
 
 

  

 

 

 

UCGE Reports 
Number 20327 

 

 

 
Department of Geomatics Engineering 

 

 

 

A Study on Canonical Expansion of Random Processes 

with Applications in Estimation Problems 
(URL: http://www.geomatics.ucalgary.ca/graduatetheses) 

 

 

by 
 

 

Zhan Zhang 
 

 

January 2011 

 

 

 

 

 

 

 

 
 



 

UNIVERSITY OF CALGARY 

 

 

A Study on Canonical Expansion of Random Processes  

with Applications in Estimation Problems 

 

by 

 

Zhan Zhang 

 

 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

 

 

DEPARTMENT OF GEOMATICS ENGINEERING 

CALGARY, ALBERTA 

JANUARY, 2011 

 

© Zhan Zhang 2011 



ii 

 

Abstract 

Canonical expansion is an effective tool of studying the second-order random process by 

decomposing the process into an orthogonal expansion based on the information of the 

second moment. In essence, it is one of those techniques which can be categorised under 

the theory of orthogonal functions. The current study is devoted to applying this 

technique in the optimal estimation of random process according to the principle of 

Minimum Mean Square Error (MMSE), by constructing both the optimal linear and non-

linear operators through the canonical expansion. The whole theory of canonical 

expansion is grounded on the theories of linear integral equation and linear algebra. The 

principle of MMSE results in the Wiener-Hopf equation for the linear estimation, and the 

regression operator in the non-linear case. Both the estimators can be constructed by the 

principal components that are generated through the canonical expansion. Numerical 

experiments show that such a method can give very accurate results for estimations of 

different time series. Also, the relation and comparison between the linear and non-linear 

operators are revealed through those numerical examples, in which the noise models are 

all Gaussian processes. 
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Chapter One: INTRODUCTION 

 

The canonical expansion is a technique that entails an orthogonal decomposition of a 

centred stochastic (or random) process into a linear combination of uncorrelated random 

variables with deterministic functions as their coefficients. These coefficients contain the 

second moment information (covariance function) of the whole process. This method 

may have a better-known name as Karhunen-Loève (K-L) theorem, yet it will be 

explained later that the canonical expansion is more general than this K-L theorem. In 

addition, one variation of this approach is the famous Principal Components Analysis 

(PCA), which is a statistical tool involving a reduction of dimensionality by transforming 

a large correlated data set into only several uncorrelated principal components (Joilliffe, 

2002). The canonical expansion stands accepted nowadays as an important technique in 

science and engineering.  

 

In a wider sense, this technique ought to be regarded as one of the treatments when 

studying a random process, and from this point of view, it is parallel to the idea of 

Fourier transform and the concept of power spectrum of a time series, since both 

techniques entail one characterisation of the stochastic process. On the other hand, 

mathematically speaking, this expansion approach is nothing else but a particular case of 

the theory of orthogonal functions (other techniques such as Fourier Analysis, Spherical 

Harmonics and Wavelets Analysis are also special cases of this more general theory). As 

a result, the canonical expansion could be fairly deemed as the ‘Fourier Analysis’ of 

stochastic processes. 
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Among various applications of this method (especially the PCA), the present work will 

be mainly devoted to the usage of canonical expansion in both the Wiener-Kolmogorov 

theory of optimal linear filtering, and in a broader class the non-linear optimal filtering 

theory considered by Pugachev and Andreyev. The essence of such optimal filtering 

theories is to design an operating system to provide the best solution of each particular 

estimation problem, or in other words, to minimise or maximise the criterion that is 

chosen for optimality (Andreyev, 1969). For example, for a time series contaminated by 

some random noise, it is our goal to recover this useful signal as best as possible, 

according to some criterion of optimality, such as that the mean squares of estimation 

errors should be minimised. In this sense, the optimal filtering is a synthesis problem, 

namely, one has to strive to develop a systematic procedure as the realisation of a 

theoretically optimum design, out of all the other permissible operations, in accordance 

with the same chosen principle.  

 

Following this idea, it will be demonstrated in the current thesis (a) how to obtain the 

optimal operators, primarily based on the principle of minimum mean square errors 

(MMSE), via the method of canonical expansion; and (b) how to apply this theory in 

different estimation problems in geodynamics and geomatics engineering. In general, we 

will see that with the help of canonical expansion (or principal components), it is possible 

to extract the probabilistic information of noise, and to apply it in the construction of 

either a linear Wiener-Kolmogorov or an optimal non-linear estimator. In the linear case, 

a weighting function (or matrix) will be produced from the canonical expansion, which 

acts as a linear transformation of the observation to the optimal estimation; while in the 
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latter case, the expansion form will be utilised to calculate the conditional probability 

density function (PDF) of the useful signal given an observation, in order to formulate the 

corresponding conditional expectation as the operator itself.  

 

Before we commence our study, it does no harm to confine ourselves to the clarification 

of some terminologies that we will be continuously adopting throughout this thesis, so as 

not to arouse any inconsistency, ambiguity or misunderstanding of the material: 

1. There is no differentiation between the names random function, random process, 

stochastic process or time series (it is to be noted that, as in some literatures, 

random process and stochastic process may refer to somewhat different 

meanings), they all represent a random-valued function whose argument is an 

evolving parameter (time).  

2. The random process that is considered throughout the thesis is the second moment 

process, i.e., a full knowledge of the first and second moment information 

characterises the whole process. 

3. The covariance function, which characterises the covariance (or correlation) 

between any pair of random variables in the process, is defined as: 

 KX (t, t ') = E X(t) mX( ) X(t ') mX( )                                                    (1.1)  

where mX  denotes the mean value of the stochastic process X(t) .                            

This is sometimes called the auto-covariance function in the literature, however, 

the term covariance function is preferably adopted in the present work. 

When characterising the covariance between any pair of variables of two 
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processes, the cross-covariance function is used: 

    KXY (t, t ') = E X(t) mX( ) Y (t ') mY( )                                                (1.2) 

4. The theory presented in this work will focus solely on the case of one-

dimensional random processes with only one parameter. The entire theory can be 

generalised into the case of multi-dimensional processes (or random vectors) 

without any apparent difficulty.   

5. All the random variables and random functions treated in this thesis are real-

valued. 

 

1.1 Background and Literature Review 

As we have mentioned before, the present work deals with the optimal estimation via the 

canonical expansion technique. As a result, it is expedient to provide an overview of the 

history of canonical expansion (or Karhunen-Loève expansion) and the PCA technique, 

followed by a brief survey of the chronological development of optimal estimation of 

stochastic processes in the past century. Only in such a way can we acquire a full picture 

of the background of the topic that we are about to develop in the next chapters. 

 

1.1.1 History of Canonical Expansion and Principal Components Analysis 

The earliest version of canonical expansion is in fact a monumental discovery in 

statistics. In 1901, Pearson published his pioneering work in curve fitting, in finding the 

best line representing a collection of correlated data, which marks the beginning of a 

century’s study on the approach of Principal Components Analysis (Pearson, 1901; 

Joilliffe, 2002). The other acknowledged pioneer is Hotelling, whose idea was to generate 



5 

 

a ‘fundamental set of independent variables’ to determine the original variables in a data 

set. His method is to use Lagrange multipliers to transform it into a problem of 

eigenvalues (Joilliffe, 2002). There are also a number of scientists who have made 

important contributions to this technique; for a more thorough and complete account on 

this approach, one may consult Joilliffe (2002) for more details.  

 

In addition, the PCA is closely related to a matrix decomposition technique called 

Singular Value Decomposition (SVD), as a means of obtaining the principal components 

directly from the observation matrix. It was originated by some eminent mathematicians 

such as Jordan, Beltrami, Sylvester, Schmidt and Weyl, through their immortal works 

both in bilinear forms and the algebraic theory of integral equations (Stewart, 1992). The 

study of its practical computation still remains one of the most vivid and fruitful topics in 

linear algebra today. 

 

On the other hand, separately from the ideas of Pearson and Hotelling from the point of 

view of statistics, the same topic was approached to by Karhunen from a more analytical 

perspective in his 1947 paper ‘Über lineare Methoden in der 

Wahrscheinlichkeitsrechunung’ (literally, ‘On linear methods in the Calculus of 

Probability’), although it was claimed that a special form had already been obtained by 

Kolmogorov in 1942 (Pugachev, 1965). In this type of work, the Karhunen-Loève 

expansion was established based on the analytical theory of random functions with a 

close connection to the theory of orthogonal functions. Pugachev (1965) summarised 

these works into a systematic theory, for which he coined the name of canonical 
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expansion. In Pugachev’s work, the K-L expansion is integrated into a more general form 

of expansion similar to the idea of Fourier expansion of an analytical function, which is 

optimal in a least-squares (LS) sense.       

 

Nevertheless, it was not until the last decades that this technique became fairly popular in 

studying stochastic processes, due to the boom of high-speed computers that could handle 

the large amount of computations. Nowadays, this method has been adopted for various 

purposes: data compression, pattern recognition, system identification and control 

problems, to name a few. Especially in geophysics and geodynamics, besides the name 

PCA, it is also known as Empirical Orthogonal Function (EOF) Analysis. It is primarily 

used for extraction of the modes (which contain the probabilistic information) of a 

dynamic model from its observation, as a basis for prediction or interpretation purposes. 

In such studies, the EOFs are normally four-dimensional data-driven vectors in a spatial-

temporal stochastic field (North, 1984).  

 

1.1.2 Development of the Theory of Statistically Optimal Estimation 

The modern theory of statistically optimal estimation was initiated by Wiener, Khintchine 

and Kolmogorov circa 1940. In its primary stage, the theory was closely related to the 

spectral theory (or correlation theory) of stationary random functions, developed 

independently by Wiener and Khintchine (Khintchine, 1934). Wiener and Kolmogorov 

developed their own optimal filters respectively from continuous time domain and 

discrete time domain analyses of stationary time series (Gelb et al., 1974). An important 

extension was made by Zadeh and Ragazzini on extending the signal to a random 
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function with a non-random polynomial in a finite domain, and a form of Wiener-Hopf 

equation was also developed (Zadeh and Ragazzini, 1950). Booton (1952) also provided 

a solution to the Wiener-Hopf equation when the input random function is non-stationary. 

The most famous technique was introduced by Kalman in 1960, on designing a recursive 

procedure ‘based on state-space, time domain formulations’ (Gelb et al., 1974). This 

technique is nowadays widely accepted as a standard treatment in filtering problems, and 

a tremendous amount of literature has been devoted to the studies on this topic.  

 

Apart from Kalman filtering, another approach based on the Karhunen-Loève expansion 

was also developed by a number of mathematicians and scientists in order to explore the 

optimal estimation theory. Davis (1952) used this technique to solve the problem of 

optimal prediction in the non-stationary case. Extensive studies of applying this method 

in optimal estimation problems were carried out by Pugachev in a series of papers around 

1960s, which marked an important progress in this direction. The method was also 

studied around the same time by Parzen (1963), who attempted to unify this approach 

with other techniques at that time under a more general treatment containing the former 

ones as special cases. Although less popular, this approach is still being studied 

nowadays in filtering and prediction. For some of these contributions, one may refer to 

Kudritskii (2000) and Shaikin (2007), and for a more historical and even philosophical 

overview, one may consult Dougherty (2009).  

 



8 

 

1.2 Thesis Objectives 

The principal objectives of the thesis are to establish a more solid foundation for the 

method of canonical expansion, to construct both the linear and non-linear optimal 

operators by the principal components, and to show the application of such an approach 

in the MMSE estimation (Wiener-Hopf estimator) of some particular problems that are 

commonly seen in the field of geomatics engineering or geodynamics by numerical 

experiments. More specifically, the following points will be addressed: 

1. to provide a comprehensive survey of the analytical theory of canonical expansion 

from different fields of mathematics, especially from the view of functional 

analysis and the theory of linear integral equations; 

2. to apply the canonical expansion to formulate the optimal operator according to 

the principle of MMSE, by solving the Wiener-Hopf equation (linear case) and 

constructing the regression operator (non-linear case); and 

3. to research the performance and computability of both operators in selected 

numerical examples, with different Gaussian noise models.  

In all, it is the intention to enrich the repertoire of current approaches for studying the 

estimation problems of time series in geodynamics, geomatics engineering or geophysics. 

Moreover, the author hopes that the solutions offered in the proposed examples will serve 

as classical paradigms for the advanced research of more elegant problems, using this 

particular approach.        
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1.3 Thesis Outline 

In Chapter two, the general theory of the canonical expansion will be established. 

Various terminologies used in the analytical theory of canonical expansion will be 

explained, such as coordinate functions, principal components, etc. Two approaches for 

finding the PCs will be investigated: the first way depends on the triangular 

decomposition of a matrix and a recursive generation; the second is the famous 

Karhunen-Loève theorem. Examples of canonical expansion of some common random 

processes involving the use of both approaches will be provided. Furthermore, we will 

bring this method under the scheme of functional analysis, by comparing it with Fourier 

and wavelets analysis, which also share the same structure of a Hilbert space.  

 

Next, we will apply the method to constructing the optimal estimators. Chapter Three 

mainly deals with the linear estimation under the principle of MMSE. Initially, the 

principle of MMSE will be presented using the theory of Hilbert space. Following this 

idea, the MMSE principle will lead to Wiener-Hopf (W-H) equation containing the 

sought optimal linear operator. The rest of the chapter will be devoted to providing a 

detailed algorithm on how to obtain this linear operator, together with its error, by solving 

the W-H equation using Galerkin’s method and principal components. 

 

Chapter Four is a subsequent chapter on formulation of non-linear operator according to 

the same MMSE principle. The operator in this case is the regression of the signal on the 

observation. In parallel, a thorough description will be offered on how to obtain the 

regression using the principal components when the noise model is Gaussian. In addition, 
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a generalisation of this method for designing an optimal operator according to any 

principle of optimality will be outlined. 

 

Chapter Five deals with the application of the foregoing theory to estimation problems in 

geophysics or geomatics engineering. Three examples will be provided, and in each case, 

either the linear and non-linear operators will be established, or their computability will 

be discussed. These examples are firstly intended to demonstrate how to apply the 

proposed procedure of estimation in the previous two chapters in each specific simulated 

data model, and also to investigate and compare the performance and effectiveness of 

both linear and non-linear operators in each case.   

 

Chapter Six serves as a summary of the entire thesis. In addition, comments and 

recommendations, based on the conclusions from previous chapters, will be presented in 

order to cover the whole spectrum of topics and analyses throughout the thesis, regarding 

this particular technique.      
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Chapter Two: GENERAL THEORY OF CANONICAL EXPANSIONS OF 

RANDOM FUNCTIONS 

 

2.1 Canonical Expansion of One-dimensional Random Functions 

Let us consider now a centred random function of one parameter X 0(t) , i.e., a random 

function with its expectation subtracted. The idea of canonical expansion is to try to 

express this centred process by a linear form of uncorrelated random variables with zero 

mean values: 

      

X 0 (t) = xi (t)Vi
i

                                                                                            (2.1.1) 

Here, Vi stand for the uncorrelated variables, the set of which are called the basis. xi(t)  

are some deterministic functions, known as coordinate functions. Under appropriate 

mathematical conditions, such expansion can be understood as the projection of the 

centred random process onto the basis of uncorrelated zero-mean variables.  

 

2.1.1 Coordinate Functions  

From the assumption, we know that the vector 
 
V = V1,{ V2 , }

T
 is a basis of 

uncorrelated variables of zero means, then we can write: 

      E Vi[ ] = 0     E Vi Vj = 0   when i j ,     and   Var Vi[ ] = E Vi
2

= Di              (2.1.2) 

If we multiply by Vj  on both sides of (2.1.1), and then calculate the expectation, we get: 

       E X 0 (t)Vj = E Vi Vj
i

xi (t)  

By the conditions (2.1.2), we then can obtain our formula for the coordinate functions 
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      x j (t) =
1

Dj

E X 0 (t)Vj                                                                                    (2.1.3) 

We can also prove that, by substituting (2.1.3) into (2.1.1), and calculate the remainder of 

any other possible representation of the form (2.1.1), this set of functions (2.1.3) gives the 

best approximation to the original centred random function in a least-squares (LS) sense. 

Hence, we can call those functions, satisfying the condition (2.1.3), the optimal 

coordinate functions. Nevertheless, such an optimal form is always hard to find in 

practice, and it is customary to use some sub-optimal functions (in the LS sense) to 

approximate them.  

 

2.1.2 Construction of the Basis and the Principal Components 

Having established the formula (2.1.3), we are ready to consider in this section a primary 

question: how to construct the basis V , namely, those uncorrelated variables, from the 

random process itself.  

Let 
  
X 0(th ) = X 0(t1), X 0(t2), … X 0(tn ){ }

T
 represent an n-dimensional centred 

variable of a random process for different instants. The idea of the construction is to 

produce n linear forms of this set of values and use them as our basis V . We can write 

this relation in matrix notation as follows: 

 

 

V1

Vn

=

a11 … a1n

an1 ann

i

X 0 (t1)

X 0 (tn )
    or   

 
V = A X 0 (th )                    (2.1.4)   
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This matrix of coefficients is generally known as the principal components (PC) (Jolliffe, 

2002), and it serves as a linear transformation of any aggregate of the random variables in 

the stochastic process into a set of uncorrelated variables.  

 

Next, the task is to further determine the property of the yet arbitrary matrix A . This can 

be done by directly using the conditions (2.1.2), and after a simple calculation, we have 

an important result: 

      
A K AT

= diag(D1, Dn ) = D                                                                (2.1.5) 

where K  is the variance-covariance matrix of vector random variables 
 
X 0 (th ) , and D  is 

a diagonal matrix with the variances of each component of the basis (2.1.4) in a 

descending order on the main diagonal. This fact suggests that the symmetric, positive-

definite real matrix K  is similar to a diagonal matrix, and A  is a non-singular matrix 

which could be determined in infinitely many ways. We will be discussing two possible 

choices of A  in the next sections. 

 

Consequently, we are able to determine the optimal coordinate function (2.1.3). By 

substituting (2.1.4) into (2.1.3), we have: 

      D = A K                                                                                                   (2.1.6) 

    where    

 

=

x1(t1) … x1(tn )

xn (t1) xn (tn )
 

Right-multiplying AT
 on both sides of (2.1.6), and considering (2.1.5): 
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      D AT
= A K AT

= D  

which implies: 

      A T
= I                                                                                                         (2.1.7) 

This important relation is called the bi-orthogonality of the optimal coordinate functions 

 and the principal components A . For a non-singular matrix A , this means that 

T
= A 1

. Correspondingly, from (2.1.5), we can express the variance-covariance matrix 

in terms of the optimal coordinate functions: 

    K =
T D                                                                                                   (2.1.8) 

 

2.1.3 Integral Representations  (continuous case) 

All the results that we have obtained are in the discrete formulation based on the 

information on the variance-covariance matrix of the distinct points of the stochastic 

process. Yet, if the analytical form of covariance function is known to us a priori, then all 

the formulations should yield continuous functions, and the construction of the basis of 

uncorrelated variables is simply a generalisation of (2.1.4) to the integral case: 

      Vi = ai (t)X
0 (t)dt

T
                                                                                        (2.1.4a) 

Consistently, the optimal coordinate functions in (2.1.6), the condition of bi-orthogonality 

(2.1.7) and the variance-covariance matrix expansion (2.1.9) can be brought into the 

integral forms. We put them here as follows: 

    x j (t) =
1

Dj

aj (s)KX (t, s)dsT
                                                                         (2.1.6a) 
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      ai (t)x j (t)dtT
= ij                                                                                         (2.1.7a) 

      KX (t, t ') = Di xi (t)xi (t ')
i

                                                                            (2.1.8a) 

Similarly, according to the theorem in last section, if the covariance function can be 

expanded as (2.1.8a), together with bi-orthogonality (2.1.7a), then the process can be 

expanded into the canonical form (2.1.1) as well. For some other necessary and sufficient 

conditions of existence of canonical expansion, one may refer to Dougherty, 2009. Also, 

regarding (2.1.7a), it is always possible to find the two bi-orthogonal systems if either 

system is composed of linearly independent functions (see Kantorovich & Akilov, 1964). 

We will use these formulae in this section later for calculating the canonical expansions 

of white noise, 1
st
 order Gauss-Markov process and random walk in Section 2.4. 

 

2.1.4 Recursive Formulae of Canonical Expansion 

As we said earlier, there are many different ways of choosing the principal components 

in A . One of them is called LDU Decomposition (an important variant of the LU 

Decomposition; see Watkins, 2002). It involves a decomposition of a matrix into the 

product of three matrices: unit lower-triangular, diagonal and unit upper-triangular ones. 

By this LDU Decomposition, relation (2.1.5) can also be written as: 

      AL K AL
T
= D                                                                                                 (2.1.9) 

      where   

 

AL =

1 0 0
a21 1 0

an1 an 2 1
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So (2.1.4) in this case has become: 

 

V1
V2

Vn

=

1 0 0
a21 1 0

an1 an 2 1

i

X 0 (t1)

X 0 (t2 )

X 0 (tn )

   or  
 
V = AL X 0 (th )                   (2.1.10) 

Because of the bi-orthogonality condition (2.1.7), we can reverse this equation, and 

express the observation points of the process in terms of the basis Vi{ } : 

 

X 0 (t1)

X 0 (t2 )

X 0 (tn )

=

1 0 0
x1(t2 ) 1 0

x1(tn ) x2 (tn ) 1

i

V1
V2

Vn

    or  
 
X 0 (th ) = L

T V         (2.1.11) 

It is worth noting that, unlike the Karhunen-Loève expansion which we will be  

discussing soon, there is no reduction in dimensionality involved in this LDU technique: 

apparently, as the observation points increase one by one, we have to introduce every 

time a new variable from the basis Vi{ } , that is to say, the total number of the 

uncorrelated variables should be as the same as that of the points in the process.  

 

The transformation (2.1.11) in fact can help us develop a series of recursive formulae to 

calculate the variances Dj  and coordinate functions x j (t) : one can assume V1 = X
0 (t1)  

and D1  is equal to the variance of this variable, and all the remaining terms can be 

determined directly by the definitions of variance and optimal coordinate function (2.1.3) 

in a recursive manner: 
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   Dj = KX (t j , t j ) Dh xh (t j )
2

h=1

j 1

                                                                         (2.1.12) 

 x j (t) =
1

Dj

KX (t, t j ) Dh xh (t)xh (t j )
h=1

j 1

                                                          (2.1.13) 

We will use these formulae to provide a canonical expansion for the important first-order 

Gauss-Markov process in Section 2.4, where we can discover that such expansion can 

actually take a very brief form, even though the dimensionality is not reduced.  

 

2.2 Canonical Expansion and Karhunen-Loève Theorem  

The most common way of finding the matrix A  of principal components is the well-

known Karhunen-Loève (K-L) theorem, which is a widely used technique in various 

branches of science and engineering. In fact, the optimal coordinate function provided by 

(2.1.3) is more of a theoretical expression, generally hard to compute, and we therefore 

need to conceive some practical method to find a new sequence of coordinate functions 

which can be regarded as approximations to those optimal ones. This is the key idea lying 

behind the K-L theorem from the perspective of the theory of canonical expansion. In this 

section, we will examine this theorem and its relation with those results that we have 

arrived at in the foregoing sections. 

 

Consider a symmetric integral equation in which the covariance function is the 

symmetric kernel (Schmidt, 1907; Blais, 1988): 

       K(t, s) (s)ds
a

b
= (t)                                                                               (2.2.1) 
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we call the solution to this equation s( )  the eigenfunction of the kernel 

K s, t )( belonging to the eigenvalues , subject to the condition: 

        μ (s) (s)ds
a

b
= μ                                                                                    (2.2.2) 

μ (s)  and (s)  are eigenfunctions corresponding to different eigenvalues μ  and . 

The eigenfunctions (s){ }  constitute a complete normalised system of the kernel 

function which is the covariance function in our context. From Mercer’s theorem 

(although the result had been provided by Schmidt in his 1907 paper already), the 

covariance function in this case can be decomposed into a uniformly and absolutely 

convergent series of eigenfunctions: 

        K(t, s) = (t) (s)                                                                         (2.2.3) 

with the arranged descending order of positive eigenvalues 
 1 2 3 > 0 . 

Furthermore, once (2.2.3) holds true, then the stochastic process (as long as it is 

continuous and differentiable) can be expanded as (Schmidt, 1907): 

       X
0 (t) = (t)V                                                                                           (2.2.4) 

  with   V = (s) X 0 (s)ds
T

                                                                                 (2.2.5) 

We can readily tell that (2.2.4) and (2.2.5) are exactly the canonical expansion (2.1.1) and 

the construction of uncorrelated basis (2.1.4a) when a (t) = x (t) = (t) . The expansion 

(2.2.4) is the formal expression of Karhunen-Loève theorem (Blais, 1988).  
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The discrete version (i.e., the matrix form) of the Mercer’s theorem (2.2.3) is the spectral 

decomposition (SD) of the variance-covariance matrix KX : 

     KX =
T

                                                                                                (2.2.6) 

where  is the matrix of eigenvectors of KX , and  is the diagonal matrix of the 

eigenvalues of KX  arranged in a descending order. Especially, for real-valued random 

variables, KX  is a real symmetric matrix, is an orthogonal matrix: 

      
T
= I                                                                                                         (2.2.7)   

This result is in accordance with that we have obtained by the theory of linear integral 

equations (See (2.2.2)).            

 

2.3 Further Discussion from the Standpoint of Functional Analysis 

Suppose that random variables are represented as points in a linear space in which we 

define the inner product as their second-order moment: 

    X,Y = E XY[ ]                                                                                                   (2.3.1) 

This linear space of random variables with (2.3.1) as the inner product is a Hilbert space 

(Dougherty, 1999). We will generalise this idea to the case of stochastic processes. 

 

Let all the stochastic processes (or random functions) constitute a linear space , in 

which each random function is regarded as a point. We define the inner product of any 

two points x = X(t)  and y = Y (t)  as their second-order moment: 

 x, y( ) = E X(t)Y (t ')[ ] = x y f (x, y; t, t ')dxdy
++

                              (2.3.2) 
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where f (x, y; t, t ')  is the joint PDF of any pair of random variables belonging to the 

processes X(t)  and Y (t ')  respectively. It is expedient to note that, more generally, (2.3.2) 

should be defined for the complex-valued random functions as E X(t)Y (t ') ; however, 

due to the fact that throughout the thesis no complex-valued process will be considered, 

for consistency of the symbols, we will restrict our discussion to the real-valued case. 

 

To differentiate from the usual definition of inner product, we will call (2.3.2) the 

stochastic inner product, specifically referring to the second-order moment between any 

two random processes. Moreover, if both X(t)  and Y (t ')  are centred processes, the 

stochastic inner product (2.3.2) is simply the covariance function (in the discrete case, it 

will be the variance-covariance matrix). 

With the definition of (2.3.2), it can be verified the following properties hold true (in 

general, these properties can be extended for complex-valued stochastic processes): 

      

1) x, y( ) = y, x( );

2) ax1 + bx2 , y( ) = a x1, y( ) + b x2 , y( );

3) x, x( ) 0; x, x( ) = 0 iff x = 0.
                                                (2.3.3) 

With the stochastic inner product (2.3.2) and these properties, the space  of the random 

functions has the structure of a Hilbert space, and we write 
H

denoting this fact (the 

completeness and separability of this space also need to be verified, however, this is 

beyond the scope of the thesis. For a simple discussion, see Dougherty, 1999).  
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If we normalise our basis vector 
 
V = V1,{ V2 , }

T
by dividing each variable by the 

square root of its variance, we get the following condition: 

      E ei[ ] = 0 ,     E ei ej = ij ,          where    ei =
1

Di

Vi                           (2.3.4) 

It is easily seen that the new basis 
 
e = e1,{ e2 , }

T
is an orthonormal basis, and the 

optimal coordinate functions given by (2.1.3), according to (2.3.2), can be written as: 

     x j (t) =
1

Dj

E X 0 (t)Vj =
1

Dj

x0 , ej( )                                                             (2.3.5)           

Correspondingly, the canonical expansion (2.1.1) can be arranged as: 

    X
0 (t) = xi (t)Vi

i

= x0 , ei( )
V

Di

= x0 , ei( ) ei
i

                                       (2.3.6) 

Thus, (2.3.5) and (2.3.6) suggest that the optimal coordinate functions are the Fourier 

coefficients with respect to the orthonormal basis (2.3.4). In other words, the canonical 

expansion is the Fourier expansion of a random process in the space with the stochastic 

inner product (2.3.2), so it is the best approximation in the LS sense. This conclusion 

agrees with what we stated in Section 2.1.1. 

 

Table 2-1 presents a comparison among the classical Fourier analysis, Haar wavelets and 

the current method of canonical expansion. They all have the same structure of a Hilbert 

space: while both the Fourier and Wavelets analysis emphasise the representation of 

functions, the canonical expansion adopts the exactly parallel idea in the treatment of 
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second-order random processes. From this perspective, we can comprehend the method 

of canonical expansion as the Fourier analysis of the stochastic process. 

Fourier Analysis Haar Wavelet Canonical Expansion 

Elements 

Continuous or 

finite jump 

functions with 

period 2  

Continuous functions 

over 0, 1[ ]  
2

nd
 order random 

process 

Inner Product f (t)g(t)dt
0

2
f (t)g(t)dt

0

1
       E X(t)Y (t ')[ ]  

Orthonormal 

Basis 

1

2
ei t  

 

 
= 0, ±1, ± 2,… 

n
(k ) (s){ }  

 

 
k = 1, 2, …2n 1  

V

D
 

         
 
= 1, 2, …  

 Fourier 

Coefficients 

1

2
f (t) e i t dt

0

2

f (t) n
(k ) (t)dt

0

1
 x j (t) =

1

Dj

E X 0 (t)Vj  

Table 2-1. Comparison of Fourier Analysis, Haar Wavelets and Canonical 

Expansion, from the Structure of Hilbert Space 

 

 

2.4 Examples of Expansion 

Now, we will use our formulae which have been obtained so far to generate the canonical 

expansions of several random processes, including white noise, 1
st
 order Gauss-Markov 

(G-M) process and random walk (or Wiener process), since most random phenomena in 

geomatics engineering or geodynamics can be modeled by these processes. Once we have 

the expansion forms, the principal components are immediately known. 
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2.4.1 White Noise 

The white noise W (t)  is a pure theoretical concept, describing a process with 

uncorrelated values and infinite dispersions and a flat spectrum. Its mathematical 

expectation and covariance function are defined as: 

     EW (t) 0 ,       KW (t, t ') = k (t t ')                                                         (2.4.1) 

k  is the constant intensity of the white noise, and (t t ')  is Dirac’s delta function.  

We will now expand the white noise on the interval 0, T[ ]  into the canonical form. The 

condition of bi-orthogonality (2.1.7a) are satisfied by the functions: 

       a (t) = e
i t

,        x t( ) =
1

T
ei t

                                                                  (2.4.2)  

        where i = 1 ,     =
2

T
,          

 
= 0, ±1, ± 2,…     

and from (2.1.6a), we can determine the variances of each variable in the basis: 

      D =

k ei s (s t)ds
T

1
T
ei t

= kT                                                                            (2.4.3) 

Therefore, the canonical expansion of the white noise process and its covariance function 

over the region 0, T[ ]  are given by: 

     W (t) =
1

T
ei t V                                                                                           (2.4.4) 

     KW (t, t ') =
k

T
ei (t t ')

                                                                                    (2.4.5) 



24 

 

Therefore, it can be readily seen that if the process is a white noise, its principal 

components are nothing but the Fourier basis –- sine and cosine functions. Also, for the 

white noise with (2.4.1), according to Khintchine’s theorem, its power spectral density 

(PSD) is a constant value. By (2.4.3), the variances of uncorrelated basis for white noise 

are the same constant kT , which is proportional to the PSD. 

 

2.4.2 First-order Gauss-Markov Process 

The first-order Gauss-Markov (G-M) model depicts a process whose joint distribution of 

any number of variables is a Gaussian one and whose conditional distribution of any 

variable given a set of variables of previous instants depends solely on the variable 

preceding it. Its covariance function has the form: 

      KX t,t '( ) = 2 e t t '
                                                                                      (2.4.6) 

where 2  is the variance of each variable of the process ,  is a parameter which is to be 

estimated from a large sample data. From this covariance function, it is possible to 

construct two kinds of PCs by utilising different approaches provided in previous 

sections, namely, the K-L theorem and the LDU decomposition.  

 

2.4.2.1 Canonical expansion using Karhunen-Loève theorem  

Firstly, we bring the covariance function (2.4.6) into the equation (2.2.1), and get: 

     (t) = 2 e t s

0

T
(s)ds                                                                      (2.4.7) 

The solution to this equation are the sine functions of the form (Pugachev, 1965): 



25 

 

    t( ) =
2

T +
sin t

T

2
+
2

 ,         
 
= 1, 2,…                                  (2.4.8) 

where the eigenvalues are  =
2 2

2
+

2
 ,             

 
= 1, 2,…          

 and { }  are the positive roots of this equation with an ascending order: 

    

tan T =
2
2 2                                                                                                (2.4.9) 

Next, based on the bi-orthogonality (2.1.7a) and the eigenfunction (2.4.8), we can write 

our coordinate functions as: 

   x t( ) =
2

T +
sin t

T

2
+
2

        
 
= 1, 2, 3,…                              (2.4.10) 

The variances of each uncorrelated variable of the basis are: 

     D =

2

2
(T + )                                                                                            (2.4.11) 

Finally, the expansions of the 1
st
 order G-M process (centred) and its covariance 

functions are: 

    X 0 (t) = sin t
T

2
+
2

2V

T +
          

 
= 1, 2, 3,…                     (2.4.12) 

 KX (t, t ') = 2 T +
sin t

T

2
+
2

sin t '
T

2
+
2

          (2.4.13) 

 



26 

 

2.4.2.2 Canonical expansion for equidistant observation 

It is possible to avoid the complexity of the foregoing computation in the K-L expansion 

by utilising the recursive relations we have built up in Section 2.1.3. The procedure is 

allegedly due to Akimov (Pugachev, 1965).  

Supposing that the observations are given at n +1  equidistant points ti = (i 1) , we start 

with the assumption that V1 = X
0 (t1)  and Var V1[ ] = 2

, and the first coordinate function 

is given by (2.1.13) in Section 2.1.4: 

     x1(t) = e
t

                                                                                                     (2.4.14) 

For brevity, we denote q = e , and after successively applying the formulae (2.1.12) 

and (2.1.13), the rest of the variances and coordinate functions are given by: 

      Dj =
2 (1 q2 )              

 
j = 2, 3,…                                                                  (2.4.15) 

      x j (t) =
1

1 q2
e t ( j 1) qe t ( j 2)

                
 
j = 2, 3,…                  (2.4.16) 

Consequently, the coordinate function for each observation point is: 

      x j (ti ) = q
i j

                                                                                                      (2.4.17) 

The canonical expansion of the n +1  observational points reads: 

   

 

X 0 (t1)

X 0 (t2 )

X 0 (t3)

X 0 (tn+1)

=

1 0 0 0
q 1 0 0

q2 q 1 0

qn qn 1 qn 2 1

i

V1
V2
V3

Vn+1

 

     or  
 
X 0 (th ) = QL V                                                                                           (2.4.18) 
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The form of QL  has the structure of both a lower triangular form and Hankel’s form 

(Kowalewski, 1909). From (2.1.10), the PCs are given by the inverse of the coefficient 

matrix in this expression (Pugachev, 1965): 

    

 

AL = QL
1
=

1 0 0 0
q 1 0 0

0 q 0 0

0 0 q 1

                                                            (2.4.19) 

We have thus discovered that the principal components, in the case of 1
st
 order G-M 

process, can be selected as a lower Jordan block (Gantmacher, 1959).  

 

2.4.3 Random Walk 

Random Walk (RW) process characterises a random function whose derivative is white 

noise (Nassar, 2003), viz.: 

           
dX(t)

dt
=W (t) ,       with  X(0) = 0                                                              (2.4.20) 

The solution is straightforward: 

           X(t) = W (s)ds
0

t

                                                                                       (2.4.21) 

As before, in order to obtain the expansion form of the RW process, firstly we need to 

find its covariance function. From (2.4.21), we can readily tell that the mathematical 

expectation of a RW process is identically zero; and recalling the covariance function of 

white noise defined by (2.4.1), we use (2.4.20) to calculate the covariance function for 

RW process as: 
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        KX (t, t ') = k min t, t '( )                                                                               (2.4.22) 

It is worthy to note that unlike the previous two cases, this covariance function is no 

longer stationary but a linear function of the time, where the variances of the variables in 

the RW process increases in the same order as the time, as it evolves.  

Now we turn to the expansion of such a covariance function on a given interval. It is 

helpful to write s T , s( )  instead of 0, T( ) for the sake of convenience of computation. 

In order to get the exact expression for the expansion, we have to transform the 

covariance function (2.4.22) into a form similar to that of the 1
st
 order G-M process 

(2.4.6), by introducing an auxiliary variable (Pugachev, 1965): 

       u =
1

2a
ln

t

s T
,       u 0, U[ ] ,   where   U =

1

2a
ln

s

s T
             (2.4.23) 

where a  is an arbitrary positive constant. 

By such introduction, the covariance function (2.4.22) is transformed to: 

      KX (u, u ') = k f (u) f (u) e
a u u '

                                                               (2.4.24) 

       where f (u) = t = s T eau                      

Hence, the covariance function of the RW process has been interpreted in terms of the 

auxiliary variable (2.4.23), possessing a form similar to that of the 1
st
 order G-M process 

(2.4.6). It is then quite natural to assume that the coordinate functions and consequently 

the canonical expansion of RW process should resemble formulae (2.4.10) and (2.4.12). 

Having brought back the original variable t , we have determined the expansion of the 

RW process on the interval s T , s( )  as  
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    X(t) = sin (t) +
2

2 t

U +
V  ,         

 
= 1, 2, 3,…                         (2.4.25) 

where  (t) =
1

2a
ln

t

(s T )s
,       = k

2a

a2 + 2  

Similar to (2.4.9), { }  are the positive roots of the equation: 

     tan( U ) =
2a

a2 2                                                                                         (2.4.26) 

The variances of the uncorrelated variables are given by: 

      D =
1

2
(U + )                                                                                           (2.4.27) 

Accordingly, the expansion of the covariance function has the form: 

  KX t,t '( ) = 2
U +

sin (t) +
2

sin (t ') +
2

t t '              (2.4.28)    

The meaning of this example lies in the fact that even if the process is expressed as a 

relation of a first-order differential equation, it is still possible to obtain the analytical 

form of its canonical expansion and correspondingly the principal components.  

 

2.4.4 Further Remarks 

Those three examples above are the most common processes (especially the noise 

models) that we usually deal with in practice. This means that, in most practical problems 

we can obtain a canonical form, and consequently its PCs, for the considered process. As 

we will demonstrate in the next two chapters, this information is critical to formalise the 

linear and non-linear filters for estimation purposes. Hence, as long as we have a 
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complete knowledge of the noise model and its parameters, we are able to tackle the 

estimation problems from the perspective of the canonical expansions. 

It is also possible, that in reality, the actual noise is a combination of several uncorrelated 

processes. For example, it could be a sum of white noise and 1
st
 order G-M process, or of 

several G-M processes with different parameters. If this be the case, our covariance 

function is definitely a linear combination of these uncorrelated processes: 

   KX (t, t ') = bi Ki (t, t ')
i

                                                                                     (2.4.29) 

The PCs of this mixed process should be a linear combination of the PCs for each 

component covariance function Ki (t, t ') , once the parameters for each process and the 

coefficients bi  are known. Otherwise, we should estimate the empirical variance-

covariance matrix from a large sample data of this combined process, and perform the 

spectral decomposition (SD) (2.2.6) to obtain the PCs.  

 

2.5 Comments on Canonical Expansion of Vector Random Functions – Singular 

Value Decomposition 

Finally, we will give some comments on the canonical expansion of a vector of random 

functions 
 
X1(t),{ X2 (t), , XM (t)}

T
, since in many practical problems it is necessary to 

consider several random processes simultaneously rather than a single one. In this case, 

the foregoing theory of canonical expansion holds true for each component of the random 

vector, so that the vector can be projected on the basis of uncorrelated variables: 
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X1(t)

X2 (t)

XM (t)

=

x11(t) x12 (t) … x1N (t)

x21(t) x22 (t) … x2N (t)

xM1(t) xM 2 (t) … xMN (t)

i

V1
V2

VN

                           (2.5.1) 

The principal components of the random vector can therefore be found through the  

condition of bi-orthogonality (2.1.7) for every entry in the matrix in (2.5.1). All the 

discussion in the previous sections are still valid here. 

 

In practice, the stationary random vector is usually given in terms of discrete 

observations, and this results in an M N  data matrix. The PCs can be algebraically 

found by the approach of Singular Value Decomposition (SVD) of this data matrix:  

        X =U VT
                                                                                                  (2.5.2) 

where X  is the centred data matrix,  is an M N  diagonal matrix, U  and V are 

orthogonal (or unitary) matrices. The SVD is related to spectral decomposition (SD) of 

the variance-covariance matrix in the following manner: 

      X XT
=U VT V T UT

=U ( T ) UT
                                   (2.5.3) 

Therefore, as is shown by this relation, the column vectors of U  are PCs of the random 

vector, and the singular values of the matrix  are the square roots of the eigenvalues of 

the variance-covariance matrix (Blais, 2010). 
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Chapter Three: DETERMINATION OF THE LINEAR OPTIMAL 

ESTIMATOR BY THE CANONICAL EXPANSION METHOD 

 

In estimation problems, it is always the central task to optimally recover the true signal 

from the observations in which the signal is contaminated by some random noise. In the 

parlance of mathematics, this is equivalent to defining an operator on the observations, 

such that the result of this operation is as close as possible to the true signal: 

       
 
e(s, t) =W (s) Z(t) = min                                                                              (3.1) 

Here, the true signal is represented by W (s) , which is a random function. 
 
Z(t)  stands 

for an operator   operating on the observation Z(t) , and we will call it the estimator. 

Throughout the thesis, we will solely consider the additive model of observation, i.e., a 

second-order random noise superimposed on the real signal.  

 

The criterion (3.1) encompasses all the practical problems of extrapolation (prediction), 

interpolation, filtering (smoothing) and detection, depending on the intersection of the 

aggregate of observational points t  over a period a, a + T[ ] , and that of instants s  for 

the signal. Based on this idea, we will do a classification of these problems, according to 

Middleton (1963) and Parzen (1963), in Table 3-1, of which the first column enlists 

various kinds of estimation problems, while the second column shows the relation 

between the fore-mentioned two aggregates of instants.  
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Therefore, for various kinds of optimal estimation problems, they can always be unified 

into the study of equation (3.1). In the present chapter, we will adopt the principle of 

ESTIMATION 

PROBLEMS 

RELATION BETWEEN s{ }  AND 

OBSERVATION PERIOD a, a + T[ ]  

Extrapolation 
 
s < a{ } s > a + T{ }

 

Prediction s > a + T{ }  

Filtering / Detection / 

Interpolation 
s a, a + T[ ]  

Filtering & Prediction 
 
s a, a + T[ ]{ } s > a + T{ }  

  

 Table 3-1. Extrapolation, Prediction, Filtering, Interpolation and Detection, with 

their Attributes  

 

minimum mean square errors (MMSE) as the criterion of the optimality, to approach the 

estimation problem when the sought operator   is linear. In this case, the principle of 

MMSE will lead us to the famous Wiener-Hopf (W-H) equation, and the solution of this 

W-H equation will produce an optimal system (the operator  ) of estimation whose 

input is observation. There are various approaches to solve this equation under different 

assumptions, for instance, Sanso and Sideris (1997) tackled this equation by the method 

of Fourier Transform (FT), so that a parallel optimal linear system can be established in 

the frequency domain. Here, we will solve this equation adopting Galerkin’s form of 

solution by the method of canonical expansion (Pugachev, 1965). A similar approach of 

solving this equation using Galerkin’s method is proposed by Keller (2000), where he 

provides the solution by selecting the Haar wavelets as the basis functions for the 
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Galerkin form. This idea is essentially parallel to what we are about to develop in next 

few sections, yet we will use the principal components (or Karhunen-Loève basis, Keller, 

2004) as the basis functions, and a linear regression model for the signal. 

As Blais (1979) suggests when considering the LS estimation, it is more appropriate to 

introduce a more abstract functional model for the purpose of mathematical analysis. We 

will therefore demonstrate the problems of optimal estimation under the scheme of 

functional analysis and the theory of operators.  

3.1 Principle of MMSE Estimation  

In Section 2.3, we have noted that the linear space of all random processes, with the 

stochastic inner product defined by the second order moment (2.3.1), is a Hilbert space. 

Since the Hilbert space is a normed space, the distance between any two points can then 

be measured in terms of this inner product. In addition, let L  be a linear subspace of , 

consisting of those random functions which are potentially the estimators of the process 

w =W (s) . The MMSE estimation problem is then reduced to finding the best estimator 

w =W (s)  within L  which has the closest distance to w (remember that w  is not 

necessarily in L ). From the projection theorem of Hilbert space, we know that each 

element in 
H

 has a unique representation (Collatz, 1964; Kantorovich & Akilov, 1964; 

Lusternik & Sobolev, 1974): 

 
w = w + e ,             where w L   and e L                                                    (3.1.1) 

Here, we call  w  the projection of w on the subspace L . Therefore, the condition of the 

optimality is equivalent to the perpendicular condition in (3.1.1): 
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e, h( ) = w w, h( ) = 0 ,           h L                                                           (3.1.2) 

Now, for an observation z = Z(t)  in 
H

, it is then necessary to find the optimal operator 

that carries z  to  w  , and (3.1.2) implies: 

 
w z, z)( = 0                                                                                                 (3.1.3) 

where   is any operator which takes the observation z  to another estimator in L . Hence, 

any operator   which satisfies the condition (3.1.3) is the optimal one which we are 

looking for, according to the MMSE criterion. This relation can be adequately illustrated 

by Figure 3-1. 

 

Figure 3-1. Principle of Minimum Mean Square Estimation using the Projection 

Theorem of Hilbert Space of Stochastic Processes 
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Hence, under the principle of MMSE, we have built up the optimality condition for any 

operator using the projection theorem of Hilbert space, so far independent of any 

statistical property of either the signal or the observation. Throughout this chapter, we 

will study the formulation of this optimal operator when it is linear; the discussion of the 

case when it is non-linear will be found in the next chapter. 

 

3.2 Optimal Linear Operator and Wiener-Hopf equation  

In this section, we will formalise the expression of the linear optimal operator  , when 

both the signal and the observation can be linearised. Such an estimator is called a Wiener 

filter. Under these assumptions, it will be seen that the sought operator is a linear 

combination of linear integral operators. In order to find their kernels, we will use the 

method of canonical expansion (or the principal components). In the following, we will 

derive a systematic approach to complete the solution of this problem (Pugachev, 1965). 

 

3.2.1 Wiener-Hopf Equation and Wiener Filter 

It is already seen from the principle of MMSE estimation that any operator which gives 

the best estimation given an observation must obey the condition (3.1.3). Keeping in 

mind that all the operators are now linear, which means that the operation of 

mathematical expectation can be interchanged with that of linear operators, we can do 

such rearrangement of (3.1.3) using the basic properties of the second-order moment:  

 

z w, z( ) = z, z( ) w, z( ) =
*

z, z( )
*
w, z( ) = 0

*
z, z( ) w, z( ){ } = 0

                       (3.2.1) 
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The necessary condition of the vanishing of the left side of this equation, for it should be 

satisfied for any operator (since   is an arbitrary operator), is given by: 

     
 

z, z( ) = w, z( )                                                                                                  (3.2.2) 

This is the famous Wiener-Hopf equation (Blais, 1988; this is also coined with the name 

Wiener-Kolmogorov equation; see Keller 2000 & 2004). Any operator satisfying this 

equation is called a Wiener filter, which minimises the mean-square errors (see Keller, 

2004). Next, in order to solve (3.2.2), we will perform two stages of linearisation: the first 

on signals w  and z , and the second on the operator   (Pugachev, 1965). In this chapter, 

we will assume that   is represented by a linear integral operator, so the estimated signal 

 
W (s)  will be the result of this operator applied to the observation Z(t) :   

   
 
W (s) = Z(t) = (s, t)Z(t)dt

T
                                                                        (3.2.3) 

where (s, t)  stands for the weighting function of this integral operator. 

 

3.2.1.1 Linear regression of signals 

Let 
 
L = span U1, U2 … Un{ }  be a subspace spanned by random variables Ui{ } , 

so any element in L  can be written as a linear combination of these elements. We use the 

projection theorem to represent both the observation z  and the signal itself w  as a sum 

of their projections on the spanned space L  and the elements perpendicular to L : 

    

z = i Ui
i

n

+ x

w = i Ui
i

n

+ y
                                                                                                  (3.2.4) 
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 where  x, Ui( ) = 0    and   y, Ui( ) = 0  

We can always assume that x  and y  are some zero-means processes without loss of 

generality. In the parlance of statistics, these are simply the linear regression models of 

the signal and observation. With the aid of these decompositions, and using the condition 

of orthogonality, we calculate the W-H equation (3.2.2) as: 

 

z, z( ) = w, z( )

i Ui
i

n

+ x, j U j
j

n

+ x, = i Ui
i

n

+ y + y, j U j
j

n

+ x

i j Ui , Uj( )
j

n

i

n

+ x, x( ) = i j Ui , Uj( )
j

n

i

n

+ y, x( )

x, x( ) = ( i i )μij
j

n

i

n

j + y, x( )

                  (3.2.5) 

where for convenience, the second moment Ui , Uj( )  is denoted by μij . By setting 

 

j = μij ( i i )
i

n

, the W-H equation is now transformed into an equivalent set of 

n +1  equations of n  unknown parameters and an unknown operator: 

    

 

x, x( ) = j
j

n

j + y, x( )

j = μij ( i i )
i

n          
i, j = 1,2, … n                                        (3.2.6) 

 

3.2.1.2 Linearisation of operator 

The structure of the first equation in (3.2.6) implies a linearisation of the operator: 
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=
(0)

+ k

(k )

k=1

n

                                                                                          (3.2.7) 

Having brought this form into the first equation of (3.2.6), we can write:  

  

 

(0)
+ k

(k )

k=1

n

x, x( ) = j
j

n

j + y, x( )

(0)
x, x( ) + k

(k )
x, x( )

k=1

n

= y, x( ) + j
j

n

j

 

Comparing both sides of the identity, and equating the corresponding terms, the first 

equation of (3.2.6) has now transformed into a system of n +1equations of n +1  

unknown linear operators: 

     

 

(0)
x, x( ) = y, x( )

(k )
x, x( ) = k k = 1,2,…, n

                                                               (3.2.8) 

These equations share the common structure of Fredholm equation of the first kind, and 

we will return to their solutions in the next section. 

 

We have yet to fix those parameters k{ }  from the remaining n  equations in (3.2.6). For 

brevity, we write this system in matrix form:  

    

 

1

n

=

μ11 … μn1

μ1n μnn

i

1 1

n n

                                               (3.2.9) 
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where the matrix μij{ }  is the matrix of the second moment of any pair of variables Ui  

and Uj . Especially, if Ui{ } are centred variables, the matrix μij{ }  is the covariance 

matrix of the variables Ui{ } . 

Substitute the operator   in this equation by (3.2.7). For each element 
 i , we have: 

   

 

i =
(0)

+ k

(k )

k=1

n

i =
(0)

i + k

(k )

i( )
k=1

n

= hi 0 + k hi k
k=1

n

   

where for brevity we write 
 
hi k =

(k )

i .  In matrix form, this is: 

   

 

1

n

=

h10

hn0

+

h11 … h1n

hn1 hnn

i

1

n

                                     (3.2.10) 

In addition, we can prove that the matrix hi k{ }  is symmetric. In fact,  
(k )

 is a linear 

operator, and consider the second equation in (3.2.8), we have: 

   
 

hi k =
(k )

i =
(k ) (i )

x, x( )( ) =
(i ) (k )

x, x( )( ) =
(i )

k = hk i              (3.2.11) 

 Therefore, (3.2.9) becomes: 

 

1

n

=

h10

hn 0

+

h11 … h1n

hn1 hnn

+

μ11 … μn1

μ1n μnn

1

i

1

n

   (3.2.12)  

Thus, by solving this system of linear equations, we can find the parameters k{ } . These 

parameters, together with those operators in the Fredholm equations (3.2.8), determine 

the linearised operator (3.2.7) as the solution of the W-H equation.  
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Figure 3-2. Algorithm of the Solution to the Wiener-Hopf Equation by Linearisation 

To sum up this algorithm, Figure 3-2 is a flowchart showing the introduced procedure for 

solving the Wiener-Hopf equation. As we can see, it requires a linearisation of the signal 

first, the result of which is a linear system of one operator and n  unknown parameters. 

Next, a further linearisation on the operator is needed, whose number should agree with 

that of linear terms in signals by the previous linearisation, so that they could be 
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transformed into a number of Fredholm equations of the first kind. The solutions to these 

equations can be sent back to the original linear system, under which the n  unknown 

parameters can be solved. Finally, the linear combination of these parameters and the 

solutions of Fredholm equation is the solution to the W-H equation.  

 

3.2.2 Solution of Fredholm Equation Using Galerkin’s Method and Canonical 

Expansion 

Now the only task is to acquire the sequence of linear operators 
 

(k )

{ }  through the 

solution of the Fredholm equations (3.2.8). All equations in (3.2.8) can be unified in the 

following form: 

        
 

(k )
x, x( ) = fk k = 0,1,…, n                                                             (3.2.13) 

To solve this equation, we will use Galerkin’s method (Kantorovich & Akilov, 1964; 

Keller, 2004) and borrow some results that we have already obtained in Chapter Two on 

canonical expansion.  

 

3.2.2.1 Galerkin’s method and canonical expansion 

If 
 

(k )

{ }  are linear integral operators, then each equation of the system (3.2.13) is of the 

following form: 

   (s, t)
T

KX (t, )dt = f (s, )                                                                          (3.2.14) 

Hence, our sequence 
 

(k )

{ }  is completely determined by the function (s, t) , which is 

the solution to be sought of this integral equation with the symmetric kernel KX (t, ) .  
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The idea of Galerkin’s method, generally speaking, consists in writing the solution as a 

linear combination of elements from a complete orthogonal system, in other words, we 

look for a local solution in a linear subspace instead of the entire Hilbert space (Keller, 

2004). In our context, we will select the principal components ai (t){ }  of the noise model 

x  as the basis of Galerkin’s solution; thus, the solution of (3.2.14) is written as: 

     

(s, t) = ci (s)ai (t)
i

                                                                                     (3.2.15) 

where ai (t){ }  are PCs satisfying the condition of bi-orthogonality (2.1.7a) with the 

optimal coordinate functions x j (t){ }  in canonical expansion of the noise X(t) : 

    ai (t)x j (t)dtT
= ij                                                                                            (2.1.8a) 

By introducing (3.2.15), our Fredholm equation (3.2.14) has now become: 

 

ci (s)ai (t)
i

T
KX (t, )dt = f (s, )

ci (s) ai (t)KX (t, )dtT
( )

i

= f (s, )

Di ci (s) xi ( )
i

= f (s, )

                                                             (3.2.16)

 

In such a way, we have obtained a canonical expansion for the function f (s, )  in terms 

of the coordinate functions.  

On multiplying the function aj ( )  on both sides of (3.2.16), and taking the integral, we 

have: 

    Di ci (s) aj ( )xi ( )d
i

T
= aj ( ) f (s, )dT
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Applying the bi-orthogonality equation (2.1.7a), we then have an expression for cj (s) , 

which is very similar to the expression for the coordinate function (2.1.6a) : 

cj (s) =
1

Dj

aj ( ) f (s, )dT
                                                                        (3.2.17) 

Finally, if we substitute these ci (s)  in (3.2.15), the solution to the Fredholm equation of 

the first kind (3.2.14) using Galerkin’s method is then of the form: 

(s, t) =
ai (t)ai ( )

Dii

f (s, )d
T

                                                               (3.2.18) 

This is sometimes described as Green’s or the inverse kernel applied to the function 

f (s, )  (Blais, 1988).  

 

 Figure 3-3 Procedure of solving Fredholm’s Equation of First Kind by Galerkin’s 

Method using the Principal Components 
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Figure 3-3 illustrates the algorithm of this method. From the known covariance function 

of the noise, we can generate its principal components first, and use them as the basis in 

the linear solution; on the other hand, we will use the known function on the right hand 

side of the equation as the kernel of an integral operator, and apply them on those PCs to 

obtain the coefficients for the linear form, which is our desired solution.  

 

3.2.2.2 General solution of Wiener-Hopf equation 

Now we come back to the system (3.2.8). For the first equation of  
(0)

, it is only 

necessary to replace the function f (s, )  by the cross-covariance function KYX (s, ) : 

     g(0) (s, t)
T

KX (t, )dt = KYX (s, )                                                                    (3.2.19) 

and because of (3.2.13), the solution can be written as: 

     g(0) (s, t) = yi (s)ai (t)
i

                                                                                     (3.2.20) 

     where yi (s) =
1

Di

ai ( )KYX (s, )dT
                                                            (3.2.21) 

Analogously, for the rest of equations of  
(k )

 , we only need to set f (s, ) = k ( ) , and 

in this case, the functions g(k ) (s, t)  correspondingly contain only one parameter t , i.e., 

g(k ) (s, t) = g(k ) (t) . The equation (3.2.14) here takes the form: 

      g(k ) (t)
T

KX (t, )dt = k ( )                                                                            (3.2.22) 

then we get Galerkin’s solution: 

       g
(k ) (t) = i k ai (t)

i

                                                                                        (3.2.23) 
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  where   i k =
1

Di

ai ( ) k ( )dT
                                                                     (3.2.24) 

Alternatively, if we write the above result in a matrix form, we have: 

      

 

g(0)

g(1)

g(n)

=

y1 y2 … yn

11 21 … n1

1n 2 n … n n

i

a1(t)

a2 (t)

an (t)

                                        (3.2.25) 

In practice, the observation is given at discrete points, so (3.2.25) will take the matrix 

form, which we will call the Galerkin matrix. 

 

Recall the symmetric matrix composed by 
 
hi k =

(k )

i  in (3.2.10) and (3.2.11), since now 

 

(k )
 takes the form of an integral operator, we have: 

      hi k = g(k ) (t)
T i (t)dt                                                                                     (3.2.26) 

This symbol hi k  simply means the linear integral operator with g(k ) (s, t)  as the kernel 

applying on each coefficient of linear regression form of the signal.  

Taking (3.2.23) and (3.2.24) into consideration, we can rearrange (3.2.26) as: 

    hi k = j ka j (t)
j

T i (t)dt = j k a j (t) i (t)dtT
( )

j

= Dj j k
j

j i           

or, as a matrix: 

 

h11 … h1n

hn1 hnn

=

11 … n1

1n n n

i

D1 0

0 Dn

i

11 … 1n

n1 n n
   

(3.2.27) 
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Similarly, we have the expression for hi 0{ } :  

 

h10

hn0

=

11 … n1

1n n n

i

D1 0

0 Dn

i

y1

yn

                              (3.2.28) 

and in such a way, we have finally acquired the expression for the system (3.2.12): 

 

1

n

11 … n1

1n n n

i

D1 0

0 Dn

i

y1

yn

=

11 … n1

1n n n

i

D1 0

0 Dn

i

11 … 1n

n1 n n

+

μ11 … μn1

μ1n μnn

1

i

1

n

 

                                                                                                                                   (3.2.29) 

The solution of this linear system, together with the matrix form (3.2.10) of the 

coefficients, fully determines the solution to the Wiener-Hopf equation, given by: 

     g(s, t) = g
(0) (s, t) + k (s)g

(k ) (t)
k=1

n

                                                                (3.2.30)  

 

3.2.3 Quality of the Solution 

   To fulfill the study of this Wiener filter problem, it is still necessary to determine the 

quality of this linear operator, viz. the solution of the Wiener-Hopf equation. To do this, 

we will measure the mean-square error of the operator, or in the language of Hilbert 

space, the distance from the true signal to the W-H type estimator in its estimator space, 

because the mean-square error is simply the square of the norm of this error. Again, using 

the properties of inner product and linear operator (Lusternik & Sobolev, 1974), we get: 
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e
2
= z w, z w( )

= z, z( ) w, z( ) w, z( ) + w, w( )
                                             (3.2.29)      

   Due to the fact that the expression inside the square brackets is nothing but the W-H 

equation, the first term vanishes identically, accordingly: 

        
 
e

2
= w, w( ) w, z( )                                                                             (3.2.30) 

similar to the calculation (3.2.4), we can obtain a system of the same kind: 

      

 

e
2
= y, y( ) y, x( ) + j j

j

n

j = μij ( i i )
i

n                                                                (3.2.31) 

 Since our operator has been decomposed into the linear form (3.2.6), and for the 

consistency of the symbols, we set y, x( ) = 0 , recalling the notation 
 
hi k =

(k )

i  that 

was defined previously, as well the fact that the matrix hi k{ }  is symmetric and 

i hi0 = pi , the mean square error has then reduced to: 

     e
2
= y, y( ) h0 0 + i pi

i

n

                                                                            (3.2.32) 

or, using the matrix relation (3.2.10) in Section 3.2.1 , we can equally write: 

 

e
2
= y, y( ) h0 0 +

1

n

T

i

h11 … h1n

hn1 hnn

+

μ11 … μn1

μ1n μnn

1

i

1

n

                                                                                                                                   (3.2.33) 
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Chapter Four: DETERMINATION OF THE OPTIMAL NON-LINEAR 

ESTIMATOR BY THE CANONICAL EXPANSION METHOD 

 

In the last chapter, we demonstrated how to find the optimal linear operator subject to the 

principle of MMSE. Nevertheless, in some practical problems, it is not the linear operator 

which gives the best solution to the equation (3.1), but the non-linear one. In terms of the 

theory of operators, the set of linear operators only constitutes a linear subspace of all 

permissible operators that can be applied to observation. Hence, the task in this chapter is 

to extend from this linear subspace to the whole space of operators in which to find the 

optimal operator, and to provide a systematic procedure of calculating this operator using 

the canonical expansion and principal components, particularly when the noise obeys a 

Gaussian distribution. Moreover, the same procedure can be generalised to acquire the 

optimal operator according to any other criterion of optimality along with MMSE. This 

will also be discussed in general in the present chapter.    

 

4.1 Optimal Non-linear Operator under the MMSE Principle 

In Section 3.1, we have demonstrated that the condition of optimality on the operator can 

be established from the projection theorem in Hilbert space, namely: 

         
 
w z, z( ) = 0 ( )                                                                            (4.1.1) 

In the last chapter, we have shown that if   is a linear operator, this condition will 

produce the Wiener-Hopf equation. Nevertheless, if   is a non-linear one, that 

computation will no longer be valid, since the operator cannot be integrated inside the 
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inner product. We therefore require a different approach to arrive at a general solution to 

this equation in the non-linear case. 

 

Remembering the inner product is defined as the second moment, the condition (4.1.1) is 

actually equivalent to: 

   
 
E Z(t) W (s){ } Z( ) = 0 ( )                                                                   (4.1.2) 

Using the identity that the mathematical expectation is equal to the expectation of the 

conditional expectation given a realisation, we get: 

    
E Z(t) W (s){ } Z( ) = E E Z(t) W (s){ } Z( ) Z(t) = 0                   (4.1.3)

 

Using the basic properties of mathematical expectation, the inner conditional expectation 

on the right hand side can be rearranged in this way: 

 

 

E Z(t) W (s){ } Z( ) Z(t) = Z( )E Z(t) W (s){ } Z(t)

= Z( ) Z(t) E W (s) Z(t){ }
                  (4.1.4)   

The optimality condition for the non-linear operator (4.1.2) has now become: 

     
 
E Z( ) Z(t) E W (s) Z(t){ } = 0                                                             (4.1.5) 

Since this condition should be satisfied for any operator  , this suggests the following 

relation must hold true as the necessary condition: 

     
 
Z(t) = E W (s) Z(t)                                                                                        (4.1.6)           

It is worth pointing out that this condition is also a sufficient condition for the optimal 

operator (Pugachev, 1965). Thus, from the projection theorem of Hilbert space, we have 

deduced this well-known fact: the non-linear estimator that gives the best estimation of 
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the signal, among all the possible estimators and according to the MMSE, is the 

conditional mathematical expectation given an observation, which is normally called the 

regression of the signal on the observation (or a-posteriori mathematical expectation; see 

Andreyev, 1969). In the next section, we will use the method of canonical expansion to 

obtain an analytical expression for the regression (4.1.6), when the noise is Gaussian. 

 

4.2 Determination of the Non-linear Operator by the Canonical Expansion 

Roughly speaking, there are two possibilities of finding an analytical form for the 

regression operator (4.1.6). The first way is to reduce this non-linear operator to a 

combination of linear ones (if it is reducible), and for each linear sub-operator, we can 

apply the foregoing theory of construction of W-H type linear estimators using PCs. For a 

more general scheme, we can conceive an algorithm of direct computation from the 

definition of regression, which is the goal of this section. The procedure described in this 

section is due to Pugachev (1965) and Andreyev (1969).  

 

4.2.1 Determination of Regression when the Noise is Gaussian 

Assuming again that we write the observation as a linear regression model: 

     Z(t) = i (t)Ui
i

n

+ X(t)                                                                                     (4.2.1) 

and the Gaussian noise has the form of canonical expansion: 

     X(t) = x j (t)Vj
j

                                                                                              (3.2.13) 

We introduce a new variable as the inner product of PC and observation: 
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      Z = a (t)Z(t)dt
T

                                                                                         (4.2.2) 

As before, the a (t)  and xi (t)  are subject to the bi-orthogonality condition (2.1.7a). 

Recalling expression (3.2.23), we calculate: 

      Z = a (t) i (t)Ui
i

n

+ x j (t)Vj
j

dt
T

= D iUi
i

n

+ V                (4.2.3) 

The reason why we have introduced this auxiliary variable is that in this way the 

observation Z(t)  can be decomposed in a linear form which is exhaustively determined 

by the new variables, with its coordinate functions being those x (t) : 

     Z(t) = x (t) Z                                                                                              (4.2.4) 

Therefore, all the probabilistic properties of the observation can be measured by fully 

characterising the properties of these newly generated variables. 

 

Recall that the regression is formally equal to: 

  
 
E W (s) Z(t) = … W (s) f U1, U2 , …( z1, z2 , …)

++

dU1dU2…           (4.2.5) 

where the signal W (s)  takes the linear form W (s) = i (t)Ui
i

n

, or more generally 

speaking, the signal can take any form depending on these variables Ui{ } . To determine 

the conditional PDF 
 
f U1, U2 , …( z1, z2 , …)  in (4.2.5), i.e., the a-posteriori density of 

Ui{ } , we use Bayes’ formula: 
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f U1, U2 , …( z1, z2 , …) =

f Z1, Z2 , …( u1, u2 , … ) f u1, u2 , …( )

… f Z1, Z2 , …( u1, u2 , … )
++

f u1, u2 , …( )du1du2…

                         (4.2.6) 

If the noise is Gaussian, it means the conditional PDF 
 
f Z u1, u2 , …( )  is Gaussian too, 

because each variable Z u{ }  should be deemed as the result of the linear transformation 

of Gaussian variables. Also, from (4.2.3), we can easily obtain the mean value and 

variance of each variable Z u{ } : 

    E Z u = D i ui
i

n

 ,      and     Var Z u = D                                    (4.2.7) 

Thus, for each single variable Z u{ } , its PDF is given by: 

      

f Z u( ) =
1

2 D
exp

Z D i ui
i

n 2

2D
                                          (4.2.8) 

Furthermore, these variables are uncorrelated, and in the context of Gaussian variables, it 

is equivalent to saying that they are independent. Correspondingly, the joint distribution 

of the conditional variables can be decomposed into the product of each distribution, and 

taking (4.2.3) and (4.2.7) into consideration, the Bayes formula reads 

 

f U( z1, z2 , …) =
f Z( u) f u( )

f Z( u) f u( )du
+

=

exp i ui
i

1
2

hij ui u j
i, j

f u( )

exp i ui
i

1
2

hij ui u j
i, j

f u( )du
+

               

                                                                                                                                     (4.2.9) 
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where for simplicity, hij and i  are defined as: 

    hi j = D i j       and    i = Z i                                                  (4.2.10)                   

Thus, the regression in general is determined by     

 E W (s) Z(t) =

W (s, u)exp i ui
i

1
2

hij ui u j
i, j

f u( )du
+

exp i ui
i

1
2

hij ui u j
i, j

f u( )du
+

                (4.2.11) 

Now it is expedient to summarise the above results as the following procedure of 

calculating the regression using the approach of canonical expansion: 

• Step I: Use the PCs to transform the observation into a sequence of random 

variables Z{ }  defined by (4.2.2), to set up a one-to-one correspondence 

between these variables and the observation. 

• Step II: Find the conditional PDF of the variables U{ }  (signal-dependent) given 

Z{ }  using Bayes’ formula. 

• Step III: Find the conditional expectation. 

 

4.2.2 Quality of the Regression Estimator 

As in the case of linear operator, we need to determine the quality of this regression 

estimator. Again, the mean-square error is measured by the norm: 

   
 

2
= w z, w z( ) = w z, w( ) w z, z( )                               (4.2.12) 
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The second term on the right hand side of this equation vanishes identically, for this is the 

condition of optimality (3.1.3). Thus, using the iterated expectation: 

    

 

2
= w z, w( ) = E W (s) E W (s) Z(t){ }W (s)

= E E W (s)2 W (s) E W (s) Z(t){ } Z(t)

= E E W (s)2 Z(t) E W (s) Z(t)
2

= E Var W (s) Z(t)

                         (4.2.13) 

This essential condition implies that under the principle of MMSE, unlike the optimal 

linear operator (Wiener type), our optimal non-linear operator is a stable one in the sense 

that for any given realisation of the random process, the minimum mean-square error 

remains an invariant. 

 

4.3 Further Remarks on the Determination of the Optimal Operator under Various 

Principles  

So far, we have confined ourselves only to the MMSE estimation, and have formulated 

both the linear and non-linear estimators under this criterion. Yet, MMSE is not a unique 

principle of optimality in practice: for different purposes, we may equally establish other 

criteria for determining the optimal operator (or system). For instance, in a signal 

detection problem, we normally use Neyman-Pearson’s lemma as the optimal decision of 

a signal being present or absent. Then comes the question of how to adjust the foregoing 

theory to formulating the optimal operator according to various criteria. Pugachev (1965) 

and Andreyev (1969) both propose a thorough discussion in this direction. Although it is 

beyond the scope of this thesis, we will sketch out a rough outline in this section. 
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Recall that the principle of MMSE is: 

    
 

e
2
= E W (s) Z(t)( )

2
= min                                                                     (4.3.1) 

Here, if we regard the mean-square error as a special form of a more general loss function 

(or cost function), the principle of optimality can thus be generalised to: 

    
 
e

2
= E l W (s), Z(t)( ) = min                                                                        (4.3.2) 

  where 
 
l W (s), Z(t)( )  is the loss function. 

Similar to our treatment of regression operator, this condition can be rearranged as: 

   
 

e
2
= E E l W (s), Z(t)( ) Z(t) = min                                                             (4.3.3) 

since this condition should be satisfied for all the realisations, we finally have: 

    
 
E l W (s), Z(t)( ) Z(t) = min                                                                               (4.3.4) 

This is the condition of determining the optimal operator according to any criterion. This 

is called the minimum conditional risk. As long as we are able to construct the loss 

function, the optimal operator (either linear or non-linear)   can be found from this 

condition. 

Therefore, we can carry out an analogous procedure to that of calculation of the non-

linear regression estimator. The only difference is that the regression is the conditional 

expectation of the signal given any realisation, while in the present case of conditional 

risk, the signal is substituted by a loss function inside the operation of conditional 

expectation, i.e., we have to minimise the integral: 
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E l W (s), Z(t)( ) Z(t) =

… l W (s,U1, U2 , …), s,Z1, Z2 , …( )( ) f U1, U2 , …( Z1, Z2 , …)
++

dU1dU2…

        

                                                                                                                                     (4.3.5) 

U{ }  are the variables that the signal depends on, and Z{ }  are those variables 

generated from the principal components, which uniquely determine the observation. In 

such a way, defining an optimal operator according to any criterion can be generally 

solved by the method of canonical expansion. 

 

We can conclude that, for each particular estimation problem, the primary task is to set 

up the most appropriate principle of optimality, so that the corresponding loss function 

can be found. Once this is done, the optimal operator that is being sought can be acquired 

by minimising the conditional risk, with the aid of the principal components and the 

Bayes formula. In a manner of speaking, this proposed procedure should have a more 

fundamental meaning than the linear approach provided in Chapter Three, because it is 

directly derived from the loss function according to the selected criterion of optimality, 

and in this sense, the W-H type linear estimator is only a special case of such procedure. 

For an extensive discussion on different principles of optimality, one should consult 

Pugachev (1965) and Andreyev (1969) for more details.  
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Chapter Five: APPLICATIONS  

 

The foregoing ideas of adopting the canonical expansion for the MMSE estimation will 

in this chapter be applied in solving three particular problems. It is an attempt to show 

that this expansion approach could be utilised in investigating a collection of estimation 

problems in geophysics or geomatics engineering, as well as to provide numerical tests in 

order to examine the performance or computability of the linear and non-linear operators 

that we have established in the previous two chapters based on the principal components. 

The selected examples encompass filtering, prediction and extrapolation, all of which are 

commonly dealt with and well-studied in the existing literature of past decades (although 

they are the same problem in essence). All of the noise models are of simple type, either a 

white noise or a first-order Gauss-Markov process, merely for illustration purposes; and 

without loss of generality, all the processes considered are of zero mean.   

 

5.1 Random Constant Reconstruction 

The first example is the reproduction of a random signal which is a constant in time. This 

random constant is a uniformly distributed variable over some interval. The model of this 

problem then takes the form: 

    
Z(t) =U + X(t)

W (s) =U                                                                                                (5.1.1) 

where Z(t)  denotes the observation and W (s)  denotes the signal. X(t)  is the noise and 

U  a uniformly distributed variable over c, + c[ ] . 
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In electrical engineering, this problem is widely known as DC level of a signal (Kay, 

1999). It can also be understood as a first moment estimation problem. The reason why 

we adopt this simple example is to show, using the previously constructed estimators, the 

fact that the linear operator sometimes gives the suboptimal estimation result which 

necessitates to formulate a non-linear operator to produce the optimal outcome. When it 

comes to the situation that the noise is a more complicated process than WGN, one can 

readily follow the exact procedure described here but with a substitution of PCs in the 

noise model. One of the applications of this model can also be found in the analysis of 

inertial sensor random errors. In Strapdown Inertial Navigation System (SINS) errors, 

this constant value is called random bias (Nassar, 2003). Thus, the proposed method can 

well be applied in this problem of random bias estimation (where the associated Gaussian 

noise model is usually a 1
st
 order Gauss-Markov process; see Nassar 2003). 

 

5.1.1 Methodology 

The most typical and simplest estimator for this model (5.1.1) under a WGN is the 

sample mean, given by: 

     

 

A =
1

N
Z(n)

n=1

N

                                                                                                      (5.1.2) 

The quality of this estimator is measured by its variance: 

     
 

Var A =

2

N
                                                                                                         (5.1.3) 

We will then compare the performances of both the optimal linear operator (the solution 

of Wiener-Hopf equation) and the optimal non-linear operator (the regression estimator), 
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with this unbiased sample mean estimator, to see how accurate the estimated values are in 

each case are compared to the true value.  

 

5.1.1.1 Optimal linear operator 

In Chapter Three, we have proved that the best linear operator must satisfy the Wiener-

Hopf equation (3.2.2). The solution of the W-H equation in the present case reduces to: 

     g(s, t) = 1(s) g
(1) (t)                                                                                           (5.1.4) 

where g(1) (s, t)  is the solution of the Fredholm equation of first kind: 

     g(1) (t)
T

KX (t, )dt = 1                                                                                        (5.1.5) 

By Galerkin’s method, the solution has the form: 

      g
(1) (t) = 1 a (t)                                                                                          (5.1.6) 

  with  1 =
1

D
a (t)dt

T
                                                                                          (5.1.7) 

To determine the parameter 1  in (5.1.4), we need to solve the system (3.2.10), which in 

this case consists of only one variable: 

      1 =
c2

c2h11 + 3
  ,        where   h11 = D 1

2
                                                  (5.1.8) 

 Thus, the weighting function (5.1.4) of the optimal linear estimator has the form: 

     g(s, t) =
c2

c2h11 + 3
1 a (t)                                                                         (5.1.9) 

and the estimator in this case is simply a biased mean, given by: 
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W (s) = Z(t) = g(s, t)Z(t)dt

T
                                                                      (5.1.10)   

The mean-square error is determined by (3.2.33): 

    e
2
= 1

2 ( h11 +
3

c2
) =

c2

c2h11 + 3
= 1                                                                   (5.1.11) 

 

5.1.1.2  Optimal non-linear operator 

As is stated in Section 4.2, the optimal non-linear operator under the MMSE criterion is 

the regression of the signal on the observation. Since the signal is nothing but a random 

variable U1 , our estimator (4.2.5) becomes: 

    
 
E U1 Z(t) = … U1 f U1( z1, z2 , …)

++

dU1                                           (5.1.12) 

and the variables Z{ }  are given by (4.2.3): 

     Z = D 1U1 + V                                                                                            (5.1.13) 

Hence, the estimator (5.1.12), after the transformation by (5.1.13), takes the form which 

corresponds to (4.2.10): 

   E U1 Z(t) =

u1 exp 1u1
1
2
h11u1

2{ }du1c

+c

exp 1u1
1
2
h11u1

2{ }du1c

+c
                                                    (5.1.14) 

where 1 = Z 1  and  h11 = D 1
2

.                       

The calculation of (5.1.14) involves the computations of the two integrals of 

transcendental functions on both the numerator and the denominator. The result will give 

the following form of the regression estimator (5.1.14): 
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E U1 Z(t) =
1

h11

1

2 h11

exp
1
2
c h11

1

h11

2

exp
1
2
c h11 +

1

h11

2

c h11
1

h11
+ c h11 +

1

h11

 

where x( )  is a Gaussian CDF: x( ) =
1

2
exp

u2

2
du

0

x

.                       (5.1.15)         

Finally, we will determine the error of this estimator. As is shown in the last chapter, the 

mean square error in this case is given by the expectation of the conditional variance: 

    
2
= E Var W (s) Z(t)                                                                                  (4.2.11) 

which is currently equal to the following expression: 

   
2
= E E U1

2 Z(t) E U1 Z(t)
2

                                                             (5.1.16) 

As we can observe, the second term inside the outer square brackets on the right-hand 

side of (5.1.16) is simply the square value of non-linear estimator (5.1.15), the first term 

can also be calculated in a similar way as we did when calculating (5.1.14). Thus, this 

proves our conclusion of (4.2.12), that the mean-square error of the non-linear estimator 

is a constant for any given observation. 

 

5.1.2 Noise Model 

The fore-mentioned results in Section 5.1.1 apply to every noise model, as long as the 

PCs of noise can be found. In this example, the noise model is a WGN; therefore, for the 

convenience of computation, we need to further obtain the practical forms for both 
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operators in the case of WGN. As is shown in Section 2.4, the principal components of 

WGN coincide with the sine and cosine functions, which are apparently the Fourier basis: 

     a (t) = ei t
                                                                                                       (5.1.17) 

To calculate the linear operator, the sequence 1{ }  is determined by (5.1.7): 

    

 

1 =
1
2T

ei t dt
T

=
1 / 2

= 0

0 = ±1, ± 2,…
                                 (5.1.18)         

Consequently, for the optimal linear operator, the weighting function becomes: 

    g(s, t) =
1
2

c2

c2h11 + 3
  ,           where h11 = D0 01

2
=
T
2

                                    (5.1.19) 

The linear estimator (5.1.10) in the WGN case is equal to: 

    

 

Z(t) =
1
2

c2

c2h11 + 3
Z[n] t

n=1

N

                                                                     (5.1.20) 

Thus, the weighting function (5.1.20) in this case actually gives a biased mean, and it 

becomes smaller when the noise variance increases.  

 

To calculate the non-linear operator in the case of WGN, firstly we need to determine the 

auxiliary variable Z{ } , which according to (5.1.18) consists of only one variable Z0 : 

   Z0 = a0 (t)Z(t)dtT
= Z(t)dt

T
= Z[n] t

n=1

N

                                                    (5.1.21) 

Thus, 1 and h11 in this case are consequently given by: 

    1 = Z0 01 =
Z0
2     and  h11 =

T
2                                                                       (5.1.22)                   
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and consequently the non-linear optimal estimator (5.1.15) in the case of WGN reads: 

  E U1 Z(t) =
Z0
T 2 T

exp
1
2
c

T
2

Z0
T

2

exp
1
2
c

T
2 +

Z0
T

2

c
T
2

Z0
T

+ c
T
2 +

Z0
T

  

                                                                                                                                   (5.1.23)                   

This formula implies that the non-linear estimator, in the case of a WGN, is a non-linear 

function of the sample mean. 

 

5.1.3 Simulation Results and Performance Comparison 

5.1.3.1 Simulation 

The first step is to generate the random constant signal. This can be done by generating a 

uniformly distributed number R  over the region 0, 1[ ] , and transforming this number to 

the interval c, + c[ ]: 

     U = c (2R 1)                                                                                                     (5.1.24) 

Then, we generate the independent normally distributed variables with zero mean and 

variance 2 , and add it to the just generated uniform variable U . The observation points 

are chosen at the equidistant in the interval 0, T[ ] , with T = 10s  and t = 0.01s . Figure 

5-1 shows one realisation of the true signal (the random variable U ) and the noisy signal, 

for c = 5  and 2
= 1.5 .  
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          Figure 5-1.  One Realisation of the Random Constant Signal and the Noisy 

Signal as a result of a superimposed White Gaussian Noise N(0, 1.5) 

 

5.1.3.2 Analysis of result 

Now, we will examine the performances of the three above formulated estimators in this 

random constant reconstruction case, to see how accurately each one behaves: 

• Sample Mean Estimator (5.1.2) 

• W-H type Linear Estimator (5.1.20) 

• Regression (non-linear) Estimator (5.1.23) 

Table 5-1 shows the result of estimation by the three operators, respectively, for 10 

realisations of reconstructing the uniform variable (the ‘True Value’ in Table 5-1) over 

5, + 5[ ] , and Table 5-2 provides the corresponding errors of these realisations.   
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No.
TRUE 

VALUE 
SAMPLE MEAN 

LINEAR 

ESTIMATOR 

NON-LINEAR 

ESTIMATOR 

1 3.002805 3.017968 3.634516 3.020986 

2 -3.581137 -3.573213 -4.303193 -3.576606 

3 -0.782387 -0.776547 -0.935190 -0.777324 

4 4.157355 4.131457 4.975482 4.122621 

5 2.922073 2.886663 3.476386 2.889549 

6 4.592924 4.587459 5.524641 4.488145 

7 1.557407 1.554408 1.871962 1.555963 

8 -4.642883 -4.589386 -5.526962 -4.489389 

9 3.491293 3.537060 4.259653 3.540469 

10 1.787352 1.814817 2.185570 1.816632 

 

Table 5-1. Ten Realisations of Estimations using Sample Mean, W-H Type Linear 

Operator & Regression Estimator, when 2
= 1.5  

 

From these two tables, we can draw the conclusion that, the linear estimator is apparently 

not optimal in this case, leading to rather high errors when used for estimation. The 

optimal estimators in this case are the sample mean and the non-linear a-posteriori 

estimator. They share the same level of optimality by both giving a very close 

approximation to the true value, especially for the noise with a small variance (in our 

case, 2
= 1.5 ), although it seems that there is a relative instability in the errors of the 

non-linear estimator. Hence, we can assert that the overall optimal estimator in this case 

should be a non-linear one. Nevertheless, when the variance of the noise grows larger, 

both the performances of the sample mean estimator and the regression estimator should 

weaken, where the performance of the regression one is more affected by this increase 
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than that of the sample mean. In general, we can claim that for a relatively small variance 

of the noise, the non-linear estimation achieves a very accurate estimation. 

No. SAMPLE MEAN 
LINEAR 

ESTIMATOR 

NON-LINEAR 

ESTIMATOR 

 1 2.2993e-4 0.3991 3.3055e-4 

2 6.2779e-5 0.5214 2.0528e-5 

3 3.4107e-5 0.0233 2.5640e-5 

4 6.7074e-4 0.6693 12.0650e-4 

5 1.2539e-3 0.3073 1.0578e-3 

6 5.5732e-5 0.8644 0.0114017 

7 8.9924e-6 0.0989 2.0861e-6 

8 2.8620e-3 0.7816 23.5605e-3 

9 2.0945e-3 0.5904 2.4182e-3 

10 7.5434e-4 0.1586 8.5732e-4 

Table 5-2. Experimental Square Errors of the Three Estimators, 2
= 1.5 . 

 

In this simple case of illustration, we have observed a very high performance of the non-

linear estimation using the a-posteriori expectation given the observation, in spite of the 

high complexity in the calculation of the estimator and its errors, involving the 

computation of some improper integrals of transcendental functions. Moreover, if the 

signal consists of more linear terms which obey other distribution laws, and the noise is 

Gaussian, we can carry out the same procedure to calculate the optimal regression 

estimator, as long as those improper integrals can be estimated. Yet, when the dimension 

of signal becomes too large (i.e., a large number of random variables appear in the 
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signal), this computational load grows up significantly, which makes the calculation of 

this non-linear operator fairly unfeasible. We will see this case in next section. 

 

5.2 Prediction of Stationary Signal with Non-stationary Noise 

As is mentioned at the beginning of Chapter Three, Keller (2000) has proposed a method 

of solving the Wiener-Hopf equation in the case of a non-stationary noise, using the 

approach of Haar wavelets. In his paper, he chooses White Gaussian Noise (WGN) with 

piecewise constant variance added on a stationary signal as the numerical illustration. 

This problem can be equally solved using the method of canonical expansion, and we 

will use his example for the demonstration in this section. Firstly, we will simulate an 

observation by combining the constructed signal and the piecewise noise; and then, we 

will provide the general form for the optimal linear operator, and investigate the 

computability of the non-linear operator in this particular case; finally, we will utilise the 

linear operator to perform the prediction, and see the effect. 

  

5.2.1 Signal and Noise Construction 

The stationary signal under study has a covariance function of the form (Keller, 2000): 

   KW (t, t ') =
1

1+ (t t ')[ ] 2
                                                                                    (5.2.1) 

The validity of the selection of a covariance function of this form is simply that its 

Fourier Transform, which is the PSD, is always positive. Thus, the stationary process 

with the covariance (5.2.1) has the real physical meaning in practice. Also, the noise is 
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selected as a piecewise constant non-stationary WGN with different variances 1
2
= 4.0  

and 2
2
= 1.0  in two consecutive equal periods of observation. 

 

Next, we need to construct the signal from this covariance function. This is done by the 

following steps (Keller, 2000): 

• Computation of the covariance matrix from the covariance function (5.2.1) 

• Cholesky decomposition of the covariance matrix: 

    K = L LT                                                                                                    (5.2.2) 

• Signal construction as a linear form: 

    
 
W (t) = L u                                                                                             (5.2.3) 

where  u  is a vector of uniformly distributed independent variables over the 

region  
1

2
,
1

2
 with unit variance.  

It can be proved that the signal defined in (5.2.3) has the covariance (5.2.1): 

 E W (ti )W (t j ) = E li p up
p

l j q uq
q

= li p l j p
p

    

or     KW = L LT = K                                                                                                (5.2.4) 

Ultimately, we only need to add the piecewise WGN on the constructed signal (5.2.3) to 

produce the noisy signal. Figure 5-2 depicts such realisation, with 512 samples. The first 

256 points in signal are mingled with a WGN with 1
2
= 4.0 , while a relatively weaker 

noise with 2
2
= 1.0  is superimposed on the rest of samples. The value of is chosen as 

0.08 (the smaller this value, the smoother the signal is). 
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Figure 5-2. Noisy Signal vs. Noise-free Signal, with piecewise Noise 1
2
= 4.0 and 

2
2
= 1.0 ,  512 Samples 

 

5.2.2 Methodology 

In this numerical example, we will use the optimal linear operator (predictor) to 

reconstruct the true signal due to its simplicity, though it is suboptimal out of all possible 

operators. It will be shown later that the optimal operator (non-linear) entails a relatively 

high complexity in calculation, which makes it not quite feasible for practical use.   

 

5.2.2.1 Optimal linear operator 

The signal is given by (5.2.3) as a linear form, so it is possible to construct a Wiener filter 

from the W-H equation, with the weighting function: 
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   g(s, t) = k (s) g
(k ) (t)

k=1

N

                                                                                     (5.2.5) 

N  is the total number of sample points. Since the observation is discrete at equidistant 

points, the component weighting functions g(k ) (s, t)  in (5.2.5) are determined in the 

matrix form, and we call this the Galerkin matrix: 

   

 

g(1) (t1) g(1) (t2 ) … g(1) (tN )

g(2) (t1) g(2) (t2 ) … g(2) (tN )

g(N ) (t1) g(N ) (t2 ) … g(N ) (tN )

=

11 21 … N 1

12 2 2 … N 2

1N 2 N … N N

i

a1(t1) a1(t2 ) … a1(tN )

a2 (t1) a2 (t2 ) … a2 (tN )

aN (t1) aN (t2 ) … aN (tN )

                              (5.2.6) 

As we can see, each entry in the Galerkin matrix is in such way determined by Galerkin’s 

form of the solution of the Fredholm equation. As a result, the weighting function (5.2.5) 

should be written as a matrix product form of Galerkin matrix and the coefficients k{ } , 

which we will call the weighting matrix of optimal linear predictor: 

  

 

g(t1, t1) g(t1, t2 ) … g(t1, tN )

g(t2 , t1) g(t2 , t2 ) … g(t2 , tN )

g(tN , t1) g(tN , t2 ) … g(tN , tN )

=

1(t1) 2 (t1) … N (t1)

1(t2 ) 2 (t2 ) … N (t2 )

1(tN ) 2 (tN ) … N (tN )

i

g(1) (t1) g(1) (t2 ) … g(1) (tN )

g(2) (t1) g(2) (t2 ) … g(2) (tN )

g(N ) (t1) g(N ) (t2 ) … g(N ) (tN )

              (5.2.7)                   
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The linear Wiener filter, as is obtained from W-H equation, is now equal to: 

   

 

Z(t) =

g(t1, t1) g(t1, t2 ) … g(t1, tN )

g(t2 , t1) g(t2 , t2 ) … g(t2 , tN )

g(tN , t1) g(tN , t2 ) … g(tN , tN )

i

Z(t1)

Z(t2 )

Z(tN )

                              (5.2.8) 

where the vector 
 
Z(t)  are observations. 

 

5.2.2.2 Computability of optimal non-linear operator 

Generally, the non-linear operator is not feasible in this case despite its superior 

performance. We will explain the reason here as we formulate this operator. The 

construction of non-linear regression operator should follow the 3-step procedure which 

has been outlined in Section 4.2.1. The first step is to build a one-to-one correspondence 

between the observation and a new set of random variables Z{ }  whose total number is 

equal to that of observation points, defined by the following relation: 

 

Z1
Z2

ZN

=

D1 0 0

0 D2 0

0 0 DN

i

11 12 1N

21 22 2N

N1 N 2 NN

i

U1

U2

UN

+

V1
V2

VN
   

(5.2.9) 

Next, we will need Bayes’ formula to obtain the form of conditional density function: 

 

f U1, U2 , …( z1, z2 , …) =

exp i ui
i

1
2

hij ui u j
i, j

exp i ui
i

1
2

hij ui u j
i, j

du1…duN1

2

1

2
1

2

1

2

 

                                                                                                                                   (5.2.10) 
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In order to calculate this conditional PDF, we need to find the value of the multi-

dimensional integral in the denominator. However, since the number of terms in the 

linear form of the signal is equal to the number of the sample points, the integral involves 

a very high dimension and the integration of an exponential function of a linear form plus 

a bilinear form. Such complex computations can only be done by complicated 

substitutions of variables, which require a lengthy and heavy calculation in practice. 

Therefore, we will not develop the non-linear operator in this case.  

 

5.2.3 Noise Model  

Next, we need to find the principal components, and subsequently find those related 

quantities that are essential to the calculation of Galerkin matrix (5.2.6) and consequently 

the weighting matrix (5.2.7). Since the noise is a WGN in the observation interval 

0, T[ ] , the canonical expansion has the form: 

   W (t) =
1

T
ei t V                                                                                                 (2.2.4) 

and the PCs are given by a (t) = ei t
, yet with different variances of basis variables V : 

    D =

1
2 T

2
, 0,

T

2

2
2 T

2
,

T

2
, T

                                                                           (5.2.11) 

Hence, we have to perform the prediction in 0,
T

2
 and 

T

2
, T  respectively, i.e., we 

have to find the weighting matrices of the predictor on each region of variances.  
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For such a construction of the predictor, firstly, we need to find the coefficient matrix 

r{ } , which is the result of an integral operator with the rth  coefficient in the linearised 

signal as the kernel, applied to the th  principal component (see (3.2.22)). In this case, to 

each region there corresponds a particular matrix, whose entry is given by: 

 r =

2

1
2T

a ( ) lr ( )d0

T

2 0,
T

2

2

1
2T

a ( ) lr ( )dT

2

T T

2
, T

                                                             (5.2.12) 

where lr ( )  stands for the rth  column of the matrix L . 

Therefore, the two matrices of (5.2.12) in each half of the interval are arranged as: 

 

(1)
11 …

(1)
1N

(1)
N1

(1)
NN

=

1
2 T

2
… 0

0 1
2 T

2

1

i

a1(t1) … a1(t N
2

)

aN (t1) aN (t N
2

)

i

l11 … l1N

lN
2
,1

lN
2
,N

 

 

(2)
11 …

(2)
1N

(2)
N1

(2)
NN

=

2
2 T

2
… 0

0 2
2 T

2

1

i

a1(t N
2
+1
) … a1(tN )

aN (t N
2
+1
) aN (tN )

i

lN
2
+1,1

… lN
2
+1,N

lN ,1 lN ,N

                   

                                                                                                                                   (5.2.13)

                   
Thus Galerkin matrices of both halves are accordingly given by:

 

 

g1
(1)(t1) … g1

(1)(t N
2

)

g1
(N ) (t1) g1

(N ) (t N
2

)

=

(1)
11 …

(1)
1N

(1)
N1

(1)
NN

T

i

a1(t1) … a1(t N
2

)

aN (t1) aN (t N
2

)
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g2
(1)(t N

2
+1
) … g2

(1)(tN )

g2
(N ) (t N

2
+1
) g2

(N ) (tN )

=

(2)
11 …

(2)
1N

(2)
N1

(2)
NN

T

i

a1(t N
2
+1
) … a1(tN )

aN (t N
2
+1
) aN (tN )

   

                                                                                                                                   (5.2.14) 

where the subscripts in g1  and g2  refer to the regions 0,
T

2
 and 

T

2
, T .  

We still need to determine the coefficient matrix i (t j ){ }  for calculating the weighting 

matrix (5.2.7). To this end, we will first calculate the elements hμ{ } : 

 

h(1)11 … h(1)1N

h(1)N1 h(1)NN

=

(1)
11 …

(1)
1N

(1)
N1

(1)
NN

T

i

1
2 T

2
… 0

0 1
2 T

2

i

(1)
11 …

(1)
1N

(1)
N1

(1)
NN

    

                                                                                                                                   (5.2.15) 

for the first region, and the elements h(2)μ{ }  for the second region will be calculated in the 

same manner. 

Thus, the coefficient matrices i
(1) (t j ){ }  and i

(2) (t j ){ }  for 0,
T

2
 and 

T

2
, T  are 

respectively obtained as: 

 

1
(1)(t1) … N

(1) (t1)

1
(1)(t N

2

) N
(1) (t N

2

)
=

h(1)11 +1 … h(1)1N

h(1)N1 h(1)NN +1

1

i

l11 … l1N

lN
2
,1

lN
2
,N

T T
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1
(2)(t N

2
+1
) … N

(2) (t N
2
+1
)

1
(2)(tN ) N

(2) (tN )

=

h(2)11 +1 … h(2)1N

h(2)N1 h(2)NN +1

1

i

lN
2
+1,1

… lN
2
+1,N

lN ,1 lN ,N

T T

 

                                                                                                                                   (5.2.16) 

It is to be noted that the superscripts in h(1)  , h(2)  and (1) , (2)  in (5.2.16) again indicate 

the regions to which these matrices belong. Finally, the weighting matrices of our optimal 

linear operator in this case read respectively as: 

 

g1(t1, t1) … g1(t1, t N
2

)

g1(t N
2

, t1) g1(t N
2

, t N
2

)

=

1
(1)(t1) … N

(1) (t1)

1
(1)(t N

2

) N
(1) (t N

2

)
i

g1
(1)(t1) … g1

(1)(t N
2

)

g1
(N ) (t1) g1

(N ) (t N
2

)

 

 

g2 (t N
2
+1
, t N

2
+1
) … g2 (t N

2
+1
, tN )

g2 (tN , t N
2
+1
) g2 (tN , tN )

=

1
(2)(t N

2
+1
) … N

(2) (t N
2
+1
)

1
(2)(tN ) N

(2) (tN )

i

g2
(1)(t N

2
+1
) … g2

(1)(tN )

g2
(N ) (t N

2
+1
) g2

(N ) (tN )

 

                                                                                                                                   (5.2.17) 

Finally, the theoretical mean square errors of this operator on 0,
T

2
 and 

T

2
, T  are 

respectively measured by those elements on the principal diagonal of the following 

matrix products, according to (3.2.33): 

 

e1
2
=

1
(1)(t1) … N

(1) (t1)

1
(1)(t N

2

) N
(1) (t N

2

)
i

h(1)11 +1 … h(1)1N

h(1)N1 h(1)NN +1

i

1
(1)(t1) … N

(1) (t1)

1
(1)(t N

2

) N
(1) (t N

2

)

T
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e2
2
=

1
(2)(t N

2
+1
) … N

(2) (t N
2
+1
)

1
(2)(tN ) N

(2) (tN )

i

h(2)11 +1 … h(2)1N

h(2)N1 h(2)NN +1

i

1
(2)(t N

2
+1
) … N

(2) (t N
2
+1
)

1
(2)(tN ) N

(2) (tN )

T

 

                                                                                                                                   (5.2.18) 

 

5.2.4  Analysis of Result 

Figure 5-3 shows the constructed signal using this Wiener type filter and the original 

signal which has been depicted in Figure 5-2. It is to be borne in mind that this linear  

              

 Figure 5-3. Reconstructed Signal using Linear Operator and its Original Signal, 

N=512,  from piecewise Noise: 1
2
= 4.0 ,  2

2
= 1.0  

 

predictor is theoretically suboptimal in the present case, as was mentioned earlier. As we 

can see, the tendency of the variation of the original signal is fully recovered by the 
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reconstructed one with a fairly satisfactory performance, although the effect of prediction 

is not that impressive. Some subtle variations of the signal cannot be reflected by this 

operator, particularly in the first half region with noise variance 1
2
= 4 . Consequently, 

we can claim that the ability of prediction is relatively weaker in the region with stronger 

noise. 

               

  Figure 5-4. Mean-Square Errors of the Prediction, with both Theoretical and 

Empirical Values, N=512, 1
2
= 4.0  and 2

2
= 1.0  

 

Figure 5-4 is an illustration of the theoretical mean-square errors obtained from (5.2.18), 

together with the empirical errors produced from observation. Most of the theoretical 

errors in the first half region (with 1
2
= 4.0 ) are around 0.23, and the other half are about 

0.09; also, the biggest empirical square error in the first region climbs up over 1.3, while 

this value is only about 0.7 in the lower variance region. Additionally, the empirical 
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prediction errors suffer from a more violent fluctuation with bigger noise. All of these 

observations imply that the linear operator is more sensitive to the noise with higher 

intensity, resulting in poorer prediction. In addition, it may be worth mentioning an 

interesting fact, that at the boundary of both regions, the theoretical error (red line in 

Figure 5-4) tends to be blown up to a certain amount, normally known as Gibbs’ 

phenomenon (Blais, 1988).    

                         

Figure 5-5. 3D Visualisation of Galerkin Matrix 

 

Figure 5-5 provides a 3D visualisation of the Galerkin matrix, composed of the two 

matrices in (5.2.14). Basically it shows the magnitudes of each entry of Galerkin matrix, 

so that we can explore the effect of weighting for the observation at each instant by each 

order of PC (or Fourier basis). One axis corresponds to the observation instants, while the 



80 

 

other indicates the order of PCs. Firstly, we can see a ‘diagonal effect’ of this Galerkin 

matrix, which suggests that every PC should be used for weighting the observation 

points; and for each point, only a few PCs should contribute dominantly to such 

weighting, or say, each PC should have a major effect on only a small collection of 

observation points. Also, we can clearly see a difference of this weighting effect between 

the two half regions with different noise intensities, where the Galerkin form takes 

significantly larger values in the region with smaller noise intensity. Comparing with the 

Galerkin matrix of Haar wavelets (Keller, 2000), the Galerkin matrix of PCs have a 

smoother look, this may be due to the fact that the Haar wavelets are more of a 

discontinuous form, while the PCs are actually harmonic functions. Finally, Gibbs’ 

phenomenon which appeared in the theoretical mean-square errors (red line in Figure 5-

4) can also be observed here in the visualisation of Galerkin matrix.   

 

It is expedient to mention that if we had not used the piecewise prediction according to 

the individual variances of each region, we would have been led to a very bad outcome of 

prediction. For example, if we were to combine the information of PCs in two regions 

together and carry out the prediction as a whole, the result of such prediction would be 

rather poor. What is more, the bigger the contrast between variances within piecewise 

noise, the more disastrous the result of prediction is for the lower intensity region.   

 

5.2.5 Concluding Remarks   

There are several points that should be brought to our attention regarding this example: 
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i. There is no reduction of dimensionality here in this example, for in the case of 

white noise, the PCs agree with the Fourier basis. Also, the number of PCs should 

be chosen the same as the dimension of the data vector. 

ii. If the noise has different intensities in parts of the observation period, as in the 

present case, to attain the best result, the prediction has to be performed separately 

for each part. 

iii. The quality of the linear operator weakens as the noise variance increases, with a 

larger mean value, and higher variances, of prediction error. 

iv. One always has to face a trade-off when finding the most suitable operator in each 

particular case. There is always the alternative between a suboptimal linear 

operator with considerable ease of calculation, and an optimal non-linear operator 

requiring a lot of complicated computations. One has to adjust the selection 

according to the objective. 

In this example, the signal is a linear form whose number of terms is the same as 

that of the total samples. The computation of the non-linear regression operator 

requires an enormous effort in both quantity and complexity. Instead, the optimal 

linear operator only requires several multiplications of matrices.   

 

5.3 Extrapolation of a Signal which is a Linear Function of Time 

As the last example in the chapter, we will visit the extrapolation problem of a random 

signal which is a linear function of time. The model this time is: 

     
Z(t) =U1 +U2t + X(t)

W (s) =U1 +U2s
                                                                                       (5.3.1) 
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Here, stands for those instants within the observation period, while s  represents the 

instant at which the value of signal is to be extrapolated. U1  and U2  are two independent 

zero-mean Gaussian variables, X(t)  is a centred 1
st
 order Gauss-Markov process. 

 

This problem can be regarded as a particular case of a more general one, i.e., the 

extrapolation of a useful random signal which is a polynomial of time: 

     
 
W (s) =U1 +U2 s +U3 s

2
+                                                                            (5.3.2)             

Ui  are either random variables with known distribution or unknown parameters. One of 

the applications of such problem in geophysics or geodynamics could be the 

extrapolation of the secular drift in polar motion, for the time series of polar motion can 

be regarded as a stochastic process (Keller, 2004). There are five constituents in the 

observed polar motion (both in the decomposed X and Y components): annual prograde 

and retrograde, Chandler wobble, a smooth secular drift and a noise (Gibert and Le 

Mouel, 1998). After separating and removing the annual prograde and retrograde, along 

with the Chandler wobble (such procedures can be done by wavelet analysis; see Keller 

2004), there will only be the secular drift and the noise involved in the time series of 

polar motion, thus the drift could be adequately approximated by a linear time function 

(or any degree of polynomial) in order to predict its future trend.  

 

5.3.1 Methodology 

Our goal is to use the method of canonical expansion to build the optimal linear operator 

for such an extrapolation problem. In fact, the optimal non-linear operator in this case 
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reduces to the linear one, as we will prove soon in this section. Thus, we will formulate 

the Wiener-Hopf type optimal linear operator according to the scheme in Chapter Two. 

Also, we will not only establish our linear estimator by using the K-L method to produce 

the PCs, but also employ the Akimov’s construction of the PCs, introduced in Section 

2.4, to investigate the effect of extrapolation using these two choices of PCs.  

 

5.3.1.1 Optimal linear operator 

In the present case, the signal depends on two independent random variables. So 

according to our theory, the optimal linear operator takes the form of a combination of 

two weighting functions:  

   g(s, t) = 1(s) g
(1) (t) + 2 (s) g

(2) (t)                                                             (5.3.3) 

with g(1) (t)  and g(2) (t)  as the solution of the following two integral equations: 

    

g(1) (t)
T

KX (t, )d = 1

g(2) (t)
T

KX (t, )d = t
                                                                                      (5.3.4) 

where the covariance function is that of the 1
st
 order Gauss-Markov process: 

     KX (t, ) =
2e t

                                                                                          (2.4.6) 

Both solutions are provided by Galerkin’s method in terms of principal components: 

    

g(1) (t) = 1 a (t)

g(2) (t) = 2 a (t)
 ,        where 

1 =
1

D
a (t)dt

T

2 =
1

D
a (t)t dt

T

                                 (5.3.5) 

The coefficients (Galerkin’s matrix) can be found according to (3.2.10): 
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1
s

=

h11 +
1

μ11
h12

h21 h22 +
1

μ22

i
1(s)

2 (s)
                                                      (5.3.6) 

Again, s  is the point at which the value of the linear time function is to be extrapolated. 

Ultimately, we have our optimal linear estimator, from the Wiener-Hopf equation, in this 

case of extrapolation of a linear time function: 

     
 
Z(t) = 1(s)g

(1) (t) + 2 (s)g
(2) (t)( )Z(t)dt

T
                                             (5.3.7) 

The mean square error of this estimator, for every time instant, is given by: 

  

 

e(s)
2
=

1(s)

2 (s)

T

i

h11 +
1

μ11
h12

h21 h22 +
1

μ22

i
1(s)

2 (s)
                                (5.3.8)    

 

5.3.1.2  Optimal non-linear operator 

In this case, the optimal non-linear operator happens to coincide with the linear one, for 

the variables in both signal and noise are Gaussian. In fact, this well-known fact can be 

proved by the same approach of using the PCs, provided in Section 4.2. 

Since the observation can be transformed into a combination of variables Z  defined by 

(4.2.2), the conditional expectation operator (4.1.6) now takes the form: 

   
 
E W (s) Z(t) = E W (s) Z1, Z2 ,…, ZN                                                         (5.3.9) 
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In particular, as we have mentioned in Chapter Four, if both the signal and noise are 

Gaussian, Z{ }  are also Gaussian, then the right-hand side of (5.3.9) can be written as: 

   

 

E W (s) Z1, Z2 ,…, ZN =
k

D
Z                                                                 (5.3.10) 

Here, k  denotes the covariance between the signal W (s)  and the generated variable Z . 

Therefore, we have arrived at the conclusion that the optimal regression operator in the 

Gaussian case is actually a linear operator (in general, it should be a non-homogeneous 

linear operator if the signal is not centred, see Pugachev, 1965). 

 

5.3.2 Noise Model 

For the 1
st
 order G-M process, we have proposed two methods of finding its principal 

components. The first is based on the K-L expansion theorem, and derived from the 

solution of the integral equation (2.4.7) directly; an alternative way is provided in Section 

2.4.2, where the PCs are arranged as Jordan block. It is to be remembered that, due to its 

nature of recursion, there is no reduction of dimensionality in the latter case. We will 

avail ourselves of these two approaches, in this section, to establish the PCs and the 

forms of the linear operator. 

 

5.3.2.1 Karhunen-Loève basis 

As just mentioned, the PCs are obtained by solving the integral equation (2.4.7) over the 

interval 0, T[ ]  , and this is already done in Section 2.4, where the result is given by 

(Section 2.4.2.1): 
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      a t( ) = sin t
T

2
+
2

              
 
= 1, 2,…                                         (5.3.11) 

  where  are roots in ascending order of the following equation: 

     tan( T ) =
2
2 2                                                                                              (2.4.9) 

Yet, the solution to this equation is not straightforward; it has to be solved approximately 

by a numerical method such as Newton’s method. To avoid such heavy computation, in 

spite of its exactness, we will use the spectral decomposition (or eigen-decomposition) of 

the variance-covariance matrix to obtain the eigenvalues and eigenvectors in order to 

form the PC, i.e. we obtain the matrices  and  from the following matrix equation: 

   KX =
T

                                                                                                   (2.2.6) 

Each column vector of  stands for a PC. It is to be noted that, the principal component 

can be chosen arbitrarily subject to only a constant; in other words, we can multiply any 

number to a PC. In accordance with our solution in Section 2.4.2, the PCs (5.3.11) in the 

present case are selected as a scalar product of the eigenvectors of : 

    a (ti ) =
T +

2
(ti )                                                                                       (5.3.11a) 

Subsequently, instead of the eigenvalues of variance-covariance matrix K , the 

corresponding variances of each variables in the basis of canonical expansion, arranged 

in a descending order 
 
D1 D2 D3 > 0 , are given by: 

    D =

2

2
(T + )                                                                                           (2.4.11) 
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Once we have the PCs (5.3.11a) and the variances (2.4.11), we can calculate the optimal 

linear operator by using the principal components defined in K-L sense, as the procedure 

we have outlined earlier. The matrix r{ }  in this case is expressed as:

 

 

11 12

M1 M 2

=

D1 … 0

0 DM

1

i

a1(t1) … a1(tN )

aM (t1) aM (tN )

i

1 t1

1 tN

      (5.3.12) 

where M is the degree of the canonical expansion. Subsequently, the Galerkin’s matrix 

now takes the form of a two-dimensional vector:

 

 

g(1) (t1) g(2) (t1)

g(1) (t2 ) g(2) (t2 )

g(1) (tN ) g(2) (tN )

T

=

11 12

M1 M 2

T

i

a1(t1) … a1(tN )

aM (t1) aM (tN )
            (5.3.13) 

To complete the solution of the Fredholm equation, we only need the following matrix to 

be inserted to into (5.3.6) to calculate the coefficients 1(s)  and 2 (s) : 

 

 

h11 h12
h21 h22

=

11 12

M1 M 2

T

i

D1 … 0

0 DM

i

11 12

M1 M 2

             (5.3.14) 

 

5.3.2.2 Jordan block – Akimov’s method 

Alternatively, for equidistant observation points, PCs can also be obtained by the method 

of Akimov, where each PC is given by each row of the following Jordan block (Section 

2.4.2.2): 
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A =

1 0 0 0
q 1 0 0

0 q 0 0

0 0 q 1

       where  q = e                                 (2.4.19) 

All the remaining quantities that are essential to constructing the optimal linear estimator 

can be obtained in the same way as (5.3.12) – (5.3.14), with only a substitution of the 

matrix of the PC in the K-L sense by (2.4.19).  

 

5.3.3 Simulation of First-order Gauss-Markov Process  

Unlike white noise, there is no direct way of generating the 1
st
 order G-M process, and 

we have to invent a system or shaping filter (Nassar, 2003) of doing so. To this end, we 

propose a discrete recursive equation (Gelb, 1974; Blais, 1988) for the generation: 

     xk+1 = qxk + wk      where  q = e  and wk ~N(0, 2
W )                              (5.3.15) 

It is easily seen that if the first input x0  is a Gaussian variable, then all the subsequent 

variables are Gaussian; also, the value of the present variable only depends on that of the 

one which precedes it, thus it clearly satisfies a first-order Markov property. Once the 

sequence is generated, the second central moments of this stationary process should be 

estimated from the simulation by: 

   

 

KX (n ) =
1

N n
x(ti+n ) mX( ) x(ti ) mX( )

i=1

N n

                                                    (5.3.16) 

where 
 
mX  is the mean value of the sample data, and n  is the time lag between any pair 

of samples. Thus, the estimated variance of the process is consequently given by: 
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2
X = KX (0) =

1

N
x(ti ) mX( )

2

i=1

N

                                                                     (5.3.17) 

In practice, the value of  is not known a priori (it is the reciprocal of correlation time of 

process), and it has to be estimated as well from the sample covariance 
 
KX (n )  by 

(5.3.16) for a sequence of time lags using a very large data sample.  

           

Figure 5-6. One Realisation of Random Linear Signal and the Observation of this 

Signal plus the Simulated 1
st
 Order Gauss-Markov Process 

 

Figure 5-6 shows one realisation of the true signal and the noisy signal where the 

constructed 1
st
 order G-M process by (5.3.15) is added upon the original signal. The 

observation period is chosen as 0, T[ ] , with T = 20  and t = 0.01. U1  and U2  are 

Gaussian variables satisfying respectively N(0, 3)  and N(0, 1) . The parameter  of the 
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G-M noise is selected as 25 (this means the correlation time of the process is 0.04), and 

the sample variance 
 

2
X  is estimated by (5.3.17) as 4.61499.  

 

5.3.4 Analysis of Result 

Initially, we will address the question: how many principal components are needed in the 

weighting functions or Galerkin’s solution (5.3.4) so that the linear filter could give a 

close approximation to the true signal, or equivalently speaking, how many terms in the 

K-L expansion of the G-M process are sufficient to give a close approximation to the 

process itself ? As we can see, Figure 5-7 depicts the extrapolated signal of the original  

           

Figure 5-7. Extrapolation using Different Orders of Karhunen-Loève Expansion. 

Orders of the PCs: M = 2, 5, 10 & 20 

 

signal in Figure 5-6 on the interval T , T + S[ ] , with S = 5 , for different orders of 

principal components. We can see that, the more PCs (corresponding to the number of 
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first terms in the canonical expansion of the G-M noise) we use to construct the linear 

estimator, the better approximation we obtain to the real random signal. Both M = 10  

and M = 20  (using the first 10 and 20 PCs) give a very close extrapolation to the real 

signal, with the errors in both cases remaining under 0.05. 

                  

Figure 5-8. Theoretical Minimum Mean Square Errors of Optimal Linear 

Estimation for Each Order of PC 

 

Figure 5-8 provides the theoretical mean square errors of estimation for each order of the 

PC, derived from (5.3.9), in order to evaluate the optimality of these estimators. We can 

observe that, the further the time instant, at which the signal is to be extrapolated, stays 

away from the observation period, the bigger the extrapolation error is. This is quite a 

natural result, since apparently the observation should produce more accurate result for 

nearer points. Moreover, a lateral comparison between those lines suggests that, the 

smaller the number of PCs (less order of expansion) is, the larger this error will become 
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as the instant moves along. For example, at the last instant s = 25 , the error of 

extrapolation for M = 20  still stays under 0.008, but that of M = 2  has already climbed 

up over 0.012. Based on this fact, we can claim that, for a reasonable number of PCs of 

selection, its curve of errors can be fairly approximated by a linear function with very 

small slope and intercept, and as a result, we can have a very good result of extrapolation. 

 

              

Figure 5-9. Continuous Spectrum of Variances of Basis Variables for K-L 

Expansion, arranged in a Descending Order 

 

Figure 5-9 shows the continuous spectrum of variances defined by (2.4.11) of basis 

variables of the expansion. They are arranged in a descending order, with roughly the 

first 200 values account for most of the variability of the observation data, though 

according to our result shown in Figure 5-7, the first few terms are sufficient for the 

estimation purpose. In this regard, Table 5-3 shows the percentage of sum of those 
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variances D , corresponding to each order of PCs in Figure 5-7, over the trace of the 

diagonal matrix D : 

 Percentage =
D

=1

M

trace(diag(D ))
                                                                               (5.3.20) 

ORDER OF 

EXPANSION
M = 2 M = 5  M = 10  M = 20  

VARIANCE 

PERCENTAGES 
1% 3% 6% 12% 

Table 5-3. Percentage of Variances for Each Order of Expansion 

 

We can see that, the first 20 terms of PCs would account for only 12% of the total 

variances, yet it has already given a very close extrapolation to the original signal. This 

fact illustrates the difference between a spectral decomposition (SD) and singular value 

decomposition (SVD). In SVD, the data matrix refers to a time series for a random 

vector, and the SVD reduces the dimensionality of this matrix to only a small number of 

singular values which contain most of the variances of the matrix (a very high percentage 

in all); but in SD, we are simply dealing with one time series, and although the 

dimensionality is as well reduced significantly by this decomposition for the estimation 

purpose, it can retain only a small amount of variation of the whole data sequence. In 

another turn of phrase, the SVD algorithm provides a discrete spectrum of data set in 

which several terms can claim most of the second moments, while the SD produces a 

continuous spectrum in which the second moments are comparatively averaged in these 
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values in a descending order (Figure 5-9). Nevertheless, this small percentage will not 

affect the excellent performance of estimation at all. 

 

Finally, we will compare the performance of extrapolation using two different choices of 

PCs: one is derived from the K-L expansion, as is used earlier; the other is obtained by 

Akimov’s method, in which the PCs are arranged in a Jordan Block (JB) (See Section 

5.3.2.2). Figure 5-10 shows the result of two extrapolations for another realisation of our 

random linear signal: one is by K-L expansion when M = 20 , the other is by this Jordan 

block selection; the variance of the G-M noise this time is around 5.23. We can see that, 

both choices of PCs produce very accurate extrapolation of the original signal over the 

region T , T + S[ ] . 

 

To compare the optimality of these two extrapolations, again, we need the theoretical 

mean-square errors of both optimal linear operators. Figure 5-11 describes the minimum 

mean-square errors of these two operators, obtained from (5.3.9). Obviously, despite the 

result in Figures 5-10, the extrapolation using K-L expansion with 20 PCs has a 

significantly lower mean errors than the PCs with JB, with all the errors of JB within the 

range of 0.08 and 0.16 while those with K-L remain a level of 0.01. This means in 

general (for many realisations), the selection of K-L expansion should give better results 

of extrapolation than those of PCs with JB structure. However, those PCs with JB are 

very easy and straightforward to compute, comparing to the spectral decomposition 

needed in K-L expansion.  
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Figure 5-10. Extrapolation using both the K-L Expansion with M=20 and Akilov’s 

Selection of the PCs having a Jordan Block Structure 

 

              

Figure 5-11. Theoretical Minimum Mean Square Errors of Optimal Linear 

Estimation using Two Choices of the PCs (K-L and JB) 

 



96 

 

Chapter Six: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary 

In the present work, we have carried out a detailed study on the fundamental theory of 

canonical expansions, and its applications in both linear and non-linear estimation under 

MMSE principle. Also, we have examined the performances of both operators in 

different cases of signal and noise models. From the theoretical exploration in Chapter 

Two, we have seen that this theory is simply one class of the more universal theory of 

orthogonal functions, and it is bound up with the theories of linear algebra and integral 

equations (or with the eigenvalue and eigenvector problems in both theories). In 

consequence, the Karhunen-Loève expansion (or PCA) is an important special case of the 

canonical expansion, although it is always possible to obtain a different manner of 

expansion. We have also seen that, theoretically, almost all the common random 

processes are capable of such expansions, so the techniques proposed in the later chapters 

can be adequately applied to every noise model in practice.   

 

In Chapters Three and Four, the optimal operator according to the MMSE has been 

formulated by using the projection theorem in Hilbert space. If the operator is linear, then 

the form of this operator depends on the solution of the Wiener-Hopf equation, which we 

have solved by Galerkin’s method using the principal components. The treatment differs 

from the linear case when the operator is not linear. In this case the optimal operator is 

the regression operator. We have also shown how to formulate the conditional 

expectation using PCs when the noise model obeys the Gaussian distribution law.  
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Subsequently in Chapter Five, numerical tests have been given in order to investigate the 

performance and computability of both operators for different signal forms and noise 

models. The first case shows that the non-linear operator is in general the optimal one 

compared to the linear one. The second example illustrates that the non-linear operator 

becomes practically not really feasible when the dimension of the signal is too large, and 

instead we have to adopt the linear one in spite of its sub-optimality; the third one is a 

case where the linear and non-linear operators coincide with each other when the 

variables in both the signal and noise are Gaussian. As we have seen, the operators using 

the canonical expansion can attain accurate results in each experiment.  

 

In all, the current work attempts to initiate a study in geomatics engineering on the 

method of canonical expansions and its application in the optimal estimation of time 

series, introduced by a group of scientists from the Russian school (e.g. Kolmogorov, 

Pugachev and Andreyev). Normally, the method of Fourier Transform (FT) is the typical 

treatment of the stationary time series by studying the PSD in the frequency domain. 

Therefore, the canonical expansion should be considered as a parallel approach to the 

method of FT when studying stationary processes. However, for non-stationary 

processes, the canonical expansion is more general, since as long as the PCs can be 

extracted from the covariance model, the optimal estimation can be performed in the 

same manner as we have developed in the thesis, without any assumption of the usual 

stationarity. As we have seen, in this thesis, we have successfully used this technique to 

solve the Wiener-Hopf equation and obtained the optimal linear estimation for a few time 

series. Also, the contribution includes a formulation of the non-linear regression, which is 
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the optimal operator overall. This opens a new direction of applications of such an 

approach in various problems not only in the MMSE estimation problems, but also in 

other optimal estimation problems under different criteria. Theoretically speaking, any 

operation or system obtained from this non-linear formulation should be the best 

estimator among all the possible operations and systems. This normally requires a 

combination of the method of canonical expansion with other numerical techniques.  

 

6.2 Conclusions and Recommendations 

Generally speaking, the canonical expansion is an effective approach of using the 

principal components derived from the noise model to filter out the unwanted noise in the 

observed time series, so that the useful signal can be extracted with the minimum square 

errors. It can be used in a variety of estimation problems in geomatics engineering and 

geodynamics: filtering, prediction and detection. Finally, we draw the following 

conclusions and recommendations, based on the results achieved in the present study: 

1. Canonical expansion is an approach of linearisation of a random process into a 

combination of orthogonal elements, which contain all information about the 

second moment of the process.   

2. In essence, the selection of principal components depends on the solution A  of 

the matrix equation of similarity (or, equivalently, the corresponding linear 

integral equation in the continuous case): 

  A K AT
= D                                   

In the thesis, we have investigated two solutions:  
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1) K-L expansion: the matrix A  is the matrix of eigenvectors of the variance-

covariance matrix K , correspondingly, D  contains all its eigenvalues;  

2) LDU decomposition: the matrix A  is selected as a lower triangular matrix, 

so that every PC can be generated recursively. 

Both selections entail a decomposition of the random process in a manner of 

canonical expansion. 

3. Principal components of the noise model, generated by canonical expansion, can 

be adequately applied in constructing Galerkin’s form of the solution of a Wiener-

Hopf type optimal linear operator in MMSE estimation problems. Both the above 

mentioned choices of PCs give good performances of this operator.  

4. The proposed linear operator can be utilised in filtering out both stationary and 

non-stationary noise. 

5. The optimal linear operator is not always the best choice of MMSE estimation. In 

general, the one defined by the a-posteriori conditional expectation (or regression) 

offers the best solution to the estimation problem, and the linear one is only a 

special case of this non-linear one. Principal components can also be used in 

formulating this non-linear operator, and its performance is quite convincing.  

6. However, the calculation of this non-linear regression operator sometimes 

involves great complexity. As a result, in practice, for the purpose of simplicity, it 

is at times expedient to adopt a sub-optimal linear operator at the cost of 

optimality. 
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7. A few models of problems that are frequently dealt with in geomatics engineering 

and geodynamics have been brought forward in order to examine the 

performances of the estimators in each case.  

8. The proposed method of non-linear estimation using principal components is not 

restricted to the MMSE case only; on the contrary, it can be used in a much wider 

range of optimal estimation problems. MMSE is only a special case of a more 

general criterion of optimality with which a well-defined loss function is 

associated. In such manner, canonical expansion should be considered as one of 

the effective approaches in every branch of estimation theory.  
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