a variety of error sources that 

have not been treated thus far and that can be significant, depending on the 

circumstances. Among them are errors due to: 

• instrumental delays in the receivers and satellites (see Teunissen and Kleusberg 

(1998b)), 

• errors in precise orbits, especially over very long baselines (see Beutler (1998)), 

• remaining tropospheric modeling errors, e.g. their dependency on instantaneous 

environmental conditions (see Brunner (1997)),  

• ionospheric effects of second-order and greater (see Klobuchar (1996)),  

• the non-white behavior of stochastically modeled parameters and their effect on 

the estimation process (see Wang (1999) and Tiberius et al. (1999)) and 

• latency effects in real-time surveys (which are likely to be less crucial since SA 

was turned off). 

While it can be argued that many of these are negligible under normal circumstances, 

their effect should always be considered for high-accuracy applications. 

3.3 Checking the consistency of various solutions 

There are two checks for consistency that are often carried out to verify the quality of 

airborne positioning results. The first is included here because it provides further insight 

into the quality of the tropospheric modeling being carried out and the second because it 

comments on the accuracy of the processing and kinematic models being used. 

Figure 3.10a was derived by comparing the position solutions obtained for the 

Kananaskis data set using two of the available master stations (Banff and Invermere). 

Intuitively, it makes sense that agreement of these with each other is a necessary 

condition for claiming a given level of accuracy. Both are fixed integer ambiguity 

solutions that make use of the Saastamoinen tropospheric model and the same precise 

ephemeris information for the whole time period. Notice by observation of Figure 3.2b 

and Figure 3.10b that the agreement is below the level of 3 cm in each component when 

the distance of the aircraft from both master stations is below 75 km. Also notice that the 
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difference grows as a function of the baseline length, reaching a peak value of 18 cm in 

the vertical component and 6 cm in the horizontal components. This peak occurs when 

the distance of the aircraft from the Invermere station reaches just over 150 km and after 

it has not been closer than about 50 km to it for over 1.5 hours. Because the error 

sequence is clearly spatially correlated (and because precise ephemerides have been 

used), the large amplitude differences are most likely due to residual atmospheric effects. 

Further, because the data set was collected during the nighttime and at a very large flying 

height, most of the effect is probably due to unmodeled tropospheric delay (note that the 

Invermere master station is approximately 465 m lower than the Banff master station and 

90 km away from it in the horizontal). A small component of the difference is also 

probably due to different multipath experienced at the master stations. 

0 2000 4000 6000 8000 10000 12000 14000

-0.2

-0.1

0

0.1

0.2

a) difference between the solutions  from  Banff and Inverm ere m as ter s tations  (m )

0 2000 4000 6000 8000 10000 12000 14000
0

50

100

150
b) separation between the airc raft and the Inverm ere s tation (km )

Tim e s ince 282600 (s )

u 

n 

e 

m ax  [n, e, u] =  [ 6.4, 6.1, 18.1 ] cm  
s td dev [n, e, u] =  [ 1.5, 1.2,   3.6 ] cm  

 

Figure 3.10 The difference between solutions from different master stations 

Finally, the two solutions obtained by processing exactly the same data forward and 

backwards in time (using the Banff master station) are compared in Figure 3.11. It shows 

a high level of consistency, with a maximum difference of 6 cm in the height and 



61 

   

standard deviations of less than 2.5 cm in all three components. For completeness, it 

should be mentioned that this is less consistent than a similar result presented in Shi 

(1994). It is assumed that this is because there were only two instances in the latter where 

the satellite constellation was reported to change (i.e. satellites rising or falling from 

view). Consistency between solutions is very challenging to achieve when satellites enter 

or leave the solution; these are opposite occurrences in forward time than in reverse time. 

Compare the solid line in Figure 3.8c to Figure 3.11 to observe the correlation between 

these events and the differences between the forward and backward solutions. 
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Figure 3.11 The difference between forward and reverse solutions 

3.4 The effect of positioning errors on airborne mapping systems 

Examples of the residual errors affecting the accuracy of airborne DGPS positioning have 

been isolated and presented in an effort to demonstrate the effect that each can have 

under realistic conditions. It was seen that an absolute accuracy of 50 cm is not always 

achieved. For long-duration surveys with baselines reaching lengths of 150 km, it was 

seen that: 

• total multipath and noise seem to cause errors no larger than about 3 cm, 

• the kinematic model and processing algorithm are consistent to at worst 6 cm 

(independent of baseline, but dependent on changes in satellite constellation), 

• absolute errors in the order of 10-15 cm due to the troposphere seem possible for 

long baselines, 
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• a float solution can deviate by 50 cm from the corresponding fixed solution (also 

for long baselines), 

• an active ionosphere can cause metre-level errors if not treated properly,  

• poor geometry can result in errors at least as large as 50 cm, and  

• errors in broadcast orbital information can cause errors that are greater than 5 cm. 

While it can be argued that the latter three of these can be minimized (by various 

logistical and processing strategies), the first three represent limits to the accuracy of 

current airborne positioning techniques. In cases where a widelane approach is not 

possible (such as under a very active ionosphere), the fourth point above may also pose a 

limitation. Given that these represent maximum errors, however, it is reasonable to 

expect to obtain the position of an aircraft with a standard deviation ( 1- ) of under 50 

cm. This confirms that DGPS is capable of providing the positioning accuracy 

required for use in airborne gravimetry.  

As for all airborne positioning applications, factors such as the selection of master 

stations with low multipath, keeping aircraft bank angles to a minimum during turns, 

using precise orbital information, flying as low as possible to minimize tropospheric 

effects and especially using dual frequency receivers will all help to ensure that this level 

of accuracy is maintained under adverse or unexpected conditions. 

For completeness, consider the general positioning requirements that are given in Table 

3.1 for a number of airborne georeferencing systems. They are from Skaloud (1999) and 

are given as function of the mapping sensor being employed. Based on the observations 

made in this chapter, several broad conclusions can be made regarding the ability of 

DGPS positioning to meet them. For large scale mapping operations (where 5-10 cm are 

needed), there appear to be two prerequisites: the length of baselines must remain shorter 

than 75 km and the aircraft must fly close to the master station on a regular basis (e.g. at 

least once per hour) to avoid the growth of errors that are not sufficiently spatially 

correlated. It is reasonable to expect DGPS to meet the accuracy requirements for the 

other applications listed in Table 3.1 as long as the baselines are shorter than 150 km. 

Finally, despite these optimistic conclusions, the reader is reminded of the large 

differences between the eight DGPS packages that were mentioned earlier and reported in 
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Bruton et al. (2000b). Although a group of the solutions agreed with each other at the 

level of 10 cm, a number of them differed from that group by more than a metre. This 

implies that a considerable amount of caution should be exercised when developing, 

evaluating and using a DGPS software package for airborne applications. 

For further evaluating the absolute accuracy of DGPS, the author recommends using a 

data set in which a precise reference is available. This might include one where either 

LIDAR or photogrammetry are available as an accurate and independent reference. If 

appropriate data sets become available, the analyses should also be extended to include 

various GPS receiver types. 

Table 3.1 Positioning accuracy requirements for airborne mapping  

Type of sensor Required Position (cm) 

Aerial camera, scale > 1:2000 5-10 
Aerial camera, scale < 1:5000 75 – 100 

CCD camera or scanner 25 – 100 
IFSAR 20 – 200 
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4 Differentiation for High Precision Velocity and Acceleration Determination 

In this chapter, processes of differentiating discrete-time signals are discussed, with 

emphasis on determining velocity and acceleration from measurements made by the GPS. 

There are two principal objectives:  

a) to comprehensively review possible methods of carrying out the differentiation 

process, expressing each in a comparable and uniform way (that is, as finite 

impulse response (FIR) filters), characterizing each method in the frequency 

domain, and  

b) to employ real GPS data to demonstrate the appropriate use of each method of 

differentiation in both the measurement and position domains.  

Operations are carried out on the GPS signals at two stages in this chapter, depending on 

the application at hand. In the first stage, operations are carried out on the GPS 

measurements, prior to their use in a GPS software package (that employs a linear system 

like that described in Section 2.3.3). These will be referred to as operations made in the 

measurement domain. Primarily, the measurements being operated upon are the carrier 

phase measurements and the resulting phase rate measurements are often referred to in 

the literature as derived Doppler measurements. In the second stage, operations are 

carried out on the sequences of position and velocity that are available after the use of 

such a GPS software package. These will be referred to as operations carried out in the 

position and velocity domains. Likewise, the term acceleration domain will be used when 

discussing sequences of acceleration, i.e. after appropriate differentiation of the position 

or velocity sequences.  

The research reported in Sections 4.1, 4.2 and 4.4 constitutes the contributions of the 

author to Bruton et al. (1999) and the results presented in Section 4.3 were obtained for 

the same publication together with the other authors. Work is presented without further 

reference to that publication.  
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4.1 Background 

The differentiation of discrete-time signals has been studied on a number of occasions for 

velocity and acceleration determination using the GPS. In the measurement domain, 

investigations have been carried out to derive a phase rate measurement (Doppler) by 

differentiating the carrier phase measurements. The derived Doppler is used in place of 

the phase rate measurement that the receiver generates from the observed Doppler shift of 

the incoming signals. In the following, the receiver generated phase rate measurement is 

referred to as the raw Doppler.  

In the literature, the derived Doppler has been considered advantageous, mainly because 

it is considered to be less noisy than the raw Doppler. Several methods of differentiation 

have been investigated for this purpose. Fenton & Townsend (1994) demonstrated the use 

of parabolic functions. Both Cannon et al. (1997) and Hebert (1997) approached the task 

using simulated GPS data by applying low-order Taylor series approximations of the 

derivative (i.e. central difference equations) and by differentiating cubic spline 

approximations to the data. A Kalman filtering approach was also proposed and applied 

by Hebert (1997). In each of the above cases, good solutions are obtained for static and 

low dynamic cases, but errors increase significantly when higher dynamics are included.  

Several investigations have also been carried out that derive acceleration by 

differentiation in the position domain. That is, a GPS software package is used to derive 

the time series of both position and velocity which are then differentiated. Examples of 

such studies of acceleration determination for airborne gravimetry include Brozena et al. 

(1989), Kleusberg et al. (1990), Hehl (1990), Czompo (1991), Wei et al. (1991) and Van 

Dierendonck et al. (1994). Because of the nature of the gravity signal, emphasis in all of 

these studies is in the low-frequency part of the spectrum. Little work has been done that 

considers different methods of differentiating the signals, especially in cases that are not 

severely band limited.  

The research carried out herein contributes to this field of study in a number of ways. 

First, the concept of differentiation is reviewed in Section 4.2. The ideal differentiator is 

introduced as a means of evaluating methods of approximating the derivative of a 

discrete-time signal. A number of differentiating concepts are then reviewed and 
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proposed for use in kinematic GPS systems. Some of these have already been applied in 

the GPS literature (e.g. central difference equations) and others have not. Although all of 

the filter concepts treated herein are widely known in the field of signal processing, it is 

important to note that they have not been evaluated for use with the GPS for deriving 

velocity and acceleration and, as a result, their evaluation is important herein. Each 

method of differentiation is presented in a common framework and subsequently 

characterized in terms of its performance in the frequency domain and with respect to the 

ideal differentiator. This approach provides an understanding of the performance of each 

method when used to differentiate GPS signals under conditions of variable or unknown 

dynamics.  

In addition, it is possible to differentiate a signal by fitting a model to it and subsequently 

differentiating the model. This approach is treated by means of an example and compared 

to the methods mentioned above. In the example, the use of best-fitting polynomials is 

reformulated as a time domain convolution (and thereby analyzed within the same 

framework as the other differentiating methods). It is then characterized as a function of 

both polynomial order and window length. The ranges of applicability of polynomial fits 

are quantified in terms of their effective frequency range. This permits an evaluation of 

the effect of curve fitting on the spectrum of the resulting signal. For example, it is seen 

that the choice of polynomial order and window length affects the spectral signature. 

To bridge the gap between theory and application, the practical implementation of each 

of these differentiators is discussed in Section 4.3. Each method is applied to real GPS 

data using a discrete time convolution. In other words, they are all considered to be non-

recursive, (i.e. FIR) filters. Issues of phase response and filter order are also discussed. 

Examples that use real GPS data are presented in order to demonstrate the effectiveness 

and limitations of these differentiating filters for determining vehicle velocity and 

acceleration under different dynamic conditions. Several methods are then applied to 

three practical cases that are characterized by increasing frequency content. Namely,  

a) a static baseline,  

b) an airborne gravimetry survey and  

c) data collected on a precision motion table.  
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In the latter two cases, verification of the results is accomplished using independent 

references of higher quality (i.e. the known gravity field and a precise reference 

trajectory, respectively).  

4.2 On the differentiation of uniformly-sampled discrete-time signals 

For the purposes of this research, a discrete-time differentiator operates on a uniformly 

sampled sequence (of a continuous-time band-limited input signal) in such a way as to 

produce a corresponding output sequence that, after suitable band-limiting, approximates 

the actual continuous-time derivative of the input signal. According to Antoniou (1993), 

the frequency response, )( TjeH ω , of an ideal uniformly-sampled discrete-time 

differentiator is given by: 
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where ω is the frequency of the spectrum of the signal (in radians), Ts πω 2≡  is the 

sampling frequency (in radians), and T is the corresponding sampling period (in seconds). 

The task of differentiating a discrete-time signal can therefore be seen as approximating 

this idealization and applying it to some signal of interest. The ideal differentiator will be 

used throughout Section 4.2 to assess the quality of each of the differentiators that are 

described. 

4.2.1 On the design and implementation of differentiators for GPS 

The differentiators discussed in this chapter are all cast as FIR filters. Practically, such a 

filter is applied to a discrete data set, x(nT), using a convolution as follows: 
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where in this case, )(’ nTx  is the derivative of the input sequence, x(nT), and h(nT) is the 

impulse response of the system, having length N. The relationship between the discrete-

time unit impulse response, h(nT), and the frequency response of the discrete-time 

differentiator, )( TjeH ω , is given by the Inverse Fourier Transform. Practically then, the 

design of a digital differentiator becomes the problem of designing an impulse response, 

h(nT), that can be applied to a data set using equation 4.2 and that has a frequency 
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response as close as possible to that in equation 4.1, within the frequency band of interest. 

For details about filter design, see Antoniou (1993). 

The application of discrete-time filters in GPS systems is restricted by several important 

practical considerations. The first consideration relates to the linearity of the phase 

response of the filter, arg[ )( TjeH ω ]. It is especially important that arg[ )( TjeH ω ] be 

close to a linear function within the frequency band of interest. This is especially critical 

for navigation systems because of their high dependence on the temporal characteristics 

of the signals. Careful treatment of both the magnitude response, | )( TjeH ω |, and the 

phase response, arg[ )( TjeH ω ], of the differentiator is therefore important. An FIR filter 

is appropriate in this respect, because it can be designed to have a time symmetric 

impulse response that implies that all spectral components of the input signal are subject 

to the same delay. The delay itself is easily corrected for in post-mission applications and 

may be taken into account in many real-time applications (depending on the processing 

requirements, the data rate and the length of the filter).  

A second consideration is the integer nature of the delay and the corresponding odd 

length of the impulse response. As pointed out in Oppenheim and Schafer (1989), an 

even length impulse response has a significantly better magnitude response than one of 

similar order but odd length. This was confirmed recently in Skaloud and Merminod 

(2000), where the goal was to preserve the frequency content for high frequencies. 

Despite these improvements in the magnitude of the frequency response, an FIR filter 

with an even length impulse response has a major drawback in terms of the phase 

response. It causes the resulting delay to be non-integer, which in turn, can be 

problematic for time sensitive navigation systems. For the research presented herein, only 

odd length impulse responses are employed because the errors due to interpolation (from 

the non-integer to the required integer epochs) outweigh the advantages, especially for 

components of the signals in the medium and high-frequency bands. 

A third consideration is the absolute length of the impulse response. A filter with a short 

impulse response offers the advantage of a small time delay and a filter with a longer 

impulse response offers the advantage that it can achieve a more accurate magnitude 

response. A further important consideration, relating to the length of the filter, occurs in 
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these systems when the states of the filter have to be reset because of unavoidable 

external events. In this case, errors occur due to edge effects. Cycle slips and gaps in GPS 

data are good examples of such unavoidable external events. These errors will affect less 

data if the length of the impulse response of the filter is small. A compromise must 

therefore be reached between minimizing the magnitude of the approximation error and 

the tolerable impulse response length. This will depend on the application and varies 

from situation to situation. 

4.2.2 Low-order Taylor series approximations 

Because they have been used extensively in the GPS literature, low-order Taylor series 

approximations of the derivative will be treated first. Consider the first-order central 

difference approximation to the derivative that is given by: 
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so that the derivative of x at time nT is estimated using data at two epochs (times 

TnT + and TnT − ). Higher order central difference equations are often presented in the 

literature as an alternative to this simple first-order approximation (because it is intuitive 

that using more data on either side of time nT will provide a better estimate of the 

derivative). These higher order derivations are also based on the Taylor series. Consider 

for example the third-order central difference equation that has the following form: 
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The expression of these basic equations as FIR filters is relatively straightforward and 

useful; the impulse responses corresponding to the first and third-order differentiators 

given above are usually represented as vectors as follows: 

[ ] T 101
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Note that the terms first-order and third-order are used herein to refer to the filters given 

by equations 4.3 and 4.4, despite the fact that strictly speaking, the impulse responses in 

equations 4.5 and 4.6 define second and sixth order discrete-time filters. This is to remain 

consistent with their use in GPS literature. 

Such filters can be implemented using equation 4.2 and are obviously non-causal. 

Expressing them in this way is useful because it permits their comparison to the ideal 

case. Consider Figure 4.1, for example, showing the magnitude of the frequency response 

for each case, derived using a normalized sampling frequency given by sω = 1 Hz. The 

ideal differentiator is also shown by the dotted line. It is clear that the first and third-order 

filters are only good approximations of the ideal differentiator at low frequencies. For 

example, they begin to deviate considerably from ideal at about 0.05 Hz and 0.15 Hz, 

respectively.  

The above observation has several implications insofar as GPS applications are 

concerned. First, if the signal being differentiated is primarily a very low-frequency 

signal, then either of these approximations may suffice. This is the case for data obtained 

during a static survey and might be the case for data collected from a very slow moving 

platform. Second, if the signal is primarily low-frequency in nature, and there exists 

mainly noise in the upper part of the spectrum, then these differentiators will also serve to 

suppress that noise; a very encouraging result at first glance. However, the proper use of 

these differentiators depends on the signal to be differentiated. Caution must be exercised 

if the signal has medium to high-frequency components (relative to the sampling 

frequency) because this type of differentiator will result in spectral distortion at those 

frequencies, and ultimately in a derivative of lower accuracy. Investigations in which 

low-order Taylor series approximations have been used in the GPS measurement domain 

include both Cannon et al. (1997) and Hebert (1997). Results presented in both of these 

publications support the observations made above; that is, the approximations worked 

well for static and very low dynamic data sets, but give poor results for cases involving 

higher dynamics. 
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Note that by increasing the order of the Taylor series approximation, better approximates 

of the ideal differentiator can be obtained (especially at low frequencies). This will be 

examined further in the discussion of numerical designs in Section 4.2.5. 

4.2.3 Designing differentiating filters using the ideal impulse response 

Because the frequency response of the ideal differentiator is known, its ideal impulse 

response can be calculated analytically using the Inverse Fourier Transform. Practically, 

a differentiator can be designed by sampling, truncating and delaying the resulting 

infinite length impulse response. For a 24th-order filter, this yields the differentiator 

shown by the solid line in Figure 4.2, i.e. the filter has an impulse response that is 25 

samples long. The upper graph shows the magnitude of the frequency response of the 

filter and that of the ideal response. The lower graph shows the error in the magnitude 

(i.e. the difference between the latter two curves).  
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While this filter does not compare well in the low-frequencies with the Taylor series 

filters discussed in the last section, it does offer a better approximation for high 

frequencies. The oscillatory nature of the deviations in the response that are shown in 

Figure 4.2 is commonly referred to as the Gibbs’ phenomenon and is the result of the 

finite length of the impulse response. There are several ways to improve on this design. 

The first and most obvious way is to increase the length of the filter, but this is subject to 

the disadvantages mentioned in Section 4.2.1, especially for navigation systems. The 

second approach is to attenuate the Gibbs’ oscillations and avoids an increase in filter 

order. Essentially, this approach replaces the abrupt truncation of the impulse response by 

a gradual tapering that is defined by a window function, see Antoniou (1993). There are a 

number of possible window functions that can be employed, including the Blackman 

function that is illustrated in Figure 4.3b. Figure 4.3a and Figure 4.3c show the impulse 

response corresponding to the 24th-order filter, before and after application of the 

Blackman window function (note that it was designed to have a cut-off frequency of ωc = 

0.4 Hz). Clearly, the window function reduces the magnitude of the impulse response on 

either side of its centre. Figure 4.4 shows the corresponding effect on the magnitude of 

the frequency response of the filter. As in Figure 4.2, the upper graph shows the 

amplitude response of the filter, and the lower graph shows the error relative to the ideal 

impulse response. The advantage of using the window function is evident as a result of 

the reduction in the magnitude of the Gibbs’ oscillations. By using only symmetric 

impulse responses and symmetric window functions, the symmetry and therefore the 

linear phase properties of the filter are preserved. Examples of other window functions 

are given in Antoniou (1993) and Orfanidis (1996). Examples where window functions 

have been used in the design of low-pass filters for GPS related research include 

Hammada (1996) and Skaloud and Schwarz (1998).  

Upon inspection of the magnitude response in Figure 4.4, it is clear that a differentiator 

that is based on the ideal impulse response will offer a good approximation to the ideal 

differentiator when a window function is used. It is also clear that such a filter has a 

wider range of applications than the low-order Taylor series approximations that have 

been considered in Section 4.2.2, because it offers a better response over the whole 
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frequency band. This has several implications. If the signal being differentiated has 

components at frequencies across the spectrum, then the output of the system will be a 

better approximation of the derivative. On the other hand, if noise only exists across a 

part of the spectrum, then the system will tend to amplify that noise. This is especially 

true if the signal of interest contains only low-frequency information. 
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4.2.4 Optimal designs 

Although no discrete-time system can be designed to perfectly match the ideal 

differentiator, FIR filters can be designed that approximate it very well for all frequencies 

of interest. In optimal design, the impulse response of the filter is obtained by minimizing 

the error in the frequency response (with respect to the desired frequency response) by 

means of conventional numerical optimization techniques. In this section, the Remez 

Exchange Algorithm is used as a demonstration of this. Consider Figure 4.5 that shows 

the amplitude response of a 24th-order differentiator designed using the Remez Exchange 
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Algorithm that is provided in software accompanying Antoniou (1993). The filter was 

designed to have a transition band from 0.4 to 0.5 Hz, thereby ensuring that no signal 

content is transmitted above the Nyquist frequency, sω /2 = 0.5 Hz, and therefore that no 

aliasing of the signal can occur. Clearly, this filter offers a better approximation to the 

ideal case over the whole frequency band than any that has been presented previously. In 

turn, this provides a good solution for conditions of unknown or high dynamics. 

4.2.5 Numerical designs 

As mentioned in Section 4.2.2, better approximations of the ideal differentiator can be 

obtained from the Taylor Series if higher order expansions are used. This is a subset of 

the filter design problem referred to as numerical design. Consider a filter design based 

conceptually on a central difference formula derived from a 24th-order Taylor series 

expansion of the derivative. Figure 4.6 shows the magnitude of the frequency response of 

such a filter and its deviation from the ideal differentiator. A higher order Taylor series 

approximation clearly better represents the ideal case over a wide bandwidth.  

It is interesting to note that although the amplitude response of this filter over the whole 

spectrum is not as good as the one designed using an optimal approach, it is very good in 

the low-frequency band. It will be shown in Section 4.3 that this makes it especially 

suitable for cases in which the spectrum of the signal is primarily at low-frequencies (e.g. 

static surveys and airborne gravity). 

4.2.6 Curve fitting for differentiation 

An intuitive approach to estimating the derivative of a noisy discrete-time signal is to fit a 

curve to the data and then differentiate the curve. For purposes of illustration, consider 

using a least squares approach to determine a polynomial that best fits the data. The 

instantaneous derivative of the data is obtained by differentiating the polynomial. The 

curve fitting approach essentially achieves a band limiting by means of polynomial 

interpolation. As well as providing an estimate of the derivative, this will offer a certain 

level of smoothing that may or may not be desirable (depending on the situation). The 

amount of smoothing will be a function of the order of the polynomial and the length of 

the sliding window in which the data is being fit.  
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Let the discrete-time signal at time instant tk be given by fk and let the sliding window of 

length (W+1) be centered around time tk and index it such that the index i varies from -

W/2 to W/2. Within this window, the best-fit polynomial of order M therefore has the 

form: 

M
M iaiaiaaiP ++++= ...)( 2

210           (4.7) 

and its first derivative is given by  

1
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idP
.           (4.8) 

The polynomial coefficients in the above equations can be solved for using the following 

standard equation for a least squares solution (without weights) 

a = (ATA)-1AT f            (4.9) 

where [ ] T
Maaa  ...10=a and the ith row of A  and f  are given by  
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Performing this type of adjustment for every data point is computationally very 

burdensome and therefore two major simplifications are made. First, because the term 

(ATA)-1AT in equation 4.9 is independent of the signal f, it only needs to be calculated 

once. Second, by setting i=0, the expression for the value of the derivative in equation 4.8 

at the center point of the window (t=tk) is given by: 

 1
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= .          (4.11) 

Thus, only one coefficient is needed at each epoch for each derivative to be calculated. 

This means that for the first derivative, only the second row of the term (ATA)-1AT is 

needed. The solution for the value of the function therefore reduces to a convolution. If 

the second row of the above matrix is given by h, then the first derivative of the function 

is given by 
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This approach to fitting polynomials to a data set using least squares is referred to as 

Savitzky-Golay smoothing. See for example Press et al. (1992).  

These curve fitting filters have symmetric impulse responses and will therefore have 

linear phase transfer functions leading to a constant time delay of all spectral components 

of the signal. When formulated as in equation 4.12, least squares fitting of polynomials to 

a discrete time signal can be seen as applying an FIR filter and the least squares 

adjustment becomes a filter design problem. This approach allows one to quantify the 

amount of smoothing that a best fitting polynomial offers as a function of both the order 

of the polynomial M and the size of the sliding window (W+1). 

For completeness, it is important to realize how this type of filtering differs from optimal 

FIR filtering (that was discussed in Section 4.2.4). Although both methods might use a 

least squares fit, they are fundamentally different. A filter designed using a curve fitting 

approach uses least squares to fit a curve to the data being operated on. It will have a 
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corresponding frequency response that is determined by the choice of the fitting function. 

On the other hand, optimal design techniques use a least squares fit to minimize the errors 

in the frequency response with respect to some desired response. 

Figure 4.7 shows the amplitude response of five polynomial fits. They are a set of 5th-

order polynomials (M=5) designed with window lengths W = 101, 49, 25, 15 and 7. Also 

shown for comparison is the amplitude response of the ideal differentiator. Notice first 

that each offers a reasonably good approximation of the ideal case at low frequencies. 

The frequency range over which they do a good job of approximating the ideal 

differentiator is clearly a function of the length of the window. Intuitively this makes 

sense: if the sliding window is short, then high-frequency information will be identified, 

whereas if it is large, only the low-frequency information will be preserved.  

This frequency domain analysis allows one to quantify the amount of differentiation and 

smoothing resulting from a given polynomial. For example, consider using a polynomial 

with M=5 and W=15, being used to differentiate a signal. Figure 4.7 shows that a good 

estimate of the derivative will be obtained for spectral information up to approximately 

0.08 Hz. Above that frequency, the spectral content is attenuated. The first zero of the 

magnitude of the frequency response of this filter occurs at 0.19 Hz and there are four 

more rises in the magnitude of the response as frequency increases. This characteristic 

can be disastrous, depending on the signal being differentiated. The filter should only be 

applied if one is interested in the derivative of the spectral components of the signal in the 

frequency range below 0.08 Hz. If there is any spectral information above 0.08 Hz in the 

signal, then the output of the filter will yield a very poor and perhaps unacceptable 

estimate of the derivative.  

The behavior of a polynomial fitting filter is also a function of the order of the 

polynomial. Figure 4.8 shows a plot of the maximum undistorted frequency (MUF) as a 

function of window length for polynomial orders M = 2, 3, 5, 10 and 20. (MUF is defined 

as the frequency above which the filter no longer approximates an ideal differentiator 

with better than 0.5% of the maximum frequency content of the signal.) This figure can 

be used to determine the range of parameters that are suitable for a given application. 

Obviously, a polynomial fitting filter can only be used to estimate the derivative in cases 
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where the signals are band-limited and low-frequency in nature. The range of 

applicability is a function of the parameters M and W, as given by Figure 4.8. 

Because the curve fitting problem has been treated by using polynomials as an example, 

some comments about other models are in order. Whether the curve being fit is a 

polynomial, parabola or cubic spline, its frequency response will be similar in nature to 

those in Figure 4.7; that is, it will be suitable for band-limited low-frequency signals and 

it will only approximate the ideal differentiator up to a certain frequency. In turn, this 

means that such filters can only be used for static or low dynamic conditions. This has 

been confirmed in the research reported in several publications. For example, Fenton and 

Townsend (1994) used a parabolic fit within the receiver to estimate the derivative. They 

found that velocity results were improved in static cases. Both Cannon et al. (1997) and 

Hebert (1997) approached this task in post mission using simulated GPS data by 

employing cubic spline fits for differentiation. In each of these cases, good solutions were 

observed in static and low dynamic cases, but errors increased with higher dynamics. 
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4.2.7 Comments on other methods of differentiation 

By restricting this discussion to the use of FIR filters, several other approaches have not 

been mentioned. For example, it is well known that a Kalman filter smoother results in a 

smooth, band-limited solution. This result was confirmed in Hebert (1997). For this 

reason, and because it has been shown to offer little or no improvement over the low-

order Taylor series approximations, Kalman filters are not treated in this dissertation. 

Also, infinite impulse response (IIR) filters have not been treated herein. This is for 

several reasons. Although they operate recursively over a smaller filter mask, the required 

impulse responses are just as long and their transient effects are of roughly the same 

length as for the equivalent FIR filter. Additionally, designing IIR filters with good phase 

characteristics is less straightforward than for FIR filters and one must often perform 

post-mission reverse time filtering in order to achieve a zero-phase response. Although 

not included in this initial analysis, it may be worthwhile to consider IIR filters as part of 

future work. 

4.3 Implementation and testing using real GPS data 

The goal of this section is to implement the differentiating filters that were introduced in 

Section 4.2 and to demonstrate their appropriate use under a variety of dynamic GPS 

conditions. This will be done in both the measurement domain and the position domain. 

In each, appropriate differentiation methods will be applied to cases of increasing 

dynamics, namely, a static DGPS baseline, an airborne gravity survey and DGPS data 

collected on a precision motion table undergoing known dynamics. In the latter two 

cases, results are verified using independent references (the known gravity field and the 

precise reference trajectory provided by the motion table). 

As outlined in the last section, all of the differentiators that are treated herein are FIR 

filters having linear phase transfer functions, meaning that they can be applied to any 

GPS data set by employing a discrete time convolution. Two software packages have 

been developed at the University of Calgary for this purpose. One is a pre-processor for 

differentiation of carrier phase measurements and one is a post-processor for 

differentiation of position and velocity. For the measurement domain investigations that 
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are carried out in the next section, the pre-processor called DERived DOPpler 

(DERDOP) was written to apply any impulse response to the phase measurements 

according to equation 4.2. It derives the phase rate (Doppler) by differentiating the carrier 

phase data. A phase velocity trend method is used to detect cycle slips using the raw 

Doppler observable and the filter is reset if gaps in the data or cycle slips are detected. In 

cases when the filter is reset, a central difference approximation is used to estimate the 

phase rate during the period in which the filter is reset (i.e. corresponding to half of the 

order of the filter). The carrier phase data coming from each satellite are treated 

independently, meaning that a slip on one does not reset the filters for the other satellites. 

The original version of the DERDOP software (that implements the ideas presented in the 

last section) was written for Bruton et al. (1999) by C. Glennie.  

The software package KINGSPAD is used to estimate position and velocity from the 

measurements whenever required. Because the baselines are short in all cases, the 

solutions are based on the L1 carrier phase measurements. 

For the position and velocity domain investigations that are carried out in Section 4.3.2, a 

post-processor called GPSACC is used. It is part of the GREATGUN package and also 

applies any impulse response according to equation 4.2. Any gaps in the time tagged 

position and velocity solutions are filled in using a linear interpolation prior to filtering.  

In the following numerical studies, curve fits and differentiators based on the ideal 

impulse response are not used. This is because the range of applicability of the curve fits 

is limited and similar conclusions are reached when using the differentiators based on the 

ideal impulse response as when using optimal designs. 

4.3.1 Analyses based differentiation in the measurement domain 

Three data sets are analyzed in this section to assess the performance of the different 

methods of differentiation in the measurement domain (i.e. performance of the derived 

Doppler). They were chosen to represent varying levels of dynamics. All three data sets 

were collected using a 1 Hz sampling frequency.  

No dynamics case: static data analyses 

For the static case, approximately 40 minutes of data was collected on a baseline of 

approximately 6 metres with an Ashtech Z-XII and a Trimble 4000SSE receiver. After a 
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static initialization period of 100 seconds, the data was processed in kinematic mode. The 

errors in velocity obtained by deriving a Doppler using the first and third-order Taylor 

series approximations and 48th-order differentiators designed using numerical and 

optimal approaches are displayed in Table 4.1. Also shown are the results obtained if the 

receiver-generated raw Doppler is used. Table 4.1 shows that each method of phase 

differentiation provides significantly better results than the raw Doppler in both RMS and 

mean values for all three components of the velocity. The best RMS improvement is 

realized using the first-order Taylor series approximation, followed by the third-order and 

the numerical filters. The optimal differentiator gives the poorest results, but this is 

expected. Because the data set is static, there is no velocity information in the frequency 

bands where the Taylor series approximations begin to deviate from the ideal 

differentiator. Therefore, instead of causing differentiation errors in this band, the two 

approximations actually behave similar to low-pass filters and dampen the higher 

frequency noise. However, since the numerical and optimal differentiators are still close 

to ideal in the higher band, they tend to amplify the noise. This effect is shown in Figure 

4.9 where the frequency spectra of the residuals for the first-order and optimal 

differentiators are displayed for one of the components.  

It is also important to notice that the numerical differentiator offers a better solution than 

the optimal differentiator for this static case. This can be explained by looking at Figure 

4.5 and Figure 4.6. The error in the response of the numerical filter at very low-

frequencies is of the order of 1x10-8, while it is of the order of 1x10-5 for the optimal 

filter.  

Table 4.1 GPS velocity errors for static data 

RMS (mm/s) Mean (mm/s) 
Doppler type 

north east up north east up 

Raw 4.00 3.11 7.04 0.20 -1.32 1.75 
1st-order 0.65 0.48 1.00 0.20 -0.05 0.18 
3rd-order 0.93 0.70 1.54 0.21 -0.07 0.17 

numerical (48) 1.24 0.96 2.16 0.20 -0.05 0.17 
optimal (48) 1.33 1.04 2.32 0.20 -0.05 0.18 



82 

   

Note that although the exact numbers in Table 4.1 would be different if other types of 

receivers had been used, it is clear that the relative improvement offered by the various 

methods of differentiation would not change. It should also be noted that if it is known a-

priori that the antenna is static, it is also known that the velocities should be zero. 

Low dynamics case: airborne gravimetry 

Airborne gravimetry provides a very illustrative example for several reasons. The first 

reason is that, as noted in Chapter 2, errors due to GPS still make up a significant portion 

of the error budget of an airborne gravity system, especially as its bandwidth is widened. 

This is especially true if the acceleration is derived from estimates of the velocity rather 

than from estimates of position. The second reason is that, although the dynamics 

experienced by the survey aircraft during a flight line are obviously higher than in the 

static case, they are nevertheless relatively low due to the benign flight conditions, so that 

it becomes a good intermediate example. 

To analyze the improvement in airborne gravity results when the acceleration is estimated 

from GPS velocity (that is in turn based on the derived Doppler data), four flight lines of 

approximately 1200 seconds duration from an airborne gravity test are analyzed. The test 

took place on September 10 1996, over the Rocky Mountains in Alberta, Canada. More 

details can be found in Appendix A.1, where it is referred to as the Kananaskis data set.  

The Trimble 4000SSI receivers in Banff and on the aircraft are used as the master and 

remote stations, respectively. The onboard SINS/DGPS combination is used to derive 

gravity disturbances (according to the procedure that is outlined in Chapter 2), and the 

estimates are then compared to reference gravity disturbances that were upward 

continued from ground gravity measurements. The accuracy of the estimates is therefore 

a function of both DGPS and SINS errors. Since the SINS errors are dominant mainly at 

lower frequencies, the accuracy of the estimated disturbances is largely a function of 

DGPS noise.  

Table 4.2 gives the errors in gravity disturbance for different filtering periods. It shows 

the average of the results obtained for the four flight lines closest to the master station 

(see Bruton et al. (1999) for details). The optimal and numerical differentiators are each 

48th-order filters. The 60 and 90 second filtering times are typical periods used in 
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airborne gravity and the others are included to demonstrate the performance for higher 

frequencies.  

An analysis of the results in Table 4.2 shows that the first-order filter now performs 

worse for the shorter period than the raw Doppler observations, which is in opposition to 

the observations made above for the static data. This change in performance is due to the 

introduction of vehicle dynamics. Consider the average spectrum of the upward 

component of the velocity for the airborne test that is shown in Figure 4.10. There is 

clearly velocity information up to approximately 0.2 Hz. The remaining spectral content 

above 0.2 Hz is due mostly to measurement noise. Recall Figure 4.1 that shows the 

amplitude response of the first and third-order differentiators. The first-order response 

deviates significantly from ideal in the band between 0.02 to 0.2 Hz. This deviation is in 

a band where vehicle motion is present and explains why poor results were obtained from 

the first-order differentiator. The third-order differentiator, however, is still very close to 

ideal up to 0.2 Hz, and therefore shows good results that are practically identical to the 

numerical and optimal results. 
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Table 4.2 Average agreement of gravity estimates with the reference  
(Based on derived Doppler) 

Standard deviation (mGal) 
Doppler type 

15 s 30 s 60 s 90 s 

raw 57.1 15.1 4.9 3.2 
1st-order 144.7 20.3 3.9 2.8 
3rd-order 41.9 11.0 3.6 2.8 

numerical (48) 41.8 11.0 3.6 2.8 
optimal (48) 41.9 11.0 3.6 2.8 

 

High frequency dynamics case: motion table data 

As a final test for comparing differentiation techniques in the measurement domain, a 

data set collected on an Anorad precision motion table was analyzed. An Ashtech Z-XII 

antenna was placed on the motion table and followed a prescribed periodic trajectory. A 

second Ashtech Z-XII was used and approximately 20 minutes of GPS data was collected 

in differential mode. The Anorad table allows the user to specify a trajectory along one 

axis, and provides a position and velocity reference for the motion at the sub millimetre 

(and millimetre/s) level. It therefore permits the generation of a data set with a dominant 

frequency (in this case at 0.2 Hz) and a very accurate reference trajectory. To provide a 

better idea of the test dynamics, a spectrum of the reference trajectory for the test is 

shown in Figure 4.11.  

The results of the analysis are given in Table 4.3. The optimal and numerical 

differentiators are again 48th-order filters. The results presented show that for this higher 

frequency data set, the optimal and numerical differentiators perform significantly better 

than the two low-order Taylor series approximations. This is due to the presence of the 

higher frequency velocity information between 0.15 and 0.25 Hz and in the band around 

0.4 Hz. In these bands, the Taylor series approximations deviate significantly from the 

ideal differentiator, and therefore do a poor job of estimating the higher dynamics. 

Because the optimal and numerical differentiators have nearly ideal responses up to 0.4 

Hz, they have no problem properly differentiating the higher frequency dynamics. Figure 

4.12 shows the difference in the residuals between the third-order approximation and the 

optimal differentiator, clearly demonstrating that the errors in the third-order derivative 
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case grow with increasing frequency. The optimal differentiator outperforms the 

numerical differentiator in this case because it is designed to have a better response over 

the whole spectrum. This might not be the case if the motion had more low frequency 

content. 

Table 4.3 GPS velocity errors for the Anorad test (measurement domain) 

Doppler Type RMS (mm/s) Mean (mm/s) 

raw 261.9 -2.5 
1st-order 237.1 -1.2 
3rd-order 48.9 -0.5 

numerical (49) 27.3 -0.5 
optimal (49) 27.0 -0.5 
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4.3.2 Analyses based on differentiation in the position domain 

Two tests were conducted to analyze the performance of the different methods of 

differentiating position and velocity to determine velocity and acceleration, respectively. 

In both, the output of KINGSPAD was used as input to the post-processor GPSACC. In 
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the first case, the low dynamic airborne gravity data is again studied. In the second, the 

higher frequency trajectory provided by the precision motion table is used again.  

Low dynamics case: airborne gravimetry 

In this case, the position of the aircraft is determined using KINGSPAD from carrier 

phase measurements and then differentiated twice using each filter to obtain acceleration. 

The same flight lines that were used in Section 4.3.1 are again used. The upward 

continued reference is again used for the evaluation. The results are shown in Table 4.4. 

Again, the best results were found to be at a filtering period of 90 seconds and agree with 

those obtained by differentiation in the measurement domain (see Table 4.2). It is 

important to notice that as the frequency band becomes larger (i.e. at filtering periods of 

60, 30 and 15 s), the acceleration results achieved by differentiating the position data are 

better than those from the derived Doppler measurements. This may become increasingly 

important as the resolution of airborne gravity systems is increased. On the other hand, it 

is of interest that the best level of agreement (at 90 s) was matched using a solution that is 

based on the derived Doppler. This implies that acceleration can be obtained without the 

explicit need for ambiguity resolution, a fact that is discussed further in Chapter 5. 

Numerical and optimal filters of 48th-order were also investigated and found to offer no 

improvement over the 24th-order filters. 

High frequency case: motion table data 

In this case, the position of the antenna on the motion table is determined from carrier 

phase measurements using KINGSPAD and then differentiated using a number of filters 

to obtain velocity. This was then compared to the truth offered by the reference 

trajectory. The results are shown in Table 4.5 and several observations can be made. The 

first is that the Taylor Series approximations offer considerably worse solutions than the 

numerical and optimal filters. Observing the filter responses (Figure 4.1) and the 

spectrum of the motion (Figure 4.11), this is obviously due to the fact that they are far 

from ideal in the part of the spectrum corresponding to the motion of the table. Second, it 

should be noted that the 48th-order numerical filter offers a better solution than the 24th-

order one. Finally, notice that in all cases, the optimal filter offers a slightly better 
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solution than the numerical filter. Higher order optimal filters were investigated and did 

not improve the solution.  

It is also important to notice that the level of accuracy achieved in Section 4.3.1 with 

measurement domain techniques is greater than that achieved with these position domain 

techniques. This is due to the fact that when the dynamics are high, input to the GPS 

engine should be as accurate as possible (which is only the case if differentiation is done 

in the measurement domain). 

 

Table 4.4 Average agreement of gravity estimates with the reference 
(based on differentiation in the position domain) 

Standard deviation (mGal) 
Doppler type 

15 s 30 s 60 s 90 s 

1st-order 273.1 36.2 4.1 2.8 
3rd-order 35.2 10.1 3.4 2.8 

numerical (48) 35.2 10.1 3.4 2.8 
optimal (48) 35.2 10.1 3.4 2.8 

 

Table 4.5 GPS velocity errors for the Anorad test (position domain) 

Doppler Type RMS (mm/s) Mean (mm/s) 

1st-order 240.7 0.6  
3rd-order 48.4 0.6 

numerical (24) 34.1 0.6 
optimal (24) 31.1 0.6 

numerical (48) 31.6 0.6 
optimal (48) 31.0 0.5 

 

4.4 Summary 

The process of differentiation for precise velocity and acceleration determination has 

been addressed in this chapter. A number of differentiating filters of varying complexity 

were studied and characterized in the frequency domain to permit an assessment of their 

applicability in different dynamic scenarios. Their implementation in both the 

measurement and position domains has been discussed with respect to deriving velocity 

and acceleration for both static and kinematic cases. The performance of the 
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differentiators has been demonstrated using real GPS data in cases where reference 

trajectories were available. 

To compare methods of computing a derived Doppler for GPS velocity and acceleration 

determination, three data sets with varying degrees of dynamics were analyzed. Based on 

this analysis the following conclusions are drawn: 

a) Deriving the phase rate (Doppler) from the carrier phase measurements provides 

accurate estimates of vehicle velocity, as long as the applied differentiator is close 

to ideal in the frequency band where the vehicle motion is present. 

b) The optimal differentiator provides the best results for high dynamics due to the 

fact that it most closely approximates the ideal differentiator throughout the 

frequency band of interest. It has been shown, using the precision motion table, 

that by using the correct filter, velocity estimates under medium-frequency 

dynamic conditions are improved by an order of magnitude to 27.0 mm/s, relative 

to the raw Doppler, for the receivers used in this case. 

c) The Taylor series approximations provide reasonable results only for static data or 

for cases of low-frequency motion. This is due to their deviation from an ideal 

differentiator in the middle of the frequency band. Caution should be exercised 

when trying to apply these differentiation techniques. For the data mentioned in b) 

above, central difference approaches were shown to be deficient, yielding results 

up to 10 times worse than the proposed preferred methods. 

To compare the results obtained by differentiation in the measurement domain to those in 

the position domain, the low and high-frequency cases were repeated for the latter. Based 

on this analysis the following conclusions are drawn. 

d) In the low dynamic case of airborne gravity, differentiation in the position domain 

appears to give better results than in the measurement domain.  

e) For the high frequency case of the precision motion table, differentiation in the 

measurement domain gives better results than in the position domain. 

The results obtained using the precision motion table in this chapter demonstrate that it is 

possible to estimate the velocity of an antenna moving with high frequency, with an 

accuracy of better than 5 cm/s, as required for airborne gravimetry. 
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Future research on estimating accurate velocity and acceleration from GPS measurements 

might include: 

• Using a variety of different GPS receivers in order to evaluate the performance of 

each. For example, it is likely that the bandwidth of the tracking loop and the 

method of raw Doppler calculation will vary from receiver to receiver. Herein, this 

was considered secondary to providing an understanding of the characteristics of 

various differentiators, demonstrating their use under various dynamic conditions 

and demonstrating the relative performance levels of each. 

• Band-pass filtering the data after a careful analysis of the spectral content of the 

vehicle motion and prior to differentiation. For example, for the airborne gravity 

flight, the signal above 0.2 Hz is mostly measurement noise. Therefore, an optimal 

differentiator might be designed with a cut-off frequency of 0.2 Hz instead of 0.4 

Hz. 

• Applying a noise reduction technique such as Kalman filtering/smoothing or spline 

fitting, to remove noise after the phase measurements have been appropriately 

differentiated. 

• Evaluating the appropriateness and possible advantages of using infinite impulse 

response (IIR) differentiating filters. 
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5 On the Optimal Determination of Acceleration from DGPS 

In this chapter, a detailed study is presented of the DGPS error budget for acceleration 

determination, within the bandwidth relevant to airborne gravimetry. There are two 

principal objectives:  

a) To use currently available methods to analyze and quantify the effect that each 

component of the error budget has, employing data sets that represent a wide 

range of operational conditions. Conceptually, this extends the analyses carried 

out in Chapter 3 to the estimation of acceleration.  

b) To propose and demonstrate specific approaches to the optimal estimation of 

aircraft acceleration for the purposes of determining the geoid and for resource 

exploration. 

5.1 Estimating the acceleration of the aircraft 

It is recalled from Chapter 2 that the acceleration of the aircraft, v& , is typically derived 

from DGPS by using carrier phase and phase rate measurements to estimate position and 

velocity and then appropriately differentiating these quantities. As shown in Chapter 3, 

the accuracy of DGPS positioning is mainly a function of receiver noise, multipath, sub-

optimal estimates of the ambiguity terms, and (depending on baseline length) 

uncompensated atmospheric and orbital errors. After differentiation, each of these error 

sources plays a role in the error, v&d , of the resulting acceleration. Also, it is recalled from 

Chapter 4 that the process of differentiation amplifies these errors as a function of 

increasing frequency, causing them to be larger as the bandwidth is increased.  

Within the bandwidth implied by the sampling frequency, the result is a very noisy 

estimate of the acceleration that is usually complicated by errors due to aircraft dynamics. 

Consider Figure 5.1, for example, that shows how the error in estimated acceleration 

increases with frequency for a controlled kinematic test. See Bruton et al. (1999) for 

details of this test.  
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Although somewhat dependent on receiver type, it is observed in practice that estimates 

of acceleration obtained by twice differentiating time series of position data are more 

accurate than those obtained by differentiating time series of velocity data. This is due to 

the typically more noisy phase rate data obtained when using the raw Doppler 

measurement (see Chapter 4). This section employs the widely used approach of deriving 

aircraft acceleration by twice differentiating the time series of estimated positions. 

Because the gravity signal is relatively low-frequency in nature (usually with most of its 

spectral energy well below 0.05 Hz for typical flying speeds), much of the noise shown in 

Figure 5.1 is removed in practice by low-pass filtering. Recall from Chapter 4, however, 

that computing acceleration using velocity estimates obtained from a Doppler 

measurement (that is in turn derived from carrier phase measurements) can yield nearly 

the same performance as deriving acceleration from the estimated position, but without 

the need for ambiguity resolution.  
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Figure 5.1 Spectrum of the error in acceleration determined for a kinematic test 

This whole process was treated extensively in the late eighties and early nineties in 

investigations such as those outlined in Brozena et al. (1989), Kleusberg et al. (1990), 

Hehl (1990), Czompo (1991), Wei et al. (1991) and Van Dierendonck et al. (1994). As a 

result of their work, it is generally accepted that an accuracy of 1-2 mGal can be achieved 

under good environmental conditions, within a bandwidth corresponding to a cut-off 

frequency, fc, of approximately 0.01 Hz (or for a period, T = fc, of 100 seconds). 

However, for airborne gravimetry, useful information exists above 0.01 Hz and this 
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information should be extracted from the data and employed to obtain more accurate 

estimates of acceleration. This is made especially challenging by the fact that errors due 

to GPS increase in this bandwidth. As a result, errors due to GPS continue to pose a 

major challenge to researchers attempting to increase the bandwidth of their systems.  

Recall from discussions in Appendix C.1 that the cut-off frequency is related to the 

maximum achievable spatial resolution via the flying speed of the aircraft. For example, a 

cut-off frequency of 0.01 Hz implies a shortest half-wavelength of 2.0 km when flying at 

45 m/s. In turn, this implies a sample spacing of 2.0 km. In order to increase the spatial 

resolution of the gravity estimate along the flight path, it is therefore desirable to increase 

the cut-off frequency. However, this inevitably leads to lower accuracy in the estimates 

of the gravity vector in large part because of the error spectrum shown in Figure 5.1. This 

critical issue is investigated in this chapter. 

5.2 Analysis of the DGPS error budget for acceleration determination 

The effects that each of the residual error sources in equation 2.14 have on the 

determination of acceleration are presented in this section. Although they are treated in a 

different order than in Chapter 3, the general approach is very similar. The same DGPS 

processing package is used as well as a number of well-chosen data sets (including the 

two used in Chapter 3). Similar data processing strategies are used to isolate and quantify 

each portion of the error budget. For each portion of the error budget, the error in the 

DGPS position solution is differentiated to derive the corresponding error in acceleration. 

This results in a set of empirically derived error spectra that characterize the errors as a 

function of frequency (and therefore as a function of space for a fixed flying speed). 

These error spectra are generated within the bandwidth between 0.0 and 0.05 Hz, which 

corresponds to half-wavelengths as short as 450 m at a flying speed of 50 m/s. The results 

are obtained for the error in the estimated three-dimensional acceleration vector (for 

which the error in vertical acceleration is one component). 

5.2.1 GPS receiver measurement noise and multipath in static mode 

Because GPS receiver measurement noise is a fundamental limit on the accuracy of the 

derived acceleration, it is treated first. Although the noise level is dependent on the 
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tracking loop bandwidth (and therefore the receiver type and the vehicle dynamics), it can 

be approximately estimated using a zero baseline test in a static environment. Consider 

Figure 5.2 that has been generated using the same triplet of receivers used in Section 

3.2.5. Figure 5.2a shows the error spectrum of the error in acceleration due to double 

difference carrier phase receiver noise (for the L1 and ionospheric-free measurements), 

∆∇ εΦ, between the two receivers sharing the rooftop antenna. For the L1 carrier, this 

error is almost negligible for the bandwidth shown and it is much more significant for the 

ionospheric-free observable, especially above 0.015 Hz. Figure 5.2b shows the magnitude 

of the combined error due to noise and multipath, generated by differentiating the error in 

the L1 double difference position solution calculated over the baseline between one of the 

rooftop receivers and the receiver in the field. It was generated for exactly the same time 

period as Figure 5.2a and shows that the double difference multipath, ∆∇ mΦ, on the L1 

carrier considerably increases the error in the same bandwidth, especially for frequencies 

around 0.035 Hz (or for half-wavelengths shorter than 640 m at a flying speed of 45 m/s). 
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Figure 5.2 Error spectra owing to receiver noise and multipath 
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Although these graphs have been derived empirically using a limited data set, they are 

considered to be conservative estimates, given that both represent the double difference 

errors in three dimensions and that the multipath environment is not calm. 

5.2.2 GPS receiver measurement noise and multipath in kinematic mode 

The effect of noise and multipath in the airborne environment is again roughly quantified 

by deriving the relative acceleration between the two antennas that were mounted on the 

aircraft during the collection of the Greenland data set. The error can be estimated by 

differentiating the difference between the two position solutions derived using the same 

master station and each of the antennas (i.e. differentiation of the sequence that was 

derived in Section 3.2.5).  Figure 5.3 shows the resulting spectrum. As shown, the 

estimated effect of the combined kinematic receiver noise and multipath at the aircraft 

does not differ greatly in the relevant bandwidth from that observed in the static situation 

on the ground that was shown in Figure 5.2b. This implies that the level of multipath in 

this bandwidth is similar on the aircraft to that seen in a medium multipath environment 

on the ground. 
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Figure 5.3 Spectrum of the error due to noise and multipath at the aircraft 

5.2.3 The importance of ambiguity estimation 

Although this study puts no emphasis on the process of estimating the ambiguity 

term, ∆∇ N, it is relevant to consider the importance of using a valid estimate of it. 
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Consider Figure 5.4 that shows the spectrum of the difference in acceleration (for the 

Kananaskis data set) between solutions derived using an L1 float solution and the 

(widelane) fixed solution. This shows that reliable ambiguity fixing makes very little 

difference over what appeared to be an equally reliable float solution.  
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Figure 5.4 Spectrum of the error in a float solution 

In order to demonstrate that the fixed solution provides a better absolute accuracy than 

the corresponding float solution, both were used to generate estimates of the gravity field 

that were in turn compared to the true field. Figure 5.5 shows the error spectra generated 

by that comparison. The solid and dash-dot lines in the figure show that the fixed solution 

is indeed slightly better than the float solution across the whole bandwidth. 

The shaded region in Figure 5.5 is included to demonstrate the approximate magnitude of 

the component of the total error spectrum that comes from the inertial sensors and from 

imperfections in time synchronization (i.e. the area between the shaded region and each 

of the lines is due to errors in the corresponding DGPS solutions). The derivation of the 

shaded error spectrum is given in Section 7.3.  

Note that the data used for this graph was collected on an aircraft having high dynamics 

within the bandwidth of interest. It is shown in Section 5.5 that using a different aircraft 

(exhibiting less dynamics) can make a significant difference to the results and it is shown 

in Section 7.4 that a large portion of the effect of the dynamics induced SINS errors can 

be removed by post mission modeling and signal processing. Because it is affected by 

biases in the inertial sensor, the portion of the bandwidth below 0.00025 Hz is not shown 

for any of the spectra in Figure 5.5 (this corresponds to half-wavelengths greater than 90 
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km for a speed of 45 m/s and is discussed in detail in Chapter 6). Note that there is also 

some contribution, primarily below 0.01 Hz, due to inaccuracies in the assumed gravity 

field. 

Although it has been shown here that a minor practical advantage is gained in striving for 

a fixed solution, it is very important to be aware that a solution that is generated using 

ambiguities that are incorrectly fixed can have disastrous effects on the resulting accuracy 

of the acceleration estimate, especially when changes occur in the satellite constellation. 

Recall that the Kananaskis data set is selected because it was flown at night and under 

excellent conditions for DGPS processing. Although nighttime conditions are not a 

prerequisite for good GPS, they often imply it. Unless data is collected under conditions 

where one has confidence in it, then using a fixed integer ambiguity solution is not 

recommended for airborne gravimetry. This is discussed in more detail in Section 5.4.  

Finally, note that it is shown here that a very reasonable solution can be obtained using a 

single frequency approach. In other words, a single frequency float solution offers an 

effective and relatively cheap alternative to a dual frequency approach if the requirements 

with respect to environmental conditions can be met. 
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Figure 5.5 Error spectrum of the estimated gravity field for several DGPS solutions  
for the Kananaskis data set 



97 

   

5.2.4 Evaluating the effect of the ionosphere 

The effect that the ionosphere has on estimates of acceleration can be evaluated by 

comparing the solutions that have been obtained using the ionospheric-free float to those 

obtained using the L1 only float solution (or a fixed solution if it can be estimated). 

Because the ionospheric-free combination removes all first-order effects of the 

ionosphere, the difference between these solutions is due to both the ionosphere and the 

increase in noise that results from the linear combination. The first of these effects is 

desirable, whereas the second is obviously not, as shown in Section 5.2.1.  

Recall that the Greenland data set was selected for this study because it was collected 

during a period of high ionospheric activity. As mentioned in Chapter 3, one consequence 

of the active ionosphere, in that case, is that it was not possible to reliably resolve the 

integer ambiguities for more than a portion of the flight. The use of the ionospheric-free 

observable made it possible to obtain a reliable position solution and also results in a 

much more accurate solution than the L1 only float solution for acceleration 

determination, for the whole bandwidth. It is interesting to note that, despite the obvious 

advantages gained by using the ionospheric-free approach under such an active 

ionosphere, it can remain very difficult to obtain accurate gravity data at high resolutions. 

Note that this case is considered to be extreme and is made so difficult by the fact that the 

data was collected in the mid afternoon during a period of high ionospheric activity over 

long baselines and at high latitudes. 

The dotted line in Figure 5.5 shows the error spectrum of the gravity solution obtained for 

the Kananaskis data set using the ionospheric-free float solution. It demonstrates two 

very important points. The first point is the very evident increase in noise over the other 

solutions for most of the spectrum, especially above 0.015 Hz. This confirms the 

preliminary observation, made in Section 5.2.1, that the increase in noise associated with 

the ionospheric-free combination makes that combination ill-suited for wide bandwidth 

applications (even in cases where the ionosphere is behaving well). The second important 

point is that the ionospheric-free solution has a lower error than the other solutions in the 

bandwidth between 0.005 and 0.01 Hz. While this may not seem very significant when 

displayed on the scale used in Figure 5.5, the reader is reminded that standard filtering 
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procedures used in geoid determination typically involve a low-pass filter with a cut-off 

frequency of around 0.01 Hz. It is evident that the advantage gained from using the 

ionospheric-free observable can be considerable in that bandwidth. This implies the 

following: 

a) the ionospheric-free observable is best suited for use in medium-frequency 

applications such as geoid determination, and  

b) a float (or fixed) L1-based solution is best suited for high resolution applications 

when the environmental conditions are good. 

5.2.5 Errors due to changes in geometry 

Changes in geometry due to changes in the satellite constellation that occur during a 

flight line, can result in very large errors in the resulting acceleration. Although such an 

event will often have small effects on the estimated position, it is easy to demonstrate that 

they can cause errors of thousands of mGal in the unfiltered acceleration data and as 

much as 10 mGal at a filtering period of 90 s. For the purpose of demonstration, Figure 

5.6 shows an example of this (where the effect is relatively small) taken from the 

Kananaskis data set. It demonstrates what happens in the time domain when a satellite is 

introduced into the constellation at 800 s. Notice that different scales are used on the 

vertical axes. It is clear from this graph of the unfiltered differences that they are very 

high-frequency in nature and occur following the 800 s epoch. It is also demonstrated 

that, although low-pass filtering reduces this error, it smears the effect of introducing the 

satellite over a time period that roughly corresponds to the filtering period.  

Figure 5.7 shows the same effect as a function of frequency. Note that the magnitude of 

this error can easily reach significantly larger magnitudes around the time of introduction 

(or removal) of the new satellite (i.e. around 800 s). There are several practical ways to 

alleviate the effect of such changes in geometry. If the flight lines are short and the 

constellation is strong enough, the user can manually force the rise and fall of satellites to 

occur during the turns. While this will often mean that a lower value of the Dilution of 

Precision (DOP) might be observed for a portion of a flight line, it ensures that rapid 

jumps like the one observed in Figure 5.6 will not affect the solution.
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Figure 5.6 Effect of a change in geometry due to the inclusion of a new SV at 800 s 
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Figure 5.7 Spectrum of the effect of the same change in geometry 

Another more elegant approach involves a careful introduction (and removal) of satellites 

from the active constellation by means of a time-varying weighting function. For 

example, if measurements from a new satellite are weighted as a function of the time 

since their appearance, a jump such as that shown in Figure 5.6 is avoided and the 

solution takes advantage of the improved geometry. An alternative to a weighted 

combination of the measurements is discussed in Brozena and Childers (2000). In that 

case, jumps in the position solution are estimated and removed by shifting the solution 

for all epochs following a jump. This results in a time series that is well-suited for 

differentiation. Depending on the situation, one of these types of approaches might be 

crucial for long flight lines or cases where the gravity data in the turns is needed. 

5.2.6 Errors due to the neutral atmosphere and the broadcast ephemeris 

Errors due to the broadcast ephemeris and inaccuracies of the tropospheric model do not 

greatly influence acceleration derived from DGPS. As noted in Chapter 3, they are both 

typically smooth and bias-like and are therefore removed by the process of 

differentiation. Figure 5.8a shows the spectrum of the error caused by errors in the 

broadcast ephemerides. This spectrum has been computed by comparing the solutions 

generated using broadcast and precise ephemerides. Figure 5.8b demonstrates the 

difference in acceleration between solutions obtained using two different tropospheric 

models (Black and Saastamoinen) under otherwise identical processing conditions. Both 

effects are clearly negligible. 
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Figure 5.8 Error spectra due to orbital and tropospheric model errors 

5.3 The (lack of) importance of the data sampling rate 

Although the rate at which raw GPS data is sampled may affect the accuracy of the 

estimated position, it has very little effect on acceleration determination, especially 

within the bandwidth of interest for airborne gravity. This is shown in Figure 5.9 where 

the spectrum of the difference in acceleration between two solutions has been obtained 

using sampling rates of 1 Hz and 10 Hz. The figure was generated using airborne data 

collected by the University of Calgary and Sander Geophysics Ltd. in which a single 

antenna on the aircraft fed two receivers, each collecting raw GPS data at the rates 

mentioned above. The 1 Hz data was collected using an Ashtech Z-12 receiver and the 10 

Hz data was collected using a NovAtel MiLLennium receiver. The data at the master 

station was collected using a NovAtel MiLLennium receiver at 10 Hz and subsequently 

decimated to 1 Hz, providing a means of estimating the position of the airplane using raw 

data at both frequencies. After computing each acceleration solution, they can be directly 
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compared to each other if the 1 Hz solution is up-sampled to 10 Hz. This was done using 

an up-sampling method that is known to preserve the frequency content of the original 

signal, as outlined in Orfanidis (1996). The filter used in the latter approach was designed 

to have a transition band between 0.35 Hz and 0.50 Hz, implying that the spectrum is 

almost perfectly preserved below 0.35 Hz and above 0.50 Hz. 

The plot shows the spectrum of the difference in the upward component of the 

acceleration between these solutions (now both sampled at 10 Hz) for a period that 

included a flight line and the turns on either side of it. Ambiguities were reliably fixed in 

both cases for the whole time period. The difference is clearly very small within the 

bandwidth that is represented by both data sets (0.0 to ~0.35 Hz).  

While some of the differences above 0.50 Hz may arise from increased noise levels in the 

data sampled at 10 Hz, it is also possible that they are due to aircraft motion; there is a 

significant amount of motion captured by the 10 Hz data that is not captured by the 1 Hz 

data. The inset in Figure 5.9 clearly shows that the difference between the two is 

negligible for the bandwidth of interest in airborne gravity. This is supported by the fact 

that these observations include the higher dynamic turns. 
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Figure 5.9 Frequency spectrum of the difference in acceleration between solutions computed 
from data collected at 1 Hz and 10 Hz 
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5.4 Recommendations for determining acceleration 

Based on the findings in Sections 5.2 and 5.3, several recommendations can be made 

regarding the best ways to process DGPS data for acceleration determination under a 

variety of conditions. These include the following: 

a) For applications that require medium-resolution gravity data (such as geoid 

determination), it is recommended that both the L1 and ionospheric-free solutions 

be considered. The latter can have some advantages during good GPS conditions 

and can be a necessary approach during poor GPS conditions (especially if the 

ionosphere is active). 

b) For applications that require high-resolution information (such as resource 

exploration), an L1 solution is recommended whenever possible. It is to be 

understood that GPS conditions have to be good for this approach to be viable. In 

cases when conditions are not suitable, the approach in a) is the recommended 

default approach and a wide bandwidth solution should not be expected. When 

the GPS data is reliable, a fixed integer ambiguity solution is desirable and is 

often made more feasible through the use of the L2 observable in a widelane 

combination.   

c) For all applications, it is recommended that changes in the satellite constellation 

be held to a minimum. If possible, satellites should only be allowed to leave or 

enter the solution during the turns between flight lines (i.e. periods during which 

gravity data is not usually being used). If the flight lines are too long, the 

geometry is too weak to permit this, or if the data in the turns are needed, a 

weighting or data shifting strategy is recommended to avoid abrupt changes in the 

estimated acceleration. 

d) Minimization of the multipath in the environment surrounding the master station 

is recommended. This implies selecting a location with minimal multipath and 

using choke-ring antennas.  

Although conditions that are conducive to the collection of very high-frequency gravity 

information are more likely to be achieved if baselines are kept very short and flights are 

flown at night, these are not necessary constraints. This is shown in the next section 
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where data collection conditions from a recent airborne gravity campaign are described 

and the accuracy of the resulting gravity estimates is shown. 

5.5 How good are current DGPS techniques for determining acceleration? 

This section uses results from a recent airborne gravity survey to demonstrate that an 

DGPS accuracy of better than of 1.5 mGal can be achieved at a spatial resolution (half-

wavelength) of 2.0 km and, further, an accuracy of better than 2.5 mGal can be achieved 

at a spatial resolution of 1.4 km, when following the recommendations made in the last 

section. This data set is chosen, because, unlike the data used in Section 5.2, it was 

collected using an aircraft with very good dynamic characteristics and within the 

bandwidth of interest, implying that much of the total error spectrum is due to DGPS, 

especially for high frequencies. 

The data was collected as part of the AGEM project of the GEOIDE Network. The 

campaign constitutes coverage of the Alexandria test area (near Ottawa, Canada) and had 

the goal of comparing all of the three currently available airborne gravity concepts on a 

single aircraft (an air-sea gravimeter, the LRF-III SINS and a 3-axis inertially stabilized 

platform). It is described in detail in Appendix A.3. Only two surveys of the campaign 

are described herein. The first was flown on April 19, 2000 between 16:00 and 21:00 and 

the second on May 4, 2000 between 09:30 and 12:30. The latter flight was flown in the 

morning in an effort to minimize the effect of turbulence and the atmosphere. 

This campaign is very useful for demonstrating the quality of current DGPS techniques, 

mainly because the Cessna Grand Caravan exhibited very little horizontal motion in the 

bandwidth of interest for airborne gravimetry, especially for high frequencies. This is 

discussed in detail in Chapter 7. Therefore, the errors affecting high-frequency gravity 

field estimation are due mainly to the errors coming from DGPS acceleration 

determination and can be analyzed. Although any of the on-board gravity systems could 

be used (they all yield the similar conclusions with respect to the DGPS performance for 

high frequencies), the LRF-III system was selected for this demonstration in order to 

maintain consistency with other results presented in this dissertation. A detailed 

comparison between systems is being carried out in a separate study and the investigators 

of the project should be contacted for details.  
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Because the GPS data was reliable for both days and because the baselines reached just 

over 100 km, processing was done using a fixed integer widelane approach. The resulting 

average gravity error spectra for each day are shown in Figure 10 along with the 

estimated error spectrum of the inertial sensor errors (calculated for the April 19 data set 

using the method that is outlined in Chapter 7). This figure demonstrates that the time of 

day has a large influence on the level of the noise coming from DGPS, almost certainly 

because of the higher level of ionospheric activity in the afternoon. As shown, the level 

of noise due to DGPS for the data collected in the morning is only slightly above that 

observed for the data set collected at night (i.e. compare the solid lines in Figure 5.5 and 

Figure 5.10). Also notice that the noise level seen for the data set collected in the 

afternoon is similar to the level of noise that was introduced by doing an ionospheric-free 

combination for the nighttime data set shown in Figure 5.5.  

It is very encouraging to observe that the total error spectrum can still be as low as 1-1.5 

mGal at a cut-off frequency of 0.025 Hz. For the flying speed of 45 m/s used in this test, 

this implies that gravity signals with half-wavelengths as small as approximately 1 

km can be detected if their amplitude is greater than 1-1.5 mGal.  

The agreement of the solutions with the ground gravity data (at flight height) is given in 

Table 5.1. As usual, the standard set of filters used have transition bands that are as sharp 

as possible in order to very nearly represent the true accuracy in a given bandwidth. 

The table demonstrates that it is possible to obtain an agreement with the reference field 

of 1.5 mGal at a bandwidth corresponding to a half-wavelength resolution of 2.0 km and 

an agreement of 2.5 mGal at a half-wavelength of 1.4 km when flying at a time of day 

when the ionospheric activity is low. These numbers are similar to the cumulative error 

spectrum. In the afternoon (on what was considered to be a day with moderate levels of 

ionosphere activity), it was possible to obtain accuracies of roughly 2 and 4 mGal for the 

same bandwidths. 

In terms of achievable accuracies, the results described in Section 5.5 imply that, unless 

the ionosphere is very active: 
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a) for medium-frequency applications, such as geoid mapping, an accuracy of 1.5-

2.0 mGal can be expected for the gravity disturbance, regardless of time of day, 

and 

b) for high-frequency applications, such as resource exploration, an accuracy of 1.5 

mGal can currently be achieved for the gravity disturbance, at a spatial resolution 

(half-wavelength) as high as 2.0 km for nighttime and morning flights. 

It should be noted that the values given above, and in Table 5.1, reflect the combined 

accuracy of the DGPS and SINS components. In other words, the DGPS error makes up 

one component of the quoted values. This is reflected by the spectra shown in Figure 5.5 

and Figure 5.10. 

Table 5.1 Standard deviation of the agreement between estimated solutions and the reference 
field (mGal) 

Morning data set Afternoon data set 
filtering periods (s) filtering periods (s) Line 

30 60 90 200 30 60 90 200 

T1001 10.7 2.5 1.5 1.5 10.2 4.4 3.7 3.4 
T1002 7.0 2.1 1.2 1.2 10.6 3.6 2.3 2.4 
T1003 7.3 2.7 1.9 1.8 27.6 4.8 2.7 1.6 
T1004 11.1 3.2 1.1 1.2 22.3 3.0 1.1 0.8 
T1005     15.6 3.8 2.1 1.8 
T1006     23.4 4.4 1.6 1.1 

average 9.0 2.6 1.4 1.4 18.3 4.0 2.3 1.9 
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Figure 5.10 Error spectra of two estimates of the gravity field from the Alexandria campaign 
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PART 3: UNDERSTANDING AND HANDLING THE SINS ERRORS  

 

The objective in the third part is to investigate the errors in estimates of the gravity field 

due to SINS sensor and modeling errors. The investigation has two components. The first 

is to thoroughly analyze the principle SINS errors that limit the bandwidth of the airborne 

gravity system and the second is to propose novel methods of dealing with them. The two 

chapters that follow concentrate on the low and high-frequency errors, respectively. 

In Chapter 6, the discussion of the requirements for gravity data is carried on from the 

material in Chapter 1. The advantages and disadvantages of airborne gravimetry as a 

collection method are briefly demonstrated in order to establish the role that it plays in 

estimating the relative gravity field. This discussion is included in order to make the 

material in Part 3 more accessible to the unfamiliar reader and to clarify a number of 

points that have been raised recently by researchers working in the field (e.g. in meetings 

of the AGEM project). Original contributions are described in the balance of the chapter. 

Using real data, the low-frequency errors (due to residual accelerometer biases) that make 

it challenging to use a SINS-based gravimeter are discussed and demonstrated. A method 

that allows for the direct estimation of the relative gravity field from airborne data is then 

proposed. The performance of the system is evaluated and demonstrated in different 

bandwidths.  

In Chapter 7, emphasis is placed on the high-frequency SINS errors that are induced by 

the motion of the aircraft. A detailed study is presented of the natural motion of survey 

aircraft in flight, both from a theoretical point of view and empirically using data from 

two survey aircraft. The effects that these dynamics have on estimating the high-

frequency components of the gravity field are described in detail. The chapter concludes 

by discussing methods of reducing the errors due to aircraft dynamics, including the 

proposal and implementation of a novel method that removes a significant portion of 

them. 
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6 On Estimating the Relative Gravity Field Using the SINS Gravimeter 

This chapter has two objectives. The first is to describe the role that airborne gravimetry 

plays in estimating the gravity field of the Earth and to relate it to the requirements for 

relative gravity information in geoid determination and resource exploration. This is done 

in Sections 6.1 and 6.2 through the presentation and interpretation of important 

background information and related research. The second objective is to describe the 

low-frequency errors that make it challenging to determine the relative gravity field when 

using a SINS-based system. This includes a demonstration of the accuracy of the system 

used by the University of Calgary for a variety of bandwidths and a discussion of how the 

relative information that is derived can be used in practice. This is done in Sections 6.3 

and 6.4, which contain the contributions made by the author. 

6.1 The role of airborne gravimetry as a data collection method  

Although the gravity field of the Earth has power at all resolutions (even a grain of sand 

causes some gravitational attraction), it decreases rapidly as a function of increasing 

frequency. This means that the majority of the gravity signal is low-frequency in nature 

and has several implications. The first is that, depending on the application, sufficient 

information can often be drawn from an accurate band-limited estimate of the gravity 

field. The second is that no single measuring system can measure the gravity field 

accurately at all resolutions; a satellite-based system is too far from the Earth to measure 

high-frequency information and ground-based measurements cannot easily cover large 

areas for low-frequency information, to name a few examples. As mentioned in Chapter 

1, there are a number of current and future measuring systems that provide information 

about the gravity field, and airborne gravity systems are just one example. Generally 

speaking, the resolution of all methods is limited on one end by factors such as sampling 

rate and the distance of the measuring system from the surface of the Earth and on the 

other end by bias-like errors and the spatial extent of the gravity survey. The following 

sections describe some of these in an effort to quantify the role that airborne gravimetry 
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plays. (Recall that the high, medium and low-resolution components of the gravity field 

were defined in Chapter 1 as those corresponding to half spatial wavelengths of less than 

5 km, between 5 and 150 km and above 150 km, respectively. Also recall from Appendix 

C.1 that the terms half-wavelength and spatial resolution are used synonymously.) 

6.1.1 Information about the low-resolution content of the gravity field 

Currently, low-frequency information about the gravity field is available on a global scale 

in the form of geopotential models that have been estimated mainly by observations of 

the perturbations in the orbits of satellites and supplemented with data from satellite radar 

altimetry and shipborne surveys (over the oceans), and surface and airborne gravimetric 

surveys (over land). An example of such a model is the Earth Gravitational Model of 

1996 (EGM96) that is a spherical harmonic expansion complete to degree and order 360, 

corresponding to a minimum half-wavelength of roughly 55 km. See Appendix C.3 for a 

brief discussion of the spatial resolution corresponding to an expansion of the spherical 

harmonic equations of a global geopotential model. The information in the model 

corresponding to half-wavelengths longer than 300 km is derived mainly from the orbit 

perturbation data and higher resolution information is derived from the altimetry, surface, 

shipborne and airborne data. Because the data available on land are often sparse or non-

existent (depending on location), the accuracy of such a model for half-wavelengths 

shorter than about 300 km depends on data availability and on the frequency content of 

the gravity field in the area of interest. Errors in this bandwidth are generally more 

pronounced in locations where high-resolution information is not available and less 

pronounced in areas with smooth topography. Their average behaviour (over the globe) is 

formalized as a function of frequency by the lighter lines in Figure 6.1a and Figure 6.1b. 

They show the global error degree amplitude spectra (which can be likened to 1-σ values) 

for gravity anomalies derived using the EGM96 model. They were computed as the 

square root of the error degree variance equations given in Lemoine et al. (1998) by F. 

Bayoud who made them available to the author for use in this chapter. Consider, for 

example, that the EGM96 can only provide an estimate of the gravity anomaly with a 

cumulative error of less than 1 mGal for half-wavelengths longer than about 300 km. As 

well as accumulated errors within the bandwidths represented by the model, there is also 
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a considerable misrepresentation of the gravity field (called the omission error) that 

results from the fact that current global models are limited in resolution. Consider Figure 

6.2a and Figure 6.2b, for example, that show the true gravity field in an area of the 

Canadian Rocky Mountains (approximately 100 by 100 km in size) and the estimate of 

the same field that is provided by the EGM96 model (evaluated to degree and order 360). 

Figure 6.2c is a plot of the difference between them and clearly demonstrates that the 

band-limited nature of the model can result in omitting high-resolution signals with 

amplitudes in the order of ± 50 mGal. More information about the EGM96 can be found 

in Lemoine et al. (1998) and the process of deriving global models is summarized in 

Rapp and Pavlis (1990).  
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Figure 6.1 Error degree amplitude values for current and future global models 

 

In the near future (e.g. 3 to 10 years from now), low-resolution information will come 

almost entirely from data provided by geophysical satellite missions that are dedicated to 

global gravity field estimation. These include the CHAMP, GRACE and GOCE missions 

that are based on hi-low satellite-to-satellite tracking, low-low satellite-to-satellite 
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tracking and satellite gradiometry, respectively. While these promise unprecedented 

improvements in the quality (and therefore useful resolution) of global models, the need 

for complementary medium and high-resolution information will not only remain, but 

increase. The reader is referred to NRC (1997) and ESA (1999) for detailed comparisons 

of current global models with those expected from future satellite missions. As an 

example, the darker lines in Figure 6.1 show how accurately the future GOCE mission is 

expected to provide the gravity anomaly. The degree amplitude spectra derived from the 

degree variance equations given in ESA (1999) are shown.  
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Figure 6.2 Resolution of the gravity field and of the data coming from the EGM96 
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It is evident from Figure 6.1 that future satellite missions will offer significant 

improvement over the EGM96, both in terms of accuracy and useful resolution. The 

models based on the GOCE data are expected to be able to provide an estimate of the 

gravity anomaly with a cumulative error of less than 1 mGal for half-wavelengths as 

short as 100 km. For higher frequencies than this, their quality degrades rapidly, 

however, implying that data from surface and airborne gravimetry will continue to play 

an important role in the estimation of the medium and high-resolution components of the 

gravity field. This is the subject of the next sub-section. 

6.1.2 Information about the medium and high-resolution content 

It was made clear above, that a role of data from surface and airborne gravimetry is to 

complement the information represented by (current and future) global models. This sub-

section compares the two in an effort to highlight the benefits of the airborne approach. 

The quality of the information that can be derived from surface data depends largely on 

the spacing of the available samples. For geodetic work, measurements are typically 

made by federal government agencies and their availability is relatively good on the 

continents of North America, Europe, Australia and Japan. Because of the cost and 

logistics of making and maintaining a database of such measurements, coverage varies in 

other areas of the world, from reasonable to none at all. Because of the relatively high 

speed, low cost and logistic simplicity of airborne surveying, it has been enjoying 

increased use for large-scale surveys in place of surface campaigns. For example, 

airborne data is currently available in selected parts of the world such as Greenland, the 

Arctic and Antartica (see Brozena (1992) and Brozena et al. (1997) for examples). 

As an example, consider Figure 6.3a and Figure 6.3b that show the location of available 

surface and airborne data in the same 100 x 100 km area that was shown in Figure 6.2. 

The surface data shown are those available in the database of the Geodetic Survey 

Division of Geomatics Canada (GSD) and the airborne data was collected on September 

10, 1996 by the University of Calgary (see Appendix A.1). The figure is included to 

demonstrate the typical characteristics of the samples available for each of these data 

types. Notice first, that because of ease of accessibility, much of the surface data in 

Figure 6.3b is collected along roadways (represented by the white dots). Alone, this 
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causes several problems in terms of sampling, including the obvious issue of the gaps 

between the roadways and the fact that such samples do not typically represent the 

gravity field at high elevations such as mountain tops. To compensate for these problems, 

the gaps were filled by helicopter-based surveys (represented by the shaded dots). 

Typically, a surface data set is collected in a number of campaigns that can span a 

number of years or decades. The data are typically maintained in a database and 

interpolated to a grid before use, e.g. in Canada they are also available on 2 and 5 arc 

minute grids. At best, it would take approximately 20 twelve-hour days to collect surface 

data of the density shown in Figure 6.3b, using a helicopter. This estimate is based on 

experience gained by the author during a recent helicopter-based field campaign for 

densifying the surface gravity measurements in the Kananaskis area (see Appendix A for 

details). On foot or even by road vehicle, the same density of points would take months to 

collect and may even be impossible, depending on the topography and vegetation. 

Consider also the data from the airborne survey shown in Figure 6.3a. There are several 

important differences, including the fact that they were collected at a constant height, on 

a near-continuous grid and over a period of only six hours. 

In both the airborne and terrestrial cases shown in Figure 6.3, the low-resolution 

information that can be derived from the data is limited by the geographical extent of the 

survey. For a survey within a given area, the maximum half-wavelength that can be 

resolved is given by the size of the area. For example, it is 100 km for both examples 

given here. On the other hand, the high-resolution information that can be derived is 

different for each. For the surface data, it is given by the average spacing between the 

samples. In this case, it varies from less than 1 km in some areas on roadways to 10 km in 

the areas between the roads. For the airborne case, it depends on the spacing between 

flight lines and on the resolution of the gravity system, i.e. the product of the aircraft 

velocity and the cut-off frequency of the low-pass filter used in the computations. Here, 

the flight lines are spaced 10 km apart, meaning that the resolution is given by a half-

wavelength of 10 km in the east-west direction. If the data are filtered to 0.01 Hz and the 

flying speed is 100 m/s (360 km/h), then the resolution is given by a half-wavelength of 5 

km in the north-south direction.  
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Half-wavelength has been chosen as an expression of resolution in this chapter because it 

corresponds roughly to the equivalent sample spacing. For example, the maximum 

sample rates corresponding to the Nyquist frequency are 10 km and 5 km in the two 

directions discussed in this case. See Appendix C.1 for more details. 

Although the factors mentioned above imply a maximum frequency content of the signal, 

the airborne data has a significant advantage over the surface data points because of the 

very high rate at which it is sampled along a profile (e.g. once every 100 m for 1 Hz data 

when flying at 100 m/s). This is demonstrated in Figure 6.3c for a 10 by 10 km area. As a 

result of this, estimates of gravity are available at practically any place along a profile 

without the need for interpolation. In turn, this means that if the data is needed on a grid 

that coincides with the flight lines, then there will be no errors due to interpolation, a 

possibly considerable advantage in areas with rough gravity fields. Figure 6.3d and 

Figure 6.3e consider the problem of gridding, for surface gravity data with varying levels 

of availability. The sample spacing is much poorer and the location of samples obviously 

implies the need to interpolate. 

Before ending the discussion about sample rates, it is important to distinguish between 

sample rate and frequency content of the airborne data. For example, despite being highly 

sampled, the frequency content of the estimate is limited by the low-pass filter that is 

applied. Practically speaking, this means that the values at each of the points (i.e. at 0.1 

km intervals) along the trajectory can be likened to mean values centered at those 

locations. In turn, they are mean values computed for a spatial extent that is defined by 

the product of the speed of the aircraft and the cut-off frequency of the low-pass filter. 

This is demonstrated by the solid and dotted lines in Figure 6.4. The estimate will 

therefore be samples of a band-limited gravity field. 

Finally, it is important to realize that a potentially significant disadvantage of the airborne 

approach is the fact that the gravity signal is attenuated because data is collected at a 

higher altitude. This is demonstrated in Figure 6.5 for flying altitudes of 0.3, 1.0 and 10.0 

km using the appropriate equation from Appendix C.3. It shows that the factor by which 

the gravity field is attenuated depends on both the altitude and resolution of the signal. 

Attenuation is clearly greater for higher altitudes and for shorter wavelengths, making it 
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more difficult to sense high-resolution information from a greater altitude. The height of 

the aircraft implies the need for a process by which the measurements can be represented 

on the geoid (or the ground). This process is known as downward continuation and the 

reader is referred to Chapter 1 for a list of reference material about it. 
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Figure 6.4 The resolution of airborne gravity data 
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Figure 6.5 The attenuation of gravity due to altitude 
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Coupled with the attenuation of the gravity signal is the fact that the noise in any gravity 

system increases as a function of frequency (e.g. see Chapter 5 and Chapter 7). Together, 

these facts mean that the gravity signal becomes smaller and the noise becomes greater as 

the resolution of a gravity system is increased. Because downward continuation amplifies 

these noisy estimates, this implies a very challenging problem when trying to resolve the 

high-resolution components of the gravity field. In turn, researchers working to regularize 

the downward continuation process need to demonstrate that they are truly estimating 

gravity at high resolutions and not simply achieving a better fit to the gravity field by 

attenuating the combined signal and noise; a result that takes advantage of the fact that 

the signal has less power at higher resolutions.  

Also shown in Figure 6.5 is the attenuation factor at an altitude of 250 km, demonstrating 

one of the reasons why the future satellite missions are unable to provide information for 

half-wavelengths below 100 km.  

Note that the true field that is shown in Figure 6.2 was calculated from a combination of 

the surface measurements in Figure 6.3b and the surface measurements in a database that 

is maintained by the University of Calgary. See Argeseanu (1995) for details about this 

process. 

6.2 Using medium and high-resolution measurements of the gravity field  

Although the determination of a relative geoid and the interpretation of gravity data for 

the exploration of resources are beyond the scope of the research presented in this 

dissertation, it is useful to consider the ways in which airborne gravity measurements will 

be used by researchers in each. This section briefly outlines these. The goal is to 

emphasize the important contribution that relative measurements of the gravity field 

make in each case. 

6.2.1 Relative geoid determination 

As outlined in Sideris (1997), a local geoid is usually determined from medium and high-

resolution measurements of the gravity field using the remove-restore technique. Because 

such measurements are usually of limited geographical extent, this approach does not 

attempt to compute the low-frequency components of the geoid. Instead, it uses the 
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measurements to compute the relative component, rN , and obtains the low-resolution 

component, GMN , from a global geopotential model. The total geoid undulation, N, is 

therefore given by the following equation: 

rGM NNN += .            (6.1) 

For simplicity, an example is borrowed from Li (2000), in which the desired component 

is computed from relative gravity disturbances according to the Hotine integral as 

follows: 

∫∫=
σ

σψ
πγ  rr )(HJ

4

R
N d ,           (6.2) 

where R is the radius of the Earth, )(H ψ  is an integration kernal known as the Hotine 

kernal function, σ  indicates that the integration is done over the area of interest and the 

relative gravity disturbance is obtained as follows from the measured gravity disturbance 

values: 

GMr JJJ −= .            (6.3) 

In other words, the inputs to the relative geoid computation are estimates of the relative 

gravity disturbance that are isolated from the measured disturbances, J , by subtracting 

the low-frequency component that comes from the geopotential model, GMJ . As 

mentioned in the last section, these measurements may come from either surface or 

airborne gravimetry campaigns. Note that the relative gravity disturbance is the quantity 

shown in Figure 6.2c. 

This and other methods for determining the relative geoid from airborne data are 

described in detail in Li (2000) and Novak and Kern (2000) where it is pointed out that 

the measured quantity, J , is expressed on a level surface and corrected for effects such 

as the topography and the atmosphere before being used in a process such as the one 

described by equation 6.2. As mentioned earlier, a downward continuation step is also 

involved.  

A current challenge being faced by researchers is the determination of the geoid with a 

cm-level accuracy. Recent results presented in Li (2000) demonstrate that a relative geoid 

accurate to 2 cm can be obtained in mountainous areas from airborne gravity data with a 
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half-wavelength of 4.5 km. According to Li (2000), the task of determining an absolute 

geoid at the cm-level seems possible by using airborne (and surface) data together with 

the data from future satellite missions.  

6.2.2 Resource exploration 

The deliverable in most geophysical applications of gravity data is the Bouguer anomaly 

in the form of surface or contour plots. It is an expression of the measured anomaly on 

the geoid (through a process that assumes that the masses that exist between the 

measurement point and the geoid can be represented as a slab of constant thickness and 

density). As discussed in Reynolds (1997), the effect of residual topography and a long-

term trend are typically removed from the anomalous field so that it represents only the 

local changes in gravity due to features below the surface. This makes it analogous to the 

quantity of relative gravity disturbance that was given in the last section and represented 

by the contour plot in Figure 6.2c (although in that case, the effect of the topography had 

not yet been removed). A relative accuracy of 1 mGal at a half-wavelength resolution of 

0.5 km is often considered to be the ultimate goal for resource exploration. 

6.3 The low-resolution SINS errors 

The presence of low-frequency errors owing to unmodeled accelerometer biases have 

traditionally been viewed as a major roadblock to successfully estimating the relative 

gravity field for geoid determination from data collected using a SINS airborne gravity 

system. Recall that these were lumped together as the variable b in equation 2.10. 

Although an attempt is made to estimate them in the Kalman filter during SINS/DGPS 

integration, they remain largely uncompensated and as shown in equation 2.5, go directly 

into the error budget of the estimated gravity disturbance. As a result of typical survey 

conditions, the errors in the upward pointing accelerometer make up the majority of this 

error for scalar gravimetry. The typical biases of the SINS system used at the University 

of Calgary are time dependent and vary by as much as 100 mGal over a flight lasting six 

hours. Given that the desired performance of an airborne gravity system is at the level of 

1 mGal, this is obviously a major problem. It would be ideal if they could be modeled 
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appropriately and removed, permitting the estimation of the gravity field in all 

bandwidths. 

Glennie (1999) should be consulted for typical time domain plots of these errors and a 

description of a number of attempts to remove them. Efforts were made there to model 

the biases as polynomials and as Gauss-Markov processes in the Kalman filter, 

unfortunately without success. Their characteristics were shown to be very similar 

whether the SINS was static in the lab or being used in flight, leading to the conclusion 

that they are most likely due to an unmodeled dependence on the temperature of the 

system. This conclusion is supported by several facts. The first is that the errors always 

reach a near steady-state value after a warm-up period of several hours (an unacceptable 

time delay in practice). The second is that there are several analyses that show negligible 

biases for data collected using similar accelerometers under more strict temperature 

control. See Ferguson and Hammada (2000) and Glennie (1999) for examples. 

6.3.1 Estimating the relative gravity field in a more direct manner 

The possibility of estimating the relative gravity field from data collected with the SINS 

used by the University of Calgary is discussed in this section. Conceptually, the method 

proposed herein uses high-pass filters to derive the relative information from airborne 

data without estimating or compensating for the accelerometer biases. In other words, 

instead of requiring that the measured gravity disturbance, J , be corrected for the 

estimated biases before being used in equation 6.3, the method directly estimates the 

relative gravity disturbance, rJ . Although the experiments described in the last section 

demonstrate that it is difficult to describe the biases as a function of time (and therefore 

space), their behaviour is relatively easy to characterize in the frequency domain. 

Consider Figure 6.6 that shows an estimate of the frequency spectrum of the 

accelerometer errors that was obtained empirically using data collected by the upward 

pointing accelerometer during a static session (in the aircraft, with the engines on). Note 

that the x-axis of the figure is presented using a logarithmic scale. The spectra derived 

from other data sets are very similar. The majority of the error is clearly very low-

frequency in nature, implying that it can be removed by high-pass filtering the estimated 



122 

   

gravity disturbance. Although doing this will obviously make direct estimation of the 

absolute gravity field impossible, it permits the estimation of relative gravity, free from 

the effects of the biases. As shown, the low-frequency errors mainly influence the signal 

in the bandwidth below 0.00025 Hz. For a flying speed of 100 m/s, this implies that the 

system is capable of accurately measuring the relative gravity disturbance, rJ , for half-

wavelengths shorter than 200 km. Notice that the remaining accelerometer errors exhibit 

white noise behaviour except in the band between 0.00025 and 0.0005 Hz, implying that 

it should perform best for half-wavelengths shorter than 100 km.  
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Figure 6.6 Frequency spectrum of the accelerometer bias errors 

Consider Figure 6.7 that demonstrates this using real data. Figure 6.7a shows the true and 

estimated gravity disturbances for the first four flight lines surveyed on September 10 of 

the Kananaskis campaign. Figure 6.7b shows the results of band-limiting each so that 

they no longer contain information with half-wavelengths longer than 100 km. The level 

of agreement is significantly better in this bandwidth. In order to quantify the low-

frequency errors affecting the performance of the SINS system for relative gravity 

determination, large portions of the data from the Kananaskis and Alexandria campaigns 

were processed in the same way for various bandwidths. This included the first 11 flight 

lines from each of September 9 and 10 of the Kananaskis campaign and the 10 flight lines 
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flown on April 19 and May 4 of the Alexandria campaign, making a total of 32 flight 

lines and nearly 13 hours of on-line data. Each data set was band-limited using 6 different 

high-pass filters designed to pass only frequencies corresponding to half-wavelengths 

shorter than 50, 100, 150, 200, 250 and 300 km when the flying speed was 100 m/s. 

Because the speed in the Alexandria campaign was close to 50 m/s, these filters 

correspond roughly to half-wavelengths of 25, 50, 75, 100, 125 and 150 km when applied 

to that data. The results are summarized in Figure 6.8, Table 6.1 and Table 6.2. Figure 6.8 

shows the average offset and slope that exist between the estimates and the reference for 

each of the bandwidths mentioned above. The average offset values are calculated for 

each campaign by computing the mean difference between the estimate and the true 

solution for each of the flight lines flown in that campaign, within the bandwidths of 

interest. The values of average slope are calculated in the same way, based on the 

absolute value of the slope of the line that best fits the error in the estimate. The spatial 

resolution for the Alexandria campaign has been normalized to 100 m/s in Figure 6.8 so 

that the data from both campaigns can be directly compared. It is clear from this that the 

behaviour of the time dependent accelerometer biases is very similar for both campaigns. 

It is also clear that they are much larger for half-wavelengths longer than 200 km, 

confirming that the behavior seen in Figure 6.6 is also typical in the airborne 

environment. The performance of the system is obviously significantly better for half-

wavelengths of 200 km and shorter. For example, Figure 6.8a demonstrates that the 

contribution of the accelerometer biases to the total error budget is less than 1 mGal for 

frequencies greater than 0.00025 Hz (which corresponds to half-wavelengths less than 

100 km and 200 km for the Alexandria and Kananaskis data sets, respectively). Table 6.1 

and Table 6.2 demonstrate the performance of the system for selected bandwidths within 

this range. The values given in these tables are the standard deviations of the agreement 

of the estimates with the reference within selected bandwidths. Agreement is clearly 

better for higher resolutions, i.e. when more of the biases have been removed. Note that 

the numbers in Table 6.2 can be roughly compared to other results published by the 

University of Calgary (where a best-fit line is typically removed from the data), by 

comparing the column corresponding to a half-wavelength equal to the length of the 
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flight line. For example, the numbers in Table 6.2 that represent the gravity field for half-

wavelengths of 100 km can be roughly compared to the results presented in Glennie and 

Schwarz (1999) where a line of best fit was removed from the data. The agreement of 

those presented herein is about 0.3 mGal worse than those mentioned above for the same 

flight lines, perhaps implying that the high-pass filters being applied herein to the 

reference and the estimates have some imperfections. As shown later (in Figure 6.9), this 

difference might also be due to residual biases that would be distributed more evenly over 

a flight line if a line of best fit were removed. If the latter is true, then removing a line of 

best fit might be a slightly optimistic means of evaluating the relative performance of the 

gravimeter. 

Note that the low-pass filter used to generate the data in Table 6.1 and Table 6.2 has a 

cut-off frequency of 0.011 Hz, meaning that the shortest half-wavelengths represented are 

approximately 2.3 and 4.5 km, respectively. Note also that the better performance seen 

for the Alexandria campaign is due to a combination of factors including slightly better 

GPS conditions, much more stable aircraft dynamics and the fact that the gravity field is 

significantly smoother in the Alexandria test range than over the mountains in the 

Kananaskis. The former two points are discussed in detail in Chapters 5 and 7, 

respectively. 
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Figure 6.7 The quality of the solution for half-wavelengths less than 100 km 
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Figure 6.8 The effect of the low-frequency errors by bandwidth  
(normalized to a flying speed of 100 m/s) 

 

Table 6.1 Performance for selected bandwidths for the Alexandria campaign 

minimum frequency  
(and corresponding half-wavelength) 

0.00025 Hz 0.0005 Hz 0.001 Hz 
data set line 

(100 km 50 km 25 km) 

T1001 3.7 3.4 3.3 
T1002 2.3 2.1 2.1 
T1003 2.7 2.6 2.5 
T1004 1.1 1.1 1.0 
T1005 2.1 2.0 2.0 
T1006 1.6 1.4 1.3 

 
 
 

Alexandria 
April 19 

average 2.3 2.1 2.0 

T1001 1.5 1.4 1.3 
T1002 1.2 0.9 0.9 
T1003 1.9 1.5 1.5 
T1004 1.1 1.1 1.0 

Alexandria 
May 4 

average 1.4 1.2 1.2 
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Table 6.2 Performance for selected bandwidths for the Kananaskis campaign 

minimum frequency  
(and corresponding half-wavelength) 

0.00025 Hz 0.0005 Hz 0.001 Hz 
data set line 

(200 km 100 km 50 km) 

1 3.8 2.6 2.5 
2 3.0 2.7 2.4 
3 6.2 6.2 4.2 
4 3.2 2.9 2.7 
5 3.1 3.2 2.7 
6 2.9 2.5 2.5 
7 4.7 3.9 3.0 
8 4.2 3.7 3.5 
9 4.6 3.8 2.8 

10 4.1 3.4 2.9 
11 3.9 4.0 3.6 

 
 
 
 
 

Kananaskis 
Sept 9 

average 4.0 3.5 3.0 

1 4.6 4.1 3.5 
2 3.2 2.8 2.1 
3 4.7 4.9 3.9 
4 5.9 3.5 3.2 
5 4.9 3.8 2.4 
6 3.6 3.3 3.4 
7 3.2 2.9 2.4 
8 3.2 3.1 2.4 
9 2.5 2.3 2.3 

10 4.3 4.1 3.3 
11 4.1 3.7 3.7 

 
 
 
 
 

Kananaskis 
Sept 10 

average 4.0 3.5 3.0 
 

6.4 Relating estimates of the relative gravity field to the true gravity field 

Generally speaking, relating estimates of the relative gravity field to an absolute scale 

requires some knowledge of the gravity field for resolutions below those represented by 

the relative information. On one extreme, if the sensors exhibit no bias-like behaviour, 

this relationship can be established using the true value of gravity for any point along the 

survey. In practice, this might be done using an absolute gravity control point at the start 

or end of a survey (on the tarmac, for example). If the sensors exhibit a linear drift (i.e. 

one that can be represented by a best-fit line), then absolute information can be obtained 
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if the true field is known for at least two points along the trajectory. In practice, the start 

and end points are typically used for this. The accuracy of the estimated absolute gravity 

is obviously directly dependent on the accuracy of the control point values used and the 

nature of residual biases. These cases are typical of surveys flown using 2-axis platform 

systems and the inertial platform system developed at Sander Geophysics Ltd., where the 

drift of the sensors is kept at or below the level of 1 mGal for an entire flight.  

In the case of a SINS-based gravimeter, values of the gravity field are unfortunately 

required at a spatial resolution corresponding to the longest half-wavelength represented 

by the relative information. For example, if the data is band-limited such that it only 

contains half-wavelengths shorter than 100 km, then low-frequency information about the 

gravity field is required with half-wavelengths longer than 100 km. This can be likened to 

needing a sample of the absolute gravity field every 100 km. Figure 6.9 demonstrates this 

for two flight lines from the Kananaskis campaign. It shows values of the relative gravity 

disturbance (for half-wavelengths shorter than 100 km) determined using the system, and 

the quality with which the absolute field can be estimated when accurate samples are 

available at the endpoints (shown by the circles). Note that even when interpolating over 

only 100 km, low-frequency errors within this bandwidth can cause the solution to 

deviate from the truth (e.g. toward the middle of the flight line in Figure 6.9b). Although 

having samples of the true gravity field every 100 km can be used in this way, it is 

entirely impractical; one will not have such information in areas without very good 

ground gravity coverage. The following sections discuss two alternative means of solving 

this problem. 

6.4.1 Using a geopotential model 

If a global geopotential model is available that has sufficient accuracy in the required 

bandwidth, then it can be used to complement the relative information that is collected. 

Although this is not a straightforward concept if one wishes to consider the stochastic 

nature of the estimates provided by these two data sources, it can be accomplished from a 

deterministic point of view rather simply. This is especially true, considering the 

temporal nature of the data collection process in airborne gravity that lends itself well to 

one-dimensional signal processing.  
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Figure 6.9 The interpolation of relative gravity using values at the endpoints 
 

Consider Figure 6.10 that shows the magnitude of the frequency response of two 

complementary filters that can be used for this purpose. The first is a low-pass filter that 

is used to band-limit the information coming from the geopotential model to half-

wavelengths longer than 100 km. The second is the high-pass filter that was used in 

Section 6.3.1 to extract relative information for half-wavelengths shorter than 100 km. 

These can be applied to the two time series to generate an estimate of the gravity field for 

all resolutions. This idea is attractive because it does not require a-priori knowledge of 

the gravity field, other than the global model. It also has several advantages over a 

crossover adjustment, including the facts that it does not require that tie lines be flown, it 

does not depend on any assumption about the nature of the accelerometer biases (e.g. 

linearity), and it does not limit the longest half-wavelength of the system to the length of 

the flight lines. (The crossover adjustment is discussed briefly in the next section.) 
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Figure 6.10 Complementary filters to combine high and low-resolution gravity information 

For this method to be successful, the errors in the geopotential model and airborne data 

need to be small enough within the bandwidths in which they are each being used. 

Unfortunately, based on the results presented in Section 6.3, it is unlikely that the SINS 

system being used by the University of Calgary will be able to deliver accurate 

measurements within the range of frequencies required for combination with current 

global models (recall the plots of the accuracy of the latter that were presented in Section 

6.1). To test this, selected data from the Kananaskis and Alexandria campaigns were 

processed in this way using the EGM96. As a worst-case example, consider the results 

obtained for the first four flight lines from the Kananaskis campaign that are shown in 

Figure 6.11 (this is the same data that was shown in Figure 6.7). It is clear that the 

EGM96 is not always accurate enough for this purpose. Biases as large as 20 mGal exist 

between the resulting solutions and the true gravity field in the Kananaskis region. 

Although the situation is somewhat better in areas with smoother topography, the errors 

can still be significant. For example, the average offset and slope between the true field 

and the global model for the data collected on May 4 of the Alexandria campaign are 5.8 

mGal and 0.081 mGal/km, respectively, which may be significant depending on the 

application. It is interesting that all of the flight lines tested in the Alexandria area have a 

very similar bias, e.g. the standard deviation of the biases is only 0.9 mGal, implying that 

the biases might be dealt with by the removal of a single constant bias from the estimates 

for the whole area. 
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Figure 6.11 Complementary filtering in a mountainous area using the EGM96 

These observations echo the call for better accelerometers that was made in Glennie 

(1999). On the other hand, although it might not be applicable at present in all situations, 

it is reasonable to expect that this method should constitute a very feasible approach once 

the data from the dedicated satellite missions becomes available. Recall from Figure 6.1 

that models based on data from the GOCE mission are expected to provide an average 

accuracy of 1 mGal for half-wavelengths longer than 100 km. If this is achieved, it 

should be very useful in this complementary filter approach, except perhaps over very 

rugged terrain. This will have to be tested once that data is made available. 

Finally, note that the author does not expect that a stochastic approach to combining 

current geopotential models with the relative airborne information from the LRF-III SINS 

would yield significantly better results than the deterministic approach presented here. 

This is because the fundamental problem is a lack of useful information in one part of the 

spectrum, which is independent of the understanding one has of the error characteristics 

of each source of information. 

6.4.2 Using a crossover adjustment 

In the absence of accelerometers with good temperature control and a global model with 

sufficient useful resolution, a well-known method called the crossover adjustment can be 

used to make the relative information consistent within a given area. Glennie and 

Schwarz (1997) demonstrated the use of the crossover adjustment as a method of dealing 

with the low-frequency errors present in the SINS gravimeter. For relative gravimetry, it 
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plays the role of making the data consistent, effectively estimating a consistent set of 

endpoint values for each flight line. It is an adjustment that takes advantage of the fact 

that the gravity disturbance is the same for a given point in space, independent of the time 

at which it is sampled. By flying a number of flight lines in the direction perpendicular to 

the main lines, a sufficient number of such points can be obtained to allow for the 

estimation of a residual offset and slope for each flight line. If the behaviour of the biases 

over the period of a flight line can be characterized by a line of best-fit, this should result 

in good levels of agreement between the solutions at the points where the flight lines 

intersect. In turn, this will mean that the relative information is fit to an arbitrary plane in 

space that can either be related to the absolute gravity field using known values for at 

least three locations in the test area, or presented as relative information by removing a 

plane of best fit. This is demonstrated in Figure 6.12 for the data collected during the 

Kananaskis campaign. The program used for this adjustment was written by C. Glennie. 

The agreement of these adjusted solutions with each other at the crossover points has 

already been demonstrated in Glennie (1999) to be at the level of 2.3 mGal (implying a 

standard error of 1.6 mGal coming from the data collected on each day). The figure is 

only included here for completeness and so that the reader can compare the concept of 

the resulting relative field to the relative field that was presented in Figure 6.2c. 
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Figure 6.12 The residual field estimated by the SINS based gravimeter 



132 

   

 

In the case that the biases cannot be modeled by a line of best fit over the length of the 

flight lines being used, incorporation of a higher order polynomial fit into the crossover 

adjustment might be appropriate. As shown earlier, this can be the case for flight lines 

between 100 and 200 km in length. Discussion of this approach is left to Kennedy (1999), 

who has already implemented it with success. 

6.5 Summary 

This chapter has demonstrated the role that airborne gravimetry plays in the collection of 

medium and high-resolution information about the gravity field. It was compared to the 

method of data collection by land-based surveying and demonstrated to have several 

significant advantages. These include the speed, uniform accuracy and homogeneity of 

the data collection process. They also include the fact that if the flight pattern coincides 

roughly with the computation grid, then errors due to interpolation are negligible. 

The accuracy with which the relative gravity field can be determined using the SINS 

system currently being used at the University of Calgary has been quantified for a variety 

of bandwidths. The system is currently only applicable for half-wavelengths up to 200 

km, and performs best for half-wavelengths shorter than 100 km. Practically, these 

correspond to flight lines that are 200 and 100 km in length, respectively.  

Methods of relating the measurements of the relative field to the absolute field have been 

discussed, including the proposal of a simple method for combining the medium and 

high-resolution information coming from airborne surveying with the low-resolution 

information coming from global models of the Earth’s gravity field. Although this 

method is only currently being applied for SINS systems with better accelerometers, it 

will be more generally applicable once global models from future dedicated satellite 

missions become available. 
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7 Natural Motion and Other High-Resolution SINS Errors 

It is recalled from Chapter 2 that because of the SINS errors, the ideal flying conditions 

for airborne gravimetry occur when the survey aircraft travels with a constant velocity 

and attitude. This is an idealization that is only approximated in practice, however, due to 

effects such as vibration, turbulence, wind and changes in speed. Although it has long 

been recognized that the response of the aircraft to these perturbations results in errors in 

the estimates of the gravity field, their causes and characteristics are not well understood 

by airborne gravity researchers and there has never been a reliable means of suppressing 

their effects. Given this, the specific objectives of the current chapter are to: 

a) present a theoretical study of the natural response of an aircraft to such 

disturbances,  

b) demonstrate the actual motion experienced by typical survey aircraft during recent 

flights and estimate the effect it has on airborne gravimetry, and  

c) discuss methods of removing the effect of this motion, including the proposal of a 

method of removing a major part of it. 

As a starting point, consider Figure 7.1 that is included to demonstrate the performance of 

the system used by the University of Calgary, both under static conditions and during an 

airborne survey. The solid line is an error spectrum that was derived from SINS data 

collected over a period of several hours, while the SINS was static. The dotted line is a 

spectrum of the SINS errors, computed for the dynamics experienced during the 

Kananaskis campaign. (The derivation of the dynamic error spectrum will be discussed 

later in Section 7.3) Note that because the low-frequency errors were treated in detail in 

the last chapter, they will not be discussed herein (e.g. the spectrum in Figure 7.1 was not 

estimated for frequencies below 0.00025 Hz). Clearly, the estimate made by the system is 

significantly worse when it is in motion, demonstrating that errors induced by the 

dynamics play a significant role. Because of this and because the relationship between the 

SINS errors and the dynamics is not generally well understood, the band above 0.016 Hz 



134 

   

is not currently considered operational. Concentration in this chapter is therefore on 

defining this relationship and discussing methods of reducing the effects of the errors.  
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Figure 7.1 The SINS error spectrum while in motion and when static 

Concentration is on the bandwidth between 0.01 and 0.05 Hz, which corresponds to 

spatial scales with half-wavelengths shorter than 5 km and longer than 0.5 km for typical 

flying speeds. As such, it serves the broader objective of increasing the performance of 

current airborne gravity systems within the bandwidth required for resource exploration. 

The chapter is divided into four sections. The theoretical background required to 

understand the natural response of an aircraft to the perturbations that occur in flight is 

presented in Section 7.1. The major objective is to demonstrate which components of this 

characteristic motion can be expected to cause errors in the portion of the spectrum of 

interest in airborne gravimetry. In principle, this means identifying components of the 

motion that have frequency content between 0.01 and 0.05 Hz. In meeting this objective, 

it is explained why the well-known Phugoid motion is a limit to high-resolution gravity 

field estimation. Available SINS/DGPS navigation data is then used in Section 7.2 to 

demonstrate and analyze the actual motion that was observed for survey aircraft during 

two recent flights. Emphasis is on demonstrating the amount by which the natural motion 

is reduced by the interaction of a pilot and autopilot. The SINS errors that are induced by 

these residual dynamics are then characterized in Section 7.3. This is done in the 
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frequency domain using larger quantities of real data. Finally, practical ways of reducing 

these errors are discussed in Section 7.4, including the proposal and implementation of a 

method for modeling the errors that show up as a result of the misalignment of the SINS. 

This constitutes the first step in a more rigorous solution to the problem. 

7.1 The natural motion of an aircraft 

The motion of a body can be described by a dynamic model if the forces acting upon it 

are sufficiently well known. Although this is not generally possible for navigation 

because the external forces are far too complicated (see Schwarz et al. (1989)), such an 

approach does provide the theoretical basis for understanding the dynamics of flight. In 

other words, the dynamic model corresponding to a given aircraft can be used very 

successfully to characterize its natural motion. This is the topic of the current section. The 

discussion is based broadly on standard presentations of flight dynamics that can be 

found in textbooks such as Babister (1980), Etkin (1982) and Bryson (1994). However, 

the notation and reference frames used in Schwarz and Wei (1997) are adopted, to make 

the material more easily accessible to readers who are familiar with the fields of 

navigation and airborne gravimetry.  

The motion being considered is that which occurs when the aircraft deviates from a state 

of equilibrium (steady motion with constant velocity and attitude) as a result of 

disturbances such as turbulence or changes in speed or wind conditions.  

7.1.1 The equations of motion 

It is standard to assume that the aircraft is a rigid body that is symmetric about the 

vertical plane passing through its fuselage when the wings are level. In such an approach, 

the motion of the aircraft is modeled as a translation of its centre of mass and a rotation of 

the body about the centre of mass. Using Newtonian mechanics, dynamic modeling of the 

centre of mass is based on the time derivative of the law of conservation of linear 

momentum as follows: 

F
v =

t

m

d

)(d
,             (7.1) 
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where m is the mass of the aircraft, v is its velocity and F is the sum of the forces acting 

upon it. In other words, if the forces, F, acting on the aircraft are known, then given some 

initial conditions, the solution to this differential equation provides the position, velocity 

and acceleration of its centre of mass.  

As described in Babister (1980), the field of flight dynamics deals with describing the 

motion of an aircraft under the influence of the gravitational attraction, aerodynamic 

forces (due to the linear and angular velocity of the aircraft and to the application of 

controls), and propulsive forces. Given this, and the fact that the mass of the aircraft can 

be assumed to be constant for short time periods (i.e. the amount of fuel used is 

negligible), the same equation can be expressed as follows: 

gffv ++= pa& ,            (7.2) 

where af  are the aerodynamic forces and pf  are the propulsive forces, g is the 

gravitational attraction (all in units of acceleration) and the dot above the variable 

represents the derivative with respect to time.  

At this point, a reference frame (r-frame), is adopted for convenience that has its origin at 

the centre of mass of the aircraft and that has constant orientation corresponding to its 

ideal path, e.g. if the intended direction of the aircraft from its starting point is north, then 

the reference axis can be likened to the l-frame. The r-frame and the b-frame are both 

depicted in Figure 7.2a. Equation 7.2 can then be expressed in the b-frame with respect to 

this r-frame as follows (Bryson (1994)): 

bb
p

b
a

bb
rb

b gffvv ++=×+& ,          (7.3) 

where b
rb  are the b-frame components of the angular velocity of the aircraft with respect 

to the r- frame. The second term on the left-hand side takes into account the fact that the 

b-frame is rotating with respect to the r-frame. Rotations of the r-frame with respect to 

the i-frame have been neglected.  
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Figure 7.2 Variable and frame definitions for natural motion 
 



138 

   

As mentioned above, the rotation of the aircraft about the centre of mass must also be 

defined in order to completely represent its motion. This definition is based on the 

principle of conservation of angular momentum that relates the angular momentum, H, of 

the aircraft to the external torques that are applied to it. Assuming that the only torques 

present are due to aerodynamics, aL , and propulsion, pL , this takes the following form: 

pad

d
LL

H +=
t

.             (7.4) 

As was done above for equation 7.3, equation 7.4 can be expressed in the b-frame, with 

respect to the reference frame, to yield the following equation (Bryson (1994)): 

b
p

b
a

bb
rb

b LLHH +=×+& .            (7.5) 

Note that this also directly relates the external torques to the angular rate of the body, 
b
rb , because: 

H = I b
rb ,              (7.6) 

where I is the instantaneous inertia tensor given by: 






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






=

zzzyzx

yzyyyx

xzxyxx

III

III

III

I ,                (7.7) 

that has diagonal elements known as the moments of inertia and off-diagonal elements 

known as the products of inertia. In other words, if the external torques, the inertia tensor 

of the aircraft and some initial conditions are known, then the solution to the differential 

equation given in equation 7.5 provides the angular rate and attitude of the aircraft with 

respect to the r-frame. 

7.1.2 The practical form of the equations of motion 

Although equations 7.3 and 7.5 provide the basis for describing the natural motion of an 

aircraft, they are usually applied in a simplified form. Specifically, each is linearized with 

respect to steady flight that is formally defined as having constant velocity and attitude 

and some constant forward speed, s (i.e. 0b =v& ,  0b
rb =  and s=bv ). In steady 

motion, the x-axis of the b-frame will coincide with the x-axis of the r-frame and the y 
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and z-axes may differ only as a result of a possible constant rotation about the x-axis (i.e. 

pitch). Further, because of the symmetry of the aircraft, the equations of motion can be 

split into two uncoupled sets; one for longitudinal and one for lateral motion. These facts 

yield linear equations of the following form (Bryson (1994)): 
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which define the motion of the aircraft in the longitudinal (vertical) and lateral 

(horizontal) planes, respectively, with respect to the conditions of steady motion. The 

terms H , W , D  and U  represent the deflections caused by the elevator, throttle, 

aileron and rudder, respectively. In other words, they represent the interaction of the pilot 

(or auto-pilot) with the system. The variables  and ϕ  represent deviations in the 

pitch and roll of the aircraft and the deviations in the yaw are given by z≅& . 

Equation 7.8 defines the motion of the aircraft in the plane defined by the y and z-axes 

and equation 7.9 defines its motion in the plane defined by the y and x-axes. The state 

variables are given in the r-frame and the superscript, r, has been dropped for 

convenience. Figure 7.2 shows the elements of the two state vectors. The dynamic 

matrices, lonF  and latF  are functions of a) the approximate magnitude of gravity, b) the 

moments and products of inertia, and c) the derivatives of the external forces and torques 

with respect to each of the state elements (that arise as a result of the linearization that is 

done). Parameter sets b) and c) are specific to a given aircraft and their derivation is a 

complex process based on a combination of observations made when the aircraft is 

stationary, in a wind tunnel and during well-observed flights. For example, consider 

Heffley and Jewell (1972) and Teper (1969) for examples of aircraft stability and control 
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data for several (mainly military) aircraft. The control matrices lonG  and latG  are also 

aircraft and autopilot dependent. Finally, remembering the small angles that have been 

assumed, the velocities in the reference frame can be approximated by: 


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rv .            (7.10) 

The standard way of solving equations 7.8 and 7.9 is discussed in the next section and 

more details about their derivation and complete form can be found in Babister (1980) 

and Bryson (1994), for example. 

7.1.3 Solving the equations of motion for natural motion 

The natural motion of the aircraft is its response to perturbations when there is no 

interaction by means of the controls. This means that if equations 7.8 and 7.9 are 

represented in general form by GuFxx +=& , then the natural motion is given by the 

solution to the homogeneous form of the same equation, Fxx =& . As discussed in 

Guterman and Nitecki (1991), if the coefficients of F are constant in such an equation, it 

is an ordinary linear differential equation that is well known to have solutions of the 

following form:  

vx teλ= ,             (7.11) 

where λ  is an eigenvalue of F and v is an eigenvector of F corresponding to λ . The 

complete natural motion will then be the sum of all such solutions. It is easy to see from 

equation 7.11 that the solutions corresponding to real eigenvalues will be exponentially 

increasing or converging functions of one of the forms shown by the solid lines in Figure 

7.3. Whether they increase or converge will depend on the sign of the eigenvalue. These 

will be called Type A modes. It is also important to realize that although the longitudinal 

and lateral equations discussed in the last section will have complex eigenvalues, the 

corresponding solutions are always real. As discussed in Etkin (1982), complex 

eigenvalues will always appear in conjugate pairs that will result in a real-valued, 

exponentially weighted sinusoid of the form shown by the dotted lines in Figure 7.3 
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(depending on the sign of the real part of the eigenvalue). See Appendix D.3 for more 

about this. These will be called Type B modes.  

Babister (1980) shows that the longitudinal motion of an aircraft will generally be 

composed of two Type B modes (i.e. it has two pairs of complex conjugate eigenvalues). 

The first is called the Short-Period Oscillation and the second is called the Phugoid Mode 

(or Long-Period Oscillation). For typical aircraft, the Short-Period Oscillation has a 4-10 

s period and is very quickly damped (it will usually reach half-power within 1 s). The 

period and time to half-power are inversely proportional to the forward speed. The 

Phugoid mode, on the other hand, is a slow sinusoidal motion that is very slowly damped. 

It has a typical period of between 25 and 150 s (that increases with the flight speed) and 

can take thousands of seconds to reach half-power.  
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Figure 7.3 The forms that the natural motion can take 

The lateral motion of an aircraft is made up of three basic modes. The first is known as 

the Dutch Roll Mode (or Yawing Oscillation). It is a Type B mode that has a period 

between 3 and 15 seconds and a half-time as short as 3 s. Generally speaking, the half-

time and period of the Dutch Roll are inversely proportional to the forward speed and the 

latter is also proportional to the wing span, Babister (1980). The second mode, known as 
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the Pure Rolling Motion is a highly damped Type A mode with a typical half-time of less 

than 2.0 s. Finally, the last mode is known as the Slow Spiral Motion that is caused by a 

slowly damped Type A mode that can have a half-time of up to a few hundred seconds. 

Recall from the last sub-section that the elements in the state vector x, correspond to the 

deviations of the aircraft motion from steady motion. The total natural motion will be 

made up of the sum of each solution of the form shown in equation 7.11. There will be 

one such solution for each eigenvalue of the system, F. For example, consider the first 

element of the longitudinal case (equation 7.8). Its solution implies that the deviation of 

the forward component of the velocity from s is given by the sum of two modes: the 

Short-Period and Phugoid modes. This point is further explored in Section 7.1.4. 

7.1.4 What does natural motion typically look like? 

This section briefly draws upon examples to provide the reader with a better 

understanding of the natural motion that was described above and to identify the modes 

with frequency content that might affect an airborne gravity system.  

Because the dynamic stability derivatives and moments of inertia (i.e. matrices lonF  and 

latF ) for aircraft commonly used in airborne gravimetry were not available to the author 

at the time of printing, an example from Bryson (1994) is borrowed and built upon to 

demonstrate the characteristic motion of a small general aviation aircraft called the 

Navion. Consider Figure 7.4 that shows the longitudinal modes for this aircraft when it is 

traveling at a speed of about 50 m/s and note that different time scales have been used. 

Notice first, that the Short Period mode is damped very quickly, having virtually no 

influence after only 1.5 s. The Phugoid mode has a larger effect, however, with a period 

of approximately 25 s and taking some 75 s to reach half-amplitude. Consider Figure 7.5 

that shows the lateral modes for the same aircraft. Although the Pure Roll and Dutch Roll 

modes are quickly damped, the Slow Spiral mode is not. Note that the period of the 

Dutch Roll mode is only about 3 s. These observations point to the conclusion that only 

the Phugoid and Slow Spiral modes have frequency content that overlaps with the gravity 

signal (i.e. their duration and period are long enough to influence the determination of 

gravity within the bandwidth of interest). 
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Figure 7.4 Longitudinal modes for the Navion 
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Figure 7.5 Lateral modes for the Navion 
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Because the airplanes used in airborne gravimetry are typically larger than the Navion, it 

is important to consider the modes of a larger aircraft. For this reason, the above example 

is extended to include the dynamic model for a Boeing 747. Although such an aircraft is 

undoubtedly much larger (and faster) than any practical surveying aircraft, it is included 

to represent an extreme case. For now, it will be assumed that the responses of typical 

survey aircraft will lie somewhere between those of the Navion and the 747. With this in 

mind, consider the longitudinal and lateral modes for the Boeing 747 flying at a speed of 

about 235 m/s that are presented in Figure 7.6 and Figure 7.7, respectively. 

Although the Short Period and Pure Roll modes have longer damping times than for the 

Navion, their effects still last much less than 10 s, meaning that will average out and not 

influence the performance of an airborne gravity system. The Dutch Roll mode has a 

period of only about 7 seconds, implying that it will also average out and have no 

influence on an airborne gravity system. (Notice that it is divergent, however, meaning 

that some sort of feedback is needed to keep the aircraft close to steady flight.) Important 

again are the Slow Spiral and Phugoid modes. The former is very similar in nature to that 

observed for the Navion, but the latter is markedly different. In this case, the Phugoid 

motion has a period of about 100 s and displays almost no dampening. 

Having identified the Phugoid and Slow Spiral modes as those most likely to affect an 

airborne gravity system, it is useful to consider the deviations in trajectory that they 

cause. This is done in Figure 7.8 where the scale of both plots has been exaggerated for 

clarity. As shown, the Slow Spiral mode causes the aircraft to deviate in horizontal 

position from its ideal path as it slowly approaches the intended heading. This can take 

hundreds of seconds, and as demonstrated for a large aircraft in Etkin (1982), the aircraft 

can deviate from the intended path by as much as 600 m. The magnitude of this deviation 

depends on the size and speed of the aircraft. The Slow Spiral mode also causes a 

smaller, but similar deviation in roll. The Phugoid mode results in a sinusoidal deviation 

of the height of the aircraft that is accompanied by similar deviations in pitch and (mainly 

forward) speed. Etkin (1982) shows that the natural deviations in height can be as large as 

700 m for large aircraft. 
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Figure 7.6 Longitudinal modes for a Boeing 747 
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Figure 7.7 Lateral modes for a Boeing 747 
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Figure 7.8 Trajectories corresponding to the Phugoid and Slow Spiral modes 

The period of the Phugoid motion is approximated in Babister (1980) by: 

g

s
T 2π= ,            (7.12) 

where s is the forward speed of the aircraft and g is the magnitude of gravity. In other 

words, it is mainly dependent on aircraft speed and not on the aircraft itself. The amount 

of natural damping of the Phugoid modes is aircraft dependent, on the other hand, and 

depends specifically on the drag. It is typically small, however. 

Details regarding the computations that were made to generate the data presented in 

Figure 7.4 through Figure 7.7 are given in Appendix D.2. Note that as Bryson (1994) 

suggests, the amplitude of the deviations has been normalized so that their relative sizes 

can be compared. Because the goal of this section is to identify problematic modes by 

frequency content, this is not considered to take away from the analyses. Further, it is the 

magnitude of the residual dynamics (i.e. the dynamics actually present after pilot or 

autopilot interaction) that are of importance in defining their effect on an airborne gravity 

system. Discussion of this is left until Section 7.2, where this is demonstrated using real 

data. 

7.1.5 How might natural motion affect airborne gravimetry in practice? 

In the last section, the Phugoid and Slow Spiral modes were identified as those most 

likely to affect airborne gravimetry. The identification of the Phugoid mode as a source 
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of error should have come as no surprise to readers who are familiar with the field of 

airborne gravimetry. In fact, errors associated with aircraft dynamics are often lumped 

together and simply referred to by airborne gravity researchers as those caused by 

Phugoid motion. At the same time, however, the same group of errors is also often 

referred to as being due to the autopilot used by the aircraft. These facts are somewhat 

contradictory and imply the need for clarifying how the natural motion causes errors in 

the estimated gravity field. This will be done below and in the next section.  

In doing so, it is useful to recall the error equation for airborne gravimetry that was given 

in equation 2.6. For convenience, it is repeated below, leaving out the errors due to DGPS 

(that were treated in Part 2) and time synchronization (that will be addressed later, in 

Section 7.3): 

bl
b

lll d d fRFg −= .              (7.13) 

The first term of this equation says that the misalignment errors, l , will present 

themselves as functions of the specific force, lF , resulting from the dynamics and the 

second term says that any dynamics induced errors in the measurements made by the 

accelerometers (e.g. scale factor errors) will present themselves directly in the solution 

after rotation from the b-frame to the l-frame. Both of these clearly depend on the specific 

force experienced by the aircraft. It is useful, therefore, to consider the characteristics of 

the specific force caused by each of the modes. This can be done by differentiation with 

respect to time of the deviations in velocity that were observed in Figures 7-4 to 7-7. The 

result is practically no signal for the Slow Spiral mode and another exponentially damped 

sinusoid for the Phugoid mode. As shown in Figure 7.4 and Figure 7.6, although the 

Phugoid mode affects both the upward (z) and forward (y) components, it will be much 

larger in the forward direction.  

In the presence of accelerometer scale factors, this type of motion will result in errors in 

the gravity disturbance, as given by the second term in equation 7.13. Given that the 

variability of the accelerations is significantly larger in the forward direction, they are 

likely to be problematic for vector gravimetry because they will have their largest effect 

on the horizontal components of the gravity vector.  
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Recall from the full form the first term in equation 7.13 (see equation 2.11), that the 

forward specific force will act to amplify the effect of the misalignment error in all three 

components of the gravity disturbance estimate.  

Although there will also be some errors due to the gyroscope scale factors, it is easy to 

show that they will be negligible in magnitude for the variations in angular rate caused by 

either the Phugoid or Slow Spiral modes. As a result, they will simply be lumped in as a 

part of the misalignment term, l , for the remainder of this chapter. 

Although the Slow Spiral modes will not cause any dynamics related errors in the 

estimated gravity disturbance, the deviations from the intended trajectory may mean that 

the measurements of the gravity field are being taken at significantly different locations 

than intended (e.g. the anomalous gravity field can vary fairly significantly over a 

horizontal distance of 600 m). This problem will increase in severity for rough gravity 

fields and as the distance over which interpolation needs to be done increases. It would 

also play a greater role in the small area surveys typical of resource exploration. This 

issue was discussed in Section 6.1. 

Again, because of the normalization that was done earlier, only the general form of the 

accelerations caused by the Phugoid motion has been discussed in this section. The 

magnitude of their effects will be quantified using real data in Section 7.2 that follows the 

brief discussion of motion control in the next section. 

7.1.6 On the use of controls to reduce the natural motion 

Anyone who has been in an airplane knows that its height does not typically deviate from 

level by anything like 600 m, as implied in Section 7.1.4. In fact, although they may not 

crash the aircraft, several of the deviations from steady flight caused by the natural modes 

would make a passenger very uncomfortable if not controlled in some reasonable way. 

The job of a pilot or autopilot is to ensure that none of these deviations present 

themselves in ways that cause discomfort to passengers (or gravimeters, for that matter).  

The aircraft controls are used to counter the natural motion according to equations 7.8 

and 7.9. In the case of a real pilot, he or she manipulates the elevator, throttle, aileron and 

rudder in order to accomplish this. In the case of an autopilot, measures of the observable 
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modes are used in a control system to automatically manipulate the same controls and 

achieve the desired effect. As described in Bryson (1994), autopilots can take many 

forms and the observables can include climb rate, altitude, yaw, roll and pitch that can be 

measured by sensors such as barometers, gyroscopes and full inertial systems. There, the 

following two types of autopilots are identified: a stability augmentation system (SAS) 

and a command (or hold) autopilot. The SAS only stabilizes one or more unstable modes 

via the feedback of the necessary parameters. The command autopilot is more 

sophisticated, involves many channels of feedback and can even fly the plane from 

shortly after takeoff to just before approach for landing. Further details about the process 

of feedback for automatic aircraft control are external to the scope of this research and 

the interested reader is referred to Bryson (1994) for details. 

In airborne gravimetry, the goal of the pilot or autopilot interaction is to control the 

components of the motion that cause significant errors in the system. Ideally, such 

interaction would remove all accelerations along a flight line. Because this is not possible 

in practice, some acceleration must be tolerated. For a given application, the appropriate 

terms in equation 7.13 can be used to roughly estimate the magnitude of the maximum 

allowable accelerations in each component. In order to keep the effects of each term 

below 1 mGal for the scalar gravimetry case, for example, an accelerometer scale factor 

error of 25 ppm implies that the deviations in upward acceleration must remain below 

0.40 m/s2 (in the relevant bandwidth) and a horizontal misalignment of 30 arc seconds 

implies that the net horizontal acceleration must be less than 0.07 m/s2 (also in the 

relevant bandwidth). 

Using data from the onboard DGPS and very accurate SINS, the next section will 

evaluate how successfully the deviations from ideal motion were minimized in two recent 

airborne campaigns.  

7.2 Examples of the aircraft motion observed during recent campaigns  

This section uses the navigation data from two recent airborne gravity campaigns to 

demonstrate the characteristics of the dynamics that the aircraft underwent. Different 

approaches to approximating the ideal motion were employed in the two tests. The first 
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used a basic autopilot to control various aspects of the motion and the second was 

controlled entirely by the pilot. Each is discussed in turn below.  

7.2.1 The Kananaskis campaign 

Details about the survey specifications for this campaign can be found in Appendix A.1. 

Recall from there that the aircraft used for the survey was a Cessna Conquest turbo prop, 

that the average flying speed was 100 m/s and that the goal of the survey was to collect 

data for geoid determination. An autopilot was used during the campaign. While little is 

known about its design, it is known that it was a basic SAS autopilot that controlled the 

heading and altitude. Although it is not certain what parameters were used in the 

feedback systems, it is likely that the heading and altitude were controlled by separate 

systems. For the first, the heading was probably maintained by adjusting the roll, based 

on feedback of the heading to the compass card heading channel. For the second, it is 

likely that the altitude would have been maintained using the pitch trim, based on 

feedback of the altitude. It is known that the pilot used the throttle to maintain the speed 

of the aircraft. This information is based on personal communication with K. Tennant at 

Intermap Technologies Corporation. 

Consider Figure 7.9 that shows the trajectory of a sample flight line from that campaign. 

Figure 7.9a shows the deviation in east position from the intended north-south trajectory 

(note that the scale in the east-west direction has been exaggerated for clarity) and Figure 

7.9b shows the deviations in height from the average ellipsoidal height of 4357 m. While 

the autopilot system being used limits the deviations in height to well within ± 10 m, 

there is a clear deviation in horizontal position that is made up by a low-frequency 

component that causes the trajectory to vary by over 800 m and by a higher frequency 

periodic component that has an amplitude of roughly 50 m. 

The low-frequency component looks suspiciously like the Slow Spiral mode that was 

identified in Section 7.1.3. Given that the heading was controlled by the autopilot, 

however, this is an unreasonable explanation. The observed deviations could also be 

explained if the heading was controlled by a magnetic compass, an idea that is supported 

by Figure 7.10. A straight line was fit to the observed trajectory for each flight line that 

was flown on September 10 to generate this figure. Clearly, such a pattern would arise if 
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the aircraft was flying according to a compass and if the magnetic declination had only 

been input once for the whole survey (near the central longitude in this case). While such 

low-frequency deviations in position have no effect on acceleration, they may cause 

errors due to interpolation to the intended grid, especially in areas with rough gravity 

fields or when closely spaced profiles are to be flown. 
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Figure 7.9 Trajectory of a sample flight line of the Kananaskis campaign 
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Figure 7.10 Observed horizontal deviation for all lines on September 10 
 

More troublesome for airborne gravimetry are the sinusoidal deviations of the aircraft 

trajectory from these low-frequency curves. Consider Figure 7.11 that demonstrates the l-

frame components of the specific force experienced by the aircraft for the flight line that 

was displayed in Figure 7.9. These were derived from the available DGPS position data 

by differentiating it and accounting for Coriolis acceleration and normal gravity. In other 

words, at the scale used here, the values shown differ negligibly from the true specific 

force experienced by the aircraft. The data in Figure 7.11 has been bandlimited to 0.05 

Hz to isolate it to the bandwidth that is relevant for airborne gravimetry. For 

completeness, the total (i.e. unfiltered) specific force is shown in Appendix D.3. The 

deviations seen in Figure 7.9a clearly result mainly in sinusoidal deviations in specific 

force in the east component that have a maximum amplitude of 0.51 m/s2. Observation of 

Figure 7.11 shows that the period of the deviations in the east direction varies between 40 

and 50 s.  
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Figure 7.11 Acceleration experienced during the Kananaskis campaign (0.05 Hz) 

There are at least two possible explanations for this lateral motion. The first and least 

likely is that the aircraft is undergoing a Dutch Roll motion that has an 

uncharacteristically long period (recall from Section 7.1.2, that the period of the Dutch 

Roll mode is typically no longer than 15 s). This seems especially unlikely in light of the 

fact that the period of the Dutch Roll for the much larger Boeing 747 was shown to be 

only 7 s in Section 7.1.3. A second possible explanation is that it comes indirectly from 

the Phugoid motion of the aircraft. This argument is supported by equation 7.12 that 

predicts the period of the motion to be 45 s for the speed at which the aircraft was flying; 

a value very close to the observed value (of between 40 and 50 s) in this case. It is 
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possible that the Phugoid mode (that was shown in Section 7.1 to be longitudinal) is 

causing the observed lateral motion because of some interaction with the autopilot. For 

example, in trying to counter the periodic change in altitude and pitch caused by the 

Phugoid mode, the autopilot may be causing a change in roll and therefore horizontal 

position and acceleration that all share the same period. For completeness, the speed and 

attitude of the aircraft are also shown in Appendix D.3 for the same flight line. 

Whatever the explanation for this lateral motion, it can have severe effects on the 

estimation of gravity. Consider again the scalar gravimetry example. Recall the example 

from Section 7.1.6 that showed that the upward acceleration must be kept below 0.40 

m/s2 and the horizontal accelerations must be kept below 0.07 m/s2 in order to keep their 

respective effects less than 1 mGal (given certain assumptions about the magnitude of the 

scale factor and misalignment errors). While this does not appear to be a problem for the 

upward acceleration, which only reaches 0.09 m/s2, it is clearly a problem for the 

horizontal acceleration, which reaches 0.51 m/s2.  

The common way to deal with this problem is by low-pass filtering the gravity estimate. 

This works well because the magnitude of the specific force is significantly smaller as the 

bandwidth is reduced. Consider Figure 7.12, for example, that shows the specific force of 

the aircraft within the bandwidth corresponding to frequencies below 0.01 Hz. They are 

clearly much smaller in this bandwidth in all components, explaining why it is so much 

easier to estimate gravity for geodetic applications (frequencies lower than 0.01 Hz) than 

for geophysical applications (which try to include frequencies between 0.01 Hz and 0.05 

Hz). Consider also Figure 7.13 that shows estimates of the gravity field after filtering to 

90 and 30 s, and the obvious advantage of the heavier filtering.  
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Figure 7.12 Acceleration experienced during the Kananaskis campaign (0.01 Hz) 
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Figure 7.13 Estimates of the gravity field in different bandwidths 
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7.2.2 The Alexandria campaign 

Details about this campaign can be found in Appendix A.3. It differed from the 

Kananaskis campaign in several important ways. The first is that the flying speed was 

half as much (45 m/s) because one of the goals was to test the performance of the system 

for higher resolution applications, i.e. for frequencies above 0.01 Hz. The second is that it 

was flown in a Cessna Caravan that was not using an autopilot. Instead, the pilot 

controlled the flight. The goal of this sub-section is to highlight the effects that those 

differences have on the dynamics of the aircraft. 

Consider Figure 7.14 that shows the deviations in trajectory from the ideal straight-line 

case. By comparing this to Figure 7.9, one can see that the horizontal deviations from 

ideal are smaller for the Alexandria campaign than for the Kananaskis campaign. Figure 

7.15 shows that the amplitude of the specific force occurring in the bandwidth around the 

Phugoid period is smaller than in the Kananaskis campaign. The standard deviation of the 

horizontal accelerations is only 0.06 m/s2 in this case, compared to 0.27 m/s2 in the 

Kananaskis case. Also, there are no low-frequency deviations, most likely due to the fact 

that the pilot was flying according to a heading derived from GPS.  

For completeness, Appendix D.3 contains plots of the observed attitude, speed and 

specific force (without filtering). It can be noted from the appropriate figure in Appendix 

D.3 that although the deviations in height are similar in this campaign to what they were 

in the Kananaskis campaign, the unfiltered upward acceleration is considerably larger for 

the Alexandria campaign than for the Kananaskis campaign. Fortunately, as shown in 

Figure 7.15, it is considerably smaller in the relevant bandwidth.  

The appropriate figure in Appendix D.3 shows that the specific force of the aircraft after 

low-pass filtering to 0.01 Hz is roughly the same as for the Kananaskis campaign. 
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Figure 7.14 Trajectory of a sample flight line of the Alexandria campaign 
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Figure 7.15 Acceleration experienced during the Alexandria campaign (0.05 Hz) 

7.3 Estimating spectra of the SINS induced gravity errors 

As touched upon in the last two sections, the dynamics experienced by the survey aircraft 

induce SINS sensor errors and highlight modeling errors that result in errors in the 

estimated gravity field. Although it is extremely difficult to define these as a function of 

time (if we could, we would simply subtract them from our estimates), it is possible to 

characterize them in the frequency domain if the dynamics are sufficiently well 

understood. This section does this by building on the knowledge of the aircraft dynamics 
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that was gained in the last section and using it to isolate and quantify the effect of each of 

the SINS related errors.  

Recall from equation 2.7 that the errors in the upward component of the estimated gravity 

disturbance are given by the right hand side of the following: 

dT )()f-f(dfvdgd bb
enneuuu fAfA &&& +++−=−δ ,      (7.14) 

where the first term is due to SINS sensor errors, the second term is due to the horizontal 

misalignment errors and the last term is due to time synchronization errors. Figure 7.16 

and Figure 7.17 show estimates of the individual error spectra for each of these for the 

Kananaskis and Alexandria campaigns respectively. 
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Figure 7.16 Spectra of the SINS induced gravity errors for the Kananaskis campaign 
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Figure 7.17 Spectra of the SINS induced gravity errors for the Alexandria campaign 

The spectra of the SINS sensor errors, udf , (i.e. Figure 7.16a and Figure 7.17a) were 

calculated from raw data collected using the upward pointing accelerometer during the 

static period at the outset of each of the surveys. The aircraft engines were on in both 

cases, meaning that the effect of the associated vibrations can be roughly evaluated by 

comparing these spectra to the solid line in Figure 7.1. For now, it will be assumed that 

these error spectra also represent the SINS errors while in flight. Strictly speaking, this is 

not true because scale factor errors may play a role (especially in the turns between flight 

lines).  

The spectra of the errors owing to horizontal misalignments, )f-f( enne , were 

estimated by multiplying the average spectra of the horizontal specific force experienced 

during all of the flight lines by a constant approximate horizontal misalignment ε = 30 arc 

seconds. This was done for each campaign to generate the spectra shown in Figure 7.16b 

and Figure 7.17b. The choice of 30 arc seconds as an approximate value for the 

misalignment was made based on the experiences with a navigation grade SINS that are 

reported in Skaloud (1999). Despite this, the choice is somewhat arbitrary and will be 

evaluated in Section 7.4. The curve in Figure 7.16b is an effective demonstration of how 
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the interaction of misalignment errors with dynamics can cause a sharp rise in the error 

spectrum at a frequency corresponding to the period of the Phugoid motion of the aircraft 

(approximately 0.022 Hz = 1/45 s, in that case). Equation 7.12 is therefore a useful 

expression because it helps in identifying the bandwidth in which a gravity survey will be 

useful. For example, unless the Phugoid mode can be suppressed, the maximum useful 

resolution of the data coming from a given airborne gravity survey is given by this 

period. 

Because the bracketed portion of the third term in equation 7.14 is a time dependent 

function of the vehicle dynamics, it can be computed for each epoch of the survey. This is 

done according to equations 2.8 and 2.9 using the values of specific force and attitude 

that were observed by the SINS/DGPS system (recall Section 7.2 and Appendix D.3 for 

examples). The vector of time synchronization errors, dT, is assumed to be due to 

registration errors that occur when the data acquisition and time tagging process is 

blocked by other processes with higher priority. As a result, they are assumed to vary 

randomly at the level of 0.5 ms and have a white-noise-like spectrum. Note that this is a 

rather pessimistic assumption about the nature of the synchronization errors and therefore 

represents a worst-case scenario. See Schwarz and Li (1996b) for more details about this 

type of error. Finally, the spectra in Figure 7.16c and Figure 7.17c are computed from the 

combination of the spectra of these two sequences.  

The most noticeable differences between Figure 7.16 and Figure 7.17 are the facts that 

the errors due to the misalignment are not concentrated around some central frequency 

for the Alexandria campaign and that they are of a much smaller magnitude than for the 

Kananaskis campaign. The former observation supports the argument that it was the 

interaction of the autopilot that caused the Phugoid modes to show up as lateral motion in 

the Kananaskis test and the latter observation is probably due in part to the slower flying 

speed. Also evident is the fact that the synchronization errors are smaller for the lower 

dynamics of the Alexandria campaign. Overall, the result is that the combined SINS 

errors are significantly smaller for the Alexandria campaign, especially above about 0.02 

Hz. 
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This demonstrates the importance of effectively controlling the motion of the aircraft. It 

appears that the pilot in the Alexandria campaign did a better job of controlling the 

natural motion of the aircraft than the autopilot in the Kananaskis campaign, especially in 

the horizontal. It is not possible to draw any broad conclusions regarding the 

appropriateness of automatic control at this point, however, because the autopilot used in 

the latter was not very sophisticated. For example, a different autopilot might do a better 

job of controlling the motion. This should be evaluated when more data becomes 

available. 

Note that the individual components of Figure 7.16 were used in Chapter 2 to create 

Figure 2-2 and that the shaded error spectra that were shown in Figure 5-5 and Figure 5-

10 are the sum of each of the spectra in parts a, b and c of Figure 7.16 and Figure 7.17, 

respectively. The former was also used in Figure 7.1. 

7.4 Reducing the dynamics induced SINS errors 

It was seen in Section 7.2 that despite efforts by pilots and autopilots to control the 

accelerations experienced by survey aircraft, they remain at potentially significant levels. 

Then, in Section 7.3, the effect of the remaining motion on the determination of gravity 

was characterized as a function of frequency. Ways of reducing the effects of these errors 

so that the bandwidth of airborne gravity systems can be widened are the subject of the 

current section. 

There are three ways of reducing the dynamics induced SINS errors. The first is to reduce 

the level of motion occurring within the relevant bandwidth, essentially eliminating the 

cause of the errors. Although this is not straightforward, it might be of interest in future 

studies to consider the natural motion of various aircraft and to study the potential of 

more sophisticated types of autopilots. In theory, both of these can be done in pre-mission 

analyses (along the lines of the examples that were given in Section 7.1.4.), if sufficiently 

accurate models of the aircraft and the feedback systems are available. Currently, these 

have not been found for typical survey aircraft. Despite this, a thorough investigation 

may be appropriate and could result in a better understanding of the necessary qualities of 

both the aircraft and the autopilot. Extension of such analyses to include helicopters is a 

very realistic possibility, again assuming the required data can be found. Alternatively, 
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navigation data could be collected during airborne testing of various aircraft under 

various conditions and studied in much the same way as in the examples of Sections 7.2 

and 7.3. In turn, either of these approaches may aid in the choice of an ideal airborne 

platform and pilot/autopilot configuration.  

The second way to reduce the SINS errors within the bandwidth of interest is to improve 

the quality of the sensors and systems for those components that are sensitive to aircraft 

dynamics, essentially reducing the magnitude of the effect that the dynamics have. This is 

generally an expensive approach. For example, by using better quality gyroscopes and by 

upgrading the system responsible for the synchronization of the SINS and DGPS data 

streams, the corresponding misalignment and synchronization errors in Figure 7.16 and 

Figure 7.17 could be significantly reduced. Improvement of the quality of the 

accelerometers could also result in better performance in terms of biases, noise limits and 

scale factors.  

If the dynamics cannot be reduced and in the absence of better sensor systems, the third 

way to widen the bandwidth of the system is by improving the modeling that is done. 

Although this is the least attractive alternative because it tries to treat the symptoms of 

the underlying problem rather than its causes, it offers considerable potential, especially 

for data that has already been collected. In concept, the idea is to make use of the 

relationship between the dynamics and the error characteristics of the system in such a 

way that the errors can be estimated as a function of time and used to improve its 

performance. Of the errors discussed in Section 7.3, only the misalignment and scale 

factors can be modeled; although the noise and synchronization errors can be roughly 

characterized in the frequency domain, they cannot be modeled as a function of time. A 

brief example of how the residual misalignment errors can be modeled is the subject of 

the next section. 

7.4.1 An example of modeling: estimating the misalignment of the SINS 

Recall from Chapter 2 that the role of the gyroscopes in a SINS-based gravimeter is to 

provide the orientation of the accelerometers in space, l
bR , so that the measured specific 

force can be rotated from the b-frame to the l-level frame. By now, the reader should be 
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familiar with the notion that the errors in this orientation matrix cause errors in the 

estimated gravity field that are a direct function of the dynamics (recall Figure 7.16b that 

shows this for the specific force experienced during the Kananaskis campaign, for 

example). Although this clearly defines the dependence of gravity on accurate estimates 

of the attitude of the aircraft, it is important to discuss the other side of the same coin; 

accurate estimates of attitude also depend on a good knowledge of the gravity field. 

Estimation of the attitude of the aircraft using a SINS is a complex process that is 

implemented in KINGSPAD and described in detail in Schwarz (1998) and Skaloud 

(1999). In short, it requires the solution of the following system of equations that relates 

both sets of measurements ( bf and b
ib ) to the variables of interest (the position and 

velocity of the aircraft, er  and ev , and especially the attitude matrix, l
bR ): 
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where the matrix , b
ieΩ , is the rotation rate of the Earth (expressed in the b-frame), the 

gravity vector, eg , is usually approximated by the normal gravity vector and as usual, the 

dot above the variables denotes their derivative with respect to time. e
bR  is the 

transformation matrix that relates the e-frame to the b-frame (the derivation of which is 

sufficient information to obtain l
bR  because the relationship between the e-frame and the 

l-frame is a simple function of the position that can be reliably estimated using DGPS). 

This system of equations is typically linearized, augmented by states that represent the 

biases of the SINS sensors and solved in a recursive manner using a Kalman filter that 

uses the position and velocity obtained from DGPS as regular updates. 

The second set of the above equations says that the attitude that is derived depends on the 

gravity field itself. This implies a somewhat circular problem in any effort to solve 

simultaneously for attitude and gravity; a model of the gravity field is needed in order to 

solve for the attitude of the vehicle, but the attitude of the vehicle is needed in order to 

solve for the gravity field. 
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From the perspective of SINSs optimized for navigation and attitude determination, this 

problem has long been recognized. In this case, a common solution is to derive the 

gravity vector, eg , from a global model of the gravity field rather than using the normal 

gravity model. As discussed in detail in Chapters 1 and 6, the drawbacks of such an 

approach include the band-limited nature of current and future global models and the 

relatively large errors in the current models. This means that considerable portions of the 

gravity field are not well represented and can result in a poorer estimate of the attitude.  

From the perspective of SINSs optimized for gravity determination, this problem was 

discussed in Schwarz and Li (1996b) where an iterative method for solving it was first 

proposed. In the first step of this method, an initial estimate of the gravity field is 

obtained using the process given by equation 7.15 and by low-pass filtering the difference 

between the SINS and DGPS streams (as it has been throughout this dissertation so far, 

according to the process outlined in Section 2.3.1). This estimate is then used in a second 

step to correct the specific force data before using it again in the same process. It was 

proposed that by repeating this procedure, the estimate of the gravity field would 

converge to a final and accurate solution.  

As it is presented, however, this approach is difficult for several reasons. The first is that 

the corrected specific force data (that the second step yields) still contains the effects of 

the accelerometer biases; it was assumed in Schwarz and Li (1996b) that the Kalman 

filter would be able to estimate them. Detailed analyses presented in Glennie (1999) 

showed, however, that it cannot. The second reason is that even in the absence of biases 

and noise in the specific force data, the Kalman filter does not have a very accurate 

means of specifying the presence of different error sources by bandwidth. For example, 

as shown in Figure 7.16b, the majority of the misalignment error only influences a very 

small portion of the spectrum of the estimated gravity field (between 0.010 and 0.030 

Hz). It is difficult to take advantage of this knowledge in a Kalman filter approach. 

The remainder of this section provides an example of how modeling can be done to 

estimate and remove selected errors. It implements an alternative method of estimating 

the misalignment terms. It is similar in spirit to both approaches outlined above. Like the 
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first, it makes use of a relatively accurate representation of the gravity field in order to 

improve estimates of the attitude, and like the second, it uses a band-limited estimate of 

the gravity disturbance coming from the system as a starting point. It is best introduced 

by again using equation 2.6 and approximating it as follows for the bandwidth between 

0.010 and 0.030 Hz: 

eFg += lll
dbandlimited ,          (7.16) 

where l
dbandlimited g  is the band-limited error in the gravity disturbance, and e is a white 

measurement noise sequence that represents the sum of the SINS errors, the DGPS errors 

and the synchronization errors. For the SINS errors, this approximation is justified rather 

heuristically for now by considering Figure 7.16 and keeping in mind that the 

synchronization errors in Figure 7.16c represent a worst-case scenario. For the DGPS 

errors, recall Figure 5-5 that implies that the DGPS errors can be very nearly 

characterized as white noise within this bandwidth if the acceleration is derived using a 

single frequency approach. 

It is hypothesized at this point that if the true specific force, lF , and the errors in the 

estimated gravity disturbance within the same bandwidth, l
dbandlimited g , can be 

sufficiently well estimated, then equation 7.16 can be used to solve for the misalignment 

term, l .  

This hypothesis is evaluated using a Kalman filter with the following state vector, x, 

design matrix, H, and measurement vector, z: 
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at each time epoch, k. The values of specific force ef , nf , and uf  are derived from 

DGPS as they were in Section 7.2. As shown, the error in the estimate of the gravity 

disturbance is estimated from the difference between the solutions obtained by low-pass 

filtering to 30 and 90 s, respectively. As suggested in Schwarz and Wei (1997), the 

misalignment states are modeled as first-order Gauss Markov processes, meaning that 

their correlation decays exponentially. According to Gelb (1974), the appropriate 

transition matrix is given as follows: 
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where t∆  is the sampling period, and the correlation period, T, of the process is given by 

β1=T . The corresponding process noise matrix is given by the following: 
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where xσ  is the standard deviation of the misalignment state elements. Further, the initial 

state and associated covariance matrix are given by: 
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The covariance matrix of the measurements is given by: 
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where hσ  and vσ  are the standard deviations of the horizontal and vertical components 

of the measurement vector, z. 

The hypothesis is tested using the first four flight lines of data collected on September 10 

of the Kananaskis campaign. The following values were used for the test: 

T = 14400 s, 

xσ  = 10 arc seconds, 

hσ  = 25 mGal, and vσ  = 2 mGal. 

The estimated misalignment state histories are shown in Figure 7.18 for the four flight 

lines. These agree well with the values that were presented in Skaloud (1999). Also, this 

confirms that the value of 30 arc seconds that was assumed for the horizontal 

misalignments in Section 7.3 was roughly correct. Following the modeling of these 

misalignment terms, the measured specific force of the system can be converted from the 

b-frame to the true l-frame using the following equation: 

bl
b

l true fRf = ,            (7.25) 

where truel
bR  is the rotation matrix between the b-frame and the true l-frame and is given 

by: 

l
b

l
l

l
b

truetrue RRR = ,           (7.26) 

where in turn, truel
lR  is given by the misalignments as follows: 

)()()( exnyuz
l
l
true −−−= RRRR .        (7.27) 

The rotated specific force is then used as usual in equation 2.3 to yield an improved 

estimate of the gravity disturbance. The results of this are summarized in Table 7.1 that 

shows the agreement of the resulting solution with the upward continued reference both 

before and after correction for the misalignment terms. Also consider Figure 7.19 that 

demonstrates the improvement in the time domain.  
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Figure 7.18 Estimated misalignments for the Kananaskis campaign 

 
Table 7.1 Standard deviation of the agreement with reference after filtering to 30 s  

Residual (mGal) Flight line 
original corrected 

1 11.5 5.5 
2 9.0 3.6 
3 11.9 5.8 
4 13.9 7.8 

average 11.6 5.7 
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Figure 7.19 Samples of the residuals, before and after modeling of the misalignment 

This preliminary result is very encouraging. It shows that it is indeed possible to model 

and estimate the error terms in an airborne gravity system, effectively removing the effect 

of the observed Phugoid motion. As a result, the standard deviation of the difference 

between the estimated gravity disturbance and the reference is approximately halved to 

just below 6 mGal. Because the aircraft was flying at a speed of 100 m/s, the 

corresponding resolution is a half-wavelength of 1.5 km. The remaining errors are due to 

errors in the upward continued reference, DGPS noise, synchronization errors and 

probably residual scale factor errors. 

7.5 Summary 

The errors affecting an airborne gravity system within the bandwidth corresponding to 

high-resolution gravity field estimation were dealt with in this chapter. The natural 

motion of the aircraft was studied in detail and the components of that motion that cause 

errors in the spectrum relevant to airborne gravimetry were identified as being due 

mainly to the Phugoid mode. Using real data, it was then seen that a pilot and autopilot 

can significantly reduce the magnitude of these dynamics. It was also seen that they still 
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exist at potentially dangerous levels despite this. In the studies presented here, the pilot 

did a better job of controlling the motion. It would be very useful to evaluate the use of a 

more sophisticated autopilot for controlling the motion. It is certainly not possible to say 

which aircraft is better in this case because it appears to depend heavily on the form of 

control used. 

The relationships between the residual dynamics and the errors in gravity were then 

studied. This provides a good understanding of the behaviour of each error source in the 

frequency domain. 

Methods of reducing the dynamics induced errors were discussed in the last section. This 

called for future studies into reducing the dynamics themselves and echoed calls made in 

other chapters for better sensors. Finally, the modeling of residual errors was discussed 

and a method of estimating the misalignment errors was proposed and implemented. It 

was shown to improve the accuracy of the SINS airborne gravity system by a factor of 

two at a very high resolution.  

This suggests a possible compromise between new sensors and modeling. Because 

gyroscopes are generally the most expensive sensor set, it seems more convenient to treat 

the misalignment terms by modeling. Because accelerometers are cheaper and clearly the 

weakest component (especially considering the arguments about their low-resolution 

performance made in Chapter 6), their replacement is advised. 

It is also concluded that the pursuit of methods for modeling SINS errors that are induced 

by dynamics should be a priority for future work. The model should incorporate scale 

factor errors that are likely to be problematic during vehicle turns. 
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Concluding Remarks 

The primary objective of the research described in this dissertation is to simultaneously 

improve both the accuracy and the resolution of the SINS/DGPS gravimeter that is used 

by the University of Calgary. This goal has been met.  

The major contributions of the research include a detailed analysis of the behaviour of the 

system and all of the components of the error budget under various dynamic conditions, 

an improvement of the performance of the system in the bandwidth corresponding to 

medium-resolution applications such as geoid determination, and a demonstration of the 

good performance of the system in the bandwidth corresponding to high-resolution 

applications such as resource exploration. 

In the following, more detailed comments are made about the above contributions and 

improvements resulting from the research. Important results are highlighted, conclusions 

are drawn and recommendations are given. More detailed conclusions can also be found 

at the end of each chapter. 

Specific contributions  

The major contributions of the research include: 

a) A frequency domain analysis of the errors affecting a SINS/DGPS airborne 

gravity system. Using a number of operational strategies, data processing 

strategies and estimation techniques, error spectra have been estimated for 

each portion of the error budget of the estimated gravity disturbance. This 

includes error spectra for each of the SINS errors in equation 2.7. In addition, a 

detailed understanding has been obtained about the effect that each of the DGPS 

errors in equation 2.14 has on the determination of acceleration. The spectra are 

derived for frequencies below 0.05 Hz, thereby offering a complete definition of 

the behaviour of the system for half-wavelengths as short as 450 m for a flying 

speed of 45 m/s.  
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b) The accuracy of airborne positioning using carrier phase DGPS has been 

assessed in Chapter 3. The assessment includes analyses that categorically isolate 

and quantify the effects of each portion of the error budget given by equation 

2.14. Because the accuracy of this type of kinematic positioning is often quoted to 

be at or below the decimetre level, these analyses contribute to research in this 

field by: 

• providing an evaluation of the observed positioning accuracy for a variety of 

realistic conditions during airborne gravity campaigns and showing that an 

accuracy of a decimetre cannot be assured, and 

• confirming that DGPS is capable of comfortably providing the positioning 

accuracy of 50 cm that is required for airborne gravimetry, provided that 

certain conditions are not violated. See Section 3.4 for details. 

c) A fundamental consideration of the various processes of differentiation has 

been given in Chapter 4 and particular differentiating filters have been proposed 

for the problems at hand. The performance and implementation of these filters has 

been investigated with real DGPS data that was collected under three realistic and 

different conditions: that is, for static receivers, for low dynamics and for 

dynamics with high frequency content. In each case, independent means were 

employed to assess the performance of the methods. The following conclusions 

have been reached: 

• Appropriate differentiation methods must be employed, depending on a 

careful consideration of the vehicle dynamics and of the frequency domain 

characteristics of the differentiating filters. 

• Simple methods of differentiation (such as those based on low-order Taylor 

series approximations and curve fitting) are only appropriate for use in static 

or very low-dynamic applications. Otherwise, their use is likely to lead to 

incorrect estimates of velocity and acceleration and therefore lead to major 

errors. 

• Using a precise motion table, it has been verified that the velocity accuracy of 

5 cm/s that is required for airborne gravimetry can be comfortably achieved. 
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d) The topic of optimal estimation of acceleration for airborne gravimetry has 

been treated in Chapter 5 where specific emphasis is placed on estimating 

acceleration for geoid determination and resource exploration. In addition to the 

error spectra that are mentioned in a) above, major conclusions of this research 

include a set of recommendations for estimating acceleration for each of these  

areas of applications. These recommendations are given in Section 5.4. 

e) A detailed analysis of the low-frequency biases that affect a SINS airborne 

gravity system is given in Chapter 6. The limitations of the SINS in estimating 

relative gravimetry are quantified in terms of maximum spatial resolution. The 

SINS gravimeter has been shown to be useful for half-wavelengths shorter than 

200 km and to perform best for half-wavelengths shorter than 100 km.  

A simple method has been proposed and implemented for combining the low-

resolution information from a geopotential model with the medium and high-

resolution information from the SINS gravimeter. Although the SINS that is used 

by the University of Calgary has been shown to be insufficiently accurate to be 

used in this way in all geographic areas, Intermap Technologies Corporation now 

uses it as part of the services they provide.  

f) A thorough investigation of the motion experienced by survey aircraft has 

been given in Section 7.1 and Section 7.2. This study is in response to the need 

for a better understanding of the dynamics that the aircraft undergoes, including 

Phugoid motion. The observed dynamics of several survey aircraft have been 

analyzed in detail under conditions when the natural motion is either controlled by 

an autopilot or by a pilot.  

g) A detailed analysis of the high-frequency errors affecting a SINS airborne 

gravity system is the subject of Sections 7.2 and 7.3. This analysis characterizes 

each error in the frequency domain, as discussed in a) above. The misalignment 

error has been confirmed to be a major barrier to high-resolution gravity field 

estimation when aircraft dynamics are high. 

h) A method for modeling and removing the misalignment errors is given in 

Section 7.4. This increases the accuracy of the estimated gravity disturbance by a 
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factor of two for the Kananaskis data, to 6 mGal, for a spatial resolution of 1.5 

km. 

Demonstrated performance of the SINS/DGPS gravimeter 

The performance of the SINS/DGPS gravimeter had been demonstrated in Wei and 

Schwarz (1998) to be 2-3 mGal for medium-resolution applications (i.e. having a half-

wavelength of 5 km). The same level of performance was demonstrated in Glennie 

(1999). The research presented herein has demonstrated an improvement in the 

performance of the system for medium-resolution applications and has also demonstrated 

for the first time that the system performs very well for high-resolution applications. 

Important highlights of the new results include the following: 

a) Using data from the Alexandria campaign, which was designed in part to test the 

performance of the system for high-resolution applications, it has been 

demonstrated that the performance of the SINS/DGPS gravimeter is at the level of 

1.5 mGal for a resolution of 2.0 km and at the level of 2.5 mGal for a resolution 

of 1.4 km. See Section 5.5 for more details. 

b) Using data from the Kananaskis campaign, it has been shown that the effect of 

Phugoid motion on a SINS gravimeter can be largely removed by employing the 

method that is proposed in Section 7.4 for modeling misalignment errors. 

c) The performance of the system for the Kananaskis campaign has been improved 

by using an ionospheric-free approach for the DGPS processing. See Section 5.2.4 

for details. 

d) An improvement of about 40% has been demonstrated for the SINS data collected 

during the Greenland campaign, when compared to the shipborne reference data 

(see Appendix E). Agreement with that data is at the level of 1.3 and 2.0 mGal for 

the two flight lines where the reference was available. The performance of the 

SINS has been demonstrated to be slightly better than that of the LaCoste and 

Romberg for that campaign. 

Recommendations 

Finally, several interesting points have come to light as a result of the work presented 

herein, discussions with colleagues and discussions with the examining committee. These 
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form the basis of the following brief list of recommendations that may in turn form the 

basis of future work. 

• In Chapter 3, the accuracy of current DGPS methods was evaluated for airborne 

positioning. It is recommended that for evaluation purposes, a future field 

campaign be planned to include an independent reference for the position of the 

aircraft. This might make use of photogrammetry or LIDAR, for example, and 

could allow for the further quantification of the influence of individual error 

sources, especially the differential troposphere. 

Also, it is recommended that the applicability of future Global Navigation 

Satellite Systems (GNSS) for positioning in airborne gravimetry is evaluated. 

This includes GPS modernization efforts (a new civil coarse- acquisition code on 

L2 and eventually a new civil frequency). This also includes the future Galileo 

system and combinations of such systems. 

• In Chapter 4, the accuracy of current DGPS methods was evaluated for velocity 

and acceleration determination. This evaluation is one of few in the literature that 

uses real (not simulated) kinematic data and an independent truth for evaluation. 

Because real data often reflects realistic levels of performance, this approach is 

recommended for future work whenever possible. It is recommended that 

different receiver types be evaluated under such conditions in order to quantify 

the effects of the different data processing strategies they employ (to derive a 

Doppler and to reduce noise and multipath).  

• In Chapter 5, the accuracy of current DGPS methods was evaluated for 

acceleration determination. This used examples from recent campaigns to 

quantify the components of the DGPS error budget as a function of frequency for 

half-wavelengths as short as 450 m. It was seen there, that major road blocks to 

widening the bandwidth of all airborne gravimetry systems include the effects of 

changing satellite geometry and receiver noise (especially if an ionospheric-free 

approach is required). It is recommended that, at least, the following research be 

conducted into reducing these error sources: 
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a) It was seen in Chapter 4 that accurate estimates of acceleration can be 

obtained using estimates of velocity that are based on a derived Doppler. 

Because this approach is simple (relative to the traditional approach of 

deriving position and differentiating it), it is recommended that future research 

be conducted into the optimal use of the derived Doppler for acceleration 

determination. Optimization should consider the requirements to minimize 

noise and the effects of changes in geometry, especially as the bandwidth is 

widened to include high-resolution applications. 

b) Evaluation of the potential of GPS modernization efforts for improving the 

accuracy with which acceleration can be determined (e.g. the coarse-

acquisition code on L2 might result in a better signal-to-noise ratio for the L2 

carrier and in turn better ionospheric-free results). 

• It remains a challenge to combine the relative information from airborne 

gravimetry with other sources of information about the gravity field. This was 

made clear in Chapter 6 and will become increasingly important as data from 

future satellite missions becomes available. Efforts in this direction are 

recommended. 

• The work presented in this dissertation has resulted in an increased understanding 

of the frequency domain behaviour of the error sources influencing airborne 

gravimetry. This should form the basis of a set of standard error spectra for 

understanding and predicting the performance of airborne gravity systems under a 

variety of expected conditions and operational ranges. Also, it is felt that this 

detailed frequency domain analysis opens the door for appropriate statistical 

modeling of the remaining errors. A study of this approach to noise reduction is 

recommended as a complement to current band-limitation techniques. 

• Future designs based on SINS technologies should include accelerometers of 

higher quality than those in the LRF-III system. Especially important is the 

compensation for changes in temperature. 
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• Further studies into the modeling of SINS/DGPS system errors should be 

conducted along the lines of the example that is presented in Section 7.4. This 

might include adding a model for scale factor errors. 

• Finally, a general recommendation is reiterated here that has been made on 

several occasions by  researchers at the University of Calgary over the last few 

years. The SINS and accelerometer triad approaches to airborne gravimetry have 

been proven to provide very accurate and high-resolution information about the 

relative gravity field. Because of this and because of the significant practical 

advantages of such systems (e.g. size, power consumption and especially cost), 

they should be the basis of future airborne gravimetry systems. 

Overall, it is exciting and encouraging to see that high-resolution surveys of the gravity 

field can be carried out with good accuracy using the SINS/DGPS gravimeter. It is 

sincerely hoped that this research contributes to future work in this field. 
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APPENDICES 

 

There are five appendices that follow.  

The goal of Appendix A is to describe the airborne field campaigns that are used for the 

research presented herein. They are described in the order in which they took place and 

specific reference is made to the author’s contributions to their planning and execution. 

Reference is also made to other publications that have employed the data from each field 

campaign. 

The technical specifications of the Honeywell Laseref III SINS are given in Appendix B. 

In Appendix C, a number of scientific assumptions that are made at different places in the 

dissertation are described. 

The goal of Appendix D is to supplement the analyses of aircraft dynamics that are 

presented in Chapter 7. 

Finally, Appendix E updates previously published results of the SINS data processing for 

the Greenland campaign. The appendix describes work done by the author to improve the 

performance of the LRF-III for that campaign.  
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Appendix A: Description of the Airborne Field Campaigns  

The objective of this appendix is to describe the airborne field campaigns that are used in 

the research presented herein. These SINS/DGPS data sets constitute a portion of the 

database that has been created at the University of Calgary.  

The field campaigns that are described below were preceded by an airborne test that was 

carried out by the University of Calgary in June 1995. In that initial field test, a single 

east-west profile over the Canadian Rocky Mountains was flown four times with the goal 

of assessing the potential accuracy of a SINS/DGPS gravimetry system for geoid 

determination. The test is the first known use of a SINS for gravimetry. As shown in Wei 

and Schwarz (1998), it yielded encouraging results in the very rough gravity field of that 

mountainous area. As a result, it prompted the further tests that are described in the 

following. Other publications that make use of the data from the 1995 campaign are 

Bruton and Schwarz (1997) and Jekeli and Kwon (1999). 

Figure A-1 shows the location of each of the campaigns that are described in the 

following sections; namely, the Kananaskis, Greenland and Alexandria campaigns.  

Details about the Kananaskis campaign are given in Section A.1. It took place in 

September 1996 with the goals of assessing the long-term accuracy and repeatability of 

the SINS system and further evaluating its potential for geoid determination. The author 

was responsible for data collection at one of the DGPS master stations. The other 

individuals from the University of Calgary who participated in the data collection were 

Y. Li, J. Skaloud, G. Chevalier, C. Glennie, G. Kerschbaumer and A. Mohamed. Flight 

services were provided by Intermap Technologies Corporation. Detailed processing of 

the data collected during this campaign is described in Glennie and Schwarz (1997) and 

Glennie and Schwarz (1999). The latter two publications also make up parts of Glennie 

(1999). Another publication that makes use of the data from the 1996 campaign is Li 

(2000).  
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In September 1999, the author coordinated an effort to increase the density of the surface 

gravity data available in the vicinity of the Kananaskis campaign. Using a helicopter, the 

densification resulted in the addition of over 70 high-elevation points to the database of 

surface measurements available in that area. The author was responsible for planning the 

test, hiring the helicopter company and for the positioning component of this 

densification campaign. The gravity measurements were made and processed by P. Salib 

from the Geodetic Survey Division of Geomatics Canada (GSD). Some processing was 

also done by P. Novak of the University of Calgary. 

Details about the second airborne campaign are given in Section A.2. It took place after 

the Airborne Gravity and the Polar Gravity Field Workshop in Kangerlussuaq, Greenland 

between June 2 and 4, 1998. The University of Calgary was invited by R. Forsberg from 

Kort & Matrikelstyrelsen (KMS) to participate in the workshop and the joint flight that 

followed it. The goal was to compare the LRF-III SINS gravimeter to their stable 

platform LaCoste & Romberg gravimeter on the same aircraft. In this test, the author 

shared the responsibility with C. Glennie for planning, testing and execution with respect 

to the role of the University of Calgary. Flight planning and services were carried out by 

KMS. First results from this campaign can be found in Glennie et al. (1999) and an 

improvement of the LRF-III results can be found herein, in Appendix E. 

The third field campaign is described in Section A.3. It was carried out near Ottawa, 

Canada in April and May 2000, as part of the AGEM project of the GEOIDE NCE. Flight 

services were carrier out by Sander Geophysics Ltd. The first goal of the campaign was 

to compare each of the three available airborne gravity system concepts on a single 

aircraft (see Section A.3 for a list of them). The second goal of the campaign was to 

assess the performance of the systems for geophysical applications. This was possible 

because the aircraft used is capable of flying as slow as 45 m/s. The author represented 

the University of Calgary in this campaign. He was responsible for testing, planning and 

execution with respect to the role of the University of Calgary. Since the campaign took 

place, he also has been responsible for coordinating a project that compares the results 

obtained with each gravity system. Although the comparison is still underway, 
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preliminary results from the SINS system can be found in Bruton et al. (2000a) and 

Chapter 5 of this dissertation. 

A.1 The Kananaskis campaign 

Following the promising results obtained from the initial flight test carried out in June 

1995, this second more extensive test took place on September 9, 10 and 11, 1996. It was 

carried out over the Canadian Rocky Mountains, centred above Banff, Alberta. As in 

1995, the test area was chosen for the very high variability of the gravity field and 

because of the dense surface gravity coverage available in the area. The height of the 

terrain varies between approximately 800 and 3600 m in the area and the gravity 

disturbances at flight height vary from about –70 to 100 mGal. For plots of the 

topography and the anomalous gravity field in the area, the reader is referred to Glennie 

and Schwarz (1999) and Li (2000). 

On each day of testing, data was collected in a 100 by 100 km area with flight lines 

spaced 10 km apart. The average ellipsoidal flying height was 4357 m on September 9 

and 10, and 7300 m on September 11. Data was collected at night (24:00 to 6:00 local 

time) in an effort to minimize the effects of the atmosphere on the GPS signals and to 

minimize turbulence. As shown in Figures A-2 and A-3, the bulk of the flight lines were 

flown in an east-west direction on September 9 and 11 and a north-south direction on 

September 10. The legend for the maps shown in this appendix is given in Table A-1.  

A Cessna Conquest turbo prop airplane was used for the testing and the average flying 

speed on all three days was 360 km/h (100 m/s). An Ashtech Z-12 and a Trimble 4000 

SSI receiver were both used on the aircraft. They shared the same antenna. GPS master 

stations were located at the Calgary airport (one NovAtel GPS Card), Banff (one Ashtech 

Z-12 and one Trimble SSI) and Invermere (one Trimble SSI). All GPS data was collected 

at a sampling frequency of 1 Hz. 

Two SINS were onboard: LRF-III and a Litton-101 Flagship. The data from the LRF-III 

was acquired using a dedicated system that is owned and operated by Intermap. The 

dedicated system simultaneously obtains data from the GPS and INS using the pulse-per-

second (PPS) timing trigger that is provided as output by the GPS. The data from the 

Litton-101 was acquired using a University of Calgary personal computer that emulates 
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the behaviour of the dedicated system owned by Intermap. Only data from the LRF-III 

and the Banff and Invermere master stations is used in this dissertation. Data from 

September 11 is not used herein. 

A reference gravity field was computed by V. Argeseanu by upward continuing the 

available ground gravity data in the area. For details about this process, see Argeseanu 

(1995). The RMS accuracy of the upward continued reference after interpolation to the 

flight lines is about 1.5 mGal. 
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Figure A-2 Flight pattern for September 9 and 11 of the Kananaskis campaign 



195 

   

Table A-1 Legend used in Figure A-2 through Figure A-6 

M

Projection: Lambert
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Figure A-3 Flight pattern for September 10 of the Kananaskis campaign 
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A.2 The Greenland campaign 

The University of Calgary and KMS carried out this joint airborne gravity survey off the 

west coast of Greenland on June 6, 8 and 9, 1998. The LRF-III and the LaCoste and 

Romberg were mounted together in a Twin Otter airplane so that they could be directly 

compared. The LRF-III was on loan to the University of Calgary from Intermap. The 

LaCoste and Romberg meter is owned by the University of Bergen, Norway. Data from 

the LRF-III was acquired using the same University of Calgary personal computer that 

was mentioned in Section A-1. Also on board was an orthogonal triad of accelerometers 

that is owned and operated by the Bavarian Academy of Sciences and Humanities in 

Munich.  

As shown in Figure A-4, the flights in this campaign took place mainly over the ocean. 

Flight lines A, B and C were flown on June 6. Flight lines F and G1 were flown on June 

8. The lines flown on June 9 are not shown because the data acquisition system used for 

the LRF-III malfunctioned. The aircraft took off from Kangerlussuaq and landed at 

Jakobshavn on June 6 and the airstrip at Jakobshavn was used for all subsequent flights. 

Data was collected in the afternoon in all cases (between approximately 15:00 and 18:00 

local time) at an average flying speed of 250 km/h (70 m/s) and an average ellipsoidal 

height of 300 m. 

The GPS master stations at Kangerlussuaq and Aasiaat were each equipped with Trimble 

4000 SSI receivers and the station at Jakobshavn was equipped with an Ashtech Z-

Surveyor receiver. On June 6, GPS data was collected at Kangerlussuaq and Jakobshavn. 

On June 8 and 9, GPS data was collected at all three master stations. Two dual frequency 

GPS antennas were mounted on the fuselage of the aircraft, separated by over 3 m. The 

front antenna was attached to a Trimble 4000 SSI receiver and the signal from the rear 

antenna was split to a Trimble 4000 SSI and an Ashtech Z-12 receiver. All GPS data was 

collected at a sampling frequency of 1 Hz. 

Flight lines A and G1 were in part flown over existing shipborne gravity profiles, in order 

to obtain an independent reference. As mentioned in Glennie (1999), the accuracy of the 

shipborne profiles is 1 mGal. 
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Figure A-4 Flight patterns for the Greenland campaign 

A.3 The Alexandria campaign 

The Alexandria campaign took place on six days between April 17 and May 4, 2000 over 

a 70 by 120 km test field conveniently located with respect to the main office of Sander 

Geophysics Ltd. in Ottawa, Canada. The test field was chosen because the variations in 

the gravity field are considerable, but the variations in the height of the terrain are small, 

meaning that the effect of the terrain on the gravity signal is small. Consider Figure A-5 

that shows the gravity disturbance at an altitude of 600 m that varies between –41 and 

+19 mGal. This was calculated and supplied to the author by Sander Geophysics Ltd. 

using surface data that is available at a spacing of 1-2 km. The height of the terrain varies 

between approximately 27 and 253 m.  
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 Figure A-5 Variations in the gravity field within the Alexandria range (contours in mGal) 

A Cessna 208B Grand Caravan airplane was used to house the three different types of 

gravity systems. The participants of the test included Intermap Technologies Corporation 

(Intermap) and the University of Calgary (who jointly operated the LRF-III SINS), 

Sander Geophysics Ltd. (who operated AIRGRAV, the custom inertially stabilized three-

axis platform gravity system that they have developed) and the Geodetic Survey Division 

of Geomatics Canada (who operated a Lacoste and Romberg gravimeter, model SL-1). 

Data from the LRF-III was acquired using the University of Calgary personal computer. 

Two GPS antennas were used on the aircraft; one on the fuselage directly above the 

gravimeters and one on the tail. Each of these antennas was each attached to a NovAtel 

MiLLennium GPS receiver collecting data at a sampling frequency of 10 Hz. The signal 

from the antenna on the fuselage was also split to an Ashtech Z-12 receiver that was 

logging data at a sampling frequency of 1 Hz. On the ground, there were three GPS 
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master stations. Two of these master stations were located near the Ottawa airport as 

shown in Figures A-6 and A-7 and the third was located in the centre of the test area. The 

third master station is not shown in the figures because it is not used in this dissertation. 

Only two surveys that were carried out during the campaign are used herein. The first 

was flown on April 19, 2000 between 16:00 and 21:00 and the second on May 4, 2000 

between 09:30 and 12:30. The May 4 flight was flown in the morning in an effort to 

minimize the effect of turbulence and the atmosphere. As shown in Figures A-6 and A-7, 

the flight lines were flown parallel to a line running from south-west to north-east. The 

spacing between lines was 10 km. The average flying height was 600 m and the average 

flying speed was just under 160 km/h (45 m/s).  
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Figure A-6 Flight trajectory for April 19, 2000 
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Figure A-7 Flight trajectory for May 4, 2000 
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Appendix B: Technical Specifications of the Honeywell Laseref III SINS 

The Honeywell Laseref III is a navigation-grade strapdown inertial navigation system. It 

is owned by Intermap Technologies Corporation of Calgary, Alberta. It contains QA-

2000 (10) accelerometers and dithered GG1342 ring laser gyroscopes, and has the 

following technical specifications: 

 

General: grade: Navigation 
 free-inertial spec.: 1 nm/h 
 data rate: 50 Hz 

Gyroscopes: drift: 0.003 deg/h 
 scale factor: 1 ppm 
 misalignment: 2 arc sec 
 random walk: 0.001 deg/ h (1-σ) 

Accelerometers: bias: 10-25 mGal 
 scale factor:  25-50 ppm 
 misalignment: 5 arc sec 
 random walk: 5 mGal (1-σ) 
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Appendix C: Scientific Background and Assumptions 

In this appendix, a number of scientific assumptions that are made at different places in 

the dissertation are described. Background information is provided in each case. 

C.1 On the resolution of the true and measured gravity fields 

The gravity field of the Earth has spectral energy at all spatial frequencies. However, 

representation of the gravity field using discrete, spatial samples results in a band limited 

estimate of the continuous gravity field. Fortunately, band limited representations of the 

gravity field are sufficient for many applications because the spectral energy of the 

anomalous gravity field decreases rapidly with increasing frequency. 

The accuracy and resolution requirements for different applications were introduced in 

Chapter 1 in terms of the high, medium and low-resolution components of the gravity 

field. These were defined such that they correspond to spatial resolutions below 5 km, 

between 5 and 150 km and above 150 km, respectively. For the purposes of this research, 

data represented by a given spatial resolution implies having an image of the field 

corresponding to a sample distance, x, given in km/sample. For example, a low-resolution 

image of the gravity field corresponds to sample distances greater than x = 150 km. 

According to Nyquist’s sampling theorem, this means that such an image only represents 

gravity signals with wavelengths longer than 300 km. It should be pointed out that it is 

also common in airborne gravimetry to characterize spatial resolution in terms of either 

a) the full-wavelength, which is 300 km in this example, or 

b) the half-wavelength, which is 150 km in this example. 

In this dissertation, the terms spatial resolution and half-wavelength are used 

synonymously.  

In airborne applications, discrete samples of the gravity field are collected as a function 

of time. The spatial data is acquired at a specific uniform temporal sampling frequency, 

sf , in samples per second (i.e. Hz). The corresponding spatial resolution, x, of the raw 
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sampled data is therefore approximated by sfsx /= , where s is the nearly constant 

aircraft speed. Typically, the effective value of sf  for GPS receivers is 1 Hz and the 

flying speed varies between 180 km/h (50 m/s) and 720 km/h (200 m/s). This means that 

the raw spatial resolution varies between 0.05 and 0.20 km. If the temporal data were free 

of errors, the spatial resolution of the gravity data along the flight path would therefore be 

as high as 50 m. However, this is not the case because of the noise characteristics of the 

sensors and the inaccuracies of the kinematic models that are used, see Chapter 2. 

Because the typical way of handling these errors is to apply a low-pass filter to the 

estimates, the upper limit of their spatial resolution is given by )2(limit cfsx = , where cf  

is the cut-off frequency of the low-pass filter. Typical low-pass filters used in current 

airborne gravity systems have cut-off frequencies between 0.0050 and 0.0166 Hz. They 

are often referred to by their corresponding periods, cc fT 1= , of between 200 and 60 s, 

respectively. For example, at a speed of 180 km/h, these correspond to effective 

maximum spatial resolutions of 5 and 1.5 km, respectively. At a speed of 720 km/h they 

correspond to 20 and 6 km, respectively.  

Section 6.1 in Chapter 6 includes a detailed discussion of the sample spacing of surface 

and airborne data and a comparison of the spatial resolution that is implied in each case. 

C.2 Relating spatial resolution to harmonic degree 

Global models of the gravity potential are typically expressed as an expansion in 

spherical harmonic functions, see Heiskanen and Moritz (1969). The maximum degree, n, 

of that expansion implies a minimum spatial resolution )2/()40000(min nkmx ≈ . For 

example, a spherical harmonic expansion to degree 360 implies a sample spacing of 

approximately 55 km. This is discussed in more detail in Sideris (1993) and NRC (1997), 

for example. 

C.3 Attenuation of gravity with altitude 

According to Newton’s inverse-square law, the strength of the gravitational attraction 

decays as a function of distance from the attracting mass. This decay is also a function of 

resolution; for a given distance from the source, high-resolution signatures are attenuated 
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less than low-resolution signatures. This was demonstrated in Section 6.1.2 where a plot 

of the attenuation factor, A, was generated for several examples using the following 

equation: 

)2( +








+
=

n

ha

a
A ,            (C.1) 

where h is the height above the surface a. The spatial resolution is obtained from the 

degree of the expansion, n, according to the equation given in the last section. Equation 

C.1 is quoted from NRC (1997) where it is derived from the spherical harmonic 

expansion for the anomalous gravity field. 
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Appendix D: More About Aircraft Dynamics 

D.1 Solutions with complex eigenvalues 

It was stated in Chapter 7 that the solutions to the characteristic equations for natural 

motion are always real, even when the eigenvalues are complex. The following simple 

proof of this fact is based on a similar proof presented in Etkin (1982). Because the 

complex eigenvalues always appear in conjugate pairs, ja ωλ ±= , the solution (i.e. 

equation 7.11) will be given by:  

2
)(

1
)( vvx tjatja ee ωω −+ += .         (D1.1) 

where 1v  and 2v  are the eigenvectors corresponding to the complex eigenvalues. 

Because the real and imaginary parts of a complex exponential sequence vary 

sinusoidally with t, this can also be written as follows: 

 )sincos( 21 tteat ωω ccx += ,        (D1.2) 

where the coefficients 211 vvc +=  and )( 212 vvc −= j  are both real. The latter is real 

because the elements of 1v  and 2v  are themselves complex conjugate numbers. In other 

words, the solution corresponding to a pair of complex eigenvalues is a real-valued, 

exponentially weighted sinusoid, as shown by the dotted lines in Figure 7-3. 

D.2 Calculation of the natural modes for sample aircraft 

Chapter 7 includes examples where the natural motion of the Navion and Boeing 747 

aircraft are demonstrated. The characteristic equations for each of these are borrowed for 

from Bryson (1994) who calculates them from dynamic control data available for those 

aircraft. They are given as follows for the Navion (for the state vector that has units of 

ft/s, centirads/s and centirads): 
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and as follows for the Boeing 747: 
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The temporal histories of the state variables presented in Figures 7-4 through 7-7 were 

obtained by solving equations 7.8 and 7.9 as outlined in Section 7.1.3. The Matlab 

function ODE45 was used for this purpose. The eigenvalues and their corresponding 

eigenvectors were determined using the Matlab function EIG and the latter were 

normalized using the largest element of each as recommended in Bryson (1994). They are 

given in Tables D.1 to D.4. When the eigenvectors are complex, their real parts are used 

as initial conditions. 

Table D.1 Eigensystem for the natural longitudinal modes of the Navion 

 Eigenvalues 
 -2.5054  ±  2.5949 i -0.0171 ±  0.2134 i 

modes  Short period  Phugoid 

-0.0029  m  0.0195 i 1.0000 ±  0.0000 i 
-0.1200  m  0.6562 i -0.0592 m  0.0013 i 
1.0000  ±  0.0000 i 0.1430 m  0.0086 i 

normalized 
eigenvectors 

-0.1926  m  0.1994 i -0.0934 m  0.6627 i 
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Table D.2 Eigensystem for the natural lateral modes of the Navion 

 Eigenvalues 
 -8.4327 -0.4862 ±  -2.5949 i -0.0088 

modes  Pure roll   Dutch roll  Pure spiral 

0.0135 -0.0947  ±  0.0195 i 0.0506 
0.0411 1.0000  ±  0.0000 i 0.1759 
1.0000 -0.0924  m  0.8835 i -0.0088 

normalized 
eigenvectors 

-0.1186 -0.3550  ±  0.1136 i 1.0000 

Table D.3 Eigensystem for the natural longitudinal modes of the 747 

 Eigenvalues 
 -0.3750  ±  0.8818 i -0.0005 ±  0.0674 i 

modes  Short period  Phugoid 

0.0111  m  0.0079 i 1.0000 ±  0.0000 i 
1.0000  ±  0.0000 i 0.1382 m  0.0124 i 

-0.0071  ±  0.1139 i 0.0142 ±  0.0007 i 
normalized 

eigenvectors 

0.1123  m  0.0396 i 0.0088 m  0.2107 i 

Table D.4 Eigensystem for the natural lateral modes of the 747 

 Eigenvalues 
 -0.6837 -0.4862 ±  -2.5949 i -0.0098 

modes  Pure roll   Dutch roll  Pure spiral 

-0.3678 1.0000  ±  0.0000 i 0.0522 
0.1177 0.0449  m  0.9845 i 0.4129 

-0.6837 -0.2328  ±  0.3248 i -0.0098 
normalized 

eigenvectors 

1.0000 0.3707  ±  0.2852 i 1.0000 

 

 

D.3 Observed specific force, attitude and speed  

For completeness, this section of Appendix D contains a number of plots that are 

supplemental to the information presented in Chapter 7. Figures D3-1 and D3-2 show the 

observed specific force for the sample flight lines of the Kananaskis and Alexandria 

campaigns, respectively, i.e. they have not been band-limited. Figure D3-3 shows the 

specific force during the Alexandria campaign, after filtering to 0.01 Hz. Figures D3-4 to 

D3-7 show the attitude and speed of the aircraft during the same flight lines. 
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Figure D3-1 Unfiltered specific force for the sample flight line of the Kananaskis campaign 
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Figure D3-2 Unfiltered specific force for the sample flight line of the Alexandria campaign 
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Figure D3-3 Filtered specific force for a sample flight line of the Alexandria campaign (0.01 Hz) 
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Figure D3-4 Attitude for the sample flight line of the Kananaskis campaign 
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Figure D3-5 Speed for the sample flight line of the Kananaskis campaign 
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Figure D3-6 Attitude for the sample flight line for the Ottawa campaign 
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Figure D3-7 Speed for the sample flight line for the Alexandria campaign 



213 

   

Appendix E: Improved Results for the Greenland Campaign 

This appendix updates previously published results of the SINS data processing for the 

Greenland campaign. As in Glennie (1999), the goal of this appendix is to process data 

using the GREATGUN package and to analyze the results.   

See Appendix A.2 for a description of the Greenland campaign and recall that its 

objective was to compare results obtained with the LaCoste and Romberg to those 

obtained with the LRF-III SINS for the same flights. First results of the processing for the 

Greenland campaign can be found in Glennie et al. (1999). The performance of the SINS 

was not as good as expected in the initial analysis, due mainly to unexplained 

irregularities in the data, as mentioned in Glennie (1999). 

This appendix describes work done by the author to explain the irregularities mentioned 

above and improve the performance of the LRF-III for that campaign. The irregularities 

are removed and the results are significantly improved. The performance of the LRF-III 

is demonstrated to be slightly better than that of the LaCoste and Romberg for this data 

set. In order to remain consistent with the data provided by KMS for the LaCoste and 

Romberg, all processing instances described below make use of a filter that has a filtering 

period of 200 s. All solutions also make use of the same DGPS solution that KMS used (a 

dual frequency ionospheric-free solution obtained using Trimble’s GPSurvey). As in 

Glennie et al. (1999), a line of best-fit was removed from the LRF-III and LaCoste and 

Romberg data prior to any comparisons, meaning that only relative gravity information is 

being evaluated.  

E.1 Analysis and repair of the irregular behaviour of the SINS 

After considerable analysis, the author discovered that the observed irregularities were 

caused by the data acquisition system that was used for the LRF-III in the campaign, and 

not due to errors in either the SINS or GPS sensors. There are several problems with the 
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synchronization of the raw SINS data and the raw GPS data in this campaign. The errors 

that result can be classified as problems with the time intervals and the time offset. 

The errors in time intervals are characterized by many jumps in the recorded time 

interval. Most of the jumps are large, often reaching values of +/- 0.8 s and often occur in 

complementary pairs (i.e. a forward time jump is usually followed by a backward time 

jump of roughly equal magnitude). In these cases, they are most likely due to the 

incorrect labeling of the data for epochs within the time period between jumps and fixing 

is relatively easy. Unfortunately, however, there are also several cases in which single, 

unpaired jumps occur. Consider the top portion of Figure E-1 where an example of this is 

shown for the data collected on June 8 during line F. Because the sampling frequency is 

50 Hz, the time interval should be 0.02 s for this data. Clearly, there is a significant jump 

in the interval at approximately 1200 s. As shown in the bottom portion of Figure E-1, 

this results in a large error in the gravity field centered about the same epoch. This type of 

error occurs on a number of occasions on all three days of testing. They correspond to 

similar errors in the gravity field in all cases. By visual inspection, the time jumps were 

understood well enough that a general purpose algorithm could be devised. A simple 

program was written to do this for all of the data sets. The result for line F is also shown 

in the bottom portion of Figure E-1.  

E.2 New results for the SINS 

This section summarizes the results of the Greenland campaign after correction for the 

irregularities discussed above. Table E.1 compares the results obtained using the LRF-III 

with the shipborne gravity data. The performance is clearly significantly better after the 

timing problems have been repaired, reaching the level of 1.3 and 2.0 mGal for the flight 

lines A and G1. Also shown in Table E.1 are the same values for the LaCoste and 

Romberg gravimeter. After correction, the performance of the LRF-III is slightly better 

than the LaCoste and Romberg. Figures E-2 and E-3 show the solutions obtained for the 

same flight lines as well as the reference values obtained from the shipborne data (after 

shifting by 20 mGal for clarity). For flight line A, note that the shipborne data is only 

available for a portion of the line and that the data from the LaCoste and Romberg is not 
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available for the first five minutes due to a problem nulling it. For flight line G1, note that 

about half of the LaCoste and Romberg data was discarded because of poor quality. 

The results obtained with the LRF-III are compared to those obtained with the LaCoste 

and Romberg in Table E.2. The level of agreement is considerably improved for three of 

the flight lines, as a result of repairing the timing problems in the acquisition of the LRF-

III data 
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Figure E-1 A timing error and the associated error in gravity (for line F) 
 

Table E.1 Agreement of the LaCoste and Romberg (LCR) and LRF-III with the shipborne data 

 Standard deviation of the agreement 

flight line LRF-III before repair LRF-III after repair LCR 

A 2.0 1.3 1.7 
G1 3.8 2.0 2.3 
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Figure E-2 Estimates of the gravity disturbance for line A on June 6 
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Figure E-2 Estimates of the gravity disturbance for line G1 on June 8 

Table E.2 Agreement of the LCR and LRF-III with each other 

 Standard deviation of the agreement 

flight line before after repair of time jumps  

A 2.4 2.0  
B 3.0 3.0  
C 1.4 1.4  

G1 4.0 2.1  
F 7.7 4.3  

 




