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ABSTRACT

The characteristics of a rubidium clock and the relationship between the clock offset error

and position error were investigated. An adaptive filter algorithm and a rubidium clock

aided GPS navigation System were developed, based on the characteristics of the

rubidium clock. An integrated navigation system consisting of GPS with a rubidium

clock, a barometer and a gyro was designed. Decentralized Kalman filters were employed

and a software was developed to test the integrated navigation system. Two field tests

were conducted at Nose Hill Park, Calgary and in downtown Calgary, respectively. The

test results have shown that rubidium clock aided GPS is a practical approach; it can

improve positioning accuracy, especially vertical accuracy, significantly; it is able to

navigate using three satellites, and therefore, improve the navigation availability

significantly; the integrated navigation system developed herein can improve navigation

availability, for the case tested, by over 50%.
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NOTATION

Symbols:

A nominal amplitude
AZi the azimuth angle from the user to satellite i ( = 1, 2, ..., n)

a e
t

1 =
−

∆
τ

the parameter to be estimated
c speed of light
C j

correction to the pseudorange measurement for the satellite j
c tδ range clock offset error
c tδω range clock drift error
d least squares adjustments to parameters
d j

distance between the receiver and the satellite j
dρ range error induced by orbital error
dt satellite clock error
dT receiver clock offset
d ion ionospheric delay
d trop troposhperic delay
dTm receiver clock offset measurement
dT real receiver clock offset measurement
Eli the elevation angle from the user to satellite i ( = 1, 2, ..., n)
H design matrix
h height
ht true height
l observation vector
n number of all satellites in view
N sampling number
p range measurement
p(t) in-phase low-pass process
pref

j

pseudorange measurement at the reference station for the satellite
j

P j
corrected pseudorange measurement for the satellite j

prmt
j

pseudorange measurement at the remote station for the satellite j
q(t) quadrature low-pass process
rρ variance of the pseudo-range measurement
r&ρ variance of the Doppler measurement
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rb variance of the barometric height measurement
rt variance of the clock offset measurement
rg variance of the gyro heading measurement
Rx(k) auto-correlation function of the process xk

sm white noise spectral amplitude fo r Wm

ε ( )t amplitude low-pass noise process
t real clock offset
dt clock offset estimation error
∆T difference between the initial clock offset and the estimated

clock offset
Trx clock offset estimate via single point positioning estimation

V V VE N= +2 2

horizontal speed
VE GPS longitude velocity

[ ]v l b t g

T
v v v=

measurement errors of barometric height, clock offset and gyro
heading

VN GPS latitude velocity

[ ]vρ ρ ρ= v v n

T

1 L
pseudo-range measurement (white) noises

W white noise
Wg white noise drift
WG white noise driving process
Wm white noise driving process
Wmg driving white noise
Wk sampling value of the white noise at the time of t k t= ⋅ ∆
X GPS position and time solution
XECEF vector of errors in estimation of position and clock offset
x system state vector
x0 nominal point of linearization based on predicted position and

receiver time
xk sampling value of the height error at the time of t k t= ⋅ ∆
X k the value of the input signal at the time of t k

XLTP vector of errors in estimation of latitude, longitude, height and
clock offset

Y vector of range measurement residuals
Ye vector of range measurement errors
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Yk the value of the LPF output at the time of t k

Zp pseudo-range error

[ ]α α αxi yi zi directional cosines of estimated line-of-site between the user and
satellite i

εT receiver clock offset measurement error
λ u estimated latitude of the user
φ u estimated longitude of the user
γ ( )t complex envelope
φ( )t phase low-pass noise process
τ the time constant of the LPF
ρ real range between the satellite and the receiver
ε p receiver noise.
φ latitude
λ longitude
σ i

2
GPS range error variance for the i-th satellite i = 1,…,n

σT
2

receiver clock offset measurement error variance
τm correlation time
τ G correlation time
δ v m velocity of the barometric height error
∆t sampling interval
Ψ0 initial heading, which satisfies
δΨg gyro heading error
δωg gyro drift
δωg random bias drift
δωm first-order Gauss-Markov process drift
τ mg correlation time
δVE GPS longitude velocity error
δVN GPS latitude velocity error
σ E

2
variance of GPS longitude velocity error

σ N
2

variance of GPS latitude velocity error
σ σ σV E N

2 2 2= = variance of the GPS velocity error
δPE longitude position error
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Operators:
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CHAPTER 1
INTRODUCTION

It is well known that clocks are at the heart of the GPS. In order to ensure the stability of

transmission over several revolutions of the space vehicles and adequate tracking to

update the satellite orbit, and afford sufficient predictability in the clock’s performance,

very precise and stable clocks are installed on the satellites. In most GPS receivers, on the

other hand, inexpensive crystal clocks are used.

1.1 Role of Clocks in GPS Receivers

The primary measurements made by a GPS receiver are the times of arrival of the

satellite generated signals. Arrival time is measured with respect to the receiver clock

which is a stable oscillator and counter. Signal-to-noise considerations preclude direct

measurement of the arrival time of a particular PN code element edge. A replica PN code

sequence generator is made to run in phase with the modulation of the incoming signal by

a tracking loop. Simultaneously, the power recovered by the correlation of the incoming

signal against slightly advanced and delayed versions of the local replica are compared to

provide the tracking error indication. The arrival time may then be observed by

comparing the replica code timing with the receiver clock timing. Either the clock time

can be observed upon the occurrence of certain events of the replica, such as the first

edge of a data word, or the phase of the replica  relative to a hypothetical replica driven

by the receiver clock, such as 1 second ticks.

The time and frequency offsets of the receiver clock from the GPS time system and true

frequency are not critical, since these are determined from the navigation solutions. This

approach basically allows the use of an inexpensive crystal oscillator as the receiver

clock and makes GPS practical for wide use.
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Usually, and always to some advantage, a more sophisticated viewpoint is taken which

allows for utilization of additional inputs and thereby improving the solution in terms of

accuracy and reliability under unfavorable conditions. Even in the absence of external

inputs, there is a benefit to be obtained if the receiver clock is stable. It becomes possible

to predict what the clock offset will be, and the number of unknowns in the navigation

solution is reduced to three. If four measurements are still available, the redundant

measurement can be used to improve the accuracy, availability and reliability of the

solution. With encouraging developments in the time reference industry and a trend

toward a higher stability at lower prices, it is of interest to investigate the advantages of

receiver clock stability for GPS positioning and navigation.

Previous work on receiver clocks attempted to exploit higher stability for navigation and

receiver autonomous integrity monitoring (RAIM). When the satellite coverage is sparse

or the satellite geometry poor, “clock coasting” over relatively short periods has been

proposed to skip estimation of the clock offset [Sturza, 1984]. The clock offset is held

fixed at the last estimated value [Lee, 1993], or propagated forward in time using  model

parameters estimated before the period of poor coverage [McBurney & Brown, 1988].

When a low-cost atomic clock is added to a GPS receiver, the vertical accuracy and

navigation availability will be improved significantly [Murphy & Skidmore, 1994]. A

quadratic function model can also be developed to predict the receiver clock offset [Misra

et al., 1995a]. It is proven that clock coasting with an atomic clock would improve RAIM

availability [Lee, 1993]. Clock-aided RAIM, an effective approach based on receiver

clock modeling to predict its offset, is presented in [Misra et al., 1995b].

1.2 Research Objectives and Thesis Outline

This thesis investigates the performance of a rubidium clock aided GPS receiver and

determines the benefits of using a rubidium clock, while focusing on the improvement in

navigation accuracy and availability.
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The motivation for employing an atomic clock in a GPS receiver is that the timing is

precise and stable enough so that the receiver clock offset from GPS time can be assumed

known, avoiding its estimation. Therefore, GPS navigation can proceed by estimating

only the position coordinates (x, y, z), i.e., only three satellites are needed. If the receiver

clock offset is precisely known, the immediate question is in what environment and to

what extent the position accuracy will be improved. Chapter 2 will answer this question

by analyzing the relationship between clock offset error and position error, and looking

into the effect of satellite geometry on their relationship.

While a quadratic function is an effective model to estimate the clock offset on the basis

of GPS measurements, previous independent measurements are needed to estimate the

parameters of the quadratic function. The available number of independent measurements

depends upon the correlation time of the measurements. The error due to SA in GPS

range measurements has been observed to have a correlation time of about 3-4 minutes.

The correlation due to unmodeled  ionospheric delay, however, may persist for several

hours. In differential mode, the effects of both SA and ionosphere are substantially

removed, and the correlation time is reduced to about 1 minute. The need for a more

effective and practical model for the rubidium clock will be also addressed. In Chapter 3,

the oscillator model and measurements will be briefly reviewed, then the characteristics

of a rubidium clock are examined using precise post-mission precise satellite orbits and

clock corrections. Based on these characteristics, a rubidium clock model for both stand-

alone and differential GPS is developed. A practical navigation algorithm, in which the

clock offset is estimated by a sequential process, is developed in Chapter 4.

To further improve GPS navigation availability, the integration of rubidium clock aided

GPS with a barometer and a gyro is investigated in Chapter 5. The integrated navigation

system is aimed at overcoming the GPS outages for land vehicle navigation in urban

areas. The combination of precise clock aided GPS with a barometer is an ideal

integration. When the satellite geometry is good, the rubidium clock is used to improve
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vertical accuracy, and in turn, the calibration accuracy of the barometer. When the

number of visible satellites falls to two, the stable rubidium clock and the more

accurately calibrated barometer will provide the good measurements of clock offset and

height information, and navigation quality can still be maintained. The gyro is also

helpful over short periods of time, when there is only one visible satellite.

Field tests in both a controlled environment and downtown area were conducted to

evaluate the navigation performance of the rubidium clock aided GPS and the integrated

navigation system. Chapter 6 describes the tests and analyzes the results. Chapter 7 gives

conclusions and recommendations.
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CHAPTER 2

RELATIONSHIP BETWEEN CLOCK OFFSET ERROR

AND POSITION ERROR

Since the rubidium clock makes it possible to predict the receiver clock offset,

positioning accuracy could be enhanced through an improvement in clock offset

estimation. To understand why and to what extent the position accuracy can be improved

by rubidium clock aiding, the correlation between the clock offset error and position error

needs to be investigated.

2.1 Analysis of Correlation Coefficients

To explore the relationship between clock offset error and position error, it is necessary

to begin from the basic GPS navigation equation. In the Earth-Centered-Earth-Fixed

(ECEF) coordinate system, the linearized navigation equation is given as

Y H X= ⋅ , (2.1)

where Y = [ ]∆ ∆ ∆p p p n

T

1 2 . . .

    = range measurement residuals for satellite 1, 2, ... , n.

X = [ ]∆ ∆ ∆ ∆x y z T T

= difference between the initial position and time solution X  and the estimated

solution $X .

H =

−

−

−























α α α

α α α

α α α

x y z

x y z

x n yn z n

1 1 1

2 2 2

1

1

1

. . . . . . . . . . . . . . . . . . . .
= design matrix.

[ ]α α αxi yi zi  = directional cosines of estimated line-of-site between the user and

  satellite i.
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The pseudorange measurement errors and errors in estimation of the position and the

clock offset satisfy the same equation

Y H Xe ECEF= ⋅ , (2.2)

where Y e = [ . . . ]δ δ δp p p n
T

1 2

= range measurement errors for satellite 1, 2, ... , n.

X E C E F
Tx y z T= [ ]δ δ δ δ

= errors in estimation of position and clock offset.

In order to compute the horizontal and vertical error, the ECEF coordinate errors must

first be transferred to Local Tangent Plane (LTP) errors, defined as Latitude, Longitude

and Height errors at the estimated location, where the LTP is tangent to Ellipsoid. This

results in the new design matrix

H H TLTP ECEF LTP

n n n n n

El Az El Az El
El Az El Az El

El Az El Az El

= ⋅ =



















−>

cos cos cos sin sin
cos cos cos sin sin

...... ...... ...... ......
cos cos cos sin sin

1 1 1 1 1

2 2 2 2 2

1
1

1

,

where Eli  is the elevation angle from the user to satellite i ( = 1, 2, ..., n).

Azi  is the azimuth angle from the user to satellite i ( = 1, 2, ..., n).

TECEF LTP
T

u u u u u

u u

u u u u u
−> =

− −
−



















cos sin sin sin cos
sin cos

cos cos sin cos sin

λ φ λ φ φ
λ λ

λ φ λ φ φ

0
0 0

0
0 0 0 1

where λ u  is estimated latitude of the user

φ u  is estimated longitude of the user.

The error equation becomes

Y H Xe LTP LTP= ⋅ , (2.3)

where [ ]X L T P

T
N E H T= δ δ δ δ

= errors in estimation of latitude, longitude, height and clock offset,
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also written as

X G YLTP e= ⋅ , (2.4)

where G H H H= ⋅ ⋅−( )LTP
T

LTP LTP
T1  =



















g g g

g g g

g g g
g g g

N N N n

E E En

H H Hn

T T T n

1 2

1 2

1 2

1 2

. . .

. . .

. . .

. . .

.

Assume that the range measurement errors δ δ δp p p n1 2, , . . . ,  are all random
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respectively. The covariances of the clock offset error with latitude, longitude and height

errors are
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The correlation coefficients of the clock offset error with the latitude, longitude and

height errors, which will be referred to as latitude-time, longitude-time and height-time

correlation coefficients respectively,  are
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(2.8)

They indicate the correlation between the clock offset error and the coordinate errors at

each epoch. The larger the correlation coefficients, the more improvement in position

accuracy the rubidium clock aided GPS can obtain by improving the clock offset

estimation. However, the correlation coefficients between the clock offset and position

errors in the horizontal component can be positive or negative over a period of time. They

are the function of the DOPs and time.
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2.2 Geometry and Correlation Coefficients

The theoretical expressions for the above correlation coefficients are complex and

clumsy, as is the satellite geometry. It is difficult to see the effect of the satellite geometry

on the correlation coefficients. A set of data and results of a static test are used to

demonstrate the relationship between the clock offset error and the position error. This

static test will also be used in later chapters to show the performance of the rubidium

clock aided GPS.

2.2.1 Static test description

The static test was conducted on December 20, 1995 in Calgary. Two single-frequency

GPS receivers, namely NovAtel GPSCards (10 channels), were modified to take an input

from external atomic oscillators, one rubidium and the other a cesium. The antenna for

the receiver with the rubidium clock was placed on a pillar, whose coordinates were

precisely known in WGS84, on the roof of the Engineering Building at the University of

Calgary. The other antenna for the receiver with the cesium clock was placed on the roof

of the NovAtel Building, some 10 km away. L1 code measurements at 1 second intervals

were collected over 3 hours and 45 minutes. Both set-ups employed chokerings to reduce

multipath.

Single point  positioning results were computed using the C3NAVTM software (Cannon et

al 1995). A one second processing interval was used, and carrier phase smoothing of the

pseudorange measurements was performed. C/A code position solutions were computed

using an elevation cutoff angle of five degrees. Troposphere corrections were included in

all processing. The data presented in this chapter was collected by the receiver equipped

with the rubidium clock.
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Figure 0.1 Height-time correlation coefficient and VDOP during the static test

2.2.2 Result analysis

Figure 2.1 presents the height-time correlation coefficient and VDOP during the static

test. The height-time correlation coefficient always stays positive and close to 1. The

larger the VDOP, the more closely the height-time correlation coefficient approaches 1.

This is because all satellites are above the receiver, hence, the projection of range errors

which result from the clock offset error on the height axis is always positive. The larger

the VDOP, the more satellites are in high elevation, and the larger the projection of range

errors on the height axis. Figure 2.2 presents the number of visible satellites. During GPS

time of 331529 to 334260 seconds, the number of visible satellites falls down to six ,

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)
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Figure 0.2 The number of visible satellites during the static test with cutoff angle of
five degree

and the VDOP reaches its largest value. Figure 2.3a shows the satellite constellation

during GPS time of 329422 to 329883 seconds, when the VDOP is better; Figure 2.3b

shows the satellite constellation during GPS time of 331529 to 334260 seconds, when the

VDOP is poorer.

Figure 2.4 and Figure 2.5 present the latitude-time and longitude-time correlation

coefficients during the test. Since the satellites can be in any direction, the projection of

range errors, which result from the clock offset error, on the latitude axis and/or longitude

axis can be both positive and negative. The latitude-time and longitude-time correlation

coefficients, therefore, change around zero. It is interesting to notice that the latitude-time

correlation coefficient remains large and positive during GPS time of 331529 to 334260

seconds. Examining Figure 2.3b again, we find that most of satellites are on the north

side during this period of time. It is obvious that the less the number of visible satellites,

the lower the likelihood the satellite constellation keeps symmetry in latitude and/or

longitude.

GPS Time (s)
Local Time (h)



12

 (a) the satellite constellation during (b) the satellite constellation during

     329422 to 329883       331539 to 334260

Figure 0.3 The satellite constellation during the static test

From the above analysis, we can summarize with the following conclusions:

1)  The vertical error is almost linearly correlated to the clock offset error. The larger the

VDOP, the more correlated the two errors.

2)  The latitude error and longitude error is nearly independent of the clock offset error

when the satellite geometry is good. The poorer the satellite geometry, the more

likely the horizontal error is correlated to the clock offset error.

3)  If the rubidium clock aiding can improve the clock offset estimation, it will definitely

improve the vertical accuracy. Under poorer satellite geometry, it is also likely to

improve the horizontal accuracy.
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Figure 0.4 The latitude-time correlation coefficient and NDOP during the static test

Figure 0.5 The longitude-time correlation coefficient and EDOP during the static
test
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Local Time (h)
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CHAPTER 3
CHARACTERISTICS OF RUBIDIUM CLOCK

It is necessary to investigate the characteristics of the rubidium clock before modeling it

for GPS navigation. While the GPS time system is very precise, the receiver clock offset

solution is not accurate enough to evaluate the rubidium clock performance when SA is

on. With post-mission precise orbits and satellite clock corrections, the receiver clock

offset solution can be used to estimate the rubidium clock  errors.

3.1  The Oscillator Model

The signal of the sinusoidal oscillator is a band-pass signal, centered about the carrier

frequency f 0  . It can be modeled by a phasor (Bedrosian, 1962; Bernier & Gardiol,

1985), i.e.

Y t A t j f t( ) ( ) exp( )= ⋅ ⋅γ π2 0 (3.1)

where A is nominal amplitude,

γ ( )t is the complex envelope.

The real signal s(t) is the real part of the phasor

Y t s t js t( ) ( ) ( )= + (3.2)

where s t( ) is the Hilbert transform of s(t).

γ ( )t is a low-pass complex random process that represents the information modulated

on the carrier (Papoulis, 1984)

γ ε φ( ) ( ) ( ) [ ( )]exp( ( ))t p t jq t t j t= + = +1 (3.3)

where p(t) is an in-phase low-pass process

q(t) is a quadrature low-pass process

ε ( )t is an amplitude low-pass noise process

φ( )t is a phase low-pass noise process.
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In the case of precision or low-noise oscillator, that is

E t

E t

{ ( )}

{ ( )}

φ

ε

2

2

1

1

<<

<<






, (3.4)

the phase noise may be expressed as

exp( ( )) ( )j t j tφ φ≈ +1 . (3.5)

The signal of the sinusoidal oscillator becomes

Y t A t j t j f t( ) { ( ) ( )] exp( )= ⋅ + + ⋅1 2 0ε φ π . (3.6)

One may obtain

p t t
q t t

( ) ( )
( ) ( )

= +
=





1 ε
φ

. (3.7)

The phase noise and the amplitude noise are orthogonal. This property enables the

independent demodulation of the phase and amplitude noise process by synchronous

demodulation. For the purpose of frequency stability analysis, the amplitude noise can be

neglected and it is the phase noise that is relevant.

The time error process x(t) can be defined as the normalized phase difference

accumulated between an oscillator used as a clock and a reference oscillator considered

as errorless. It is related to the phase noise process by

x t
t
f

( )
( )

=
φ

π2 0

(3.8)

where f 0  is the nominal frequency of the reference oscillator.

The normalized instantaneous frequency deviation y(t) is defined as

y t
dx t

dt f
d t

dt
( )

( ) ( )
= = ⋅

1
2 0π

φ
. (3.9)

It is a frequency “deviation” in the sense that being associated with the complex

envelope, it does not describe the instantaneous frequency of the oscillator signal s(t), but

the frequency deviation with respect to f 0 .
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The instantaneous frequency f(t) is related to y(t) by the following

y t
f t f

f
( )

( )
=

− 0

0

. (3.10)

The normalized frequency deviation is conserved after frequency multiplication or

division and it also enables the direct comparison between the frequency instability levels

of two oscillators of different nominal carrier frequencies.

3.2 Time Domain Measurement

3.2.1 The true variance

The logical way to characterize frequency stability of an oscillator would be the true

variance of the frequency samples (Sydnor & Allan, 1996):

I E y
N

yk i
i

N
2 2 2

1

1
( ) { }τ = =

=
∑ . (3.11)

The time series yk  is non-stationary, and the mean squared value of y t( , )τ , which

defines the true variance, diverges, i.e., becomes infinite when it is averaged over an

infinite time. This is due to the non-stationary model representing the oscillator. This

problem led to the definition of more appropriate measurements of frequency stability in

the time domain, namely the Allan variance.

3.2.2 The Allan variance

The traditional or classical Allan variance is defined as (Allan, 1961)

σ τy k kE y y2
1

21
2

( ) {( ) }= − − . (3.12)

With N successive samples of x(t) and the sampling intervalτ , the Allan variance may be

written as

σ τ
τy i i i

i

N

N
x x x2

2 2 1
2

1

21
2 2

2( )
( )

( )=
−

− ++ +
=

−

∑ , (3.13)

where x i  is the time series of time error acquired.
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3.3 GPS Time Standard

In terms of navigation accuracy, one nanosecond of time error is equivalent to

approximately 0.3 metres of range error; this means that precision timing and frequency

control are essential to the GPS system. All system timing requirements are synchronized

with GPS system time, which is maintained by the Master Control Station (MCS) through

the use of a set of highly accurate cesium clocks. Precision timing is maintained in the

space vehicles by the use of highly stable atomic clocks (cesium and rubidium

oscillators), which have stability of about 1 part in 1013 over a day (Martin 1980). The

GPS system time, therefore, can be used to measure the time error of a rubidium clock.

To evaluate a rubidium clock by GPS system time, the clock is used in a phase-loop with

a GPS receiver or as the oscillator of a GPS receiver. The receiver clock offset is with

respect to GPS system time so it is this time offset which must be determined.

When SA is on, however, the accuracy of the receiver clock offset solution is

approximately 340 nanoseconds (95%), which equates to a 2DRMS horizontal accuracy

of 100 m. The receiver clock offset solution is not accurate enough to evaluate the atomic

clock.

With post-mission precise orbits and satellite clock corrections, which are provided by

NRCan (Kouba & Popelar, 1994, Gao et al. 1994), the height estimate is at the 2 m

accuracy level when using a low code noise  receiver (Henriksen et al. 1996, Skone et al.

1996). Since the height error is almost linearly correlated to the receiver clock offset

error, the receiver clock offset has a similar accuracy level, which is approximately

equivalent to 7 nanoseconds. The receiver clock offset solution with post-mission

information is accurate enough to evaluate the rubidium clock.
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3.4 GPS Receiver with an External Rubidium Clock
The GPS receiver with an external rubidium clock tested herein is composed of a

NovAtel GPSCardTM 951R L1 GPS receiver, an Efratom Model FRK-LLN Rubidium

clock, a Silicon Valley GPS Reference Frequency Generator and a PC computer, as

shown in Figure 3.1.

Figure 0.1 GPS receiver with an external rubidium clock

Table 0.1 Performance of NovAtel GPSCardTM 951R GPS receiver

Frequency L1, 1575.43 MHz
Code tracked C/A code (SPS)
Channels 10
Position Accuracy 15 metres CEP (SA off), GDOP<2

40 metres CEP (SA on)
1-5 metres CEP differential with standard reference
station

Time Accuracy (relative) 50 nanoseconds (SA off)
250 nanoseconds (SA on)

Pseudorange Measurement
Accuracy

10 cm RMS, no multipath, C/N>44 dBHz
25 cm RMS in multipath environment with Choke Ring

Single Channel Phase
Accuracy

3mm RMS, C/N>44 dBHz
Loop BW=15 Hz

Differential Channel Phase
Measurement Accuracy

0.75  mm RMS, 1 second smoothed, no multipath,
C/N>44 dBHz

Velocity, Dynamics 515 metres per second
Acceleration, Dynamics 4g (sustained tracking)
Position Update Rate 10 solutions per second (100 msec)
Raw Data Availability Rate 20 data per second (50 msec)
Time to First Fix 70 seconds typical
Re-acquisition 3 seconds typical
Height Measurements up to 18,288 metres (60,000 feet) maximum

Rb Clock Freq. Generator GPS Parallel
I/O

CPU
    IBM Compatible Computer
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The NovAtel GPS receiver’s patented C/A code Narrow CorrelatorTM technology

achieves pseudorange accuracy with near P-code performance and provides the robust

resistance against errors introduced by multipath signals. Table 3.1 summarizes the

receiver’s performance (NovAtel 1994).

The Efratom Model FRK-LLN Rubidium clock is a compact, atomic resonance-

controlled  oscillator, which provides an extremely pure and stable sinusoidal signal of 10

MHz. Table 3.2 lists the performance specification for the rubidium clock (Ball Efratom

1989).

Table 0.2 Specifications for Efratom Model FRK-LLN rubidium clock

Output 10 MHz sine wave 1.0 Vrms into 50 ohms
Accuracy Factory set to 10.0 MHz ± 5E-11 at shipment
Signal to Noise (SSB 1 Hz
BW)

120 dB at 10 Hz and 147 dB at 100 Hz from carrier

Warm-up Characteristics ≤ 10 minutes to reach 2E-10 at 25 °C ambient
Retrace ± 2E-11
Long-term Stability <4E-11/month
Sort-term Stability 3E-11      τ =1 sec

1E-11      τ =10 sec
3e-12       τ =100 sec

Trim Range ≥ 2E-9
Voltage Variation <1E-10/10% change
Operating Temperature <3E-10 from -25 °C to +65 °C
Magnetic Field <4E-13/ AM −1  (3E-11/0.1 millitesla)
Altitude <1E-13/mbar (sea level to 21,000 m)
Humility 95% MIL-5422F

The GPS Silicon Valley GPS Reference Frequency Generator provides an externally

generated reference clock signal for the NovAtel GPSCardTM. The card generates the

20.473 MHz reference signal required by the GPSCardTM (GPS Silicon Valley 1994).

The signal is phase locked to the rubidium clock. This is necessary because the

GPSCardTM does not accept the 10 MHz output of the rubidium clock.
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3.5 Evaluation of Rubidium Clock by Using Post-mission Information

The data used herein is that collected in the static test described in Chapter 2. All point

positioning results were computed using the C3NAVTM software and processed as

previously described. The elevation cutoff angle was changed to ten degrees. Broadcast

and post-mission satellite orbits and clock corrections were used respectively.

Section 4.1 will discuss rubidium clock modeling and Figure 4.1 shows the clock offset

estimates using broadcast information and post-mission information for the rubidium

clock. The fluctuation of the clock offset estimates using broadcast information is mainly

the result of SA. Post-mission precise orbits and clock corrections eliminate SA. The

clock offset estimates using post-mission information become very smooth.

Table 0.3 Comparison of specified Allan Variance with measured Allan Variance by
GPS post-mission information for the rubidium clock

Sampling Interval (s) Specification Measured
1 3E-11 4.8E-10
10 1E-11 1.4E-10
100 3E-12 2.6E-11
300 N/A 8.4E-12
500 N/A 3.4E-12
1000 N/A 2.9E-12

Table 3.3 summarizes the results of evaluation of the rubidium clock. When the sampling

interval is less than 300 seconds, the measured Allan variance of the rubidium clock is

larger than the specifications provided by the manufacturer due to the GPS measurement

noise. With the increase of sampling interval, the effect of the GPS measurement noise

gradually decreases. On the other hand, the Allan variance for the rubidium clock is

almost constant when the sampling interval is greater than 100 seconds and less than one

day (Ball Efratom Division 1989). The measured Allan Variance approaches the

specification provided by the manufacturer. It is believed that the appropriate sampling

interval for evaluating the long term stability of the rubidium clock in this case is 500

seconds.
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CHAPTER 4

RUBIDIUM CLOCK AIDED GPS

It was demonstrated in Chapter 2 that an improvement in the clock offset estimation will

improve the position accuracy. The problem to be solved now is how to estimate the

clock offset more accurately. With a knowledge of the characteristics of the rubidium

clock, the proper modeling of the clock can be proposed for GPS navigation.

4.1 Rubidium Clock Modeling for Stand-alone GPS

In general, we cannot expect to know the true receiver clock offset. But we can estimate

it from GPS measurements over a time period consistent with the stability characteristics

of a given clock. How well and how far ahead such clock behavior can be predicted

depends upon the stability characteristics of the clock.

The rubidium clock is a very stable clock. Figure 4.1 presents behavior typical of the

rubidium clock using successively the clock offset solutions estimated with post-mission

precise satellite orbits and clock corrections, and the broadcast satellite orbits and clock

corrections respectively. The 430 nanoseconds bias of the reference clock, which is used

to produce precise satellite clock corrections at the Algonquin ACS reference station with

respect to GPS time is removed in Figure 4.1 (Héroux, 1997).

The clock offset solution with the post-mission information basically describes the

characteristics of the rubidium clock with an accuracy of two metres (7 nanoseconds). It

is nearly a straight line with a slow drift. In real-time, however, only the clock offset

solution with broadcast information and C/A code is available for the users without

encryption  help needed to remove SA. This solution, degraded mainly by the SA,

wanders around the real clock offset. The effect of SA on the clock offset estimate is

much similar to mixing of interference, which consists of higher frequency components,
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with the slowly drifting clock offset. In other words, the clock offset measurements made

from GPS contains the interference with higher frequency components. Since SA is an

intentional manipulation of both the navigation message orbit data and the satellite clock

frequency, its effect on height estimate, the height error sequence, has been observed to

make the mean height estimate error approach zero over a long enough period of time.

We have proven that the clock offset error is almost linearly correlated to the height error.

The mean of the clock offset error made from GPS, therefore, approaches zero, i.e., the

mean of the clock offset estimates made from GPS is approximately the real clock offset.

Figure 0.1 Rubidium clock offset solutions estimated with the post-mission
information and broadcast information, respectively

In order to estimate and predict the clock offset from GPS measurements, the problem

becomes how to estimate the mean of the measurements from the noisy signals. One of

the practical and efficient solutions is to use a low-pass filter (LPF). A first-order low-

pass filter, shown in Figure 4.2, is a practical scheme to obtain the mean of a signal.

Given a proper cut-off frequency ( f c =
1
τ

), the LPF will cut off all the components of the

input signal with the frequency higher than the cut-off frequency, and output the direct

component of the signal, i.e., the mean of the signal. The discrete digital formula for this

LPF is (Damper, 1995)

Estimated with
the post-mission
information

Estimated with
the broadcast
information

GPS Time (s)
Local Time (h)
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where X k is the value of the input signal at the time of t k ,

Yk  is the value of the LPF output at the time of t k ,

τ  is the time constant of the LPF.

         

 Figure 0.2 Block diagram of first-order Low-pass Filter

The time constant τ  of the LPF gives the cut-off frequency. Noting that the average

period of the alternating components is around 500 seconds, we set the time constant

τ  at 1200 seconds. At the first epoch (k=0), Y X0 0= . It will take 3τ  (3600 seconds) for

Figure 0.3 Flow chart of the algorithm for the adaptive LPF
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the LPF to reach the mean of the input signal. To adapt the LPF to the mean of the input

signal faster, an adaptive time constant LPF is implemented. The algorithm of the

adaptive LPF is shown in Figure 4.3. At start, a small initial value τ 0 is given to the

time constant, then the time constant τ  is increased by a step of d at every epoch, until τ

= 1200 when the time constant is held fixed.

Figure 4.4 presents the clock offset estimated by the LPF from the GPS measurements. It

takes approximately 2000 seconds for the LPF to yield an estimation error less than 10%

of the GPS measurement error. Figure 4.5 presents the clock offset estimated by the

adaptive LPF from the GPS measurements. It takes 900 seconds  for the adaptive LPF to

yield an estimation error less than 10% of GPS measurements. The adaptive LPF is more

effective than the LPF to reach the mean of the GPS measurements.

Figure 0.4 Clock offset estimated by the LPF from the GPS measurements

Estimated by the LPF

GPS Time (s)
Local Time (h)
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Figure 0.5 Clock offset estimated by the adaptive LPF from the GPS measurements

4.2 Rubidium Clock Modeling for Differential GPS (DGPS)

The adaptive LPF is an efficient means to estimate the clock offset from GPS

measurements in stand-alone mode. This method can be directly used in differential

mode, but the implementation is more complicated.

4.2.1 Procedure of Differential GPS (DGPS)

DGPS requires a reference station at a known location that receives the same GPS signals

as does the remote user. This reference station processes its GPS measurements,

calculating pseudorange and pseudorange rate errors with respect to its precisely known

location, and then transmits these corrections to remote users in the area. The remote

users then apply these corrections to their measurements thus canceling all common

errors.

C3NAVTM, developed at the University of Calgary (Cannon et al., 1995), is a typical GPS

navigation software which is able to process data using between receiver single

difference, carrier phase smoothed code measurements. In C3NAVTM, the procedure to

generate the corrections to pseudorange measurements is illustrated in Figure 4.6.

Estimated by the adaptive LPF

GPS Time (s)
Local Time (h)
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Figure 0.6 Generation of pseudorange corrections with C3NAVTM

At each epoch the clock offset is estimated via single point positioning estimation. Then,

the distances between the receiver and all satellites in view are calculated. Finally,  the

corrections to the pseudorange measurements are generated with the following formula:

C d p cTj
ref
j

ref
j

rx= − + , (4.2)

where C j  is the correction to the pseudorange measurement for satellite j,

d ref
j  is distance between the receiver and satellite j,

pref
j  is a pseudorange measurement at the reference station for satellite j,

Trx  is the clock offset estimate via single point positioning estimation,

c is speed of light,

j = 1, 2, ... , n,

where n is  the number of all satellites in view.

At the remote station, the corrections generated by the reference station are applied to the

pseudorange measurements

P p Cj
rmt
j j= + , (4.3)

where P j is the corrected pseudorange measurement for the satellite j,

 derive clock offset estimate via
single point positioning

calculate the distances between
the receiver and satellites

generate corrections of
pseudorange measurements
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prmt
j is the pseudorange measurement at the remote station for the satellite j.

With the corrected pseudorange measurements, the remote user's coordinates and clock

offset can be estimated via least squares.

4.2.2 Remote User's Clock Offset Estimate

The coordinates of the receiver at the reference station are precisely known in WGS84.

Therefore, the clock offset Trx   can be estimated by either normal single point positioning

estimation (4-D estimation), or single parameter estimation with fixed coordinates (1-D

estimation). One may write the clock offset estimate as

Trx  = t + dt , (4.4)

where t is real clock offset, dt is the clock offset estimation error, and the corrections to

the pseudorange measurements as

C d p ct cdtj
ref
j

ref
j= − + + . (4.5)

At the remote station, the corrections generated by the reference station are applied to

correct the pseudorange measurements

P p C p d p ct cdtj
rmt
j j

rmt
j

ref
j

ref
j= + = + − + + . (4.6)

In the following, the corrections with the clock offset estimate via 4-D estimation will be

referred to as  4-D estimation corrections, and the corrections with the clock offset

estimate via 1-D estimation will be referred to as 1-D estimation corrections. It is obvious

that the clock offset estimation error dt using 1-D estimation will not be the same as that

using 4-D estimation.

The linearized navigation equations Eq. (2.1) may be written as

Y H X= −1 1 c T∆ , (4.7)

where [ ]X 1

T
x y z= ∆ ∆ ∆
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                 = directional cosine matrix of the estimated line of site(LOS).

∆T  = difference between the initial clock offset and the estimated clock offset.

Assume that the reference station time is synchronized to GPS time, that is, the clock

offset estimation error dt  in Eq. (4.4) is 0. The corrections to the pseudorange

measurements become:

C d p ctj
ref
j

ref
j

0 = − + (4.8)

and the corrected pseudorange measurements are

P p d p ctj
rmt
j

ref
j

ref
j

0 = + − + . (4.9)

With the above corrected pseudorange measurements, the solution for [ ]x y z T
T

0 0 0 0

can be derived from Eq.(4.7). The accuracy of this solution depends upon the DOP and

the variances of the corrected pseudorange measurements.

In practice, it is very difficult to synchronize the reference station's time to GPS time. The

clock offset of the receiver located at the reference station is usually estimated via 1-D or

4-D single point positioning estimation, that is, via Eq.(4.4) with dt ≠ 0 .

From Eq.(4.4) we note that all the corrections for the satellites in view have the same

clock offset estimation error at each epoch. The pseudorange measurement corrections

for SV j are

C d p ct cdt C cdtj
ref
j

ref
j j= − + + = +0 (4.10)

where C j
0 is pseudorange measurement corrections for the satellite j when dt = 0.

The corresponding corrected pseudorange measurement is
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P p d p ct cdt P cdtj
rmt
j

ref
j

ref
j j= + − + + = +0 , (4.11)

where P j
0  is corrected pseudorange measurement for the satellite j when dt = 0.

It is straightforward to conclude from Eq. (4.7) that if the solution [ ]x y z T
T

0 0 0 0

satisfies that equation with P j
0 , the solution [ ]x y z T dt

T

0 0 0 0 −  will also satisfy the

equation with P cdtj
0 + . In other words, the remote user's clock offset estimate entirely

absorbs the clock offset estimation error produced at the reference station. Therefore, the

remote user's position accuracy is the same with either 1-D estimation corrections or 4-D

estimation corrections, while the 1-D clock offset estimation error is not equal to that of

4-D estimation.

The remote user's clock offset solution is now with respect to the clock offset at the

reference station, which is referred to as time base. Depending upon how the clock offset

solution is derived at the reference station, the effective time base will vary with respect

to GPS time.

The remote user's clock offset estimation error is made up of two parts: the estimation

error with respect to the time base of the reference station and the time base error with

respect to GPS time. The first part of the clock offset estimation error is at the same level

as the position error of DGPS. This is the case when the reference station's time is

synchronized to GPS time. The remote user's clock offset estimation error depends upon

the TDOP and the variances of corrected pseudorange measurements. The second part of

the clock offset estimation error depends upon how the time solution at the reference

station is derived, namely via 1-D or 4-D estimation, and the level of SA.

The clock offset estimation error using the 4-D method, or normal single point

positioning estimation, is caused directly by the errors of pseudorange measurements,

which result from Selective Availability errors, ionospheric delays, tropospheric delays,
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ephemeris errors and satellite clock errors etc. In 1-D estimation, however, a clock offset

solution is maintained at the reference station that drives the average  of the corrections

of all satellite in view to zero, under the assumption that the means of all errors are zero.

The errors of pseudorange measurements are averaged.  It is obvious that the clock offset

estimate via 1-D estimation is better than that via 4-D estimation, assuming that the

WGS84 coordinates are precisely known.

Figure 4.7 through Figure 4.9 demonstrate the relationship between the clock offset

solution at the reference station and that at the remote station. All the data were collected

during the static test described in Chapter 2. Figure 4.7 presents the clock offset estimate

(time base) at the reference station via 1-D estimation using broadcast information. The

receiver clock at the reference station is a cesium clock which is more stable than the

rubidium clock. The time base in Figure 4.7 is relatively noisy due to the effect of SA

over a period of four hours. Figure 4.8 shows the clock offset solution estimated at the

remote station using differential corrections, which is generated using the time base as

shown in Figure 4.7. This solution is with respect to the time base. Figure 4.9 presents the

difference between the clock offset solution at the remote station and the time base at the

reference station. This difference is similar to the clock offset estimate using post-mission

information (see Figure 4.5) which basically reflects the remote receiver clock’s actual

drift  with respect to GPS time. There is, however, an 80 metres bias between the two

estimates because the time base wanders around -80 metres. It is reasonable to believe

that the real clock offset is smoother than the curve shown in Figure 4.9 which include a

clock offset error. This clock offset error results from the residual effect of SA, difference

of ionosphere and troposphere etc., and only this error is correlated to the position errors

as analyzed in Chapter 2. As will be shown later, the cesium  and rubidium clocks have

similar linear drift characteristics over the time interval tested.
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Figure 0.7 Time base estimated via 1-D estimation at a reference station equipped
with a cesium clock

Figure 0.8 Rubdium Clock offset solution at the remote station using differential
corrections

Figure 0.9 Difference between the remote clock offset solution and the time base
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GPS Time (s)
Local Time (h)
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4.2.3 Considerations on the clock at the reference station

 In order to apply the adaptive filter to DGPS, it is necessary to separate the remote clock

offset estimation error with respect to the time base from the time base error with respect

to GPS time. If the time base is estimated via 1-D or 4-D estimation using broadcast

information, the time base estimation error is quasi-random since SA is quasi-random

over a sufficiently long period of time. It is difficult to predict the time base error.

When very stable clocks, such as cesium or rubidium clocks, are used at both the

reference and remote station, the time base can be simply fixed, i.e. substitute Trx  in

equation (4.2) with a constant. At the remote station, the linearly changing component of

the clock offset solution is the effect of the drifts of both the clock at the reference station

and the clock at the remote station, and the high frequency component is the clock offset

estimation error with respect to the time base. The two errors can be separated by a low-

pass filter. Figure 4.10 presents the clock offset solution at the remote station using

differential corrections with the time base fixed ( Trx  was fixed at -80 metre) at the

reference station. Figure 4.11 shows the clock offset estimated by the adaptive LPF from

the GPS measurements. In the next section, it will be shown that the filtered clock offset

from the GPS measurements in differential mode is more accurate than direct

computation using GPS measurements.

When a less stable clock, such as TCXO, is used at the reference station, the clock drifts

rapidly and in a non-linear manner. The time base at the reference can not be fixed. If the

receiver at the reference station could access the Y code or precise satellite orbits and

clock corrections, the time base could be estimated with an accuracy of better than 10

nanoseconds at each epoch. Figure 4.12 shows this is possible by presenting the time base

estimated with post-mission precise satellite orbits and clock corrections. Generated with

the precise time base, the pseudorange corrections are applied to solve the clock offset at

the remote station as shown in Figure 4.13. The adaptive LPF can still be applied to

reduce receiver and atmospheric noise. The data used in Figure 4.14 and 4.15 were

collected at Nose Hill Park, Calgary. The test will be described in detail in Chapter 6
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Figure 0.10 Rubidium clock offset solution at the remote station using the
differential corrections with the fixed time base at the reference station with a

cesium clock

Figure 0.11 Clock offset estimated by the adaptive LPF from GPS measurements in
differential mode

and referred to as the Nose Hill test. A TCXO clock at the reference station and a

rubidium clock at the remote station were used. The TCXO clock is that used internally

in the NovAtel 951R receiver. Figure 4.14 presents the clock offset solution at the remote

station with differential corrections using the time base calculated with broadcast

information by 1-D estimation. The remote clock offset changes rapidly because the

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)
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effect of SA enters into the time base estimation and in turn affects the remote solution.

Figure 4.15 depicts the remote clock offset solution with differential corrections using the

time base with post-mission precise satellite orbits and clock corrections by 4-D

estimation. The remote clock offset becomes smooth and the adaptive LPF can be

applied. If SA was off, the use of a TCXO clock with broadcast ephemeris at the

reference station would be sufficient.

Figure 0.12 Cesium time base estimated with post-mission precise satellite orbits
and clock corrections at the reference station

Figure 0.13 Rubidium clock offset solution at the remote station using the
differential corrections generated with the reference station cesium time base

estimated with post-mission information
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Figure 0.14 Rubidium clock offset estimate at remote with differential corrections
using a reference station TCXO time base solved by 1-D estimation with broadcast

information

Figure 0.15 Rubidium clock offset solution at remote with differential corrections
using a reference station use TCXO time base solved by 4-D estimation with post-

mission information

4.3 Navigation Algorithm Design for Rubidium Clock Aided GPS

Usually, the GPS navigation algorithm used to estimate point solutions is either a least

squares or Kalman filtering algorithm. This section will discuss the least squares method

and leave the Kalman filtering algorithm to Chapter 5.

GPS Time (s), Local Time (h)
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4.3.1 Rubidium clock constrained GPS

In the case of rubidium clock constrained GPS navigation, the clock offset information,

which is estimated from the GPS measurements, is used to constrain the position

estimate. A mathematical model of the GPS range measurement is given by [Lachapelle,

1995]:

p d c dt dT d dm ion trop p= + + − + + +ρ ρ ε( ) (4.12)

where p   is range measurement

ρ  is the real range between the satellite and the receiver

dρ  is the range error induced by orbital error

dt   is the satellite clock error

dTm  is the receiver clock offset

d ion  is the ionospheric delay

d trop is the troposhperic delay

ε p  is receiver noise and multipath.

For the clock offset measurement, the mathematical model may be written as:

dT dTm T= + ε (4.13)

where dTm  is the receiver clock offset measurement

dT   is the real receiver clock offset measurement

εT   is the receiver clock offset measurement error

Given the design matrix A , the covariance matrix of measurements Cl , the a priori

position estimate vector x0  and the misclosure vector w 0 , a solution vector $x  may be

obtained by the following equations (Krakiwsky, 1990):

w x l0 0= f ( , ) (4.14)

d [A C A] A C wT
l

1 1 T
l

1 0= − − − − (4.15)

$x x d0= + (4.16)

where l  is the observation vector and
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d  is the least squares adjustment to parameters x0 .

The design matrix A  may be obtained by linearizing the equations with respect to the

geodetic coordinates and the receiver clock offset. For a GPS range measurement,

Ai
i i ip p p

h
= −











∂
∂φ

∂
∂λ

∂
∂

1

where φ  is latitude,

λ  is longitude,

h  is height,

and for the receiver clock offset measurement, the design matrix is

[ ]AT = −0 0 0 1 . (4.17)

The constraint weight matrix Cl
−1 is defined as:

Cl

n

T

− =
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where σ i
2  is the GPS range error variance for the i-th satellite i n= 1, ,L ,

σT
2  is the receiver clock offset measurement error variance.

Figure 4.16 presents a basic navigation algorithm for rubidium clock aided GPS. The

algorithm estimates three coordinates and the receiver clock offset by standard least

squares, then filters the clock offset estimated from GPS measurements using the

adaptive low-pass filter. Finally, the algorithm employs the clock constraint in the least

squares solution. In terms of processing time, this is not a efficient algorithm, since the

least squares solution must be calculated twice.
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Figure 0.16 Basic navigation algorithm for rubidium clock aided GPS

Since the rubidium clock drifts very slowly, an alternative navigation algorithm was

designed by the author for rubidium clock constrained GPS. Figure 4.17 shows this

improved navigation algorithm. The least squares estimator takes the GPS range

measurements and the filtered clock offset from the last epoch. The two algorithms have

the same accuracy, but the improved algorithm is faster than the basic navigation

algorithm.

Figure 0.17 Improved navigation algorithm for rubidium clock aided GPS

4.3.2 Single point solution example

The GPS navigation program C3NAVTM was modified to implement the navigation

algorithm for rubidium clock aided GPS. The data used herein were collected in the static

test described in Chapter 2. All the point results were computed using a satellite cutoff

angle of five degrees and a processing interval of 1 second. Carrier phase smoothing of

the pseudorange measurements was performed and troposhperic corrections were

employed.

Figure 4.18 presents the position errors of unaided GPS which were computed by

C3NAVTM in stand-alone mode. Typical SA positioning errors of 100 metres in
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horizontal and 150 meters in vertical occur. It is noted that the position accuracy was

degraded severely during GPS time of 331529 to 334260 seconds, when the satellite

geometry was relatively poor (please refer to Figure 2.1 through 2.5).

Figure 4.19 presents the position errors of rubidium clock aided GPS, which were

computed by the modified navigation program implementing the navigation algorithm

shown in Figure 4.17, in stand-alone mode. The position accuracy, especially the vertical

accuracy, is improved significantly. Table 4.1 summarizes the results of the static test.

The height accuracy was improved the most by clock aiding, since the height error was

most correlated to the clock offset error during the test. The longitude accuracy was

improved the least significantly, since the longitude error was least correlated to the clock

offset error during the test.

Table 0.1 Statistics for the results of the static test (entire test)

MEAN/RMS (m)
LATITUDE LONGITUDE HEIGHT

unaided GPS 6.82/27.48 1.90/15.06 6.13/41.83
clock aided GPS 5.84/20.65 0.29/14.15 9.04/21.82

It is interesting to observe the relationship among the correlation coefficients, the satellite

geometry and improvement in position accuracy. During GPS time 331529 to 334260

seconds, the satellite geometry is poorer. Table 2 summarizes the results during this

period.

Table 0.2 Statistics for the results of the static test during 331529 to 334260 seconds

MEAN/RMS (m)
LATITUDE LONGITUDE HEIGHT

unaided GPS -0.88/42.59 -2.28/17.18 9.79/68.79
clock aided GPS -7.37/21.62 -3.33/17.17 1.77/20.11

Both the height and latitude accuracies are increased significantly since the height and

latitude errors are strongly correlated to the clock offset error during this period. The
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longitude accuracy is not improved at all since the longitude error is independent of the

clock offset error in this case.

4.3.3 DGPS solution example

Figure 4.20 presents the position errors of unaided GPS, which were computed by

C3NAVTM, in differential mode. The accuracy of DGPS increases significantly over

stand-alone GPS since the common errors, such as SA errors, ionospheric delays,

tropospheric delays, ephemeris errors and satellite clock errors etc., are eliminated.

Figure 4.21 shows the remote position errors of rubidium clock aided GPS in differential

mode. The differential corrections were generated by using a fixed time base fixed (-80

metres) at the reference station which was equipped with a cesium clock. The point-to-

point remote station results were computed by the modified navigation program which

implements the navigation algorithm as shown in Figure 4.17. Table 4.3 summarizes the

results in differential mode. While there are improvements in position accuracy, they are

not as significant as in stand-alone mode because the satellite geometry is relatively good

in this case. Under degraded geometry, the improvement is significant, however, as will

be shown in subsequent chapters.

Table 0.3 Statistics for the results of the static test

MEAN/RMS (m)
LATITUDE LONGITUDE HEIGHT

4-D Estimation -0.07/0.67 -0.31/0.54 0.42/1.30
3-D Estimation -0.03/0.63 -0.29/0.45 0.47/0.99



41

Figure 0.18 Position errors of unaided GPS in stand-alone mode
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Figure 0.19 Position errors of rubidium clock aided GPS in stand-alone mode
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Figure 0.20 Position errors of unaided GPS in differential mode
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Figure 0.21 Position errors of rubidium clock aided GPS in differential mode
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CHAPTER 5

RUBIDIUM CLOCK AIDED GPS/BAROMETER/GYRO

INTEGRATED NAVIGATION SYSTEM

Augmentation of GPS with a barometer and a heading rate gyroscope improves

positioning availability significantly (Hayashi, 1996a & b). Integration of rubidium clock

aided GPS with a barometer and a gyro will be investigated in this chapter.

5.1 System Hardware Overview

The integrated navigation system developed herein consists of a NovAtel GPSCard 951R

L1 GPS receiver, an Efratom Model FRK-LLN Rubidium clock, a Silicon Valley GPS

Reference Frequency Generator, a Viatran Model 246 barometric pressure transducer, an

Andrew AutoGYRO digital fiber optic gyro, an Advantech PCL-711 12-bit data

acquisition board and PC, as shown in Figure 5.1. Another GPSCard is used as the

reference station to generate differential corrections. The reference station may also

include an external clock to improve timing accuracy.

Figure 0.1 On board hardware overview - integrated navigation system

The GPS receiver, the GPS reference frequency generator and the Advantech PCL-711

12-bit data acquisition board are all PC compatible circuit boards, and installed in the

expansion slots of the PC.
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The Viatran Model 246 barometric pressure transducer senses an ambient barometric

pressure and translates it into an output of voltage ranging from zero to five volts. The

voltage output  is converted into 12-bit digital data by the PCL-711 data acquisition

board. Table 5.1 presents the barometer’s specification (Viatran 1995). The height

difference accuracy achievable will be discussed later.

Table 0.1 Viatran Model 246 Barometer Specifications

Full Scale Pressure Range 25” to 32” Hg absolute (1” = 25.4 mm)
Total Error Band due to Non-linearity,
Hysterisis and Repeatability

≤ ± 0.01” Hg

Response Time ≤ ± 5 msec
Zero Repeat after 100°F Temperature Shift ≤ ± 0.007”Hg
Compensated Temperature Range 0°F to +200°F
Operating Temperature Range -40°F to +250°F
Temperature Effect on Zero ≤ ± 0.0018” Hg per 1°F
Temperature Effect on Span ≤ ± 0.0018” Hg per 1°F
Long-term Stability ≤ ± 0.035” Hg per 6 months
Supply Voltage 8.5 to 40 VDC
Power Supply Regulation ≤ ± 0.000007” Hg per Volt
Output Signal 0 to 5 VDC
Output Signal Noise Levels ≤ 10 mV peak to peak

The Andrew AutoGYRO digital fiber optic gyro is a one-axis gyro mounted vertical to

the road surface to sense the vehicle’s heading rate. It outputs a digital signal with a RS-

232E serial port. The computer can  obtain the gyro data directly through the serial port.

Table 5.2 gives the gyro’s performance (Andrew 1994).

Table 0.2 Performance of Andrew AutoGYRO

Input Rotation Rate ± 100 deg/sec
Minimum Detectable Rotation Rate
 (in 100 Hz bandwith)

± 0.02 deg/sec (60 deg/hr)
  angle random walk

Bias Drift (at stabilized temperature) 0.005 deg/sec, rms (18 deg/hr)
Scale Factor Non-linearity 0.25%, rms
Scale Factor Temperature Stability 0.5%, rms
Warm-up Time 1 second
Operating Temperature -40°C to +75°C
Power +9 to +18 VDC, 630 mA
Sensor Output RS-232E, 9600 baud
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5.2 System Algorithm Design

The integrated navigation system was designed to be modular and decentralized, as

shown in Figure 5.2. The navigation sensors used are the following:

1.  GPS pseudorange and Doppler for position and velocity;

2.  rate gyro for azimuth change;

3.  barometer for height; and

4.  rubidium clock for time.

Figure 0.2 Block diagram of the integrated navigation system algorithm
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Each sensor has its own filter. The master filter is GPS-based, while each sensor has its

own local filter for determining bias and performing fault detection. All local filters feed

in the master filter where fusion of all information is made. The master filter then feeds

back in the local filters.

The feed back from the master filter to each local filter allow for frequent and automatic

calibration of each sensor separately. In this manner, outliers, blunders and spurious data

in each sensor can be eliminated and recalibration can take place. Only clean data moves

from each local filter into the master filter.

At the beginning of a run, when the number of satellites in view is more than 3 and the

satellite geometry as measured by the DOP is good enough (less than 5), the adaptive

filter will estimate the clock offset from GPS measurements; the Kalman filter for the

barometer will estimate  the barometric height error from GPS height measurements; the

Kalman filter for the gyro will estimate the gyro heading error from GPS velocity

measurements. With GPS pseudorange and instantaneous Doppler measurements,

improved clock offset,  and height and heading estimates, the master Kalman filter will

be capable of better estimation of the position.

When the number of satellites in view falls to three or less, or the satellite geometry

becomes poor, the adaptive filter will predict the clock bias and the Kalman filters will

predict the barometric height error and gyro heading error. The master Kalman filter can

still estimate the position with reasonable accuracy.

5.3  Kalman Filter Design for the Barometer

The Kalman filter for the barometer is a complementary filter (Yu, 1984), which

estimates the barometric height error from the measurement differences between the

barometric height and the GPS height.
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5.3.1 Barometric height

The barometric pressure p measured by the Viatran pressure transducer can be converted

into pressure altitude, or barometric height hb , from the U.S. Standard Atmosphere

model (Lutgens & Tarbuck, 1982), i.e.:

h a a p a p a p a p a pb = + + + + +0 1 2
2

3
3

4
4

5
5 (5.1)

where a0 = -1.42463372756486× 103  m

a1 = 3.776791975661281× 10  m· (kPa)-1

a2 = -6.074065901439399× −10 1  m· (kPa)-2

a3= 5.643398665717297× −10 3  m· (kPa)-3

a4 = -2.81444043108233× −10 5  m· (kPa)-4

a5 = 5.846393362917872× −10 8  m· (kPa)-5

The pressure altitude is the height in a model atmosphere above the standard pressure

datum plane (sea level) of 760 mm of mercury. It differs from the true altitude (above the

standard sea level) in that the pressure altitude does not consider pressure or temperature

variations over the surface of the earth due to changing weather pattern and height of the

surface above sea level at the starting point.

5.3.2  Barometric height error

In static mode, the primary error for the barometric height is the barometric height bias

with respect to the GPS height (above the WGS 84 Ellipsoid). This is due to the height

difference between the barometer and the GPS antenna, and pressure or temperature

variations. Over a short time period, the height bias is approximately constant. Figure 5.3

shows the barometric height error in static mode, the result of a field test which was

conducted on November 27, 1996, at Nose Hill park, Calgary, and will be described in

detail in section 6.1 (we will refer to the test as the Nose Hill test). The barometric height

bias δ h 0 , therefore, can be modeled as a random constant, namely

δ &h 0 0= . (5.2)
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In kinematic mode, the barometric height measurement error becomes significant. The

barometer uses a silicon strain gage, which senses the deformation of the silicon to

determine the barometric pressure. The relationship between the deformation of the

silicon and the variation of pressure is very complicated and hard to model, but it is a lag

system. Figure 5.4 shows the barometric height measurement error in kinematic mode,

during the Nose Hill test. The height error may be modeled as a first-order Gauss-Markov

process driven by a white noise process as shown in Figure 5.5 (Siouris, 1993).

Figure 0.3 Barometric height error in static mode

Figure 0.4 Barometric height error in kinematic mode
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Figure 0.5 Model for the barometric height measurement error

Figure 0.6 GPS height error in static differential mode

The barometric height measurement error can be written directly from Figure 5.5 as

follows (where S is the complex frequency of the Laplace transform):

δ
τ

δ&h h Wm
m

m m= − +
1

(5.3)

where τm  is correlation time

Wm  is white noise driving process
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5.3.3 GPS height error

Figure 5.6 shows the GPS height error results of the Nose Hill test. The GPS height error

can be modeled as a first-order Gauss-Markov process also. It can be written as follows:

δ
τ

δ&h h WG
G

G G= − +
1

(5.4)

where τ G  is correlation time

WG  is white noise driving process

5.3.4  Estimation of parameters in height error models

Both the barometric height measurement error and the GPS height error are modeled as

first-order Gauss-Markov processes. Their discrete forms are:

x a x Wk k k+ =−1 1 (5.5)

where xk  is the sampling value of the height error at time t k t= ⋅ ∆

Wk  is the sampled value of the white noise at time t k t= ⋅ ∆

a e
t

1 =
−

∆
τ  is the parameter to be estimated

τ is the correlation time

∆t  is the sampling interval.

When the process xk  has a zero mean, Eq. (5.5) is a standard Autoregressive (AR)

model. When the process xk  has a non-zero mean µ , then a suitable model is easily

constructed by using a model for the deviation ( xk -µ ). This leads to the slightly more

general model (Priestley, 1981):

x a x Wk k k− + − =−µ µ1 1( ) . (5.6)

To estimate the parameter a1  and the variance of the white noise σ 2 2= E Wk{ } , Yule-

Walker equations are used (Blais & Vassiliou, 1987):
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x x
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σ
(5.7)
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where R k
N k

x xx k i i
i

N k

( ) =
− +

=

− −

∑1

0

1

 is the autocorrelation function of the process xk

N is the sampling number and τ  is derived from a1 .

Table 5.3 lists the parameters estimated from the data of the Nose Hill test.

Table 0.3 Summary of parameter estimation from the data of the Nose Hill test

Static mode
a1 σ 2  (m2) τ (second)

Barometric height error 0.6244 172 10 5. × − 2.12
GPS height error 0.9813 0.0827 52.97

Kinematic mode
Barometric height error 0.9858 334 10 5. × − 69.92

GPS height error 0.9825 0.0627 56.64

5.3.4  Consideration of the height error models

In static mode, the measured correlation time of the barometric height measurement error

is much shorter than that of the GPS height error. The Kalman filter can decouple the two

height errors from the measurement of ( )h hb G−  by separating the rapidly changing error

(barometric height measurement error) from the slowly changing error (GPS height

error).

In kinematic mode, however, the measured correlation time of the barometric height error

is very close to that of the GPS height error. The Kalman filter is unable to separate the

two height errors. That is, the estimation of the barometric height error would be very

poor. Besides, the barometric height error is actually proportional to the variation of

pressure. It is both time and space correlated. Therefore, the first-order Gauss-Markov

process is not appropriate for the barometric channel. If the model for the barometric

height error is built as an integrated random walk as shown in Figure 5.7, the Kalman

filter for the barometer will be able to distinguish the two height errors. The model can be

written as:

δ

δ δ

&
&
v W

h v
m m

m m

=

=





(5.8)
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where δ v m  is the velocity of the barometric height error

Figure 0.7 Integrated random walk model for the barometric height error

5.3.6  Kalman filter models for the barometer

Four variables, namely the barometric height bias, the barometric height measurement

error, the velocity of the barometric height error and the GPS height error are chosen to

compose the system state vector. By combining Eq. (5.2), (5.4) and (5.8), the process

model can be described by the following differential equation:
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(5.9)

From Eq. (5.9), the state transition matrix can be derived as:

Φ
∆

∆
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(5.10)

The process noise covariance matrix is as follows:
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where sm  is the white noise spectral amplitude for Wm

σG GE W2 2= { }  is  the variance of WG .

The white noise spectral amplitude sm = × −1 10 6  was chosen for the process noise matrix.

For the barometric height hb , the observation equation is:

h h h hb m= + +δ δ0 (5.12)

where h is the true height.

For the GPS height hG , the observation equation can be written as:

h h h WG G= + +δ (5.13)

where W is white noise.

Combining Eq. (5.12) and (5.13), the measurement model can be described as:

Z h h h h h Wb G m G= − = + − −δ δ δ0 (5.14)

or, in vector form:

[ ]Z = −



















+ −1 1 0 1

0δ
δ
δ
δ

h
h
v
h

Wm

m

G

[ ] (5.15)

The Kalman filter measurement matrix is

Hk = [ 1  1   0   -1] (5.16)

and the measurement noise covariance is:

R E W= { }2 . (5.17)

5.4 Kalman Filter Design for the Gyro

The Kalman filter for the gyro is similar to the filter for the barometer. It estimates the

gyro heading error from the measurement difference between the gyro heading and the

GPS heading.
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5.4.1  Gyro heading

The Andrew AutoGYRO digital fiber optic gyro was used as a heading rate gyro. The

relationship between the gyro heading Ψg  and the output of the gyro, i.e., gyro rate ω g ,

is as follows:

Ψ Ψg g

t

dt= +∫ω
0

0 (5.18)

where Ψ0  is the initial heading, which satisfies:

&Ψ0 0= (5.19)

The heading rate gyro cannot measure the initial heading. It needs calibration by external

information to make the gyro useful. This calibration is implemented by the GPS heading

in the system.

5.4.2  Gyro heading error

Besides the initial heading, the heading rate gyro has its measurement error, or gyro drift.

The gyro heading error may be written as:

δ δω&Ψg g= (5.20)

where δΨg  is the gyro heading error

δωg  is the gyro drift

Usually, the gyro drift consists of white noise, a random bias and a first-order Gauss-

Markov process, namely (Yu, 1984):

δω δω δωg g b mW= + + (5.21)

where Wg  is white noise drift

δωb  is random bias drift

δωm  is the first-order Gauss-Markov process drift

with δω& b = 0 (5.22)
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and δω
τ

δω&
m

mg
m mgW= − +

1
(5.23)

where Wmg  is driving white noise and

τ mg  is the correlation time

5.4.3  GPS heading error

The GPS heading ΨG  can be obtained from velocity component solutions:

ΨG
E

N

V
V

=








−tan 1 (5.24)

where VE  is the GPS longitude velocity

VN  is the GPS latitude velocity.

The GPS heading error δΨG  can be derived from Eq. (5.24):

δ δ δΨG
N

E N
E

N

E N
N

V
V V

V
V

V V
V=

+
−

+2 2 2 2 (5.25)

where δVE  is the GPS longitude velocity error and

δVN  is the GPS latitude velocity error.

The variance of the GPS heading error σ G
2  can be written as:

σ σ σG
N

E N
E

E

E N
N

V
V V

V
V V

2
2

2 2 2
2

2

2 2 2
2=

+
+

+( ) ( )
(5.26)

where σ E
2  is the variance of GPS longitude velocity error and

σ N
2  is the variance of GPS latitude velocity error.

Under the assumption that the GPS longitude velocity error is independent of the GPS

latitude velocity error and both of the velocity errors have the same variance to simplify

the estimation of GPS heading error, Eq. (5.26) may be written as
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σ
σ

G
VC

V
2

2

2= , (5.27)

where V V VE N= +2 2  is  the horizontal speed and

σ σ σVC E N
2 2 2= =  is the variance of the GPS velocity component error.

The accuracy of the GPS heading depends on the horizontal speed and the accuracy of

the GPS velocity. In differential mode, the standard deviation of the GPS velocity error is

approximately 0.05 ms-1 under good geometry. To calibrate the gyro heading to an

accuracy of 0.01 rad (95%), the horizontal speed should be more than 10 ms-1.

5.4.4  Estimation of parameters in heading error models

The gyro shift error is modeled as combination of a constant bias and a first-order Gauss-

Markov process. The standard AR model of Eq. (5.5) is used to estimate the parameter

a1  and the variance of the driving white noise σ 2 .

Figure 5.8 presents the gyro drift error in static mode, the result of the Nose Hill test. The

constant bias dominates the gyro shift error. Figure 5.9 presents the gyro shift error in

kinematic mode, results of the Nose Hill test. The Gauss-Markov process dominates the

gyro shift error in kinematic operation since the gyro was fixed on the frame of the

vehicle; the attitude of the vehicle varied with the road surface and so did the gyro, as it

sensed the related false heading rate. Table 5.4 summarizes the parameters estimated by

Eq. (5.7).

Table 0.4 The summary of the parameters in gyro shift error model

a1 σ 2  (rad2) τ (second)
Static mode 0.4226 536 10 4. × − 1.16

Kinematic mode 0.0663 0.2496 0.37
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Figure 0.8 Gyro drift error in static mode

Figure 0.9 Gyro drift error in kinematic mode

5.4.5 Kalman filter models for the gyro

Four variables, namely initial heading, gyro heading error, gyro’s constant bias drift and

gyro’s Gauss-Markov process drift, were chosen to compose the system state vector. By

combining Eq. (5.19) through (5.23), the process model can be derived as the following

differential equation:
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(5.28)

GPS Time (s) Local Time (h)

GPS Time (s)
Local Time (h)
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From Equ. (5.28), the state transition matrix can be derived as:
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(5.29)

The process noise is as follows:
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where
σ

σ
g g

m m

E W

E W

2 2

2 2

=

=







{ }

{ }
.

For the gyro heading, the observation equation can be written as:

Ψ Ψ Ψ Ψg g= + +0 δ (5.31)

where Ψ  is the true heading.

For the GPS heading, the observation equation can be written as:

Ψ Ψ ΨG GW= + , (5.32)

where W GΨ,  is white noise.

Combining Eq. (5.31) and (5.32), the measurement model can be written as:

Z Wg G g G= − = + −Ψ Ψ Ψ Ψ Ψ0 δ , (5.33)

or, in vector form:
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[ ]Z =



















+ −1 1 0 0

0Ψ
Ψ

Ψ

δ
δω
δω

g

b

m
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The Kalman filter measurement matrix is:

Hk = [ 1    1     0     0  ] (5.35)

and the measurement noise variance is as follows:

R E W G= { },Ψ
2 . (5.36)

5.5  Master Kalman Filter Design

In the master filter, the updated local information, the barometric height, the gyro heading

and the filtered clock offset, are recombined with the raw measurement of GPS, namely,

pseudorange and Doppler, to form a new total sum - a fused solution (Carlson, 1988).

The Position-Velocity (PV) model was chosen for the GPS problem, since the Position-

Velocity-Acceleration (PVA) model hardly improves positioning accuracy in the case of

moderate vehicle dynamics (e.g. Cannon, 1991; Gao, 1992; Bullock, 1995). The PV

dynamic process can be described by the following vector differential equation ( Hwang

& Brown, 1990; Brown & Hwang, 1992):
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(5.37)

where δPE  is the longitude position error

δVE  is the longitude velocity error

δPN  is the latitude position error
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δVN  is the latitude velocity error

δH   is the vertical position error

δVH  is the vertical velocity error

c tδ   is the range clock offset error

c tδω  is the range clock drift error

and the amplitudes associated with the white noise driving function are sp  for W WE N,

and WH  , s f  for Wt  and sg  for Wω .

From Eq. (5.37), the state transition matrix can be derived as:
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(5.38)

The process noise covariance matrix is as follows:
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 (5.39)

For the measurement of pseudoranges, the measurement vector equation is given by:

Z H x vρ ρ ρ= + (5.40)

where [ ]x = δ δ δ δ δ δ δ δωP V P V H V c t cE E N N H t

T
 is the system state vector

[ ]Z ρ ρ ρ ρ ρ= − −1 1 0 0
$ ( ) $ ( )x xn n

T
L  is the pseudorange error

ρi  is the measured pseudorange

x0  is the nominal point of linearization based on predicted position and receiver

time,

$ ( )ρi x0  is the predicted pseudorange based on x0 .
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 are the direction cosines

[ ]vρ ρ ρ= v v n

T

1 L  is pseudorange measurement (white) noise
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For the instantaneous Doppler measurements, the measurement equation is described as:

Z H x v& & &ρ ρ ρ= + (5.41)

where [ ]Z & & &$ ( ) & &$ ( )ρ ρ ρ ρ ρ= − −1 1 0 0x xn n

T
L  is the Doppler error

&ρi  is the measured Doppler

&$ ( )ρi x0  is the predicted Doppler based on x0
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1 L  is the Doppler measurement (white) noise.

For the measurements filtered by the local filters, namely, barometric height, gyro

heading and clock offset, the measurement equation can be written as:

Z H x vl l l= + (5.42)

where [ ]Z l b r g

T
h H x ct ct x x= − − −$ ( ) $( ) $ ( )0 0 0Ψ Ψ

h ctb g, ,Ψ  are measured barometric height, range clock offset and gyro heading

$ ( ), $( ), $ ( )H x ct x x0 0 0Ψ are predicted height, range clock offset and heading
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[ ]v l b t g

T
v v v=  is the measurement error vector of barometric height, clock

offset and gyro heading

Combining Eq. (5.40) through (5.42), the measurement vector equation for the master

filter is written as:

Z H x v= +k (5.43)
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where [ ]Z = Z Z Z l
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Under the assumption (Brown & Hwang, 1992) that measurement errors are uncorrelated,

the corresponding measurement covariance matrix is:
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(5.44)

where rρ  is the variance of the pseudorange measurement

r&ρ  is the variance of the Doppler measurement

rb  is the variance of the barometric height measurement

rt  is the variance of the clock offset measurement

rg  is the variance of the gyro heading measurement.

rρ  and r&ρ  can be obtained directly from the receiver measurements, and rb = 4 m2, rt = 1

m2, rg = 0.25 rad2 were chosen according to the test results described above.

5.6 Software Design

A program, based on C3NAVTM, was developed to implement the system algorithm

design described above in post-mision. It uses the basic routines of C3NAVTM, such as
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satellite ephemeris decoding, satellite orbit computation, satellite clock computation,

ionospheric and tropospheric corrections, generating and applying differential

corrections, carrier smoothed code generation and standard least squares estimation etc.

Therefore, it keeps most of the features of C3NAVTM, and can process GPS data with

Kalman filtering algorithm and integrate GPS with a rubidium clock, a barometer and a

gyro. The code for the program was written in C language. Figure 5.10 shows the

flowchart of the integrated navigation software.

The navigation software will first read the GPS data and sensor data, then process the

GPS data, after that implement Kalman filters, if the standard deviation derived by the

master Kalman filter is less than 10 m, the estimates are considered as good estimates.
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Figure 0.10 Flowchart of the integrated navigation software
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CHAPTER 6

FIELD TRIALS AND RESULT ANALYSIS

In order to evaluate the navigation system discussed above, two field tests were

conducted. The first test was carried out in a controlled environment, where there were no

obstructions along the test route so that excellent satellite coverage and geometry could

be continuously obtained during the test. Since a reference route can be provided by

carrier phase differential GPS with decimetre level accuracy under these conditions, the

advantages of using the rubidium clock can be examined in terms of both accuracy and

availability. The second test was carried out in a downtown area of Calgary, where the

satellite signals are often masked by tall buildings and/or trees. The purpose of this test

was to examine the performance of the navigation system in a typical operational

environment.

6.1 Field Test in Controlled Environment

6.1.1 Test description

A field test was carried out at Nose Hill Park, Calgary, on November 28, 1996. To obtain

a reference trajectory with a decimetre level accuracy from carrier phase processing with

FLYKINTM (Lachapelle et al., 1996), an ideal environment with excellent satellite

coverage and geometry was chosen.

The navigation system, which includes a GPS receiver, a rubidium clock, a barometer

and a gyro, was mounted on a vehicle. The antenna of the GPSCard receiver was

installed on the roof of the car. Another NovAtel GPSCard receiver with a normal

internal TXCO clock was used as the reference station, placed on the roof of the

Engineering Building at the University of Calgary, approximately 5 to 10 km away.

L1 C/A code, Doppler, carrier phase, barometric pressure and gyro heading rate

measurements were collected at one second intervals over a period of 90 minutes. The
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vehicle was kept stationary for twenty minutes before moving to allow the rubidium

clock to stabilize. The carrier phase measurements were used to determine the reference

trajectory of the test route using FLYKINTM with an estimated accuracy of about 10 - 20

cm using the ambiguity float mode. Figure 6.1 shows the horizontal reference trajectory.

Figure 0.1 Horizontal reference trajectory computed with FLYKIN TM

Figure 6.2 presents the number of visible satellites above a cutoff angle of five degrees.

Most of the time, the number of visible satellites was more than six. Occasionally, the

number of visible satellites fell to five. These few intervals resulted in poor geometry,

especially in height (VDOP), as shown in Figure 6.3.

This trial was designed for evaluating the accuracy of rubidium clock aided GPS, and

inspecting the capability of the integrated navigation system presented earlier using three,

two or even one satellite.
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Figure 0.2 Number of visible satellites during the Nose Hill test, above cutoff angle
of five degrees

6.1.2 Rubidium clock aided GPS

All point positioning results in this section were computed by using either C3NAVTM,

which implements a standard LS algorithm and will be referred to as unaided GPS, or

C4NAV, which was modified to implement rubidium clock aided GPS algorithm. Both

software operate in either stand-alone mode with broadcast clock and ephemeris

information, stand-alone mode with post-mission information, or differential mode. C/A

code position solutions were computed each second using a satellite cutoff angle of five

degrees. Tropospheric corrections were applied and the pseudoranges were carrier phase

smoothed in all cases.
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Local Time (h)
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Figure 0.3 Satellite geometry during the Nose Hill test

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)



72

1.  Stand-alone mode with broadcast information

Figure 6.4 presents the position errors of unaided GPS in stand-alone mode using

broadcast information. It is obvious that SA was on during the test. Typical SA

positioning errors of up to 100 metres occur. The vertical position error spikes due to

poor geometry exceed 200 metres several times during the test. The dashed envelopes

indicate 3σ error envelopes derived from the least squares estimation. The actual errors

are within the estimated accuracy some 95% of the time.

Figure 6.5 presents the position errors of rubidium clock aided GPS in stand-alone mode

using broadcast information. Since the low-pass filter is used in the rubidium clock aided

algorithm, the effect of smoothing is demonstrated. The sudden changes in positioning

errors are eliminated and the position error spikes are removed. Table 6.1 summarizes the

results. The results are consistent with the results of the static test described in chapter 4.

The EDOP shown is less than 1 during most periods of the time. The longitude errors are

practically independent of the clock offset errors. Therefore, the longitude accuracy is

nearly not affected with the improvement in the clock offset estimate.

Table 0.1 Statistics of the Nose Hill test, processed in stand-alone mode with
broadcast information

MEAN/RMS (m)
LATITUDE LONGITUDE HEIGHT

UNAIDED GPS 2.43/23.24 5.00/15.86 2.70/56.94
RUBIDIUM CLOCK AIDED

GPS
1.67/19.02 7.10/16.54 -5.43/14.96

Figure 6.6 presents the correlation coefficients among the three position errors. The solid

line indicates the coefficients using unaided GPS, and the dashed line represents the

coefficients using clock aided GPS. The latitude error is almost independent of the

longitude error, the correlation coefficient between them does not change much for both

unaided and clock aided GPS. However, the latitude and longitude errors are correlated to

a certain degree with the height error using unaided GPS. The correlation coefficients

between the height error and the horizontal errors tend to be smaller and constant when

using clock aided GPS.
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Figure 0.4 Position errors of unaided GPS, processed in stand-alone mode with
broadcast  information, Nose Hill test
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Figure 0.5 Position errors of rubidium clock aided GPS, processed in stand-alone
mode with broadcast information, Nose Hill test
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Figure 0.6 Correlation coefficients among three position errors

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)

Unaided GPS
Clock aided GPS



76

2.  Stand-alone mode with post-mission information

Figure 6.7 presents position errors of unaided GPS in stand-alone mode with post-

mission precise satellite orbits and clock corrections. It is clear that a one-to-three metre

level  accuracy can be achieved by overcoming SA components, namely satellite clock

dithering and satellite ephemeris degradation. Biases are significant on both horizontal

and vertical error components. They are believed to be mainly due to the ionospheric

effect. While the effects of changes in the visible satellites are not apparent, position error

spikes due to poor geometry still exist. A large spike at epoch 423436 second in longitude

is very noticeable. This is because the GPS receiver output a blunder time measurement

at that epoch. While all the pseudorange and Doppler measurements were sampled at the

integer second, an exception happened at that point, namely the measurements was

sampled at 423436.1 seconds. After careful analysis of data, it was found that the

measurements at that point were actually sampled at the integer second, that is, at 423436

seconds, the measurement time was output as 423436.1 seconds. When the measurements

at that point was treated as sampled at 423436 second, the spike disappears. For real-time

application, this spike is impossible to be detected. It is, therefore, preserved here and

later.

Figure 6.8 shows the position errors of rubidium clock aided GPS in stand-alone mode

with post-mission precise satellite orbits and clock corrections. The effect of smoothing is

demonstrated again by the removal of the position error spikes. Table 6.2 summarizes the

results. Although the horizontal accuracy of the rubidium clock aided GPS is almost the

same as that of the unaided GPS, the vertical accuracy is improved significantly.

Table 0.2 Statistics of the Nose Hill test, processed in stand-alone mode with post-
mission precise satellite orbits and clock corrections

MEAN/RMS (m)

LATITUDE LONGITUDE* HEIGHT
UNAIDED GPS 1.87/1.98 -0.23/0.34 3.25/3.51

RUBIDIUM CLOCK AIDED GPS 1.94/2.00 -0.19/0.29 2.74/2.80
* Excluding the bias at 423436 seconds.
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Figure 0.7 Position errors of unaided GPS, processed in stand-alone mode with post-
mission information, Nose Hill test

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)

GPS Time (s)
Local Time (h)

3σ

3σ

3σ



78

Figure 0.8 Position errors of rubidium clock aided GPS, processed in stand-alone
mode with post-mission information, Nose Hill test
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3. Differential mode

Figure 6.9 presents the position errors of unaided GPS in differential mode using

broadcast ephemerides and satellite clock corrections at both the remote and the reference

station. Carrier phase smoothing of the pseudorange measurements was not applied in

this case. The position error spikes due to the poor satellite geometry still can be seen in

the height error.

Figure 6.10 shows the position error of rubidium clock aided GPS in differential mode

using broadcast information at the remote station but post-mission information at the

reference station to calculate an accurate time base for the TCXO under SA. The

smoothing effect of the rubidium clock aiding is noticeable in the vertical component.

Table 6.3 summarizes the results.

Table 0.3 Statistics of the Nose Hill test, processed in pseudorange differential mode

MEAN/RMS (m)
LATITUDE LONGITUDE* HEIGHT

UNAIDED GPS 0.27/0.58 -0.11/0.35 -0.51/0.95
RUBIDIUM CLOCK AIDED GPS 0.24/0.55 -0.10/0.33 -0.34/0.78
* Excluding the bias at 423436 seconds.

Neither improvements in the horizontal or vertical accuracy are significant, however,

since the satellite geometry is good everywhere.
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Figure 0.9 Position errors of unaided GPS, processed in differential pseudorange
mode, Nose Hill test
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Figure 0.10 Position error of rubidium clock aided GPS, processed in differential
pseudorange mode, with the accurate TCXO time base calculated using post-

mission information at the reference station, Nose Hill test
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6.1.3 Simulated downtown area

In urban environments, the buildings along the road mask satellite signals, thus GPS

outages occur frequently. To simulate this environment, a virtual wall satellite rejection

algorithm (Hayashi, 1996a) can be used. The basic concept of the algorithm is to build a

virtual wall on each side of the road, as shown in the Figure 6.11. The walls block a part

of the sky and mask the signals of some satellites.

Figure 0.11 Basic concept of the virtual walls

Assume the vehicle goes along the central line of the road with heading Ψ . Given a

cross-track cutoff angle αc , the cutoff angle for the satellite with an azimuth of Ψk  can

be derived as:

[ ]α αk c k= ⋅ −−tan tan sin1 Ψ Ψ (6.1)

If the elevation of the satellite is less than the α k , this satellite is assumed to be blocked

by the walls and rejected by the algorithm. Since the test is aimed at inspecting the

capability of the integrated navigation system for navigation using three or two satellites,

a cross track cutoff angle of 70o was chosen, which corresponds to a wall height of 20

αk
Ψ

Ψk

North

Satellite

Virtual Walls

Vehicle direction
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metres with a cross track distance from the vehicle to walls of 7.5 metres. Figure 6.12

presents the number of visible satellites in the simulated downtown area using the Nose

Hill test data. During most of the test, the number of visible satellites is two or three.

Unaided GPS can provide position solutions only for a very short period of time (90

epochs out of 3800 epochs), during which four satellites can be seen.

Figure 0.12 Number of visible satellites for the simulated downtown test

6.1.4 Rubidium clock aided GPS/barometer integration

All point positioning results in this section were computed by a navigation program

developed by the author, which integrates rubidium clock aided GPS with the barometer

using the Kalman filters described in Chapter 5. The data was processed in both stand-

alone mode with post-mission information and differential mode. C/A code position

solutions were computed each second using a satellite cutoff angle of five degrees.

Before the vehicle entered the simulated downtown area, all the satellites in view in the

controlled environment were tracked by the receiver to allow the rubidium clock aided

GPS to estimate the clock offset and calibrate the barometer. After entering the simulated

downtown area, the number of visible satellites fell to two or three, so the barometer error

estimate was held fixed at the last estimated value.

GPS Time (s)
Local Time (h)
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Figure 6.13 presents the position errors of the integrated navigation system in stand-alone

mode with post-mission information. The dashed envelopes are 3σ  error envelopes

derived from the master Kalman filter. The actual errors are within the estimated

accuracy some 95% of the time, which constitutes a good indication that the error sources

are modeled correctly in the Kalman filter. Tropospheric corrections were applied, and

carrier phase smoothing of the pseudorange measurements was performed. Figure 6.14

presents the position errors of the integrated navigation system in differential mode. In

this mode, carrier phase smoothing was not used. At the reference station, post-mission

information was used to estimate the TCXO clock offset so that the clock offset error

could be removed from the corrections. The same effect would have been obtained using

a rubidium clock at the reference station with broadcast information. Table 6.4

summarizes the results.

Table 0.4 Statistics of the results for the rubidium clock aided GPS integrated with a
barometer in the simulated downtown area

MEAN/RMS (m)
LATITUDE LONGITUDE* HEIGHT

STAND-ALONE 3.23/4.24 1.06/4.97 2.08/3.17
DIFFERENTIAL 1.14/3.35 -0.10/5.38 -1.73/3.19

* Excluding the bias at 423436 seconds.

Rubidium clock aided GPS integrated with a barometer is able to navigate using two or

three satellites in the entire simulated downtown area (3800 epochs), although the

accuracy is reduced. It is noted that during the time when the number of visible satellites

falls to two or three, the Kalman filter held the last barometric height bias obtained from

the estimate of GPS height with good geometry (VDOP<5). The vertical accuracy of the

integrated navigation system in this case is dependent upon the calibration accuracy, the

barometric altitude accuracy and the clock offset estimate accuracy. For land vehicle

navigation, the atmosphere and temperature are relatively stable in a local area. So the

barometer performs well. In addition, horizontal errors show a strong correlation with the

vertical error. If the accuracy of the barometric altitude could be improved, better
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Figure 0.13 Position errors of the rubidium clock aided GPS integrated with a
barometer in stand-alone mode with post-mission information, for the simulated

downtown area (70º cut-off-across-track)
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Figure 0.14 Position errors of the rubidium clock aided GPS integrated with a
barometer in differential mode, in the simulated downtown area (70º cut-off-across-

track)
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horizontal accuracy would also be expected. While stand-alone GPS using post-mission

information has similar positioning accuracy to differential GPS using corrections

generated with post-mission information, the former has larger bias errors due to the

ionosphere. Therefore, in the downtown test to be described later only DGPS will be used

to demonstrate the performance of the navigation system.

6.1.5 Rubidium clock aided GPS/Barometer/gyro integration

As mentioned in Chapter 5, a gyro cannot measure the absolute heading until the

corrections are applied from the GPS heading. The correction accuracy depends on the

accuracy of the GPS heading, i.e., the vehicle’s horizontal speed. To obtain an accuracy

of 0.01 rad, the vehicle’s horizontal speed must exceed 10 m/s. Figure 6.15 presents the

vehicle’s horizontal speed during the test.

Unlike the GPS position, which can be evaluated with a sub-decimetre accuracy by the

reference position solution of the carrier phase measurements, very sophisticated and

expensive equipment, such as high accuracy gyro compass and INS etc., are needed to

evaluate the GPS heading. The GPS velocity can be evaluated in static mode without

external equipment. The GPS heading, however, is treated as the heading reference when

the vehicle’s horizontal speed exceeds some value. The higher the vehicle’s horizontal

speed, the more accurate the GPS heading, provided that the accuracy of GPS velocity is

the same in static mode as that in kinematic mode, which is a reasonable assumption

under the dynamic considered herein (e.g. Cannon et al. 1997). Therefore, the time period

of GPS time 422900 to 423800 second, during which the vehicle’s horizontal speed is

almost always more than 10 m/s, was chosen to evaluate the efficiency of the Kalman

filter for the gyro.

The filter for the gyro does not compute the gyro heading until the calibration is applied

from the GPS heading with satisfactory accuracy, when the vehicle’s horizontal speed is

high enough. The Kalman filter estimates the initial heading and measurement errors,

then applies them to the gyro heading, i.e.:
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$ $ $Ψ Ψ Ψ Ψg g g= − −0 δ (6.2)

where $Ψg  is the calibrated gyro heading

$Ψ0  is the estimated initial heading, and

δ $Ψg  is the estimated gyro measurement error.

Figure 0.15 Horizontal speed of the vehicle during the Nose Hill test

Figure 0.16 Calibrated gyro heading error using the GPS heading
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Figure 6.16 presents the calibrated gyro heading error, which was computed using GPS

heading as the reference heading as shown in Figure 6.17. The Kalman filter makes the

gyro heading follow the GPS heading within 0.1 degree.

Figure 0.17 GPS heading computed using the GPS velocity

If the number of visible satellites falls to one after the gyro heading is calibrated by the

GPS heading, the Kalman filter will predict the gyro heading error. Figure 6.18 shows the

performance of the gyro in this situation. The gyro senses false heading rate due to severe

variations in the vehicle’s attitude so that the gyro heading appears to drift very fast.

Figure 6.19 shows the reference height during the period. The vehicle was running on a

slope during the period from 423030 to 423450 and the corresponding gyro drift can

clearly be seen in Figure 6.18. Gyro drift is also correlated with heading changes as can

be seen by comparing Figure 6.17 and 6.18.

GPS Time (s), Local Time (h)
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Figure 0.18 Performance of the gyro after it is calibrated by the GPS heading

Figure 0.19 Reference height computed by FLYKINTM

The gyro heading rate error results from two sources: misalignment of the installation and

the inclination of the vehicle. If the gyro is mounted on the vehicle with a misalignment

angleα  and misalignment azimuth angle β , and the vehicle has a heading rate ωh , a

GPS Time (s), Local Time (h)
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pitch rate ω p  and a roll rate ω r , as shown in Figure 6.20, where the (xv, yv, zv) is the

vehicle frame coordinate system, the angular rate detected by the gyro is:

ω ω α αg h H= +cos sin (6.3)

where H r p= +ω β ω βcos sin

Considering that the misalignment angle usually is small, one may write  Eq. (6.3) as:

ω ω α ω β ω βg h r p= + +( cos sin ) (6.4)

Figure 0.20 Misalignment of a gyro in a car

If the vehicle has a pitch angle of θ  and a roll angle of γ , as shown in Figure 6.21,

where (x, y, z) is the horizon coordinate system, one can write the real heading rate of the

vehicle as:

ω ω θ ω θz z r= −′ cos sin (6.5)

and ω ω γ ω γ′ = +z g pcos sin (6.6)

One may obtain:

ω ω γ θ ω γ θ ω θz g p r= + −cos cos sin cos sin (6.7)
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If the roll and pitch angles are small, the gyro heading rate error can be expressed as:

( ) ( )d p rω ω γ α β ω θ α β= − − +sin cos (6.8)

Figure 0.21 Inclination of the vehicle.

Usually, the sharper the turn on the road, the larger the incline angle of the road, thus, the

larger the gyro heading error. Comparing Figure 6.17 with Figure 6.18, this situation is

clearly visible. In downtown areas, however, the roads may be more level than the test

road used herein. The performance of the gyro is therefore expected to be better in such

areas.

Theoretically, rubidium clock aided GPS integrated with a barometer cannot navigate

with only one satellite measurement. While the Kalman filter is able to predict the

position based on the past measurements, it will diverge dramatically. Figure 6.22

presents the positioning error of the rubidium clock aided GPS integrated with a

barometer when only one satellite is available.
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But, the rubidium clock aided GPS integrated with a barometer and a gyro is able to

navigate using only one satellite measurement as long as the gyro heading has been

calibrated. Figure 6.23 shows the positioning error of the rubidium clock aided GPS

integrated with a barometer and a gyro. Since the gyro drifts very fast due to the incline

of the vehicle, the performance of the integrated system degrades rapidly with time.
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Figure 0.22 Positioning errors of the rubidium clock aided GPS integrated with a
barometer using one satellite measurement
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Figure 0.23 Positioning errors of the rubidium clock aided GPS integrated with a
barometer and a gyro using one satellite measurement
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6.2 Field Test in Downtown Area

6.2.1 Test description

A field test was carried out in downtown Calgary on April 6, 1997. The test time was

deliberately selected from 5:50 to 7:05 a.m. to observe the performance of the navigation

system under both the poorest and the best satellite geometry in a day, and avoid the

heavy traffic. Figure 6.24 presents the number of visible satellites and Figure 6.25 the

DOPs during the downtown Calgary test, with a cutoff angle of five degree. Repeating

the same trajectory eight times enabled one to examine the repeatability of the navigation

system derived trajectories. Each run time duration is shown in both Figure 6.24 and

Figure 6.25 as well.

Figure 0.24 Number of available satellites during the downtown Calgary test
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Figure 0.25 Satellite geometry during the downtown Calgary test using a mask angle
of 5°
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The test route, shown in Figure 6.26, was carefully chosen so that the navigation system

encountered various severe environments, such as tall buildings (10-story or higher) on

both sides of the road along 6th Avenue, Centre Street and 8th Street, tall buildings on one

side but low buildings (3-story or lower) or trees on the other side of the road along part

of Center Street, part of 8th Street and 7th Street, and only tall buildings and/or low

buildings on one side of the road along 1st Avenue, 3rd Avenue and 4th street. The dashed

line is the horizontal component of the trajectory. Eau Claire Avenue and 5th Street,

where there are no buildings or trees along the road, were intentionally included to allow

the GPS receiver to obtain at least four satellite measurements, so that the Kalman filter

could calibrate the barometer and the gyro in every run.

Figure 0.26 Test route, downtown Calgary test.

The navigation system was mounted on a vehicle. The antenna of the GPS receiver was

installed on the roof of the vehicle. Another NovAtel GPSCard receiver equipped with a
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TCXO clock was used as the reference station, placed on the roof of the Engineering

Building at the University of Calgary, some 10 km away. The driving speed varied

between 0 and 30 km/h and the 4-km trajectory required approximately 10 minutes to

complete. L1 code, barometric pressure measurements and gyro heading rate

measurements were collected at one second intervals over a period of 75 minutes.

Since the number of visible satellites, as shown in Figure 6.27, is less than four during

most of the test runs, it is impossible to use carrier phase differential GPS to derive the

reference trajectory. Instead, the horizontal component of the trajectory shown in Figure

6.26 derived from a digital map provided by the City of Calgary, was used to assess the

GPS derived trajectory.

Figure 0.27 Number of visible satellites in the downtown Calgary test
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Although the accuracy of the digital map is approximately 5 metres in downtown

Calgary, the reference trajectory can only check the across track error and consistency of

the position solutions. The GPS position solutions are, therefore, transformed into UTM

coordinates in accordance with the digital map.

The solutions were computed in differential mode using a satellite cutoff angle of five

degree and broadcast ephemerides and satellite corrections. However, post-mission

information was used to derive an accurate time base with the TCXO clock at the

reference station. The processing interval was one second. Neither  tropospheric

corrections nor carrier phase smoothing of the pseudorange measurements were applied.

The navigation system was designed to be modular, and as such the data was processed in

the following ways, namely

• unaided GPS

• rubidium clock aided GPS

• GPS/barometer integration

• rubidium clock aided GPS/barometer integration

• GPS/barometer/gyro integration, and

• rubidium clock aided GPS/barometer/gyro integration,

to examine the performance of the navigation system in different modes.

6.2.2 Unaided GPS

The unaided GPS point solutions were computed with C3NAVTM, which requires at least

four satellite measurements. Figure 6.28 presents the horizontal components of the

positioning solutions in run #1. Along Eau Claire Avenue and 5th Street, there is clear

view to the sky. The receiver could therefore obtain enough measurements and the GPS

positioning solutions are consistent with the reference trajectory. On 1st Avenue, there

were several epochs when the receiver had enough measurements. The deviation of the

GPS solutions from the reference trajectory is believed to be the result of multipath,
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noting that there is a tall building on the southern side of the road. Unaided GPS was not

possible in other sections of the route.

Figure 0.28 Horizontal trajectory using unaided GPS, downtown Calgary test,
run #1

6.2.3 Rubidium clock aided GPS

The results in this and the following sections were computed using the navigation

program, which implements the integration of rubidium clock aided GPS with a

barometer and a gyro. The navigation mode was set as ‘clock aiding’ and the minimum

number of satellite required for navigation was set to three. The availability is increased

by quite a few epochs, amounting to availability almost twice the distance of unaided

GPS, as shown in Figure 6.29.
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Figure 0.29 Horizontal trajectory by the rubidium clock aided GPS, downtown
Calgary test, run #1

6.2.4 GPS/barometer integration

The navigation program was set in the mode of ‘GPS + barometer’ and the minimum

number of satellite required for navigation was set to three. When the number of visible

satellites is more than three and the VDOP is less than 5, the Kalman filter calibrates the

barometer with GPS measurements. When the number of visible satellites falls to three or

the VDOP becomes larger than 5, the Kalman filter predicts the barometric height error

based on the past measurements. Figure 6.30 presents the estimated horizontal trajectory

of GPS integrated with a barometer. The trajectory is similar to that of Figure 6.29 due to

the high correlation between clock and the height component.
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Figure 0.30 Horizontal trajectory using GPS integrated with a barometer,
downtown Calgary test, run #1

6.2.5 Rubidium clock aided GPS/barometer integration

The navigation program was set in the mode of ‘clock aided GPS + barometer’ and the

minimum number of satellites required for navigation was set as two. When the number

of visible satellites is more than two and the VDOP is less than 5, the Kalman filter will

calibrate the barometer with GPS measurements. When the number of visible satellites

falls to three or the VDOP is larger than 5, the Kalman filter will predict the barometric

height error basing on the past measurements. Figure 6.31 presents the estimated

horizontal trajectory of the rubidium clock aided GPS integrated with a barometer. Figure

6.32 shows the estimated position standard deviations derived by the master Kalman

filter.

The position availability is increased significantly since the required number of satellites

is reduced to two. At the corner of 3rd Avenue and Center Street, the corner of 6th Avenue
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Figure 0.31 Horizontal trajectory using the rubidium clock aided GPS integrated
with a barometer, downtown Calgary test, run #1

and 8th Street and on 6th Avenue, the cross track error is apparent. The error is believed to

be the combination of the estimation error and multipath. The variances of the barometric

height measurement and the clock offset measurement were all set as 1.0 m2, that is, the

height solutions were mainly decided by the barometer and the clock measurements. The

horizontal solutions, however, were also affected by the satellite constellation and

pseudorange measurements. This is shown in Figure 6.32. Since the reference trajectory

was not available for this test, the position errors’ standard deviation can be used to

evaluate the accuracy of the navigation system during the test. If the error sources are

modeled correctly as shown in Figure 6.13 and 6.14, the position error should not exceed

30 m within 95% time when the navigation system was available.

6.2.6 GPS/barometer/gyro integration

The navigation program was set in the mode of ‘GPS + barometer + gyro’ and the

minimum number of satellites required for navigation was set as two. When the number

of visible satellites is more than three and the VDOP is less than 5, the Kalman filter
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Figure 0.32 Position standard deviations, derived by the master Kalman filter in the
mode ‘clock aided GPS + Barometer’
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calibrates the barometer with GPS measurements. When the number of visible satellites

falls to three or the VDOP is larger than 5, the Kalman filter predicts the barometric

height error based on the past measurements. For the gyro, when the number of visible

satellites is more than two and HDOP is less than 5, the Kalman filter calibrates the gyro.

When the number of visible satellites falls to two or the HDOP is more than 5, the

Kalman filter predicts the gyro heading error based on the past measurements. Figure

6.33 presents the estimated trajectory of GPS integrated with a barometer and a gyro.

The navigation availability in this mode is nearly the same as that in the mode of ‘clock

aided GPS + barometer’. The cross track error in this mode is obviously larger

considering the gyro’s drift due to the inclination of the vehicle during turning. Since the

position estimate based on gyro heading measurements is propagated from the past

position

Figure 0.33 Horizontal trajectory using GPS integrated with a barometer and a
gyro, downtown Calgary test, run #1
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estimate, the gyro’s heading error will result in significant cross track error. The

estimated trajectories on 2nd Avenue and 8th Street show the obvious gyro heading error.

The position estimates around the corner of 3rd Avenue and Centre Street have so large

cross track errors that they are almost useless.

6.2.7 Rubidium clock aided GPS/barometer/gyro integration

The navigation program was set in the mode of ‘clock aided GPS + barometer + gyro’

and the minimum number of satellites required for navigation was set as one. When the

number of visible satellites is more than two and the VDOP is less than 5, the Kalman

filter calibrates the barometer with GPS measurements. When the number of visible

satellites falls to two or the VDOP is larger than 5, the Kalman filter predicts the

barometric height error based on the past measurements. For the gyro, when the number

of visible satellites is more than one and the HDOP is less than 5, the Kalman filter

Figure 0.34 Horizontal trajectory using the rubidium clock aided GPS integrated
with a barometer and a gyro, downtown Calgary test, run #1
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Figure 0.35 Position standard deviations, derived by the master Kalman filter in the
mode ‘clock aided GPS + Barometer + Gyro’
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calibrates the gyro. When the number of visible satellites falls to one or the HDOP is

more than 5, the Kalman filter predicts the gyro heading error based on the past

measurements. Figure 6.34 presents the estimated trajectory of rubidium clock aided GPS

integrated with a barometer and a gyro.

The position availability is increased to 90% in terms of time and distance. Rubidium

clock aided GPS integrated with a barometer provides better accuracy and more

availability than GPS integrated with a barometer does. The gyro, thus, had more chances

to be calibrated with higher accuracy. On the other hand, the calibrated gyro improves the

position estimate at the corner of 3rd Avenue and Center Street, and the corner of 6th

Avenue and 8th Street. Figure 6.35 shows the estimated position standard deviations

derived by the master Kalman filter. The results are similar to those obtained in Figure

6.32.

6.2.8 Summary of the downtown Calgary test

Results for the other runs are presented in Appendix A. In run #5 and #6 there were not

enough satellites for GPS to calibrate the rubidium clock, the barometer and the gyro, and

thus the Kalman filters diverged. Results of these two runs are not included.

Rubidium clock aided GPS and GPS/barometer integration have nearly the same

availability and similar accuracy, because the test route is relatively flat and the

barometer could give better height measurements after correction. While rubidium clock

aided GPS/barometer integration and GPS/barometer/gyro integration have similar

availability, the performance of  the later depends on the gyro’s performance when the

number of satellites in view falls to two. In run #2, GPS/barometer/gyro integration

provides better solutions at the corner of 4th Street and 2nd Avenue. In run #3, gyro drift is

obvious from the solution of GPS/barometer/gyro integration at the corner of 3rd Avenue

and Center Street. In run #4, the solution of rubidium clock aided GPS/barometer

integration on 6th Avenue has a large cross road bias, which is believed to be due to

multipath; the solution of GPS/barometer/gyro has a smaller cross road bias, because of

good gyro performance during the period. In run #7, rubidium clock aided
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GPS/barometer integration and GPS/barometer/gyro have similar solutions. In run #8, the

solution of GPS/barometer/gyro was degraded by the gyro drift. Of all the integration

modes, rubidium clock aided GPS/barometer/gyro integration provides the best

availability as expected.

Table 6.5 summarizes the navigation availability of the navigation system in different

modes for the six test runs described above and the sum thereof. Figure 6.36 shows the

availability of the navigation system in different modes for the summary of all test runs

described above. Rubidium clock aiding improves the navigation availability

significantly.

Table 0.5 Summary of results

Navigation Availability (%)
Navigation Mode run #1 run #2 run #3 run #4 run #7 run #8 Total

Unaided GPS 29 13 17 6 13 13 16

Clock Aided GPS 39 32 26 27 31 23 31

GPS + Barometer 39 31 31 27 31 25 31

Clock Aided GPS +
Barometer

65 51 54 56 67 48 57

GPS + Barometer +
Gyro

62 50 47 45 55 41 50

Clock Aided GPS +
Barometer + Gyro

92 79 63 73 86 67 74

As mentioned in section 6.2.5, an exact reference trajectory was not available for the test.

While the position errors’ standard deviation can be used to evaluate the accuracy of the

navigation system, the assumption made in section 6.2.5 still needs to be verified. The

reliable means is to use another set of position sensors with reasonable accuracy to

evaluate the navigation system studied herein.
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While the rubidium clock, barometer and rate gyro used herein are expensive ($8,000

USD for the clock, $1,000 USD for the gyro and $800 USD for the barometer), the thesis

objective is to explore the potential of augmenting GPS with these sensors. Cheaper

sensors are available in market, such as $2,000 - $4,000 rubidium clocks and $20 - $100

gyros and barometers. Those sensors are suitable for commercial use.
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Figure 0.36 Navigation availability in different modes
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The rubidium clock is a sufficiently stable and precise clock for GPS navigation. It

allows us to obtain a better receiver clock offset estimate from the GPS measurements,

when the rubidium clock is utilized as the receiver’s oscillator. Thus, rubidium clock

aiding significantly improves positioning accuracy. The improvement depends upon the

correlation between the clock offset error and position errors and the improvement in the

estimation of the clock offset. In general, the poorer the satellite geometry, the more

correlated the clock offset error with the position errors, thus, the more likely the position

accuracy can be improved. With a good satellite geometry, rubidium clock aided GPS is

able to achieve a height accuracy similar to or better than the horizontal accuracy.

The rubidium clock drift is nearly linear. An adaptive low-pass filter, therefore, can be

used to estimate the clock offset from the GPS measurements. The laboratory

experiments and field trials have shown that the clock constrained GPS algorithm, which

employs the adaptive low-pass filter, is able to improve the positioning accuracy. Its

effect is especially beneficial for land vehicle navigation, which often encounters

positioning error spikes due to sudden changes in the number of visible satellites and

poor satellite geometry. The clock constrained GPS algorithm developed herein processes

the data sequentially, thus it only needs the last measurement. It is a fast and practical

navigation algorithm.

In addition to the rubidium clock, augmentation with a barometer and a gyro can further

improve availability. While the barometric height measurements are dependent upon

atmospheric pressure and temperature, the barometer demonstrated unexpectedly good

performance for land vehicle navigation due to the relatively stable local atmosphere and

temperature. The tests in the controlled environment and downtown area have indicated

that rubidium clock aided GPS integrated with a barometer can navigate using two
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satellites. The positioning accuracy is mainly dependent upon the constellation of the

satellites and the accuracy of barometric height measurements.

The gyro’s measurements are not as reliable as the barometer’s. Large heading

measurement errors are induced once the vehicle is tilted. The gyro, therefore, needs to

be calibrated frequently by the GPS measurements. Although the rubidium clock aided

GPS integrated with a barometer and a gyro is capable of performing one satellite

navigation, the navigation performance is determined to a large extent by the gyro

heading measurements. Fortunately, for land vehicle navigation in a downtown area,

most streets are smooth and flat. The test in downtown Calgary revealed that the gyro

measurements depend on the GPS calibration quality. Since the number of visible

satellites often falls to two (for nearly 35% of time), the quality of GPS heading

measurements, which are derived from the GPS velocity, can not be ensured at all times.

Using a barometer and a gyro without clock aiding is an alternative integration approach.

GPS/barometer integration provides nearly the same navigation availability and accuracy

to that of rubidium aided GPS. Both navigation algorithms can perform three-satellite

navigation for a relatively long time, provided that the satellite geometry is adequate for

the purpose.

GPS/barometer/gyro integration has comparable availability as that of rubidium clock

aided GPS/barometer integration. The latter often provides superior position solutions to

the former under the same conditions. Since the barometric measurements are reliable in

a local area, rubidium clock aided GPS integrated with a barometer is able to perform

two-satellite navigation for a long time as long as the satellite geometry is adequate.

GPS/barometer/gyro integration, however, can not perform two-satellite navigation for

very long. Since the position solution is propagated on the basis of the last position

solution and the gyro heading measurement, unpredictable gyro drifts will result in
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divergence of the Kalman filter. Of the all integration modes, the rubidium clock aided

GPS/barometer/gyro provides the highest availability.

7.2 Recommendations

The rubidium clock has proven to be stable enough for clock aiding of GPS. It is still of

interest to investigate whether or not a lower cost clock, such as a high quality oven-

controlled crystal oscillator (OCXO) clock, is suitable for clock aiding GPS. The OCXO

clock drifts much faster than the rubidium clock does, so the OCXO clock modeling

would be different from the rubidium clock modeling.

The silicon strain gage barometer, which senses the deformation of the silicon, was

shown to have a time lag. If the lag could be modeled precisely, the barometric height

measurement would be improved significantly. The performance of the integrated

system, thus, would be further enhanced.

Inclination of the vehicle induces large errors in the gyro heading measurements, since

the gyro is mounted directly on the vehicle’s frame. Using the past and updated position

estimates to estimate the slope and using the gyro rate measurements to estimate the tilt

angle might help to reduce the errors. The obvious solution for heading measurements,

however, is to add a magnetic compass to the system. Combination of the compass and

gyro will overcome each other’s weakness. In a downtown area, adding a distance/speed

sensor, such as an odometer, to obtain a dead reckoning system would also improve

availability and accuracy.

Finally, the use of GPS/GLONASS, instead of GPS only, would also significantly

enhance availability (e.g. Lachapelle et al. 1997).
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RESULTS OF DOWNTOWN CALGARY TEST
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Figure 0.1 Run #2, using unaided GPS

Figure 0.2 Run #2, using rubidium clock aided GPS
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Figure 0.3 Run #2, using GPS/barometer integration

Figure 0.4 Run #2, using rubidium clock aided GPS/barometer integration
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Figure 0.5 Run #2, using GPS/barometer/gyro integration

Figure 0.6 Run #2, using rubidium clock aided GPS/barometer/gyro integration
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Figure 0.7 Run #3, using unaided GPS

Figure 0.8 Run #3, using rubidium clock aided GPS
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Figure 0.9 Run #3, using GPS/barometer integration

Figure 0.10 Run #3, using rubidium clock aided GPS/barometer integration
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Figure 0.11 Run #3, using GPS/barometer/gyro integration

Figure 0.12 Run #3, using rubidium clock aided GPS/barometer/gyro integration
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Figure 0.13 Run #4, using unaided GPS

Figure 0.14 Run #4, using rubidium clock aided GPS
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Figure 0.15 Run #4, using GPS/barometer integration

Figure 0.16 Run #4, using rubidium clock aided GPS/barometer integration
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Figure 0.17 Run #4, using GPS/barometer/gyro integration

Figure 0.18 Run #4, using rubidium clock aided GPS/barometer/gyro integration
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Figure 0.19 Run #7, using unaided GPS

Figure 0.20 Run #7, using rubidium clock aided GPS
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Figure 0.21 Run #7, using GPS/barometer integration

Figure 0.22 Run #7, using rubidium clock aided GPS/barometer integration
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Figure 0.23 Run #7, using GPS/barometer/gyro integration

Figure 0.24 Run #7, using rubidium clock aided GPS/barometer/gyro integration
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Figure 0.25 Run #8, using unaided GPS

Figure 0.26 Run #8, using rubidium clock aided GPS
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Figure 0.27 Run #8, using GPS/barometer integration

Figure 0.28 Run #8, using rubidium clock aided GPS/barometer integration
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Figure 0.29 Run #8, using GPS/barometer/gyro integration

Figure 0.30 Run #8, using rubidium clock aided GPS/barometer/gyro integration
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