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ABSTRACT

The intent of this research was to make a contribution to the synthetic Earth project. To

that end, this dissertation describes three attempts to determine the mantle density distri-

bution that results in the Earth’s geopotential field. Each has advantages and limitations,

as will be described in the sequel. To begin, a description of the Earth models that are in

current use is given, and with those descriptions, some of the work that has been done in

the synthetic Earth project is outlined. This is followed by the background needed for the

chapters which describe experimental results.

A wav elet approach for anomalous body identification and depth estimation was the first

attempted. The technique employed is one which is suitable for mineral exploration. It

was expected also to be useful for crust and mantle analysis, but this was found not to be

the case. Analysis of simple bodies was found to be straightforward, but complex anom-

aly assemblages rendered the technique unusable.

An examination of the geopotential spectrum revealed a power law characteristic that

related the spectrum to depth. By making simplifying assumptions with regard to source

configuration, and accepting that not all causative bodies might be recognized, it proved

possible to classify a geopotential field into several layers. Tw o of the deepest were used

in an inversion strategy to characterize individual causative bodies, and subsequently to

replicate the measured field. While the correlation of the measured to synthesized field

appeared quite good, the discrepancies between the two were larger than was deemed

acceptable.

By taking an alternative approach based on Green’s equivalence layer, the same depth
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layers interpreted in the previous analysis were inverted as continuous shells of arbitrary

thickness. The estimated density contrast variation, and consequently anomalous mass

variation, was seen to be within the range predicted or used by other researchers. That

there was a direct connection between the measured geopotential field and the density

contrast as a function of interpreted depth and shell thickness is considered to be a strong

argument for validating this approach, which may be used as more modern spectra are

developed.
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1
1 Introduction
Like the Preliminary Reference Earth Model (PREM) of [Dziewonski and Anderson
1981], which has been used in geophysical studies, a synthetic model of the Earth’s grav-
ity field would be an invaluable asset for numerical research. Such was the thinking of
the International Association of Geodesy (IAG) when special study group 3.177 was cre-
ated in 19961. The IAG felt that such a model would be very useful for computational
experimentation. A synthetic Earth model could be used to look at the problems associ-
ated with approximations used in geodetic studies. It could allow one to study how errors
are propagated through various numerical processes. It could allow researchers around
the world to experiment with common, well understood and well characterized datasets.
By addressing the practical aspects of producing a synthetic gravity model, it could also
allow one to capture the essence of crust or mantle geology through the appropriate
choice of a model. Thus the result would be a model representing not only the observed
gravity and its derivatives, but also present a possible picture of that geology.

Some of the suggested objectives of the synthetic Earth project were related to global
geology: the density and mass structure of anomalous bodies in the mantle and crust.
[Featherstone 1999a] mentions the desirability of realistic fields, possibly based on point
masses which might be fixed, freely positioned or in some manner adaptable to specific
needs. Furthermore, some form of numerical density structure was deemed most desir-
able. These areas were of most interest in the research to be described, and they hav e
been of interest to other researchers as well.

Over recent decades, considerable work has been done by various researchers, at times
independently of this IAG initiative. Work to date ranges from an early model created by
[Moritz 1968a] and [Moritz 1968b] to high order models (up to degree and order 1800)
which were constructed by G. Wenzel prior to his recent death. These (see [Wenzel
1998b] and [Wenzel 1998a] for details) were based on 5’ by 5’ world-wide datasets of
mean free air gravity anomalies.

Other workers have experimented with synthetic models using point masses, suitably dis-
tributed so as to replicate the observed field. A review article covering such approaches is
contained in [Vermeer 1995]. Forward modelling which employs geologically-controlled
structures, suggested from geophysical (often seismic) experiment has been used in the
past for mineral exploration. Such procedures often employ analytic models (point

1 http://www.cage.curtin.edu.au/˜will/iagssg3177.html



2
masses, lines, ribbons and the like) for which gravitational attraction can be computed.
Example studies include that of [Lehmann 1993] who used an iterative technique
ascribed to [Barthelmes 1986] for modelling the field in the Gulf of Bothnia, and
[Martelet et al. 2001] who investigated deeper structures, principally that of the
Himalayas, reaching from about 7 km to about 20 km depth. Studying gravity anomalies
as a means of interpreting Earth structure has been going for many years however; it is
not a new phenomenon. See for example [Dobrin 1960] and the references therein. A
very readable discussion may be found in [Blakely 1995].

In another recent paper [Papp et al. 1996], the authors constructed a three-dimensional
volume element model of the upper crust and mantle to study sediment compaction in
north western Hungary. In part the model was derived from deep seismic sounding and
gravity inversion. It was successfully used to reconstruct geoid undulations of short
wavelengths in the Pannonian Basin, and these were favourably compared to the existing
quasi-geoid solution (to about the 10 cm level in RMS).

[Pail 1999] has constructed a synthetic global gravity model based on the equivalent
source principle. As such, he has employed lateral density variations at the surface of the
upper mantle which were parameterized by recent tomographic models. These mantle
density variations have been superimposed on PREM and have been augmented by an
isostaticly compensated crustal layer. Owing to its parameterization, the upper limit of
resolution is said to be low; nevertheless it has been used for satellite gravity gradiometry
simulations.

Recently [Featherstone 1999b] developed two gravimetric models of the geoid over a por-
tion of Australia. These were constructed from modified forms of Stokes’ formula. The
justification for doing this, as opposed to experimenting with observed gravity data, was
that a consistent, or well-known set of gravity anomalies and undulations were thus avail-
able. These in turn could be used for experimental purposes as the error in numerical
computation would be self evident. As it turned out, Featherstone was able to establish
that the modified Stokes’ operator was superior to the commonly used remove-restore
approach for geoid computation in his geographic area.

[Allasia 2001] examined the interpolation of gravitational potential on scattered data.
[Claessens et al. 2001] experimented with the free positioning of point masses as the
authors attempted to model the region around the city of Perth in Western Australia.
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3
[Haagmans 1999] built topographic and Earth potential models to a high degree for com-
parison with current and existing models. Another interesting approach was taken in
[Vajda and Vaníc̆ek 1999] where the properties of a point mass anomaly when processed
by a truncated Stokes’ function, were studied. The examination of "dimple" events
occurring in the derivatives of the truncated geoid allowed the researchers to estimate the
depth of the point mass independently of its mass.

Many other researchers have also been active. See for example the bibliography in
[Featherstone 2002], the report in [Featherstone et al. 2001] and the recent paper by
[Kuhn and Featherstone 2002a] which is an attempt to construct a forward gravity field
model. This paper discusses the generation of a synthetic Earth gravity model based on
surface topography and bathymetry, and a 2° by 2° crustal model of densities that extends
into the upper mantle. It was successful in a partial match with EGM962 for higher
degrees, but lacked the deeper mantle mass anomalies to permit a match for the lower
degrees. One other related paper by [Kuhn and Featherstone 2002b] discusses the spatial
resolution needs for crustal mass distributions for forward gravity model generation. An
extended Meissl scheme for forward gravity field modelling is developed. They found
that currently available digital elevation models were sufficient to find the effect on the
geoid height caused by topographic masses with an omission error less than 1 cm. The
effect of deeper data on geoidal heights, given spatial data resolved to about 20 km
(where available) could be derived with omission errors of less than 1 mm. These two
papers will be seen to complement the research to be described in the sequel.

In a very recent paper, [Kuhn 2003] describes experiments with determining the geoid
using isostatic models augmented by information derived from geological maps for SW
Germany. He tried both constant and variable density cases for both planar and spherical
isostatic models and concluded that the difference in the geoid height could reach 1 dm
with different density assumptions, a value that he pointed out was too high for precise
geoid determination.

1.1 Modelling the Earth

Earth models have been developed since at least the early 1980’s when [Dziewonski and
Anderson 1981] published their paper describing a preliminary Earth reference model, or
PREM as it has become known. It is a radially symmetric Earth model described by key

2 EGM96 is a publicly-available geopotential model computed by Goddard Space Flight Centre (GSFC),
the National Imagery and Mapping Agency (NIMA) and Ohio State University (OSU) from JGM-3 (Joint
Gravity Model 3) and terrestrial/altimetric 30’ x 30’ anomalies [Lemoine et al. 1998].
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geophysical parameters, including shear and compressional velocity, as well as the den-
sity which is of interest in this research. That attribute is illustrated graphically in Figure
1-1.
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Figure 1-1: Dziewonski and Anderson’s 1981 Preliminary Earth Reference

Model. Shown are density versus Earth radius values.

The Earth however is not radially symmetric as the shape of the geoid so aptly indicates.
An exaggerated (for display purposes only) version of a low order geoid is illustrated in
Figure 1-2. For reference, continental and island coastlines have been ‘floated’ above the
geoid. Divergence from a sphere is particularly apparent in the lower portion of the
image. Geodesy is the theory of the size and shape of the Earth and the variations seen in
the figure indicate a non-uniform density for the interior, and hence the presence of struc-
tures beneath the surface [Garland 1965].

It is with this thought in mind that from the PREM model has emerged a new Earth refer-
ence model (REM) for which one objective is that it will also accurately reflect the geoid.
It is the intention of seismological researchers that this model encapsulate more geophysi-
cal parameters than the seismic constraints of PREM.

Recent research appears to have been focussed on the crust. See for example, the latest
updates to the REM subgroup 5 page3 which may be referenced from the Whole Earth

3 http://mahi.ucsd.edu/Gabi/rem.dir/crust/rem.crust.html#3smac
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,

Figure 1-2: This is an exaggerated image of a low order geoid with coast-

lines shown ‘floating’ above for reference. Divergence from a sphere is read-

ily apparent.

Geophysics page4. From all appearances, there has been little work done on density esti-
mation for the mantle since the primary focus has been seismic analysis [Laske,
Dziewonski, and Masters 2003]. The next section describes the efforts to develop a new
model.

1.1.1 Reference Earth Model REM

Currently the development of a new Reference Earth Model (REM) is underway5. The
objective is to produce a replacement for the PREM which is now over 20 years old
[Laske, Dziewonski, and Masters 2003]. The subgroups include the following:

1 Modes and surface wav es

2 Travel times and source locations

3 Regional wav eforms

4 Global wav eforms

4 http://mahi.ucsd.edu/index.html
5 http://mahi.ucsd.edu/Gabi/rem.dir/rem.home.html
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5 Crust, lithosphere, age and topography

6 Mineral physics

7 Geodynamics

8 Geochemistry

Of these, the closest to our research interest might be the fifth which deals with the crust6

and lithosphere7, both of which are defined in [Whitten and Brooks 1979].

The crustal model currently available is named CRUST 2.0 and its density structure8 has
been specified using newly available constraint data from field and laboratory studies. In
areas without field measurements, statistical estimates have been made based on similari-
ties in crustal age and tectonic settings with better known areas. A cross section of the
crust for different geological settings is available9. Note that the model gives only an
estimate of the upper mantle density. Over the Earth, 341 crustal profiles describe the
variations in the 16,200 2° by 2° cells, and from these the mantle density immediately
beneath the crust was found to have mean and variance 3.17±0.43 gm/cc.

There are other recent crustal models such as 3SMAC [Nataf and Ricard 1996] which is a
model of the crust and upper mantle with a focus on tomographic observables (P and S
wave velocity). Another is RUM, a model of seismic structure of the upper mantle. It
too is a seismic model generated through tomographic inversion and provides modelled P
and S wav e speed or travel times. The last is the Global Digital Sediment Map which is
a 1° by 1° model developed in the late 1990’s [Laske and Masters 1997]. Its use is aimed
at providing more accurate crustal corrections for mantle tomographic studies. Informa-
tion available in the model includes P and S wav e velocities, plus density divided into 3
depth zones: 2 km, 5 km and the remainder, depending on crustal depth.

These recent models are of little use in this research on mantle inhomogeneity. Some
work at the Berkeley Seismological Laboratory is more relevant, however. An online
paper available10 is that of [Rousset and Romanowicz 2002]. This is a discussion of the

6 The crust is that part of the Earth lying above the Mohorovičić discontinuity which has an average
depth of about 35 km, and which separates the crust from the mantle, a zone of substantially greater density
composed primarily of olivine.

7 The lithosphere is that part of the crust containing the outer, rigid sial, (composed of silica and alu-
minum). It also includes the upper part of the less rigid sima, (composed of silica and magnesium).

8 CRUST 2.0 also provides shear and compressional velocities [Bassin et al. 2000].
9 http://mahi.ucsd.edu/Gabi/crust/crust.keys.gif
10 http://www.seismo.berkeley.edu/seismo/annual_report/ar01_02/node1.html
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use of the Neighbourhood Algorithm [Sambridge 1999a; Sambridge 1999b] to estimate
mantle density (and velocity) variability. This technique uses forward modelling to sam-
ple the parameter space preferentially where the fit is better and then exploits the result to
obtain quantitative information. The result was good for shear wav e estimation, but less
so for compressional wav e estimates. The density estimates were oscillatory.

A related paper, available at the same site is [Kuo and Romanowicz 2001]. It examines
the question of resolving the three dimensional structure of the mantle by using synthetic
data to support the hypothesis that low density structures in the lower mantle were corre-
lated with low velocities. This is in sharp contrast with the work of [Ishii and Tromp
1999] who concluded from their studies that exactly the opposite was the norm, that is
that low velocities were associated with high density regions. Kuo’s conclusion in part,
was that current methods and datasets were insufficient to establish density variations in
the Earth. Their work supported the conclusions of others [Resovsky and Ritzwoller
1999] that it is not possible to correlate or de-correlate density variations in terms of seis-
mic velocity as a function of depth.

A recent paper on the South African uplift has been related to mantle density structure
[Gurnis et al. 2000]. It is a discussion of how a positively buoyant structure within the
mid to lower mantle is related to the uplift observed in southern Africa. They use
dynamic topography11 and uplift rate to constrain mantle density and thus model the
lower to mid mantle (2500 ↔ 1500 km in depth) density as being 0.2% less dense in that
area.

An online abstract [Hipkin 2000] suggests that unless deep causative bodies have suffi-
cient magnitude, shallower bodies will always swamp their surface expression. Hipkin
notes that most anomalies observed in EGM96 are from the lithosphere (wav elengths less
than about 500 km), with several exceptions: first the wav elength range of 3000 ↔ 1300
km is indicative of bodies near 1300 km depth; and secondly, a zone of density anomalies
near 230 km is also visible, making density variations at the 670 km boundary invisible.
These findings are similar to those found in this research, although the 230 km depth is
not in agreement with the present work, as that depth was found to be about 320 km.
Hipkin’s work was aimed more at estimating mantle viscosity from estimated density
variations.

11 That topography which is maintained by dynamic processes. For example, the elevation of a bound-
ary surface due to upward or downward flow induced by density anomalies in the mantle.
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His comments concerning the lithosphere dominating the measured field are supported by
earlier researchers, such as [Cook 1963] who noted that higher order harmonics could
not originate at great depth, while the low orders might. These he speculated resulted
from undulations in the boundary between the solid mantle and the fluid core.

Except for Hipkin’s oral presentation, it seems that little published work is available on
the subject of mantle density calculation, to the specific degree that this writer’s research
has been aimed. Clearly, the subject of mantle density is an open question that will be
researched and explored for many years to come. The most direct method available for
geophysical analysis remains the seismic method, with subsequent Earth characteristic
modelling based largely on tomography. Expressions relating density to shear and com-
pressional velocity, providing the elastic constants for bulk modulus and rigidity are
known, allow subsequent estimates of density to be made [Stacey 1969].

A check on the interests of well-known Canadian researchers would also suggest that
mantle density is not the focus of current deep Earth model research. Workers such as
Bruce Buffett12 at the University of British Columbia, and Gary Jarvis13 at York are inter-
ested more in geodynamics, with specific emphasis on core/mantle interactions, mantle
convection, thermal evolution and numerical modelling of temperature and velocity
fields. A wider cross section of interests can be reviewed with the organization known as
SEDI, an acronym for the Study of the Earth’s Deep Interior14, which is an umbrella
group, or union committee of the International Association of Geodesy and Geophysics
(IUGG). Its reason for existence is to “amalgamate all sources of data and all points of

view to generate the most coherent and consistent picture of the workings of the Earth’s

deep interior”. Its focus is on the past and present thermal, dynamic and chemical states
of the deep Earth, and what effect these may have at the surface.

A review of SEDI’s recent publications indicates little specific reference to density or
mass anomaly estimation. References to density are generally in the context of the core
or the core/mantle boundary, with the exception of a report of some work in 1996 of man-
tle tomography. This showed mantle convection, and slab structures passing through the
transition zone into the lower mantle. Some of the structures were draped along the 670
km level, and also apparent were slab-like structures at the 1300 km level. This model
was attributed to R. van der Hilst (Massachusetts Institute of Technology) in

12 http://www.eos.ubc.ca/public/people/faculty/buffett.html
13 http://www.eas.yorku.ca/eas/faculty/jarvis.html
14 http://www.sedigroup.org/
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collaboration with S. Widiyantoro (Australian National U.) and E.R. Engdahl (USGS,
Denver).

Gravity field analysis is much less direct than seismic analysis, although in some mineral
exploration areas it remains very useful, judging by the recent wav elet analysis work dis-
cussed elsewhere in this document. For Earth characterization and its application to the
synthetic Earth project, it is ambiguous at best, although spectral analysis with traditional
inversion techniques can be quite enlightening. Much further research is warranted. The
research described herein is an attempt to contribute to that knowledge base.

1.2 Research Objectives and Contributions

The primary objective of this research was to contribute to the synthetic Earth project by
making reasonable estimates of deep Earth mass anomalies’ magnitude and depth. These
estimates were to be judged as acceptable on the basis of their plausibility and the degree
to which the measured geopotential field matched that generated by the estimated bodies.
The source of all analysis was to be the expansion of a publicly-available geopotential
field, such as EGM96 or other recent coefficient sets.

The subordinate objective was the development of various tools and techniques to facili-
tate achieving the primary goal: the simulation of the Earth’s geopotential field. These
included procedures for handling geopotential field synthesis, expansion, filtering, nor-
malization, synthetic field generation and other procedures required in this research;
methods to perform wav elet analysis on both global and local fields insofar as required
for their numerical analysis and subsequent interpretation; the facility to analyze fields for
recognizable anomalies and to perform mass estimates for those anomalies; and finally,
developing a method to permit the assessment of lateral variations of identified and inter-
preted anomalies.

To the extent that the measured potential or the gravity field can be used for estimating
deeply buried mass anomalies, this research exercise was successful.

Selected contributions of this research to the synthetic Earth project, and potentially to
the overall knowledge of the Earth’s interior follow:

• Using a simple model, a method to make use of the geopotential field to estimate
the depth to anomalous bodies has been identified and exploited.
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• A model of possible mass anomalies numbering several hundred in total has been

constructed. These range in depth from 300 to 1100 km and have mass sizes in the
order of 1022 grams. The mass model is reasonably well correlated to the low order
coefficients of the EGM96 and the CHAMP geopotential models (to degree 27).
This model of mantle mass anomalies generates a plausible field using point
masses as suggested in [Featherstone 1999a], although discrepancies make it less
than ideal.

• A method to estimate the lateral variability of the aforementioned model has been
identified, coded and used for the evaluation of the mid to upper mantle. Based on
a direct link to the measured and interpreted geopotential field, this method permits
a continuously variable density contrast (or anomalous mass) analysis at arbitrary
mantle depths. In this research, the depths employed were specified by the inter-
pretation of the measured field. The resulting analysis compares favourably with
portions of the mass model, and also with aspects of other researchers’ work.
Because of the manner in which it was computed, the model has the property of
reproducing the measured field.

• An evaluation of the wav elet techniques described in the context of exploration
geophysics was performed. To the extent that simple features were available, this
was found to be an acceptable method of depth assessment for deep-seated mass
anomalies. For complex surface expressions, it was demonstrated to be lacking and
in need of additional knowledge of the subsurface to be effective. Thus, unlike the
three previous contributions, this work demonstrated an unsatisfactory method for
the depth analysis of mantle structure.

• Various codes for spherical harmonic expansion, synthesis, filtering, normalization
and display were developed in the context of an analysis suite suitable for reliable
interaction with and the interpretation of published geopotential or other coefficient
sets. Other tools developed were for wav elet analysis, synthesis and expansion
employing orthogonal wav elets. Procedures to use continuous wav elets for pro-
cessing global gravity or geopotential fields were also created.

1.3 Dissertation Organization

Chapter 2 provides necessary background on spherical harmonics. It provides an over-
view of the subject, and how they are calculated and normalized. To the extent that deriv-
atives and integrals are required, the subject is covered, as is a discussion on sampling
and spectral resolution. There is a brief review of the approaches used to expand
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functions, or to synthesize them, with a focus on the technique used in this research.
There are some comments on other codes of interest and idiosyncrasies of which users
must be aware. Finally, some specific mathematical development required for the experi-
mentation described in later chapters is provided.

Chapter 3 covers the subject of wav elets, a relatively new field that has seen considerable
interest and application in many scientific areas. The continuous and its discretized
cousin are discussed, and the orthogonal transform that provides for a multiresolution
analysis is also covered. The relationship of wav elets to potential fields, and their appli-
cation for global gravity field analysis completes the chapter.

Chapter 4 is one of two that applies the techniques described in the previous material to
global potential field analysis. In this chapter, the wav elet technique is exploited to ascer-
tain its applicability for deep Earth characterization. For simple models this proves to be
useful, but it will be seen that for the complexity of the real geopotential field, the tech-
nique leaves much to be desired.

Chapter 5 is the second that applies the techniques of previous chapters to global poten-
tial field analysis. In this chapter, a review of some of the work of other researchers is
provided. Standard inversion procedures are used in synthetic studies. Problems associ-
ated with resolution are identified and an alternative is proposed. This permits defining
some error limits for the inversion process. A means to identify mass anomalies is
described and used to locate likely bodies. Using the spectrum with simplifying assump-
tions, depth estimates are made from the surface expression presumed due to underlying
mass anomalies. These are inverted to give mass estimates, and from them, a match with
the published field is produced. Further numerical work attempts to characterize the
shape of the anomalies with good success. A technique using an interpretation of a
geopotential spectrum allows plausible inversions of the measured field to be performed,
and this is demonstrated for several depths. This allows a continuously variable density
contrast to be estimated.

A summary of the work, a detailed list of contributions and several recommendations for
future work are provided in the closing chapter.
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2 Spherical Harmonics
This chapter discusses spherical harmonics to the degree necessary15 to understand the
basic theory and how they may be profitably employed in unravelling the mysteries of the
Earth’s interior. Readers wishing a much more extensive background are referred to the
classic [Hobson 1931] and the equally instructive monograph [MacRobert 1967]. These
two works cover the subject very well, although some areas relevant to the derivatives and
integrals of Legendre polynomials are better described elsewhere, as will be seen.

2.1 A Brief Introduction

It is the solution to Laplace’s homogeneous equation in space, expressed in spherical
coordinates, that result in what are known as spherical harmonics. The simplest harmonic
function is that described by the inverse distance between two points: (x, y, z) and
(ξ , η, ζ ), as per

1
l

=
1

√ (x − ξ )2 + (y − η)2 + (z − ζ )2
(2-1)

where this and other functions (expressed here as U , and as V in the sequel when refer-
ring to gravitational potential) are said to be harmonic if they satisfy Laplace’s equation,

∆U = 0 (2-2)

which is the common abbreviation for ∇2U = 0.

As indicated in [Heiskanen and Moritz 1966], a well known example of such a function
is that indicated by the exterior potential of a homogeneous sphere,

V =
GM

l
(2-3)

with G being the gravitational constant, M and the sphere’s mass, and l the distance from
the centre of the sphere to the measurement point. In the general case, this would be
expressed as

VP = k
ν
∫∫∫

ρQ

lPQ
dv (2-4)

which indicates that the potential measured at P results from the integration of all density
elements within volume ν at points Q (i.e. ρQdv) separated from point P by distance lPQ.

15 No pun intended.
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As an aside, note that this equation is illustrative of the fundamental problem at hand, that
of estimating Earth structure from measurements of the exterior potential. Unfortunately,
the problem is complicated by the fact that any harmonic function exterior to a surface S,
is uniquely determined by its values on S. See, for example [Butkov 1968], for a detailed
explanation of Stokes’ theorem, of which this is a particular instance. As [Heiskanen
and Moritz 1966] thus point out, it is not possible to determine a unique solution by the
inversion of the Earth’s potential; nevertheless, a study principally employing spherical
harmonics was pursued to gain insight into that structure.

Continuing with the discussion of spherical harmonics, by following the development in
[Heiskanen and Moritz 1966], one finds that the conversion from Cartesian coordinates in
(x, y, z) to the orthogonal spherical coordinates in (r,θ , λ) affords a solution to Laplace’s
equation for an arbitrary harmonic function U in both surface and solid spherical har-
monics. That equation is expressed as,

∆U =
1
r2

∂
∂r



r2 ∂U

∂r



+
1

r2 sinθ
∂

∂θ


sinθ

∂U
∂θ




+
1

r2 sin2 θ
∂2U
∂λ2 (2-5)

Separation of variables into r and (θ , λ) is the usual first step.

U = U(r,θ , λ)
= f (r)Yn(θ , λ)

(2-6)

where Yn(θ , λ) = g(θ )h(λ). The radial solutions f (r) = rn or f (r) = r−(n+1), are called
solid spherical harmonics and are expressed as either (or both in the case of a sum),

U =
∞

n=0
Σ





rn

r−(n+1)




Yn(θ , λ) (2-7)

The Yn(θ , λ) are known as the surface spherical harmonics, with r = 1 on the unit
sphere. After separating the other two variables, the following expressions for the surface
spherical harmonics result from the solution to the two-variable differential equation16,

Yn(θ , λ) = Pnm(cosθ )




cos mλ
sin mλ





m = 0, 1, . . . , n (2-8)

The two solutions for h(λ) are cos mλ and sin mλ . The solution for g(θ ) are the
Pnm(cosθ ), which are known as Legendre functions. Because of the linearity of these
equations, any linear combinations are also solutions, such as

16 The Yn(θ , λ) are defined in [Heiskanen and Moritz 1966] on page 21, equations 1-48 and 1-53.
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Yn(θ , λ) =
n

m=0
Σ 


anm Pnm(cosθ ) cos mλ + bnm Pnm(cosθ ) sin mλ



=
n

m=0
Σ 


anm Rnm(θ , λ) + bnmSnm(θ , λ)



(2-9)

with Rnm(θ , λ) = Pnm(cosθ ) cos mλ and Snm(θ , λ) = Pnm(cosθ ) sin mλ .

The surface harmonics can be used to expand any arbitrary function on a surface, by
appropriate choice of coefficients anm and bnm. It should be noted that the terms
Rnm(θ , λ) and Snm(θ , λ) are individually and collectively mutually orthogonal for non
equal values of degree (n) and/or order (m). Furthermore, their square over a sphere has
the value,

σ
∫∫ (Rnm(θ , λ))2dσ =

σ
∫∫ (Snm(θ , λ))2dσ =

(2δ m0)2π
2n + 1

(n + m)!
(n − m)!

(2-10)

Note the delta function in equation equation 2-10. It indicates that for m = 0, an addi-
tional factor of 2 appears in the result. A similar expression appears in later equations.

For functions respectively inside or outside a normalizing sphere of radius R, potential is
given by

Uinside(r,θ , λ)

Uoutside(r,θ , λ)

=
∞

n=0
Σ 


r
R




n

Yn(θ , λ)

=
∞

n=0
Σ 


R
r




n+1

Yn(θ , λ)
(2-11)

The general expression for a Legendre function is expressed in either the form for a Leg-
endre polynomial as

Pn(t) =
1

2nn!
dn

dtn
(t2 − 1)n (2-12)

where t = cosθ ,17 or in the modified form for a associated Legendre function as

Pnm(t) = (1 − t2)m/2 dm Pn(t)
dtm

=
1

2nn!
(1 − t2)m/2 dn+m(t2 − 1)n

dtn+m

(2-13)

17 Here, θ is the colatitude, or 90 minus geographic latitude. Note that some authors use geographic
coordinates, and for them t = sinθ , with appropriate modifications to Rodrigues formulae.
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both of which are known as Rodrigues formula [Butkov 1968].

In general, Pnm(t) is the same as (−1)m Pm
n (t), as indicated by [Hobson 1931, p. 90] and18

Pm
n (t) = (−1)m(1 − t2)m/2 dm Pn(t)

dtm
(2-14)

where (1 − t2)m/2 has its positive value when m is odd.

Note that ‘m’ is a positive integer quantity for geodetic use, having the range
m = 0, 1, . . . , n where n is the degree.

2.2 Legendre Function Calculations

The polynomial functions (i.e. m = 0) are easily derived from a recursive formula, given
the first two expressions for the polynomials19. That formula is

Pn(t) = −
n − 1

n
Pn−2(t) +

2n − 1
n

tPn−1(t) (2-15)

and the first few expressions are

P0(t) = 1
P1(t) = t
P2(t) = 1. 5t2 − 0. 5
P3(t) = 2. 5t3 − 1. 5t

(2-16)

by which the recursive formula is seen to be correct. Note that when n is even, Pn(t) is
also even, as shown by [MacRobert 1967] in,

Pn(−t) = (−1)n Pn(t) (2-17)

To calculate the associated functions, Rodrigues formula may be used, and this results in
expressions such as (to n = m = 2, with t = cosθ and u = sinθ ),

P00(t) = 1
P10(t) = t
P20(t) = 1. 5t2 − 0. 5

P11(t) = u
P21(t) = 3ut P22(t) = 3u2

(2-18)

Many recursion relations exist for the associated Legendre functions, several of which
follow. For the case of n > 0  and m ≤ n, m ≠ 0, the following relation from [Sideris
1997] attributed to [Singh 1981] obviously holds

18 MacRobert indicates that this function is called Ferrer’s function
19 Orthogonal functions generally satisfy three term recursions. See for example [Szegö 1939].
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Pnm(t) = (2n − 1)(1 − t2)
1
2 Pn−1 m−1(t) + Pn−2 m(t) (2-19)

As does this from [Blais 1995], also attributed to [Singh 1981]

Pnm(t) =
2n − 1
n − m

tPn−1 m(t) −
n + m − 1

n − m
Pn−2 m(t)

=
2(m − 1)t

(1 − t2)
1
2

Pn m−1(t) − (n − m + 2)(n + m − 1)Pn m−2(t)

n − 2 ≥ m

m ≥ 2
(2-20)

given the initial values for P0(t), P1(t), P11(t) and P21(t) above.

An alternative expression from [MacRobert 1967, page 115, example (i)] and also in
[Hobson 1931, page 107, equation 40], indicates the following recursive relationship for
constant n,

Pn m+2(t) = (n − m)(n + m + 1)Pnm(t) −
2(m + 1)t

√ t2 − 1
Pn m+1(t) (2-21)

The expression as indicated is complex, and is intended for the case where t is not real,
and is less than one. However, if the signs of the coefficients are reversed and the signs
under the radical are also reversed, an expression appropriate for real, non-negative t

results. This is similar to Hobson’s equation 41, with the signs of the coefficients as
shown here,

Pn m+2(t) =
2(m + 1)t

√ 1 − t2
Pn m+1(t) − (n − m)(n + m + 1)Pnm(t) (2-22)

Note that this expression is identical to that in equation 2-20, except that the order m has
been incremented by two. Sometimes such alternative expressions are more convenient
to use. For example, from [Hobson 1931, page 108, equation 42] there are two relations
with constant m, where the only difference is the increment to the degree n,

Pn+1 m(t) =
1

(n − m + 1)


(2n + 1)tPnm(t) − (n + m)Pn−1 m(t)


(2-23)

Pn+2 m(t) =
1

(n − m + 2)


(2n + 3)tPn+1 m(t) − (n + m + 1)Pnm(t)


(2-24)

The associated Legendre functions where n = m may also be computed recursively.
Observe the sequence calculated from the definition in equation 2-13.
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P11(cosθ ) =
P22(cosθ ) =
P33(cosθ ) =
P44(cosθ ) =
P55(cosθ ) =
Pnn(cosθ ) =

sinθ
3 sin2 θ

15 sin3 θ
105 sin4 θ
945 sin5 θ

(2n − 1)(2n − 3) . . . 1 sinn θ

(2-25)

This reduces to

Pnn(cosθ ) = (2n − 1) sinθ Pn−1 n−1(cosθ ) (2-26)

A related recursion relation exists for the Pn+1 n(t) term. Derived in a similar manner, the
first few terms and the general relation are,

P10(cosθ ) =
P21(cosθ ) =
P32(cosθ ) =
P43(cosθ ) =
P54(cosθ ) =

Pn+1 n(cosθ ) =

cosθ
3 cosθ sinθ

15 cosθ sin2 θ
105 cosθ sin3 θ
945 cosθ sin4 θ

(2n + 1)(2n − 1)(2n − 3) . . . 1 cosθ sinn θ

(2-27)

This reduces to

Pn+1 n(cosθ ) = (2n + 1) sinθ Pn n−1(cosθ ) (2-28)

Many other recursions exist, including those employed by Swarztrauber in his
Spherepack routines, to be described in the sequel [Swarztrauber 1993]. In this article
he provides several additional recursion relations, including the following four point rela-
tion:

(n + m)(n + m − 1)Pm−1
n−1 (t) − (n − m + 1)(n − m + 2)Pm−1

n+1 (t)
+Pm+1

n−1 (t) − Pm+1
n+1 (t) = 0

(2-29)

These show that all P2m
n (t) can be expressed as a linear combination of the P0

n(t) and that

all P2m+1
n (t) can be expressed as a linear combination of the P1

n(t). Furthermore, as there
is no functional dependence on θ , the derivatives are easily calculated from this recursion
as well.

The recurrence relation is initialized by pre-computing P0
n(t) and P1

n(t). It is also possi-
ble to compute Pm

n (t) for n = m and m = n − 1 by setting Pm
n (t) = 0 when n < m.
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It is worthwhile to note that not all Pm

n need to be calculated as certain symmetries may
be exploited. One in particular is Pm

n (cos(π − θ )) = (−1)n+m Pm
n (cosθ ), which implies that

only one hemisphere needs to be determined [Oh et al. 1999] and also [Adams and
Swarztrauber 1997].

In [Heiskanen and Moritz 1966] there is the suggestion that the following formula might
also be used to calculate values for the associated functions, but as one will see later,
numerical problems occur rapidly,

Pnm(t) =
(1 − t2)m/2

2n

(n−m)/2

k=0
Σ (−k)k (2n − 2k)!

k!(n − k)!(n − m − 2k)!
tn−m−2k (2-30)

Earlier it was noted that an arbitrary functions on a surface could be expanded in surface
spherical harmonics by a suitable choice of coefficients. These are computed in much the
same way that the coefficients of a Fourier expansion are determined [Heiskanen and
Moritz 1966],

anm =
2n + 1

(2δ m0)2π
(n − m)!
(n + m)!

σ
∫∫ f (θ , λ)Rnm(θ , λ)dσ

bnm =
2n + 1

(2δ m0)2π
(n − m)!
(n + m)!

σ
∫∫ f (θ , λ)Snm(θ , λ)dσ

(2-31)

where n = 0, 1, 2, . . . ∞ and m = 0, 1, 2, . . . n.

Lastly, note that the values of the surface harmonics can take on a wide range of values,
and that normalized Legendre functions are generally employed. These are expressed
as

Rnm(θ , λ) = √ 21−δ m0(2n + 1)
(n − m)!
(n + m)!

Rnm(θ , λ)

Snm(θ , λ) = √ 21−δ m0(2n + 1)
(n − m)!
(n + m)!

Snm(θ , λ)
(2-32)

with the unnormalized functions Rnm(θ , λ) and Snm(θ , λ) defined in equation 2-9.
Using these expressions, an expansion of an arbitrary function takes the form (the usual
geodetic formulation),

f (θ , λ) =
∞

n=0
Σ

n

m=0
Σ 


anm Rnm(θ , λ) + bnmSnm(θ , λ)


(2-33)

with the coefficients being determined via
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anm =
1

4π
σ
∫∫ f (θ , λ)Rnm(θ , λ)dσ

bnm =
1

4π
σ
∫∫ f (θ , λ)Snm(θ , λ)dσ

(2-34)

The standard way of computing the coefficients is via quadrature formulae. These indi-
cate that for some grid (σ i) and integration weights (w(σ i)), the difference between the
quadrature (i.e. summation formula) of a set of discrete values f (σ i) of a continuous
function f (σ ) and the analytic integral approaches zero. Mathematically, this is stated as
[Yakowitz and Szidarovszky 1989],

0 ≈
N

i=1
Σ w(σ i) f (σ i) −

σ
∫ f (σ )dσ (2-35)

On the parallels, the grid points are defined at the zeros of the cosine and sine basis func-
tions used in the Fourier transform. On the meridians, the points are defined at the zeros
of the Legendre polynomials20. This ensures that the contribution of each grid point is
counted only once, in a manner similar to that of integrating when using Lagrange poly-
nomial functions as a basis.

It should be noted that the normalization factors used in geodetic work (see equation
2-32) are not the only factors in common usage. In geomagnetic studies, the Schmidt
functions are commonly used [Blakely 1995, page 113].

Pnm(cosθ ) = Pnm(cosθ )

= √ 2
(n − m)!
(n + m)!

Pnm(cosθ )

if m = 0

if m > 0
(2-36)

2.3 Normalized Recursion Relations

As might be expected, recursions for the normalized functions also exist. In this section
is the development of the recursion relation used in this research, and elsewhere (citations
follow).

The Legendre functions along the diagonal (i.e. n = m) enjoy a simple relationship. This
is seen by comparing two adjacent expressions: Rn−1 n−1(t) and Rnn(t) as follows.

20 Other authors use the nodes of the Chebyshev polynomials [Driscoll and Healy 1994, page 218].
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Rn−1 n−1(t) = √ 2(2(n − 1) + 1)((n − 1) − (n − 1))!
((n − 1) + (n − 1))!

Rn−1 n−1(t) (2-37)

and

Rnn(t) = √ 2(2n + 1)(n − n)!
(n + n)!

Rnn(t) (2-38)

Their ratio is then after simplification,

Rnn(t) = √ 2n + 1
2n

Rn−1 n−1(t)
Rnn(t)

(2n − 1)Rn−1 n−1(t)
(2-39)

But earlier it was learned from equation 2-26 that there existed a relation between the
diagonal elements. Using this, it is seen that

Rnn(t) = √ 2n + 1
2n

sinθ Rn−1 n−1(t) (2-40)

The elements immediately below the diagonal enjoy a similar relationship with the diago-
nal elements. Consider Rn+1 n(t) and Rnn(t) as follows.

Rn+1 n(t) = √ 2(2n + 3)1!
(2n + 1)!

Rn+1 n(t) (2-41)

and

Rnn(t) = √ 2(2n + 1)0!
(2n)!

Rnn(t) (2-42)

Their ratio then yields,

Rn+1 n(t) = √ 2(2n + 3)1!
(2n + 1)!

(2n)!
2(2n + 1)0!

Rn+1 n(t)
Rnn(t)

Rnn(t) (2-43)

But combining equation 2-26 and equation 2-28 it is found that

Pn+1 n(t) = (2n + 1) cosθ Pnn(t) (2-44)

which means that

Rn+1 n(t)
Rnn(t)

=
cos(nλ)Pn+1 n(t)
cos(nλ)Pnn(t)

= (2n + 1) cosθ
(2-45)
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which simplifies equation 2-43 to

Rn+1 n(t) =
√ 2n + 3
2n + 1

(2n + 1) cosθ Rnn(t)

= √ 2n + 3 cosθ Rnn(t)
(2-46)

Using the recursion relation cited in equation 2-15, one can develop a similar relation for
the normalized polynomials. Recall that

Rn(t)
Rn−1(t)
Rn−2(t)

= √ 2n + 1Pn(t)
= √ 2(n − 1) + 1Pn−1(t)
= √ 2(n − 2) + 1Pn−2(t)

(2-47)

then a substitution into equation 2-15 yields,

Rn(t) =
√ 2n + 1√ 2n − 1

n
t Rn−1(t) −

√ 2n + 1(n − 1)

n√ 2n − 3
Rn−2(t) (2-48)

This can be generalized for n ≠ m to

Rnm(t) = √ (2n + 1)(2n − 1)
(n − m)(n + m)

t Rn−1 m(t) −

√ (2n + 1)(n + m − 1)(n − m − 1)
(2n − 3)(n + m)(n − m)

Rn−2 m(t)
(2-49)

and confirmed by substitution. It is the recursion in equation 2-49 that is used in [Rapp
1982] and in subsequent work when it was extended to higher degree and order. It was
this recursion coded in C and extended for derivatives, that was used in the course of this
research.

As far as accuracy of the recursion relations is concerned, [Wenzel 1998b] notes that the
well known relation

n

m=0
Σ P2

nm = 2n + 1 (2-50)

can be used. He explored numerical accuracy with a FORTRAN compiler and found that

accuracies of 10−13 . . . 10−11 was achievable for the fully normalized functions up to
degree 1800 for polar distances to 180° with 15 digits of precision. Recently, [Holmes
and Featherstone 2002a] and [Holmes and Featherstone 2002b] discussed numerical pro-
cedures for extending the recursions of Legendre functions to degree and order 2700.
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Relative error similar to that experienced by Wenzel was obtained.

In a group effort, Blais and colleagues recently examined the inaccuracy of pre-comput-
ing the normalization factor independently of the Legendre function, and then using their
product when synthesizing a model composed of unit coefficients to represent a model on
the sphere. It was found that after a low degree and order (between 32 and 64) unaccept-
able error began to creep into the process. By using a code similar to that described in
this section, numerical imprecision problems were not observed to at least degree 1024
[Blais 2003]. The experiments used the commercial program known as Mathematica, a
code with extended precision capabilities.

2.4 Derivatives and Integrals

Upon occasion, either or both the derivatives or integrals of Legendre polynomials or the
associated functions will be required. During the course of this research, both were
needed at different times, and this section summarizes the results of exploring this area.

As the derivatives of the Legendre polynomials are straightforward to compute, they will
not be repeated here. Instead, only the derivatives for the associated functions are given.
From equation 2-40, one can deduce the derivative of Rnn(t) with respect to colatitude
directly, as

d Rnn(t)
dθ

= √ 2n + 1
2n



sinθ

d Rn−1 n−1(t)
dθ

+ cosθ Rn−1 n−1(t)


(2-51)

It was this latter form that was suggested in [Colombo 1981] and used in [Rapp 1982].
For a giv en m, the values are determined to a given n, leaving21,

d Pnm(cosθ )
dθ

=
1

sinθ




nPnm(cosθ ) cosθ − 


2n − 1

(n2 − m2)(2n + 1)



1
2

Pn−1 m(cosθ )




(2-52)

The start value is

d P00(cosθ )
dθ

= 0 (2-53)

An alternative formulation from [Swarztrauber 1993] is the derivative of the unnormal-
ized function,

21 Switching from Rnm(cosθ ) to Pnm(cosθ ) is acceptable as the former is simply the latter multiplied by
either cos mλ (or sin mλ in the case of Snm(cosθ )). See equation 2-9 and equation 2-32.
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dPnm(cosθ )

dθ
=

1
2

(Pn m+1(cosθ ) − (n + m)(n − m + 1)Pn m−1(cosθ )) (2-54)

The derivatives of the normalized Legendre functions with respect to λ are quite straight-
forward, and require no repeating here.

With respect to integrals, only integration with respect to t = cosθ was an issue for this
research. For integrals of the polynomials, examination of equation 2-15 suggests

∫ Pn(t)d(t) =
Pn+1(t) − Pn−1(t)

2n + 1
(2-55)

This is very easily evaluated; however, the integration of the associated functions is not
at all obvious. Various authors have attempted evaluation procedures. For example,
[Young 1970] and [Christodoulidis and Katsambalos 1977] are both referenced in [Paul
1978] as having either instability problems near the poles (Young) or computational time
and accuracy problems (Christodoulidis). Paul on the other hand developed an accurate
recurrence of the following expression,

t2

t1

∫ Pnm(t)dt (2-56)

which will not be repeated here; merely note that to at least degree 100, for functions

integrated over any arbitrary interval within 90°, the errors detected never exceeded 10−23

in magnitude.

Other authors extended Paul’s work. These include [Gerstl 1980] who examined the
domain of stability in order to recommend which of either forward or reverse recursion
should be employed to compute the integral in equation 2-56.

Straightforward numerical integration of equation 2-56 is also possible, but tedious and in
need of an extended arithmetic code as it is fraught with numerical considerations. The
principal problem is the magnitude of the numbers with which a user must deal.

The basic formula, as cited in equation 2-30, can be broken down into two parts:

Tnmk =
(−1)k(2n − 2k)!

2nk!(n − k)!(n − m − 2k)!
(2-57)

which is independent of cosθ (i.e. cosine of the colatitude), and
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cosθ2

cosθ1

∫ (1 − cos2 θ )m/2 cosn−m−2k θ d(cosθ ) =
µ2

µ1

∫(1 − µ2)m/2 µn−m−2k d µ

=
θ2

θ1

∫(1 − cos2 θ )m/2 cosn−m−2k θ (− sinθ )dθ

(2-58)

to show two equivalent formulations of the integral. Summing the products of Tnmk with
the respective integrations provides a final result. Unfortunately, the Tnmk can become
extremely large. The normalization factor,

√ 2(2n + 1)(n − m)!
(n + m)!

(2-59)

provides a correction for these values, which can easily yield values in excess of 700 dig-
its. For example, 360!, in the denominator of Tnmk is 767 digits in length. The largest
term in the normalization factor for the same degree and order is 1747 characters.
Clearly, special care is required to handle numbers of such magnitude.

Normally, the values of the Pnm are determined recursively, and as normalization is
included, the values remain moderate in size. Since the experiment was to attempt direct
computation however, it was imperative to employ an extended precision code.

One effective tool is an arbitrary precision arithmetic machine. This device, of which
GNU bc22 is an example of a command line, interpreted and programmable language,
allows arithmetic operations to virtually any desired degree of precision. Several C and
C++ tool sets are also available. One such library is GNU MP23, a multiple precision
arithmetic library [Granlund 2002].

Initial codes were written in GNU bc to calculate the integrals of lower order Pnm terms.
As the scale parameter was set only to 100 digits of precision, this limited the applicabil-
ity to degree and order 35. Other codes with caller-specified scale parameters were later
developed with GNU MP. This library was the easiest to modify for the requirement at
hand. Other libraries that are available include [Arndt 1997] and [Tommila 1999].

As a matter of interest, several tables of integrals had to be consulted to obtain expres-
sions which could be successfully evaluated numerically, including [Gröbner and

22 http://www.gnu.org/software/bc/bc.html
23 http://www.gnu.org/directory/gnump.html
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Hofreiter 1961; Selby 1964] and [Beyer 1991]. There were typographical errors in each,
which might be excusable in the first reference which appeared to be hand-written, but
not so for the latter. The same errors were faithfully copied from edition to edition.

2.5 Sampling and Spectral Resolution

How many data points are needed in each direction for a successful analysis? For the
meridians, it is some N = Nmax + 1, where Nmax is the maximum degree included in the
data, as described by the N data samples 0 ≤ n ≤ N − 1. For the parallels, it is
2N − 1 = 2Nmax + 1, as described by the 2N data samples 0 ≤ m ≤ 2N − 1 [Colombo
1981]. This corresponds to Nmax frequencies resolvable along each latitude for an
equiangular grid: ∆λ = ∆θ = π /N . It has also been shown that for band limited functions
on a spherical surface, inversion is possible with N samples in both directions (i.e. non-
equiangular), as outlined in [Driscoll and Healy 1994] and described here in the sequel.

Using a fast Fourier transform along the parallels will yield N frequencies from 2N data
points. The DC ( f = 0 radians per unit length) and Nyquist ( fNy = N /2 radians per unit
length) are even functions, and the intermediate frequencies are complex, making the
number of coefficients resulting from the transform equal to the number of data points
input to the transform. Since the maximum order equals the maximum degree, then for
Nmax as the maximum degree, one expects 2 * Nmax + 2 points along each latitude. This

indicates needing (2 * Nmax + 2) * (Nmax + 1) = 2N 2 data points in agreement with
Colombo.

Note also that for some degree N , there are 2N + 1 coefficients resulting from an analy-

sis, for a total of (Nmax + 1)2 for a complete analysis to degree Nmax. These correspond to
2N values for orders not equal to zero, and the zero order value. Since the zero order
value is the DC component and has no imaginary value, the extra value must result from
the addition of an imaginary value at the Nyquist frequency.

From another perspective, a recent thesis by [Kampes 1998] discusses the minimum
amount of data required for an expansion to degree Nmax. He notes that for m = 0, the
maximum number of unknowns are apparent (i.e. from n = 0 to Nmax, totalling Nmax + 1).
Thus, for a solution to the equation (where m = 0, meaning there is no λ dependence)

f (θ ) =
Nmax

n=0
Σ Pn0(cosθ )Cn0 (2-60)
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one requires a minimum of Nmax + 1 observations24. The dependence on λ , for the m

component, is a minimum of 2Nmax observations. This corresponds to the Nmax + 1 even
components (for m = 0, 0 ≤ n ≤ Nmax) and Nmax − 1 odd components (1 ≤ m ≤ Nmax on
each parallel because sin mθ is zero for m = 0 and m = fNyquist). All components along
the parallels then total 2Nmax.

According to Kampes then, it takes Nmax + 1 parallels and 2Nmax meridians to compute a

spectrum to maximum degree Nmax. This corresponds to 2N 2
max + 2Nmax data points,

which is typical of analysis programs like Spherepack which include the poles in its cal-
culations. For example, a 5° equiangular grid, including the poles would have 37 paral-
lels and 72 meridians for a maximum degree (and order) of 36 from 2664 data samples.

By contrast, Colombo’s equiangular centre point grid requires 2 * 372 = 2738 samples.

Why then, if for maximum degree Nmax, are there only (Nmax + 1)2 coefficients, when one
started with 2Nmax(Nmax + 1) data points (Kampes, Spherepack), or
(2 * Nmax + 2) * (Nmax + 1) data points (Colombo), and can one invert? Certainly for a
Fourier transform on the plane, there are exactly as many coefficients as there are data
points, but not so in the sphere. The answer appears to lie in how the coefficients are
computed and what they represent. For example, the zero degree coefficient, which is
real and even is just the mean or DC value. There is also a "DC" value for degree 1, order
0. For this degree there is only one fundamental frequency to be computed, the Nyquist,
which is also even, but for which an imaginary component is computed. Degree 2 has a
"DC" value, a Nyquist value (with an imaginary component) and a fundamental con-
tributing 2 coefficients, and so on.

The Fourier transform estimates the magnitude of representative coefficients along the
parallels. These are the averages of the inner products of sinusoids at each frequency of
interest over the interval [Blais 1988]. This operation requires 2Nmax values per parallel
at the maximum degree. Once computed, the average of the inner product of the associ-
ated Legendre functions and the previously computed Fourier coefficients is determined.
Since the Legendre functions are determined solely by the colatitude (or latitude in the
case of Spherepack) the averaging occurs over the Nmax parallels. All values along a
parallel contribute equally, but different functions are employed for each of the Fourier
coefficients previously computed. In this manner the data are averaged in a least squares
sense to produce just enough coefficients to reproduce it [Swarztrauber 1993].

24 See also [Blakely 1995] for additional commentary on zonal solutions.
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Furthermore, each Legendre coefficient computed is the best possible regardless of the
length of the dataset [Blakely 1995]. As indicated in equation 2-33 an infinite number of
coefficients may be required to accurately represent some function on the sphere, but for
the general case, a finite sum will suffice. The coefficients computed from the data avail-
able will allow the synthesis of that data to the degree permitted by the averaging process
of the analysis.

As an aside, it is worth noting that the wav elength corresponding to each degree of

expansion is roughly 2π RE
N , where RE is the average radius of the earth, and N is the

degree in question. For a circumference of about 40,000 km (given RE ≈ 6371 km), the
second degree harmonic has a wav elength of about 20,000 km, while the tenth is about
4,000 km.

2.6 Implementation Approaches

This section is intended to outline some of the different techniques used by various
authors in their attempts to implement efficient synthesis and analysis of spherical
datasets. Most authors (all described here) employ fast Fourier transforms (FFT) in their
codes, but even with this fairly recent development [Cooley and Tukey 1965] typical

Fourier analysis on the sphere is still O(N 3) in complexity.

Rather than beginning with Gauss methods which clearly pre-date the use of electronic
computers, an early user of the FFT as described in a short paper by Ricardi and Burrows
has been selected. None of the techniques will be discussed in detail, but hopefully, the
reader will be left with some insight into the approach used by the different authors.
Additional discussion of some of these techniques may be found in [Blais and Provins
2000] and [Blais and Provins 2002].

2.6.1 Ricardi Method

In 1972, a 2 page ‘short note’ described a recurrence technique for expanding a function
in spherical harmonics [Ricardi and Burrows 1972].

Like other authors, they begin with a Fourier transform over the m coordinate. This
leaves an expression of the form,

f e,o
m (θ ) =

n
Σ ae,o

nm Pnm(cosθ ) (2-61)
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Note that the ae,o

nm actually correspond to two coefficients, one even, the other odd.

The authors note that a Legendre transform (by means of computing an inner product)
would then produce the desired coefficients. They avoid this procedure by noting that the
associated Legendre functions have the property that when m is even, the Pnm(cosθ ) may
be expressed as a finite series in cos pθ , and when odd, may be expressed as a finite
series in sin pθ . The values of p are p = n, n − 2, . . ..

This means that f e,o
m (θ ) is either

f e,o
m (θ ) =

p
Σ Ap cos pθ m even

f e,o
m (θ ) =

p
Σ Ap sin pθ m odd

(2-62)

Clearly, taking another Fourier transform will result in the computation of the Ap.

The desired coefficients are then given by expressions of the form,

ae,o
nm =

2n + 1
2

(n − m)!
(n + m)! p

Σ Inmp Ap (2-63)

for values of n = m, m + 1, . . . (recall that the first step was to compute the m values, so
now one is computing all n for a specific m).

The expressions of Inmp are integrals of the form,

Inmp =
π

0
∫ cos pθ Pnm(cosθ ) sinθ dθ m even

Inmp =
π

0
∫ sin pθ Pnm(cosθ ) sinθ dθ m odd

(2-64)

Careful (make that laborious) integration reveals that the Inmp can be expressed in closed
form, and not very arduous integration indicates a simple recursion for these terms. By
noting that the Inmp are zero for every other value, and using matrix formulation, the
resulting matrices are relatively sparse.

This writer has not calculated the number of operations, but it was said by Colombo to be

O(N 3).
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2.6.2 Colombo

In 1981, a report from Ohio State University described an O(N 3) routine. This appeared
to be an implementation of the Ricardi and Burrows algorithm, and was confirmed in a
personal communication from Grafarend [Blais 2000] and passed to this writer. See for
example, equations 1.17 and 1.18 in the report [Colombo 1981].

The analysis of a function f (θ i , λ j) sampled on an equi-angular basis is given as

Ĉ
α
nm =

1
4π

N−1

i=0
Σ

2N−1

j=0
Σ Pnm(cosθ i)





cos
sin




(mj∆λ) f (θ i , λ j)∆ij (2-65)

where ∆θ = ∆λ = π /N and the θ i and λ j are point values which are centred in each equi-
angular grid block. The Pnm are fully normalized associated Legendre functions, and

Ĉ
α
nm =





Cnm α = 0
Snm α = 1

(2-66)

By substituting

Χnm
i =

1
4π

Pnm(cosθ i)∆ij (2-67)

he simplifies the expression.

He notes that an equi-angular grid is symmetric about the equator and that

Χnm
i

Χnm
i

= Χnm
N−1−i

= −Χnm
N−1−i

n − m even
n − m odd

(2-68)

so that equation 2-65 becomes

Ĉ
α
nm =

N /2−1

i=0
Σ




Χnm

i





2N−1

j=0
Σ





cos
sin




(mj∆λ) f (θ i , λ j)





+(−1)n−mΧnm
i





2N−1

j=0
Σ





cos
sin




(mj∆λ) f (θ n−1−i , λ j)









(2-69)

As for other methods, a (fast) Fourier transform becomes the first step. For all
0 ≤ n, m ≤ N , two sums are computed, although the inner sum (the following two equa-
tions) is obviously the Fourier transform,
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ai
m

bi
m





=
2N−1

j=0
Σ





cos
sin




(mj∆λ) f (θ i , λ j) (2-70)

and





aN−1−i
m

bN−1−i
m





=
2N−1

j=0
Σ





cos
sin




(mj∆λ) f (θ N−1−i , λ j) (2-71)

The second step is to add the contributions of the just-calculated Fourier coefficients with
weights from the associated Legendre functions,

Ĉ
α
nm = Ĉ

α (i−1)
nm + K









ai
m

bi
m





+ (−1)n−m



aN−1−i
m

bN−1−i
m








Χnm

i (2-72)

This results in the calculation of all the Cα
nm.

There are N (fast) Fourier transforms, each of O(N log N ) totalling O(N 2 log N ) opera-

tions to be performed. To calculate the Ĉ
α
nm terms requires a further N operations, result-

ing in a total operations count O(N 3 log N ) for the method. Like other methods to be

described, certain data values which also require an operations count O(N 3) are com-

puted once and saved for future re-use. The author describes the whole as an O(N 3)
algorithm.

The inverse transform is computed in a similar manner, and the number of operations is

also O(N 3). The author indicates that K is a proportionality constant. ∆ij is defined as
∆λ(cosθ i − cos(θ i + ∆θ )), which is the angular area of a surface element.

2.6.3 Driscoll and Healy, Jr.

This is a very brief summary of the method employed by Driscoll and Healy, Jr. to com-
pute spherical harmonic transforms, as described in their paper [Driscoll and Healy
1994]. Their method is said to be exact in exact arithmetic for band-limited functions
(i.e. those with a finite number of non-zero Fourier coefficients on the sphere).

They find an appropriate sampling of a function (on the sphere) for which an efficient

transform can be developed. The method begins by finding an O(N (log N )2) algorithm

for the Legendre polynomial transform over n = 2k ≤ N points arranged on an equiangu-
lar grid, using a data structure of size O(N log N ). This is extended for the associated
Legendre function transform over the sphere, and has the same order of complexity. The
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inverse is done in O(N 1.5) time.

Some function f (θ , λ) is said to be band-limited so that its transform f̂ (l, m) = 0 if l ≥ b.
If sampled on a grid of points i = 0, . . . , 2b − 1, j = 0. . . . , 2b − 1 with θ i = π i/2b and
λ j = π j/b (notice that there are 2b points in both directions), then by weighting the sam-
ples of f (θ j) by the appropriate a j given in the following expression, the non-zero
Fourier coefficients can be computed from them, and the function f can be recovered
exactly. The expression given for the a j , with n samples being a power of two is,

a j =
2√2

n
sin 


π j
n




n/2−1

l=0
Σ 1

2l + 1
sin 


(2l + 1)

π j
n




j = 0, . . . , n − 1 (2-73)

From this is obtained an equation describing the Legendre transform of function f as
per25,

f̂ (l, m) =
√ 2π
2b

2b−1

j=0
Σ

2b−1

k=0
Σ a j f (θ j , λ k)Y m

l (θ j , λ k) (2-74)

with l < b, |m| ≤ l, Y m
l = (−1)mY −m

l and

Y m
l (θ , λ) = (−1)m √ (2l − 1)(l − m)!

4π (l + m)!
Pm

l (cosθ )eimθ (2-75)

For synthesis,

f (θ , λ) =
b−1

l=0
Σ

|m|≤n
Σ f (l, m)Y m

l (θ , λ) (2-76)

Note that the sample count is somewhat confusing in their paper. In the case of the Leg-
endre transform, the maximum degree computed from the n samples is l < n/226. That is
to say that there are n points along a meridian. Other points around the sphere that make
up the equiangular grid mentioned earlier are used to form averages from which the Leg-

endre transform can be computed. For the associated Legendre transform, 2b2 = n2 data
points are used, and the maximum degree (and order) computed is l < b27. Thus 2b = n,
and l < n/2.

They also prove that the convolution of two functions on the sphere is the product of their
transforms (note that m = 0 for function ĝ).

25 Y m
l is the complex conjugate.

26 Lemma 3, page 218.
27 Theorem 3, page 215.
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( f ∗g)l̂m = 2π √ 4π
2l + 1

f̂lm ĝl0 (2-77)

This is an interesting conclusion as [Blais and Provins 2002, page 32] find that without
geodetic normalization28 as described in equation 2-32,

( f ∗g)l̂m =
4π

2l + 1
f̂lm ĝl0 (2-78)

which uses the fact that the Dirac kernel has the expansion (2n + 1) / 4π and thus will pre-
serve a function when convolved with a Dirac.

Note that the filter is axially symmetric (i.e. no change in longitude). Note also that

( f ∗g)l̂m ≠ (g∗ f )l̂m (2-79)

as convolutions on the sphere do not commute. The dual is indicated as the point-wise
product of two functions on the sphere being the ‘convolution’ of their transforms. This

convolution, like the inverse transform can be computed in O(N 1.5) time.

2.6.3.1 Improvements on the Algorithm

More recently, Healy and associates have re-worked the original algorithm to develop
improved inv erse and convolution routines. For N sample points, the cost of performing

their fast Legendre transform is O(N (log N )2), using a pre-computed data structure of
O(N log N ). Thus, for a function with harmonics of at most order N, their spherical har-

monic transform is computed in O(N 2(logN )2) operations versus O(N 3) required by
direct computation. The performance, however is computer architecture dependent.
They reported their work in an internal technical report at Dartmouth College’s Depart-
ment of Computer Science (PCS-TR94-222), and also in [Healy et al. 1998]. The expla-
nation of their algorithm is much better in this paper, compared to that of [Driscoll and
Healy 1994].

Healy and associates compared several variations of their algorithm, and found that the
theoretically optimal algorithm was slower than several of the others. One caution that
they noted in passing was that the storage requirements for the Legendre functions were
formidable. For example, in one code, for a bandwidth of n = 1024, a pre-computed data
structure of some 1.3 GBytes was required for one variation of the base algorithm. Other

28 With geodetic normalization the expression becomes ( f ∗g) l̂m = 4π
√ 2l+1

f̂lm ĝl0
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variations made smaller storage demands, but even so were far too large for holding in
commonly available computers. Of particular note is the fact that their codes are avail-
able for experimentation. An implementation is available [Moore et al. 1998] for experi-
mental use. Several algorithms are included, and the sampling is done on Chebyshev
nodes.

Also of note is the fact that the need for a power of two for the sample count may not be a
requirement to use the algorithm. As of this writing, Blais and colleagues have experi-
mented with forward and inverse transforms to degree and order 1024 on a unit sphere
that excluded the poles when sampled. The maximum RMS error difference as defined
by the square root of the sum of the squares of the differences of the cosine and sine coef-
ficients (after synthesis and re-expansion) are approximately 10-12 in magnitude.

2.6.4 Mohlenkamp

[Mohlenkamp 1999] describes a method by which an expansion or synthesis can be

accomplished in O(N 5/2 log N ) or O(N 2(log N )2) from an equiangular grid of 2N 2 points
on a sphere. This second method is faster but less accurate than the first. Like the

method of Driscoll and Healy, this is an improvement over the O(N 3) operation count of
earlier methods. Both methods used pre-computed associated Legendre functions. The
calculations are done to a user-specified precision.

One variation that stands out in Mohlenkamp’s method is the fact that he employs N

Gaussian nodes for his integration along the meridians (and 2N points along the paral-
lels). This allows the accurate integration of a polynomial of order 2N with only N

points and implies that measurements not be made on an equi-angular basis, but at the
zeros of the Legendre polynomials.

Like other authors, Mohlenkamp expects the (fast) Fourier transform to dispose of the

longitudinal dependence. Doing this incurs O(N 2 log N ) operations and leaves 2N prob-
lems indexed by m: −N < m < N where for the expansion (i.e. analysis) problem, one
computes N coefficients (for each m) f (θ j , m). He then finds a way to reduce the prob-
lem to the application of matrices, and he takes advantage of the (as)symmetries across
the equator (θ = π /2) of the Pnm(cosθ ) when n − m is odd versus even. Note that his
sample implementation requires that a user add a suitable Fourier transform (such as an
FFT) at the appropriate place in his code.
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From the solution of certain differential equations (particularly Schrödinger’s, which
affords an asymptotic solution near the poles) an approximate solution yields an ‘instan-
taneous frequency’ that appears to model different values of the Pnm(cosθ ). These func-
tions look like trigonometric functions, and this fact is a motivation behind the ‘one-
dimensional’ algorithm. Mohlenkamp partitions the function and represents it in a local-
ized trigonometric basis (actually, a local cosine basis). This allows the creation of sparse
matrices which he says contributes significantly to the speed of the algorithms. The
choice of partition (in the actual calculation) is a function of m and n. As the partition
changes with n (for fixed m), the matrix adapts.

Like the previous method, Mohlenkamp has provided experimenters with a sample imple-
mentation, although it lacks the Fourier transform needed for processing the parallels
[Mohlenkamp 2000].

2.6.5 Spherepack

Geophysical processes may be analysed with the Spherepack collection of FORTRAN
77 programs, which are publicly available [Adams and Swarztrauber 1997]. Both scalar
and vector functions may be decomposed via spherical harmonic transforms. The com-
putation of the required associated Legendre functions is provided, as are any required
calculations of Gauss points and weights, or fast Fourier transforms.

The Spherepack collection allows spherical harmonic analysis on both Gaussian grids and
equally-spaced grids. The means to transfer data between these two grids is also pro-
vided. Spherepack provides an exact harmonic analysis of a scalar function f (θ , λ) on
the sphere, providing it is sufficiently smooth. To arbitrary precision, this means that
there exists some N so that

f (θ , λ) ≈
N

n=0
Σ

n

m=0
Σ Pnm(cosθ )


am,n cos mλ + bnm sin mλ


(2-80)

where the Pnm(cosθ ) are the associated Legendre functions.

The coefficients (anm, bnm) are given by the usual expressions for non-normalized values,
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anm =
(2n + 1)(n − m)!

2π (n + m)!

2π

0
∫

π

0
∫ f (θ , λ)Pnm(cosθ ) cos mλ sinθ dθ dλ

bnm =
(2n + 1)(n − m)!

2π (n + m)!

2π

0
∫

π

0
∫ f (θ , λ)Pnm(cosθ ) sin mλ sinθ dθ dλ

(2-81)

Here, equation 2-80 and equation 2-81 represent the synthesis of a scalar field given its
spectrum, and the forward transform, or analysis of a scalar field respectively. Similar
expressions may be derived for vector transforms of vorticity and divergence.

Many operations are provided in the collection. For example, the gradient of a scalar
field can be computed from a vector field synthesis and the Laplacian of a scalar function
can be computed as a suitably scaled synthesis of the original scalar function. All of
these functions, and many others are provided by the collection.

For additional background, see [Swarztrauber 1979; Swarztrauber 1993] and [Swarz-
trauber 1996].

2.7 Various Codes for Legendre Functions and Transforms

FORTRAN code known as the Gathers’ Legendre transform is available from the
Oakridge National Lab in the USA. It may be acquired for $1300US. It was written in
1977 to run on an IBM 360. Routines in the package calculate the associated Legendre
functions of the first kind, indefinite (multiple) integrals involving the Legendre polyno-
mials, derivatives of the Legendre polynomials, spherical harmonic functions, and an
expansion of an arbitrary (single valued) function. Other code to compute Legendre
functions is available through Lawrence Livermore National Labs29. A set of FORTRAN
codes to evaluate various Legendre functions or polynomials with real or complex argu-
ments, some with derivatives and others with integrals is also available30.

Codes attributed to GNU are available31 and they are part of the GNU Scientific Library
which is also available32. Other codes33 allege to use extended range arithmetic (i.e. a
combination of integer and float to represent numbers).

29 ftp://ftp-icf.llnl.gov/pub/Yorick/doc/html_i/legndr_i.html
30 http://iris-lee3.ece.uiuc.edu/˜jjin/routines/routines.html
31 http://www.computing.ethz.ch/sepp/gsl-1.1.1-mo/gsl-ref_122.html
32 http://www.computing.ethz.ch/sepp/gsl-1.1.1-mo/gsl-ref.html#SEC_Top
33 http://sunsite.univie.ac.at/statlib/cm/doc/fcnpak/archive
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Reiji Suda of Nagoya University proposed the development of a fast spherical harmonic

transform of time order O(T 2 log T ) when at the Fields Institute, University of Toronto
[Suda 2001]. In his IPSJ34 abstract dated June 2001, and a second dated July, 2002 he
indicated the use of ultra-spherical polynomials for the associated Legendre transform.
The proposed method would run theoretically with computational complexity of

O(N 2 log2 N ). He felt that this approach would be a better tradeoff between computa-

tional complexity and memory requirements than the direct method (of order O(N 3)). He
published an algorithm [Suda and Takami 2002] and made two sample implementations
(FORTRAN 90 and FORTRAN 77) available from his personal website35. Note that his
website, which offers an online test system, only promises the precision of the transform

in the 2-norm to be about 10−10.

At NCAR is the library of routines known as ALFPACK, dev eloped by Swarztrauber36.
A complete list of his publications, many of which are available electronically including
those cited earlier, are also available online37.

Synthesis codes are available from Blais at the University of Calgary38. These are made
up of two C programs, first of which reads a set of ASCII-formatted spherical harmonic
coefficients and writes them out as a binary-formatted file. The second program reads
this file, makes the appropriate geodetic normalization corrections and synthesizes the
geoid undulation.

Other synthesis codes have been developed at the Ohio State University’s Department of
Geodetic Science and Surveying. See for example [Rapp 1982] which synthesizes to
degree and order 180. Subsequent codes were extended to higher degrees, some of which
are being used for experimentation with the weights described in [Driscoll and Healy
1994] by Blais and associates.

Finally, cosmic microwave background anisotropy researchers are now using fast spheri-
cal harmonic transforms thanks to the development of the HEALPix pixelization scheme
for the sphere. The transforms are said to be slower than the Mohlenkamp routines as

they scale asymptotically as O(N 3/2), but owing to the method of discretization used, they
34 Information Processing Society of Japan
35 http://www.na.cse.nagoya-u.ac.jp/˜reiji/
36 See ftp://ftp.ucar.edu/dsl/lib/alfpack/ and the README therein.
37 http://www.scd.ucar.edu/css/staff/pauls/papers/
38 http://www.ucalgary.ca/˜blais/
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deal with smaller datasets for the same degree and order. Sample codes which are avail-
able39 are described in [Górski, Hivon, and Wandelt 1998; Hivon and Górski 1998; Wan-
delt et al. 1998]. See also [Bond et al. 1999] and [O’Mullane et al. 2001] for additional
information. HEALPix and its use in this study are described in the sequel.

2.8 Notes on Using FFT´s, Public Codes and Power Spectra

Various codes were investigated during the course of this research, and C implementa-
tions were effected for several. As might be expected, the results were varied. Tech-
niques were investigated to greater or lesser detail depending on this writer’s available
time and interest. The following comments briefly summarize some of the interesting
findings.

During the course of early research, an O(N 3) synthesis program was written using both
simple coefficient multiplication and addition initially, then a discrete Fourier transform,
and later fast Fourier transforms (FFTs). Obviously the latter implementation was supe-
rior in terms of speed, but all three codes were written so as to verify the correctness of
the others. In addition, as certain derivatives were required for an investigation to be
described in a later chapter, the writer had no choice but to write them as other codes
known to the writer did not provide the required facilities. This program then provided
the basic facility described in equation 2-33 (repeated here for convenience),

f (θ , λ) =
∞

n=0
Σ

n

m=0
Σ 


anm Rnm(θ , λ) + bnmSnm(θ , λ)


(2-82)

plus the addition of northward and eastward derivatives of the synthesized function.

The relationship between the summation implied in equation 2-82 and the Fourier trans-
form was described in [Blais and Provins 2003]. Summarizing the expressions for a finite
sum to N , the equation was re-written by swapping the n and m summations as per,

39 http://www.eso.org/science/healpix/index.html

Chapter 2



38

f (θ , λ) =
N

m=0
Σ








N

n=m
Σ anm Pnm(t)


cos mλ + 


N

n=m
Σ bnm Pnm(t)


sin mλ





=
N

m=0
Σ





Am(θ ) cos mλ + Bm(θ ) sin mλ




=
1
2

N

m=0
Σ




(Am(θ ) + iBm(θ ))e−mλ + (Am(θ ) − iBm(θ ))e+mλ 




= Re 

DFT (Am(θ ) + iBm(θ ))



(2-83)

with symbol ‘Re’ denoting the real part, and DFT indicating the discrete Fourier trans-
form. [Rummel 1997] reached a similar conclusion when examining the expansion of the
disturbing potential.

When introducing the fast Fourier transform, it is important to note that as one is comput-
ing a real function on the sphere, then the products of the amm Pnm(t) and bnm Pnm(t) must
have their imaginary components above the Nyquist flipped in sign40. Failure to make the
correction results in an inaccurate synthesis. [Kanasewich 1981, page 45]

The second thing to note when employing the fast Fourier transform is that the energy of
the spectrum is spread across both positive and negative frequencies. Thus the products
mentioned in a previous paragraph must be so distributed before invoking an FFT. In
other words, one half the energy in the fundamental, plus all its harmonics except for the
Nyquist must be in the positive frequency set, and one half must be in the negative fre-
quency set. As the DC and Nyquist frequencies are even functions, they are unaffected.

A final consideration when using publicly available codes is that the internal scale factors
may not be the same between codes, and and will almost certainly provide results differ-
ent from the geodetic formulation in equation 2-33. For example, tests with the Driscoll
and Healy implementation on axially symmetric functions on the sphere suggested a cor-
rection factor of 2√ π . On the other hand, using Spherepack with the same dataset

implied a correction of 2√2. Martin Mohlenkamp’s code, again with the same dataset had

a scale factor of √2. Fortunately, for the latter two codes, the inverse and forward proce-
dures were consistent.41 The scale factors derived for each of these codes were those
needed to correct for a geodetic normalization.

40 Because of the circularity of FFTs, negative frequencies typically appear after the Nyquist. They are
the complex conjugates of the positive frequencies for real data sequences.

41 The Driscoll and Healy algorithm has been extensively tested by Blais’ group.

Chapter 2



39
For the purposes of this research, selected FORTRAN routines from the Spherepack
package were interfaced to C. As indicated, corrections were needed when this code was
used to synthesize geodetic coefficients generated by other programs. This was due to
differences in normalization between Spherepack and those used in geodetic contexts.
The corrections required are shown in Table 2-1.

Spherepack Corrections for Synthesis of Geodetic Data
Order Coefficient Correction

0 all * 2√2
real +2

imaginary −2
1↔n

Table 2-1: When synthesizing a set of coefficients computed by normal geo-

detic software, Spherepack must have products, sums or difference correc-

tions applied to obtain the correct result.

There are several descriptions of spherical harmonic spectra and their normalization.

[Kaula 1966, page 98] defined the term degree variance or σ 2
n , to describe the variances

arising from the variations of the Earth’s gravitational field, as per

σ 2
n =

n

m=0
Σ 


a2

nm + b2
nm




(2-84)

Based on Kaula’s definition, at least two definitions of power spectra were then given by
subsequent authors. Those known to this writer, and used to illustrate items of interest in
the sequel, were given by, [Wong et al. 1971, page 6231] and [Pollack 1973] Their
respective definitions were42:

Powern =
σ n

√ 2n + 1

= σ n√ 2n + 1

Wong et al.

Pollack
(2-85)

Both of these employ normalized coefficients in the geodetic sense. Pollack’s has the
unique characteristic that for point sources at the surface, which obviously would produce
a singularity, the spectrum is uniform, just as the spectrum for a Dirac delta function is
uniform. Example spectra for both normalization methods are illustrated in Figure 2-1.

42 While these authors called σ n a power spectrum for degree n, it might be more appropriate to call it an
amplitude spectrum because of the square root.
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EGM96 is shown to degree 100 and to degree 360. The normal field has been removed.
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Figure 2-1: Both Wong and Pollack’s normalization of the corrected geopo-

tential model EGM96 are illustrated. On the left, the field to degree 360 is

shown, and on the right, the first 100 degrees are shown.

2.9 Requirements for Wav elet Analysis

In order to implement the wav elet analysis technique which will be described in a later
chapter, certain expressions involving spherical harmonics in a geodetic context were
required. This section covers that material, which is in addition to the computational
requirements coded in accordance with the material already described in this chapter.

The fundamental expression for the potential is indicated in [Pollack 1973], and also in
[Heiskanen and Moritz 1966, page 59 and page 107] as that given in equation 4-1 and is
repeated here for convenience.

V (r,θ , λ) =
GM

r




1 −

∞

n=1
Σ

n

m=0
Σ 


a
r




n


anm Rnm(θ , λ) + bnmSnm(θ , λ)





(2-86)

with θ as colatitude, λ as longitude, r as the spherical Earth radius (for surface measure-
ments) or the radius at which measurements are taken (for an elevated surface), and a as
the radial distance to the model body. This is the potential exterior to the sphere contain-
ing the source. It has units of work or energy (distance in metres times acceleration).

The gravitational vector is the radial derivative of equation 2-86, providing the directions
of the normals for the reference surface and the anomalous surface are nearly coincident.
This is the standard assumption for a spherical approximation and the expansion of the
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disturbing potential [Heiskanen and Moritz 1966, section 2-14]. Because the same
assumption is made for Pollack’s models, then the vector magnitude will be given by the
following equation which has units of acceleration in metres per second squared43.

g = −
∂V
∂r

= −
GM
r2




1 −

∞

n=1
Σ

n

m=0
Σ (1 + n)


a
r




n


anm Rnm(θ , λ) + bnmSnm(θ , λ)






(2-87)

The upward continuation of g is a straightforward computational exercise. The calcula-
tion of the two dimensional horizontal gradient is accomplished by calculating the
changes to the gravity vector from that implied by a centred spherical source.

For the anomalous potential of the Earth, how the geoidal surface differs from the ellip-
soid is described by [Heiskanen and Moritz 1966, page 112] as the change in the undula-
tion divided by the change in arc length along the ellipsoid. This is the same as the
change in the tangent along a curved surface, as described in [Protter and Morrey 1964,
page 60].

For the wav elet transform of gravitation, a similar requirement exists. Specifically, the
gradient of the gravity vector is needed, and this is given as the change in the magnitude
of the gravity vector over some arc length, as per

ε = −
dg
ds

(2-88)

In this case, g is the value of the gravitational field for the given potential, and ds = Rdθ
is the arc length for some angular change of colatitude dθ , and nominal radius R. The
gradient is expressed in terms of latitude (φ ) and longitude (λ) as,

δ N

δ E

= −
1
R

∂g
∂φ

= −
1

R cos φ
∂g
∂λ

(2-89)

Note that dφ = −dθ and that cos φ = sinθ in the following. Note also that as the expres-
sions in equation 2-89 are taken with respect to the latitude, then this implies that the
gravity has been described in terms of latitude, or rather that the associated Legendre
functions are given in those coordinates. A simple calculation shows that the derivative
of these functions with respect to colatitude is minus that of the derivative with respect to

43 Acceleration measured in m/sec2 corresponds to 100 cm/sec2 or 100 gals (1 gal = 1 cm/sec2).

Chapter 2



42
latitude.

Thus the gradients become,

Eastward δ E = −
1

r cos φ
∂g
∂λ

= −
1

r sinθ
∂g
∂λ

= −
1

sinθ
GM
r3

∞

n=1
Σ

n

m=0
Σ (1 + n)


a
r




n


anm(−m) sin(mλ) + bnm(m) cos(mλ)


Pnm(t)

(2-90)

and

Northward δ N = −
1
r

∂g
∂φ

=
1
r

∂g
∂θ

= −
GM
r3

∞

n=1
Σ

n

m=0
Σ (1 + n)


a
r




n


anm cos(mλ) + bnm sin(mλ)


∂Pnm(t)

∂θ

(2-91)

Note that the eastward gradient has no meaning at the poles owing to the sin−1 θ term, not
to mention that the poles are single valued anyway. Notice also that this gradient has the
dimensions of acceleration per unit distance. The derivative required in the previous
expression for the North gradient is given by the recursions noted earlier.

Note that there is no derivative that can be calculated at θ = kπ , k = 0, 1 using any previ-
ously mentioned recursion. However, there is a simple recursion for certain values at
those locations, with all others being zero. The specific Pnm(cosθ ) for which the deriv-
atives are non-zero are, and the obvious recursion is given in Table 2-2.

The recursion for the normalized derivatives is (with starting value P′
11(cosθ ) = √3),

P′
n1(cosθ ) = P′

n−1 1(cosθ )(−1)nδ180,θ √ (2n + 1)(n − 1)
(2n − 1)(n + 1)

(2-92)

Also required was the magnitude of the gradient of gravitation. This is just the root of the
summed squares,

M = √ δ N 2
θ ,λ

+ δ E2
θ ,λ

=
GM
r3 √ E2

θ ,λ +
N 2

θ ,λ

sin2 θ

(2-93)
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Values for P′nm(cosθ ) at the Poles

Degree (n) θ = 0 θ = π

0 0  0
1 1  -1
2 3  3
3 6  -6
4 10 10
5 15 -15

n n + P′n−1 m(cos 0) −1δ1,(n%2)(n + P′n−1 m(cos 0))

Table 2-2: A simple recursion for the derivatives of the Pnm(cosθ ) at the

poles. The symbol % is a shorthand expression for modulus (i.e. the remain-

der function).

where the terms Eθ ,λ and Nθ ,λ are the summations of the coefficients described in equa-
tion 2-91 and equation 2-90.

For completeness, note that the azimuth of the vector resulting from the combination of
the northward and eastward gradients is the usual arctangent function, as per

D = tan−1 



Nθ ,λ

sinθ Eθ ,λ





(2-94)

With these mathematical tools, one can explore the efficacy of the wav elet transform
approach as a means to uncover the Earth’s structure.

2.10 Requirements for Geopotential Inversion

For inv erting geopotential fields directly, there is a requirement for the continuation of the
field and for expressing density variations as derived from the measured field. This sec-
tion develops the equations necessary to downward continue the measured anomalous
geopotential field to an arbitrary depth. in such a manner that the density variation of a
shell of arbitrary thickness may be determined.

There is a theorem by Chasles, which is also known as Green´s equivalent layer
[Heiskanen and Moritz 1966; Ramsey 1961], that says that any Newtonian potential V on
an equipotential surface S will be the same as that of a surface layer of density µ,
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µ =
−1

4π G
∂V
∂n

(2-95)

where the partial derivative is taken with respect to the normal n [Heiskanen and Moritz
1966]. Furthermore, using Gauss’ theorem the amount of matter contained within S is
given by,

S
∫∫ µdS =

v
∫∫∫ ρdv (2-96)

Pail used the surface layer technique to consolidate all of the mantle into a single surface
feature in order to reduce the amount of numerical work that he incurred. He concluded
that the coefficients for the mantle with mean density ρ could be derived from the poten-
tial measured at radius R by placing the surface layer at some radius r̃ < R. He quotes
the following expression for surface layer density as a function of surface potential coeffi-
cients {anm, bnm} [Pail 1999, p. 18; MacMillan 1930],





µ (c)
nm(r̃)

µ (s)
nm(r̃)





=
(2n + 1)ρ R

3



R
r̃




n+2



anm

bnm





(2-97)

where in the sequel, these will be given as µnm(r̃) = {µ (c)
nm(r̃), µ (s)

nm(r̃)}. This equation
implies the surface density layer coefficients are downward continued versions of the
coefficients at measurement radius.

His alternate expression for a shell of known thickness relates the geopotential coeffi-
cients observed at radius R scaled to compute potential at some radius r > R, and down-
ward continued to depth, to the equivalent density contrast coefficients for a shell of
thickness rb − ra as,





anm

bnm





=
3

(2n + 1)ρ Rn+3

rb

ra

∫




ρ (c)
nm(r′)

ρ (s)
nm(r′)




r′n+2dr′ (2-98)

where in the sequel, these will be given as ρ nm(r′) = {ρ (c)
nm(r′), ρ (s)

nm(r′)}. This equation
indicates that the coefficients observed at the measurement radius are upward continued
versions of the coefficients due to the radially-dependent density.

Pail derived his expressions by use of a certain ‘well-known’ relation (see page 8 of his
thesis, and its use on pages 14 and 18), quoted here as,
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1
Rnm(θ , λ)

2π

λ ′=0
∫

π

θ ′=0
∫

Rnm(θ ′, λ ′)
l

r′ sinθ ′dθ ′dλ ′ =
4π

2n + 1



r′
R




n+1

(2-99)

where Rnm(θ , λ) corresponds to Pnm(cosθ )[cos mλ + sin mλ] (with a similar expression
for Rnm(θ ′, λ ′)), l is the spherical distance between two points separated by angle α at

radii r′ and R, giv en as l = √ r′2 + R2 − 2r′R cos α and r′ < R. This may be derived as
follows (using R′nm to represent Rnm(θ ′, λ ′), Rnm to represent Rnm(θ , λ) and σ as
sinθ dθ dλ , and quoting the relevant equations from [Heiskanen and Moritz 1966]).

1
Rnm σ ′

∫∫ R′nm
r′
l

dσ ′ =
σ ′
∫∫

1
Rnm

R′nm




P

p=0
Σ

p

q=0
Σ 1

2p + 1



r′
R




n+1

R pq R′pq



dσ ′

=
P

p=0
Σ

p

q=0
Σ 1

2p + 1



r′
R




p+1

σ ′
∫∫

R′nm

Rnm
R pq R′pq dσ ′

=
1

2n + 1



r′
R




n+1 Rnm

Rnm σ ′
∫∫ R′nm R′nm dσ ′

=
1

2n + 1



r′
R




n+1

4π

=
4π

2n + 1



r′
R




n+1

eqn. 1-83’, page 33

eqn. 1-68, page 29

eqn. 1-74, page 31

(2-100)

One can deduce Pail’s expressions for arbitrary and surface layer density distributions
from the following. In addition to the expressions for Rnm and R′nm above, let
C = {anm, bnm} be the measured coefficients.

V (r,θ , λ) =
GM

R

∞

n=0
Σ

n

m=0
Σ 


R
r




n+1

C Rnm

= G
2π

0
∫

π

0
∫

rb

ra

∫
ρ(r′,θ ′, λ ′)

l
r′2 sinθ ′dθ ′dλ ′dr′

(2-101)

Let the density at arbitrary level r′ be expanded into spherical harmonic coefficients as,

ρ(r′,θ ′, λ ′) =
∞

n=0
Σ

n

m=0
Σ ρ nm(r′)R′nm (2-102)

Inserting the expression for the expansion of ρ(r′,θ ′, λ ′) into the second expression in
equation 2-101, yields,
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V = G
2π

0
∫

π

0
∫

rb

ra

∫
∞

n=0
Σ

n

m=0
Σ ρ nm(r′)

l
R′nmr′2 sinθ ′dθ ′dλ ′dr′ (2-103)

Re-arranging terms and then inserting equation 2-99 gives

V = G
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ra

∫
∞

n=0
Σ

n

m=0
Σ ρ nm(r′)r′
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∫
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∞
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∞
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2n + 1

rb

ra

∫ ρ nm(r′)r′n+2dr′Rnm

(2-104)

Equating this to the first expression in equation 2-101, gives,

GM
R




R
r




n+1

C =
4π G

(2n + 1)Rn+1

rb

ra

∫ ρ nm(r′)r′n+2dr′ (2-105)

For the potential V measured at r = R, and setting mass M = 4π R3 ρ
3 (where ρ is the mean

density to radius R), with re-arrangement results in

C =
3

(2n + 1)ρ R

rb

ra

∫ ρ nm(r′)


r′
R




n+2

dr′ (2-106)

which with a re-arrangement of terms is equation 2-98. For the case where no integration
is required because all mass is assumed to lie on the surface r̃,

C =
3

(2n + 1)ρ R



r̃
R




n+2

µnm(r̃) (2-107)

which when inverted is

µnm(r̃) =
(2n + 1)ρ R

3



R
r̃




n+2

C (2-108)

is equation 2-97.

In the case at hand, the anomalous potential on the surface of the sphere is expressed in
spherical harmonic coefficients Tnm. The analysis undertaken within this research will
show that when properly normalized, publicly available geopotential fields indicate that
the mid to upper mantle may be described by layers of mass anomalies. Given Chasles
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theorem, it seems reasonable that a surface layer density analysis might indicate the area
distribution of non-point source mass anomalies.

The anomalous potential can be expanded for an arbitrary radius r outside of the masses
contributing to that potential (see Figure 2-2) by [Heiskanen and Moritz 1966, page 88],

T (r,θ , λ) =
∞

n=0
Σ 


R
r




n+1

Tn(θ , λ) (2-109)

where Tn(θ , λ) is the Laplace surface harmonic of degree n,

Tn(θ , λ) =
n

m=0
Σ anm Rnm(θ , λ) + bnmS(θ , λ) (2-110)

This can be re-written in terms of the coefficients at radius r and those at radius R, as per,

Tnm,r = 


R
r




n+1

Tnm,R (2-111)

which indicates that the coefficients at r > R, are scaled versions of those at radius r = R.

R
r>R

Mass filled sphere

nm,r

nm,R

Mass "free" zone

T        (potential desired here)

T       (coefficients measured here at Earth radius)

Figure 2-2: Within the Earth radius shown here as r, at which the anoma-

lous potential was measured, a mass-filled sphere is located (with radius R).

Thus if one measured T (r,θ , λ) at some radius r > R, where R was the radius just enclos-
ing the mass contributing to T (r,θ , λ), then the coefficients are known at r = R, as per,

Tnm,R = 


r
R




n+1

Tnm,r (2-112)

Chapter 2



48
A justification for this in terms of convolutions on the sphere may be found in [Blais and
Provins 2002].

For the purpose of this research, the portions of EGM96 which correspond to individual
anomalous zones, or layers indicating that substantial anomalous mass is to be found, are
examined in the light of both surface layer density and radially constant shell density
anomalies.

For the case of a surface layer at depth, one must correct the measured anomalous geopo-
tential coefficients for the appropriate depth, and then compute the surface layer density
that would create that field. Suppose that the layer in question was at R < RE (i.e. at
some radius less than the nominal Earth radius). Then the coefficients that would be
measured for masses within that radius would be as described in the extended Meissl
scheme [Rummel 1997],

D = 


RE

R



n+1

C (2-113)

where D indicates a set of coefficients which are downward continued versions of C, as
per equation 2-112.

Inserting D as the representative coefficient set for depth R < RE in equation 2-101
through to equation 2-107, computing the surface layer density in terms of D, and then
re-introducing C produces the following result.

D =
3

(2n + 1)ρ R



r̃
R




n+2

µnm(r̃) (2-114)

Therefore,

C =
3

(2n + 1)ρ R
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R
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3r̃
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r̃
RE




n+1

µnm(r̃)
(2-115)

or when inverted,

µnm(r̃) =
(2n + 1)ρ R2

3r̃



RE

r̃



n+1

C (2-116)

with C being the coefficients measured at RE . Note that ρ is the mean density of the
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sphere with radius R. This expression gives the surface layer density at an arbitrary
radius r̃ less than the radius R which contains the masses. Obviously, if r̃ = R, then the
expression reduces to

µnm(R) =
(2n + 1)ρ R

3



RE

R



n+1

C (2-117)

meaning the relevant coefficients from the surface measurements, downward continued to
the desired depth can be converted to an equivalent surface layer of density µnm(R). By
relevant coefficients is meant that set of coefficients most likely to have contributed to the
zone of interest.

For the case of a shell of masses, equation 2-106 when expressed in terms of a downward
continued set of geopotential coefficients results in

C =
3

(2n + 1)ρ R
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ra
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dr′
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ra
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dr′

(2-118)

Assuming that the density in the shell varies laterally and not radially yields,

C =
3RE ρ nm

(2n + 1)ρ R2

rb

ra
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r′
RE




n+2

dr′ (2-119)

or when inverted,

ρ nm =
(2n + 1)ρ R2

3RE

rb

ra
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r′
RE




n+2

dr′

C (2-120)

Letting rb = R be the upper limit of integration, and ρ is the mean density of the shell,
results in,

ρ nm =
(2n + 1)(n + 3)ρ(R/RE )2

3







R
RE




n+3

− 


ra

RE




n+3



C (2-121)

This equation describes the spherical harmonic coefficients for a shell of thickness R − ra

at radius R. These coefficients indicate a variable density and are derived directly from
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the measured coefficients for a spherical Earth of radius RE . Obviously, this is an invert-
ible expression. That one is a function of the other is an important relationship. Clearly,
if one knows what portion of the spectrum is strongly correlated with what depth, then
the Earth’s internal structure will be revealed in a manner not seen before.

2.10.1 Comments on Geopotential Inversion

The geopotential fields (EGM96, GEMT1, CHAMP) employed in this research are pub-
licly available. They hav e been corrected for the effect of angular rotation, and include
all normal corrections for topography, isostasy etc. For the purpose of this research, no
additional corrections were required. The addition of higher resolution spectrum, say
from topography, may prove to be useful for more detailed analysis of surface features,
but this was not done.

In the chapter following the wav elet experiments, these fields were employed in two
ways. In the first case, attempts were made to compute anomalous mass magnitudes
using the fields in a global least squares inversion. Synthetic tests indicated that this
would be possible under certain conditions, but these could not be guaranteed, nor could
the instability of the process be overcome in a satisfactory manner. The alternative was to
employ equation 2-121 once a satisfactory depth estimate had been made. The method
became quite simple: interpret the spectrum as a series of anomalous layers having iden-
tifiable depths, and then use that equation to make density contrast estimates. Depth,
thickness and spectral interpretation were the controlling parameters.

The steps for these experiments were as follows:

1 Normalize and display the spectrum in the manner to be described.

2 Interpret the spectrum as a series of layers at likely depths, based on a point source
assumption, and subject to certain limitations also to be described.

3 For the case of identifiable anomaly inversion, compute the potential corresponding
to the spectral components for the interpreted depth and identify anomaly extrema.

4 Giv en anomaly locations and depth, populate the normal equations and invert for
mass magnitude.

5 For the case of variable shell density, use equation 2-121 with the spectral compo-
nents for the interpreted depth to estimate density contrast.

Chapter 2



51
3 Wav elets

3.1 Introduction

In an early attempt to achieve the primary objective, the use of wav elets was investigated.
It was hoped that the use of a signal processing approach to potential field analysis might
prove to be beneficial in this regard44. Accordingly, continuous, discrete and orthogonal
wavelet approaches were studied. Finally an indirect approach to applying an analyzing
wavelet to the gravitational field was considered.

This latter method might be called the Poisson kernel wav elet method. It is based on
deriving an analyzing wav elet from the Poisson kernel, which itself is a smoothing func-
tion that satisfies desirable properties. It is an indirect method because at no time does
one apply a specific wav elet, such as those to be described in the sequel; nevertheless, a
wavelet based on sound physical principles, and one which has the property of identifying
desirable features in the original data, is applied.

This chapter begins with some background on Fourier analysis to set the stage. By means
of examples, each of the wav elet techniques mentioned earlier is described. The chapter
closes with the description of the technique which promised to indicate not only the shape
of a buried structure, but also to indicate the depth to such a body. It was the latter
attribute of primary interest in this research.

The discussion in this chapter will not be a thorough, or exhaustive description, but
should provide the reader with sufficient background for a following chapter.

3.2 Fourier Analysis

Signal analysis in its traditional form has involved the use of Fourier transforms which
resulted from the work of Jean Baptiste Joseph Fourier who lived from 1768 to 1830. It
was Fourier, who in his study of the theory of heat shortly after 1800, first expanded an
arbitrary function as a series based on sinusoids [O’Connor and Robertson 1997].
Although not received well by his contemporaries, his development in this regard has
withstood the test of time, and still enjoys widespread use. Useful reviews of Fourier
techniques may be found in various publications, including the following small sampling
[Blais 1988; Blais 1997; Carslaw 1930; Gonzalez and Wintz 1987; Kanasewich 1981;

44 Wa velets are used in many areas, including data compression, matrix simplification, data combination,
filtering and geophysical analysis.
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Kay and Marple 1981; Marple 1987; Papoulis 1962; Priestley 1981; Robinson 1967], or
[Oppenheim and Schafer 1975].

3.2.1 Periodic Functions

A function periodic in an interval T , which is expressible as

f (t) = f (t + nT ) n = 0, ±1, ±2, . . . (3-1)

can be expressed in terms of basis functions (→en) that are themselves periodic in an inter-
val T [Kaiser 1994], as per

fN =
1
T

N

−N
Σ cnen (3-2)

where en are basis vectors given by [Kanasewich 1981],

en(t) = einω0t (3-3)

with nω0 = 2π n/T , n = 0, ±1, ±2, . . .. Such basis functions are more than orthogonal as
through their inner product, one can see that they are also orthonormal (within the period
T ).

〈en, em〉 = Tδ nm (3-4)

As a result, the cn terms may be computed by means of the inner product of the basis
functions and the arbitrary function fN , as per

cn = 〈en, fN 〉T =
t0+T

t0

∫ fN (t)e−inω0t dt (3-5)

In the limit, fN → f∞ and,

| f |2T =
1
T

∞

−∞
Σ |cn |2 (3-6)

Given that the period of the function is T , then the result is a spectral expansion of f

from the fundamental frequency f0 = 1/T to an upper limit based on the length T and the
number of samples contained therein. T can be arbitrarily long, including an interval
which is of infinite length. In other words, any function can be considered to be periodic
if its support (i.e. non-zero length) equals the period.

The spectral lines so generated are multiples of the fundamental, meaning that the
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decomposition is in terms of f ’s harmonic content. Each ‘line’ is an indication of the
contribution that frequency makes to the overall energy in the period.

This analysis is highly beneficial for signal analysis and other purposes, as it has the
capability of capturing frequency information in an entire dataset, and presenting it
together. Thus it provides for a general analysis of frequency content over a fixed time
interval. It has the disadvantage of not being selective in time. For example, it is not pos-
sible to determine if two signals occur simultaneously within a period, or are separated in
time, both having occurred within the same period.

Fourier’s spectral decomposition demonstrated that any periodic motion could be repre-
sented as a combination of simple harmonic functions. His transformation of a signal can
be seen as the weighted contributions of sinusoidal functions which when summed will
result in the reconstruction of a time (or spatial) domain signal. It is ideal for the analysis
of stationary signals; but for those signals whose statistical characteristics vary with time,
one requires a transformation which is time dependent, or just as non-stationary as the
signal being analysed. Dennis Gabor proposed such an analysis tool in the late 1940’s,
the Short Time Fourier Transform (STFT) [Gabor 1946].

The windowed or short time Fourier transform of which Gabor’s is one example, was
intended to overcome the limitation of Fourier’s more general transform. It was an
attempt to provide insight into the properties of a signal as a function of both location and
frequency. This was done by performing a Fourier analysis on the convolution of a win-
dow and the original dataset. Because the window had compact support, meaning that it
was zero outside of some defined bounds, the resulting analysis provided insight into the
local spectral properties of the signal.

3.2.2 Uncertainty

However, there was still some ‘vagueness’ in the analysis. Specifically, the desired local-
ization in both time and frequency was not quite attainable. This is a result of requiring
one full period of any signal in order to establish that the time signal contains that fre-
quency. For a window of length T , the lowest frequency recognizable corresponds to
1/T , with higher frequencies recognized up to fNyquist , that value being dependent on the
sample rate. Large windows have good frequency resolution, but poor time resolution
(i.e. event time localization). Short windows have improved time resolution, but poorer
frequency resolution.
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This poorly determined state is similar to that referred to as Heisenberg’s uncertainty
principle developed in 1927 [Schiff 1968]. The general condition is that the product of
the time width of the window and its bandwidth is a constant which is lower bounded
[Rioul and Vetterli 1991],

∆ f ∆t ≥
1

4π
(3-7)

This then is the caveat with the windowed or short time Fourier transform. In effect, it is
that if the windowed Fourier transform is used to analyse a signal containing frequencies
having more than one cycle in the window (i.e. signal features shorter than the window
length), then the analysis is underlocalized in time. In other words, like the general
Fourier transform, one doesn’t know when a feature occurred, just that it did occur. Simi-
larly, if such a transform is used to analyse a signal containing events with a length longer
than the analysis window, it is said to be overlocalized in time. Such events cannot be
resolved by the transform.

In either case, the windowed Fourier transform (at least for a fixed length window) is
inappropriate if used without altering the window length. It has difficulty dealing with
local behaviour. As indicated, the balance between time and frequency resolution is con-
trolled by the window function. One requires a scale independent transformation to deal
with such behaviour. The wav elet transform is a tool that provides such a facility.

3.3 Continuous Wav elet Transforms

A scale independent transformation is one whose analyzing function offers high resolu-
tion for high frequencies and correspondingly appropriate resolution for low frequencies.

While, the Fourier basis functions eiω t have very high frequency locality, and they are
also orthogonal, it is the purview of wav elets to offer similar characteristics with the pro-
viso of also offering scale dependent resolution.

A single wav elet function defines a family of wav elets by dilating and translating itself
over the continuum of all possible values. Such functions are said to be mother wavelets

or analyzing functions. Their stretching in time corresponds to a contraction in band-
width, with translations corresponding to phase shifts, as might be expected. When used
to transform a signal f , the resulting magnitude describes how much f is like the trans-
lated and dilated analyzing function. For most choices of analyzing wav elet g, an inv erse
is possible providing several requirements are met [Teolis 1998]:
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• Every function f should be represented as a linear combination of dilated and

translated versions of g over a large enough space of interest

• Each function should be recoverable from a knowledge of the inner products
〈 f , Dt Ds g〉 where Dt indicates translation (t) and Ds the amount of dilation (s) of
g

• The analyzing function g must have zero mean.

A function ψ ∈L2(R )45 is defined as a wav elet if it fulfils the admissibility condition,
meaning that it has finite energy [Mallat 1989b, p. 2097],

0 < cψ = 2π
∞

−∞
∫ ψ̂ (ω )

2

|ω |
dω < ∞ (3-8)

and based on this definition, the wavelet transform as originally introduced by [Goupil-
laud et al. 1984] for seismic signal analysis, is given by

W ( f )(s, t) =
1

√ cψ

1
|s|1/2

∞

−∞
∫ f (u)ψ 


u − t

s


du (3-9)

for s∈R \ {0}, t ∈R 46. The term s is known as the scale, while t is the amount of trans-
lation of the wav elet operator. Note that this expression is simply a convolution with a
scaled operator (see for example Figure 3-1), which could be re-written as,

W ( f )(s, t) =
1

√ cψ
f ∗ψ st (3-10)

where

ψ st =
1

|s|1/2 ψ 


u − t
s




(3-11)

The inverse is given as [Daubechies 1992],

f (u) =
1

√ cψ R
∫ ∫ψ 


u − t

s


W ( f )(s, t)

dsdt
s2 (3-12)

From these statements, one concludes that a wav elet has zero mean (because cψ < ∞) and

hence it must oscillate. As well, because ψ ∈L2(R ), then ψ decays to zero at some point
45 ψ is indicated to be a member of the set of square integrable functions over the space of reals.
46 The expression s∈R \ {0} means that s exists in the space of all reals, with the exception of the value

zero.
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making it a wav e of finite length (i.e. compact support), or a ‘wav elet’.

Unlike the short time Fourier transform, the denominator in the expression of ψ in equa-
tion 3-9 indicates that the envelope function (containing the aforementioned oscillations)
changes shape as the factor s, or scale, changes in magnitude. As s shrinks in magnitude,
the width of ψ declines so that the frequency of oscillation increases, implying improved
resolution at higher frequencies. It follows that scale changes affect a wav elet’s spectrum
with larger scales implying narrower spectra.

For example, for the Mexican Hat wavelet, defined as the second derivative of a normal
distribution function,

ψ (t) = (1 − t2)e−t2/2 (3-13)

the effect of scaling at five versus unity is illustrated in Figure 3-1 following. Note that
[Kumar and Foufoula-Georgiou 1997] show the Mexican Hat wav elet with the coefficient

2/√3π −1/4. See also Figure 3-2 which illustrates a Mexican Hat wav elet at multiple scales
and the corresponding spectra.
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Figure 3-2: A Mexican hat wavelet applied to a centred unit spike on a 32

sample dataset is shown (left). Fr om left to right the wavelet increases in

length, and decreases in overall amplitude. The position of the wavelet as it

is presented from left to right results from the addition of the effective scale

value to the result of the convolution. The lengths range from 9 to 31 sam-

ples, and the actual amplitudes range from 0.867 (bottom left) to 0.45 (top

right). On the right are the corresponding spectra.

An alternative is the Morlet wavelet given as
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Figure 3-1: A Mexican Hat wavelet with scale factor set to 1 and to 5. A

large scale factor increases the length of the wavelet thus accommodating

larger features. Smaller scale factors resolve finer features. Note that the

amplitude of the scaled wavelet increases with smaller scale factors, imply-

ing constant wavelet energy.

ψ (t) =
1

√ 2π
e−t2/2e−iω ot (3-14)

which has the spectrum [Starck 2002],

ψ̂ (ω ) = e−2π 2(ω −ω0)2
(3-15)

This wav elet has the advantage of being complex. This allows the determination of event
phase as well as amplitude, a feature lacking in the symmetric Mexican Hat wav elet.
Examples of Morlet wav elets for the same scales as before may be seen in Figure 3-3.
Note that complexity may also be viewed as a disadvantage in that the computational
requirements are doubled. Of course if fast Fourier transforms are employed, this addi-
tional cost is ameliorated.

There are several formulations for the Morlet wav elet. Another, from [Teolis 1998] gives
the formula as:

ψ (t) =
1

√ π γ BW
ei2π γCF t−(t2/γ BW ) (3-16)

where γ BW is the bandwidth and γCF is the centre frequency. The L1 norm of ψ (t) is
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Figure 3-3: The real part of a Morlet wavelet at scales one and five (left)

versus the imaginary part (right).

unity, and as a result, its Fourier transform has its maximum value (1) at γCF . Teolis
notes that the Fourier transform of a Morlet wav elet is

ĝMorlet(γ ) = e−π 2γ BW (γ −γCF )2
(3-17)

The zero mean requirement is not satisfied for a Morlet wav elet, but he indicates that by

choosing the product γ BW ⋅ γ 2
CF large enough, the mean can be made arbitrarily small.

The mean is unimportant if the signals being analyzed are in L1 over R , and have a zero
mean.

The article by [Kumar and Foufoula-Georgiou 1997] shows the Morlet wav elet as

ψ (t) = π −1/4e−iω0t e−t2/2 ω0 ≥ 5 (3-18)

Other wav elet examples, also from [Teolis 1998] are

• frequency B-spline wavelet given as

gm(t) = (γ BW /m)(1 / 2−m)ei2π γCF t







sin 


π γ BW t
m




π t







m

m = 1, 2, 3, . . . (3-19)

These are simply B-splines designed in the frequency domain.

• Shannon wavelet given as

gShannon(t) = γ −1/2
BW ei2π γCF t sin(π γ BW t)

π t
(3-20)
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Teolis notes that as the envelope of this wav elet is a sinc function, it has poor 1/t
time decay.

3.4 The Discrete Wav elet Transform

In order to implement a continuous wav elet transform, it must be discretized. This cre-
ates the so-called discrete wavelet transform which can be implemented numerically. In
the forward case, a single integral (equation 3-9) must be evaluated, and for the inverse
case, a double integral with its additional cost must be computed (equation 3-12). Given
that digitally, one is limited to discrete values on a grid (i.e. G = {(sm

0 , nt0)|m, n∈Z }47),
with s0 > 1  a  fixed dilation step and t0 > 0  a  fixed start time, the question of invertability
arises. Can the original signal f (u) be completely represented by the following discrete
basis functions?

ψ (s0,t0)
mn (•) = s−m/2

0 ψ (s−m
0 • − nt0) (3-21)

The answer is that inversion is in fact possible, providing the wav elet basis functions

ψ (s0,t0)
mn (•) have certain properties. They must form what is called a frame, which implies

that a bounded inverse operator exists [Kumar and Foufoula-Georgiou 1997].

By a suitable choice of scale and translation values, generally those which correspond to
a dyadic analysis, the coefficients resulting from the transform indicate the intensity of
the signal f at the scale sm

0 in the vicinity of time ntosm
0 . They provide similarity infor-

mation about the discretized signal. Providing the so-called frame requirements are met,
the inverse is guaranteed. Partial inversions or inversion with modified coefficients can
be useful when studying specific aspects of a process as the effects of factors such as
noise or interfering signals can be reduced.

One example of a discretized continuous wav elet transform is shown in Figure 3-4. A
Mexican Hat wav elet is applied to a dataset similar to that found in [Mallat 1997]. The
dataset which is shown at the bottom of the figure has been biased negatively to offset it
from the result of the analysis. The scales employed were 1, 2, 4 and 8, with intermediate
scalings known as voices48. A suitable number of voices per octave of analysis has the
effect of meeting the frame requirements for inversion. If the most stringent frame needs
are not met, then the wav elet coefficients are correlated over a neighbourhood which

47 The term Z indicates the field of all integers.
48 A ‘voice’ is an intermediate scaling of the analyzing wav elet. As typical scales are related by dyads

(i.e. separated by factors of two, or octaves) a ‘voice’ would have some value between the current and next
scale value.

Chapter 3



60
tends to improve the resolution of sharp features in an analysis [Kumar and Foufoula-
Georgiou 1997, page 393].

Different mechanisms are used when applying continuous wav elet transforms to discrete
data. Some researchers employ zero padding as is commonly done for fast Fourier trans-
forms, some assume periodicity, and others force the data to appear mirrored at the
boundaries [Mallat 1997].

-5
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0 50 100 150 200 250

Normalized Mexican Hat for scales 1 - 8, 4 voices per octave, mirrored

Output biased by scale, original by -2

Figure 3-4: A Mexican Hat is applied to the lower dataset (biased by -2).

Each scale and voice (4 per octave) is biased by the effective scale factor to

create the display. The data were mirrored about the endpoints.

3.5 Multiresolution Analysis

Multiresolution analysis (MRA) is the technique of going from one resolution to another
by building an image pyramid of a function represented in space or time.

In general, multiple resolutions can mean different colours, scale, time or other factors
which make for different sets of observations [Blais 1997]. Multiple resolutions allow
zooming in for enhanced information extraction. The detail required depends on the spe-
cific requirement.

Any equispaced data can be analyzed, placed into a pyramid or made into an orthonormal
set (meaning that different coverages can be decoupled). Combinations of equispaced
sequences can be made and varying scales of images can be synthesized. Data series can
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be assimilated into processes. This means that everything relevant to a process can be
extracted. Such an analysis can act as an aid in understanding a process, or can facilitate
further processing of a dataset [Kumar and Foufoula-Georgiou 1997]. As indicated ear-
lier, other applications include digital signal and image coding or compression. Some
inverse problems with ill-conditioning can be handled. Wa velet transforms are informa-
tion preserving, just as Fourier transforms are [Blais 1996].

As in many analyses, the objective of a multiresolution analysis is to approximate some
signal f ∈V0

49 by some new signal f ∈V−1 with minimal approximation error. The error
is carried in the orthogonal space W−1.

One can represent the projection as a Boolean sum,

f = P0 f ⊕Q0 f (3-22)

This corresponds to a low pass smoothing step (P0 f ) and a high pass filtering step (Q0 f )
with a decimation of the result. One can represent the space V0 by

V0 = V−1⊕W−1 (3-23)

The smoothing and filtering can be repeated again (and again ...) as per,

f = (P0⊕Q0) f
= (P1⊕Q1)P0 f ⊕Q0 f
= P1P0 f ⊕Q1P0 f ⊕Q0 f

(3-24)

Pictorially, this looks like Figure 3-5. The definition of a multiresolution analysis is a
nested sequence of spaces, as described in [Teolis 1998, page 92] is given by

L2(R )⊃ . . . ⊃V1⊃V0⊃V−1⊃ . . . ⊃{0} (3-25)

This says that there is a sequence of nested subspaces Vk which increase in resolution as
k increases. These spaces contain improved representations of some function f with
increasing k. The change in resolution will be uniform if the spaces are related by con-
sistent dilation factors (usually two).

This is an MRA if several conditions are satisfied:

1 There must exist some function φ called a scaling function (sometimes called a
smoothing function) which by integer translates, will form an orthonormal basis

49 The symbol V is used in the context of an MRA to denote a space. While in the context of Newtonian
potential the same symbol is used, there should be little chance of confusion.
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Figure 3-5: Repeated application of projections onto subspaces of preceding

superspaces shows repeated smoothing (into spaces V−n) and loss of infor-

mation (into spaces W−n).

for f in a subspace Vk . Only one basis function is required for each space, and
they are related as per [Mallat 1989a],

φ2 j (•) = 2 jφ (2 j•) ∀ j ∈Z (3-26)

Thus if φ (•) is a basis for V0, then φ2 j (•) is a basis for V2 j . An alternative definition
from [Mallat 1997, page 225] is

φ jn(•) = √ 2− jφ (2− j(• − n)) ∀ j ∈Z (3-27)

where the family {φ jn}n∈Z is an orthonormal basis of V j ∀ j ∈Z .

2 The union of the spaces is dense in L2(R ),

m∈Z
∪ Vm = L2(R ) (3-28)

3 The spaces are independent of each other,

m∈Z
∩ Vm = {0} (3-29)

4 If signal f (•)∈V0, then dilating by 2m will place it in Vm (i.e. f (2m•)∈Vm). All
spaces of an MRA are scaled versions of the base space V0.

5 [Chui 1992] adds a fifth condition50, that being that V j+1 = V j⊕W j , j ∈Z where
W j is the orthogonal complement of V j . He also points out an intrinsic property of
wavelet spaces, which says that more and more variations of the projection of f

(i.e. P j f ) are removed as j → −∞.
50 Note that which space is subordinate to which sometimes is reversed in equation 3-25. [Mallat 1989a]

shows the boolean sum as indicated here, but in [Mallat 1997] it is reversed.
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Any set of vector spaces V2 j , j ∈Z satisfying these properties is said to form a multireso-

lution approximation of L2(R ) [Mallat 1989a]. Implementation details for multiresolu-
tion filter specification are given, for example, in this latter paper, or more recently in
[Keller 2000].

As indicated in equation 3-22, there are two aspects to an MRA. One smoothes by appli-
cation of a low pass filter, and one highlights detail with a high pass filter. The smoothing
step results in the ability to visualize a process at some resolution. In fact, each resolu-
tion is a scaled version of the base space V0 (condition 4 above). What has been removed
and set aside is the result of the filtering step at the preceding resolution.

If a function fm(t) is the representation of f (t) at resolution m, then to get the function at
the next higher resolution, one need only add that which was removed, as per

fm+1(t) = fm(t)⊕ f ′
m(t) (3-30)

where f ′
m(t) is the detail removed to obtain the ‘view’ of f (t) at resolution m. The

smoothed version of f (t) at resolution m is computed by the action of a smoothing func-
tion φ upon f (t) at the desired resolution, with fm(t) represented in terms of that function
by,

fm(t) =
∞

n=−∞
Σ cmnφ mn(t) (3-31)

with

φ mn(t) = 2−m/2φ (2−m t − n) (3-32)

and coefficients computed by51,

cmn =
∞

−∞
∫ f (t)φ ∗

mn(t)dt (3-33)

By contrast, the detail that has been removed is described by a weighted sum of orthogo-
nal wav elets (Ψmn(t)), as per

f ′
m(t) =

∞

n=−∞
Σ dmnψ mn(t) (3-34)

with the coefficients defined by,
51 Shown here is the inner product of a function with the complex conjugate of the smoothing function.

Typically, real wav elets and smoothing functions are used.
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dmn =
∞

−∞
∫ f (t)ψ ∗

mn(t)dt (3-35)

Often this detail is derived from a wav elet which is the first derivative of the smoothing
function. A good example is the Haar wav elet described in a later section.

Examples of the application of smoothing and detail removal can be seen in Figure 3-11
and Figure 3-12. The first shows the detail removed from successive applications of the
wavelet, and the second shows the remainder which is the equivalent of applying the
smoothing function at each of the scales illustrated.

3.5.1 Application and Results

A multiresolution analysis can be implemented in one or more directions. The decompo-
sition is performed via quadratic mirror filters [Blais 1996], that is filters (H, a low pass
smoothing filter, and G, a high pass detail recovery filter) that satisfy the condition that

H* H + G*G = I (3-36)

where H and G and their transposed complex conjugates correspond to the conjugate
mirror filter pair (in spectral response) [Mallat 1989a],

H(ω )

G(ω )

=
∞

n=−∞
Σ h(n)e−inω

= e−iω H∗(ω + π )
(3-37)

This defines the filter pair (in time/space response).

g(n) = (−1)1−nh(1 − n) (3-38)

with g(n) being the high pass filter corresponding to G(ω ). The filters h and g corre-
spond to the smoothing and wav elet (detail) functions φ and ψ respectively. The band-
width of the filters is approximately equal to [−π , 0] ∪[0, π ] for h and

[−2π , −π ] ∪[π , 2π ] for g in V0 and [−2− jπ , 0] ∪[0, 2− jπ ] for h and

[−2− j+1π , −2− jπ ] ∪[2− jπ , 2− j+1π ] for g in subspace V2 j [Mallat 1989a].

The relationship of the filters g and h to the detail and smoothing functions is [Li 1996a;
Mallat 1997, pp. 228, 239],

φ (x) = √2
∞

n=−∞
Σ h(n)φ (2x − n) (3-39)
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with

h(n) =
∞

−∞
∫ φ (x)φ (2x − n)dx and

∞

n=−∞
Σ h2(n) = 1

(3-40)

and

ψ (x) = √2
∞

n=−∞
Σ g(n)φ (2x − n) (3-41)

with g defined as in equation 3-38 above.

In one dimension they act on a data sequence via,

H ⋅ {x1, . . . xn}
G ⋅ {x1, . . . xn}

= {r1, . . . , rn/2}
= {s1, . . . , sn/2}

(3-42)

Reconstruction occurs under the mapping,

H* ⋅ {s1, . . . sn/2} + G* ⋅ {r1, . . . rn/2} = {x1, . . . xn} (3-43)

with ‘*’ denoting the conjugate transpose.

The process is as follows

1 apply the low and high pass filters to the current sequence

2 decimate the result of the both filter operations by discarding every second sample,
setting aside the decimated high pass result and creating a new sequence from the
decimated low pass result

3 repeat the first two steps until decimation is no longer possible

Note that the effect of the low pass filter is to reset the bandwidth of the sequence to a
lower value than the original sequence had. In this case it would be halved. Once the
highest frequency is at one half the original Nyquist frequency, the data can be decimated
without loss of information. Then the process can be repeated. For the data processed
with the high pass filter, the bandwidth is also halved. Thus it too can be decimated with-
out loss of information.

The process is similar to averaging, and then subtracting the average from the original to
get the residual. The trend or low frequency component leads to data pyramids, and the
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high pass detail leads to the wav elet transform. This procedure allows one to work at a
resolution which is appropriate for the task. It also allows one to do some separation of
signal (trend) and noise (residual).

Application of such filters results in a smooth approximation of the original signal, plus
the residuals remaining at each step. So, for some signal S0, application of a multiresolu-
tion analysis would result in

S0→

Sk , Rk , Rk−1, . . . R2, R1




(3-44)

Here Sk is the smooth function remaining after k smoothing operations, or applications of
the low pass filter. The Ri , i = 1, 2, . . . , k are the residuals remaining at each step of the
analysis. This is illustrated pictorially in Figure 3-6.

R3

R2

S0 S1 S2 S3

R1

(divides signal into trend plus residual)

Wavelet Transform

S0

S1 R1

S2

S3

R2

R3

Figure 3-6: The multiresolution wavelet transform is a method of separating

the trend from the residual, using the previous trend as input to the next

trend/residual estimate. The result is a vector comprised of the final trend

component, plus the preceding residuals. The number of components in the

whole is the same as the original vector length. Note that the final result is

(as indicated in the text) the sequence {S3, R3, R2, R1}.

A similar series of operations can be applied to two dimensional data. In this case, the
filters are applied in both directions to decompose the original dataset into quadrants, one
of which is then further decomposed, and so on. Pictorially, this looks like the illustration
in Figure 3-7 which shows a single step of decomposition. For the two dimensional case,
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Figure 3-7: A single step of a two dimensional decomposition is illustrated

before (top) and after (bottom) application of multiresolution filter operators.

The signal at the next lower resolution, or smoothed image, is seen in the

northwest corner. The southwest corner has horizontal (vertical) emphasis;

the northeast corner has vertical (horizontal) emphasis and the southeast

corner shows both directions. The four smaller rectangles ‘replace’ the orig-

inal signal after the single step. A succeeding step would be applied to the

new ‘signal’.

a more concrete example is the following illustration (Figure 3-8) which shows the per-
spective view of a simple dataset made up of several unit height boxes one of which is
surrounded by a fence, all of which lie upon a uniform background. After applying a sin-
gle step of a Haar two dimensional transformation, the right hand side of the figure
results. A miniature version of the original set of structures may be seen in the lower left
hand corner, with the expected residuals in the other three corners.

Of particular note in Figure 3-8 is the fact that there are many zero and near zero values
remaining after even a single step in a multiresolution analysis. Data compression and
numerical analysis algorithms can take advantage of this characteristic to afford accept-

able answers for problems of considerable magnitude.

Unfortunately, while a multiresolution analysis is a useful tool for compression, or the
simplification of numerical algorithms, it has the property of shrinking the spatial extent
of anomalous features when used as a tool for say indexing image52 databases. This
property is inherent in the analysis of the data remaining at each succeeding step, as the

52 Any two dimensional datasets could be indexed in this manner. The term image is being used loosely
in this context.
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Figure 3-8: A perspective view of a two dimensional dataset used to illus-

trate a Haar transform is shown on the left. A matching perspective view of

a single step of the two dimensional transform applied to the first dataset is

shown on the right. As indicated in Figure 3-7, the ‘signal’ occupies only

one quarter of the original image’s space.

smoothed image is always reduced in size compared to the original data sequence. This
smoothing of the original dataset is much like viewing the original at increasingly greater
distances; detail is lost to the eye, as the dataset shrinks in size. This is a normal feature
of a multiresolution analysis.

It can be argued that this is entirely correct, but one could also argue that with a suitable
microscope, the image size need not shrink. Such an imaginary device would allow an
observer to better appreciate the effect of detail removal, or in other words, more clearly
comprehend the increasingly gross structural aspects of a dataset.

The following illustrations show how one could establish context for features large and
small. They are generated by expanding the coefficients, which were computed during
the multiresolution analysis, in terms of the relevant basis functions at the appropriate
level of detail53. There are two examples: both are for the one dimensional case, with
one showing the detail removed at each scale, and the other illustrating the degradation of
the smoothed data as the detail is removed. They clearly show varying levels of detail at
the original, or unaltered scale. For reference see [Press et al. 1992].

Figure 3-9 illustrates the gravity response over the Orphan Knoll, a geological feature
53 These basis functions were computed by performing inverse transforms on unit vectors, one for each

desired basis function. Each basis function corresponds to one level of detail.
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found in the Labrador Sea. It was examined by [Zhang 1993] in his PhD research. The
model shown is a duplicate of the model that he used. A cross section over the model is
shown in Figure 3-10. This cross section was used to generate Figure 3-11 and Figure
3-12 which illustrate a multiresolution analysis where the scale has been preserved. A
Daub1454 orthogonal wav elet [Daubechies 1988; Mallat 1997] was employed to ensure a
near zero response when applying the high pass filter. This ensured that the low pass fil-
ter provided the best possible representation of the low frequencies at each scale. In other
words, the wav elet applied had a sufficiently large number of vanishing moments to
remove high frequency components successfully [Press et al. 1992].

Orphan Knoll Gravity Response
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Figure 3-9: This illustrates the Orphan Knoll gravity response as synthe-

sized from assumed density information [Zhang 1993].

3.6 Wav elets and Potential Fields

In the geodetic literature, there has been increasing use of wav elets for signal analysis and
other purposes. For example, [Blais 1999] discusses multiresolution analysis in a geo-
detic context. The presentation by [Wang et al. 2001] discusses feature extraction using
wavelet techniques with illustrations of the Orphan Knoll highlighted earlier and first
attempts at global subsurface characterization. In [Blais and Provins 2001] there is a dis-
cussion of the application of symmetric wav elets used to highlight possible geological
features. In [Blais and Provins 2000] and [Blais and Provins 2002] there is further

54 A ‘Daub14 wav elet’ is one of a series of causal conjugate mirror filters developed by Ingrid
Daubechies. Each has p vanishing moments and 2p samples. The Daub14 has 7 vanishing moments. As
noted in [Liu and Sideris 2003b] the higher the number of vanishing moments, the more zeroed wav elet
coefficients there are.
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Figure 3-10: This is a cross section of the gravity response synthesis of the

Orphan Knoll geological feature in the North Atlantic Ocean.

Basis Function Expansion for the Synthesized Orphan Knoll Gravity Response
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Figure 3-11: This illustrates the expansion of the wavelet analysis of the

cross section illustrated in Figure 3-10. A Daub14 wavelet has been

employed. Highest frequencies are shown in the foreground, and the mean

response is shown at the back.

discussion of multiresolution analysis in spherical contexts, with emphasis on convolu-
tions and the obvious relationship of these operations and spherical harmonic transforms.
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Scaling Function Expansion for the Synthesized Orphan Knoll Gravity Response
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Figure 3-12: This illustrates the progressive removal of the high (to low) fre-

quency components in a spatially contextual manner. In the foreground is the

original gravity field synthesis. At the back is the mean level of that synthe-

sis.

[Li 1996b] and [Li 1996a] discuss the combination of data having different resolutions
and accuracies using wav elet transforms. In [Kotsakis and Sideris 1999] there is a discus-
sion of using wav elet transforms as a tool for spectral gravity field modelling.

Very recently, wav elets have been used for the evaluation of terrain corrections [Liu and
Sideris 2003a]. In another use, wav elet techniques have been employed to describe the
Earth’s gravitational field in terms of its wav elet coefficients to allow new data to be
added to the model easily [Salamonowicz 2001]. [Grebenitcharsky and Sideris 2002] dis-
cuss the use of wav elets to provide information about the spatial distribution of irregulari-
ties when combining mountainous coastal data with smoother oceanic data.

In other work, attempts to identify plate boundaries have been reported in [Vecsey et al.
2000] and [Yuen et al. 2001]. The authors employed second, fourth and eighth order de-
rivatives of a Gaussian function with emphasis on the first (the Mexican Hat described
earlier). Unlike some of the authors cited earlier, this group applied their operators to
Mercator projections of the geoid. Even with the associated distortion, they were able to
identify subduction zones, such as was done in the non-distorted spherical basis and
described in [Wang et al. 2001]. An example of the early experimentation by Wang and
colleagues is illustrated in Figure 3-14 in the sequel. It illustrates the wav elet gradient
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magnitude computed at a resolution of 0.1° at a reference scale of one.

The use of wav elets is not confined to geodetic work. Geophysical exploration has also
enjoyed benefit from their use. In [Gibert and Pessel 2001] the authors describe the use
of continuous wav elet transforms to study self-potential55 profile data. In a more theoreti-
cal sense, [Moreau et al. 1997] and [Moreau et al. 1999] describe the theory behind
developing wav elets specifically related to the gravitational data. In a related paper the
techniques described earlier are used to investigate the use of continuous wav elet trans-
forms for the recovery of geometric characteristics of simple shapes. Using upward con-
tinuation and various wav elets, the shape, thickness and dip of simple causative bodies
may be inferred [Martelet et al. 2001].

Other authors have dev eloped similar techniques which are described in the sequel.
These were employed in an attempt to realize the objective of this research: to create a
realistic Earth model by making reasonable estimates of deep Earth mass anomalies as a
contribution to the synthetic Earth project. The work published by the Australian
researchers [Boschetti, Horowitz, and Hornby 1999; Boschetti, Horowitz, Hornby et al.
2000; Hornby, Boschetti, and Horowitz 1997; Hornby, Boschetti, and Horowitz 1998;
Hornby, Boschetti, and Horowitz 1999; Hornby, Boschetti, Horowitz, and Archibald
1997a; Hornby, Boschetti, Horowitz, and Archibald 1997b] and [Boschetti, Hornby, and
Horowitz 2000] is more oriented to exploration for economic minerals, but the technique
described appears quite relevant to the objective of this research.

In the following section is a description of the work done in Australia. In this research, a
development similar to that described by the Australians was employed. These
researchers take a more practical approach to the problem of deciphering gravity data.
Tw o sections describe that approach, and this is followed by the writer’s thoughts on
applying the technique to global geopotential fields. The following chapter describes the
use of the technique for the interpretation of geopotential data for mass anomaly charac-
terization.

3.6.1 Practical Application

Typically, an exploration geoscientist would employ either a visual, or traditional inter-
pretive approach to delineating and mapping causative bodies, or more recently, would

55 Self-potential is the potential developed in the Earth by electrochemical action between minerals and
the solutions with which they are in contact.
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use some form of an inversion approach in his attempt to comprehend the geology which
induced the measured field. Background on the interpretation of potential field data
through modelling is exemplified by [Jessel 1997] or [Blakely and Simpson 1986].

More recently, the work of [Hornby, Boschetti, and Horowitz 1999; Moreau et al. 1997;
Moreau et al. 1999] combined with the work by [Mallat and Hwang 1992] and [Mallat
and Zhong 1992] some of which has already been mentioned, has introduced the signal

processing approach to interpretation. By employing the physics of the system to model
or to influence the processing of the measurement, it is hoped that the characteristics of
causative bodies will be revealed.

As seen earlier in equation 3-10, the continuous wav elet transform of some function f is,

W [ f ](s, x) = f ∗ψ s(x) (3-45)

for dilation s and translation x. In the detection of edges, [Hornby, Boschetti, and
Horowitz 1999] observe that given a non-negative smoothing function φ (x) (to be
defined in the sequel) whose integral is unity, and with a wav elet ψ (x) derived from that
smoothing function by taking its horizontal gradient (∇x) as per,

ψ s(x) = s
d
dx




1
s

φ


x
s






= s
d
dx

φ s(x)
(3-46)

then the transform is identical to,

W [ f ](s, x) = s∇x f ∗φ s(x) (3-47)

using the definition of convolution and the linearity of the derivative operator. This is
sometimes called scale covariance under a gradient operation.

The consequence of this is that rapid changes resulting from convolving a scaled smooth-
ing function with another function, is to highlight those changes as local maxima, by
computing the gradient of the convolution. These local maxima correspond to the edges
of a signal, after being blurred at scale s and are known as multiscale edges [Mallat and
Zhong 1992].
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3.6.2 Application to Potential Fields

The potential at z0 (a reference elevation) can be described in the continuous case as,

V (x, y, z0) = G

R 2
∫ ∫

0

−∞
∫

ρ(x′, y′, z′)dx′dy′dz′
[(x − x′)2 + (y − y′)2 + (z − z′)2]1/2 (3-48)

and the magnitude of the gravity at that point can be described by

g(x, y, z0) = G

R 2
∫ ∫

0

−∞
∫

ρ(x′, y′, z′)(z0 − z′)dx′dy′dz′
[(x − x′)2 + (y − y′)2 + (z0 − z′)2]3/2 (3-49)

which corresponds to the vertical derivative of the potential. This latter equation can be
expressed in terms of a normalized Green´s kernel function for the vertical acceleration,
given by,

K (x, y, z) =
z/2π

[x2 + y2 + z2]3/2 (3-50)

Thus, the gravity magnitude is expressible as,

g(x, y, z0) = 2π G
0

−∞
∫ ρ(x′, y′, z′)K (x, y, z0 − z′)dz′ (3-51)

which is a convolution over z. The function K (x, y, z) has an integral of unity for all
z > 0, implying compact support in the limit as x, y→∞.

Consider the scaling of K (x, y, z) vertically,

K (x, y, sz) =
1

2π
sz

[x2 + y2 + (sz)2]3/2

=
1

2π s2

z
[(x/s)2 + (y/s)2 + z2]3/2

=
1
s2 K (x/s, y/s, z)

= Ds K (x, y, z)

(3-52)

Thus the horizontal dilation of K (x, y, z) is the same function as would be found at some
scaled height sz. This is a two dimensional smoothing function like that indicated in
equation 3-46. In other words, using the symbols of that equation, the dilation of
K (x, y, z) is,
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K (x, y, sz) =
1
s2 φ (

x
s

,
y
s

)

= φ s(x, y)
(3-53)

This function can be used in a wav elet analysis. Its two dimensional gradient
(∇xy K (x, y, sz)≡∇xyφ s(x, y)) yields wav elets ψ s(x) = ∇xφ s(x, y) and ψ s(y) = ∇yφ s(x, y)
by their definition. Each has zero mean and their support is finite, providing the underly-
ing function converges to zero at a sufficiently great distance.

Therefore, the wav elet transform given by equation 3-47 for one dimension is the same
as,

W [ f ](s, x, y) = s∇x f ∗K (x, y, sz)
= s∇x f ∗Ks(x, y, z)

(3-54)

Thus both a smoothing function (φ ) and a wav elet (ψ ) are available. The effect of apply-
ing a smoothing function is directly related to the scale, which in turn is a function of the
selected height above the reference. The wav elet function is related to the smoothing
function by its first derivative.

[Hornby, Boschetti, and Horowitz 1999] show that the vertical acceleration at some ele-
vation z can be computed from that at another level z0 by convolution with the appropri-
ately scaled smoothing function φ . They assert that this expression is comparable to the
expression in equation 3-47, so that by choosing a scale factor of

s =
z
z0

(3-55)

one finds the horizontal derivative of the vertical acceleration (gz , which is a function of
K (x, y, z)) to be the wav elet transform for scale s (in one dimension),

W [g](s, x) =
z
z0

∇x gz(x, y) (3-56)

Since the expression is the same for the y direction, the two dimensional transform
becomes,

W [g](s, x, y) =
z
z0

∇xy gz(x, y) (3-57)

As Hornby and colleagues conclude, the wav elet transform of the vertical acceleration at
arbitrary elevation (which is equivalent to a single scale), can be obtained by upward con-
tinuing the measured gravity data to level z = sz0, computing the two dimensional
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gradient and then scaling by s. These steps correspond to applying a suitably scaled
wavelet (scaled by s = z/z0, the upward continuation step) to a data set to achieve a con-
tinuous wav elet transform. By using several scale factors (i.e. elevations), sufficient
information may be derived to analyze the properties of the body which generated the
original, measured gravity field. The effect of the analyzing wav elet is quite visible.
There is a clear correspondence between horizontal gravity gradients and the wav elet
transform of planar sources [Hornby, Boschetti, and Horowitz 1999].

The difference in the transforms for each scale selected corresponds to the detail removed
(or added, depending on the direction of continuation) between chosen scales. Since no
indication has been given of whether or not the wav elet forms a frame with the requisite
characteristics, the question of invertability is not answered, nor is it relevant for the pur-
pose of this research. The transform described here was intended for information extrac-
tion from geopotential fields: depth estimates and possibly shape analysis.

With regard to shape analysis, [Mallat and Zhong 1992] show that the evolution of
wavelet local maxima across scales characterize the local shape of irregular structures.
They observe that the maxima of the absolute value of the first derivative of f ∗φ s(x) (for
one dimension) are sharp variation points. These are easily selected by the modulus of
the transform |W [ f ](s, x)| which is easily extended to two dimensions. Furthermore, the
values of the modulus maxima56 vary across changing scale values. This ev olution is
dependent on the Lipschitz regularity of the signal. Examine again Figure 3-4 for an
illustration of how the maxima of the analyzing wav elet’s actions change with scale.

A function is said to be uniform Lipschitz α for α ∈(0, 1], in the interval (a, b), if there
exists some constant K , independent of location (within the interval) so that for all
xi , x j ∈(a, b),

| f (x j) − f (xi)| ≤ K |x j − xi |
α (3-58)

An example function is a unit step, for which α = 0. The derivative of such a function, a
Dirac delta, has α = −1. In fact, using the definition given by [Mallat and Hwang 1992,
page 619], one can show that the Lipschitz regularity α , indicates the differentiability of a
function. The primitive (i.e. integral) of a function Lipschitz α at a point is Lipschitz
α + 1 at the same point, but it’s derivative need not be Lipschitz α − 1 at that point. It is
only bounded by α − 1 [Hornby, Boschetti, and Horowitz 1999].

56 Modulus maxima means the extrema of the modulus of the wav elet transform.
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Distribution f , whose integral F is Lipschitz α , is Lipschitz α − 1, by definition. See
[Mallat and Hwang 1992] and [Hornby, Boschetti, and Horowitz 1999]. Thus the value
of α = −1 for a point source in one dimension, and -2 in two dimensions. This behaviour
can be related directly to source body configuration by a study of the modulus of the
wavelet transform [Hornby, Boschetti, and Horowitz 1999]. In particular, these authors
prove that if the density is Lipschitz uniform regular at some depth, then given the verti-
cal acceleration (gravitational attraction) the modulus maxima has the value,

|W [ f ](s, x)| ≤ K (s + s′)α −1s (3-59)

where s = z/z0 and s′ = −z′/z0, with z′ the depth below z0. This says that by examining
the variation of the modulus maxima, one can make estimates of s and s′, as well as the
Lipschitz exponent α , which indicates the type or shape of the source body.

For various body shapes, Hornby and colleagues provide an analysis of the modulus max-
ima to be expected. In particular, they note the expected result for spherical bodies, and
how one can interpret their depth from the measured values. The expression given, and
that employed in this work was (for one dimension)

x = ±(s − zd )/2 (3-60)

where s = z is the scale used in the wav elet analysis, z0 = 1 is the normalized height of
the measurement surface above the body, zd is the depth to the source below the reference
surface and x is the horizontal offset to the wav elet modulus maxima. This expression is
easily derived from the expression for the vertical acceleration due to a point source
[Hornby, Boschetti, and Horowitz 1999, page 184].

Hornby notes that the anomalous body produces a diagnostic shape in the graph of the
gravity function. While this has been known for many years (see for example [Dobrin
1960] or [Telford et al. 1976]), the use of wav elets introduces a vertical variation of the
field through reformulation of the available information. This in turn may be investigated
through the horizontal gradient to highlight edges at varying scales. By means of
wavelets, Hornby and colleagues have provided a sound basis for the interpretation of
potential field data.

3.6.3 Application to Global Potential Fields

The theoretical development in the Moreau papers substantiates the work of Hornby and
colleagues. Thus it makes sense to apply the more direct method described by the latter
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authors to interpret gravity anomalies on a global basis. The method is simpler to imple-
ment, and the two are fundamentally the same.

The preferred method of dealing with global data is via spherical harmonics. They can be
used to describe all manner of data on a sphere, as indicated elsewhere in this document.
In particular, they may be used to describe the anomalous potential, which is that poten-
tial of the gravitational field dissimilar to that expected from the normal field, defined by
a specified ellipsoid.

For the anomalous potential, the spherical harmonic coefficients are well known via many
different models, each generally improving on its predecessors. Similarly, gravitational
models based on well-known body types can be developed for experimental use.

The signal processing approach used in the Poisson kernel continuous wav elet analysis of
either measured or modelled data is as follows:

1 Initialize the radius of computation, say at the spherical Earth’s mean radius RE .

2 In spherical approximation, compute the two dimensional horizontal gradient of
gravitation at the current height (i.e. the current level of upward continuation).
This is estimated from published coefficients by modifying them as if to compute
the magnitude of the gravitational attraction g from the anomalous potential T as
described in equation 2-87. The gradients are then given by equation 2-90 and
equation 2-91. By taking these gradients, the detail at the current scale or relative
height is computed.

3 Synthesize the field described by the spherical harmonic representation.

4 Compute the magnitudes (scaled by s) of the extrema of the synthesized field and
note the extrema locations.

5 Increment the height and thus effect an upward continuation or smoothing of the
gravitational spectrum when these steps are next iterated.

6 Repeat steps two through five until all scales of interest are determined.

7 Estimate depths and allied parameters. This may be done graphically by plotting
the positions of the extrema versus their relative magnitude. Finding the regression
line through these points then indicates relative depth. Further detail is provided in
the next chapter.
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The described process is relatively easy to implement, although there are certain numeri-
cal problems to overcome which will be mentioned in due course. Typical of geophysical
interpretations, graphical methods are employed and it will be seen that for simple bodies
the technique is sufficiently robust for depth estimation. Unfortunately, for complex mass
assemblages (which tend to be the norm in the real world) the method appears inappropri-
ate. These issues will be described in the sequel.

It should be noted that some early work in the area of global feature extraction was done
by the author in some of the work mentioned earlier [Wang et al. 2001]. In that work
global datasets using both EGM96 and the very high degree model described in [Wenzel
1998a] were employed using an early version of the technique described in this chapter.
The approach used was an approximation for a single scale. The deflections of the verti-
cal for the undulation at ground level (scale equal to one) were computed, their magni-
tudes were found, and the extrema were displayed. The result for EGM96 is shown in
Figure 3-13. To the degree that the transform was computed, the results appeared
promising in that subterranean features were nicely highlighted - particularly on Wenzel’s
dataset shown in Figure 3-14. An additional test employing a multiresolution analysis
using low order Daubechies orthogonal wav elets over the Orphan Knoll was also com-
pleted, with somewhat ambiguous results.

3.7 Summary

This chapter reviewed the basic theory of continuous wav elets and their discretized
implementation. It also covered multiresolution analysis using orthogonal wav elets and
smoothing functions. Examples shown illustrated the application of these transforms to
general datasets and synthesized gravity anomalies.

The text returned to the continuous case to observe the relationship that wav elets have to
gravity data. This was shown by virtue of the effect of smoothing when altering the refer-
ence surface elevation. The importance of the wav elet modulus maxima was highlighted
as a tool which allows one to characterize a body at depth. The important aspect for this
research was that depth could be determined for certain body shapes.

Using this, and the assumption that anomalous bodies can be characterized by the sim-
plest of models (a point source), the next chapter explores the use of the technique to real-
ize the primary objective.
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Figure 3-13: Using EGM96, the wavelet transform magnitude is seen to

show some features, but less clearly than in Figure 3-14. A scale of one was

employed (i.e. no upward continuation).

Figure 3-14: Using Wenzel’s 0.1° geopotential model (GPM98B) the wave-

let transform magnitude is seen as very fine curvilinear features over the

Earth. A scale of one was employed (i.e. no upward continuation).
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4 Using Wav elets for Anomaly Characterization
Use of wav elet transforms should allow one to make estimates of depth for mass anom-
alies reflected in the geopotential field’s surface expression. Given some estimate of
depth, one should then be able to make some assessment of mass for each surface geopo-
tential anomaly. This then will result in a map of Earth structure that matches (to some
degree) the measured field. This chapter demonstrates the capability the wav elet trans-
form affords in delineating that structure. As will be seen, under ideal conditions, the
method works reasonably well. In realistic conditions however, it proves to be inade-
quate.

The theories developed by Moreau and associates, Hornby and colleagues, and quite
recently by [Abdelrahman et al. 2001] are intended generally for seeking out, and charac-
terizing shallow bodies of exploration interest. Such bodies would typically be within a
few kilometres of the Earth’s surface (for the deepest mines), and for economic reasons
would be as shallow as possible. In this research, the primary interest lay in modelling
the Earth’s deep structure so as to synthesize the Earth’s geopotential field. Consequently
there was the wish to test the theories of some of the previously mentioned authors for
their applicability in this endeavour. If successful, then one might expect that a better
knowledge of the crust and mantle might result. The most obvious characteristic would
be a consistent and plausible depth estimate for causative bodies based upon the surface
measurements of the gravity field. While other characteristics (shape, orientation etc.)
might also be possible, the focus on depth, followed by mass and the resulting fit to the
measured field was the primary objective.

In this chapter, reference is made to the work of Bowin as described in [Bowin 2000].
His interest was in attempting to describe some of the major geoidal features in terms of
structure on the core/mantle boundary, with shallower anomalous masses contributing to
the balance of the geopotential field. His models and those of Lithgow-Bertelloni were
provided to the author for experimental use. While reference is made to some of their
work in this chapter, it is not until the next that they were used to any extent. Accord-
ingly, a greater description of their activities and models is deferred until then.

The next section begins with a review of a small set of models, one of which will be used
here and in the following chapter. This is followed by a discussion of the convergence of
the spherical harmonic spectrum for a point source. An additional consideration is the
cost of calculating the spectrum for experimental purposes. The ‘meat’ of the chapter is
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comprised of attempting to estimate the depth of a buried source using the wav elet trans-
form procedure described in the previous chapter. Both simple and complex body assem-
blages are considered, and an attempt to estimate the depth of the principal cause of the
South American high is made. Some conclusions about the usefulness of the wav elet
technique for depth estimation end the chapter.

4.1 Modelling the Potential Field on a Global Basis

To model bodies at depth, one needs a method to synthesize that which is measured at the
surface. [Pollack 1973] provided several models of various shaped bodies in terms of
spherical harmonic coefficients. Without going into detail, quoted here are his model
descriptions, with corrections57. This paper described how one might represent the gravi-
tational potential field in terms of three rudimentary models. These included a point
mass, a spherical cap and a spherical rectangle58. The representation was in terms of the
generated spherical harmonic coefficients for an arbitrary placement of these ideal bodies.

Pollack’s paper describes the normalized spherical harmonic coefficients in terms of
potential for each body using the expression found in [Heiskanen and Moritz 1966, page
59]

V (r,θ , λ) =
GM

r




1 −

∞

n=1
Σ

n

m=0
Σ 


a
r




n


anm Rnm(µ, λ) + bnmSnm(µ, λ)






(4-1)

where

r radial distance from the origin to the point of observation
a radius of the sphere upon which the models are placed
θ colatitude of observation point (θ ′ for the model)
λ longitude of observation point (λ ′ for the model)
µ cosθ (µ′ = cosθ ′ for the model)

anm, bnm coefficients of the normalized spherical harmonic expan-
sion of the gravitational potential as per [Heiskanen and
Moritz 1966]

57 There were some typographical errors in Pollack’s paper, which have been corrected in this document.
Perhaps not surprisingly, when developing codes to exploit these models, typographical errors were also
encountered in several reference texts.

58 The spherical cap is a circular surface and the rectangle is a zone defined by two colatitudes, and a
lune.
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Rnm(µ, λ), Snm(µ, λ) normalized spherical harmonic functions of degree n and

order m

The models are well described by Pollack, with the coefficients for each given in terms of
the coordinates of the anomalous body at (a,θ ′, λ ′).

Point Mass




anm

bnm





=
−1

2n + 1





Rnm(µ′, λ ′)
Snm(µ′, λ ′)





(4-2)

Spherical Cap




anm

bnm





=
Pn+1(γ ) − Pn−1(γ )
(2n + 1)2(1 − γ )





Rnm(µ′, λ ′)
Snm(µ′, λ ′)





(4-3)

Spherical Rectangle: m = 0

an0 =
Pn−1(µ1) − Pn+1(µ1) + Pn+1(µ2) − Pn−1(µ2)

(2n + 1)2(µ1 − µ2)
Pn0(µ′)

(4-4)

Spherical Rectangle: n, m > 0





anm

bnm





=

µ2

µ1

∫ Pnm(µ′)d µ′

m(2n + 1)(γ2 − γ1)(µ1 − µ2)





sin(mλ2) − sin(mλ1)
cos(mλ1) − cos(mλ2)





(4-5)

In these expressions, the angle of the generating cap is α , with γ = cos α .

Note that the expression for the spherical rectangle contains a term additional to that indi-
cated by Pollack (Pn0(µ′)). Apparently, it was missed in transcription, but is easy enough
to determine. The expression shown for that model will resolve to that of the spherical
cap if the rectangle is 2π radians in width, and has µ1 = 1 (i.e. the rectangle starts at the
pole). Pollack’s expression will not. Note also that both the spherical cap and the spheri-
cal rectangle (for m = 0) generate the same potential as the point source as γ → −1 (cap)
and µ1 → 1, µ2 → −1 (rectangle).

With the exception of the spherical rectangle, for n, m > 0, these expressions are easy to
evaluate. The rectangle is more involved, as it requires the numerical solution of the inte-
gral,
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µ2

µ1

∫ Pnm(µ′)d µ′ (4-6)

This may be done using an extended arithmetic machine such as GNU MP, or via recur-
sions such as described by [Paul 1978]. Note that if the former method is employed, con-
siderable care must be taken to ensure adequate precision is carried, and that the expres-
sions used for the integration lack typographical error. The process is also expensive
computationally, as is illustrated in Figure 4-1.

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180

U
se

r p
lu

s 
S

ys
te

m
 T

im
e

Precision in Decimal Digits

Decimal Digits of Precision versus Computation Time

Time versus Precision

Figure 4-1: Direct calculation of the integrals of the Pnm functions for vari-

ous degrees of decimal precision can be costly. Shown here are the times in

seconds to calculate these functions to degree and order 36, 48 and 60 on a

300 Mhz Pentium II processor.

4.2 Potential for a Point Mass

The first problem investigated was that of the convergence of a spherical harmonic model
to a field that is truly representative for that model. Authors [Heiskanen and Moritz 1966,
page 245] hint at the need for high degree summations, owing to slow convergence, and
one might surmise that Pollack’s models were not used, or at least cited in the literature
as being used, because of this problem. The capabilities of commonly available comput-
ing facilities of his day were not as well developed as they are today59 [Dongarra 2003].

59 There were very some capable computers available at the time, such as those produced by CDC for
scientific work. More commonly available however, were those from IBM, such as the 370 with a MFLOP
rating of about 1.2. Today’s Sony Playstation 2 is comparable to that machine at 0.995 MFLOPs.
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It is instructive to see the degree of convergence, or lack thereof as a function of anomaly
depth versus degree. This was accomplished by computing the measured surface poten-
tial via both Pollack’s expressions and from geometric considerations. For a point mass,
this also confirmed that the calculation via spherical harmonics was correct. In Table 4-1
is illustrated the effect as a function of depth, for varying degrees of expansion, the rela-
tive error that may be incurred, The relative error indicates the difference between an
exact, geometric potential versus that determined from a spherical harmonic expansion.
The same information is shown graphically in Figure 4-2.

Geometric Potential versus Spherical Harmonic Potential

Relative Error by Degree (%)
36 72 90 144 180 360

Depth (km)

1600 0.002 0.000 0.000 0.000 0.000 0.000
1400 0.010 0.000 0.000 0.000 0.000 0.000
1200 0.045 0.000 0.000 0.000 0.000 0.000
1000 0.182 0.000 0.000 0.000 0.000 0.000
800 0.702 0.006 0.001 0.000 0.000 0.000
600 2.585 0.074 0.012 0.000 0.000 0.000
400 9.105 0.884 0.276 0.008 0.001 0.000
200 30.765 9.771 5.507 0.986 0.313 0.001
100 55.727 31.550 23.739 10.112 5.725 0.333

Table 4-1: A comparison of potential computed via spherical harmonics ver-

sus that determined from geometric considerations. Measurable error is

observed at shallower depths.

It is evident that anomalies too near the surface require high degree spherical harmonic
expansions. For moderately deep anomalies, say greater than several hundred kilometres,
the computing demands are ameliorated considerably, as the highest degree required is
substantially less.

As might be expected, gravitational fields exhibit similar characteristics. Figure 4-3
illustrates the convergence of the gravitational field for point sources at various depths. A
surface source forms a singularity, and hence is not shown. The RMS difference between
a synthesized gravitational field and a geometrically-generated field, over a specified
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Figure 4-2: Shown is the relative error between a geometric calculation and
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spherical rectangle, has been computed.
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Figure 4-3: Convergence of a spherical harmonic synthesis of gravitation

with increasing degree/order for the attraction due to a 1017 kg mass at vari-

ous depths. On the left is a 20° spherical rectangle centred on a point

source, and on the right is a 40° rectangle. No surface anomaly is shown as

the calculation diverges with increasing degree.

The dependency of the gradient on degree and order is illustrated in Figure 4-4. Only the
20° spherical rectangle is shown. Clearly the gradient values are both small and decrease
rapidly with increasing degree.
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Figure 4-4: The convergence for a synthesis of gradients of gravitational

attraction for various degree/order and depths. On the left is illustrated the

dependency of the northward gradient of gravitation for point mass anom-

alies at various depths. The right illustration is for the eastward gradient.

The mass size was 1017 kg.

It is apparent that using Pollack’s synthesis mechanism for moderately deep bodies
should be satisfactory if degree and order 360, a common value until quite recently, were
used. This was confirmed numerically, and is shown here graphically by further geomet-
ric versus synthesis comparison at that degree. For example, for a single point source
buried at a depth of 100 km, with measurements taken at the surface, and again at 100 km
elevation, Figure 4-5 shows that the potential computed by both methods is virtually
identical.

For gravitational attraction, as seen in Figure 4-6, there is some observable discrepancy
for the surface measurement within 1° of the anomaly. This amounts to an order of mag-
nitude difference (1.48∗10-5 for geometrically computed values of 6.672∗10-4, versus
synthesized values of 6.524∗10-4). This falls to two orders of magnitude difference by 1°
and greater. For a higher measurement elevation (or a deeper body depth), the difference
is a minimum of 4 orders of magnitude. Computing the gravitational attraction to degree
and order 1440 caused the difference to fall to between 7 and 8 orders of magnitude, as
might be expected.

4.2.1 Computational Considerations

Evidently, for minimal error, a high degree is required. At the same time, computational
costs imply that a low degree is desired. Since the synthesis of a set of spherical
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Figure 4-5: To degree and order 360, the potential measured at the surface,

and at an elevation of 100 km for a point source of 1017 kg at 100 km depth

appears coincident for the spherical harmonic and direct calculation meth-

ods.

harmonic coefficients is O(N 4) in the most naive implementation, computational cost can
become extremely high for even moderate degree/order syntheses. Although codes to
degree and order 1800 have been developed (e.g. [Wenzel 1998a]), they are expensive to
run.

As illustrated in earlier figures, by degree and order 360, the synthesis for moderately
deep bodies (say in excess of 50 km) converges rapidly for the quantities derived from the
potential described by the models used. Accordingly, a maximum degree/order of 360
was selected as a compromise. To maximize performance the codes developed by this

author made use of fast Fourier transforms to reduce the order of computation to O(N 3).
This was the least possible without employing codes such as those developed by
[Mohlenkamp 1997] or [Healy et al. 1998] which have their own computational idiosyn-
crasies (mainly very large storage and memory requirements).

For the fast Fourier transform (FFT), the publicly available FFTPACK codes were
selected. These are supplied as single precision FORTRAN functions. To increase
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Figure 4-6: For the same parameters as in Figure 4-5, the gravitational

attraction deviates for measurements close to the buried source.

numerical accuracy and to make them compatible with other codes developed for this
research, the author did a conversion to C, and forced all real variables to double preci-
sion. The required routines were then packaged as a single library to be linked with other
codes as required.

Employing an FFT in a spherical harmonic synthesis requires a reorganisation of the
order of operations from that which appears to be most obvious from the summation
described in, for example, equation 2-86. It is evident that a Fourier transform is being
executed but its implementation is not immediately clear. Satisfying the conditions
described in the chapter on spherical harmonics will ensure that the FFT can be used to

reduce the order of computations from O(N 4) to O(N 3).

4.3 Synthetic Examples using Wav elets

The first modelling program was used in part to ensure the correctness of the algorithm.
Some early program results are shown here. All computations were performed with dou-
ble precision arithmetic and to maximum degree and order 360. The mass of the point

source was 1017 kg, and the anomalous body was placed (for convenience) at a colatitude
and longitude of 90°. The following illustrations, and all other synthetic tests were made
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by analyzing single anomalies, or multiple anomalies arranged in a line through which
cross sections were made. Only multiple body assemblages required some interpretation
to select the orientation of the sectional ‘slice’.

In Figure 4-7 are illustrated the potential computed from point masses at two different
depths, but measured at an elevation superior to the Earth’s surface. In Figure 4-8 are
illustrated the corresponding gravitational attractions for the point source bodies of Fig-
ure 4-7. For one of the bodies, the eastward and northward gravitational gradients for an
elevated measurement level (i.e. upward continued from the Earth’s surface) are illus-
trated in Figure 4-9. Finally, in Figure 4-10 is illustrated the magnitude of the gradient
for the same body.

All illustrations were generated over a 20° by 20° rectangular surface and have had hid-
den lines removed for clarity. Readers are assured that the gradient figures are as asym-
metrical as expected, and that the northward and eastward gradients had identical (or
nearly so – some numerical imprecision results from differing order and content of calcu-
lations) values.

Potential for Various Source Depths and Measurement Heights
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Figure 4-7: An example of the potential calculated from a Pollack point

source body at two different depths, and measured at some elevation above

the Earth’s surface.

Using the wav elet technique described earlier, depth estimates resulting from several
analyses for a single point mass were made and are illustrated in the following figures.
They show the interpretation of the modulus maxima (i.e. location and magnitude) com-
puted from the wav elet transform. The horizontal axis is given in terms of sample num-
ber while the vertical axis is the scale or dilation applied for each transform step. Figure
4-11 illustrates points at depths of 50 and 100 km, while Figure 4-12 is for depths of 200
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Gravity for Various Source Depths and Measurement Heights
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Figure 4-8: An example of the gravitational attraction due to a Pollack point

source body at two different depths, and measured at some elevation above

the Earth’s surface.

East Gradient for Various Source Depths and Measurement Heights
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Figure 4-9: An example of the gravitational gradients calculated from a Pol-

lack point source body at a single depth, and measured at some elevation

above the Earth’s surface.

and 400 km. Lastly, Figure 4-13 is for a depth of 800 km. The estimated depths resulted
from a least-squares analysis of the best fit line through the samples having the highest
magnitude. No attempt was made to interpolate for a better estimate of where that point
might lie. The heights to which continuation was taken were {0, 50, 10, 150, 200, 300,
400, 500}. Extending this list to {0, 50, 10, 150, 200, 300, 400, 600, 800, 1000, 1200,
1400, 1600, 1800, 2000} made no appreciable difference to the depth estimate. See Fig-
ure 4-14. As the gradient magnitude is symmetrical about the point source, only one half
is shown.

The intercept at sample 180 is a measure of the depth to the source body. As noted
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Gradient Magnitude for Varying Source Depths
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Figure 4-10: An example of the magnitude of the combined gradients (effec-

tively the magnitude of the wavelet transform of the gravitational attraction

for an unspecified scale factor) calculated from a Pollack point source body

at a single depth, and measured at some elevation above the Earth’s surface.

earlier in equation 3-60, the positions of the wav elet maxima are related to the source
depth via (for a cross section through the source),

x =
(s − zd )

2
(4-7)

where zd is the depth below the measurement surface to the body in question, and s is the
normalized dilation factor for the wav elet transform which is given by,

s =
z
z0

(4-8)

with z0 = 1. This term is Hornby’s expression [Hornby, Boschetti, and Horowitz 1999,
page 184 ]. Since the depth to the body (zd ) is unknown, and by implication, the height
of the measurement surface relative to the body (z0) is also unknown, and only the height
above the measurement surface (z) is known, the scale or dilation becomes a relative
measure. One can arbitrarily set z0 = 1 to parameterize everything to a scale relative to
the unknown source depth. Thus the intercept is an indirect measure of depth. Actual
depth estimates require a knowledge of the intercept and an estimate of the distance
between the intersection of the left and right gradient maxima lines (although for these
experiments, as was indicated earlier only one line was required due to near perfect sym-
metry).

For example, if for the experiment the point source was placed at 90° colatitude (i.e. on
the equator), and the synthesis was computed to degree and order 360, then the samples
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would be taken at 0.5° intervals. For a nominal Earth radius of 6378 km, this corresponds
to approximately 55.7 km between samples. If the best estimate of the line fitting the
data points was for example,

s = 0. 019069x − 2. 506281 (4-9)

as it was for the first 400 km deep experiment (see the following figures), then the inter-
cept would be,

(1 − 0. 019069∗180 + 2. 506281)∗6378 (4-10)

In other words, the distance below the z0 = 1 lev el multiplied by the Earth’s radius is the
depth to source. The number 180 in the previous equation appears as the point source
was placed at the 181st sample (counting from zero). The error of the estimate increases
with increasing point depth, as shown in Table 4-2.

First Attempt Depth Estimates (km) for Single Points

Actual Depth Estimated Depth Standard Deviation

50 58.7 ±20.2
100 102.5 ±36.2
200 228.4 ±32.6
400 471.6 ±32.6
800 958.1 ±32.6
1600 1934.6 ±36.2

Table 4-2: For a single mass anomaly, depths were estimated using the

largest observed value for analysis.

As an illustration of the effect of increasing the height to which the measurements are
upward continued, see Figure 4-14, which shows the same point mass situated at a depth
of 1600 km. The left figure has a maximum continuation height of 500 km, while the
right has been taken to 2000 km. Note the change in the slope and intercept. Based on
the intercept, the estimated depth for the lesser of the continuation heights is 2072.7
±38.1 km, while that for the greater continuation height is 1934.6 ±36.2 km. Examining
the figures, it is apparent that the intercept can be greatly affected by the point distribu-
tion. A better estimate would be one where the horizontal coordinate (x in the example
calculation shown in equation 4-9) was unity. This point is within or very near the set of
measurements, and thus suffers less from the sensitivity of estimates due to slope error.
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Figure 4-11: Fifty and one hundred kilometre depths for a single point

source.
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Figure 4-12: Two and four hundred kilometre depths for a single point

source.

Furthermore, the point at which the regression line crosses the horizontal axis equals the
depth to the source body. The depth estimates for the previous examples using that value
are illustrated in Table 4-3. The additional experiment for a body at 1600 km with
upward continuation to 2000 km had depth estimates of 2072.7±38.1 km using the inter-
cept and 1898.7 km using the horizontal axis as the reference.

Anticipating that a better estimate of the peak location might improve the accuracy of the
depth estimates, a simple parabolic interpolation around the highest magnitude observed
was performed for selected depths. This didn’t hav e the desired effect, although the stan-
dard deviations were improved for the most part. These are illustrated in Table 4-4 for
selected point source depths. As well, in Figure 4-15 for depths of 1600 km and 200 km,
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Figure 4-13: Eight hundred kilometre depth for a single point source.
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Figure 4-14: The left hand illustration shows the depth estimate for a point

source at a 1600 kilometre depth upward continued to 500 km. The right

hand figure is the same body upward continued to 2000 km.

one can see the improvement in the line fit. Part of the problem associated with finding
the maximum of the transform is the sampling of the field. For example, for a depth of
100 km, with 0.5° sample spacing at the equator, Figure 4-16 shows how well the magni-
tudes for various upward continuation heights are defined. On the other hand, for a
deeply buried body, the sampling frequency appears to be quite adequate. This is illus-
trated in Figure 4-17.

4.4 Estimating Depth in More Complex Situations

This section will consider the problem of making depth estimates when there is more than
one body in the study area. It will be seen that this seriously complicates the issue, and
that the interpretation requires greater care. Whether it would be possible to automate
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Modified Depth Estimates for Single Points (km)

Actual Depth Estimated Depth Standard Deviation

50 56.9 ±20.2
100 99.1 ±36.2
200 208.7 ±32.6
400 431.5 ±32.6
800 877.1 ±32.6
1600 1881.4 ±36.2

Table 4-3: Errors incurred when making depth estimates using a different

reference point at which to make that estimate.

Parabolic Depth Estimates (km) for Single Points

Actual Depth Depth Standard
Depth from Intercept from Unit Dilation Deviation

100 117.8 106.8 ±40.9
200 265.0 235.3 ±18.3
400 495.4 442.7 ±19.5
800 983.9 887.2 ±20.0
1600 2064.7 1896.8 ±21.9

Table 4-4: Errors incurred when using a parabolic fit to make depth esti-

mates.

this process is currently an outstanding problem.

Previous illustrations were the gradient and magnitude graphs for a single body. Con-
sider the case where there are 2 bodies in moderately close proximity. Let one be at a
depth of 100 km, and the second at a depth of 200 km, and let them be separated by 5°,
using the Earth centre as the coordinate reference. Let each have a mass of 1020 gm.
These characteristics are outlined in Table 4-5.
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Figure 4-15: On the left is a body buried at 200 km, and on the right the

depth is 1600 km. Using parabolic interpolation of the three points encom-

passing the maximum observed gradient magnitude, less variation about the

line fit is observed. This suggests an improved depth estimate might result.
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Figure 4-16: For 0.5° sampling, the definition of the magnitude of the gradi-

ent (i.e. the wavelet transform) is less than ideal for a shallow body at low

heights above the measurement surface.
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Figure 4-17: For 0.5° sampling, the definition of the magnitude of the gradi-

ent (i.e. the wavelet transform) appears to be satisfactory for a deeper body.

Tw o Body Problem

Latitude Longitude Depth (km) Mass (gm)

0. 140. 100. 1020

0. 145. 200. 1020

Table 4-5: A simple two body problem for testing the wavelet technique.

The potential generated by such a simple model is shown in Figure 4-18 and the gradient
is illustrated in Figure 4-19. Evidently, the gradient is easily interpreted as to where it
crosses the horizontal axis. Thus the magnitude for at least one scale (i.e. scale = 1) is
easily determined. Given that the peaks of the magnitude diverge with increasing scale, it
should be recognized that complications will quickly result.

As well, as the bodies become closer, it becomes increasingly difficult to separate them,
as is illustrated in Figure 4-20 and Figure 4-21. In Figure 4-22 one can see the wav elet
transforms for the two-body problem synthesized to degree and order 360. To keep the
profiles in a displayable range, they are shown in two overlapping illustrations. The con-
tinuation height of 200 km is common to both. In Figure 4-23 one can see the two body
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Figure 4-18: The potential generated by the two mass anomalies described

in the text.
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Figure 4-19: The gradient generated by the two mass anomalies described in

the text.

problem with the maxima and minima displayed for analysis. The minima have been
scaled by -1 so that they can be easily selected for display. Normally, they would be posi-
tive numbers. The drift in their location is an indication of the difficulty in identifying the
number and locations of point sources as the transform proceeds through different dila-
tions.
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Figure 4-20: Separating the bodies by smaller angular amounts increases

the difficulty in recognizing their existence. This is illustrated in this graph

of potential for 2 bodies separated by 2.5°, with all other parameters as

before.
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Figure 4-21: With the same parameters as Figure 4-20, this illustrates the

gradient calculation for decreasing separation.

At a higher degree, better resolution is achieved, albeit at the expense of computational
cost. Figure 4-24 illustrates the same two body problem synthesized to degree and order
1440 (i.e. 0.125° resolution). The peak definition is much improved, and combined with
the identification of the peak maxima (see Figure 4-25), and the corresponding
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Figure 4-22: The gradient magnitudes for various continuation heights for

the two-body problem. The degree and order for the synthesis was 360.
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Figure 4-23: For the same two bodies separated by 2.5°, and differing in

depth by 100 km., the interpretation of depth and source location becomes

much more difficult. The degree and order for the synthesis was 360.

intervening minima, make interpretation somewhat easier. Applying the techniques
described earlier for estimating depths, one is able to make up to three estimates for the
left hand body. In Figure 4-26 are shown the gradient maxima at upward continuation
heights ranging from 0 to 200 km. These correspond to all but one of the peaks identifi-
able in Figure 4-24 and Figure 4-25. The 200 km peak on the right hand side of that fig-
ure is sufficiently influenced by the adjacent body that the peak location is unusable. This
is easily seen when plotting the estimated line which fits the data points. The slope is
inordinately in error. Deleting the point corrects the problem. To be fair, one must note
that this is an interpretation issue, but it is readily identified as an error of some sort. By
referring back to the gradient curves, it is easily seen.

Chapter 4



102

0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

130 135 140 145 150

G
ra

di
en

t (
m

et
re

s/
se

c2 /m
et

re
)

Longitude (degrees)

Gradient Curves for the Two-Body Problem

Height 0 km
Height 50 km
Height 75 km

Height 100 km
Height 125 km
Height 150 km
Height 175 km
Height 200 km

Figure 4-24: Defining the anomaly to a higher degree (here to degree and

order 1440) enables the interpreter to better comprehend the anomalous fea-

ture. This is the same two-body problem as in the previous illustrations.
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Figure 4-25: The minima (left) and maxima (right) that correspond to the

gradient curves illustrated in Figure 4-24.

Even with this correction, it is obvious that the two slopes do not agree, which isn’t sur-
prising as it should be obvious that one is not dealing with a single point source.
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Nevertheless, one can find that the intersection of the two regression lines occurs at a
depth of 89 km. Using the offset technique, that is using the point at which the regression
lines cross the scale = 0 line, yields estimates of 99.7 km and 86.9 km for a mean value of
93.3 km. Finally, as one can note that the minimum in the gradient curve seems to be
well positioned over the longitude 140° mark, one can estimate, from the left hand curve
that the depth is 99.7 km, on the presumption that it is more reliable.

A significant factor in the interpretation is the ability to resolve the anomalies so that
good estimates of gradient maxima magnitude and location can be made. A second and
equally important factor is the ability to isolate at least one half of the wav elet transform
from the effects of adjacent bodies.

A rudimentary examination of gradient maxima shown in the right hand side of Figure
4-25 indicates that without taking some corrective action for the influence of the dominat-
ing body to the left, any depth estimate will be inordinately high. This requires a mass
estimate, and then the insertion of an appropriately signed mass at the prescribed depth
and location to remove the effect of the dominant body.

A rough calculation using the measured potentials between 135° and 140° suggests a
mass of about 1.5∗1017 kg. While this is 50% too high because the second body is a also
a contributor, it must be accepted. As might be expected, if the mass and depth are cor-
rect, a negative mass will exactly remove the effects of a positive mass. Error in either of
these quantities causes the exercise to be frustrating. Only by successive mass reductions
can one remove the effects of the erroneously high mass estimate. These manifest them-
selves as negative potential, which of course is not possible except in the case of the
anomalous potential. Note that the assumed mass geometry will also affect the outcome
of this step. In these experiments, only the simplest shapes (point sources) were used60.

A second attempt which utilizes the apparent fact (deduced from Figure 4-18) that the
right hand body has roughly one half the potential of the first allows for a better result.
Clearly this is highly interpretive, but like most geophysical analyses, there is a require-
ment to achieve some reasonable resolution to the problem at hand. Assuming that the
right hand body contributes about one half the potential can be realized by an anomaly of

60 In the paper [Hornby, Boschetti, Horowitz, and Archibald 1997a] is an illustration of how the most
unusual geological interpretations can fit the measured potential field. The fact that anything (the head of
Mickey Mouse® with appropriate ear and brain density in the cited reference) can produce the observed
field suggests that the simplest models should be used.
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Figure 4-26: The interpretation of the left body in the two body problem.

The degree and order for the synthesis was 1440. Without this degree of res-

olution (0.125°), and the use of smaller continuation heights, the difficulty of

interpreting is increased.

one half the mass at the same depth, or the same mass at twice the depth (or any of a very
large number of variations, keeping in mind that depth and the width of the associated
surface expression are related).

Using these two extremes results in several mass estimates with associated error in the
estimated potential. Tw o tests were conducted: the first used potential measurements
across the pair of bodies (from 130° to 150°), and the second reduced the affect of the
second body by dropping potential values from 140° to 150°. The results are in Table
4-6.

Tw o Body Mass Estimates Given One Body’s Depth Estimate

Range of Depth 1 Depth 2 Mass 1 Mass 2 RMS Difference
Potentials (km) (km) (gm) (gm) in Potential

93 186 0.85∗1020 1.11∗1020 0.216
93 93 1.04∗1020 0.58∗1020 0.735

130° - 150°
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Tw o Body Mass Estimates Given One Body’s Depth Estimate

Range of Depth 1 Depth 2 Mass 1 Mass 2 RMS Difference
Potentials (km) (km) (gm) (gm) in Potential

93 186 0.84∗1020 1.18∗1020 0.079
93 93 0.72∗1020 1.33∗1020 0.147

130° - 140°

Table 4-6: Mass estimates with associated error in the estimated potential.

One of these stands out with much lower error in the estimated potential, although two
others are close. One can select the former and use the mass estimated for the left hand
body to remove its effect.

The result is illustrated in Figure 4-27. There is clearly a residual anomaly in the poten-
tial after adding the negative mass at longitude 140°.
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Figure 4-27: A negative mass of -0.836∗1020 gm has been added at longitude

140°. A residual anomaly is clearly visible.

In the following figures (Figure 4-28 and Figure 4-29) are the gradient and gradient
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maxima/minima curves. It is evident that the right hand body is now better defined61 so
that a depth estimate may be made.
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Figure 4-28: The left-most body has been subtracted after estimating a

depth, assuming a depth for the presumed second body, and then estimating

masses for both. While complicated in appearance, probably due to inade-

quate mass removal, the right-most transform curves now appear to be reli-

ably interpretable.

The interpretation of these curves is that the right hand body is probably located nearer to
142.5° (previously presumed to be at 142°). As well, one can compute from the regres-
sion lines that the second body is somewhere between 216.2± 7.4 and 199.3± 7.4 km
below that location. These figures come from the two methods described earlier for the
right most line shown in Figure 4-30. The left hand line is presumed to be less reliable
as it is evidently still influenced by the remnants of the first body. It suggests depths of
121.9 and 142.1 km with a standard deviation of ± 16.4 km.

Using the mean of the two presumably more reliable depth estimates, one can calculate
the mass for the two bodies, based on the measured potentials as in Table 4-7.

The potential across the two bodies after these calculations compares favourably with the
61 At least on the right hand side.
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Figure 4-29: On the left are the minima for the gradients across the two

body problem after the left most body has been removed by subtracting an

estimated mass at its estimated depth. On the right are the maxima for the

same two bodies. The right-most gradient peaks now resemble the left-most

in the previous analysis, and appear to be interpretable. These curves corre-

spond to the transforms shown in Figure 4-28.
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fewer points because there was a lack of local maxima attributed to the left

had side of the local minima.

measured values, as seen in Figure 4-31. The standard deviation for the difference in
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potential along the entire parallel is 4.031∗10-3 with the largest difference occurring at
140°. That value was 1.70 when the actual maximum was 86.2. Adjacent difference val-
ues were at least an order of magnitude smaller.

Tw o Body Problem: Estimated Depths and Masses

Colatitude Longitude Depth (km) Mass (gm)

90.000 140.0 93 9.377∗1019

90.000 142.5 200 1.046∗1020

Table 4-7: Using measured potentials, and presumably reliable depth esti-

mates, masses are estimated.
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Figure 4-31: After estimating the depth and mass for the two bodies, one can

compare the potential as originally measured and that computed for the

interpreted model.

When performing the least-squares analysis of the gradient maxima, no weights were
assigned to individual samples. This might be counter intuitive as the wav elet transform
clearly is affected by the degree of smoothing that the scaling due to measurement ele-
vation contributes. Obviously, a transform taken at a higher elevation is ‘further away’
from the body of interest. Furthermore, an examination of the gradient curves, such as
Figure 4-24 for example, indicates a decrease in the sharpness of local extrema, which
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could easily contribute to error in locating that point.

Isolated bodies show very little extrema location variation at small scales and would not
benefit greatly from such a procedure (see the interpretation in Figure 4-15). Complex
assemblages such as that of Figure 4-24, and which is interpreted in Figure 4-26, hav e
the additional complication of adjacent body interference which cannot help but influence
the position of the extrema. On the right hand side of that figure, it is quite obvious that
weighting according to dilation would not be free of that effect, and hence erroneous val-
ues would result.

4.5 The South American High

One of Bowin’s areas of interest was the South American High, centred roughly at 110°
by 290° [Bowin 2000]. His research and a description of how it was used in this research
are described in the following chapter. In Figure 4-32 are illustrated the GEMT1 and
EGM96 geopotential models over that anomaly. See [Marsh et al. 1987] and [Lemoine
et al. 1998] for model details. The former model is a considerably simplified synthesis
compared to the latter. Obviously an analysis of deep-seated bodies would need the de-
emphasis of the higher spectral components in order to obtain an interpretable wav elet
transform of the low frequencies. A cross section of the potential at colatitude 110° is
illustrated in Figure 4-33.

Choosing a dataset for the transform can be approached in several ways. Firstly, because
the GEMT1 model is inherently smoother, owing to the averaging of the limited data
available at the time the model was created, it would provide a good starting point. Alter-
natively, the EGM96 model could be truncated at a suitably low degree, much as Bowin
did in his analysis, or it could be filtered with an appropriately shaped Butterworth opera-
tor.

As has been seen, using a low degree (e.g. degree 36) model yields very poor results for
the wav elet transform because of the associated coarse sampling of the field. The better
alternative is to use a high degree model with appropriate filters applied to reduce the
complexity. This complexity is highlighted in Figure 4-33 where the EGM96 model is
shown in profile across the South American high in question.

Truncating the model to a lower degree greatly simplifies the analysis. In Figure 4-34
are shown two truncations. One is to degree 36, and the other to degree 10. As Bowin
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points out, the contribution to the Earth’s geoid anomalies show little change with the
addition of spherical harmonic components in excess of 10. In fact, the largest contribu-
tions come from degrees 2 and 3, and the power spectra for the Earth range over some 8
orders of magnitude to degree 10. Thus it is not unreasonable to employ a spectrum of
maximum degree 10, or possibly even less.

GEMT1 Potential Field Centred at 110 by 290 Degrees

GEMT1 potential at 10 degree intervals
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Figure 4-32: On the left is the GEMT1 geopotential model over the South

American high. On the right is the same anomaly synthesized from EGM96.

Note the complexity introduced by the latter field description.
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Figure 4-34: Both figures show the same profile as illustrated in Figure
4-33. On the left, the EGM96 spectrum has been truncated at degree 36, and

on the right, to degree 10.

Interpreting the filtered high requires an appropriate choice of continuation heights.
Using heights similar in range to those employed for shallower anomalies, such as the
100 or 200 km deep bodies of the demonstration studies, proves inadequate for a much
deeper body. This is illustrated in Figure 4-35 where one can see the gradients over the
anomaly of interest. Careful study indicates that they do not converge at a reasonable
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Figure 4-33: A cross section of the potential illustrated in the previous figure

taken at colatitude 110°.

depth, but the convergence rate is not as easily seen as in earlier experiments. This may
be due to the influence of other nearby anomalies, and so the depth at intercept is mean-
ingless. The depth computed from the scale zero value is likely more indicative of the
true depth. The scale zero depth is estimated to be in the range 2415 to 2476 metres.

Using continuation heights ranging from 0 km to 2000 km gives similar results. The high
side of the anomaly, that is, the magnitude of the gradient to the right in the figure still
suggests an impossibly large depth (anywhere from 42,000 to 62,000 km). The zero scale
intercept gives about the same values as before: 2397 to 2470 km. To illustrate the prob-
lem, see Figure 4-36. In this figure one can see the both sides of the anomaly. If it were
due to a point source, without being affected by adjacent bodies, the two lines would con-
verge to intersect at the approximate depth of that body. The line on the right hand side
clearly has the wrong slope, indicating external influences.

The position of the anomaly is less in doubt. Its location is close to 293.25±0.25°. This
is evident from the gradient display in Figure 4-35. It is surmised that the transform
magnitudes are being influenced by other sources. That these exist are evident in Figure
4-37 where at least two others are apparent.
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Figure 4-35: The South American High passed through the wavelet trans-

form at continuation heights which are too small to dramatically indicate the

causative body’s depth.
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Figure 4-36: The two lines shown are used to estimate depth to point
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enced by another anomaly. Thus the depth estimate is questionable.

Four views of the South American high synthesized to degree 10 from EGM96 are shown
in Figure 4-38. From the top left, they are taken from the west through to the south (bot-
tom right) at 30° intervals. This figure illustrates the complexity that remains even
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Figure 4-37: The wavelet transform of the high on or near 293° longitude

may be influenced by the adjacent sources evident in this illustration. Both

to the right and left are other causative bodies, of lesser magnitude, but nec-

essarily influential.

though the shallowest features have been removed by truncation filtering. For compari-
son the original, unfiltered gradient magnitudes are shown in Figure 4-39. The same
views are shown, and in the same order. Clearly the truncation at degree 10 has had a
dramatic effect.

There is always the concern that simple truncation will induce ringing in the synthesized
result. To ascertain whether or not that is an issue one can undertake to properly filter the
EGM96 spectrum by applying a Butterworth filter. This filter was a low pass filter with
a 10 degree cutoff, and a 36 db per octave slope. No significant differences appear when
comparing the illustrations in Figure 4-40 and Figure 4-38. To be fair, the Butterworth
filtered data seems slightly less complicated. The interpretation is not significantly
enhanced though.

Lastly, an attempt to estimate a mass for a causative body at about 2400 km was made.
This turned out to be grossly in error. Using Bowin’s estimate of about 1200 km was also
erroneous. Arbitrarily selecting 600 km provided a reasonable match to the filtered
potential curve. The three estimates are shown in Figure 4-41.
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Figure 4-38: Four views of the South American high gradient magnitude.

Fr om the top left the views are taken from the west looking east, from the

west south west looking east north east, from the south south west looking

north north east and from the south looking north.

4.6 Final Comments

This chapter considered an approach to depth estimation that depended on wav elet trans-
form analysis based on a Poisson kernel smoothing function and derived wav elet. Funda-
mentally, this is a signal processing approach to wav elet analysis not having any concern
for frames and inversion. In theory, it can provide more than just depth information as
the ‘structural index’, or ‘Lipschitz regularity’ can indicate some of the properties of a
causative body. For simple anomalies, the depth is easily extracted from the potential
field, albeit with some error, but for more complex body assemblages, the technique
proves to be problematic.

Limitations observed in this chapter included numerical issues, and in particular, preci-
sion issues as the spherical harmonic expansion requires a relatively high degree for rea-
sonable accuracy. Good interpretation of the resulting transforms also requires a rela-
tively high degree of expansion in order to achieve a reasonable estimate of wav elet trans-
form maxima locations. These needs impose computational requirements that may
exceed the capability of available machinery.
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Figure 4-39: The same four views of the South American high gradient mag-

nitude, but using the full spectrum available from EGM96. Fr om the top left

the views are taken from the west looking east, from the west south west look-

ing east north east, from the south south west looking north north east and

from the south looking north.

From a geophysicist’s point of view, the interpretation of the two body problem, and par-
ticularly the South American high problem might be satisfactory. This is particularly true
for one experienced in exploration geophysics, where all interpretations are made with
compromise and are subject to business constraints. From a researcher’s point of view,
the results are less satisfactory as ideally one wants to understand as much as possible so
as to quantify the Earth’s characterization in a repeatable manner.

In the opinion of this writer, the wav elet technique is not the answer for deep mantle char-
acterization. For shallow bodies, particularly in an exploration context where local grav-
ity anomalies may be isolated from the background, the technique might be very useful.
As the literature has indicated, not only can depth and mass be estimated, but so can a
body’s gross characterization, as described by the Lipschitz regularity [Hornby, Boschetti,
and Horowitz 1999], or by the "structural index" associated with Euler deconvolution
[Blakely 1995], neither of which were discussed in this document.

Given the frustration experienced in trying to interpret depths, and ultimately masses for
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Figure 4-40: Four views of the South American high gradient magnitude.

Fr om the top left the views are taken from the west looking east, from the

west south west looking east north east, from the south south west looking

north north east and from the south looking north. These illustrations have

been filtered with a Butterworth low pass filter with a 3 db cutoff of 10

degrees, and a 36 db/octave slope. The images are not significantly different

from Figure 4-38.
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Figure 4-41: Three estimates of masses that might reflect a point source

interpretation of a profile over the South American high. On the left is a

mass of 5.964∗1021 at 2400 km which is clearly too deep. At the center is a

mass of 3.763∗1021 placed at Bowin’s depth of 1200 km. At the right is a

mass of 2.568∗1021 placed at 600 km. All masses are in grams.

body assemblages (i.e. 2 or more) in synthetic cases, or for the case of the South

Chapter 4



117
American high, it was deemed prudent to explore other methods of estimating depth,
mass and possibly mass distribution to characterize deep mass anomalies and ultimately
generate a synthetic Earth model.
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5 Estimating Anomaly Depth, Mass and Distribution
In this penultimate chapter the objective is achieved. For a modest portion of the spheri-
cal spectrum, mass anomalies are identified both geographically and by depth, and an
estimate of their mass is made. This set of mass anomalies have a corresponding surface
potential which resembles that of publicly available geopotential models. In addition, a
continuous mass anomaly representation is computed for the same and other depths. This
model, which represents a variable density contrast, complements the discrete mass
model and can be improved easily as better spherical harmonic spectra are derived. For
the portion of the spectrum that is examined, these models and their spectral representa-
tion provide a contribution to the synthetic Earth project for the mid and upper mantle.
This complements the crustal models mentioned earlier.

The result is achieved in a circumspect manner. On the assumption that if anomaly loca-
tions and depths can be determined, then it should be possible to compute their masses
and contributing potential. To do so requires that certain problems of inversion be identi-
fied. The result of this investigation establishes the ‘bounds’ for reliable mass estimates.
Once this is completed, then the procedure of indicating anomaly spatial location using
the characteristics of the spherical spectrum is reviewed and shown to be effective for a
specific type of mass. Both of these steps are performed using synthetic data.

Given geographic location and depth, a model of the mid to upper mantle is generated
and is shown to be similar to the measured field, as exhibited in recent geopotential mod-
els. Noting that these mantle anomalies, and in fact all mass anomalies, are not the same
as the mass type employed in the study, an attempt is made to ascribe some sense of their
breadth and possible density characteristics. This latter exercise results in a direct link
between a continuously variable density contrast for a specific depth and shell thickness,
and the measured geopotential field as interpreted as a depth-dependent function.

To be more specific, this chapter deals with the following subjects:

1 A review of recent Earth models

2 Establishing inversion bounds

• Describing the basic mathematical framework for inverting potential to mass

• Reviewing some experimental results for inversion of point masses whose
surface potential is assumed known
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• Noting the effect of the normally-used spherical coordinate system in polar

regions when making reliable mass estimates

• Noting the effect of proximity to other masses when identifying each mass’
location and the ability of performing a satisfactory inversion

• Proposing the use of an alternative discretization of the sphere to limit the
effect of the ‘polar problem’ and establishing some limits for anomaly iden-
tification and inversion

• Establishing the limitations for the aforementioned inversion by reviewing
error incurred due to erroneous depth and/or location estimates

• Noting the effect of precision problems in the inversion results, if any

• Describing an appropriate method for determining the most likely position of
mass anomalies

3 Spectrum exploitation

• Exploiting a characteristic of the spherical spectrum to make depth estimates
for bodies at varying depths, assuming a simple mass model

• Estimating possible mass anomaly characteristics (geographic location and
depth) as interpreted from publicly available geopotential models

• Employing the previously interpreted characteristics to estimate anomaly
mass size and the similarity of their associated spectrum to the publicly
available spectra

4 Altering the model assumptions

• Demonstrating a technique for indicating mass anomalies’ possible size and
density characteristics in a manner which is linked directly to the measured
geopotential field

5 Summarizing the experimental results and noting the field generated from the inter-
preted model more closely matched the published fields than those of other recent
researchers

5.1 Recent Models

By introduction to gravity field modelling, this section describes the work of Carl Bowin
[Bowin 2000], and alludes to the preceding work of C. Lithgow-Bertelloni and her col-
leagues [Lithgow-Bertelloni, Richards et al. 1993; Ricard et al. 1993] and [Lithgow-
Bertelloni and Richards 1998]. These researchers made estimates of the mantle and crust
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composition in terms of mass anomaly structures, with the latter group modelling plate
subduction over the millennia and the former testing an hypothesis counter to the status
quo. Their models were used as a starting point in researching methods to estimate
anomaly depth.

But their work has been preceded by earlier research into the possible cause of geoid
anomalies. Early work on the correlation of geoid highs to subduction zones was com-
pleted by [McKenzie 1977; Morgan 1965; Parsons and Daly 1983] who concluded that
excess mass existed beneath the highs, but that thermal modelling over estimated that
mass by a significant amount. These researchers took surface deformation into account
while [Chase 1979; Crough and Jurdy 1980] did not when engaged in similar studies. A
follow-on study by [Hager 1984] also related the geoidal highs to viscosity contrast in the
upper mantle.

Other work done at about the same time included that of [Dziewonski, Hager, and
O’Connell 1977] who noted a negative correlation between velocity anomalies deeper
than 1100 km and degrees 2 and 3 of the geopotential spectrum. [Hide and Horai 1968]
examined the spectrum and concluded (as did Bowin later) that the lowest degrees of the
spectrum were likely due to the core mantle boundary and its topography. Later [Khan
1977; Lambeck 1976], indicated that the Earth’s spectrum could be described by a non-
unique random distribution of density anomalies with no spatial coherence. Their study
of the spectrum found that sources were generally shallow, except for the lowest (< 7)
degrees. As noted elsewhere in this document, the spectral interpretation is blind to spa-
tial dependencies.

In the study of subduction zones, [Chase 1979] examined them in the context of lower
mantle convection and slab existence. He found that while contributing to the geoid, they
did not dominate the low-degree (long wav elength) geoid. In related studies, [Richards
and Hager 1984] found a good fit between seismic velocity in the lower mantle and the
lowest two degrees of the geopotential. These seemed to correlate well with ancient plate
positions. Past subduction zones also showed as lows [Chase 1985] and these might be
due to the concentration of old lithospheric slabs in the mid mantle [Hager 1984].

Bowin was a much more recent researcher who proposed and substantiated the idea that
large scale geoidal structures could be caused by deep-seated mass anomalies. These
anomalous bodies were proposed to exist at the core/mantle boundary, and were the result
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of topography on that surface. Other anomalous bodies were suggested to exist at shal-
lower depths. He argued that since gravity varied as the reciprocal of distance squared,
while potential (and undulation) varied only as the reciprocal of distance, then gravity
features were more likely to reflect nearby anomalous bodies. On the other hand, features
reflected in the potential must reflect more deeply seated bodies.

He observed that the lowest degree (2 and 3) contributions to potential dominated, and
that for degrees in excess of 10, very little change occurred from their contributions.
Intermediate values made smaller but observable contributions. Bowin concluded that the
low degree harmonic coefficients were sufficient to specify the regional geoid, and sug-
gested that some very deep anomalies dictated the lowest degree (2 and 3) contributions,
while some shallower bodies determined the intermediate contributions. He added that
the intermediate degree contributions to the geoid seemed to reflect plate subduction
zones and indicated that shallow crustal bodies contributed to the larger gravity anom-
alies. By means of the ratio of the gravity to geoid anomalies for presumed point sources,
he estimated the depth to several major anomalous bodies, including the South American
high which he concluded had a maximum depth of about 1200 km [Bowin 2000, page
366].

To support his hypothesis, Bowin obtained a model set of 9274 5° spherical cubes derived
from a study of plate reconstruction done by C. Lithgow-Bertelloni. This dataset gav e
slab location estimates at 20 depths. He observed that the model did not reflect the geoid
very well, (see Figure 5-18 or Figure 5-19), but when a dynamic topography62 solution
set of coefficients was added, then a better match was achieved. Using these cubes, he
created two new models, one of which contained masses not deeper than 800 km and the
other not deeper than 1400 km. These also contained four masses at the core/mantle
boundary: beneath New Guinea, Iceland, Crozet and and the Indian Ocean. The range of
densities used in the models was 0.5∗10-4 to 0.225∗10-2 gm/cc. In terms of a 5° pixeliza-
tion of the Earth, the coverage over the sphere for Bowin’s mass anomalies is shown in
Table 5-1. While not a perfect match to the observed geoid, Bowin felt that they were a
viable alternative to the dynamic topography model which has been in vogue for some
15 or more years. In this research, Bowin’s deeper model was used for early experiments

62 Dynamic topography relates thermal flow and geoid anomalies. Positive density anomalies, presum-
ably blocks resulting from subduction, flow through a viscous medium as they descend. Bowin, who cites
[Pekeris 1935], notes that this will induce negative boundary deflections at the surface, and at interior den-
sity boundaries within the mantle. This combination will result in a complex geoid anomaly. Determining
the amount of dynamic topography requires an accurate knowledge of the density structure of both the crust
and mantle [Lithgow-Bertelloni and Richards 1998].
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Mass Anomaly Coverage by Depth

Count Depth (km) Percent Coverage

7 72.5 0.27
105 217.5 4.05
98 362.5 3.78
92 507.5 3.55

220 652.5 8.49
383 797.5 14.78
324 942.5 12.50
274 1087.0 10.61
282 1232.0 10.88
326 1377.0 12.58

Table 5-1: The mass anomalies are distributed irregularly with depth and the

coverage is particularly thin at shallow depths. The ‘percent coverage’ fig-

ure indicates the percentage of the some 2592 5° spherical rectangles that

contain a mass anomaly.

in depth estimation.

The distribution of Bowin’s masses are shown in Figure 5-1 where they are seen as a
function of latitude. Shown in Table 5-2 is a breakdown of Lithgow-Bertelloni’s mass
anomalies, which were used as a basis for Bowin’s models. The table gives an indication
of the distribution of mass magnitudes, and indicates the number of masses, their mean
separation and the standard deviation about that mean. The distribution is illustrated in
Figure 5-2 which shows mass size versus latitude, and geographic distribution.

5.2 Potential Field Inversion

5.2.1 Inversion of Point Masses

To generate a synthetic Earth model, mass anomalies which create a matching geopoten-
tial field were sought in this research. Assuming the anomalous bodies were placed and
sized satisfactorily, then the primary objective would be achieved. To some degree and
order, a field matching recent published fields would result, and some indication of the
mantle (and possibly the crust’s) geology would also be realized.
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Figure 5-1: Bowin’s masses, which were derived from Lithgow-Bertelloni’s

mass model, are shown as a function of latitude. Bowin included four addi-

tional masses in his dataset (not shown here) which he placed near the

core/mantle boundary.

The observations and assumptions at hand were two-fold: first, recent geopotential fields
were available (e.g. EGM96), and second, two recent models of subducted blocks which
had sunk deep into the mantle were available. It seemed reasonable that one might be
able to expand on the work of the creators of these models to find other anomalous
masses, or unexpected changes in lithologic density, and to estimate their depth and mag-
nitude.

An obvious thing to do, was to see if given the model which indicated both depth and
mass, one could compute one of those parameters, given the other and the potential field
that one would measure at the surface. To the best of the knowledge of this writer, all
masses in the models were treated as points, although they were indicated to be cubes 5°
on the side. Thus the earliest experiments undertaken after discarding the wav elet tech-
nique as inappropriate for the purpose were to see how successfully one might invert the
field.

The standard method for solving problems when one has some measurements and a
model describing the physical situation, is to use least-squares to estimate the parameters
that match those measurements. For the problem at hand
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Lithgow-Bertelloni’s Mass Anomaly Characteristics

Number of Mean Minimum
Masses Separation Angle (°)

Depth Mean Mass (gm)

72.5 503 0.69±0.49 1.952∗1016±2.066∗1016

217.5 503 0.69±0.49 6.292∗1016±6.657∗1016

362.5 520 0.71±0.57 5.790∗1016±6.734∗1016

507.5 118 1.60±3.22 7.156∗1016±7.368∗1016

652.5 424 1.18±1.04 1.529∗1017±1.321∗1017

797.5 228 2.45±2.55 4.700∗1017±6.329∗1017

942.5 204 2.81±3.39 6.055∗1017±6.527∗1017

1087.5 205 2.92±3.50 4.626∗1017±5.175∗1017

1232.5 211 2.18±3.25 4.486∗1017±4.621∗1017

1377.5 216 1.65±2.19 3.915∗1017±3.426∗1017

1522.5 191 1.96±1.70 3.955∗1017±3.880∗1017

1667.5 204 2.01±2.37 4.563∗1017±4.249∗1017

1812.5 219 1.61±1.89 5.123∗1017±4.997∗1017

1957.5 211 1.71±2.38 5.987∗1017±6.228∗1017

2102.5 197 2.34±3.05 7.083∗1017±7.805∗1017

2247.5 197 2.25±3.42 7.930∗1017±1.019∗1018

2392.5 203 1.94±3.13 6.738∗1017±9.869∗1017

2537.5 191 1.97±3.20 7.414∗1017±9.898∗1017

2682.5 189 1.97±3.27 7.714∗1017±9.561∗1017

2827.5 174 1.98±3.53 9.228∗1017±1.242∗1018

Table 5-2: The mass distribution in Carolina Lithgow-Bertelloni’s 20 mass

anomaly files. Each line corresponds to a single data file. The mean angle is

the average angular separation of each mass anomaly to its closest neigh-

bour. Masses are in grams with the smallest being 3.371∗1012 and the

largest being 8.545∗1018.

K
→
f =

→
d (5-1)

where K is a design matrix yet to be described,
→
f is a vector of unknown masses, and

→
d is

a vector of potential measurements, given a sufficiently large set of observations, one
could perform an inversion, as indicated in equation 5-2 to make such an estimation.

Chapter 5



125

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  50  100  150  200  250  300  350

La
tit

ud
e 

(d
eg

re
es

)

Longitude (degrees)

Lithgow-Bertelloni Anomalies: Latitude versus Longitude

72.5 km
217.5 km
362.5 km
507.5 km
652.5 km
797.5 km
942.5 km

1087.5 km
1232.5 km
1377.5 km
1522.5 km
1667.5 km
1812.5 km
1957.5 km
2102.5 km
2247.5 km
2392.5 km
2537.5 km
2682.5 km
2827.5 km

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  1e+18  2e+18  3e+18  4e+18  5e+18  6e+18  7e+18  8e+18  9e+18  1e+19

La
tit

ud
e 

(d
eg

re
es

)

Mass (gm)

Lithgow-Bertelloni Anomalies Mass versus Latitude

72.5 km
217.5 km
362.5 km
507.5 km
652.5 km
797.5 km
942.5 km

1087.5 km
1232.5 km
1377.5 km
1522.5 km
1667.5 km
1812.5 km
1957.5 km
2102.5 km
2247.5 km
2392.5 km
2537.5 km
2682.5 km
2827.5 km

Figure 5-2: The geographic distribution of Lithgow-Bertelloni’s mass anom-

alies (left) and their magnitude versus latitude (right). The range of values

runs from 1012 to 1018 grams.

The solution to equation 5-1 for the case where the number of observations exceeds the
number of unknowns is given by

→
f = (KT K )−1KT →

d (5-2)

This is the least-squares method formulation as described in [Blais 1988; Meju 1994;
Menke 1989] and others.

The problem to be solved is linear. Giv en a set of measured potentials, and the coordi-
nates of some mass anomaly, the inversion is straightforward. Using a spherical coordi-
nate system, for a mass at subsurface coordinate Q (MQ), the associated potential at some
surface location P is given by,

VP =
GMQ

|P − Q|
(5-3)

with G being the gravitational constant 6. 67259∗10−11m3/kg/sec2. This is expressed in
the continuous case as

V = G
v
∫∫∫

ρ
l

dv (5-4)

with dv some volume element (sometimes called a voxel), ρ the density of that voxel and
l the distance separating the voxel and the point of observation, with the integration being
carried out over all space containing mass.
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It follows that given the locations of measurement points and the subsurface locations of
mass anomalies, the design matrix K can be populated easily. For both the regular case,
where masses and observations are distributed uniformly, although not necessarily at the
same locations, and the irregular where observations and masses may be positioned arbi-
trarily, the populating of K can be described by,

Ki =
N

j=1
Σ

GM j

|li− j |
(5-5)

Thus the contribution to K for the observation at station i is the sum of all contributions
from masses M j to station i, divided by the distance separating the mass and the observa-
tion location. This formulation applies to the discrete point masses used in the sequel.
Obviously, extended masses would require an additional degree of discretization.

For the problems examined in this research, the observations were regularly distributed
on the sphere on an equiangular basis, and the masses were either regularly distributed
(for synthetic tests) or irregularly positioned for geopotential field inversion. Certain dif-
ficulties manifested themselves with equiangular surface and mass spacing when per-
forming initial synthetic tests. These were alleviated by altering the spacing strategy to
that of an equal spherical angle. This problem is described in detail in the sequel.

Suitable codes for experiments in this regard were written with the highly efficient
Lapack++ library [Dongarra et al. 1996] on both Intel IA86 and HP/Compaq/DEC-Alpha
architectures. Other codes (for smaller problems) were written in GNU Octave63.

5.2.2 Designing Suitable Experiments

It was with the numerical techniques just described that the suggestion of a colleague to
attempt to resolve masses at unspecified locations, but within narrow depth ranges, was
undertaken. Early experiments in this regard employing simple models of buried masses
at known locations were promising. Without constraints, small numbers of masses could
be recovered acceptably well, having RMS error two orders of magnitude less than the
av erage mass size. With single constraints, this was improved by an order of magnitude.
Thus encouraged, a code which could employ some or all of Bowin’s model as con-
straints was constructed. The balance of all possible mass locations for one or more
depths, were assumed to be filled with unknowns and inversion was attempted.

63 GNU Octave is a high level interpreted language intended for numerical computations. It is uses gnu-
plot for two and three dimensional display, and is generally compatible with Matlab, an interpreted, com-
mercial code available from The MathWorks, Inc.
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This had the unfortunate effect of requiring a significant re-coding of the problem to
effect a solution, as the memory requirements for a direct inversion became substantial,
except for the least number of constraining ‘known’ masses. Another problem hinted at
earlier was the effect of matrix conditioning which caused the reliability of the inversion
to be in doubt. Instead, purely synthetic test codes were developed to study the problem
more carefully.

Since the densities of Bowin’s mass anomalies were modest (see Table 5-3), the code
designed allowed for both positive and negative deviations from the PREM value for a
chosen depth. The range selected was between plus and minus Bowin’s largest density
value.

Density Variations for Bowin’s Mass Anomalies (gm/cc)

0.1166∗10-02

0.1332∗10-02

0.2250∗10-02

0.5000∗10-04

0.6660∗10-03

0.8375∗10-03

0.8658∗10-03

0.9990∗10-03

Table 5-3: Densities used in Bowin’s mass anomaly analysis.

For the experiments, the Linux function rand(3) which provides a uniformly random
sequence of integers between 0 and the value defined for RAND_MAX64 was used.
Alternatives include random(3) and plfg which was developed by Ken Tan (see [Tan and
Blais 2000]), who developed the latter code for a parallel implementation of a random
number generator. An equivalent function was employed when GNU Octave was used.

One of several codes developed was created to synthesize a randomly distributed field of
density contrasts for one or more shells at depth. An example test was for the Bowin’s
deepest shell at 1377 km, and had the density contrast characteristics shown in Table 5-4.

The autocorrelation of the densities had a mean and standard deviation of -1.9298∗10-4 ±
64 RAND_MAX has the value 2147483647 on typical IEEE 754 32 bit machines.
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Synthetic Shell of Masses: Density Contrast Range (gm/cc)

Minimum Maximum Mean
-0.00199902 0.00199286 1.79556∗10-5

Table 5-4: The density characteristics for a sample synthetic model of mass

anomalies.

0.0138, after discarding the zero lag value which was unity. In other words, the mean of
the autocorrelation function, apart from the zero lag value, was close to zero. Besides
fully populated shells, other codes allowed partial population, or population restricted to
narrow zones.

5.2.3 Experimental Inversion Results

To reduce computational time, and to take advantage of the facilities immediately avail-
able, the problem examined was reduced from a shell of unknown masses to those lying
solely on a great circle, by suitable modification of inversion programs already written.

A typical pseudo-random dataset was created with the property that anomalous masses
exist only along a great circle passing through the poles. A line drawing illustrating one
such dataset and its randomness is shown in Figure 5-3. The vertical axis is that of the
size of the masses which are placed at 5° intervals at a depth of 1377 km. The horizontal
axis is the sample number for samples starting at the north pole, and proceeding to the
south pole before returning to the origin. The individual masses have density contrasts
within the range ±0. 002 gm/cc.

Computing the potential for the masses in Figure 5-3 and then performing a standard
inversion resulted in Figure 5-4 where the potential is seen to be well resolved whenever
the surface sample interval is less than the subsurface mass position interval of 5°. The
individual mass elements are resolved to within about 5 orders of magnitude, while the
potentials are resolved to within 6 or 7 orders of magnitude. The values for various sur-
face sampling intervals are shown in Table 5-5. As a matter of interest, with sufficient
over sampling, the parameter resolution matrix65 was found to be the identity matrix.

A subsequent experiment involving two layers of randomly chosen masses at depths of
65 Parameter resolution matrix calculations were done for cases where the surface sample interval was

twice that of the subsurface. Only a single shell of masses was considered.
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1377 km and 1232 km was singularly unsuccessful when simultaneous inversion was
attempted. The data are illustrated in Figure 5-5, and the surface potential in Figure 5-6.
The masses were set at 5° intervals along a polar great circle.

In this experiment, the masses returned from the inversion step were wildly in error with
differences having the same order of magnitude as the computed masses. The potential
associated with the computed masses however, suggested that acceptable masses had
been determined. The difference in potential resulting from the true masses versus the
computed masses was some 6 orders of magnitude (i.e. the true and computed potential
was nearly the same), with an RMS difference of 1.475464∗10-4. Experiments like this
were performed to the finest degree allowed by models like EGM96 (i.e. 0.5°).

For single shells of masses (i.e. a set of masses with random magnitude, but on a regular
grid), inversion could be both successful and unsuccessful. Experimentation revealed that
the ‘degree’ of success was a function of mass location. It was later determined that mass
anomaly positioning using the standard spherical coordinate system was affecting the
inversion results negatively. As will be seen, this was a function of anomaly proximity in
the polar regions. After this ‘polar problem’ described in the next section was identified
and dealt with, reasonable inversions of synthetic mass anomaly assemblages for fixed
depths became reliably invertible. In various tests, as much as 25% of the regularly
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RMS of the Mass and Potential Difference by Surface Sample Interval (gm)

Surface RMS of Mass RMS of Potential
Interval (°) Differences Differences

5 3.474161∗1022 3.195533∗100

4.5 2.471824∗1014 3.447001∗107

4 3.286231∗1014 3.760962∗107

3.5 1.704014∗1014 2.741021∗107

3 2.537612∗1014 3.184918∗107

2.5 1.673274∗1014 5.952656∗107

2 2.168901∗1014 5.488175∗107

1.5 3.082822∗1014 1.981722∗107

1.25 1.963754∗1014 2.368938∗107

1 2.679974∗1014 4.050323∗107

Table 5-5: For masses of magnitude 1020 grams placed along a great circle

at a subsurface spacing of 5°, with various surface sample intervals, the

RMS of the differences between actual and computed mass sizes and their

geopotential are illustrated. The computed masses differ from the true values

by 6 orders of magnitude (RMS), and the potential by 7.

gridded masses could be randomly removed, and still result in a satisfactory inversion of
the remainder.

Other problems to be discussed in the following text included error in the estimated depth
and error in the estimated position.

5.2.4 Problems Associated with Neighbour Proximity

During inversion experiments, some difficulties were observed when trying to resolve
individual masses. Errors associated with estimating mass magnitudes for bodies at
known depths seemed to have significant variation. This was judged to be a function of
latitude as may be seen in Figure 5-7 following. That figure shows the absolute value of
the differences between computed and actual mass magnitudes for a synthetic analysis
where bodies were placed in a spherical shell at an 11.25° subsurface sample interval,
with a known depth of 1377 km. The errors shown are those greater than 1020 grams.
Typical errors ranged from 1014↔1020 grams with a mean of 3.4*1019 grams. Of interest
is the fact that error increased closer to the poles which results from the inability to
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resolve masses at that depth with such small angular separations.
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set on a 5° grid along a polar great circle.

This was determined to be a result of the discretization employed in traditional spherical
harmonic analysis/synthesis codes, and which had been carried over to this analysis of
mass magnitude. These codes generally employ what is known as an equiangular sam-
pling (i.e. sample separation in latitude equals that in longitude), although the method as
described in [Driscoll and Healy 1994] is an exception. Masses on some grid, and at
some depth appear from the surface to be separated by an approximate angular separation
Λ of

Λ = tan−1 (RE − Dbody)θ sin α
Dbody

(5-6)

where RE is the Earth’s nominal radius, Dbody is the mass depth, θ is the angular separa-
tion of masses at depth referenced to the Earth’s centre and α is the latitude. Thus for
θ = 11. 25° and Dbody = 1377 km., the approximate separation of masses referenced to
the surface is 35.5° or 982 km. At 11.25° from the pole, the apparent separation becomes
7.9° or 192 km, which is somewhat less than the surface sample interval of 244 km at the
same latitude. This resolution problem, as a function of latitude is illustrated in the same
figure.

To see the problem from a slightly different perspective, one might inquire as to what
angular separation is needed between adjacent mass anomalies to allow one to recognize
that two masses existed. Visually, or numerically, a minimum in the potential would be
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of 1020 grams are shown for masses ordered by colatitude for each longitude.

On the right all errors are shown as a function of colatitude, illustrating the

resolution problem discussed in the text.

required to identify two adjacent local maxima (assuming positive mass anomalies, as
Bowin and Lithgow-Bertelloni did).

One can find such a minimum in the two dimensional case by computing the potential
due to each, summing them and locating the minimum numerically as was done later in
this research, or visually as shown in the sequel. For two bodies of relative mass M1 and
M2 (where M2 = kM1) which are situated at depths z1 and z2 with separation L, one need
only solve the potential expression,

V =
M1



z2

1 + L2


1/2 +
kM1



z2

2 + (L − x)2


1/2 (5-7)

for a local minimum situated between them. This turns out to be the value of x, where,



z2

2 + (L − x)2


3/2

x = k(L − x)

z2

1 + L2


3/2

(5-8)

This is most easily seen graphically for varying masses, depths and separations, or may
be solved numerically if a line search is performed to locate the point of equality. Graph-
ical solutions are shown in Figure 5-8 and Figure 5-9. In the first figure, for various
angular separations, the potential due to a combination of two non-identical masses at
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different depths is shown. It may be seen that for large enough mass differences, large
enough depths and small enough angular separations, one quickly loses sight of the sec-
ond mass. The second figure shows a close-up view for masses at two different depths
and a fixed mass ratio. For the 1000 km deep bodies, it is apparent that at least 20° sepa-
ration is needed to observe the presence of the second body. This fact is in keeping with
the previously observed need for larger angular separation to minimize mass estimate
error when body location is known. See for example Table 5-8 which illustrates the
problem from a different perspective. A more definitive measure of acceptable resolution
follows in the next subsection. There, an alternative pixelization of the spherical surface
that affords the opportunity to establish how close two bodies may be and still permit a
satisfactory inversion, is described.
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Figure 5-9: close-up of masses at 1000 km (left) and 500 km (right) where

the mass ratio is 0.9. Angles in degrees.

It should be noted that if one somehow knew the exact positions and depths of two or
more masses that were so close that their individual extrema could not be identified, they
were still successfully inverted in synthetic tests.

5.2.4.1 An Alternative Discretization

It was noted earlier that for a spherical harmonic analysis to an arbitrary maximum
degree and order, the ability to separate individual potential anomalies is determined by
that degree/order cut-off. Anomalies that occur more frequently than the cut-off degree
and order are simply aliased as they would be by an harmonic analysis on the line or
plane. The cut-off degree and order in turn is determined by the surface sampling inter-
val. Thus for a 0.5° sampling interval, one should not expect a higher frequency (or
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Figure 5-8: Fr om top to bottom, left to right the mass ratios are 1:0.1, 1:0.3,

1:0.5, 1:0.7 and 1:0.9. Depths range from 200 to 1000 km and the angular

separation ranges from 0° to 30°. Mass pairs are at the same depth. Where

definite peaks are seen, then simple inversion will suffice providing the mass

separation at depth corresponds to the peak separation. Closer masses are

partially separable, but increased mass estimate error is incurred.

degree/order) than 360, simply because of the usual requirement that it takes at least two
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samples to define a sinusoid.

But there is catch, so to speak. While 0.5° from East to West at the equator is a moder-
ately large distance (about 55 km), it is a very short distance 0.5° south of the north pole
(about 0.5 km). Thus the anomaly resolution of a spherical analysis is somewhat vari-
able. Except for order zero analyses (i.e. symmetrical about the poles) which can have
uniform sampling from north to south upon synthesis, all non-zero order analyses sample
more frequently near the poles, than near the equator. Diagrams illustrating this are
found in [Heiskanen and Moritz 1966, page 26].

Thus near the poles, one should expect to see preserved by a spherical harmonic analysis
more high frequency anomalies than near the equator. As well, one should expect that
high frequency anomalies in the equatorial regions would be aliased. What results is a
mean spectrum for the sphere [Swarztrauber 1979]. Given that, one might assume that
one could better approximate the subsurface if the Earth was composed of a more uni-
form distribution of mass anomalies. In other words, if the distribution of masses was not
less than some interval corresponding to the average sampling interval of a typical spheri-
cal harmonic analysis, then a more reliable inversion might result.

It is interesting to see how close those samples can be for some depth, but still allow an
inversion with an acceptable error. Clearly, it would be advantageous if a uniform dis-
cretization of the sphere existed, with the meaning of uniform to be equal or nearly equal
spherical angular separation between sample points. Several pixelizations have been
reported in the literature. These include equidistant cylindrical projections (which corre-
sponds to the equal divisions of latitude and longitude normally associated with spherical
harmonic analysis), quadrilateralized sky cube projections (a cube is projected onto the
sphere to generate 6 equal areas which may be subdivided in a hierarchical lattice), and
the igloo projection which possesses exact azimuthal symmetry at each latitude. These
pixelizations are described in whole or part in [Crittenden and Turok 1998] and [Bond et
al. 1999]. One other uniform discretization is that of the regular partitioning possible
with the icosahedron, a polyhedron made up of twenty equilateral triangular faces.
Recursive partitioning of these faces leads to the spherical quad tree data structure [Tan,
Blais, and Provins 1999].

An alternative, known as HEALPix, is also mentioned in Crittenden’s article, and is
introduced in [Bond et al. 1999] as using a rhombic dodecahedron66 as its base. A
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HEALPix pixelization provides a uniform pixelization of the sphere and it may be
divided hierarchically while remaining azimuthal as required for rapid spherical harmonic
analysis. This pixelization is also equiangular along the parallels, but unlike that used in
typical spherical harmonic analysis, it is also equiangular from a spherical angle perspec-
tive. This ensures consistent surface sample spacing. Because of this uniformity,
HEALPix is ideal for verifying the proximity problem described earlier. Details of the
implementation are best described by the authors in [Górski, Hivon, and Wandelt 1998;
Górski, Wandelt et al. 1999; Hivon and Górski 1998] and [Wandelt et al. 1998].

The name HEALPix is an acronym for Hierarchical Equal Area iso-Latitude Pixelization
as applied to the sphere. It provides a near-isometric discretization of the sphere and as
indicated in its name, the pixels are centred on equal areas, which is ideal for spherical
analysis. FORTRAN 90 code is available from the authors, and some of this was ported
to C to establish the error bounds discussed earlier. The base pixelization is made up of
the 12 sides of the dodecahedron mentioned earlier. Each face may be subdivided into 4
new faces (replacing the previous faces), and this is done in powers of two. The parame-
ter nside is that which the authors use to determine the number of pixels and their distri-
bution. It indicates how many pixels are to be found along the side of one of the 12 base
divisions of the sphere.

Shown in Table 5-6 is how nside affects the pixel count and the mean spherical angle
between pixel centres as computed from the ported code. As can be seen in the table, the
mean angle between pixel centres is fairly consistent. The same information is shown
graphically in Figure 5-10. Evidently, the HEALPix sampling is a uniform discretiza-
tion. Using it should allow the estimation of inversion error as a function of mean pixel
separation versus surface grid interval with depth variation.

To establish the error bounds for mass separation, codes from the HEALPix sample
implementation were adapted so that they might be used with the author’s inv ersion
codes. Tests for various depths and separation angles were then run to estimate mass size
using synthetic data. As before, it was observed that bodies that were too close together
for a particular depth were not inverted correctly, with the error increasing as they became
closer. For some depths, the demarcation of good or correct inversion versus poor or

66 The dodecahedron is one of the five Platonic solids: the tetrahedron (4 sides), the hexahedron or cube
(6 sides), the octahedron (8 sides), the dodecahedron (12 sides) and the icosahedron (20 sides) [Selby 1964,
page 15]. The rhombic dodecahedron is a 12 sided polyhedron with each face being an identical rhombus.
Not all vertices are the same as some join 3 and others 4 faces. The internal angles for each rhombus are
70.53° and 109.47°.
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HEALPix Mean and Minimum Angular Separations (°)

Number Pixel Mean Standard Closest
of sides Count Angle Deviation Angle

1 12 58.19 0.00 58.19
2 48 28.49 0.90 27.59
3 108 18.78 1.06 17.26
4 192 14.11 0.86 12.64
5 300 11.28 0.70 9.98
6 432 9.41 0.60 8.21
7 588 8.07 0.51 6.99
8 768 7.07 0.45 6.09
9 972 6.28 0.40 5.39

10 1200 5.66 0.36 4.83
11 1452 5.15 0.33 4.38
12 1728 4.72 0.30 4.00
13 2028 4.36 0.28 3.69
14 2352 4.05 0.26 3.42
15 2700 3.78 0.24 3.19

Table 5-6: Average and minimum angular separation in degrees for the clos-

est pixels in the HEALPix spherical decomposition for various side counts.

incorrect inversion was quite clear, while for others it appeared blurred. The potential
computed from the computed masses generally closely matched the actual potential quite
well even though the masses were quite erroneous.

For a wide range of depths, the correlation coefficient between computed and actual mass
for various spherical angles of separation is tabulated in Table 5-7. The limits of resolu-
tion for the depths used are fairly clear with the general rule being that deep bodies
require more separation than shallow bodies, which is to be expected. The table forms a
useful guide for resolving mass anomalies from geopotential fields. Assuming that some
measure of depth has been established, then bodies spaced wider than the "cut-off" sug-
gested in the table should be successfully inverted.

Note that spherical angles imply a specific separation, irrespective of the location on the
sphere. Because geographical coordinates converge tow ards the poles, the separation of
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pixels in a HEALPix decomposition for various values of the number of side

divisions.

surface points is not constant. For example, points at 10° colatitude and separated by 10°
along a parallel are only 1.73° (or about 193 km) apart, while the same points at the equa-
tor are spaced by 6.81° (about 758 km). To achieve the same surface spacing for the first
pair, the separation along the parallel would need to be about 40°. It follows that to
achieve a satisfactory inversion of buried masses given their potential, the closer to the
pole that these masses lie, the less frequently they should occur in a spherical coordinate
system.

5.2.5 Other Possible Error Sources

It is reasonable to assume that no matter what procedure might be used to estimate depth,
or the geographical location of an anomalous body, some error is to be expected. These
two error sources and the error associated with the measured potential are the subjects of
this section.

In an early experiment, where the objective was to determine the effect of mis-positioning
mass anomaly geographic locations, it was observed that errors of several degrees had a
not-insignificant effect on the geopotential field. The results for one experiment involv-
ing a regular grid of surface points at 11.25° intervals, and a regular grid of buried masses
at 30° intervals, offset from the poles and the prime meridian by 20° is shown in Table
5-8.
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Correlation of Computed and Actual Masses for Various Depths

Depth (km)

Angle (°) 3000 2000 1000 500 250 125 62 31

28.49 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

18.78 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

14.11 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

11.28 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

9.41 3.28e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

8.07 2.15e-02 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

7.07 1.80e-02 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

6.28 -1.80e-03 9.34e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01 9.99e-01

5.66 -6.66e-05 -1.26e-02 8.93e-01 9.53e-01 9.78e-01 8.99e-01 9.18e-01 8.88e-01

5.15 2.08e-02 1.60e-02 1.10e-02 4.83e-01 7.61e-01 8.37e-01 8.74e-01 8.98e-01

4.72 -1.14e-02 1.73e-02 -1.20e-02 5.51e-02 1.94e-02 3.29e-02 6.76e-02 1.39e-02

4.36 -4.77e-04 -2.00e-04 -1.05e-02 -4.99e-03 -8.94e-03 2.22e-02 7.31e-03 2.02e-02

Table 5-7: These are the correlation coefficients between the actual and

computed masses on a HEALPix grid, for the indicated depths and spheri-

cal angles of separation. Notice that shallower mass assemblages are

resolvable at smaller angles, as expected.

For 0.5° of position error, the potential computed from inaccurate masses is very close to
the correct potential. By 2.5° it begins to deteriorate with the potential for 1000 km deep
masses having an unexpectedly large standard deviation. For 0.5°, the ratio of computed
to actual masses is not particularly good, and deteriorates for greater location error with
an error of nearly 50% with a 2.5° location error. Notice that at shallower depths the
mass ratio tends to approach unity. This likely reflects better geometry. Curiously, the
spectral norm, which is the ratio of the highest to lowest singular value of the normal
equation matrix, decreases for greater location error.

This test was performed prior to recognizing the ‘polar problem’. A subsequent test
over a broader range of location errors, and which also examined the effect of error in
depth estimate as well as observation error was completed using the HEALPix dis-
cretization. This provided a more reliable measure of the effects of mis-positioning for
both position and depth. In Table 5-9 the mean location error has been set to a random
value having a mean of 0.05° or 0.1°. The average depth error was given random values
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Effect of Positioning Error on Mass and Potential Calculations

Mean Location Error
(degrees)

Depth (km) Spectral Norm Mass Ratio Potential Ratio

1500 2.125∗104

1000 1.850∗103

500 9.803∗101

0 1.0 1.0

1500 6.016∗102 0.866±1.285 1.000±0.013
1000 2.984∗102 1.361±3.236 0.995±0.106
500 8.246∗101 0.952±0.307 0.972±0.350

0.498±0.288

1500 1.323∗102 0.661±0.753 1.000±0.031
1000 7.681∗101 1.309±2.784 0.962±4.271
500 3.912∗101 0.794±1.096 0.977±0.657

2.491±1.443

1500 8.908∗101 -0.154±4.408 2.169±23.452
1000 5.865∗101 0.801±1.069 0.839±3.869
500 3.874∗101 0.703±0.950 0.989±3.690

4.989±2.886

Table 5-8: The table illustrates the effect of geographic location error on the

norm of the normal equation matrix, and on the ratio of the computed to

actual masses and their surface potentials. Note that the ‘polar problem’

has had an effect on the inversion results, making them much less reliable.

See Table 5-9 for comparison.

with means of 0.5% and 1%. Lastly, the observed potential was assigned mean errors of
about 0.5% and 1%. The depths selected encompassed the depths of real anomalies iden-
tified later in this document. Also shown are the spectral norms for the design matrices.
While all combinations of these parameters were used, only a small selection is shown.
The test used masses on a regular grid having randomly assigned values near 1020 grams,
a value near that used by Bowin. In the test shown, the true value of the gravitational
constant (G) was used. Other tests employed a value of G = 1 with and without unit val-
ued masses. These resulted in identical results indicating that the inversion procedure did
not suffer from numerical precision problems. The precision of the values in the table is
about 7 digits, with only 3 shown owing to the size of the table.

A review of the whole table indicates several items of note:
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• the spectral norm declines from values of near 1100 for the deepest masses, to

about 35 for the shallowest. This is consistent whether or not any dithering of the
three parameters has occurred.

• As may be observed in the previous table, given perfect data and knowledge of
mass location and depth, a perfect inversion can be performed.

• The ratio of the computed to true masses appears to be fairly good, although an
examination of actual values (not shown) indicate that when dithering occurs, the
computed masses are only accurate to from 1 to 3 decimal places. This is consis-
tent for all variations and the greatest accuracy occurs for the shallowest anomalies.

• For the degree of dithering tested, the computed to actual potential ratio is gener-
ally good, with 2 to 3 decimal places of consistency.

The inversion step is sensitive to the three parameters shown which is a good indicator
that this is not a well-posed problem; nevertheless, the inversion can still provide some
insight into the underlying geology of the mid to upper mantle.

5.2.6 Peak Searches

Gravity anomalies are associated with masses. There can be no offset between the geo-
graphic location of the anomaly and the underlying mass. Point masses have the property
that the anomaly’s extremum lies directly over the body. Extended masses also underly
observable anomalies, but a suitable extremum may be difficult to identify.

Note that where two mass anomalies lie in close geographic proximity, there may be an
apparent offset of the extrema for both masses. This was illustrated earlier in the figures
for relative potential of two masses: Figure 5-8 and Figure 5-9.

A code was written to locate potential extrema. It employed a simple test for locating
those points, and had a refined location mechanism for making a better estimate of the
extremum coordinates. The test was to perform a least-squares fit of a two-dimensional
paraboloid to the 9 or 25 points which were centred on the possible extremum.

After testing with 2 small, synthetic datasets to ensure code correctness, the code was
applied to the geopotential field from EGM96 and several spectrally delineated versions
of that geopotential model. It was not surprising that as the spectrum widened, the num-
ber of extrema increased. What was surprising was that the number of extrema on the
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Effect of Location, Depth and Potential Variation using HEALPix Surface Coordinates

Depth Mean Location Mean Depth Mean Potential Mean Mass Mean Potential

(km) Error (°) Error (%) Error (%) Ratio Ratio
Spectral Norm

2000 0 0 0 1.117e+03 1 1

1000 0 0 0 1.041e+02 1 1

500 0 0 0 4.501e+01 1 1

250 0 0 0 3.637e+01 1 1

2000 0.050±0.028 0 0 1.110e+03 1.026±0.196 0.999±0.000

1000 0.050±0.028 0 0 1.041e+02 1.002±0.020 0.998±0.011

500 0.050±0.028 0 0 4.502e+01 1.001±0.016 0.998±0.050

250 0.050±0.028 0 0 3.641e+01 1.001±0.022 1.004±0.027

2000 0.100±0.057 0 0 1.099e+03 0.997±0.388 0.999±0.001

1000 0.100±0.057 0 0 1.041e+02 1.004±0.041 0.998±0.020

500 0.100±0.057 0 0 4.510e+01 1.003±0.034 1.006±0.183

250 0.100±0.057 0 0 3.650e+01 1.003±0.044 1.009±0.067

2000 0 0.501±0.288 0 1.081e+03 1.017±1.437 1.000±0.001

1000 0 0.501±0.288 0 1.038e+02 1.006±0.028 0.998±0.022

500 0 0.501±0.288 0 4.499e+01 1.001±0.008 1.004±0.060

250 0 0.501±0.288 0 3.636e+01 1.000±0.003 1.000±0.002

2000 0 1.002±0.577 0 1.040e+03 0.865±1.296 1.000±0.003

1000 0 1.002±0.577 0 1.035e+02 1.014±0.070 0.998±0.035

500 0 1.002±0.577 0 4.498e+01 1.002±0.018 1.043±0.576

250 0 1.002±0.577 0 3.636e+01 1.000±0.006 1.000±0.005

2000 0 0 0.558±0.279 1.117e+03 0.908±1.791 1.000±0.004

1000 0 0 0.558±0.279 1.041e+02 1.056±0.512 1.000±0.006

500 0 0 0.558±0.279 4.501e+01 0.966±0.442 1.001±0.027

250 0 0 0.558±0.279 3.637e+01 1.043±0.394 0.999±0.006

2000 0.049±0.028 0.998±0.575 0.992±0.566 1.134e+03 0.781±4.373 1.000±0.008

1000 0.049±0.028 0.998±0.575 0.992±0.566 1.044e+02 0.995±0.277 1.012±0.161

500 0.049±0.028 0.998±0.575 0.992±0.566 4.521e+01 0.914±0.909 0.999±0.035

250 0.049±0.028 0.998±0.575 0.992±0.566 3.663e+01 1.039±0.395 1.000±0.016

2000 0.099±0.057 0.998±0.575 0.992±0.566 1.126e+03 0.726±8.364 1.000±0.008

1000 0.099±0.057 0.998±0.575 0.992±0.566 1.046e+02 0.994±0.276 1.011±0.152

500 0.099±0.057 0.998±0.575 0.992±0.566 4.557e+01 0.945±0.596 1.008±0.133

250 0.099±0.057 0.998±0.575 0.992±0.566 3.695e+01 1.078±0.787 1.001±0.029
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Table 5-9: This is a sample of the inversion tests run to examine the effect of

dithering the average location and depth of a presumed mass anomaly. As

well, the observed potential was dithered to see what effect this parameter

had on the computed masses and their potential. HEALPix surface coordi-

nates were used to avoid the ‘polar problem’. For this example, the surface

was sampled with ‘nside’ = 4 (about 14.1° spacing) and subsurface was

sampled with ‘nside’ = 3 (about 18.8°). The true value of the gravitational

constant (G = 6.672590e-17 m3/kg/sec2) was used.

full field was less than that of some of the narrower spectral ranges. This must be due to
some cancellation mechanism resulting from conflicting coefficients in the spectrum,
when synthesized. Recall that the dynamic topography thesis indicated that this might
be expected.

The number of extrema found as a function of data points examined is illustrated in Table
5-10. The peak finding was limited to the 9 point paraboloid least-squares fit in this table.
Changing the size of the interpolant from 9 points to 25 points provided some different
peak locations. The error in fit increased for finer resolution geopotential fields for larger
paraboloids, as might be expected. For fields up to degree and order 100, the fit was very
good.

Duplicate peak indications are common in such analyses. A shell script to remove these
was written. It performed a sort based on peak coordinates, and then tested for peak
proximity, rejecting those that were too close (< ≈ 0. 2°). Subsequent experiments found
that such a simple test was inadequate, and suitable C code was written to test all possible
combinations of points for duplicates, and to ensure that the minimum spacing between
extrema did not fall below a user-defined threshold (initially set to 6° which was adequate
for depths within the range 1000 to 2000 km).

Note that extrema searches in polar regions were inclined to locate an overabundance of
peaks. This likely resulted from the spherical harmonic expansion characteristics
described earlier. Spherical harmonics generate anomalies in the polar regions of appar-
ently the same frequency as those in the equatorial region. In a spatial sense these are of
much higher frequency because of the spatial sample interval difference between polar
regions and equatorial zones.
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Once the duplicates were removed, shell scripts were used to reformat the peak locations
so that an inversion procedure might be applied, given a depth estimate, which is the sub-
ject of the next section. In Figure 5-11 is shown the result of peak finding for the 2↔11
degree range, and the 12↔27 degree range in the EGM96 geopotential field. The max-
ima are shown as black dots, and the minima are white. These figures were generated
with GMT67 version 3.3.4 [Smith and Wessel 1998].

Figure 5-11: Shown are probable mass locations for the 2↔11 degree range

(upper) and the 12↔27 degree range (lower). There are 15 masses in the

former range and 184 in the latter, As the spectral range increases, the num-

ber of possible mass anomalies increases rapidly. Black "dots" are positive

anomalies, while "white" are negative.

5.2.7 Final Comments on Inversion

This section, and its subsections discussed the problems associated with inverting a
geopotential field, on the assumption that some model of a mass anomaly was made, and

67 Generic Mapping Tools: a marvellous toolkit for high quality maps and other diagrams.
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EGM96: Full and Partial Spectrum Extrema Counts

Data
Point

Cumulative Extrema Found

Count Full 2-11 12-27 28-102 102-296 297-359

12996 153 0 10 95 679 2443
25992 298 0 21 203 1390 4996
38988 392 1 33 312 2105 7545
51984 465 1 43 422 2766 10104
64980 551 2 56 540 3446 12668
77976 647 3 65 680 4160 15279
90972 713 3 75 820 4843 17859

103968 819 3 87 959 5471 20443
116964 971 4 98 1106 6200 22975
129960 1141 5 108 1254 6991 25487
142956 1346 6 114 1414 7721 28028
155952 1430 7 124 1552 8480 30635
168948 1482 8 131 1668 9221 33222
181944 1536 9 139 1798 9976 35769
194940 1606 10 150 1935 10663 38342
207936 1749 11 161 2076 11319 40906
220932 1883 14 173 2203 11970 43476
233928 1993 14 183 2316 12655 46090
246924 2068 15 193 2426 13373 48686
259920 2227 16 208 2541 14129 51294
259920 2235 16 208 2544 14156 51368
259920 2239 16 208 2549 14187 51450
259920 2239 16 208 2549 14187 51450

Table 5-10: Extrema found in the entire geopotential field described by

EGM96 or one of its spectral subsets, where the degree/order range has

been limited.

that each mass’ geographic location and depth was known. Given this information, an
inversion is possible in principle.

Problems identified included what has been referred to here as the ‘polar problem’. The
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proximity of masses is problematic for two reasons. Firstly, individual anomalies cannot
be readily identified for possible inversion. Secondly, bodies placed on a regular grid
using a standard spherical coordinate system for positioning are not spaced consistently
when moving from equatorial to polar regions where they are too close for successful
inversion.

This problem affected the ability to define the bounds one would require for successfully
inverting a publicly available geopotential field. By employing an alternative discretiza-
tion, HEALPix in this case, the so-called ‘polar problem’ was eliminated. Tests to
define what if any anomaly location error, or depth estimate error could then be run reli-
ably.

Because the problem is not well-posed, any small error in either of these parameters
results in some error in estimated mass. In a table which showed several variations of
these, as well as possible error in the observed potential, it was noted that masses were
accurate only from 1 to 3 decimal places. The potential associated with the computed
masses was similarly affected. No problems associated with precision were observed in
tests designed to highlight such difficulties.

Lastly, a procedure to estimate anomaly location was described and for certain limited
ranges of a spherical harmonic spectrum (the reasons for which are deferred to the next
section), the locations of mass anomalies were mapped and displayed.

5.3 Using the Spectrum to Estimate Depth

Given a reliable depth, standard inversion techniques can be used to estimate mass
(assuming a simple model is acceptable). Obviously, it is then critical for any structural
assessment that a depth value be available. The question then becomes one of how to
estimate that causative body’s depth so that its mass can be determined.

As can be seen in Figure 5-12, the differences in the spectra for bodies at varying depths
are not overly great. Given the disappointing results of wav elet analysis for making such
estimates however, these differences appear to be all that remains for exploitation. As
will be seen, they turned out to be beneficial, although the result still contained some
ambiguity.

From the spectrum one can make a depth estimate, providing one makes a simplifying
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Figure 5-12: The spherical harmonic spectra of a body at four depths: 100,

200, 300 and 400 km. Substantial spectral overlap indicates little opportu-

nity for spectral decomposition. On the left is the full spectrum, and on the

right is a close-up of the first 100 degrees.

assumption about the masses under consideration. Furthermore, one must ignore the fact
that some mass anomalies will be hidden from view in the spectrum, and thus impossible
to recognize. This means that one will be characterizing the Earth in a ‘deficient’ manner
(i.e. a model will result, but it will not be complete). However, at least with some form of
depth estimate, and an analysis of the surface potential irregularity, one can ‘spot’ mass
anomalies, their magnitudes and their locations in a repeatable manner.

Recall Pollack’s models, and in particular his equation for the potential of a point mass,
equation 4-2. Notice that the spectrum of the potential falls off as a function of degree n,
as per

spectrum (n) ∝
1

2n + 1



a
r




n

(5-9)

Recall also the degree variance definition for the potential from the normalized spectrum
as given by [Kaula 1966, page 98] in equation 2-84 with corresponding definitions of the
power spectrum using geodetic normalized spectral coefficients given by [Wong et al.
1971, page 6231] and [Pollack 1973] in equation 2-85. Of particular interest is the char-
acteristic of these power spectra for bodies at fixed depths. In Figure 5-13 is illustrated
the power spectra for masses of random density contrast (within the range of ± 0.002
gm/cc) using both Wong’s and Pollack’s normalization. Notice that for point masses, the
Pollack normalization exhibits a linear trend as a function of degree when plotted against
power, with the slope being a function of depth of burial. Please also note that as might
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be expected, single masses exhibit the same linear power versus degree characteristic
shown in the figure.

The spectrum for single masses, having the characteristic indicated in equation 5-9, thus
has the root of Kaula’s degree variances in similar proportion,

σ (n)∝
1

√ 2n + 1



a
r




n/2

(5-10)

so that by applying Pollack’s suggested normalization (i.e. multiplying by √ 2n + 1), the
following power function with respect to degree n is indicated,

σ (n)∝


a
r




n/2

(5-11)

For a mass at the surface, which would indicate a singularity in the spectrum, the spec-
trum is uniform for all degrees, just as the Fourier spectrum of a Dirac function is. The
Pollack normalized spectra follows a homogeneous power law (i.e. abc) similar to those
described in [Schroeder 1991, chapter 4].

A natural question would be to ask what characteristic does a field like EGM96 exhibit
when viewed in terms of its so-called power spectrum. This is answered in Figure 5-14
where that geopotential model has been corrected for the normal field to degree 8.

Given this spectral display, and that of the random masses arranged in a shell, one can
measure the characteristics of their respective linear features. The result is shown in Ta-
ble 5-11 which tabulates the masses at Bowin’s depths which were used in the shell mod-
els, plus the most obvious lineament of the EGM96 spectrum.

The regression line fit to the slopes of the preceding synthetic data study was slightly par-
abolic, as per,

slope = −1. 38151 * 10−07 * depth2 − 0. 00133843 * depth − 0. 00331638 (5-12)

where ‘slope’ is measured in decibels per degree, and ‘depth’ is in km. Adding the addi-
tional constraint that the surface have zero slope because all harmonic degrees are equally
represented at that depth [Pollack 1973, page 1764], and adding additional information
about the slopes for single buried masses over a broader depth range (see Table 5-12)
results in the following equation,
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Figure 5-13: The power spectra for datasets made up of a random set of

masses contained within the density contrast range of ± 0.002 gm/cc, having

different depths. These illustrate Pollack normalization (top) and Wong nor-

malization (bottom). Single masses at the depths shown exhibit the same

characteristic.

slope = −1. 91098 * 10−07 * depth2 − 0. 00127453 * depth − 0. 00902622 (5-13)

with an RMS fit of ±0. 0114685. Inverting this expression so that depth can be deter-
mined from measured slope, one has (where the radical is real),

depth =
0. 00127453±√ 0. 001274532 + 4 * 1. 91098 * 10−07 * (−0. 00902622 − slope)

−2 * 1. 91098 * 10−07 (5-14)
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Figure 5-14: Geopotential field EGM96 is shown with Pollack normalization

(top) and Wong normalization (bottom) after being corrected to degree 8 for

the normal field. Note the apparent linear features in the upper image.

This is illustrated in Figure 5-15. Note that the estimated slope for degrees 50 to 350 of
geopotential model EGM96 indicated earlier as -0.063655, corresponds to a depth of
about 42.6 km.

Shown in Figure 5-16 is the EGM96 power spectrum from degree 2 to degree 102 with
regression lines over three possible depth zones. That there are 2 lines over the middle
zone reflects the inclusion or exclusion of degree 27 in the second and third zone. The
spectrum between degrees 2 and 259 is shown in Figure 5-17. Depth estimates made by
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Po wer Spectral Decay for Random Masses at Depth with Pollack Normalization

Start End
Degree

Depth (km) Slope Intercept RMS

1377 10 65 -2.108498 -6.483956 0.715606
1232 10 70 -1.862298 -6.428508 0.682542
1087 10 80 -1.622151 -6.395910 0.605898
942.5 10 97 -1.387754 -6.409862 0.579932
797.5 10 120 -1.152760 -6.702502 0.851110
652.5 10 140 -0.938112 -6.320963 0.521751
507.5 10 180 -0.719759 -6.384600 0.526288
362.5 10 260 -0.507356 -6.433044 0.484305
217.5 10 360 -0.301810 -6.286295 0.419965
72.5 10 360 -0.099525 -6.284648 0.419194

egm96 (corrected) 50 350 -0.063655 -24.0536 0.395040

Table 5-11: Decay characteristics of the power spectra of Pollack-normal-

ized random mass fields for various depths. For comparison, a sample line

characteristic of EGM96 is included. The RMS value indicates the ‘fit’ of

the data to the regression line.

Po wer Spectral Decay for Single Masses at Depth with Pollack Normalization

Start End
Degree

Depth (km) Slope Intercept RMS

3200 0 20 -6.0524 0.0136988 0.0420106
1600 0 50 -2.50885 0.00337255 0.0666596
800 0 100 -1.16355 -0.0163561 0.0762518
400 0 200 -0.56227 -0.0188264 0.0651609
200 0 300 -0.276818 0.00830768 0.00947161
100 0 300 -0.137298 -0.00479047 0.0419473

Table 5-12: Decay characteristics of the power spectra of Pollack-normal-

ized single mass anomalies for various depths.

using equation 5-14 with the slopes indicated in Figure 5-15 suggest that the deepest
causative bodies are located in the upper half of the lower mantle. Depth estimates made
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from the whole spectrum are shown in Table 5-13.
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Figure 5-16: Piece-wise linear regressions are overlaid on the EGM96
power spectrum between degrees 2 and 102. These quasi-linear trends are

indicative of anomalous masses arranged in shells.

As a matter of interest, one might like to do a visual comparison of the mass anomalies
that were reported in [Lithgow-Bertelloni, Richards et al. 1993; Ricard et al. 1993] and
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Depth Estimates from the Power Spectrum of EGM96

Equivalent Degree Range
Radius (km) Low High

Slope Depth (km)

-1.69482 1130.9 5247. 2 11

-0.418556 307.2 6071.
-0.45153 330.8 6047.4

12 27

-0.0844938 58.7 6319.4
-0.0839344 58.3 6319.9

28 102

-0.0649262 43.6 6334.6
-0.0647521 43.4 6334.7

102 296

-0.0483362 30.7 6347.4 297 359

Table 5-13: Slopes taken from Figure 5-17 suggest mass anomalies at the

depths shown. Pairs of slopes are from different interpretations of the regres-

sion lines set to segments of the EGM96 spectrum. These do not correlate

with anomalies derived from other geophysical measurements.

[Lithgow-Bertelloni and Richards 1998] with the spectrum of a field like EGM96. The
aforementioned authors indicated a good correlation with current geopotential fields, but
the interpretation that has been placed on EGM96 does not seem possible in Figure 5-18,
except perhaps for the latter half of the spectrum. Between degrees 150 and 360, one
might interpret the curve as being sufficiently linear to estimate a depth of burial of about
64 km. This is about 8.5 km shallower than Lithgow-Bertelloni’s shallowest masses. As
well, Figure 5-19 which uses the same scale as Figure 5-16, shows a close-up of Lith-
gow-Bertelloni’s summed masses. Notice that the power drops much more rapidly than
is evident in EGM96, suggesting that while the geophysical analysis done by that group
may be plausible, it does not completely reflect the measured spectrum.

Examining Figure 5-18 one can see a curvilinear shape to the normalized spectrum,
which is of some interest. One can surmize that some combination of mass anomalies
can produce such an effect through a summation process. This effect can be demon-
strated in Figure 5-20 where one can see identical masses at different depths, and non-
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Figure 5-17: For degrees 2 to 359, piece-wise linear regressions are overlaid

on the EGM96 power spectrum.
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Figure 5-18: The power spectrum for the sum of all Lithgow-Bertelloni’s 20

spherical harmonic amplitude spectra. Using the observed correspondence

of slope and depth, the approximate slope of the spectrum between degrees

150 and 360 which is -0.09141±0.00049 indicates a depth of 64.06 km, just

8.5 km shallower than the mass anomalies closest to the surface in her

model.

identical masses at different depths (and their inverse). It is apparent that deeper masses
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Figure 5-19: This is a close-up of that pictured in Figure 5-17, and has the

same scale as Figure 5-16. A visual inspection suggests that Lithgow-

Bertelloni’s model could yet be improved.

influence the lowest degrees, but that their influence is lost if shallower masses have a
greater magnitude. This is the spectral characteristic alluded to earlier: depths can be
estimated, but not all masses are visible.

Finally, the supposition that phase difference in the spectrum of each mass anomaly
allows for a sharper demarcation of the individual power spectra is examined. An
encouraging result can be seen in the multi-images of Figure 5-21. Except for the two
polar cases with angular separations of 0° (top left) or 180° (bottom right), the slope
expected for each of the masses is fairly represented in the combined power spectrum,
albeit with some error around the point of intersection. Notice also that the smoothness
of the intersecting spectra is a function of the angular separation, with the degree of
‘roughness’ increasing with that angle. At the maximum possible angular separation, the
noise level becomes unexpectedly high, for numerical reasons. An examination of the
spectral coefficients reveals that the non-zero order coefficients are either zero, or are very
small.

5.3.1 Earth Characteristics from Geopotential Spectra

The reason for exploring the spectrum was to see if it could be used to make better depth
estimates for mass anomalies. To that end, it can be seen that masses subject to the initial
requirements, that being that they be treated as point masses, could be seen to have a
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Figure 5-20: On the left are two masses of size 1019 grams at the depths 100

and 1000 km. At higher degrees, the power spectrum resembles the shal-

lower mass. At low degrees, the spectrum approaches the slope of the deeper

mass. In the centre are two masses at depths of 100 and 1000 km, with mag-

nitude 1019 grams and 1018 grams respectively. The deeper mass makes little

contribution to the overall spectrum. On the right the masses are reversed

and it can be seen that the larger but deeper mass has a stronger influence

on the lowest degrees of the power spectrum. The shallower mass still influ-

ences the highest degrees.

particular characteristic when the spectrum was viewed in a certain manner. Also seen
was the fact that there is still ambiguity, in that some point masses will always be hidden
by other masses (larger and shallower) in their joint spectrum. Nevertheless, this tool as
it were, does promise to give insight into the makeup of the Earth. To that end, the
EGM96 geopotential field can be examined to see what one might learn from it.

By careful selection of the mass anomaly locations, even if positions are in error by a
small amount, the possibility of re-creating the measured field may be possible. Given
the locations and a depth estimate, mass magnitudes can be determined, and a synthetic
field having a geological basis may result.

The first inversion was performed on the lowest degree range observed for that field:
2↔11. Recall that two different interpolating procedures were tried: 9 and 25 point.
Generally, these agreed, with the exception that the former found an additional point.
The fifteen mass locations shown in Figure 5-11 are tabulated in Table 5-14. Note that
these anomalies were interpreted to lie at 1131 km, as suggested by the normalized spec-
trum shown in Figure 5-16. Inv ersion of the spectrum indicated that the masses were 1
to 2 orders of magnitude larger than those Bowin, and 4 to 5 orders of magnitude larger
than those of Lithgow-Bertelloni (all of whose 20 shells tended to be smaller by about
that amount). Recalculating the geopotential field from the estimated masses indicated a
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Figure 5-21: Two masses, the first being 100 km beneath the North pole with

magnitude 1019 grams, and the second at 1000 km beneath the surface with

magnitude 1020 grams, with varying angular separation. From the top left,
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the latitude of the deeper mass varies from 0° to 180° difference. Note the

sharp demarcation corresponding to the slopes of the mass anomalies, except

where the masses are both beneath the North pole.

match with a correlation coefficient of 90%, however, the re-computed geopotential had a
standard deviation about the mean (0.931) of 121.798 on a 2° equiangular sample inter-
val. The minimum potential difference between the correct and computed potential due
to the inverted masses was -518.77 and the maximum was +431.16, strongly suggesting
that the correlation coefficient was not a reliable indicator of an accurate inversion.

Performing an inversion on the degree range 12↔27 resulted in a potential field that cor-
related with the original to 86%. The mean value and standard deviation of the differ-
ences between the computed and true potential values were 0.156±14.740. The minimum
and maximum differences were -73.23 and +108.24 respectively.

Attempting the simultaneous solution of the two layers (depths 1131 and 320 km) gav e
an excellent geopotential match (98.7%), but the masses were (at times) markedly differ-
ent from the individual solutions. The duplicates discarded (all from the 12↔27 degree
range) were identical to the individual runs - which might be expected as the peaks used
were from those runs. The mean and standard deviation for the differences between
actual and computed potential were 0.059±44.592 with minimum and maximum differ-
ences of -299.10 and +216.56 respectively.

As an example of the differences possible from the two approaches, in Table 5-15 are
shown those calculated from an individual run, versus the combined run for degree range
2↔11. Note the relative error for the two attempts, and whether or not a high was
expected. For the other dataset (degree range 12↔27), 58 of the 184 masses disagreed in
sign with the presumed sign of the anomaly in the combined case (31.5%), while only 4
of the 184 disagreed in the range restricted case (2.2%).

If the two independent mass analysis runs are combined (i.e. the files are concatenated),
and the power spectrum is computed, Figure 5-22 results. The slopes are not what was
expected however. Over the first range, a slope of -1.78 per degree (compared to about
-1.69 per degree observed for EGM96) and for the second range, a slope of -0.57 per
degree (compared to the range -0.419↔-0.452, or near about -0.435 per degree for
EGM96) were observed. The observed slopes suggested depths of 1181 and 412 km

Chapter 5



160

9 Point versus 25 Point Mass Estimates at 1131 km

9 Pt. 25 Pt.
Masses (gm) Masses (gm)

Colat Lon

138.12 43.76 +1.445077∗1022 +1.437910∗1022

85.23 76.68 -2.391181∗1022 -2.499971∗1022

42.67 91.20 -3.310169∗1020 -7.159362∗1021

96.93 145.63 +2.370215∗1022 +2.456003∗1022

52.26 173.94 -1.231404∗1021 -5.973212∗1020

162.24 180.08 -1.764103∗1022 -1.734742∗1022

28.32 197.65 +5.046133∗1021 +5.714147∗1021

119.87 230.66 +1.968236∗1021 +1.531852∗1021

66.69 236.89 -1.216150∗1022 -9.141775∗1021

112.39 252.57 -1.157434∗1021 -7.250776∗1020

32.02 272.11 +2.951412∗1021 -1.560431∗1022

111.48 292.05 +5.372541∗1021 +1.392713∗1021

66.38 296.90 -2.446202∗1021

147.70 302.11 +5.743403∗1020 +2.168099∗1021

30.08 336.90 +2.317899∗1022

137.02 351.35 +4.665534∗1021 +2.632707∗1021

Table 5-14: For the degree range 2↔11, masses were estimated at the loca-

tions of the extrema in the geopotential field as shown in Figure 5-16. Each

interpolant found one additional extremum. The addition of these points in

each inversion is the cause of the difference in mass size for the common

locations. Duplicate extrema (there was an instance near colatitude 147.7,

longitude 302) are not shown. The coordinates shown are those found for

the 9 point interpolant. For the coordinates of the 25 point interpolant, see

Table 5-15.

respectively.

The simultaneous solution for the same degree ranges is shown in Figure 5-23 for two
choices of datasets. It is obvious that the choice of data to include in the linear analysis is
critical to the interpretation. For the case where the data was analyzed for linear features
only to degree 27, the first range shows a slope of -1.96 which is a higher in magnitude
than that observed (-1.69), and the second is -0.38, compared to that observed in EGM96
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Selected Range versus Combined Analysis for 1131 km

Estimated Mass High/Low Relative

2↔11 Degree Range Combined Run Expected Error
Colatitude Longitude

138.13 43.76 +1.437910∗1022 +1.172515∗1022 H -0.18457

85.23 76.68 -2.499971∗1022 -1.835775∗1022 L -0.26568

42.68 91.21 -7.159362∗1021 -1.821100∗1022 L +1.54366

96.91 145.62 +2.456003∗1022 +1.871427∗1022 H -0.23801

52.26 173.96 -5.973212∗1020 -4.691477∗1021 L +6.85419

162.24 180.10 -1.734742∗1022 -1.232662∗1022 L -0.28942

28.32 197.64 +5.714147∗1021 +6.007909∗1021 H +0.05140

119.88 230.66 +1.531852∗1021 -2.728807∗1021 L -2.78138

66.68 236.88 -9.141775∗1021 -9.852181∗1021 L +0.07770

112.40 252.57 -7.250776∗1020 +6.579872∗1020 H -1.90747

32.03 272.11 -1.560431∗1022 -1.192218∗1022 L -0.23596

111.49 292.05 +1.392713∗1021 +1.432038∗1022 H +9.28236

147.69 302.08 +2.168099∗1021 +3.757541∗1021 H +0.73310

30.08 336.90 +2.317899∗1022 +1.501331∗1022 H -0.35228

137.02 351.36 +2.632707∗1021 -3.603731∗1020 H -1.13688

Table 5-15: Example mass values interpreted from Figure 5-16 resulting in

a depth of 1131 km obtained by analysing only the degree range 2↔11, ver-

sus those found in a combined run with masses interpreted to exist at depth

320 km, and thus for the range of degrees 12↔27. Whether or not a local

high was expected is noted, and is based on the peaks determined in the com-

bined run. In the case of the single range run, errors were incurred at longi-

tudes 230.66 and 252.57. On the other hand, the simultaneous run had a

single error at longitude 351.36. Finally, the relative error is shown. Coor-

dinates are those of the 25 point single degree range run.

(-0.435). The intersection point is at (9.4, -14.9) with the last point attributed to the first
line at degree 12. Only points to degree 27 were included. Ignoring degrees 11 and 12
which may have influenced the slope calculation, made negligible difference to their val-
ues (a change of about +0.01 at most). The slope -1.96 suggests a depth of 1284 km, or
about 150 km (about 13%) deeper than expected. The slope -0.38 suggests a depth of
279 km, which is also 13% shallower than the interpreted depth. Adding additional
points to the interpretation of the data in terms of 2 linear sets results in slopes of -1.96
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Masses for ranges 2-11 and 12-27 combined

Figure 5-22: The potential resulting from two independently run peak and

mass analyses were combined to produce this power spectrum. It shows

some of the character seen in the EGM96 spectrum over the degree ranges

2↔11 and 12↔27, but the slopes computed over the degree ranges are erro-

neous (see the text).

and -0.44 for depths of 1284 and 322 km respectively.

Examining each of the assemblages of computed masses independently of the other,
where the masses were determined from the spectrum range of degrees 2↔27, with the
assumed depths 1131 and 320 km, indicates that the slopes determined from EGM96 are
repeatable. Figure 5-24 shows four graphs. There are two each for the depths 1131 and
320 km, with one of each of these pairs showing the normalized spectrum for degrees
2↔100 and one for the range 2↔11 (for depth 1131) and 12↔27 (for depth 320). The
slopes of the lines are nearly identical to those seen in Figure 5-17. The spectrum over
the reduced degree ranges is sufficiently ‘noisy’ to account for the slope discrepancies
observed in the earlier text.

It is likely that there is some interaction between the two spectra that might explain the
slope discrepancy. Earlier tests indicated that single masses or masses situated on a uni-
form grid, with varying mass values had well defined slope characteristics. The interpre-
tation and inversion of the lower degrees of EGM96 resulted in multiple masses at two
depths, with a non-uniform distribution. For a single mass M , the observed potential was
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Figure 5-23: This illustration of a combined solution for degree ranges

2↔11 and 12↔27 shows some of the characteristics of the EGM96 power

spectrum. The piece-wise linear regressions indicate a possible depth inter-

pretation not unlike that of EGM96 for the higher degree range, but is in

error for the deeper masses. On the left, the higher degrees have been inter-

preted to degree 50 when computing the regression line. On the right, the

higher range was restricted to degree 27.
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This has a clearly defined relationship between depth and degree, in the form of the
power law discussed earlier. Multiple masses Mk have a slightly different form,
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(5-16)

where the coefficients anm, bnm are dependent on the mass distribution (i.e. mass location)
and the mass magnitude. This affects how they sum. Note also that there is power in the
lower degrees for both mass assemblages, and consequently, both sets of masses will
impact the spectrum of the other. The potential for impact is visible in Figure 5-24.
Notice the amount of power in the lower degrees of the 12↔27 degree range spectrum
compared to that of the deeper bodies. Obviously the summation grows even more com-
plex when mass assemblages at multiple depths are involved in the spectrum calculation.
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Figure 5-24: The result from the peak analysis for each of the degree ranges

identified (i.e. 2↔11 and 12↔27) in the normalized spectrum for EGM96
have been combined, and the masses computed from the potential field over

the entire degree range. The regression lines over degrees 2↔100 for the

power spectrum for each of the mass assemblages were then determined, and

are shown in the illustrations. Depth 1131 km for degrees 2↔11 and

2↔100 are at the top (left and right), and for the same ranges, the masses at

depth 320 km are shown at the bottom. The slopes computed are very close

to those interpreted in the normalized EGM96 spectrum.

5.3.2 A Modern Geopotential Field

This section examines the CHAMP or CHAllenging Minisatellite Payload geopotential
field. CHAMP is a German small satellite mission for geo-scientific and atmospheric
research and applications68. In particular, the CHAMP mission will generate a highly
precise gravity field. As well, datasets may be obtained up to degree and order 140 (at
the time this document was written). Note that the analysis is complete only to degree

68 http://op.gfz-potsdam.de/champ/index_CHAMP.html
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and order 120, with degree 140 complete for only selected orders.

Figure 5-25 shows the CHAMP field normalized both via Pollack and Wong normaliza-
tion (as done before). In the same illustration is included the EGM96 field with Pollack
normalization. A close-up of degrees 2 through 40 are shown in Figure 5-26 where the
interpretation of the EGM96 field has also been included. Of particular interest is the
unexpected divergence of the fields above degree 40, below which their power spectra are
nearly identical. The upward concave shape is puzzling as it clearly does not follow the
Pollack model. One might conclude that a sub parallel line might be ascribed to degrees
35 ↔ 80. This would correspond to bodies at a slightly deeper depth, but a deeper depth
following a shallower depth makes little sense. How to explain the upward trend after
degree 80 is not immediately apparent, but [Roland and Denker 2002] suggests that it is
due to the fact that CHAMP is a satellite only mission, and therefore tends to lose power
at the higher degrees. This may be compounded by too optimistic error estimates. This
will be a subject for further investigation.
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Figure 5-25: This is the recently released CHAMP geopotential field to

degree and order 120. Shown is the field normalized via Pollack and Wong

and for comparison, EGM96 normalized via Pollack. Note the EGM96 and

CHAMP fields are virtually identical to degree and order 40, before an unex-

pected divergence occurs. This divergence may have implications for higher

degrees.
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Figure 5-26: Shown are both CHAMP and EGM96 geopotential fields. To

the degree that depths have been interpreted, and masses estimated, the fields

are identical.

5.3.3 Final Comments on Spectrum-based Depth Estimates

This section discussed the use of the spectral representation of the measured geopotential
field to estimate the depth of buried masses. Although the spectrum for bodies buried at
various depths changes very little, particularly for increasingly deep bodies, that there is a
change afforded an opportunity for exploitation. To take advantage of the spectrum as a
possible depth estimator, a particular assumption had to be made, and the limitations of
this assumption had to be recognized.

While it is highly unlikely that any body causing a recognizable surface expression is
spheroidal, this was the mandatory assumption that was required. Using the well-docu-
mented model for a point source, which from a gravity-inducing perspective is identical
to a uniform spherical source, the effect of depth as a function of spectral characteristics
was examined using synthetic data. It was demonstrated with additional synthetic studies
that certain bodies would be ‘lost’ using the model. Larger shallower masses were seen
to always mask deeper and smaller bodies. As well, individual sources were seen to be
invisible in the spectrum. This is a consequence of a global ‘Fourier’ analysis, unlike the
spatially sensitive wav elet analysis technique.

The point source model study was extended to an examination of two publicly available
geopotential fields, which for low degree and order, exhibited characteristics similar to
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those observed in the synthetic studies. Interpreting the resulting spectra provided esti-
mates for possible depths of burial for bodies at two lev els. Using the peak-finding meth-
ods and inversion procedure discussed in the previous section, the masses corresponding
to the extrema observed in the surface geopotential were computed. Re-computing the
surface potential from the interpreted masses showed a good match to the observed fields
in terms of cross correlation; however, the individual potential fields showed discrepan-
cies, which are summarized in Table 5-16. As well, the slopes (and thus the presumed
depths) of the masses in the re-computed geopotential were observed to be in error. This
is believed due to the impact that each set of masses had on the other when their respec-
tive spectra were summed. As well, the datasets used to estimate the slopes were small.
Extending these to higher degree resulted in a near reproduction of the interpreted slopes
from EGM96.

Point Mass Synthesis Summary (depths in km, potential in (m/sec)2)

Degree Interpreted Estimated Potential Discrepancy

Range Slope Depth Slope Depth Mean±Std. Dev. Min Max
Correlation

2↔11 -1.69 1131 -1.78 1181 90% 0.931±121.798 -518.77 +431.16

12↔27 -0.44 320 -0.57 412 86% 0.156±14.740 -73.23 +108.24

-1.69 1131 -1.96 1284

-0.44 320 -0.38 279
2↔27 98% 0.059±44.592 -299.10 +216.56

Table 5-16: Running independent mass analyses from the potential computed

from the indicated degree range gave good results in terms of correlation

between synthesized and actual potential (first two lines). The mass analysis,

and subsequent potential recalculation gave an even better correlation (third

line), but in all cases, there was substantial discrepancies between the real

and synthesized potentials.

To the extent that the model assumptions can be accepted, a repeatable synthetic field can
be generated, and an indication of the mid to upper mantle geology is indicated. Compar-
ison of actual to computed geopotential from interpreted mass anomalies indicate that the
field is not an accurate reproduction of the original, however. Furthermore, each of the
mass assemblages interpreted and synthesized from the EGM96 spectrum clearly has an
impact on neighbouring degree ranges. This could make the original interpretation ques-
tionable. Even so, the apparent linearities are quite evident and suggestive of some form
of layered Earth structure.
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5.4 What Shape if not a Point

5.4.1 Variable Density Contrast

The simplifying assumption made in the previous analysis of depth was that the anom-
alies observed in the geopotential field were due to point masses. This was both con-
venient, and in fact necessary as the shape of the spectrum relied on this assumption. Of
course, it is highly unlikely that any anomalies are due to point masses, and since one
would like some insight into what their possible shapes might be, this section attempts to
elucidate on that subject by further experiment.

As noted earlier, there is a theorem by Chasles, which is also known as Green’s equiv-
alent layer [Ramsey 1961], that says that any Newtonian potential V on an equipotential
surface S can be represented outside of that surface by a surface layer of density µ on that
surface,

µ =
−1

4π G
∂V
∂n

(5-17)

where the partial derivative is taken with respect to the normal to the equipotential surface
[Heiskanen and Moritz 1966]. Furthermore, using Gauss’ theorem the amount of matter
contained within S is given by,

S
∫∫ µdS =

v
∫∫∫ ρdv (5-18)

[Pail 1999] used the surface layer technique to consolidate all of the mantle into a single
surface feature in order to reduce the amount of numerical work that he incurred.

In this section, using the expressions derived in chapter 2 for surface and shell layers,
graphic illustrations of density variation at depths identified earlier will be seen. To
begin, Figure 5-27 shows the result of deriving a surface layer density at the greatest
depth examined with the point source model (1131 km). The dataset employed was
EGM96 between degrees 2 and 11, and the synthesis was taken to 0.5°. A visual com-
parison with the top half of Figure 5-11 is favourable, but should not be expected to be
identical, as the downward continuation step alters the relative weights of coefficients as
they contribute to the surface density synthesis. Note that a surface layer density is sim-
ply the result of a mathematical equivalence, and has no known relationship to real gravi-
tational potential fields; nevertheless, it is instructive to see that it does reproduce the
measured field, and when compared to the next figure, gives reassurance of its correctness
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(insofar as the model assumptions allow). Figure 5-28 is the shell model for the same
depth, with a shell thickness of 150 km.

The contrast between the continuous shell and the point mass models shown in Figure
5-11 is more evident in Figure 5-29 which is a rendition of how density varies at a depth
of 320 km when considered as a 150 km thick shell (the thickness used by other
researchers). A comparison with the lower half of Figure 5-11 shows clear differences.

Noteworthy is the fact that the density contrast variations are less than ±0.004 gm/cc for
the 1131 km deep model and ±0.002 gm/cc for the 320 km deep model. This latter figure
is approximately 0.025 times the variation assigned in [Ricard et al. 1993] (0.08 gm/cc).
[Bowin 2000] quotes a density of about 0.0004 gm/cc to depth 670 km, and then 0.0024
gm/cc for deeper bodies for one model (to 800 km, except for 4 masses at the core/mantle
boundary). In his second model (to depth 1400 km, with the same 4 masses), his density
range varies over 0.00005↔0.00225 gm/cc. The density contrast computed by the mod-
elling procedure described in this thesis for the 320 km shell model is within the range of
both Ricard and Bowin’s experiment. For the case of the deeper shell, the density con-
trast is nearly twice the highest figure used by Bowin and about 0.05 of that used by
Ricard and colleagues. The mean density of the 320 km shell was 3.620 gm/cc and that
of the 1131 km shell was 4.697 gm/cc. However, it must also be noted that the shell
thickness has a direct bearing on the density contrast computed by the technique
employed here, just as the size of the ‘blocks’ employed by other researchers must also
affect the apparent contrast.

The EGM96 geopotential model was interpreted as being composed of 5 zones. The
third had an estimated depth of 58 km. Inverted as density contrast for a shell of 150 km
thickness about a mean density of 3.370 gm/cc, this relatively shallow model is illustrated
in Figure 5-30. Reducing the shell thickness to 25 km results in Figure 5-31. In this
case, owing to the reduced thickness, the density contrast range rises in value to
-0.0187507↔0.0170367 gm/cc from -0.00586163↔0.00535551 gm/cc around a mean
density of 3.377 gm/cc. Although not apparent to the eye, the images are slightly differ-
ent owing to the variable contribution of the denominator of equation 2-121.

The penultimate layer which is interpreted from degree range 102↔296 as being associ-
ated with the depth 43 km is seen in Figure 5-32. The density contrast range for a layer
of 15 km thickness is higher than before: -0.089985↔0.163997 gm/cc around a mean
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GMT 2003 Nov 24 15:24:23 EGM96 at 0.5 degrees: surface layer density at 1131 km
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Figure 5-27: This is an illustration of a surface layer density distribution at

a depth of 1131 km using EGM96 between degrees 2 and 11, as per the

depth analysis performed earlier.
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Figure 5-28: The variation in density at 1131 km for a 150 km thick shell

produced from downward continued geopotential coefficients from the range

2↔11, as interpreted previously. The density contrast ranges from

-0.00371927↔0.00363546 gm/cc, corresponding to a mass variation of

-1.875∗1023↔1.833∗1023 grams.

density of 3.379 gm/cc. The mass range corresponding to this density contrast range is
-6.7913∗1023↔1.2377∗1024 grams.
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Figure 5-29: This figure illustrates the variation in the density of a 150 km

thick shell when geopotential coefficients estimated at the Earth’s surface are

downward continued to a depth of 320 km. The range of contrast is

-0.00205883↔0.00158779 gm/cc which corresponds to a mass variation of

-1.389∗1023↔1.072∗1023 grams.

The last layer, illustrated in Figure 5-33, is 12 km thick at 31 km depth, which is near the
mean depth of the Mohorovičić discontinuity. The mean density is 3.359 gm/cc, and the
density contrast range is -0.0457247↔0.0480633 gm/cc. This corresponds to a mass
range of -2.7725∗1023↔2.9143∗1023 grams.

5.4.2 Error Associated with Variable Density Contrast

The error associated with the analysis of the previous section is as variable as the density
structure that was defined. That is to say, the error in the calculation of the density con-
trast is a function of several factors: depth, shell thickness and the measured spherical
harmonic coefficients. Of the three, the coefficients affect the computed contrast in the
most direct manner. Just as the equations indicate, an error in the potential coefficients is
mapped directly to a corresponding error in the density coefficients.

The other factors affect the contrast calculation as a function of degree. Depth errors
have the most pronounced effect, and for bodies assumed to lie at greater depths than they
actually do, the error increases non-linearly with degree. For bodies assumed to lie at
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GMT 2003 Dec  5 15:28:12 58 + 150
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Figure 5-30: This figure illustrates the variation in the density of a 150 km

thick shell when geopotential coefficients estimated at the Earth’s surface are

downward continued to a depth of 58 km. The range of contrast is

-0.00586163↔0.00535551 gm/cc which corresponds to a mass variation of

-4.309∗1023↔3.937∗1023 grams.
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Figure 5-31: This figure illustrates the variation in the density of a 25 km

thick shell when geopotential coefficients estimated at the Earth’s surface are

downward continued to a depth of 58 km. The range of contrast is
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-0.0187507↔0.0170367 gm/cc which corresponds to a mass variation of

-2.343∗1023↔2.12923 grams.
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Figure 5-32: This illustrates the variation in density contrast of a 15 km

thick shell at 43 km, as interpreted from EGM96’s spectrum. The contrast

range is -0.089985↔0.163997 gm/cc which corresponds to a mass range of

-6.7913∗1023↔1.2377∗1024 grams. The range of data samples shown has

been reduced to highlight low amplitude features.

shallower than correct depths, the non-linear effect is greatly reduced, but still can be sub-
stantial. Error in shell thickness is greatest at the lowest degrees, falling rapidly to an
inconsequential value for high degree. Illustrations of the effects of depth and thickness
error on the computed coefficients show these effects clearly. The following figures have
been selected to cover the range of depths interpreted from the normalized EGM96 spec-
trum.

In Figure 5-34 the effects of depth and thickness error are illustrated for the shallowest
shell depth: 31 km, with a 12 km thickness. Errors of 1% and 10% for both depth and
thickness are shown. As the degree range for this layer is presumed to be the highest, the
figures cover the entire spectrum. The maximum error in the computed coefficients
occurs at degree 360 and ranges from about 1.75% to approximately 19% if the error is to
assume the body is deeper than the correct depth. Should the error assume a shallower
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GMT 2003 Dec  5 16:16:24 31 + 12
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Figure 5-33: This illustrates the variation in density contrast of a 12 km

thick shell at 31 km, as interpreted from EGM96’s spectrum. The contrast

range is -0.0457247↔0.0480633 gm/cc which corresponds to a mass range

of -2.7725∗1023↔2.9143∗1023 grams. The range of data samples shown has

been reduced to highlight low amplitude features.

body, the maximum error ranges from -1.75% to about -16%. The thickness error is
much smaller, ranging from a maximum of approximately ±1% for a 1% error in thick-
ness to about +11↔-9% for a 10% error in thickness. It declines to about ±0.7% for a
1% error in thickness to the approximate range -6%↔+7%. The thickness error range
maximum appears to be independent of the depth or shell thickness, but the rate of decay
is not, as it decays more slowly with thinner shells.

Figure 5-35 shows similar calculations for the greatest depth that was interpreted: 1131
km. A 1% error in depth becomes a maximum at degree 11 (the highest used for that
depth) of ±2.5%. An error of 10% translates to an error range of -23% to +30% for the
highest degree. The thickness error has initial values similar to the 31 km depth layer, but
declines to a range of about ↔0.8% by degree 11 for a 1% thickness error, and -7.5% to
+9% for a 10% error.

Figure 5-36 illustrates the relative error for a depth of 320 km for the same depth and
thickness errors. For a 1% error in depth, the relative error ranges over ±1.5% at the
maximum degree of interest (27). For a 10% error in depth, the error ranges over
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Figure 5-34: Relative depth errors of 1% and 10% are shown in the top half

(left and right respectively). Relative thickness error for the same percent-

ages is shown in the bottom half. The layer is at 31 km and has a 12 km

thickness.

-14%↔+16% at the maximum degree. The thickness error has about the same maximum
range, and declines to ±0.65% for a 1% thickness error. The range is about -13%↔+16%
for a 10% thickness error. The same figure also shows the effect of depth and thickness
error to degree 360, to highlight graphically the non-linear characteristic of both the depth
and thickness error curves as a function of degree.

The question remaining is what effect the errors just described have on the computed den-
sity contrast. This may be determined through experiment. For example, a 10% increase
in the presumed depth for a layer at 31 km compared to the presumed depth results in an
apparent contrast range of -0.00854694↔0.00790712 gm/cc versus the presumed range
-0.0457247↔0.0480633 gm/cc cited earlier. This corresponds to about a 16 to 18%
change in the contrast. The mean value of the difference was -3.421∗10-5±6.145∗10-3.
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Figure 5-35: For a depth of 1131 km, depth error of 1% (top left) and 10%

(top right) are shown. Thickness error of 1% (bottom left) and 10% (bottom

right) are also shown.

The change in density contrast for other selected depths is given in Table 5-17.

It seems that the density contrast has its greatest change when the apparent depth is
altered, while holding the thickness constant. See for example the first two lines for the
deepest layer (1131 km) in Table 5-17. The contrast changes by 18.4 to 23.4% for a
change in depth of ±10%. On the other hand, a 10% change in thickness for a fixed depth
results in a small change in contrast (relatively speaking). For the same depth, see lines
three and four which show a change of 7.5 to 9.3%.

Altering both depth and thickness has a more dramatic effect. A shallower shell sees its
contrast change from 10.8% (thinner) to 24.7% (thicker). A deeper shell has the contrast
change from 14.2% (thicker) to 34.9% (thinner).
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Figure 5-36: Depth errors of 1% and 10% (top) and thickness errors of 1%

and 10% (bottom) for a depth of 320 km. The left side goes to degree 360,
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while the right is to 30.

Density Contrast Change for 10% Depth and Thickness Errors (km)

Nominal Nominal Selected Selected Nominal Difference

Depth Thickness Depth Thickness Range (gm/cc) Range (gm/cc)
Difference (%)

34 -0.00854↔0.00790 17.5

28 -0.00789↔0.00846 17.4
12

13 -0.00251↔0.00262 5.5

11 -0.00311↔0.00298 6.5
31

31 12 -0.04572↔0.04806

352 -0.00023↔0.00029 14.3

288 -0.00025↔0.00019 12.1
150

165 -0.00012↔0.00009 6.0

135 -0.00012↔0.00015 7.4
320

320 150 -0.00205↔0.00158

1244 -0.00086↔0.00086 23.4

1018 -0.00068↔0.00067 18.4
150

165 -0.00028↔0.00027 7.5

-0.00034↔0.00034 9.3
1131

-0.00040↔0.00039 10.8
135

-0.00092↔0.00090 24.7
1018

-0.00052↔0.00052 14.2
165

135 -0.00127↔0.00129 34.9
1244

1131 150 -0.00371↔0.00363

Table 5-17: For selected depths and shell thicknesses the density contrast

range of the presumed shells and the difference in contrast between the pre-

sumed and erroneous shells (with 10% error) are illustrated. The difference

in the range is also given as a percentage.

To summarize, for up to a 10% error in estimating thickness or depth, one should expect
the density contrast computed to be in error within the range 7.5↔34.9% for the deepest
layer in this study (1131 km). As expected from the preceding graphs, thickness error
has the least effect as it ranges over a change of a little less than a factor of two for the
three depths shown in the table. The effect of depth error appears to decline from the
deepest to the mid-range depth, but curiously increases for the shallowest layer. This
may be due to increased sensitivity of the measured coefficients to shallow bodies.
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The effect on the density contrast changes is most easily seen graphically, as in Figure
5-37. For a depth 1131 km, the 9 variations shown in Table 5-17 are illustrated. The
middle figure is identical to Figure 5-28, and the others are variations of depth and thick-
ness. Notice that the anomaly on the west coast of South America is a high in the middle
figure. As the thickness for this presumably correct shell is varied, it shows a much lower
density contrast for a thicker shell (middle right), and an unexpected sign reversal for a
thinner shell (middle left).

When the shell is assumed to be deeper than it is, the synthesis of the difference also
changes sign. The deepest and thinnest (bottom left) is about one third in value, but
opposite in sign. The thicker shell at the same depth is also opposite in sign, and up to
one sixth the magnitude. This suggests an over-compensation due to increased depth. In
other words, a deeper shell requires a higher density to produce the same surface field.
Thus the difference between the ‘correct’ and ‘erroneous’ shells results in a polarity
reversal. If the difference had not been exhibited, this would be self-evident.

The synthesis of the difference between the presumed ‘true’ depth and shallower depths
(top row) also show a high, but the contrast is reduced by a factor of about 10 for the
thinnest shell (top left) to about a factor of 4 for the thickest (top right). This indicates
that for a shallower depth (by 10% in this case) and a ±10% change in shell thickness, the
anomaly is reduced in magnitude, but still evident. Using an argument opposite to that of
the deeper shell, one might realize that a shallower body requires a lower density to pro-
duce the surface field.

It is apparent that interpreting the depth is most important if one is to specify the density
contrast with certainty. The contrast resulting from an interpretation still provides insight
into the local Earth structure, however.

5.4.3 South American High re-Visited

In the vicinity of the South American High near 290° longitude and 110° colatitude, it is
evident that the major feature is deep-seated (in excess of several hundred kilometres),
with a narrow ‘high’ positioned in the shallow upper mantle. This is illustrated in Figure
5-38 which shows each of the depths analyzed from the spectrum. At about 1130 km, the
major high is centred at 112° by 294°. At the shallower depth of 320 km, the anomaly
becomes less diffuse, concentrating itself near 103° by 288°.
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Figure 5-37: This is an illustration of the synthesis of the difference between

the depth and thickness of a shell interpreted from EGM96 to exist at 1131

km with a 150 km thickness, and variations on the depth and thickness by

±10%. From left to right, the shell thicknesses have values of 135, 150 and

165 km. Fr om top to bottom, the shell depths have values of 1018, 1131 and

1244 km. The middle figure has no depth or thickness correction applied and

is identical to Figure 5-28.

Tw o images of the density structure near 58 km are shown in the figure. One assumes a
150 km shell thickness, and the other a 25 km thickness. While they appear nearly identi-
cal, as indicated earlier they are only insofar as the general features are concerned. The
difference in thickness affects the density contrast with the thinner shell showing an
expected higher contrast. Owing to the formula used to calculate the density, the relative
contribution for coefficients varies according to shell thickness and degree; nevertheless,
the feature sets are similar, with both showing a high which tends to follow the coastline.
This corresponds to the subduction zone where the Nazca and South American plates
meet. The figure suggests an excess of mass in the near upper mantle beneath their point
of contact.

The final two portions of Figure 5-38 are for the shallowest zones interpreted in EGM96.
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There seems to be little contribution at the 43 km depth, and almost none at the shallower
depth (31 km)69.

5.4.4 The Core/Mantle Boundary

As a last example of inversion, the following illustration examines Bowin’s thesis that
four masses at the core/mantle boundary (approximate depth 3000 km) would satisfy to
some degree the lowest degrees of the measured field. The masses were positioned at the
locations noted in Table 5-18. The density contrast observed from the use of the lowest
degrees (2 and 3) of the observed field is illustrated in Figure 5-39. There, the four
anomalies noted in Table 5-18 are observed along with other substantial anomalies not
matched to his deep masses.

The range for the density contrast was found to be -0.00294708↔0.00279903 gm/cc with
an average density of 7.759 gm/cc. The mass variation for the shell was
-8.9731∗1022↔8.5224∗1022 grams. These values are one to two orders of magnitude
smaller than Bowin’s. This suggests that the assumed (for this example) shell thickness
may be too large. Further investigation may be warranted.

Bowin’s Core/Mantle Boundary Mass Anomalies

Latitude (°) Longitude (°) Mass (gm) Location

-4 142 0.5000∗1022 New Guinea
5 77 -0.9422∗1023 Indian Ocean

55 -23.5 0.1100∗1024 Iceland
-52.5 50 0.7200∗1023 Crozet Is.

Table 5-18: Bowin placed four substantial masses at the core/mantle bound-

ary in addition to his shallower masses. These were intended to demonstrate

that a restricted set of mass distributions might generate a geopotential field

similar to that which is observed.

69 Note that the GMT labels under each image are for the data processor’s use, and their content is irrel-
evant to the content of this document.
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GMT 2003 Nov 28 15:03:30 grdimage -JM295/-15/6i -Cegm96.1131.cor.shell.geoph.stripped.dat.cpt -E300 -Bg30f2a10::/g30f2a10:: -R270/300/-30/+0 -P -Uc -V -K

270˚

270˚

280˚

280˚

290˚

290˚

300˚

300˚

-30˚ -30˚

-20˚ -20˚

-10˚ -10˚

0˚ 0˚

-0.001912568

-0.001434426

-0.000956284

-0.000478142

0.000000000

0.000478142

0.000956284

0.001434426

0.001912568

0.002390710

D
e
n
s
i
t
y
 
C
o
n
t
r
a
s
t

Grams/cc

GMT 2003 Nov 28 14:58:03 grdimage -JM295/-15/6i -Cegm96.320.cor.shell.geoph.stripped.dat.cpt -E300 -Bg30f2a10::/g30f2a10:: -R270/300/-30/+0 -P -Uc -V -K

270˚

270˚

280˚

280˚

290˚

290˚

300˚

300˚

-30˚ -30˚

-20˚ -20˚

-10˚ -10˚

0˚ 0˚

-0.001359810

-0.001133175

-0.000906540

-0.000679905

-0.000453270

-0.000226635

0.000000000

0.000226635

0.000453270

0.000679905

0.000906540

D
e
n
s
i
t
y
 
C
o
n
t
r
a
s
t

Grams/cc
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GMT 2003 Nov 28 17:47:18 grdimage -JM295/-15/6i -Cegm96.58.25.cor.shell.geoph.stripped.dat.cpt -E300 -Bg30f2a10::/g30f2a10:: -R270/300/-30/+0 -P -Uc -V -K
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GMT 2003 Nov 28 14:44:22 grdimage -JM295/-15/6i -Cegm96.43.cor.shell.geoph.stripped.dat.cpt -E300 -Bg30f2a10::/g30f2a10:: -R270/300/-30/+0 -P -Uc -V -K
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Figure 5-38: The South American high as interpreted from EGM96 at 1131

(top left) and 320 (top right) km, with 150 km thicknesses. The centre images

show two shells at 58 km with a 150 (left) and 25 (right) km shell thick-

nesses. The shallowest shells are interpreted to lie at 43 (bottom left) and 31

(bottom right) km with 15 and 12 km thick shells respectively.
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GMT 2003 Nov 26 15:43:04 grdimage -JW0/6i -Cegm96.CMB.cor.shell.geoph.stripped.dat.cpt -Bg30::/g30:: -R0/360/-90/+90 -P -Uc -V -K
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Figure 5-39: Bowin included 4 deep-seated masses (see Table 5-18) to

account for core/mantle boundary potential anomalies. The density contrast

due to degrees 2 and 3 of EGM96 is illustrated. The shell thickness was 200

km, centred on the interface. The density contrast was

-0.00294708↔0.00279903 gm/cc with an average density of 7.759 gm/cc.

The mass variation for the shell was -8.9731∗1022↔8.5224∗1022 grams.

5.5 Final Comments

This chapter considered an alternative to the wav elet approach for estimating depth to
causative bodies. It began by considering how one might estimate body characteristics on
the assumption that the bodies in question were at pre-defined depths. These were pre-
sumed to be those depths indicated by Bowin, or by the earlier researchers Lithgow-
Bertelloni and colleagues. For numerical and geometric reasons this approach was aban-
doned in favour of a possible alternative.

The alternative identified was the use of the spherical harmonic spectrum as a tool to esti-
mate depth. The examination of the publicly available spectra were not encouraging ini-
tially, but recognizing that bodies of different depths (and mass magnitudes) offered a
possible means of distinguishing mass depths, the approach was pursued.

Fortunately, an early pioneer (Pollack) had already developed some simple models and a
means for computing their spectra on the sphere. One in particular was identified as hav-
ing a useful property, that being that its spectrum was related to its depth, at least when
the spectrum was appropriately normalized.
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Investigations of single and multiple point sources and their spectra proved to be very
encouraging. Unfortunately, the model and the procedure also proved to hav e its defi-
ciencies, such as the inability to identify individual sources, and the likelihood that bodies
other than those causing the particular spectral response might be hidden. Such problems
have to be accepted when using global analysis tools like spherical harmonics. Neverthe-
less, synthetic testing lead to the examination of recent public geopotential models and
for the lower order degrees, the point source depth identification property appeared to
hold. From the spectrum, depth to causative bodies could be established, subject to the
ambiguities mentioned earlier.

Once some measure of depth had been established, it then became a simple matter of
identifying the likely positions of causative bodies, a task that required appropriate search
algorithms. Ambiguity was observed here as well, as the choice of search dimension
impacted the final geographic positioning of buried masses to a certain extent. Given
both depth and location estimates, mass size could then be determined, and these were
found to be not unlike the range of values that Bowin had employed in his models.

Point sources were used for modelling simplicity, much as other researchers have done.
However, one must accept that this is an unlikely shape, especially after the modelling
work of Lithgow-Bertelloni and colleagues. That group had attempted to model the
potential field after following the subduction of crustal material over the millennia. They
postulated that blocks had been subducted and had sunk to great depth into the mantle.
Obviously, these weren’t spheres, or point sources.

In an effort to gain increased insight into gradational variations in Earth density, a mathe-
matical equivalence ascribed to George Green (1793-1841), and known as Green’s equiv-
alent layer was used. As noted in an earlier chapter, this procedure was extended in [Pail
1999] to allow the consolidation of the mantle in his effort to generate a synthetic poten-
tial field for satellite geodesy and other purposes. It was shown in the same chapter that it
could be further extended to allow the use of downward continued geopotential spectra to
arbitrary depths, including those interpreted as being representative of mantle layers, and
which had been used in the point mass model. By making a uniform mean density
assumption, it was found possible to determine spatial density contrast variations within
shells at those interpreted depths.

Several examples of shell inversions based on the layer interpretation of EGM96 were
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illustrated. The density contrasts observed were within the range of Lithgow-Bertelloni
and colleagues assumptions, but on occasion outside of Bowin’s models. These results
were then qualified by examining the source of possible error in the analysis. Apart from
the interpretation of the geopotential field, and the assumptions that were used to justify
it, the errors were seen to come primarily from incorrect depth estimates, with a contribu-
tion due to incorrect thickness. These error causes were demonstrated graphically. As
well, the difference between the presumed ‘correct’ analysis and various combinations of
‘incorrect analysis’ were synthesized, displayed and commented upon.

As a follow-on to an attempted analysis of the South American high which was begun in
the chapter on wav elet-based depth analysis, the spectral interpretation technique
described here was used to gain insight into its cause. Interpretation of the subject area
suggested very deep-seated anomalies overlaid by narrow, and much shallower bodies
likely induced by subduction along the continental margin were the cause of the anomaly.

For the point mass model, the presumed geologic pictured afforded by the spectral inter-
pretation permitted an approximation of the original geopotential field. While imperfect,
it was more like the published field over the degree range used in this research, than that
of the geophysical study on subduction. On the other hand, the shell density contrast
experiment was performed directly from the published field, thus ensuring a direct link
between the field and the densities or masses so determined. For this latter case, the
direct link to the observed field ensured that the density contrast (or equivalently the
anomalous mass within the shell) derived from the interpretation of the field provided
insight into the Earth’s structure, thereby realizing the principal goal of this research.
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6 Summary, Contributions and Recommendations

6.1 Summary of the Research

This has been an interesting research exercise. The initial objective was to find a way to
reproduce the measured geopotential field. By doing so in some reproducible manner,
one could perform numerical exercises and other experiments. In principle, reproducing
the field is simple enough, and Newton indicated how one might achieve that goal with a
deceptively simple expression several hundreds of years ago. Unfortunately, to use his
equation, one requires a complete knowledge of the density structure of the Earth, some-
thing that is still lacking, although numerous researchers are attempting to determine
exactly that and other properties of the Earth using tomographic techniques.

This research tried several different methods to discover the Earth’s internal structure.
The first, based on proven mathematical and physical principles, employed a relatively
new branch of mathematics called ‘wav elets’. The technique exploited the similarity of
the Poisson kernel to a smoothing function. The method noted that the application of an
analyzing wav elet to potential field data, specifically the vertical gradient of the potential
(or gravity), could be had by finding the scaled horizontal derivatives of that field. Suc-
cessive applications of the horizontal gradient to the increasingly smooth upward contin-
ued gravity data corresponded to applying the analyzing wav elet with different dilations.

This process is the manifestation of a continuous wav elet transform based on a Poisson
kernel. The transform is applicable to potential field data, or any other data which obeys
Poisson’s equation [Moreau et al. 1997]. It permits one to detect and characterize singu-
larities. This approach to wav elet analysis of a potential field might better be known as
the Poisson kernel wav elet transform. It is based in the field of signal processing.

Researchers in fields other than geophysics had determined that the application of analyz-
ing wav elets to pattern recognition problems allowed one to characterize the shape of
irregular structures by examining the evolution of wav elet maxima. This was extended
for determining the depth to causative bodies in the field of mineral exploration by groups
in both France and Australia. It was this technique that was explored for its applicability
in mantle-depth Earth structure determination. It was found that while quite appropriate
for simple, isolated bodies, very little additional complexity made the method very diffi-
cult to use, and so it was abandoned.
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Subsequent to the wav elet exercise, it was observed that the spherical harmonic spectrum
offered some discrimination with respect to depth, and the opportunity to exploit this was
pursued. It was noted that an earlier researcher had described a method of ‘normalizing’
a spectrum so that it was much more similar to that of a spectrum on the plane. This
approach, plus the observation that certain bodies assumed a power law characteristic
when their spectra were normalized in the suggested manner, provided the sought-after
means for exploitation. A simplifying assumption was required, that being that the
causative bodies tend towards a spherical shape, thus making them appear as point
sources, as other researchers have assumed.

Using this assumption, it was discovered that there was a convenient relationship between
depth and normalized spectrum which resulted from the power law characteristic. Exper-
imentation with synthetic models revealed some limitations related to body depth and
mass. Accepting that not all bodies might be recognized, allowed the interpretation of a
publicly available geopotential field to be performed, and this indicated that it could be
decomposed into several zones or layers as a function of depth. Once depth information
was available, it became a simple matter of finding local extrema which resulted from the
synthesis of that portion of the spectrum attributable to that depth range. Standard least-
squares techniques were then used to determine probable mass magnitudes.

The result of this exercise was a model which could be mapped to a potential field, and
which then resembled the measured field to a reasonably high degree; however, there
were individual samples of the potential field which were greatly different from the mea-
sured field. This point mass model, which might have been used as a starting point for a
more detailed model, seemed less than acceptable.

The last attempt to model the Earth’s interior was done using a different approach, but
which was based on science completed in the nineteenth century. Using a mathematical
oddity known as the equivalence layer, a  shell extension was deduced, thus allowing one
to compute as a continuous function the density contrast at specific depths and for spe-
cific shell thicknesses. The depths chosen were those interpreted from EGM96, and the
thicknesses selected were comparable to those used by other recent researchers. This
exercise resulted in density contrasts that were similar or smaller in magnitude than those
employed by other workers, and the corresponding anomalous mass range was compara-
ble to within two orders of magnitude to one of several recent researcher’s results.
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This particular approach to Earth characterization is one which directly links the mea-
sured field to the estimated contrast variation. As noted in the last chapter, the interpreta-
tion of the field is critical, as errors in thickness and depth can alter the estimated density;
nevertheless, one is still left with a ‘picture’ of the mantle at one or more depths. This
can be used as an additional information source for further gravitational inversion, or in
tomographic studies, which at present, remains the most direct measuring tool available
for geophysical researchers.

6.2 Conclusions and Contributions

6.2.1 Conclusions

This research exercise was both interesting and frustrating. One can conclude several
things from the effort:

• The transfer of ideas from one area of geophysics to another is not always fruitful.
It seemed perfectly reasonable to identify the characteristics of density anomalies
using sound physical principles at the outset of this research. As in the several
papers on the subject, initial synthetic studies were very encouraging. The com-
plexities of reality made the wav elet technique far less usable. In mineral explo-
ration, using the Poisson kernel wav elet transform approach may be very appropri-
ate, and indeed very satisfying as it is based on potential theory and well-known
characteristics of signal processing; however the writer is skeptical of its general
applicability to mantle-depth investigations.

• The interpretation of EGM96 as a potential field which reflected a layered geology
proved to be very useful. It required certain assumptions about the bodies generat-
ing the observed field, and also required that one accept that not all bodies would
be identified. Accepting these however permitted the modelling of two deeper lay-
ers as point sources, much as other researchers had done. That the modelling exer-
cise was ‘on the right track’ was supported by the magnitudes of the bodies in the
model, when compared to others in the literature. Certainly the correlation with the
observed field was good, but individual potential values could at time be quite dif-
ferent from the measured field. The conclusion then was that while the exercise
was going the right direction, and was superior to the wav elet attempt, it was inade-
quate for a final model.

• Using the same layered geology interpretation, a much superior model was pro-
duced using some old mathematics. The mass variation within the shell model was
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similar to that of the point source model, but this approach offered the direct link to
the measured field. Furthermore, the model is easily adapted to better defined
geopotential fields, and is equally easily modified for improved geological interpre-
tation, possibly resulting from integration with tomographic models. The conclu-
sion is that this continuous description of density contrast is the preferred model
owing to its adaptability, and strong dependence on the measured field.

6.2.2 Contributions

The following are the contributions resulting from this research:

• Identified a ‘power law’ relationship between the depth of a point or spherical mass
and its spherical harmonic spectrum.

• Exploited the ‘power law’ relationship to make a meaningful interpretation of a
publicly-available geopotential field. This resulted in the identification of several
zones or layers within the mantle that were likely major contributors to the mea-
sured spectrum. No attempt was made to correlate these with other geophysically-
derived anomalies.

• Dev eloped a model based on point masses attributable to the interpreted field which
when converted to surface potential provided a surprisingly good correlation to the
measured field.

• Extended Green’s surface equivalent layer for potential to a shell-based model
which when allied with the field interpretation described earlier allowed one to
deduce an approximation of the mantle structure. This technique directly linked
the surface field to the density contrast at depth in terms of the spherical harmonic
coefficient datasets deduced from satellite and surface gravity analysis. The contri-
butions to error in the analysis were identified and quantified for a modest range of
values.

• Identified and characterized a ‘polar problem’ and highlighted the use of an alter-
native spherical pixelization which can reduce the effect of latitude on spherical
harmonic analysis, and thereby increase the resolution of high latitude anomalies.

• While doing preparatory work, researching different methods of spherical har-
monic analysis revealed some idiosyncrasies about the codes available to the com-
munity. These codes, with their advantages and disadvantages have been described
in this text, with corrections noted (as appropriate) for their proper use in a geodet-
ic context.
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• As an exercise, examined the expansion of orthogonal wav elet coefficients to

observe the decay or enhancement of a potential field anomaly to see what insights
might be gained. Such an exercise might prove to be useful in an exploration con-
text.

• Explored the use of wav elet techniques for depth analysis of mantle structures.
Like the discrete and continuous mass anomaly studies described above, these were
developed in a spherical harmonic context, with many calculations being per-
formed in that environment. This wavelet approach was found to be undesirably
complicated by moderately complex mass assemblages; nevertheless, the codes
developed for this aspect of the study may prove to be relevant for other experi-
mental work.

• Dev eloped an extended set of tools for analyzing, synthesizing and manipulating
spherical harmonic fields, for allowing their interpretation and for inverting them in
different ways to generate either discrete or continuous models of the subsurface.

6.3 Recommendations for Further Work

[Parker 1974; Parker 1975] and [Parker 1994] describe methods for estimating the best
bounds on density and depth. That is to say, it is possible to determine the least upper
bound on density contrast, or correspondingly, the greatest lower bound on depth for a
deep density anomaly. It would be quite interesting to place the interpretation offered in
this research into such a context as it might ensure greater confidence in the proposed
density contrasts. Others too have deduced rules to estimate maximum depth for gravity
anomalies and these may be worth exploring [Grant and West 1965].

A most interesting exercise would be to marry the results obtained in this research with
that of the tomographic community. Their resolution is said to be of the order of hun-
dreds of kilometres, and introducing the results obtained here as control in their studies,
might prove to be mutually beneficial. It is equally likely that their models will suggest
an adjustment of the interpretation placed on the surface field. Certainly as improved
potential field models are developed, a more refined interpretation of depth as a function
of the spectrum might be achieved. The two combined (tomography and improved poten-
tial models) should help to better align with reality the interpretation offered here.
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