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ABSTRACT 

The ongoing Global Positioning System (GPS) modernization program has seen the 

deployment of a partial constellation of Block IIR-M or Block IIF satellites capable of 

transmitting the new L2C signal. There is great benefit for the low-cost civil receivers to 

generate L2C measurements on a second frequency in addition to the full availability of 

L1 C/A signals, without the need to rely on the complicated and expensive tracking 

techniques to get access to the L2P measurements.  The L2C signal is targeted to serve 

the current and future increasing demand of dual-frequency civil users, not only in the 

highly professional but also in the low-cost commercial electronic applications. 

Moreover, once the full deployment of the L2C signal is achieved in the future, it tends to 

serve the single-frequency GPS applications with the designed advantages over the L1 

C/A signal.  

 

This research investigated the feasibility of utilizing the partial availability of new L2C 

signals during its deployment phase for the single-point dual-frequency code positioning 

and differential GPS (DGPS) dual-frequency precise positioning with single baseline 

scenarios . For the single-point positioning scenario, an ionospheric delay estimation 

method using partial availability of L2C signals is proposed to provide ionospheric 

correction for the other L1 C/A single-frequency satellites. The resulted position accuracy 

is of the same order of magnitude as that obtained using the broadcast Klobuchar 

ionosphere model. For the DGPS dual-frequency precise positioning scenario, the L2C 

code and phase measurements are incorporated into the positioning filter and a single 
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state is added to account for the ionospheric residual using limited number of 1, 2, or 3 

L2C measurements. The impact of the introduction of the L2C DD ambiguity on the 

ambiguity resolution (AR) performance is evaluated. The effectiveness of the proposed 

ionospheric residual estimation method as well as its impact of on the position accuracy 

and AR performance is also evaluated. The results show that partially available dual-

frequency AR outperforms the L1 single-frequency AR. Moreover, a general conclusion 

is drawn that the more L2C satellites the better AR performance and better ionospheric 

residual estimate which leads to better position accuracy.  
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CHAPTER ONE: INTRODUCTION 

As the first passive, one-way ranging Global Navigation Satellite Systems (GNSS) to 

become operational, the GPS is an all-weather positioning and navigation system 

developed and maintained by the U.S. Department of Defense primarily for military 

applications. However, it has been serving worldwide civilian users since its fully 

operational capability was declared after its civil signals are open to the public and the 

later removal of the selective availability by the U.S. government. Everyone in the world 

with a civil GPS receiver can determine accurate time and location, in any weather, any 

time, and anywhere.  

 

 A constellation of 24 satellites for the GPS system design are in six orbital planes 

inclined at 55 degrees relative to the equatorial plane at an altitude of about 20,200 km 

from the earth. This configuration ensures a global coverage with at least 4 satellites 

simultaneously observable. Usually six to eight satellites are available for a user 

anywhere on the earth. A key part of the GPS satellites is a very stable atomic clock from 

which all the satellites are synchronized and all ranging measurements are obtained. GPS 

provides standard positioning service (SPS) consisting of space-based positioning, 

navigation, and timing (PNT) signals (only refers to L1 C/A signal until now) delivered 

free of user fees for peaceful civil, commercial and scientific uses worldwide. As to 2007, 

with the signal-in-space accuracy, well-designed GPS civil receivers can achieve 

horizontal accuracy of 3 metres or better and vertical accuracy of 5 metres or better 95% 

of the time (Department of Defense 2008).  
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At present, for example, the GPS chip is planting into most of the handheld electronic 

devices for location service and is becoming a necessary part of an automobile for 

navigation purposes. The continuously developing semi-conductor and computing 

technologies enable the GPS into everyone’s daily life which will substantially benefit 

from the GPS modernization for civil applications.  

 

1.1 Modernization Background 

Based on the benefit from the civil GPS applications with L1 only SPS, the civilian users 

are requiring more from this system to meet for high-value professional and commercial 

applications, e.g. dual-frequency applications for precise positioning on machine 

guidance, infrastructure monitoring, and land surveying, and so on. However, these 

applications are limited by the only present single civil signal on frequency L1, although 

the civilian users turn to the encrypted signal on the second frequency using certain 

advanced tracking techniques.  Thus, there is a growing demand to place a civil signal on 

the second frequency. The GPS modernization is therefore focusing on adding new 

frequency carriers and civil signals to the GPS constellation. Besides, another drive to 

motivate the modernization is that the competition from other developing GNSS, i.e. 

GLONASS in Russia, Galileo in Europe, and Compass/Beidou in China. These systems 

emphasize civilian services with multiple signals at their very early design stages to meet 

the requirements in a growing world. Finally, there is inherent limitation of the legacy 

civil signal on L1 frequency, i.e. L1 Coarse/Acquisition (C/A) signal, has substantial 

degraded performance during particular harsh environments, such as signal attenuation 
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under foliage or in urban canyons, signal interference, and multipath sensitive location. 

The design of the new civil signals is expected to overcome these shortcomings.  

 

There are three announced modernized signals designed for civilian use: a) L2C signal on 

L2 frequency, for commercial dual-frequency applications enabling ionospheric 

correction along with L1 C/A signal in a low-cost civil receiver, and for delivery of faster 

signal acquisition, enhanced availability and reliability in single-frequency applications; 

b) L5 civil signal, located in the frequency band reserved for aviation safety applications; 

c) L1C signal on L1 frequency, the fourth civil signal designed to enable interoperability 

between GPS and other GNSS systems expected to provide better performance. The new 

signals are phasing in gradually as new GPS satellites are launched to replace the older 

ones. As the time of writing, the first GPS Block IIF satellite with full L5 capability has 

been launched on May 28, 2010. The eighth GPS Block IIR-M satellite (referring to the 

L2C satellite in this thesis) with full L2C capability was launched on August 17, 2009 

and was set operational ten days later, which is known by its pseudorandom noise 

number (PRN) as PRN 05. Starting with the first Block IIR-M satellite, PRN 17, with full 

L2C capability launched on September 26, 2005, there are currently another six satellites 

transmitting L2C signals, i.e. PRN 01 (also with testing L5 capability), PRN 07, PRN 12, 

PRN 15, PRN 29, and PRN 31, seven L2C satellites in all.  

 

1.2 Related Research 

There are convincing advantages of having GPS measurements generated on a second 

frequency in addition to the legacy L1 frequency. With the availability of dual-frequency 
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measurements, there comes the great opportunity to explore the ionosphere property and 

to model the ionosphere effect on positioning. Moreover, dual-frequency AR plays an 

important role in relative precise positioning, e.g. for survey applications.  

  

A user can essentially eliminate the ionosphere as a source of GPS measurement error 

with a dual-frequency (e.g. L1 and L2) receiver estimating the ionospheric group delay 

and phase advance (Misra & Enge 2001). However, the estimate of the ionospheric delay 

using the coding measurements is noisy, which subjects to the relatively large code 

multipath and noise, and the derived estimate using the phase measurements alone is 

precise but inherent ambiguous with the presence of the unknown integer ambiguities. 

Therefore, data smoothing techniques are employed to take advantage of both the code 

and phase estimates in order to account for the ionospheric delay with better accuracy 

(Hatch 1982, Lachapelle et al 1986, Skone 1998). Liu et al (2005) compared the 

performance of two smoothing approaches and derived closed-form ionospheric delay 

estimation formulas, which provides guidance for the selection of the smoothing 

approach for different scenarios.  

  

In addition, the ionospheric delay estimate obtained from dual-frequency measurements 

is subject to the inter-frequency bias (IFB) at both the receiver and satellite ends as well. 

The determination of the IFB is important for precise ionosphere modeling, and currently 

this has been fulfilled mostly using the ionosphere single-layer model (SLM) assumption. 

(Gao et al 1994). A new and efficient algorithm is proposed in Hong (2007) using the 

geometry conditions between the satellites and the receivers without the need for the 
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ionosphere SLM assumption, which makes the IFB estimation independent on the 

ionosphere model.  

 

The carrier phase based DGPS precise positioning relies on the correct resolution of the 

double difference (DD) integer ambiguities in the DD phase measurements to achieve 

centimetre or millimetre level of accuracy. The Least-square AMbiguity Decorrelation 

Adjustment (LAMBDA) method is a very well-known mechanization of the integer least-

square (LSQ) ambiguity estimation (Teunissen, 1995) and is being well documented and 

widely used. This method proposed an efficient algorithm that is independent of the 

GNSS systems, frequencies, and the number of carriers, comparing to the other integer 

ambiguity estimation approaches. The accuracy of the carrier phase based DGPS precise 

positioning is affected by primarily the differential tropospheric delay and differential 

ionospheric error which is difficult to be well modelled (Klobuchar 1996).  

 

With the L1 and L2 dual-frequency measurements, measurement combinations are used 

to either mitigate, e.g. forming ionosphere-free observable, or to account for, e.g. forming 

widelane (WL) observable, the ionospheric errors (Hatch 1982, Blewitt 1989). 

Alternatively, however of particular interest is the stochastic modeling of the differential 

ionospheric residual, which is proposed in Teunissen (1997). Further, depends on the a-

priori knowledge of the ionospheric error, Odijk (2002, 2000) summarized a class of 

three models, i.e. the ionosphere-,fixed, float, and weighted model, to estimate the 

differential ionospheric error explicitly. Note that external ionospheric error information 

is indispensable for the ionosphere-fixed and ionosphere-weighted models. In Liu et al 
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(2003), a thorough investigation of the carrier phase combination strategies using L1 

and L2 dual-frequency measurements was performed. The “0” values are adopted as the 

pseudo-observations of the DD ionospheric residuals which are usually bounded around 

zero. These strategies are assessed and compared using real world data from short, 

medium, long baselines.  

 

1.3 Objectives 

Having so much work been done in the literature for GPS civil applications using L1 C/A 

and L2P dual-frequency measurements, this research work is to demonstrate the 

feasibility of employing the partial constellation of L2C signals to replace the full 

constellation of L2P signals for dual-frequency processing on ionospheric error 

estimation and AR. The following specific objectives are set up to guide this thesis work:  

a) To design an ionospheric delay estimation algorithm for the single-point L1 C/A 

code positioning with full constellation of L1 C/A signals and only partial 

constellation of L2C signals.  

b) To design and implement a strategy to estimate the differential ionospheric errors 

for all the involved L1 C/A and L2C code and phase measurements utilizing the 

limited number of L2C measurements from the available L2C satellites in a single 

difference (SD) observation model based carrier phase processor. 

c) To test the AR performance of the scenarios L1 C/A only single-frequency, L1 

C/A and L2P dual-frequency, and L1 C/A and L2C dual-frequency.  
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d) To evaluate the effectiveness of the designed ionospheric error estimation 

algorithms and to test their impact on positioning accuracy and single- or dual-

frequency AR performance using real world data. 

 

1.4 Thesis Outline 

This thesis includes six chapters in all. The organization of the content of the remaining 

part is briefed for each chapter.  

 

Chapter Two reviews the L1 C/A and the L2P signals and corresponding performance. 

The L2C signal is introduced in terms of the design motivation and features, the signal 

characteristics, and the advantage over the L2P signal for civil applications. The L1 and 

L2 observation models used in this work are reviewed. An overview of the measurement 

and observable error sources is provided with brief discussions of the countermeasures.  

 

Chapter Three reviews concepts on the single-point code positioning and carrier phase 

DGPS precise positioning, including the functional models, system dynamic models, and 

the LAMBDA method for AR. The LSQ and Kalman filter (KF) estimators are reviewed 

along with the positioning concepts. Two algorithms are proposed to estimate the L1 C/A 

ionospheric code delay for single-point code positioning,  and the differential L1 C/A and 

L2C ionospheric code and phase advance for DGPS precise positioning utilizing the 

partial constellation of L2C signals.  
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Chapter Four tests the proposed single zenith ionospheric delay (ZID) algorithm for 

ionospheric delay estimation in a single-point code positioning scenario using real data. 

Two tests are performed on two data sets with three L2C satellites available. One is a 

post-processing test with batch smoothing approach to estimate the ionospheric delays as 

well as the receiver IFB. The other is a real-time processing test with recursive smoothing 

approach to estimate the ionospheric delays. Performance evaluation is fulfilled in terms 

of single-point positioning accuracy. 

 

Chapter Five tests the proposed differential ZID method is tested using real data in a 

relative positioning scenario with short and long baselines. A SD observation model 

based carrier phase positioning KF is implemented estimating the differential ionospheric 

errors along with the position states, the SD clock bias state, and the SD ambiguity states. 

The positioning accuracy and AR performance are compared among different scenarios 

for evaluation.  

 

Chapter Six draws principle conclusions based on the presented results and makes 

recommendations for future work development and evaluation. 
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CHAPTER TWO: GPS L1 AND L2 SIGNALS, OBSERVATIONS, AND ERRORS 

This chapter briefly reviews the GPS L1 and L2 signal structures, their signal 

performances, and their derived observations. The design motivation and technical 

characteristics of the L2C signal are especially of interest. The observation models for L1 

and L2 dual-frequency processing used in this work are presented as well as the 

observation errors and the corresponding methods to account for them. 

 

2.1 L1 and L2 Signals 

The GPS satellites are transmitting the signals with the radio frequency (RF) located in 

the L-band which is a subset of the ultra-high frequency (UHF) band that covers the 

frequencies between 1 GHz and 2GHz. The Link 1 (L1) and Link 2 (L2) are known as the 

legacy GPS signal carrier frequencies that have been in use since the system was 

deployed. Actually, the GPS satellites transmit additional RF signals referred to as Link 3 

(L3) and Link 4 (L4), which are generated by classified payloads aboard the satellites, for 

classified or military purposes serving the U.S. Department of Defense (Misra & Enge 

2001). The ongoing GPS modernization introduces the additional Link 5 (L5) signal for 

civil and especially safety-of-life applications. In the remaining part of this section, only 

the L1 and L2 signals will be reviewed and discussed for the purpose of this work. 

 

2.1.1 Signal Structures 

The GPS is a Code Division Multiple Access (CDMA) system. Generally, each GPS 

signal is comprised of three components: the RF carrier, the PRN code, and the 
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navigation data bits carrying the navigation messages. The satellites share the same 

frequencies but their signals can be discriminated from each other with different PRN 

codes modulated on the carrier with various modulation techniques, e.g. binary phase 

shift keying (BPSK) and Quadrature phase shift keying (QPSK). 

 

The L1 signal is centered at the RF frequency of 1575.42 MHz ( 1f ) carrying the 

coarse/acquisition (C/A) code, the precision (P) code, and the navigation message using 

the BPSK modulation technique, as well as the navigation data message. The P code is 

classified for military use and has been encrypted by the Y-code since 1994. The 

encrypted code is therefore referred to as the P(Y) code in general. The P(Y) code is 

designed as the principle code for precise ranging with a code period of 7 days at a 

chipping rate of 10.23 Mbps. The much shorter C/A code is designed to aid the 

acquisition of the long P(Y) code with a code period of only 1 millisecond (ms) at a 

chipping rate of 1.023 MHz. Each satellite is assigned with a unique C/A code selected 

from the Gold code family, and the Gold code is generated by the moduo-2 addition of 

two maximum-length sequence (m-sequence) with the same period. The C/A code is 

open to the public but the precision of the C/A code ranging is limited. Positioning using 

only the C/A code pseudoranges is referred to as SPS.  A binary data bit rate of 50 bps is 

used to carry the navigation message, which is modulated with the C/A code and then 

with the carrier. Due to the alignment of the C/A code and navigation data bit boundaries, 

there are exactly 20 C/A code periods during one data bit. 
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The L2 signal is centered at the frequency of 1227.60 MHz ( 2f ). Before GPS 

modernization, L2 carried only the P(Y) code. In addition to single-frequency (L1) 

applications, however the dual-frequency applications require phase tracking and 

measurements on L2. Since the spreading code is not known, the codeless tracking and 

the semi-codeless tracking techniques are used to generate measurements on L2, e.g. 

squaring method and cross-correlation method, are used to generate measurements on L2; 

however, are usually subject to loss of signal-to-noise ratio (SNR) and non-robust 

tracking (Woo 1999). 

 

In order to eliminate the need to track the L2 P(Y) signal to obtain measurements on L2, 

and instead of having a replica of the C/A code on L2 for civilian use, a modern signal 

structure designed to meet the requirements and capabilities in the 21
st
 century, was 

introduced to serve not only the dual-frequency applications but also the single-frequency 

applications which are currently using the L1 C/A signal (Fontana et. al. 2001). 

 

Similar to the C/A code and the P(Y) code on L1, the civil code on L2 (L2C) is 

modulated on the in-phase carrier and is synchronized to the satellite clock, while the L2 

P(Y) code is modulated on the quadrature carrier, which has a 90
o 

phase shift to its in-

phase counterpart. The modern L2C signal structure incorporates a dataless channel (the 

pilot channel) in addition to the data channel carrying navigation message in binary data 

bits. The two channels carry two different types of codes, i.e. the L2 civil-moderate 

(L2CM) code on the data channel and the L2 civil-long (L2CL) code on the pilot channel.  

The L2CM code is different for each satellite with a chipping rate of 511.5 kbps and a 
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period of 20 ms, i.e. 10230 chips, while the L2CL code is much longer than the L2CM 

code with 767250 chips at the same chipping rate and a period of l.5 seconds.  The two 

codes are transmitted in the same single frequency carrier in a chip-by-chip, time-

multiplex manner. Thus the actual chipping rate of the time multiplexed code is 1.023 

MHz, which is the same as the L1 C/A code. Besides, the L2CM code is aligned with the 

data bit, which eliminates the need to perform the data bit synchronization once the signal 

is acquired. A newly updated civil navigation (CNAV) data is modulated on the L2CM 

code. The CNAV data is intended for the GPS modernized civil signals and has a flexible 

structure for frames, which was not available for the navigation (NAV) data modulated 

on the L1 C/A signal. The CNAV data has a bit rate of 25 bps but is coded by a rate ½ 

convolution encoder that provides a 50 symbol-per-second symbol rate. The convolution 

coding method is adopted to reduce the bit error rate when extracting the data bit. The 

CNAV data has been uploaded to the modernized Block IIR-M (also for the future 

modern GPS satellites) satellites since September 2009. 

 

2.1.2 Signal Processing and L2C Signal Performance 

Driving by the requirements of dual-frequency and more robust single-frequency 

applications, the L2C signal has a modern two channels design. As a result, the available 

transmission power is equally distributed between the data and pilot channels, which lead 

to a 3 dB signal power reduction for each individual channel. However, the tracking of a 

dataless channel provides a 6 dB threshold advantage, which overall mitigates the above 

mentioned 3 dB signal power loss and gains a 3 dB carrier phase tracking improvement 

when compared to the single-channel L1 C/A signal tracking. This advantage is very 
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useful for weak signal tracking in signal degraded environments. Besides, there is an 

unacceptable 21 dB (Doppler effects included) cross-correlation inherent to the C/A code 

that allows a strong GPS signal to interfere with the weak GPS signals. The L2C signal 

theoretically achieves this by having a worst-case cross-correlation performance of 45 dB 

(Fontana et al 2001). Moreover, the L2C signal design lowers the data modulation 

threshold and makes it possible to decode the message with even barely tracked signals. 

These advantages benefit the single-frequency signal processing and enhance the 

robustness of its applications. However, there are still limitations for a single-frequency 

L2C receiver. The minimum received signal power of the L2C signal on modern Block 

IIR-M or IIF satellites is -160.0 dBW, which is 1.5 dB lower than the L1 C/A signal 

transmitting from the same satellite (ICD-GPS-200D 2006). Fortunately, with the 

assistance of the pilot channel and the long L2C code, the processing signal power can be 

compensated to some extent. In addition, the dispersive ionosphere causes the 

ionospheric error proportional to the square of the carrier frequency. The L2 frequency is 

lower than the L1 frequency, which results in greater ionospheric error in the L2 

measurements than those in the L1 measurements. This is a disadvantage for the single-

frequency L2C receivers. Therefore, it is recommended to use a L1/L2 dual-frequency 

receiver to effectively remove the ionospheric errors, which has been demonstrated in 

experiments using real data. 

 

Several real data experiments have been conducted to investigate the L2C signal 

performance using different receivers from different vendors after the first Block IIR-M 

satellite became operational. In summary, the L2C signal has similar code noise and 
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multipath level as those of the L1 C/A signal, but the inclusion of the pilot channel of 

the L2C signal surely helps the signal acquisition and phase tracking under signal 

degraded environments. Besides, the L2C signal outperforms the L2P(Y) signal in terms 

of carrier-to-noise density (C/N0) and the carrier phase measurements quality (Simsky et 

al 2006, al-Fanek et al 2007, Sukeova et al 2007). 

 

2.2 Observation Models 

The principle GPS observations are the measurements of the line-of-sight (LOS) signal 

path between the satellites and the receiver. Three types of observables can be generated 

from each channel of the receiver, i.e. code pseudorange, carrier phase cycles, and 

Doppler, which are referred to as un-differenced (UD) observations.  Based on the UD 

observations, the SD and DD observations can be formed either to reduce or eliminate 

some biases or errors. 

 

2.2.1 Principal Observation Models 

The principle observation models for the GPS L1 and L2 code and phase observables are 

defined as follows: 

 
1 0 0 ,1 ,1 ,1 ,1

2 0 0 ,2 ,2 ,2 ,2
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 ( )
2

1 2f fγ =   (2.3) 

where the subscript 1 and 2 represent the frequencies 1f  and 2f  respectively and the 

superscripts R  and S  represent receiver and satellite respectively, 

0ρ  is the geometrical range between the receiver and satellite  

0δρ  is the satellite orbital error, 

  c  is the speed of light (299792458.0 m/s),  

dt  is the satellite clock error,  

dT  is the receiver clock error,  

λ  is the wavelength of the carrier,  

N  is the integer phase ambiguity,  

s
T  is the tropospheric error,  

s
I

ρ  is the slant ionospheric delay on L1,   

s
I

φ  is the slant ionospheric phase advance on L1, 

b  with subscript or superscript is the instrumental hardware delay,   

m  represents the multipath, and  

ε  represents the noise. 

 

Note that these observation equations are defined specifically for L1 and L2 dual-

frequency processing, which account for the IFBs (referring to section 2.3.6) between the 

L1 and L2 measurements. For single-frequency processing, the IFBs are not accounted 
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for and should be eliminated from the above observation equations. The principle 

observations are also referred to as UD observations. 

 

2.2.2 Differencing Observations 

Single-differenced (SD) Observation Models 

The SD observations can be formed either from between-receiver differencing or from 

between-satellite differencing. The between-receiver L1 and L2 code and phase SD 

observations are of interest of this work and are obtained as follows by introducing a 

between receivers SD operator ∆  

 
1 0 ,1 ,1

2 0 ,2 ,2
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 (2.4) 

and 
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∆

∆
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∆ = ∆ − ∆ + ∆ + ∆ − ∆ − ∆ +
 (2.5) 

Note that the satellite clock error is eliminated as well as the IFB at the satellite end. The 

multipath and the satellite orbital error are omitted for simplicity since these errors are 

not modeled in the scope of this work. There are several advantages of the SD 

observation: a) mathematically uncorrelated, b) suitable for sequential update which is 

computationally efficient, c) innovation testing can be performed using an ordered 

strategy from the highest elevation satellite, and d) simple implementation compared to 

that for the DD observations. 
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Double-difference Observation Models 

Based on the above SD observations, the DD observations can be formed through 

between-satellite differencing the between-receiver SD observations, which are described 

as follows by introducing the between-satellite SD operator ∇  
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 (2.7) 

Note that the satellite and receiver clock errors as well as the IFBs in the satellites and 

receivers are eliminated. 

 

Observation Combinations 

The L1 and L2 phase measurements can be linearly combined to obtain new 

measurements in a way described by the following equation (Lachapelle 2008) 

 , 1 2j k
j kφ φ φ= +  (2.8) 

The resulting wavelength is 

 ,

1 2

1
j k

j k
λ

λ λ
=

+
 (2.9) 

Depending on the requirements of the GPS applications, e.g. time to fix ambiguity and 

positioning accuracy, different combinations of j  and k  are selected to form the phase 

combinations with different wavelengths and noise characteristics. There are significant 

advantages and disadvantages for each phase combination, which is chosen to 
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compromise the application requirements. Several typical phase combinations and 

associated characteristics are shown in Table 2.1 (Lachapelle 2008). 

Table 2.1: Basic L1 and L2 Linear Phase Combinations 

Measurement j  k  λλλλ (m) DD Ambiguity (cycles) 

Widelane (WL) 1 -1 0.8619 
1 2WL

N N N∆∇ = ∆∇ − ∆∇  

Narrowlane (NL) 1 1 0.1070 
1 2NL

N N N∆∇ = ∆∇ + ∆∇  

Ionosphere-free 1 1 2f f−  0.4844 
1 1 2 2( )

IF
N N f f N∆∇ = ∆∇ − ∆∇  

L1 Only 1 0 0.1903 
1N∆∇  

L2 Only 0 1 0.2442 
2N∆∇  

 

For the linear phase combinations, the longer the wavelength of the derived ambiguities, 

the easier to fix the integer values. Thus, among all combinations, the WL ambiguity is 

the easiest ambiguity to fix; however the errors, e.g. ionospheric error, noise, and 

multipath, are amplified. The positioning accuracy is affected by these errors after the 

fixing of the WL ambiguity. 

 

2.3 Observation Errors and Modeling 

The observation models described by Equations (2.1) and (2.2) contain several 

measurement errors. According to Lachapelle (2008), there are three classes of errors in 

the GPS observations, namely 

a) Satellite-based errors: the satellite orbital errors, the satellite clock errors, and the 

IFBs due to the satellite hardware are included in this category; 
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b) Propagation errors: the ionospheric error, the tropospheric error, multipath, and 

interference are included in this category; 

c) Receiver-based errors: the antenna errors, the receiver clock errors, the receiver 

IFBs, and the receiver noise are included in this category. 

 

The two primary characteristics of the given error are the magnitude and the variability. 

The magnitude of the error depends on the observation model used since some of the 

errors will be reduced or even eliminated through differencing. The variability of the 

error needs to be theoretically and experimentally investigated to determine the temporal 

correlation and, if differenced errors are of concerned, the spatial correlation. Depends on 

the characteristic of the error sources, the errors are determined through calibration, 

modeling and estimation, or are eliminated through differencing. 

 

2.3.1 Satellite Orbital Error 

As a trilateration positioning system, GPS needs to provide the user with the satellite 

position (in specified coordinate frame) and velocity information, which is actually 

transmitted as broadcast ephemeris in the navigation message. However, the uncertainty 

in the broadcast ephemeris results in the satellite orbital errors. The ephemeris 

information is predicted from the previous measurements of satellite motion and 

knowledge of the Earth’s gravity field, and this prediction happens once every several 

hours and has low accuracy. The resulted orbital error is generally in the metres level and 

can reach tens of metres if the prediction is weakened. Note that the new CNAV data 

includes new satellite ephemeris parameters to improve the satellite position accuracy. 
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An effective way to account for the orbital error is to use the post-processed precise 

orbit parameters provided by the agencies, e.g. the International GNSS Service (IGS) 

provides a final precise ephemeris with accuracy in centimetres but latency of 13-20 

days. The limitation of the precise orbit parameters is that it can not be applied in real-

time. Alternatively, the orbital error can be largely reduced through differencing between 

receivers for DGPS applications. The typical baseline error due to orbital uncertainty can 

be expressed as (Lachapelle 2008) 

0

0

b b
δρ

δ
ρ

=  (2.10) 

where  

bδ  is the typical baseline error, 

b  is the length of the baseline, and 

0ρ  is the mean distance between a satellite and a receiver.   

Given a satellite orbital error of 2 m, the baseline estimation error is about 1 cm over a 

100 km baseline with an average 20000 km satellite-receiver distance. The orbital error is 

considered negligible over shorter baselines. 

 

2.3.2 Satellite Clock Error and IFBs 

The satellite clock error is defined as (IS-GPS-200D 2006) 

 
sv

dt t t= −  (2.11) 

where 
sv

t  is the effective signal transmission time and t  is the actual GPS time of the 

signal transmission. Similar to the satellite orbital error, the satellite clock error is also 

predicted from previous measurements and is broadcasted in the ephemeris. Besides, the 



 

 

21 

onboard oscillators have a direct impact on the accuracy of this prediction. The 

broadcast satellite clock error has an accuracy of several nanoseconds but is broadcasted 

in real time. IGS also provide post-processed precise clock error estimation with accuracy 

better than 0.1 nanoseconds and a latency of 13-20 days. For DGPS applications, the 

satellite clock error is eliminated through between-receiver single differencing or double 

differencing. 

 

Due to the different delay that the RF module applied to the different signal frequencies, 

the L1 and L2 signals are not necessarily synchronized as they leave the satellite. The L1 

and L2 observations from the same satellite-receiver pair are biased by different amounts 

which is called the IFB. The broadcast ephemeris contains a parameter, the group delay 

between L1 P(Y) and L2 P(Y), to account for the effect (IS-GPS-200D 2006) 

 1 ( ) 2 ( )( ) / (1 )
GD L P Y L P Y

T t t γ= − −  (2.12) 

where ( )LiP Y
t  is a specific epoch GPS time of the i

th
 frequency P(Y) signal transmitted 

from the satellite’s antenna phase centre. For the IFBs between the civil legacy L1 C/A 

signal or the modernized civil L2C signal and the L1 P(Y) and L2 P(Y) signal, there is 

inter-signal correction (ISC) provided by the new CNAV data. For maximum accuracy, 

the single-frequency L1 C/A user must use this correction as shown below (IS-GPS-200D 

2006) 

 1 1 /L CA GD L C A
dt dt T ISC= − +  (2.13) 

Similarly for the single-frequency L2C user, the modification is (IS-GPS-200D 2006) 

 2 2L C GD L C
dt dt T ISC= − +  (2.14) 
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The values of 1L CA
ISC  and 2L C

ISC  are measurements respectively representing the 

mean satellite differential bias between the L1 P(Y) code and the L1 and L2 civilian 

codes. Their mathematical relationships are shown below (IS-GPS-200D 2006) 

 
1 / 1 ( ) 1

2 1 ( ) 2

L C A L P Y L CA

L C L P Y L C

ISC t t

ISC t t

= −

= −
 (2.15) 

where 
Lix

t  is the transmit GPS time of one specific epoch of the i
th

 frequency of x signal. 

 

2.3.3 Ionospheric Delay 

The ionosphere extends from a height of about 500 km to about 1000 km above the earth, 

which is a region of ionized gases with an abundance of free electrons and ions. The 

ionization is caused by the sun’s radiation, and the state of the ionosphere (the density of 

the ionized gases) is determined primarily by the intensity of the solar activity that varies 

from day to day and changes with seasons and the phases of the eleven-year solar cycle. 

There are also unpredictable short-term effects and localized anomalies due to 

geomagnetic disturbances. The state of the ionosphere changes widely between day and 

night with an electron density (number of electron/m
3
) peak around 2 p.m. local time. 

 

Phase Advance and Group Delay 

The atmosphere (ionosphere and troposphere in the context of this work) that the GPS 

signal travels through from the satellite to the receiver is a different medium from the 

vacuum and thus the changes the velocity (speed and direction included) of propagation 

of the GPS radio signals is different from those of the velocity in vacuum. This 

phenomenon is called refraction. The refractive index is thus defined by Equation (2.16) 
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to mathematically relates the speed of the propagation of the signals in other mediums 

( v ) to the speed in the vacuum 

 
c

n
v

=  (2.16) 

Due to the inconsistent distribution of the atmosphere composition, the refractive index 

changes along the path of the signals and results in the bending of the path of the signals.  

Signals actually travel longer path than the geometrical Line-of-Sight (LOS) path (Snell’s 

Law). However, the propagation time along this bent path is shorter than that for the LOS 

path (Fermat’s principle of least time). This additional delay in signal propagation due to 

refraction is described by (Misra & Enge 2001) 

 
1

( ( ) 1)
S

R
d n l dl

c
τ = −∫  (2.17) 

where l  represents the signal path and ( )n l represents the changing refractive index 

profile along the signal path in the medium. 

 

In addition, if the refractive index of a medium depends on the frequency of the signal, 

the medium is referred to as dispersive. For the GPS radio frequency signals, the 

ionosphere is dispersive while the troposphere is not. As a result, there exists a 

phenomenon for the signals travelled through the ionosphere, called code-carrier 

divergence, where the code phase measurement is measured too long while the carrier 

phase measurement is measured too short. This phenomenon is due to the fact that the 

modulation code signal travels at a different speed than the carrier in the dispersive 
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ionosphere medium. This difference can be described by the relationship between the 

phase refractive index (
p

n ) and the group refractive index (
g

n ) (Misra & Enge 2001) 

 
p

g p

dn
n n f

df
= +  (2.18) 

The ionospheric refraction index changes with the varying density of the electrons along 

the signal path. Instead of accurately determine the refraction index profile in Equation 

(2.17), the ionospheric refraction index is approximated by a Taylor-series expansion up 

to the third order in the literature. The three expansion orders are referred to as the first-, 

second-, and third-order ionospheric delays (Odijk 2002). 

 

The first-order ionospheric delay is a function of the total electron content (TEC) that is 

defined as the number of electrons in a tube of 1 m
2 

cross section extending from the 

receiver to the satellite (Misra & Enge 2001) 

 ( )
S

e
R

TEC n l dl= ∫  (2.19) 

where ( )
e

n l denotes the changing electron density along the signal path. Note that TEC is 

measured in units of TEC Units (TECU), which is defined as 10
16 

electrons/m
2
. One 

TECU results in approximately 0.16 m and 0.26 m of ionospheric delay on GPS L1 and 

L2 measurements, respectively. The signal from the zenith satellite passes the ionosphere 

in the shortest way, and thus the TEC is the smallest and is referred as to vertical TEC 

(VTEC). In this work, the TEC along the slant paths is referred as to slant TEC (STEC). 

Note that the TEC is not a constant due to the variable electron density. Moreover, the 
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TEC has a strong dependence on the elevation of the satellite since the signal path 

through the ionosphere gets longer with a lower elevation angle. 

 

The phase refractive index (to the first order) of a radio signal of frequency f is (Misra & 

Enge 2001) 

 
2

40.3
1 e

p

n
n

f
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Thus, the phase delay due to the refraction as the signal pass through the ionosphere is 

calculated as (Misra & Enge 2001) 
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It is shown that, however, the phase delay is negative, i.e. the phase is advanced. And the 

magnitude of the phase advance depends on the TEC along the signal path, which can be 

represented in metres as 
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where the superscript s  denotes the slant ionospheric delay or advance. According to 

Equation(2.18), the ionospheric group delay is calculated in metres as 
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It is found that the ionospheric group delay calculated from the pseudorange 

measurements has the same magnitude but opposite sign as the ionospheric phase 

advance calculated from the carrier phase measurements. This is a very important 

conclusion that is useful in estimating the ionospheric delay when processing dual-

frequency pseudorange and carrier phase measurements. Note that the second- and third-

order phase ionospheric delays are also of opposite sign to their group delay counterparts 

while the magnitudes do not hold the same relationship (Odijk 2002), if the higher-order 

ionospheric delays other than only the first-order delay are accounted. 

 

Fundamental Ionosphere Models 

Many models are proposed to account for the ionospheric delay or advance in the GPS 

measurements. If the 3-dimensional structure and characteristic of the ionosphere are 

expressed in terms of the refraction index variability and the electron density variability 

in Equation (2.21), a 3-dimensional ionosphere model  can be derived. However, under 

some assumptions, a 2-dimensional ionosphere model can be derived with the estimation 

of the STEC in Equations (2.22) and (2.23), which is less complicated but also less 

accurate than the 3-dimensional model. In the following section, in the context of this 

work, several fundamental concepts for 2-dimensional ionosphere modeling are 

discussed. 

 

The basic ionosphere model in the literature is the so called single-layer model (SLM), 

which ignores the electron density variability and lateral electron gradients and 

considering the ionosphere as a single-layer shin shell surrounding the earth. By 
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exploring the geometrical relationship between the STEC and the VTEC as shown in 

Figure 2.1, a standard mapping function is derived for the easy utilization of the SLM. 

θ

I
h

θ ′
e

 

Figure 2.1: Ionosphere single-layer model 

 

A mean height (
I

h ) of the ionosphere shell has to be firstly determined for this shell 

height typically varies in the range of 300-400 km in the mid-latitude area during the 

minimum phase of the solar cycle. The ionospheric pierce point (IPP) is then defined as 

the point of the intersection of the slant signal path and the single-layer ionospheric shell 

at height 
I

h . The STEC refers to the TEC along the slant signal path in the ionosphere 

shell, and the VTEC refers to the TEC along the path that is normal to both the earth’s 

surface and the assumed shell and passes the IPP in the ionospheric shell. Obviously, the 

STEC is always greater than or equal to the VTEC counterpart and are only the same for 
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the zenith satellite. Using geometry, the VTEC is mapped from STEC through the 

zenith angle θ  at the IPP as 

 
1

cos( )
STEC VTEC

θ
= ⋅  (2.24) 

Further, according to the law of sines, it is shown that 
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where θ ′  represents the satellite’s zenith angle at the receiver position and 
E

r  represents 

the radius of the earth. Finally, the mapping function between the STEC and the VTEC in 

terms of elevation angle e  is defined as 
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 (2.26) 

The ionosphere SLM is a simplification and an approximation based on some 

assumptions. However, this model will introduce errors if those assumptions are not true. 

While there are other mapping functions as discussed in Schaer (1999), they provide 

similar performance for the scenario with most of the observations above 15
o
, but 

generally the SLM mapping function provides a satisfactory performance in terms of 

complexity and computation burden.  

 

The well-known Klobuchar model, also known as the broadcast model for the parameters 

are broadcasted by the satellites in the navigation message, utilizes another mapping 
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function described by Equation (2.27) that can be considered as an approximation of 

Equation (2.26) (Klobuchar 1987) 

 3( ) 1.0 16.0(0.53 )m e e= + −  (2.27) 

where e  still represents the satellite elevation angle at the receiver position but in units of 

semi-circles (180 degrees). In order to correct the ionospheric delays for all the available 

receiver-satellite pair, the Klobuchar model represents the diurnal variation of the VTEC 

with a half cosine function. The VTEC in units of metres is represented by (Misra & 

Enge 2001) 
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 (2.28) 

where  

1A  is the night-time constant offset of 5 ns, 

2A  is the amplitude of the cosine function, 

 3A  is the phase of the daily maximum TEC which is 14:00, local time, and 

 4A  is the period of the cosine function.  

2A  and 4A  are fit by cubic polynomials using the eight parameters broadcasted in the 

navigation message, and four for each parameter calculation. Besides, the receiver’s 

latitude, longitude, satellite elevation and azimuth angles, and local time are necessary 

information for calculating the ZID. The detailed procedures have been presented in 

Klobuchar (1987) and IS-GPS-200D (2004). Having the mapping function and the 
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VTEC, one can compensate the STEC for each receiver-satellite pair with single-

frequency receivers. 

 

The Klobuchar model is empirically derived from a large amount of data and is intended 

for single-frequency receivers with low complexity and computational requirements. The 

performance of this model is demonstrated using real data, from which it is observed that 

50% of the root-mean-square (RMS) range errors due to ionospheric delay are 

compensated (Klobuchar 1987).  

 

Currently, there is another emerging technique using local or global GPS receiver station 

networks to model the ionosphere error. For the user surrounded by a local GPS receiver 

station network, a local ionosphere model or map can be estimated to assist the 

positioning. Besides, there is also global ionosphere maps (GIM) produced by some 

research institutes, e.g. Centre for Orbit Determination in Europe (Schaer 1999), to be 

adopted for post-processing. These GIM provide instantaneous “snapshots” of the global 

TEC distribution by interpolating, in both space and time, using data provided by more 

than 100 continuously operating GPS receivers worldwide. 

 

2.3.4 Tropospheric Delay 

The troposphere extends 9 km over the pole and 16 km over the equator and is the region 

where most of the water vapor is located. In GNSS literature the troposphere is often 

defined as the region up to about 40 or 50 km, where the neutral atmosphere is dense 

enough to significantly delay signals. It is non-dispersive for the GPS frequencies and has 
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refraction effects on the GPS signals causing group and phase delays. The index of 

refraction for the GPS signals passing through the troposphere is referred to as 

refractivity, which is usually divided into dry (hydrostatic) and wet parts. Thus the 

tropospheric delay is subdivided into dry (hydrostatic) and wet components with the 

former accounts for 80-90% of the total errors and is a function of the surface 

temperature and pressure and the latter accounts for 10-20% of the total errors and is a 

function of the partial pressure of water vapor and the surface temperature (Lachapelle 

2008). 

 

The dry component can be predicted very accurately while the wet component is difficult 

to predict due to the variability of the water vapor. There are several ways to compensate 

the tropospheric delay: a) apply a tropospheric model, e.g. Hopfield (1970) and UNB3 

model (Leandro et al 2006), b) estimate a residual zenith delay along with the other 

parameters, and c) use a water vapor radiometer for a better accuracy but this method is 

expensive. Both the troposphere model and the estimation methods model the zenith 

delay maps it to the slant delays using typical mapping function. In these ways, the 

typical accuracy is better than 1% for the dry component but only 10-20% accuracy for 

the wet component. 

 

The tropospheric delay is strongly correlated over short baseline for DGPS applications 

only when the height difference of the rover and reference receivers is small and thus can 

be neglected. However, with long baseline or the height difference is large, the spatial 

correlation is weakened and the tropospheric delay is not negligible. With the 
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tropospheric models that account for the height dependence, the resulting typical 

differential error is rarely larger than 3 parts-per-million (ppm) (Lachapelle 2008). In 

addition to the use of the expensive water vapor radiometer for better accuracy, the 

growing GPS networks are also used to predict the relative tropospheric wet component 

(Zhang 1999). 

 

2.3.5 Multipath 

Multipath occurs when a signal reaches the receiver antenna via multiple paths in 

addition to the LOS path, which causes systematic error in the code and phase 

measurements. The magnitude of the resulting multipath error depends on the reflector, 

the antenna gain pattern, and the correlator used in the receiver. Multipath interferes with 

the LOS signal in the GPS receiver correlator and results in error when determining the 

arrival time of the LOS signal. It affects the code and phase measurements and the code 

multipath error (typically smaller than 1/2 chip length of the PRN code) is larger than the 

phase multipath error (typically 1/4 phase cycles). The multipath error is non-Gaussian 

and decorrelates spatially quickly but correlates from day-to-day for a given location. In 

high-end GPS receivers, advanced correlators are employed to reduce or mitigate the 

code multipath error. However, the phase multipath is still one major error source for 

precise positioning since it decorrelates between receivers at the two ends of the long 

baseline and cannot be eliminated through differencing. 
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2.3.6 Receiver clock error and IFB 

The receiver clock error is defined as the difference of the effective transmission time in 

the frame of the receiver’s clock with respect to the actual transmission GPS time of that 

signal. The receiver IFBs are similar to the satellite counterpart but received few 

attentions. In fact, the receiver clock error and IFBs do not affect the general GPS 

positioning applications, since they are eliminated in the DD observations or estimated if 

other types of observations are employed. However, the receiver IFBs play an important 

role in time-transfer applications and the determination of the absolute ionospheric delays 

using dual-frequency measurements. Liu (2004) employed the SD model to cancel the 

satellite IFB to investigate the receiver clock error and the receiver IFB. The behavior of 

them is analyzed in a relative manner (the differential SD IFB between two receivers). 

The research results indicate that the receiver clock error itself is likely a white noise 

process, i.e. a new unknown for each epoch, but the receiver IFB can be captured 

adequately by a simple constant rate-of-change (velocity) model. Gao et al (1994) studied 

the behavior of the L1/L2 IFB using data from a GPS network and showed that the IFB is 

constant at ± 0.1 ns can be estimated with the accuracy of ± 0.5 ns. 

 

2.3.7 Receiver Noise 

The receiver noise arises from the receiver tracking loop and is related to the thermal 

noise, the dynamic stress, and the quality of the oscillator. The L1 C/A code noise ranges 

from 5 to 200 cm for LOS measurements while it is only 10 cm level for the P(Y) code 

measurements. With advanced correlator and tracking loop structures, the code noise can 

be reduced to 10 cm level. The carrier phase noise is only in the level of millimetre or 
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sub-millimetre (Lachapelle 2008), which does not affect the DGPS precise positioning 

much. 

 

2.4 Summary 

This chapter reviewed the principle GPS L1 and L2 signals, measurements, and the 

errors. The L1 and L2 observation models for dual-frequency processing are presented 

with the corresponding error terms and their effect on positioning. The fundamental 

ionosphere modeling method is shown. Further discussion on the ionosphere estimation 

using dual-frequency measurements is in the following chapter. 
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CHAPTER THREE: L1 AND L2C SINGLE-POINT POSITIONING AND DGPS 

DUAL-FREQUENCY PRECISE POSITIONING 

The L2C signal is partially available and its signal performance has been discussed in the 

previous chapter. This chapter describes the problems involved in incorporating the L2C 

measurements into the dual-frequency positioning scenario along with the L1 C/A 

measurements for civil receivers. 

 

3.1 Position Estimators 

GPS is a trilateration system that allows the users to obtain their positions by observing 

their distances from the signal transmitters with known positions. These observed 

distances in GPS are referred to as the code pseudoranges and carrier phase cycles. The 

code pseudorange is noisy and subjects to relatively more multipath while and the carrier 

phase cycle observations having less noise but also have an unknown integer ambiguity 

bias. With established mathematical measurement models for code pseudoranges or the 

carrier phase cycle observations, the user’s position can be estimated by the GPS 

positioning estimators, e.g. the LSQ estimator and the KF, using certain number of 

measurements. 

  

3.1.1 Least Squares Adjustment 

The LSQ adjustment is the standard method to obtain a unique set of values for a set of 

unknown parameters from a redundant set of observables through a known mathematical 
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model (Krakiwsky 1990).  The redundancy is necessary for improved precision and 

quality control. 

 

Linear Mathematical Model 

Assuming the n-dimensional vector l  of observations is related to the u-dimensional 

vector of unknown parameters x  by a linear model by the following observation equation 

 = +l Ax r  (3.1) 

where A  is n u× -dimensional matrix representing the linear relationship between the 

observations and the unknowns and r  is a vector of random noise errors (residual). The 

LSQ estimate for x  is obtained from minimizing the sum of the squared residuals 

 

2

1

ˆ arg min || ||

( )T T−

= −

=

x
x l Ax

A A A l
 (3.2) 

where ^  denotes the estimate and || ||i  denotes the Euclidean vector norm. Note that there 

is no a-priori statistical knowledge about the observation, and this LSQ estimator works 

for Gaussian and non-Gaussian noise situations. The optimality of this LSQ estimator 

depends on the properties of the corrupting noise as well as any modeling error (Kay, 

1993). 

 

Assuming the residual r  is a noise with zero mean and covariance P  (while the 

probability of density can be arbitrary), the statistical model of the observations is 

 ( )E =l Ax  (3.3) 

 ( )D =l P  (3.4) 
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where ( )E i  and ( )D i  are respectively the expectation and covariance functions. 

Finally, if the covariance matrix of the observations is used as a weighting matrix, then 

the LSQ problem becomes a weighted LSQ problem of which the estimate is obtained as 

a best linear unbiased estimate (BLUE) in the following form (Kay 1993) 

 1 1 1ˆ ( )T T− − −=x A P A A P l  (3.5) 

where it is assumed that 1T −A P A  is not singular, which means that there is observation 

redundancy ( n u> ). The BLUE estimate yields the minimum variance of all unbiased 

estimators with linear model. Further, if the noise r  conforms to a Gaussian distribution, 

the BLUE is the optimal minimum variance unbiased estimate for all linear and non-

linear models (Kay 1993). 

 

Nonlinear Mathematical Model 

Consider the general case where the mathematical model is implicit and non-linear, the 

observation equation is defined as 

 ( )f= +l x r  (3.6) 

where ( )f i  is a general non-linear function. The linear LSQ method cannot be applied 

here directly. There are actually two ways to solve this non-linear LSQ problem and both 

ways involve iteration. One is to attempt to directly resolve the minimization problem 

described by Equation (3.2) through the linearization of the derivative of the objective 

function at each iteration about the current estimate, which is the Newton-Raphson 

method. The other way is to linearize the model about some nominal value of x  and then 

apply the linear LSQ procedure, which is the Gauss-Newton method (Kay 1993). 
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Assuming that the LSQ estimates x̂  and the resulting adjusted observation l̂  are 

correct, the following is obtained (Krakiwsky 1990) 

 ˆˆ( , ) 0f =x l  (3.7) 

Then the mathematical model can be approximated by a linear Taylor series as follows 

(Krakiwsky 1990) 

 , ,
ˆ ˆˆ ˆ( , ) ( , ) | ( ) | ( ) 0

f f
f f

∂ ∂
= + − + − =

∂ ∂
x l x l

x l x l x x l l
x l

 (3.8) 

with the estimate correction 

 ˆ ˆδ = −x x x  (3.9) 

The linearized mathematical model is (Krakiwsky 1990) 

 , ,
ˆˆ( , ) | | 0

f f
f δ

∂ ∂
+ + =

∂ ∂
x l x l

x l x r
x l

 (3.10) 

When f  is evaluated with the nominal estimate values x  at each iteration, the misclosure 

is obtained as 

 ˆ( , )f=ω x l  (3.11) 

If only the unknown parameters in vector x  is parameterized and with the following 

design matrix definition 

 ,|
f∂

=
∂

x l
A

x
 (3.12) 

The linearized mathematical model becomes similar to Equation (3.1) in the following 

form 

 ˆ= +ω Ax r  (3.13) 
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3.1.2 Kalman Filter 

Compared to the LSQ adjustment, the KF considers the unknown parameters as varying 

with time and provides a solution for the system with linear dynamics. The state space 

conception is introduced to provide a convenient mathematical description of the system 

dynamics and the statistical system errors (Gelb 1974). The unknown parameter vector is 

now referred to as the state vector, therefore, the measurement model can be described by 

the following equation in the linear case in the continuous-time domain 

 ( ) ( ) ( ) ( )t t t t= +z H x v  (3.14) 

where 

z  is the measurement vector, 

H is the design matrix representing the linear relationship between the 

observations and the states, and 

v  is the residual vector describing the effect of random measurement noise. 

 

KF abstracts the characteristics of the linear dynamic system through a system dynamic 

model (Gelb 1974) 

 ( ) ( ) ( ) ( ) ( )t t t t t= +x F x G wɺ  (3.15) 

where 

x  is the time varying state vector and a dot represents the time derivative, 

F  is the dynamic matrix with coefficients representing the system dynamic, 

G  is the shaping matrix with coefficients shaping white noise, and 

w  is the driving noise vector with random errors assumed to be zero mean white 

Gaussian noise. 
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The details of the solution for the differential equations can be found in Gelb (1974). In 

reality, most of the applications use discrete-time system states and measurements 

derived from sampling. As such, the discrete forms of the measurement model and 

dynamic model are defined as (Gelb 1974) 

 
k k k k

= +z H x v  (3.16) 

 , 1 1 , 1 1k k k k k k k− − − −= +x Φ x Γ w  (3.17) 

with the discrete-time transition matrix , 1k k −Φ  calculated from the continuous-time 

transition matrix Φ  as (Gelb 1974) 

 , 1 1( , )
k k k k

t t− −=Φ Φ  (3.18) 

and the random noise driven vector 

 
1

1 1 ( , ) ( ) ( )
k

k

t

k k k
t

t dτ τ τ τ
−

− − = ∫Γ w Φ G w  (3.19) 

where the subscript denotes the discrete time point and the symbols without subscript 

indicate the continuous-time form.  

 

Assuming that the driving noise and measurement noise are both white Gaussian noise 

with zero mean and there is no correlation between these two, then, according to Gauss-

Markov Theorem and Orthogonal Projection Theorem, KF derives a recursive algorithm 

to estimate the states described by Equations (3.16) and (3.17) without taking account of 

the past measurements for the current estimation. The algorithm is comprised of a series 

of state predictions and measurement update. The state and its corresponding covariance 

predictions are fulfilled by Equations (3.20) and (3.21) 
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 , 1 1
ˆ ˆ

k k k k

− +
− −=x Φ x  (3.20) 

 , 1 1 , 1 1

T

k k k k k k k

− +
− − − −= +P Φ P Φ Q  (3.21) 

where  

the superscript ‘-’ denotes the predicted term before measurement update and  ‘+’ 

denotes the updated term, 

P  is the covariance matrix of the states, and 

Q  is the covariance matrix of the driving noise referring to as the process noise 

matrix   which accounts for the uncertainty of the system dynamic model. 

For a stationary system, the dynamic matrix F  is time-invariant and thus the continuous-

time transition matrix depends only on the time interval and could be calculated as (Gelb 

1974) 

 1( )

1( , ) k kt t

k k
t t e −−

− = F
Φ  (3.22) 

The process noise matrix can be computed as (Gelb 1974) 

 
1

1 ( , ) ( ) ( ) ( ) ( , )
k

k

t
T T

k k k
t

t t dτ τ τ τ τ τ
−

− = ∫Q Φ G Q G Φ  (3.23) 

where ( )tQ  is the continuous-time spectral density matrix of the random driving noise. 

With the measurement model defined by Equation (3.16), the measurement update 

procedure is described by Equation (3.24) to Equation (3.26) 

 1( )T T

k k k k k k k

− − −=K P H H P H + R  (3.24) 

 ˆ ˆ ˆ( )
k k k k k k

+ − −= + −x x K z H x  (3.25) 

 ( )
k k k k

+ −= −P I K H P  (3.26) 

where 
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K  is the Kalman gain matrix representing the optimality of the KF, and 

R  is the covariance matrix of the measurements. 

The innovation sequence is defined as 

 ˆ
k k k k

−= −v z H x  (3.27) 

which can be considered as the new information being introduced into the system by the 

measurements. Then it is weighted by the Kalman gain matrix to update the states where 

the Kalman gain matrix acts as a weighting factor that indicates the amount of new 

information accepted by the system when compared against the amount of current 

knowledge of the states being inherited and propagated. Note that there are other sets of 

formulations for the measurement update procedure, which can be found in Gelb (1974). 

 

The presented KF is an optimal, linear minimum-mean-square-error estimator with the 

system model and measurement models conforming to the Bayesian linear model. 

Further, the KF is an optimal minimum-mean-square-error estimator if the measurement 

noise and system uncertainty are jointly Gaussian distributed. The KF, which is referred 

to as the standard KF in the following section, is not a general solution to all the 

estimation and filtering problems, although it can be used to solve many of the problems 

(Kay 1993). In practice, there are many non-linear applications, and, similar to non-linear 

LSQ problems, they need a linearization step which brings this discussion to the extended 

KF (EKF). The EKF is not optimal and its optimality depends on the accuracy of the 

linearization (Kay 1993). Generally, the non-linear system dynamic and the measurement 

model in discrete form are described as follows 
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 1 1( )
k k k

f − −= +x x w  (3.28) 

 ( )
k k k

h= +z x v  (3.29) 

where ( )f •  and ( )h •  are non-linear functions. The firstly linearization step is going to 

expand the first order Taylor series of Equations (3.28) and (3.29) at a nominal states 

point, and, similar to the non-linear LSQ problem, the following are obtained as 

 , 1 1 1
ˆ ˆ

k k k k k
δ δ− − −= +x Φ x w  (3.30) 

 ˆ
k k k k

δ δ= +z H x v  (3.31) 

where ( )δ •  denotes the perturbation. Then the standard KF algorithm is performed with 

the states perturbation being estimated and the observations misclosure being used as new 

observations. 

 

3.1.3 Applications in GPS Positioning 

GPS positioning is fulfilled by estimating the coordinates of the receiver from the range 

measurements available in certain coordinate frames (e.g. the Cartesian earth-centered 

earth-fixed (ECEF) system). The range between the satellite and the receiver is a 

Euclidean distance, which is defined in the ECEF coordinate system as 

 2 2 2

0 ( ) ( ) ( )S S S
x x y y z zρ = − + − + −  (3.32) 

where 

, ,x y z  is the receiver’s position parameters in a earth-centered earth-fixed 

(ECEF) coordinate system, and 

, ,s s sx y z  is the ECEF coordinates of the satellite. 



 

 

44 

This range is non-linear with respect to the ECEF coordinates, therefore, the 

measurement from the GPS receiver is non-linear with respect to the user’s position in 

GPS positioning. As shown in Equation (3.8), usually a Taylor series expansion is 

performed about some nominal trajectory to fulfill the linearization. The nominal 

trajectory refers to the time series of estimated parameters herein and can be determined 

before any observation is available. The practical way is to use the state estimate from the 

last epoch as the nominal trajectory. The states perturbation is actually estimated each 

epoch and then reset to zero for next epoch. For the EKF case, the innovation sequence is 

the same as the misclosure. 

 

In this work, the static single-point positioning is performed with the LSQ estimator, 

while the carrier phase DGPS static positioning is performed with the EKF estimator 

using a parallel LSQ estimator to obtain a single-point position of the rover.  

 

3.2 Single-point Code Positioning 

In the following, the linearized measurement functional models are derived for the single-

point positioning with UD measurements as indicated by Equation (2.1). 

 

The non-linearity comes from the relationship between the geometrical ranges in those 

measurements with respect to the position parameters in certain coordinate system. It 

follows that the non-linear UD pseudorange functional model in the ECEF coordinate 

system for sing-point LSQ positioning is 

 0 cdTρ ρ= +  (3.33) 
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The linearized model is derived using the Taylor’s series expansion about the nominal 

trajectory as 

 0
ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )x x y y z z cdT cdT

x y z cdT

ρ ρ ρ ρ
ρ ρ

∂ ∂ ∂ ∂
= + − + − + − + −

∂ ∂ ∂ ∂
 (3.34) 

With the definition by Equation (3.12), one row of the design matrix for one satellite is 

 
ˆ ˆ ˆ( ) ( ) ( )

1
ˆ ˆ ˆ

s s sx x y y z z

x y z cdT

ρ ρ ρ ρ

ρ ρ ρ

  ∂ ∂ ∂ ∂ − − −
= =   ∂ ∂ ∂ ∂   

h  (3.35) 

The state vector can be extracted from Equation (3.34) as 

 ˆˆ ˆ ˆ ˆ
T

x x y y z z cdT cdTδ  = − − − − x  (3.36) 

Finally, the misclosure for one measurement, representing the linear model, is described 

by 

 ˆˆ ˆr ρ ρ δ= − = h x  (3.37) 

 

Most low cost civil applications of single-point code positioning uses the L1 C/A 

pseudorange, though there are some applications where L1 code and phase is used, while 

presently dual-frequency observations require semi-codeless receivers that are generally 

only available in surveying and geodetic applications. Low cost civil applications can still 

benefit from the available dual-frequency measurements in estimating ionospheric delay, 

which will be discussed in Section 3.5 and evaluated in Chapter 4. 
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3.3 Differential Carrier Phase Positioning 

There are three steps for differential carrier phase positioning: a) a float filter designed to 

obtain a float solution; b) integer ambiguity resolution; c) fixed solution with correctly 

resolved integer ambiguities, which are discussed in detail in the following. 

 

3.3.1 Functional Models 

With the addition of unknown integer ambiguity N  and ionospheric delay I (for the 

interest of this work), the non-linear functional model for the carrier phase measurement 

is 

 0 cdT N Iφ ρ λ= + + −  (3.38) 

As stated, the carrier phase DGPS precise positioning relies on the resolution of the DD 

integer ambiguities, and the DD functional model is usually adopted for this purpose, 

which can be found in Liu (2002) in detail. In this work, however the SD functional 

model is used for its ability to incorporating a single L2C measurement to estimate the 

differential ionospheric error, while no DD ambiguity can be formed. The linearized SD 

functional model for one observation can be described by the following equation  

 

ˆ ˆ

ˆ

ˆ

ˆˆ ˆ ˆ
1 1 1 ˆˆ ˆ ˆ

ˆ

ˆ

x x

y y

z zx x y y z z

c dT c dT
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I I

φ φ δ

ρ ρ ρ

λ λ

∆ − ∆ = ⋅

− 
 − 
 − − − −  = −  ∆ − ∆  
 

∆ − ∆ 
 ∆ − ∆ 

h x

 (3.39) 
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Note that the linearized SD pseudorange model is similar to Equation (3.39) except 

that the ambiguity term does not exist and the design matrix coefficients of the 

differential ionospheric error states have an opposite sign. Moreover, it is not necessary 

to add the pseudorange observation into the estimation process, however in most cases it 

does to help fast convergence of the filter and becomes necessary while estimating the 

ionospheric delay using dual-frequency pseudorange and carrier phase measurements.  

 

3.3.2 Dynamic Models 

For single-point positioning, no dynamic assumptions are needed if the LSQ adjustment 

method is used. For precise carrier phase DGPS applications, this section describes the 

estimated states and their corresponding dynamic models chosen for an EKF solution. 

 

In the linearized model, the estimated states in a SD positioning filter contain three 

position states ( , ,x y z ) and one SD receiver clock offset ( c dT∆ ) in metres. There are 

also one SD ambiguity ( N∆ ) state, and one SD ionospheric delay ( I∆ ) state if the 

differential ionospheric error is estimated explicitly, e.g. the DD ionospheric residual 

estimated in Liu (2002), for each satellite. As such, the state vector is described by  

 [ ]1 2 1 2
ˆ

T

n n
x y z c dT N N N I I I= ∆ ∆ ∆ ∆ ∆ ∆ ∆x ⋯ ⋯  (3.40) 

The dynamic models are selected to match the specific application scenarios, which 

ultimately determine the state transition matrix and the process noise matrix. 
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For near-stationary positioning applications, such as static positioning or surveying, the 

position states are adequately modeled as random walk processes described by (both 

continuous-time and discrete-time form) Equation (3.41) 

 
1−

=

= +
k k k-1

x w

x x w

ɺ
 (3.41) 

where w describes the system dynamic (velocity) as a white noise process with a power 

spectral density amplitude q  in units of m
2
/s

2
/Hz. The values of , ,

x y z
q q q (for the x , y , 

and z  dimensions respectively) are chosen specifically according to the receiver’s 

dynamic. Besides, an enhancement can be adopted if the GPS Doppler measurements are 

available to the receiver. A coarse GPS velocity estimate can be obtained from the 

Doppler measurements using the LSQ adjustment that could be implemented in parallel 

with the positioning filter solution (Macgougan 2009). 

 

It is not an easy problem to precisely model the stochastic behavior of the SD receiver 

clock offset, since there are many factors, e.g. oscillator quality, temperature, receiver 

dynamic, and vibration, all affecting the modeling. One option is to fully re-estimate the 

clock offset state epoch-by-epoch. In other words, the clock bias is not modeled but but 

simply reset. This maintains the equivalence between hyperbolic positioning (as found in 

double differencing technique) and pseudoranging (between receiver single difference). If 

a valid clock model can be employed, then the single differencing technique should 

outperform the DD functional model in which the clock biases are cancelled out 

(Macgougan 2009). Liu et al (2004) demonstrated the receiver clock offset is most likely 

a white noise process (i.e. completely new at each epoch) using data collected from high-
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end receivers in practical circumstances. Thus, the SD receiver clock offset is also 

modeled as a random walk process with large process noise (spectral density 
c dT

q ∆  in 

units of m
2
/s

2
/Hz) to have it fully estimated at each update epoch. 

 

The sub-matrix representing the process noise of the position and SD receiver clock 

offset states is derived as 

 1

0 0 0

0 0 0

0 0 0

0 0 0

x

y

z

c dT

q t

q t

q t

q t

δ

δ

δ

δ∆

 
 
 =
 
 
 

Q  (3.42) 

where tδ  is the time difference between two continuous epochs. 

 

The SD carrier phase ambiguity states are modeled as random constants with no process 

noise, which is described by 

 
0=

k k-1

x

x = x

ɺ
 (3.43) 

They are constant values only if the phase tracking is maintained continuously and 

correctly during the observation time span. The corresponding process noise sub-matrix 

2Q  has only zeroes as its elements. 

 

The ionospheric error is shown to have temporal correlation and the TEC is modeled as a 

first-order of Gauss-Markov process by Skone (1998). The discrete form of a first-order 

Gauss-Markov dynamic equation with a correlation time 
c

T  is given by 
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1

c

c

t

T

T

e

δ
−

= − +

= +
k k-1 k-1

x x w

x x w

ɺ

 (3.44) 

Liu et al (2003) also modeled the DD ionospheric error as a first-order of Gauss-Markov 

process to have it estimated along with the carrier phase ambiguities and the position 

parameters. In this development, the SD ionospheric error states are also modeled as a 

first-order of Gauss-Markov process with the process noise sub-matrix derived as 
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I n c T
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e

q T
e

q T
e

δ

δ

δ

−

−

−

 
− 

 
 
 −

=  
 
 
 

−  

Q

⋮ ⋮ ⋱ ⋮

⋯

 (3.45) 

, where 
I

q  is the spectral density of the SD ionospheric error states in units of m
2
/s

2
/Hz. 

 

Note that the velocity states are not included in the estimation for the interest of this 

work. Namely, the velocity information is not used to predict the position, but the parallel 

LSQ velocity solution is used to adjust the process noise of the position states. To sum 

up, for the selected system dynamic models, the state transition matrix is simply an 

identity matrix, while the process noise matrix is diagonal and is shown as follows 

 

1

2

3

0 0

0 0

0 0

 
 =  
  

Q

Q Q

Q

  (3.46) 
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3.3.3 Sequential EKF Implementation 

It is indicated in Grewal & Andrews (2001) that updating the vector-valued observations 

sequentially will improve the computational efficiency by using error decorrelation 

algorithms that avoids the matrix inversion computation, which is a proper KF 

implementation on low-performance processors with lower cost and power consumption 

than the current powerful PC. Besides, the SD observations are mathematically 

uncorrelated and are suitable for sequential update without the need of the decorrelation 

procedure. The implementation of the sequential update is described as follows. First of 

all, the design vector for the i
th

 observation is computed as
i

h . The next step is to form the 

innovation (
i

v ) of this observation based on the states prediction according to Equations 

(3.20) and (3.21) before update. If necessary, the innovation testing can then be 

conducted for reliability verification. The Kalman gain for the i
th 

observation is computed 

as 

 
2

T

k i
i T

i k i i
σ

=
+

-

-

P h
k

h P h
 (3.47) 

where the matrix inversion presented in the standard implementation is avoided. Then the 

state variance-covariance matrix is updated as 

 ( )
k i i k

= −+ -
P I k h P  (3.48) 

For an EKF implementation, the error states are actually not predicted but updated only, 

the unknown parameters are then updated accordingly at each epoch, which means the 

following 
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ˆ 0

ˆ

ˆ ˆ ˆ

k

k i i

k k k

δ

δ

δ

−

+

+ − +

=

=

= +

x

x k v

x x x

 (3.49) 

 

3.3.4 Float DD Solution from Differencing the SD Solution 

The SD observation model is chosen as the mathematical positioning model in this work; 

however, the SD ambiguities are not easily separable from the SD receiver clock offset 

errors as both appear as biases in the observation equation and DGPS precise positioning 

requires the resolution of the integer ambiguities. Fortunately, the DD ambiguities and 

corresponding variance-covariance information can be obtained from double differencing 

the SD solution, which is equivalent to extracting from the DD observation model, where 

DD ambiguities insure integer values. The unknown state vector in Equation (3.40) is 

denoted as ˆ
SD

x  which can be transformed to the DD solution through the following 

operation (MacGougan 2009) 

 ˆ ˆ
DD SD

=x Dx  (3.50) 

, where 

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

N

I

∆

∆

 
 
 
 

=  
 
 
 
  

D

B

B

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯

⋯

 (3.51) 

where 
N∆B  and 

I∆B  are block transformation matrix for double differencing the SD 

ambiguity and the SD ionospheric error states, respectively. If the first satellite is selected 
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as the reference satellite for further between-satellite differencing, these two block 

transformation matrices are described by 

 

1 1 0 0

1 0 1 0

1 0 0 1

N I∆ ∆

− 
 − = =
 
 
− 

B B

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

 (3.52) 

These operations eliminate the receiver clock offset error and form the DD ambiguity and 

the DD ionospheric error states, while keeping the position states unchanged. The 

covariance matrix of the SD solution
SD

P , namely 
k

+
P  , is transformed accordingly to 

obtain the covariance matrix of the DD solution (MacGougan 2009) 

 T

DD SD
=P DP D  (3.53) 

Finally, an initial float DD solution containing all the information needed for ambiguity 

resolution is available and ambiguity fixed position solution can be obtained through the 

further simple transformation operations. 

 

3.4 Ambiguity Resolution 

The GPS carrier phase ambiguity resolution contains two distinct parts: a) the ambiguity 

estimation problem, i.e. finding the integer candidates out of the float ambiguities from 

the float solution and b) the ambiguity validation problem, i.e. verifying integer 

candidates are the correct integers for unambiguous precise carrier phase measurements. 

Thereafter, a precise fixed position solution is obtained with the ambiguities are correctly 

resolved. 

 



 

 

54 

3.4.1 Ambiguity Estimation 

From the float solution obtained in Section 3.3, real-valued estimates for the baseline 

parameters, ambiguities, and their corresponding variance-covariance matrices are 

available as 

 
ˆ ˆ ˆ

ˆ ˆˆ

ˆ
,

ˆ

b ba

aab

   
   

  

Q Qb

Q Qa
 (3.54) 

where 

 b̂  is the non-ambiguity states vector obtained in the float solution, 

â  is the float DD ambiguity vector, and  

Q  denotes the covariance matrix. 

The ambiguity estimation problem is a non-standard minimization problem described by 

 
ˆ

2ˆarg min || ||
n a∈

= − Q
a Z

a a a
⌣

 (3.55) 

In fulfilling the criteria presented in Teunissen (1999), there are three admissible integer 

estimators, namely integer rounding, integer bootstrapping, and integer least-square 

estimators (Odijk 2002). 

 

The integer least-square estimator is mechanized in the Least-squares AMBiguity 

Decorrelation Adjustment (LAMBDA) method (Teunissen 1994 and De Jonge & 

Tiberius 1996), which is deployed as the ambiguity estimator in this research. A main 

feature of the LAMBDA method is that it provides a decorrelation procedure to transform 

the original real-value ambiguity estimates â  to a new set of ambiguity through a Z  

transformation while preserving the integer nature of the DD ambiguities. The 
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transformations (including the variance transformation) are given by the following 

equation  

 
ˆˆ

ˆˆ

T

z a

=

=

z Za

Q ZQ Z
 (3.56) 

The volume of the search space is preserved, and is thereby defined as 

 2 1

ˆ
ˆ ˆ( ) ( )T

z
χ −≥ − −z z Q z z

⌣ ⌣
 (3.57) 

This volume of the search space yields an n-dimensional ellipsoid, and the search is 

performed at the grid points that are nearest to the true integer estimates, with the 

distance measured by the information derived from the covariance matrix. Note that the 

decorrelation procedure is not a prerequisite for the integer search, which can also be 

performed with the original ambiguities, â . However, the decorrelation procedure 

substantially benefits the computational efficiency as well as the correlation and precision 

of the DD ambiguities (Teunissen 1994). The detailed implementation can be found in De 

Jonge & Tiberius (1996). 

 

3.4.2 Ambiguity Validation 

The purpose of ambiguity resolution is to obtain a substantial improvement in baseline 

estimation accuracy by eliminating the ambiguity states to make the carrier phase 

measurements precise pseudorange measurements. Thus, it is crucial to have the integer 

estimates to be the true values. A method of validating the integer ambiguity estimates is 

required, since wrong integer estimates can deteriorate the position solution even worse 

than the float solution obtained before ambiguity resolution. 
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Teunissen & Verhagen (2008) discussed the problem of when and how to fix or not to 

fix the ambiguity, and divided the ambiguity resolution problem to model-driven and 

data-driven approaches.  

 

The integer least-squares estimator is proved to be optimal for the model-driven approach 

in maximizing the probability of correct integer estimation, i.e. the success rate (SR) 

(Teunissen 1999). Unfortunately, the direct calculation of the SR is not an easy work. 

Thus, approximations have to be applied, and one usual approximation is the lower 

bound based on integer bootstrapping since the integer bootstrapping estimator has a 

close-to-optimal performance after applying the LAMBDA decorrelation procedure on 

the ambiguities. The bootstrapped SR is calculated as (Verhagen 2004a) 

 ,

1 |

1
(2 1)

2

n

s B

i i I

P
σ=

 
= Φ −  

 
∏  (3.58) 

with ( )Φ i  as the cumulative normal distribution given by 

 21 1
( ) exp{ }

22

x

x u du
π−∞

Φ = −∫  (3.59) 

, and |i I
σ  the conditional standard deviation of the i

th
 ambiguity with the previous 1i −  

ambiguities are sequentially fixed to integer values, which are the by-products of the 

LAMBDA decorrelation thus assure easy calculation of the success rate. The 

disadvantages of this method are that the real-value ambiguities, â , have no influence on 

the SR and that the failure rate is not controllable (Teunissen & Verhagen 2008). 
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A typical method to decide whether or not fix the integer ambiguities is the ratio test 

given by (Teunissen & Verhagen 2008) 

 ˆ

ˆ

2

2

2

ˆ|| || ,

ˆˆ ,|| ||

a

a

use

use

δ

δ

− ≤


>− 

Q

Q

a a a

aa a

⌣ ⌣

⌣  (3.60) 

, where 2a
⌣

 is the second-best integer candidate from the integer least-squares estimation. 

This method is data-driven but often empirical based on testing experience in selection of 

the threshold valueδ . In the literature, a fixed value of 1/2 or 1/3 is used. The ratio test is 

one kind of the discrimination tests reviewed and tested in Verhagen (2004a, b). Their 

common problem is the choice of the threshold values. Values, either empirically 

determined or based on incorrect assumption that the fixed ambiguity estimator a
⌣

 is 

deterministic, are in principle not true (Verhagen 2004a). In addition, the model-driven 

failure rate is not applicable due to the implicit introduction of a probability of not fixing, 

and also the quality of the fixed solution cannot be evaluated if the ratio test is applied 

(Teunissen & Verhagen 2008). 

 

In this work, the combination of the discussed bootstrapping SR evaluation and the ratio 

test is adopted as the integer ambiguity validation strategy. 

 

3.4.3 Fixed Solution 

Having obtained the valid integer ambiguities, the fixed position solution and 

corresponding covariance information is calculated by the following (De Jonge & 

Tiberius 1996) 
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⌣ ⌣

 (3.61) 

Note that b  represents the vector of all non-ambiguity states of the DD state vector, the 

DD ionospheric error states are included in case the ionospheric errors are estimated. 

 

3.4.4 L1 and L2 Dual-frequency Ambiguity Resolution 

For L1 and L2 dual-frequency phase ambiguity resolution, a directly useful way is to 

make use of the WL technique. The WL is a useful linear phase combination that results 

in a long wavelength, low noise behavior, and small ionospheric delay in a relative sense. 

Teunissen (1997) investigated the relative merits of the WL technique by putting it into 

the framework of the LAMBDA method. The relative higher efficiency of the integer 

least-squares search of the LAMBDA method derives from the higher precision and 

lower correlation of the transformed ambiguities. Teunissen (1997) reached the 

conclusion that the L1 and L2 ambiguities are extremely correlated for the whole range of 

ionospheric spatial decorrelation, and by replacing either the L1 or L2 ambiguity with the 

WL ambiguity (not the widelane observable), the WL technique is proved to be useful 

with the fact that the WL ambiguity has better precision than the original L1 and L2 

ambiguities, i.e. the WL ambiguity decorrelates with the original L1 or L2 ambiguity, for 

the ionosphere-float, ionosphere-fixed, and ionosphere-weighted cases. Further, the 

LAMBDA decorrelation procedure automatically achieves the WL transformation at the 

initialization stage of the decorrelating transformation. Moreover, the decorrelating 
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transformation can go beyond the widelane ambiguity to obtain maximally 

decorrelated ambiguities to greatly reduce the integer search space. 

 

The numerical results from Teunissen (1994) showed that the volumes of the search 

space and also the number of the integer candidates decrease more rapidly as a function  

of the observation time span for the L1 and L2 case, in which the L1 and L2 ambiguities 

are taken together in a single integer least-squares estimator than the L1 only case. This 

observation is expected to be the advantage of dual-frequency AR over the L1 only case 

when the dual-frequency measurements are available. 

 

3.5 Ionospheric Delay Estimation with Partial Availability of L2C Measurements 

Described by Equations (2.22) and (2.23), the first-order of ionospheric group delay and 

phase advance can be determined by the STEC along the signal path. It is not a trivial 

work to directly calculate the STEC, however, having the dual-frequency measurements 

with the first-order group delay, referring to as the slant ionospheric delay (SID) on L1 

caused by the ionosphere along the signal path from the satellite to the receiver, can be 

calculated using the pseudorange measurements as follows 

 ( )1 2

1

1

sIρ ρ ρ
γ

= − −
−

 (3.62) 

where the superscript s  denotes the slant delay and the superscript ρ  denotes the code 

estimate. In other words, the ionospheric delay on L1 is proportional to the differential 

delay between the L1 and L2 pseudorange. However, the ionospheric delay estimates are 

expected to be much noisier than the individual pseudorange measurements because of 
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the differencing between originally two noisy pseudoranges. The dual-frequency 

carrier phase measurements are much less noisy and an estimate of the ionospheric phase 

advance on L1 can be obtained as 

 1 1 1 2 2 2

1
[ ( ) ( )]

1

sI N Nφ λ φ λ φ
γ

= − − −
−

 (3.63) 

It is shown that the ionospheric delay estimate is ambiguous without the attempt to fix the 

integer ambiguities 1N  and 2N . However, as long as no occurrence of cycle slip and 

continuous carrier phase tracking, 1N  and 2N  remain fixed, the changes of ionospheric 

delay between continuous epochs can be estimated in real time, called time differential 

delay, which benefit from the precise carrier phase measurements and thus have good 

precision up to centimetre level (Misra & Enge 2001). Note that we have to account for 

the IFBs caused by the satellite and receiver hardware when using dual-frequency 

measurements. Then, Equations (3.62) and (3.63) become 

 

1 2

1 1 1 2 2 2

1 1
( ) ( )

1 1

1 1
[ ( ) ( )] ( )

1 1

s R S

s R S

I db db

I N N db db

ρ ρ ρ

φ φ φ

ρ ρ
γ γ

λ φ λ φ
γ γ

= − − + −
− −

= − − − + −
− −

 (3.64) 

where db represents the IFB. The subscript 1 is omitted in the remaining of this thesis for 

simplicity and I is then referring to ionospheric delay on L1 otherwise by explicit 

denotation. It is then shown that the ionospheric delay and phase advance estimates 

calculated from the raw dual-frequency code and phase measurements are biased by the 

IFBs. In sum, there are two major problems in estimating the ionospheric error using 

dual-frequency measurements: a) only noisy estimate from code measurements or precise 



 

 

61 

but ambiguous estimate from carrier phase measurements; b) estimates interrupted by 

the IFBs. 

 

3.5.1 Smoothing and IFB Determination 

For the first problem, one approach is to smooth the originally noisy code measurements 

with the original carrier phase measurements as the algorithm described in Hatch (1982) 

 1 1( ) ( ) (1 )[ ( ) ( ( ) ( ))]
k k k k k k k

t w t w t t tρ ρ ρ φ φ− −= + − + −ɶ ɶ  (3.65) 

with (assuming M epochs in all) 

 
1

, 1,2, ,
k

w k M
k

= = ⋯  (3.66) 

and ρɶ  the phase-smoothed pseudorange. Having the phase-smoothed pseudoranges with 

better precision than the original ones, more precise ionospheric error estimates are 

expected. Alternatively, another approach can be performed in the raw ionospheric error 

estimates domain with the noisy code-based estimates of the ionospheric delay smoothed 

by phase-based estimates of the differential delay using the same algorithm shown in 

Equation (3.65), namely 

 1 1( ) ( ) (1 )[ ( ) ( ( ) ( ))]s s s s s

k k k k k k kI t w I t w I t I t I tρ ρ ρ φ φ− −= + − + −ɶ ɶ  (3.67) 

The two approaches have the same idea to utilize time-differenced phase measurements 

or phase-based ionospheric estimates to eliminate the ambiguities and then smooth the 

noisy code measurements or code-based ionospheric estimates.  There is another idea of 

utilizing the difference between the code measurements and the phase measurements, or 

the difference between the code-based ionospheric estimates and the phase-based 

ionospheric estimates, as coarse estimates of the phase ambiguities. The following is an 
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algorithm developed according to this idea in the ionospheric estimates domain (Skone 

1998). 

 
1( ) (1 ) ( ) ( ( ) ( ))

( ) ( ) ( )

k k k k k k

k k k

I t w I t w I t I t

I t I t I t

ρ φ

φ

−∆ = − ∆ + −

= + ∆

ɶ ɶ

ɶ ɶ
 (3.68) 

These three smoothing approaches stated above are referring to as recursive smoothing 

approaches herein, which are useful in real-time implementations where a reasonable 

number of code observations are used to average through any multipath while the relative 

weight of the phase measurements is slowly increasing. On the contrary, there is also 

another approach referred to as batch smoothing described by 

 
1

1
( ) ( ) [ ( ) ( )]

M

k k k k

k

I t I t I t I t
M

φ ρ φ
=

= − −∑ɶ  (3.69) 

, which is based on the same idea as that in Equation (3.68). In fact, this batch smoothing 

approach is derived from that recursive smoothing approach, and is useful in post-

processing to provide the best absolute ionosphere estimate by averaging through the 

maximum number of available pseudorange observations (thus averaging out the 

pseudorange errors). 

 

For the second problem, the IFBs have to be calibrated before estimating the ionospheric 

error otherwise the estimates will be biased. The disrupting IFBs have two parts come 

from both the satellite and the receiver ends. With the newly issued CNAV data, the 

calibration values of these IFBs are included in the broadcast message. Thus, the IFBs in 

the satellite end will not be a major problem, it is only in the level of 10
-1

~10
-2

 

nanoseconds and will be largely reduced with the corrections mentioned. However, the 
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IFBs from the receiver end needs calibration procedure by the user. In this work, the 

receiver IFBs are estimated by post processing dual-frequency measurements with a 

proposed zenith ionospheric delay (ZID) method. 

 

In Figure 2.1, assuming the ionosphere is isotropic which means that the ionospheric 

delay is only proportional to the length of the signal path no matter where the pierce point 

is, and given that dual-frequency observations from one satellite can be used to compute 

a slant ionospheric delay, an simplified algorithm is proposed to map all simultaneously 

observable slant ionospheric delays to zenith and then use the averaged zenith delay to 

map down to obtain the slant ionospheric corrections for all available measurements. The 

essential is to admit that there is the same single ZID for all the satellites in view which 

covers certain range of ionosphere shell. With the ionosphere SLM and the proposed 

method, Equation (3.64) is rewritten as the following in terms of the ZID zI  
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 (3.70) 

Then, the smoothed ionospheric delay is derived as follows through the batch smoothing 

approach applied on M  epochs 

 
1

( )1

( ) 1

R Sz M
s

k

db dbI
I

m e M

ρ ρ

γ =

−
= − +

−
∑ɶ  (3.71) 

The above equation is applied as the observation equation for a LSQ adjustment, with 

observations from p satellites, p n≤ ( n is the number of observable satellites), with dual-

frequency measurements. The unknown parameters vector is thus defines as 
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 1 2
ˆ

T
z

p
I b b b =  x ⋯  (3.72) 

where 1 2, , ,
p

b b b⋯  are the estimated scaled average of the difference between the receiver 

and satellite code IFBs as indicated in Equation (3.71). For redundancy requirement, a 

batch LSQ adjustment is deployed as 

 1 2 1 2
ˆ

T T
s s s

p p
   =   I I I H H H xɶ ɶ ɶ⋯ ⋯  (3.73) 

 

3.5.2 Single-point ZID Method 

For single-point positioning, the civil receiver users can only make use of the limited 

number of L2C measurements at this stage. As such, the simplified ZID method is 

proposed to provide ionospheric correction for all available L1 C/A code measurements 

even from those satellites without L2C signal capability, using the ionospheric error 

estimates obtained from those satellites with L2C signal capability. Based on the previous 

presentation in this Sub-section 3.5, the proposed algorithm follows as 

a) Determine the IFBs for those satellites with L2C measurements using the method 

described in Section 3.5.1; 

b) Compensate the SIDs using the IFBs obtained in last step and then map them to 

corresponding ZID epoch-by-epoch, this step can be represented by this equation 

 ( ) [ ( ) ] ( ( )), 1,2,z s

j k j k j j kI t I t b m e t j p= − ⋅ = ⋯  (3.74) 

c) Use 1, 2, 3, or all the available p ZID estimates to calculate one single ZID 

estimate (e.g. simply averaging) which is then mapped to all the measurements 

from observable satellites to correct the ionospheric delay, this step is summarized 

in the following 
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⋯

 (3.75) 

In sum, this method in intended for civil receivers to utilize the benefit of the newly 

modernized L2C signals from limited number of satellites to compensate the ionospheric 

error based on the simplified ionosphere SLM model and mapping function. This method 

is limited by the underlying assumptions and simplifications. The real data testing results 

will be shown in Chapter 4 under the scenario of single-point positioning to discuss its 

usage and effectiveness. Besides, the determination of the ionospheric error under this 

scenario is independent with the positioning filter, however it is worth of investigation to 

estimate the ionospheric error along with the other parameters in one positioning filter, 

which is left to the next section for the differential phase positioning. 

 

3.5.3 Differential ZID Method 

Not only the advantages on AR will be introduced by the addition of the L2 phase 

measurements as discussed in Section 3.4.4, but also the ionospheric error can thus be 

measured and removed by combining the L1 and L2 code and phase measurements as 

discussed in the previous contents of this Section. For differential phase positioning 

application, the ionospheric error, in most cases, is the major remaining error source for 

medium and long baseline scenarios. Many approaches have been proposed to either 

mitigate or estimate the ionospheric delay using GPS dual-frequency code and phase 

observations. 
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The direct way to mitigate the ionospheric delay is to form ionosphere-free linear 

phase combination which however eliminates the integer property of the DD phase 

ambiguities, without the attempt to resolve ambiguities into integers. Alternatively, of 

particular interest are the models proposed by Odijk (2000) where for each DD phase 

observation, a DD differential ionospheric delay (SID) state is also estimated. This 

additional state can either be augmented by pseudo-observations of the ionospheric delay 

(ionosphere-weighted model) or simply estimated using dual-frequency data along with 

phase ambiguities (ionosphere-float model, which is closely related to the ionosphere-

free combination method). With proper stochastic modeling, a weighting of the external 

ionospheric delay correction, the ionosphere-weighted model is a rigorous technique for 

fast successful ambiguity resolution and precise baseline estimation, while the 

ionosphere-float model needs long time to estimate the SID state with significant 

geometry change (Odijk 2000). It is shown in Liu et al (2003) that the ionosphere-

weighed model with simply “0” as the pseudo-observations for all the DD ionospheric 

delay estimation provides the best positioning accuracy for the dataset used, while the IF 

combination method provides more noisy position estimate and also needs significant 

time to converge. In this work, the SID estimation method is also investigated and 

implemented but with SD observation model and the state vector is defined as Equation 

(3.40). 

 

For the civil receivers, in order to make use of the available limited number of L2C 

measurements to estimate ionospheric delay for all the observable satellites, a differential 

ZID method is proposed based on the ionosphere SLM and where electron density varies 
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over the projection of a GPS baseline on the shell, compared to the widely documented 

and tested SID method which estimates the SID along with the signal path from the 

satellite to the receiver for each satellite pair if DD observations adopted. Due to the 

partial availability of satellites with L2C signal capability, only 1, 2, or 3 L2C 

measurements are often available simultaneously, albeit for some short time intervals. A 

civil-signal receiver capable of tracking only L1 C/A and L2C could attempt to estimate 

the SID for one or two double differences. However SID states would not be observable 

for the other satellites.  A possible alternative is to estimate a general ionospheric state 

that is observed by all of the L1 C/A and L2C measurements. As such, the differential 

ZID method is proposed to estimate only one differential ZID using few numbers of SID 

calculated from the L1 C/A and L2C code measurements.  As shown in Figure 3.1, if 

PRN i  and PRN j  are transmitting L2C signal and are in the common view of the rover 

and base receivers with L1C/A and L2C signal tracking capability, one SID could be 

calculated for each satellite-receiver path, which is then could be mapped to as ZID using 

the standard mapping function. 
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Figure 3.1:  SLM based differential ZID estimation method 

The mapping values calculated from the two elevation angles of the same satellite with 

respect to each of the two receivers could be considered nearly the same with the baseline 

even up to 100 km. Thus, the SD SID could be approximately calculated as 

 

, ,

, ,( ) ( )
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( )

j j j

s s r s b

j j j j
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j j

z r

j j

z b

I I I

I m e I m e

I m e

I m e

∆ = −

= −

≈ ∆

≈ ∆

 (3.76) 

At this point, however, still only the differential ZID for those satellites with L1C/A  and 

L2C code measurements could be estimated. In order to fulfill the purpose of also 

estimating SD SID for all the other available satellites with only L1 measurements 

accessible by the receivers, the available differential ZID estimates are considered 

sampling the ionosphere shell part that covered by the satellite-receiver geometry and 

further are used to calculate one single differential ZID estimate that is actually added in 
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the float filter. Therefore, the unknown parameter vector is changed from Equation 

(3.40) as 

 1 2
ˆ [ ]z T

n
x y z c dT I N N N= ∆ ∆ ∆ ∆ ∆x ⋯  (3.77) 

In the design matrix, the standard mapping function is used to map the single SD ZID to 

obtain SD SID estimates to compensate all the L1 and L2 SD code and phase 

measurements. 

 

It should be noted that the single differential ZID state approximately represents the 

difference of the zenith ionosphere in a weighted mean sense between the rover and base 

receivers, however it is not the best possible estimate since the samples that are located at 

the various ionosphere pierce points are not necessarily well distributed around each 

receiver. While much work has been done to develop sophisticated ionospheric models 

using networks of reference receivers, the purpose of this method is to demonstrate the 

feasibility of the proposed simple method for a single baseline. The effectiveness of this 

method is tested using real data in Chapter 5. 

 

3.6 Summary 

This chapter reviews the basic principles of GPS L1 and L2 positioning, including L1 

single-frequency single-point positioning and L1 and L2C dual-frequency differential 

phase positioning involving AR. The ionospheric error estimation using dual-frequency 

L1 and L2C measurements are investigated to help single-point and differential phase 

positioning applications. Of particular interest is that new methods are proposed with 
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zenith ionospheric error estimation to compensate ionospheric error as well as help 

with dual-frequency L1 and L2C AR. 
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CHAPTER FOUR: TESTING RESULTS AND ANALYSIS OF SINGLE-POINT 

CODE POSITIONING 

With the proposed single ZID method described in Section 3.5.2, this chapter will test the 

feasibility and effectiveness of the proposed algorithm using real data. The content is 

organized as follows: first of all, a description of the data collection is presented; then, 

the single ZID method for ionospheric delay estimation is demonstrated with the 

generation of interested IFB estimates; finally the single ZID method and the obtained 

IFBs are applied to a single-point L1 C/A code positioning scenario to evaluate the 

benefit from the partial availability of L2C measurements in the position domain.  

 

4.1 Data Collection 

In order to test the benefit of the partial availability of the L2C signals for a single-point 

positioning scenario, two data sets were collected at time periods when multiple Block 

IIR-M satellites transmitting L2C signals were available. The first data was collected 

over a twenty-two minutes interval on August 14, 2009 beginning at 21:08 UTC time 

(15:08 local time) on the roof of the CCIT building at the University of Calgary 

(approximately 51 N, 114 W). Three Block IIR-M satellites, PRN 7, PRN 15, and PRN 

17, are in view during this test as well as five other satellites without L2C signals. A sky 

plot is shown in Figure 4.1 and the elevation angles of the three Block IIR-M satellites as 

a function of time are shown in Figure 4.2. IF samples were collected with a National 

Instruments (NI) RF-front end configured such that the L1 and L2 RF modules were 

driven by a common oscillator and the dual-frequency samples were collected 

synchronously. The second data set was collected over a nine minutes time period  
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Figure 4.1: Satellites sky plot for the first data set 
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Figure 4.2: Elevation angle for the three available L2C satellites 
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using the same front-end and configuration as the first data set on August 28, 2009, 

also on the same antenna on the CCIT building roof. Three Block IIR-M satellites, PRN 

12, PRN 15, and PRN 17, are available and during this test. Note that the two data sets 

are collected allowing for the priority that up to three L2C satellites can be observed and 

used for the performance evaluation.  

 

The collected IF samples were then processed using GSNRx
TM

, a highly configurable 

multi-system, multi-frequency software receiver developed by the Position, Location And 

Navigation (PLAN) group at the University of Calgary to obtain 1 Hz L1 C/A and L2C 

code and phase measurements (Petovello et al 2008). Corresponding tracking parameters 

are set to achieve performance only targets for low-cost civil receivers.  

 

4.2 Ionospheric Delay Estimation Results 

The L1 ionospheric group delay and phase advance is calculated using Equation (3.62)

and Equation (3.63) using L1 C/A and L2C code and phase measurements respectively. 

The following ionospheric group delay and phase advance refer to the delay and advance 

on L1 without explicit indication. An example of the ionospheric group delay and the 

ambiguous phase advance is shown in Figure 4.3 with measurements from the satellite of 

PRN 15 during the first data set. It is shown that the ionospheric group delay is corrupted 

by multipath and noise, which is not surprising since the ionospheric error should have 

more than two times the standard deviation of the L1 C/A pseudorange if the L2C 

pseudorange is assumed to be equally noisy. The ambiguous phase advance shown in the  
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Figure 4.3: Example of the ionospheric group delay and ambiguous phase advance 

 

figure is subtracted by a certain value to align the scale with the group delay, which is 

still ambiguous but precise. When the batch smoothing approach is applied to this data 

set, the smoothed L1 SID estimates from each PRN are shown in Figure 4.4. The first 

thing to note in this figure is that all the SIDs for all the satellites is negative. However, it 

is expected that all the SIDs are positive and the magnitudes of them decrease as the 

elevation decreases and increase as the elevation increases. Further more, under the 

assumption of an isotropic ionosphere, it is also expected that the SIDs for similar 

satellite elevations be similar, which would imply that the lines in Figure 4.4 should cross 

at roughly the same locations as those in Figure 4.2. Finally, one would also expect that 

mapping these SID’s to zenith will result in similar zenith values for each satellite with 
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the isotropic assumption. These zenith values are shown in Figure 4.5 and are clearly 

not what was expected. 
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Figure 4.4: Batch smoothed L1 slant ionospheric delay without IFB compensated  

 

The reason for these unexpected results is that the IFBs between the L1 and L2 channels 

in the receiver have not been accounted for. There is also the possibility of a satellite-

dependent IFB, either due to actual satellite biases that are not accounted for in the total 

group delay parameter broadcast by the navigation message, or due to the large multipath 

in the pseudorange measurements results in a biased estimate of the mean code delay 

when averaging many pseudorange measurements. Any bias between the measurements 

made on the two frequency signals on a given satellite will result in a bias in the L1 SID 

estimate that is proportional to the IFB. 



 

 

76 

508094 508366 508638 508909 509181 509453
-1.5

-1

-0.5

0

Io
n

o
sp

h
e
r
ic

 d
e
la

y
 (

m
)
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Figure 4.5: Mapped ZID from batch smoothed SID without IFBs corrected 

 

A batch LS approach, described in Section, is used to estimate the IFBs which are then 

used to correct the SID’s shown in Figure 4.4, the corrected SIDs are shown in Figure 

4.6. This figure is similar to an approximate mirror image of the elevation angles shown 

in Figure 4.2, which was to be expected since the ionospheric delay increases as the 

elevation angle decreases, and the same intersection points are shared by the elevation 

angle lines and the SID lines. When the corrected slant delays are mapped to zenith, as 

shown in Figure 4.7, similar zenith delays are obtained for each available L2C satellite, 

and independent (in terms of noise) time series of zenith ionospheric delay are obtained. 

Note that the mean value of the three time series is equal to the single zenith delay as 

estimated by the batch LS approach used to estimate the IFBs. For comparison sense, the  
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Figure 4.6: Batch smoothed slant ionospheric delays with inter-frequency biases 

corrected 
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Figure 4.7: Mapped zenith ionospheric delay from inter-frequency biases corrected 

slant ionospheric delays, with the zenith delays from the batch least-square estimate 

and the Klobuchar ionosphere model 
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zenith delay provided by the broadcast Klobuchar ionosphere model is also shown and 

is close to the estimated zenith delays. 

 

4.3 Single-point L1 C/A code Positioning Results 

The ZID estimates shown in Figure 4.7 can now be used to test the proposed algorithm 

using 1, 2, or all 3 of the ZID estimates and the mapping function described by Equation 

(2.26) to generate corrections for the other satellites without L2C signal capability. In 

order to obtain positioning results, an LSQ estimator is used with three position 

components and a receiver clock offset estimated using only the L1 C/A code 

pseudoranges. Three scenarios were considered: a) using uncorrected observations (i.e., 

no ionospheric correction applied), b) using the broadcast Klobuchar ionosphere model, 

and c) using ionosphere corrections obtained from 1, 2, or 3 of the L1 C/A and L2C 

measurements derived ZID estimates. A simple averaging is used to combine 2 or 3 ZID 

estimates to form the single ZID estimate.  

 

Figure 4.8 shows the position errors obtained using L1 C/A pseudoranges without the 

ionospheric delay being corrected. Even in single-point mode without ionospheric 

correction, a two metre level horizontal position solution is obtained. The most obvious 

ionospheric effect is the bias in the vertical component. This is due to the fact that all of 

the uncorrected measurements are delayed by different amounts. Any common delay is 

absorbed by the estimated receiver clock offset, the remaining delay differences are then 

mapped into the position state errors. However, since the satellites are distributed more or 

less evenly around the receiver, any unaccounted for biases affecting the horizontal 
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components will tend to average out in the LSQ estimation while in the vertical 

component this is not possible. 

508094 508366 508638 508909 509181 509453
-4

-2

0

2

4

6

8

P
o

si
ti

o
n

 e
r
r
o

r
s 

(m
)

 

 
Without ionospheric delay corrected 

15:08 15:13 15:17 15:22 15:26 15:31
GPS Time (s)-Local Time (hh:mm)

North East Vertical

 

Figure 4.8: Positioning errors using L1 C/A pseudoranges without ionospheric delay 

being corrected 

 

When the ionospheric corrections calculated from the Klobuchar model are applied to 

each L1 C/A pseudorange, the vertical position bias disappears though the general shape 

of the three time series, due mainly to multipath, remains the same. The corresponding 

position errors are shown in Figure 4.9. Figure 4.10 shows the position errors obtained 

when the epoch-per-epoch average of the three ZID estimates shown in Figure 4.7 is used 

to map to SID’s. Note that the results are very similar to those obtained from the 

Klobuchar model. This is not surprising since the ZID estimates obtained from the L2C 

satellites are all very close to the Klobuchar model ZID and the same mapping function is 

used, meaning that very similar correction values will be generated using each approach. 
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The similar results are obtained using two or one of the L2C satellites, which are 

shown in Figure 4.11 and Figure 4.12 respectively. 
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Figure 4.9: Positioning errors using ionospheric corrections from Klobuchar model 
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Figure 4.10: Position errors using a zenith value obtained from averaging of the ZID 

estimates from 3 L2C satellite (PRN 7, 15 , and 17) 
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Figure 4.11: Position errors using a zenith value obtained from averaging 2 L2C 

satellite (PRN 7 and 17) estimated zenith values 
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Figure 4.12: Position errors using the estimated zenith delay obtained from 1 L2C 

satellite (PRN 7) 
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Table 4.1 summarizes the above position errors in terms of statistics and also shows 

the results for all other possible combinations of one or two ZID estimates are used to 

generate the single ZID for the first data set. As stated, since the ZID estimates from 1, 2, 

or 3 of the L2C satellites or the combination of 1, 2, or 3 of them are quite close to each 

other, the close position errors are obtained accordingly. All the cases provide the close 

horizontal accuracy, but the Klobuchar model case and the cases with ZID estimate from 

the L2C satellites provide 1.9 m vertical accuracy improvement when compared to the 

case without any ionospheric correction.   

Table 4.1: RMS position errors for post-processing of the first data set 

RMS Position Errors (m)  

Approaches 

Northing Easting  Vertical 

No correction 1.1 0.8 3.2 

Klobuchar model 1.1 0.8 1.3 

7 1.1 0.8 1.3 

15 1.1 0.8 1.3 1 PRN 

17 1.1 0.8 1.3 

7 and 15 1.1 0.8 1.3 

7 and 17 1.1 0.8 1.3 2 PRNs 

15 and 17 1.1 0.8 1.3 

3 PRNs 7, 15, and 17 1.1 0.8 1.3 

 

At this point, two concerns arise regarding the proposed algorithm. The first is that the 

same data set was used to estimate the IFBs and demonstrate the algorithm. The second is 
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that the results assumed batch post-processing to determine the biases as well as to 

estimate the smoothed SIDs. The average of all available pseudoranges and phases was 

used to estimate the phase ambiguity. In order to overcome both these concerns, two 

more tests are performed. One is to perform a real-time, recursive epoch-by-epoch 

processing of the first data set with ionospheric corrections obtained from the recursive 

smoothing approach. A single arbitrary value of the average of the IFBs obtained from 

batch processing for PRN 7 and 17 was used to correct the raw code and phase 

measurements. PRN 15’s IFB estimate was excluded from the average due to its large 

difference with the other two IFB estimates. One hypothesis is that this difference was 

due to large code multipath on PRN 15 which did not average out over the first 

22 minutes data set. The other test is to perform a real-time processing on the collected 

second data set. In this data set, L2C satellites PRN 12, PRN 15 and PRN 17 were 

observed. Instead of estimating three IFBs again using the second data itself by a batch 

processing, the same IFB used for real-time processing of the first data is used herein for 

the second data set, according to the fact that the receiver IFB is not time correlated and 

has small variability as long as the same hardware configuration in the same 

environment.  

 

Figure 4.13 and Figure 4.14 show the estimated SID and ZID, respectively, for the three 

L2C satellites in the first data set during a real-time processing. The main feature of this 

figure is the high but decreasing level of noise and multipath evident over the first 300 

epochs. This corresponds to the smoothing interval of 300 seconds, where the relative 

weight applied to the code delay is slowly decreased in favour of the weight applied to 
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the phase advance. After 300 seconds, only the phase advance derived L1 code delay is 

used, resulting in a very smooth delay estimate. Note that the estimated slant delays are 

all positive values, suggesting that the IFB has been effectively removed. Besides, the 

estimated SIDs generally follows the expectation that becoming smaller as the 

corresponding elevation increasing and becoming larger as the corresponding elevation 

decreasing. The estimated ZID differs among the three satellites, with the estimate from 

RPN 7 being closest to the Klobuchar model value. The effect of the estimated ZIDs on 

the position accuracy is shown in statistics in Table 4.2. It is observed that the horizontal 

accuracy are quite close for all the cases and an overall 1.5 – 1.9 m vertical accuracy 

improvement is achieved while only 0.8 m with the ZID estimate obtained from PRN 15. 

It may due to higher code multipath or noise of this L2C satellite or its own 

uncompensated satellite IFB or the combination of both effects.   
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Figure 4.13: Recursive smoothed slant ionospheric delays with the inter-frequency 

biases corrected for the first data set 
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Figure 4.14: Mapped zenith ionospheric delays from the slant ionospheric delays 

shown in Figure 4.13 

 

Table 4.2: RMS position errors for real-time processing of the first data set 

RMS Position Errors (m)  

Approaches 

Northing Easting  Vertical 

7 1.1 0.8 1.2 

15 1.0 0.8 2.4 1 PRN 

17 1.1 0.8 1.7 

7 and 15 1.0 0.8 1.7 

7 and 17 1.1 0.8 1.4 2 PRNs 

15 and 17 1.0 0.8 1.5 

3 PRNs 7, 15, and 17 1.1 0.8 1.4 
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To validate the rare invariability of the receiver IFB and test the effectiveness of the 

proposed ionospheric delay estimation method sufficiently, a real-time processing is 

performed on the second data set with the elevation angles of the three L2C satellites 

shown in Figure 4.15. Figure 4.16 shows the recursive smoothed L1 SID estimates for the 

second data set. The same features as the recursive smoothed L1 SID estimates for the 

first data set can be observed. It is verified that the IFB has also been effectively removed 

by the IFB estimate obtained from the batch processing of the first data set. When these 

SIDs are mapped to zenith, as shown in Figure 4.17, it becomes clear that PRN 15 suffers 

from an IFB that is not well modeled by the adopted IFB estimate while the other two 

satellites have the ZID estimates very close to the Klobuchar model value. Again this 

could be due to either high code multipath during the 300 second smoothing interval or 

due to the satellite IFB or a combination of both effects.  
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Figure 4.15: The elevation angles of the 3 L2C satellites in the second data set 
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Figure 4.16: Recursive carrier smoothed slant ionospheric delays for the second 

dataset corrected with the inter-frequency biases obtained from the first dataset 
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Figure 4.17: Mapped zenith ionospheric delays from the slant ionospheric delays 

shown in Figure 4.16 
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Despite the corrupted zenith delay estimate obtained from PRN 15, position solutions 

were obtained with this data set using all possible combinations of the three zenith delay 

estimates to generate ionospheric corrections. The results are summarized in Table 4.3. 

The first thing to note in these results is that all of the methods (with no corrections, 

Klobuchar model corrections, L1 C/A and L2C dual-frequency measurements derived 

zenith and slant corrections) resulted in similar levels of horizontal positioning accuracy. 

The major differences are evident in the vertical, as expected. In particular the 

uncorrected solution, and solutions obtained with corrections involving PRN 15 are 

particularly poor. This is not surprising since the zenith delay computed for PRN 15, 

using a single inter-frequency receiver bias, does not match well the Klobuchar model 

ionosphere estimate. Otherwise, the use of one or two zenith delays to generate slant 

ionosphere error corrections appears to provide position solutions with similar slightly 

improved vertical RMS errors.  
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Table 4.3: RMS position errors for real-time processing of the second data set 

RMS Position Errors (m)  

Approaches 

Northing Easting  Vertical 

No correction 0.9 1.5 3.0 

Klobuchar model 0.7 1.8 2.1 

7 0.9 1.4 2.2 

15 0.8 1.4 3.9 1 PRN 

17 0.9 1.5 1.9 

7 and 15 0.8 1.4 2.4 

7 and 17 0.9 1.5 1.9 2 PRNs 

15 and 17 0.8 1.4 2.2 

3 PRNs 7, 15, and 17 0.9 1.4 1.9 

 

 

4.4 Summary 

In this chapter, the possibility of using partial availability of L2C signals to provide an 

ionospheric correction for the other satellites without L2C signal is investigated and 

demonstrated. The results presented in this chapter suggest that when limited number, 

e.g. 1, 2 or 3 L2C satellites, are available, a ZID can be estimated and thus can be used to 

generate slant ionospheric corrections for the L1 C/A pseudoranges. Use of these 

corrections provides positioning results with errors of the same order of magnitude as 

those obtained using the broadcast Klobuchar ionosphere model. 
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CHAPTER FIVE: TESTING RESULTS AND ANALYSIS OF CARRIER 

PHASE DGPS PRECISE POSITIONING 

The proposed differential ZID method is tested in this chapter using real data. Results are 

presented comparing several scenarios involving a partial constellation of L2C signals 

versus a full constellation of L2P signals, contrasting the proposed differential ZID 

method with the well established SID method, L1/L2 dual-frequency observations 

processing while ignoring the ionosphere, and finally the L1 only case. 

 

5.1 Data Collection 

To test the feasibility of the proposed differential ZID method, data sets from three L2C 

capable static GPS stations, BAMF, UCLU, and PGC5 were used. All three stations are 

part of the Western Canada Deformation Array which is a permanent GPS tracker 

network established by the Geological Survey of Canada as part of the Canadian National 

Earthquake Hazards Program, and are located on Vancouver Island, in British Columbia, 

Canada as shown in Figure 5.1. These stations are equipped with dual-frequency, 

geodetic quality GPS receivers, here the Trimble NetRS receivers are deployed with the 

capability of outputting GPS L1 C/A, L2C, and L2P measurements simultaneously 

(Trimble 2005). These measurements are automatically forwarded to the International 

GNSS Service (IGS) and thus are downloadable from the IGS website. These three 

stations are selected due to their L2C signal continuously tracking capability as well as 

the interested baselines formed as indicated in Table 5.1 for single baseline testing. The 

BAMF-UCLU baseline and BAMF-PGC5 baseline refer to the relatively short and long 

baseline in this context, respectively. 



 

 

91 

 

Figure 5.1: The geography locations of the three selected stations as part of the 

Western Canada Deformation Array (NRCan 2010) 

 

Table 5.1: Selected baselines 

Baseline Length (km) 

BAMF-UCLU 31 

BAMF-PGC5 125 

 

Three 45 minutes data sets, sampled at 30 seconds interval, were collected on Jan. 11, 

2010 from 09:23am to 10:09am local time from each of the three stations. The duration 

of the data sets is limited by the simultaneous availability of the L2C signals of interest. 

During the selected time segment, three L2C satellites, indicated by PRN 05, PRN 12, 

and PRN 29, are observable and usable simultaneously by all the three GPS stations. It is 

the time period that maximum number of L2C satellites is available for maximum time 

duration. The corresponding sky plot for BAMF station is shown in Figure 5.2, and the 

other two stations have very similar sky plots. 
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Figure 5.2: Sky plot for BAMF station 

 

5.2 Data Processing and Results Interpretation Strategies 

The following seven processing strategies were adopted for the testing and analysis: 

• L1 only: single-frequency L1 C/A code and phase measurements are used; 

• Strategy A: L1 and L2 (L2P or L2C) code and phase measurements are used, 

without estimating the ionospheric delay; 

• Strategy B: L1 C/A and L2C code and phase measurements are used, with 

estimating the single differential ZID using the ionosphere-float approach; 

• Strategy C: L1 C/A and L2P code and phase measurements are used, with 

estimating SID for each satellite using the ionosphere-float approach; 

The L1 only strategy presented here is for comparison purposes since it does not have a 

second frequency observation for combination nor the capability of estimating the 
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ionospheric delay. Strategy A is adopted to show the benefit of the dual-frequency AR 

comparing to the L1 only strategy. Strategy C is trying to estimate the SID using SD 

instead of DD observations, where the SD SID states are modeled as a first order of 

Gauss-Markov process the same as to the differential ZID state in Strategy B. All of these 

strategies are then compared with Strategy B which targets to evaluate the capability of 

limited number of L2C measurements.  

 

The cut-off elevation angle is set as 15
o
, and the C/N0 threshold to admit usable 

measurements is 28 dB-Hz. The a-priori standard deviation for both L1 and L2 un-

differenced pseudorange observation is chosen as 0.3 m, and 0.02 cycles for the L1 and 

L2 phases. Since all the data sets processed are static, and the position states are modeled 

as random walk process directly, a very small spectral density, 10
-6

 m
2
/s

2
/Hz, is assigned 

to the horizontal position states and an even smaller spectral density, 10
-9

 m
2
/s

2
/Hz, is 

assigned to the vertical position state. The SD clock bias state is also modeled as a 

random walk process, but large process noise, 10
4
 m

2
/s

2
/Hz, is used to make it fully 

estimated, which is of significance for the SD functional model to be equivalent with the 

DD functional model. The ionospheric states, either single differential ZID state or 

multiple SID states, are modeled as first order of Gauss-Markov process with a 

correlation time constant, 200 seconds, and a spectral density of the driving white noise, 

0.1 cm
2
/s (Liu et al 2003). The ambiguity validation strategy used is a combination of the 

ratio test with the threshold empirically chosen as 1.75, and the bootstrapping success 

rate with the threshold as 0.99995. 
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Two tests are performed to evaluate the positioning accuracy and AR performance. 

The entire 45 minutes data set is firstly processed estimating position and ambiguities 

along with ionospheric delay. The LAMBDA method is executed epoch-by-epoch for the 

whole data set ambiguity fixing. In this way, the effect of different observations and 

processing strategies on the float solution can be examined in terms of the ambiguity 

fixing performance representing by the percentage of correct fixing (PCF) and the 

percentage of incorrect fixing (PIF). PCF and PIF are defined as the percentage of epochs 

with correctly and incorrectly fixed integer ambiguity set respectively. Besides, an 

overall position error can be estimated and compared between different scenarios. Then, 

for the second test, the whole data set is divided into data batches with duration of five 

minutes and nine minutes and re-processed. At the beginning of each batch, the KF was 

re-initialized with the same parameters to avoid taking information from the processing 

of the previous observation span. Then the empirical PCF and PIF is calculated to 

evaluate the AR performance, which are defined as the percentage of batches with correct 

integer ambiguity set and with wrong integer ambiguity set among all the batches 

respectively. Note that the definitions for the PCF and PIF are different from the first test. 

Finally, the mean time to first fix (MTFF) is utilized to evaluate the AR speed, which is 

defined as the mean time to first fix to the correct integer ambiguity set of those correctly 

fixed batches. The time resolution of MTFF in this analysis, however, is limited to 30 

seconds as this is the data rate.  
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5.3 Results and Analysis 

The results are presented in different scenarios with the above listed processing strategies 

apply on different types of observations. For each scenario, the results of the short 

baseline are presented firstly and followed by the results of the long baseline.  

 

5.3.1 Scenario with L1 Only 

Since there is no dual-frequency measurements can be used to estimate the ionospheric 

errors, the broadcast Klobuchar ionosphere model is applied to the L1 Only Strategy to 

compensate the ionospheric errors. As an example, Figure 5.3 shows the estimated L1 

float DD ambiguities of PRN 29 – PRN 30 (reference satellite) for the L1 Only Strategy 

with and without Klobuchar model compensation for the short baseline. The float DD 

ambiguities converge to their true integer values (all set as zeros during the analysis in 

this chapter). The convergence speed for the two cases are quite similar to each other, 

with the case where Klobuchar model applied provides slightly better accuracy of float 

DD ambiguity estimate. The corresponding ambiguity validation ratio test values and the 

bootstrapping SR are shown in Figure 5.4. Since the bootstrapping SR is a lower bound 

and is driven by the observation model only, it is not affected by the real DD ambiguity 

values. The two cases with and without Klobuchar model compensation share the same 

observation model, therefore they passed the threshold at the same time point. The ratio 

test is affected by the accuracy of the float DD ambiguities along the convergence. The 

ratio test values shown here indicate that the accuracy of the float DD ambiguities are 

close to each other for the two cases.  The reason is that there is little difference between 

the ionospheric delays for the two stations, provided by the Klobuchar model.  
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Figure 5.3: Estimated L1 float DD ambiguity of PRN 29 – PRN 30 for L1 Only 

Strategy, short baseline 
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Figure 5.4: Ambiguity validation test values for L1 Only Strategy, short baseline 



 

 

97 

Figure 5.5 shows the position errors in northing, easting, and vertical components for 

the two cases with and without Klobuchar model. Note that the position errors obtained 

from the entire data set epoch-by-epoch processing is presented with a mixed of float 

solution and fixed solution if available, which is also the case for the remaining of this 

chapter. During the time period where the ambiguities is fixed, indicated in Figure 5.4, 

the fixed solution provides improved position accuracy over the float solution, which 

indicates correct AR. Table 2.1 summarizes the RMS of the position errors and the AR 

performance in terms of PCF and PIF. The statistics verify the impression that these two 

cases provide nearly the same position accuracy and AR performance with the stated 

reason that the differential Klobuchar ionospheric delay is almost negligible.  
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Figure 5.5: Position errors for L1 Only Strategy, short baseline 
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Table 5.2: The whole dataset position error RMS and AR performance for L1 

Only Strategy, short baseline 

Position Error RMS (cm) Ambiguity Fixing 
Strategies 

Northing Easting Vertical PCF PIF 

L1 Only 11 13 20 73.4% 0.0% 

L1 Only (Klobuchar) 11 12 20 75.5% 0.0% 

 

 

Table 5.3 further summarizes the AR performance of the data batches processing for the 

L1 Only Strategy with and without Klobuchar model compensation. There are 9 data 

batches or 5 data batches with the entire data set divided into intervals of 5 minutes or 9 

minutes. Still, the Klobuchar model helps rarely in the data batches processing for 

evaluating the AR performance. Generally, with 210 - 300 minutes of time, a 30%-60% 

of PCF and only 10%-20% of PIF are observed for this data set for the L1 Only Strategy 

with the short baseline.   

Table 5.3: Data batches AR performance, short baseline 

Strategies Span (minutes) PCF PIF MTFF (s) 

5 33.3% 0.0% 210 

L1 Only 

9 40.0% 20.0% 210 

5 44.4% 11.1% 210 

L1 Only (Klobuchar) 
9 60.0% 20.0% 300 

 

At this point, it may conclude that the Klobuchar model does not help with the carrier 

phase DGPS positioning accuracy and the L1 Only AR performance. However, there is 

another potential reason that the differential ionosphere error is trivial during this time 
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period with the short baseline. The following presents the same results analysis for the 

long baseline. Figure 5.6 shows up to 1 cycle of offset to the true value for the estimated 

L1 float DD ambiguity of PRN 29-PRN 30 at the beginning for the long baseline, which 

slowed down the convergence than that of the short baseline. This indicates the presence 

of non-negligible differential ionospheric error. After converging to the true value “0” at 

the time point between 150066 and 150624, the case with Klobuchar model 

compensation shows better accuracy than the case without it. This accuracy improvement 

directly affects the ambiguity validation. The ratio test values shown in Figure 5.7 

indicate that the best ambiguity integer set candidate is more discernible to the second 

best ambiguity integer set candidate with the Klobuchar model applied in this long 

baseline data set. Moreover, the case with Klobuchar model compensation passes the 

ratio test threshold earlier than the case without it, which indicates faster float DD 

ambiguity convergence. The two cases for the L1 Only Strategy passed the bootstrapping 

SR threshold at the same time point again and also at the same time point as the short 

baseline, which addresses again that this ambiguity validation is model-driven and not 

affected by the real different ambiguity values as long as the observation model is the 

same. Figure 5.8 shows the position errors for the two cases of the L1 Only Strategy with 

the long baseline. The float solution takes longer time to converge than the short baseline. 

The integer ambiguities are fixed to the wrong values at the beginning for both cases, 

which deteriorates the position accuracy. Table 5.4 presents the RMS of the position 

errors and corresponding AR performance. The case with Klobuchar model applied 

provides slightly better AR performance in terms of the PCF (about 4% improvement) 

and the PIF (1%), which is not significant and is expected. 
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Figure 5.6: Estimated L1 float DD ambiguity of PRN 29 – PRN 30 for L1 Only 

Strategy, long baseline 
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Figure 5.7: Ambiguity validation test values for L1 Only Strategy, long baseline 
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Figure 5.8: Position errors for L1 Only Strategy with and without Klobuchar model, 

long baseline 

 

Table 5.4: The whole data set position error RMS and AR performance, long 

baseline 

Position Error RMS (cm) Ambiguity Fixing 
Strategies 

Northing Easting Vertical PCF PIF 

L1 Only 11 26 37 27.7% 10.6% 

L1 Only (Klobuchar) 8 31 39 31.9% 9.6% 

 

 

Table 5.5 further summarizes the AR performance of the data batches processing. With 

the short period of time of the data batches and the presence of non-negligible differential 

ionospheric errors, any of the cases can fix the ambiguities correctly. The only finding is 
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that the case with Klobuchar model applied can lower down the PIF compared to the 

case without the Klobuchar model applied. 

Table 5.5: Data batches AR performance, long baseline 

Strategies Span (minutes) PCF PIF MTFF (s) 

5 0.0% 44.4% N/A 

L1 Only 

9 0.0% 60.0% N/A 

5 0.0% 11.1% N/A 

L1 Only (Klobuchar) 
9 0.0% 40.0% N/A 

 

 

In summary, the L1 Only Strategy is adopted firstly to do the tests to obtain the 

performance of the single-frequency scenario for comparison with the other dual-

frequency scenarios. In addition, the broadcasted Klobuchar model for single-frequency 

GPS positioning is utilized to provide ionospheric correction. However, as the results 

presented above, the Klobuchar model does not help with the positioning accuracy but 

slightly helps to improve the AR performance in both the short and long baseline 

scenarios, which is not of interest. In the remaining part of this chapter, the L1 Only 

Strategy refers to the case without the Klobuchar model ionospheric error compensation.  

 

5.3.2 Scenario with L2P Measurements 

To date, although requiring for expensive tracking techniques, the measurements were 

obtained from the L2P signal in addition to L1 measurements for civil dual-frequency 

applications. The performance of the L2P signal is limited due to the tracking techniques 

used in the civil receivers, but there are advantages to employ a second frequency signal 
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compared to the single-frequency L1 only scenario. In this thesis, the L2P 

measurements are also used to perform the dual-frequency processing and the 

corresponding performance is obtained for comparison sense. Figure 5.9 shows the 

estimated L1 float DD ambiguity of PRN 29-PRN 30 in dual-frequency Strategy A and 

Strategy C compared to the L1 Only Strategy for the short baseline. Strategy A provided 

similar estimate to the L1 Only Strategy but slower convergence since more states are 

estimated. Strategy C provided a very different estimate which is biased from the true 

value since it parameterized a state to estimate the negligible differential ionospheric 

errors in the short baseline, and this state is estimated as a bias which is hardly separable 

with the SD clock offset without sufficient observability. Figure 5.10 shows the 

ambiguity validation test results for this short baseline with Strategy A and Strategy C. It 

is found that Strategy C can not pass either the ratio test or the bootstrapping SR test with 

the L1 C/A and the L2P dual-frequency measurements with the estimation of a SD SID 

for each satellite. The reason is that the SD ionospheric delay is negligible for this short 

baseline during this time period, while the filter is trying to estimate it as a bias state 

along with the SD clock bias and SD ambiguity. The observation model is not valid any 

more with the SD ionospheric delay explicitly modeled in this case making the model-

driven bootstrapping SR lower than the threshold. As stated, Strategy C works 

equivalently as the positioning approach using the ionosphere-free phase combination 

where the inherent integer property of the DD ambiguity may not exist anymore. Besides, 

the float DD ambiguities are biased to weaken the ambiguity fixing and the ratio test for 

ambiguity validation before sufficient observability to separate the SD SID state and the 

SD clock offset state or the SD ambiguity state.  
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Figure 5.9: Estimated L1 float DD ambiguity of PRN 29 – PRN 30 for Strategy A 

and Strategy C using L2P measurements, short baseline 
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Figure 5.10: Ambiguity validation test values for Strategy A and Strategy C using 

L2P measurements, short baseline 
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Figure 5.11 shows the position errors for Strategy A and Strategy C using the L1 C/A 

and the L2P dual-frequency measurements. Strategy A provided much faster convergence 

speed of the float solution as compared to the L1 Only Strategy shown in Figure 5.5 

without improving the convergence of the L1 float ambiguity individually. As a result, 

the ambiguities are fixed and the fixed solution is obtained much faster. This is the 

benefit obtained from the dual-frequency AR using the LAMBDA method which 

automatically forms widelane ambiguity that decorrelates and has better accuracy than 

the L1 and L2 ambiguity alone. Table 5.6 summarizes the statistics for the positioning 

accuracy as well as the AR performance. The PCF is about 4% higher than that of L1 

Only Strategy, The horizontal RMS position accuracy is thus improved for several 

centimetres overall for more epochs of ambiguities are fixed correctly.  
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Figure 5.11: Position errors for Strategy A and Strategy C using L2P 

measurements, short baseline 
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Table 5.6: The whole data set position error RMS and AR performance for Strategy 

A and Strategy C using L2P measurements, short baseline 

Position Error RMS (cm) Ambiguity Fixing 
Strategies 

Northing Easting Vertical PCF PIF 

Strategy A (L2P) 8 8 21 77.7% 0.0% 

Strategy C 15 15 27 0.0% 0.0% 

 

 

Table 5.7 presents the AR performance for the divided data batches with Strategy A only, 

since Strategy C can not fix ambiguity at all. Comparing to the L1 Only Strategy, the 

most improvement is obtained on the MTFF that reduced from 210-300 seconds to 90-

120 seconds, which is the benefit from the dual-frequency AR over the single-frequency 

AR theoretically developed and now practically proved with real data. The implicitly 

formed widelane ambiguity at the initial stage followed by the optimal combination of 

the dual-frequency phase ambiguity during the LAMBDA decorrelation process provides 

much more accurate ambiguity than the L1 ambiguity alone.  

Table 5.7: Data batches AR performance with Strategy A using L2P measurements, 

short baseline 

Strategies Span (minutes) PCF PIF MTFF (s) 

5 33.3% 11.1% 120 

Strategy A (L2P) 

9 60.0% 0.0% 90 
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The following presents the results obtained from Strategy A and Strategy C using the 

L1 C/A and the L2P dual-frequency measurements for the long baseline. As shown in 

Figure 5.12, a more than 1.5 cycles offset for the L1 float DD ambiguity estimate from 

Strategy A and about 1 cycle offset for the L1 Only Strategy are observed until sufficient 

convergence is obtained at nearly the same time point for the two strategies. This 

indicates the float solution convergence suffers from the remaining differential 

ionospheric error for the two strategies and a slower convergence for Strategy A as more 

states are estimated. Afterwards, the two strategies provided similar L1 float DD 

ambiguity estimates. Note that Strategy C provided the best L1 float DD ambiguity 

estimate among these three strategies with faster convergence at the beginning. However, 

it is also observed that Strategy C needs longer time to obtain float ambiguity estimates 

with the accuracy achieved by Strategy A and the L1 Only Strategy at the end of the data 

set. This means that longer convergence time is needed for Strategy C to have the 

sufficient observability to separate the SD SID state with the SD clock offset and the SD 

ambiguity states. The observation model for Strategy C can not provide the float 

ambiguity estimates with the accuracy to be validated by the bootstrapping SR approach 

during the entire data set, as shown in Figure 5.13. With the presence of the differential 

ionospheric errors for this long baseline, Strategy C can pass the ratio test for some of the 

epochs at the end of the data set, which may indicate ambiguity fixing if the 

bootstrapping SR test is not combined to the ratio test. Note that Strategy A passes the 

bootstrapping SR threshold at the same time point for both the short and long baseline 

scenarios. It is addressed again that the bootstrapping SR validation approach is 

observation model-driven and not affected by the real ambiguity values. 
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Figure 5.12: Estimated L1 float DD ambiguity of PRN 29 – PRN 30 for Strategy A 

and Strategy C using L2P measurements, long baseline 
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Figure 5.13: Ambiguity validation test values for Strategy A and Strategy C using 

L2P measurements, long baseline 
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Figure 5.14 shows the time series of position errors for the long baseline. Strategy A 

provides relatively larger position errors trying to fix the L1 and L2 phase ambiguities 

without estimating the ionospheric error, while Strategy C provides relatively small and 

smoothing position errors along with the time only with the float solution. Table 5.8 

summarizes the statistics for the RMS of the position errors as well as the AR 

performance. Strategy A provides similar RMS of position errors compared to the L1 

Only Strategy and about 8% lower PIF but about 7% lower PCF. It is reasonable for these 

two strategies to have such performance in a 125 km long baseline scenario. Meanwhile, 

it is found that Strategy C provides improved centimetre level of horizontal accuracy and 

reduced vertical error in terms of RMS, comparing to all the other cases for this long 

baseline scenario, though no ambiguity is ever fixed.  
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Figure 5.14: Position errors for Strategy A and Strategy C using L2P 

measurements, long baseline 
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Table 5.8: The whole data set position error RMS and AR performance for Strategy 

A and Strategy C using L2P measurements, long baseline 

Position Error RMS (cm) Ambiguity Fixing 
Strategies 

Northing Easting Vertical PCF PIF 

Strategy A (L2P) 12 21 42 20.2% 2.1% 

Strategy C 3 6 16 0.0% 0.0% 

 

 

With the presence of non-negligible ionospheric error in this long baseline scenario, the 

AR performance of the data batches can not benefit from Strategy A using additional L2P 

measurements where the ionospheric error is not estimated or compensated, comparing to 

the L1 Only Strategy. The statistics are listed in Table 5.9. 

Table 5.9: Data batches AR performance with Strategy A using L2P measurements, 

long baseline 

Strategies Span (minutes) PCF PIF MTFF (s) 

5 0.0% 11.1% N/A 

Strategy A (L2P) 

9 0.0% 40.0% N/A 

 

 

In summary, this section evaluated the performance of dual-frequency AR with the full 

constellation of L2P signals for comparison purpose. Strategy A can provide horizontal 

accuracy and also MTFF improvements over the L1 Only Strategy for the short baseline 

where the differential ionospheric residual is negligible. Strategy C provides the best 

position accuracy in the float solution without the ability to fix ambiguity in the long 
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baseline scenario while deteriorates the solution for the short baseline scenario with 

over-estimated differential ionospheric residual.  

 

5.3.3 Scenarios with partial availability of L2C satellites 

This section discusses the benefit of having partial availability of L2C measurements as 

compared to the previously discussed single-frequency L1 only scenario and the dual-

frequency scenario with full constellation of L2P measurement. The discussion starts 

with the scenario with 1 L2C satellites in addition to full constellation of L1 C/A 

measurements followed by scenarios with 2 and 3 L2C satellites available.  

 

First of all, as the proposed differential ZID method for the differential ionospheric error 

estimation with partial availability of the L2C measurements, Strategy B is applied to 

estimate a single differential ZID state along with the position states, the SD clock bias 

state, and other SD ambiguity states. For the following scenarios with 1, 2, or 3 L2C 

satellites, the estimated differential ZIDs of the float solution are shown in Figure 5.15 

and Figure 5.16 for the short and long baseline respectively, comparing to the estimates 

from the GIM. Only one example estimate is selected to shown here for the 1 (e.g. with 

PRN 29) or 2 L2C (e.g. with PRN 29 & 05) satellites scenario respectively. The 

differential ZID obtained from the GIM shows negligible ionospheric residual exists for 

the two stations for the short baseline, while the estimates in this work are in the sub-

decimetre level. The differential ZID from the GIM is about 5 – 15 cm, while the 

estimates in this work are nearly in the same level. The impact of these estimated 

differential ZID will be discussed in the following.  
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Figure 5.15: Estimated differential ZID from IONEX map and Strategy B with 1, 2, 

or 3 L2C satellites available, short baseline 
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Figure 5.16: Estimated differential ZID from IONEX map and Strategy B with 1, 2, 

or 3 L2C satellites available, long baseline 
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Scenario with 1 L2C satellite 

As the results shown in the scenario with full availability of L2P measurements, there is 

no much difference for the float solution whether the remaining differential ionospheric 

error is estimated or not for the short baseline, although the AR performance is improved 

to some extent. Accordingly, for the scenario with only 1 L2C satellite, where no L2C 

DD ambiguity could be formed, Strategy A and Strategy B will not obtain much different 

position solution and AR performance from the L1 Only Strategy. As shown in Figure 

5.17, there is not much difference for the L1 float DD ambiguity estimates except that the 

estimate from Strategy A with L2P measurements has more cycles offset to the true value 

during the convergence due to that more states are estimated. In Figure 5.18, the 

bootstrapping SR values show that slight time delay for Strategy B to pass the threshold 

than that of Strategy A, with only one additional differential ZID state added in the 

observation model. Besides, the observability of the differential ZID state is better than 

the observability of the SD SID state in Strategy C, , when estimating the SD clock error 

state and SD ambiguity state at the same time, provided by the variability of the elevation 

angle and the corresponding mapping value. The corresponding bootstrapping SR is 

shown in Figure 5.10. The ratio test shows that Strategy A with measurements from 1 

additional L2C satellite is quite similar to the L1 Only Strategy, which is expected since 

no L2C DD ambiguity is added. Strategy B provides more conservative ratio test results 

due to the one more estimated differential ZID state. 
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Figure 5.17: Estimated L1 float DD ambiguity of PRN 29 – PRN 30 for Strategy A 

and B with 1 L2C satellite (PRN 29) available, short baseline 
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Figure 5.18: Ambiguity validation test values for Strategy A and Strategy B with 1 

L2C satellite (PRN 29) available, short baseline 
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Figure 5.19 shows the position errors for Strategy A and Strategy B with one 

additional L2C satellite, and still quite close results were obtained due to the nearly 

negligible differential ionospheric residual for this short baseline. It is found that these 

results are quite close to the results for the L1 Only Strategy without any benefit obtained 

from Strategy A by adding one L2C measurement and from Strategy B by adding one 

L2C measurement as well as estimating the differential ionospheric errors. The statistics 

shown in Table 5.10 also verified the same conclusion. For the AR performance, Strategy 

B tended to be conservative in the ratio test and thus provided little lower PCF but 

reduced PIF at the same time.  
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Figure 5.19: Position errors for Strategy A and B with 1 L2C satellite (PRN 29) 

available, short baseline 
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Table 5.10: The whole dataset position error RMS and AR performance with 1 L2C 

satellite available, short baseline 

Position Error RMS (cm) AR 
PRN Strategies 

Northing Easting Vertical PCF PIF 

Strategy A 7 14 27 74.5% 1.1% 

12 

Strategy B 7 13 25 71.3% 0.0% 

Strategy A 10 12 20 73.4% 0.0% 

29 

Strategy B 11 12 21 70.2% 0.0% 

Strategy A 10 12 19 73.4% 0.0% 

05 

Strategy B 10 12 20 63.8% 0.0% 

 

 

The following shows the results and analysis for the scenario with only one L2C satellite 

available for the long baseline. This time, as shown in Figure 5.20, Strategy B brought 

the benefit from estimating the differential ionospheric error by a single differential ZID 

state as compared to the L1 Only Strategy and Strategy A with L2P measurements.  As 

shown in Figure 5.21, the bootstrapping SR test results for the long baseline are the same 

as the short baseline since the observation model is the same. The ratio test result of 

Strategy A has rare difference from the L1 Only Strategy for the only addition of one 

L2C measurements. The ratio test result of Strategy B shows that most of the ambiguities 

can not be fixed and shows the conservative of this strategy which tends to lower down 

the PIF of ambiguity fixing.   
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Figure 5.20: Estimated L1 float DD ambiguity of PRN 29 – PRN 30 for Strategy A 

and B with 1 L2C satellite (PRN 29) available, long baseline 
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Figure 5.21: Ambiguity validation test values for Strategy A and Strategy B with 1 

L2C satellite (PRN 29) available, long baseline 
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Figure 5.22 shows the position errors along with time for having one additional L2C 

satellite PRN 29. Started at the time point of 15006, the float solution converges 

sufficiently for the ambiguities to be fixed correctly, which is also indicated in Figure 

5.20. Before this point, all the ambiguities are fixed to the wrong integers. Strategy A and 

Strategy B presented the similar position solution trend. The statistics in Table 5.11 show 

that the position accuracy improvement obtained from Strategy B comes out of the lower 

PIF other than higher PCF as compared to Strategy A. In fact, Strategy B provides lower 

PCF than Strategy A with any one of the three available L2C satellite. Comparing to the 

L1 Only Strategy, Strategy A has no obvious advantage since the only difference is the 

added one L2C measurement. The advantage of Strategy B over Strategy A also holds for 

over the L1 Only Strategy.  
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Figure 5.22: Position errors and number of fixed ambiguities, Strategy A and B with 

1 L2C satellite (PRN 29) available, long baseline 
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Table 5.11: The whole dataset position error RMS and AR performance with 1 L2C 

satellite available, long baseline 

Position Error RMS (cm) AR 
PRN Strategies 

Northing Easting Vertical PCF PIF 

Strategy A 10 28 39 21.3% 11.7% 

12 

Strategy B 11 27 37 14.9% 11.7% 

Strategy A 14 16 36 26.6% 8.5% 

29 

Strategy B 13 16 29 1.1% 4.3% 

Strategy A 11 31 52 28.7% 16.0% 

05 

Strategy B 15 28 25 2.1% 1.1% 

 

In summary, with only one additional L2C satellite, a single differential ZID state can be 

estimated along with the position states, the SD clock bias state, and the other SD L1 

ambiguity states, and no L2C DD ambiguity can be formed. The benefit of estimating this 

single differential ZID state tends to reduce the PIF, but at the same time to lower the 

PCF on the other hand for both the short and long baselines as compared to the case 

without estimating any remaining ionospheric residual. The benefit for the position 

accuracy derives from the lower PIF other than higher PCF. 

 

Scenario with two L2C Satellites 

For a data set with three L2C satellites available, there are three cases for any two of 

them to form one scenario. Table 5.12 summarizes the statistics of the position errors and 

AR performance of using additional measurements from 2 L2C satellites. As stated for 

the scenario with only 1 L2C satellite available, Strategy B tends to reduce PIF but also 
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slight lower PCF, which also can be observed from those statistics for the short 

baseline scenario. Comparing to the L1 Only Strategy, no improvement on the position 

accuracy and the AR performance has been observed for the entire data processing in the 

short baseline scenario.  

Table 5.12: The whole dataset position error RMS and AR performance with 2 L2C 

satellites available, short baseline 

Position Error RMS (cm) Ambiguity Fixing 
PRN Strategies 

Northing Easting Vertical PCF PIF 

Strategy A 6 11 25 77.7% 0.0% 

12&29 

Strategy B 6 11 26 71.3% 0.0% 

Strategy A 7 12 24 71.3% 0.0% 

12&05 

Strategy B 7 12 25 62.8% 0.0% 

Strategy A 11 12 22 70.2% 1.1% 

05&29 

Strategy B 10 11 21 70.2% 0.0% 

 

Table 5.13 shows the AR performance statistics for data batches with 2 L2C satellites 

available, where one additional L2C DD ambiguity could be formed to join in the 

ambiguity fixing process with other L1 DD ambiguities. No benefit has been obtained 

using Strategy B over Strategy A, although the PIF is reduced from 22.2% to 11.1% for 9 

data batches processing. Comparing to the L1 Only Strategy, Strategy A provides similar 

PCF and PIF but shows its advantage on the MTFF. As described theoretically for the 

LAMBDA method, dual-frequency AR outperforms L1 only AR with the ability to form 

widelane ambiguity which could be more easily and faster resolved than the L1 or L2 

ambiguity individually.  
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Table 5.13: Data batches AR performance with 2 L2C satellites (PRN 29 & 05) 

available, short baseline 

PRN Strategies Span (minutes) PCF PIF MTFF (s) 

5 33.3% 22.2% 180 

Strategy A 

9 40.0% 20.0% 180 

5 33.3% 11.1% 180 

29 & 05 

Strategy B 

9 20.0% 20.0% 120 

 

Comparing to the ratio test value shown in Figure 5.21, Strategy A, shown in Figure 5.23, 

becomes more conservative in fixing the ambiguities with two L2C satellites involved 

than with only one, which can be explained by the more accurate WL ambiguities formed 

during the decorrelation of the LAMBDA method with one L2C DD ambiguity added.  
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Figure 5.23: Ambiguity validation test values for Strategy A and Strategy B with 2 

L2C satellite (PRN 29 & 5) available, long baseline 
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As shown in Figure 5.24, the ambiguities of some of the epochs were fixed before the 

time point of 150066 when the float solution is not sufficiently converged. Thus, there is 

large possibility to fix the ambiguities wrong. The fact that the vertical component of the 

position errors is very large during that period of time identified the possibility. Around 

the time point of 151182, Strategy A provided a better position solution than Strategy B 

with those ambiguities correctly fixed.  
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Figure 5.24: Position errors and number of fixed ambiguities, Strategy A and B with 

2 L2C satellites (PRN 29 & 5) available, long baseline 

Table 5.14 shows the corresponding statistics for the position errors and the AR 

performance. Comparing to the L1 Only Strategy, Strategy A provided lower PIF. In 

addition, the statistics also shows that Strategy A with 2 L2C satellites also tended to 

provide lower PIF than Strategy A itself with only 1 L2C satellite. The advantage of 

reducing PIF still holds for Strategy B. Note that for the case with PRN 12 and PRN 29 
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or PRN 12 and PRN 5, Strategy B still provided better vertical accuracy than Strategy 

A while the PIF for these two strategies are the same and the PCF of Strategy B is equal 

or lower than Strategy A. This observation indicates that the remaining ionospheric 

residual is effectively estimated by the single differential ZID state with certain accuracy.  

Table 5.14: The whole dataset position error RMS and AR performance with 2 L2C 

satellites available, long baseline 

Position Error RMS (cm) Ambiguity Fixing 
PRN Strategies 

Northing Easting Vertical PCF PIF 

Strategy A 11 16 35 24.5% 2.1% 

12&29 

Strategy B 11 15 31 16.0% 2.1% 

Strategy A 11 25 49 21.3% 9.6% 

12&05 

Strategy B 12 27 33 21.3% 9.6% 

Strategy A 14 22 50 7.5% 7.5% 

05&29 

Strategy B 13 16 29 0.0% 1.1% 

 

As shown in Table 5.15, no ambiguity can be fixed during those short data batches for the 

long baseline. As a result, the MTFF performance can not be determined. For the relative 

longer data batches of 9 minutes processing, Strategy B still tended to reduce the PIF as 

compared to Strategy A, but it provided a higher PIF A for the 5 minutes data batches.  

Table 5.15: Data batches AR performance with 2 L2C satellites (PRN 29 & 05) 

available, long baseline 

PRN Strategies Span (minutes) PCF PIF MTFF (s) 

5 0.0% 11.1% N/A 

Strategy A 

9 0.0% 40.0% N/A 

5 0.0% 22.2% N/A 

29 & 05 

Strategy B 

9 0.0% 20.0% N/A 
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In summary, with 2 available L2C satellites, Strategy A provided a lower PIF than itself 

with only 1 L2C satellite, and Strategy B still tended to provide lower PIF than Strategy 

A as the same conclusion obtained from the comparison between Strategy B and Strategy 

A with only 1 available L2C satellite. Besides, the MTFF improvement for AR is proved 

in this scenario with one L2C DD ambiguity added from 2 available L2C satellites as 

compared to the scenario with only 1. 

 

Scenario with three L2C Satellites 

In this scenario, the single differential ZID state is estimated by the dual-frequency 

measurements from three L2C satellites using Strategy B. Table 5.16 shows the position 

errors and AR performance for Strategy A and Strategy B for the short baseline. Again, 

Strategy B works similarly as Strategy A since the remaining ionospheric residual is 

negligible. Besides, the scenario with 3 L2C satellites does not bring improvement over 

the L1 Only scenario and the scenarios with one or two L2C satellites, quite similar 

performance has been observed among all these scenarios for the short baseline.  

Table 5.16: The whole dataset position error RMS and AR performance with 3 L2C 

satellites available, short baseline 

Position Error RMS (cm) Ambiguity Fixing 
Strategies 

Northing Easting Vertical PCF PIF 

Strategy A 7 11 24 72.3% 0.0% 

Strategy B 6 10 25 72.3% 0.0% 
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Table 5.17 summarizes the AR performance for the data batches processing. Clearly, 

Strategy B is not necessary to obtain better performance for the short baseline and 

Strategy A presents satisfactory results especially with the MTFF improvement over the 

L1 Only Strategy and itself with one or two L2C satellites, though the time resolution is 

limited by the 30 seconds observation interval. Strategy A with three L2C satellites 

provides lower PIF and equal or higher PCF than the other strategies with one or two 

L2C satellites or the L1 Only Strategy. At this point, generally, AR performance 

improvement can be achieved by introducing additional one-by-one L2C satellite in each 

scenario as compared to the performance obtained from the L1 Only Strategy. The more 

the L2C satellite added in, the better AR performance is expected.  

Table 5.17: Data batches AR performance with 3 L2C satellites available, short 

baseline 

Strategies Span (minutes) PCF PIF MTFF (s) 

5 33.3% 11.1% 150 

Strategy A 

9 60.0% 0.0% 150 

5 33.3% 11.1% 150 

Strategy B 

9 40.0% 20.0% 180 

 

 

Figure 5.25 shows the ambiguity validation test results for the long baseline case. The 

bootstrapping SR test shows that Strategy A with three available L2C satellites passes the 

threshold at the time point of 149100 that is the same as Strategy A with full availability 

of L2P measurements, while Strategy  A with one or two L2C satellites could only pass 

the threshold at the time point of one epoch later. It may come to the observation that the 
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decorrelated widelane ambiguity formed by the L1 C/A DD ambiguities and the two 

additional L2C DD ambiguities achieves the accuracy of that formed by the L1 C/A DD 

ambiguities and the full availability of the L2P DD ambiguities. However, one additional 

L2C DD ambiguity formed from two available L2C satellites can not make equivalent 

decorrelated widelane ambiguity accuracy. For the ratio test, there is only one epoch for 

Strategy A to pass the threshold before the sufficiently converged float solution, much 

less than the L1 Only Strategy and Strategy A with one or two available L2C satellites.  

As such, there is large possibility to reduce the PIF for the entire data processing. Note 

that Strategy B passes the threshold at a later time point than Strategy A for the first time. 

It is due to the position float solution converges a little slowly for Strategy B to estimate 

one more state compared to Strategy A. This slower float solution convergence can be 

observed from the easting component shown in Figure 5.26. However, the vertical 

component of Strategy B converges faster and has better accuracy than Strategy A, since 

the ionospheric residual is effectively estimated by Strategy B, which has the most impact 

on the vertical accuracy estimation for removing a residual bias in the observation model. 

With a better float solution, Strategy B provides a 20 cm vertical accuracy improvement 

over Strategy A during the entire data processing other than relying on providing lower 

PIF, as shown in Table 5.18. Another important observation is that Strategy A and B with 

three available L2C satellites tend to provide the lowest PIF among all the strategies with 

L2C satellite and the L1 Only Strategy, however the PCF is not improved indicated by 

the statistics.  
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Figure 5.25: Ambiguity validation test values for Strategy A and Strategy B with 3 

L2C satellites available, long baseline 
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Figure 5.26: Position errors, Strategy A and B with 3 L2C satellites available, long 

baseline 
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Table 5.18: The whole dataset position error RMS and AR performance with three 

L2C satellites available, long baseline 

Position Error RMS (cm) Ambiguity Fixing 
Strategies 

Northing Easting Vertical PCF PIF 

Strategy A 13 17 50 20.2% 1.1% 

Strategy B 11 16 30 21.3% 0.0% 

 

Finally, Table 5.19 shows the statistics for the AR performance of the data batches 

processing. Unfortunately, still no ambiguity can be fixed during all the short time period 

data batches. Both strategies with two or three L2C satellites have similar AR 

performance in terms of PIF, and provide better PIF than the L1 Only Strategy. 

Table 5.19: Data batches AR performance with three L2C satellites available, long 

baseline 

Strategies Span (minutes) PCF PIF MTFF (s) 

5 0.0% 22.2% N/A 

Strategy A 

9 0.0% 40.0% N/A 

5 0.0% 22.2% N/A 

Strategy B 

9 0.0% 20.0% N/A 

 

In summary, having investigated the scenario with three available L2C satellites and 

previous scenarios with one or two L2C satellites, it is observed that Strategy A with 

three L2C satellites lowers the PIF compared to itself with one or two L2C satellites for 

the entire data processing, and improves the MTFF for the data batches processing in the 

short baseline case without the need to estimate the remaining ionospheric residuals. 
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Moreover, Strategy B improves the position solution and lowers the PIF than Strategy 

A in the long baseline case by estimating the remaining ionospheric residual through a 

single differential ZID state.   

 

5.4 Summary 

The work in this chapter evaluated the L1 and L2 dual-frequency relative precise 

positioning performance using the partial availability of L2C signals for a short baseline 

(31 km) and a long baseline (125 km) case. During the limited time period of 45 minutes 

data sets, there are 3 L2C satellites available and usable. Scenarios are divided by adding 

one, two, or three L2C measurements to do dual-frequency AR, positioning, and 

ionospheric residual estimation, comparing to the scenario with L1 measurements only or 

L1 and L2P measurements. A general conclusion is drawn that the more L2C 

measurements, the better performance of position accuracy and AR. For the short 

baseline, Strategy A lowers the PIF for the entire data processing and improves the 

MTFF for the data batches processing as one and one L2C satellite added in without the 

need to estimate the ionospheric residual, while Strategy B improves the position 

accuracy by providing better float solution and lowering down the PIF through estimating 

the ionospheric residual in the proposed single differential ZID method for the entire data 

set processing in the long baseline case.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

The low-cost civil receivers will benefit from the modern L2C signals. It is interesting to 

find what performance can be achieved during the phase in of the L2C signals. The 

research of this thesis targets to investigate the feasibility of introducing the partial 

constellation of L2C signals as the second frequency signals for dual-frequency 

applications and to evaluate the corresponding positioning and AR performance as 

compared to the L1 single-frequency case and dual-frequency case with the full 

constellation of the L2P signals. The utilization of the partial constellation of the L2C 

signals is divided into a L1 C/A single-point positioning scenario and a DGPS L1 and L2 

dual-frequency precise positioning scenario.  

 

For the single-point scenario, an ionospheric error estimation approach is proposed to 

estimates a ZID using the L1 C/A and L2C dual-frequency code and phase measurements 

obtained from the modernized partial constellation of L2C satellites. Then the ZID is 

mapped down to obtain SID to provide ionospheric corrections for those satellites with 

only L1 C/A signal accessible by the low-cost civil receivers. In order to overcome the 

inherent limitations of the ionospheric group delay and phase advance, a batch and a 

sequential smoothing approach is adopted to improve the ionospheric error estimate for 

the post-processing mission and the real-time application respectively. Besides, a receiver 

IFB estimate can be obtained from the post-processing mission for the first data set, 

which is then used to correct the dual-frequency measurements for real-time application. 
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Finally, the derived ionospheric correction estimate is applied to the L1 C/A code 

measurements to evaluate the single-point positioning performance.  

 

For the DGPS L1 and L2 dual-frequency precise positioning scenario, a 31 km short 

baseline and a 125 km long baseline are used. The dual-frequency AR performance and 

the corresponding positioning accuracy are evaluated for the two baselines with or 

without estimating the differenced ionospheric residuals. With the partial constellation of 

the L2C signals, limited number of one, two, or three L2C measurements is incorporated 

with the full constellation of the L1 C/A measurements for dual-frequency AR and 

positioning. Comparison has been made among the capability of with one, two, or three 

available L2C measurements.  

 

To sum up, the following conclusions can be drawn based on the work described above: 

a) For the single-point positioning scenario, an IFB estimate is obtained for each of 

the three L2C satellites in estimating the ZID through batch processing, which is 

used to correct the SID of each L2C satellite. The resulted SID is then mapped to 

obtain the ZID for this satellite. The estimated ZID of each L2C satellite is found 

to be quite close to the values obtained from the broadcast Klobuchar model and 

the IONEX map.  

b) The measurements quality differs among different L2C satellites. The receiver 

IFB calculated by the measurements from PRN 15 differs relative large from the 

other two L2C satellites. The single-point position accuracy is poorer if the 

ionospheric correction is obtained by involving the PRN 15 measurements only 
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than the other cases, better position solution is achievable if the ionospheric 

corrections are obtained by involving another L2C satellite and PRN 15. It is 

suggested to estimate the receiver IFB and the ionospheric correction using at 

least two L2C satellites.  

c) Generally, a ZID can be estimated using dual-frequency measurements from one, 

two, or three L2C satellites and this delay can be used to generate SID to correct 

the L1 C/A pseudoranges for a better single-point position solution that has the 

same level of accuracy as obtained by using the broadcast Klobuchar ionosphere 

model. 

d) For the DGPS dual-frequency precise positioning scenario, a general conclusion 

is drawn that the more L2C measurements, the better performance of position 

accuracy and AR. 

e) For the short baseline, Strategy A lowers the PIF for the entire data processing 

and improves the MTFF for the data batches processing as one and one L2C 

satellite added in without the need to estimate the ionospheric residual. Strategy B 

improves the position accuracy by providing better float solution and lowering 

down the PIF through estimating the ionospheric residual to some extent using the 

proposed single differential ZID method for the long baseline for the entire data 

set processing.  

f) Although the data sets used in this research are not subjected to severe 

ionospheric error, the proposed ionospheric error estimation methods, both the 

single-point ZID and the differential ZID methods, are experimentally proved to 

be feasible and effective. 
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Having obtained the above conclusions and with the limitations of this research in mind, 

the following recommendations are made: 

a) Due to the fact that the L2C measurement is available in geodetic grade receivers 

in most cases, the results obtained may be optimistic for the targeted low-cost 

civil receivers. The work in Chapter 5 subjects to this limitation as the 

measurements from the expensive Trimble NetRS receiver are used for 

performance evaluation. Future work is needed to assess the performance using 

the L2C measurements from “real” low-cost receivers. 

b) The time resolution is limited by the observation interval of 30 seconds for time 

sensitive performance evaluation as the case the MTFF evaluation for data 

batches processing in Chapter 5. Other data sets with different observation rate 

are also of interest for performance evaluation. 

c) In order to have up to three L2C satellites available and useable for performance 

evaluation and comparison among cases with different number of L2C satellite 

involved, the time duration of the data sets used in Chapter 4 and Chapter 5 are 

limited by the short availability of the simultaneously three L2C satellites. As the 

gradual deployment of the L2C satellites, there will be longer time period of data 

sets for processing and the benefit of the longer data set is also of interest in the 

future work. 

d)  An isotropic assumption is used here for the ionosphere shell, more complex 

algorithm is of interest to be developed without the limitation by this assumption.  
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e) The civilian users can benefit from the partial availability of the L2C signals 

and are recommended to utilize these limited number of L2C measurements 

during its deployment phase.  
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