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Abstract  

New series of very high spatial resolution (VHR) satellites Ikonos and Quickbird have 

enabled mapping and updating of GIS databases of urban areas that is presently carried 

out using field surveys and aerial images. Satellites provide higher spatial resolution in 

panchromatic (PAN) mode compared to that in multispectral (MS) mode. High spatial 

and high spectral resolution are desirable for urban mapping as high spatial resolution 

provides better geometric quality while high spectral resolution provides better object 

identification. Image fusion techniques aim at increasing the spatial resolution of MS 

images using information from PAN image. However, fusion methods alter the spectral 

content of the original images. This is not desirable in applications requiring spectral 

information such as visual interpretation or classification procedures that depend on the 

spectral information of MS images. In this study, fused images obtained for Ikonos PAN 

and MS and Quickbird PAN and MS images by the standard methods namely IHS 

(Intensity-Hue-Saturation) and PCA (Principal Component Analysis), and simple wavelet 

methods namely, IHS with wavelet (IHS+W), PCA with wavelet (PCA+W), Wavelet 

Addition (WA) and Wavelet Substitution (WS) and complex ARSIS ("Amelioration de la 

Resolution Spatiale par Injection of Structures") methods are compared and analysed 

visually and statistically for urban mapping. Since PAN is less correlated with the Blue 

band, it results in high spectral error in the fused Blue band of IHS, IHS+W, WA and WS 

methods. The ARSIS models aim at synthesizing the images at high resolution close to 

reality. However, it is found that the ARSIS models produce similar results to the WA 

and WS methods in some bands and introduce more error in the NIR band compared to 

other methods. The ARSIS M2 method provides similar results as the PCA method. 

Based on the subjective (visual) assessment, of all the methods ARSIS M2 and PCA 

method provides good spatial quality while best preserving the colour of objects. Thus, 

these fused MS images are better for visual interpretation and mapping.   

VHR images have inadequate spectral resolution for complete discrimination of urban 

classes: roads and buildings. The high within-class spectral variance in VHR images 
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results in misclassifications. The problem is increased in the fused images where there are 

more spatial details compared to the original MS images. Also, the spectral variance in 

each class is further increased by fusion methods resulting in more misclassifications. 

However, because of the high redundancy in the MS bands, the classified fused images of 

different methods do not show much difference. Considering other pre and post-

processing steps involved in automated urban feature extraction, classification is only a 

part of the whole process. Future Worldview satellite from Digital Globe will provide 

higher spatial resolution for PAN (0.5 m) and 8-MS bands (2 m). With such a very high 

resolution, the need for the fusion of PAN and MS images has to be further investigated 

especially for automatic feature extraction procedures.               
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Chapter 1        Introduction  

Mapping of urban features (e.g. roads and buildings) from satellite images has gained 

enormous research interest with the launch of the Ikonos and Quickbird satellites that 

provide very high spatial resolution (VHR) panchromatic images (PAN) of 1 m and 

0.7 m respectively and multispectral images (MS) in four bands of 4 m and 2.8 m 

respectively. Sensor limitations in acquiring images with high spatial as well as high 

spectral resolution have led to the research in image fusion techniques to obtain images 

with high spatial as well as high spectral resolution. Because of the complexity of an 

urban environment and the high level of spatial details in VHR images, different fusion 

techniques to combine complementary data sets such as PAN, MS, Lidar and 

hyperspectral data is currently of interest in the field of urban feature extraction.  

Many image fusion methods have been developed in the last two decades for integrating 

images of different characteristics (e.g. SAR and Optical) and of different spatial 

resolutions (e.g. SPOT PAN and Landsat TM) to exploit the complementary data sets to 

obtain better information, interpretation and mapping. The need for increasing the 

interpretability of “low” spatial resolution images such as Landsat TM (30 m) initiated 

the research in PAN and MS fusion. The earlier fusion methods were developed based on 

simple pixel by pixel addition, subtraction, band arithmetic, ratio (Price, 1987, 

Munechika, 1993), IHS (Intensity-Hue-Saturation) (Welch et al., 1987; Carper, 1990), 

PCA (Principal Component Analysis), and high pass filters (Chavez et al., 1991). In the 

past few years, the wavelet tools have been extensively used and several new methods 

have been proposed. Currently, the research in image fusion focuses on applying the 

existing methods on images from different sensors and also on evaluating the quality of 

the fused images. In this chapter, the general motivation for the fusion of VHR PAN and 

MS images, the need for this research and the research objectives are presented.  
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1.1     General Motivation 

Very high spatial resolution enables an accurate description of shapes, features and 

structures while high spectral resolution enables better identification and classification of 

the features (Couloigner et al., 1998). Even though Ikonos and Quickbird images provide 

MS images with a very high spatial resolution of 4 m and 2.8 m respectively, this spatial 

resolution is insufficient for an operational level mapping. For urban mapping, map 

scales of 1: 5000 to 1:10 000 and 1:1000 to 1:2000 are desired for tactical and operational 

levels respectively (Weber et al., 2003). To obtain maps in these scales, the spatial 

resolution requirements of remote sensing images are of the order of 50 cm to 5 m for the 

tactical level and of the order of 20 to 50 cm for the operational level (Weber et al., 

2003). Ideally, improving the spatial resolution of the MS images should enable more 

detailed and more accurate urban maps. As we can see from Figure 1.1 a, the roads 

marked 3, 4 and 5 are difficult to map using 4 m MS images. Figure 1.1 b shows the 

fused images in true colour composite. The increased spatial resolution of the fused 

images enables a better interpretation and an easier mapping. The fused MS images have 

an additional advantage of colour (object identification) over a PAN image at VHR, 

thereby reducing time in photo interpretation as well as errors in feature identification 

and mapping. Similarly, in automatic urban mapping, fused MS images have high spatial 

resolution and have the spectral information of objects that allows automatic 

classification of objects.            
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Figure 1.1 Original and fused Ikonos images of a sub-urban area 
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1.2     Need for Research 

Most of the existing methods were developed for the fusion of “low” spatial resolution 

images such as SPOT and Landsat TM. They may or may not be suitable for the fusion of 

VHR images (Zhang, 2002). Hence, the existing methods have to be evaluated for VHR 

images.  

Results obtained with one fusion method may vary depending on the scene complexity 

and the application. For example, a method “A” that is “superior” to a method “B” for a 

certain data set may not be superior for another data set even if the data sets are from the 

same sensors. Therefore, a number of experiments on different data sets are required 

before conclusions can be drawn on the most suitable method of fusion.   

There is also a lack of measures for assessing the objective and subjective quality of the 

fusion methods. The quantitative measures are based on assessing the objective quality: 

spectral preservation while increasing the spatial resolution. They do not reflect the 

subjective quality of the images: visual quality for photo interpretation and preservation 

of spectral variance required in classification. In other words, the objective and subjective 

quality measures have low correlation (Cornet & Binard, 2004). Therefore, a subjective 

quality as well as an objective quality assessment is required.        
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1.3     Research Objectives 

The primary objective of this research is to evaluate the visual and spectral quality of 

different fused images obtained from Ikonos PAN and MS images and from Quickbird 

PAN and MS images in urban areas. The secondary objective is to analyze the usefulness 

of the fused images in automatic urban feature extraction. 

This research is mainly concerned with the evaluation of some pixel-based fusion 

methods for VHR images. The research outcomes and conclusions will contribute 

towards understanding the suitability of the existing fusion methods for Ikonos and 

Quickbird images. However, the results and conclusions are based on specific data sets 

and firm and global conclusions cannot be drawn. Several other experiments on different 

data sets are necessary to make final conclusions on fusion methods.  

1.4     Thesis Outline 

In Chapter 2, data fusion, common terminologies, architectures and fusion levels are 

presented. A review of standard and wavelet based methods with a brief introduction of 

the wavelet transform is provided. 

In Chapter 3, some of the relevant and useful quantitative measures for the quality 

assessment of fused images are discussed.   

In Chapter 4, the data sets and the fusion methods used are presented. The fused images 

obtained by the different methods are presented. The fused images have been evaluated 

based on the visual and statistical criteria discussed in Chapter 3.  

In Chapter 5, the classification of VHR images in urban environment and of the fused 

images obtained by the different methods is discussed. The relevance of the statistical 

quality parameters for classification is discussed.  

In Chapter 6, conclusions are drawn and future scope of the research is discussed.   
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Chapter 2        Fusion Process  

2.1     Introduction 

In this chapter, a general overview of data fusion, fusion architectures and fusion levels 

are presented first. Then, some pixel-based standard and wavelet-based fusion methods 

are discussed. In the final part, the sensor characteristics of Ikonos and Quickbird sensors 

are discussed.   

2.2     Data Fusion 

Wald (1999) proposed a general definition for data fusion in the context of earth data.  

“Data Fusion is a formal framework in which are expressed means and tools for 

the alliance of data originating from different sources. It aims at obtaining 

information of greater quality; the exact definition of ‘greater quality’ will depend 

upon the application”  

This definition equally emphasizes the tools for combining the data and the quality of the 

result. Merging, combination, data assimilation, and integration are other terms that are 

used to refer to data fusion.  Image fusion is a sub domain of data fusion referring to the 

fusion of two or more images. Pohl and Van Genderen (1998) defined image fusion as:   

“[..] the combination of two or more different images to form a new image by 

using a certain algorithm”  

It can refer to any fusion process involving images from sensors of same satellites or 

different satellites having different spatial, spectral and temporal characteristics (e.g. 

SPOT PAN with Landsat TM, SPOT PAN and SPOT XS, ENVISAT ASAR with SPOT 

Vegetation).  
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2.3     Fusion Architecture 

Fusion architecture describes the general scheme for combining and processing the inputs 

in the fusion process. The selection of a suitable architecture depends on the nature of the 

problem, the characteristics of the data, the availability of computing power and other 

factors. They are generally categorized into centralized, decentralized and hybrid 

architectures.   

The centralized architecture (Figure 2.1) takes all the available input simultaneously in 

order to derive the information. The D1, D2 and D3 are data from different sources (e.g. 

Images, DEM, GIS, other ancillary data like maps or ground truth) entering the fusion 

process. The input data set may comprise multi-temporal images, images of different 

spatial and spectral resolution or any other auxiliary data sets (e.g. D1 and D2 can be two 

images obtained at different dates and D3 may be GIS data for change detection). Since 

all the sources are taken in one fusion process, it offers a minimal loss of information. 

One drawback of this architecture is that if one dataset is of poor quality, it will affect the 

quality of the final result. Another disadvantage is the requirement of high processing 

power and computer memory.          

Figure 2.1 Centralized architecture    

Fusion Results
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Fusion Results

D1
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In the decentralized architecture (Figure 2.2), the inputs are processed in different fusion 

processes. In Figure 2.2, the sources D1 and D2, D3 and D4 are processed in different 

fusion processes and the results are combined using another fusion process. The 

decentralized architecture offers a greater flexibility in processing.   

Hybrid architecture is one that combines centralized and decentralized architectures. An 

illustration is shown in Figure 2.3. These architectures might need different processing 

stages and levels.          

Figure 2.2 Decentralized architecture         

Figure 2.3 Hybrid architecture 
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2.4     Fusion Levels 

Fusion level describes the level at which the fusion takes place. Fusion can be either at 

the pixel, feature or decision level. The following description and illustrations of fusion 

levels are given in the context of feature extraction.  

2.4.1 Pixel level fusion 

Pixel level fusion requires the least amount of pre-processing. It uses the DN or radiance 

values of each pixel from different sources in order to derive the useful information. 

Geometric registration and time difference in the acquisition of the inputs should be taken 

into consideration. Classification of multispectral or hyperspectral images along with 

other sources like PAN and DEM (Digital Elevation Model) for land use mapping is a 

good example to explain pixel level fusion. An illustration is provided in Figure 2.4. 

Here, data fusion refers to the use of a pixel vector composed of MS images, a PAN 

image and a DEM to derive the information. The pixel vector obtained from the different 

sources is used to obtain the result but there is no actual manipulation of the pixel values. 

The pixel based fusion of PAN and MS is also a pixel level fusion where new values are 

created or modeled from the DN values of PAN and MS images.            

Figure 2.4 Pixel level fusion 
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2.4.2 Feature level fusion 

Feature level fusion involves the extraction of feature primitives like edges or regions by 

segmentation procedures from different images. These extracted features are then 

combined using rule-based (fuzzy approaches) or knowledge-based approaches using 

Artificial Neural Networks (ANN), object-oriented or statistical approaches. This 

involves a higher level of processing. This fusion level is increasingly used in urban 

feature extraction. Figure 2.5 represents a feature level fusion. The regions and edges 

extracted from the different sources like MS images, PAN and Lidar data are combined 

to obtain a more meaningful representation of the objects of interest (e.g. 2D or 3D 

building models).            

Figure 2.5 Feature level fusion  
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Figure 2.6 Decision level fusion  
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3. Frequency Filtering / Modeling methods 

A few methods are described here. The frequency modeling methods are promising for 

VHR urban areas as most of the objects are well represented in VHR MS images except 

for some spatial details. Many recent works in fusion demonstrate that wavelet-based 

methods provide better results. Therefore, only standard and wavelet-based methods are 

used in the study. The examples and equations provided in the next sections correspond 

to the fusion of PAN and MS images although they can be applied to fusion of images 

from other sensors with or without slight modifications.   

2.5.1 Projection and Substitution methods 

The methods under this category involve the transformation of the input (MS) images 

into new components. The IHS (Intensity-Hue-Saturation) and PCA (Principal 

Component Analysis) transformations fall under this category. These two methods have 

become standard methods in image fusion.   

2.5.1.1 The IHS fusion method 

The IHS method is based on the human colour perception parameters. It separates the 

spatial (I) and spectral (H, S) components of a RGB image. Intensity refers to the total 

brightness of the colour. Hue refers to the dominant wavelength. Saturation refers to the 

purity of the colour relative to gray.  In fusion, the IHS transformation is used to convert 

three bands of an MS image from the RGB colour space to the IHS colour space. The I 

component is related to the spatial frequencies and is highly correlated with the PAN 

image. However, PAN has higher spatial frequencies than the MS images. These high 

frequencies represent the finer details present in the PAN image. Therefore, replacing the 

I component with the PAN image and transforming back to the RGB colour space will 

introduce high frequencies from PAN into the MS image. The PAN is usually contrast 

stretched or histogram matched to the I component it replaces. There are different 

algorithms for the computation of the IHS components. These algorithms differ in the 
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computation of the I component; however they tend to produce the same values for H 

and S (Nuñez et al., 1999).   

A simple model for the IHS transformation is given in Pohl and Van Genderen (1998). 

This model is implemented in many commercial software (Wald, 2002). This is the 

model used to test the suitability of the IHS method for VHR images.   

The conversion equations are: 
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and 1/2tan 1 vvH  with H not defined if R + G = 2B,   

22 21 vvS . 

The IHS to RGB transform equations are:   

HSv cos1

 

HSv sin2

 

                        

2

1

06/23/1

2/16/13/1

2/16/13/1

v

v

I

B

G

R    

(2.2)   

2.5.1.2 The PCA (Principal Component Analysis) fusion method 

The PCA method is based on statistical parameters. It transforms a multivariate data set 

of inter-correlated variables into new uncorrelated linear combinations of the original 

values. This method is also based on the assumption that the first PC (Principal 

Component) is highly correlated with PAN. The PCA method is very similar to IHS 

except that it is the first PC (PC1) that is replaced by PAN. As with the IHS method, 

PAN is stretched or histogram matched to PC1.   



    
14

 
The equation to compute the PC components from 3 bands of the MS image  is given 

by: 

                               

B

G

R

PC

PC

PC

333231

232221

131211

3

2

1

     

(2.3) 

where each row in the transformation matrix 

 

represents the eigen vectors of the 

covariance matrix . The transformation matrix satisfies the relationship T

 

where ),,( 321diag are the eigen values corresponding to 

 

in the descending 

order. R, G, and B are the input images.   

 To convert back to the RGB space, the transformation is given by:  

                       

3

2

332313

322212

312111

PC

PC

PAN

B

G

R

fused

fused

fused

    

 (2.4)  

The PCA method can be used for more than three bands.  

A schematic representation of the IHS and PCA methods is given in Figure 2.7. When the 

correlation between the I or PC1 component with PAN is not high, the results of these 

methods are not generally good. The IHS method can handle only three input images 

while the PCA method can be applied to any number of images. Since all the finer details 

of PAN will be introduced, the resulting fused image will appear spatially enhanced but 

less real. Modifications of the IHS and PCA methods involve the injection of the high 

frequency components of PAN corresponding to the missing high frequencies in the MS 

image. These modifications are discussed later.     
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Figure 2.7 Representation of the IHS and PCA methods  

2.5.2 Spectral Contribution methods 

In these methods, the relationship between the PAN and MS bands are used. This 

assumes that the spectral range of the PAN image covers the spectral range of the sum of 

the MS bands’ spectral range. Figure 2.8 shows the spectral response curve for the SPOT 

sensors. 

 

Figure 2.8 Relative spectral responsivity of SPOT sensors 
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2.5.2.1 SPOT P+XS method 

The SPOT P+XS method is specifically designed for SPOT images. The SPOT MS bands 

are referred by XS1, XS2 and XS3. For earlier SPOT 1, 2 and 3, the panchromatic 

spectral range covers the XS1 and XS2 bands. The XS3 band is in the NIR part of the 

electromagnetic spectrum and therefore it is not possible to use the PAN for improving 

the spatial resolution of XS3. This method is based on the assumption that the half-sum 

of the radiances in XS1 and XS2 is equal to the radiance in the PAN. The equations for 

XS1 and XS2 are: 

                  
ll

l
hh XSXS

XS
PANXS

21

1*
1 **2                                         (2.5)   

ll

l
hh XSXS

XS
PANXS

21

2*
2 **2

    

       (2.6)  

where  *
1hXS  is the fused XS1 band,   

*
2hXS  is the fused XS2 band,   

hPAN  is the PAN at resolution h,   

ll XSXS 21 ,   are XS1 and XS2 bands respectively at the spatial resolution l.  

2.5.2.2 Relative spectral contribution methods 

These methods also model the relationship between PAN and MS bands. These models 

assume that there is high correlation between the PAN and each of the MS bands. Eqn 2.7 

represents the Brovey transform. In the following equations, PAN is the PAN image, 

MS is the original image, erpMS int is the interpolated MS image, N is the number of 

bands, k is the band under consideration, h denotes the high resolution, and l denotes the 

low resolution. General equations for computing are:  

N

j

jh
erp

hkh
erp

kh

MS

PANMS
MS

1

int

int
* *   

     (2.7) 
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)(*
*

*
"

kh

klkh
kh

MSm

MSmMS
MS

   
    (2.8) 

where  khMS ''  is the mean adjusted fused image,   

)( klMSm and )( *
khMSm are the mean values of the images klMS and *

khMS .  

The “Colour Normalization” method (eqn. 2.9) is a modification of the Brovey transform. 

                       1
3

)1)(1(3

1

int

int
*

N

j

jh
erp

hkh
erp

kh

MS

PANMS
MS           (2.9) 

The Pradines’, Price’s, Local correlation modeling, Local Mean and Variance matching, 

and Synthetic Variable Ratio methods are based on similar modeling of the relationship 

between the PAN and MS images with slight variations. 

a) Pradines’ method: The model is given by 

                   
l

kl
hkh

PAN

MS
PANMS **

  

                     (2.10) 

A modification is to apply the model (eqn. 2.11) to the interpolated image.    

hlhkh
erp

hkh PANMSPANMS /
int* /

    

(2.11) 

where hlhPAN /

 

is the average over the window size defined by h/l.   

b) The Local Correlation Modeling and the Price method: A linear relationship is 

searched between the moving windows centered on the current pixel at the spatial 

resolution l for both images. The equations are:    

))(( intint*
h

erp
lhkh

erp
kh PANPANaMSMS                 (2.12) 
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where the coefficient a is computed by linear regression bPANaMS lkl * at the 

spatial resolution l.   

c) The LMVM method (Local Mean and Variance Matching): The mean and variance 

are adjusted locally over a moving window. The equations are: 

skh
erp

hkh
erp

shhkh MSPANMSPANPANMS intint* )(stdev/)(stdev*)(    (2.13) 

where shPAN

 

and )(stdev hPAN are the mean and standard deviation over the 

window of size s,    

skh
erpMS int and )(stdev int

kh
erpMS  are the mean and standard deviation over the 

window of size s.  

d) SVR (Synthetic Variable Ratio) Method 

The SVR method was proposed by Munechika et al. (1993) based on the Pradines (1986) 

method and Price (1987) methods.  The merged MS image is calculated using the 

equation:    

lSyn

kl
hkh PAN

MS
PANMS **

     

         (2.14)  

The fused image ( lSynPAN ) is calculated by:    

kl
k

ilSyn MSPAN
4

1

     

          (2.15) 

The parameters i

 

are calculated by regression with the values simulated using an 

atmospheric model that accepts target reflectance and relative spectral responses. Zhang 
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(1999) simplified the SVR method. The equation for synthesizing the MS image at a 

higher resolution is given by:     

hSyn

kh
erp

hkh PAN

MS
PANMS

int
* *

 
                                              (2.16) 

The hSynPAN  is calculated as in eqn. 2.15 but using multiple regression at resolution h.  

2.5.3  Frequency Filtering/Modeling methods 

The frequency filtering/modeling methods use high pass filters, Fourier transform or 

wavelet transform to model the frequency components between the PAN and MS images. 

They are based on the assumption that the difference between PAN and MS is only the 

lack of high frequencies in MS image that are present in PAN. High frequencies 

correspond to the spatial details (edges, small details) in the images. As mentioned 

earlier, PAN has a better spatial resolution and hence it has more high frequency 

information compared to the MS image. Thus, these methods aim at modeling the 

frequency components and introducing them into the MS image.   

Chavez et al. (1991) introduced the HPF (High Pass Filtering) method for PAN and MS 

fusion. In HPF, the high frequencies in PAN are extracted using high pass filters. The 

extracted high frequencies are then introduced into one band of the MS image by simple 

addition. The high frequency is introduced equally without taking into account the 

relationship between the MS and PAN images.   

High pass filtering forms the basis for many of the wavelet-based image fusion methods. 

Several wavelet transforms such as Haar, Daubechies and à-trous wavelets have been 

used for image fusion. In the next section, a brief introduction to the wavelet transform is 

given.   
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2.5.3.1 Wavelet Transform 

Any signal or image can be decomposed into several components representing different 

frequencies for a better analysis, description and for further processing. Wavelet 

transform (WT) provides a good localisation in both frequency and space. Wavelet 

transforms allow a decomposition of the signal (also called analysis) as well as a perfect 

reconstruction of the signal (also called synthesis). This property is highly useful in 

image fusion. The analysis and synthesis are explained using multiresolution analysis 

within a filter bank structure.  

The wavelet transform of a continuous 1D function f (t) can be expressed as  

dt
a

bt
tfabafWT )(),)((

2/1    
(2.17) 

where a and b are the scaling and translation parameters, respectively. Each base function 

a

bt
is a scaled and translated version of a function t

 

called mother wavelet. 

With the different scaled versions of the mother wavelet, it is possible to analyze the 

signal at different scales. This is referred to as the multiresolution analysis. Figure 2.9 

shows a good representation of a multiresolution (or multiscale) analysis.     
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Figure 2.9 Multiresolution Analysis  

Multiresolution analysis can be performed either using a Generalised Laplacian Pyramids 

(GLP) or using wavelet transform (with or without decimation). In Figure 2.9, the 

original image forms the base of the pyramid and the successive approximations are 

placed at the top of the original image giving rise to pyramidal structure. As we go up the 

pyramid, the approximation images have coarser and coarser spatial resolution. The 

difference between two successive approximations constitutes the detail images or the 

wavelet coefficients. The original images can be reconstructed from the final 

approximation and all the detail images if the process of multiresolution analysis is 

inverted. This is the synthesis property of wavelets. Of the many discrete wavelet 

transforms, the most common implementations in image fusion are the Mallat’s algorithm 

and the à-trous algorithm. Figure 2.10 shows an implementation of the Mallat algorithm 

using a filter bank structure. The filter bank structure consists of a high pass filter G and a 

low pass filter H. In the first level (j+1) of the analysis, the original image ),( yxf j is 

decomposed into an approximate image ),(1 yxf j , horizontal ),(1 yxCH j , vertical 

),(1 yxCV j

 

and diagonal ),(1 yxCD j

 

details by successively applying H and G filters. 

2

 

denotes sub-sampling the image by a factor of 2 that gives rise to the pyramidal 

structure. In the second level (j+2) of the analysis, ),(1 yxf j

 

is decomposed 
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into ),(2 yxf j , ),(2 yxCH j , ),(2 yxCV j

 
and ),(2 yxCD j . At each level, the size of 

the image is reduced by half resulting in a pyramidal structure. For synthesizing the 

original image from the final approximate and all the detail images, the complementary 

filters H

 

and G of H and G respectively, are used. The filters are applied as shown in 

Figure 2.10.                   

Figure 2.10 Filter bank structure for implementing the Mallat algorithm 
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The filters H, G, H

 
and G can be designed using the Daubechies wavelet coefficients 

for example. The four Daubechies wavelet coefficients are given in Table 2.1. The filters 

H, G, H  and G  are shown in Table 2.2.   

Table 2.1 Daubechies filter coefficients 

H(0) H(1) H(2) H(3) 

0.482962913145 0.836516303738 0.224143868042 -0.129409522551 

 

The coefficients are divided by 2  for normalization. The filter H is a low pass filter and 

G is a high pass filter.  

Table 2.2 Filter masks for analysis and synthesis filters 

Filter Filter Coefficients 

H H(3) H(2) H(1) H(0) 

G -H(0) H(1) -H(2) H(3) 

 

H(0) H(1) H(2) H(3) 

 

H(3) -H(2) H(1) -H(0) 

 

An example of WT analysis and synthesis using the Daubechies wavelet coefficients is 

presented in Figure 2.11. The original image has been decomposed to approximate and 

detail images at the first level.     

HH

GG
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Figure 2.11 WT analysis and synthesis using a Daubechies wavelet  

The “à trous” wavelet transform is a non-orthogonal, shift-invariant, symmetric, dyadic, 

undecimated, discrete redundant wavelet transform (Dutilleux, 1987). The sampled data 

at each level are the scalar products of the function )(xf with the scaling function )(x

 

which corresponds to a lowpass filter. The scaling function can be a triangle scaling 

function or a bicubic spline scaling function. The wavelet coefficients are usually 

calculated as the difference between two consecutive approximations.          
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Figure 2.12 Approximate and detail images using the à-trous algorithm  

The mask for the B3-Spline Scaling function is (1/16, 1/4, 3/8, 1/4, 1/16) in one 

dimension (1D). This mask can be extended to two dimensions (2D) by assuming 

separability and applying the 1D mask along row and then along column of image or by 

applying the 2D mask given by: 

256/164/1128/364/1256/1

64/116/132/316/164/1

128/332/364/932/3128/3

64/116/132/316/164/1

256/164/1128/364/1256/1  

                        (2.18)  
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This algorithm produces a band stack of approximate images that have the same size as 

the original image (i.e. no decimation). At each level of decomposition, one approximate 

and one detail image is produced. In this case, the detail image is isotropic. An example 

of the decomposition using the à-trous algorithm is presented in Figure 2.12. The original 

image represents the image at level j and the B3-spline function is applied to obtain the 

approximate image at level j+1. The detail image at j+1 is the pixel-based difference 

between the image at level j and the approximate image at j+1.  

2.5.3.2 IHS+W and PCA+W 

Modifications of the IHS method were proposed by Nuñez et al. (1999). Instead of 

replacing the I by PAN, the high frequency components from PAN are modeled using the 

à-trous with a B3-Spline scaling function and injected into the I component resulting in a 

new intensity I*. Then the I*, H and S components are retransformed into the RGB colour 

space. This way, the dominance of PAN in the fused MS images is substantially reduced 

resulting in a better spectral preservation. This combined use of wavelet and IHS is 

referred in the thesis as the IHS+W method. On the same principle, González-Audícana 

et al. (2004) proposed a Mallat’s undecimated algorithm for improving the IHS and PCA 

methods. The undecimated Mallat algorithm uses the same filter bank structure shown in 

Figure 2.10 but without the sub-sampling by 2. The PCA+W is used in the thesis to refer 

to the PCA method in combination with wavelet. In the PCA+W method, the high 

frequency components of PAN are introduced into the PC1 component to obtain a new 

PC1* and then an inverse PCA is carried out with the new PC1*. Both the à-trous and 

Mallat undecimated algorithm with the Daubechies wavelet coefficients were used in 

IHS+W for one data set. But only the results of the à-trous algorithm have been used for 

comparison in the chapter 4. Some results of the Mallat undecimated algorithm are 

presented in the Appendix 1.   

Figure 2.13 illustrates the wavelet analysis and synthesis with decimation in PAN and 

MS image fusion. In IHS+W and PCA+W methods, the I or the PC1 component are 

decomposed in a similar way and a new I* or PC1* are synthesized.  
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Figure 2.13 Diagram to illustrate wavelet transform in image fusion  

2.5.3.3 ARSIS Concept 

The ARSIS concept is based on wavelet transform and multiresolution analysis. It was 

also developed on the assumption that the difference between the PAN and MS images is 

the lack of the high frequency components in the MS image. It tries to model these 

missing frequencies using a multiresolution analysis to synthesize the image at a higher 

resolution (Ranchin et al., 2000).   
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Figure 2.14 General scheme for ARSIS concept  

(Source: Ranchin et al., 2000)  

Figure 2.14 illustrates a general scheme for the ARSIS concept. There are three models in 

the ARSIS scheme: MSM (MultiScale Model), IBSM (Inter-Band Structure Model) and 

HRIBSM (High Resolution Inter-Band Structure Model). The MSM model describes the 

spatial structures in an image at different spatial resolutions. This can be either 

implemented using the Mallat algorithm combined with a Daubechies wavelet or the à-

trous algorithm. The IBSM model describes the relationship between the spatial 

structures with change in spectral bands. The HRIBSM model is the IBSM model which 

models the transformation with change in spatial resolution. The HRIBSM model is 

identical as the IBSM model as the relationship between the spatial resolutions of 

different modalities is not known exactly.   

The general scheme (Figure 2.14) consists of the following steps: 

1. Multiresolution analysis of the PAN and MS image using MSM to obtain 

approximate and detail images at different spatial resolutions. 
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2. Modeling the relationship between known detail images of PAN and MS at each 

spatial resolution using the IBSM model. 

3. Inferring the missing high frequency information in the MS image (HRIBSM 

model) from the known modeled relationship. 

4. Inverting the MSM model of MS image taking into account the transformation 

parameters computed in the IBSM and HRIBSM models to synthesize the MS 

image at a higher spatial resolution, i.e. the one of PAN.   

There are three IBSM models proposed by Ranchin et al. (2000). The simplest model is 

the Identity model (Model 1) where the detail images of MS image are assumed to be 

equal to PAN. The wavelet addition (WA) and wavelet substitution (WS) methods 

proposed by Nuñez et al. (1999) can be categorized as a Model 1 technique. PAN and 

MS images are decomposed into approximate and detail images at different levels say n = 

1 to 4 represented in the following equations: 

n

i
PANPAN AwPAN

1      

(2.19)  

kMS

n

i
kMSk AwMS

1     

(2.20)  

where   k refers to the multispectral band under consideration,    

w refers to the detail images and    

A refers to the approximate image.   

In the wavelet addition method (WA), the detail images of the PAN image are directly 

added to the MS image (eqn. 2.21). The detail images of one or two levels are usually 

added. In the wavelet substitution method (WS) (Figure 2.13), both the PAN and MS 

image are decomposed into approximate and detail images. Depending on the level of 

decomposition, the detail images of MS images are substituted by the corresponding 

detail images of PAN (eqn 2.22).  

n

i
PAN

erp
khkh wMSMS

1

int*    
(2.21) 
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n

i
PANkMSkh wAMS

1

*     
(2.22)  

Model 2 (M2) is based on mean and variance adjustments between the details of PAN 

and MS. In this model, the missing detail is given by: 

                                 bwaw lhPANlhMS )()( *                   (2.23) 

where )( lhMSw  is the detail of MS between the scales h and l,  

           )( lhPANw

 

is the detail of PAN between the scales h and l,   

)( variance

)( variance

)(

)(

plphPAN

plphMS

w

w
a

  

)(mean*)(mean )()( plphPANplphMS wawb

  

p is the ratio of two successive scales in the multiscale model.  

Model 3 (M3) is different from Model 2 in the computation of the coefficients a and b. 

The coefficients are calculated based on least square adjustments and axes of inertia. The 

RWM model is another IBSM model named after the authors Ranchin, Wald and 

Mangolini. More details on these models can be found in (Ranchin et al., 2000; Ranchin 

et al., 2003).   

2.5.4 General Remarks 

The IHS and PCA methods only aim at increasing the spatial resolution of the images. 

These methods generally provide good results when the PAN spectral range covers the 

spectral range of MS images. In other words, they perform well when the PAN is highly 

correlated with the MS images. The IHS+W, WA and WS methods depend on the 

correlation between the high frequency components of PAN and MS images. But they do 

not try to model the frequency relationship between PAN and each MS band. Instead, the 

same amount of high frequency component is introduced into all the bands of the MS 

image irrespective of the wavelength bandwidth of each band of the MS image. The 
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ARSIS M2 and M3 models try to model the relationship between the high frequency 

components of PAN and MS images. These models have been shown to produce better 

results for many different data sets from different sensors. The ARSIS concept has a good 

theoretical framework to synthesize high resolution MS images that would be obtained if 

a MS sensor at high resolution existed. But, the synthesis at high resolution depends on 

the sensor characteristics of both the PAN and MS sensors.   

Figure 2.15 and Figure 2.16 show the spectral response curves for the Ikonos and 

Quickbird sensors respectively. It can be seen that the spectral response of the PAN 

sensor is not uniform in the entire wavelength. As we can see in Figure 2.15, the spectral 

response of Ikonos PAN is very low in the Blue band and maximum in the Green, Red 

and NIR bands. The PAN spectral response curve extends beyond 0.90 m. Similarly, the 

Quickbird PAN sensor has low spectral response in the Blue band, and maximum in the 

Green-Red bands (Figure 2.16). Even though the spectral ranges of the PAN sensors are 

provided as 0.45-0.90 m, the spectral sensitivity is not uniform over the MS bands. 

Thus, the fusion methods may encounter problems in the Blue and NIR bands.               
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Figure 2.15 Ikonos spectral response  

(Source: Space Imaging)  

 

Figure 2.16 Quickbird spectral response  

(Source: NASA Library) 
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2.6     Summary 

In this chapter, concepts of data fusion and some pixel based fusion methods were 

discussed. Any pixel-based fusion method modifies the spectral values of the original MS 

images. Several applications like photo-interpretation and classification depend on the 

spectra of objects and high error in synthesis may result in inaccurate mapping. Therefore 

quality assessment is essential in image fusion.  Some of the existing quality measures 

are discussed in the next chapter.  
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Chapter 3        Quality Assessment  

3.1     Introduction 

Quality refers to both the spatial and spectral quality of images. Image fusion methods 

aim at increasing the spatial resolution of the MS images while preserving their original 

spectral content. Spectral content is very important for applications such as photo 

interpretation and classification that depend on the spectra of objects. The lack of 

standard methods and tools for assessment has led to poor knowledge about the fusion 

methods and their suitability for different data sets and landscapes. Several efforts have 

been taken to frame a standard protocol for evaluating quality. This chapter discusses the 

properties of the fused images, the limitations in quality assessment and some 

quantitative criteria for the quality assessment of fused images.   

3.2     Properties of Fused Images 

As formulated by Wald (1997), the properties of fused images are:  

1. Any fused image once downsampled to its original spatial resolution should be as 

identical as possible to the original image. 

2. Any fused image should be as identical as possible to the image that a 

corresponding sensor would observe with the same high spatial resolution. 

3. The MS set of fused images should be as identical as possible to the MS set of 

images that a corresponding sensor would observe with the same high spatial 

resolution. 

These three properties have been reduced to two properties: consistency property and 

synthesis property (Thomas & Wald, 2004). The consistency property is same as the first 

property and the synthesis property combines the second and third properties defined by 

Wald (1997). The synthesis property emphasizes the synthesis at an actual higher spatial 



35  

and spectral resolution. These properties cannot be tested directly due to the lack of 

reference images at the higher spatial resolution.   

3.3     Reference Images 

Reference MS images at a higher spatial resolution are not available for assessing the 

quality of the fused images. The only available reference images are the original MS 

images at the “low” spatial resolution. Wald et al. (1997) proposed a protocol for quality 

assessment and several quantitative measures for testing the three properties.  The 

consistency property is verified by downsampling the fused image at the higher spatial 

resolution h to their original spatial resolution l using suitable filters such as bi-cubic 

spline. The synthesis properties of fused images need a reference image. Since they are 

not available, the original PAN at resolution h and MS at resolution l are downsampled to 

their lower resolutions l and v respectively.  Then, PAN at resolution l and MS at 

resolution v are fused to obtain fused MS at resolution l that can be then compared with 

the original MS image. The quality assessed at resolution l is assumed to be close to the 

quality at resolution h. This reduces the problem of reference images. However, we 

cannot predict the quality at higher resolution from the quality of lower resolution (Wald 

et al., 2002). The quality at higher resolution can be better or worse depending on the 

high frequencies introduced and it is difficult to predict the variability of the quality with 

respect to the spatial resolutions.   

Although neither the consistency property nor the synthesis property can provide the true 

quality of the fused images, they can be used to infer the quality of the fused images to 

some extent. The consistency property used for testing the quality of fused images in 

preserving the original spectral content seems reasonable compared to the actual 

synthesis. Nevertheless, the conclusions might be similar for both approaches.    



36  

3.4     Quality Assessment 

3.4.1 Visual Quality 

The objective of fusion is to increase the spatial resolution of MS images. Therefore, 

visual analysis is a necessity to check if the objective of fusion has been met. The general 

visual quality parameters are: image quality (geometric shape, size of objects), spatial 

details and local contrast. Other visual quality parameters for testing the properties are: 

1. Spectral preservation of features in each multispectral band: Based on the 

appearance (high or low spectral values) of objects in the original MS images, the 

appearance of the same objects in the fused images are analysed in each band.  

2. Multispectral synthesis in fused images: Fusion should not distort the original 

spectral characteristic of objects. The multispectral characteristics of objects at 

higher spatial resolution should be similar to that in the original images. 

Analysing different colour composites of the fused images and comparing them 

with that of original images can help verifying this property. 

3. Synthesis of images close to actual images at high resolution as defined by the 

synthesis property of fused images: This property cannot be actually verified but 

can be analysed from our knowledge of spectra of objects in the lower spatial 

resolutions.   

3.4.2 Statistical Quality 

Some measures often used to evaluate the quality of fused images are presented in this 

section. klMS refers to the multispectral band k at the spatial resolution l, lkhMS )( * is the 

downsampled fused image at resolution l and *
klMS refers to the fused image created at 

resolution l. For simplicity, *
klMS is used in the following equations. This is applicable 

for the synthesis property. For the consistency property, it is replaced by lkhMS )( * .   
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Bias, standard deviation of the difference image (SDD), difference in variance (DIV) and 

correlation coefficient (CC) are criteria that are used to verify both the consistency and 

synthesis (second property) properties of fused images. Some criteria for multispectral 

quality includes computing the correlation coefficient between the fused images with 

PAN; the correlation coefficient between the fused images in different bands; and the 

frequency of pixels in each dominant spectra in the image and classification.   

Let * and klkl MSMS be the mean of * and klkl MSMS respectively and * and klkl MSMS the 

variance of * and klkl MSMS  respectively.   

1. Bias is the difference between the means of the original image and of the fused 

image. The value is given relative to the mean value of the original image. The 

ideal value is zero.  

                             
kl

kl

kl

klkl

MS

MS

MS

MSMS
Bias

**

1                                           (3.1) 

2. Difference in Variance (DIV) is the difference between the variances of the 

original image and of the fused image. It indicates the amount of information 

added or lost during fusion. A positive value indicates a loss of information and a 

negative value some added information. It is given relative to the variance of the 

original image. The ideal value is zero.    

kl

kl

kl

klkl

MS

MS

MS

MSMS **

1DIV                                         (3.2) 

3. Correlation Coefficient (CC) measures the correlation between the original and 

the fused images. The higher the correlation between the fused and the original 

images, the better the estimation of the spectral values. The ideal value of 

correlation coefficient is 1.  
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4. Standard deviation is the standard deviation of the difference image (SDD) 

relative to the mean of the original image. It indicates the closeness of the fused 

image to the original image at a pixel level. The ideal value is zero. 

kl

klkl

MS

MSMS )(deviation Standard
  SDD 

*

   

(3.4) 

5. Correlation between different bands: The correlations between the fused image 

and PAN ) and ( * PANMSkl and between the fused bands are computed. This 

quantity indicates the correlation between the different bands. A correlation 

coefficient close to that in the original images indicates a preservation of the 

multispectral integrity between the two bands under consideration.    

6. Number and frequency of spectra: The number of different spectra in the 

original MS image and in the fused MS image is calculated using the pixel vector 

composed of all the MS bands. However, even if the number of spectra is 

identical, this measure does not ensure that the spectra are identical in both 

images as they should. The other criterion is the number of occurrences of each 

spectra in the original and fused images. This can accurately describe the 

multispectral synthesis of the fusion method, but does not provide any spatial 

information about the occurrences of pixels. Thus, the results obtained may be 

misleading.  

7. Classification: Fused images are often classified to obtain land-use maps. 

Classification is similar to the frequency of each spectrum but only the most 

dominant spectra are considered in classification. Classification results of fused 

images can be analysed to understand the effect of spectral error(s) in the fused 

images relative to different fusion methods. Standard deviation and mean 

differences between different objects in original and fused images has been used 
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to characterize spectral distortion in different objects (Terrattaz, 1997; Weber, 

2003). Weber (2003) analysed the mean for different objects in original and fused 

images to characterize the spectral distortion in those objects. An unsupervised 

classification is used to classify the original image into clusters. The mean, 

standard deviation and root mean square error (RMSE) are calculated between the 

original and fused image for the pixels in each cluster. Clusters (Pixels) of only 

the dominant spectra are considered.   

The RMSE is given by:  

       
n

iMSiMS

RMSE

n

i
klkl

1

2* )()(

                                          (3.5)   

where  n is the number of pixels,     

MSk is the original image for the band k and   

           *
kMS  is the fused image in band k. 

8. ERGAS (from the French acronym “Erreur Relative Globale Adimensionnelle de 

Synthèse”) is a simplified quantity proposed by Wald (2002) that summarizes the 

error(s) in all the bands. The lower the error(s) in the bands, the better the quality 

of the fused images.   

It is given by:    

N

k kl

k

MS

MSRMSE
Nl

h
ERGAS

1
2

2)(1
100                           (3.6)  

where RMSE is calculated using eqn. 3.5 using every pixel of the image,   

N is the number of bands,   

h/l is the ratio of spatial resolutions of original PAN and MS images. 
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3.5     Related Work 

Much literature is available for the fusion of SPOT and Landsat TM images. The ARSIS 

models have been tested on SPOT P and XS images, SPOT XS and KVR-1000 image, 

Landsat TM bands, and SPOT P and Landsat TM bands (Ranchin et al., 1997; Terretaz, 

1997) and they generally provide better statistics and preserve multispectral content.    

Only very little research has been done using VHR images. The ARSIS M2 and M3, 

PCA with wavelet (PCA+W), IHS (IHS+W) with wavelet have been shown to provide 

better results for Quickbird images compared to standard IHS and PCA fusion methods 

(Reyes et al., 2004). Weber et al. (2003) presented better results with the UWT-M2 

method that uses the ARSIS concept compared to a method based on correlation. The 

UWT-M2 method uses undecimated wavelet transform (the à-trous algorithm) for MSM 

and ARSIS M2 for IBSM. Among the different combinations of MSM and IBSM models 

in the ARSIS concept, GLP-AABP (Gaussian Laplacian Pyramid (MSM model) - AABP 

(IBSM model) named after the authors Aiazzi, Alparone, Baronti and Pippi)) provided 

better results for the fusion of Ikonos PAN and MS (Ranchin et al., 2003). Other methods 

based on least squares (Zhang, 2002) and IHS combined with Fourier filtering (Ehlers, 

2005) are shown to better preserve multispectral content in fusion of  VHR images.   

3.6     Conclusion 

Based on several experiments, statistical measures - bias, standard deviation of difference 

image, difference in variance and correlation coefficient - are found to be suitable for 

evaluating the quality of fused images. The numbers of spectra and of occurrences of the 

spectra are not used in this research because of the high radiometric resolution (dynamic 

range) of the VHR images. The spatial and multispectral quality of fused images is often 

assessed by visual analysis. Results of visual quality assessment may differ depending on 

the human perception of quality and it will also differ depending on the application 

(Cornet and Binard, 2004).  
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Chapter 4        Results and Analysis  

In this chapter, the fused images obtained by different methods are evaluated based on 

the quality measures described in chapter 3. First, the data sets and the methods used in 

the study are presented.  Then, the quality of the fused images obtained for each data set 

is analyzed visually and statistically. Finally, some general discussions and conclusions 

are drawn based on the analyses. Classifications of the fused images are discussed in the 

next chapter.   

4.1     Data 

Our study consists of ortho-rectified subset images of the City of Fredericton, New 

Brunswick, Canada acquired by the Ikonos (IK) satellite of Space Imaging Inc. in 

October 2001 and by the Quickbird (QB) satellite of Digital Globe in August 2002.   

The IK PAN and MS images are provided at a spatial resolution of 1 and 4 m 

respectively. The QB PAN image is provided at a spatial resolution of 0.7 m and MS 

images at 2.8 m. The IK and QB PAN images are acquired in the spectral range of 0.45 to 

0.90 µm and the MS images are acquired in four spectral ranges of (Blue) 0.45-0.52µm, 

(Green) 0.52-0.60µm, (Red) 0.63-0.0.69µm, and (NIR) 0.76-0.90µm.  

Two Ikonos data sets and two Quickbird data sets were selected for the experiments. The 

data sets under consideration consist of urban and suburban areas. The test sites of the 

data sets are shown in Figure 4.1 and Figure 4.2. The MS images are of size 256 x 256 

pixels and PAN images are of size 1024 x 1024 pixels.     
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(a) Ikonos dataset 1 (IK D1)    (b) Ikonos dataset 2 (IK D2) 

Figure 4.1 Image showing study areas in Ikonos data sets   

     

  

(a) Quickbird data set 1 (QB D1)   (b) Quickbird data set 2 (QB D2) 

Figure 4.2 Image showing study areas in Quickbird data sets   



  
43

 
The study area of Ikonos dataset 1 (IK D1) shown in Figure 4.1a consists of a complex 

residential area with houses, streets and dense vegetation in its upper right portion and an 

industrial area with large buildings, parking lots, and vehicles in its lower portion.  

The test area of Ikonos dataset 2 (IK D2) shown in Figure 4.1b consists of a sub-urban 

area with small houses and streets.  

The test areas for Quickbird dataset 1 (QB D1) (Figure 4.2 a) and data set 2 (QB D2) 

(Figure 4.2 b) consists of complex residential and industrial areas. The study area of QB 

D2 is identical as that of IK D1.    

4.2     Methods 

Bicubic resampling technique is used for resampling the MS images to the size of PAN 

and also for downsampling the MS images in quality assessment. The following methods 

were selected for evaluation:  

1. IHS 

2. PCA 

3. IHS+W 

4. PCA+W 

5. Wavelet Addition (WA) 

6. Wavelet Substitution (WS) 

7. ARSIS M2 model 

The IHS method was carried out for different combinations of bands. The ARSIS models 

were only available for IK D1 and QB D1. The ARSIS fused images of different IBSM 

models using different filter sizes in the MSM model were provided by Dr. Ranchin 

(Ecole des Mine de Paris, France). The statistics computed for all these images are 

presented in Appendix 1. The M2 model (called the M2 method) using a filter size of 3x3 

for the MSM model was selected for comparison with other methods as the fused images 

of other models do not have good geometric quality. 
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4.3     Results of IK D1 

The subsets of the fused images obtained by the different methods are shown in Figure 

4.3 for the Blue band. Figure 4a shows the original image. Figure 4.3b, c, d, e, f, g and h 

show the fused images by the IHS, PCA, IHS+W, PCA+W, WA, WS and M2 methods 

respectively.  The increase in spatial details (edges and small objects) is clearly visible in 

the fused images.  

4.3.1 Visual Quality 

The IHS image in Blue band shows high spatial details (Figure 4.3b). The fused image 

appears brighter than the original one and the vegetated areas appear coarser. The PCA 

fused image (Figure 4.3c) is slightly brighter compared to the original image and it has 

less spatial details than the IHS one. Visually, the fused images of IHS+W, WA and M2 

(Figure 4.3d, e and f) appear to have less sharp spatial details compared to IHS. Similar 

to the Blue band, the fused images in Green and Red bands also have small differences in 

the sharpness of the spatial details introduced. The differences can be seen in the WA and 

M2 fused subset in Green band and of WS and M2 in Red band presented in Figure 4.4 

and Figure 4.5 respectively. Edges, small objects and spatial structures in buildings 

appear sharper in the fused NIR images by PCA and M2 compared to IHS and IHS+W 

(Figure 4.6).   

All the methods have introduced spatial details but the degree of sharpness varies in the 

fused images. When the spatial details (edges of objects) are less sharp, it results in bright 

areas surrounding the objects and blurry edges. Visually, all the methods seem to have 

preserved the relative spectra of the features in the individual bands. 
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Figure 4.3 Fused images in Blue band (IK D1)  



  
46

  

Figure 4.3 Fused images in Blue band (IK D1)        
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Figure 4.4 Fused images in Green band (IK D1)  

 

Figure 4.5 Fused images in Red band (IK D1)    
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Figure 4.6 Fused images in NIR band (IK D1)  
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4.3.1.1 Multispectral quality 

Visual analysis is also essential for assessing the multispectral synthesis. Several colour 

composites of the fused images obtained by the different methods were analysed. First a 

mosaic of the fused MS bands obtained by different methods is created (Figure 4.7). This 

assures that the same LUTs are applied to create comparable colour composites.    

 

Figure 4.7 True color composite of different methods  

The colour composites of the fused images in the Green, Red and NIR bands do not show 

significant colour differences whatever the method applied. The false colour composite of 

IHS (NIR band in Red, Red band in Green, Green band in Blue) is as good as the M2 

method (Figure 4.8). A subset of the colour composites (Red band in Red, Green band in 

Green, Blue band in Blue) is shown in Figure 4.9. Figure 4.9a shows the original colour 

composite. Figure 4.9b shows the colour composite of the IHS fused bands. The colour 

distortion in the shadow pixels and in vegetation can be clearly seen. The spectral 

distortion in vegetation seems to be less for IHS+W (Figure 4.9d) compared to IHS. 

Similar to IHS+W, distortion was also observed in WA and WS colour composites. It 

seems that there is high error in the synthesis of the Blue band by the IHS, IHS+W, WA 

and WS methods. The PCA and M2 colour composites (Figure 4.9c and e) appear to have 

preserved the original spectral content. The colour composite of PCA+W is similar to 

PCA and it seems to preserve the multispectral content of the original images. In 

conclusion we can say that of all the methods the M2, PCA and PCA+W methods seem 

to better preserve the original multispectral content.  
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Figure 4.8 False colour composites (IK D1) 

(Colour Composite: NIR band -Red, Red band – Green, Green band – Blue)  
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Figure 4.9 True colour composites (IK D1) 
(Colour composite: Red band- Red, Green band - Green, Blue band - Blue)   
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4.3.2 Statistical Quality 

Since the IHS method can take only three input images, different combinations were 

tested. The band number 4, 3, 2 and 1 refers to the NIR, Red, Green and Blue bands 

respectively.  All the combinations with the NIR band provide similar statistical results 

(See Appendix 2). Hence, the fused images in the 431 combination and the fused images 

in the 421 combination are only considered here for the IHS method.   

For the PCA method, all four bands were used. The first principal component (PC1) 

accounts for 57 percent, PC2 for 42 percent, PC3 for 0.47 percent and PC4 for 0.10 

percent of the total variance, which indicates high information content in both the PC1 

and PC2 components.   

Statistics obtained for the different methods are given in Table 4.1. The bias and standard 

deviation of the difference image are given in percentage relative to the mean of the 

original image; and variance is given in percentage relative to the variance of the original 

image. The bias quantifies the first property of the fused images and is less than 0.5 for 

all the methods.   

4.3.2.1 Standard deviation of the difference image (SDD) (Table 4.1) 

Standard deviation of the difference image indicates the difference between the original 

and the fused image at the pixel level. A lower value generally indicates the closeness of 

the fused image to the original image and thereby implies a better synthesis by a certain 

method. On the general observation of the statistics for this dataset, the PCA+W fused 

images have low SDD of 5, 8 and 11 percent for the Blue, Green and Red bands 

respectively. The IHS+W fused image has the lowest SDD in the NIR band. Thus, 

PCA+W produces less error in Blue, Green and Red bands and IHS+W less error in NIR 

band.   
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4.3.2.2 ERGAS  

ERGAS is a global measure that summarizes the error in all the bands fused by a certain 

method. A plot of the ERGAS values computed for each method is presented in Figure 

4.10. A lower value generally indicates a better quality of the fused product. PCA+W 

produces a low ERGAS of 2.3 followed by IHS+W with 2.5. Both the WA and WS 

methods have a same ERGAS value of 3.7. The M2 method has an ERGAS of 4.3 and 

the PCA method has a slightly higher value of 4.5. The IHS method produces the highest 

ERGAS (equal to 5). Thus, based on the ERGAS values, the PCA+W and IHS+W 

methods seem to provide better quality results.   

Table 4.1 Statistics for IK D1  

Bias, SDD (standard deviation of the difference image), DIV (difference in variance) in %,  
CC (correlation coefficient)    

Band IHS PCA IHS+W

 

PCA+ WA WS M2 

Blue -0.32 -0.15 -0.02 -0.01 0.01 0.01 0.17 

Green -0.3 -0.25 -0.01 -0.01 0.01 0.01 0.16 

Red -0.4 -0.34 -0.02 -0.02 0.01 0.01 0.21 
Bias 

NIR -0.23 -0.35 -0.01 -0.02 0.01 0.01 0.1 

Blue 19.59 9.39 9.65 4.74 14.97 14.93 9.83 

Green 18.92 15.62 9.42 7.89 14.59 14.58 14.06 

Red 24.66 21.37 12.32 10.79 18.83 18.81 18.86 
SDD 

NIR 14.3 22.33 7.05 11.27 10.9 11.28 23.41 

Blue 2.97 5.81 -9.5 -1.32 - -30.85 4.59 

Green 15 6.49 -3.08 -1.88 - -12.18 3.94 

Red 15.49 5.84 -2.88 -2.03 - -10.66 3.78 
DIV 

NIR 1.82 6.57 -0.05 -1.94 -9.25 1.94 2.28 

Blue 0.7 0.93 0.93 0.98 0.87 0.86 0.92 

Green 0.85 0.9 0.97 0.98 0.93 0.92 0.92 

Red 0.87 0.9 0.97 0.98 0.94 0.93 0.93 
CC 

NIR 0.95 0.87 0.99 0.97 0.97 0.97 0.86 
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Figure 4.10 Plot of the ERGAS values  

4.3.2.3 Difference in Variance (DIV) (Table 4.1) 

DIV indicates the information loss or gain in each band. A positive value indicates an 

information loss and a negative value an information gain. Except for the IHS, WA, and 

WS methods, all the other methods have a low variance. It is very high for the WA and 

WS fused images in the Blue band. This indicates more PAN information introduced to 

the fused images in the Blue band. Considering all four bands, the PCA+W method has 

the lowest variance (in the range [-1; -2]), followed by M2 in the range [2; 5] and PCA in 

the range [6; 7].   

4.3.2.4 Correlation Coefficient (CC) (Table 4.1) 

The CC is over 0.90 for most of the fused images except for the IHS fused Blue band. 

The M2 and PCA fused NIR bands have a lower correlation of around 0.86 and 0.87 

against a value of over 0.97 for the IHS+W, PCA+W, WA and WS fused images. A 

higher SDD and a lower correlation in the PCA and M2 fused NIR bands indicate that 

more PAN information has been introduced in the NIR band. Similarly, the IHS, WA and 

WS fused Blue bands have high SDD compared to the other methods indicating that these 

methods introduce more PAN information in the Blue band. 
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4.3.2.5 Correlation between PAN and fused MS images and between fused MS images in 

different bands 

The correlation obtained for the fused images are provided in Table 4.2 and 4.3. All the 

methods increase the correlation of the MS images with PAN. The M2 fused NIR band 

has the highest correlation of 0.85 with PAN against a 0.64 with the original image. This 

explains the low correlation coefficient in NIR discussed in the previous section. The IHS 

and PCA images in the Blue, Green and Red bands have decreased their correlation with 

the NIR band (Table 4.3). The WA, WS and M2 fused images in the Blue, Green and 

Red bands have increased their correlation with NIR. The IHS+W fused images have a 

correlation close to that with the original images. From these statistics, it appears that the 

IHS+W and PCA+W methods preserve the spectral integrity between the different bands 

better than the other methods.   

Table 4.2 Correlation Coefficient between PAN and the MS bands (IK D1) 

Band Original

 

IHS PCA IHS+W

 

PCA+W

 

WA

 

WS M2 

Blue 0.49 0.68 0.59 0.62 0.56 0.70

 

0.70 0.65 

Green 0.58 0.76 0.70 0.68 0.66 0.73

 

0.74 0.73 

Red 0.58 0.76 0.70 0.69 0.67 0.74

 

0.74 0.74 

NIR 0.64 0.72 0.78 0.70 0.74 0.74

 

0.75 0.85 

 

Table 4.3 Correlation between the MS bands (IK D1) 

Band Original

 

IHS PCA IHS+W

 

PCA+W

 

WA WS M2 

1&2 0.97 0.94 0.97 0.97 0.98 0.97 0.97 0.98 

1&3 0.95 0.93 0.95 0.95 0.95 0.95 0.95 0.97 

1&4 0.07 0.04 0.01 0.09 0.09 0.21 0.21 0.21 

2&3 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.99 

2&4 0.20 0.15 0.15 0.21 0.22 0.30 0.29 0.32 

3&4 0.21 0.17 0.16 0.22 0.22 0.30 0.29 0.32 
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4.3.2.6 Discussion on SDD and ERGAS 

The SDD and ERGAS values are based on the spectral error introduced in each pixel. 

They do not give any information about the spatial distribution of the error. Analyses of 

several profiles of lines revealed that the differences in the spectral values synthesized by 

different methods are very small for certain objects. A profile of line is provided in 

Figure 4.11 for the Blue and NIR bands. The DN values in the “building” object are 

similar for all the methods.   

To understand the local distribution of errors in different urban objects such as roads, 

buildings and vegetation, the RMSE for the pixels in vegetation and built-up classes were 

calculated and analyzed (Figure 4.12). The differences in PCA and M2 are found only for 

the “tree” and “grass” clusters. In general, the IHS+W and PCA+W methods have the 

lowest RMSE values. From the analysis of the profiles and the RMSE values, it seems 

that the very small differences in SDD between two methods are due to the differences in 

the spatial enhancement (edges and small objects) introduced in the fused images. Thus, 

the SDD and ERGAS values should be carefully interpreted with respect to the 

composition and high frequency components in the data set. The differences in the spatial 

information between the original PAN and MS images have a higher influence on the 

ERGAS values. This is applicable for VHR images in urban areas where the spatial 

resolution of MS images is high enough already to represent most of the urban objects. 

The only difference between the PAN and MS images exists in the spatial details 

corresponding to edges and very small objects.  In these cases, the ERGAS values may 

therefore be misleading. It is known that the error in synthesis increases as the spatial 

resolution increases (Wald, 2002), as it is not possible to synthesize both the spatial and 

spectral characteristics of the spatial details by fusion methods. Also, because the sensor 

characteristics of the VHR PAN and MS sensors (Figure 2.15 and 2.16) are different, the 

synthesis of spectra in the Blue and NIR bands is questionable for VHR images. Thus, 

the SDD values can only be used to describe similarities and differences. Absolute values 

do not have any significance for this data set.  
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Figure 4.11 Spectral Profiles   
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Figure 4.12 Plot of the RMSE (IK D1)   

Tree cluster

0

10

20

30

40

50

60

70

80

1 2 3 4

Band

R
M

S
E

Grass cluster

0

10

20

30

40

50

60

70

80

1 2 3 4

Band 

R
M

S
E

Road cluster

0

10

20

30

40

50

60

70

80

1 2 3 4

Band

R
M

S
E

Building cluster

0

10

20

30

40

50

60

70

80

1 2 3 4

Band

R
M

S
E

Key 



  
60

 
The PCA and M2 methods follow a similar trend in their SDD values (Figure 4.13) 

indicating a similar spatial enhancement in all the bands.  It can also be seen (Table 4.1) 

that the WA, WS, and M2 methods produce same SDD in the Green and Red bands. This 

indicates a similar spatial enhancement in the Green and Red bands by these methods. 

The differences in the ERGAS values for the WA, WS and M2 methods are only due to 

the Blue and NIR bands. Since the spatial details are too much enhanced by the M2 

method in the NIR band, the SDD is quite high compared to the WA and WS methods. 

Based on the ERGAS parameter, it can only be said that the IHS+W and PCA+W (lower 

than 3), WA and WS (around 3.7) and M2 and PCA (around 4.5) provide similar spatial 

enhancement. The IHS method (higher than 5) introduces too much spatial details in the 

Blue band resulting in a high ERGAS. Thus, a subjective analysis is required for 

interpreting the statistics.    

 

Figure 4.13 Plot of SDD (IK D1) (Values from Table 4.1)  
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4.3.3 Summary 

The IHS fused images present sharp spatial details in all the bands. However the objects 

in the IHS fused images seem to have a significant loss of spectral information.  This is 

obvious in the colour composites of the IHS fused images. Thus, IHS seems to produce a 

poor multispectral quality. The PCA fused images show high levels of spatial details but 

they are less sharp than the IHS fused images in all the bands except in the NIR band. 

The multispectral content seems to be better preserved in the PCA fused images. The 

IHS+W, WA and WS images are less sharp than the IHS and PCA images. They have 

slight distortions in their spectral content. PCA+W preserves the original spectral content, 

but the fused images are less sharp than the PCA images. The M2 fused images present 

sharp spatial details as well as preserve the multispectral quality of the original images. 

Thus visually, the PCA and M2 fused images seem to be better compared to the other 

methods’ results.   

From the statistical analysis, the PCA+W and IHS+W methods provide better results for 

all the measures. It seems that the quality indicated by the ERGAS values is inversely 

related to the spatial details introduced. A high ERGAS indicates high spatial detail while 

a low ERGAS indicates a poor spatial detail. This confirms the visual analysis of the 

fused images that we made. Thus, a “good” ERGAS value depends on the application. 

While considering the variance in all the bands fused by a certain method, PCA+W has 

the lowest variance. IHS+W shows low variance for the Green, Red and NIR bands but a 

relatively high variance in the Blue band. This relatively high variance in one band seems 

to indicate an error in the spectral synthesis. Most of the statistics only show that a 

different amount of PAN information is introduced according to the method applied. The 

IHS, IHS+W, WA and WS methods introduce more PAN information in the Blue band 

while the M2 and PCA methods introduce more PAN information in the NIR band. 

However, the correlation between the fused images indicates that the IHS+W and 

PCA+W methods preserve the spectral integrity of the original images better than the 

other bands.  
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Thus statistical quantities can be used to describe similarities and differences in the 

methods applied but they cannot be interpreted without a visual analysis. Based on our 

visual analysis, the M2 and PCA methods provide sharp images as well as preserve the 

spectral content of the original images. The ERGAS values of these methods lie between 

the IHS, and the IHS+W, PCA+W, WA and WS methods.    

4.4     Results for IK D2 

The study area is a sub-urban area mostly composed of vegetation and residential houses. 

The PCA method is not suitable for this data set as the correlation between the original 

NIR and Blue bands is very low (-0.0003).  The fused images obtained for some of the 

methods applied are shown in Figure 4.14 for the Green band.   

4.4.1 Visual Quality 

Figure 4.14a, b and c present the original image, the IHS, IHS+W and WS fused images 

respectively. Similar to the IHS fused Blue band of IK D1, the IHS image is enhanced too 

much in the Blue band. Too much spatial detail introduced in the vegetated areas by IHS 

(Figure 4.14) give a poor visual appearance. Visually, not much difference is seen 

between the IHS+W, WA, and WS fused images in the individual fused bands. An 

analysis of the multispectral images shows a poor quality for the IHS method and can be 

clearly seen in the true colour composite presented in Figure 4.15b. Thus, it is obvious 

from Figure 4.15 that the IHS method introduces high values from PAN for the shadow 

and vegetation pixels in the Blue band. The IHS+W fused images have also very slight 

distortions in the shadow and vegetation pixels that is not so obvious in the true colour 

composite.      
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Figure 4.14 Fused images in Green band (IK D2)  
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Figure 4.15 True colour composites (IK D2) 

(Colour composite: Red band- Red, Green band - Green, Blue band - Blue)  



  
65

 
4.4.2 Statistical Quality 

Table 4.4 presents the statistics computed for IK D2. The bias is less than 0.5 percent for 

all the methods applied. The SDD is very high for IHS in the Blue, Green and Red bands 

compared to the other methods. This indicates that too much information has been 

introduced from PAN resulting in spatially enhanced fused images with spectral errors. 

All the SDD values follow a similar trend than for IK D1. Similar to the analysis of IK 

D1, IHS, IHS+W, WA, and WS show high variance in the Blue band. The spectral 

synthesis in the Blue band is expected to be poor because of the large variance. This is 

confirmed by the visual analysis of the colour composites (Figure 4.15). The spectral 

distortion is less obvious in IHS+W than in the WA and WS methods. Therefore, 

considering both SDD and variance, the IHS+W method seems to be better 

comparatively. The PCA statistics are not valid as the fused images do not show any 

improvement in spatial details due to the uncorrelated MS data set (Table 4.6). The 

correlation of the IHS+W fused images with PAN is closer to the correlation of the 

original PAN and MS images (Table 4.5). Table 4.6 presents the correlation between the 

original MS bands and between the fused MS bands. It can be seen that the IHS method 

decreases the correlation of the fused images in the Blue, Green and Red bands with the 

NIR band. The WA and WS methods have increased the correlation of the fused images 

between the Blue, Green and Red bands with the NIR band. The IHS+W method shows a 

correlation close to the original, showing that the spectral integrity is better preserved in 

the bands than for the IHS, WA and WS methods. Thus, based on visual and statistical 

analysis, the IHS+W method is comparatively better than the other methods.        
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Table 4.4 Statistics for IK D2 

Bias, DSD (standard deviation of the difference image), DIV (difference in variance) in %, 
CC (correlation coefficient)   

Band IHS PCA IHS+W WA WS 
Blue -0.21 -0.01 0.07 0.07 0.07 

Green -0.2 -0.05 0.07 0.07 0.07 
Red -0.27 -0.07 0.09 0.09 0.09 

Bias 

NIR -0.12 -0.26 0.04 0.04 0.04 
Blue 23.42 1.55 10.19 14.72 14.72 

Green 23.09 6.1 10.04 14.52 14.57 
Red 30.57 8.79 13.3 19.2 19.2 

DSD 

NIR 13.33 32.29 5.81 8.35 9.07 
Blue -29.43 14.66 -12.73 -45.34 -34.98 

Green 5.4 -10.27 -4.12 -24.44 -14.29 
Red 6.16 -9.66 -3.9 -23.4 -13.47 

DIV 

NIR 7.99 -3.4 1.18 -6.44 5.63 
Blue 0.58 1 0.91 0.86 0.84 

Green 0.75 0.98 0.96 0.92 0.91 
Red 0.76 0.98 0.96 0.92 0.92 

CC 

NIR 0.95 0.72 0.99 0.98 0.98 
ERGAS

  

5.85 4.26 2.55 3.68 3.71 

 

Table 4.5 Correlation Coefficient between PAN and the MS bands (IK D2) 

Band Original

 

IHS PCA IHS+W

 

WA

 

WS 

Blue 0.34 0.53 0.35 0.49 0.58

 

0.58 

Green 0.45 0.65 0.48 0.56 0.63

 

0.63 

Red 0.46 0.66 0.49 0.60 0.63

 

0.64 

NIR 0.67 0.77 0.96 0.72 0.75

 

0.76 

Table 4.6 Correlation between the MS bands (IK D2) 

Band Original

 

IHS PCA IHS+W

 

WA WS 

1&2 0.96 0.92 0.96 0.96 0.96 0.96

 

1&3 0.92 0.89 0.93 0.92 0.93 0.94

 

1&4 -0.003 -0.08 0.21 0.003 0.14 0.14

 

2&3 0.97 0.99 0.98 0.98 0.98 0.98

 

2&4 0.16 0.06 0.35 0.16 0.25 0.25

 

3&4 0.17 0.08 0.36 0.17 0.26 0.26
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4.5     Results of QB D1 

The area of QB D1 is a complex environment composed of residential areas and 

industrial areas. There is a lot of vegetation in the area. A subset of the IHS, PCA, 

IHS+W and M2 fused Blue bands is presented in Figure 4.16.  

 

Figure 4.16 Fused image in Blue band (QB D1) 
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4.5.1 Visual Quality 

Figure 4.16a, b, c and d present the IHS, PCA, IHS+W and M2 fused Blue bands 

respectively. The IHS Blue band is very sharp compared to the other methods (Figure 

4.16). For certain buildings, the PCA fused images have sharp edges compared to the M2 

images (Figure 4.16b). The relative spectral values of the different features have been 

preserved by all the methods. The spatial details in IHS+W, PCA+W, and WS are less 

sharp compared to the PCA and M2 images (Figure 4.17). The analysis of different 

colour composites shows that the IHS method does not synthesize the spectra accurately 

(Figure 4.17b). The distortion is more obvious near the shadow pixels of vegetation and 

near buildings. Figure 4.17d presents the colour composite of the IHS+W. The WA and 

WS methods are similar to IHS+W and show less spectral distortion compared to IHS. 

The PCA and M2 methods best preserve the spectral quality of the original images. The 

PCA+W colour composites are similar to the PCA colour composites. The IHS+W, WA 

and WS methods provide a better spectral synthesis than IHS but a poorer one compared 

to the M2, PCA+W and PCA methods.   
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Figure 4.17 True colour composites (QB D1) 

(Colour composite: Red band- Red, Green band - Green, Blue band - Blue)  
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4.5.2 Statistical Quality 

The statistics computed for the fused images of the different methods are provided in 

Table 4.7.  The bias is less than 0.5 percent in all the bands and a little bit less for the 

IHS+W, PCA+W, WA and WS methods. This shows that all methods satisfy the first 

property. 

Table 4.7 Statistics for QB D1 

Bias, SDD (standard deviation of the difference image), DIV (difference in variance) in %,  
CC (correlation coefficient)   

Band IHS PCA IHS+W

 

PCA+W WA WS M2 

Blue -0.27

 

-0.13 0 0 0 0 0.18 

Green

 

-0.21

 

-0.19 0 0 0 0 0.17 

Red -0.33

 

-0.26 0 0 0 0.01 0.19 
Bias 

NIR -0.16

 

-0.24 0 0 0 0 0.1 

Blue 23.8 12.39 9.73 4.94 15.08 14.77 11.63 

Green

 

19.25

 

17.96 7.86 7.15 11.38 11.13 15.33 

Red 28.93

 

23.99 11.82 9.56 18.31 17.89 20.63 
DSD 

NIR 14.33

 

23.04 5.84 9.18 9.06 8.97 17.1 

Blue -4.09

 

5.36 -14.75 -0.33 -29.75 -20.65

 

9.94 

Green

 

11.06

 

5.03 -7.27 -0.56 -12.51 -3.91 9.66 

Red 7.96 4.57 -8.06 -0.5 -15.55 -7.22 9.34 
DIV 

NIR 4.62 5.22 -3.83 -0.89 -6.89 0.89 9.81 

Blue 0.76 0.93 0.96 0.99 0.92 0.92 0.9 

Green

 

0.91 0.92 0.99 0.99 0.97 0.97 0.94 

Red 0.89 0.92 0.98 0.99 0.96 0.96 0.94 
CC 

NIR 0.96 0.9 0.99 0.99 0.99 0.99 0.95 

 

4.5.2.1 SDD and ERGAS 

A general observation for all the methods is that the fused Red band has the highest SDD. 

The IHS fused images have higher SDD in the Blue, Green and Red bands compared to 

the other methods. This indicates a relatively high error introduced in the fused images by 

the IHS method in these bands. The PCA and M2 fused NIR bands have a very high SDD 

compared to the other methods. This indicates a high error in the PCA and M2 fused NIR 



  
71

 
bands. As discussed under IK D1, the differences in SDD are highly related to the 

sharpness of the spatial details (spatial enhancement) in the fused images. Therefore, high 

or low value only indicates better or poor spatial details compared to another method. To 

summarize the SDD in all the fused images by a method, the ERGAS values are plotted 

in Figure 4.18. The IHS+W and PCA+W methods produce the lowest ERGAS values of 

1.98 and 2.27 respectively. The WA and WS methods have an ERGAS of 3.4. The IHS 

method has the highest ERGAS value of 5.6. The PCA and M2 methods have ERGAS 

values of 5 and 4 respectively. These values verify our visual analysis that the PCA fused 

images are sharper compared to the M2 method. The similarities in the ERGAS values 

indicate a similar synthesis of the spatial details. Thus, the ERGAS values in the 

increasing order of spatial detail are for IHS+W, PCA+W, WA and WS, M2, PCA, and 

IHS. This confirms the visual analysis of the spatial details.   
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Figure 4.18 Plot of ERGAS values (QB D1)  
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Figure 4.19 Plot of RMSE (QB D1) 

The RMSE for the “tree” and “built-up” clusters are analyzed (Figure 4.19). PCA follows 

the same trend as the M2 model with a slightly higher error in the all the bands for the 

“built-up” areas. This explains the better spatial detail in some buildings in the PCA 

fused images. PCA+W has similar RMSE than IHS in the Green and Red bands. PCA+W 

shows a similar RMSE than IHS+W in the Green and Red bands. PCA+W have the 

lowest RMSE values in the Blue, Green and Red bands and a slightly higher RMSE than 

IHS in the NIR band for both clusters. All these values confirm that there are local 

differences (objects) in the synthesis of the spatial details by different methods.   

4.5.2.2 Difference in Variance (DIV) 

DIV is highly negative in the WA and WS fused Blue bands (Table 4.7). The WA fused 

images in the Green and Red bands have highly negative variance. The PCA+W fused 

images have a low variance between 0 and  -1 percent followed by PCA with 4-5 percent 

and M2 with 9-10 percent. The IHS fused images have low variance but the fused Blue 
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band has a negative variance while in the other bands it is positive. This relative 

difference in variances in the fused images resulting from a certain method seems to 

indicate an error in the spectral synthesis. This also has been observed in the visual 

analysis of the colour composites of the IHS, IHS+W, WA and WS methods.   

4.5.2.3 Correlation Coefficient (CC) 

CC indicates the degree of relationship between the original and the fused images. If 

more information from PAN is introduced during fusion, it results in a low correlation 

coefficient. The CC is around 0.7 for the Blue band and 0.9 for the other bands with the 

IHS method. This indicates a high error in the Blue band. It is around 0.9 for the PCA 

NIR band which indicates that high spatial information has been introduced in the NIR 

band compared to the other methods. PCA+W has a high correlation of 0.99 in all the 

bands indicating that the fused images are close to the original images.   

4.5.2.4 Correlation between PAN and fused MS images and between fused MS images in 

different bands 

The correlation coefficient between PAN and MS and between the MS bands is given in 

Table 4.8 and 4.9 respectively. Similar to the observations for IK D1, all the methods 

have increased the correlation of MS images with PAN. In the correlation between the 

fused MS bands, IHS and PCA have decreased the correlation between the Blue, Green 

and Red band with the NIR band. The WA, WS and M2 methods produce highly 

correlated fused images. The IHS+W and PCA+W methods maintain the original 

relationship between the MS bands.     
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Table 4.8 Correlation Coefficient between PAN and the MS bands (QB D1) 

Band Original

 
IHS PCA HIS+W

 
PCA+W

 
WA

 
WS M2 

Blue 0.62 0.74 0.71 0.70 0.66 0.75

 
0.75 0.72 

Green 0.66 0.80 0.77 0.73 0.72 0.76

 
0.76 0.77 

Red 0.68 0.77 0.75 0.71 0.70 0.76

 

0.76 0.75 

NIR 0.70 0.76 0.79 0.73 0.75 0.76

 

0.75 0.78 

 

Table 4.9 Correlation between the MS bands (QB D1) 

Band Original

 

IHS PCA IHS+W

 

PCA+W

 

WA WS M2 

1&2 0.99 0.95 0.98 0.98 0.98 0.98 0.98 0.99 

1&3 0.97 0.95 0.97 0.97 0.97 0.97 0.97 0.98 

1&4 0.21 0.16 0.17 0.21 0.22 0.30 0.29 0.25 

2&3 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 

2&4 0.29 0.26 0.25 0.29 0.30 0.35 0.33 0.32 

3&4 0.26 0.21 0.22 0.26 0.28 0.33 0.31 0.29 

 

4.5.3 Summary 

Similar to the conclusions for IK D1, the PCA+W, PCA and M2 methods produce a 

better multispectral quality in their results. Statistically, the PCA+W and IHS+W 

methods provide low ERGAS values. However, considering the variance, the PCA+W, 

PCA and M2 methods are better compared to the other methods. Overall, the PCA and 

M2 fused images are better in terms of details as well as multispectral content.   

4.6     Results of QB D2 

The area in this data set is the same as the IK D1 one. The correlation between the 

original NIR and Blue bands is 0.08, between the Red and NIR band -0.01, and between 

the Green and NIR band 0.02 (Table 4.12).   
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4.6.1 Visual and Statistical Quality 

Visually, the IHS+W and WA fused images have poor spatial details and the blur near the 

edges of the buildings are very obvious (Figure 4.20). The WS fused images are similar 

to the fused images produced by the IHS+W and WA methods. The IHS method provides 

better enhanced fused images than the other methods. However, the visual quality is not 

satisfactory. Figure 4.21 presents the colour composites of the IHS and IHS+W methods. 

It is clearly observed from the colour of the vegetation that the Blue band is inaccurately 

synthesized by the IHS method. The IHS+W method has a better multispectral quality 

but the spatial details are poorer.   

 

Figure 4.20 Fused images in Red band (QB D2)  
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Figure 4.21 True colour composites (QB D2)    

(Blue band- Blue, Green band - Green, Red band –Red)  
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The statistics computed for this data set are given in Table 4.10. The statistics are poor 

for the IHS method. The correlation of the IHS fused Blue band is 0.64, which is very 

low compared to the other bands. This indicates that too much information has been 

added from PAN. Among the IHS+W, WA and WS methods, it is the IHS+W fused 

images that are statistically better based on SDD, DIV, CC and ERGAS. The PCA fused 

images in the Blue, Green and Red bands do not show any improvement in spatial details 

because of the low inter-band correlation. Therefore, the statistics given are not valid. 

Table 4.11 and Table 4.12 show the correlations between the PAN with the fused images 

and between different pairs of MS bands. It can be seen that IHS increases the correlation 

between PAN and MS bands to a greater extent than the other methods. However, the 

IHS images are better visually as the spatial details in IHS+W, WA and WS are not 

sufficient to provide a satisfactory visual quality.   

Table 4.10 Statistics for QB D2 

Bias, SDD (standard deviation of the difference image), DIV (difference in variance) in %,  
CC (correlation coefficient)    

Band HIS PCA IHS+W WA WS 
Blue -0.37 0.03 -0.03 -0.06 -0.06 

Green -0.28 0.01 -0.03 -0.05 -0.05 
Red -0.42 0.03 -0.04 -0.07 -0.07 

Bias 

NIR -0.19 -0.41 -0.02 -0.03 -0.03 

Blue 26.63 3.43 7.77 11.78 11.9 
Green 20.78 1.07 6.12 8.63 8.89 
Red 30.67 2.58 8.96 13.57 13.86 

SDD 

NIR 14.04 40.95 4.12 6.21 6.82 

Blue -36.79 10.39 -3.91 -18.85 -14.7 
Green 4.92 2.72 -0.21 -6.93 -2.52 
Red -3.79 4.73 -0.64 -8.94 -4.8 

DIV 

NIR 7.54 0.55 1.07 -3.07 3.19 

Blue 0.64 0.99 0.96 0.93 0.92 
Green 0.83 0.99 0.98 0.97 0.97 
Red 0.8 0.99 0.98 0.96 0.96 

CC 

NIR 0.95 0.56 0.99 0.99 0.99 

ERGAS  5.97 5.15 1.75 2.61 2.68 
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Table 4.11 Correlation Coefficient between PAN and the MS bands (QB D2) 

Band Original

 
IHS PCA IHS+W

 
WA

 
WS 

Blue 0.39 0.62 0.36 0.49 0.55

 
0.55 

Green 0.45 0.68 0.45 0.52 0.55

 
0.56 

Red 0.44 0.65 0.43 0.51 0.55

 

0.56 
NIR 0.54 0.69 0.96 0.59 0.61

 

0.61 

 

Table 4.12 Correlation between the MS bands (QB D2) 

Band Original

 

IHS PCA IHS+W

 

WA WS 
1&2 0.98 0.93 0.97 0.97 0.97 0.97 
1&3 0.95 0.92 0.95 0.95 0.95 .095 
1&4 -0.08 -0.11 0.34 -0.09 -0.002 -0.01 
2&3 0.98 0.98 0.98 0.98 0.98 0.98 
2&4 0.02 -0.04 0.44 0.01 0.06 0.05 
3&4 -0.009 -0.07 0.41 -0.02 0.04 0.03 

 

4.7     Conclusion 

The results of the visual and statistical analyses are dependent on the application. The 

statistics do reveal the similarities and differences between the methods. However, it is 

very difficult to interpret the statistical results without a visual analysis. For urban 

mapping from VHR images, the objective of the fusion is to have an increased spatial 

resolution while preserving the spectral information.  Therefore, spatial details as well as 

multispectral quality are important. Some methods that provide poor spatial details give 

better ERGAS values. Thus quality provided by ERGAS values seem to be inversely 

related to the spatial details introduced.  

Based on the results and analyses for IK D1 and QB D1, it seems that an ERGAS value 

between 4 and 5 indicates a good spatial quality. For these data sets, a value smaller than 

that indicates low spatial quality. Relative high or low variances in one band with respect 

to the others seem to indicate a poor multispectral synthesis by the method. It is difficult 

to conclude based only on one statistical measure. Collective analyses of all the measures 

can be used to categorize similar methods but conclusions are difficult to draw when the 
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differences in statistics are too small between two methods. This holds also for the visual 

analysis. For example, the PCA and M2 fused images have similar statistics. The visual 

analysis showed that the PCA fused images have sharper edges in buildings compared to 

M2 while some edges (pavements) are blurrier in PCA compared to M2. Thus, quality is 

very subjective in this aspect. If sharper edges are desired, PCA is better and if better 

image quality is desired, M2 is better.   

The IHS method assumes that the PAN information is highly correlated with all the MS 

bands. The IHS+W, WA and WS methods assume that the high frequencies of PAN are 

correlated with the high frequencies in the MS bands. This is not true for the Ikonos and 

Quickbird sensors where the Blue band is less correlated with PAN. Therefore, the IHS, 

IHS+W, WA and WS fused images contain spectral distortion in the Blue band. 

Depending on the amount of PAN information introduced, the spectral distortion may or 

may not be obvious in the visual analysis. This is the case with the IHS+W method that 

introduces less high frequency information compared to the WA and WS methods and 

the spectral distortions are not as obvious in the colour composites as with the WA and 

WS methods.   

The PCA and PCA+W methods provide better results for the IK D1 and IK D2 data sets. 

However, they are not suitable for uncorrelated data sets such as IK D2 and QB D2. For 

QB D2, the spatial details introduced at the first level are not sufficient for a good visual 

quality.   

To conclude, the PCA and M2 methods provide better spatial and spectral qualities which 

are required for photo-interpretation and mapping.  The IHS+W method is comparatively 

better than the WA and WS methods. The WA and WS methods are better than IHS.  
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Chapter 5        Classification  

5.1     Introduction 

Image fusion techniques alter the spectra of pixels. Any changes in the spectral signatures 

of the classes will affect the classification. The visual and statistical qualities that were 

analyzed and discussed in Chapter 4 are more relevant for photo-interpretation and 

automatic mapping. The visual and statistical discrepancies in different bands and 

between different methods may or may not be relevant for automatic classification 

procedures. In this chapter, a general discussion on the classification of VHR images and 

an analysis of class separabilities in fused images of different methods are presented.  

5.2     Classification  

Although classification accuracy is expected to be high as the spatial resolution increases, 

VHR MS images have more small objects such as vehicles, structures on building roofs 

and signalization on roads that are not of interest. This may lead to poor classification 

accuracy (Martino et al., 2003). The classification results could be worse with fused MS 

images because we have increased the spatial details, i.e. higher variance within a class. 

Although VHR MS bands have a reasonable spectral resolution, it is insufficient for 

completely discriminate the urban objects such as roads and buildings based only on their 

spectral information as certain road materials have similar spectral signatures as certain 

building materials. Figure 5.1 shows a spectral plot of some road and building pixels that 

have similar spectral characteristics. An example of the supervised maximum likelihood 

classification obtained with all the four original MS bands is shown in Figure 5.2.    
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Figure 5.1  Spectral signatures of misclassified road and building pixels  

 

Figure 5.2 Maximum Likelihood Classification of the original MS images  

An unsupervised ISODATA classification was used to aid the selection of training sites 

as homogeneous areas were difficult to find for the road and tree classes because of 
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shadows, signalization on roads, vehicles and so on. Five major classes - tree, grass, 

shadow, road and buildings - were used. There are three different classes of buildings in 

this data set. In a classification based only on the spectral information, parking objects are 

difficult to differentiate from the road pixels Two sub classes road (1) and road (2) were 

used for the road class and three sub-classes building (1), building (2) and building (3) 

were used for the building class. The error matrix for the training pixels is given in Table 

5.1. The accuracy of road (2) is very poor (around 63%). The road (2) and building (3) 

class have similar spectral signatures (Figure 5.1) and it is very difficult to separate them 

based only on their spectral information. The blue arrows in Figure 5.2 show pixels of 

road and parking lots that have been classified as building. The tree, grass and shadow 

classes have a very high accuracy (over 98%). The accuracies of the road (1), building (1) 

and building (2) classes are greater than 80%. It should be noted that the problem is due 

to the spectral limitation of the VHR images and not with the training sites.    

Table 5.1 Error matrix obtained for training pixels   

Classified data 

  

Tree Grass Shadow Road(1) Road(2) Building(1) Building(2) Building(3)

 

Tree 98.98

 

1.02 0 0 0 0 0 0 

Grass 0 100 0 0 0 0 0 0 

Shadow 0 0 100 0 0 0 0 0 

Road (1) 0 0 0 82.81 9.9 0 0.52 6.77 

Road (2) 0 0 0 9.30 62.79 0 0 27.91 

Building (1) 0 0.24 0 0.48 0.72 97.84 0 0.72 

Building (2) 0 0 0 4.9 0 0 100 0 

Building (3) 0 0 0 5.71 6.67 1.90 0 85.71 

User’s 
accuracy 

(%) 

100 97 100 92 48 99 99 76 
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Incorporating the spatial information using texture measures shows an improvement in 

the classification of the multispectral data of urban areas (van der Sande et al., 2003; 

Martino et al., 2003; Shackelford et al., 2003). Some experiments on IK D1 with 

different textures (e.g. mean, variance, homogeneity, entropy) have shown improvements 

in classification. However, some textures while increasing the accuracy for some classes 

decrease the accuracy for other classes. Some examples and classification results of M2 

fused images with different textures are shown in Appendix 2. For dense urban areas, 

apart from the spectral and textural information, surface area, length, width, 

morphological shape criteria and shadow information are important to discriminate 

between road, building, and a non road impervious surface (e.g. parking) (Shackelford et 

al., 2003). And the classification approaches for VHR and dense, complex areas are still 

in research and this limits the testing of the fused images based on classification for 

feature extraction. Since the scope of this research is related to fusion techniques, a 

Maximum Likelihood Classifier (MLC) was used to test if the fused images have enough 

spectral separability to differentiate the major classes.   

The spectral variances in the vegetation and built-up classes are generally high enough in 

the VHR MS bands that any fusion method will allow for an easy discrimination of the 

vegetation class from the built-up class. A few building and road pixels were selected 

(Figure 5.3) to check the percentage of correctly classified pixels. The results are 

presented in Table 5.2. Nearly 80 percent of the road pixels are correctly classified by 

whatever fusion method applied. For the building pixels, IHS has the lowest percentage 

(67 percent). Some building pixels along the edges have been classified as road pixels 

and shadow pixels. However, the classified image of the IHS fused MS image shows that 

IHS provides significant spectral variances to discriminate the major classes (Figure 5.4).  



  
84

  

Figure 5.3 Road and building pixels used for Table 5.2 

Table 5.2 Percentage of correctly classified pixels  

Road (%) Building (%) 

Original 89.1 87.5 
IHS 79.5 67.3 
PCA 84.0 81.6 

IHS+W 81.3 72.7 
PCA+W 84.9 83.1 

M2 83.7 86.7 

 

Fused MS images have more spatial details than the original MS image. The spatial 

structures on some roofs, small objects like vehicles on roads and parking lots, 

signalization on roads do not have a characteristic spectral signature. They are often 

classified as either road or building. The classification results for the fused MS image by 

the different methods are shown in Figure 5.4.  A few buildings have been classified 

partially as road. Differences in classification can only be seen in those pixels 

corresponding to edges, boundary pixels, pavement pixels and so on. Therefore, a 

comparison of the classification accuracies does not seem like a valid approach for 

evaluating the spectral preservation in the fused images.   
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Figure 5.4 Subset of the classified images 

a) Original MS image b) IHS c) PCA d) IHS+W e) PCA+W e) M2 fused images  

The class separability obtained with the Bhattacharya distance was analyzed for the 

training as well as the reference pixels (Table 5.3a and b). This distance measure 

produces a maximum of 2.0 which means a good separability. Class separabilities may 

increase or decrease in the fused images depending on the error introduced during the 

fusion. The IHS+W and M2 methods provide a better class separability between all the 

pairs of classes. For both sets, the class separability between the tree-grass classes is low 

with the PCA method. The PCA+W and M2 methods also show a low separability 

compared to IHS+W between the tree-grass classes. Between the road(1)-building(1) 

classes, all the methods have a separability over 1.8. Considering the urban classes, 

road(1)-building(1), road(1)-building(2), building(1)- building(3) that have good 

separabilites in the original MS image, the class separabilities are also high for the 

IHS+W, PCA+W, PCA and M2 fused MS images. However, it should be noted that there 
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may or may not be significant differences in the classification even if the class 

separabilities are low.   

Table 5.3 Class Separabilities (Bhattacharya distance) 

a) Training pixels  

Original IHS PCA IHS+W PCA+W M2 

Tree-Grass 1.91 1.47 0.98 1.61 1.37 1.51 

Road (1) –Building (1) 1.99 1.88 1.95 1.96 1.99 1.96 

Road (1) –Building (2) 1.82 1.30 1.60 1.56 1.62 1.81 

Road (1) – Building (3) 1.49 0.86 0.98 1.27 1.12 1.13 

Road (2) – Building (3) 0.92 0.55 0.39 0.89 0.51 0.61 

Building(1)–Building (3) 1.75 1.64 1.61 1.70 1.89 1.85 

 

b) Reference pixels  

Original HIS PCA IHS+W PCA+W M2 

Tree-Grass 1.92 1.68 1.19 1.71 1.59 1.59 

Road (1) –Building (1) 1.99 1.85 1.90 1.94 1.97 1.95 

Road (1) –Building (2) 1.89 1.53 1.80 1.75 1.87 1.91 

Road (1) – Building (3) 1.54 1.13 0.98 1.19 1.13 0.99 

Road (2) – Building (3) 0.97 0.60 0.49 0.70 0.63 0.56 

Building(1)–Building (3) 1.76 1.36 1.66 1.51 1.71 1.86 

 

Classification accuracies cannot be used to conclude whether one method is better than 

the others considering the complexity of the urban features and the differences in the 

syntheses created by the different methods. It seems that all the methods have spectral 

variance to separate the major classes in the image and classified images also prove that 

there is no significant difference in classification.  
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5.3     Fusion in Automated Urban Mapping 

The benefits of image fusion for urban mapping have been demonstrated by Couloigner 

et al. (1998a, 1998b) for SPOT5 PAN and XS data fusion. Road extraction algorithms 

and classification approaches that were suitable for the “low” spatial resolution images 

are not suitable for the feature extraction in urban environment due to high level of 

details and complexity (Couloigner & Ranchin, 2000). Only few works have been done 

using VHR fused MS images (Zhang & Wang, 2004; Shackelford and Davis, 2003a, 

2003b; Zhang and Couloigner, 2005) in urban areas.            

Figure 5.5 Road extraction method  

(Zhang & Wang, 2004)     
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Figure 5.6 Segmentation based classification  

(Shackelford & Davis, 2003b)   

Figure 5.7 Angular texture signature based road network extraction  

(Zhang and Couloigner, 2005)   

Urban feature extraction algorithms either focus on extracting one feature of interest (e.g. 

roads) or on improving the classification approach for extracting different features (e.g. 

roads, buildings etc.). In either case, supervised or unsupervised classification alone is 

insufficient for a successful extraction due to the spectral similarities of the urban 
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features and the complexity of the urban environment. An example is provided in Figure 

5.8. Figure 5.8a and b present a sub-urban area and its unsupervised ISODATA classified 

image. The challenge in extracting roads from these areas lies in the post-processing steps 

like a texture or a shape analysis. The problem increases in dense urban areas due to 

spectral similarities and more spatial details. Thus, several other processing steps such as 

edge detection, texture filtering, morphological shape or other contextual information like 

shadow are essential in the pre-processing or post-processing procedure(s) for a 

successful urban feature extraction from VHR images.   

a) Original image     b) Built-up area 

Figure 5.8 Built-up areas by unsupervised classification  

Automated urban mapping requires both high spatial and high spectral resolution. But the 

importance of having high spatial details in MS images decreases as original PAN images 

are available at higher and higher spatial resolution. Most edge detection and region 

based algorithms to obtain the edges of homogeneous segments are based on single 

images. The PAN image has high better spatial details (edges) as well as smooth texture 

that are more advantageous for segmentation. Thus spatial detail (sharp edges, small 

objects) in the MS images is of less importance for urban feature extraction.   
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5.3.1 Interpolation Vs. Fusion 

The benefit of fusion in automated mapping depends on the objects in the image and the 

purpose of the fusion. Fusion generally provides better edges compared to interpolation. 

However, classification results of fused images and of interpolated images may not have 

differences in certain cases such as the one shown in Figure 5.9. Figure 5.9b and c show 

the road class obtained from the fused and interpolated images. They are quite similar 

except that the latter appears more nosiy. Thus the benefit of fusion for automated urban 

mapping depends on the area under consideration, the algorithm and methodology 

applied for the feature extraction.   

 

Figure 5.9 Built-up areas from unsupervised classification 
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5.4     Summary 

The visual and statistical differences in the fused images of the different methods do not 

seem to have much effect on their classification. Considering the class separabilities, it 

can be only be said that the PCA, PCA+W, IHS+W and M2 methods provide a better 

separation of the urban classes compared to the IHS method. Spectral and textural 

information are important for urban feature extraction; however successful feature 

extraction from VHR images depends not only on the spectral information but mainly 

depends on the methodology (segmentation and other pre- and post-processing) of feature 

extraction.  
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Chapter 6        Conclusions and Future scope  

The main objective of this study was to evaluate some pixel based fusion methods on 

VHR images for urban mapping. The methods were tested on Ikonos and Quickbird data 

sets covering residential and industrial areas.   

The PAN of the VHR images has a low correlation with the Blue band and a high 

correlation with the NIR band. Thus, even though the spectral range of PAN covers the 

entire MS range, there are problems in the synthesis of the Blue and NIR bands. Based on 

the statistics of all the data sets, it is expected that the IHS, IHS+W, WA and WS 

methods provide better statistics for the Green, Red and NIR bands as they are highly 

correlated with PAN. The problem is only with the Blue band. The PCA method provides 

better results in all the bands for certain datasets, but they highly depend on the inter-

band correlations. In VHR images, the Blue and the NIR bands have very low correlation 

that makes PCA not reliable for VHR images. The M2 method provides better statistics 

for the Blue, Green and Red bands. Since NIR is highly correlated with PAN, the M2 

method overestimates the spectral values in the NIR band. The M2 method provides 

better results even when the inter-band correlations are low as the fusion is carried out 

separately for each band.   

Reyes et al. (2004) compared different models and the ERGAS is reported to be low for 

the PCA-M1, ARSIS M2, PCA-M2, ARSIS-M3, and IHS-M2 methods. Thus it seems 

that IHS and PCA combined with wavelet provides better statistics comparable to the 

ARSIS models. The IHS+W and PCA+W methods in this study also provide overall 

better statistics.   

Based on the visual analysis of the fused images for IK D1 and QB D1, the PCA and M2 

preserve the colour of the objects in original images while providing high spatial details. 

For IK D2, the IHS+W method is better than the WA, WS and IHS methods in 

preserving the colour of objects. For QB D2, the fused images of IHS+W, WA and WS 
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present a very poor visual quality. The introduced high frequency information seems to 

be very low to meet the objective of the fusion. Thus, IHS seems better in terms of spatial 

detail and spectral content in the Red, Green and NIR bands for the QB D2 data set.   

Classification results show that irrespective of the differences in the high frequencies 

introduced, all the fusion methods provide sufficient variances to discriminate between 

the vegetation and the urban objects such as roads and buildings that are also spectrally 

separated in the original images. Based on some preliminary study, it is found that it is 

not possible to obtain good discrimination between different building types and between 

certain building types and roads and parking lots by only conventional classification 

procedures.   

Assessment protocol  

The assessment protocol proposed by Thomas & Wald (2004) addresses two properties: 

consistency and synthesis properties. Both the properties involve degradation of the 

images and the effect of interpolation algorithm should be considered in evaluating the 

fusion methods. In the consistency property, any fusion method that introduces less high 

frequency will have better statistics and more important is that an interpolated image will 

have closer values to ideal.  In the synthesis property, the original images have to be 

degraded to their respective lower resolutions and then fused to obtain the MS images at 

their original spatial resolution. The degradation process should simulate the image at 

lower resolution but seldom is the case with interpolation algorithms. And, this property 

also has a drawback that the quality at a higher resolution can not be predicted from the 

quality at a lower resolution.   

The synthesis property may hold for lower resolutions (15 m, 30 m or less), in 

homogeneous areas and when the spectra of objects in MS bands are more predictable 

than from PAN. In degrading the images of VHR urban areas consisting of small and 

large objects, more than 50 percent of the information is lost. It is not possible to 

synthesize the spectra of lost objects or poorly represented objects by any fusion method. 
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Fusion methods may appear to synthesize the images at high resolution in certain bands 

when there is not much difference in the spectra of objects while there is change in 

spectral range and resolution. Even though the ARSIS models have a good theoretical 

frame for synthesis, the spectral values for details like edges and small objects cannot be 

synthesized close to the sensor observed ones as these models do not consider any 

physical laws governing the sensor characteristics.    

The objective assessment criteria such as bias, SDD, DIV and CC for both properties 

only provide information about the amount of spectral distortion in each band by 

different methods. Thus, statistics are only useful for comparison and absolute quality can 

not be derived from the existing quantitative measures. Subjective assessment is always 

required in addition to an objective assessment. In this case, doing two fusions one at a 

high resolution and one at a degraded resolution do not seem to be necessary as the 

statistics from both will provide the same information.  Spatial quality and spectral error 

are related to each other. When a method provides a good spatial quality, it also indicates 

that there might be high spectral error. Depending on the application, a trade-off between 

spatial and spectral quality is necessary.      

Future Scope  

The future Worldview satellite from Digital Globe will provide higher spatial resolution 

for PAN (0.5 m) and the 8-MS bands (2 m). With such a very high resolution, the need 

for the fusion of PAN and MS images has to be further investigated especially for 

automatic feature extraction procedures. No doubt that fusion increases the spatial 

resolution of the images. But due to the difficulty in developing operational feature 

extraction algorithms for VHR images, higher and higher spatial resolution further 

increases the problems in automatic mapping, especially in urban areas. Thus, pixel-level 

fusion of PAN and MS images is only a part of the extraction procedure, and successful 

urban feature extraction in fact needs feature- and object-level fusion of multiple sources.  
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Appendix 1  

1.  The MALLAT Undecimated Algorithm Vs. the “à-trous” Algorithm. 

The results obtained for IK D1 are given here. The statistics of IHS+W and WA are 

slightly better than the one obtained with the à-trous algorithm. The variance is low in all 

the bands except in the WA fused NIR band. The spatial quality is poor compared to the 

M2 and PCA methods. A colour composite is shown in Figure 1.  

Table 1   Statistics for IHS+W  

Band Bias  SDD  DIV CC 

Blue 0.24 5.98 -1.93 0.97 
Green 0.26 5.85 0.47 0.98 
Red 0.31 7.58 0.52 0.99 
NIR 0.18 4.50 2.19 0.99 

 

Table 2   Statistics for WA (1 plane) 

Band Bias  SDD DIV  CC 

Blue 0.23 9.07 -1.65 0.94 
Green 0.24 9.27 4.57 0.97 
Red 0.17 11.84 5 0.97 
NIR 0.32 8.77 13 0.98 
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Figure 1 Fused colour composite by the IHS+W method  

2.  The ARSIS M2 and RWM models 

In the ARSIS scheme, different models for MSM and IBSM exist. The statistics have 

been computed and are presented in Table 3 for the MSM model with filter size 3x3 and 

the IBSM models - Model 2 (M2), RWM (named after Ranchin, Wald, and Mangolini) - 

with different filters denoted as R7 (7x7 mask), R15 (15x15 mask), R21 (21x21 mask). 

The statistics for all the other models vary by only a few (1-4) percent.  The visual quality 

of the fused images for R7, R15, R21 are not satisfactory in the Blue, Green and Red 

bands. The images appear to be noisy in certain areas and smoothed in others. A fused 

image using R7 in the Green band is given Figure 2.     
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Table 3 Statistics for different MSM and IBSM models for the ARSIS scheme   

Bias SDD DIV  CC 

MSM3M2  

Blue 0.17 9.83 4.59 0.92 
Green 0.16 14.06 3.94 0.92 
Red 0.22 18.86 3.78 0.93 
NIR 0.1 23.41 2.28 0.86 

MSM3R7 

Blue -0.07 9.89 -4.84 0.93 
Green -0.08 13.8 -2.82 0.93 
Red -0.12 19.18 -4.27 0.93 
NIR 0 19.74 2.24 0.9 

MSM3R15 

Blue 0.11 8.9 1.56 0.94 
Green 0.13 13.52 -0.58 0.93 
Red 0.15 18.72 -1.54 0.93 
NIR 0.09 21.46 0.43 0.89 

MSM3R21 

Blue 0.15 8.53 5.66 0.94 
Green 0.16 13.21 2.72 0.93 
Red 0.21 18.18 1.89 0.93 
NIR 0.08 22.05 2.17 0.88 
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Figure 2   R7 fused image in Green band         
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Table 4   Statistics for IHS method for IK D1             

Note: 431, 421, 432 and 321 represent the bands. NIR Band – 4, Red Band -3, Green Band – 2, Blue Band -
1.   

 

                a) IHS    b) WA (1 plane)     c) WA (2 plane)  

Figure 3   Fused Blue bands - QB D2     

Band 431 421 432 321 

Blue -0.32 -0.31 - -0.31 
Green - -0.3 -0.33 -0.3 
Red -0.4 - -0.42 -0.39 Bias 
NIR -0.23 -0.23 -0.24 - 
Blue 19.59 19.39 - 32.04 
Green - 18.92 21.67 31.25 
Red 24.66 - 27.97 40.33 

SDD 

NIR 14.3 14.16 16.21 - 
Blue 2.97 3.37 - -12.81 
Green - 15 17.59 12.22 
Red 15.49 - 17.9 13.23 

Variance 

NIR 1.82 2.4 -2.92 - 
Blue 0.7 0.7 - 0.64 
Green - 0.85 0.81 0.6 
Red 0.87 - 0.83 0.26 

Correlation 
coefficient 

NIR 0.95 0.95 0.94 - 
ERGAS  4.99 4.41 5.61 8.69 



  
104

 
Appendix 2 

Classification via Texture Analysis   

Some results obtained with the classification of high resolution 4-m MS image and 1-m 

fused ARSIS M2 MS images are presented here. Those results are preliminary works to 

demonstrate the need of new classification methods in VHR images of urban areas to 

discriminate roads from parking/buildings (see Zhang and Couloigner, 2005). The 

classification accuracies obtained for the training pixels are given in Table 1.  

Table 1 

Maximum-Likelihood Classification results for the training pixels 
Image Overall Accuracy Kappa Coefficient 

4-m MS 89.11 0.866 
1-m  fused MS 90.65 0.886 

 

The overall accuracy and the kappa coefficient obtained with the 4-m MS image do not 

vary much from those obtained with the 1-m fused MS image. The classification 

accuracy of the fused image was evaluated with the reference pixels and the confusion 

matrix obtained for the classes shown in Table 2.  

Table 2 
Confusion Matrix for the reference pixels obtained by the maximum-likelihood classification  

Reference pixels 

 

Grass Tree Road Building Parking 
Grass 11133 1387 69 0 396 

Tree 1683 48789 0 1 0 

Road 0 11 2951 479 8514 

Building 0 178 551 7600 5319 

Parking 0 0 1695 1061 10809 

Shadow 0 6966 2 123 1 

Pavement 0 0 632 24 2387 

Vehicle 0 64 429 509 7566 

Total 12816 57395 6329 9797 34992 

User accuracy % 86.86 97.21 63.42 78.83 59.33 

 



  
105

  
The percentage accuracy for Road, Parking, and Building were calculated with the 

Pavement, Vehicle, and Shadow pixels included for the Road class, Shadow pixels 

included for the Building class, Pavement and Vehicle pixels included for the Parking 

class. For the Tree and Grass classes, the accuracy obtained was more than 85%. The 

largest source of errors was due to the misclassification between the Road and Parking 

classes. The classification accuracy obtained for the Parking class is 59 % and for the 

Road class 63 %.  Nearly 26% of Road class is classified under Parking class and 24% of 

Parking class is classified under Road class. Shadow pixels are more associated with 

Building class and Tree class. Even though there was a separate class for shadows, it was 

impossible to obtain a separation between the shadows and the sides of the building. The 

pixels around tree shadows and some vehicles are classified as Building in many areas. 

This is also a reason for misclassification between the Road and Parking class with 

Building class.  

Textural classification of ARSIS fused image 

Texture measures such as entropy, homogeneity, and contrast can be used to obtain a 

better separation of the classes. Texture measures were derived from the 1-m fused NIR 

image and 1-m PAN for window sizes of 25 x 25, 15 x 15 and 5 x 5. The classification 

accuracy was better for the texture measures derived from 1-m NIR than for the texture 

measures derived from 1-m PAN. The classification accuracies obtained with different 

texture measures are presented in Table 3. 

The texture measures - homogeneity, angular second moment, and entropy - resulted in 

high classification accuracies for the Grass and Tree classes. It can be seen that the 

classification accuracies are better for the Grass and Tree classes with a 15 x 15 window. 

When the variance 5 x 5 texture increased the accuracy of the Parking class to 66 %, the 

accuracy of the Road class dropped to 62%.  The classification accuracies increased for 

the Road, Building, and Parking classes to 80%, 80% and 57 % respectively with the 

mean 25 x 25 texture, whereas the accuracies of the Grass and Tree classes decreased 

considerably. 

The classification accuracies are very high for the entropy 15 x 15 and the homogeneity 
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15 x 15 texture measures for the Grass and Tree classes. The entropy 15 x 15 

measure was found to be best for differentiating the Grass-Tree class by visual analysis. 

Classified images obtained for the entropy 15 x 15 texture is shown in Figure 1 (c). 

Classification result obtained with only four spectral bands is shown in Figure 1 (b). It is 

obvious that the entropy texture measure has improved the differentiation between the 

Grass-Tree classes.  

Table 3 
Classification Accuracies obtained with maximum likelihood classification with different texture measures  

Grass Tree Road Building Parking 

Homogeneity 25 x 25 99.9 98.3 75.5 80.8 42.5 
Contrast 25 x 25 94.6 98.55 70.24 80.83 50.1 
Mean 25 x 25 90.94 98.7 84.33 81.23 57.5 
Variance 25 x 25 91.8 96.5 82.43 80.7 43.5 
Angular second moment 25 x 25 99.9 97.42 87.7 81.9 45.8 
Entropy 25 x 25 99.9 98.7 85.7 81.73 43.41 
Homogeneity 15 x1 5 99.9 99.2 80.7 80.7 49.9 
Contrast 15 x 15 96.2 98.2 76.26 81.5 54.8 
Mean 15 x 15 97.5 97.6 82.9 81.02 42.9 
Variance 15 x 15 89.6 98.6 82.9 79.3 44 
Angular second moment 15 x 15 99.9 96.16 84.26 83.01 47.6 
Entropy 15 x 15 99.9 99.06 86.16 82.1 46.2 
Homogeneity 5 x 5 92.4 98.2 73.1 78.9 59.0 
Contrast 5 x 5 89.5 97.1 61.7 68.8 64.5 
Mean 5 x 5 91.2 96.6 55.5 77.3 59.37 
Variance 5 x 5 91.8 95.6 62.1 74.3 65.9 
Angular second moment 5 x 5 96.6 97.05 75.13 76.12 56.1 
Entropy 5 x 5 94.1 97.9 74.5 77.01 54.9 

 

With the enormous spatial information present in VHR images, it is possible to overcome 

the limitations of the spectral range and spectral resolution of these images to some 

extent. The accuracies obtained by the textural classification vary for different texture 

measures and window sizes. When a texture measure increases the accuracy of one class, 

it decreases the accuracy of the other classes for most of the cases. Thus, the selection of 

a suitable texture measure and window size is very important to obtain good results in 

textural classification. The classification accuracies obtained for certain classes can be 

compromised depending on the application at hand. For example, when the purpose of 

the classification is road extraction, the classification accuracies for the Grass and Tree 
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classes could be compromised to some extent and a texture measure that helps to 

better differentiate the Road class from the Building and Parking classes could be 

selected. However, specific texture measures like length-width texture (Shackelford, 

2003) or angular texture measures are highly useful for road extraction and need to 

investigate in more detail.    

       

   

    (a)           (b)  

    

 

(c)  

Figure 1. (a) Colour composite (RGB=432) of the 1-m M2 fused image. Maximum 
Likelihood classification of the 1-m M2 fused image (b) with 4 MS bands and (c) with 4 
MS bands and the entropy 15 x 15 texture measure. 


