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ABSTRACT

A system to estimate the horizontal position of cellular telephones operating in the Advanced Mobile

Phone Service is developed and its performance evaluated.  This system, named Cellocate, was designed and

developed for the application of automatic location of cellular 911 callers.  Cellocate implements a

superresolution based algorithm to estimate, at a number of cell sites, the time of arrival of signals transmitted by

a cellular telephone.  The time of arrivals are differenced between the cell sites and hyperbolic trilateration is used

to estimate the position of the cellular telephone.  Time synchronization between the various cell sites is

implemented through the use of a GPS receiver, operating in time transfer mode, at each cell site.  Least squares is

used in the position estimation process to make redundant observations consistent.

The performance of Cellocate is evaluated though the use of simulations and field tests.  The

simulations indicate that for an actual cellular network in Calgary, Alberta, and for typical propagation losses and

multipath effects, Cellocate is able to estimate the horizontal position of a cellular telephone with an accuracy of

119 m (67%).  Operational field tests, in which the Cellocate system was installed in four working cell sites,

indicate a positioning accuracy between 189 m and 287 m (67%).  Positioning accuracy is shown to be a function

of received signal SNR, multipath, geometry, and calibration of the system biases.  Significant improvement in the

precision of the position estimates is achieved by averaging of the results.  Given proper system calibration, as

well as adequate geometry and signal strength, Cellocate will meet the Federal Communications Commission

requirement of 125 m (67%) for automatic 911 caller location.
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 CHAPTER 1

INTRODUCTION

1.1  Introduction

The field of cellular telephone positioning has attracted much attention in recent

years.  Initially, cellular telephone positioning was seen as advantageous for system

management purposes.  For instance, as system capacity increases in response to consumer

demand, cells decrease in geographical size.  Knowing the accurate locations of cellular

telephones may assist the system in allocating resources effectively.

More recently, however, the focus of cellular telephone positioning has shifted from

system needs to human needs.  A significant majority of cellular telephone users cite security

and safety as the principal reasons for subscribing to cellular telephone services.  A recent

incident involving a cellular telephone in an emergency situation serves as an excellent

example.  In February of 1997 a person became stranded along a highway during a winter

blizzard (Associated Press, 1997).  She used her cellular telephone to call for help but could

not provide her location due to white-out conditions.  To identify the caller’s approximate

position, authorities asked her to tell them when she could hear the search plane flying

above.  From the time of her first call, forty hours elapsed before a ground rescue team

reached her.  An automatic positioning system would have allowed rescuers to reach her far

sooner.

Other security applications also exist.  Fraudulent telephone use is of major concern

to cellular service providers.  Identifying the location of a fraudulent user obviously assists

in their apprehension.  The same may be said for persons who use cellular telephones for

criminal purposes.  Other applications include the tracking of stolen vehicles containing

cellular telephones as well as important persons carrying cellular telephones.

1.2  Motivation

The most immediate motivation for the development of cellular telephone

positioning systems is enhanced 911 (E911) services.  In June of 1996, the Federal
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Communications Commission (FCC) in the United States created rules that require cellular

service providers to provide the position of cellular 911 callers to Public Safety Answering

Points (PSAPs).  When 911 is called from a land-line telephone, the street address of that

telephone is automatically provided to the 911 operator.  This service is one of the features

of E911.  Automatic telephone location allows the 911 operator to dispatch emergency

response teams immediately.  It is most critical when the caller does not know their location

or cannot speak.

Currently, E911 services are not available for wireless subscribers.  The FCC would

like to change this due to the increasing number of 911 calls made from cellular telephones.

The FCC rules state that cellular service providers must provide the horizontal position of a

cellular 911 caller with an accuracy of 125 metres in 67% of all cases (FCC, 1996).  These

rules take effect in October of 2001.

1.3  A Cellular Telephone Positioning System

In response to the FCC mandate, a collaborative effort to design and develop a

cellular telephone positioning system was undertaken by Cell-Loc Inc. and the Department

of Geomatics Engineering at the University of Calgary.  The result of this effort is

Cellocate, a system to estimate the horizontal position of cellular telephones operating

under the Advanced Mobile Phone Service (AMPS).  At this time, AMPS is the dominant

cellular standard in North America and several countries outside North America.

This dissertation is a record of much of the design, development, and analysis of the

system to July of 1997.  The principal contributions of the author were the incorporation of

GPS (Global Positioning System) time synchronization, the positioning algorithms, an

analysis of the effect of multipath (MP) on time of arrival (TOA) and position estimation,

and testing and analysis of the system.  The author also conducted simulations to investigate

the performance of the TOA estimation and position estimation processes and determine the

system’s potential.  Cell-Loc Inc. provided the basic TOA estimation
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algorithms, the system hardware, and digital signal processing software.  Both parties

labored through the development stage to produce a working prototype.

The Cellocate prototype estimates, at several cell sites, the TOA of a cellular

telephone transmission on the reverse control channel (RECC).  TOA differences are formed

between the cell sites in order to eliminate the time of transmission (TOT).  Trilateration is

then used to estimate the horizontal position of the cellular telephone given the known

positions of the cell sites.  GPS is used to synchronize the cell sites in time.

Although most of the concepts on which Cellocate is based are not new, such a

system has only become realizable in the last year.  There are two main reasons for this, the

first being TOA estimation accuracy.  In the past, TOA estimation by Fourier based

correlation has not been of sufficient accuracy to produce a position accuracy of any

practical benefit.  This has changed with the introduction of superresolution algorithms.  As

shown by Dumont (1994), one such algorithm, Multiple Signal Identification and

Classification (MUSIC), is able to provide TOA estimates of far higher resolution than those

produced by Fourier methods.  Dumont simulated the use of MUSIC in TOA estimation for

the purpose of hyperbolic trilateration.  The Cellocate system, however, is the first

application of MUSIC to AMPS based cellular telephone positioning.

One of the major error sources for TOA estimation of cellular telephone signals is

multipath.  In the cellular frequency band of 800 - 900 MHz, reflection, refraction and

diffraction of the signal, due to man-made and natural objects, is common.  As a result, the

signal travels from the transmitter to the receiver via many paths.  A line of sight (LOS) path

may or may not exist.  If a LOS path does not exist, the TOA estimate will obviously be later

than it should.  Since positioning by trilateration assumes LOS propagation, error is

introduced.  If a LOS signal does exist, it will more than likely be accompanied by later

arrivals.  If the TOA estimation method is not able to resolve the LOS signal from the others,

the TOA estimate will be skewed late, again introducing error.  Due to its high resolution,

MUSIC is able to provide TOA estimation accuracy, in the presence of multipath, never

before realizable.
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The second factor which allowed a system such as Cellocate to be developed is

the implementation of GPS.  Since achieving initial operational capability in December of

1993 (Leick, 1995), GPS has been able to provide timing synchronization at the same level

of accuracy as atomic clocks.  In addition, it has two distinct advantages - GPS receivers are

far less expensive than atomic clocks and do not require periodic calibration.

1.4  Research Objectives

The principal objective of this research is to design and develop the Cellocate

system described above.  A second major objective is to investigate and test the various

components of Cellocate and to analyze the entire integrated system under normal field

operation conditions.  Since Cellocate is designed to address the E911 problem for

wireless subscribers, a key objective is to determine whether and under what conditions it is

able to meet, in an urban environment, the FCC accuracy requirement of 125 m (67%).

Other objectives are to analyze the performance of TOA estimation by MUSIC, investigate

the use of GPS for time synchronization, analyze the positioning performance of hyperbolic

trilateration, quantify the effect of urban multipath on TOA and position estimation, and to

analyze the geometry of the current cellular network in Calgary, Alberta, and determine its

effect on positioning accuracy.

These objectives are met through simulations and field tests.  Simulations were

conducted for TOA estimation in the presence of multipath and position estimation for the

Telus Mobility cellular network in Calgary.  Field tests were conducted by installing

Cellocate prototypes in four Telus Mobility cell sites.

1.5  Dissertation Overview

This dissertation consists of nine chapters.  Chapter 2 is a discussion of the various

approaches to cellular telephone positioning and includes a literature review of past and

concurrent research efforts.  Chapter 3 deals with TOA estimation theory.  The emphasis is

on TOA estimation by correlation with Fourier methods and superresolution.  Position

estimation is discussed in Chapter 4.  Least Squares (LS) estimation and various trilateration



5

models are explained.  The chapter ends with Plane Intersection - a closed form position

estimation algorithm.  Simulation of the multipath corrupted cellular channel is the topic of

Chapter 5.  The TOA of a signal transmitted through the simulated channel is estimated with

MUSIC.  Chapter 6 deals with positioning simulations.  Chapters 7 and 8 present field test

results.  A static multipath test with four Cellocate prototypes in an open field is discussed

in Chapter 7.  Results from a test, in which Cellocate was installed at four working cell

sites, are presented in Chapter 8.  In Chapter 9, conclusions and recommendations for further

investigations are made.
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CHAPTER 2

CELLULAR POSITIONING TECHNOLOGY

2.1  Introduction

This chapter consists of three main sections.  In the first, general methods of

cellular positioning are discussed and compared.  The second section gives an overview of

the work already done in the area of cellular telephone location.  Both university and

industrial efforts are discussed.  The chapter ends with a presentation of the Cellocate

system, the main object of this dissertation.

2.2  Approaches to Cellular Positioning

Cellular telephone positioning systems may be divided into two general groups.

Those that place the positioning technology in the mobile terminal (that is the cellular

telephone) may be classified as mobile terminal centric.  Technology within the cellular

telephone estimates position and transmits that information to the network for use in

applications such as E911.  The most obvious example of this type of approach is the

inclusion of a GPS receiver in the cellular  telephone.

GPS is a satellite based positioning system designed to provide three dimensional

position and velocity information 24 hours a day, in any weather, anywhere in the world

(Hofmann-Wellenhof et al., 1993).  GPS satellites orbit the earth at approximately 20 000

km and transmit signals which are used by GPS receivers to position themselves.  The

satellites transmit on two separate frequencies, 1575.42 MHz and 1227.6 MHz.  This allows

corrections to be made to compensate for signal delay through the ionosphere.  On the first

frequency (1575.42 MHz) two spread spectrum codes are modulated.  The C/A code is a

1023 bit Gold code (Spilker, 1980) with a rate of 1.023 Mbps.  The P code, having a period

of 38 weeks and a rate of 10.23 Mbps, is also modulated onto the second carrier of 1227.6

MHz.  Each satellite has its own unique C/A code and a one week segment of the P code.
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The position of the GPS receiver is estimated by spherical trilateration.  The TOA

of the satellite signal at the receiver is estimated by correlating the spread spectrum codes

with replicas in the receiver. The TOT of the signal is part of the information transmitted

from the satellite to the receiver.  Subtracting this TOT from the estimated TOA and

multiplying by the speed of light gives a range from the satellite to the receiver.  This range

defines a sphere, centered at the satellite, on which the receiver must be located.  The

position of the satellite is also transmitted to the receiver.  If three satellites are used, the

three corresponding spheres will intersect at the location of the receiver.  In reality, a fourth

satellite is required because the offset of the receiver clock, with respect to GPS system time,

is also unknown.  Selective availability (SA) is an intentional degradation of GPS accuracy

usually implemented by dithering the satellite clock correction parameters.

The advantages of a GPS based system are positional accuracy and the availability

of the technology.  The accuracy of GPS in single point C/A mode is 100 m 2 dRMS (95%)

in the horizontal and 156 m (95%) in the vertical component (Lachapelle, 1992).  This more

than meets the FCC specification.  In addition, GPS receivers can be inexpensive and are

readily available.  However, two serious disadvantages prevent such a system from being a

viable option.  Currently, there are 50 million cellular telephones in use in North America,

none of them containing GPS receivers.  To ask consumers to purchase cellular telephones

containing GPS receivers, in order to be compatible with a location finding system, is

unreasonable.  Ideally, any positioning system should be compatible with the telephones

currently in use and, as far as possible, transparent to the entire network.  For a GPS based

system, changes to the signal standards would be required in order to accommodate the

position information.  Secondly, such a system would suffer the same LOS availability

limitations as GPS.  Due to a free space path loss in excess of 180 dB, GPS signals require a

clear unobstructed path between the receiver and the satellites.  GPS is unavailable inside

buildings, vehicles, underground parkades, tunnels, etc., areas considered critical from an

emergency point of view.

The second group of systems are network centric.  In these systems the positioning

technology resides in the network rather than the telephone.  In this way the telephone need
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not be modified and the system will be compatible with telephones currently in use.  This is

by far the greatest advantage of this approach over the mobile terminal centric approach.

Network centric systems rely on radio location techniques.  Either or both the angle of

arrival (AOA) and TOA of signals transmitted between the cellular telephone and network

cell sites are estimated.  Position may then be estimated by triangulation in the case of AOA

or trilateration in the case of TOA.  Triangulation refers to the intersection of bearings from

at least two stations with known location.  An example of triangulation is given in Figure

2.1.

α1 α 2

N

Figure 2.1 Location by Triangulation

In Figure 2.1, α1  and α2  refer to AOA estimates of a signal transmitted by the

cellular telephone and received at cell sites 1 and 2 respectively.  The AOA estimates are

obviously with respect to some reference direction such as North.  The position estimate is

then the intersection of the bearings from the two cell sites.

Trilateration involves the intersection of position lines formed by ranges or range

differences.  Consider the scenario of Figure 2.2.  Pictured are three cell sites receiving

signal transmissions from the cellular telephone.  At each cell site the TOA of the signal is

estimated.  If the TOT of the signal is known, the range from cell site to cellular telephone

may be determined by multiplying the propagation time by the propagation velocity.

According to that cell site then, the cellular telephone lies somewhere on a circle (for the
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horizontal case) with a radius equal to the estimated range and centered at the cell site.

Unless the cellular telephone is exactly midway between two cell sites, the range circles of

two cell sites will intersect at two points.  Depending on the size of the range circles, the

application at hand, and any a priori positional information, it may or may not be obvious

which of the two intersections corresponds to the position estimate.  For the cellular

application, the distances involved require at least a third range, as in Figure 2.2, to identify

the position sought.  Position estimation by the intersection of circles is herein referred to as

circular trilateration.

r1
r2

r3

Figure 2.2 Circular Trilateration

In a network centric cellular positioning system, TOT information from the cellular

telephone is unavailable.  In such a case, the unknown TOT may be eliminated by forming

TOA differences between cell sites.  Lines of position are then defined as those for which the

TDOA (time difference of arrival) between two cell sites is a constant.  For the two
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dimensional case, the conic section which is defined by this very constraint is the hyperbola

(Swokowski, 1983).  The relevant half of the hyperbola is known from the arrival order of

the two cell sites involved.  Two lines of position requires two hyperbolas and therefore

three cell sites.  The intersection of the two hyperbolas then estimates the position as

illustrated in Figure 2.3.  The use of TDOAs in this way is termed hyperbolic trilateration.

1 2

3

TOA TOA1 3− TOA TOA2 3−

Figure 2.3 Hyperbolic Trilateration

In the past, AOA and TOA estimation accuracy has been the greatest disadvantage

of these systems.  The accuracy of the derived position is, of course, a function of the

accuracy of the AOA or TOA estimates.  Accurate estimation of AOA usually requires the

use of expensive steered beam antenna arrays and is greatly affected by multipath.  AOA

estimation using superresolution and virtual antenna arrays has been investigated for the

AMPS standard (Klukas, 1993).  For a LOS signal in the presence of multipath, an AOA

accuracy of approximately 5° was possible.  This translates into a positional error of

approximately 100 m or less for cell sizes on the order of  1 km.

TOA estimation may be accomplished by correlating a received signal with a

replica of that signal. The accuracy of TOA estimation by correlation is a function of the

signal bandwidth.  Spread spectrum signals are, therefore, ideal for this in that they generally
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have a relatively large bandwidth.  GPS is an example of this type of radio location

technology.  The C/A code has a clock or chip rate of 1.023 Mbps (Spilker, 1980).  The

individual elements of the code are referred to as chips.  The chip length, being the speed of

light divided by the chip rate of 1.023 Mbps, is approximately 293 m.  For correlation by

delay lock loop, errors due to multipath are limited by the chip length.  Multipath reflections

arriving later than one and a half chips after the first arrival introduce no error (Van Nee,

1991). Multipath errors are proportional to the early-late spacing of the delay lock loop and

reach a maximum of half the early-late spacing (Van Nee, 1992). Early-late spacings of 0.1

chips are now common in GPS receivers (Van Dierendonck et al., 1992).

Correlation of spread spectrum signals is often achieved with traditional Fourier

based techniques.  In that case, resolution is generally limited by the Rayleigh resolution

criterion (Haykin, 1991).  This states that two signals are just resolved when the peak of one

sits at the first minimum of the other.  Since the autocorrelation function of pseudo-random

spread spectrum codes is a triangle with a base of twice the chip length, Fourier based

correlation techniques are only able to resolve multipath arrivals with delays greater than  the

chip interval.  This corresponds to the limits of the delay lock loop discussed above.

In any case, the smaller the chip interval, the better the multipath rejection.  In the

Cellocate system presented herein, the signal which is used for correlation is the cellular

telephone registration preamble transmitted on the reverse control channel.  The data rate of

this signal is only 10 kbps giving a chip length of 30 km.  The resolution of typical Fourier

based correlation techniques will obviously not be adequate.  Instead, superresolution

algorithms may be employed in the correlation process.  They are so named because of their

ability to exceed the Rayleigh resolution bound.  Dumont (1994) has investigated the use of

superresolution in spread spectrum ranging systems.  Dumont uses root MUSIC in the TOA

estimation process and demonstrates the improvement over traditional Fourier correlation.

She also demonstrates MUSIC’s ability to resolve multipath arrivals within one chip

interval.  For a 10 Mbps pseudo-random signal, a signal to noise ratio (SNR) of 10 dB, and a

two ray channel with ray separation of 1 8  of a chip, MUSIC was able to resolve both

arrivals in 75% of all cases.  This same method is used in the Cellocate system to estimate
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TOA of the 10 kbps registration message preamble.  It will be shown with field data that

MUSIC in the correlation process outperforms Fourier based correlation in terms of position

accuracy.

TOA estimation accuracy in the past would have been inadequate for meeting the

FCC specification.  However, superresolution has taken TOA estimation to a new accuracy

level.   This use of superresolution in TOA estimation makes a network centric solution

based on trilateration a feasible, low-cost and attractive solution to the cellular telephone

positioning problem.  TOA estimation by MUSIC will be further discussed in Chapter 3.

2.3  Previous Work

The positioning of cellular telephones has been of interest for some time.  It may be

considered a special case of the broader field of automatic vehicle location.  One means of

automatic vehicle location is position estimation of a transmitter located in the vehicle.  This

is very similar to the application of cellular telephone positioning in that the transmitting

device is now the cellular telephone.

Much work was done in the area of vehicle location in the early 1970s.  Turin et al.

(1972a) performed experiments in the San Francisco area to generate a statistical model of

urban multipath propagation.  From a fixed site, 100 ns pulses were simultaneously

transmitted at frequencies of 488, 1280, and 2920 MHz and received at a mobile van.  The

data was analyzed and from it statistical models derived.  The models were then used in the

simulation of an urban vehicle monitoring system and the results presented in a companion

paper (Turin et al., 1972b).  Two methods of ranging were simulated.  In the first, TOA was

estimated by measuring the phase of a narrowband (25 kHz) phase modulated signal.  In the

second, a wideband (10 Mbps) pulsed waveform was employed.  TOA was estimated by

observing when the envelope of the received signal exceeded a threshold.  Simulations of

phase-ranging for a dense urban environment resulted in a mean range error of 440 m and a

standard deviation of 627 m.  For pulse-ranging the corresponding values were 95 m and 65

m.
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In either case, the position of a simulated transmitter was estimated by trilateration

using TOA estimates from a number of fixed sites.  LS was used to fit a position to the TOA

observations.  Cities with concentric circular propagation environments were simulated with

4, 6, or 8 receivers placed symmetrically along a circle of radius 3048 m.  Simulated

transmitter points were placed along circles of radii 762 m, 2286 m, and 4572 m.  The

resulting radial location error distribution for phase ranging and 8 receivers had a mean of

141 m and a standard deviation of 110 m.  For a pulse-ranging system the mean error was 43

m with standard deviation 31 m.

Warren et al. (1972) built and tested a vehicle location system based on TOA

measurements and hyperbolic trilateration.  The vehicle to be positioned emitted a signal

consisting of a 3150 Hz tone FM modulated onto a 154 MHz carrier.  The phase of this

signal, received at each of the monitoring stations, was correlated with synchronization

pulses transmitted from a central site.  This formed the basis of the TOA measurements.

The system was tested with four monitoring stations and the horizontal location accuracy

was found to be 549 m (67%).

In recent years the area of vehicle location, and more specifically cellular telephone

location, has again attracted a large amount of interest.  Spread spectrum based systems, in

particular, have been heavily investigated.  In the late 1980s, an automatic vehicle location

system was developed and put into use in Australia (Hurst, 1989).  This system, named

QUIKTRAK, measures TOA of a 1 Mchip/sec spread spectrum signal and estimates position

by hyperbolic trilateration.  The application is fleet management of commercial vehicles.

The system is claimed to have an accuracy of approximately 30 m in a coverage area of

some 2000 square kilometres.  Goud (1991) also analyzed the use of spread spectrum

trilateration and reports a range error mean of 18 m and standard deviation of 40 m for a 10

MHz bandwidth.  His positioning simulations suggest a mean absolute location error of 26 m

and a 90th percentile of 51 m for 8 sensors located on a circle of radius 3 km.  Dumont

(1994) also simulated positioning accuracy using root MUSIC to estimate TOA of a 10

Mchip/sec spread spectrum signal.  With four base stations optimally spaced on a sphere of



14

radius 200 m, a mobile anywhere within the sphere could be located with a mean error of

less than 10 m.

The way in which TOA estimates are processed in order to estimate position has

also been investigated.  Morley (1995) compares LS with maximum likelihood estimation

based on statistical distributions for multipath and iterative hill-climbing algorithms.  His

simulations show that under certain conditions, maximum likelihood has a 90th percentile

position error 1.4 to 3.6 times less than that of LS.  Schmidt (1996) and others (Smith et al.,

1987) have developed non-iterative LS based algorithms to estimate position from range or

TOA differences.

Although much of the attention has focused on TOA technologies, AOA has not

been abandoned.  Sakagami et al. (1992) investigated the use of multibeam antennas for

vehicle positioning in multipath environments.  Field tests performed in Tokyo yielded RMS

position errors of 200 m or more when measuring AOA at three sites.  Sakagami et al. report

errors in excess of 1000 m due to strong multipath from distant reflectors.

A number of companies are developing cellular telephone positioning systems.

Lockheed Sanders, Inc., offers a two stage positioning system (Sanders, 1996).  The first

stage, called Smart Look, provides a wide area (or approximate) location of an AMPS

cellular caller.  Smart Look  is installed in the existing cellular infrastructure and requires

no modification of the cellular telephone. From dense urban environment field trials, Sanders

claims a Smart Look location accuracy of just over 3000 feet or 914 m.  A handheld

device called Micro Look  may then be used to lead the user directly to the cellular

telephone by providing a true line of bearing from signal strength measurements

(Microwaves & RF, 1995).  Sanders claims a position accuracy better than 125 m for the two

stage system.  Both Smart Look  and Micro Look  use a proprietary technology called

“compressive TDOA”.  Sanders plans to make this system commercially available when

market conditions improve.

The Associated Group, Inc. (1997) has developed a product called TruePosition

which also uses TDOA technology.  TruePosition is very similar to Cellocate.  Both

systems estimate TDOA of transmissions on the reverse control channel, use GPS to provide



15

timing information, and require no modification of the cellular telephone.  In the

TruePosition system, TDOAs are obtained by cross-correlating between signals received

at different cell sites (Stilp et al., 1994).  The cross-correlation process is a crucial difference

between the two systems.  TruePosition uses shift registers to perform a sliding correlation

whereas Cellocate employs MUSIC.  The location algorithm in TruePosition is a two

step process that first finds the minimum LS difference between the measured TDOAs and

theoretical values for a grid of hypothetical locations.  The best theoretical location is then

used as the starting point for a second search with finer resolution.  The positioning

algorithm in Cellocate follows the classical implementation of LS for trilateration as

outlined in Chapter 4. In TruePosition, a quality factor is associated with each TDOA to

account for multipath effects.  This quality factor is based on the width of the correlation

peak which represents the degree of multipath corruption in the TDOA measurement.

TruePosition is reported to provide a location accuracy of 400 feet (122 m) or better.  With

a wideband digital system, Associated expects to achieve an RMS error of 114 m.

A TDOA based system has also been developed by Engineering Research

Associates.  This system also makes use of signals transmitted on the reverse control channel

and uses GPS to provide time synchronization (Kennedy et al., 1994).  Its uniqueness lies in

it’s method of mitigating multipath interference.  Alternating projection maximum likelihood

is first used to estimate the AOA of the first received signal (the signal of interest) as well as

that of all multipath arrivals (Kennedy et al., 1995).  The receive antenna array is then

electronically steered in such a way as to reject the multipath interference and provide

maximum gain to the signal of interest.  TDOA is estimated by cross-correlation of signals

from two different cell sites and trilateration used to estimate the cellular telephone’s

position.  The system is reportedly able to achieve a position accuracy of 100 m or better.

2.4  The Cellocate  System

Cellocate is a TOA based cellular telephone positioning system currently

implemented for AMPS. Using root MUSIC, the TOA of a signal transmitted by the cellular

telephone is estimated by correlation at three cell sites or more.  A GPS receiver, operating



16

in time-transfer mode, is located at each cell site to provide time synchronization.  TOA

estimates are differenced at a central processing site to produce TDOA measurements.  A

two dimensional position is then estimated by hyperbolic trilateration through the use of LS.

Since Cellocate makes use of operational cellular signals, it enjoys the

advantages, and is subject to the limitations, of propagation in the 800 - 900 MHz portion of

the radio spectrum.  The system is capable of operation in all weather conditions and all

propagation environments.  However, as will be shown later, the performance of Cellocate

is dependent on received SNR and multipath conditions.

2.4.1  The Cellular Registration Message

The signal used for correlation in AMPS is the preamble of the cellular telephone

registration message.  This message consists of a 30 bit dotting sequence, an 11 bit Barker

coded synchronization word, and a 7 bit digital color code for a total of 48 bits.  It is

transmitted by each cellular telephone on a reverse control channel whenever network access

is required.  Each cell site makes use of two 30 kHz wide control channels.  The forward

control channel is for transmission from the network to the cellular telephone whereas

transmission in the opposite direction is performed over the reverse control channel.  When a

cellular telephone is turned on, it scans all available forward control channels and locks onto

the strongest one.  Transmissions on the forward control channel are periodic.  After locking

onto a control channel, the cellular telephone receives data on that channel which among

other things tells it when the reverse control channel for that particular cell is free.  Upon

availability of the reverse control channel, the cellular telephone transmits its registration

message.  Other occasions for registration are paging by the network, call initiation, and

regular registration while powered up.  A cellular telephone may be made to register as often

as desired by paging it.

Because each cell has only one reverse control channel, all cellular telephones in

that cell must share that channel.  A positioning system must sort through all of the incoming

transmissions on the reverse control channel and identify that of the cellular telephone of

interest.  This may be accomplished using the mobile identification number which is part of
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the registration message.  More details regarding the structure and modulation of the

registration message preamble are given in section 5.2.1.

2.4.2  RF Receiver and Correlator

In order to receive the registration message and estimate its TOA, a radio frequency

(RF) correlation receiver and a GPS receiver are installed at each cell site.  A block diagram

of the system at each cell site is shown in Figure 2.4.  The standard cell site equipment

consists of a preselect filter, a low noise amplifier (LNA), and a splitter. 

M

Receiver Multicoupler
(Standard Cell Site Equipment)

Preselect
Filter

1:6
Splitter

Other
Transceiver

ShelvesLNA

Cellular Positioning Equipment

RF Receiver and
Correlator

GPS
Receiver

Computer To Central
Processing

Site

 Receive
Antenna

Figure 2.4 Cellocate System at a Cell Site
The Cellocate prototype consists of an RF receiver, a correlator, a GPS receiver,

and a computer (Klukas et al., 1996).  The RF receiver and correlator consists of an RF

board and a digital signal processor (DSP).  The system interfaces with the cellular network

at the splitter in the receiver multicoupler as shown in Figure 2.4.  The first task of the RF

receiver, therefore, is to demodulate the signal.  The modulation method used in AMPS is

narrowband, analog FM.  The signal is demodulated as shown in Figure 2.5.
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Figure 2.5 RF Receiver and Correlator

The RF receiver is tuned to the appropriate reverse control channel.  The signal is

downconverted first to 45 MHz and then to 455 kHz.  The FM signal is demodulated with a

phase lock loop (PLL).  The PLL provides  two outputs, the baseband signal and the lock

detect.  The lock detect signal becomes active when the PLL has locked onto the received

signal.

The baseband signal is sampled in the DSP at 160 kHz.  The symbol rate of the

registration preamble is 10 kbps.  This gives 16 samples per data symbol for a total of  768

samples.  When the lock detect signal becomes active, correlation on the Barker sync word is

initiated.  As each new sample is received, the contents of a correlation buffer are shifted

over by one sample and correlated with a stored replica of the Barker word.  Once a

correlation value above a certain threshold has been detected, a counter counts up to 112 data

samples, the known number of samples from the Barker correlation peak to the end of the

preamble.  If another correlation value greater than the threshold is detected before the

counter reaches 112, the counter is reset.

When the counter reaches 112, a pulse is sent to the GPS receiver and the entire

baseband signal, which has been stored in a separate buffer, is downloaded to the controlling

cell site computer.  When pulsed, the GPS receiver records a time stamp in GPS time to the

same computer.  Within the computer a second correlation is performed in software using the

entire registration preamble and root MUSIC.  When referenced to the GPS time stamp, the

resulting correlation peak estimates the TOA of the signal at that cell site in GPS time.  In

this prototype system, MUSIC is not implemented in the DSP due to the complexity of the

eigenanalysis required.  The DSP in this prototype is not of sufficient speed to perform all of

the required computations in the time allocated.  In an operational system, it is possible for
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registration messages from various cellular telephones to arrive within fractions of a second

of each other.  The system must be able to process each registration in turn.  More powerful

DPSs, which should be able to handle the processing load of MUSIC, are now becoming

commercially available.

A second interface with the cellular network is required in order to transmit the

TOA estimate, mobile identification number and cell site identification to a central site for

position estimation.  One possibility is to transmit this information over a land telephone line

via modems.

2.4.3  GPS Time Synchronization

Crucial to any TOA based system is time synchronization.  If TOA measurements

from various locales are to be combined to estimate position, they must obviously be

measured with respect to the same time reference.  One possibility is to use high

performance atomic clocks at the cell sites.  However, compared to GPS time-transfer,

atomic clocks have some serious disadvantages (Van Dierendonck et al., 1983).  The first is

cost.  Since the construction of atomic clocks is labor intensive, the cost of these clocks is

expected to remain high in the future.  On the other hand, GPS receivers are continually

dropping in cost due to the use of large scale integration techniques.  Another disadvantage

of frequency standards such as atomic clocks is their drift, without bound, over time.  This

necessitates periodic calibration.  GPS receivers operating in time-transfer mode have no

such problem and in the short term are just as accurate as a Cesium clock.  One quickly

concludes that GPS time-transfer is the most cost effective and accurate method of time

synchronization for the positioning system under consideration.

GPS time-transfer is most accurate when the position of the GPS receiver is

precisely known.  Assuming that the receiver position is known and given that satellite

positions are obtained from the navigation message in the GPS signal, the propagation

distance between the receiver and the satellites may be calculated.  The TOT of the GPS

signal, in GPS system time, is also contained in the navigation message and thereby known

by the receiver.  This allows for calculation of the GPS signal TOA at the GPS receiver by

adding the TOT to the known propagation distance.  The TOA of the GPS signal in the
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receiver’s own time is then compared to the GPS system TOA just calculated to determine

the receiver’s time offset from true GPS time.  In this way a GPS receiver operating in time-

transfer mode at each cell site synchronizes all sites to GPS time.

In the Cellocate system, the position of each cell site is accurately surveyed

beforehand in DGPS (Differential GPS) carrier phase mode with an accuracy better than 10

cm (Lachapelle et al., 1992).  When operating in time-transfer mode, the receiver’s

coordinates are held fixed allowing all satellite observations to be used for solving the

receiver’s clock offset.  The accuracy of the receiver’s time, in the absence of SA and with

known receiver coordinates, will be better than 30 ns (Van Dierendonck et al., 1983).  The

presence of SA increases the user equivalent range error.  This corresponds to a timing error

of SA error n  where SA error  is the error in range due to SA and n is the number of

satellites used.  A nominal value for the standard positioning service timing error, in the

presence of SA, is 280 ns 2 dRMS (probability of 95% - 98%) (National Research Council,

1995).

In the Cellocate system, coordinated time synchronization is possible (Van

Dierendonck et al., 1983).  The common mode - common view technique may be used to

improve time-transfer accuracy analogous to the way DGPS improves positioning accuracy.

If the GPS receivers at all cell sites are constrained to view the same satellites, common

errors will be reduced or even eliminated over short baselines when TOA differences are

formed in the hyperbolic trilateration process.  Common errors include satellite ephemeris

and clock errors (including SA) as well as atmospheric errors.  Errors not common to all

receivers will of course be amplified by 2 .  This includes the above mentioned satellite

and atmospheric errors for long baselines where these errors are weakly correlated between

receivers.  For short baselines (≤ 100 km), the error budget will be dominated by receiver

noise and error in the receiver coordinates.  As a result, for short baselines and cm level

relative receiver coordinate accuracy, a relative timing accuracy of ≤ 5 ns between cell sites

may be possible.
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A simple test was performed to see how closely two GPS receivers could be

synchronized in time.  Both receivers used were the NovAtel GPSCard, a C/A code

receiver incorporating Narrow Correlator spacing (Fenton et al., 1991).  NovAtel

GPSCard receivers were used for all GPS work in this project.  The two receivers shared

the same GPS antenna.  This is referred to as a zero baseline test and is extremely useful for

isolating GPS receiver errors.  Both receivers were also pulsed by the same source and when

pulsed recorded a time stamp to a file.  A total of 657 time stamps were obtained over

approximately 32 minutes.  The differences between corresponding time stamps are plotted

in Figure 2.6.
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Figure 2.6 Time Stamp Differences between Two GPS Receivers

The mean time difference in Figure 2.3 is -6.5 ns and the standard deviation is 23.8

ns.  This is significantly higher than the 5 ns just quoted.  This is due to the resolution of the

time stamp measurement in the GPSCard.  According to the Commands Description

Manual (NovAtel, 1994) the resolution is 49 ns.  This suggest a maximum error of half that,

or 24.5 ns.  Although quantization error is uniformly distributed, adding two uniformly
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distributed random variables results in a nearly Gaussian random variable (Maybeck, 1994).

The standard deviation of the time differences is then expected to be 0.67*24.5* 2  = 23.2

ns.  Time synchronization may therefore be expected to contribute approximately 7 m (67%)

of error to the TDOA measurements using a GPS receiver of the NovAtel GPSCard type.

2.4.4  Position Estimation

Cellocate employs hyperbolic trilateration as discussed in section 2.2.  A

minimum of two TDOAs are required in the horizontal case since there are two unknowns,

latitude and longitude.  In the case where the number of observations (TDOAs) exceeds the

number of unknowns, errors in the observations prevent a unique solution.  LS is a common

and effective method of dealing with this redundancy by minimizing the sum of the square

of the residuals (Krakiwsky, 1990).  The hyperbolic trilateration equations are nonlinear and

must be linearized for use in LS.  The linearization process may be implemented with a

Taylor series expansion. Successive iterations of LS are then used to arrive at a position

estimate.  Other methods exist which linearize a non-linear problem without the need for

iterations.  Such closed form solutions include the spherical interpolation, spherical

intersection, and plane intersection methods (Smith et al., 1987) as well as the feasible

bivector method (Schmidt, 1996).  Plane intersection is herein investigated for providing the

initial position to begin the iterative process of LS.  Both plane intersection and LS are

described in detail in Chapter 4.
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CHAPTER 3

TOA ESTIMATION

3.1  Introduction

In Chapter 2, radio location by TOA estimation was presented as a leading

candidate to solve the cellular telephone positioning problem.  Correlation of signals was

discussed as a common method of estimating TOA.  This chapter deals in particular with

TOA estimation by correlation.  It begins by showing how TOA estimation is actually the

estimation of the channel impulse response and how correlation is related to the input/output

relations of linear systems.  This is followed by a discussion of MUSIC and its application to

the correlation process.

3.2  The Channel Impulse Response

In a cellular telephone communication system, signals are transmitted through a

channel and thereby corrupted by noise and very often, multipath.  Consider the simple block

diagram of Figure 3.1.

Channel
h(t)

input output

x(t) y(t)

Figure 3.1 Cellular Communication Channel

In Figure 3.1, the signal transmitted by the cellular telephone is x(t).  It passes

through the channel with impulse response h(t) and the signal arriving at the cell site is y(t).

The impulse response of a system is defined as the output of the system when the input is a

unit impulse (Van Valkenburg, 1964).  The Dirac Delta function, ( )δ t , is commonly used to

represent a unit impulse and is illustrated in Figure 3.2.  If x(t) = ( )δ t , then y(t)  will equal

the impulse response, h(t).  The channel is characterized in the frequency domain by its
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frequency response, H(f).  The impulse response h(t) and frequency response H(f) are a

Fourier transform pair.

( )δ t td−

t d t

1

Figure 3.2 The Dirac Delta Function

The output of the channel is related to the input by the impulse response.  This is

expressed in the convolution integral (Proakis, 1989)

y t h x t d( ) ( ) ( ) .= −
−∞

∞

∫ τ τ τ

(3.1)

Rather than solve the convolution integral, it is often more convenient to make use

of the convolution theorem (Haykin, 1989).  This theorem states that convolution in the time

domain and multiplication in the frequency domain are a Fourier transform pair.  Rather than

convolve two time domain signals, one may multiply their individual Fourier transforms in

the frequency domain.  Inverse transforming back to the time domain then gives the same

result as (3.1).

3.3  Impulse Response of Multipath Channels

In TOA estimation we are not interested in determining the channel output y(t)  but

the channel impulse response h(t).   Due to multipath, the urban radio propagation channel
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for cellular frequencies is generally modeled by a linear filter (Turin et al., 1972a).  If x(t) is

the transmitted lowpass waveform, then the received lowpass signal, y t( ) , is

( ) ( )y t a x t t e n tk k
j

k

N
k( ) = − +

=

−

∑ θ

0

1

(3.2)

where N = the number of multipath arrivals,

ak = the amplitude of arrival k ,

t k  = the time delay of arrival k ,

θ k = the phase of arrival k , and

n(t)= additive Gaussian noise.

Of interest here is that the received signal is the sum of a number of scaled, phase

shifted, and time delayed replicas of the transmitted signal.  If x(t) = δ( )t , then ( )y t , the

magnitude of y(t), and hence the magnitude of the impulse response h(t), may appear

something like Figure 3.3.

tt1 t2 t3 t4 tN

L

( )y t

  

Figure 3.3 Typical Impulse Response Magnitude of Multipath Channel

For radio location purposes, the TOA of the first, and hopefully LOS arrival, t1 , is

the quantity of interest.  TOA estimation may then be thought of as estimating the impulse

response of the channel, identifying the first arrival and its time delay. If the individual

arrivals in the impulse response are resolved and the first arrival corresponds to the LOS

path, multipath introduces no error into the TOA estimate.  Many times, however, the
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individual arrivals are so close that they cannot be resolved.  In that case, the first signal in

the estimated impulse response actually consists of a number of paths and its time delay will

be skewed due to the later arrivals.  Therefore, high resolution in the TOA estimation process

is an important factor.

The impulse response of the channel may be considered to consist of a number of

point sources in white noise.  As will be discussed shortly, this is an important condition as

far as MUSIC is concerned.

3.4  Estimating the Channel Impulse Response

To estimate the channel impulse response h(t), we may cross-correlate the input of

the channel with the output.  This assumes that the input to the channel, the transmitted

signal, is known.  Following Proakis (1989), the cross-correlation function between the input

and output of a linear system is found.  For jointly stationary stochastic processes x(t)  and

y(t), their cross-correlation is,

[ ]φ α α α

α φ α α

φ

yx t t

xx

yx

t t E Y X h E X t X t d

h t t d

t t

( , ) ( ) ( ) ( ) ( )

( ) ( )

( ).

1 2 1 2

1 2

1 2

1 2
= ⋅ = −

= − −

= −

−∞

∞

−∞

∞

∫

∫                                   

                                   

(3.3)

With t t1 2− = τ , the cross-correlation becomes

( ) ( ) ( )φ τ α φ τ α αyx xxh d= −
−∞

∞

∫ (3.4)

which is a convolution.  We may apply the convolution theorem to express (3.4) in the

frequency domain.  The result is

( ) ( ) ( )Φ Φyx xxf f H f= (3.5)
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where ( )Φ yx f  is the Fourier transform of ( )φ yx t  and ( )Φ xx f  is the energy density

spectrum of the input signal ( )x t .  The energy density spectrum of a signal is related to its

autocorrelation function by

( ) ( )[ ] ( ) ( )[ ]Φ xx xxf t x t x t= ℑ = ℑ ∗ −φ * (3.6)

where ℑ represents the Fourier transform, ∗  indicates convolution, and ( )x t*  is the

complex conjugate of ( )x t .  If the input signal is known, its autocorrelation function, and

hence energy density spectrum, may be determined.

It then remains to determine the cross-correlation between the input and output

signals without knowledge of the channel transfer function.  The cross-correlation between

two signals may also be found from

( ) ( ) ( )φ τ τxy x t y t dt= −
−∞

∞

∫ *

( ) ( )= ∗ −x yτ τ* . (3.7)

Again it is generally easier to implement multiplication in the frequency domain than

convolution in the time domain.  Hence, making use of the convolution theorem we have

( ) ( )[ ] ( ) ( )[ ]φ τxy xy f X f Y f= ℑ = ℑ ⋅− −1 1Φ * (3.8)

where ℑ−1  is the inverse Fourier transform.

From (3.5) and (3.8) the impulse response of the channel, and hence TOA, is then

calculated by ( ) ( ) ( )
( )

h t
X f Y f

fxx

= ℑ
⋅









−1
*

.
Φ

(3.9)

This manner of estimating TOA is often referred to as the correlation method.  Note that if

the input signal ( )x t  is white noise, ( )Φ xx f  is a constant.  Estimating TOA then reduces

to finding the cross-correlation between the transmitted signal and the received signal.
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3.5  TOA Estimation using Spread Spectrum Codes

Spread spectrum signals are natural candidates for estimating TOA by correlation.

Spread spectrum signals are so named due to their wide bandwidth (Proakis, 1989).  Pseudo-

noise (PN) codes are impressed upon the signal to be transmitted spreading its bandwidth.

The signal then appears to be pseudo-random or noise-like.  The higher the chip rate of the

PN code, the wider the bandwidth of the spread spectrum signal and the more it appears as

noise.

The noise-like character of spread spectrum signals may be seen by observing the

autocorrelation function of PN codes.  The most common type of codes used for spread

spectrum signals are maximum-length shift-register sequences (Proakis, 1989).  For a code

of length n, the autocorrelation function will appear as in Figure 3.4.  Tc is the chip length

and the base of the autocorrelation peak is twice Tc.  As the chip length decreases, the

autocorrelation function begins to resemble an impulse and the code appears to be more and

more noise-like.  As discussed in Chapter 2, a higher chip rate, and hence a larger

bandwidth, improves TOA estimation in the presence of multipath.

t
0 Tc-Tc

1

-1/n

  Figure 3.4 Autocorrelation Function of PN Code

For PN codes with large periods, the energy density spectrum will approximate the

sinc2 function.  The energy density spectrum of the autocorrelation function depicted in

Figure 3.4 is

( ) ( )
Φ xx c

c

c

f T
T f

T f
=











sin
.

π
π

2

(3.10)
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Equation (3.10) is plotted in Figure 3.5.  Note that as the chip rate increases (Tc

decreases), the nulls in (3.10) move away from zero and in the extreme, ( )Φ xx f  becomes

flat (white noise).
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3
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−
1
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3
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f

Tc

( )Φ xx f

Figure 3.5 Energy Density Spectrum of PN Code

For the purpose of estimating the TOA of the cellular registration preamble, the

actual data transmitted acts as the PN code.  However, the data rate is only 10 kbps.

Therefore, ( )Φ xx f  in (3.9) is not a constant and must be accounted for if the true channel

impulse response is to be estimated.  Dividing by ( )Φ xx f  removes the autocorrelation

spectrum from the cross-correlation.  The result, in the time domain, are impulses at times

corresponding to the TOA of various arrivals.  This process is often called inverse filtering

or deconvolution and may also be used to remove the effects of filtering.  Note that prior to

dividing by ( )Φ xx f , the signals involved must be bandlimited in order to avoid dividing

by the nulls in Figure 3.5.  Noise is enhanced when dividing by the nulls.

At this point it is possible to demonstrate, in the frequency domain, the effect of

multipath on TOA estimation.  In the absence of multipath, the ideal channel impulse
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response will consist of only one impulse.  The frequency response will, as a consequence,

be flat.  For a two ray channel the frequency response will appear something like Figure 3.6

(Dumont, 1994).  The nulls in the magnitude of the frequency response are due to destructive

interference between the two arrivals and cause fading of the resultant signal.  The distance

between the nulls is the inverse of the time delay between the two arrivals.  The location of

the nulls is a function of their phases.
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        Figure 3.6 Frequency Response of Two Ray Channel

As discussed above, in the process of estimating the channel impulse response, the

signals involved are bandlimited.  The vertical dotted lines in Figure 3.6 indicate, for a data

rate of 10 kHz and a sampling frequency of 160 kHz, those portions of the spectrum left after

bandlimiting.  The 20 kHz portion of spectrum used for TOA estimation is always centered

at 0 Hz.  If the signal phases are such that the frequency spectrum appears as in Figure 3.6, it
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may be difficult to resolve the two arrivals since the frequency response is somewhat flat.

As the two arrivals come closer together in time, the nulls in Figure 3.6 move further apart

resulting in an even flatter 20 kHz spectrum.  The result is a spectrum which begins to

resemble that of a one ray channel.  On the other hand, if the 20 kHz spectrum centered at 0

Hz is also centered on a fade, a poor SNR will result in only noise being used for the TOA

estimation process. This will obviously give poor results.  It is, therefore, desirable that the

20 kHz portion of spectrum used for TOA estimation be neither centered on a peak nor a

fade.  Unfortunately, this cannot be guaranteed since the location of the nulls with respect to

0 Hz is a function of phase and phase is a uniformly distributed random variable.

3.6  The Correlation Method

A block diagram of the correlation method is presented in Figure 3.7.  The

frequency domain signals are multiplied and the result is multiplied by a weighting function

( )W f .  To this point, the weighting function discussed has been ( ) ( )W f fxx= 1 Φ .  In

the literature (Carter, 1993), TOA estimation using this weighting function is termed the

Roth method after (Roth, 1971).

FFT

X

FFT*

IFFT

Full Preamble 
Replica

Baseband
Signal

Full
Correlation

Pulse
W(f)

Figure 3.7 Correlation Method

Other weighting functions have been derived and investigated as well (Carter,

1993).  They are summarized in Table 3.1.  The parameter ( )C fxy  is called the magnitude-

squared coherence and is defined as
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( )
( )

( ) ( )
C f

f

f fxy
xy

xx yy

=
Φ

Φ Φ

2

. (3.11)

All of the weighting functions in Table 3.1 are merely methods of manipulating the

frequency spectrum in order to minimize the effects of noise.  They do not overcome the

fundamental limitation of the discrete Fourier transform - the inability to resolve the TOA of

a signal lying between samples.  Both standard cross-correlation and the Roth method were

tested with simulations and the results were identical to within a millimetre.

Table 3.1 Weighting Functions for the Correlation Method

Method ( )W f

Standard Cross-Correlation 1

Roth ( )1 Φ xx f

Wiener Processor ( )C fxy

Smoothed Coherence Transform ( ) ( )1 Φ Φxx yyf f

Phase Transform ( )1 Φ xy f

Maximum Likelihood ( )
( )( ) ( )

C f

C f f
xy

xy xy1− Φ

3.7  Correlation in the Cellocate  System

3.7.1  Full Correlation

In section 2.4.2, acquisition and time tagging of the cellular registration preamble

by the Cellocate system was discussed.  Sliding correlation on the Barker word is used to

give an initial TOA estimate in GPS time.  The entire baseband signal is then downloaded to

the site computer for further processing.  This processing includes TOA estimation by the
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correlation method discussed in sections 3.4, 3.5, and 3.6.  The peak of the full correlation

pulse of Figure 3.7 may be referenced to the GPS time tag previously obtained.  The result is

a Fourier based TOA estimate.  For the application at hand, position estimation based on

such TOA estimates is not sufficiently accurate, particularly in the presence of multipath.

This is demonstrated in Chapter 8 where the standard cross-correlation method of Table 3.1

is used on some of the data.  Superresolution algorithms such as MUSIC may be used at this

point to improve the TOA estimation accuracy.

3.7.2  Correlation with root MUSIC

3.7.2.1  Standard MUSIC

MUSIC is widely discussed in the literature.  A concise summary is given here for

the convenience of the reader.  The development below basically follows that of Haykin

(1991), Klukas (1993), and Dumont (1994).

MUSIC is an eigenvector based superresolution algorithm initially intended for

frequency and direction of arrival estimation (Schmidt, 1986).  MUSIC models frequency

domain data as point sources in noise and therefore assumes that the time domain data

consists of complex sinusoids in noise.  For frequency estimation, the time domain data is

processed by means of a transversal filter.  Hence, the data on which MUSIC operates is an

equally spaced time series.

Consider a signal consisting of L uncorrelated sinusoids in additive white noise with

zero mean and variance σ 2 .  Let R  be the (M+1) by (M+1) ensemble averaged correlation

matrix of the signal.  It may be expressed in the form

R SDS I= +H σ 2 (3.12)

where H indicates Hermitian transpose and I is the (M+1) by (M+1) identity matrix.  S is an

(M+1) by L matrix of the form
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[ ]S s s s=

=
















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− − −

− − −
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, , ,L

L
L
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L

L

j j j

jM jM jM

e e e

e e e

L

L

 
ω ω ω

ω ω ω

(3.13)

and is called the frequency matrix.  D is the correlation matrix of the sinusoids and therefore

of dimension L by L.  Since the sinusoids are assumed to be uncorrelated, D is diagonal,

nonsingular, and of rank L.  Let the eigenvalues of SDS H  be { }υ υ υ1 2 1≥ ≥ ≥ +L M

and those of R be { }λ λ λ1 2 1≥ ≥ ≥ +L M .  Then according to (3.12)

λ υ σi i i M= + = +2 1 2 1, , , ,       L . (3.14)

If the L sinusoids have distinct frequencies, S will also be of rank L.  As a result

SDS H  will be of rank L and have L nonzero eigenvalues.  Therefore, the eigenvalues of R

will be

λ
υ σ

σ
i

i i L

i L M
=

+ =

= + +







2

2

1

1 1

,      

            

, ,

, , , .

L

L
  (3.15)

According to (3.15), the eigenvalues may be partitioned into two sets, those that

correspond to the signals and those that correspond to noise.  The corresponding

eigenvectors may be similarly partitioned.  Let { }v , v , , v1 2 M 1L +  be the eigenvectors of

R.  Due to the fact that
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( )R I v 0− = = + +σ 2 1 1i i L M, , ,      L (3.16)

the columns of S are related to the eigenvectors corresponding to the M+1 - L smallest

eigenvalues of R by (Haykin, 1991),

s vl
H

i i L M
l L

= = + +
=

0 1 1
1 2

, , ,
, , , .

      
                       

L
L

(3.17)

MUSIC exploits (3.17) for the purpose of determining the frequencies of the

signals.  The observation space may be said to consist of two subspaces which are

orthogonal to one another; the signal plus noise subspace and the noise subspace.  Those

eigenvectors corresponding to the M+1 - L smallest eigenvalues span the noise subspace.

The columns of S span the signal plus noise subspace and according to (3.17) are orthogonal

to the noise subspace.  Let ( )s ω  be a variable frequency scanning vector with form

( ) [ ]sT j jMe eω ω ω= − −1, , , .L (3.18)

Any ( )s ω , corresponding to the frequency of one of the L signals, when projected onto the

noise subspace, will result in a null.  Frequency estimation by MUSIC may then be achieved

by scanning (3.18) through all possible frequencies and projecting onto the noise subspace.

The MUSIC spectrum so obtained is calculated from

( ) ( ) ( )
$S

H
N N

HMUSIC ω
ω ω

=
1

s V V s
(3.19)

where [ ]V v vN L M= + +1 1, ,L .

3.7.2.2  Decorrelation of Signals
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MUSIC relies on the assumption that the signals to be estimated are uncorrelated.

If some of the sinusoids represented by (3.13) are partially correlated, D is no longer

diagonal but still nonsingular and of rank L.  In the event that some of the signals are

perfectly correlated (coherent), D becomes singular and rank deficient.  When this happens

R is no longer of rank L and (3.15) and (3.17) no longer hold.

Practical experience suggests that the signals need not be perfectly correlated to

cause problems (Shan et al., 1985).  Highly correlated signals created by a multipath

environment also have detrimental effects on the performance of MUSIC.  To use MUSIC in

an application such as cellular positioning where multipath may be considered to be always

present, requires decorrelation of the signals.

Signal decorrelation by smoothing of the data has been found to be very effective

(Pillai et al., 1989).  Consider the N data points ( )[ ]x x x N0 1 1   ( ) ( )L − .  A subarray is

formed consisting of M+1 points where M+1 < N.  Smoothing is introduced by sliding the

subarray across the full array of data points in both the forward and backward directions.

This is accomplished by structuring a data matrix A in the form,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

AH

x M x N x x N M
x M x N x x N M

x x N M x M x N

=

− − +
− − − +

− + −





















L L
L L

M O M M O M
L L

1 0 1
1 2 1 2

0 1 1

* *

* *

* *

.

(3.20)

The left half of A H  contains the subarrays for forward smoothing whereas the right half

consists of the subarrays for backwards smoothing.

The ensemble averaged correlation matrix R is defined as the expected value of the

product of the data matrix A, with its Hermitian.  In practice it is not known and must be

estimated from a sample average.  The estimate of R will then be
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( )
$R A A=

−
1

2 N M
H

(3.21)

where ( )2 N M−  is the number of points averaged.

3.7.2.3  root MUSIC

To avoid the frequency scanning necessary to obtain the spectrum of (3.19), root

MUSIC was developed (Haykin, 1991).  In this approach, a polynomial D(z) is formed from

the denominator of (3.19) by substituting e jω  in (3.18) with the complex variable z.  The

coefficients of the polynomial are equal to the sums of the diagonals of the matrix

V VN N
H .  Those roots of D(z) which are closest to the unit circle should correspond to

signals and the phase of those roots to the normalized frequencies of those signals.

Simulation results by (Rao et al., 1989) demonstrate that root MUSIC is preferable

to standard MUSIC due to the radial nature of the errors in root MUSIC.  A radial error in

root location does not effect the phase of the root as it does the corresponding peak in the

standard MUSIC spectrum.  The result is a more accurate frequency estimate with root

MUSIC.

3.7.2.4  Time Estimation with MUSIC

Although MUSIC was originally applied to the problem of frequency estimation, it

is equally suitable for time estimation.  Yamada et al. (1991) are one of the first to use

MUSIC in this way.  Consider the sampled time domain signal

( ) ( )x i e v i i Nl
j i

l

L
l= + = −

=
∑α ω

1

0 1 1, , , ,      K   (3.22)

where L   = the number of complex sinusoids,

α l  = the complex amplitude of the l th  sinusoid,
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ω l  = the angular frequency of the l th  sinusoid, and

( )v i = the complex noise value at the i th  sampling time.

In (3.22) the angular frequencies ω l , are the parameters to be estimated and the

data points x(i) differ from one another in terms of time.  The data represented by (3.22) is

used to form the data matrix of (3.20) and the angular frequencies are estimated as described

above.

Now consider the problem of estimating time delays from frequency domain data

collected by a network analyzer.  To measure the frequency response of a system, a network

analyzer injects a sinusoid into the system and sweeps the frequency of the sinusoid through

the band of interest.  Reflections of the sinusoid from the system at each frequency are the

measured data of interest here.  Following Yamada et al. (1991) the signal at any frequency

( )f i  may be written as

( ) ( ) ( )r i s e n i i Nk
j f i t

k

L
k= ⋅ + = −−

=
∑ 2

1

0 1π , ,     1, ,K (3.23)

where L = the number of reflections,

sk  = the reflection coefficient of the k th  reflection,

t k  = the time delay of the k th reflection, and

( )n i  = additive white noise at frequency ( )f i .

Because (3.23) represents frequency domain data, the time delays t k  are the

parameters to be estimated and the data points are a frequency series indexed by ( )f i .

However, given that ω π= 2 f , note the similarity between (3.22) and (3.23).  If ( )f i  in

(3.23) is replaced with the index i, then (3.22) and (3.23) have the same form with the

exception of the domain in which the signal is represented.  To estimate the time delays of
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(3.23), a time scanning vector, analogous to the frequency scanning vector (3.18), is used.  It

takes the form of

( ) [ ]sT jt jMtt e e= − −1, , ,L (3.24)

where M is the number of frequency points used in a subarray of data.  The data matrix

(3.20) and correlation matrix estimate (3.21) may then be formed from the N  frequency

domain points.  Note that decorrelation by smoothing is necessary due to the fact that the

reflections are highly correlated.  Following eigen-decomposition of the correlation matrix,

the MUSIC spectrum is calculated from (3.19) with ( )s t  in place of ( )s ω .  The root

MUSIC algorithm may also be used in the frequency domain merely by substituting z for

e jt  in (3.24).

We see then that MUSIC is able to estimate time from frequency domain data just

as it is able to estimate frequency from time domain data.  In both cases, the parameters to be

estimated are modeled as point sources in noise.  For frequency estimation this requires the

signal to consist of sinusoids and for time estimation the signal must consist of a number of

impulses.  Therefore, we return to the interpretation that TOA estimation is, in reality, the

estimation of the channel impulse response.

3.7.2.5  TOA Estimation in Cellocate

Section 3.7.1 described how a Fourier based TOA estimate is first generated by the

Cellocate system through correlation of the entire registration message preamble.  This

process is identical to that illustrated in Figure 3.7 with ( )W f  = 1.  This corresponds to the

standard cross-correlation method.  In order to improve the resolution and accuracy of the

correlation peak, the data is further processed with root MUSIC as in Figure 3.8.

FFT
root

MUSIC
Full Correlation

Pulse
High Resolution
Correlation PulseW(f)

Figure 3.8 High Resolution Correlation by root MUSIC
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The full correlation pulse used as input to Figure 3.8 was first windowed around the

correlation peak.  This was necessary to ensure accurate representation in the frequency

domain following the FFT. Following transformation into the frequency domain by the FFT,

the data is filtered by

( ) ( ) ( )W f
f H fxx F

=
1

Φ
(3.25)

where ( )H fF  is the combined frequency response of any

filters.

As discussed in section 3.5, this filtering removes the autocorrelation spectrum as

well as any filter effects from the cross-correlation.  What remains is the bandlimited

impulse response of the channel.  Since the impulse response consists of point sources

(impulses), the data model is that assumed by MUSIC.  The frequency domain data may then

be used to form a data matrix and root MUSIC implemented as discussed previously.

Details regarding the implementation of root MUSIC for TOA estimation in the Cellocate

system are covered in section 5.4.
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CHAPTER 4

POSITION ESTIMATION

4.1  Introduction

In section 2.4.4, LS was introduced as a method of implementing trilateration in the

presence of observation redundancy.  LS is used to make redundant observations consistent

while satisfying a minimum variance criterion.  This chapter explains the models used for

trilateration, their linearization, and the mechanism of LS for estimating position.  This is

followed by a discussion of reliability and statistical testing of the LS results. The chapter

then concludes with an explanation of plane intersection, a closed form position estimation

algorithm.

4.2  Least Squares

4.2.1  The General Case

According to Krakiwsky (1990), “Least squares estimation is the standard method

to obtain a unique set of values for a set of unknown parameters (x) from a redundant set of

observables (l) through a known mathematical model (f(x,l))”.  Following Krakiwsky

(1990), we consider the most general situation in which the parameters and observables are

related through an implicit and nonlinear mathematical model.  In that case we may write,

( )f x l$, $ = 0 (4.1)

where $x  and $l  are estimates of the parameters and observations, respectively.  These

estimates are obtained with the condition that

[ ]$ $ $ $r C r Cl x
T T− −+ =1 1δ δ minimum , (4.2)

where $r  = estimated residuals to the observations,
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$δ  = estimated corrections to the parameters,

Cl = the covariance matrix of the observations, and

C x = the covariance matrix of the parameters.

LS does not require that the observations be of any particular distribution or that the

distribution be known a priori (Mikhail et al., 1976).  However, the observations should be

zero mean.  All systematic errors should be accounted for in the mathematical model.  Also,

for the condition of (4.2) to ensure that the variances of the estimated parameters are

minimized, the observation errors must be symmetrically distributed.  If the observation

errors are normally distributed, the LS estimates will be identical to the maximum likelihood

estimates.

The fact that corrections to the parameters are estimated instead of the parameters

themselves, stems from the need to linearize the nonlinear model f(x,l).  To do this, the

mathematical model is approximated with a Taylor series (Swokowski, 1983).  Discarding

all second order and higher terms results in

 

( ) ( ) ( ) ( )

( )

f x l f x l
f
x

x x
f
l

l l

f x l
f
x

f
l

r

x l x l

x l x l

$, $ , $ $

, $ $

, ,

, ,

= + − + −

= + + =

∂
∂

∂
∂

∂
∂

∂
∂

             0.δ
(4.3)

Note that x refers to the quasi-observed values of the parameters whereas $x  refers

to the adjusted or corrected parameters.  In like manner, l refers to the observed values of the

observables and $l  to the adjusted observables.  The value of the mathematical model for the

observed and quasi-observed values of observables and parameters respectively, is called the

misclosure vector, w.  We may then write,
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( )w f x l= ≠, 0 (4.4)

which illustrates that given a set of redundant observations containing errors, a unique

solution to the parameters is not possible.  To arrive at a unique solution, the observations

must be adjusted under the condition (4.2).  In any case, the linearized mathematical model

is expressed by

A Br w 0$ $δ + + = (4.5)

where A
f
x x l

=
∂
∂ ,

is the first design matrix and

B
f
l x l

=
∂
∂ ,

    is the second design matrix.

The estimated corrections to the parameters and observations are determined from

the LS normal equations.  The normal equations themselves are derived from the linearized

mathematical model and the variation function

( )φ = + + + +− −$ $ $ $ $ $ $r C r C k A Br wl x
T T T1 1 2δ δ δ (4.6)

where k is a vector of Lagrange correlates (Krakiwsky, 1990).  Solving the LS normal

equations for the parameter corrections results in

( )[ ] ( )$δ = − +
− −

− −
A BC B A C A BC B wl x l

T T T T1 1
1 1

.(4.7)

The corrections or residuals to the observations are
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$ $r C B kl= − T (4.8)

where ( ) ( )$ $k BC B A wl= +
−T 1

δ .

4.2.2  The Parametric Case

The equations given above apply to the general case in which the relationship

between the parameters and observations is implicit.  For the case of trilateration, the

observations may be explicitly expressed as a function of the parameters.  This is known as

the parametric case.  Because the mathematical model is explicit in the observations, the

second design matrix B is equal to -I, the negative identity matrix.  Given this as well as

Cx
− =1 0 , meaning the parameters are unweighted, the LS equations are

[ ]$δ = − − − −A C A A C wl l
T T1 1 1 0 (4.9)

where w 0  is the misclosure vector evaluated at some approximate 

values of the parameters x 0 ,

$ $x x= +0 δ , (4.10)

( )$ $ ,k C A wl= +−1 0δ (4.11)

$ $r C kl= , (4.12)

$ $l l r= + , (4.13)

$ $ $
σ

νo

T
2 =

−r C rl
1

(4.14)

where $σ o
2 = the estimated variance factor and

ν  = the degrees of freedom (number of 

observation minus the number of unknowns),
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[ ]C C A C Ax l
1

$ $δ
= = − −

T
1

, (4.15)

[ ]C A A C A A
l l

1
$ = − −

T T
1

, and 4.16)

C C Cr l l$ $= − . (4.17)

The matrices C $δ
, Cx$ , C l$ , and Cr$ , are the covariance matrices of the parameter

corrections, corrected parameters, adjusted observations, and residuals respectively.  The a

priori reference factor σ o
2  pertains to the scale of C l

−1 .  Although the scale of C l
−1  is

irrelevant as far as (4.9) and (4.12) are concerned, it is significant in the calculation of the

other covariance matrices.  If the observation covariance matrix is properly scaled, the

estimated variance factor $σ o
2 , will be very close to unity.  If C l$  is unscaled, it may be

scaled by dividing by σ o
2 .

Each LS iteration begins with the calculation of w 0 , the misclosure vector, and A,

the design matrix, for some a priori value of the parameters.  This a priori parameter

information may be the estimated parameter values $x  from the previous iteration or some

approximation for the first iteration.  The remaining unknown quantities are then obtained, in

order, from (4.9) through (4.17).

4.2.3  Trilateration Models

4.2.3.1  Circular Trilateration

Consider a cellular telephone with horizontal coordinates ( )x yc c,  and

transmitting a message at some unknown time of transmission Tc .  The message is received

at N cell sites and the TOA at each cell site estimated.  Let the coordinates and TOA of the

i th cell site be ( )x yi i,  and Ti  respectively.  The unknown parameters to be estimated are

then the telephone coordinates and Tc .  The observations are the TOAs at the N cell sites.  In
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the absence of observational error, the difference between Tc  and Ti  will equal the

geometrical distance between the coordinates ( )x yc c,  and ( )x yi i,  divided by the speed

of light, c.  When observation errors are present, the preceding is only true with adjusted

observations and estimated parameters.  In any case, the mathematical model for the i th  cell

site is

( ) ( ) ( )f x,l = − − − + − =T T
c

x x y yi c c i c i
1

02 2
.(4.18)

The first design matrix A is obtained from the partial derivatives of ( )f x l,  with

respect to the three unknowns, ( )x yc c,  and Tc .  For the N cell sites
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y y
r

c c
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c N

N

c N

N

M M M
(4.19)

where ( ) ( )r x x y yi c i c i= − + −
2 2

.

Because the TOA observations are uncorrelated and unweighted, the unscaled

observation covariance matrix Cl  is an identity matrix of dimension N.  This form of

circular trilateration is often called the pseudoranging mode to distinguish it from the case

where the TOT is known and pure ranges, therefore, are measured.  Pseudoranges refer to

range measurements which include some unknown parameter such as the TOT or a clock

offset.

4.2.3.2  Hyperbolic Trilateration with Reference Differencing
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As discussed in Chapter 2, the TOT may be eliminated by differencing TOAs

between cell sites.  Mathematically, this is identical to circular trilateration (pseudoranging

mode) as described above.  When the correlation in the TOA differences is accounted for,

hyperbolic trilateration and circular trilateration (pseudoranging mode) give identical results.

Although the TOT may be solved for in circular trilateration as explained above, it

may not be possible to do so in practice.  For TOT to be estimated by LS, an approximate

TOT must be provided.  An approximate TOT of sufficient accuracy may or may not be

available depending on the distances involved.  For the system presented and tested in this

work, a more practical reason for employing TDOA exists.  Absolute biases existing at each

cell site could not be measured.  However, relative biases, or bias differences between cell

sites, could be measured.  Therefore, only TOA differences could be corrected for the biases

and used as observations.

Reference differencing refers to the choice of one TOA observation as a reference

and TOA differences formed by differencing that TOA with all others.  Let the reference cell

site be that corresponding to i = 1.  The mathematical model for cell sites i N= 2, ,K  will

then be

( ) ( ) ( ) ( ) ( )f x,l = − − + − + − + − =∆T
c

x x y y
c

x x y yi c i c i c c1
2 2

1
2

1
21 1

0

(4.20)

where ∆T T Ti i1 1= − .

Taking partial derivatives of (4.20) with respect to the unknown

parameters ( )x yc c,  results in
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Due to the fact that the observations consist of TOA differences, the observations

are no longer uncorrelated and the observation covariance matrix is no longer an identity

matrix.  To account for the correlation between the TOA differences, we write the

observation vector as

l

H T

=

−
−

−
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. (4.22)

Note that l is a column vector of dimension N-1.  The unscaled observation covariance

matrix is then

C HHl = =



















T

2 1 1
1 1

1 1
1 1 2

L
O M

M O
L

(4.23)

and has dimensions N-1 by N-1, reflecting N-1 independent observations.

4.2.3.3  Hyperbolic Trilateration with Sequential Differencing
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In contrast to differencing the TOAs of all cell sites from that of one reference cell

site, it is possible to difference the TOAs in a sequential manner.  Consider TOA

observations for N cell sites.  We may form the following N-1 linearly independent TOA

differences:

T T
T T

T T
T T

N N

N N

2 1

3 2

1 2

1

−
−

−
−

− −

−

M

.

 (4.24)

The mathematical model is then
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(4.25)

for i N= 2, ,K  and where ∆T T Tii i i− −= −1 1 .  The corresponding design matrix is
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The observation vector is now
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50

but still of dimension N-1.  The unscaled N-1 by N-1 observation covariance matrix is

C HHl = =

−
− −

−
−

−
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L
O M
O

M O O O
L

. (4.28)

4.2.3.4  Circular Trilateration with TOA Differences

As discussed in section 4.2.3.2, implementation issues may require the use of

TDOA and hence hyperbolic trilateration.  One factor which requires the use of TDOA is the

effect of SA on GPS time synchronization.  In section 2.4.3, the formation of TOA

differences was presented as a method of mitigating, if not eliminating, the effect of SA.

However, the use of TOA differences as observations results in observation

residuals which also correspond to TOA differences.  Residuals are often a useful quantity

for testing the quality of the observations.  For the application of cellular telephone

positioning, residual testing may be used to monitor the integrity of individual cell sites.  If

the observation residuals correspond to TOA differences, it may not be possible to isolate the

cell site causing large residuals.

Therefore, one would ideally wish to use TOA differences as observations in order

to derive the implementation benefits described above and at the same time obtain residuals

on individual TOAs.  This may be accomplished by circular trilateration with TOA

differences.  Again consider a cellular telephone with horizontal coordinates ( )x yc c,  and

transmitting a message at some unknown time of transmission Tc . The message is received

at N cell sites, with the coordinates and TOA of the i th cell site being ( )x yi i,  and Ti

respectively.  We begin by choosing one cell site to be the reference as in the case of

hyperbolic trilateration with reference differencing.  For the sake of discussion let the
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reference site be the first site.  The assumption is then made that the TOA at the reference

site is equal to the TOT corrected by any bias at the reference cell site, or

T T Bc1 1= − (4.29)

where B1  is the bias of the first cell site. Observations are formed by differencing the TOA

at each site with the TOT or, equivalently, the TOA at the reference site.  The observation

equation for the first cell site will be

∆T T T Bc11 1 1 0= − + = (4.30)

which is necessarily equal to zero due to the assumption just made.  The observation

equation for the i th  cell site, where i N= 2, ,K , is

∆T T T B
T T B B
T T B

i i c i

i i

i i

1

1 1

1 1

= − +
= − − +
= − +

      
      .

(4.31)

Note that in contrast to hyperbolic trilateration in which we obtain N-1 observations

from N cell sites, here we have N observations from N  cell sites.  However, the additional

observation is zero and hence there is no new information. What we have essentially are

hyperbolic trilateration observations in a circular trilateration type model.  That model is

( ) ( ) ( )f x,l = + − − + − =∆T
c

R
c

x x y yi u c i c i1
2 21 1

0 (4.32)
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where ∆T T Ti i1 1= −  (the biases of (4.31) have been disregarded) and Ru  is the third

unknown, necessary for the circular trilateration mechanism.  In (4.18) the three unknowns

are ( )x yc c,  and Tc  whereas in (4.32) the unknowns are ( )x yc c,  and Ru .  From (4.32) it

is obvious that Ru  is the range from the first (or reference) cell site to the  cellular

telephone.

Taking partial derivatives of (4.32) with respect to the unknowns the design matrix

is found to be

A =

−
−

−
−

−
−

−
−

−
−

−
−


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

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c c

c N

N

c N

N

M M M
(4.33)

which is identical to that of circular trilateration (4.19) with the exception of the sign of the

last column.  What remains now is to determine the observation covariance matrix.  At first

glance one might assume that since the observations are TOA differences, the observation

covariance matrix must account for this correlation as in (4.23).  However, in hyperbolic

trilateration any correlation in the measurements will affect the unknowns ( )x yc c,  and

must, therefore, be accounted for.  In the case under consideration, the correlation in the

observations is accounted for by the presence of the third unknown Ru .  As a result, the

observation covariance matrix is the identity matrix of dimension N.

The advantage of circular trilateration with TOA differences lies in its ability to

produce N observation residuals when only N-1 TOA differences are available.  Recall that

in some circumstances we are forced to use TOA differences because only bias differences

are available to correct the observations.  In that case, and under hyperbolic trilateration,

only residuals on TOA differences are available.  Under the formulation just presented,
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however, the observation vector is of length N since it consists of a zero and N-1 TOA

differences.  The residual vector is, therefore, also of length N.  That the residual

corresponding to the ‘zero’ observation actually corresponds to the TOA observation of the

reference cell site is demonstrated in the results of Chapter 7.

4.2.4  Geometry

A critical factor in the performance of a trilateration positioning system is

geometry.  The relative positions of the cell sites with respect to one another and the cellular

telephone, has a significant impact on positioning accuracy.  For methods employing the

design matrix A, the geometrical strength of a position fix is measured by the Dilution of

Precision or DOP (Lachapelle, 1993).  The DOP is a unitless number which relates accuracy

in the measurement domain to accuracy in the position domain.  For the case of position

estimated from TOA measurements, this is expressed by

σ σp TOADOP= ⋅ (4.34)

where σ p = the standard deviation of the position estimates, and

σTOA = the standard deviation of the TOA measurements.

According to (4.34), when the DOP value decreases the amount of error passed

from the measurement domain to the position domain, due to geometry, decreases.

Consequently, a small DOP value indicates strong geometry and is desirable.

Because DOP is a measure of geometrical strength, it is necessarily a function of

the design matrix A.  Consider the case of circular trilateration for horizontal positioning.

From (4.15), the unscaled covariance matrix of the estimated parameters is
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(4.35)

where '  denotes an unscaled quantity.  For (4.35) to be unscaled requires that Cl  be an

identity matrix.  Note that Cl  must also be divided by c 2  in order to calculate DOP from

(4.35).

The Horizontal Dilution of Precision (HDOP) is a measure of geometrical strength

in two dimensions.  It is calculated as

HDOP xx yy= +σ σ' '2 2
. (4.36)

Geometrical strength in each of the two individual dimensions may also be quantified.  In

this work the x coordinate refers to the west to east direction (easting) and y refers to the

south to north direction (northing).  Therefore, the DOP for the x coordinate is referred to as

the East DOP (EDOP) and is given by

EDOP xx= σ ' 2
. (4.37)

In like manner, the North DOP (NDOP) is

NDOP yy= σ ' 2
 (4.38)

and the Time DOP (TDOP), which is the effect of geometry on the TOT estimate, is

TDOP tt= σ ' 2
. (4.39)
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In the case of hyperbolic trilateration, equations (4.35) through (4.38) may be used

with appropriate A and Cl  matrices.  TDOP is not available since the only two parameters

to be estimated are the components of horizontal position.  For a given situation, the DOP

values will be the same for each of the trilateration types discussed.

4.2.5  Statistical Analysis of Least Squares Results

Following a LS adjustment, it is possible to statistically analyze the results.  The LS

method does not require the observations to be normally distributed.  Statistical testing of

results, however, is only valid if the observation errors are normal.  In addition, statistical

testing also assumes that the LS estimation was performed on a linear model.  In the case of

a nonlinear model, the last linearized form after iterating must be close to the nonlinear

model for the statistical testing to be valid.

The principal purpose of statistical testing, for the present application, is the

identification of observations which contain serious errors or blunders.  Related to this is the

concept of internal reliability.  For any statistical testing of the observation residuals, it is

imperative that the covariance matrices obtained from LS be correctly scaled.  However,

prior to discussing these tests, the concept of hypothesis testing is presented.

4.2.5.1  Hypothesis Testing

Integral to statistical testing is the notion of hypothesis testing.  A concise overview

of this concept is given here.  Further details regarding hypothesis testing may be found in

Steeves et al. (1987) and Roberts (1993).  Consider a random variable some parameter of

which LS attempts to estimate.  Hypothesis testing has three main components: 1) form a

hypothesis regarding the statistical nature of the estimated parameter, 2) choose a test based

on a statistic computed from the observations, 3) compare the test statistic with the bounds of

a confidence region (Steeves et al., 1987).

To begin then, an initial or null hypothesis is made regarding the parameter of

interest.  This null hypothesis is denoted by H o .  For instance, we may be interested in

estimating the mean of some parameter.  The null hypothesis may be that the mean is equal
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to a particular value.  The validity of this hypothesis is to be tested.  There are four possible

scenarios.  In the event that the hypothesis is correct, the statistical test will lead one to

accept or reject the hypothesis.  The same is true if the hypothesis is actually false.  Table 4.1

summarizes these four outcomes.

Table 4.1 Hypothesis Test Conclusions

Acceptance of H o Rejection of H o

H o  correct
Correct Conclusion

(1- α )

Type I Error Committed

(α )

H o  incorrect
Type II Error Committed

(β )

Correct Conclusion

(1- β )

If H o  is in fact correct, the probability that the hypothesis test will conclude in

favor of accepting H o  is equal to  (1- α ) and is called the confidence level.  A type I error

is committed when the hypothesis test concludes that H o  be rejected.  The probability of

this is α , the significance level of the test.  The probability of correctly rejecting H o  when

it is incorrect, is the power of the test (1- β ), whereas accepting an incorrect H o  results in a

type II error with probability β .

Probabilities α  and β  are related to one another through the non-centrality

parameter, δ o  (Leick, 1995).  For every null hypothesis H o , an infinite number of

alternative hypotheses exist.  Consider one such alternative hypothesis, H a .  The

relationship between H o , H a , α , and β  is illustrated in Figure 4.1.
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δo

Ho Ha

1−α 1− β

α
2 α

2

β

Accept Ho Reject Ho

Accept Ha

Reject Ho

Reject Ha

Figure 4.1 Null and Alternative Hypothesis’

In Figure 4.1, a type I error is committed if the statistical test result falls anywhere

within the light gray shaded area.  A type II error occurs when the test conclusion falls

within the dark gray shaded area.  Note that for a particular alternative hypothesis and non-

centrality factor, it is impossible to reduce both the probability of a type I error and the

probability of a type II error to zero.  One is minimized at the expense of the other.

4.2.5.2  χ 2  Test on the Variance Factor

From equations (4.9), (4.11), and (4.12) we see that the scale of the observation

covariance matrix, Cl , does not affect the computation of the estimated parameters or the

observation residuals.  However, Cl  must be properly scaled to correctly compute the other

covariance matrices and the standardized residuals used for statistical testing.

To test whether Cl  is properly scaled, the estimated variance factor, $σ o
2 , is

computed from (4.14).  If Cl  is properly scaled, both σ o
2  and $σ o

2  will be unity.  The null

hypothesis to be tested then is H o : $σ σo o
2 2= .  If the observation residuals $r   are

normally distributed, the test statistic νσ σ$
o o

2 2  has a χ2  distribution with ν  degrees of
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freedom (Steeves et al., 1997).  We therefore construct the two-tailed confidence region for

σ o
2  as follows,

νσ
χ

σ
νσ

χν α ν α

$ $

, ,

o
o

o
2

2
2

2
2

2
1 2

< <
−

. (4.40)

If σ o
2  falls within the confidence region of (4.40) one may be (1- α )% certain that

it is correct.  If it falls outside this interval it is likely that σ o
2  was incorrectly assumed or

that the model used to relate the parameters to the observations is not correct.  For example,

unmodeled systematic errors in the observations would cause this test to fail.  For the

application at hand, multipath, which is very difficult to model and account for, is an obvious

source of such systematic errors.

4.2.5.3  Statistical Testing of Residuals for Outliers

The detection of any gross errors in the observations is accomplished through an

examination of the observation residuals.  The null hypothesis to be tested is that the

individual estimated residuals, $ri , are normally distributed with a mean of zero and a

standard deviation of  σ $ri
, where σ $ri

2
 is the i th  element of the principal diagonal of Cr$

(4.17).  This assumes that σ o
2  is correctly known.  If the observations are normally

distributed, the residuals should be as well.  The residuals are standardized such that the

entire set of residuals is assumed to belong to the normal distribution with zero mean and

unit standard deviation, n(0,1).  The i th  standardized residual is then

$
$*

$

r
r

i
i

ri

=
σ

. (4.41)

If the null hypothesis is correct, the standardized residuals should fall within the (1-

α )% confidence region or,
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. (4.42)

The statistical testing of (4.42) examines each individual residual in isolation.  Of

greater interest is the testing of individual residuals “in context”.  That is we wish to test

whether all standardized residuals are simultaneously within a certain confidence interval.

To this end, the confidence region of (4.42) is replaced by 1 2− α
N  where N  is the total

number of residuals.

If for a particular standardized residual, the test of (4.42) fails, it is likely that the

corresponding observation is not normally distributed.  The suspected cause of this is that the

observation contains a blunder.  However, it is possible for the test to fail even in the

absence of blunders.  Since multipath is not Gaussian, its presence may cause the

observations to be non-Gaussian as well.  Therefore, the test of (4.42) should be used with

caution.

In any case, the results of (4.42) may be used in a number of ways for the cellular

positioning application.  One option would be to discard that observation and perform

another LS adjustment.  Observation redundancy must obviously exist in order to do this.

Systematic testing of the residuals may also be done to identify a cell site which may be

consistently providing poor observations and is, therefore, in need of service.

4.2.5.4  Internal Reliability

Closely associated to the notion of blunder identification is the concept of reliability

analysis.  Internal reliability is the ability of a system or model to detect a blunder in an

observation (Leick, 1995).  External reliability refers to an estimate of the effect of an

undetected blunder on the estimated parameters.

Reliability may be defined in terms of the controllability of the observations.  If the

observations are highly controlled, a blunder in one of the observations will be easily

detected.  A blunder in a poorly controlled observation will not be detected by the statistical

testing described in the previous section.  How well the observations are controlled is a
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function of the redundancy in the observations.  Redundancy numbers are defined as the

elements of the principal diagonal of the matrix ( )C Cr l$
−1

.  The redundancy number of the

i th  observation is

( )gi ii
= −C Cr l$

1
. (4.43)

Note that due to (4.16) and (4.17), Cl  need not be properly scaled to compute redundancy

numbers from (4.43).

An observation is considered to be fully controlled when its redundancy number is

unity (Mackenzie, 1985).  In that case, all of the observational error appears in the residual

for that observation.  Should that particular observation contain a blunder, statistical testing

of that observation’s residuals will detect this.  Poorly controlled observations have a

redundancy number significantly less than unity.  According to (4.43), the residuals of such

observations will not reflect any large errors in the observations.

Internal reliability refers to the computation of a marginally detectable error

(MDE).  The MDE is the smallest error on a particular observation which the model or

system will be able to detect.  Any observation errors smaller than the MDE will be

undetectable.  The MDE for the i th  observation is

∇ =oi
o

i
i

g
δ

σ (4.44)

where σ i  is the standard deviation of the i th  observation and ∇ oi  refers to the magnitude

of the N by 1 vector ∇ oi  (Roberts, 1993).  An important assumption made in the

development of (4.44) is the presence of only one blunder at any one time.  As a result, there

is only one nonzero entry in ∇ oi  and the magnitude of ∇ oi  is equal to the MDE for the i th

observation.

Due to the presence of the non-centrality factor δ o  in (4.44), there are probabilities

attached to the MDE.  What in fact internal reliability addresses is the control of type II
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error.  The null hypothesis here is that there are no blunders in the observations.  The

alternative hypothesis states that one blunder exists in one of the observations.  From (4.44)

we may say that there is a (1- β ) probability that a blunder greater than (4.44) will be

detected whereas the probability that a blunder greater than (4.44) remains undetected is β .

The probability of committing a type I error, detecting a blunder when in fact none exists, is

α .

External reliability estimates the effect of an undetected, and therefore unremoved,

blunder on the solution of the LS adjustment.  According to the probabilities just discussed,

the maximum blunder that one needs to consider is the MDE.  The effect on the estimated

parameters by a MDE in the i th  observation is

[ ]∇ = ∇− − −$δoi
T T

oiA C A A Cl l
1 1 1

. (4.45)

Note that the vector of (4.45) shows the effect on the estimated parameters for a

MDE on only one observation.  Therefore, a total of N vectors like (4.45) may be computed.

For an application of reliability to GPS, see Morley (1997).

4.3  Plane Intersection

Plane intersection was introduced by Schmidt (1972) as an alternative to hyperbolic

range difference location.  Recall that in hyperbolic trilateration, range or TOA differences

define hyperbolic lines of position.  The TOA difference is a constant for any point on that

line of position.  Three known stations yield two independent TOA differences and hence

two hyperbolas.  Where these two hyperbolas intersect is the estimated position fix.  Plane

intersection uses an approach called LOCA (Location On the Conic Axis).  The fundamental

theorem of LOCA states that the TOA differences for three stations of known location yield

a straight line of position.  This straight line is the major axis of a conic.  The three stations

lie on the conic and the location being estimated lies at one of the foci of the conic.  This

theorem is illustrated in Figure 4.2 and a proof is given in Schmidt (1972).  In hyperbolic

trilateration, the stations are located at the foci of the hyperbolas and the location in question
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lies on the hyperbola itself.  Therefore, LOCA and hyperbolic trilateration may be thought of

as duals of each other.

Station 1

Station 2

Station 3

Position Fix (conic focus)

Conic
(ellipse)

Conic Axis

Figure 4.2 Location On the Conic Axis

Once the conic has been defined by the locations of the three stations and their TOA

or range differences, it then remains to determine which of the conic’s foci corresponds to

the correct position fix.  If only three stations are available it may be possible to resolve the

ambiguity depending on the conic.  If the conic is an ellipse, a transmitter at the other focus

would generate negative TOA differences compared to a transmitter at the first.  In that case

the ambiguity may be solved.  If the conic is a hyperbola, a transmitter at either of the two

foci would generate the same TOA differences and the ambiguity cannot be resolved.  In the

case of a parabola, one focus has moved off to infinity.

When more then three stations are available, a second conic may be constructed

from the triad of stations consisting of two of the original three and the additional fourth.

This is illustrated in Figure 4.3.  The position fix is clearly the intersection of the two conic’s

major axes.  This method then requires a minimum of four TOAs to estimate an

unambiguous position fix.
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Site 1
Site 2

Site 4

Site 3

Position Fix

Figure 4.3 Plane Intersection Geometry

To this point the discussion has centered on two dimensional space.  The two conics

of Figure 4.3 reside in the same plane.  In two dimensions at least four stations are required

if the position fix is obtained by an intersection of lines.  In three dimensions a triad of

stations defines a plane instead of a line.  Four noncoplanar stations then define two planes

which produce a line when they intersect.  This line is the axis of a three dimensional conic,

an ellipsoid or a circular hyperboloid of two sheets.  A second quad of stations will produce

a second three dimensional conic axis.  The intersection of the two axes occurs where their

foci overlap and the result is the position fix.  In any case, the intersection of planes provides

the position fix and hence the method is called plane intersection.

To formulate the plane intersection algorithm we again consider the case of N cell

sites receiving a transmission from a cellular telephone with horizontal coordinates

( )x yc c, .  The coordinates and TOA of the i th cell site are ( )x yi i,  and Ti , respectively.

Following Schmidt (1996), we form TOA differences for each triad of sites.  For example,

for the 123rd triad (sites 1, 2, and 3), the following TOA differences are formed:

∆
∆
∆

T T T
T T T
T T T

32 3 2

13 1 3

21 2 1

= −
= −
= − .

(4.46)
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According to the LOCA theorem, there exists a line on which the cell phone

resides.  This line may be written as

Ax By D+ = (4.47)

where A x T x T x T= + +1 32 2 13 3 21∆ ∆ ∆ ,

B y T y T y T= + +1 32 2 13 3 21∆ ∆ ∆ ,

( )
D

T T T d T d T d T
=

+ + +∆ ∆ ∆ ∆ ∆ ∆21 32 13 1
2

32 2
2

13 3
2

21

2
, and

d x y ii i i
2 2 2 1 2 3= + =   for   , , .

From N cell sites, a total of 
N
3





  triads of cell sites are possible where

( )
N N

N3 3 3




 =

−
!

! !
. (4.48)

An equation such as (4.47) is written for each triad and writing these equations in

matrix format gives

A B

A B
x
y

D

Dijk ijk

c

c ijk

123 123 123

M M

M M

M

M























=


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










                                E f g

. (4.49)

Hence the cellular telephone lies on or is close to each of these lines.  The plane intersection

solution is then the LS estimate of ( )x yc c,  from (4.49).  Note that as (4.49) stands, the LS

solution will be weighted where the weights are A Bijk ijk
2 2+ .  To compute the

unweighted LS solution to (4.49), each of Aijk , Bijk , and Dijk  must first be divided by

A Bijk ijk
2 2+ .  When this is done, the residuals being minimized will be the

perpendicular error distances to the lines.
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It is obvious from (4.49) that there are two unknowns to be solved for, x yc c and ,

and a total of 
N
3





 equations.  For N = 3 there is only one triad and the system of equations

(4.49) is under determined.  Therefore, at least four cell sites are required.  If N = 4, there is a

total of 4 triads and consequently four equations.  However, there exist only two linearly

independent triads.  This causes the rank of [ ]E g  to be two, the same as the number of

unknowns.  As a result, a unique solution to (4.49) is possible.

Equation (4.49) is solved in Matlab with the command

f E G= \ . (4.50)

When E is not square, the Matlab operator ‘\’ makes use of Householder

reflections to compute the following orthogonal-triangular factorization (Matlab, 1994b),

E P Q R⋅ = ⋅ (4.51)

where P is a permutation matrix, Q is orthogonal, and R is upper triangular.  The LS solution

f is then

( )( )f P R Q GT= ⋅ ⋅\ . (4.52)

The error propagation theory of plane intersection is not documented in the

literature.  In his paper which introduces plane intersection, Schmidt (1972) performs an

empirical error analysis.  Using simulations, Schmidt determines positional error, due to a

particular error in either a TOA difference or a fixed station’s coordinates, as a function of

the transmitting device location.  Unfortunately, the results are of little use for networks of

different geometry and distances.  A recommended topic for future work is an analytical

understanding of how error in the measurement domain is propagated to the position domain.

Note that plane intersection is a closed form algorithm.  Approximate values for

( )x yc c,  are not required.  This makes plane intersection a prime candidate for calculating

an approximate position which may be used to begin the standardized LS iterative process.

For this application, the error propagation theory for plane intersection may be useful for
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weighting the approximate parameters in LS.  The performance of plane intersection for

providing approximate coordinates is investigated in chapters 6, 7, and 8.
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CHAPTER 5

TOA ESTIMATION SIMULATIONS

5.1  Introduction

In order to determine the performance of a system such as Cellocate, simulations

were performed in two steps.  The first step was to simulate TOA estimation using root

MUSIC.  This preliminary work was done to verify whether superresolution algorithms such

as root MUSIC were capable of sufficient resolution for the application at hand.  Once this

was verified, positioning simulations were undertaken.  The main purpose of the positioning

simulations was to determine the positional accuracy of Cellocate given the cellular

network geometry, multipath, and TOA estimation performance of root MUSIC.  The

positioning simulations are presented in the next chapter.

This chapter describes the root MUSIC TOA estimation simulations.  The

simulation of the cellular signal, its modulation, convolution with a channel transfer

function, demodulation, and correlation are described in detail.  The multipath models used

are also presented.  The TOA estimation procedure using root MUSIC is then explained.

Simulation results are presented in terms of the TOA estimation error mean, RMS, and

standard deviation as a function of SNR, multipath delay, phase, and amplitude.  The chapter

ends with a description of the TOA estimation error models derived from these simulations

and used in the positioning simulations.

Software to simulate TOA estimation by root MUSIC was provided by L. Dumont

and A. Borsodi.  The software simulates the transmission of the 48 symbol preamble of the

cellular precursor through a two ray analog cellular telephone channel as well as TOA

estimation using root MUSIC.

5.2  Generation and Transmission of the Precursor

The first step in the simulation process was to generate the 48 symbol preamble of

the cellular precursor.  The 48 symbol preamble consists of a 30 symbol dotting sequence, an

11 symbol Barker sync word and a 7 symbol Digital Colour Code (DCC) in that order.  The
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dotting sequence is composed of alternating 1’s and 0’s beginning with a 1.  The Barker sync

word is 1 1 1 0 0 0 1 0 0 1 0.  There are four possible DCCs.  Table 5.1 contains all four.  For

the purposes of these simulations, DCC 2 was used.

Table 5.1 Digital Colour Codes

DCC 0 0     0     0     0     0     0     0

DCC 1 0     0     1     1     1     1     1

DCC 2 1     1     0     0     0     1     1

DCC 3 1     1     1     1     1     0     0

Next, the 48 symbol preamble was mapped to Manchester code.  The Manchester

code (Haykin, 1989), or split phase code, represents a ‘0’ by a negative pulse followed by a

positive pulse.  Both pulses are of half-symbol width and have equal amplitudes.  A ‘1’ is

represented by a positive pulse followed by a negative pulse.  The Manchester coded

preamble was then upsampled.  In AMPS, the data rate is 10 kHz.  The Cellocate receiver

oversamples the signal by a factor of 16.  This results in a sampling rate of 160 kHz.  When

sampled, the 48 symbol preamble becomes 768 samples with amplitude -1, 0, or 1.  Samples

which occur at a transition are mapped to a 0.

The AMPS standard allows for a data clock offset in the cellular telephone of up to

1 Hz.  During the sampling process, distortion in the data clock rate was implemented to

determine the effect on TOA estimation.  Figure 5.1 shows the TOA estimation error as a

function of the data clock frequency.  Note that TOA estimation error is expressed in metres.

The TOA estimation error in seconds is multiplied by the speed of light to obtain units of

metres.  This is done since it is often easier to appreciate the significance of a TOA error

when it is expressed in units of length.  Therefore, in many of the figures to follow, TOA

estimation error is expressed in metres.

A high SNR was chosen for Figure 5.1 since the effect of a distorted data clock rate

is masked by noise at low SNR.  For a data clock offset of 10 Hz, the TOA estimate is in

error by 500 m.  Fortunately, the data clock offset should not exceed ± 1 Hz, and since it is
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common to all TOA estimates, it is canceled when TOA differences are formed for

hyperbolic positioning.  Therefore, a distorted clock rate was not implemented for the

remainder of the simulations.
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Figure 5.1 TOA Error for Distorted Data Clock Rates  (SNR = 30 dB)

After sampling at a rate of 160 kilosamples per second, the preamble signal was

integrated in order to ensure a continuous phase in the modulated signal (Proakis, 1989).

The signal was then low-pass filtered with a 2nd order Bessel filter.  Since the frequency

deviation for AMPS is 8 kHz, the cutoff for the transmit Bessel filter was 8 kHz.  Following

the filter, a complex, equivalent lowpass continuous phase frequency shift keying (CPFSK)

signal was generated using the filtered cellular precursor preamble to vary the frequency

with a frequency deviation of ± 8 kHz.  The equivalent lowpass signal may therefore be

written as

( ) ( )v t j Tf d dd

t

=






















−∞
∫exp 4π τ τ (5.1)

where ( )d τ  = Manchester encoded, upsampled and lowpass filtered preamble,
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   T    = symbol length in seconds (1/10 kHz), and

    f d   = maximum frequency deviation (8 kHz).

5.3  Simulation of the Multipath Channel

The modulated signal was next convolved with the transfer function of the

simulated channel.  Multipath was simulated using a two ray model.  The transfer function of

the channel consisted then of the sum of two separate paths.  The second path lagged behind

the first by an amount corresponding to the type of environment to be simulated.  For the

purposes of the positioning simulations two propagation environments were assumed - urban

and suburban.  Turin’s empirical data (Turin et al., 1972a) was used to arrive at typical

delays for the second path.  Turin generated probability densities for the first 10 paths at

1280 MHz for his area B.  This area is typical of downtown areas in medium sized cities

where, according to Turin’s results, LOS is probable.  Since Turin does not show probability

densities for any of the other areas, this area was chosen to correspond to the general

classification of ‘suburban’.  The excess range of the second path according to Turin’s data

is approximately 200 feet or 61 m.  This corresponds to a time lag of approximately 200 ns

which is the value used by the second path in the simulated channel for suburban areas.  For

‘urban’ areas the time lag between the LOS and second path was chosen to be 400 ns.

The relative amplitude of the second arrival with respect to the first was also

derived from Turin’s data.  Morley (1995) traced plots of signal strength as a function of

excess range from Turin.  From Morley’s figures, the second arrival amplitude was found to

be 0.4 of that of the LOS path for the ‘suburban’ area (Turin’s area B).  For the ‘urban’

environment (Turin’s area A), the ratio was 0.8.  The phase of the second arrival with respect

to the first was varied from 0° to 315° in steps of 45° to simulate the uniform distribution of

received signal phase.  The carrier frequency used in the channel transfer response, to

account for the phase lag of the second path, was 840 MHz.  This corresponds to a

wavelength of approximately 36 cm.  Table 5.2 summarizes all the parameters pertaining to

the urban and suburban channels.
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Table 5.2 Simulated 2 Ray Channel Parameters

Urban Multipath Suburban Multipath

2nd Arrival Time Lag w.r.t. LOS 400 ns 200 ns

2nd Arrival Amplitude w.r.t LOS 0.8 0.4

2nd Arrival Phase w.r.t. LOS 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°

Channel Frequency 840 MHz

5.4  Demodulation and Correlation

After convolution of the modulated signal with the 2 ray channel transfer function,

the FM receiver was simulated.  The signal was first filtered with a 2nd order Bessel filter.

Since the signal is an equivalent lowpass signal and the bandwidth of the analog cellular

channel is 30 kHz,  the cutoff frequency of the receive filter was 15 kHz.  Average white

gaussian noise (AWGN) was then added according to the desired SNR.  It will be shown that

the performance of MUSIC for TOA estimation is a function of SNR.

Following demodulation and as discussed in Chapter 3, the signal was correlated

with a replica of the signal (reference) identically generated except without the channel.

Correlation was performed by Fourier transforming both signals to the frequency domain in

which one was multiplied by the conjugate of the other and the result inverse Fourier

transformed.  This resulted in a correlation sequence.  For the case of suburban type

multipath at 0° phase and an SNR of 15 dB the magnitude of the correlation sequence is

shown in Figure 5.2.  The number of Fast Fourier Transform (FFT) points used was 1024,

the next highest power of 2 over 768 which is the number of samples in the precursor.  The

peak of the correlation sequence was identified and all data outside of a window centered at

the peak was discarded.  The limited correlation peak was then Fourier transformed.  The

size of the window was found to be important for the performance of MUSIC.  The number

of FFT points used to transform the limited correlation peak to the frequency domain was 64.

For the FFT result to be accurate, the windowed data should be periodic and the number of
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FFT points should be equal to the data window or some multiple of it.  Since there are 16

samples per symbol, the correlation peak should be 32 samples wide.  This suggests a 32

sample data window.  However, by trial and error it was found that a 15 sample data window

gave much better performance at lower SNRs.  Sixty-four FFT points is still an approximate

multiple of the 15 point data window.
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Figure 5.2    Correlation Sequence for Suburban Channel with 0° Multipath Phase

Next, the DC level in the finite length correlation sequence was matched to that of

the reference correlation sequence.  As discussed earlier, the frequency representation of the

original correlation function (reference) must be divided from that of the received signal

correlation function in order to yield point sources in noise.  Different DC levels in the two

correlation functions was found to impact the performance of MUSIC.  Therefore, an
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iterative process was used to shift the DC level of the received correlation sequence to match

the level of the reference correlation sequence.

A problem arises, however, due to the time lag assigned to the LOS path in the

channel model.  The 2-ray channel model may be written as

( )h t a e
j fct

a e
j fct

=
−

+
− +





1
2 1

2
2 2 2π π φ

(5.2)

where a1, a2 = amplitudes of the LOS and 2nd ray respectively,

t1, t2   = time lags of the LOS and 2nd ray respectively,

fc = carrier frequency, and

φ2  = phase lag of 2nd path with respect to LOS.

As previously mentioned, the reference correlation pulse does not include the effect of the

channel model.  Any nonzero value of t1 in equation (5.2) introduces a phase shift in the

received signal.  As a result, the phase of the received correlation sequence will not match

that of the reference correlation sequence which assumes t1 to be zero.  When the DC level

of the received correlation sequence is adjusted to match that of the reference correlation, the

phase is affected.  Simulations were conducted at each particular SNR by varying the value

of t1 from -0.5 of a sample to 0.5 of a sample since a signal may arrive anywhere within one

sample.  When t1 = 0, the assumption holds and adjusting the DC level actually improves

accuracy.  When t1 is nonzero, adjusting the DC level of the received correlation to match

that of the reference affects the phase such that accuracy suffers.  Therefore, DC level

matching was not employed in the simulations.

Figure 5.3 illustrates the degree to which DC level adjustment does improve

accuracy when t1 = 0.  Plotted in Figure 5.3 is the difference, in RMS TOA error, between

the case when the correlation DC level is adjusted and the case when it is not adjusted.  The

positive differences correspond to a reduction in the RMS error when the DC level is

adjusted.  The three curves illustrate the differences for urban and suburban levels of

multipath (parameters of Table 5.2 and phase of 0°) as well as the case of no multipath.  At

higher SNRs, a multipath floor exists.  As noise no longer becomes significant, multipath

causes a fixed TOA estimation error.  The result is a fixed RMS error difference as seen in
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the urban and suburban curves of Figure 5.3.  However, in the absence of multipath, the

improvement due to DC level adjustment continues to be a function of SNR.  With no noise

present, DC level adjustment would be meaningless since the received correlation sequence

and reference correlation sequence would be equivalent.

At an SNR of 10 dB in Figure 5.3, the improvement is about 5 m or less.  As will be

seen later, the RMS TOA estimation error at this SNR is approximately 100 m.  The

improvement is therefore 5% or less.  At higher SNRs the improvement is also on the order

of 5%.
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Note the linear behavior of the curve corresponding to no multipath, for SNRs

greater than 10 dB.  At 10 dB, the curve ‘breaks’ due to the FM threshold effect (Haykin,

1989).  Below an SNR of 10 dB, the FM receiver output SNR is no longer a linear function
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of the input SNR.  The result is impulse-like components in the receiver output and an

increase in the TOA estimation error.  The FM threshold effect is visible in many of the

following figures.

An underlying assumption of MUSIC in its usual application of frequency domain

estimation is that the signals to be estimated are uncorrelated complex sinusoids in white

noise (Haykin, 1991).  When MUSIC is used in the opposite direction of estimating time

domain signals from frequency domain data, the same assumption must hold.  Therefore, it

is necessary that the time domain data be modeled as point sources in white noise.  To

achieve this, the effects of the lowpass filters and the correlation process must be removed

from the frequency domain data before the application of MUSIC.  This deconvolution is

performed by dividing from the frequency domain data the frequency representation of an

identical signal (reference signal) to that received with the exception that it has not passed

through the channel.  Since it is the impulse response of the channel which is being

estimated, the effect of the channel must necessarily remain in the signal.

Both the received frequency domain data and the reference signal were bandlimited

before deconvolution.  This is necessary due to the nulls in the sinc2 function at ± 10 kHz,

the data rate.  Dividing by the sinc2 function causes noise enhancement at the nulls.  Both

signals were, therefore, bandlimited to ± 10 kHz.  For 64 FFT points and a sampling

frequency of 160 kilosamples per second, this corresponds to discarding all frequency

domain data outside of ± 4 FFT points of 0 Hz.  This parameter was varied and a value of 4

was found by trial and error to give the best performance.

At this point the frequency domain data was ready for processing by root MUSIC.

The frequency domain data was first organized into a data matrix, the form of which

implements forward and backward smoothing (Haykin, 1991).  As discussed in Chapter 3,

forward and backward smoothing are effective methods of decorrelating correlated signals.

The bandlimited frequency domain signal consists of 9 points (0 Hz point ± 4 points) and

may be written as

[ ]x = x x x T
1 2 9L (5.3)
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where T indicates transpose.  To implement smoothing, the data vector is partitioned into

subarrays.  The optimal subarray length is approximately 0.75 times the length of the data

vector x (Tufts and Kumaresan, 1982).  In this case the subarray length was set to 7.  The

data matrix then consists of two halves, those subarrays arranged in a forward direction and

the same subarrays conjugated and ordered in the reverse direction.  The data matrix A is

AH

x x x x x x
x x x x x x
x x x x x x
x x x x x x

x x x x x x
x x x x x x
x x x x x x

=





























∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

7 8 9 1 2 3

6 7 8 2 3 4

5 6 7 3 4 5

4 5 6 4 5 6

3 4 5 5 6 7

2 3 4 6 7 8

1 2 3 7 8 9

. (5.4)

Once the data matrix has been constructed, a singular value decomposition (SVD) is

performed on A.  The resulting squares of the singular values and the right singular vectors

are the same as the eigenvalues and eigenvectors of the correlation matrix

Φ = A AH . (5.5)

The SVD of A produces M+1=7 singular values where M+1 is the subarray length.   These

singular values are divided into two groups according to a threshold.  The threshold used was

the largest singular value divided by 2 1∗ − +( )N M  where N is the total number of points

in x.  All singular values, and their associated right singular vectors, which exceed the

threshold correspond to the signal subspace.  Those singular values, and their corresponding

right singular vectors, which do not exceed the threshold, correspond to the noise subspace.

It is these singular vectors which span the noise subspace. Any steering vector which

corresponds to a signal will be orthogonal to that space.  In the event that no singular values

exceed the threshold, a default number of ‘signal’ singular values was used.  That default

number is 2∗ −( )N M  which yields 6 in this case.  Yamada et al. (1991) report that in

terms of signal estimation accuracy, it is better to overestimate rather than underestimate the
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number of signals L.  Since the subarray size is 7, the total number of singular values is also

7.  Therefore, in order to have at least one singular right vector to span the noise subspace, L

may be overestimated to a maximum of 6.

A matrix is formed from the right singular vectors corresponding to the M+1-L

smallest singular values.  Let the right singular vectors be v v v1 2 1, , ,L M+ .  The order of

these singular vectors is such that the corresponding singular values σ σ σ1 2 1, ,L M+  are

arranged in descending order.  The matrix spanning the noise subspace is then

[ ]V v v vnoise L L M= + + +1 2 1L (5.6)

where each singular vector is of dimension (M+1) × 1.  It follows that the dimensions of

Vnoise  are (M+1) × (M+1-L).

In root MUSIC, the MUSIC spectrum is represented by

( ) ( )
$S z

D zMUSIC =
1

 . (5.7)

The polynomial D(z) is created from ( ) ( )s V V sH
noise noise

Ht t , the MUSIC spectrum

denominator, by substituting the variable e jt  with z.  The coefficients of the polynomial are

equal to the sums of the diagonals of the matrix V Vnoise noise
H .  Those roots of the polynomial

D(z) which are closest to the unit circle should correspond to signals and the phase of those

roots to the normalized time of those signals.  It is not necessary, however, to consider all

roots as possible signal candidates.  When the received correlation sequence is divided by the

reference correlation sequence, the phases are differenced.  Ideally the phases are identical

and the resulting phase is zero.  Consequently, only those roots with phase within some

sector centered at zero need be considered.  In this case the sector width was -0.5 symbols (-

45° or -8 samples) to 0.0625 symbols (5.625° or 1 sample).  Since multipath signals always

arrive after the LOS signal, the negative sector bound was made larger than the positive.

Should the most dominant arrival be multipath and not LOS, it is desirable to consider roots

prior to zero phase and not after.  Even when the dominant arrival is LOS, it is expected to

be close to zero and not significantly after.
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That root within the sector and closest to the unit circle was chosen.  Its phase in

radians was then converted to samples by

delay
phase

NFFT
=

2π
 (5.8)

where NFFT is the number of FFT points (in this case 64).  This delay is root MUSIC’s

estimate of the LOS arrival with respect to the peak identified after the correlation process.

The correlation peak itself must be referenced to the true TOA of the LOS path in order to

calculate the error in TOA.  When the time lag for the LOS signal is zero and the entire

precursor is used for correlation, the correlation peak will occur at NFFT / 2 + 1 samples

with respect to zero time.  Note that the number of FFT points used in the correlation process

(and therefore of significance here) is 1024 whereas the number of FFT points used in the

superresolution process is 64.  The TOA estimate of root MUSIC is then

TOA delay peak
NFFT

MUSIC
$ = + − +













2
1 (5.9)

where TOAMUSIC
$  = root MUSIC TOA estimate in samples,

delay = root MUSIC estimate with respect to correlation peak in samples,

peak = number of samples from start of correlation sequence to the peak,

NFFT = number of FFT points used for correlation (1024).

The error in the root MUSIC TOA estimate, expressed in metres, is calculated by

( ) ( )TOA TOA LOS lag c R ferror MUSIC data= −$ * / * (5.10)

where LOS lag = time lag of the LOS path in samples,

c = propagation speed (speed of light = 299792.5 m/s),

R = oversampling factor (16), and

fdata  = data rate (10 kHz).

.5.5  Cramer-Rao Lower Bound



79

It is possible to compute the Cramer-Rao lower bound (CRLB) for TOA estimation.

The CRLB is a lower bound on the variance of any unbiased estimator.  It states that the

variance of any unbiased estimator $θ  must satisfy (Kay, 1993)

( ) ( )
var

ln
$

;
θ

∂ θ
∂θ

≥

−










1
2

2E
p x

(5.11)

where E  is the expectation operator, and

( )p x;θ  is the probability density function of the observed

sample

    set x.

When estimating a parameter of a signal in white Gaussian noise, equation (5.11) becomes

( )
[ ]

var $
;

θ
∂ θ

∂θ

≥






∑

1
2

s n

n

           (5.12)

where  [ ]s n;θ  is the nth sample of the signal s with parameter θ .

For the case of TOA estimation in the absence of multipath, the received signal can

be written as

( ) ( ) ( )x t s t w to= − +τ (5.13)

where s(t) is the transmitted signal,

τo is the propagation time from transmitter to receiver, and

w(t) is white Gaussian noise.

Using equation (5.12) it can be shown (see (Kay, 1993) for details) that for the signal model

(5.13), the CRLB for range estimation ( $R ), is
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( )var $R
c

SNR F
≥

⋅ ⋅

2

22
 (5.14)

where c = the speed of light,

( ) ( )

( )
F

F S F dF

S F dF

2

2 2

2

2
= −∞

∞

−∞

∞

∫
∫

π
 and, (5.15)

S(F) is the Fourier transform of s(t).

This is equivalent to the CRLB for TOA estimation expressed in metres.  Since the

expression F2 is a measure of the bandwidth of the signal, it is clear that the CRLB is

inversely proportional to the SNR and the signal bandwidth.

5.6  Simulation Results

TOA estimation simulations were carried out for various levels of multipath delay

(including the urban and suburban levels given in Table 5.1).  Other parameters varied were

the amplitude of the reflected signal, its phase with respect to the LOS signal and SNR.  To

obtain TOA error statistics for any combination of errors, the time lag of the LOS path was

varied from -0.5 of a sample to +0.5 of a sample in increments of 0.002.  The mean, standard

deviation and RMS of the TOA estimation errors are, therefore, based on 500 trials.

The first set of results, shown in Figures 5.4 and 5.5, illustrate the effect of

multipath delay.  Figure 5.4 plots the mean TOA error, expressed in metres, as a function of

SNR.  Figure 5.5 contains the RMS of the TOA estimation error, also expressed in metres.

In all cases, the phase of the multipath ray is 0° with respect to the LOS ray and the

amplitude of the multipath ray is 0.5 of that of the LOS ray.  Beside each curve appears the

time lag of the multipath ray with respect to the LOS ray.  Figure 5.5 also shows the CRLB

on the standard deviation of the TOA estimate.
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Figure 5.4 Mean TOA Estimation Error for Various Levels of

Multipath Delay (Multipath Phase = 0°, Multipath Ampl. = 0.5)

The standard deviation of the TOA estimation error is approximately equal for all

five levels of multipath delay in Figures 5.4 and 5.5 and was not plotted.  The standard

deviation curve for each of the five multipath levels is virtually identical to the RMS curve

for 0 ns multipath delay, since for that level of multipath the mean error is zero.
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Figure 5.5 RMS TOA Estimation Error for Various Levels of

Multipath Delay (Multipath Phase = 0°, Multipath Ampl. = 0.5)

It is clear from these results that the bias in root MUSIC TOA estimation is a

function of the multipath delay spread whereas the standard deviation is a function of SNR.

Due to the FM threshold effect below 10 dB, the differences in bias are insignificant

compared to the standard deviation and therefore the RMS curves converge.  At higher SNR,

where the standard deviation is on the order of the biases, the RMS curves are distinct.  The

TOA estimation errors were calculated by subtracting the true TOA from the root MUSIC

TOA estimate.  As expected, the bias due to multipath is positive.  It is interesting to note

that the bias in seconds due to multipath is approximately one third of the multipath delay.

The phase of the multipath ray with respect to the LOS ray also has a significant

effect on the TOA estimation performance of MUSIC.  This is especially true when the two

arrivals are out of phase. Then, fading due to multipath will exacerbate an already low SNR.
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To demonstrate this, in Figures 5.6 and 5.7 respectively, the mean and standard deviation of

TOA estimation error are plotted versus SNR for two rays in phase as well as 90° and 180°

out of phase.  The delay of the multipath ray with respect to the LOS is 400 ns and the

amplitude is 0.8 of that of the LOS ray.  These parameters correspond to the urban

environment parameters of Table 5.2.

Note that the absolute value of the mean TOA error is plotted.  This was necessary

only because of the 180° data.  Both the 0° and 90° mean data are positive as expected.  The

180° data, however, are negative.  Since negative data cannot be plotted on a log axis the

absolute value was taken.
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Figure 5.6 Mean TOA Estimation Error as a Function of Multipath Phase

(Multipath Delay Spread = 400 ns, Multipath Ampl. = 0.8)

When the two rays are in phase, the mean error is approximately 50 metres which

generally agrees with the data of Figure 5.4.  For a 90° phase difference at SNRs above 10

dB the mean error is also in the order of 40 to 50 metres.  Below 10 dB, however, the effect
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of fading begins to reveal itself.  This is most evident in the 180° curve.  Fading effectively

lowers the SNR.  The SNR was calculated as the ratio of the power of the transmitted signal

to the power of the noise.  The 180° out of phase signal destructively interferes with the LOS

signal - the result being a combined signal of reduced power.  In this case the amplitude of

the multipath ray is only 20% less than that of the LOS ray causing a large amount of fading.

Below 20 dB and for the case of 180° phase, the combined effect of fading and an increased

noise level is a meaningless correlation sequence.  The peak was so far in error that part of

the required data window lay outside the correlation sequence and no solution could be

generated.  Above 20 dB a solution could be generated and at 30 dB the standard deviation is

just over 100 metres.  However, confidence in the solution is low due to the magnitude of the

mean error and the fact that it is negative.
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The standard deviation curves of Figure 5.7 also demonstrate the effect of fading.

Again, there is little difference between 0° and 90° at higher SNRs whereas below 15 dB

fading becomes significant.  For 180°, the effect of destructive interference is obvious.

The amplitude of the multipath arrival with respect to the LOS arrival is also

important.  The mean and standard deviation plots of Figures 5.8 and 5.9 illustrate this.  The

mean errors in the case of a multipath phase of 180° are again negative and the absolute

values are plotted.   In each of the figures six plots are shown.  Three curves correspond to

the case of inphase multipath with amplitudes of 0.2, 0.5, and 0.8 of that of the LOS arrival.

The other three correspond to 180° multipath with the same amplitudes.  In terms of the

mean TOA error, the effect of increased multipath amplitude is an increase in the TOA

estimation bias.  For the 0° phase, the increase in bias, as amplitude increases from 0.2 to

0.8, is approximately 35 m.  The effect of amplitude is far more dramatic in the case of 180°

multipath.  When destructive interference is small (0.2 amplitude) there is little difference

between the 0° and 180° multipath TOA estimation means apart from the sign.  However,

there is a difference of approximately 400 m between the 0.8 amplitude curves.
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The fact that amplitude is more significant in the case of out of phase multipath can

also be concluded from the standard deviation curves of Figure 5.9.  For inphase multipath

there is little difference in standard deviation as the multipath amplitude changes.  The

opposite is true in the case of 180° multipath.
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To conclude, these simulations verify that TOA estimation by root MUSIC is

subject to multipath as expected.  Out of phase multipath causes destructive interference and

increases TOA estimation error.  Low SNR and high multipath amplitudes worsen the

situation.  TOA estimation error also increases as the time lag between the LOS and

multipath arrivals increases.  One would expect, however, that the error would begin to

decrease as the time lag continues to increase.  For example, if root MUSIC could only meet

the Rayleigh resolution criteria, the multipath arrival should have no effect on TOA

estimation of the LOS arrival when the lag between them is the period of one symbol (100

000 ns).  However, a multipath delay of this magnitude is unrealistic for the application at

hand.  Realistic delay spreads for cellular signals as determined by Turin (1972a) are

approximately 1/200 of a symbol period and the largest investigated here was 1/62.  Dumont
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(1994) investigated delay spreads of 1/4 of a chip (or symbol) to 1/32 of a chip and found

that the mean TOA error increases as delay spread decreases, the opposite of the findings

here.  It may be inferred then, that the delay spread threshold which corresponds to a

maximum TOA estimation error lies between 1/32 of a symbol and 1/62 of a symbol.  In any

case, this delay spread threshold is much higher than what could normally be anticipated in

the cellular propagation environment.  Therefore, for this application, an increase in delay

spread will cause an increase in TOA estimation error.

5.7  Models of MUSIC TOA Estimation Error

For the purposes of including MUSIC TOA estimation error in the positioning

simulations to follow, models were created.  The purpose of these models was to add

MUSIC TOA estimation error to the range between a simulated cellular telephone position

and a cell site.  As discussed in section 5.3, two propagation environments are assumed -

urban and suburban.  The values of the multipath parameters for the two environments are

given in Table 5.2.

Simulations were performed for each of the two environments at all the phases

listed in Table 5.2.  As before, the time lag of the LOS path was varied from -0.5 samples to

0.5 samples but in increments of 0.005.  The statistics at each SNR are therefore based on

200 samples.  The SNR was varied from 12 dB to 52 dB in steps of 4 dB.  As will be

discussed later, the minimum allowed SNR in the positioning simulations is 13 dB and as the

following results show, both the mean and standard deviation are essentially constant above

50 dB.

The TOA estimation error mean and standard deviation curves were modeled using

polynomials.  Polynomials were chosen for two main reasons.  The first is the convenience

of the polynomial functions contained in Matlab®, the language in which all the simulation

software was written.  Matlab® includes functions to fit a polynomial to some data and to

evaluate the polynomial at any parameter value.  Secondly, polynomials were found to fit the

curves with an accuracy sufficient for the application.  In almost all cases a polynomial order
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between five and eight was sufficient to ensure the model matched the simulation values to

within  1 m.

Figures 5.10a and 5.10b contain the mean and standard deviation of MUSIC TOA

estimation errors for the urban environment.  Each figure contains eight plots - the TOA

error mean and standard deviation for four different multipath phases.  Each plot is labeled

with both the multipath phase and the order of the polynomial used to fit the simulation data.

Within each plot appear eleven small circles.  These correspond to the simulation data.  The

continuous line is the polynomial model evaluated from 13 dB to 52 dB in steps of 0.01 dB.

All urban simulation points were used for polynomial fitting except in the cases of

180° and 225° multipath phase.  In the case of 180° the first three simulation points of the

mean (16 dB,  20 dB, and 24 dB) were not used for modeling (as discussed earlier, no TOA

solution could be generated at 12 dB and a phase of 180° due to low SNR and fading).

Similarly, the first two points of the standard deviation were not used.  At low SNR and a

high degree of fading, the TOA estimation process is extremely difficult.  As a result, it was

very difficult to obtain a statistically valid sample set.  It was found that even with 200

samples, the mean would significantly change at low SNR when the seed of the random

generator, used to produce the noise, was changed.  At high SNR and for less destructive

multipath, the mean TOA estimation error was the same for a number of random number

generator seeds.  The conclusion drawn from this is that the mean TOA estimation error

shown in the 180° plot of Figure 5.10b is only one realization - particularly at SNRs lower

than 24 dB.  The first three points were, therefore, not used to model the mean.  For the same

reason the first two points (16 dB and 20 dB) were not used to model the standard deviation.

The same can be said in the case of urban multipath of phase 225°.  In this case only the

simulation point at 12 dB was not used in modeling the mean.  All points were used to model

the standard deviation since there are no anomalies in the standard deviation data.

The simulation data and models for the suburban environment are given in Figures

5.11a and 5.11b.  All points were used for modeling except for the first (12 dB) in the case of

the mean TOA error for 180° multipath.  Again this is due to a lack of confidence in the

simulation results at an SNR of 12 dB.
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Figure 5.10a MUSIC TOA Estimation Error Models (Urban)

(‘o’ simulation points,  ‘-’ polynomial model)

In the positioning simulations to follow, the models of Figure 5.10 and 5.11 were

used to add TOA estimation error to simulated multipath corrupted ranges.  The appropriate

model - urban or suburban - was chosen based on the location of the simulated cellular

telephone position.  The multipath phase, with respect to that of LOS, was randomly

generated from a uniform distribution with outcomes {0°, 45°, 90°, 135°, 180°, 225°, 270°,

315°}. The polynomial models for the particular environment and phase were then used to
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generate the mean and standard deviation of the TOA estimation error.  The calculated SNR

of the simulated received signal served as the parameter for the models.
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Once values for the TOA estimation error mean and standard deviation were

randomly generated for a particular range, they were used to generate a TOA estimation

error from the Normal distribution.  The assumption of the normality of the TOA estimation

errors was tested by generating normal probability plots for both the urban and suburban

environments at various SNRs and for various multipath phases.  Matlab® contains a

function called normplot which allows one to asses whether a data set comes from a normal

distribution.  The normal probability plot for a suburban environment with multipath phase

of 90° and a SNR of 15 dB is shown in Figure 5.12.
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The crosses show the empirical probability for each TOA estimation error.  The

straight line connects the 25th and 75th percentiles of the data.  Note that the tick marks on

the y-axis are not uniformly spaced.  Instead, the distances between them match the distances

between the quantiles of a normal distribution.  If the data samples fall near the solid line, it

is reasonable to conclude that the data come from a normal distribution.  For the data plotted

in Figure 5.12, it is safe to assume that the TOA estimation errors are in fact normally

distributed. Figure 5.12 is typical of the normal probability plots generated for other

environments, phases, and SNRs.  Therefore, it was considered safe to generate TOA

estimation errors for the positioning simulations using the normal distribution.
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CHAPTER 6

POSITIONING SIMULATIONS

6.1  Introduction

These simulations are based on the Telus Mobility cellular network in Calgary,

Alberta, Canada.  Only four Cellocate receivers were available at the time of this work.  It

was, therefore, impossible to install Cellocate receivers throughout the network and field

test the system on a city-wide scale.  This made it necessary to simulate system performance

on a large scale.

This chapter describes the positioning simulations and the models used.  The results

of these simulations indicate the effect of various error sources as well as network geometry

on position accuracy.  The chapter proceeds by describing the Telus Mobility network, the

multipath models used to corrupt ranges, the propagation loss equations used to determine

SNR and the positioning algorithms.  Following this, the results of the simulations are

presented and analyzed.

6.2  Description of Positioning Simulations

6.2.1  Cellular Network

The Telus Mobility cellular telephone network was used to simulate the

performance of the Cellocate system on a city-wide scale.  When the simulation software

was designed and written, the network consisted of approximately 40 cell sites.  Almost all

of the cell sites are sectorized in that they use directional antennas.  To make the simulation

computations reasonable, however, all cell sites were assumed to be isotropic.  In addition, a

small number of the cell sites share the same geographical location.  For instance, three

separate cell sites, with directional antennas pointing in different directions, are located on

top of the Petro Canada building.  These three cell sites were regarded as one isotropic site.

Therefore, for the simulations, a total of 36 isotropic cell sites were assumed.

The relative positions of the 36 cell sites, with respect to an outline of the Calgary

city limits, are given in Figure 6.1.  The cell sites are represented by the small circles.  Also
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included in Figure 6.1 are two larger circles centered on downtown Calgary.  The larger is of

12 km radius whereas the smaller is of 2 km radius.  A grid of hypothetical cellular

telephone locations was generated over the city area.  The spacing between the grid points

was 250 m.  Since the extreme northern and southern portions of the cities are undeveloped

and cell sites outside of the city limits were in general not used, a boundary of 12 km from

the city centre was chosen.  Only grid points within the 12 km radius were used in the

simulations.

For the simulations of this chapter and the field tests of Chapters 7 and 8, all grid

points and cell sites are assumed to lie in a horizontal plane.  The position to be estimated is

a two-dimensional, horizontal position.  The heights of the grid points and cell sites are not

accounted for.

0 5 10  km

Figure 6.1 Telus Mobility Cellular Network in Calgary, Alberta, Canada

6.2.2  Propagation Environment



97

The 2 km radius circle serves as a boundary between propagation environments.

Calgary consists of two main propagation environments.  The downtown or city centre is

densely developed with high-rise office buildings in excess of 20 stories.  Towards the

periphery of the city core the building size is somewhat smaller with the exception of some

multi-story apartment buildings.  The city core extends to a radius of approximately 2 km.

Outside the city core the development is mostly suburban with the exception of the

occasional multi-story building, such as on the university campus or in industrial parks.  The

city was therefore divided into the two distinct propagation areas - that within 2 km of the

city centre is classified as urban whereas from 2 km to 12 km the classification is suburban.

These two areas are distinct with regards to multipath and propagation loss.  Therefore,

different models will be used for these areas in the simulations.

Some grid points lying near the interface of the two propagation environments will

of course be visible from cell sites in both areas.  However, for any particular grid point, the

same multipath and propagation loss models will be used for all cell sites, regardless of

whether they reside in the urban zone or suburban zone.  The models used depend on the

location of the grid point.  For grid points within the urban zone, this may make the

simulation results somewhat pessimistic.  However, the opposite effect will occur in the

suburban zone.  The overall effect of this simplification will, therefore, be insignificant.

Of the grid of hypothetical cellular telephone locations generated, 7211 fall within

the 12 km radius of the city centre.  Of those 7211 points, 195 fall within the 2 km radius

whereas the remaining 7016 lie between the 2 km and 12 km radii.  Each simulation run

consists of one trial at each of the 7211 points.  The result of each trial is a two dimensional

error in the estimated position of a cellular telephone at that location.  Statistics for the

simulation run are then generated from the two dimensional error at each of the grid points.

6.2.3  Simulated Multipath

The simulations proceeded by stepping through each of the 7211 grid points.  For

each point the horizontal LOS distance to each of the 36 cell sites was calculated.  An excess

range was then added to each LOS range in order to simulate multipath.  The excess range
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was generated from probability density functions (PDFs) based on Turin’s experiments

discussed in section 2.3 (Turn et al., 1972a).  In the experiments, the van containing the

receiver was driven through four different propagation environments.  Of interest here are

Turin’s areas A and B.  Area A consisted of narrow streets and densely packed buildings up

to 50 stories high.  Turin describes it as “typical of the worst propagation environment one

could expect in a modern metropolis”.  Note that some 25 years later, buildings well in

excess of 50 stories are common in urban centres.  Within this area multipath and diffraction

are common due to the abundance of reflecting objects.  Propagation loss is also high.    This

area was chosen for the ‘urban’ area of Calgary.    Turin’s Area B was downtown Oakland

California.  This area consisted of “sparsely clustered skyscrapers, up to 40 stories,

interspersed with 2-3 story ... buildings.”  He notes that LOS transmission was possible if not

common in this area.  Multipath is, however, also common.  This area was chosen for the

‘suburban’ area of Calgary - that region from 2 km radius to 12 km radius.  Although this

choice is somewhat pessimistic, the ‘suburban’ part of Calgary consists of true suburbia, as

well as industrial parks, apartment buildings and so on. Turin’s area B is, therefore, a

reasonable choice.

Morley (1995) created PDFs from Turin’s data.  Turin plots probability-of-

occupancy curves based on his empirical data.  These plots (Fig. 4 in Turin et al. 1972a)

show the empirical probability of a path being within ±50 ft of an excess range between 0 ft

and 7000 ft.  The results are divided into bins of width 100 ft.  Morley derived the PDFs of

the first path excess range from these curves.  To determine the probability that the first path

arrives in some bin, he multiplied that bin’s probability of occupancy by the probability of

non-occupancy of all the preceding bins. From these functions, the probability that the first

signal to arrive at the receive antenna will travel a particular excess distance due to reflection

or refraction, can be determined.

Plots of Morley’s PDFs for Turin’s areas A and B are shown by the dashed curves

in Figures 6.2 and 6.3 respectively.  These figures were traced from Morley’s Figures 2-3 (a)

and (b).  Also plotted in these figures are curves generated from 10th order polynomials

using the Matlab® polyval function.  The polynomial coefficients were determined from
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points on Morley’s curves with the Matlab® polyfit function.  The resolution of the

polynomial curves in Figures 6.2 and 6.3 is 1 ft.  Values of the polynomials in these two

figures are occasionally negative.  This is not practically possible since these curves

represent probabilities.  This is later accounted for in the method of generating random

numbers from these polynomials.

The PDF used to generate an excess range depended on whether the grid point

under consideration was located in the urban zone or the suburban zone.  Once the

appropriate PDF was chosen, it was used to generate a random excess range according to

that distribution.  The rejection method (Matlab®, 1994a) was chosen to generate a random

number according to one of the two PDFs.  Let F be the distribution with corresponding PDF

f(x) from Figure 6.2 or Figure 6.3.  The reduction method requires another distribution G

with PDF g(x) and a constant c such that

( ) ( )f x cg x x≤ ∀   . (6.1)

Random numbers from the distribution F may then be generated by the following steps:

1. Generate a random number x from distribution G.

2. Calculate 
( )
( )

r
cg x
f x

= .

3. Generate a uniform random number u.

4. If ur < 1 then  x is a random number from distribution F.

5. If ur ≥ 1 then repeat steps 1 to 3.
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The uniform distribution was chosen for G and a value of 1/1500 was given to g(x).

The constant c was set to 550.  A value of 1/1500 was chosen for g(x) since Turin’s

probability-of-occupancy curves, and hence Morley’s PDFs, used a domain of [0, 1500 ft].

The generation of random excess ranges was done with the same domain and the result

converted from feet to metres.  The first step then was to generate a uniformly distributed

number x between 0 and 1500.  The value of f(x) was then evaluated using the appropriate

polynomial model.  As previously noted, the polynomial models shown in Figures 6.2 and

6.3 are occasionally negative.  If for x the polynomial value was negative, f(x) was set to a

very small positive number (1e-10).  A uniform random number of range [0,1] was then

generated and steps 4 and 5 of the method followed.

How well this method generates random variables according to Morley’s PDFs is

illustrated in the histograms of Figure 6.4 and Figure 6.5.  Shown in each of these figures are

Morley’s PDF and a histogram of 100,000 random numbers generated with the reduction

method.  The bin width in all cases is approximately 30.5 metres which corresponds to the

100 ft bin width of the Turin data from which Morley derived his PDFs.  Agreement

between the Morley’s PDFs and the histograms is good with the exception of the first bin.  It

is important to note that the reduction method histogram curves of Figures 6.4 and 6.5

characterize the multipath in the simulations to follow.
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Figure 6.4 Excess Range Histograms (Urban)
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6.2.4  SNR Calculation

Once random excess ranges were generated and added to the LOS distance to each

cell site, the propagation losses for the resulting ranges were calculated using Hata’s

empirical formulae (Hata, 1980).  Hata’s equations are based on empirical data and predict

the propagation loss for land mobile radio services.  The equations are considered applicable

for the conditions in Table 6.1.

Table 6.1 Conditions for Hata’s Propagation Loss Equations

Frequency 150 MHz - 1500 MHz

Base Station Antenna Height 30 m - 200 m

Vehicular Station Antenna Height 1 m - 10 m

Distance 1 km - 20 km

Hata presents a standard formula for urban propagation loss with corrections for

vehicle station antenna height and other propagation environments.  The standard formula is

( )
( )

L f h a h

h R
urban c b m

b

= + ⋅ − ⋅ −

+ − ⋅ ⋅

69 55 26 16 13 82

44 9 6 55

. . .

. .

log log

                                                      log log
10 10

10 10

  

(6.2)

where L = propagation loss in dB,

f c  = carrier frequency in MHz,

hb  = base station antenna height in m,

hm  = vehicular station antenna height in m,

( )a hm  = correction for vehicular station antenna height in dB,

and

R = propagation distance in km (LOS + excess range).

Two different vehicular antenna height corrections are given.  For a ‘medium-small’ city the

correction is
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( ) ( ) ( )a h f h fm c m c= ⋅ − ⋅ − ⋅ −11 0 7 156 0 810. . . log .log10 (6.3)

whereas for a large city the correction is

( ) ( )a h h fm m c= ⋅ − ≥32 1175 4 97 40010
2

. log . . ,          MHz.(6.4)

The standard equation (6.2) is corrected for propagation loss in a suburban area.  The

modified equation is

( ){ }L L fsuburban urban c= − −2 28 5410

2
log . . (6.5)

For the urban area of the positioning simulations (radius up to 2 km), equations

(6.2) and (6.4) were used.  For the suburban area (2 km to 12 km radius) equations (6.3) and

(6.5) were used.  As shown in Table 5.2, the carrier frequency assumed was 840 MHz.  The

cell site antenna height, hb , was set to 50 m and the cellular telephone height, hm , was set

to 1.5 m.

Following Morley, an additional path loss due to the log-normal distribution of

signal strength, was added to the loss calculated from Hata’s equations.  Turin reports that

path strength as a function of excess range is log-normally distributed.  From Turin’s plots of

path strengths, Morley determined that the standard deviation for the areas of interest here is

approximately 6 dB.  Therefore, additional path losses were generated from normally

distributed random numbers with mean of 0 dB and standard deviation of 6 dB.

Short term fading was taken into account by incorporating a fade margin in the

SNR calculation.  A fade margin of 8 dB ensures that signal loss due to short term fading

happens only 10% of the time (Lee, 1982).  Long term fading was not accounted for.

Antenna gains and cable losses were also incorporated after Morley.  Therefore, the SNR in

dB was calculated by

SNR P L C F Nt= − + − −  (6.6)
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where Pt  = transmit power = 28 dBm (nominal class III power),

L = path loss in dB (Hata’s equations + Turin’s log-normal path strength),

C = mobile ant. gain + cell site ant. gain + cable losses,

    = 2.2 dB + 6 dB - 5 dB,

F = fade margin = 8 dB, and

N = noise floor at 30 kHz = -129 dBm.

Obviously all 36 cell sites in the city would not be able to receive a signal from a

cellular telephone anywhere within the city.  An SNR threshold was set to determine which

cell sites could receive the signal and be used in the positioning calculations. Hand-off

information from Telus Mobility1 for the Calgary area indicates that, on average, a cellular

telephone is ‘visible’ from seven cell sites.  To obtain an average number of approximately

seven participating cell sites, a threshold of 13 dB was chosen. One measurement made by

Telus Mobility in the vicinity of the cell sites used for the field tests of Chapter 8, yielded an

SNR of 24 dB.  A minimum SNR of 13 dB is, therefore, realistic.  For the simulations to

follow, a threshold of 13 dB resulted in a mean of 8.2 cell sites (and therefore observations)

with standard deviation of 3.9.

6.2.5  Simulated TOA Estimation Error

Once the participating cell sites were determined, the range to each cell site, already

corrupted by multipath, was further corrupted by the TOA estimation error of root MUSIC.

The polynomial models of Figures 5.10 and 5.11 were used for this purpose.  First, a

uniformly distributed random phase was selected from the set {0°, 45°, 90°, 135°, 180°,

225°, 270°, 315°}.  The corresponding polynomial model, based on whether the grid point

was in the urban zone or the suburban zone, was then used to determine the TOA estimation

error mean and standard deviation for the given SNR.  Since the polynomial models are only

valid up to 50 dB SNR, any calculated SNR above 50 dB was fixed to 50 dB.  This is

reasonable since most of the MUSIC error mean and standard deviation curves are constant

after 50 dB.  In addition, in very few cases was the SNR greater that 50 dB.  A histogram of
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SNRs for one simulation run is plotted in Figure 6.6.  It is clear that over 95% of the SNRs

are below 50 dB.
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Figure 6.6 SNR Histogram for One Simulation Run

The TOA estimation error mean and standard deviation were used to generate a

normally distributed random TOA estimation error.  This error was added to the multipath

corrupted range.  The result for each grid point then was a set of corrupted ranges to those

cell sites which were visible to that grid point according to the SNR threshold.  These ranges

were the observations used in the positioning estimation process.

6.2.6  Geometry

Given the positions of the grid points and cell sites involved in the position

estimation process, the HDOP may be calculated from the design matrix and observation

covariance matrix as discussed in Chapter 4.  Due to the design of these matrices, circular

and hyperbolic trilateration yield an identical HDOP value. The HDOP was calculated for

every grid point within the 12 km radius.  As discussed previously, the participating cell sites

                                                                                                                                                                      
1 Private Communication with Brent MacArthur of Telus Mobility
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for each grid point are a function of the multipath models used.  Both the multipath models

and propagation loss calculations require the generation of random numbers.  Random

number generators are based on a seed value, each seed generating a different series of

random numbers.  A simulation run, defined as one trial at each of the 7211 grid points, is

based on a specific seed value for the normal and uniform random number generators.  In

Matlab®, the normal and uniform random number generators maintain separate seeds.

Therefore, for each simulation run, the corruption of the LOS ranges due to

multipath and the propagation losses are different.  The participating cell sites for a particular

grid point may change from one run to the next.  Therefore, the result of any one simulation

run is only one realization of a random process.  Figure 6.7 is a plot similar to that of Figure

6.1.  Shown in Figure 6.7 are regions of similar HDOP for one particular realization. There is

little difference in the HDOP values from one realization to the next and Figure 6.7 may be

considered as typical.  Within each region, the grid points have an HDOP within the

approximate ranges indicated.

There are four regions.  Within the 2 km radius the HDOP is relatively high.  In this

area there are a large number of cell sites in a very small geographical area.  The urban

propagation model will eliminate many of the cell sites outside of the urban zone from being

used in the position fix due to high propagation loss.  The result is poor geometry especially

towards the fringe of the urban zone.  The best geometry occurs primarily to the south and

northeast of the city centre.  The number of surrounding cell sites in these areas accounts for

this.  Throughout the rest of the city the HDOP is fairly uniform at about 2.  The exceptions

are the edges in the north, southeast, and southwest.  The northern area corresponds to the

location of the airport whereas the southern areas are essentially empty of development.

Outside the 12 km radius, with the exception of due south, the land is undeveloped.  Hence,

the number of cell sites in those areas is small and the HDOP along the edge of the 12 km

radius is high.
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Figure 6.7 HDOP Regions for One Particular Simulation Run

A histogram of the HDOP values appears in Figure 6.8.  It is clear that over 50% of

the grid points have an HDOP of 1 or less and 80% have an HDOP of 2 or less.  A total of

121 grid points had an HDOP greater than 10, the largest being 221.  From Figures 6.7 and

6.8, one concludes that the geometry for the vast majority of the test area is excellent.  It is

emphasized, however, that these results are based on an SNR threshold of 13 dB and the

propagation loss equations (6.2) through (6.5).
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Figure 6.8 HDOP Histogram for One Simulation Run

6.2.7  Position Estimation

6.2.7.1  Initial Position Estimate

Iterative methods such as LS require an initial position to begin the iterative

process.  For many applications, due to geometry and the distances involved, the accuracy of

the initial solution need not be very good.  For example, in the case of GPS the transmitting

sources are approximately 20,000 km from the receiver and the satellites will be within 180°

of each other in the celestial sphere.  Errors in the initial position on the order of the radius of

the earth may, therefore, be tolerated.  For cellular positioning, however, the propagation

distances are in general less than 5 km and the receiver is often located amongst the

transmitters.  This results in the possibility of multiple or ambiguous solutions within close

proximity of one another.  This situation requires a much more accurate initial position.

Consider the case of Figure 6.9.  This figure shows a simulation grid point and the

only three cell sites which exceed the 13 dB threshold.  The grid point is indicated by the
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asterisk, the cell sites are marked by filled circles and the city limit is drawn by the dashed

line.  Also shown are the hyperbolic lines of position corresponding to the range differences.

In this case the ranges of cell sites A and C were differenced with that of cell site B.   The

resulting hyperbolas are identified as AB and CB.  The ranges from the grid point to the cell

sites were uncorrupted.  As a result, the two hyperbolas intersect at the true grid point

position.  Of interest here is the fact that the two hyperbolas intersect at two points within 2

km of one another.  In many applications the second solution is so far remote that it can be

easily discounted.  Figure 6.9 shows, however, that for the geometry and distances involved

in this application, it is possible to have two reasonable solutions.
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Figure 6.9 Dual Solutions for Two Intersecting Hyperbolas
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(range B differenced from ranges A and C)

To which solution LS converges is a function of the initial position provided to LS.

Figure 6.10 is a replica of Figure 6.9 with some additional information.  Shown in Figure

6.10 is a grid of 289 initial positions, spaced by 500 m.  These initial positions were used,

one after the other, to initialize the LS iterative process.  This resulted in 289 LS solutions.

The result of each solution is indicated by the symbol used to mark the initial position used

for that particular case.  Three categories of solutions were possible.  LS was found to either

converge to one of the two solutions or to diverge.  Those initial positions which resulted in

convergence to the correct solution are indicated by crosses; those that resulted in

convergence to the second solution are marked by dots; those resulting in divergence are

indicated by circles.  The correct solution is again indicated by an asterisk whereas the

second solution is marked by an x.



112

B
A

-6000 -4000 -2000 0 2000
-6000

-4000

-2000

0

2000

4000

6000

60004000

Easting (m)

N
or

th
in

g 
(m

)

Correct Solution
Second Solution
Divergence

C

Figure 6.10 Result of Various Initial Positions in the Case of Two Solutions

(range B differenced from ranges A and C)

Of the 289 initial positions, 40% resulted in convergence to the correct solution,

22% resulted in convergence to the second solution and the remaining 38% resulted in

divergence.  It is intuitively obvious that those initial positions close to one solution or the

other will cause convergence to that solution.  This is confirmed by the quiver plot of Figure

6.11.  This plot illustrates vectors corresponding to the corrections to the position parameters

after one iteration.  Each arrow represents the parameter correction given the tail of the

arrow as the initial position.  From this plot one can easily see that the solution eventually
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arrived at depends on the initial position.  Since the LS process is the minimization of some

objective function, one may add a third dimension to Figure 6.10 representing the value of

the objective function.  The three dimensional surface so obtained will have two minima -

one at each of the intersections.  Which of the two minima LS ‘slips into’ depends on where

LS starts.
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Figure 6.11 Parameter Correction Vectors

In contrast to Figure 6.10, Figure 6.11 gives the impression that an overwhelming

majority of the initial positions result in convergence to one solution or the other.  This is

due to the vectors of Figure 6.11 being of unit magnitude.  In reality, the magnitudes of those

vectors corresponding to the circles of Figure 6.10 are orders of magnitude greater than those
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corresponding to the dots and crosses.  In other words, although many of the vectors point

toward one of the solutions, their magnitude is so large that they greatly overshoot the

solution resulting in divergence.

The cell site used as reference for differencing does not affect the outcomes

illustrated in Figures 6.9 through 6.11.  Figure 6.12 shows the results when the ranges of cell

sites B and C are differenced from that of A.  The results are identical to those of Figure

6.10.  In this case the two hyperbolas intersect at a very shallow angle but at the
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Figure 6.12 Result of Various Initial Positions in the Case of Two Solutions

(range A differenced from ranges B and C)

same two points.  It is obvious that the hyperbola corresponding to range difference AC will

also intersect that of range difference BC at the same two points.
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The preceding discussion has demonstrated the possibility that in the case of poor

geometry and three TOAs, two solutions in close proximity of one another are possible.  The

solution arrived at by LS is largely a function of the initial position.  One would expect that

more observations will eliminate this problem.  In general this is true; although possible, it is

highly improbable that n hyperbolas formed from n+1 TOAs (where n > 2), will intersect at

two points.  However, it is possible that some subset of hyperbolas will approximately

intersect at a second point and that LS may converge to this point.  Such a case is illustrated

in Figure 6.13.  This is another example from the simulation run which provided the

previous example.
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In Figure 6.13, the four hyperbolas are formed by differencing between the five

TOAs in a sequential manner rather than differencing four of the TOAs from the remainder.

Note that the HDOP is very high indicating poor geometry.  The correct solution is at

coordinates (0, 0) where all four hyperbolas intersect exactly.  Three of the hyperbolas come

very close to intersecting again at the point (3, 1).  LS converges to this second solution for

41% of the initial positions shown. Forty-six percent of the initial positions resulted in

convergence to the correct solution and the remaining 13% resulted in divergence.  This

demonstrates that even when redundancy exists, an accurate initial position is critical when

geometry is poor.

Geometry in the form of DOP values, however, is not a reliable indicator for

warning when multiple solutions may exist.  Other examples, similar to those just presented,

were found having HDOP values of approximately 2.  The problem of solution bifurcation in

GPS has been studied by Chaffee and Abel (1993).  They present examples in which two

GPS solutions become possible as a GPS receiver approaches a satellite.  Unfortunately the

DOP values are low and do not warn that a secondary solution is possible.  In the context of

developing a direct GPS solution for the case of four observations, Chaffee and Abel

consider the notion of solution uniqueness.  They developed a simple geometric test for

solution uniqueness.

The work of Chaffee and Abel may be transferred to the cellular positioning case.

Consider three cell sites with horizontal positions C1 , C 2 , and C3  where [ ]Ci i ix y=  .

The TOA estimated at the i th  cell site is Ti .  The origin of the coordinate system is first

moved to the position of the first cell site.  TOA differences are then formed using the first

cell site as the reference.  We then have

∆
∆

T T T
T T

21 2 1

3 1

= −
= −

 and
T31 .

(6.7)
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Now let the coordinates of cell sites 2 and 3, for the coordinate system with origin

at the first cell site, be

[ ]
[ ]

C

C
2 2 1 2 1

3 3 1 3 1

'

' .

= − −

= − −

x x y y

x x y y

 and
(6.8)

A matrix Z is formed where

Z
C
C

=










2 21

3 31

'

' .
∆
∆

T
T

(6.9)

Given that Z is of rank 2, the null space of Z will be one-dimensional.  Let the unit

vector spanning the null space of Z be a.  Chaffee and Abel show that, assuming a direct

solution exists, there will be a unique solution to the hyperbolic equations when

a a, < 0 (6.10)

and two solutions exist when

a a, > 0 . (6.11)

The operation a a,  is the Lorentz inner product defined by,

a a, .=






 −

=
∑a ai
i

2

1

2

3
2

(6.12)

Chaffee and Abel refer to a a,  as the bifurcation parameter.  Bifurcation of the solution

occurs as the parameter passes through zero from positive to negative.

Note that the bifurcation parameter test only applies to an exactly determined

system of equations.  For horizontal cellular positioning this corresponds to two TOA
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differences or two hyperbola, as in Figure 6.9.  For the case of Figure 6.9, the bifurcation

parameter was 0.45 indicating that two solutions exist.  When redundancy exists, the

bifurcation parameter must be calculated for each hyperbola pair.

As an example consider Figure 6.14.  Cell site 3 is used as the reference such that

hyperbola H13 is formed from the TOA differences between sites 1 and 3, H23 from the

TOA differences between sites 2 and 3 and so on.  Note that hyperbola H23 and H43

intersect at two separate points, the correct solution and the second solution.  The bifurcation

parameter for these two hyperbola is 0.05.  Hyperbola H13 and H23 intersect only once as

do H13 and H43.  The bifurcation parameters for these hyperbola pairs are -0.005 and -0.08

respectively.  When only hyperbola H23 and H43 are used, LS converges to either the

correct solution or the second solution depending on the initial position.  When all three

hyperbola are used either the correct solution or Solution A are obtained, again depending on

the initial position.
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HDOP = 17,  NDOP = 6,  EDOP = 16

Detection of the presence of two solutions is the obvious first step in dealing with

this phenomena.  The next problem is how to avoid convergence to a secondary solution.

One possibility is to not make use of the offending hyperbola pair.  However, since

redundancy generally improves the position estimate, this is not a desirable course of action.

A more attractive approach may be to assign less weight to the observations in question.

In any case, a very accurate initial position is desired.  Due to the highly mobile

nature of cellular telephony, past position is of little help in determining an initial position.

Perhaps the easiest and most convenient source of an initial position is the cell site with

which the cellular telephone communicates.  The assumption could be made that the

telephone is located within that cell and perhaps the geographical centre could be taken as

the initial position.  As cells become smaller due to increased load, this may result in a

position of adequate accuracy given that the above assumption is correct.  However, in many

cases, the cell site with which the telephone communicates may not be the closest site.  For

example, in the field tests conducted, the telephone would often lock onto the cell site

located atop the Petro Canada building, some 4 km in the distance, instead of a cell site only

1 km away.  The reason was signal blockage.  The Petro Canada building is a sky scraper in

the central part of Calgary and the cell site antenna on its roof is visible from a large portion

of the city.  Although most of the other cell site antennas are mounted on masts, signal

blockage and fading can occur.  Therefore, it cannot be guaranteed that the cell site handling

the telephone’s call is the closest one.

A closed form algorithm, requiring only TOA observations, is the preferable

solution.  The LS plane intersection method discussed in Chapter 4 is investigated here for

this purpose.  A simulation run was executed using plane intersection to estimate position.

Of the 7211 grid points, 6471 had four or more participating cell sites and their positions

could therefore be estimated.  The mean number of participating cell sites was eight with a

standard deviation of 3.9.

Table 6.2 presents the results of the simulation run.  The performance measures

used here and in the simulation results to follow are Distance Root Mean Square (DRMS),
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horizontal precision, mean horizontal error, and the 67th and 95th percentiles. Horizontal

precision is defined as

Hor. Prec.  = σ σx y
2 2+        (6.13)

where σ x  is the standard deviation of the errors in the x component and σ y  is the same for

the y component errors.  DRMS is an accuracy measure which is calculated by

( ) ( )[ ]
DRMS =

$ $x x y y

N

i i i i
i

N

− + −
=
∑ 2 2

1        (6.14)

where ( )$ , $x yi i  is the position estimate of the ith grid point, ( )x yi i,  are the true

coordinates of grid point i, and N is the number of grid points.  The mean horizontal error is

self-explanatory and the 67th percentile is that horizontal distance which 67% of the

horizontal errors are less than.  The values of the DRMS and 67th percentile suggest that

there are a small number of large errors.

Table 6.2 Test Results for the LS Plane Intersection Method

DRMS (m) 2784

Horizontal Precision (m) 2784

Mean Hor. Error (m) 452

67th Percentile (m) 190

95th Percentile (m) 1237

Plotted in Figure 6.15 are the plane intersection DRMS, horizontal precision, and

67th and 95th percentiles for grid points with HDOP less than or equal to the abscissa.  Also
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plotted are the percentage of points, out of the 6471 total, and the mean number of

participating cell sites for those points, with HDOP less than or equal to the abscissa.  Recall

that the results presented are for those grid points at which there were four or more TOA

observations.

In general, the plots indicate the dependence of accuracy upon geometry.

Performance is best when HDOP is small indicating good geometry.  Geometry itself is a

function of the number of participating cell sites as indicated by the plot of the mean number

of cell sites versus HDOP.  There is a significant jump in the DRMS and horizontal precision

between HDOPs of 2 and 3 and an even larger jump between an HDOP of 5 and 6.  These

jumps may be correlated with the HDOP regions of Figure 6.7.  The jump in DRMS between

an HDOP of 2 and 3 corresponds to the difference between region B and region A in Figure

6.7.  The jump in DRMS when HDOP increases from 5 to 6 may be associated with the

difference between region C, the downtown area, and regions A and B.     Those points with

HDOP of 5 or less represent 93.5% of the total number of points whereas 95%  have an

HDOP of 6 or less.  The increase in DRMS from approximately 1000 m to 2000 m is due to

points consisting of only 1.5% of the total.  A large majority of those points are in the

downtown area which contains approximately 2.7% of the total number of points.

From these results, it appears that the LS plane intersection method is suitable for

determination of initial position.  The multiple solution cases presented in Figures 6.9

through 6.13 suggest that LS should be started as close as possible to the true solution to

avoid convergence to a secondary solution.  How accurate the initial position must be to

ensure this, depends on the geometry of the particular case.  In Figure 6.12, an accuracy of

about 700 m, half the distance between the true and second solutions, is required.  In the case

of Figure 6.13, the required accuracy is 2 km, about two thirds of the distance between the

two solutions.

The need to resolve between the two solutions depends on their proximity to one

another.  The two cases presented earlier are by no means exhaustive.  As multiple solutions

become closer to one another, it becomes less important to which solution LS converges.

Convergence to the ambiguous solution, although undesirable, is not catastrophic if the two
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solutions are within say 200 m of each other.  However, in all cases, it would be most

beneficial to provide some sort of reliability measure which could alert the user to the

possibility of convergence to a secondary solution.

The LS plane intersection method was found to be numerically stable.  For a

simulation run in which uncorrupted ranges were used, the position estimated was accurate

to within machine precision for the 6471 grid points which had four or more observations.
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Therefore, the initial position provided to LS in the simulations to follow was

provided by the LS plane intersection method.  If a grid point had four or more participating

cell sites, its position was estimated with LS plane intersection.  This position was then used

to start the iterative process of LS.  If LS diverged, or did not converge within 500 iterations,

or the matrix [ ]A C Al
T −1

 became singular, the coordinates, plus 100 m in an arbitrary

direction, of the participating cell site with the highest SNR, were used as the initial position.

In the event that that this again resulted in no solution, that grid point was identified as such.

6.2.7.2  Least Squares Position Estimation

Four different LS algorithms were tested by simulation.  Algorithms ls1 and ls3b

employ circular trilateration - both horizontal position and TOT are solved for.  They require

an initial estimate of the TOT.  Since the simulations are based on ranges and TOA was

calculated by dividing range by the speed of light, the initial TOT estimate provided to LS

was always zero.  The two algorithms are identical with the exception that ls3b checks the

misclosure vector during each iteration and discards any observation whose misclosure is

greater than some multiple of the Root Mean Square (RMS) value of the misclosure vector.

For N  TOA measurements, the misclosure vector is

w T
r

TOT
o

o= − −








c
( 6.15 )

where T  is a vector of length N containing the TOA measurements,

r o is a vector of length N containing ranges from the N cell sites

to        the approximates coordinates of the telephone,

TOT o  is a vector of length N in which each entry is the 

    approximate Time Of Transmission, and

c is the speed of light.
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During each iteration updates to the approximate coordinates and TOT are calculated and

used to compute the misclosure vector.  Each entry of the misclosure vector, beginning with

that of the largest magnitude, is then compared to the misclosure RMS value which is

w
N

RMS
i

i

N

= =
∑ w 2

1  .             (6.16)

If the misclosure for any observation is greater than some multiple (commonly 3) of

the RMS value, it is discarded provided that at least three observations remain.  For both of

the circular trilateration algorithms, the observation covariance matrix is the identity matrix.

Two different LS algorithms were used to implement hyperbolic trilateration.  The

algorithm lsdifa differences the TOA of the cell site with the highest SNR from that of all

other cell sites involved.  This is reference differencing as discussed in section 4.2.3.2.  and

the observation covariance matrix is given by 4.23.  Sequential differencing is implemented

in the algorithm lsdifsqa.  In this case, TOA differences are formed between adjacent entries

in the TOA measurement vector.  No particular order is observed in the formation of the

measurement vector.  Sequential differencing results in the observation covariance matrix of

(4.28).

In conclusion, the position of each grid point with four or more observations was

estimated with one of the four LS algorithms described above.  A threshold of four

observations was required due to the LS plane intersection method.  Only three observations

would be required if an initial approximate position is obtained from some other source.  If

LS converged, the error in the position estimate was recorded.

6.3  Positioning Simulation Results

6.3.1  Uncorrupted Ranges

The stability of the LS algorithms was tested by conducting simulations with

uncorrupted ranges.  Multipath and TOA estimation noise were generated as described

earlier but not added to the LOS ranges.  Although not employed, these errors were
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generated in order to maintain the same values for the stochastic portion of path loss.  This

was necessary in order to yield, to the greatest extent possible, the same participating cell

sites for each grid point as when range errors are included.  In this way a comparison is

possible between simulations incorporating multipath and TOA estimation noise and those

which do not.  Unfortunately, the absence of excess range due to multipath results in shorter

ranges for the purposes of path loss calculation.  This may result in a higher number of

participating cell sites than when ranges are corrupted.

The ls1, lsdifa, and lsdifsqa algorithms were tested with uncorrupted ranges.  The

ls3b algorithm was not tested in this way since it does not make sense to throw away

observations which are perfect.  For all three algorithms tested, the estimated position errors

and observation residuals were essentially zero (neglecting round-off error).  Of the 7211

grid points, 703 were not positioned due to less than four participating cell sites.  The

maximum number of participating cell sites of the 6508 points which were positioned was

21.  The overall mean number of participating cell sites was 8.3 and the standard deviation

was 3.9.  When the same simulation (i.e. same random number generator seeds) was

performed with multipath and TOA estimation noise added to the ranges, 740 points had less

than four participating cell sites.  The mean number of cell sites was slightly less at 8.1 but

the standard deviation was the same.  As suspected,  for some grid points the lack of excess

range resulted in perhaps one or two more participating cell sites.  However, as the preceding

numbers suggest, the differences are not significant.

6.3.2  Range Corruption by Multipath and TOA Estimation Noise

Simulations were conducted with ranges corrupted by both multipath and TOA

estimation noise due to MUSIC.  Ten simulation runs were conducted, each with distinct

seeds for the random number generators.  The various LS algorithms were employed in each

of the simulation runs.  Each of the simulation runs represents one particular realization of

multipath errors, TOA estimation noise, and to a limited extent propagation losses.

Therefore, the number and identity of the cell sites seen from any particular grid point will

vary somewhat between the simulation runs.  Table 6.3 gives pertinent information regarding
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each of the simulation runs.  Included are the minimum, maximum, mean, and standard

deviation of the number of participating cell sites as well as the number of grid points out of

the total of 7211 which were not visible from at least 4 cell sites.  The statistics regarding the

number of participating cell sites do not significantly differ between the simulation runs.

This is not unexpected and is indeed desirable.   That the simulation runs differ at all is

evidenced by the number of grid points with less than four observations.  On average, 10%

of the grid points had less than four participating cell sites.

Table 6.3 Participating Cell Site Statistics for 10 Simulation Runs

Run # RNG Seed Number of participating cell sites Points with

Min Max Mean Std <  4 obs

1 0 0 20 8.1 3.9 740

2 10 0 21 8.2 3.9 718

3 20 0 22 8.1 3.9 724

4 30 0 21 8.2 3.9 761

5 40 0 22 8.1 3.9 749

6 50 0 21 8.2 3.9 724

7 60 0 20 8.2 3.9 702

8 70 0 20 8.1 3.9 752

9 80 0 23 8.2 3.9 695

10 90 0 21 8.1 3.9 771

Average N/A 0 21.1 8.15 3.9 733.6

The simulation results for hyperbolic trilateration with sequential differencing

(lsdifsqa) are given in Table 6.4.  Included in this table are the DRMS, horizontal precision,

the mean absolute position error as well as the 67th and 95th percentiles for each of the 10

simulation runs of Table 6.3.  Also included is the number of grid points which could not be

positioned due to divergence of LS.  This is expressed both as an absolute number and as a

percentage of the total number of grid points which had four or more observations.
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Table 6.4 Simulation Results for lsdifsqa , Multipath and TOA Errors

(Hyperbolic Trilateration with Sequential Differencing)

Simulation
Run #

DRMS
(m)

Hor. Prec.
(m)

Mean
(m)

67%
(m)

95%
(m)

Diverging
Points

1 529 529 176 118 547 104 / 1.6%

2 790 790 194 119 548  98 / 1.5%

3 442 442 169 119 551 116 / 1.8%

4 676 676 182 120 531 117 / 1.8%

5 626 626 176 120 532 103 / 1.6%

6 829 829 195 118 567  99 / 1.5%

7 841 841 193 121 545  96 / 1.5%

8 496 496 169 114 517 115 / 1.8%

9 710 710 191 120 559 109 / 1.7%

10 879 879 179 118 529 108 / 1.7%

Average 681.8 681.8 182.4 118.7 542.6 106.5 /1.65%

The DRMS and horizontal precision results of Table 6.4 indicate that there is no

bias in the positional errors.  This is expected since the presence of a bias would indicate

some type of error in the process.  The variation between the 10 simulation runs is actually

quite small.  The largest variations occur in the DRMS and horizontal position which varied

from 442 m to 879 m.  The 67th percentiles vary by only 7 m and the 95th percentiles by

42m.  There is also little difference in the number of grid points for which LS diverges.  It is

evident that the difference between the simulation runs is primarily the number and

magnitude of the position estimates which may be described as outliers.

Simulation run 4 was chosen as typical since the results for that run are comparable

to the averages calculated over all 10 runs.  For run 4, histograms of the multipath errors,

TOA estimation errors, the combination of the two, and TDOA residuals are plotted in

Figure 6.16.  All of the multipath errors are included whereas only those TOA estimation

errors and combination of multipath and TOA estimation errors less than 1000 m are

included in the corresponding histograms.  This corresponds to approximately ± 3σ and 99%
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of the total errors.  In the case of the TDOA residuals, all residuals less than ± 5σ (again 99%

of the total) are included in the histogram.  The statistics for all of the multipath errors, TOA

estimation errors, combination of multipath and TOA estimation errors, and the TDOA

residuals are given in Table 6.5.  The min and max values correspond to one particular grid

point in each case.
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Figure 6.16 Histograms for Simulation Run 4 - Hyperbolic

Trilateration with Sequential Differencing

Table 6.5 Statistics for MP, TOA, MP+TOA errors, and TDOA Residuals

for Simulation Run 4

min (m) max (m) mean (m) std (m)
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MP Errors 3e-05 448 42 58

TOA Errors -31923 44129 6  376

MP + TOA Errors -31861 44172 47 380

TDOA Residuals -7563 5864 0.25 152
The values for mean and standard deviation for TOA estimation errors agree with

the simulation results reported in Chapter 5.  Looking back to Figures 5.7 and 5.9, one sees

that a standard deviation of 376 m agrees with those figures when taking into account that

the majority of SNRs lie between 13 dB to 20 dB, and multipath phase varies from 0° and

315°.  At first glance, the mean TOA error seems small when compared to Figures 5.4 and

5.8.  However, the mean error for multipath phases around 180° was negative and therefore

pulls the average towards zero.  The mean TOA error in Table 6.5 is still positive as

expected.  The multipath error histogram is also as expected.  Combining Figures 6.4 and 6.5

in the same proportion as the number of urban grid points to suburban grid points should

yield a result comparable to the TOA estimation histogram of Figure 6.16.  Combining the

multipath and TOA estimation errors results in slightly biased range errors with standard

deviation only slightly greater than that of the TOA estimation errors.  The primary effect of

the multipath is to bias the range measurements since the standard deviation of the multipath

errors are relatively small.

The simulation results for ls1 and lsdifa are very similar to those of Table 6.4 and

their individual results, therefore, are not shown.  Instead, Table 6.6 compares the averages

of the simulation results amongst ls1, lsdifa, and lsdifsqa.  As expected the results are very

similar.  In fact the 67th percentiles are the same.  The greatest difference is seen in the

DRMS values but the variation is only about 4%.  The differences  were found to be due to

only one or two grid points in each of three of the ten simulation runs.  For instance, the only

difference between sequential differencing and reference differencing in simulation run 3

was one grid point.  LS with reference differencing diverged for this point whereas LS with

sequential differencing converged to a very poor solution.  The HDOP for this point was 15

and there were four TOA observations.  In simulation run number four, there was one grid

point which primarily accounted for the difference between sequential differencing and
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reference differencing.  Although both forms of differencing resulted in convergence to a

solution, the error for referencing differencing was orders of magnitude larger than that for

sequential differencing.  This point again had only four TOA observations and an HDOP of

26.

In general, the three LS algorithms give exactly the same results.  In the very few

exceptions, the HDOP was very high and the number of observations low.  It seems that in

these special cases, numerical instabilities cause one algorithm to converge and another to

diverge or converge to a wildly different solution.  The results herein do not provide

sufficient evidence that one algorithm is better than the others in terms of the positioning

results.  However, between the two hyperbolic differencing methods, sequential differencing

is normally favored.  Sequential differencing may have an advantage when the geometry is

poor.  In such cases, the matrix [ ]A C Al
T −1

 may have a higher condition number for

reference differencing than for sequential.  Hence, for hyperbolic trilateration, sequential

differencing is preferred.

Table 6.6 Average Simulation Results

Positioning Algorithm DRMS
(m)

Hor.
Prec. (m)

Mean
(m)

67%
(m)

95%
(m)

Circular (ls1) 694 694 182.7 118.7 542.3

Hyperbolic (lsdifa)
Reference Diff.

708 708 182.9 118.7 541.9

Hyperbolic (lsdifsqa)
Sequential Diff.

682 682 182.4 118.7 542.6

The principal observation from the results presented thus far is that if the

simulations conducted accurately reflect system operation in the field, the FCC specification

of 125 m (67%) can be achieved with the cellular infrastructure of Telus Mobility in Calgary

and using root MUSIC for TOA estimation.  That the DRMS and 67th percentiles do not

agree suggest that the error data is not Gaussian but that there are a significant number of

large outliers.  The largest horizontal positional error encountered in the 10 simulation runs
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was 54 km.  This was for a point with an HDOP of four.  Each of the positioning algorithms

was able to converge to a solution over 98% of the time.  Therefore, of the total 7211 grid

points in the simulations, 12% could not be positioned - 10% due to a lack of observations

(less than four) and 2% due to divergence of LS.

The performance of ls3b was also evaluated.  As discussed earlier, ls3b employs

circular trilateration but discards any observations for which the misclosure exceeds some

threshold.  Table 6.7 compares simulation results of ls3b with two different thresholds to ls1,

circular trilateration in which all observations are retained.  The first three simulation runs of

Table 6.3 were used to compute the average numbers of Table 6.7. The misclosure

thresholds tested were two and three times the misclosure RMS value defined in (6.15).

Table 6.7 Simulation Results for Circular Trilateration with and without

Removing Outlier Observations

Positioning
Algorithm

DRMS
(m)

Hor. Prec.
(m)

Mean
(m)

67%
(m)

95%
(m)

Diverging
Points

Circular (ls1) 574 574 178.7 118.7 547 106 / 1.6%

Circular (ls3b)

Thresh = 3 *
RMS

574 574 178.7 118.3 545  106 / 1.7%

Circular (ls3b)

Thresh = 2 *
RMS

599 599 184.3 118.7 572 152 / 2.3%

Table 6.7 indicates that for these simulations there is no advantage in checking for

and discarding outlier observations.  The numbers for ls1 and ls3b with a threshold of

3*RMS are virtually identical.  When the threshold was lowered to 2*RMS, the DRMS,

mean and 95th percentile actually increase although the 67th percentile remains the same.  In

addition the number of grid points for which LS diverged also increased.  It is obvious,

therefore, that the multipath and TOA estimation errors introduced in the simulations did not

create many observational outliers.  When the misclosure threshold was lowered to 2*RMS,

it is evident that perfectly valid observations were being discarded.  This resulted in poorer
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position estimates.  It is expected that with actual data, the likelihood of observational

outliers is real and that discarding poor observations will improve performance.

6.3.2.1  Effect of Geometry on Positioning Performance

Figure 6.17 demonstrates the effect of geometry on positioning performance for LS,

hyperbolic trilateration with sequential differencing.  Simulation run 4 was again chosen for

this purpose.  Figure 6.17 contains the same type of plots as Figure 6.15. Plotted are the

DRMS, horizontal precision, and 67th and 95th percentiles for grid points with HDOP less

than or equal to the abscissa.  Also plotted are the percentage of points, out of the 6333 for

which LS converged, and the mean number of participating cell sites for those points with

HDOP less than or equal to the abscissa.

Comparing Figure 6.17 to Figure 6.15, one sees a significant improvement in

positioning performance when hyperbolic trilateration is used in place of plane intersection.

For those points with an HDOP of one or less, the 67th percentile for plane intersection is

approximately 1.5 times higher than that of hyperbolic trilateration.  The greatest difference,

however, is in those errors above the 67th percentile - the outliers.  For all points, the 95th

percentile for hyperbolic trilateration is one half that of plane intersection.  As discussed in

section 6.2.7.1, the points responsible for the large DRMS and horizontal precision values

for plane intersection are relatively few in number and have poor geometry.  This

observation suggests that, although the plane intersection and hyperbolic trilateration

solutions are both LS, the plane intersection model is more sensitive to poor geometry.

As expected, positioning accuracy improves as the HDOP decreases.  There is a

large increase in the DRMS, from 100 m to 406 m, when the HDOP increases from 1 to 2.

The 67th and 95th percentiles also increase the most in this interval.  This is due to a large

increase in the number of points with an HDOP less than 2 as compared to points with an

HDOP less than 1.  The percentage of grid points with an HDOP of 1 or less is 51% and for

an HDOP of 2 or less the percentage is 81%.  If the percentages are calculated out of the

total 7211 grid points as opposed to the 6333 grid points for which a solution was found, the

results are 44% and 71%.
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Figure 6.17 Performance Measures, Percentage of Points, and Mean Number 

of Participating Cell Sites vs. HDOP for LS Hyperbolic 

Trilateration with Sequential Differencing

(Simulation Run 4)

Figure 6.17 demonstrates that geometry is a critical factor.  To maintain the FCC

specification of 125 m (67%) it will be necessary to ensure that the number of cell sites and

their positions are such that good geometry will be maintained.  This is especially important

in suburban and rural areas where the number of cell sites is low due to low channel demand.

To maintain good geometry in such areas, it may be necessary to install additional cell sites.

These additional cell sites need not be fully functional in terms of offering voice channels to

cellular telephones.  Instead, they would exist only for positioning purposes and

consequently need very little hardware in addition to the cellular positioning equipment.
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6.3.2.2  Effect of Propagation Environment on Positioning Performance

To determine the effect of propagation environment on positioning performance,

the simulation results of Table 6.4 were divided between those points located within the 2

km radius urban zone and those in the 2 - 12 km radius suburban zone.  The results are given

in Table 6.8.

Of the 195 points in the urban zone, only 0.2% were visible from fewer than 4 cell

sites.  This was expected since the city centre contains 6 cell sites in a 2 km radius area.  The

maximum number of observations for any point in the urban area was 12 and the minimum

was 3.  Although 4 observations was used as a threshold for the sake of plane intersection, it

should be possible to position every point in the urban zone with hyperbolic trilateration

since all points were visible from three or more cell sites.  In the suburban zone a much

larger percentage, 10.4% of the 7016 points, were visible from fewer than 4 cell sites.  The

minimum number of observations for any particular point was zero and the maximum was

23.  Therefore, maintaining a minimum number of observations can be a problem in the

suburban zone but not in the urban.  The points which were not visible from any cell sites

were along the edge of the city.

Table 6.8 Average Simulation Results Divided by Propagation Environment

(Hyperbolic Trilateration with Sequential Differencing)

Environment
DRMS

(m)
Hor.

Prec.(m)
67%
(m)

95%
(m)

Percentage
of Points

with < 4 obs

Percentage of
Points which

Diverged
Urban (< 2 km)

195 points
HDOP > 5

1129 1130 327 1895 0.2% 28.5%

Suburban (2-12 km)
7016 points

HDOP generally < 3
664 664 116 514 10.4% 0.7%

Points in the suburban zone fared far better than those in the urban zone in terms of

convergence.  Although the number of points for which LS diverged is approximately 50 in

both zones, the percentage of points which diverge is far greater in the urban zone.  This may
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be attributed to geometry.  Recall from Figure 6.7, that the HDOP in the urban zone was

generally 5 or greater whereas for the majority of points in the suburban zone, the HDOP

was 3 or less.

Considering the poorer geometry, higher TOA estimation error, and larger

multipath effects in the urban zone, it is not surprising that the positioning results are poorer

there than in the suburban zone.  Considering geometry alone, one would expect the

horizontal precision to be approximately 1.7 to 5 times worse in the urban zone than in the

suburban zone.  In fact, it is 1.7 times worse in the urban zone.  The 67th percentile in the

urban zone is approximately 3 times greater than that in the suburban.  Although the FCC

specification is not met in the urban zone, it is still met overall.  However, this conclusion is

based on interpreting 67% of all cases to correspond to 67% of all locations.

The fact that the horizontal precision in the urban zone is not more than 1.7 times

worse than in the suburban zone may be due to the high rate of divergence in the urban zone.

Had the quality of the observations or the geometry been slightly better for some of the

points for which LS diverged, it is possible that LS would have converged but to a poor

solution.  Therefore, if solutions would have been obtained for more of the 28.5% of the

points which diverged, the DRMS and 95th percentile values would have probably increased

and the horizontal precision would have become worse.

6.3.3  Multipath Corrupted Ranges

The ten simulation runs of Table 6.3 were repeated but without TOA estimation

noise added to the ranges.  The ranges were only corrupted by multipath.  However, the

multipath errors and participating cell sites are identical to those in the simulations of Table

6.3.  Hyperbolic trilateration with sequential differencing was used.  The results are given in

Table 6.9.

Comparing the results of Table 6.9 with those of Table 6.4, one sees that with

multipath only, the 67th and 95th percentiles are less than half of those when both multipath

and TOA estimation errors are present.  If the multipath models used in these simulations are
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realistic, one may conclude that with perfect TOA estimation the FCC specification of 125 m

(67%) can be easily met in a city such as Calgary.

Table 6.9 Simulation Results for lsdifsqa, Multipath Errors Only

(Hyperbolic Trilateration with Sequential Differencing)

Simulation
Run

DRMS
(m)

Hor. Prec.
(m)

Mean
(m)

67%
(m)

95%
(m)

Diverging
Points

1 562 562 87 52 235 30 / 0.46%

2 273 273 82 54 248 33 / 0.51%

3 382 382 79 51 224 30 / 0.46%

4 1293 1293 92 53 241 26 / 0.40%

5 459 459 82 53 233 32 / 0.50%

6 446 446 85 52 242 25 / 0.39%

7 239 239 76 52 233 23 / 0.35%

8 247 247 76 51 227 34 / 0.53%

9 469 469 85 53 239 30 / 0.46%

10 262 262 80 52 241 29 / 0.45%

Average 463.2 463.2 82.4 52.3 236.3 29.2 /0.45%

Since the ranges in this case are corrupted by multipath only, the results may be

compared with those of Morley (1995).  Morley reports that for his real network and a dense

urban propagation environment, LS resulted in a mean absolute location error of 71 m and a

67th percentile of approximately 72 m.  For his moderate urban environment (suburban

environment here) the mean and 67th percentile were 11 m and 9 m respectively.  This is

comparable to the results here - a mean location error of 82.4 m and a 67th percentile of 52.3

m when taking into account that these numbers are for a combination of the two

environments.

6.3.4 TOA Estimation Noise Corrupted Ranges

The same 10 simulations were again conducted but this time with ranges corrupted

only by TOA estimation noise, not multipath.  The results are reported in Table 6.10.  In the
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simulations in which multipath was included, propagation loss was calculated based on the

multipath corrupted ranges.  The resulting SNR was the factor which then determined

whether a particular cell site participated in the position estimation process or not.  By

excluding multipath here, the propagation losses are somewhat smaller leading to a greater

number of participating cell sites.  Therefore, the conditions for these 10 runs are not

identical to those of Table 6.3.  However, the differences are minor.  The maximum, mean,

and standard deviation of the number of participating cell sites for these simulations are 22,

8.23, and 3.91 respectively.  These values are slightly higher than those of Table 6.3.  The

greatest differences lies in the number of grid points which had less than four participating

cell sites.  In Table 6.3 the average is 734 whereas here the average is 682.

Table 6.10 Simulation Results for lsdifsqa, TOA Estimation Errors Only

(Hyperbolic Trilateration with Sequential Differencing)

Simulation
Run

DRMS
(m)

Hor.
Prec. (m)

Mean
(m)

67%
(m)

95%
(m)

Diverging
Points

1 402 402 149 99 491  95 / 1.46%

2 545 545 157 98 476 100 /
1.54%

3 440 440 149 101 465 107 /
1.63%

4 1003 1003 161 98 473  95 / 1.46%

5 648 648 152 97 463 120 /
1.83%

6 873 873 177 100 471  96 / 1.47%

7 792 792 157 100 467  86 / 1.31%

8 441 441 147 101 460  94 / 1.44%

9 523 523 148 100 454  90 / 1.38%

10 586 586 159 97 489  81 / 1.24%

Average 625.3 625.3 155.6 99.1 470.9 96.4/
1.48%
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With only TOA estimation error, system accuracy is 99 m (67%) compared to 52 m

(67%) with only multipath and 119 m (67%) with both error sources.   This is of no surprise

considering the histograms of Figure 6.16.  The effect of multipath is to positively add to the

bias of the TOA estimation errors and only slightly increase the standard deviation.  As a

result, the addition of multipath to already present TOA estimation errors results in a

relatively small increase in the 67th percentile.  It may, therefore, be concluded that

according to these simulations and the models used, positioning accuracy in terms of the

67th percentile is most effectively pursued by improving the TOA estimation accuracy.  The

question then is what level of TOA estimation error becomes swamped by multipath?

6.3.5  Various Levels of TOA Estimation Error

To determine how much the TOA estimation error may be decreased until multipath

becomes the dominant factor, simulations were conducted  with various levels of TOA

estimation error.  These simulations are identical to those of Table 6.4 with the following

exceptions.  Whereas the multipath models used are identical to those used in previous

simulations, the TOA estimation models are not.  In the simulations presented here, one

TOA estimation error model is used per simulation run.  Different models depending on the

propagation environment and a randomly chosen multipath phase are not used.  The

objective here is to decrease the TOA estimation error and determine when a further

decrease in TOA estimation error is of no consequence.

Eight simulation runs, each with a different TOA estimation error model, were

conducted.  As the previous simulation results indicate, there is little difference in the 67th

percentile when the random number generator seeds are varied.  Therefore, all eight runs use

the same seed.  The eight TOA estimation error standard deviation curves used are displayed

in Figure 6.18.  The mean TOA estimation error for all eight models is zero for all SNRs

considered.

The curves were modeled with polynomials and the coefficients used within the

simulations to obtain a TOA estimation error standard deviation for any particular SNR.  A

TOA estimation error was then generated from the Normal distribution with the standard
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deviation so obtained and a mean of zero.  The TOA estimation error was added to the range

already corrupted by multipath.  The results of the eight simulation runs are shown in Table

6.11.  The TOA Std numbers in Table 6.11 correspond to the labeled curves in Figure 6.18.
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Figure 6.18 Standard Deviation of TOA Estimation Models

Table 6.11 Simulation Results for Multipath and Various Levels of TOA 

Estimation Error (Hyperbolic Trilateration with Sequential 

Differencing)

TOA Std
Curve

DRMS
(m)

Hor.
Prec. (m)

Mean
(m)

67%
(m)

95%
(m)

Diverging
Points

1 1203 1203 315 208 977  118 / 1.8%

2 502 502 122 81 361   46 / 0.7%

3 315 315 95 63 289   39 / 0.6%
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4 260 260 87 58 258   34 / 0.52%

5 245 245 82 55 252  31 / 0.48%

6 241 241 81 54 245  31 / 0.48%

7 244 244 80 53 243  30 / 0.46%

8 243 243 79 53 242  31 / 0.48%

As the standard deviation of the TOA estimation error decreases the 67th percentile

eventually reaches a floor of about 53 m.  This agrees with the simulation results of Table

6.9 which show that with multipath only, the 67th percentile is approximately 52 m.  Further

decreasing the TOA error standard deviation here, therefore, will not result in a lower 67th

percentile.  In fact the maximum TOA error standard deviation for curve 8 is already only 10

m.

From Table 6.11, one may conclude that multipath becomes the dominant error

source once the TOA error standard deviation reaches that of curve 5 in Figure 6.18, a

maximum of 45 to 50 m at 13 dB SNR.  From Figures 5.10 and 5.11 one sees that the lowest

TOA error standard deviation modeled for 13 dB is approximately 100 m.  Therefore, there

is still room to improve the TOA estimation process before multipath, as modeled here,

becomes dominant.  Any reduction of TOA estimation error standard deviation below

approximately 50 m will not be significant.
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CHAPTER 7

STATIC MULTIPATH FIELD TEST

7.1  Introduction

For the sake of analyzing system performance, it is highly desirable to separate the

effect of multipath from that of errors in the Cellocate system such as hardware biases and

TOA estimation resolution.  In the Telus Mobility field tests to follow in Chapter 8, there is a

strong probability that multipath varies due to the dynamic nature of the environment.

Specifically, the high vehicular traffic in the test area is expected to cause fluctuations in

multipath and hence the position results.  In an attempt to focus specifically on the

Cellocate system errors, a test was designed in which multipath and its effects were

minimal but more importantly, static.  In the complete absence of multipath, all positional

error is obviously due to errors in the Cellocate system.  If multipath is present but static, it

will contribute to an overall bias which will be unique to each Cellocate receiver.  This

bias may be modeled and removed from the observations.  If this is done properly, the only

remaining error source will be the TOA estimation noise due to the Cellocate receivers.  If

the multipath is dynamic, it may be very difficult to distinguish it from the TOA estimation

noise which is the very effect we wish to quantify.

7.2  Test Site

The static multipath test was conducted on an acreage near Balzac Alberta,

approximately 4 km north of Calgary’s city limits on June 7, 1997.  A two dimensional plan

view of the area is given in Figure 7.1.  The black dots indicate the positions of the

Cellocate receivers.  They are labeled according to their position in the field as well as the

actual Cellocate receiver number.  For example, Cellocate receiver number 1 was placed

at the SW site. The position of the cellular transmitter is indicated by the +.  The coordinates

of all these points were surveyed with DGPS.  The reference station was located on the

University of Calgary Engineering building rooftop approximately 18 km away.  The

occupation time for each position was at least 45 minutes and the data was processed with



142

Semikin™.  The accuracy of the coordinates is better than a few dm which is more than

enough for the present purpose.

The shape of the property on which the test was conducted is a long narrow

rectangle running east-west.  The maximum achievable separation between the receivers on

the south side and the receivers on the north was approximately 100 m.  The length of the

property in the east-west direction was approximately 800 m.  However, due to a rise in

elevation at an easting of approximately 400 m in Figure 7.1, moving the NE and SE

receivers further east would result in a non-LOS path between them and the cellular

transmitter.  In addition, a house and other buildings are located at the far east end of the

property and it was desirable to remain as far away as possible from sources of reflection.

Therefore, the distance between the east and west receivers was approximately 400 m.  The

three-dimensional ranges from the transmitter to each of the four Cellocate receivers

varied from 187 m to 222 m. The NE and SE receivers were approximately 8 m higher than

the NW receiver, SW receiver, and the transmitter.

The geometry of the four receivers and transmitter is quantified by the DOP

numbers in Figure 7.1.  An HDOP of 1.95 for the transmitter location is the best possible

given the geometry of the receivers.  The EDOP and NDOP reflect the fact that the receiver

east-west separation is approximately four times the north-south separation.  One therefore

expects that the standard deviation in the northing of the estimated transmitter position will

be four times that of the easting.
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Figure 7.1 Test Site for Static Multipath Test

There were four objects in the immediate vicinity of the test site which may be

sources of signal reflection and diffraction.  Due to the short distances involved and the

similarity in elevation of both the transmitter and receivers, refraction should be negligible.

The major sources of reflection are the metal shed and house on the neighboring property to

the north.  One would expect that the NE receiver in particular would be affected by these

two sources of multipath.  The wooden shed near the transmitter did not block the LOS path

from the transmitter to the NE and SE receivers.  It may, however, cause a certain amount of

diffraction which in turn also causes multipath.  Foliage, such as the trees in the NW corner

of the field, may cause diffraction, reflection, and absorption.  Since the trees do not lie in

the path between the NW receiver and the transmitter, diffraction and absorption are not

considered threats.  However, they may cause some reflection of the signal.  In any case,

since all of these objects were stationary, any multipath created by them should be static.

During the test there was little movement in the test area.  Data was collected over a span of
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approximately one hour and during that time the author walked between receivers for a total

of about 5 minutes.  The only other human movement was a pickup truck which drove the

length of the field from east to west in the adjacent field to the north.  This occurred very

near the end of the one hour and only lasted about 2 minutes.

7.3  Equipment Setup

The Cellocate and GPS receivers were set up at each of the four receiver stations

in the configuration discussed previously.  Omni-directional RF antennas were used for the

Cellocate receivers.  The GPS receiver at each station was fixed to the surveyed

coordinates for that station.  Both the GPS receivers and Cellocate receivers were allowed

to run for at least one hour prior to the collection of data.  This was more than sufficient for

the receiver clock model in the NovAtel GPS receivers to stabilize and for the Cellocate

receivers to reach a stable operating temperature.

To facilitate testing without the interference of other cellular telephones in the area,

a reserved reverse control channel was used.  The frequency of this channel was 835.02

MHz.  Since cellular telephones lock onto whichever control channel is strongest, a

transmitter was built in order to simulate the transmission of the registration message on this

frequency.  Had an actual cellular telephone been used, it would have been necessary to tune

the Cellocate receivers to the strongest control channel in the area.  The Cellocate

receivers would then have received registration messages from any active cellular telephone

in the vicinity.  This would require sorting through all the received messages and using the

mobile identification number which appears after the precursor in the registration message to

identify the correct message.  Although necessary in an operational system, this is less than

convenient during testing.   Using a transmitter allowed transmission on the reserved control

channel frequency.  The Cellocate receivers could then be tuned to this frequency and only

received from the transmitter since no cellular telephones would use this channel.

The transmitter simulated the same message and modulation scheme as an analog

cellular telephone.  It was programmed to transmit the registration precursor every 5 seconds

in order to collect as much data as possible in a minimum amount of time.  The transmission
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power level was approximately 0.5 W which is typical for modern hand held telephones.

Both the transmitter antenna and the Cellocate antennas, with the exception of the SW

antenna, were at ground level.  The antenna at the SW station needed to be raised about 1 m

off the ground in order for the Cellocate receiver to consistently receive the transmitter’s

message.  This was due to the sensitivity of that particular Cellocate receiver, not its

location.  The received SNR at each of the receivers was unknown.  Although the limit of the

Cellocate receiver at the SW station was approached, it is expected that the other receivers

still had sensitivity to spare.  During developmental work it was found that the Cellocate

receivers with the omni-directional antennas had a range of approximately 2 km in a

relatively built-up area.  In the operational field tests to follow in Chapter 8, the low noise

amplifiers and directional antennas of the Telus Mobility cell sites are expected to increase

the range of the Cellocate receivers.

7.4  Test Results

7.4.1  Data

The data collected consists of 502 epochs common to all four Cellocate receivers

and spanning 56 minutes.  The data is not evenly spaced due to some missing epochs. Since

the transmission rate was once every 5 seconds, there should be 670 epochs of data in 56

minutes.  Occasionally one or more of the receivers did not receive a transmission at all or

the received record was incomplete.  In other cases the received data was corrupted to the

extent that the GPS time stamp from the coarse correlation process was not close enough to

the time stamps of the other receivers for that particular transmission.  The GPS time stamp

for each received record of a particular receiver was compared to all other record time

stamps of the other receivers.  Those time stamps within 1 ms of each other were assumed to

correspond to the same transmission.  On occasion all four receivers would receive the same

transmission but one or more of the receiver’s data was corrupted such that the time stamp

was outside the 1 ms threshold.  In that case, a position fix was not attempted since that

particular TOA observation would contribute a large amount of error.  If more redundancy
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were available such an observation could be discarded as described in section 6.2.7.2 and a

position fix for the epoch still obtained.

7.4.2  Cellocate  Biases

Each Cellocate receiver attempts to estimate the TOA of the cellular signal

impinging on its antenna.  The TOA estimates must be synchronized in order to estimate

position.  The GPS receiver at each site provides this synchronization.  When a Cellocate

receiver locks onto the Barker word the GPS receiver is pulsed and records a time stamp

which is later referenced by the TOA estimation software.  Before the GPS receiver is pulsed

however, there are numerous delays within the RF equipment and the Cellocate receiver.

These delays are due to the antenna cable, RF hardware within the Cellocate receiver as

well as delays in the DSP software.  In the operational tests of Chapter 8, there are additional

delays due to the front end equipment in the Telus Mobility cell sites.  For each of the

receivers and cell sites these delays will differ.  The combined effect of these delays will

henceforth be called the site bias.

Because the site biases are on the order of the propagation times involved, it is

necessary to accurately determine them in order to estimate position from TOA.  Without

accurate knowledge of the biases, the LS position estimation algorithm diverges.  Measuring

the absolute site biases is difficult.  A simplified range equation for any particular site may

be written as

( )p TOA Rx TOT T ci i i B i= + − + + ⋅ε (7.1)

where pi  is the geometrical distance between the transmit antenna

and the antenna of site i;

TOAi  is  the estimated time of arrival at site i;

Rx i   is  the time bias at site i;

TOT is  the actual time of transmission at the transmitter;
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TB   is  the time bias in the recorded TOT,

ε i   are  unmodeled errors such as multipath and resolution of the 

TOA estimation process, and

c    is the speed of propagation.

Although the TOT at the transmitter may be obtained by pulsing a GPS receiver, it is

impossible to pulse the GPS receiver at the exact time the signal is transmitted.  Hence there

is a bias, TB  in the TOT  estimate.  If this bias were known and propagation errors in ε

could be minimized, it would be possible to reasonably estimate the site biases by

transmitting from a known position.  Since TB  is unknown, it is impossible to accurately

measure the absolute site bias Rx .  However, the bias differences may be determined.

Since the TOT and TB  are common to all sites receiving the signal, they cancel when TOA

differences are formed.  If the known range differences are subtracted from the TOA

differences, the result is the bias differences and the combination of the unmodeled errors.

Since the TOT cancels when TOA differences are formed, it is not necessary to

measure it.  For the test under consideration here, it is assumed that the contribution of ε i  in

(7.1) is negligible; differencing TOAs and subtracting the known range differences is

therefore believed to result in accurate bias differences.  In the Telus Mobility tests to follow

this cannot be assumed and the bias differences are measured in another manner.
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Figure 7.2 Raw and Lowpass Filtered Bias Differences  (NE Reference)

After the common epochs between all four Cellocate receiver’s were found, each

receiver’s data was processed as described in section 5.4.  The result is a TOA at each of the

four sites for every common epoch.  Corresponding TOAs of any two sites were then

differenced and the corresponding known difference in range to the transmitter subtracted.

The results are given in Figures 7.2 through 7.5.  In each figure a different site was chosen as

the reference which is subtracted from the other three.  Consequently, there are three plots in

each figure.  Note that the vertical axis scaling in all four figures is identical.  In each plot

there are two data sets shown.  The noisy data set is the raw TOA differences with the range
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differences subtracted.  The second is a lowpass filtered version of the first.  The standard

deviation of the raw data is also given in each plot.  The cell sites are again identified by

their field position and Cellocate receiver number.

-1500

-1000

-500

0

-6000

-5500

-5000

-4500

0 100 200 300 400 500
-2500

-2000

-1500

-1000

Epoch Number

N
E(

4)
-N

W
(3

)  
(m

)
SE

(2
)-

N
W

(3
)  

(m
)

SW
(1

)-
N

W
(3

)  
(m

)

σ = 189 m

σ = 208 m

σ = 221 m

Figure 7.3 Raw and Lowpass Filtered Bias Differences  (NW Reference)

There are two distinct characteristics in the raw data.  It is obvious that there is

short-term white noise.  This noise may be considered the random error in the Cellocate

system (the TOA estimation noise).  There is also a long term drift in the bias differences.

This is illustrated by the variation in the filtered bias differences.  The level of white noise

appears to remain relatively constant throughout the one hour of data.  To quantify this



150

noise, the long term drift was removed by subtracting the lowpass filtered curve from the

raw data.  The standard deviation of the resulting data is a measure of the level of white

noise in the system.  These standard deviation values are given in Table 7.1 along with the

standard deviations of the raw data and the lowpass filtered data.  The standard deviation of

the noise varies from 49 m to 113 m.  Four of the six values are within 4 m of 79.5 m, the

average noise standard deviation.  If the long term drift in the bias differences is eliminated,

and given an HDOP of 1.95 for the transmitter location under consideration, a horizontal

precision error of approximately 1 95 79 5 2 110. .∗ =  m may be expected.
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The short term white noise does seem to vary from site to site.  The standard

deviation of the bias difference between the NW and SW sites is significantly larger than the

mean whereas the standard deviation of the bias difference between the NE and SE sites is

significantly smaller.  With the data collected it cannot be determined with certainty whether

this is due to the Cellocate receivers themselves or the sites at which they were located.

This could only be determined by repeating the test with the receivers sequenced through the

different sites.
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It is suspected, however, that the white noise level is a function of both site location

and receiver sensitivity.  The NE and SE sites were 8 m and 6 m, respectively, higher than

the transmitter.  The NW and SW sites were both about 2 m lower than the transmitter. In

addition the NE site is 2 m higher than the SE site and the standard deviation of any bias

involving the NE site is 5 to 6 m less than that of the corresponding bias difference involving

the SE site.  One may infer that received SNR is a function of the receiver elevation with

respect to transmitter elevation.  From Table 7.1 one may also conclude that receiver 3 (NW)

displays a higher noise level than the other three receivers.  Similar results from the

operational field tests will confirm this.

The long term bias drift is also site or receiver dependent.  There is a distinctive

long term drift pattern in each bias difference involving the NW site.  The same may be said

for any bias difference involving the SW site.  However, the NW pattern dominates the SW

in the NW-SW bias difference.  By far, the NE-SE bias difference is the best behaved.

According to Table 7.1, the standard deviation of the long term drift of any bias involving

the NW site is at least four times greater than that of the NE-SE bias difference.  Bias

differences involving the SW site have a long term drift standard deviation at least two times

greater than that of the NE-SE difference.

Table 7.1 Standard Deviations of Bias Differences

σ raw  (m) σ filtered  (m) σ raw filtered−  (m)

NW(3) - NE(4) 189 173   76

NW(3) - SW(1) 221 190 113

NW(3) - SE(2) 208 191   82

NE(4) - SW(1) 122   95   76

NE(4) - SE(2)   64   41   49

SW(1) - SE(2) 146 121   81

As opposed to the bias difference white noise, the long term drift is more than likely

due to temperature.  The group delay of the RF filters currently used in the Cellocate
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receivers may drift in the order of microseconds as temperature changes.  Some of the bias

differences in Figures 7.2 through 7.5 drift up to 1000 m over the one hour.  This

corresponds to approximately 3 µs.  Since the Cellocate receivers were in close proximity

of one another and all more or less equally exposed to the elements, it is unlikely that they

experienced radically different temperature gradients.  In fact one would expect larger

temperature drifts for the eastern receivers since they were located atop a small rise and yet

they exhibited the least drift.  One concludes that the RF filters in the western receivers were

more sensitive to temperature.  This may also contribute to differences in the white noise

levels.

New versions of the RF circuitry in the Cellocate receivers include custom

designed filters with group delay less dependent upon temperature.  It is anticipated that with

improved filters, the biases will be relatively constant and the need for periodic calibration

will be eliminated.  In that case, the biases could be measured over a sufficient length of time

and averaged to obtain a single value.  This approach was used for the data here but the

results, as presented in the next section, are poor.  On the other hand, for the operational tests

conducted with the Telus Mobility sites, the measured biases were more constant and

average values yielded reasonable position results even for data collected on different days.

7.4.3  Plane Intersection Position Results

The Plane Intersection method was investigated for the purpose of determining its

suitability for providing an initial position.  For any position estimation algorithm, the

Cellocate biases must be removed from the TOA observations.  The bias differences

analyzed in the previous section were therefore subtracted from the appropriate TOA

differences and the results used in the plane intersection algorithm.  Since plane intersection

is non-iterative, a solution is obtained for each epoch of data.

In the first case considered, the average of each bias difference was calculated from

the full hour of data.  The position estimates of plane intersection using these mean bias

differences are shown in Figure 7.6.  The figure is similar to Figure 7.1.  Shown are the

positions of the four Cellocate sites and a + indicating the true position of the transmitter.
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Due to the large scale of the map, the Cellocate sites and transmitter position all lay on top

of one another.  The small dots indicate the instantaneous transmitter position estimates from

the same data from which the average bias differences were derived. Also given in the figure

are the values for the DRMS, horizontal precision, 67th percentile, and 95th percentile.

Notice that the northing and easting are given in kilometres.  At this scale it is impossible to

distinguish between the four sites as well as the transmitter site.  Obviously, the position

estimates are grossly in error.  It is certain that given the distances between the sites and

transmitter are in the order of hundreds of metres, LS will not converge with an initial

position estimate in error by thousands of kilometres.
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Because the plane intersection method worked well in the simulations of Chapter 6,

it is suspected that the site biases are to blame for the poor performance here.  To test this

hypothesis, the lowpass filtered bias differences of Figures 7.2 through 7.5 were used instead

of average bias differences.  Whereas the same average bias differences are used for each

epoch of data, the lowpass filtered bias differences are used on an epoch by epoch basis.

That is, at each epoch, the lowpass filtered bias difference for that particular epoch is

subtracted from the TOA difference at that epoch.  If instead of the lowpass filtered bias

differences the raw bias differences are used, the position estimate should be perfect. Using

the lowpass filtered bias differences is akin to assuming that the long term bias drifts may be

eliminated in an operational system.

The position estimation results for the case of lowpass filtered site bias differences

are given in Figure 7.7.  As expected, there is a significant improvement in the positioning

performance.  Two position estimates were excluded from the plot in order to maintain a

small scale.  The two estimates excluded were 2.5 km and 15.5 km in error.  These two

estimates are, however, included in the performance measures.  According to the 67th

percentile, plane intersection should yield a position estimate accurate enough to be used as

an initial position for LS.  This will be confirmed in section 7.4.4.4.
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7.4.4  Least Squares Position Results

The data collected was also processed by LS to produce position estimates for the

transmitter.  Because only bias differences are available, either hyperbolic trilateration or

circular trilateration with bias differences must be employed.  Since the two algorithms give

identical results but circular trilateration produces residuals for the individual TOA

observations, the results presented are from circular trilateration with bias differences.

The circular trilateration algorithm used chooses one of the four sites as reference

and differences that site’s TOA with the other three.  In terms of position results the choice

of reference is insignificant; the DRMS, horizontal precision, 67th percentile, and 95th

percentile for the case of the NE site as reference are within 2 m of those of the case when
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the NW site is chosen as reference.  However, when average biases are used, there is a

difference in the estimated values of the transmitter bias; the standard deviation of the

transmitter bias is 74 m in the case of the NE reference and 101 m for the case of the NW

reference.  Since the transmitter bias parameter is the range from the transmitter to the

reference site, it is reasonable that the effect of the ill-behaved bias of the NW site (as

compared to that of the NE site) will appear in this parameter when the NW site is the

reference.  If the lowpass filtered biases are used, the choice of reference station becomes

even more insignificant.  In any case, for the results to follow, the NE site was used as the

reference since according to the bias results it seems to be the best behaved.

7.4.4.1  Least Squares Position Results with Average Biases

Figure 7.8 shows position estimates for the case when average bias differences are

subtracted from the TOA differences.  The initial position used to begin LS for each data

epoch was 100 m to the north and 100 m to the east of the true transmitter position.

Although the accuracy in terms of DRMS and 67th percentile is good, these statistics are

based on only 272 of the 502 epochs of data.  For the other 230 epochs, LS diverged.  Again

this is due to the use of average site bias differences which contain long term drift.  It will be

shown later, that using lowpass filtered bias differences results in a much higher rate of

convergence.

The effect of the drift in the bias differences appears in the estimated parameters.

Figure 7.9 shows the unknown parameter estimates as a function of time.  Plotted are the

errors in easting position, northing position, and the transmitter bias.  As discussed in

Chapter 4, this transmitter bias should equal the range from the transmitter to the site chosen

as the reference.  In this case, that range is 197 m.  Also contained in each plot are the mean,

standard deviation and RMS for the error in each parameter estimate.  Comparing to Figure

7.2, one sees a high degree of correlation between the easting position error and the bias

difference involving the NW site.  The northing and transmitter bias also exhibit, in a more

limited sense, the same pattern.
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Figure 7.8 Static Multipath Position Results Using Least Squares 

and Average Site Bias Differences

The observation residuals are also affected by the bias drift.  Consider Figure 7.10.

Plotted are the observation residuals as a function of time.  The mean and RMS are given for

each.  Recall that although the observations consist of each site’s TOA (including NE) minus

the NE site’s TOA, the residuals obtained are the same as those that would be obtained by

circular trilateration with TOA observations.  The same familiar pattern and degree of

correlation can be seen in all of the residuals.
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and Average Site Bias Differences

In order to fully appreciate the effect of the long term drift in the bias differences,

the data was processed again but without the NW site data.  This leaves only three

observations and therefore no redundancy.  Although there are no residuals, it is still

instructive to view the position estimates and convergence rate.  Figure 7.11 contains the

position results.  Note the increased DOP values due to the loss of one site.  Of the 502

epochs of data, LS now converges for 420.  Other than the 67th percentile, all of the

accuracy measures have increased from the case when all four sites are used.  This is due to

two reasons.  Obviously the loss of redundancy and increase in DOP degrades the position

solution.  Secondly, the removal of the effect of the NW bias causes LS to converge for 150
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epochs for which it did not converge with the inclusion of the NW data.  Undoubtedly, the

data at some of these 150 epochs is of marginal quality.  Inclusion of the position estimates

at these epochs results in a larger DRMS, horizontal precision and 95th percentile.
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Figure 7.11 Static Multipath Position Results Using Least Squares 

and Average Site Bias Differences (without NW Site)

The parameter estimate errors as a function of time are shown in Figure 7.12.

Again the mean, standard deviation, and RMS of the estimation error is given in each plot.

Compared to Figure 7.9, one sees that the parameter estimates no longer resemble the NW

bias difference.  With the removal of the NW data from the solution, the next most

influential bias difference becomes apparent, the SW-NE bias difference (see Figure 7.2).
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From these results one obviously concludes that drift in the Cellocate site biases

directly affects the position estimate.  It is highly desirable to eliminate any drift in the

biases.  As discussed earlier this drift is most likely temperature dependent.  Stable operating

temperatures and higher quality RF filters should mitigate this problem.
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Figure 7.12 Static Multipath Parameter Estimates Using Least

Squares and Average Site Bias Differences (without

NW site)

Note that the residuals of Figure 7.10 are highly correlated with one another.  In

particular, the NE and SE residuals are negatively correlated as are the NW and SW

residuals.  This is due to the high degree of symmetry in the geometry and only one degree
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of freedom.  For every epoch the covariance matrix of the observation residuals was

calculated.  A typical unscaled result is

Cr$ =



















0.274 -0.308 -0.210 0.244
-0.308 0.346 0.236 -0.274
-0.210 0.236 0.161 -0.187
0.244 -0.274 -0.187 0.217

. (7.2)

Note that the off-diagonal terms are as large as the diagonal terms.  From C r$  it is obvious

that the NE residual is highly negatively correlated with the NW and SE residuals and

positively correlated with the SW residual.  Correlation coefficients were calculated between

the four sets of residuals and are presented in Table 7.2.

Table 7.2 Residual Correlation Coefficients (4 Sites only)

NE NW SE SW

NE -0.933 -0.986 0.940

NW 0.888 -0.991

SE -0.917

Since the Cl  matrix used was the identity matrix, the redundancy numbers of the

observations are equal to the diagonal terms of (7.2).  The average redundancy number of the

272 convergent solutions is 0.25 which is significantly less than 0.5 which is considered the

lowest typical redundancy number of a well designed geometry (Mackenzie, 1985).

Therefore, each of the observations is poorly controlled and as a result, very little individual

observational error will show up in the corresponding estimated residuals.

7.4.4.1.1  Simulations

In a working system, it is highly desirable that poor observations be detected and

removed if possible.  If the observations are fully controlled, the residuals may be used as an

indicator of observation quality.  In the case under consideration here, the observations are
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poorly controlled.  This suggests that large errors in any one observation will not be

detectable in that observation’s residual but spread amongst all residuals.  To demonstrate

this, data was simulated for the geometry of the static multipath test.  Gaussian noise was

added to perfect TOAs for each of the four sites given the transmitter position.  The standard

deviation of the noise on the NE site was set at 100 m.  The noise standard deviation at the

remaining three sites was set to 1 m.  Five hundred epochs of data was simulated; of those

LS converged for 432.  The observation residuals are shown in Figure 7.13.
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Figure 7.13 Static Multipath Residuals for Four Sites and

Simulated Data (σNE = 100m, σ = 1m for all others)

Again the residuals are highly correlated; correlation coefficient magnitudes range

from 0.98 to 0.997.  The residual RMS for each site is either 18 m or 20 m.  It is, therefore,
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not readily apparent from the residuals that the NE observations are 100 times noisier than

the other three.  A typical redundancy matrix is

C Cr l$
− =



















1

0.299 -0.267 -0.278 0.247
-0.267 0.238 0.249 -0.220
-0.278 0.249 0.260 -0.230
0.247 -0.220 -0.230 0.204

. (7.3)

and the average observation redundancy number is of course 0.25 as before.

Four additional sites were added to increase the redundancy.  The geometry of the

network now appears as in Figure 7.14.  The four original sites are NE, NW, SE, and SW.

The four additional sites are labeled e1, e2, e3, and e4.  The transmitter position is again

indicated by the + and the position results by the small dots.  Note the improvement in the

DOP values due to the addition of receiver sites.
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Figure 7.14 Static Multipath Position Results for Eight Sites and

Simulated Data (σNE = 100 m, σ = 1m for all others)

For 500 epochs of simulated data, LS converged for all epochs.  The average

observation redundancy number was 0.625, a significant improvement over 0.25.  The

observation residuals for the position results of Figure 7.14 are shown in Figure 7.15a and

Figure 7.15b.  Correlation coefficient magnitudes range from 0.836 to 0.997.  Obviously

some residuals remain highly correlated due to geometry and the location of the position

fixes.  The lowest correlations are found between site e2 and sites NW, SE, SW, and e3.
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Figure 7.15a Static Multipath Residuals for Sites NE, NW, SE, SW with

Simulated Data for 8 Sites (σNE = 100m, σ = 1m for all others)

Figure 7.15 clearly illustrates how, with an increase in redundancy number, the

observation residuals more accurately reflect  observational error.  From Figure 7.15a and

7.15b one could reasonably infer that the NE observations contain more noise than the

others.  However, one may also be led to believe that the SE and e1 sites are also noisier.

This example only helps to demonstrate the need for redundancy if the residuals are to be

used as indicators of individual observation quality.



168

-100

0

100

e1
 (m

)

-100

0

100

e2
 (m

)

-100

0

100

e3
 (m

)

0 100 200 300 400 500
-100

0

100

e4
 (m

)

Epoch Number

Mean = -0.3 m

Mean = -3 m

Mean = -1 m

Mean = -0.4 m

RMS = 25 m

RMS = 11 m

RMS = 6 m

RMS = 13 m

Figure 7.15b Static Multipath Residuals for Sites e1, e2, e3, e4 with Simulated 

Data  for 8 Sites (σNE = 100 m, σ = 1m for all others)

7.4.4.2  Internal Reliability and Statistical Testing

As discussed in Chapter 4, it is possible to detect observation blunders by

statistically testing the residuals.  This was done with the simulated data just investigated.

The first step was to ensure that the observation covariance matrix was properly scaled.

Because the level of noise added to the perfect observations was known, the covariance

matrix could be properly scaled and the a priori variance factor, σo
2 , set to 1. The a priori
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variance factor σ o
2  was still tested with the χ2  test.  The significance level, α, chosen for

this example was 0.05 which results in a two-tailed confidence interval of 95%.

Five hundred epochs of data were again simulated and Gaussian noise was added to

the observations of all four original sites.  The standard deviation of the noise added to each

exact TOA observation was 1m.  LS converged for all 500 epochs.  The χ2  test on the a

priori variance factor passed for all but 27 epochs and the average a posteriori variance factor

was 1.01.

The marginally detectable error was explained in Chapter 4 and is repeated here for

convenience.  For a given α and β, and therefore δ o , redundancy number ri , and

observation standard deviation σ i , the MDE of the ith observation is,

∇ =o i i
o

i

l
r

σ
δ

. (7.4)

For a significance level, α, of 0.05 and a β (probability of Type II error) of 0.10, the

noncentrality parameter, δ o , is 3.24.  Given a standard deviation of 1 m and average

redundancy number of 0.25, the MDE for the simulated observations is 6.48 m.  A blunder

of 6.5 m was added to each TOA for the NE site, for epochs 200 to 299.  The residuals at

every epoch were then statistically tested with (4.42) in order to detect blunders.  For “in-

context” testing (N=4), the test statistic,

n(0,1)
1-

2N
α (7.5)

is equal to 2.5.

Figure 7.16 is a plot of the standardized residuals $ *ri .  The horizontal line

corresponds to the test statistic threshold of 2.5.  The standardized residuals for the NE site

generally exceed the test statistic of 2.5 from epochs 200 through 299 and thereby detect a

blunder for those epochs.  Unfortunately, the standardized residuals for the other three sites
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are virtually identical to those of the NE site.  The observation containing the blunder cannot

be identified, again due to low redundancy.
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Figure 7.16 Standardized Residuals based on 4 Sites

(Blunder of 6.5 m on NE Site)

Data was then simulated for sites e1, e2, e3, and e4 in addition to the four original

sites. The geometry is, therefore, as in Figure 7.14.  The observation noise standard deviation

was again 1 m for all sites and a blunder of 6.5 m was added to the NE observations for

epochs 200 to 299. Standardized residuals were calculated for all eight sites and the results

plotted in Figures 7.17a and 7.17b.  Note that for eight observations the test statistic

threshold is 2.74.  It is now obvious that the blunder is in the NE observation.  The SE and

e1 standardized residuals also indicate a blunder but do not consistently exceed the threshold

to the extent that the NE residuals do.
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7.4.4.3  Least Squares Position Results with Lowpass Filtered Biases

In section 7.4.4.1 average biases were used.  In this section the lowpass filtered bias

differences of Figures 7.2 are used.  Use of the filtered bias differences removes the long

term drift from the observations.  For this test, the remaining error source should be the

white noise of the TOA estimation process.  Any static multipath will cause a bias which

will be included in the bias differences.  This bias is removed, however, when the filtered

bias differences are used.  This leaves TOA estimation noise as the major source of error.  As

explained earlier, the main purpose of this static multipath test was to estimate the positional

error, due to Cellocate system noise, in a multipath free environment.



173

With the use of filtered bias differences, the position results are as given in Figure

7.18.  The DOP values are the same as in Figure 7.1 since the same four sites are used.  In

this case LS converged for 425 of the 502 epochs.  The 67th percentile is now 105 m, the

best so far.  The horizontal precision of 118 m is close to the 110 m predicted in section

7.1.4.2.  As expected, the position results are essentially unbiased since the DRMS and

horizontal precision agree.  Upon comparing the DRMS and 67th percentile, one may

conclude that the position errors are also more or less Gaussian.
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Figure 7.18 Static Multipath Position Results Using Least Squares 

and Lowpass Filtered Site Bias Differences
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The parameter estimation errors are presented in Figure 7.19.  Note that compared

to Figures 7.9 and 7.12, there is no detectable long-term drift in the parameter estimates here.

The standard deviation of the easting is approximately one quarter that of the northing as

expected upon comparing the EDOP and NDOP.  Both the easting and northing are

essentially unbiased since their means are about one tenth of their standard deviations.  It is

not clear why there is a large bias in the transmitter bias parameter.  It is definitely not

caused by a bias in the filtered bias differences.  The mean differences between the raw site

bias differences and the filtered versions are zero.  One is tempted to place the blame on

multipath since the bias is positive.  However, static multipath is accounted for by the

filtered bias differences.
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Figure 7.19 Static Multipath Parameter Estimates Using Least Squares 

and Lowpass Filtered Site Bias Differences
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Figure 7.20 shows the observation residuals.  All traces of the long-term drift of the

site bias have disappeared.  The NW residuals have a significant bias which may be related

to the bias in the transmitter bias parameter.

The objective of this field test was to estimate the position error due to the

Cellocate system in the absence of multipath and compare this to the simulation results of

Chapter 6.  The results of Table 6.10 predict that in the absence of multipath, TOA

estimation error in the Cellocate system will produce a horizontal position error of 99 m

(67%) for the Telus mobility cellular network in Calgary. To compare this result to the 105

m (67%) result from this field test, one must ensure that the geometry and received SNR are

comparable.  According to Figure 6.14, just over 80% of the test points in the simulations

had an HDOP of two or less and the rate of increase in the 67th percentile slows

considerably as the HDOP increases above two. Therefore, taking into consideration that the

field test is only one realization whereas the simulations are an ensemble average of many

realizations, the results presented in this chapter tend to confirm the simulations of Chapter

6.  With good geometry (HDOP ≤ 2) and over short LOS distances, the Cellocate system is

currently capable of a positioning accuracy of approximately 100 m (67%).  Unfortunately

the SNR corresponding to short distances is unknown at this time.
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Figure 7.20 Static Multipath Residuals From Least Squares 

and Lowpass Filtered Site Bias Differences

7.4.4.4  Effect of Averaging

The results presented so far are all instantaneous; that is no averaging was

performed on the position estimates.  In the presence of zero-mean Gaussian noise only,

averaging the position results over time will improve the position standard deviation by

averaging out the noise.  The improvement in the standard deviation of the average

positional error may be predicted with the equation

σ
σ

( )X
N n
N n

=
−
− 1

  (7.6)
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where σ( )X  = standard deviation of the average positional error,

N = number of position fixes from which to sample,

n = number of position samples which are averaged,

σ  = standard deviation of the total number of position fixes, N .

The term ( ) / ( )N n N− − 1  is a correction factor used whenever the population

sampled is finite (Neter et al., 1978).  The data set under consideration here contains 425

elements and since sample sizes up to 90 are used, the correction factor is employed.

Figure 7.21 shows the improvement in horizontal improvement due to averaging for

the position results of Figure 7.18.  Each time interval of the abscissa represents a sample

size.  For each sample size moving position averages were calculated across the entire 425

position fixes.  The standard deviation of the averages for each particular sample size was

then calculated and plotted.  The dotted line in Figure 7.21 corresponds to these results.  The

solid line in Figure 7.21 represents the theoretical standard deviation according to (7.6).
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Figure 7.21 Effect of Averaging on Horizontal Precision

(using 8-second intervals)

The results of Figure 7.21 indicate a six fold improvement in the horizontal

precision when position fixes over 2 minutes are averaged.  The horizontal precision drops
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from 118 m to approximately 20 m.  The 425 position fixes obtained span approximately 56

minutes and the average interval between fixes is then 7.9 s.  Therefore, a 2-minute

averaging time represents 15 fixes. Averaging for longer than 3 minutes does not

significantly improve the horizontal precision.  Therefore, for the conditions of this test, a

cellular 911 call need last for less than 3 minutes in order to derive maximum benefit from

the averaging.  With a shorter time interval between fixes, the averaging time necessary to

obtain a 20 m horizontal precision will be even less.

7.4.4.5  Required Initial Position Accuracy

It was demonstrated in Chapter 6 that the accuracy of the initial position provided to

LS affects the ability of LS to converge.  Figure 7.7 suggests that the Plane Intersection

method is suitable for providing the initial position.  To confirm this for the present data set,

one particular epoch was chosen and a grid of initial positions used to begin the LS process.

The positional error for the epoch chosen was only a few metres.  In Figure 7.22 each initial

position is plotted by either a cross or circle.  Those initial positions which result in the

convergence of LS are marked by a cross; those that result in the divergence of LS are

indicated by a circle.  The four filled-in circles again represent the four Cellocate receiver

sites.
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Least Squares is 5.6 m in Error

According to Figure 7.22, any initial position within approximately 200 m of the

true transmitter position, results in the convergence of LS to the same solution. Comparing

Figure 7.22 to Figure 7.7, one sees that a vast majority of the Plane Intersection solutions fall

within the area of convergence.  Less than 5% of the Plane Intersection solutions cause LS to

diverge for the particular data epoch under consideration.

In a sense, the data epoch used in Figure 7.22 is a worst case scenario.  Note that the

true transmitter position, LS solution, and centroid of the polygon formed by the Cellocate

sites are more or less equal.  This results in a uniformly circular convergence region of

minimum area.  The same grid of initial positions was used with other data epochs.  For

those data epochs for which the LS solution was accurate (say within 50 m), the area of
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convergence was very similar to that of Figure 7.22.  For cases in which the LS solution was

very much in error, the convergence area looked quite different.  Consider the case in Figure

7.23.  Here the LS solution is 449 m in error and indicated by the *.  Note that the

convergence area is now much bigger but still includes the circle of radius 200 m centered at

the transmitter’s true position.
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Figure 7.23 Results of Various Initial Positions for a Data Epoch at 

which Least Squares is 449 m in Error

To conclude, the Plane Intersection solution for each data epoch was used as the

initial position for LS.  The results are almost identical to those of Figure 7.18 in which the

approximate position supplied to LS was truth plus 100 m.  The number of epochs for which

LS converged dropped from 425 to 402.  The DRMS, horizontal precision, 67th percentile,
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and 95th percentile all dropped by 2 to 3 m.  Therefore, for the data set analyzed in this

section, Plane Intersection is capable of providing an initial position accuracy sufficient for

LS to converge to a solution if it will in fact converge at all.  However, it should be

remembered that this is only true if lowpass filtered bias differences are used.
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CHAPTER 8

OPERATIONAL FIELD TESTS

8.1  Telus Mobility Cell Sites

In order to test Cellocate in a city environment and with actual cell sites, an

agreement was reached with Telus Mobility to install the Cellocate system in four Telus

cell sites in Calgary.  Cell sites in the northeast quadrant of the city were chosen since both

the Cell-Loc Inc. and Telus Mobility offices are located in that area.  Figure 8.1  is a plan

view of the area.  The black dots show the locations of the cell sites; the major thoroughfares

are indicated by lines; shaded areas represent the approximate propagation environments;

and the transmitter locations are marked by asterisks.  Also shown is the direction of the

main antenna lobe at each cell site.
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The four cell sites approximately form a box 2 km on a side.  The Windwood cell

sites sits atop a six story office building, one of the two highest buildings in the immediate

area.  The Sheraton cell site antenna is located on the roof of the Sheraton Cavalier Hotel

which is eight stories high.  Both the Franklin and Renfrew cell sites are located in utility

huts with the antennas mounted on towers.  The Renfrew tower is approximately 25 metres

high and the Franklin tower is about 50 metres tall.  The Windwood, Sheraton, and Franklin

sites are located in light industrial areas whereas the Renfrew site is located in a residential

neighborhood.  Three different propagation areas are indicated in Figure 8.1.  The darkest

area corresponds to residential and the lightest corresponds to light industrial.  These two

areas are, to a certain extent, comparable to the suburban and urban areas respectively,

assumed in the simulations of Chapters 5 and 6.  The light industrial area largely consists of

buildings anywhere from one to six stories.  There is a fair amount of open space in this area

and consequently the density of the buildings in this area is not high.  Therefore, it is just as

likely for LOS propagation to exist as not.  However, due to the abundance of reflecting

surfaces, it is very likely that multipath always exists.  In residential areas, multipath is most

likely due to reflections from nearby objects and the multipath delay is therefore small.

Almost all of the Telus Mobility cell sites in the city are sectorized due to the use of

directional antennas.  The common visualization of a cell site occupying the geographical

centre of the cell’s coverage area is not the norm.  In the downtown area, many of the cell

site antennas are located atop tall buildings and are tilted down in one direction or another.

In other areas the choice of convenient locations for the cell site is limited and it is not

possible to position the cell site at the centre of the intended coverage area.  The four cell

sites used in these tests are directional.  Due to strong coverage by a cell site atop the tallest

building in the Calgary’s downtown (to the southeast of the sites in Figure 8.1), the cell sites

of Figure 8.1 are directional to the northeast.

This limited the choice of locations from which to transmit the cellular signal.  The

Sheraton and Franklin cell sites were the most problematic.  The Sheraton antenna pointed

away from the interior of the box formed by the four sites.  However, any transmitter to the

northeast of Sheraton and, therefore, within the main lobe of its antenna was too far distant
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to be heard by the Renfrew site.  If the transmitter was to the southwest of Sheraton it could

by heard by Renfrew but was now in the rear lobe of the Sheraton antenna and unless very

close could not be received.  Therefore, a separate omni-directional antenna was used at the

Sheraton cell site.  The Franklin cell site was unable to receive from anywhere west of an

easting of approximately 1500 m in Figure 8.1.  Possible areas for a cellular transmitter were

therefore limited to the right half of the box formed by the cell sites.  Any location to the east

or north of this box was too distant from Renfrew.  Any location south of the box was

outside of Windwood’s main antenna lobe and any point west of the box’s centre was

beyond the reach of Franklin.

Three locations from which to transmit the cellular signal where chosen.  They are

indicated by the asterisks in Figure 8.1 and labeled as 1, 2, and 3.  A transmitter at these

three locations could be consistently heard by the four cell sites.   Location 1 was on the side

of the road shown nearby in Figure 8.1 and LOS to Sheraton and Franklin.  It was certainly

not LOS to Renfrew and probably not LOS to Windwood.  The area surrounding location 1

was somewhat open with the exception of a few one or two story buildings to the east and

north and a multi-story hotel approximately 250 metres to the southwest.  Location 2 was

located on an access road to a parking lot.  The immediate area was open.  Approximately 50

metres to the west were several two or three story buildings in high density.  This prevented

LOS propagation to both the Windwood and Renfrew sites.  Sheraton was very near to the

northeast and obviously LOS.  The Franklin site was also LOS.  The third location was

located in the parking lot of the Travel Lodge Hotel (approximately six stories).  The hotel

itself was just to the southeast of this location.  The area to the west of this location was

densely developed with an abundance of reflecting objects.  Therefore, Renfrew and

Windwood were not LOS whereas Franklin and Sheraton were.

The coordinates of the four cell sites were surveyed using DGPS.  The reference

station used was a point on the Cell-Loc building roof which in turn was tied to one of the

control pillars atop the Engineering building at the University of Calgary.  The baseline from

the Engineering building to Cell-Loc is 8 km.  Semikin™ was used to process this GPS

baseline data which spanned approximately 1.5 hours.  The accuracy of the double
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differenced, fixed ambiguity coordinates of the point on the Cell-Loc rooftop is better than 3

cm.  This point was then used as the reference station for surveying the cell sites and

transmitter locations.  Approximately 40 minutes of GPS data was collected at each cell site

and the baseline from Cell-Loc to each cell site was 3 km or less.  Semikin™ was again used

and the double differenced, fixed ambiguity results should again be accurate to within 3 cm.

The latitude and longitude of each cell site was then converted to Universal Transverse

Mercator (UTM) northing and easting for use in the positioning software.

The coordinates of the transmitter locations were also obtained with DGPS.  During

testing, a GPS receiver was installed on the roof of Cell-Loc to act as the reference.  Another

GPS receiver was mounted in the test automobile which also contained the cellular

transmitter.  As a result a DGPS position for the cellular transmitter was always available.

The positions of the three transmitter locations were obtained from a semi-kinematic survey.

The occupation time at each of the points was between 5 and 8 minutes.  The accuracy of the

transmitter location coordinates is expected to be better than 5 cm, more than an order of

magnitude better than required by this application.

The FCC specification of 125 m (67%) is for horizontal position.  Therefore, height

was not estimated in the simulations of Chapter 6 or the static multipath test of Chapter 7.

Indeed, height differences in the static multipath test were altogether neglected.  For the

purpose of positioning, height differences are also neglected in this chapter.  The measured

DGPS coordinates of the cell sites and transmitter locations are three dimensional.  In

section 8.4.1 three dimensional ranges from the cell sites to the transmitter locations are

subtracted from TOA differences.  For those results, height is obviously accounted for.

However, when horizontal position is estimated, height differences are disregarded since

they are insignificant compared to the horizontal distances involved.  The largest height

difference is 61 m and occurs between the Franklin site and location 2.  However, 61 m is

only 2.1% of the three dimensional range of 2876.8 m.  This corresponds to a difference in

range of 60 cm when this height difference is neglected.  The largest height difference in

terms of percentage of the range is 24 m between the Sheraton site and location 2.  The 24 m

is 7.5% of the three dimensional range of 322.3 m.  Neglecting this height difference
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introduces an error of 90 cm.  These errors are insignificant compared to TOA estimation

error and multipath.  However, in areas such as downtown, where cell sites often sit atop tall

office buildings, it is quite possible that height differences will make up the majority of the

propagation distances.  In that case height must be accounted for.  Estimating height,

however, will reduce the degrees of freedom by one and may be difficult due to poor vertical

geometry.  If the participating cell sites all have similar elevations, the vertical DOP (VDOP)

will be large.

8.2  Test Equipment

A Cellocate receiver and GPS receiver were mounted in each of the four Telus

cell sites.  The Cellocate receiver numbers are indicated in Figure 8.1 next to each site

name. As discussed previously, at all sites with the exception of Sheraton, the actual cell site

antenna was used.  The cellular signal provided to the Cellocate receiver, was tapped from

the cell site multicoupler.  The GPS receiver was fixed to the precisely surveyed cell site

coordinates and thereby operated in time transfer mode.  Before the tests, each of the four

Cellocate receivers was turned on and allowed to reach a stable operating temperature.

From the bias test to follow, it was determined that approximately 20 minutes was required

for this purpose.  Once all the receivers were running for at least 20 minutes, the data logging

software was activated and data collection commenced.  The same transmitter used in the

static multipath test was used here.  The antenna was mounted on the automobile roof and

the cellular precursor was transmitted every 2 seconds.

8.3  Cellocate  Biases

8.3.1  Cellocate  Receiver Biases

The bias of each Cellocate receiver was first analyzed in the laboratory to

determine its stability.  The transmitter was connected to each receiver in turn via a cable.

Both TOA at the receiver and TOT at the transmitter were recorded for each transmission.

The TOT was obtained by pulsing a second GPS receiver which shared the same antenna as

the GPS receiver which recorded the TOA.  Both the GPS receivers were operated in time
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transfer mode.  The transmission rate was once every 2 seconds and data was collected for

approximately 30 minutes.

The TOT at each epoch was subtracted from the corresponding TOA to produce the

bias plots of Figure 8.2.  Note that the biases are expressed in metres as opposed to seconds

and that the vertical scales are relative; for each plot the first TOA-TOT difference was

subtracted from all others.  Also included in each plot is the standard deviation, expressed in

metres, of the last half of the data.  It is obvious that each receiver’s bias settles to some

stable value after a time period of 10 to 15 minutes.  As discussed in the previous chapter,

these bias changes are temperature dependent.  In this particular test, each receiver was not

allowed to warm up prior to data collection.  Therefore, what we see in Figure 8.2 is the

warm up period of each receiver.  The trends in Figure 8.2 could not be due to the transmitter

since it was running continuously.
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Upon reaching steady state, the standard deviation in the biases ranged from 41 m

to 65 m.  This is slightly better than the raw-filtered bias difference standard deviations of

Table 7.1 because of the use of shielded cable as the propagation medium here.  For the

biases of Figure 8.2, the standard deviation of the bias differences will on average be 52 m *

2  = 73.5 m.  The average bias difference standard deviation of Table 7.1  is 79.5 m.

Figure 8.2 agrees with Table 7.1 in terms of relative standard deviations.  Both sets of results

suggest that receivers 1 and 3 are noisier than receivers 2 and 4.

8.3.2  Cellocate  Site Biases

A different approach was taken to measure the site biases for the Telus Mobility

tests than that used for the static multipath test.   The biases are obviously different here than

in the case of the static multipath test since they now include propagation delay due to the

cell site equipment.  Although it is possible to measure the bias differences by differencing

TOAs and subtracting differences in range to a transmitter of known position, as pointed out

earlier, the bias differences so derived will contain multipath effects unique to the transmitter

position.  It was desired to measure the biases in such a way as to ensure their independence

of the transmitter position.

Therefore, the bias at each cell site was measured by locating the transmitter as

close as possible to the cell site antenna.  In this way, it was assumed that the measured

propagation time consisted only of the propagation time through the cell site equipment, and

the receiver bias.  No multipath effects should be included in these measured biases.  As in

the lab tests, the TOA at the receiver was recorded as well as the TOT at the transmitter.  The

difference between the two time tags, assuming the propagation distance between the

antennas is zero, is the site bias. Because the TOT recorded was not the exact time at which

the signal left the antenna, a bias exists in the measured site bias.  This bias was removed by

differencing between the measured site biases.  The TOT bias was identical for all sites and

therefore cancels out when bias differences are formed.

The distance between the transmitter antenna and receiver antenna ranged from

approximately 10 m at the Windwood and Sheraton sites to the height of the towers at the
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Renfrew and Franklin site.  In any case the propagation distances were ignored since they are

minor compared to the bias differences being measured.  Expressed in terms of distance, the

bias differences for the Franklin site as reference are on the order of 3 to 4 km.  With the

Renfrew site as reference the bias differences are anywhere from 1 to 4 km.  In the worst

case of the Franklin-Renfrew bias difference, neglecting the propagation distance results in a

bias difference error of approximately 2%.
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The measured site biases are plotted in Figure 8.3.  The biases plotted are the

measured biases minus the corresponding mean.  The transmission rate was again once every
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2 seconds.  The standard deviation of each plot and the receiver located at each site are also

included.  Note that the Cellocate receivers were allowed to warm up prior to data

collection.  The trends visible in Figure 8.2 are therefore absent from Figure 8.3. Compared

to the bias differences of Figures 7.2 through 7.5, the bias differences here are slightly better

behaved in terms of long term drift.  However, in comparing the two cases it is important to

remember that the time span of the data in Chapter 7 is almost one hour whereas the data of

Figure 8.3 spans between 20 and 40 minutes.  In any case, the marginal improvement is

perhaps due to the fact that the Cellocate receivers in this case were located within the

Telus Mobility cell sites in which the ambient temperature is strictly controlled.  The

transmitter was located outside and still subject to temperature variations.

In terms of relative magnitude there is some correlation between the standard

deviations of Figure 8.3 and Figure 8.2.  Receivers 1 and 2 are very similar and the best

behaved of the four receivers.  Receiver 3 has a larger standard deviation than receivers 1

and 2 although by a larger ratio in Figure 8.3 than in Figure 8.2.  In general, the standard

deviations of the receivers are four to eight times larger than in the laboratory.  This of

course may be attributed to the propagation channel.  In the laboratory the channel was a

shielded cable which delivered a high SNR signal with no interference.  In the field, the

signal was transmitted over the air and therefore subject to greater attenuation loss,

interference such as multipath, and noise from the cell site equipment.  Recall that the

simulations of Chapter 5 concluded that TOA estimation noise is a function of SNR.

There is also a certain degree of correlation between Figure 8.3 and the results of

Table 7.1.  In section 7.4.2 it was postulated that a high standard deviation of any bias

difference involving the NW site was due to the location of the NW site.  The results here

suggest that it is far more likely that the receiver at the NW site was to blame.  Receiver

number 3 was used at the NW site in Chapter 7 and at the Renfrew site here.  It has a high

standard deviation in both cases, possibly due to poor sensitivity.  In addition,

notwithstanding that the biases here and those of Chapter 7 were all measured over the air,

the biases here have larger standard deviations even though the propagation distances are
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much shorter.  This may be due to white noise in the measured TOT.  No TOTs were used in

Chapter 7.

The bias of receiver 4 is rather odd when compared to the rest.  In the laboratory,

there was little difference between receiver 4 and receivers 1 and 2.  In the field, the noise in

the bias of receiver 4 can hardly be called white.  It instead seems to have two

characteristics.  Throughout the some 27 minutes of data, lies a bias similar to that of

receiver 2 in terms of standard deviation.  At intervals throughout the data the bias jumps in

a positive direction by up to 2000 m.  Because these jumps are in a positive direction, one

might suspect multipath.  Receiver 4 was located on the roof of the Sheraton Cavalier Hotel.

Structures on the roof where certainly capable of generating multipath but not on the order of

500 m to 2000 m as Figure 8.3 suggests.  If multipath is to blame, the source must be a

distant reflector.  Other multistory buildings exist in the immediate area but are not as tall as

the Sheraton.  In any case, the bias for the Sheraton site will be a weak point in the

positioning process.

The biases of Figure 8.3 were used in some of the positioning results to follow.

Because these biases were measured on a separate day (Oct. 28, 1996) from the collection of

other data, they cannot be applied on an epoch by epoch basis.  Instead, average biases were

calculated from the data of Figure 8.3 and used to correct TOA data.  The average biases and

the corresponding bias differences with the Franklin site (receiver 2) as reference are given

in Table 8.1.  Note that they are expressed in distance rather than time.  For all positioning

results to follow, the Franklin site is used as the reference site for the purpose of forming

TOA differences.

Table 8.1 Average, Measured Biases and Bias Differences (Oct. 28, 1996)

with respect to Franklin

Cell Site Measured, Average Bias (m) Bias Difference (m)

Windwood  (rx 1) 1 280 513 3261

Franklin  (rx 2) 1 277 252 N/A

Renfrew  (rx 3) 1 281 307 4055
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Sheraton  (rx 4) 1 280 022 2770

8.4  Static Data

Static data was collected on two separate occasions, Oct. 3 and Oct. 24,  1996.  The

equipment setup on these two days was identical to that of Oct. 28, the date the biases were

measured.  In this way the biases measured on Oct. 28 could be used with the data collected

on the other two dates.  On Oct. 3, 1996, data was collected for the transmitter at locations 1

and 2 in Figure 8.1.  On Oct. 24, 1996, the transmitter visited all three locations.  Each

transmitter location was occupied for approximately 10 minutes.  Only those epochs at

which all four cell sites received a transmission were used for positioning.  Sensitivity was

poorest for the Renfrew site due to the lack of a LOS path and perhaps the use of receiver 3

there.  Windwood was the next worse.  Most often epochs were discarded because Renfrew

or Windwood did not receive at that particular epoch.  The number of common epochs for

each transmitter location on each date of data collection is given in Table 8.2.  Also included

is the time span which these epochs cover.  The time between common epochs ranged from

3.1 to 5.4 seconds.  If all sites receive every transmission, the interval would be 2 seconds

per epoch.

Table 8.2 Static Data Characteristics

Txer Location and Date No. of Data
Epochs

Time Span Interval

Loc. 1 Oct. 3, 1996 103 5 min  21 secs 3.1 s/epoch

Loc. 1 Oct. 24, 1996 94 7 min  29 secs 4.8 s/epoch

Loc. 2 Oct. 3, 1996 129 7 min  7 secs 3.3 s/epoch

Loc. 2 Oct. 24, 1996 66 5 min  54 secs 5.4 s/epoch

Loc. 3 Oct. 24, 1996 97 5 min  29 secs 3.4 s/epoch

8.4.1  Bias Differences

8.4.1.1  Multipath Effects
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As in Chapter 7, the first step in processing the data was to difference TOAs

between the cell sites and subtract the corresponding known range to transmitter difference.

This essentially removes the propagation distance from the data.  What remains is the cell

site bias differences as well as errors due to multipath and TOA estimation.  Figures 8.4

through 8.6 show these differences for three of the five data sets.  These figures are similar to

Figures 7.2 to 7.5 in that they contain the raw TOA differences with range difference

subtracted, as well as lowpass filtered versions.  They also contain a dashed horizontal line at

the values of the bias differences of Table 8.1. In each figure the three plots are labeled

according to the sites and the receivers used at those sites.  Each plot also contains the

standard deviation of the raw data.  The same normalized cutoff frequency was used for the

lowpass filters here as in Chapter 7.
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Figure 8.4 Raw and Lowpass Filtered Bias Differences (Franklin Reference)

Oct. 3, 1996  Loc 1 Data

The difference between the lowpass filtered differences and the measured biases of

Table 8.1 is an indicator of the multipath in the TOA difference measurements.  Recall that

the lowpass filtered differences contain the site biases, the mean TOA estimation error and

multipath errors.  The measured bias differences (dashed lines) should only consist of the

site bias and the mean TOA estimation error. Multipath should be minimal, if it exists at all,

since the transmit and receive antennas were placed as close as possible to one another when

measuring the biases.  Subtracting the measured bias differences from the lowpass filtered

TOA differences, should eliminate the cell site biases from the TOA differences as well as

the mean TOA estimation error.  What remains is multipath on the TOA difference

measurement and any residual noise.
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Figure 8.5 Raw and Lowpass Filtered Bias Differences (Franklin Reference)

Oct. 3, 1996  Loc 2 Data

The mean difference between the measured bias differences (dashed lines) and the

lowpass filtered TOA differences was calculated for each cell site pair for each of the five

data sets.  These values are tabulated in Table 8.3.  The cell sites are again identified both by

the initial of the cell site name and the Cellocate receiver number.  Note that any random

noise still present will be removed when calculating the mean values of Table 8.3.

Averaging the absolute values of all means for each particular transmitter location results in

the following: Loc 1, 106 m; Loc 2, 182 m; Loc 3, 109 m.
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Table 8.3 Mean Differences between TOA Differences (with Range 

Differences Removed) and Measured Site Bias

Differences

Data Set W - F (m)

(1) - (2)

R - F (m)

(3) - (2)

S - F (m)

(4) - (2)

W - S (m)

(1) - (4)

R - S (m)

(3) - (4)

W - R (m)

(1) - (3)

Oct. 3 Loc
1

71 -30 146 -76 -176 101

Oct. 24
Loc 1

-149 63 -38 -112 101 -213

Oct. 3 Loc 328 233 123 205 111 94
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2

Oct. 24
Loc 2

315 228 336 -21 -108 87

Oct. 24
Loc 3

50 181 151 -109 30 -131

When interpreting the results of Table 8.3, one must be careful to remember that

these numbers are indicators of multipath on TOA differences.  A number of small

magnitude in Table 8.3 can indicate one of two different things; either there is little

multipath in both of the TOAs involved, or both TOAs are corrupted by roughly the same

amount of multipath.  On the other hand, a number of large magnitude in Table 8.3 must

indicate a significant multipath effect on at least one of the two TOAs involved.  The sign of

the number may indicate which of the TOA measurements is the leading contributor to a

large magnitude.  If one assumes that multipath always delays TOA, then a positive number

implicates the numerus ex quo subductus while a negative number points to the numerus

subducendus.  One also needs to remember that the measured site bias differences are

assumed to accurately represent the site bias differences only.

From Table 8.3, one may rank the sites, according to the assumptions made, in

terms of the amount of multipath.  This is done in Table 8.4.  For each data set the sites are

listed from that with the highest multipath effect to that with the lowest.  Recorded between

each adjacent pair of sites is the difference in multipath effect.  The last row of the table

contains the mean of the cumulative sum of the numbers for each column.  For example, in

the first column the mean of 103 m is the mean of 30 m, 30 m + 71 m, and 30 m + 71 m + 76

m.

Table 8.4 Relative Multipath Effects

Oct. 3  Loc 1 Oct. 24  Loc 1 Oct. 3  Loc 2 Oct. 24  Loc 2 Oct. 24  Loc 3

Sheraton Renfrew Windwood Sheraton Renfrew

76 m 63 m 94 m 21 m 30 m

Windwood Franklin Renfrew Windwood Sheraton
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71 m 38 m 111 m 87 m 109 m

Franklin Sheraton Sheraton Renfrew Windwood

30 m 112 m 123 m 228 m 50 m

Renfrew Windwood Franklin Franklin Franklin

Mean = 103
m

Mean = 158 m Mean = 228 m Mean = 293 m Mean = 133 m

From Tables 8.3 and 8.4 one may make the following observations.  In general,

multipath seems to be more significant for Loc 2 than for Loc 1 and Loc 3.  Comparing the

two dates for Loc 1 there is little consistency in terms of sign and magnitude.  In fact, there

is almost a complete reversal of the cell sites in the terms of the severity of multipath.  Loc 2

is more consistent between the two dates.  For both dates all sites experienced more

multipath than Franklin.  That Windwood and Renfrew experienced large amounts of

multipath relative to Franklin is consistent with the known propagation environment.  As

discussed in 8.1, both Windwood and Renfrew did not have LOS paths to Loc 2.  Sheraton,

however did have LOS propagation with Loc 2 and it is therefore unclear why it would

experience such a large multipath effect with respect to Franklin.  It is quite possible that

since the actual range between  Loc 2 and Sheraton is only 322 m, reflections from the

buildings due west of Loc 2 may have had amplitudes of the same order as the LOS ray.

The Loc 3 results indicate large multipath for Renfrew and Sheraton and smaller multipath

for Windwood and Franklin.  One would expect small multipath effects for Franklin since it

is LOS, but not for Windwood.  Large multipath was expected for Renfrew but not Sheraton.

It is not immediately obvious why Sheraton would experience large amounts of multipath for

this location.

If the assumption is made that the lowest cell site in each column of Table 8.4

experienced no multipath, then the multipath effects in the other three cell sites ranges from

30 m to 336 m with the mean multipath effect ranging from 103 m to 293 m.  This is entirely

consistent with the Turin based multipath models used in the positioning simulations of

Chapter 6.  Compared to the urban probability density function illustrated in Figure 6.2, the

results here may seem somewhat pessimistic.  However, the PDF of Figure 6.2 is for the first
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arrival only whereas the results reported here are indicative of the total multipath effect -

both the delay of the first arrival and the effect of later arrivals.  Secondary signal arrivals

will obviously bias the TOA estimate in a positive direction.

8.4.1.2  TOA Measurement Noise

Although the data collected is only of short duration it is still instructive to observe

the standard deviation of the raw, filtered, and raw minus filtered bias differences.  These

standard deviations, for all of the data collected, appear in Table 8.5.

Table 8.5 Standard Deviations of Bias Differences

σ raw  (m) σ filtered  (m) σ raw filtered−  (m)

W(1) - F(2) 238 55 231

Oct. 3  Loc 1 R(3) - F(2) 191 60 182

S(4) - F(2) 108 32 103

W(1) - F(2) 250 71 239

Oct. 24  Loc 1 R(3) - F(2) 332 98 314

S(4) - F(2) 158 61 145

W(1) - F(2) 242   69 231

Oct. 3  Loc 2 R(3) - F(2) 310 125 283

S(4) - F(2) 191   63 172

W(1) - F(2) 183 83 161

Oct. 24  Loc 2 R(3) - F(2) 371 62 361

S(4) - F(2) 151 65 134

W(1) - F(2) 156 47 148

Oct. 24  Loc 3 R(3) - F(2) 268 79 254

S(4) - F(2) 136 36 131

The standard deviations of Table 8.5 are significantly higher than those of Table

7.1.  This is most likely due to longer propagation distances and lack of LOS for the Telus

Mobility data.  Of the Windwood, Renfrew, and Sheraton cell sites, the Sheraton cell site is
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the only one for which it was certain a LOS path to the three transmitter locations existed.  It

was also the closest site, of the three just mentioned, to the transmitter locations.  It would

therefore be quite reasonable to assume that the received signal SNR at the Sheraton site was

significantly higher than at the Windwood and Renfrew sites.  The SNR at the Franklin site

is also expected to be high since a LOS path exists from Franklin to the three transmitter

locations.

The difference in SNR and receiver sensitivity are expected to be the major causes

of the difference in standard deviation between the three cell site pairs of Table 8.5.  For all

but the Oct. 3 Loc 1 data set, the Renfrew-Franklin bias difference has the highest standard

deviation whereas the Sheraton-Franklin bias difference has the lowest.  This is consistent

with the expected received SNR at the Sheraton, Windwood, and Renfrew sites and the

poorer performance of Cellocate receiver number 3.  Recall that receiver 3 was involved in

the highest noise standard deviations in the static multipath test as well.

Comparing the two Oct. 3 data sets, there is little difference, as far as the

Windwood site is concerned, between transmitter locations 1 and 2.  The Renfrew-Franklin

bias difference standard deviation for transmitter location 2 is approximately 100 m higher

than for location 1.  Again one would assume that a significantly longer propagation path

and therefore lower SNR would cause higher TOA estimation noise.  For the Oct. 24 data

sets there is little difference between Loc 1 and Loc 2 with respect to the Sheraton-Franklin

bias difference whereas for the Oct. 3 data sets there is a 70 m difference.  In making all of

these comparisons one must recognize that the data collected only spans a few minutes.

Standard deviations based on data spanning a longer time period may be more consistent

with expectations.

The average raw-filtered standard deviation from Table 8.5 is 206 m.  In the

absence of any long term drift or bias in the measurements and an HDOP of 1, one would

expect an instantaneous horizontal precision of approximately 206/ 2  * 1 = 146 m.

8.4.2  Plane Intersection Results
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Plane intersection was tested with the field test data.  Again, its performance was

dependent on the biases used.  Using the bias differences of Table 8.1, the position results

for the Oct. 3 Loc. 1 data were extremely poor.  The results are similar to those of Figure 7.6,

for which average site biases were employed in the static multipath test.  As in that case, all

four accuracy and precision measures here are in the thousands of kilometers.

Using filtered bias differences the five sets of data were processed with plane

intersection.  Figure 8.7 contains the position results for the Oct. 3 Loc 1 data set.  Plane

intersection position results for all five sets of data are given in Table 8.6.
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Figure 8.7 Oct. 3 Loc 1 Position Results Using Plane Intersection and 
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It is interesting to note that in Table 8.6, the 67th percentiles for the Loc 1 data are

approximately one half of that of the other data sets.  Because the bias difference standard

deviations for Loc 1 are not lower than those for the Loc 2 and Loc 3 data sets another factor
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must be causing the difference.  This factor cannot be multipath since any constant multipath

will be accounted for in the filtered bias differences used and any short term multipath would

contribute to the raw minus filtered bias differences.

The only remaining factor is the sensitivity of plane intersection to geometry.  The

HDOP for Loc 1 and Loc 2  is 1.1 whereas the HDOP for Loc 3 is 1.5.  This leads one to

believe that there should be no difference in positioning accuracy due to geometry between

Loc 1 and Loc 2 and an increase of 1.4 times in the position error of Loc 3 with respect to

Loc 1 and Loc 2.  However, this is only true for positioning algorithms which employ the

design matrix A from which HDOP is derived.  Plane intersection does not make use of the

design matrix.  Schmidt (Schmidt, 1972) investigated the sensitivity of plane intersection to

geometry.  He simulated networks of three or four stations.  To one of the perfect TOA

differences, corresponding to a specific transmitter point, he then added an error and

obtained a position fix with plane intersection.  This was done for a grid of transmitter

points, the same error being added to the same TOA difference at all points.  He then

connected points with the same position error to produce error contour maps.  Although none

of Schmidt’s networks are comparable to the network under consideration here, his

simulations do demonstrate large position error for points close to one of the receiver sites,

particularly for points outside the polygon formed by the sites.  Outside the polygon there is

also large position error for points close to the line formed by any two of the receiver sites.

Both Loc 2 and Loc 3 fall into these areas of problem geometry.

Table 8.6 Position Results Using Plane Intersection and

Lowpass Filtered Site Bias Differences

DRMS (m) Hor. Prec. (m) 67% (m) 95% (m)

Oct. 3  Loc 1 1244 1250 351 2972

Oct. 24  Loc 1 4414 4362 399 2970

Oct. 3 Loc 2 1465 1461 643 2702

Oct. 24 Loc 2 6366 6414 982 4403

Oct. 24 Loc 3 3078 3049 700 2385
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8.4.2.1  Required Accuracy of Initial Position

To determine if the plane intersection results of Table 8.6 are sufficiently accurate

for use as initial positions for LS, a grid of initial positions was generated for each of the

three transmitter locations.  These initial positions were each used by LS for one particular

epoch of data which results in a very small position error.  For the Oct. 3, Loc 1 data set a

data epoch was chosen for which the LS position error is 25 m.  The results are given in

Figure 8.8.  Initial positions resulting in convergence are marked by a + whereas those

resulting in divergence are marked by a o.  The cell sites are indicated by the large black

dots.  The plane intersection results of Figure 8.7, represented by small black dots, are also

shown.
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Figure 8.8 Results of Various Initial Positions for a Data Epoch at which LS 

is 25 m in Error (Oct. 3,  Loc 1)
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It is apparent from Figure 8.8 that the overwhelming majority of the plane

intersection position fixes would result in convergence of LS for the particular data epoch

under consideration.  The figure indicates that the initial position must be within 1500 m to

2000 m of truth in order for LS to converge to the correct (25 m in error) position.  Of the

plane intersection fixes, 92% are within 2000 m of the true transmitter position.  This

particular data epoch, which results in a LS position error of only 25 m, is considered a worst

case scenario in that the area of convergence is most likely the smallest for the geometry

given.  Recall Figure 7.23 which shows a larger convergence area when the LS position fix

error is larger.
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Figure 8.9 shows the LS convergence area for a particular data point from the Oct.

3, Loc 2 data set.  This case may also be considered a worst case since the LS position fix is

only 58 m in error.  Note that in contrast to the circular convergence area of Figure 8.8, here

the convergence area is a circle centered on the cell site network with an additional lobe of

convergence to the NE.  The plane intersection results are also shown and some of them fall

in this lobe of convergence.  Overall, 90% of the plane intersection fixes,  when used as the

initial position, result in convergence for this particular data epoch.

A LS convergence plot was also done for Loc 3.  The data epoch chosen results is a

LS position error of 28 m.  Figure 8.10 illustrates the convergence area for this one data

epoch and the plane intersection results for the entire data set.  Note the familiar circular

convergence area with an additional region of convergence to the east and northeast.  Using

the plane intersection fixes as initial positions for this one particular data epoch results in a

convergence rate of 78%.
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Figure 8.10 Results of Various Initial Positions for a Data Epoch at which LS 

is 28 m in Error (Oct. 24,  Loc 3)

For the three data sets considered here, plane intersection is capable of generating

an initial position resulting in the convergence of LS in 78% to 92% of all cases.  This is

considered a pessimistic result since the data epoch used for each data set resulted in a very

accurate LS position location.  However, in order for plane intersection to achieve this level

of accuracy, it was necessary to use lowpass filtered epoch by epoch cell site bias differences

derived from the actual data and the known ranges to the transmitter.  This is obviously not a

practical solution since it requires a priori positional information.  More work needs to be

done in order to more accurately measure the cell site biases which may be used with any

data and are not dependent on the transmitter’s location.  It is anticipated that with highly
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accurate cell site biases and additional cell sites, plane intersection will be capable of

providing a sufficiently accurate initial position to begin the LS iterative process.  To

separate the effect of plane intersection accuracy from LS accuracy in the results to follow,

the initial position provided to LS will always be a point 100 m to the north and 100 m to the

east of the true transmitter position.

8.4.3  Least Squares Position Results

8.4.3.1  Position Results

The five data sets were processed using root MUSIC to estimate TOA and LS to

estimate position.  Circular trilateration with TOA differences was again used in order to

obtain residuals for the individual TOA observations.  The Franklin site was used as the

reference site.  In order to make the results as realistic as possible, raw TOA differences

were corrected with the average measured bias differences of Table 8.1.  Lowpass filtered,

epoch by epoch bias differences were not used.  To follow are figures describing the results

for the following three data sets: Oct. 3 Loc 1, Oct. 3 Loc 2, Oct. 24 Loc 3.  Figures 8.11,

8.12, and 8.13 illustrate the position results, individual parameter estimates and residuals for

the Oct. 3 Loc 1 data set.  Figures 8.14, 8.15, 8.16 and 8.17, 8.18, 8.19 show the same for the

Oct. 3 Loc 2 and Oct. 24 Loc 3 data sets respectively.  As before, the small dots in the

position results are the epoch by epoch position fixes and the + marks the location of the

transmitter as determined by DGPS.
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Figure 8.11 Position Results for Oct. 3 Loc 1
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Figure 8.14 Position Results for Oct. 3 Loc 2
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Figure 8.17 Position Results for Oct. 24 Loc 3
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Figure 8.19 Observation Residuals for Oct. 24 Loc 3

The results for all five data sets are summarized in Tables 8.7 through 8.11.  The

horizontal position performance measures are given in Table 8.7 whereas individual

parameter statistics are given in Table 8.8.  The observation residuals appear in Table 8.9,

their correlation coefficients in Table 8.10, and the observation redundancy numbers in

Table 8.11.

It is clear from Table 8.8 that the position estimates are biased.  This is also

reflected in Table 8.7.  For zero mean Gaussian errors, the DRMS and horizontal precision

should be equal.  For the Oct. 24 Loc 1 data set the two measures are only 7 m apart whereas

for the Oct. 3 Loc 2 data the two numbers differ by 100 m.  These position biases are due to

the difference between the average measured biases and the lowpass filtered biases.  As

discussed in section 8.4.1.1, it is reasonable to assume that the differences in the measured
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and filtered biases are due to multipath.  However, since the same bias differences were used

for all data, the fact that the magnitude of the biases in Table 8.8 vary from one date to the

next, for the same location, suggests a change in the multipath environment.  On the other

hand, perhaps more data is required to say with certainty that the position bias does change

significantly from day to day.  If the position estimates were Gaussian, the DRMS and 67th

percentiles would also agree.  This is true here with the exception of the Oct. 24 Loc 3 data.

In that case, outliers clearly visible in Figure 8.17, inflate the DRMS value.

Table 8.7 Position Results Using LS and Average Site Bias 

Differences

DRMS (m) Hor. Prec. (m) 67% (m) 95% (m)

Oct. 3  Loc 1 183 151 189 266

Oct. 24  Loc 1 220 213 208 434

Oct. 3 Loc 2 276 186 286 461

Oct. 24 Loc 2 279 172 287 436

Oct. 24 Loc 3 316 310 225 446

Table 8.8 Parameter Estimate Error Statistics

Easting Error (m) Northing Error (m) RT Error (m)

mean RMS mean RMS mean RMS

Oct 3 Loc 1 -58 125 -87 133 -52 78

Oct. 24 Loc 1 -10 187 58 116 36 95

Oct. 3 Loc 2 185 237 -86 140 -111 165

Oct. 24 Loc 2 105 170 -195 222 -216 240

Oct. 24 Loc 3 65 274 -16 157 -24 185

The results presented indicate a horizontal position accuracy of 189 m to 287 m

(67%).  It was concluded in Chapter 7 that with HDOP ≤ 2 and in the absence of multipath,

the Cellocate system is capable of 100 m (67%) positioning accuracy.  The 89 m to 187 m

of additional error here is mainly due to three factors.  First is the accuracy of the site biases.
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For these tests, the biases were measured on a separate date as opposed to being derived

from the actual data from which position was estimated.  The increased propagation

distances are the second factor.  In the static multipath test the propagation distances were on

the order of 200 m and all LOS.  Here the propagation distances vary from 322 m to 3 km

and are often not LOS.  This will obviously result in lower received SNR and therefore

higher TOA estimation noise.  The third factor is multipath.  The lack of LOS propagation is

one aspect and the presence of reflections is another.  All three transmitter locations were

next to busy roads and therefore subject to dynamic reflections from passing cars.

Surrounding buildings also contribute static multipath.

The residual RMS values in Table 8.9 are a reflection of the propagation distance

and, therefore, received SNR.  For instance, the Renfrew cell site was most distant from

locations 2 and 3.  Correspondingly, the Renfrew residuals have a higher RMS than those of

the other cell sites for those two locations.  For location 1, Windwood is most distant and its

residuals have the highest RMS.  The Sheraton residual RMS values for Loc 2 and Loc 3 are

roughly half of that for Loc 1.  The propagation distance from Sheraton to Loc 1 is five times

that to Loc 2 and three times that to Loc 2.  On the other hand, the Franklin residual RMS

values change very little even when the propagation distance is almost doubled.  This may be

due to greater sensitivity of the Franklin Cellocate receiver or that a LOS path always

existed for the Franklin site.

Table 8.9 Statistics of Observation Residuals

Franklin (m) Renfrew (m) Windwood (m) Sheraton (m)

mean RMS mean RMS mean RMS mean RMS

Oct 3 Loc 1 -1 79 -3 126 11 130 -6 78

Oct. 24 Loc
1

-35 79 76 173 -82 188 42 94

Oct. 3 Loc
2

1 70 -3 132 3 97 -1 34

Oct. 24 Loc
2

-10 84 26 160 -22 121 5 44
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Oct. 24 Loc
3

-19 53 49 127 -52 121 22 49

The residuals for all data sets are highly correlated.  According to Table 8.10, the

magnitudes of the correlation coefficients range from 0.88 to 0.99.  The average redundancy

numbers for each cell site’s observations are given in Table 8.11.  Franklin and Sheraton

have very low redundancy while Renfrew and Windwood have significantly higher

redundancy.  In any case, the redundancy numbers are such that the observations are still

poorly controlled.  When standardized residuals are calculated, they are found to be identical

amongst the four cell sites as in Figure 7.16.  Standardized residuals for the Oct. 3 Loc 1,

Oct. 3 Loc 2, and Oct. 24 Loc 3 data sets are given in Figure 8.20.  Note that a blunder is

detected at epoch number 18 in the Oct. 3 Loc 1 data and this corresponds with a large

positional error for that data epoch.  A blunder is also detected at epoch 18 in the Oct. 24 Loc

3 data but does not correspond to a large positional error.  Although identifying the epoch at

which a blunder exists may be possible, it is impossible to determine which observation is at

fault due to low redundancy.

Table 8.10 Residual Correlation Coefficients

F / R F / W F / S R / W R / S W / S

Oct. 3 Loc 1 -0.97 0.91 -0.94 -0.98 0.99 -0.99

Oct. 24 Loc 1 -0.99 0.98 -0.99 -0.99 0.99 -0.99

Oct. 3 Loc 2 -0.99 0.95 -0.96 -0.99 0.99 -0.99

Oct. 24 Loc 2 -0.99 0.97 -0.98 -0.99 0.99 -0.99

Oct. 24 Loc 3 -0.99 0.96 -0.88 -0.98 0.90 -0.97

Table 8.11 Average Observation Redundancy Numbers

Franklin Renfrew Windwood Sheraton

Oct. 3 Loc 1 0.07 0.32 0.46 0.15

Oct. 24 Loc 1 0.08 0.35 0.44 0.13

Oct. 3 Loc 2 0.14 0.52 0.30 0.04

Oct. 24 Loc 2 0.15 0.53 0.29 0.04
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Figure 8.20 Standardized Residuals

8.4.3.2  Effect of MUSIC TOA Estimation

To illustrate the improvement in TOA estimation accuracy due to root MUSIC,

position was estimated for all five data sets with TOA estimates obtained from the standard

cross-correlation method described in section 3.6.  The results may then be compared with

those of root MUSIC.  Other than the source of the TOA estimate, the position estimation

process was identical to that in the previous section.  The position performance measures are

tabulated in Table 8.12.  These may be compared with those of Table 8.7.  The position

estimates for the Oct. 3 Loc 1 data set are plotted in Figure 8.21 and should be compared to

those of Figure 8.11.

Table 8.12 Position Results Using Full Correlation TOA Estimates

DRMS (m) Hor. Prec. (m) 67% (m) 95% (m)
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Oct. 3  Loc 1 632 623 652 1124

Oct. 24  Loc 1 644 625 647 1129

Oct. 3 Loc 2 684 665 717 1013

Oct. 24 Loc 2 628 600 638 1053

Oct. 24 Loc 3 725 610 789 1078
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Figure 8.21 Position Results for Oct. 3 Loc 1 and Full Correlation TOA 

Estimates

The 67th percentiles of Table 8.12 are anywhere from 2.2 to 3.5 times greater than

those of Table 8.7 and 5 to 6 times greater than the FCC specification of 125 m.  This clearly

illustrates that traditional Fourier based correlation techniques provide insufficiently accurate

TOA estimates for the purpose of positioning.  Further processing by algorithms such as

MUSIC is necessary to meet the FCC specification.
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8.4.3.3  Effect of Averaging

The position results were averaged, as in Chapter 7, in order to determine the

improvement in horizontal precision.  Raw TOA observations, corrected by the measured

average bias differences, were used.  Figure 8.22 shows the results for the Oct. 3 Loc 1 data

set while Figure 8.23 shows the same for the Oct. 3 Loc 2 data set.  These figures are similar

to Figure 7.21 in that they illustrate horizontal precision as a function of averaging time.  The

empirical results are again represented by the dotted lines whereas the theoretical results

from (7.6) are represented by the solid lines.

The results of Figures 8.22 and 8.23 may be related to the results of Table 8.5.  The

integration time of the filter used to smooth the bias differences in Table 8.5 was 112

seconds.  One would expect then that the standard deviation of the filtered bias differences

could be related to the horizontal precision obtained after averaging for 112 seconds.  For

example, taking the average filtered standard deviation for the Oct. 3 Loc 1 data set in Table

8.5, dividing by 2 , and multiplying by an HDOP of 1.1 results in a horizontal precision of

38 m.  In Figure 8.22, the horizontal precision after an averaging time of 112 seconds is

approximately 24 m.  Although one might anticipate the two horizontal precisions to be

equal, it is reasonable to expect a somewhat lower value from Figure 8.22 than that obtained

from the results of Table 8.5.  The standard deviations in Table 8.5 are calculated from the

full data sets whereas the horizontal precisions in Figure 8.22 and 8.23 are calculated from

subsets of the data sets (with the exception of the last one).
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Figure 8.22 Effect of Averaging on Horizontal Precision

Oct. 3  Loc 1

The time interval between position estimates in both Figure 8.22 and Figure 8.23 is

approximately 3 seconds.  Thus, thirty seconds of averaging time corresponds to

approximately 10 position fixes.  Using 30 seconds of averaging the horizontal precision

drops by a factor of 2.8 in Figure 8.22 and by a factor of 2.4 in Figure 8.23.  For the other

three data sets, the horizontal precision dropped by a factor of 1.9 to 2.4 after 30 seconds.

After one minute, the drop was a factor anywhere from 2.8 to 3.6.  If an infinite population is

assumed, the finite population correction factor of (7.6) may be assumed to be unity.  In that

case, the theoretical number of fixes required to cut the horizontal precision in half is 4.  To

reduce the horizontal precision to one third, 9 fixes are required.
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Figure 8.23 Effect of Averaging on Horizontal Precision

Oct. 3  Loc 2

The averaging time required to improve the horizontal precision will obviously

depend on the instantaneous horizontal precision, which is a factor of TOA estimation error,

SNR, and dynamic multipath, as well as the time between fixes. The Cellocate hardware is

currently able to provide a TOA estimate every two seconds.  To transmit the TOA estimates

to a central site and combine them to estimate a position may require another 2 or 3 seconds.

Therefore, if the network is able to page the cell phone every 2 seconds, and each cell phone

precursor transmission results in a TOA estimate at four or more sell sites, 4 position fixes

should be obtained in about 10 seconds.  Averaging position estimates is, therefore, a very

worthwhile exercise.  This is important for the application of interest, enhanced 911 services.

For a time interval of approximately 3  seconds between position fixes, averaging over 30

seconds will result in reducing the horizontal precision to approximately one third of its

instantaneous value.  Because time is of the essence in emergency situations, it is crucial that

averaging times required for highly precise position, are short.

Note, however, that only precision improves with averaging.  It is noise which is

removed by averaging and any constant bias in the position estimates remains.  Figures 8.22

and 8.23 show the effect of averaging on horizontal precision.  Therefore, any bias in the

positions will not be visible in Figures 8.22 and 8.23.
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CHAPTER 9

CONCLUSIONS

9.1  TOA Estimation Simulations

The objective of the TOA estimation simulations was to determine the effect of

multipath on TOA estimation by root MUSIC.  Multipath was modeled as a 2-ray channel.

During the course of the simulations it was found that a difference in the DC level of the

correlation sequence, formed from the received data, from that of the reference correlation

sequence, impacted TOA estimation accuracy. When the DC levels were matched, there was

a 5% improvement in the TOA estimation accuracy.

The effect of multipath on TOA estimation by root MUSIC was investigated as a

function of three multipath parameters: delay, phase, and amplitude.  The mean root MUSIC

TOA estimation error was found to be a function of the time delay between the LOS path

and the second arrival.  As the delay spread increased from zero, the mean TOA error also

increased as expected.  The mean error was not a function of SNR, but rather, was relatively

constant over all noise levels.  The levels of delay spread for suburban and urban

environments were chosen to be 200 ns and 400 ns respectively.  These values are consistent

with empirical data.  For a second arrival inphase with the LOS arrival but only of half

amplitude, the mean TOA estimation error of root MUSIC was 20 m in the suburban case

and 40 m in the urban case.

The standard deviation of the TOA estimation error was a function of the SNR -

obviously decreasing as the SNR increased.  However, standard deviation was virtually

identical for all multipath delay spreads tested.  At 15 dB, the standard deviation of the TOA

estimation error was approximately 80 m and at 20 dB, approximately 45 m.

The phase of the second arrival, with respect to LOS, also affected TOA estimation.

Both the mean and standard deviation of the TOA error were lowest for a multipath phase of

0° and highest for 180°.  A phase difference of 180° between the two arrivals causes

destructive interference and fading of the received signal amplitude.  The effect on TOA

estimation is, therefore, more pronounced at lower SNR values.
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As expected, the smaller the amplitude of the second arrival with respect to the first,

the smaller the effect on TOA estimation.  For any value of multipath phase, the mean and

standard deviation of the TOA estimation error increased as the amplitude of the second

arrival increased.  Again, this was particularly true at lower SNR values.

The simulated root MUSIC TOA estimation errors were found to be normally

distributed.

9.2  Positioning Simulations

The purpose of the positioning simulations was to estimate the performance of

Cellocate on a city-wide scale with an existing cellular cell site network.  TOA estimation

error models based on the results of Chapter 5 and multipath models based on empirical data

were used to corrupt ranges from hypothetical cellular telephone locations to all cell sites.

An SNR threshold was used to decide which cell sites would participate in the positioning

process.

9.2.1  Geometry

The geometry of the Telus Mobility cellular network in Calgary, Alberta, was

analyzed by calculating the HDOP for a dense grid of hypothetical cellular telephone

locations.  The area of best geometry (lowest HDOP) was the region just outside the 2 km

radius urban zone of the city centre.  The HDOP was found to be 1 or less in this area.

Outside this first region to a radius of almost 12 km, was the next best area for geometry.  In

this region the HDOP was generally between 1 and 3.  Within the 2 km city centre zone the

HDOP was usually 5 or greater whereas at the edges of the 12  km radius the HDOP was

generally greater than 8.

In general, the HDOP was lowest and geometry strongest in those areas where a

large number of cell sites surrounded the point of interest.  Along the edges of the 12 km

radius, the number of cell sites is small and usually to one side of the point of interest.  This

begins to resemble the rural environment in which there are very few cell sites.  For a TDOA

system such as Cellocate to operate requires at least three cell sites to be involved.  In a
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rural environment three sites may not always be available.  A possible solution is to install

additional cell sites for positioning purposes only.  These ‘pseudo’ cell sites need not be

allocated voice channels for communication purposes.  They could merely monitor the

existing channels for positioning purposes.

On the whole, the geometry of the Telus Mobility network in Calgary is excellent.

Of the points for which a solution was found, over 50% had an HDOP of 1 or less and 80%

had an HDOP of 2 or less.  Expressed as a percentage of the total number of grid points

within a 12 km radius of the city centre, the values are 44% and 71% respectively.  These

results are based on the assumption that an average of 8 cell sites can ‘hear’ a cellular

telephone.  Although this average number is based on hand-off information from Telus

Mobility, its accuracy is not certain.  On the other hand, the simulations were performed for

a total of 36 cell sites.  Since the time of the simulations, the number of cell sites has

increased and is ever increasing due to the need for more cellular capacity.  As a result, the

geometry results obtained here, if not already realistic, will become even more realistic, to

the point of becoming conservative, as the density of cell sites increases.

9.2.2  Plane Intersection Simulation Results

Least squares requires an a priori position estimate to begin the iterative process.

Plane intersection, a closed form algorithm which estimates position from TOA differences,

was in general found to be capable of providing this position estimate.  A simulation run was

conducted over the entire 12 km radius test area using plane intersection to estimate

horizontal position.  The result was a horizontal error 67th percentile of 190 m.  The DRMS

was found to be 2784 m.

In general, the accuracy of plane intersection reported is sufficient for the purposes

of providing an initial position estimate to LS.  However, there may be cases when this is not

true.  Plane intersection requires at least 4 TOA observations for a horizontal position

estimate whereas hyperbolic trilateration models require a very minimum of 3.  When the

number of TOA observations is only 3, some other source must be found for the initial

position estimate.  Secondly, due to the small distances involved in the cellular positioning
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problem, it is possible for hyperbolic lines of position to cross each other in more than one

place.  These multiple intersections can occur very close to one another.  Depending on the

initial position estimate provided, it is possible that LS will converge to any of these multiple

crossings.  When these ambiguous solutions are close to one another, it is imperative that the

initial position estimate be as close as possible to the true solution.  For the two examples

investigated, the accuracy of the initial position estimate was required to be 700 m in one

case and 2 km in the other.

Fortunately, it is possible to detect the presence of two solutions with the

bifurcation parameter.  This parameter is easily computed for two hyperbola given the

positions of the cell sites and the TOA differences.  A positive value for the parameter

indicates the presence of two solutions.  Given the detection of two solutions, appropriate

steps may be taken to minimize the possibility of converging to two separate solutions

depending on the initial position used for LS.  This may involve the use of a closed form

algorithm of sufficient accuracy and not subject to solution bifurcation.  Reducing the weight

of, if not eliminating all together, the offending observations may also be required.

9.2.3  Least Squares Simulation Results

Using LS for positioning, the average 67th percentile of the instantaneous

horizontal error was 119 m.  This was based on 10 independent simulation runs.  The

average DRMS was found to be approximately 700 m because of a few outliers.  If the

assumptions and error models made in the simulations are correct, the Cellocate system is

able to meet the FCC specification of 125 m (67%) for the Telus Mobility network in

Calgary.

For each of the 10 simulation runs, there were a total of 7211 hypothetical cellular

telephone locations within a 12 km radius of the city centre.  On average, 10.2% of these

points were visible from less than 4 cell sites.  The positions of these points were not

estimated due to the use of plane intersection for providing the initial position estimate.  LS

diverged for 1.65% of those points for which 4 or more TOA observations were available.

The mean number of TOA observations was 8.2.
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Within the 2 km radius urban zone, the 67th percentile was 327 m.  In the 2 km to

12 km radius suburban zone, the 67th percentile was 116 m.  The principal problem in the

urban zone was geometry.  Although at least 3 cell sites were visible from every hypothetical

telephone location, the geometry was generally poor and this is reflected in the position

results.  In contrast, the geometry in the suburban zone was generally good with the

exception of the city edges where a large number of hypothetical locations were visible from

less than 4 cell sites.  Therefore, the two zones suffer from different problems - poor

geometry in the urban zone and a lack of coverage along the edges of the suburban zone.

The choice of the trilateration model was found to be essentially irrelevant.  The

67th percentile was equal for all the models used. There were differences in a very few cases

of poor geometry where numerical instabilities caused one model to converge and another to

diverge or converge to a very different solution. The choice of model may then be a function

of something other than solution accuracy.  For instance, when residuals are required for the

individual TOA observations, circular trilateration may be used without fear that accuracy is

being compromised.  For hyperbolic trilateration, sequential differencing is favored over

reference differencing although the advantage may be very slight.

Running the same 10 simulation runs again, but without TOA estimation error,

resulted in a 67th percentile of 52.3 m.  This reflects the level of positioning error due to

simulated multipath only.  In this context, multipath refers to the probability that the first

arrival does or does not follow a LOS path.  The same simulation runs performed with TOA

estimation error only, resulted in an accuracy of 99.1 m (67%).  Any effort to improve

positioning accuracy should concentrate on the improvement of TOA estimation since the

multipath error added accounts for the lack of a LOS path and this cannot be changed.

Positioning accuracy was found to improve until the standard deviation of the TOA

estimation error was reduced to approximately 50 m.  Any further improvement of the TOA

estimation process was swamped out by the multipath effect of no LOS path.

As expected, geometry was found to significantly affect position estimation

accuracy.  As HDOP decreases, positioning accuracy improves.  For those points with an

HDOP of 2 or less, the horizontal position accuracy was 94 m (67%).  This corresponds to
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80% of the points for which a solution was computed.  The conclusion is again made that,

given the assumptions of the simulations, the geometry over the majority of the test area is

sufficient to yield a position accuracy which meets the FCC specification.  In an urban

environment such as Calgary, Cellocate is capable of providing the position accuracy

necessary for enhanced 911 purposes.

9.3  Static Multipath Field Test

9.3.1  TOA Estimation Noise

The static multipath field test was designed in order to estimate the TOA estimation

noise in the Cellocate system.  Removal of the long term drift from the TOA differences

resulted in noise standard deviations ranging from 49 m to 113 m, with a mean of 79.5 m.  In

so doing, it is assumed that any static multipath is removed by the filtering and no dynamic

multipath exists.  The average standard deviation for an individual TOA estimate is,

therefore, 79.5 m / 2  = 56.2 m.  From this one may predict a horizontal precision of 56.2

m ×  HDOP.

The standard deviation of the noise varied from site to site.  It could not be

determined with the data collected in this particular test whether this was due to differences

in the receivers themselves or differences in the physical sites.  The propagation distances

ranged from 190 m to 220 m suggesting that the received SNR should have been roughly

equal for all receivers.  However, differences in noise standard deviations were also found in

the operational field tests.  In both tests, one of the receivers displayed higher noise levels.

One concludes that differences in terms of sensitivity exist between the four Cellocate

receivers tested.

A long term drift was also present in the TOA differences.  It is likely that this was

due to temperature dependencies in the RF components.  Filters with a group delay less

dependent on temperature will rectify this problem.

9.3.2  Plane Intersection Position Results
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Plane intersection was found to be very sensitive to the bias differences used to

correct the TOA differences.  Average bias differences derived from the data resulted in

positioning accuracy and precision on the order of kilometres. This is obviously not adequate

for the case at hand.  If epoch by epoch lowpass filtered bias differences were used instead, a

67th percentile of 56 m was achieved.  This is equivalent to the standard deviation of the

TOA estimation noise and sufficient for an initial position for LS.  This is true, however,

only when there is no long term drift in the biases.

9.3.3  Least Squares Position Results

In terms of positioning accuracy, LS was less sensitive to the bias differences used.

With average bias differences, LS achieved a horizontal error of 127 m (67%) and a

horizontal precision of 143 m.  Due to the use of average bias differences, the long term drift

of the dominant bias difference was visible in each of the estimated parameters as well as

each residual.  This again emphasizes the need to prevent long term drift due to temperature

dependence.

The observation residuals were found to be highly correlated with one another.

This was due to low redundancy and a high degree of symmetry in the geometry.

Calculation of each observation’s redundancy number found the observations to be poorly

controlled.  As demonstrated in further simulations, it is impossible to detect a large error in

one observation, when the observations are poorly controlled.  When the number of

observations was doubled, thereby changing the geometry as well as increasing the amount

of redundancy, the observations became better controlled.  Each observation’s residuals then

reflected the errors in that particular observation more accurately.

This was also found in the statistical testing of the residuals.  For low redundancy,

the statistical testing of each residual indicated the presence of a blunder.  However, the

blunder had only been introduced into one observation.  It was, therefore, impossible to

determine which observation contained the blunder.  With additional redundancy, it was

possible to identify the offending observation with statistical testing of the residuals.

Therefore, residuals should only be used as indicators of individual observation quality when



232

the observations are well controlled.  Redundancy numbers greater than 0.5 indicate

relatively well controlled observations.

With the use of lowpass filtered bias differences, LS achieved a 67th percentile for

horizontal position error of 105 m.  The horizontal precision and DRMS were both 118 m.

Recall that the expected horizontal precision for an HDOP of 1.95 was 110 m.  The position

results are unbiased, as indicated by the equivalence of DRMS and horizontal precision, and

approximately Gaussian due to the agreement of the DRMS and 67th percentile.  This was

obviously expected since filtered bias differences, derived from the data, were used.

These results tend to confirm those of the simulations conducted in Chapter 6.  In

the absence of multipath and for good geometry (HDOP ≤ 2) Cellocate is capable of a

positioning accuracy of approximately 100 m (67%).  However, it must be stressed that this

is dependent on the received SNR.

As expected, averaging of instantaneous position fixes results in an improvement in

positioning performance.  An instantaneous position fix was available every 8 seconds.

Averaging 15 position fixes over 2 minutes resulted in a horizontal precision of 20 m.  For

an operational system, instantaneous positions will be available every 2 to 3 seconds.  For

the configuration of the static multipath test, averaging over periods of 30 seconds will give

a horizontal precision of 20 m, a remarkable and critical result for emergency situations.

9.4  Operational Field Tests

9.4.1  Cellocate  Receiver and Site Biases

The Cellocate receiver biases were measured in the laboratory by connecting each

receiver, in turn, to a transmitter.  Subtracting the TOT from the TOA gave a measurement

of the receiver bias.  The main conclusion from this test was, as previously mentioned, that

the receiver biases are temperature dependent.  Each receiver required 10 to 15 minutes after

power-up before stabilizing to a constant bias.

When the Cellocate receivers were located in the Telus Mobility cell sites, the

combined receiver and site bias was measured in a similar manner.  With the transmitter

located next to the cell site antenna, the TOT was again subtracted from the TOA.  It is
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assumed that the biases measured in this way contain no multipath effects.  Before collecting

the TOT and TOA data, the receivers were allowed to warm up.  This resulted in no warm up

drift and less long term drift compared to the biases of the static multipath test.  The strictly

controlled temperature in the cell sites, as well as allowing the receivers to warm up, helped

to offset the temperature dependency of the RF filters in the receivers.  New hardware

designs include filters with group delay far less dependent on temperature.

9.4.2  Multipath Effects

From five static data sets covering three separate transmitter locations and two

separate days, it was possible to estimate relative amounts of multipath.  Differencing TOA

estimates between any two cell sites and subtracting the known range difference, resulted in

bias differences.  These bias differences were then lowpass filtered to remove the TOA

estimation noise.  Subtracting the previously measured bias differences from these filtered

bias differences gave an estimate of the multipath in the TOA differences.

From the above results it was possible to estimate the relative multipath effect

between TOA observations for each of the five data sets.  Assuming that the cell site judged

to have the least multipath had in fact none, the absolute multipath effect on any TOA

observation ranged from 30 m to 336 m.  This agrees with the empirical data of Turin et al.

(1972a) and the simulation multipath models of Chapter 6.  One may therefore conclude that

under the conditions encountered, the above method of estimating multipath is reasonable.

9.4.3  TOA Estimation Noise

An estimate of the TOA estimation noise was also made.  This was done by

subtracting the lowpass filtered bias differences from the raw bias differences.  The level of

the TOA estimation noise here was roughly 2.6 times higher than that of the static multipath

test.  This reflects the longer propagation paths here.  The average TOA estimation noise on

any individual TOA was 146 m.

9.4.4  Plane Intersection and Initial Position Accuracy
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Plane intersection was again found to be very sensitive to the bias differences used

to correct the TOA differences.  Using lowpass filtered, epoch by epoch, bias differences,

plane intersection achieved a position accuracy of 351 m to 982 m (67%).  This level of

accuracy resulted in the convergence of LS in 72% to 92% of all cases considered.

However, accurate bias differences are required if plane intersection is to be used for

providing initial positions.

9.4.5  Least Squares Position Results

Using the average measured bias differences, the position accuracy achieved with

LS ranged from 189 m to 287 m (67%).  This is 84 m to 182 m higher than that achieved in

the static multipath test.  One major reason for this difference is the propagation distances

and hence, received SNR.  As received SNR decreases, TOA estimation noise increases.

The mean TOA estimation noise on any individual TOA was 56 m in the static multipath

test.  In the operational field tests this figure was 146 m.

A second major reason for the difference in positioning results between the static

multipath test and the operational field tests is the bias differences used.  The lowpass

filtered, epoch by epoch bias differences used in the static multipath test accounted for the

biases in the receivers, any long term drift in those biases, and any static multipath.  The

average measured biases used in the operational field test only account for the biases in the

receivers and the cell site equipment.  Any static multipath remains in the TOA observations.

As indicated previously, these multipath effects ranged form 30 m to 336 m and manifested

themselves in the biased position results.

Therefore, aside from maintaining good geometry, there are two major factors

which determine whether Cellocate meets the FCC specification of 125 m (67%), namely

received SNR and system calibration.  Any effort to increase the received SNR will result in

lower TOA estimation noise and consequently more accurate TOA estimates.  Accurate

system calibration will account for the biases of the receivers and the cell sites.  If biases

based on particular cellular telephone locations can be determined, their use will also remove

much of the static multipath.  A possibility for a working system is to estimate position in
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two steps.  In the first step, generic biases for the cell sites are used to estimate the

telephone’s position.  Then, biases specific to the area in which the telephone is estimated to

be in, may be used to generate a second more accurate position estimate.

As in the case of the static multipath test, averaging the position fixes had a

significant impact on horizontal precision.  Averaging some 10 position fixes was found to

reduce the horizontal precision to about one third of its instantaneous value.  In an

operational system, 10 fixes should be available in 30 seconds or less.  Averaging over

approximately 30 seconds resulted in a horizontal precision of 50 m to 100 m for the five

data sets considered.  However, averaging does not reduce the effects of biases on position.

From an emergency point of view, and for the purposes of dispatching emergency units, such

a high level of precision may be critical.

9.5  Recommendations and Future Work

From this work recommendations may be made for an operational system as well as

for future work.  An important discovery made was the possibility of situations in which two

solutions to the hyperbolic trilateration equations exist.  These two solutions are often so

close that either may be deemed reasonable.  If the solutions are only 100 m apart, it may not

be critical which is arrived at.  However, remembering that the FCC requirement is 125 m

(67%), it becomes very important to converge to the correct solution as the solutions become

farther apart.  As detailed in Chapter 6, it is possible to detect the presence of two solutions

for a hyperbola pair.  Therefore, it is recommended that an algorithm be developed to

combine the observations is such a way as to minimize, if not eliminate, the possibility of

two solutions in these cases.

Related to the problem of two possible solutions is the accuracy of the initial

position provided to LS.  Closed form algorithms such as plane intersection are the

preferable source for the initial position.  Future work should include an investigation of

other closed form solutions in terms of accuracy and susceptibility to multiple solutions.
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In all cases, position estimates should be averaged where possible to produce a

more precise position estimate.  Averaging reduces the effect of noise as well as any

dynamic multipath due to motion of the telephone or reflecting objects.

In the event that relative biases instead of absolute biases are available to calibrate

the system, circular trilateration with TOA differences is the recommended trilateration

model.  This will allow for statistical testing of individual TOA observations and

consequently the detection of blunders.  It would also allow for the calculation of

observation redundancy numbers which indicate whether statistical testing of the residuals

will be able to isolate the observation containing the blunder.

Important for an operational system is some sort of overall reliability parameter for

the estimated position.  This parameter should incorporate information from a number of

sources such as the estimated parameter covariance matrix, statistical testing of the residuals,

an internal and external reliability analysis, the bifurcation parameter, HDOP, SNR, and the

amount of averaging performed.  Emergency personnel who respond to a 911 call will want

to know how much confidence they can place in the position estimate they are provided

with.

Differences in height between the cell sites and the transmitting source were

neglected in the field tests due to their small magnitude compared to the propagation

distances involved.  In an operational system, this will obviously not always be the case.  In

flat areas where it is probable that any telephone will be at or near a nominal height, the cell

site antenna heights can be accounted for in the calibration of the cell site biases.  In

downtown areas, however, there can be large height differentials.  The difference in height

between a telephone at street level and a cell site located atop an office building can easily be

on the order of 100 m and may account for the majority of the propagation distance.  In such

cases, the VDOP may be sufficiently low such that height could be estimated in addition to

horizontal position.  Cellocate should be tested in such environments in order to determine

its ability to estimate the three dimensional position of a cellular telephone.

Cellocate, as described herein, is configured for the AMPS cellular standard.  As

the analog world gives way to the digital, Cellocate must be adapted to work for other
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standards.  In North America, Code Division Multiple Access (CDMA) and Time Division

Multiple Access (TDMA) (IS-136) are being implemented whereas in other parts of the

world the Global System for Mobile Communications (GSM) is the dominant standard.

Adapting Cellocate to these different standards will ensure that it remains a leading edge

technology in the field of cellular telephone positioning.
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