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Abstract 

For the last three decades, the Geomatics Engineering and Computer Science 

communities have considered automated road network extraction from remotely-

sensed imagery to be a challenging and important research topic. The main objective 

of this research is to investigate the theory and methodology of automated feature 

extraction for image-based road database creation, refinement or updating, and to 

develop a series of algorithms for road network extraction from high resolution multi-

spectral imagery.  

The proposed framework for road network extraction from multi-spectral imagery 

begins with an image segmentation using the k-means algorithm. This step mainly 

concerns the exploitation of the spectral information for feature extraction. The road 

cluster is automatically identified using a fuzzy classifier based on a set of predefined 

road surface membership functions. These membership functions are established 

based on the general spectral signature of road pavement materials and the 

corresponding normalized digital numbers on each multi-spectral band. Shape 

descriptors of the Angular Texture Signature are defined and used to reduce the 

misclassifications between roads and other spectrally similar objects (e.g., crop fields, 

parking lots, and buildings).  

An iterative and localized Radon transform is developed for the extraction of road 

centerlines from the classified images. The purpose of the transform is to accurately 

and completely detect the road centerlines. It is able to find short, long, and even 

curvilinear lines. The input image is partitioned into a set of subset images called road 

component images. An iterative Radon transform is locally applied to each road 

component image. At each iteration, road centerline segments are detected based on an 

accurate estimation of the line parameters and line widths. Three localization 

approaches are implemented and compared using qualitative and quantitative methods. 

Finally, the road centerline segments are grouped into a road network. The extracted 
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road network is evaluated against a reference dataset using a line segment matching 

algorithm. The entire process is unsupervised and fully automated. 

Based on extensive experimentation on a variety of remotely-sensed multi-spectral 

images, the proposed methodology achieves a moderate success in automating road 

network extraction from high spatial resolution multi-spectral imagery.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Roads are a very important topographic object class and it is of paramount interest to 

minimize the updating cycles [Bentabet et al., 2003]. For many Geographical 

Information System (GIS) applications (e.g. urban planning, vehicle navigation, traffic 

management, emergency handling, etc), it is also very important to keep the road 

network database current. For many years, photogrammetric and remote sensing 

imagery was considered as the primary data source for topographic mapping [Heipke 

et al., 2004]. However, the traditional process of manually updating a road database is 

very tedious and time-consuming. Automated road network extraction from remotely-

sensed imagery can be used to make the process of building and updating a road 

network database easier and more efficient.  

According to Baltsavias (2004) and other literature [Klang, 1998; Fillin and Doytsher, 

2000; Auclair-Fortier et al. 2001], image-based road network database updating may 

include the following four processes: (1) Extraction of new roads; (2) Elimination of 

roads which no longer exist; (3) Updating of roads which have changed; and (4) 

Improvement and refinement of existing non-changed roads, which can include an 

increased degree of detail, better geometric accuracy, increased attributes and possibly 

the third dimension [Heipke et al., 2004]. 

The realization of the above four processes requires an efficient, robust and accurate 

extraction of a new version of the road network from remotely-sensed imagery. This is 

the main motivation of this research. 

During the last three decades, substantial work has been completed for automated road 

extraction from remotely-sensed imagery in the photogrammetric and computer vision 

communities. Accordingly, many different strategies or algorithms are proposed in the 

existing literature [Auclair-Fortier et al., 2000; Mena, 2003; Baltsavias, 2004; 
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Quackenbush, 2004]. However, little research has been conducted on road network 

extraction from multi-spectral imagery (MSI) [Doucette et al, 2001; 2004]. This 

situation is now changing due to the increasing availability of MSI with high spatial 

resolutions. MSI has a great advantage over panchromatic or other grey-level imagery 

in that it enhances the capability to discriminate road surface materials from most 

other types of landscape materials. For example, the multi-spectral data usually 

includes a NIR band that is a powerful discriminator of vegetation and man-made 

surfaces. This could be very helpful in a road identification step. With the emergence 

of advanced data fusion technologies, it is now even possible to extract road networks 

from Pan-sharpened MSI in urban areas (e.g., [Zhang and Wang, 2004]). However, 

many issues need to be further researched in extracting road networks from MSI, 

especially from high resolution MSI.  

1.2 Problem Statement 

1.2.1 Road network modeling in remotely-sensed imagery 

The difficulties in automated road network extraction from remotely-sensed imagery 

lie in the fact that the image characteristics of road feature vary according to sensor 

type, spectral and spatial resolution, ground characteristics, etc. Even in the same 

image, different parts of the road network often appear differently. In urban residential 

areas, with high resolution remotely-sensed images, the situation is even worse [Wang 

and Zhang, 2000]. A high resolution image enables a more accurate localization of the 

road sides as well as its extraction as a surface element. However, it generates a higher 

complexity of the image and an increase in the number of artifacts (vehicles, trees 

along the road, occlusions) [Péteri et al, 2003]. Finally, in the real world, a road 

network is too complex to be well modeled mathematically. 

As Xiong (2001) stated, “the studies of road image characteristics, their changes with 

respect to geographic background, image types, image resolutions, development of 

mathematical models to represent these characteristics, are critical in order to make 

substantive progress in this area.” The author further pointed out that a road 
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recognition algorithm can consider a limited set of characteristics and when these 

characteristics change beyond a certain limit, the algorithm may fail. Similar remarks 

have been made by Auclair-Fortier et al (2000): “in order to appropriately detect roads, 

understanding how a road’s physical characteristics influence its visual characteristics 

is primordial.” These visual characteristics are used to identify roads in a given image.  

The general physical characteristics of a road in a remotely-sensed image have been 

presented by Bajcsy and Tavakoli (1976) and revisited by Auclair-Fortier et al. (2000). 

These characteristics include: (1) spectral properties (e.g. surface characteristics); (2) 

geometric properties (e.g. width, curvature); (3) topological properties (e.g. links, 

networking); and (4) contextual properties (e.g. the type of road). 

A similar but more programmable road model was presented by Gruen and Li (1995, 

1997). The properties in their generic road model included: (1) good contrast to 

adjacent areas; (2) homogeneity in grey values along a road; (3) smooth and without 

small wiggles; (4) continuous and narrow; (5) having an upper bound in the local 

curvature; and (6) without significant change in the width. 

Limitations to the existing road models are: 

1) Most of these properties are derived based on the assumption that the image is 

noise-free. In a real image, however, particularly in urban areas, roads are subject 

to many noisy artifacts (vehicles, trees along the road, occlusions) and are not 

necessarily satisfying the above conditions. A good road model must take noise 

into consideration. 

2) Most of the existing road models only work at a single scale level. Multi-scale 

modeling is more suitable for a road network because of the multi-scale nature of 

the road network and the remotely sensed imagery.  

3) Until recently, very few road models have been presented for multi-spectral 

imagery although high spatial resolution multi-spectral imagery is becoming more 

popular and available.  
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4) Road junctions play little or no role in the existing road models. This often leads to 

erroneous road network topology and to difficulties in road change detection and 

updating.  

In this research, we are interested in developing a road network model which best 

describes the image characteristics of a road in high resolution multi-spectral imagery. 

1.2.2 Image classification for road network extraction 

The task of road extraction addresses two issues: (1) identification and (2) delineation 

[Doucette et al, 2001]. A semi-automated algorithm relies on user-provided cues (e.g. 

seed points or initial directions) to identify the approximate location of a road. By 

contrast, fully automated methods attempt to integrate aspects of identification and 

delineation to achieve true operational autonomy. Most of the existing road extraction 

methods for MSI rely on an automated and reliable classification of road surfaces (e.g., 

[Doucette et al, 1999, 2001; Amini, et al, 2002, Song and Civco, 2004]). 

Unfortunately, the classification accuracy of roads is far from satisfactory whether a 

supervised classification method or an unsupervised method is used. The main 

difficulty lies in the high misclassification between roads and other spectrally similar 

objects, such as parking lots, buildings, crop fields, etc. 

Quackenbush (2004) pointed out that a number of articles specifically take advantage 

of the multi-spectral nature of sensors such as Landsat TM, SPOT and Ikonos to 

extract road information. However, in most cases, even with hyper-spectral datasets, 

the spectral information alone was not sufficient to define roads and the classification 

was one component of a multistage process. Gardner et al. (2001) found that 

classification of roads using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

imagery was challenging due to the similarities of construction materials in roads and 

roofs. They found that following the classification with a spatial pattern recognition 

technique using a Q-tree filter improved the final result. 

The primary concern in urban areas is the misclassification between roads and parking 

lots. Road and parking lot surfaces often use the same construction materials and thus 
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have similar spectral signatures, which make it very difficult to automatically separate 

them in a remotely-sensed image. Introducing other information, such as height data 

from LIght Detection And Ranging (LIDAR) and clues from detected vehicles, does 

not measurably improve the situation since roads and parking lots are usually at the 

same level and both will usually be occupied by vehicles. Research on the 

classification of roads and parking lots is quite recent, partly due to the fact that road 

network extraction in urban areas only becomes feasible with the availability of high 

resolution remotely-sensed imagery.  

In [Hu et al., 2004a], the vehicle clue is used to verify a parking area in combination 

with a morphologic operation, which is applied to the classified aerial image to detect 

big open areas. The vehicles are extracted by a pixel based classification method. It is 

assumed that a region with a nearly square shape and large area has a high possibility 

of being a parking lot. The output from this step is used to improve the detected road 

segments using a Hough transform. Although the test results from 0.5m resolution 

color ortho-imagery with LIDAR data are quite good, there is no information available 

on using the morphologic operation to identify the large open areas. On the other hand, 

their research confirms our belief that although introducing LIDAR data is useful in 

building extraction, it is not very useful in road network extraction because it does not 

improve our ability to separate parking lots from roads. 

Based on image classification results from pan-sharpened imagery, Zhang and Wang 

(2004) apply a segment filtering algorithm to deal with large parking lots and 

buildings which are misclassified as road networks. Basically, a directional texture 

detector is developed to distinguish different types of objects according to their 

textures in different directions. The directional texture detector measures the pixel 

grey value variance along the central lines in each of four directions (N, S, E and W) 

of an operation window. If all of the variances in the four directions are smaller than a 

certain value, it can be concluded that the object within this window is homogeneous 

and can be considered as a non-road object. The object can then be removed. The 

work demonstrates that it is possible to extract urban objects from pan-sharpened 
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imagery. However, the separation of parking lots and buildings from road networks is 

not satisfactory. Many artifacts are introduced by the directional texture detector. 

Similarly in [Wang et al., 2005], directional texture information was used to eliminate 

non-road objects on classified imagery in combination with edge information from the 

panchromatic image and shape/size information of the connected components. . 

The directional texture measure is also known as the Angular Texture Signature (ATS). 

It was used by Haverkamp (2002) and Gibson (2003) for finding road networks in 

Ikonos Panchromatic imagery. The texture measure that they used as a road detector 

had two components: the degree of the pixel (i.e. the number of the strong local 

minima in the angular texture signature) and the direction of the minimum. 

Song and Civco (2004) used two shape measures, namely smoothness and 

compactness, to further reduce the misclassification between roads and other 

spectrally similar objects from a support vector machine (SVM) classifier. The two 

shape measures were derived by the commercial software eCognition©. Experiments 

on Ikonos MS imagery showed that the SVM classifier has a slightly better 

performance than the traditional maximum likelihood classifier in terms of overall 

classification accuracy. By combining the spectral information and shape measures 

they were able to remove most of the false-road objects in the road group. 

Doucette et al. (1999) performed a principal component analysis on HYper-spectral 

Digital Imagery Collection Experiment (HYDICE) imagery and then used a maximum 

likelihood classification to generate a classified layer. This classified layer was 

combined with coarse GIS data in a neural network in order to extract linear features. 

The GIS data provided approximate location information for the extraction which 

speeded up convergence while minimizing user input. A Self-Organized Road Map 

(SORM) was developed by Doucette et al. (2001) for extracting road networks from 

classified imagery. Doucette et al. (2004) present a novel methodology for fully 

automated road centerline extraction that exploits the spectral content from high 

resolution multi-spectral images. Preliminary detection of candidate road centerline 

components is performed with Anti-parallel-edge Centerline Extraction (ACE). This is 
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followed by constructing road vector topology using a fuzzy grouping model that links 

nodes from a self-organized map of the ACE components. Following topology 

construction, a Self-Supervised Road Classification (SSRC) feedback loop is 

implemented to automate the process of training sample selection and refinement for a 

road class, as well as deriving practical spectral definitions for non-road classes. SSRC 

demonstrates a potential to provide dramatic improvement in road extraction results by 

exploiting the spectral content. Road centerline extraction results are presented for 

three 1m color infrared suburban scenes which show significant improvement 

following SSRC. 

The Ikonos MS image is first classified into road and non-road classes in [Gao and Wu, 

2004]. The road class is refined by removing noisy pixels, such as the building pixels, 

using a spatial filter based on the assumption that all of the small size components are 

not actual road pixels. The road segments are then joined and thinned to form a road 

network.  

In [Tarku et al., 2004], the coarse road class is obtained by thresholding the original 

panchromatic image. Refinement is achieved by removing the false road pixels based 

on a connected component analysis. Small components, dense components, and 

irregular components are less likely to be road-based components. They are identified 

and removed from the road class.  

In their knowledge-based 3D road extraction [Zhang, 2004], the ISODATA algorithm 

was used to classify the input color images into five classes: road regions, vegetation, 

shadow areas, dark roofs and red roofs. The three bands used for the image 

classification were 1) the first component of the principal component transformed 

image; 2) a greenness band calculated with R and G bands in RGB space as (G-

R)/(G+R); and 3) S band of HSI color space. The 3D roads were detected by 

combining the multi-source clues: the information derived from the classified road 

regions, the 3D straight edges detected from the input stereo images, the Digital 

Surface Models (DSM) and Digital Terrain Models (DTM), and the knowledge base 
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built from a GIS database. The research was mainly focusing on extracting roads in 

rural areas. 

In summary, the image classification for road network extraction is still problematic. 

In urban residential areas, with high resolution remotely-sensed images, the situation 

is worse [Wang and Zhang, 2000]. Due to the inability of the discriminatory of 

spectral information, there is a trend to incorporate the spatial information in image 

classification or to refine the spectral road class by integrating the spatial information. 

In this research, we propose a new approach to effectively identify the parking 

lots/buildings and other spectrally similar objects from the road cluster resulting from 

a spectral clustering. This approach is based on newly developed shape descriptors of 

the Angular Texture Signature in combination with a fuzzy classifier. 

1.2.3 Road centerline extraction from classified imagery 

There are a number of road network extraction algorithms that can be applied to high 

resolution classified imagery. Doucette et al. (1999; 2001) presented a self-organizing 

road map (SORM) approach to road centerline delineation from classified high-

resolution MSI. The SORM is essentially a spatial clustering technique adapted to 

identify and link elongated regions. This technique is independent from a conventional 

edge definition and can meaningfully exploit multi-spectral imagery. However, the 

positional accuracy of the extracted lines is low because they are created by linking 

the cluster centers, which are sensitive to noisy pixels (e.g. misclassified road pixels). 

Line-fitting techniques can also be applied but they are only suitable for finding a 

single line in an image. This is not the case in road network extraction. Mathematical 

morphology operations are also used to find the line skeletons in a binary image (e.g., 

Karathanassi et al., 1999; Amini et al., 2002). However, these methods have issues 

with spikes in the resulting skeletons, which are usually determined at a pixel level. 

The Hough transformation was used by Hu et al. (2004a) in their integrated processing 

of high resolution imagery and LIDAR data for the automatic extraction of a grid 

structured urban road network. To reduce the influence of multiple peaks in the 

transform space, the Hough transform was applied iteratively. For each step of the 
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transform, only one maximum response in the Hough space was detected. The 

extracted stripe pixels were then removed from the binary image.  

The Radon transform has a number of advantages for linear feature detection 

including its ability to detect line width and its robustness to noise [Murphy, 1986]. It 

has been widely used in remote sensing for linear feature (e.g., ship wakes) detection 

from Synthetic Aperture Radar (SAR) images [Copeland et al., 1995; Du and Yeo, 

2004; Zilman et al., 2004] and from LIDAR data [Manandhar and Shibasaki, 2002; 

Clode et al., 2004]. However, the quality of the Radon transform-based linear feature 

detector needs to be improved for road network extraction from remotely sensed 

imagery. First, it fails to provide an indication of the line length or the end-point 

positions, and cannot be relied upon to detect linear features of short extent [Murphy, 

1986]. Second, linear features that span the entire image but display some curvature 

may not produce suitable peaks or valleys in the transform domain [Copeland et al., 

1995]. Third, the localization of the peaks or valleys is very difficult in some cases, 

which complicates the accurate estimation of the line parameters. Finally, it does not 

accurately find the centerline of thick lines; their diagonals are found instead [Clode et 

al., 2004].  

The quality of the extracted road centerline from classified imagery usually determines 

the positional accuracy of the extracted road network. Therefore, it is important to 

develop a method that can accurately locate road centerlines based on the classified 

road pixels. Our literature review and preliminary experiments have shown that the 

Radon transform-based linear feature detector is a good choice because of its 

robustness to noisy pixels (i.e. misclassified pixels), its positional accuracy, and its 

capability to estimate line width. In this research, an advanced technique is proposed 

to accurately estimate the line parameters including the line width in the Radon 

domain. An iterative and localized Radon transform is then developed to extract road 

centerlines from the classified remotely sensed imagery. 
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1.2.4 Road network formation 

Road network formation enables the link between individual road segments to form 

meaningful road lines and it generates the topological structure of the network so that 

the data is ready for use within a GIS. It usually includes a set of processes such as 

bridging gaps between road segments, creating nodes for road intersections, and 

removing overshooting and undershooting.  

Perceptual grouping (organization) is defined as an ability to explore a structuralized 

feature organization from sensory data. It allows us to form object hypotheses with 

minimal domain knowledge [Hu and Tao, 2002]. The Gestalt psychologists have 

found a set of important properties in perceptual organization: proximity, continuity, 

similarity, closure, and symmetry. These properties can be used as primary constraints 

for linking fragmented road segments. Perceptual grouping has been widely used in 

the computer vision community [Boyer and Sarkar, 1999]. It has four general 

operating levels: signal, primitive, structure and assembly. In [Crevier, 1999], a 

probabilistic method for extracting chains of collinear segments is presented. A similar 

approach is adopted in [Hu and Tao, 2002].  

There are two main concerns in road network formation. The first is how to bridge the 

gaps caused by artifacts such as trees, shadows or occlusions from buildings. This 

affects the completeness of the extracted road network and the topological correctness 

of the network. The second is how to remove the false extraction during this step 

because, based on the connection analysis, many falsely extracted road centerlines can 

be identified and thus removed. This can improve the correctness of the extracted road 

network. The basic procedures of road network formation are studied with an 

emphasis on grouping the road centerline segments. 

1.2.5 Quality assessment of road network extraction 

Quality assessment is an important and necessary step for automated road extraction 

from imagery. However, relatively little work has been carried out in this area [Hinz et 

al., 2002; Wiedemann, 2003]. 
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Couloigner and Ranchin (1998) proposed some criteria to quantitatively assess the 

extracted road network based on surface calculations, comparison of the direction and 

length differences, node distance between the extracted street lines and the manually 

extracted reference lines. Péteri and Ranchin (2002) presented an approach to guide 

the determination of a reference based on statistical measures from several image 

photo-interpretations. They concluded that it was important not to rely on a single 

image photo-interpretation for establishing the reference. In Wiedemann (2003), the 

evaluation of the extracted road data was carried out by comparing the automatically 

extracted road centerlines with reference data. The evaluation was processed in two 

steps: (1) matching the extracted road primitives to the reference network using a 

modified buffering method and (2) calculating quality measures such as Completeness, 

Correctness, Redundancy, or Root mean square difference. For road intersections, 

Wiedemann (2002, 2003) proposed the use of a matching-based measure to evaluate 

the extracted results. Péteri et al. (2004) provided an approach to define a reference 

based on a tolerance zone. They also used a set of quantitative criteria for both the 

planimetric accuracy evaluation and the spatial characterization of the extracted road 

network. 

The main problem with the quality assessment of an extracted road network is the lack 

of positional accuracy measures for linear features. Hausdorff distance [Hangouet, 

1995] and Buffering-based distance [Goodchild and Hunter, 1997; Walter and Fritsch, 

1999] measures are computationally intensive. L2-distance [Saalfeld, 1988; Saalfeld, 

1993] and Linear Mapping-based measures [Fillin and Doysther, 1999; Fillin and 

Doysther, 2000] rely on the matching of vertices. When the matching fails, the 

calculated distance is distorted. 

Another problem is that given two versions of a road network - the extracted one 

versus the reference one - how can we automatically find the conjugate road lines? 

This is usually done manually, which is very time consuming. Based on some 

similarity measures, including distance measures, we can automate the matching to 

some degree and save time in assessing the quality of the extracted road network. 
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In this research, a line segment matching strategy is designed to decide the matched 

portion of two conjugate line segments. Quality evaluation is then carried out based on 

the distance measure and the matching results. 

1.3 Research Objectives 

The main objective of this research is to investigate the theory and methodology of 

automated feature extraction for image-based road database generation, refinement 

and updating. More specifically, the objective is to develop a series of algorithms for 

road network extraction from high resolution multi-spectral imagery.  

1.4 Research Contributions 

1.4.1 Proposed road network model 

A road network model is essential for a successful road network extraction. However, 

a generic road network model does not exist due to the complexity of the real road 

network and the variety of imaging sensors and conditions. We summarize the image 

characteristics of a road in high resolution multi-spectral imagery in the following 

sections. These characteristics also serve as the basic assumptions of this research. 

1.4.1.1 Spectral properties 

Depending on the pavement material (e.g. asphalt) used and their ages, in multi-

spectral imagery (assuming we have red, green, blue, and NIR bands and under 

normal imaging conditions, i.e., no flooded or no snow-covered roads), roads usually 

have relatively high reflectivity in red, green and blue bands, while relatively lower 

reflectivity in NIR band. Due to the variety of sensing conditions and road conditions, 

the reflectivity values (or the digital numbers) cannot be compared directly. In this 

research, we use normalized digital numbers to segment the input image and then 

identify the road cluster(s). 

In a single band, roads usually have good contrast with their adjacent areas and are 

homogenous in terms of digital numbers along the road. However, this is not true 

when:  



 

 

13 

1) the road surface has been partially repaired and thus it might have different 

pavement materials resulting in different reflectivity values within a small range; 

2) the road surface is in shadow of trees or buildings; 

3) the road surface is occluded by trees or buildings; 

4) the road surface is occupied by vehicles; 

5) the road surface has traffic markings on it; and 

6) the road surface is covered by snow, etc. 

Due to these highly complex phenomena, it is almost impossible to model all of the 

situations and incorporate them in a single road network extraction process. In this 

research, we assume that all of the situations will result in a misclassification in the 

image classification step and thus will be treated in the road centerline extraction and 

road network formation steps by using less noise-sensitive approaches. 

1.4.1.2 Spatial properties 

Spatially, a road extends continuously and narrowly along the road direction. In low-

resolution images (> 4m), roads may appear as lines. In high-resolution images, roads 

appear as elongated regions with parallel borders [Auclair-Fortier et al., 2000]. This 

property can be used to separate roads from many other spectrally similar objects, 

such as parking lots, buildings, and crop fields as these non-road objects usually 

occupy a large and wide area.  

1.4.1.3 Geometric properties 

A road usually extends smoothly without small wiggles [Gruen and Li, 1997]. It 

usually has an upper bound in local curvature, which follows from the smooth traffic 

flow requirement [Gruen and Li, 1997]. It does not significantly change in width 

[Bajcsy and Tavakoli, 1976; Gruen and Li, 1997]. These geometric properties justify 

extracting road primitives locally and then linking them to form a road network. 
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1.4.1.4 Topological properties 

Roads are built to link certain places together and neighboring roads are connected to 

form networks [Bajcsy and Tavakoli, 1976]. This property is usually used in the road 

network formation step, particularly when bridging the gaps.  

1.4.1.5 Contextual properties 

The type of road is one of the contextual properties which can be used in road network 

extraction. In the real world, the roads have different classes, such as highway, 

driveway, or streets. Knowing the types of roads under consideration can be helpful 

when determining the parameters to use, e.g. the width of a search window. This 

information can also be used to verify the extracted roads properties, e.g. the road 

width. 

1.4.2 Proposed methodology 

In this research, a framework for road network extraction from multi-spectral imagery 

is proposed, which starts with an image segmentation using the k-means algorithm 

(Figure 1.1). This step mainly concerns the exploitation of the spectral information for 

feature extraction. The road cluster is then automatically identified using a fuzzy 

classifier based on a set of predefined membership functions for road surface 

recognition. These membership functions are established based on the general spectral 

signature of the road pavement materials and the corresponding normalized digital 

numbers on each multi-spectral band. A number of shape descriptors are defined for a 

refined Angular Texture Signature. These measures are used to reduce the 

misclassifications between the roads and parking lots/buildings.  

An iterative and localized Radon transform is developed for the road centerline 

extraction from the classified images. It can find the road centerlines accurately and 

completely, and is able to find short, long, and even curvilinear lines. The input space 

is partitioned into a set of subset images called road component images. An iterative 

Radon transform is applied locally to each road component image. At each iteration, 

road centerline segments are detected based on an accurate estimation of the line 

parameters including line widths. The road centerline segments are then grouped into a 
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road network, which is assessed against a reference dataset. The entire process is 

unsupervised and fully automated. 

 

 

Figure 1.1 Proposed framework for road network extraction from MSI 

 

1.5 Thesis Outline 

Chapter 2 briefly discusses the issues on image segmentation of MSI. The traditional 

k-means clustering is used in this research because of its simplicity and efficiency. A 

fuzzy logic classifier is designed to automatically identify the road clusters. 
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Chapter 3 provides a novel approach to refine the road class resulting from the image 

segmentation step. First we introduce the basic angular texture signature and then 

define a set of shape descriptors for the refined angular texture signature. The 

descriptors are used to separate the road features from other spectrally similar ground 

features, such as parking lots, buildings, or certain crop fields. 

Chapter 4 discusses the problem of road centerline extraction from the classified 

imagery. An iterative and localized Radon transform is proposed and used to 

accurately extract the road centerlines. 

Chapter 5 deals with the road network formation issues. Perceptual grouping is used to 

link the road segments into a meaningful road network. This network is ready to be 

used in a GIS. 

Chapter 6 addresses the quality assessment, which is an important and necessary step 

for an automated road network extraction system. A new line segment matching 

algorithm is developed for the purpose of evaluating the road extraction results. 

Chapter 7 gives some concluding remarks followed by a brief look at future research 

of automated road network extraction from high resolution remotely sensed imagery. 
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CHAPTER 2  

IMAGE CLASSIFICATION 

2.1 Introduction 

As was mentioned in the previous chapter, a multi-spectral image (MSI) provides 

more spectral information than a single band image. The goal is to exploit the spectral 

information in order to improve the road network extraction process. In general, we 

have two options: (1) to extract the roads from each band and then fuse them to form a 

single version of the road network; or (2) to classify the input multi-spectral image and 

then extract the roads from the classified imagery. The first option involves 

intermediate-level (also called feature-level) or even high-level (also called decision-

level) data fusion [Pohl and Genderen, 1998]. It is more difficult to implement because 

the roads extracted from different bands are subject to different levels of inaccuracy 

and incompleteness. For that reason, the second option is applied in this research. One 

of the advantages of the second option is that new or more advanced image 

classification approaches can be easily encompassed in the road network extraction 

framework without significantly altering the process flowchart.  

Image classification plays an important role in the automated road network extraction 

from remotely sensed imagery, especially from high resolution MSI. The choice of 

image classification methods is also important and will affect the entire process. A 

supervised classification method often achieves better overall results than an 

unsupervised classification method. However, a supervised classification requires 

setting up a training set, which usually relies on a heavy human intervention. A 

spatially-integrated (e.g. texture-based method) [Ruiz, et al., 2004], object-based 

method [Benz, et al., 2004]) has been shown to be superior to a purely spectral-based 

method. In this research, we use an unsupervised approach for coarse classification 

and then integrate the spatial information in the refinement step. 
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In this chapter, the simple k-means clustering algorithm is chosen for the image 

segmentation of MSI for the purpose of automated road network extraction. A fuzzy 

logic classifier is designed to automatically identify the road cluster from the 

clustering results. Some typical outputs from our experiments will be given and 

discussed. 

2.2 Image Segmentation of MSI  

Image segmentation is the division of an image into meaningful structures, called 

regions or segments [Heijden, 1994]. The partitioning is meaningful, if and only if, a 

correspondence is known to exist between segments and portions of the object being 

“imaged”. There are many methods for image segmentation, ranging from edge-based 

approaches to region-based algorithms [Gonzalez and Woods, 2002]. However, most 

of the algorithms mainly apply to grey level imagery. For MSI, spectral clustering 

algorithms are often used. These include k-means, ISODATA, mean shift [Comaniciu 

and Meer, 2002] classifiers, etc. In our research, the k-means algorithm is applied 

because of its simplicity and efficiency. All bands of an input image are used in the 

spectral clustering. Although five to seven spectral clusters work well for most of the 

test images, six clusters have been selected for all the cases in this research.  

Figure 2.1 depicts a typical output of the k-means algorithm from Ikonos MS imagery. 

We can see clearly that the algorithm is able to separate the road surfaces successfully 

from the other landscape types. However, there is a high misclassification between the 

roads and other spectrally similar objects (e.g. the upper-left corner of the image 

indicated by the black arrow). 

Figure 2.2 depicts a typical output of the k-means algorithm from QuickBird MS 

imagery. As with the Ikonos MS imagery, we can see that the algorithm is able to 

separate the road surfaces successfully from the other landscape types. However, there 

is also a high misclassification between the roads and other spectrally similar objects 

(e.g. the parking lots in the centre portion of the image indicated by the black arrow). 
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                                (a)                                                                  (b) 

Figure 2.1  A typical output of the k-means algorithm from Ikonos MS imagery: 

(a) original true color composite ortho-image; (b) segmented image with the 

identified road cluster shown in red 

 

  
                                 (a)                                                                  (b) 

Figure 2.2  A typical output of the k-means algorithm from a Quickbird MS 

image: (a) original true color composite ortho-image; (b) segmented image with 

the identified road cluster shown in red.  



 

 

20 

2.3 Road Cluster Identification  

To automate the process, we need to find a way to automatically identify the road 

cluster in the segmented image. Due to the discriminating capability of the multi-

spectral imagery, the road cluster does have its own signature in the final means of 

each cluster.  

Generally speaking, the road surface has relatively higher reflectance in the blue, 

green, and red bands, while it has a relatively lower reflectance in the near infrared 

band assuming normal imaging conditions. The problem is how to mathematically 

model these spectral signatures. Several methods have been tested in this research. It 

was found that the direct digital number (DN) of the final means is not reliable 

because its value will vary with different scenes. In this research, the mean-standard 

deviation normalization (Eq.2.1) is applied for each band and the normalized DNs are 

used in the spectral clustering. 

DN1k =
DN0k − mean0k

σ 0k        (2.1) 

where DN0k and DN1k are the original and normalized digital number respectively, 

mean0k and σ0k are the mean and standard deviation of the band k. The computed 

means and standard deviations for the images in Figure 2.1 and Figure 2.2 are shown 

in Table 2.1. 

 

Table 2.1 The mean and standard deviation of the original DN for the whole 

images in Figure 2.1 and Figure 2.2. Images are 11-bit coded. 

Image Band Blue Green Red NIR 

Mean 590.97 766.13 694.00 798.32 Figure 2.1 

(Ikonos) Std 317.86 327.59 342.14 529.32 

Mean 175.19 236.46 142.70 462.58 Figure 2.2 

(Quickbird) Std 49.42 88.61 83.96 166.09 
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The final means resulting from the clustering are used to automatically find the road 

clusters based on a fuzzy logic classifier. The Gaussian membership functions [Ross, 

1995] are used for all four bands as these functions can easily express the concepts 

“relatively higher” or “relatively lower” (Eq.2.2 and Figure 2.3).  

µ(DN1k ) = exp(−
(DN1k − mean1k )2

2σ1k
2

)

 (2.2) 

where DN1k is the normalized digital number of band k of the final road clusters (Table 

2.3 and Table 2.4), mean1k and σ1k are the mean and standard deviation of the 

Gaussian membership functions defined for the road clusters (Table 2.2). The values 

in Table 2.2 are empirically selected. They might need to be changed for different 

imaging systems or different imaging conditions. 

 

 

Figure 2.3  A plot of the Gaussian membership function. 

 

Table 2.2 The parameters used in the Gaussian membership functions for 

automatic road cluster identification. 

Band Blue Green Red NIR 

Mean 1.50 1.50 1.50 -0.50 

Std 0.25 0.25 0.25 0.25 
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The cluster which has the highest combined road membership is labeled as the road 

cluster. The combined road membership is determined by multiplying the road 

memberships from each band. For our two previous test images, the computed road 

membership values are shown in Table 2.3 and Table 2.4 (indicated in red in the table 

legends).  

 

Table 2.3 Cluster means and the computed road membership values for the 

image in Figure 2.1 (indicated in red). 

Cluster Legend Blue Green Red NIR Road Membership 

1  -0.335 -0.285 -0.225 -0.503 0.2500 

2  0.036 0.491 0.356 1.112 0.0001 

3  -0.791 -0.671 -0.792 1.024 0.0000 

4  1.885 1.761 1.857 -0.499 0.5617 

5  -1.063 -1.337 -1.216 -0.498 0.2500 

6  0.833 0.581 0.639 -1.089 0.0236 

 

Table 2.4 Cluster means and the computed road membership values for the 

image in Figure 2.2 (indicated in red). 

Cluster Legend Blue Green Red NIR Road Membership 

1  0.185 0.293 0.375 0.162 0.0075 

2  -0.704 -0.760 -0.740 -0.180 0.1101 

3  -0.507 -0.411 -0.479 1.080 0.0000 

4  3.234 3.379 3.317 0.303 0.0014 

5  -0.168 -0.387 -0.324 -1.642 0.0000 

6  1.434 1.391 1.400 -0.795 0.8242 

 

A number of other Ikonos MS ortho-images with a 4m spatial resolution have also 

been tested. The identified road clusters are identical to those determined through 
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visual inspection and are quite robust. The tested images were captured in different 

years and covering different areas. Figure 2.4 illustrates the outputs from another 

Ikonos test image.  

 

  
                                (a)                                                                  (b) 

Figure 2.4  Road class identification from another Ikonos MS test image: (a) 

original true color composite ortho-image; (b) segmented image with the road 

cluster shown in red. 

 

It is important to note that the proposed approach can be directly applied to Quickbird 

MS imagery with a 2.4m spatial resolution without any changes. The identified road 

cluster in Figure 2.2 (b) is the one shown in red. Figure 2.5 shows the results from 

another Quickbird test image. 
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                                 (a)                                                                  (b) 

Figure 2.5  Road class identification from another Quickbird MS test image: (a) 

original true color composite ortho-image; (b) segmented image with the 

identified road cluster shown in red.  

 

2.4 Summary  

To exploit the spectral information of MSI, the image classification-based approach is 

selected for road network extraction in favor of its adaptability. Any progress made by 

the research community in image classification can be easily integrated into the 

framework to improve the quality of the extracted road networks. 

In this research, we propose a simple but efficient clustering algorithm to find the road 

surfaces on the image. The classification quality is typical of a spectral-based image 

classification. The road cluster is identified based on a fuzzy logic classifier and will 

be refined by integrating the texture information in the next chapter.  

To achieve a better clustering quality, it is recommended that the number of clusters 

be optimized using the approaches presented in [Doucette et al., 2001]. 
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CHAPTER 3  

ROAD CLASS REFINEMENT 

As shown in the previous chapter, the classification process is able to locate the road 

cluster from other land coverage clusters on multi-spectral imagery. The major 

problem, however, is the high misclassification between the roads and other spectrally 

similar objects such as parking lots or buildings. The road cluster resulting from the 

classification is a mix of roads, parking lots, buildings and other spectrally similar 

objects. Further refinement is required to remove the non-road regions before the road 

centerline extraction and road network formation. Refinement of the road class is 

achieved using an advanced application of the Angular Texture Signature (ATS) 

[Gibson, 2003] and its newly derived shape descriptors. The justification of this 

approach lies in our observation that roads usually appear as elongate regions while 

spectrally similar objects are usually open areas. 

In this chapter, we will give a brief introduction to the basic ATS and define the new 

shape descriptors of the refined ATS. A classifier will be designed to separate the 

roads from other spectrally similar objects. 

3.1 Basic Angular Texture Signature 

The Angular Texture Signature (ATS) is a measure developed for road extraction from 

high resolution panchromatic imagery and is described in [Haverkamp, 2002; Gibson, 

2003]. For each pixel p of a grey level image, T (α, w, p) is defined as the variance 

from the mean for a rectangular set of pixels of width w around the point p whose 

principal axis lies at an angle α from the horizontal. This measure is computed for a 

set of angles α0,…, αn. Figure 3.1(a) shows the templates for a single point. At point p, 

the ATS is defined as the set of values {T( α0, w, p ), T( α1, w, p ), …, T( αn, w, p) }. 

The graph of an ATS for a single point p is shown in Figure 3.1 (b). The local minima 

on this graph correspond to the most likely directions of the road at p (e.g. direction 4 

and 13 in Figure 3.1). For each pixel p, the number, k, and the location of the strongest 
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local minima are computed from the ATS. For example, the signature shown in Figure 

3.1 (b) has four minima that are significant (i.e. less than 250 in this case). We refer to 

k (the number of minima) as the degree of the pixel. The texture measures that are 

commonly used in road detection are: the degree of the pixel and the direction of the 

minimum.  

 

 

                          (a)                                                                           (b) 

Figure 3.1  Texture is computed over (a) the set of rectangular regions about a 

pixel and (b) the graph of the Angular Texture Signature for a single pixel. The 

image used is a subset of an Ikonos MS-red image. For illustration purposes, the 

size of the rectangular regions is set to 5 by 20 pixels. (After [Gibson, 2003]) 

 

To simplify the computations, we define the ATS based solely on the road pixels. The 

ATS is computed based on the binary image of our road cluster, i.e., where the road 

pixels are white (pixel value = 1) and the surrounding pixels are black (pixel value = 

0). As we are only interested in the road pixels, instead of calculating the variance of 

the pixel values within the rectangular window, we calculate the mean value, which is 

equal to the number of road pixels divided by the total number of pixels within the 

rectangular window. This normalizes the ATS values to the range of [0, 1]. By using a 

binary image with road pixels given the value of 1, we define the number of maxima 
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as the ATS-degree of the pixel and the direction of the maximum as the ATS-direction. 

Figure 3.2 illustrates the ATS-degree and the ATS-direction for the road cluster 

presented in Figure 2.1. The number of directions computed is set to 18, which is the 

same value used by Gibson (2003). The size of the rectangular window is determined 

based on the typical road width in the scene. The width of the rectangular window 

should be less or equal to the typical road width and its length should be at least twice 

the width of the typical road. For our data, we use a 5 by 10 pixel window for Ikonos 

MS imagery and a 5 by 20 pixel window for Quickbird MS imagery. 

 

  

                          (a)                                                                       (b) 

Figure 3.2  ATS –degree (a) and direction (b) for the road cluster presented in 

Figure 2.1. In (b) the direction indices are the same as in Figure 3.1 (a). 

 

As can be seen from Figure 3.2(a), the ATS-degree gives a sense of the location of the 

parking lots or the other spectrally similar objects (e.g. red area in the upper-left 

corner). However, the ATS-degree and the ATS-direction are very sensitive to the 

neighboring pixels. The resulting images are very “noisy” and difficult to threshold. 

We developed some shape descriptors based on the refined ATS that are more suitable 

for identifying parking lots and other spectrally similar objects from the roads. 
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3.2 Shape Descriptors of Angular Texture Signature 

When examining the ATS of each pixel, some interesting links between the shape of 

the ATS polygon and the corresponding pixel types are found. To form the ATS 

polygon, instead of being plotted for each direction along a horizontal line, the ATS 

values are plotted around the pixel under consideration with the corresponding 

directions and close the polygon by linking the last point to the first point. The 

resulting polygon is called the ATS polygon.  

Figure 3.3 shows the calculated ATS for some interesting pixels with their 

corresponding ATS polygons shown in blue. The pixels under consideration are 

marked with a red cross. For illustration purposes, all of the ATS polygons are 

enlarged by a factor equal to the length of the rectangular window. In this example, the 

polygons are enlarged by 10 pixels. 

The proposed shape descriptors for the ATS are defined as: 

1) Mean 

The mean of the ATS is defined as the mean ATS value for all directions (Eq. 3.1). It 

is the average percentage of pixels belonging to the object of interest surrounding the 

pixel under consideration within the rectangular window. A pixel on a parking lot or 

building will have a larger ATS-mean than a road pixel. Figure 3.4 (a) confirms this 

assumption. 

∑
=

=
n

i

mean iATS
n

ATS
1

)(
1

 (3.1) 

where n is the number of directions. 
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(a)                                          (b) 

     

(c)                                      (d) 

Figure 3.3  Angular texture signature for (a) a pixel on a road; (b) a pixel in the 

corner of a parking lot; (c) a pixel within a T-road junction; and (d) a pixel in a 

parking lot. 

 

2) Compactness 

The compactness of the ATS is defined as the compactness of the ATS polygon using 

Eq. 3.2. It indicates whether the shape of the ATS polygon looks like a circle. A 

circle-like ATS polygon usually means that the pixel under consideration is on a 

parking lot or a building (Figure 3.3 (b) and (d)). In Figure 3.4 (b) the parking lots and 

buildings have very large compactness values.  

2

4

P

A
ATS scompactnes

⋅⋅
=

π
  (3.2) 

where A is the area and P is the perimeter of the ATS polygon. 
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3) Eccentricity 

The eccentricity of the ATS is defined as the discrepancy between the origin point of 

the ATS polygon (i.e., the pixel under consideration) and the centroid of the ATS 

polygon (Eq. 3.3). If a pixel lies at the corner of a parking lot or building, the 

eccentricity will be relatively larger than those closer to the center of the feature 

(Figure 3.5). Introducing the ATS-Eccentricity in the detection of parking lots reduces 

the boundary problem, i.e. the ATS-polygon of a boundary pixel of an open area often 

has similar shape as that of a road pixel. 

2

0

2

0 )()( yyxxATS cctyeccentrici −+−=   (3.3) 

where (xc, yc) is the centroid of the ATS polygon and (x0, y0) is the pixel under 

consideration . 

 

   

                               (a)                                                               (b) 

Figure 3.4  ATS-Mean (a) and ATS-Compactness (b) for the road cluster 

presented in Figure 2.1 
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Figure 3.5  ATS-Eccentricity for the road cluster presented in Figure 2.1 

 

4) Direction 

The direction of the ATS is redefined as the direction of the symmetric maximum 

direction, i.e., if the direction ni gives a maximum and one of the directions (ni-1, ni, 

ni+1) is also a local maximum then the direction ni will be identified as a symmetric 

maximum direction and will be used as the direction of the ATS. We define the 

symmetric maximum direction that has the largest combination ATS value (i.e., the 

sum of the direction pairs) as the ATS direction of this pixel. The new defined ATS-

direction is more meaningful and useful in the road network formation process than 

the original ATS-direction as it gives a robust indication of the possible road direction 

and is less sensitive to the noisy pixels in the neighborhood. This is evident in Figure 

3.6, which shows the coded ATS-direction of the test image (Figure 2.1(a)). The 

directions of the road pixels are more consistent compared with the basic ATS-

direction (Figure 3.2 (b)). 
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Figure 3.6  ATS-direction for the road cluster presented in Figure 2.1. The 

direction indices are the same as in Figure 3.1(a) 

 

3.3 Road Class Refinement Using the Angular Texture 

Signature 

A fuzzy logic classification is used to separate the roads and parking lots/buildings 

based on the ATS shape descriptors defined in the previous section. Gaussian 

membership functions have been chosen to create our fuzzy classification. The 

parameters used in this step are listed in Table 3.1. Based on our previous definitions, 

the three shape descriptors (ATS-Mean, ATS-Compactness, and ATS-Eccentricity) 

have values in the range [0, 1]. 

 

Table 3.1 The parameters used in the Gaussian membership functions for the 

road class refinement 

 ATS ATS-Compactness ATS-Eccentricity 

Mean 0.25 0.40 0.05 

Std 0.20 0.20 0.05 
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Figure 3.7 (a) shows the combined road membership for each pixel belonging to the 

road cluster binary image presented in Figure 2.1. Figure 3.7 (b) is the result after 

thresholding Figure 3.7 (a) at a combined membership of 0.1, which is empirically 

determined.  

 

    
(a)                                                                    (b) 

Figure 3.7  Road membership (a) for the road cluster presented in Figure 2.1; (b) 

the output after thresholding (a) at 0.1. In (b) white: non-road pixels, red: road 

pixels, and blue: parking lots/buildings pixels. 

 

Figure 3.8 is the output for another Ikonos MS test image. Figure 3.9 is the result from 

the Quickbird MS test image presented in Figure 2.2. 
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(a)                                                           (b) 

Figure 3.8  Road membership (a) for the road cluster presented in Figure 2.4; (b) 

the output after thresholding (a) at 0.1. In (b) white: non-road pixels, red: road 

pixels, and blue: parking lots/buildings pixels. 

 

The thresholding value for the image shown in Figure 3.10 is empirically set to 0.4. If 

a lower value is used, the separation of roads and non-roads is not as complete as that 

of the other test images. This may be due to the relatively smaller percentage of non-

road pixels in the classified image. Figure 3.7 to Figure 3.10 clearly demonstrate that 

the proposed approach is able to effectively identify the parking lots/buildings or other 

spectrally similar objects from the roads.  
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(a)       (b) 

Figure 3.9  Road membership (a) of the Quickbird MS ortho-image presented in 

Figure 2.2; (b) the output after thresholding (a) at 0.1. In (b) white: non-road 

pixels, red: road pixels, blue: parking lots/buildings pixels. 

 

  

(a)       (b) 

Figure 3.10  Road membership (a) of the Quickbird MS ortho-image presented in 

Figure 2.5; (b) the output after thresholding (a) at 0.4. In (b) white: non-road 

pixels, red: road pixels, blue: parking lots/buildings pixels. 
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To evaluate the classification results, the non-road pixels (parking lots, buildings, 

crops, etc) were manually identified from the road cluster images and used as the 

reference. Table 3.2 shows the overall classification accuracy for the four test images. 

The kappa statistics were calculated using the approach described in [Congalton and 

Green, 1999]. In Table 3.2, the five p-values are less than 10
-5

 suggesting that the 

proposed classification approach is certainly better than random chance. 

 

Table 3.2 Evaluation of road class refinement 

kappa statistics 
Test Image 

Overall 

Accuracy 
kappa variance z-value p-value 

IkonosMS1 (Figure 3.7) 0.70 0.40 0.00007 48.61 < 10
-5

 

IkonosMS2 (Figure 3.8) 0.84 0.67 0.00004 99.52 < 10
-5

 

IkonosMS3 0.76 0.51 0.00008 58.32 < 10
-5

 

QuickbirdMS1 (Figure 3.9) 0.79 0.56 0.00002 128.35 < 10
-5

 

QuickbirdMS2 (Figure 3.10) 0.69 0.28 0.00004 42.43 < 10
-5

 

 

Although the overall classification accuracy is satisfactory, the relatively high false 

alarm rate, i.e., the classification of real road pixels into non-road pixels, is a problem 

because this misclassification will harm the road network topology. As we can see in 

Figure 3.7 to Figure 3.10, most of the misclassifications occur for the roads that are 

closely adjacent to parking lots/buildings, or that are part of major roads intersections. 

A possible solution will be to integrate the information from the ATS-direction. The 

ATS-direction of the road pixels (Figure 3.6), even at the road intersections or 

adjacent to a spectrally similar open area, is robust and consistent in providing clues 

about the major road direction. The difficulty, however, lies in the modeling of the 
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consistency of road direction and the integration of this information in the road class 

refinement.  

3.4 Summary 

Partially due to the poor image classification accuracy, little research work has been 

done in road network extraction from MSI. This research proposed a new road 

identification approach integrating a traditional unsupervised classification, a fuzzy 

logic classification and a refined angular texture signature. A number of shape 

descriptors are proposed for the refined angular texture signature and have been used 

successfully to separate road pixels from parking lots/buildings pixels. Substantial 

experiments have shown that the proposed methodology is robust and can be applied 

to reduce the misclassification between roads and other spectrally similar objects for 

the purpose of road network extraction.  

In the next chapter, the classified and refined road pixels will be used to extract road 

centerlines using an iterative and localized Radon transform.  
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CHAPTER 4  

ROAD CENTERLINE EXTRACTION 

4.1 Introduction 

Road centerline extraction from classified imagery affects the positional accuracy of 

the final extracted road network. This is not a trivial task because there are always 

misclassified pixels existing in the classified image. These misclassified pixels are 

either road pixels classified as non-road pixels or non-road pixels classified as road 

pixels. This results in noisy pixels in the road centerline extraction.  

As mentioned in the chapter one, a Radon transform-based line detector is applied in 

this research. The Radon transform is able to transform images with lines into a 

domain of possible line parameters, where each line in the image has a peak (for a 

bright line) or a valley (for dark line) positioned at the corresponding line parameters. 

This has lead to many line detection applications within image processing, computer 

vision, and seismic applications [Toft, 1996]. The Radon transform-based linear 

feature detector is less sensitive to noise in the image than other linear feature 

detectors because the intensity fluctuations due to noise tend to be cancelled out by the 

process of integration [Murphy, 1986]. Therefore, in remote sensing, it has been 

widely used in linear feature (e.g. ship wakes) detection from Synthetic Aperture 

Radar (SAR) images [Murphy, 1986; Copeland et al, 1995; Du and Yeo, 2004; Zilman 

et al, 2004]. The Radon transform is closely related to a common computer vision 

operation known as the Hough Transform [MathWorks, 2005]. The advantages of the 

Radon transform technique over the conceptually similar Hough transform approach 

includes: 1) its ability to extract lines from very noisy images [Toft, 1996]; 2) its 

affordable computational efficiency [Murphy, 1986]; 3) its possibility to detect both 

bright and dark lines in the same image [Copeland et al., 1995]. 

However, there are a few issues associated with the Radon transform-based linear 

feature detector. First, it fails to provide an indication of the line length or the end-
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point positions, and cannot be relied upon to detect linear features of short extent 

[Murphy, 1986]. Secondly, linear features that span the entire image but display some 

curvature may not produce suitable peaks (or valleys) in the transform domain 

[Copeland et al., 1995]. Thirdly, locating the peaks is very difficult in some cases (e.g., 

when the peaks are biased along the two parameter directions) and thus an accurate 

estimation of the line parameters is not straightforward. Finally, it does not accurately 

locate the centerline of thick lines but locates their diagonals instead [Clode et al., 

2004]. The last two issues are associated with the peak selection of the Radon 

transform.  

In the last two decades, substantial work has been completed to improve the quality of 

the Radon transform-based linear feature detectors. In [Copeland et al., 1995], the 

Radon transform is modified to localize the area in which each integration takes place. 

This reduces the problem of integrating through more noise than necessary, which 

tends to obscure the peak (or valley) corresponding to a linear feature that is much 

shorter than the image dimensions. It can also produce better results if the linear 

features display some curvature. Unfortunately, the localization of the Radon 

transform prevents us from using the popular frequency domain calculation method 

[Murphy, 1986] to save computation time. 

In their auto-extraction of linear features, such as guard-rails from vehicle-borne laser 

data, Manandhar and Shibasaki (2002) used a Circle Growing algorithm to locate the 

end points of the linear features based on a Radon transform. Morphological 

operations were used to select the peaks from the radon image, which involved 

dilation using structuring line elements and threshold values of the radon space. 

However, thresholding after a morphological operation such as dilation does not solve 

the peak selection problem since the original radon peak is often biased.  

Based on the gliding-box algorithm [Cheng, 1999] and the Radon transform algorithm, 

a novel method for detecting ship wakes in SAR images is proposed in [Du and Yeo, 

2004]. This method is applied to both simulated and real SAR images. The result 

shows that the detection accuracy is satisfactory in a strong noise environment. A 
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significant feature of the new algorithm is that it can even detect ship wakes that are 

significantly shorter than the image dimensions. 

To avoid problems with the detection of thick lines, Clode et al. (2004) convolve a 

raw, pixelated, binary road classification with a complex-valued disk. This technique 

provides three separate pieces of information about the road or the thick line: its 

centerline, its direction, and its width at any point along the centerline. The road 

centerline can be detected from the position of the magnitude peak in the magnitude 

image resulting from the complex convolution. Road width can be estimated from the 

magnitude peak while the direction may be obtained from the phase image. Tests on 

LIDAR data have shown that the proposed methodology was able to detect thick 

curvilinear lines. However, the technique failed to give proper results with road 

intersections and it was difficult to determine the road width. 

Theoretically, it is simple to detect a line in an image based on the Radon transform. 

However, in practice, there are many cases where results are not accurate or the line 

detection fails. In this research, we focus on the peak selection problem to find the 

centerlines of thick lines based on the Radon transform. It is an important issue that 

affects applications such as road network extraction on high resolution remotely-

sensed imagery. 

An iterative and localized Radon transform is developed for the specific application of 

road network extraction from classified images. The proposed approach is applied to 

the previously classified and refined road pixels (Figure 4.1), and the goal is to find 

the road centerlines accurately and completely. It is also able to find short, long, and 

even curvilinear lines. First, the input space is partitioned into a set of subset images 

called road component images. An iterative Radon transform is applied locally to each 

road component image. At each iteration, the road centerline segments are detected 

based on an accurate estimation of the line parameters including line widths.  

The remaining sections of this chapter are organized as follows: Section 4.2 describes 

the basic Radon transform; Section 4.3 discusses the issues of line detection using the 

Radon transform with an introduction to the proposed line parameter estimation 
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techniques; Sections 4.4 and 4.5 are dedicated to the iterative and localized Radon 

transform and its applications in road centerline extraction from classified imagery; 

and Section 4.6 summarizes the research and concludes the chapter. 

 

 

Figure 4.1 A flowchart of the iterative and localized Radon transform for road 

network extraction from classified imagery. 

 

4.2 The Basic Radon Transform 

The Radon transform of a function g(x,y) in a two-dimensional Euclidean space is 

defined by Eq. 4.1 [Murphy, 1986]: 

∫ ∫
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where δ(r) is the Dirac function which is infinite for argument zero and zero for all 

other arguments (it integrates to one). The presence of the term δ(ρ - xcos θ - ysin θ) in 

the definition of the Radon transform forces the integration of g(x,y) along the line 

defined by: 

ρ = xcos θ + ysin θ        (4.2) 

Consequently, if g(x,y) is a two-dimensional image intensity function, the computation 

of its Radon transform yields the projections across the image at varying orientations θ 

and offsets ρ  (relative to a parallel line passing through the image centre) [Murphy, 

1986]. The Radon transform should contain a peak corresponding to every line in the 

image that is brighter than its surroundings and a valley for every dark line. The 

problem of detecting lines is reduced to detecting the peaks and valleys in the 

transform domain [Copeland et al., 1995]. The geometry of the Radon transform is 

illustrated in Figure 4.2. 

 

 

Figure 4.2 Geometry of the Radon Transform (After [MathWorks, 2005]) 
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4.3 Line Parameter Estimation in the Radon Transform 

In the context of linear feature detection via the Radon transform, there are three main 

parameters to be estimated for a straight line: the line direction (θ), the offset (ρ) 

which is relative to a parallel line passing through the image centre, and the line width 

(w). These three parameters are necessary because we are working on real lines, not on 

geometric lines. In many cases, the estimation of these parameters is not trivial.  

Complications may occur when the peaks (or valleys) are ambiguous or biased along 

either the offset (ρ) or the direction (θ) or both. In addition, there is a θ – boundary 

problem because the Radon transform is usually calculated based on a limited range of 

direction angles [0, 180°].  

All of the test images used in this section are assumed to have bright lines on a dark 

background. Therefore, only the peaks in the radon space are important. However, for 

illustration purposes, the following figures use the negative of the input images. For all 

of the images, the step size of θ in the Radon transform is set to one degree. 

4.3.1 Peak selection  

4.3.1.1 Biased radon peak: one direction 

Figure 4.3 is an example of a biased peak along the ρ axis. In Figure 4.3 (a), the black 

line is approximately five pixels in width and the dashed line is reconstructed from the 

parameters determined from the original radon peak. As we can see from the figure, 

the detected line is shifted away from the actual centerline. This occurs because the 

peak in the radon domain is not a simple unique point but a small peak region (Figure 

4.3 (b)), and the ρ value that forms the peak radon value is biased along the profile in 

the ρ axis (Figure 4.3 (c)). 
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                             (a)                                                      (b) 

  

                             (c)                                                        (d) 

Figure 4.3  Accurate line parameter estimation in the Radon transform using the 

profile analysis technique: (a) the input image and the reconstructed line 

(dashed) based on the original radon peak; (b) the Radon transform; (c) a profile 

along the ρρρρ axis shown as a white dashed line in (b) and an illustration of the 

estimation of the ρρρρ value; (d) the reconstructed line using the refined radon peak. 

 

To obtain a better estimation of the ρ value of the line, a profile analysis technique is 

applied. A profile along the ρ direction passing the peak is plotted (Figure 4.3 (c)) and 

two values, ρ1 and ρ2, are determined by using a linear interpolation based on a semi-
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peak radon value, which is 90% of the peak radon value (Figure 4.3 (c)). The 

determination of the semi-peak radon value is based on our observation that the 

difference between the biased radon peak value and the true radon peak value is 

usually less than 10%. 90% is selected so that the true radon peak is included in the 

range while keeping the range as small as possible. Decreasing the number (e.g. to 

75%) will not significantly affect the final result if the radon peak region is close to 

symmetric in the θ direction. 

However, increasing the number (e.g. to 95%) will risk the loss of the true radon peak 

in the range. The ρ value of the line is then determined by the average of these two 

values: 

2/)(ˆ
210 ρρρ +=        (4.3) 

Similar steps are used for an accurate estimation of the θ value:  

2/)(ˆ
210 θθθ +=        (4.4) 

The reconstructed line with the new estimated parameters )ˆ,ˆ( 00 θρ  accurately 

coincides with the actual centerline of the wide black line and is shown in Figure 4.3 

(d). It is clear that the proposed method gives a more accurate estimation of the line 

parameters than using the original radon peak.  

Figure 4.4 illustrates results for two other simulated images. The problem with these 

two images is that the radon peaks are biased along the θ axis (Figure 4.4 (a) and (c)). 

The proposed approach corrects one of the problems with the Radon transform-based 

line detection: the exact centerline of the thick lines (Figure 4.4 (b) and (d)) is detected 

instead of the diagonal line, which is the case when the original radon peak is used. 
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 (a)  (b) 

 (c)  (d) 

Figure 4.4  Examples of accurate line parameter estimation in the Radon 

transform: (a) and (c) show the reconstructed line (dashed) using the original 

radon peak; (b) and (d) show the reconstructed line (dashed) using the refined 

radon peak. 

 

4.3.1.2 Biased radon peak: both directions 

The profile analysis technique, however, is not applicable if the radon peak is biased 

in the ρ and θ axes because the true line parameters are no longer located on the 

profiles passing the peak. Figure 4.5 illustrates this problem. The Radon transform of 

the input image (Figure 4.5 (a)) is shown in Figure 4.5 (c). A zoomed-in version of the 

transform is shown in Figure 4.5 (d). The reconstructed centerline based on the 

original radon peak is shown as a white dashed line in Figure 4.5 (a). It is clear that the 
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centerline is not accurate. Numerically, the radon peak is at located at R0 (84.0, 93.0°).  

The refined radon peak using the profile analysis approach is located at (84.1, 92.8°). 

Although it is closer to the true position R1 (88.0, 90.0°), it is not perfectly accurate. 

A low-pass filter applied to the radon image will remove the undesirable variations 

and make it easier to find the true radon peak. The low-pass filter can be a mean filter, 

a Gaussian filter, or a median filter. The simplest mean filter was chosen for use in this 

research. The element with the highest mean radon value within the filter window is 

selected as the peak and is used to estimate the line parameters (Figure 4.5 (d)). The 

choice of the filter size is mainly based on the average thickness of the lines. 

Experiments show that the filter size should be less than but close to the average 

thickness of the lines. For example, a 3 by 3 filter is used for an average width of 5 

pixels and a 7 by 7 filter for an average width of 10 pixels. The filter size used in this 

example is 3 by 3. The improved result is shown in Figure 4.5 (b). 

4.3.1.3 θ-boundary problem 

The θ-boundary problem of the Radon transform is associated with vertical lines. The 

peak region corresponding to a vertical line is artificially divided into two 

discontinuous parts in the Radon transform because the θ used is between 0 and 180 

degrees. The true radon peak corresponding to the true line parameters is exactly 

located on the boundary (θ=180°). Both the profile analysis and mean-filter method 

fail to locate the true radon peak because of the θ-boundary problem. Figure 4.6 

illustrates this problem. The Radon transform of the input image (Figure 4.6 (a)) is 

shown in Figure 4.6 (b), where the θ-boundary problem is evident. The solution is to 

use values of θ from -5° to 185° in the Radon transform to allow an overlapping area 

along the θ axis (Figure 4.6 (d)). The final result is shown in Figure 4.6 (c). 
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                              (a)                                                                        (b) 

 

                              (c)                                                                        (d) 

Figure 4.5  Accurate line parameter estimation in the Radon transform using a 

mean filter: (a) the input image and the reconstructed centerline (dashed) based 

on the original radon peak; (b) the reconstructed line (dashed) using the refined 

line parameters based on the radon peak found by a mean filter; (c) the Radon 

transform; (d) zoomed in version of (c). R0 - the original radon peak; R1 - the 

radon peak found by the mean filter, the black dashed line shows the window 

used. 
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                              (a)                                                                        (b) 

  

                              (c)                                                                        (d) 

Figure 4.6  Example of θ-boundary problem of the Radon transform: (a) input 

image with the reconstructed line (dashed) based on the original radon peak; (b) 

the Radon transform; (c) the new reconstructed line (dashed) using the refined 

line parameters; (d) the expanded Radon transform with θ as [-5°°°°, 185°°°°]. 

 

4.3.1.4 Robust approach to peak selection 

As mentioned above, the estimation of the line parameters (ρ and θ) is related to the 

peak selection problem. The radon peak will be biased in both axes (ρ and θ) due to 

the limitation of the directional integration in the Radon transform. The solution is to 

use the profile analysis technique and a low-pass filter in the Radon domain. These 

techniques, however, do not work well for wide lines in an image because they create 
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a small area of peaks, called a radon peak region, not a single peak in the radon space. 

This is evident in Figure 4.7. In the simulated image (Figure 4.7 (a)) there is one wide 

line with a width of 9 pixels. The Radon transform of the input image is shown in 

Figure 4.7 (b) where the radon peak value is marked as a white cross (R0). The 

detected centerline (red dotted line in Figure 4.7 (a)) from this single radon peak is 

obviously biased since the directional integration of the diagonal line yields the largest 

value.  

 

   

(a)                                                         (b) 

Figure 4.7  Peak selection problem in the Radon transform: (a) input image with 

a wide line, the red dotted line is the detected centerline using the single radon 

peak, the red solid line is the detected centerline using the refined radon peak; (b) 

the Radon transform of (a), where R0 is the single radon peak, R1 is the refined 

radon peak. The blue line depicts the radon peak region. 

 

To correctly estimate the line parameters, the radon peak region is used instead of the 

single radon peak. The radon peak region is defined as the connected radon elements 

which have a radon value larger than ninety percent of the radon peak value. Ninety 

percent is selected so that the true radon peak is included in the range while keeping 

the range as small as possible (see an explanation in Section 4.3.1.1). In this research, 

the radon peak region is found using a region growing algorithm in the radon space 
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starting from the radon peak. In Figure 4.7 (b), the radon peak region is the region 

bounded by the blue line. The centroid of the radon peak region (R1 in Figure 4.7 (b)) 

is then used to estimate the line parameters. The centerline detected using the refined 

radon peak (the red solid line in Figure 4.7 (a)) accurately coincides with the true 

centerline. Intensive experimentation has shown that the proposed peak selection 

approach is accurate and robust for the estimation of line parameters in the Radon 

transform. 

4.3.2 Line width estimation in the Radon transform 

The estimation of line width is important for many linear feature detection 

applications such as road network extraction from remotely sensed imagery. Different 

road widths often indicate different road classes. However, most road detectors fail to 

provide an accurate and robust estimation of road width. A dynamic programming 

approach (e.g. [Gruen and Li, 1997]) does not provide any information on line width. 

In a template matching approach (e.g. [Hu et al., 2004b]), line width is usually preset 

with limited adjustability during the matching process. Line width estimated from a 

profile analysis technique (e.g. [Wang and Zhang, 2000; Hu and Tao, 2005]) or from a 

morphological thinning-based approach (e.g. [Song and Civco, 2004]) is often 

sensitive to any noisy pixels. These techniques fail to provide a meaningful line width 

for a real road. With a Radon transform-based linear feature detector, the line width 

for each detected line segment can be estimated. 

The width (Wρ) in the ρ axis of a peak in a Radon transform provides an estimate of 

the mean width of the corresponding linear feature [Murphy, 1986]. In this research, 

two ρ values, ρ’1 and ρ’2, are determined based on the half-peak radon value, which is 

fifty percent of the peak radon value (Figure 4.8). The half-peak radon value is used in 

the mean line width calculation since any pixel contributing to the half-peak radon 

value during the radon integration should be taken into consideration in the line width 

calculation. The width, Wρ, is then calculated using the following equation: 

Wρ=ρ’2-ρ’1        (4.5) 
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The width of the line shown in Figure 4.7 is exactly 9 pixels and the estimated line 

width is also 9 pixels. 

 

 

Figure 4.8  Line width estimation in the Radon transform: ρρρρ’1 and ρρρρ’2 are two 

points located along the profile in the ρρρρ direction at the refined radon peak (R1) 

shown in Figure 4.6 (b). They are determined by the half peak radon value. 

 

The results from a number of simulated test images are summarized in Table 4.1. The 

real line widths are calculated based on the geometric relationship illustrated in Figure 

4.9 and the equation below: 
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The values of a and b are manually measured on the input images once the images are 

zoomed in enough to ensure measurement accuracy at an approximate level of ±0.1 

pixels. It is clear that the proposed approach is capable of estimating an accurate line 

width based on the Radon transform. The mean of the errors is +0.1 pixels and the 

standard deviation is approximately ±0.2 pixels. This indicates that the accuracy of 

line width estimation is very close to that of a manual measurement. 
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Figure 4.9  Calculation of line width 

 

Table 4.1 Line width estimation (in pixels) 

Line No Real value Estimated Error 

1 4.2 4.5 -0.3 

2 9.9 9.5 0.4 

3 9.9 9.5 0.4 

4 5.0 4.8 0.2 

5 5.0 4.8 0.2 

6 5.0 4.8 0.2 

7 5.0 4.8 0.2 

8 5.0 4.7 0.3 

9 5.0 4.9 0.1 

10 5.0 4.7 0.3 

11 5.0 4.9 0.1 

12 5.0 4.9 0.1 

13 5.0 4.9 0.1 

14 3.0 3.0 0.0 

15 4.2 4.0 0.2 

16 4.2 4.0 0.2 

17 4.2 4.4 -0.2 

18 4.3 4.6 -0.3 

19 4.2 4.3 -0.1 

20 4.2 4.3 -0.1 

Mean 0.1 
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4.3.3 Endpoint determination 

The Radon transform does not provide any information about the endpoints of a given 

line segment. Therefore, the endpoints have to be determined in the original image 

space. In this research, the endpoints are constructed by overlaying the detected 

centerlines on the original image. For the example shown in Figure 4.10, the centerline 

21PP  is reconstructed from the estimated line parameters (ρ, θ). The centerline 

segment 32 PP  is then created by overlaying 21PP  on the original image. In this step, 

more than one centerline segment can be found. These centerlines will be recorded if 

their lengths are greater than a certain threshold (e.g. 10 pixels). 

 

 

Figure 4.10  Endpoints determination 

 

4.3.4 Experiments 

The proposed Radon transform method has been tested on numerous images. The 

results will be discussed in the following sections.  

4.3.4.1 Synthetic image 

A typical result from one of the simulated images is illustrated in Figure 4.11. Figure 

4.11 (a) shows the reconstructed centerlines based on the original radon peaks. Figure 

4.11 (b) presents the results from our proposed approach. As can be seen from lines 1, 
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4, and 6, the results from our method are more accurate than those from the original 

method. The estimated line widths are shown in Table 4.2. The mean error is only 0.1 

pixels. 

 

 (a)  (b) 

Figure 4.11  Centerline detection using the Radon transform from the first 

synthetic image: (a) the reconstructed lines (red) based on the original radon 

peaks; (b) the improved results. 

 

Table 4.2 Line width estimation for the first synthetic image (in pixels) 

Line No Real value Estimated Error 

1 5.0 5.0 0.0 

2 5.0 5.1 -0.1 

3 4.6 4.5 0.1 

4 4.2 4.2 0.0 

5 5.0 5.1 -0.1 

6 5.0 5.0 0.0 

Mean 0.0 

 

Results from Figure 4.12 indicate that the proposed approach is applicable to 

centerline detection of thick lines. The six line widths are approximately 10 pixels. 
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The improvements are evident when comparing Figure 4.12 (b) with Figure 4.12 (a). 

The estimated line widths (Table 4.3) are also very accurate. This indicates that the 

proposed method is not sensitive to line width. 

 

 (a)  (b) 

Figure 4.12  Centerline detection of thick lines using the Radon transform from 

the second synthetic image: (a) the reconstructed lines (red) based on the original 

radon peaks; (b) the improved results. 

 

Table 4.3 Line width estimation for the second synthetic image (in pixels) 

Line No Real value Estimated Error 

1 10.0 10.0 0.0 

2 9.7 9.5 0.2 

3 10.1 9.7 0.4 

4 9.9 9.8 0.1 

5 10.6 10.4 0.2 

6 9.0 9.0 0.0 

Mean 0.2 

 

To evaluate the positional accuracy of the extracted centerlines, we manually extracted 

the centerline segments for both sets of synthetic images. These segments were used 
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as our reference data. The extracted centerlines using the improved Radon transform 

are then assessed against the reference data based on the line segment matching 

technique, which is an algorithm developed for quality assessment for automated road 

extraction. Details of the assessment method can be found in Chapter 6. The 

evaluation results are shown in Table 4.4. The average positional accuracy is about 0.5 

pixels. Although there are no widely accepted accuracy standards for linear feature 

extraction, it is reasonable to consider that sub-pixel (less than or equal to 1.0 pixel) 

positional accuracy is accurate enough for the application of road network extraction.  

 

Table 4.4 Positional accuracy assessment (in pixels) 

Synthetic Image One Synthetic Image Two 

Line No Error Line No Error 

1 0.30 1 0.55 

2 0.91 2 0.77 

3 0.35 3 0.20 

4 0.69 4 0.41 

5 0.20 5 0.25 

6 0.04 6 0.61 

Mean 0.41 Mean 0.47 

 

4.3.4.2 Synthetic image with noise 

To test the robustness of the proposed method, we added salt and pepper noise with 

0.02 and 0.05 noise densities to the original images. The outputs are shown in Figure 

4.13 and Figure 4.14. The estimated line widths are listed in Table 4.5 and Table 4.6, 

respectively.  The extracted centerlines from the noisy images are less accurate than 

those from the noise-free images, but all are well within an acceptable quality 

threshold (see Table 4.7 for a positional accuracy assessment). This confirms that the 

proposed method is able to accurately extract the centerlines and precisely estimate the 

line widths from a noisy image. 
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 (a)  (b) 

Figure 4.13  Centerline detection using the improved Radon transform for 

synthetic image one with added noise density of: (a) 0.02; (b) 0.05. 

 

 (a)  (b) 

Figure 4.14  Centerline detection using the improved Radon transform for 

synthetic image two with added noise density of: (a) 0.02; (b) 0.05. 
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Table 4.5 Line width estimation for the first synthetic image with added noise (in 

pixels) 

  Noise Density 0.02 Noise Density 0.05 

Line No Real value Estimated Error Estimated  Error 

1 5.0 5.1 -0.1 5.1 -0.1 

2 5.0 5.2 -0.2 5.3 -0.3 

3 4.6 4.6 0.0 4.5 0.1 

4 4.2 4.3 -0.1 4.3 -0.1 

5 5.0 5.2 -0.2 5.1 -0.1 

6 5.0 5.0 0.0 5.2 -0.2 

  Mean -0.1 Mean -0.1 

 

Table 4.6 Line width estimation for the second synthetic image with added noise 

(in pixels) 

  Noise Density 0.02 Noise Density 0.05 

Line No Real value Estimated Error Estimated  Error 

1 10.0 10.1 -0.1 10.2 -0.2 

2 9.7 9.5 0.2 9.6 0.1 

3 10.1 9.8 0.3 9.9 0.2 

4 9.9 9.8 0.1 10.0 -0.1 

5 10.6 10.5 0.1 10.6 0.0 

6 9.0 9.0 0.0 9.2 -0.2 

  Mean 0.1 Mean 0.0 
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Table 4.7 Positional accuracy assessment with added noise (in pixels) 

Synthetic Image One Synthetic Image Two 

Noise Density Noise Density 
Line No 

0.02 0.05 
Line No 

0.02 0.05 

1 0.08 0.58 1 0.53 0.36 

2 1.04 0.91 2 0.77 0.77 

3 0.35 1.18 3 0.34 0.27 

4 0.69 0.40 4 0.71 0.25 

5 0.40 0.20 5 0.14 0.29 

6 0.00 0.33 6 0.72 1.06 

Mean 0.43 0.60 Mean 0.53 0.50 

 

4.3.4.3 Real classified satellite image 

The proposed Radon transform has also been applied to a set of classified images. 

Figure 4.15 and Figure 4.16 illustrate some of the results of the road centerline 

extractions. From Figure 4.15 and Figure 4.16, we can see that the proposed 

methodology is able to detect road segments on classified imagery with a good 

estimation of road width and positional accuracy. The failure to detect the right road in 

Figure 4.15 (b) is due to the misclassification in the image segmentation step, i.e., 

most of the road pixels have been misclassified as non-road pixels (see Figure 4.15 

(a)). 
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 (a)  (b) 

Figure 4.15 Detected road centerlines (red) overlaid on the road pixels (a) and the 

Ikonos MS true composite image (b). The estimated line widths for lines 1-3 are 

2.4, 2.3 and 2.2 pixels respectively. 

 

 (a)  (b) 

Figure 4.16 Detected road centerlines (red) overlaid on the road pixels (a) and the 

Ikonos MS true composite image (b). The estimated line widths for lines 1-3 are 

3.3, 3.9 and 2.0 pixels respectively. 
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4.4 Iteration of the Radon Transform 

Studies have shown that iteratively applying the Radon transform will help to extract 

short lines in an image because short lines usually do not generate detectable peak 

responses in the radon space. For example, for the input image shown in Figure 4.17 

(a), it is very difficult to find the radon peaks corresponding to the two shortest lines 

(line 4 and 5) in the radon space (Figure 4.17 (b)).  

Similar to the idea of the iterative Hough transform used in [Hu et al., 2004a], an 

iterative Radon transform is developed to accurately extract the road centerlines on a 

binary image. Each iteration in the Radon transform is composed of three steps: (1) the 

Radon transform is applied to the entire input image; (2) the possible road segments 

are detected based on the refined peak radon value; and (3) the line widths are 

estimated and used to remove the road pixels belonging to the detected road segments. 

This process continues until no more road segments are detected.  

For the previous example, Figure 4.17 (c) shows the Radon transform after the longest 

line (line 1) has been detected and its pixels removed from the image. Two radon 

peaks corresponding to the two middle length lines (line 2 and 3) are clearly visible 

and can be detected. Similar steps are applied to the remaining image to detect the two 

shortest lines (line 4 and 5) based on the Radon transform shown in Figure 4.17 (d). 

The five detected lines are shown in red in Figure 4.17 (a). Every line (including the 

shortest lines) has been accurately reconstructed by the proposed iterative Radon 

transform.  



 

 

63 

 

 

                               (a)                                                       (b) 

  

                  (c)                                                        (d) 

Figure 4.17 Centerline detection using the iterative Radon transform: (a) input 

image with five lines with different lengths, the red lines are the detected 

centerlines using the developed iterative Radon transform; (b) the Radon 

transform of (a); (c) the Radon transform of (a) with the longest line being 

removed (iteration 2); and (d) the Radon transform of (a) with the longest three 

lines being removed (iteration 4). 

 

Experiments have shown that the success of an iterative Radon transform relies on the 

accurate estimation of the line width. If the line width is overestimated, any smaller 

lines connected to the longer lines will shrink due to the fact that the pixels close to the 

longer lines will be removed. If the line width is underestimated, many false lines will 
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be detected from a single line. The line width estimation method proposed in the 

previous section is applied and the results are robust and accurate. 

The iterative Radon transform has also been applied to a number of real images. Two 

of these results can be found in Figure 4.15 and Figure 4.16. 

4.5 Localization of the Radon Transform 

In a global Radon transform, the interactions between different lines during the radon 

integration will create false peaks. These peaks do not correspond to any real lines 

which impedes the estimation of the correct line parameters of a given line. Figure 

4.18 illustrates this problem. For the input image with a single line (Figure 4.18 (a)), it 

is simple to find the correct radon peak in the Radon transform (Figure 4.18 (b)) in 

order to accurately reconstruct the centerline (red line in Figure 4.18 (a)). If the input 

image has five other lines (Figure 4.18 (c)) and a global Radon transform is used, we 

will have six radon peak regions corresponding to the six lines (Figure 4.18 (d)). 

However, we will never locate the correct peak element for the lower-left line, the 

same line shown in Figure 4.18 (a). Figure 4.18 (e) is a zoomed-in version of the 

corresponding peak region (green rectangle in Figure 4.18 (d)). The peak element 

found in the global Radon transform is marked as “R0”, while the true peak element 

should be “R1”. The centerline reconstructed from “R0”, the red line in Figure 4.18 (c), 

is obviously biased because the peak region is affected by two of the other lines (the 

upper-right and the middle-right lines).  
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(a)                                            (b) 

  

(c)                                            (d) 

 (e) 

Figure 4.18 Local Radon transform vs. global Radon transform: (a) the input 

image with a single line and the detected centerline (red); (b) the Radon 

transform of (a); (c) the input image with six lines and the detected centerline 

(red) of the lower-left line; (d) the Radon transform of (c); (e) the peak region in 

(d) which corresponds to the lower-left line in (c). R0 is the peak element we are 

able to find while the R1 is the true location. 
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This example demonstrates that the Radon transform-based line detectors work well 

on an image with a single line. For an image with many lines, the input image needs to 

be subset into a set of smaller images where each image contains a single line. This is 

the principle behind the localized Radon transform. In reality, the situation is more 

complicated because we will never have a simple image as shown in Figure 4.18 (c), 

which is easily subset into six smaller images with a single line on each image. For a 

real image, we have to find an appropriate approach to partition the input image in 

order to localize the Radon transform. In this research, three approaches to localize the 

Radon transform have been developed and tested. They will be discussed in the 

following sections. 

4.5.1 The gliding-box approach 

In a gliding-box approach, a moving window is defined and the Radon transform is 

performed locally within the window. The partition of the input image is achieved 

directly by the window size and step size. There is no requirement to pre-process the 

input image and this saves computational time.  

Figure 4.19 is the output of the road centerline extraction using the gliding-box 

approach on two of our test images. The black pixels are the refined classified road 

pixels. The dashed blue rectangles are the gliding boxes, which have a size of 32 by 32 

pixels. The step size is set to 32 pixels to ensure there is no overlapping or gaps. The 

road centerline segments extracted from the adjacent subset images can be linked in 

the road network formation step. The detected road centerlines are shown in red in 

Figure 4.19.  

As can be seen in Figure 4.20, the localized Radon transform is able to accurately and 

completely locate the centerlines. Long lines are extracted from a series of short 

centerline segments, which can be linked into a single long line in the road network 

formation step. Curvilinear roads are approximated by a set of short road centerline 

segments. This is an important feature of the road network extraction system as 

accurately extracting curvilinear roads is always a difficult task. 
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 (a) 

 (b) 

Figure 4.19 Road centerline extraction from classified imagery using iterative 

and localized Radon transform based on gliding-box approach. (a) Ikonos test 

image; (b) Quickbird test image. Dashed blue lines indicate the gliding boxes and 

the red lines are the extracted road centerlines. 
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There is a problem associated with the gliding-box approach. If a road line runs 

vertically or horizontally and lies close to the boundary area between two neighboring 

gliding-boxes, erroneous centerlines will be created. Three examples can be found in 

Figure 4.19 (b). The blue arrows indicate the positions where two parallel centerlines 

have been extracted. However, there should only be a single centerline. This problem 

is created by the artificial boundaries used by the gliding-boxes.  

4.5.2 The connected component analysis approach 

In this approach, the connected components need to be found in the classified image 

so that the Radon transform can be separately applied on each connected component. 

In this research, the region growing algorithm is used for the connected component 

analysis. Region growing is a region-based image segmentation technique, which can 

find the connected regions based on seed points and a set of growing criteria 

[Gonzalez and Woods, 2002].  

The seed points were selected based on a local neighborhood analysis. If a road pixel 

is surrounded by 8 road pixels in its 3 by 3 neighborhood, it is selected as a seed pixel. 

Figure 4.20 and Figure 4.21 show the road centerline extraction outputs using the 

connected component analysis technique to localize the Radon transform. The 

technique was applied to the same test images as in Figure 4.19. The different colors 

in Figure 4.20 (a) and Figure 4.21 (a) are showing different road component images 

grouped by the region growing algorithm. The road centerlines are extracted from 

each road component image using the iterative Radon transform. 

From Figure 4.20 and Figure 4.21, we can see that this approach generally gives 

longer lines than the gliding-box approach. This is an advantage if the road is straight. 

However, it is a disadvantage for a curvilinear line as it will straighten the line and 

enlarge the discrepancy between the real centerline and the extracted line. In addition, 

if a very large connected component exists in the image, the localization of the Radon 

transform will not be complete and might cause erroneous extractions. The technique 

also fails to extract any road centerlines from very small road components. 
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 (a) 

 (b) 

Figure 4.20 Road centerline extraction from the classified Ikonos test image using 

an iterative and localized Radon transform based on a region growing approach. 

(a) road component images (differentiated by color) found by the region growing 

algorithm; (b) extracted road centerlines (red). 
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 (a) 

 (b) 

Figure 4.21 Road centerline extraction from the classified Quickbird test image 

using an iterative and localized Radon transform based on a region growing 

approach. (a) road component images (differentiated by color) found by the 

region growing algorithm; (b) extracted road centerlines (red). 
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4.5.3 The spatial clustering approach 

A spatial clustering algorithm can be also applied to the road pixels in order to 

partition the input road image into a series of meaningful subset images (called road 

component images). The Radon transform will be then applied locally to the subset 

images. 

Theoretically, any spatial clustering algorithm can be used to divide the input image. 

However, there is a tradeoff between the computational efficiency and the clustering 

quality. In this research, a special version of the k-medoids algorithm is applied. The 

k-medoids method is a partitioning-based clustering method. Since it uses the most 

centrally located object (medoid) in a cluster as the cluster centre instead of taking the 

mean value of the objects in a cluster, it is less sensitive to noise and outliers as 

compared with the k-means approach [Han et al., 2001]. Therefore, the k-medoids 

method is more suitable for spatial clustering than the k-means method because of its 

improved clustering quality. However, it is well known that a k-medoids method is 

very time-consuming. To overcome the computational issue of existing k-medoids 

methods, a new k-medoids algorithm called Clustering Large Applications with 

Triangular Irregular Networks (CLATIN) has been introduced by Zhang and 

Couloigner (2005). The CLATIN algorithm is more efficient than the basic k-medoids 

algorithm while retaining the same clustering quality.  

Figure 4.22 (a) and Figure 4.23 (a) are the outputs of the CLATIN algorithm on the 

classified road pixels. The Voronoi tessellation (red lines) based on the final medoids 

produces a continuous partition of the entire image. Each component has a small 

portion of the road pixels from which a Radon transform can be applied and possible 

road segments can be found. Figure 4.22 (b) and Figure 4.23 (b) depict the extracted 

road centerlines based on the CLATIN approach.  
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 (a) 

 (b) 

Figure 4.22 Road centerline extraction from the classified Ikonos test image using 

an iterative and localized Radon transform based on the CLATIN spatial 

clustering approach. (a) output of the CLATIN algorithm: black pixels – road 

pixels, red points – final medoids, red lines – Voronoi tessellation of the final 

medoids; (b) extracted road centerlines (red). 
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 (a) 

 (b) 

Figure 4.23 Road centerline extraction from the classified Quickbird test image 

using an iterative and localized Radon transform based on the CLATIN spatial 

clustering approach. (a) output of the CLATIN algorithm: black pixels – road 

pixels, red points – final medoids, red lines – Voronoi tessellation of the final 

medoids; (b) extracted road centerlines (red). 



 

 

74 

Compared to the gliding-box algorithm used by Du and Yeo (2004), the CLATIN 

algorithm provides a more meaningful partition of the input space because it takes into 

consideration the spatial distribution of the road pixels. The partition of the road pixels 

by CLATIN is continuous and has no overlapping areas. This makes it easier to group 

the road segments in order to form a long line, even curvilinear line.  

The main disadvantage of this approach is that there is no efficient spatial clustering 

algorithm available in the computer science community. The number of road pixels in 

the classified image is usually very large and this creates a fatal computational issue.  

4.5.4 Comparison between different localization approaches 

The qualitative comparison of the three localization approaches is summarized in 

Table 4.8, where CCA means connected-component analysis. These comparisons are 

based on visual observation.  

 

Table 4.8 Comparison of different localization approaches 

 Gliding-box CCA CLATIN 

positional accuracy high low high 

long straight line well better well 

curvilinear line well problem well 

short lines well problem well 

computational load low medium high 

network structure good problem good 

 

The quantitative assessment of the final extracted road networks using the three 

approaches is performed against a reference dataset based on a line segment matching 

algorithm presented in Chapter 6. Three quality measures have been used: the 

completeness to indicate the ability of the road extraction methods to extract the entire 
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road network; the correctness to represent the percentage of correctly extracted road 

data with respect to the total extracted road data; and the Root Mean Square Error 

(RMSE) to indicate the potential geometrical accuracy of the extracted road data. 

Table 4.9 provides an overview of the assessment results. Two sets of multi-spectral 

(MS) images have been used: Ikonos MS (4 m spatial resolution) and Quickbird MS 

(2.4 m spatial resolution). Both sets have three test images. The quality measures 

shown in Table 4.9 are the average values from the three test images. 

 

Table 4.9 Quality assessment of the extracted road networks using different 

localization approaches 

Test Image Method Completeness Correctness 
RMSE 

(Pixels) 

Gliding-box 0.49 0.37 0.90 

CCA 0.51 0.29 1.10 Ikonos MS 

CLATIN 0.48 0.41 0.84 

Gliding-box 0.50 0.49 1.07 

CCA 0.49 0.46 1.21 Quickbird MS 

CLATIN 0.48 0.51 1.12 

 

As we can see from Table 4.9, all three approaches are performing similarly. The 

CLATIN has a relatively higher correctness rate and positional accuracy. The 

connected component analysis (CCA) has a relatively higher completeness rate but a 

lower correctness rate and positional accuracy. These differences can be visually 

perceived from their outputs. The gliding-box approach achieves a comparable quality 

with a lower computational load, which is suitable to localize the Radon transform 

where computational load is an issue. 
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4.6 Summary 

The Radon transform has a number of advantages for linear feature detection 

including its ability to detect line widths and its robustness to noise. However, the 

quality of the Radon transform-based linear feature detection has to be improved for 

road network extraction from classified imagery. 

In this research, the peak selection problem in the Radon transform-based line detector 

has been investigated. A mean filter was proposed to locate the true peak in the radon 

image and a profile analysis technique was used to further refine the line parameters to 

reduce the biased radon peak issues. The θ-boundary problem of the Radon transform 

was also discussed and the erroneous line parameters were corrected. Finally, a robust 

approach was developed to locate the Radon peak region for wide lines. Experiments 

have shown that the proposed methodology provides an accurate and robust estimation 

of the line parameters and a solution to the peak selection issue of the Radon 

transform-based linear feature detector.  

An iterative and localized Radon transform has been developed for the specific 

application of road network extraction from classified imagery. The iterative Radon 

transform was able to detect both long and short lines based on an accurate estimation 

of the line width and line parameters in the radon space. The localization of the Radon 

transform was achieved by using three algorithms: the Gliding-box; the Connect 

Component analysis; and the Spatial Clustering approach. These techniques were 

applied to the classified and refined road pixels. The localized Radon transform made 

it possible to detect small road segments and long curvilinear lines. The three 

localization methods have been compared and the Gliding-box approach is suggested 

for applications where computational load is of concern. 

The extracted road centerline segments will be further grouped, in the next chapter, to 

form a road network.  
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CHAPTER 5  

ROAD NETWORK FORMATION 

Road network formation enables the linking of individual road segments into 

meaningful road lines and the building of the network topological structure such that 

the data is GIS-ready. Generally, it includes tasks such as bridging gaps between road 

segments, creating nodes for road intersections, and removing overshooting or 

undershooting. 

The Gestalt psychologists have defined perceptual grouping (or perceptual 

organization) as an ability to explore a structuralized feature organization from 

sensory data. It allows the formation of object hypotheses with minimal domain 

knowledge [Crevin, 1999]. It has four levels: signal, primitive, structure, and assembly 

[Boyer and Sarkar, 1999]. 

The Gestalt psychologists have discovered a set of important properties in perceptual 

organization: proximity, continuity, similarity, closure, and symmetry. These 

properties are useful in grouping the detected edges or detected road centerlines into a 

road network. Thus, perceptual grouping has been widely used in road network 

extraction from remotely-sensed imagery (e.g., Crevin, 1999; Hu and Tao, 2002).  

In this research, we will apply the basic idea of perceptual organization to the 

grouping of road centerline segments into a road network.  

5.1 Endpoint Fusion 

Due to the use of a localized Radon transform in our road centerline extraction, there 

are many disconnected road segments belonging to the same road line. The gaps 

between these disconnected road segments are usually very small (i.e. in the order of 

1-3 pixels). This step allows us to examine all of the endpoints of the extracted road 

segments and find out which endpoints are close to each other, e.g. within an 

Euclidean distance of 5 pixels. Endpoints within this threshold distance are joined 
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together by averaging their coordinates, thus creating one position (Figure 5.1). In 

Figure 5.1, three line segments are shown. The endpoints P2, P3, and P5 are 

determined to be close to each other and are joined together into a single point (the red 

point). 

 

 

Figure 5.1 Endpoint fusion 

 

5.2 Gap Bridging 

Gap bridging is one of the main concerns in road network formation. Gaps might 

occur in the extracted road network for many different reasons. A gap may occur if a 

building or a line of trees occludes a road, or when changes in road pavement 

materials cause the algorithm to incorrectly identify some small road segments.  

 

 

Figure 5.2 Gaps bridging 
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A collinear test is usually used for gap bridging. Figure 5.2 illustrates the method we 

used in the research. A triangle zone (height d and angle a) is built at the endpoint P2 

of the line segment L1. If there is an endpoint from another line segment (e.g. L2) 

within this triangle zone and if the two line segments have a similar orientation, the 

gap between P2 and P3 will be bridged. A new endpoint P will be then created at the 

average location of these two endpoints. These two line segments will be then linked 

into one polyline. 

5.3 Creation of Road Intersections 

Road intersection can be created in two ways: (1) create the direct intersection point of 

two intersecting line segments and then divide the two line segments into four 

segments; and (2) create the possible road intersection by extending two line segments. 

The latter case removes possible problems with undershooting. 

 

 

Figure 5.3 Road intersections creation 

 

The two line segments L1 and L3 shown in Figure 5.3 do not have a direct intersection 

point. However, by extending the two line segments, we create the intersection point P.  

Figure 5.4 gives the output of our grouping of the road segments from the Quickbird 

test image presented in Figure 2.2. The road centerline segments (black lines) were 

extracted using the iterative and localized Radon transform based on the gliding-box 

approach. From Figure 5.4, we can see that the endpoint fusion of small gaps (red 

points) and the creation of the road nodes (red crosses) is quite successful. However, 

the bridging of big gaps (red lines) has some problems (e.g., the one at the upper 

centre indicated by the red arrow). Many large gaps still remain in the extracted road 
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network (indicated by the blue arrows). These gaps are not bridged during the 

grouping process since they fall outside the threshold values. The hierarchical 

perceptual grouping strategy used by Hu and Tao (2002) is expected to help reduce 

this issue. 

 

  

Figure 5.4 Road segments grouping: red points - fused small gaps, red lines - 

bridged big gaps, red crosses - created road nodes. 

 

5.4 Topological Structure Building 

In order to input the extracted road networks into a GIS, explicit topological 

relationships are usually required. In this research, both road polylines and road nodes 
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are defined along with their topological information (see Table 5.1, Table 5.2 and 

Table 5.3). 

 

Table 5.1 Road polyline attributes. 

No Attribute Name Type(Length) Description 

1 PolylineID Int(6) Unique identity of the road 

2 FromNodeID Int(6) The node ID of from-node 

3 ToNodeID Int(6) The node ID of to-node 

4 VertexNum Int(4) The number of the inner vertices 

5 VertexIDList IntPointer(Var) The list of the vertices ID  

6 …   

 

Table 5.2 Road node attributes. 

No Attribute Name Type(Length) Description 

1 NodeID Int(6) Unique identity of the node 

2 X Dbl(12.3) The X coordinate of the node 

3 Y Dbl(12.3) The Y coordinate of the node 

4 Z Dbl(12.3) The Z coordinate of the node 

5 InPolylineNum Int(4) # polylines linked towards the node  

6 OutPolylineNum Int(4) 
# polylines linked outwards from the  

node 

7 PolylineIDList IntPointer(Var) The ID list of the linked polylines  

8 …   
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Table 5.3 Road vertex attributes. 

No Attribute Name Type(Length) Description 

1 VertexID Int(6) Unique identity of the vertex 

2 X Dbl(12.3) The X coordinate of the node 

3 Y Dbl(12.3) The Y coordinate of the node 

4 Z Dbl(12.3) The Z coordinate of the node 

5 …   

 

Assuming that each road segment is represented by two points, P1 and P2, with an 

orientation given by the direction from P1 to P2, the basic steps in building topological 

structures from road segments are as follows: 

1) Create two initial road node records from the endpoints of the first road segment 

with InPolylineNum=0 and OutPolylineNum=1 for the first end point, 

InPolylineNum=1 and OutPolylineNum=0 for the second end point; 

2) Create a new road polyline record from the first road segment with a unique 

PolylineID and relevant FromNodeID/ToNodeID information from Step 1. 

3) For all of the remaining road segments:  

a. create a new road polyline record with a unique PolylineID 

b. check both endpoints (P1, P2): 

i. If P1 is in the road node table, update the corresponding 

OutPolylineNum and PolylineIDList; else create a new road 

node record. 

ii. If P2 is in the road node table, update the corresponding 

InPolylineNum and PolylineIDList; else create a new road node 

record. 
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c. Update the new road polyline record with proper FromNodeID and 

ToNodeID from Step b. 

4) In the road node table, start from a road node whose linked polyline number is not 

equal to two. The number of linked polylines is also called the degree of the road 

node. If a road node has a degree of two, it is a false road node or an inner vertex, 

which should be removed from the road node table. We start the topological 

relationship building from a real road node. We name this road node as the current 

road node (CurNode). For each linked polyline (CurLinkedPolyline) of the current 

road node:  

a. If CurLinkedPolyline has not been processed, assign the current road 

polyline (CurPolyline) to CurLinkedPolyline and assign the search 

polyline (SearchPolyline) to CurPolyline. 

b. Assign the search road node (SearchNode) to the other end point of the 

SearchPolyline:  

i. If the SearchNode has a degree of two, update the CurPolyline 

by adding a vertex to its vertex list, change the SearchPolyline 

to the other linked polyline of the SearchNode (it has only two 

linked polylines because its degree is two). Change the 

SearchNode to the other end point of the new SearchPolyline. 

ii. Repeat Step i until the degree of the SearchNode is not equal to 

two, i.e. a real road node is encountered. The current road 

polyline is then finished. 

c. Move to the next linked road polyline of the current road node. Repeat 

Step a and b until all of the linked road polylines of the current road 

node have been processed.  

d. Move to the next road node and repeat Step 4 until all road nodes have 

been processed. 
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5.5 Road Network Cleaning 

The road network cleaning step removes the short road lines which are not connected 

with other lines, i.e., segments that are most likely isolated lines, not roads. 

Overshooting can be also handled in this step because the topological information for 

all road lines is available. Figure 5.5 and Figure 5.6 show the final outputs from our 

road network formation steps.  

In Figure 5.5, the road centerline segments were extracted using the iterative and 

localized Radon transform based on the gliding-box approach from the Ikonos test 

image presented in Figure 2.1. The main roads have been successfully extracted 

except for the road running from the lower right to the upper left, for which a large 

portion is missing (indicated by the magenta arrows) due to the problem associated 

with the road refinement algorithm (see Figure 3.7). False road lines were extracted 

where the spectrally similar open areas have not been completely removed (indicated 

by the blue arrows).  

 

 

Figure 5.5 Road network formation based on the extracted road centerline 

segments from the Ikonos MS test image presented in Figure 2.1. 
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Figure 5.6 gives the output from the road network formation based on the extracted 

road centerline segments (red lines) from the Quickbird test image presented in Figure 

2.2. The road centerline segments were extracted using the iterative and localized 

Radon transform based on the gliding-box approach. The extracted road network is 

generally complete and accurate. Incompleteness is visible at major road intersections 

and in the vicinity of parking lots or crop fields where the road refinement step 

encountered some difficulties (indicated by the magenta arrows). False extractions are 

mainly located on spectrally similar objects such as parking lots and buildings, which 

have not been removed as non-roads (indicated by the blue arrows). 

 

 (b) 

Figure 5.6 Road network formation based on the extracted road centerline 

segments from the Quickbird MS test image presented in Figure 2.2. 

 

Although the overall quality of the road network formation is satisfactory given the 

road centerline segments extracted by the iterative and localized Radon transform, 

some erroneous lines have been created during the road network formation step (see 

the line indicated by the black arrow in Figure 5.6). In addition, the road network 
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cleaning step fails to remove the short lines that are located close to a real road line but 

at a very sharp angle. Two examples are shown within the magenta circles in Figure 

5.6.  

Figure 5.7 (a) shows the extracted road centerline segments (red lines) from the Ikonos 

test image presented in Figure 2.4. The road centerline segments were extracted using 

the iterative and localized Radon transform based on the gliding-box approach. Figure 

5.7 (b) depicts the final road networks resulting from the road network formation. The 

major structure of the extracted road network is well established and topologically 

correct. The long curvilinear road running from the lower right to the upper left is 

almost completely extracted with only one small portion missing due to the road 

classification problem (indicated by the blue arrow). Three of the four road 

intersections have been successfully created. The failed intersection is due to the 

problem of occlusion by trees (indicated by the magenta arrow)), which caused the 

error in road classification.  

 

   

(a)      (b) 

Figure 5.7 Road network formation: (a) the extracted road centerline segments 

from the Ikonos MS test image presented in Figure 2.4; (b) the final road 

network.  
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Figure 5.8 (a) shows the extracted road centerline segments (red lines) from the 

Quickbird test image presented in Figure 2.5. The road centerline segments were 

extracted using the iterative and localized Radon transform based on the gliding-box 

approach. As with the Ikonos MS imagery, incompleteness in the final road networks 

resulting from the road network formation shown in Figure 5.8 (b) mainly occurs at 

the road intersections (indicated by the magenta arrows) or within densely residential 

areas (indicated by the blue arrows). 

 

  

(a)       (b) 

Figure 5.8 Road network formation: (a) the extracted road centerline segments 

from the Quickbird MS test image presented in Figure 2.5; (b) the final road 

network.  

 

5.6 Summary 

Road network formation from individual road segments is important since it affects 

the quality measures of the extracted road network, particularly the network properties. 

Bridging the gaps, likely due to misclassification, is an important task and can 

improve the completeness of the extracted road network. It is also possible to remove 
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certain false extractions after the road network formation step by examining the 

geometrical or topological properties of the extracted road polylines. This will 

improve the correctness of the extraction. Finally, road network formation is required 

to be able to input the extracted road network into a GIS and thus be able to update an 

existing GIS database.  

Based on the analysis, our current road network formation is relatively weak. There 

are still problems in removing the erroneous road polylines in the grouping stage. 

Further work will be required to improve the results.  
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CHAPTER 6  

QUALITY ASSESSMENT 

6.1 Introduction  

Although quality assessment is an important and necessary step for automated road 

network extraction from imagery, relatively little work has been carried out in this 

area [Hinz et al., 2002; Wiedemann, 2003]. 

As previously presented in Chapter 1, Couloigner and Ranchin (1998), Wiedemann 

(2002, 2003) and Péteri et al. (2004) provided different sets of quantitative criteria for 

both planimetric accuracy evaluation and spatial characterization of the extracted road 

network against a reference network. 

The main problem with the quality assessment of an extracted road network lies in the 

lack of positional accuracy measures for linear features. Hausdorff distance [Hangouet, 

1995] and Buffering-based distance [Goodchild and Hunter, 1997; Walter and Fritsch, 

1999] measures suffer from a heavy computational issue. L2-distance [Saalfeld, 1988; 

Saalfeld, 1993] and Linear Mapping-based measures [Fillin and Doysther, 1999, 2000] 

rely on the matching of vertices. If the matching fails, the calculated distance is 

distorted. 

Another problem lies in the inability to automatically locate all conjugate road lines 

from two versions of a road network - extracted versus reference. This is usually 

performed manually, which is very time consuming. Based on some similarity 

measures, including distance measures, we can automate the matching to some degree 

and save time in assessing the quality of the extracted road network. 

In this research, a distance measure for line segments is proposed and a matching 

strategy is designed to locate the matched portion of two conjugate line segments. 

Quality evaluation is then carried out based on the distance measure and the matching 

results using the criteria proposed by Wiedemann (2002, 2003) 
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The remaining sections of this chapter are organized as follows: Section 6.2 introduces 

quality assessment for automated road extraction and describes three basic quality 

measures; Section 6.3 details the feature matching problems; Sections 6.4 and 6.5 

discuss the application of the proposed methodology to the evaluation of the road 

network extraction; Section 6.6 provides some conclusions; and Section 6.7 

summarizes the chapter.  

6.2 Quality Measures for Road Extraction 

A common method for evaluating extracted roads is to use a reference road map, 

which is assumed to be more accurate and more complete. The reference road map can 

be an existing up-to-date digital road map or a road map created by photo-

interpretation from the same image (see [Péteri and Ranchin, 2002; Péteri et al., 2004] 

for how to establish an accurate reference map from photo interpretation). 

A typical situation is illustrated in Figure 6.1. In (a), the red lines are the reference 

road lines overlaying the source image, and in (b), the red lines are the extracted road 

lines. The reference road lines are derived from an existing road map verified and 

updated using GPS data. The image used in the road network extraction is a subset of 

a high spatial resolution (2.4 m) multi-spectral Quickbird image. The roads are 

extracted using the proposed methodology described in Chapters 2 to 5. 

A visual comparison of the extracted roads with the reference roads in Figure 6.1 

shows that most have been successfully and accurately extracted. However, we do not 

know the number of: 

1) Missed roads (part of the road at the upper-right corner of the input image is 

missing); 

2) Missed road intersections (the major road intersection at the lower-center of the 

input image has not been extracted); 

3) False roads (some extracted roads are not roads); and 

4) Shifted roads (the positional accuracy of some roads is low). 
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 (a) 

 (b) 

Figure 6.1 Evaluation of automated road extraction: (a) the RGB composite of 

the source image overlaid with the reference roads (red lines); (b) the extracted 

roads (red lines) 
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Before applying our automated road network extraction to a production environment, 

quantitative assessment of the results is necessary. In the existing literature, three basic 

quality measures have been used to evaluate extracted road networks. They are 

Completeness, Correctness, and RMSE. Following the notations and definitions used 

in [Wiedemann, 2003], the following sections describe the three basic quality 

measures. 

6.2.1 Completeness 

The completeness is the ratio of the reference road data matched with the extracted 

road data to the total length of the reference road network (Eq. 6.1). It indicates the 

ability of the road network extraction methods to extract the road network from an 

image. The completeness has a range of [0, 1]. A higher completeness value means 

less roads missed or less errors of omission.  

referenceoflength

referencematchedoflength
ssCompletene =

. 

(6.1) 

6.2.2 Correctness 

The correctness is the ratio of the extracted road data matched with the reference road 

data to the total length of the extracted road network (Eq. 6.2). The correctness also 

has a range of [0, 1]. The lower the value, the higher the false alarm rate of the results 

or the higher the errors of commission, i.e., more false roads have been extracted.  

extractionoflength

extractionmatchedoflength
sCorrectnes =

 . 
(6.2) 

6.2.3 RMSE 

The RMSE expresses the average distance between the extracted road network and its 

matched reference. It indicates the geometrical accuracy potential of the extracted road 

data and is usually calculated using the following equation: 
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K
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RMSE

K
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 . 

(6.3) 

where K is the number of matched line segments, and d(exti, ref) is the distance 

between the i
th

 segment of the extracted line and its corresponding reference line. 

Using different computational approaches, these three quality measures have been 

widely used in evaluating feature extraction from imagery (e.g., [Wessel et al., 2002; 

Wiedemann, 2003; Hu and Tao, 2005]). The three quality measures depend on the 

results of the road network matching step. Different matching strategies will certainly 

have different evaluation results. In the next section, I will discuss how the technique 

of feature matching can be applied to the quality assessment of automated road 

network extraction. 

6.3 Feature Matching for Quality Assessment  

Feature matching is one of the most important vision problems as well as one of the 

most important photogrammetric problems. Feature matching is a technique used to 

determine the conjugate features between two different versions of a dataset, e.g. to 

determine the correspondence between two sets of coplanar lines, by finding pairs, 

among many candidate feature points, that correspond to the same element. Feature 

matching is also one of the critical steps in map conflation [Cobb et al., 1998].  

The matching results are useful for determining the change of a GIS layer [Filin and 

Doytsher, 2000] or to automate an image registration process [Habib and Al-Ruzouq, 

2005]. Feature matching can also be applied to road network extraction, particularly 

for assessing the extracted road network against a reference road network. There are 

three basic issues in feature matching: choice of the matching primitives; choice of 

similarity measures; and choice of matching strategy [Habib and Al-Ruzouq, 2005]. 

6.3.1 Matching primitives 

The selection of the matching primitives is an important issue that affects the matching 

procedures and the reliability of the matching results. For linear feature matching, 
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such as the matching of two road networks, we have a choice of using polylines, lines 

segments, and points.  

The ideal matching primitive should be road polylines. This is due to the fact that road 

polylines and road nodes are vital to build a road network with its topology. A road 

polyline usually represents a real road and has its own semantic content. It is believed 

that during visual matching, road networks are typically matched based on road nodes 

and road polylines rather than road segments or inner vertices. However, matching 

road polylines relies on a well-defined distance measure of the polylines. Similar to 

the human visual system, this distance measure should reflect the positional 

discrepancy between two polylines. It should also be able to encompass the 

differences of the two polylines in terms of direction, number of inner vertices, etc. 

The available distance measures for polylines include the Hausdorff distance and the 

L2 distance. Both measures are based on the distance between the vertices of two 

polylines, which means that they are sensitive to the positions of the inner vertices. If 

the inner vertex has a different structure, the matching will fail and the distance 

measure will be distorted. Buffering techniques have also been applied to decide 

whether two polylines are to be matched or not, thus avoiding the calculation of the 

distance between two polylines (e.g. [Walter and Fritsch, 1999]). A polyline-based 

matching strategy also depends on the two versions of the road network sharing a 

similar topological structure in order to ensure the matching rate. Unfortunately, this is 

a very strict condition in the context of automated road network extraction from 

imagery. Both the redundant road segments and the missing road segments, which are 

very common in road network extraction, will damage the topological structure of the 

entire road network and make polyline-based matching difficult. 

In [Wiedemann, 2003], equally spaced auxiliary nodes are inserted along the edges of 

each network. From each node of a network, the shortest distance to its respective 

node in the other network is determined along with a consideration of the difference in 

direction. The matching is based on this distance and all of the quality measures are 

approximated by this distance. 
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In this research, a line segment-based matching approach is proposed. The reasons for 

this selection are: 

1) Most polyline-based matching approaches eventually rely on operations involving 

line segments, e.g., buffering a polyline involves calculating buffers for each 

individual line segment. Therefore, using line segments as the matching primitive 

does not significantly add computational load to the matching procedure; 

2) Line segment-based matching is less sensitive to the topological differences 

between two versions of a road network;  

3) Line segments are easier to manipulate than polylines; and 

4) Multiple matching or partial matching is easier to identify and take into account. 

6.3.2 Line segment distance measure  

A distance measure for line segments is useful for many applications such as feature 

matching in computer vision, collision avoidance in game design or robotics. 

Unfortunately, the mathematic definition of the distance between two line segments is 

only available for two parallel line segments. Many researchers have defined their own 

distance measures for their specific applications and the definition of the distance 

between two line segments becomes application-oriented. For example, the minimum 

Euclidean distance between two straight-line segments used in robotics is defined as 

the minimum of distances between any of the points of one segment and any of the 

points of the other segment [Lumelsky, 1985]. The Hausdorff distance of two line 

segments is based on the four distances between each pair of endpoints of the two line 

segments in [Hangouet, 1995]. Crevier (1999) described a distance measure of two 

line segments for the purpose of grouping collinear line segments. The distance 

measure consists of two components: longitude distance and transverse distance. Both 

components are based on the mid-point of a line linking one of the two endpoints of 

the two line segments.  

Unfortunately, none of these existing distance measures are ideal for feature matching 

when evaluating automated road network extraction. However, some of the measures 
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might be used for a preliminary check of potential matches. In order to calculate the 

quality measures previously discussed, we need to determine the exact matched 

portion of the two line segments under consideration because multiple matching and 

partial matching are very common amongst the two versions of a road map. 

6.3.3 Matching Line Segments 

Let us denote p as the base line segment with its two endpoints (xp1,yp1) and (xp2,yp2), 

and q as the source line segment with its two endpoints (xq1,yq1) and (xq2,yq2). To 

determine whether the line segments are matched and, if so, determine the degree to 

which they are matched, we first build a local coordinate system that originates at the 

first endpoint of the base line segment and has its x-axis pointing towards the second 

endpoint of the base line segment (Figure 6.2). The coordinates of the end points then 

become (x p1
' , y p1

' ), (x p2
' , yp2

' ), (xq1
' , yq1

' ) and (xq2
' , yq2

' ) , with 0'

2

'

1

'

1 === ppp yyx  

and 
'

2px  = the length of the segment p.  

 

 

Figure 6.2  Matching line segments 

 

First, the source line segment q is projected onto the base line segment p. The 

projected line segment [e1,e2 ]  is obtained by intersecting the projected source line 

segment and the base line segment. If the length of the projected line segment is zero, 

there is no matched portion between these two line segments. This is justified by the 

fact that, after registration to the same coordinate system, the conjugate lines should 
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overlay to some degree. If the length of the projected line segment is greater than zero, 

the following two conditions are examined to further determine whether these two line 

segments are matched: 

1) The difference in direction between the source and base line segments should be 

less than a certain threshold; 

2) The distance (d1) between e1 and e3 and the distance (d2) between e2 and e4 should 

be less than a certain threshold (D).  

If the above three criteria (including the length of the projected segment being greater 

than zero) are met, the projected portion [e1,e2 ] is defined as the matched portion of 

the segment p by the segment q. 

If one of the distances (d1 or d2) is greater than the threshold (D), a new point along 

the source line segment q has to be found such that the distance to the base line 

segment p is equal to the threshold value (D). The projected line segment [e1,e2 ] is 

then adjusted accordingly to [e1,e'2 ]  (Figure 6.3).  

 

 

Figure 6.3. Matching line segments (special case) 

 

The threshold value (D) for line segment matching is an important preset parameter. It 

is the maximum distance that two line segments can be considered to be matched. 

Theoretically, this value should be determined based on the relative positional 

accuracy (σ) between the reference data and the extracted data. The D is usually set to 
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twice or three times σ. In this research, threshold value (D) is empirically set to 5.0 

pixels.  

We define the average distance 2/)( 21 ddd +=  as the distance measure between 

these two matched line segments. This distance will be used in the calculation of the 

RMSE (Eq. 6.3). In a situation where one of the distances (d1 or d2) is greater than the 

threshold (D), we use 2/)( 1 Ddd +=  if d2>D or 2/)( 2dDd +=   if d1>D. 

Since there might be more than one source line segment matching the current base line 

segment p (the i
th

 base line segment), we have to determine the matched portion for 

each source line segment. The union of all these matched portions provides the final 

matched portion of the current base line segment i. Let us denote the union of all of 

the matched portions of the current base line segment as [e"1 ,e"2 ] with a length '

il . 

The completeness contribution of the base line segment i is given by: 

i

i
i l

l
ssCompletene

'

= , where li is the length of the current base line segment i 

assuming the base line segment is taken from the reference data. 

The overall completeness can then be calculated as:  

∑
=

=
M

i
issCompletene

M
ssCompletene

1

1
 (6.4) 

where M is the total number of line segments in the reference data.  

Similarly, if we use the line segments from the extracted data as the base line 

segments, we will have: 
i

i
i l

l
sCorrectnes

'

= , where li is the length of the current 

base line segment i from the extracted data. The overall correctness is then given by: 

∑
=

=
N

i
isCorrectnes

N
sCorrectnes

1

1
 (6.5) 

where N is the total number of line segments in the extraction data.  
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6.3.4 Implementation  

The main steps of our line segment matching process for evaluating the quality of 

automated road extraction are: 

1) Input both line segment datasets; 

2) For each line segment i in the reference data 

a. Find the potential matched extracted line segments using the Minimum 

Bounding Rectangle (MBR) relationship; 

b. For each potential matched extracted line segments j, find the matched 

portion [e1,e2 ], if there is any, using the matching strategy introduced in the 

previous section. 

c. Make the union of the matched portions of the current line segment and 

calculate the distance di and the completenessi; 

3) Calculate the overall completeness and RMSE; and 

4) Repeat step 2 with the line segments of the extracted data as the base line segments 

and calculate the overall correctness.  

The evaluation result of the data presented in Figure 6.1 is depicted in Figure 6.4, 

where the green lines indicate lines that have been correctly extracted and the red lines 

indicate lines that have been missed. The blue lines are mainly false alarms, i.e., the 

road lines that have been “erroneously” extracted.  

 



 

 

100 

 

Figure 6.4 Evaluation results for the extracted road network in Figure 6.1 (b): 

Green – correct extraction, red – missed roads, blue – false extraction 

 

The completeness of the extracted road network presented in Figure 6.1(b) is 65% and 

its correctness is 51%. The RMSE is 0.6 pixels. The evaluation shows that the road 

network extraction has a moderate success in terms of completeness and correctness. 

However, it has good positional accuracy. 

6.4 Assessing the Extracted Road Networks – AutoMap Test 

Data 

The line segment matching approach has been applied to the evaluation of the 

extracted road networks from both Quickbird MS imagery and Ikonos MS imagery. 

The test data was provided by the NCE GEOIDE AutoMap project. In total, three 

subsets of an Ikonos MS image and three subsets of a Quickbird MS image have been 

tested. Both source images cover a portion of the City of Fredericton, New Brunswick.  
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6.4.1 Reference Data 

The reference data are from the National Road Network, Canada, Level 1 (NRNC1), 

which is available for free through GeoBase (http://www.geobase.ca ) for research 

purposes. The National Road Network, Canada, Level 1 (NRNC1) is the 

representation of a continuous accurate centerline for all non-restricted roads in 

Canada (5 meters or more in width, drivable and no barriers denying access). 

The primary data source of NRNC1 was produced with field driven Differential 

Global Positioning System (DGPS) technology. Additional sources, such as existing 

accurate photogrammetric provincial and municipal data were also integrated and 

updated. During the initial acquisition of the NRN data, efforts were made to utilise 

and update as much of the existing authoritative “closest to source” centerline road 

data as was possible. 

Natural Resources Canada (NRCan) managed and produced, in partnership with 

several provinces, the first version of the NRN. Initial data collection of the NRN was 

undertaken in the summer of 1999 and was completed by the end of 2003. 

The NRNC1 dataset has a horizontal positional accuracy of 8 m with circular map 

accuracy standards. 

6.4.2 Ikonos MS Images 

Table 6.1 provides an overview of the evaluation results of the road network 

extraction from the AutoMap Ikonos MS test images (4 m spatial resolution, 375 by 

306 pixels).  Figure 6.5, Figure 6.6 and Figure 6.7 are the output evaluation images. 

The major problem with the extracted road network from Ikonos MS 1, as shown in 

Figure 6.5, is the missing portions of the main road running from the lower right to the 

upper left of the image. This is due to a problem associated with our road class 

refinement algorithm. The missing roads are closely adjacent to parking lots or other 

spectrally similar open areas and thus are removed as non-road pixels. False 

extractions are mainly due to the incompleteness of removing non-road pixels and to 
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the extraction of small pathways through the forest, which are not represented in the 

NRNC1 data.  

 

Table 6.1 Quality assessment of the extracted road networks 

(AutoMap Ikonos MS images) 

RMSE (in pixels) 
Test Image Completeness Correctness 

average stdev 

Ikonos MS 1 0.50 0.38 1.13 0.77 

Ikonos MS 2 0.33 0.57 0.84 0.61 

Ikonos MS 3 0.59 0.20 0.62 0.61 

Average 0.47 0.38 0.86 0.66 

 

 

Figure 6.5 Evaluation results for the image Ikonos MS 1: Green – correct 

extraction, red – missed roads, blue – false extraction 
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Figure 6.6 Evaluation results for the image Ikonos MS 2: Green – correct 

extraction, red – missed roads, blue – false extraction 

Figure 6.6 illustrates the result of the evaluation of the Ikonos MS 2 image. The 

extracted road network from this image has a very low completeness (33%, see Table 

6.1). This is due to the following reasons:  

1) The misclassification of road pixels as non-road pixels during the road class 

refinement. These are mostly the roads adjacent to spectrally similar objects 

(buildings, crop fields, parking lots); and 

2) Occlusions by trees, which causes problems in identifying the road pixels during 

the image classification step. This accounts for the curvilinear road going through 

the forest area near the upper-left corner of the image and the straight road line at 

the lower-left corner. 
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Figure 6.7 Evaluation results for the image Ikonos MS 3: Green – correct 

extraction, red – missed roads, blue – false extraction 

 

Figure 6.7 illustrates the result of the evaluation of the Ikonos MS 3 image. The 

extracted road network has a very low correctness (20%, see Table 6.1). A close 

examination of the results indicates that this is mainly due to the incompleteness of the 

reference data, which does not include the two long, straight and narrow road lines 

(indicated by the two red arrows in Figure 6.7). The proposed road network extraction 

method was able to extract some portions of these two road lines, which could help in 

updating the NRNC1 database.  

6.4.3 Quickbird MS Images 

Table 6.2 summarizes the evaluation results of our extracted road networks from three 

Quickbird MS images (2.4 m spatial resolution, 500 by 400 pixels). The 

corresponding evaluation output images are shown in Figure 6.8, Figure 6.9, and 

Figure 6.4  
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Table 6.2 Quality assessment of the extracted road networks  

(AutoMap Quickbird MS images) 

RMSE (in pixels) 
Test Image Completeness Correctness 

average stdev 

Quickbird MS 1 0.42 0.63 1.07 0.77 

Quickbird MS 2 0.39 0.40 1.37 1.03 

Quickbird MS 3 0.65 0.51 0.75 0.61 

Average 0.49 0.51 1.06 0.80 

 

 

Figure 6.8 Evaluation results for the image Quickbird MS 1: Green – correct 

extraction, red – missed roads, blue – false extraction 

 

The image shown in Figure 6.8 is a subset of an urban/suburban scene. The missing 

roads are mainly in the residential areas, where occlusions from buildings and trees 
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make the road identification difficult, even by photo-interpretation. Our method has 

many false extractions from the boundaries of parking lots or buildings. The long 

falsely extracted road (blue road line near the upper right corner of Figure 6.8) is 

actually a real road, which is not included in the reference dataset. 

 

 

Figure 6.9 Evaluation results for the image Quickbird MS 2: Green – correct 

extraction, red – missed roads, blue – false extraction 

 

Figure 6.9 illustrates the result of the evaluation of the Quickbird MS 2 image, which 

is a subset of industrial and residential areas. The extracted road network has relatively 

lower completeness and correctness (Table 6.2).  

The low completeness (39%) is mainly due to the following two reasons:  
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1) The misclassification of road pixels as non-road pixels during the road class 

refinement. These are mostly the roads adjacent to spectrally similar objects 

(buildings, crop fields, parking lots); and 

2) Failure to extract roads in the densely residential areas. 

The low correctness (40%) is most likely due to the proposed road network extraction 

method finding road segments on the parking lots, which were not successfully 

separated during the road class refinement step. The winding pathway along the small 

river is not included in the reference data but is extracted by the proposed method. 

This also accounts for the low correctness. 

The evaluation result of the Quickbird MS 3 image is illustrated in Figure 6.4. This 

result indicates that our method is able to extract the main road network from high 

resolution multi-spectral imagery even in urban/suburban areas. Most of the roads 

have been extracted with a satisfactory accuracy. Missing roads are due to problems 

associated with our road class refinement algorithm. The missing road close to the 

upper right corner is caused by the inadequateness of the spectral-based image 

segmentation. False extractions are mainly from the boundaries of the parking lots or 

buildings.  

6.5 Assessing the Extracted Road Networks – EuroSDR Test 

Data 

The European Spatial Data Research (EuroSDR) Working Group (WG) “Automated 

extraction, refinement, and update of road databases from imagery and other data” 

initiated a unique program on assessing road network extraction methods in 2004. The 

main objectives of this program are [Mayer et al., 2005]: 

1) To thoroughly evaluate the current status of research including models, strategies, 

methods and data; 

2) To test and compare existing semi- or fully automated methods using various data 

sets and high quality reference data; and 
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3) To identify weak points, and to propose strategies and methods that lead to an 

implementation of operational procedures for road extraction, update, and 

refinement. 

They provide a set of test images to the members of the WG and assess the extracted 

road networks against manually digitized ground truth using the same input images. 

The members send their results to a web-server which computes the evaluation results 

via a CGI script. In the first stage of this program, only the road centerline are 

evaluated. More details can be found at [Mayer et al., 2005]. 

The test data includes 8 test images from different sensors: 

1) Aerial Images (3); 

2) Leica ADS40 (2); 

3) Ikonos (3). 

6.5.1 Aerial Images 

The given ortho-images have a ground resolution of 0.5 m and a size of 4000 by 4000 

pixels. The original images have an image scale of 1:16,000, the principal distance of 

the camera was 0.3 m (normal angle lens), and the images were scanned with a Zeiss 

SCAI scanner with 14 µm pixel size. The ortho-images were generated using a digital 

surface model (DSM) with a 2 m grid size generated by image matching (Leica 

Photogrammetric Suite including manual elimination of blunders). The images cover 

an area close to the city of Thun, Switzerland. 

1) aerial1 contains a suburban area in hilly terrain; 

2) aerial2 comprises a rural scene with medium complexity in hilly terrain; 

3) aerial3 contains a rural scene with low complexity in hilly terrain; 

The evaluation results are reported in [Mayer et al., 2005]. Table 6.3 gives an 

overview of the current evaluation results. Figure 6.10, Figure 6.11, and Figure 6.12 

show the evaluation outputs for our method. The input images were downsampled by 
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a factor of 2 before they were fed to the program. This helped reduce the 

computational load and also match the input images to the parameters already set. The 

extracted road networks from the downsampled images were rescaled to match the 

original image resolution before they were sent for evaluation. 

 

Table 6.3 Quality assessment of the extracted road networks 

(EuroSDR aerial test images, [Mayer et al., 2005]) 

Name Test Image Completeness Correctness RMSE (pixels) 

Gerke aerial1 0.31 0.56 1.53  

Gerke aerial2 0.65 0.82 1.14 

Gerke aerial3 0.72 0.77 1.30 

Zhang aerial1 0.51 0.49 1.92 

Zhang aerial2 0.67 0.49 1.72 

Zhang aerial3 0.72 0.63 1.66 

 

From the evaluation output result shown in Figure 6.10, we can see that the method 

works well on extracting the main roads in rural areas. Incompleteness occurs when 

roads are occluded by trees or when roads are closely adjacent to an open area which 

has a similar spectral signature to the roads, e.g. the lower part of Figure 6.10. The 

reason for this is that our method starts with an initial image segmentation which is 

based on spectral information only. If the road surfaces cannot be identified in the road 

classification step, the method will fail to extract the corresponding road lines. 

Therefore, further improvement in image classification for this type of image is 

required. Compared to the other methods assessed (Table 6.3), our method has a 

higher completeness but a slightly lower correctness. 
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Figure 6.10 Evaluation results for the image aerial1: Green – correct extraction, 

red – missed roads, blue – false extraction ([Mayer et al., 2005]). Image 

copyright: Swiss Federal Office of Topography, Bern, Switzerland 
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Figure 6.11 Evaluation results for the image aerial2: Green – correct extraction, 

red – missed roads, blue – false extraction ([Mayer et al., 2005]). Image 

copyright: Swiss Federal Office of Topography, Bern, Switzerland 

 

As expected, the completeness of our method from the aerial2 image (Figure 6.11) is 

higher than that of the first test aerial image (Figure 6.10).  Most of the missing roads 

are located in a forested area and are hardly visible even to human observers. The false 
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extractions are partly due to the boundaries between crop fields, which are similar to 

linear features. 

 

 

Figure 6.12 Evaluation results for the image aerial3: Green – correct extraction, 

red – missed roads, blue – false extraction ([Mayer et al. 2005]). Image copyright: 

Swiss Federal Office of Topography, Bern, Switzerland 

 

Figure 6.12 depicts the evaluation of our extracted road networks from the third test 

aerial image (aerial3). A relatively higher completeness and correctness from this 
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image is achieved. Incompleteness mainly occurs where the roads are close to open 

areas which have similar spectral signatures as roads and where the roads are within a 

residential area. False extractions are mainly due to the boundaries of the crop fields.  

Compared to the other methods assessed (Table 6.3), our method has similar 

completeness for both the second and the third test aerial images, but with a relatively 

lower correctness.  

6.5.2 Leica ADS40 Images 

The Leica ADS40 is a digital photogrammetric camera with 3 panchromatic and 4 

spectral linear CCDs, each with 12,000 pixels and 6.5 µm pixel size. The focal length 

was 62.5 mm.  The images cover an area close to Waldkirch, Switzerland. The images 

are ortho-images (generated with an enclosed, ASCII-format, DTM) with a ground 

resolution of 0.2 m. The size of the images is: 

1) ads40_1: 5800 x 5765 pixels; 

2) ads40_2: 4880 x 5290 pixels. 

8-bit versions of the images as well as the original 16-bit versions were available. 

ads40_1 and ads40_2 are comprised of rural areas with medium complexity in flat 

terrain. Additionally, an ASCII DTM with 1 m grid-size was provided for these test 

areas. At the time of this thesis, this research is the only one that has submitted road 

extraction results for these two images. Table 6.4, Figure 6.13 and Figure 6.14 show 

the evaluation results of our method for ads40_1 and ads40_2. As for the aerial 

images, the two ADS40 images were downsampled by a factor 4 before they were fed 

to the program to reduce the computational load and also to match the input images to 

the parameters already set. The extracted road networks from the downsampled 

images were rescaled to match the original image resolution before they were 

evaluated. 
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Table 6.4 Quality assessment of the extracted road networks 

(EuroSDR ADS40 test images, [Mayer et al., 2005]) 

Name Test Image Completeness Correctness RMSE (in pixels) 

Zhang ADS40_1 0.56 0.48 2.80 

Zhang ADS40_2 0.45 0.30 2.58 

 

In Figure 6.13, most of the roads that our method fails to extract are completely 

occluded by trees. This is still an issue in the automated, whether fully-automated or 

semi-automated, road network extraction from high resolution imagery. Some 

extracted roads are evaluated as missing because of the low positional accuracy. These 

roads are shown as two parallel lines, one is red and one is blue in the evaluation 

image. The low positional accuracy is due to the preprocessing needed to reduce the 

spatial resolution of the images by 4. 

The evaluation results for the ADS40_2 image (Figure 6.14) show that the low 

completeness and correctness of our method is mainly due to the low positional 

accuracy of the extracted roads. Our method did manage to extract most of the roads. 

However, due to the use of reduced spatial resolution before applying our algorithm, 

many of the extracted roads have a large discrepancy with the true road centerlines. 

These roads are shown as two parallel lines, one is red and one is blue in the 

evaluation image.  
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Figure 6.13 Evaluation results for the image ADS40_1: Green – correct 

extraction, red – missed roads, blue – false extraction ([Mayer et al., 2005]). 

Image copyright Leica Geosystems, Heerbrugg, Switzerland 
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Figure 6.14 Evaluation results for the image ADS40_2: Green – correct 

extraction, red – missed roads, blue – false extraction ([Mayer et al., 2005]). 

Image copyright Leica Geosystems, Heerbrugg, Switzerland 
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6.5.3 Ikonos Images 

The images come from the Space Imaging® product line Geo, have a ground 

resolution of 1 m, and an image size of 4000 by 4000 pixels. 8-bit versions of the 

images as well as the original 11-bit versions were available. The 4 Ikonos spectral 

channels are made available as pan-sharpened images. The images cover areas located 

in Kosovo. Table 6.5 summarizes the current evaluation results. 

1) ikonos1 contains a urban/suburban area in hilly terrain. 

2) ikonos2 comprises a rural scene with medium complexity in hilly terrain. 

3) ikonos3 contains a rural scene with medium complexity in hilly terrain. 

 

Table 6.5 Quality assessment of the extracted road networks 

(EuroSDR Ikonos test images, [Mayer et al., 2005]) 

Name Test Image Completeness Correctness RMSE (pixels) 

Gerke Ikonos1 0.49 0.36 1.83 

Gerke Ikonos2 0.59 0.10 1.95 

Gerke Ikonos3 0.62 0.16 1.57 

Bacher Ikonos3 0.55 0.35 1.56 

Bacher Ikonos1_sub1 0.34 0.66 1.29 

Bacher Ikonos3_sub1 0.81 0.87 0.97 

Bacher Ikonos3_sub2 0.86 0.89 1.00 

Malpica Ikonos1_sub1 0.25 0.74 1.13 

Malpica Ikonos3_sub1 0.60 0.79 1.41 

Malpica Ikonos3_sub2 0.60 0.89 1.59 

Zhang Ikonos1_sub1 0.59 0.43 1.66 

Zhang Ikonos3_sub1 0.73 0.37 1.77 

Zhang Ikonos3_sub2 0.70 0.34 1.18 
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Figure 6.15 Evaluation results for the image Ikonos1_sub1: Green – correct 

extraction, red – missed roads, blue – false extraction ([Mayer et al., 2005]). 

Image copyright Bundeswehr Geoinformation Office (AGeoBw), Euskirchen, 

Germany 

 

The image presented in Figure 6.15 is one of the most difficult test images because it 

contains an urban/suburban area in hilly terrain. Roads passing through the small town 

are not even visible to the human eye. Automated extraction of these roads is 

extremely difficult if not impossible without human interventions. The major 
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incompleteness occurs on the right upper and the centre part of the image due to the 

inadequateness of the image segmentation. Although the extraction is not satisfactory, 

the proposed method outperforms most of the other methods in terms of completeness. 

 

 

Figure 6.16 Evaluation results for the image Ikonos3_sub1: Green – correct 

extraction, red – missed roads, blue – false extraction ([Mayer et al., 2005]). 

Image copyright Bundeswehr Geoinformation Office (AGeoBw), Euskirchen, 

Germany 
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Figure 6.16 depicts the evaluation of our results from the test image Ikonos3_sub1. A 

large portion of the missing roads (red lines) are in the residential (town) area, i.e., in 

the left upper corner of the image. The winding roads located below the small town 

are missing due to the large width of the roads. They were misclassified as non-roads. 

This could be solved by changing the parameters set to adapt to the new wide roads to 

extract. The missing roads located in the right lower corner of the image are mainly 

due to the misclassification of road surfaces as non-road surfaces in our road 

refinement step. This occurred because they are closely adjacent to the crop fields that 

have similar spectral characteristics to the roads. As expected, a large portion of the 

false extractions are in the town area. Most of the other false extractions are actually 

small pathways in the crop fields. We do have some false roads extracted within a 

crop field. This is caused by the incompleteness in the road class refinement step. 

The evaluation of our results from the test image Ikonos3_sub2 is presented in Figure 

6.17. The missing roads (red lines) are mainly due to the misclassification of road 

surfaces as non-road surfaces in our road refinement step. These roads include the 

lines shown in red on the left part of the image and are either roads closely adjacent to 

spectrally similar objects or very wide roads. The other missing roads are due to the 

inadequate visibility of these roads on the image. They are occluded either by trees or 

buildings. A major problem is the missing road intersection on the left-upper part of 

this image. It will damage the topological structure of the extracted road network. The 

falsely extracted roads from this image are mostly on the hills where the barren soils 

are visible. They are misclassified as road surfaces in the image segmentation step. 

Because they look like linear features, the road class refinement fails to completely 

separate them from the real road surface. However, these false roads can be easily 

removed in a post-editing procedure. 
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Figure 6.17 Evaluation results for the image Ikonos3_sub2: Green – correct 

extraction, red – missed roads, blue – false extraction ([Mayer et al. 2005]). Image 

copyright Bundeswehr Geoinformation Office (AGeoBw), Euskirchen, Germany 

 

6.6 Comparing the Two Evaluation Approaches 

Our evaluation of the proposed road extraction method has slightly different ratings 

than those of Mayer et al. (2005). Because the reference data of the EuroSDR test 
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images have not been accessible to us and the details of the evaluation procedures are 

also unknown, the possible reasons for this evaluation discrepancy are: 

1) The two sets of test images are from different sensors. The Automap set is of 

Ikonos MS and Quickbird MS, while the EuroSDR set is of aerial, ADS40, and 

pan-sharpened Ikonos MS. The properties of road networks depend on the sensor. 

2) The two sets of test images are from different geographical areas. The Automap 

images are mostly in urban/suburban areas, while the EuroSDR images are mostly 

in rural areas. This might be one of the reasons why the quality of the rural set of 

images is better (less spectrally-similar objects).  

3) Different parameters used in the evaluation of the extracted road networks. For 

example, the distance threshold used to define the matching of two lines will affect 

the evaluation results. When a larger threshold value is used, higher completeness 

and higher correctness will be achieved with a possible lower RMSE values. 

6.7 Summary 

Quality assessment is an indispensable step for an automated system. This is also true 

for automated road extraction from remotely-sensed imagery. Due to the lack of 

proper distance measures for linear features, automatic evaluation of road network 

extraction results is still an issue in the photogrammetry and computer vision 

communities.  

This thesis presented a line segment matching-based quality assessment paradigm for 

evaluating automated road extraction. The line segment was chosen as the matching 

primitive due to the simplicity of its manipulation. The new matching approach was 

capable of determining the exactly matched portion of two line segments under 

consideration. Thus, the matching results can be directly used to calculate the basic 

quality measures without approximation. The proposed approach has been 

successfully applied to the evaluation of results from our road network extraction 

algorithm. 
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CHAPTER 7  

CONCLUSIONS AND RESEARCH OUTLOOK 

7.1 Conclusions 

For the last three decades, road network extraction has been one of the most 

challenging research topics in both the geomatics science/engineering and computer 

science communities. The major difficulties of automating road network extraction 

from remotely sensed imagery are: 

1) Image characteristics of road features vary according to sensor type, spectral and 

spatial resolution, ground characteristics, etc. Even in the same image, different 

parts of the road network often appear differently; 

2) In reality, road networks are too complex to be well modeled mathematically; 

3) There is interference by other features with a similar spectral response, e.g. crop 

fields, buildings, parking lots; and 

4) There are many artifacts on the roads, such as vehicles, trees and shadows, due to 

the high spatial resolution of the images now available. 

More research needs to be conducted to solve these problems. This research proposed 

a methodology to automate the road network extraction from multi-spectral imagery.  

7.1.1 Image classification and road class refinement 

To reduce the misclassification of roads and other spectrally similar objects, a set of 

shape descriptors of the refined angular texture signature were defined. These shape 

descriptors were used to separate the roads and non-roads after a spectra-based image 

classification. The proposed method has successfully identified the major 

misclassified open areas, such as crop fields, parking lots or buildings. However, 

further studies will be required on reducing the misclassification of the roads that are 

closely adjacent to parking lots/buildings and those within a major road intersection. 
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There are three other aspects that require further study to improve the road 

identification:  

1) Improve the image classification by using more advanced classifiers, e.g., neural 

network-based approach or fuzzy logic based approach; 

2) Improve the ATS-shape based road refinement by integrating more information 

from the shape descriptors (e.g., the ATS-direction and the ATS-degree); and 

3) Develop an image classifier, which can integrate shape information with spectral 

information or use an object-based image classifier instead of a pixel-based image 

classifier.  

7.1.2 Road centerline extraction from classified imagery 

To accurately extract the road centerlines from the classified imagery, an iterative and 

localized Radon transform was developed. The Radon transform was chosen because 

of its ability to detect line widths and its robustness to noise in the extraction process. 

However, there are still many practical issues in applying the Radon transform to 

extract road centerlines from classified imagery. One of the main problems involves 

the selection of peaks in the Radon domain. A peak region-based approach was 

proposed in this research. The new approach can be used to accurately extract the 

centerline of a wide line. Based on the robust line parameter estimation, we were able 

to implement an iterative Radon transform for road centerline extraction, which was 

further enhanced by applying the transform locally. The localization of the Radon 

transform was tested using three approaches, two of which were proposed by this 

research. All three approaches were then compared and analysed. The gliding-box 

approach was recommended when computational load is an issue. Further 

improvement in the road centerline extraction includes improved localization 

approaches for the Radon transform, more computationally efficient Radon transforms, 

etc. 
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7.1.3 Road network formation 

Road network formation is an important step as it affects the quality of the final 

extracted road network, particularly the topological properties. Perceptual grouping or 

perceptual organization is often used in the road network formation process. In this 

research, both proximity and similarity were used in determining the collinearity of 

line segments. Overshooting and undershooting were removed and road intersections 

were created. However, the conflation of close parallel line segments, which are 

created by the road centerline extraction still need to be studied. The removal of non-

road segments could be also partially automated. 

7.1.4 Quality assessment of road extraction 

Quality assessment is an important and necessary step for the automated road network 

extraction from imagery. To automate the assessment process, a feature matching 

technique is indispensable. Unfortunately, little research has been conducted into 

linear feature matching. In this research, a line segment matching algorithm was 

proposed and applied to the evaluation of the extracted road network against the 

reference data. The selection of reference data is extremely important as inaccurate or 

incomplete reference data will either invalidate the evaluation or render it 

unreasonable. Both manual extraction and the use of existing accurate road maps have 

their own strengths and weaknesses.  

Based on extensive experiments on a variety of remotely sensed multi-spectral images, 

the proposed methodology achieved moderate success in automating the road network 

extraction from imagery. The proposed methodology results are comparable to the 

results of other current methods of road network extraction from remotely sensed 

images. 

Regarding the quality assessment of road network extraction, the proposed method 

does not take into account other network properties such as topological completeness 

and topological correctness. Assessment based on road intersections is also 

meaningful and has its importance in evaluating extracted road networks. 
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7.1.5 About computational load 

Table 7.1 summarizes the computational time used for each test image set. The 

computer used in this research is a PC with 2.40GHz CPU and 512 RAM. All the 

computational time includes the file I/O operations, as well as the time to visualize the 

results. For exploration purpose, the current implementation consists of five modules, 

namely image segmentation, road class refinement, road centerline extraction, road 

network formation, and result evaluation. The computational time of the result 

evaluation is not included in Table 7.1. The image segmentation step is written in C++, 

while all the others are implemented using Matlab®. It is expected that the total 

computational time can be greatly reduced if all the modules were written in C/C++, if 

the intermediate file I/O operations were reduced, and if the codes were optimized. 

The tests have shown that given an image scene with a moderate size of about 2000 by 

2000 pixels, the entire process including the data preparation and the result evaluation 

can be completed within 2-3 hours.  

 

Table 7.1 Average computational time (seconds) 

AutoMap EuroSDR 
Image set 

Ikonos MS Quickbird MS Aerial ADS40 Ikonos 

Image size 306×375 400×500 2000×2000 1442×1450 1600×1600 

Image 

segmentation 
6.7 22.0 474.0 143.5 257.3 

Road class 

refinement 
25.0 84.7 787.7 256.5 1250.0 

Centerline 

extraction 
4.7 12.0 71.7 39.5 52.0 

Network 

formation 
13.7 26.3 1374.3 482.0 563.7 

Total time 50.1 145.0 2707.7 921.5 2123.0 
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7.1.6 About the determination of parameters and thresholds 

The proposed methodology has a series of parameters that need to be set appropriately 

to ensure its effectiveness. Table 7.2 summarizes the critical parameters used in this 

research along with some suggestions on how to determine the parameter values. 

Some parameters are determined empirically and can be used for most cases (e.g., the 

threshold distance for end point fusion). Others vary from scenes to scenes and need to 

be double checked before applying them to a new set of images (e.g., the 

mean/standard deviation (std) of the Gaussian membership function). There are also 

some other parameters that can be interactively determined (e.g., the threshold road 

membership can be interactively determined by viewing the road membership image). 

7.2 Outlook 

In the research area of image-based road database generation, refinement and updating, 

the following areas may be helpful and require further study: 

1) The multi-resolution analysis (MRA) technique has been used to build image 

pyramids from the input images. It may be more helpful if we also apply the MRA 

theory for modeling road networks. An ideal multi-scale road network model will 

include not only geometrical information but also radiometric information. The 

idea to divide the roads into different subclasses and treat different subclasses with 

different strategies [Laptev, et al., 2000; Zhang, 2004] can be a practical approach 

if this information is available from an existing GIS database; 

2) Complex road models are required to extract large road junctions such as highway 

interchanges where the roads exiting from the main road usually have a large local 

curvature; 

3) By extending the quality assessment results, automated road map change detection 

and updating could be achieved. Thus a production chain from imagery to GIS 

databases may be feasible; and  
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Table 7.2 Parameters and thresholds 

Module Parameter Value used Selection suggestions 

Image 

segmentation 

Number of 

clusters 
6 5 or 7 also works. 

Road class 

identification 

Mean/Std of 

Gaussian 

membership 

function 

Table 2.2 

Might vary from scenes to scenes, 

check the final cluster means to 

find appropriate values.  

ATS window 

size 

5×10 pixels 

5×20 pixels 

Depends on the average road width 

in the image. 

Road class 

refinement Threshold of 

road 

membership 

0.1 

0.4 

Depends on the ratio of road pixels 

and non-road pixels in the road 

cluster. Can be interactively 

determined by viewing the road 

membership image. 

Window size 31×31 pixels 
Larger than the largest road width 

in the image. Centerline 

extraction Minimum 

segment length 
10 pixels 

Larger than the average road width 

in the image. 

Threshold 

distance for 

endpoint fusion 

5 pixels Empirically set. 

Triangle size for 

gap bridging 

10 pixels 

π/12 
Empirically set. 

Network 

formation 

Threshold 

directional 

difference 

π/4 Empirically set. 

Minimum 

matched 

segment length 

5 pixels Empirically set. 

Result 

evaluation Threshold 

distance for line 

segment 

matching 

5 pixels Empirically set. 
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4) This research work should be extended to include the extraction of other types of 

geographical features, such as buildings, pipelines, rivers, landscape boundaries or 

geological structure lines, and from other types of remotely sensed imagery or data, 

such as hyper-spectral imagery, Radar imagery, or LIDAR data. 

It is believed that the development of image-based road database (in general GIS 

database) generation, refinement and updating systems will help to overcome the 

bottleneck issue in establishing and maintaining an application GIS. Image-based road 

map updating systems will find their first applications in rural areas and then be 

applied to suburban areas. However, a set of post editing tools will be necessary to 

help users correct the problems resulting from an automated algorithm.  
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