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ABSTRACT

A new concept for ambiguity resolution is introduced.  Past techniques determined each

ambiguity separately regardless of the assumed integers of the other ambiguities.  These

techniques considered only the partial relationship among ambiguity parameters

themselves, and treated these ambiguities as fixed only if their correct values were

known.  In this study, the search ranges are determined recursively and are related to each

other.  To determine the uncertainty range of an ambiguity parameter, the effect of an

assumed integer on other ambiguities is fully taken into account by constraining the

ambiguities into integers.  These constrained integers may be correct or incorrect.

However, the incorrect integers are rejected later.  All observations from the initial to the

current epoch are taken into account by a least-squares filter.  Furthermore, an index of

the possible inability to fix ambiguities is used.  Therefore, the full search of all possible

integer ambiguities is not required and the computation time is dramatically reduced.

Analysis of experimental results shows significant improvements in the time of ambiguity

search and the number of epochs required to resolve the ambiguities.  The reliability of

the ambiguity resolution is also improved.
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CHAPTER 1 INTRODUCTION

1.1 Global Positioning System (GPS) and Ambiguity Resolution

The Navstar Global Positioning System is being developed primarily for the military

forces of the North Atlantic Treaty Organization (NATO) for world-wide, real time

positioning and continuous navigation.  The initial intention of GPS was mainly for

navigation of the US military.  Due to the tremendous potential of the system and the

latest improvements in receiver technology, a growing community is using GPS for a

variety of civilian applications (navigation, geodetic positioning, etc.) [Wells et al.,

1987].

Many applications require an accuracy no more than 1 m, e.g., navigation in open sea, en-

route aircraft navigation, and fleet monitoring [Trimble Navigation, 1989].  However, as

will be discussed later, sub-metre and even centimetre-level accuracy is required in many

applications.

To achieve centimetre-level accuracy, carrier phase measurements have to be used.  The

carrier phase measurement is the most precise positioning signal obtainable from GPS.

The measurement can be converted into a precise distance between the receiver and the

satellite.  The position of the receiver can then be computed using the distances from the

receiver to different GPS satellites.  However, a receiver can measure only the fractional

part of the phase and its variation over time.  There is a constant unknown, called initial-

cycle ambiguity (simply called ambiguity), in every phase measurement.  This ambiguity
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has to be resolved before the carrier phase measurement becomes an accurate geometric

range between the receiver and the satellite.  Once all the phase ambiguities are resolved

correctly, accurate positioning at the centimetre-level will be readily achievable using at

least four satellites.

Double-difference observations between satellites and two receivers are often used.  In

this case, one receiver acts as a base station (or sometimes called a reference or monitor

station).  The position of the other receiver (also called remote station or rover) with

respect to the base station can then be determined.  The corresponding ambiguity

parameter is also double-differenced but it is still called the ambiguity.

1.2 Applications of Precise GPS Positioning

Ambiguity resolution is very important for many applications of instantaneous precise

positioning.  The determination of the ambiguity parameters while the remote receiver is

moving is called on-the-fly (OTF) ambiguity resolution.  It is also very important for

many static surveying projects where only a short period of occupation on the station is

allowed.  In the following, some existing and potential applications are outlined.

For many geodetic applications,  centimetre-level accuracy can be achieved by occupying

a site for an extended period of time without integer ambiguity resolution.  However, this

accuracy is difficult when prolonged occupation is impossible and ambiguity parameters

are not resolved.

If ambiguities can be resolved within a few minutes, or even a few seconds, the

productivity of surveying can be improved significantly.  If on-the-fly ambiguity

resolution can be achieved correctly before setting up a GPS antenna, then only one epoch

of observations is sufficient to get positioning accuracy to the 2 cm level.  This can be
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especially useful for surveying where fast positioning is very important.  Even for

prolonged occupation of a site, the resolution of ambiguities will always improve the

accuracy of positioning.

As GPS receivers are becoming more affordable, GPS surveying may be extensively used

and form the basis for efficient land information systems.  GPS will provide many

services to the general public.  Precise positioning with GPS will be used in precise

geodetic surveying, deformation surveys, surveys for detecting and monitoring tectonic

movements, geodynamics, etc. [Wells et al., 1987].

Ambiguity resolution is also required in attitude and heading determination using GPS.

In these applications, at least two or more antennas must be mounted on a platform (car,

ship, plane, etc.).  If ambiguities between any two antennas can be resolved, the vectors

between antennas can be determined at the centimetre-level.  The heading and attitude

can then be derived from relative positions of these antennas [Cohen and Parkinson,

1991; Cannon and Haverland 1993; Lu et al., 1994].  At least one baseline is needed to

determine heading and at least two baseline vectors are needed to determine the attitude.

GPS antennas and receivers can also be mounted on a spacecraft so that position and

attitude information of the spacecraft can be derived [Brock et al., 1994].  Possible

applications include altimetry satellites, remote sensing satellites, communication

satellites, space ships, etc.

In airborne photogrammetry, if GPS units are mounted at both the ground and on-board

the aircraft, precise positions of the camera at each exposure time can be determined if

the ambiguities are resolved.  Therefore, the number of conventional ground control

points can be reduced or even completely eliminated [Hintz and Zhao, 1989; Cannon,
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1991].  Similarly, GPS precise positioning can be applied to airborne remote sensing

[Schwarz et al., 1994].  Lachapelle et al. [1994a] also experimented with precise aircraft-

to-aircraft positioning.

For aircraft navigation, high accuracy is required for landing, especially for automatic

landings.  Precision GPS may help in reducing risk during the landing[Davis, 1993].

In  marine applications, precise GPS can be used to monitor ocean tides, position the

points on the sea floor (sea floor geodesy), verify satellite altimetry, determine water

levels [Lachapelle et al. 1994c], study sea level variations, and assist with dredging

operations [Lachapelle et al. 1993b].

Precise kinematic differential GPS will also be useful in navigating agricultural vehicles.

It can play a role in the distribution of work, navigation of the harvesters, and the

guidance of tractors, Lachapelle et al. [1994b].

1.3 Previous Studies

Different strategies can be applied to fix ambiguity parameters.  A combined strategy is

often used.  The next sub-section describes techniques in terms of different positioning

arrangements.  In the second sub-section, ambiguity resolutions in terms of data

processing techniques are introduced.  In the final sub-section, major developments in the

ambiguity search are presented.
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1.3.1 Ambiguity Resolution by Arrangement of Occupation

1.3.1.1 Semi-Kinematic Positioning

In semi-kinematic positioning, the remote receiver first rests on a static point.  It starts

moving once ambiguities are resolved[Cannon, 1990].

One method to resolve ambiguities is prolonged occupation over a static point.  This is

the oldest method of GPS surveying.  After the remote site has been occupied for an

prolonged period of time, the satellite geometry changes.  The changed geometry leads to

precise positioning and accurate estimation of real valued ambiguity parameters (called

float ambiguities).  Here, the float ambiguity parameters converge and can be rounded off

to integers, provided the distance between the reference and the remote station is

relatively short.  These integers are, therefore, regarded as the correct  values.

The disadvantage of this method is its low productivity.  Because the geometry of a

receiver with respect to the GPS satellites changes slowly, long occupation times are

required so that float ambiguities converge to the correct integer values.

A known precise station can also be used to speed up the ambiguity resolution.  Here, the

remote antenna is first mounted on a point whose relative position with respect to the

reference is precisely known.  Therefore, the carrier phase ambiguities can almost be

computed directly from just a few epochs of observations as long as the effect of errors is

well below one cycle of wavelength.  Once ambiguities are resolved, the antenna can be

transfered to a moving platform or other survey points.  The requirement of a precise

position is the limitation of this method because obtaining a precise position is often

difficult.
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All cycle slips must be recovered for the entire kinematic positioning process.  To fix the

cycle slips of single frequency observations, at least four satellites should be free from

cycle slips, otherwise the remote antenna has to go back to a static point.  In many cases,

it is difficult to start from a fixed point.  A short baseline is often used to reduce the effect

of un-modeled errors and speed up the ambiguity resolution.

1.3.1.2 Antenna Swapping

This technique was first introduced by Remondi [1986]; see also [Hofmann-Wellenhof

and Remondi, 1988].  To describe this technique, two antennas are labeled as 1 and 2, and

two stations are labeled as A and B.  First, the antenna 1 is mounted at station A and

antenna 2 is mounted at station B.  Their locations are then exchanged (Figure 1.1).  After

simultaneously observing at both stations, antenna 1 is moved to station B, and antenna 2

is moved to station A.  Two groups of double difference observations are then obtained.

A B

Antenna 1 Antenna 2

A B

After Swapping

Before Swapping

Antenna 1Antenna 2

Figure 1.1 Concept of Antenna Swapping
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It is assumed that, before antenna swapping, the double difference phase observation is:

∆∇φ ij
AB

ij
AB N∇∆+∇∆= λρ ij

AB

where,

∆∇φ AB
ij , ∆∇ρ AB

ij , and ∆∇Ν AB
ij  are double difference phase, geometric distance, and

ambiguity respective between satellites i and j, and between stations A and B.  After

antenna swapping, the double difference observation can be expressed as:

∆∇φ' λρ ij
AB

ij
AB

ij
AB N '' ∇∆+∇∆=                                            (1.2)

If no cycle slips occur during the antenna swapping, the following relationship holds true:

∆∇Ν' ij
AB

ij
AB N∇∆−=                                                                         (1.3)

Equation (1.2) then becomes

∆∇φ' 
ij
AB  = ∆∇ρ' 

ij
AB - ∆∇Ν 

ij
AB  λ . (1.4) 

By adding equations (1.1) and (1.4), the following can be obtained:

∆∇φ' 
ij
AB  + ∆∇φ 

ij
AB  = ∆∇ρ' 

ij
AB  + ∆∇ρ 

ij
AB  . (1.5) 

On the other hand, by subtracting equation (1.1) from equation (1.4), the following can be

obtained:

∆∇φ' 
ij
AB  - ∆∇φ 

ij
AB = ∆∇ρ' 

ij
AB - ∆∇ρ 

ij
AB + 2 ∆∇Ν 

ij
AB λ  . (1.6) 

Since equation (1.5) contains no ambiguities, the precise vector between the two stations

can be determined precisely by using only a few pairs of observations before and after

antenna swapping.  Once the position is known, the real valued ambiguities can be

computed directly from equation (1.6).  Since these values are very precise, rounding to

the nearest integers will normally result in the correct integer ambiguities.



8

1.3.1.3 Kinematic Rapid Positioning Forming a Closed Loop

In this method, the remote unit starts at a point, and then moves to other points of interest.

At each occupation, the collection of just one or a few epochs is necessary.  After the

satellite geometry changes significantly, the receiver returns to the start point.  This

changed geometry causes a higher constraint in ambiguity resolution and makes the

resolution easier.  After ambiguity resolution, the precise positioning of other observed

points on the closed loop can be determined.  A suitable method is still necessary to

resolve the ambiguities.  The disadvantage of this method is the difficulty in guaranteeing

continuous phase lock [Kleusberg, 1990].

All the methods described above suffer from a common problem, the difficulty in

maintaining phase lock.  Therefore, operational flexibility is restricted.  As a result, points

would have to be close together throughout the survey mission to guarantee a fast

recovery if satellite signals are occasionally lost.

1.3.1.4 Rapid Static GPS Surveying

In this surveying model, each point is occupied for only a short period of time to speed up

productivity.  Due to the short period of the time, float estimation of the ambiguities may

not converge to integer values.  Therefore, an ambiguity search method or precise range

information should be applied [Kleusberg, 1990].

1.3.1.5 Multiple Occupations of the Same Point

This technique requires re-occupation of points but the continuous tracking during any

two consecutive occupations is not required.  However, the time gap between two

occupations should be large enough to guarantee sufficient geometry in ambiguity
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resolution.  If all the points can be re-occupied in an orderly manner, for example, if the

re-occupation occurs in the same order as the previous one, then this method can improve

the productivity of many positioning tasks.  This method is also called pseudo-kinematic

surveying [Kleusberg, 1990].  The float estimated ambiguities normally do not converge

to integers and a proper ambiguity search method is still required in this method.

1.3.2 Ambiguity Resolution Methods in Terms of Data Processing Techniques

1.3.2.1 Classical Convergence of Real Estimated Ambiguity Parameters

One of the earliest ambiguity resolution methods used was to estimate float ambiguities

and the float estimations are rounded to the integers if they are close to integers [Langley

et al. 1984].  As discussed in Section 1, prolonged occupation on a static point is required

so that the changed satellite geometry results in more effective integer ambiguity

convergence.

When coordinates are determined very accurately, the real estimated ambiguities may be

accurate enough to be rounded to integers.  Once the correct ambiguities are obtained, the

positioning accuracy can be further improved.

The classical method of rounding to the nearest integers has been improved by many

authors.  Blewitt [1989] processed undifferenced data, and then formed double-difference

ambiguities.  His basic assumption was that when some of the ambiguities converge to

their correct integers, they can be removed from the estimation;  therefore, the geometry

of the remaining ambiguities becomes stronger.  The variance-covariance matrix was

used to select the best determined ambiguity, according to his optimal double-difference

transformation.  He also used precise code measurements to assist ambiguity resolution.

The most likely fixed ambiguity was resolved and removed from the estimation.  Then,
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the next most likely fixed ambiguity was sought.  His criterion of the most likely fixed

ambiguity was based on subjective statistics and is only good if some ambiguities

converge to the correct integers.  Otherwise, an incorrect ambiguity will be selected

without trying other alternatives.  Dong and Bock [1989] proposed a technique for

ambiguity resolution in a network.  In this technique, the ambiguities of a few baselines

converge at first, and then ambiguities for other baselines converges sequentially.

However, this technique offers no help for rapid static and kinematic positioning of a

single baseline.

Talbot's approach [1991] is similar to that proposed by Blewitt.  The difference is that he

tried ambiguity resolution epoch by epoch, sequentially.  He also did not use subjective

statistics to fix an ambiguity into an integer when it did not converge to an integer with

high confidence; he assumed that some of the ambiguity parameters should converge to

integers first.

In static applications, it takes a long time before any real estimated ambiguities converge

to integers.  Therefore, the method is not suitable for detailed precise surveying where

many points are to be occupied, or in other areas where only a short period of occupation

is allowed.    Therefore, an effective ambiguity search algorithm is still very important.

1.3.2.2 The Combination of Different Observations and the Use of Precise Code

As will be discussed in Chapter 2, GPS has two primary radio carrier frequencies,

namely, L1 and L2.  The two fundamental types of GPS observations are carrier phase

and code measurements.  From these observations, linear combinations between

observations of the same type can be formed to resolve ambiguities.  These linear

combinations are mostly used to reduce, or even eliminate certain biases, or to increase
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the wavelength of the combined observation [Wübbena, 1989].  The following criteria are

normally considered in forming a combined observation,

• integer ambiguities,

• reasonably large wavelength to help ambiguity fixing,

• low ionosphere influence,

• limited observation noise.

Two important linear combinations useful for ambiguity resolution are the wide and

narrow lane combinations [Wübbena, 1989].  The wide lane observation is formed by

subtracting the L1 observation from the L2 observation and the narrow lane observation

is formed by adding the L1 and L2 observations.  Note that the unit of measurement when

forming wide and narrow lane observations is cycles.  The advantage of the wide lane

observable are its long wavelength (≈86 cm, which is 4.5 times larger than L1 wave)

which is favorable for ambiguity resolution.  The advantage of the narrow lane observable

is its low noise level (about half of L1 or L2).  However, the wavelength of the narrow

lane observable is only about half of that of L1.  If potential ambiguities of both wide and

narrow lanes can be resolved, the potential ambiguities for individual frequencies can be

resolved using an even-odd condition [Seeber, 1993].

This property was further exploited by Wübbena [1989] in a technique called extra-

widelaning.  Besides wide and narrow lanes, Wübbena used a smoothed narrow lane

pseudorange and ionospheric delay combination.  The phase measurements were also

used to derive the narrow lane ambiguities.  Obviously, the method can not be applied to

single frequency observations.

The measurement of very precise code (cf. Chapter 2) can facilitate ambiguity resolution.

If the pseudorange can be measured to a precision of 10 to 40 cm, this will allow
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ambiguity determination to occur more rapidly [Euler and Goad, 1991], [Cannon and

Lachapelle, 1992], [Lachapelle et al. 1993a].  However, the availability of P-code

receivers is reserved for military users and are not available to the general public.

Although the precision C/A receivers are available they are still affected by relatively

high noise, such as multipath signals and ionospheric delay.  As a result of this noise, the

uncertainty ranges for ambiguity parameters are substantially increased.

The fact that many receivers based on  single frequency and wide correlator are still being

used demands good search method to resolve ambiguities.  Even for dual frequency and

narrow correlator receivers, float ambiguities may not close to their correct integers and a

search scheme is needed to resolve integer ambiguities.

1.3.3  Methods Based on Ambiguity Search

As will be shown in Section 3.1, prolonged occupation over a single point is often

difficult, and the float ambiguities can not be rounded to their nearest integer values.

Here ambiguity search techniques may be required to get centimetre-level precise

positions.

Various methods have been developed for OTF ambiguity resolution.  The search process

for integer ambiguities is performed by applying certain validation and rejection criteria

to the estimated ambiguities or positions.  The methods developed for OTF can also be

applied for rapid static position, multiple-occupation, and so on.

One of the search criteria for ambiguity-fixing is based on the minimization of the sum of

the squared observation residuals (simply called sum of residuals).  The ambiguity set that

minimizes the sum is fixed as the correct one.  Other insurance measures are often taken

to make the results more reliable, such as the ratio test [Abidin, 1991; Lu et al. 1994].
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Many ambiguity search algorithms are available to minimize the  sum of squared

residuals.  A simple technique is to search through all the possible integer ambiguity sets

in the uncertainty ranges.  However, such a method consumes enormous computation

time, even for a minimal 1 m uncertainty in the position components.

Loomis [1989] used a bank of Kalman filters, each of corresponding to a set of potential

ambiguities.  Unfortunately, the technique did not work well.  The technique did take into

account the dependence between ambiguity parameters and was computationally

intensive.

Hwang [1989], in a variation of the Loomis approach, recognized that three ambiguities

were sufficient to solve the problem.  He simply picked the three ambiguities that

independently converged the most quickly.

Cohen and Parkinson [1991] and Brown [1992] have also proposed that an OTF

ambiguity resolution technique be used specifically for attitude determination of a

moving platform using GPS carrier observations.  However, the technique cannot be

generalized.

Abidin [1991] has proposed an integrated strategy for OTF ambiguity resolution.

However, many of the criteria he used almost overlap.  As a result, the technique can

have only marginal improvement.

Frei and Beutler [1990] proposed the Fast Ambiguity Resolution Approach (FARA).  The

major characteristic in this approach is that the differences of any two ambiguities in a

potential ambiguity set should be included in the corresponding confidence regions of

their real estimation.  However, the improvement in the computation time is not

significant over the full search method, because, when a set of ambiguities is satisfied in
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their confidence regions, the difference of any two ambiguities from the set only

marginally exceeds the confidence region.

Hatch [1991] proposed an elegant, yet relatively simple approach.  Instead of searching

through all the possible integer ambiguity sets, he divided the ambiguity parameters into

two groups: primary ambiguities (typically three ambiguities); and the secondary

ambiguities.  Only the primary ambiguities are fully searched.  For each set of the primary

ambiguities, there is a unique set of secondary ambiguities.  Therefore, the search

dimension is smaller and the computation time is significantly shorter than the full search

approach.

Hatch's method also involves a modified sequential least-squares technique.  It searches

through all possible integer ambiguity sets at the first epoch.  In subsequent epochs, those

which do not fit with the data are rejected until only one ambiguity set (or only a few sets)

is left.  Then, if the ratio test (the second largest sum of squared residuals divided by the

minimum sum) exceeds a certain threshold, the ambiguity set corresponding to the

minimum is accepted.

Hatch's method is one of the most popular algorithms.  However, the ambiguity

determination for secondary satellites is not very reliable, and there is the possibility of

excluding the correct set of ambiguities at the first epoch.  This will be especially true if

the geometry of the primarily satellites is poor and non-random errors, such as multipath

biases, are large.

Landau and Euler [1992] employ an optimized Cholesky decomposition algorithm

(herein, it is simply called Landau and Euler's approach).  However, the method is still

slow for real time applications, when the uncertainty region is large, or when the data
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collection rate is higher than 1 Hz.  Furthermore, the time required for ambiguity search is

much higher during the initial epochs.

Ober [1993], Teunissen [1993], and Teunissen et al. [1994] applied a lattice

transformation [Dieter, 1975, Pohst and Zassenhaus, 1989] on the integer ambiguity

parameters.  This application is called  Z-transformation by the authors.  This

transformation is advantageous when dual frequency observations are used without

explicitly forming widelane observations.  By applying the integer transformation on the

ambiguity parameters, the correlation between estimated ambiguity parameters is greatly

reduced when strong correlation exists between estimated ambiguity parameters.

Although the technique will decrease the computational effort in some specific cases, it

has no impact on the observation period required to resolve the ambiguities nor on the

reliability of the solution.

An ambiguity resolution method similar to the one described by Chen [1993], and further

developed in this thesis, was presented by Landau and Vollath [1994].  Although a

different formulation is used, the same concepts as proposed by Chen [1993] are utilized.

Another criterion for ambiguity-fixing is the Ambiguity Function Method (AFM) as first

described by Counselman and Gourevitch [1981] for static positioning.  Mader [1992]

applied the technique for OTF ambiguity resolution.  However, the AFM is nearly

identical to the minimization of the sum, if all the cycle slips are properly handled.  The

equivalence was discussed by Lachapelle et al. [1992b].  Therefore, only methods related

to the minimization of the sum of residuals will be compared with the method developed

in this thesis.
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1.4 The Scope of the Research

As discussed previously, there is an increasing demand for rapid static and kinematic

surveying.  Even for conventional static surveying, ambiguity resolution will always

increase the accuracy of GPS positioning.  The key to precise and rapid static surveying is

ambiguity resolution.

The exact determination of the ambiguities is a crucial issue for precise GPS positioning

and navigation.  As will be discussed in the next chapter, the solution of these integer

ambiguities is not an easy task.  It is limited by various error sources and their patterns,

the satellite geometry with respect to the receiver's antenna, and the limitations of

ambiguity resolution techniques currently available.

While significant research has been conducted in the area of ambiguity resolution, many

problems still remain.  Three of the most notable problems are computational speed,

observation time required to resolve the ambiguities, and reliability.  Unfortunately,

techniques for efficient and reliable ambiguity resolution are not yet satisfactory,

especially in rapid and kinematic positioning.

The objective of this research is to improve integer ambiguity resolution.  The following

factors should be considered for an ambiguity resolution algorithm:

- It should be fast enough to be installed in the most common applications.

- It can be applied to both the static and kinematic environments.

- It should be fast enough for both initial search and subsequent searches.

- It should be reliable.

With the above objectives, this dissertation is outlined as follows:
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Chapter 2 describes basic GPS observables, error sources, and the effect of the errors on

the positioning.  Methods on reducing or even eliminating these effects are discussed.

Chapter 3 provides the background of least-squares filtering and develops formulas that

can be applied in ambiguity searching.

Chapter 4 presents the method proposed by the author, namely the Fast Ambiguity Search

Filter (FASF).  The fundamental concepts of FASF are developed in the chapter.  To

implement these concepts, the least-squares filtering technique is used.

Chapter 5 examines four sets of experimental data which are used to test the effectiveness

of FASF and its least-squares implementation.  The data sets originate from land, marine,

and air experiments of GPS.  The computational efficiency, the observation time required

to resolve ambiguities, and the repeated ambiguity resolutions are presented.  The

comparisons with the results from FLYKIN™'93 (a software initially developed

according to a modified Hatch's method) are also shown.

The final chapter makes conclusions and suggestions for further developments.
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CHAPTER 2 GPS OBSERVABLES AND ERROR
SOURCES

Various errors in observations affect position accuracy and also affect the ambiguity

resolution.  Following the description of GPS observations in Section 2.1, the handling of

biases in GPS observations is discussed.  The effect of selective availability is briefly

discussed in Section 2.3.

2.1 GPS Observations

Three different types of positioning information can be extracted from the signals of a

GPS satellite, namely: code (pseudorange), carrier phase, and phase rate (also called

Doppler frequency).

2.1.1 Code Measurement (Pseudorange)

A pseudorange is the measurement of the time shift required to align a replica of the GPS

PRN code, generated in a GPS receiver, with the code transmitted from a GPS satellite.

If the receiver clock is fully synchronized with the GPS time, then the time delay between

the transmission and the reception is exactly the travel time of the signal.  This delay can

be converted into the travel distance of PRN signals between the satellite and the

receiver's antenna.  However, since satellite and receiver clocks are not synchronized, the

range determined in this procedure contains a clock error.  The range is, therefore,

referred to as the pseudorange.  Two types of code are available for GPS signals: P-code

(Y-code) and C/A code [Wells et al. 1987].
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The pseudorange equation can be written as:

p(t)   = ρ(t)   + dorb +  c {dt(t) - dT(t)} + dtrop(t)  + dion(t)  + εP

where,

p(t) is the code measurement in metres,

ρ(t) is the distance from the satellite to the receiver in metres,

dorb is the orbital error in metres,

c is the speed of light in metres/second,

dt(t) is the bias of the satellite clock in seconds,

dT(t) is the bias of the receiver clock in seconds,

dtrop(t) is the bias of the tropospheric delay in metres,

dion(t) is the bias of the ionospheric delay in metres, and

εP is the measurement noise in metres.

In the ambiguity search procedure, the role of the code measurement is to determine the

search space.

2.1.2 Carrier Beat Phase Measurement

The carrier phase can also be measured by beating the received Doppler-shifted satellite

carrier with a signal of constant frequency generated in a GPS receiver.  The carrier

transmitted by a satellite can be extracted either by complete knowledge of the Pseudo-

random Codes (C/A-code or P-code), or by codeless signal processing techniques, such as

squaring, or cross-correlation.  Since a receiver can only measure the fractional part of the

beat carrier phase, the integer number of whole wavelengths in every phase measurement

is unknown.  This integer number is called initial carrier phase ambiguity.  If the initial

phase ambiguity could be resolved reliably, the phase would be used as the most accurate

distance measurement from a GPS satellite.
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The carrier phase equation can be written as:

 Φ(t) = −λ φ(t) = ρ(τ)  + dorb  + c {dt(t) - dT(t)} + dtrop(t) - dion(t)  +λ  N  + εφ ,

where,

Φ(t) is the carrier phase measurement in metres,

φ(t) is the carrier phase measurement in cycles,

λ is the carrier wavelength in metres,

N is the integer carrier phase ambiguity, and

εφ is the measurement noise in metres.

The definitions of the other symbols are the same as in the pseudorange observation.

Double-difference observations are often used.  That is, the observations are first

differenced between different satellites.  Then, these differenced observations are further

differenced between the receivers.  The advantage of the double difference is that it

greatly reduces or eliminates the effects of many errors discussed in Section 2.

2.1.3 Doppler Measurement

A Doppler measurement is the measurement of the instantaneous rate of the GPS carrier

phase, i.e., the instantaneous Doppler frequency shift of the incoming carrier.  The shift is

caused by the relative motion between the receiver and the satellite.  The major role of the

Doppler measurement is in velocity estimation.  In kinematic positioning, it can also be

used for roughly detecting and  estimating cycle slips (cf. 2.2.9).

2.2 Error Sources in GPS Positioning

Noise and biases in GPS positioning can be grouped into three categories: station

dependent biases, observation dependent biases, and satellite dependent biases [Wells et
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al. 1987].  Station dependent biases are errors in the base station coordinates and in the

receiver clock.  Observation dependent biases include the signal propagation delays in the

ionosphere and troposphere, carrier phase cycle slips, receiver measurement noise, and

multipath.  Satellite dependent biases cover errors in the satellite orbit and satellite clock

biases.

2.2.1 Measurement Noise

Typical pseudorange measurement resolution is approximately 1 m on a C/A-code and

0.3 m on a P-code.  Currently, many receivers can achieve higher accuracy.  For example,

the NovAtel GPSCard™ use a technique called Narrow Correlator™ in the receiver

Delay Lock Loops (DLLs) [Van Dierendonck et al. 1992].  This technique allows GPS

receivers to measure the pseudorange at 10 cm noise level on C/A code.

The carrier phase can be measured with millimetre or sub-millimetre precision.  The

measurement error tends to decrease as the number of observations increases.  However,

other error sources, such as multipath, are normally much larger than the measurement

noise (cf. 2.2.8).  In looking at the issue of measurement quality, what is important is the

stability of the phase measurements.  If a receiver has frequent cycle slips, even worse,

half cycle slips and abnormal observations, ambiguity resolution will be very difficult.

2.2.2 Orbital Biases

Orbital errors result from the uncertainties in the orbital information.  These uncertainties

are due to the accuracy limitations associated with the predicted nature of the broadcast

ephemeris and the SA policy instituted by the DoD (see section 2.3).  Tests have shown

that the orbital error is generally 10 to 50 metres.  Under Selective Availability (SA, cf.

2.3), the orbital errors can exceed 100 metres in extreme cases [FRNP, 1990].  Since most
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users derive the positions of GPS satellites from the broadcast ephemeris, the

uncertainties of the broadcast ephemeris result in errors in positioning.

The orbital error can be greatly reduced in relative positioning by differencing

observations between receivers.  However, the residual orbital bias increases as the

baseline length creases.  Therefore, a more effective way to handle orbital bias for a long

baseline positioning is to use post-processed precise orbits.  Precise orbits require an

extensive monitoring network, complicated force modeling and parameter designing

[Chen, 1991, Delikaraoglou et al. 1990].  These orbits are currently not available for real

time applications.

The effect of the orbital error is as follows, [Vanícĕ k et al. 1985]:

db = dr b / ρ , (2.1)

where,

db is the error in the baseline,

b is the length of the baseline,

dr is the orbital error, and

ρ is the satellite-receiver range.

The effect of the orbital errors on relative positioning is given in Table 2.1.

Equation (2.1) implies a considerable approximation.  A geometry analysis by Chen and

Langley [1990a] has shown that the popular belief that the above estimation is pessimistic

is not always true.  In the case of poor geometry in a GPS satellite configuration, the error

could be larger than shown in the above equation.  This is especially true if only a few

epochs of observations are used and the number of tracked satellites is limited.  However,

if many redundant satellites are tracked or if a prolonged period of observation on a
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stationary point is carried out, the orbital errors will tend to reduce by averaging.  Only in

this case, equation (2.1) can be regarded as a pessimistic estimation.  Therefore, equation

(2.1) should be used with caution and only for rough estimation.  Nevertheless, the

equation is convenient.

Table 2.1 Effect of the Orbital Error on Relative
Positioning

Orbital Error (m) Relative Accuracy (ppm)
(Assumed ρ=20,000 km)

100 5

20 1

2 0.1

If the orbital error is 20 m and the baseline length is 10 km, the corresponding bias in a

double difference phase observation is estimated at one centimetre.  That is comparable to

multipath effect.  Over a longer baseline, the effect of the orbit will increase and the

ambiguity resolution will be more difficult.  Orbital error is one of the major factors that

limit the length of the baseline on which ambiguities can be resolved.

2.2.3 Error in Base Station Coordinates

In differential positioning, the uncertainty of the reference coordinates with respect to the

WGS-84 coordinate system will directly propagate to the estimated coordinates of the

remote station.  The uncertainty has a reduced impact on relative positions (i.e., reduced

effect on the coordinate differences between the remote and the base station).  The effect

is similar to those of orbits, but it is more systematic [Chen and Langley, 1990].  For its

effect to be comparable or less than orbital errors, the accuracy of reference coordinates
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should be better than that of the orbits.  For example, if broadcast ephemeris of 20 m are

used, the accuracy of the reference station should be better than 20 m.

2.2.4 Satellite Clock Bias

The satellite clock bias is the time offset of the satellite clock with respect to GPS time.

For civilian users, the clock effect mostly comes from Selective Availability (SA, cf. 2.3).

Because the difference in the signal emission times from a satellite to two receivers is

small, the drift of the satellite clock in the period is negligible.  Therefore, the effect of

the bias is almost completely removed in double difference observations as stated earlier.

The higher order terms of a satellite clock offset are negligible in double difference

observations.  The residual effect of the satellite clock offsets can be neglected in the

ambiguity resolution.

2.2.5 Receiver Clock Bias

The receiver clock bias is the offset of the receiver clock time with respect to GPS time.

Although a GPS receiver is supposed to synchronize itself to GPS time at the start of

observations, the synchronization is not perfect.  Furthermore, the receiver clock will drift

after synchronization.  However, in double difference observations, just as with satellite

clock bias, receiver clock bias can be almost completely removed.  The effect of the

receiver clock offset and drift on the ambiguity resolution can be ignored for most

receivers.
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2.2.6 Ionospheric Effect

The ionospheric effect is caused by interference of free electrons when GPS signals pass

through  the upper layer of the atmosphere.  The effect on range may vary from more than

150 m (at midday, during period of maximum sunspot activity, with the satellite near the

horizon of the observer) to less than 5 m, (at night, during the period of minimum sunspot

activity, with the satellite at the zenith) [Wells et al. 1987].  For GPS carrier frequencies,

the ionospheric effect is dispersive, meaning that the amount of ionospheric delay

depends on frequency.  The dispersive nature of the ionospheric effect can be used as an

advantage.  For example, for dual frequency GPS phase observations, a linear

combination can be formed to eliminate most of the ionospheric effect.  However, in this

case, the integer ambiguity resolution is difficult to achieve from this ionosphere-free

combination alone.  The ambiguities are generally estimated as real value.

Ionospheric correction coefficients from the broadcast  message can remove only 50% of

the ionospheric delay at mid-latitudes [Wells et al. 1987].  Recently, attempts have been

made to model the ionospheric effect with polynomials from the difference between the

phase and code measurements.  Cohen et al. [1992] used a first order spherical harmonics

function.  Qiu [1993] and Qiu et al. [1994] used third order polynomials.  However, these

modelling attempts are not accurate enough to be suitable in ambiguity resolution.

Over short baselines below 10 km, the effect of the ionosphere tends to cancel out

between the two receivers.  Over long baselines, the ionospheric effect increases as the

baseline length increases.  As a result, the ionospheric effect limits the length of a

baseline on which integer ambiguities can be resolved.
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2.2.7 Tropospheric Effect

The tropospheric effect is the propagation delay caused by the refraction of a GPS signal

in the lower atmosphere and is independent of the GPS carrier frequency.  To account for

this delay, a tropospheric model has been used.  Hopfield's tropospheric model is a

popular one [Hopfield, 1971].  However, studies have shown that other models may be

better at low elevations [Janes et al. 1990].

The un-modeled tropospheric effect is strongly correlated over a short distance between

the reference and the remote if the height difference of the two stations is small.

However, when the separation distance or height difference is large, local atmospheric

conditions will be more different and the correlation becomes weaker.  Consequently,

adequate modeling remains difficult, especially for the wet delay component.

Surface meteorological data is not accurate to represent atmospheric conditions along the

signal path.  To get more accurate data, The water vapor content of the atmosphere along

the propagation path can be measured with water vapor radiometers.  However, the

instruments are very elaborate and expensive and can only be used in major projects.

A parameter estimation approach can be used to model the tropospheric effect.  That is to

say, a nuisance parameter for each station per observation window is designated for the

tropospheric delay [Chen, 1991].  However, in kinematic positioning, estimation of the

scale factor will over-parameterize the state model and make the ambiguity resolution

more difficult due to the limited number of observations.

As with orbital and ionospheric effects, un-modeled tropospheric effects also limit the

length of the baseline on which integer ambiguities can be resolved.
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2.2.8 Multipath

Multipath means that reflected signals also reach the antenna in addition to the direct

signal.  Multipath propagation is almost inevitable for most GPS applications due to all

possible reflectors, such as streets, buildings, water, and observing platforms.

Multipath error affects both pseudorange and carrier phase measurements.  The amount of

multipath for a code observation is much larger than that for a carrier phase.

Traditionally, the pseudorange multipath can reach up to one chip length of the PRN code

(293 m for the C/A code, and 29.3 m for the P code), while carrier phase multipath is less

than 25% for the carrier wavelength [Georgiadou and Kleusberg, 1988].  However, in

most cases, observed multipath from C/A code receivers is less than 20m.  NovAtel's

patented Narrow Correlator™ technique usually reduces the multipath effect on the C/A

to submetre levels [Van Dierendonck et al. 1992].  New development on code multipath

reduction techniques has been conducted by van Nee [van Nee and Siereveld, 1993].

Multipath is proportional to the ratio of the direct signal power to the reflected signal

power.  Typically, in static observations, multipath is non-Gaussian in nature and shows

sinusoidal oscillations with periods of a few minutes.  In kinematic mode, multipath

appears more random, due to vehicle movement and environmental change.  In a strong

multipath environment, the required observation time in the field may have to increase

significantly to correctly resolve the satellite carrier phase ambiguities.

For surveying, sites of low multipath can often be chosen.  However, for kinematic

positioning, the environment may be difficult to control.  Choker-rings, absorbing

material near the antenna or ground plates may reduce the effect of multipath.  Special

receiver antenna design and firmware may also help.  In principle, another method that
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can help reduce the effect of multipath is to model this effect when the relative locations

with respect to the reflecting objects and the reflection index are known [Georgiadou and

Kleusberg, 1988].  However, it is almost impossible for most users due to complicated

nature of the reflecting objects.

For most applications, the multipath effect is independent of the length of the baseline.

Multipath is a major error source for differential positioning of short baselines.  For static

positioning, the effect of the multipath tends to be reduced.  When multipath is strong, it

will take a substantially longer time to resolve the ambiguities since the multipath effect

varies slowly over time.  This is especially true when strong multipath is combined with

limited number of satellites and unfavorable satellite geometry.

2.2.9 Cycle Slips

Cycle slips occur if the receiver loses phase lock on the satellite signal.  This may be

caused by external  or internal  factors.

The examples of external factors include:

• obstructions, e.g., buildings, trees,

• high signal noise, in particular caused by multipath and ionospheric scintillation,

• low satellite elevation, causing low signal strength,

• antenna inclination in kinematic application (airplane, ship).

The examples of internal factors include:

• weak signals, partly caused by signal interference,

• signal processing method used.
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In many applications, especially for static positioning, cycle slips pose no problem, since

the prediction errors of the observations are normally well below one cycle.  The triple

difference, i.e., the difference of the double difference observations between two

consecutive epochs, is used to detect and eliminate cycle slips.  The measurement of the

phase rate can also be used to compute the cycle slips if the errors of the integrated values

of Doppler are less than half a cycle [Cannon, 1991].

Cycle slips may pose a difficulty for precise kinematic positioning.  Neither the prediction

method nor triple differencing can be used where the error in the predicted position is

larger than half a cycle.  The Doppler measurement may detect large cycle slips, but do

little to eliminate them since the speed between two consecutive measurements is often

not uniform.

If four or more satellites are free of cycle slips, the cycle slips for the remaining satellites

can be computed easily.  However, it will be difficult to fix cycle slips if the number of

satellites without cycle slips is less than four.  If cycle slips cannot be fixed, the

ambiguities should be resolved again.

The integration of an additional sensor, for example, the integration of an inertial sensor

package, can help to bridge gaps caused by cycle slips.  The integration can be used to

predict GPS measurements.  However, the prediction is only good for a very short time

(i.e., a few seconds) and most inertial systems will drift more than one cycle after several

seconds [Cannon, 1991].  In addition, an inertial system is too expensive for most users.

2.3 Selective Availability and Anti-Spoofing

Since GPS is a military navigation system and is the primary responsibility of the US

Department of Defense (DoD), GPS has to meet the national security interests of the
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United States.  Accordingly, access to the total system accuracy by the national and

international civil community is limited.

The service available to the civil community is called Standard Positioning Service

(SPS); the service available to authorized users, mainly military, is called the Precise

Positioning Service (PPS).  Under the current policy of Federal Radio Navigation Plan,

the accuracy available to SPS provides 100 m of 2D-RMS; PPS provides 10 to 20 metres

in three dimensions [FRNP, 1990].

Anti-Spoofing (AS) entails the encryption of P-code, or in other words, the use of a

protected code named Y-code.  Only authorized users have the means to access the P-

code while AS is activated.  Selective Availability (SA) degrades both broadcast

ephemeris and satellite clocks, and thus, introduces errors in measurements.  As a result,

SA is especially bad for single point positioning.  However, for double differencing

positioning, the effects of SA are almost completely removed since double differencing

significantly reduces the effect of SA.
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CHAPTER 3 LEAST-SQUARES AND KALMAN
FILTERING

This chapter takes a look of the filtering technique from the least-squares estimation.

Starting with classical least-squares estimation, the least-squares filtering is derived from

the least-square estimation.  It is also shown here that least-squares filtering is equivalent

to Kalman filtering.  Finally, parameter removal is discussed concerning cases in which

some estimated parameters become perfectly known.  The parameter removal technique

discussed is equivalent to the technique that treat the parameters as  known values from

the beginning.

3.1 The Problem of Least-squares Estimation

3.1.1 Definition of the Problem

Observations are made to derive certain parameters.  However, observations often contain

biases and errors.  To reduce the effect of the errors and assess the accuracy of the

solution, redundancy is required.  That is, more than the minimum number of

observations is required to determine the estimated parameters.  These observations must

be adjusted so that the solution will be consistent with these adjusted observations.  To

adjust observations and to obtain the desired parameters, the method of least-squares

estimation is often used.  In least-squares estimation, parameters and corrected

observations are derived by minimizing the weighted sum of the squared residuals.  This

process is subject to certain constraints among the observations and estimated parameters.
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Suppose that the mathematical relation between the observation vector l and the unknown

parameter vector x is:

l  = f(x) + ε ε ε ε , (3.1)

where,

εεεε is the unknown observation noise.

Then, the least-squares estimation of x is to seek a vector

x̂ (x̂ ∈X, where, X is a real space)  such that

 (l - f(x̂ ))T P (l - f(x̂ ))  = min , (3.2)

where,

P  is the a-priori weighting matrix of the observations.

Note that the symbol, ^, over a vector is referred to as the corresponding least-squares

estimate throughout this thesis.

Here, the a-priori information is also regarded as a quasi-observation.  The constraints in

a space could be regarded as a sub-space where the solutions should belong to.  The

solution space could be discrete (such as cycle ambiguities in GPS carrier phase

measurements), or continuous (as for coordinates or velocities), or mixed.

Generally, the solution may not necessarily be unique.  However, in many applications,

such as, surveying and navigation, a problem is often  designed in such a way that only a

unique solution can be derived from the least-squares estimation process.  The uniqueness

is determined by the geometry of observations (including a-priori information), the

variance-covariance matrix of the observations, and the constraints.
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3.1.2 Constrained Adjustment with Unknown Parameters

Assuming the n-dimensional observation vector as l with variance-covariance matrix Cl,

where the observations here also include the a-priori information, the constraints are then

described by a system of m equations such that:

f(x, l + r)  = 0 , (3.3a)

where,

x is the unknown parameter vector to be estimated, and

r  is the correction on observation l .

The above equation can be linearized as follows:

A δδδδ  + B r  + w  = 0 , (3.3b)

where,

A = 
∂ f

 ∂ x |xo,l   is the design matrix with respect to the unknown parameter vector,

B = 
∂ f
 ∂ l |xo,l  is the design matrix with respect to the observation vector,

w = f(xo,l)  is the misclosure vector,

xo is the vector of approximate value of x,

δδδδ is the correction on the approximate value vector of x, i.e., x  = xo +δδδδ , and

r is the residual vector.

Using the minimum criterion (3.2), the solution of the least-squares estimation for δδδδ  and

r becomes:

^δδδδ   = -[AT M-1 A]-1 AT M  -1 w  , (3.4a)

 r̂  = -Cl BT M -1 (A 
^δδδδ   + w)  , and (3.4b)

M = B Cl BT  . (3.4c)

The variance-covariance matrices corresponding to the above estimation are:
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Cδ̂δδδ  = [AT M -1 A]-1 , and (3.5a)

Cr̂  = Cl BT M -1 B Cl - Cl BT M -1 A C^δδδδ   AT M -1 B Cl  (3.5b)

[Krakiwsky, 1990].  Note that 
^δδδδ   is the variation from approximate state vector which has

no weighting in the adjustment.  The a-priori information is included in observation

vector.  Therefore,

Cx̂   = C^δδδδ   . (3.6)

The a posteriori variance factor can be computed as:

σ̂σσσ 2o =  r̂ TCl -1 r̂  / (m-u) . (3.7) 

The formula for the computation of r̂ TCl-1 r̂   can be derived as:

 r̂ T Cl -1 r̂    = wT M -1w - 
^δδδδ  T Cx̂  -1 

^δδδδ  , (3.8)

where,

m is the number of constraints, and

u is the number of unknown parameters.

3.1.3 Parametric Adjustment

When B  = -I, where, I is the unit matrix, the estimation in Section 3.1.2 becomes a

parametric adjustment.  The formulas then become:

^δδδδ   = -[AT Cl-1 A]-1 AT Cl -1 w  , (3.9a)

r̂ =  (A 
^δδδδ   + w)  , (3.9b)

C^δδδδ  = [AT Cl -1 A]-1 , (3.9c)

Cr̂  = Cl - A C^δδδδ   AT , (3.9d)

= (wT Cl -1w - 
^δδδδ  T Cx̂  -1 

^δδδδ  )/(m-u) (3.9e)
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3.1.4 Conditional Adjustment

When A is a null matrix, the estimation in Section 3.1.2 becomes a conditional

adjustment,  that is,

 r̂     = - Cl BT M -1 w  , (3.10a)

M   = B Cl BT , (3.10b)

Cr̂   = Cl BT M -1 B Cl , (3.10c)

Cl̂    = Cl - Cr̂   , and (3.10d)

σ̂σσσ 2o = r̂TCl -1 r̂ / m . (3.10e) 

The formula for the computation of r̂ TCl -1 r̂   can be derived as:

 r̂ T Cl-1 r̂   = wT M -1 w . (3.10f)

The above formulas will be used to derive a filter in the following sections.

3.2 From Least-squares to Kalman Filtering

The problem of least-squares filtering is illustrated in Fig. 3.1 for kinematic satellite

positioning.  The position, velocity, and other parameters (denoted as xk+1) are to be

estimated at epoch k+1 from the observation vector lk+1 and its variance-covariance
matrix Clk+1

 .  Supposing  that rk+1 is the correction to lk+1, the relationship between the

lk+1 and xk+1 is defined by the prediction model:

lk+1 + rk+1 = f(xk+1, tk+1) . (3.11)

The relationship between xk+1 and xk is defined by the prediction model, or transition

model:

xk+1 = g(xk, tk+1, tk) + εεεεk+1,k , (3.12)
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where,

εεεεk+1,k  is the uncertainty of the model, and its variance-covariance matrix is Cεεεεk+1,k .

Receiver

Update 
Positions

Observations
lk+1, Clk+1

Other
Information

~xk+1|k+1, C~xk+1|k+1

~xk|k, C~xk|k

~xk+1|k, C~xk+1|k  Transition Model
xk+1 = g(xk, tk+1, tk) +εεεεk+1,k , Cgk+1,k

l
Observation Model

f(xk+1, k+1  +  r , t ) = 0k+1 k+1

Figure 3.1 Problem of Kinematic Positioning in GPS

The question now is how to estimate the system parameter vector, xk+1, with all

information up to the current epoch, k+1.  The problem was first solved by Kalman

[1960] and is, therefore, called Kalman Filtering.  In this section, the least-squares

estimation technique described in the previous section is applied to derive the equivalent

formulas.  The advantage of this approach is that many available formulas in the least-

squares adjustments can be used.

The problem is solved in two steps.  In the first step, the current state vector is computed

using equation (3.12) and its variance-covariance matrix is also computed.  In the second

step, both the predicted a-priori and direct observations are used to derive the state

vector.  This step is called updating.
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At the first epoch, the updated value is computed from the a-priori and direct

observations.  All updated values of the state vectors at subsequent epochs are computed

from predicted and direct observations.

3.2.1 Prediction of the State Vector

Assuming that x̂ k|k is the updated value for state vector xk, x̂ k|k is computed from all the

information up to epoch k.  The predicted value for the state vector xk+1, namely, x̂ k+1|k,

is computed from x̂ k|k using equation (3.12):

x̂ k+1|k = g(x̂ k|k,tk+1, k)  + εεεεk+1,k , (3.13)

where, the expected value of εεεεk+1,k is regarded as zero.

In order to obtain the variance-covariance matrix, the kinematic prediction model is

linearized as:

x̂ k+1|k  = øk+1,k (x̂ k|k - xko) + gk+1,k (xko, tk+1, tk)  + εεεεk+1,k , (3.14)

where,

øk+1,k =  
∂ gk+1,k

 ∂ xk
 |xko , and

xko is the point of expansion in the Taylor's series and normally takes the value of 

x̂ k|k..

By using the law of error propagation, the variance-covariance matrix of the predicted
state vector, Cx̂k+1|k  , can be computed as:

Cx̂k+1|k  = øk+1,k Cx̂k|k  øTk+1,k + Cεεεεk+1,k . (3.15)

3.2.2 Updating Using a Parametric Adjustment

The observation equation can be linearized as:
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rk+1 = Ak+1 δδδδk+1 + wk+1 , (3.16)

where,

Ak+1 = 
∂ fk+1

 ∂ xk+1
 |x̂ k+1|k ,

wk+1 = fk+1(x̂ k+1|k, tk+1) -  lk+1 , and

δδδδk+1 is the correction to the predicted value, x̂ k+1|k .

The estimated parameters are included in δδδδk +1|k +1.

In the next two sections, the updating of the state vector will be discussed.

The observation equation corresponding to the a-priori  state vector is:

rxk+1|k = δδδδk+1 . (3.17) 

By combining equations (3.16) and (3.17) into one, the following equation system can be

obtained:

r  = A δδδδk +1 + w , (3.18)

with a variance-covariance matrix of

Cl  =  
�
�
�
�

�
�
�
�Cx̂k+1|k 0

0 Clk+1
  , (3.19)

where,

r = 
rxk +1/ k

rk +1

� 
� 
� � 

� 

A= 
I
Ak+1

� 
� 
� � 

� 
  and

w = 
0
wk +1

� 
� 
� � 

� 
  . (3.20)
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By applying the parametric adjustment formulas from Section 3.1.3, the following

estimation can be obtained:

^δδδδ  k+1|k+1 = -[ AT Cl-1 A]-1  AT Cl-1 w  ,

x̂ k+1|k+1 = x̂ k+1|k  + 
^δδδδ   k+1|k+1

= x̂ k+1|k  - [ AT Cl-1 A]-1  AT Cl-1 w, and

Cx̂k+1|k+1  = [ AT Cl-1 A]-1 , (3.21)

Note that here|k+1 means that the values are obtained using the information up to epoch

k+1.

By placing equations (3.19) and (3.20) into equation (3.21), the following can be derived:

x̂ k+1|k+1 = x̂ k+1|k  - [Cx̂k+1|k -1 + Ak+1T Clk+1
 -1 Ak+1]-1 Ak+1T Clk+1

 -1 wk+1

   = x̂ k+1|k  - K wk+1 , (3.22a)
Cx̂k+1|k+1  = [Cx̂k+1|k -1 + Ak+1T Clk+1

 -1 Ak+1]-1 , (3.22b)

where,

K  = [Cx̂k+1|k -1 + Ak+1T Clk+1
 -1 Ak+1]-1 Ak+1T Clk+1

 -1 . (3.22c)

Comparing with Bayes expression of Kalman filtering in Krakiwsky [1990], the two

expressions are equivalent.  Here, wk+1 is equivalent to (wk+1 + Ak+1 
^δδδδ k+1|k ) in Bayes

expression.  This can be done by the linear expansion of Taylor's series with wk+1 at an

approximate value of the current state vector xk+1.  However, this is not necessary here,

since all linearization can be made at the predicted value of the state vector.
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3.2.3 Updating Using Conditional Adjustment

The least-squares filtering expression can also be derived from the conditional

adjustment.  The observations are the same as in the last sub-section.  However, the

constraint equations can be reformatted as:

B r  + w  = 0 , (3.23)
where,

r = 
�
�
	



�
�δδδδk+1

rk+1
  ,

w = wk+1 ,

B = (Ak+1 ,  -l) , and (3.24)

Cl  is the same as in equation (3.19).

From the equations of the conditional adjustment, the least-squares estimation is:

 r̂   = -Cl BT M -1 w  , (3.25a)

M  = B Cl BT ,

Cr̂   = Cl BT M -1 B Cl , and (3.25b)

Cl̂    = Cl - Cr̂   . (3.25c)

By placing equation (3.24) into equations (3.25a) and (3.25c), the following can be

obtained:

x̂ k+1|k+1 = x̂ k+1|k  + 
^δδδδ k+1|k+1

   = x̂ k+1|k  - Cx̂k+1|k  Ak+1T [Ak+1 Cx̂k+1|k  Ak+1T + Clk+1
 ]-1 wk+1

   = x̂ k+1|k  - K wk+1 , and (3.26)
Cx̂k+1|k+1  = Cx̂k+1|k - K Ak+1 Cx̂k+1|k , (3.27)

where,

K = Cx̂k+1|k
  Ak+1T  [Ak+1 Cx̂k+1|k -1 Ak+1T + Clk+1

 ]-1 . (3.28)
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By comparing the above with the results from Krakiwsky [1990], the above expressions

are equivalent to Kalman Filtering except for the term, wk+1.  In the formulas given by

Krakiwsky, the linearization is at a value other than the predicted one, while here, it is at

the predicted value.

3.3 Parameter Removal and Transformation of Normal Equations

During filtering, some estimated constant parameters may become perfectly known

without biases and noise such as the ambiguity parameters in GPS.  To determine these

parameters as if they were perfectly known from the beginning, we want to find a

rigorous filter solution.  The following discusses a method that transforms estimated

constants in filtering to deterministic constants.  For convenience, this process is called

parameter removal.

To introduce the method for parameter removal, the parametric adjustment method is

used. For simplicity in this discussion, all subscripts related to epochs are dropped off.

All estimated values are referred to having used all information up to the current epoch.

The state vector is partitioned into two parts: one part corresponds to the constant

unknowns and the other part corresponds to remaining unknown.  Similarly, the design

matrix, normal matrix, and normal equation are all partitioned accordingly.

Theorem.   If the normal equations of a kinematic system at any epoch are:

Pxx δx̂   + Pxy   δ ŷ = ux , (3.29a)

Pyx δx̂   + Pyy   δ ŷ   = uy , (3.29b)
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where,

ŷ is the constant part of the unknowns in the state vector,

x̂ is the remaining part of the state vector,

δx̂  and   δ ŷ  are the variation of  x̂  and    ŷ  from their approximate values, xo, yo.

Then, if y becomes a constant known, denoted yC, the normal equation 3.29 becomes:

Pxx δx̂ |y  = ux|y , (3.30)

and the weighted sum of the residual squares becomes:

Ω|y = Ω + (yC- ŷ )T ~P yy (yC- ŷ ) , (3.31)
where,

ux|y = ux - Pxy (yC - yo) , (3.32)
~P yy = Pyy - Pyx Pxx-1 Pxy ,

 ŷ  is the float estimation from equation (3.29),

x̂ |y is the estimation of x corresponding to the known value of y ,

Ω  is the weighted sum of squared residuals while treating y as the estimated

parameter vectors, and

Ω|y  is the weighted sum of residuals while treating y as a vector of known

constants.

The proof of the same theorem with parametric adjustment is included in the Appendix.

Another method to prove the theorem is to use the conditional adjustment method, where,

y is constrained to the integer values.
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CHAPTER 4 FAST AMBIGUITY SEARCH
FILTER: THE CONCEPT AND ITS
IMPLEMENTATION

In this section, basic concepts for ambiguity resolution, Fast Ambiguity Search Filter

(FASF), are described, followed by a special recursive sequential search algorithm.  Then,

the least-squares method to implement FASF is discussed.  The observation equations are

given in Section 4.2 with the prediction model following.  Finally, the least-squares

implementation of FASF is discussed.

4.1 Development of the Concept of FASF

FASF uses a least-squares filter, a special ambiguity searching process where ambiguities

are searched at every epoch until they are fixed, and an index is used to exit the search

process without completing full search.

In the current implementation of FASF, the number of potential solutions is used as the

index to exit the ambiguity search.  An attempt is made to fix the ambiguities if the total

number of potential ambiguity sets from the search is less than a certain threshold.  If the

number is one, the ambiguity set is regarded as the correct one.  Otherwise, other tests are

carried out, such as the ratio test of the sum of squared residuals: the second minimum

divided by the minimum.  If the ratio is larger than the specified threshold, the one with

the minimum Ω  (the weighted sum of the squared residuals) is regarded as the correct
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ambiguity set.  However, if the radio test fails, the ambiguities are estimated as real

values.

Since the full search of potential ambiguities is avoided with FASF, only a relatively

small amount of computation time is needed for ambiguity searching.  Consequently, the

computational efficiency is significantly improved.

The threshold on the number of potential solutions affects computational efficiency.  The

smaller the threshold, the less the computation is required.  However, a small threshold

requires a longer observation period before ambiguity resolution is made.  From the tests

described in Chapter 5, the threshold of ten works reasonably well.  However, this value

is by no mean an optimal one and should be investigated further.

A least-squares filter, the equivalent of a Kalman filter obtained by applying least-squares

theory, is used in FASF and is illustrated in Figure 4.1.  In this method, the process noise

corresponding to the ambiguity parameters from one epoch to the next is zero.  The

ambiguities are searched at every epoch, starting from the  first epoch, until they can be

fixed.  Once the ambiguities can be fixed correctly, they are regarded as known integers.

The principle of FASF can also be used for static positioning by assigning the noise of

predicted positions as zero; in this case, the velocity components are also zero and are not

included in the state vector.  As will be discussed in section 4.4, the biases in the GPS

observations are strongly correlated over the time.  Adding processing noise in the

estimated ambiguities may partially compensate the impact of the correlation.  However,

the exact impact should be further investigated.
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Figure 4.1 Flowchart of Fast Ambiguity Search Filter

In all previous scheme, the value of an ambiguity parameter could be treated as known

only if it was correct, or all potential ambiguity sets have to be fully searched.  In the

paper by Blewitt [1989], ambiguity parameters converge sequentially in a static

application.  His main assumption is that by arranging the sequence of ambiguity

parameters, at least one of the estimated ambiguity parameters will converge to correct

integer in terms of a probability level he designed.  Once the ambiguities are known

values, they can be removed from the estimation.  He also used precise code and wide

lane ambiguities.  The assumption of the convergence may be the case for some static

positionings, especially when precise code measurements are also used and the

observation period is long enough.  However, in many applications, especially in

kinematic applications, the convergence can not be guaranteed.  The estimation often

converges to incorrect values due to various systematic biases.
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4.1.1 Search Algorithm

One of the important characteristics of FASF is the ambiguity search procedure.  Here,

ambiguities are arranged in a series  The search range of each ambiguity is determined

recursively and sequentially by updating constraints.  To compute the search range of an

ambiguity parameter in the series, the presumed integer ambiguities on the left of this

series (assuming the ambiguities are arranged from the left to the right) are regarded as

known.  Here, a recursive procedure can be applied and the constraints are updated in

computing the uncertainty range for ambiguities from N1 to Nn.  This concept is called the

Recursive computation of the Search Range for the ambiguities (RCSR), or updating of

the constraints.

Assuming the ambiguity series as N1, N2, N3, ..., Nn, the search ranges for the ambiguities

are computed from N1 to Nn, where, n is the number of ambiguity parameters.  The search

range of possible integers for ambiguity Ni  is computed for each specific integer set of

ambiguities N1, N2, ..., Ni-1.  In computing the search range, the values of N1, N2, ..., Ni-1

are treated as correct, while Ni, Ni+1, Ni+2, ..., Nn  are treated as estimated parameters.

Note that the search range of Ni  should be equal to the maximum uncertainty range of the

real estimation of Ni.  It  can be expressed as:

xNi|N1, N2, ..., Ni-1
min  ≤ Ni  ≤ xNi|N1, N2, ..., Ni-1

max , (4.1)

where,

xNi|N1, N2, ..., Ni-1
min is the minimum possible value of Ni  if the integer values of N1,

N2, ..., Ni-1 are correct, and

xNi|N1, N2, ..., Ni-1
max  is the maximum possible value of Ni  if the integer values of

N1, N2, ..., Ni-1 are correct.
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Of course, to compute the search range of Ni, each potential integer set of ambiguities

N1, N2, ..., Ni-1 should also be included in the corresponding ranges derived from the same

principle described here.  Since N1 is the first in the series, its maximum uncertainty is

derived from the float solution without fixing any ambiguities to possible integer values.

All integer sets falling into these ranges should be included.

Not all integer ambiguity sets will be included in these search ranges.  However, the

correct solution will be included if the search ranges of possible ambiguities are

computed properly.  Incorrect sets of ambiguities may also be included in the search

ranges due to insufficient geometry, the effect of noise, and poor initial a-priori

information, though the incorrect solutions normally have a higher chance of being

rejected in the RCSR.  However, as observations and geometry accumulate, only the

correct solution will continue to satisfy these search ranges.  In the case of good

geometry, low noise, and good a-priori information, it is possible to determine the

ambiguities in a few epochs (even one epoch).  However, for single frequency

observations, it will normally be rare that ambiguities will be resolved in one epoch

except in some very favorable conditions, such as a large number of satellites, very small

biases and low noise in the phase and pseudorange observations, and special satellite

configurations.

4.1.2 Search Algorithm Based on RCSR

To explain the basic concept of FASF in more detail, a search process based on the RCSR

can be designed.  The search is a procedure of multi-level loops as described below:

Loop 1: Compute the search range for ambiguity N1.
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1. The search range for N1 is computed without constraining any ambiguities to

integers.  The correct value of N1 is one of the integers in this range if the search

range is computed properly.

2. For each possible integer of in the search range of N1, search for possible integer

values of other ambiguities.  That is, go to the deeper loops for other ambiguities.

3. Exit the search loop when all the possible integers of N1 have been searched.

Loop 2:  Compute the search range for N2

1. Corresponding to each constraint of N1 to a possible integer, the range of all the

possible integers for N2 is computed as if the constrained value of N1 was a correct

integer value of N1.  When N1 is a correct value, the correct N2 will be included in

the range and deeper loops can be carried forward.

2. If no integer is in the range of N2, go back to loop N1 and search the next possible

integer of N1.

3. Go to upper loop level, loop N1, if all the possible integers have been searched.

Loop 3:  Compute search range for N3

1. Similarly, for each constraint of N1 and N2 to their integers, compute the search

range for N3.  The specific integer pair of N1 and N2 is treated as correct values in the

range computation.  When the integer pair of N1 and N2 is correct, the correct value

of N3 will be included in the search range.

2. For the integer pair of N1 and N2, if no integer is available in the computed range of

N3, continue to search for the next available integer pair of N1 and N2 (the next step

in loops N1 and N2).

3. Go to the upper loop, loop N2, if all the possible integers of N3 have been searched.

Loop i: Compute the search range of Ni
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1. Again similarly, compute the search range of all possible integers of Ni

corresponding to each set of constrained integer values for N1,...,Ni-1.  The specific

integers of ambiguities N1,...,Ni-1 are correct values in the range computation.

2. If the integer set for N1,...,Ni-1 is correct and the search range is appropriate, the

correct integer of Ni will be included in the search range and the deeper loop can be

carried forwards.  If no integer is available in the computed range of Ni

corresponding to a specific set of N1,...,Ni-1, search the next available integer set of

N1,...,Ni-1 (i.e., the next step in loops N1,...,Ni-1).

3. Go to upper level of loop (i.e. Ni-1) if all the possible integers of Ni have been

searched.

Loop i+1 to Loop n-1:  Similar to the above.

Loop n:  Compute the search range of for Nn

1. Compute the search range for Nn corresponding to each integer set of N1, ..., Nn-1.

2. If no integer is in the search range of Nn, go back to loop Nn-1 and search the next

possible integer of Nn-1.

3. Go to the upper loop level, loop Nn-1, if all the possible integers of Nn have been

searched.

Loop Nn is the deepest loop in the ambiguity search.  Therefore, a full set of integer

ambiguities is obtained for each possible integer of Nn.  That is, a possible ambiguity set

can be obtained by putting together the integer ambiguities of different loops since each

loop is related to an ambiguity parameter.   Therefore, the possible number of integers for

ambiguity Nn in this loop is added to the total number of potential solutions.

Whenever the accumulated number is larger than a certain threshold, for example, one,

four, ten, etc., depending on the circumstances, it becomes apparent that fixing
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ambiguities may not be possible.  At this time, the search process stops and the

ambiguities are estimated as real numbers.  The number of potential ambiguity sets is

used as an index of possible inabilities to fix the ambiguities.  The use of the index is

justified because the greater the number of potential solutions available, the less likely the

correct ambiguity resolution will be retained.

4.1.3 Size of Search Windows

The second cause of the reduced computation of FASF is the window size for each

ambiguity.  As described earlier, in a traditional approach, the window sizes of individual

ambiguities are unrelated to one another, except in Hatch's algorithm where the values of

the secondary ambiguity parameters are almost uniquely determined by the values of the

primary ambiguities.  However, by using the RCSR concept presented here, the search

windows of ambiguity parameters are related to each other.  As a result, sequential

updating of constraints normally makes subsequent uncertainty ranges smaller and

smaller.

The difference in the window sizes is illustrated in Figure 4.2.  For convenience, in this

figure, the window sizes of different ambiguity parameters in the full search method are

assumed to be constant and the ambiguity parameters are arranged in the same order for

the different methods.
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Full search, and Landau and Euler

Hatch

N1  N2 N3   ...   Ni-1,  ............   ,    Nn  Ambiguity
Figure 4.2 Illustration of Window Sizes for Three Different Approaches

Although  the search windows for the first epoch are the same for the full search in

Landau and Euler's approach, the latter uses an optimized Cholesky decomposition

algorithm to compute Ω.  As demonstrated in Landau and Euler [1992], there is a

significant computational difference between the two approaches.

By using the RCSR concept, the decrease in window size is dependent on the correlation

between the ambiguity parameters.  In applying RCSR, the steepness of window size

relative to ambiguities will increase as the number of observations increases and

geometry changes.

The window sizes for RCSR are smaller than for the full search or for Landau and Euler's

approach.  The window sizes for the primary satellites in RCSR are smaller than for

Hatch's method.  Actually, it is not necessary to keep the concept of the primary and the

secondary ambiguities in RCSR.  The concept is described here only for comparison with

Hatch's method.  However, for secondary ambiguities, the window sizes of RCSR can be

smaller or larger than for Hatch's method.  In Hatch's method, there is a unique set of

windows for the secondary ambiguities [Hatch, 1991]; in the RCSR concept, there may be

none or more than one set of secondary ambiguities for a specific integer set of primary

ambiguities.
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4.1.4 Validation of the New Concept

With the intent of validating the RCSR concept, the following theorem is first presented:

RCSR Theorem:

If the set of potential ambiguity solutions is:

Nn  = { {N1,.., Ni, ...Nn},

while for each Ni (i=1,.., n),

(xNi |N1, N2, ..., Ni-1
min    ≤  Ni   ≤ xNi |N1, N2, ..., Ni-1

max) ∩ Ni  ∈ I1} , (4.2)

where,

xNi |N1, N2, ..., Ni-1
min  is the minimum possible value of Ni  if the integer values of N1,

N2, ..., Ni-1 are correct,

xNi |N1, N2, ..., Ni-1
max is the maximum possible value of Ni  if the integer values of

N1, N2, ..., Ni-1 are correct

I1 is one dimensional integer space and ∩ is logical 'and'.

Note that  xNi |N1, N2, ..., Ni-1
min and xNi |N1, N2, ..., Ni-1

max  should be formulated in a way

that when the values of N1,.., Ni-1 are correct, the correct value of Ni  will be included

between them;

Then, the correct ambiguity set is included in Nn.

The theorem shows that when the uncertainty ranges are properly computed, the correct

values of ambiguities are always included in the potential ambiguity sets by using any

recursive method based on the RCSR.

The following is the prove of the theorem:
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• When n =1, Nn becomes N1 = { N1, (xN1
min  ≤ N1  ≤ xN1

max)  ∩ N1 ∈ I1} .  From the

definition, the correct ambiguity solution should be one of the sets from N1.

Therefore, the theorem is true when n =1.

• If we can further prove true for n =k+1 under the condition of being true for n  = k, it

becomes true.

Assuming that the theorem is true for n =k, the potential ambiguity set defined in the

theorem is denoted as N  'k.  According to the assumption, the correct ambiguity set

should be inside N 'k.  Denoting the correct values of the first k ambiguity parameters

as N'1, N'2, ..., N'k, from the definition of the maximum uncertainty in the theorem, the

correct value of ambiguity Nk+1 will be included between xNk+1|N'1, N'2, ..., N'k
min and

xNk+1|N'1, N'2, ..., N'k
max corresponding to ambiguity values, N'1, N'2, ..., N'k.  This

correct value is designated as N'k+1.

Therefore, N'1, N'2, ..., N'k, N'k+1 are the correct values of N1, N2.., Ni, ...Nk+1, i.e., the

correct values of N1, N2,.., Ni, ..., Nk+1 are included in the theorem for n =k +1 if the

correct values of N1, N2, ..., Nk are included for n  = k.

• According to the theory of mathematical induction, it can be concluded that the

theorem is true.

Although RCSR is rigorous, the difficulty in this method is the determination of the

uncertainty range due to the complex nature of noise.  On the one hand, the range should

be large enough to include the correct solution when other assumed integer ambiguity

parameters are held fixed.  On the other hand, the range should not be exaggerated.  If the

range is too large, more incorrect solutions will be included, and the discrimination

between the correct solution and incorrect ones will be more difficult.  If the uncertainty

ranges are not properly computed, the correct solution may not be included in Nn.  If that

happens, the ambiguity resolution will fail.  Many methods are possible to compute the
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search ranges.  As a first effort, a least-squares method to compute the search range is

described in section 4.3.

4.2 Filter Scheme

In this section, the least-squares filter is applied to implement the basic ideas previously

described.  Following the general double difference observation equations, the prediction

of the state vector is described and the adjustment algorithm is applied.  The adjustment

algorithm applied is equivalent to the standard Kalman filter [Chapter 3].

4.2.1 Observation Equations

The vector form of double difference GPS observations after the various corrections have

been applied can be written as:

∆∇lph = ∆∇ρρρρ   + λ ∆∇ΝΝΝΝ  + ∆∇εεεεph  ,

∆∇lpsr = ∆∇ρρρρ  + ∆∇εεεεpsr  , (4.3)

where,

∆∇lph is the vector of double difference phase observations in metres,

∆∇lpsr is the vector of the double difference pseudorange observations in metres,

∆∇ρρρρ is the vector of double differenced geometric propagation distances from

the satellites to the receivers, in metres,

λ is the whole wavelength of the carrier, L1, L2, or the wavelength of a

linear

combination of  dual frequency observations.  However, for squaring 

type receivers [Wells et al. 1987], it is the half of the carrier wavelength, in 

metres, and

∆∇εεεεph and ∆∇εεεεpsr are residual vectors in metres.
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After linearization, equation (4.3) can be written as:

r  =  A δx  + w , (4.4)

where,

r = -
�
�
�

�
�
�∆∇εεεεph

∆∇εεεεpsr 
  is the residual vector.  The variance-covariance matrix of the 

observations is denoted as Cl,

δx is the correction to the approximated state vector,

A is the partial derivatives of the observations with respect to the state vector

(called the first order design matrix), and

w is the misclosure after linearization.

To obtain the solution of δx, the weighted parametric least-squares adjustment can be

applied.  The normal equation is:

P δx̂   = u , (4.5)

where,

δx̂   is the least-squares estimation using all information up to the current epoch, and

u  = AT Cl
-1 w  + Cx

-1 δxo ,
P  = AT Cl

-1 A + Cx) 
-1 , (4.6)

where,

δxo is the variation of the a-priori  state vector from the point where the

linearization is made, and

Cx) is the variance-covariance matrix of xo.

For the combined solution of the phase and code,

AT Cl 
-1 A  = AphT Cph 

-1 Aph  + ApsrT Cpsr 
-1 Apsr ,

AT Cl 
-1 w = AphT Cph 

-1 wph + ApsrT Cpsr
-1 wpsr , (4.7)
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where,

Aph, Cph, and wph  correspond to the phase observable, and

Apsr, Cpsr, and wpsr correspond to the pseudorange observable.

For the code only solution,

AT Cl -1 A = ApsrT Cpsr-1 Apsr , and
AT Cl -1 w = ApsrT Cpsr-1 wpsr . (4.8)

For the phase only solution,

AT Cl1 A   = ApsrT Cpsr-1 Apsr , and
AT Cl -1 w = AphT Cph -1wph . (4.9)

If there is no a-priori  information, equation (4.6) becomes:

u  = AT Cl 
-1 w  , and

P  = AT Cl 
-1 A  . (4.10)

In a kinematic application, the observation equation can be linearized around the a-priori

state vector.  Then, equation (4.6) is reduced to:

u  = AT Cl
-1 w  , and

P  = AT Cl
-1 A  + Cx

-1 . (4.11)

The state vector normally includes position, velocity, and ambiguity parameters.  The

ambiguity parameters are not included in the state vector if no phase observations are

used or if ambiguity parameters are fixed.

Since only the difference between ambiguity parameters will affect the observation

equation (4.3), the ambiguity parameters are defined as the differences between a specific

satellite and all other satellites.  The differences are defined in a way such that each

double difference ambiguity in equation (4.3) can be uniquely and linearly combined by

these parameters.
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The components of the design matrix are listed in Table 4.1, assuming that the double

difference observations are made with respect to the first satellite.

The variance-covariance matrix for the double difference phase or the code observations

is:

C  = 2 σ0  
�
�
�

�
�
�2 1 ... 1

1 2 ... 1
... ... ... ...
1 1 ... 2

   , (4.12)

where,
σ0 is the a-priori variance for undifferenced observations, and

C  can be inverted by the general method.  However, the inversion can be computed 
simply using the following formula:

C -1 = 1/2 σ0-1 
�
�
�

�
�
� n /(n+1) -1/(n+1) ... -1/(n+1)

-1/(n+1)  n /(n+1) ... -1/(n+1)
     ...      ... ...      ...
-1/(n+1) -1/(n+1) ...  n /(n+1)

  . (4.13)

In kinematic positioning, the a-priori state vector is normally computed from the

estimated state vector of the previous epoch by using a prediction model (see next sub-

section).
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Table 4.1 Partial Derivatives with Respect to the Components of the State Vector.
(Assuming the double difference are made with respect to 1'st satellite)

Observable Pseudorange Carrier phase

With

respect to

coordinates

�
�
�

�
�
�a1T

a2T

...
anT

 

where,
ai  = uiR  - u0R ,

i  =1,2,..,n. (Assumed n +1 satellites available).
uiR  and u0R  are unit vectors from satellite i  and 0 to the remote
station.

With
respect to
velocity

~0

With
respect to

ambiguities

(Only if
ambiguities

are
estimated)

0

A special case if the first satellite is the reference satellite
and the order of the satellites is the same as the order of the
ambiguity parameters:

λ  
�
�
�

�
�
�1 0 ... 0

0 1 ... 0
... ... ... ...
0 0 ... 1

  .

If not, each element at row i  and column j  is:
λ  (δ ij  - δ0j) ,

where,
λ   is the wavelength,

δ ij = 
�
�
�1, if i  and j  are referred to the same satellites
0, otherwise  

n  is the number of the double difference observations

4.2.2 Prediction of the State Vector

Assuming that the state vector contains the coordinates, velocities, and ambiguity

parameters,  the predicted state vector is then:
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x̂ k+1|k = 
�
�
�

�
�
�x̂ck+1|k

x̂vk+1|k
x̂nk+1|k

  = 

�
�
�
�

�
�
�
�x̂ck|k + x̂vk|k (tk+1 - tk)

x̂vk|k  
x̂nk|k  

  +  
�
�
�
�

�
�
�
�εεεεck+1|k

εεεεvk+1|k
0

 

= 
�
�
�
�

�
�
�
�I (dt I) 0

0 I 0
0 0 I

 

�
�
�
�

�
�
�
�x̂ck|k 

x̂vk|k  
x̂nk|k  

  + 
�
�
�
�

�
�
�
�εεεεck+1|k

εεεεvk+1|k
0

 

= 
�
�
�
�

�
�
�
�I (dt I) 0

0 I 0
0 0 I

 x̂ k|k + 
�
�
�
�

�
�
�
�εεεεck+1|k

εεεεvk+1|k
0

  , (4.14)

where,

x̂ k+1|k is the state vector at epoch k+1, estimated from all the information up to

epoch k  (i.e., the predicted state vector at epoch k+1),

x̂ ck+1|k, x̂ vk+1|k, and x̂ nk+1|k are the components of x̂ k+1|k for the coordinates,

velocity, and the ambiguity parameters correspondingly,

x̂ ck|k, x̂ vk|k, and x̂ nk|k are the state vectors at epoch k  estimated from the

information up to epoch k, and

εεεεck+1|k and εεεεvk+1|k are the noise of the prediction model on the coordinate and

velocity vectors.

From the law of error propagation, the variance-covariance of x̂ k+1|k is:

Cx̂ k+1|k  = 
�
�
�
	



�
�
�I (dt I) 0

0 I 0
0 0 I

  Cx̂ k|k 
�
�
�
	



�
�
�I 0 0

(dt I) I  0
0 0 I

  + 
�
�
�

�
�
�Cεεεεck+1|k Cεεεεcvk+1|k 0

Cεεεεcvk+1|kT Cεεεεvk+1|k 0
0 0 0

  

=  
�
�
�
	



�
�
�I (dt I) 0

0 I 0
0 0 I

 
�
�
�

�
�
�Cck|k Ccvk|k Ccnk|k

Ccvk|kT Cvk|k Cvnk|k
Ccnk|kT Cvnk|kT Cnk|k

 
�
�
�
�

�
�
�
�I 0 0

(dt I) I 0
0 0 I
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 +  
�
�
�

�
�
�Cεεεεck+1|k Cεεεεcvk+1|k 0

Cεεεεcvk+1|kT Cεεεεvk+1|k 0
0 0 0

 

= 
�
�
�

�
�
�Cck|k +dt (Ccvk|kT+Ccvk|k)+dt2Cvk|k Ccvk|k +dt Cvk|k Ccnk|k +dtCvnk|k

(Ccvk|k +dt Cvk|k)T Cvk|k Cvnk|k
Ccnk|kT+dt Cvnk|kT Cvnk|kT Cnk|k

  

 + 
�
�
�

�
�
�Cεεεεck+1|k Cεεεεcvk+1|k 0

Cεεεεcvk+1|kT Cεεεεvk+1|k 0
0 0 0

  , (4.15)

where,

I is the unit matrix,

dt is the time difference between epochs k+1 and k,

Cck|k, Ccvk|k, Ccnk|k, Cvk|k, Cvnk|k, Cnk|k are the components of the variance-

covariance matrix corresponding to the estimated state vector x̂ k|k, and

Cεεεεck+1|k, Cεεεεcvk+1|k, and Cεεεεvk+1|k are the variance-covariance matrices  of the

prediction noise for coordinates and velocity.

If the velocity is not included in the state vector, all components corresponding to the

velocity become null.  The same happens if the ambiguity parameters are not included.

4.3 Computation of the Uncertainty Range Using Least-Squares

In the previous sections, a specific method to compute the search range was not

mentioned.  In this section, a least-squares filter is applied to compute the search range.

The predicted state vector and the direct GPS observations are all regarded as observables

in the estimation process.
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When the cycle ambiguity parameters are estimated as real values, the system of normal

equations can then be derived using the parametric adjustment method as follows

(Section 4.2.1):

PCC δx̂ C  + PCN δx̂ N  = uC , and

PNC δx̂ C  + PNN δx̂ N  = uN , (4.16)

where,

δx̂ N is the estimated correction of the ambiguity parameters to be estimated as the 

real values,

δx̂ C  is the estimated correction of the other parameters,

PCC , PCN , PNC , and PNN  are the sub-matrices of the normal matrix partitioned

corresponding to xC and xN, and

uC and uN are the constant terms in the normal equations.

By eliminating the parameter δx̂ C from the second part of equation (4.16), the following

equation can be obtained:

~P 
NN δx̂ N  = ˜ u  , (4.17)

where,

~P 
NN  = PNN  - PNC PCC

-1 PCN , and

ˆ u N    = uN  - PNC PCC
-1 uC . (4.18)

Assuming that ambiguities N1, N2.., Ni-1 have been assigned integer values, denoted as

NI, a least-squares solution is now required for Ni, ..., Nn while treating N1, N2.., Ni-1 as

known values.

A tree of filters can be used.  Each filter corresponds to each different set of ambiguity

values.  However, such an approach will complicate programming and computation.  A
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simpler solution is to convert the solution of equation (4.17) to an equivalent solution of

partially fixed ambiguities using the parameter removal theorem discussed in the last

chapter.

To get the filter solution when ambiguities N1, N2, ..., Ni-1 are treated as known integers,

the normal equations are partitioned before ambiguity fixing.  That is, the full float

estimated ambiguity parameters are partitioned into two parts, one corresponding to

N1, N2.., Ni-1, denoted as δx̂ Na (the vector form of δx̂ N1, ..., δx̂ Ni-1); the other

corresponding to Ni, ..., Nn , denoted as δx̂ Nb (the vector form of δx̂ Ni, ..., δx̂ Nn ).  Then,

equation (4.17) can be partitioned like the partition in equation (4.16):

~P Naa δx̂ Na  + ~P Nab δx̂ Nb    =  ˆ u  Na , and
~P Nba δx̂ Na  + ~P Nbb δx̂ Nb   = ˜ u Nb , (4.19)

where,
~P Naa, ~P Nab, ~P Nba, and ~P Nbb are the sub-matrices of the normal matrix (~P NN )

partitioned corresponding to δx̂ Na and δx̂ Nb, and

ˆ u Na and ˆ u Nb are the constant terms in the partitioned normal equations.

Note: In the above equations, all ambiguity parameters are estimated as real.

When xNa becomes known, denoted as NI, values of Ni, ..., Nn are denoted as δx̂ Nb|N1 N2

Ni-1.  According to the theorem in Chapter 3, when xNa is treated as the fixed value

vector, the corresponding normal equation after eliminating the non-ambiguity parameters

becomes:

~P Nbb, δx̂ Nb|N1, N2, ..., Ni-1 =  ˜ u Nb   - ~P Nba  (NI  - xNao) , (4.20)

where

xNao is the approximate value that δxNa is referred to.
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Therefore, the float estimation of remaining ambiguity parameters is:

δx̂ Nb|N1, N2, ..., Ni-1 = ~P Nbb
-1 ( ˆ u Nb - ~P Nba (NI  - xNao)) . (4.21)

The corresponding variance-covariance matrix is ~P Nbb -1.

From equation (4.19), the float estimation of δx̂ Nb without fixing any ambiguity, is:

δx̂ Nb  = ~P Nbb
-1( ˆ u Nb - ~P Nba δx̂ Na )  . (4.22)

By differencing between equations (4.21) and (4.22), the following can be obtained:

δx̂ Nb|N1, N2, ..., Ni-1 - δx̂ Nb = ~P Nbb
-1 ~P Nba (δx̂ Na - (NI  - xNao)) . (4.23)

Since x̂ Na = δx̂ Na + xNao, the above equation becomes:

δx̂ Nb|N1, N2, ..., Ni-1 - δx̂ Nb = ~P Nbb
-1

 
~P Nba (x̂ Na - NI ).  (4.24)

That is,

x̂ Nb|N1, N2, ..., Ni-1 - x̂ Nb  =  ~P Nbb
-1

 
~P Nba (x̂ Na - NI ) . (4.25)

Also since only the float estimation of Ni is of concern, only the first element of

δx̂ Nb|N1 N2 Ni-1 is to be computed.  That is,

x̂ Ni|N1, N2, ..., Ni-1 = x̂ Ni + ai T  (x̂ Na - NI ) , (4.26)

where,

ai T  = 1'st row of (~P Nbb
-1

 
~P Nba)

= 1'st row of (~P Nbb
-1)   ~P Nba .

The variance of the estimated δx̂ Nb|N1 N2 Ni-1 corresponds to the elements of the first row

and the first column of ~P Nbb
-1 multiplied by the variance factor (σο ).  That is,

σxNi
 = σο [ ~P Nbb

-1]11 , (4.27)

As seen, only the first row of ~P Nbb
-1 needs to be computed.
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After the float solution and its variance is obtained, the maximum uncertainty range for

possible integer values of xNi  can be computed as:

xNi|N1, N2, ..., Ni-1 - ξ σxNi|N1, N2, ..., Ni-1
  ≤   Ni  ≤

xNi|N1, N2, ..., Ni-1 + ξ σxNi|N1, N2, ..., Ni-1
  , (4.28)

where,
ξ is the expansion factor from the standard deviation to the maximum possible 

uncertainty.

Since both ai and ξ σxNi|N1, N2, ..., Ni-1
  are independent on the values of N1, N2, ..., Ni-1,

both can be computed outside the search loops.  Theoretically, ξ can be related to a

probability level if the noises in the GPS observations are uncorrelated in the time

domain.  However, this is not always true.  The noise of a GPS observable is correlated

from epoch to epoch and the form of the correlation is unknown.  Therefore, the

probability level based on the assumption of independent observations is not suitable

here.  For the first ambiguity, N1,  xN1 and σxN 1 are computed without fixing any other

ambiguities.

As the uncertainty range is linearly proportional to both the a-priori standard deviation of

the observation and the expansion factor, the increase or decrease of the expansion factor

can also be equivalently achieved by the same amount of the increase or decrease in the

expansion factor.  However, this increase or decrease will make the a-priori standard

deviation deviate from the actual level of the noise and the biases.  Therefore, it is better

to keep a-priori standard deviation close to the actual value and adjust the expansion

factor so that the correct ambiguities will be included in all range checks described in

equation (4.28).

According to the parameter removal theorem in Chapter 3, the weighted sum of the

squared residuals can be computed as:
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Ω|xN =NF   = Ω  + (NF  - x̂ N)T  ~P 
NN  (NF - x̂ N) , (4.29)

where,

NF is the potential solution of the full ambiguity set,

Ω|xN =NF   is the adjusted Ω  corresponding to fixed ambiguity values,

x̂ N is the float ambiguity vector from the least-squares estimation, and

Ω is the sum of the squared residuals while all ambiguity  parameters are estimated

as real values.

4.4 Expansion Factor

The presumption for the standard deviation of the float ambiguities is that the noise in the

observation should be uncorrelated from epoch to epoch.  In this ideal case, equation

(4.28) can be explained by a statistical confidence interval [Vanícĕ k and Krakiwsky,

1987].  Assuming that the observation error is Gaussian distributed and uncorrelated over

the time, in order to achieve a probability level of 1-α so that a correct solution is

included as a potential solution satisfying equation (4.28), the expansion factor in the

equation can be expressed as:

ξ  = ξ 1-α /(2 n) , (4.30)

where,

ξ 1-α /(2 n) is the expansion factor of individual two-tailed statistical test with the

significant level of α/n, and

n is the number of ambiguities.

With six ambiguity parameters, and the confidence level of 0.99, the expansion factor

will be 3.765.  Similarly, the expansion factors 3 and 15 correspond to confidence levels

of 0.984 and .99999999 for six ambiguities.
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In many cases, there is a strong correlation between the errors from different epochs.  The

standard deviations derived from least-squares may not be able to represent the

uncertainties correctly in many cases.  This correlation makes the estimated standard

deviation too optimistic.  Typically, a value between 3 and 15 is used for the least-squares

FASF.  The exact value is dependent on the correlation over time.  If the correlation is

large and only a small value of the expansion factor is used, the correct ambiguities are

most likely to be excluded from the search ranges.  Therefore, if the correlation level is

unknown, a conservative value of 15 is recommended.  However, if the biases in the

observations are small and a large expansion factor is used, it will take longer.

The following two simplified examples may help to understand the problem better.  The

correct values in the examples are zeros and are supposed to be unknown; the measured

values are 0.00 + noise; there are 401 measurements.  The purpose in presenting these

problems is to derive the correct integer value from equation (4.28).

Example 1: Pure white noise.  The a-priori standard deviation of the measurement error is

σ=1.00 (Figure 4.3).  The value from the least-squares estimation is -0.025 with the

standard deviation of σ/20=0.05 (from the a-priori standard deviation).  With a

confidence level of .99, the expansion factor is 3.765.  By applying equation (3.32), the

search range is from -0.214 to 0.164.  The only integer value included is zero.  In this

case, the correct value is obtained.
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Figure 4.3 White noise

The adjusted value is 1.0.  With a confidence level of .99, the search range is from 0.811

to 1.189.  Only the incorrect solution is included.

Example 2:  Constant noise with value of one (see Figure 4.4).  The a-priori standard

deviation is σ=1.
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Figure 4.4 Constant Noise

For the strongly correlated observations from epoch to epoch, the standard deviation from

the least-squares estimation for the partially assumed ambiguities is too optimistic.  This

problem can be partially considered by the proper selection of the expansion factor in
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converting the standard deviation to the maximum possible error for the float estimation.

However, the difficulty here is that this expansion factor is highly dependent on the

correlation of errors in the observations.  The exact relationship between the correlation

and the expansion factor is also unknown.  Furthermore, no current models exist on the

relationship between the correlation and the environment.  The selection of a universal

value is still a problem to be solved.  The correlation coupled with the geometry makes

the estimated standard deviation even more complicated.  The relationship between the

geometry, error pattern, success rate, and time required to resolve ambiguities also needs

to be further investigated.  Under strongly correlated observation noise, the longer the

period of the observations for the float solution, the more serious the distortion.

The least-squares FASF will work fine where only a few epochs of observations are

needed to resolve ambiguities since the distortion of standard deviation will be serious

only when  extensive observations are accumulated.  For example, in the case of

favorable geometry, the FASF should be good even if there is strong correlation in the

observations from epoch to epoch.  Also, for dual frequency receivers, where the wide

lane ambiguities can be formed either explicitly or implicitly, FASF will also work

properly because of the relatively small size of the search range in terms of cycles.
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CHAPTER 5 TESTING AND ANALYSIS OF FASF

The theoretical advantage of FASF is tested with four data sets.  One of the data sets is

static, but processed as if it were kinematic.  The other three sets are kinematic data from

land, air, and sea experiments.  Some of the kinematic data have previously been used for

ambiguity resolutions based on a modified Hatch's algorithm.  All these data sets are

analyzed using a program developed by the author based on the FASF concept and its

least-squares implementation.   The results of these analyses are presented here in the

comparison with previous results.

The static data set is analyzed in Section 5.1; the land kinematic experiment is analyzed

in Section 5.2; the air experiment is presented in Section 5.3; the marine data is examined

in Section 5.4.  The threshold of maximum number of potential solutions (Chapter 4) is

taken as ten in all the analysis.

5.1 Kinematic Analysis of Static Data

5.1.1 Description of Test Data

The experiment was conducted on February 12, 1993, on the Springbank Test Range,

using NovAtel L1 GPSCard™ (model 951R) units.  In this analysis, a static data over a

short baseline was used.

Although the code observations of the NovAtel GPSCard™ are very precise (Cannon and

Lachapelle, 1992), this analysis is intended to demonstrate only the computational
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advantage of FASF and thus, the code observations are not used.  The inclusion of code

measurements will be discussed in later sections.

5.1.2 Data Analysis

A 486/50 PC was used for the data reduction.  The characteristics of the data processing

are listed in Table 5.1.  The standard deviation σph was assigned arbitrarily.

Table 5.1 The specifications of Data Processing Characteristics
σ of initial

state
σ of prediction

for x
σ of the

prediction for v
σph

Mask angle
33 m 3 m 3 m/s 1.5 cm 10 degrees

The computation time versus the number of epochs is shown in Figure 5.1.  The short

vertical lines represent the time required to search the integer ambiguities.  The time

needed for ambiguity searching is either zero or 0.06 second.  The zero time is caused by

the resolution of the PC system time.
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Figure 5.1 Computation Time for  Epoch by Epoch Ambiguity Search
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A comparison of the computation time with other methods is shown in Table 5.2.  As

shown, FASF has a clear advantage in terms of computational time.  The time required

for Landau and Euler's method is an optimistic estimation.  At the initial search epochs,

the time required in Landau and Euler's method is much longer than the values presented

here.

Table 5.2 Computation Time: FASF vs.  Others
(six Satellites, 486/50 Computer)

range in

methods
cycles ±10 ±50 ±500

FASF 0.06s 0.06s 0.06s

Landau & Euler 0.1* 1.5* 71*

Hatch 0.2** 3x10** 3x104**

Full search 9x10*** 3x105*** 3x1010***

* Estimated from Landau and Euler's paper, [1992].  The time required for the window of ±500 in their
method was projected from the time required for the windows of ±10 and ±50.  The computation
formula is 1.5*(W/50)1.68, where, W is the size of the window.

** The time for the window of ±50 was experienced by Lu [1993], using the 1993 version of
FLYKIN™[Lachapelle et al. 1993].  The other two values were computed by 30*(W /50)3.

*** The time for the full search method was computed by the time required for Hatch's method multiplied
by (2*W)n-3, where, n was the number of the ambiguity parameters.

The variations from the FASF solution in height are depicted in Figure 5.2.  As seen,

before the ambiguities are fixed, the float solution deviates by as much as 10 m.

However, after correctly fixing the ambiguities, the deviation becomes much smaller.

The convergence time, the time required to resolve ambiguities, is about 1100 seconds.

As stated previously, no code measurements were used in this analysis.  The standard

variation of the a-priori  coordinates is 33 metres.  That could be improved if code

information was used.

The variations of the updated heights using the fixed ambiguity parameters from the OTF

solution are shown in Figure 5.3.  No systematic errors larger than 1.5 cm are evident.



72

The small deviations are mostly caused by carrier phase multipath.  A constant value of

1184.39 m has been subtracted from the height in Figures 5.2 and 5.3.  The plots in these

figures are thinned out by a factor of five.  The same was also applied to the carrier phase

residuals in Figure 5.4.  Similarly in Figure 5.4, there is no noticeable long term

systematic effect.  The small periodic variations are mostly caused by  multipath effects.
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Figure 5.2 Height Variations before and after Correct Ambiguity Fixing
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Figure 5.3 Height Variations Using the Fixed Ambiguities
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Figure 5.4 Residuals of Phase Observations using the Fixed Ambiguities

5.2 Kinematic Land Testing

5.2.1 Description of the Experimental Data

The data was obtained on Aug. 25, 1992, on the Springbank Test Range, located 20 km

west of Calgary.  The experiment was originally intended to compare P-code and C/A-

code L1 Narrow Correlator™ spacing receiver technologies to resolve ambiguities using

Hatch's method [Lachapelle et al. 1993a].  In this analysis, only a portion of the L1 data

between GPS times of 260218 and 261193 seconds is used.  The receivers were all

NovAtel GPSCards™ (Model 951R) and antennas were geodetic type (Model 501) with

choker-ring groundplanes.

The remote unit was mounted on a vehicle travelling at speeds of up to 70 km h-1.  The

distance between the reference station and the vehicle did not exceed a few kilometres

(see Figure 5.5).  A static initialization at the control points was performed at the start and

end of the 15-minute trial to assess independently the correctness of the solutions.   The

return to the original point was also used as a check on the ambiguity solution.
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Figure 5.5 Trajectory of the Moving Unit (after Lachapelle et al. [1993a])

As indicated in the figure, trees located near the corner of the L-shaped trajectory created

a multipath signal on the nearby highway.  The period of the most multipath effect was

between the GPS time of 260528 and 260758 seconds (see Lachapelle et al. [1993a] for

the details).  Seven satellites were available during the experiment and the PDOP was

less than three.

5.2.2 Analysis of Results

The accuracy of the initial coordinates of the moving unit was set at 3m (1σ).  The

process noise  of the moving vehicle, error of the predicted position and velocity, was set

at 3 m (1σ) for the positioning components, and 3 ms-1 for the velocity components.

Observation noise was set at 1.8 cm (1σ), the value previously used by Lachapelle et al.

[1993a], and an expansion factor of three was used.  The masking angle was set at 10˚ and

the original data was collected at the rate of 1 Hz.

The observation time required for FASF ambiguity resolution OTF was investigated by

conducting numerous computational trials on the kinematic portion of the data, each one
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shifted in time by 10 s.  The number of epochs required for each trial is shown in Figure

5.6.  In the period corresponding to the strong multipath interference, significantly more

epochs are required to resolve the cycle ambiguities.  The statistics of such trials are

summarized in Table 5.3.  A comparison with a previous analysis  using a modified

Hatch's method by Lachapelle et al. [1993a] is summarized in Table 5.4.  Two groups are

listed, one was under the effect of the trees (i.e., between GPS times of 260528 and

260758 seconds); the other was clear from the trees.  The number of trials, number of

identical solutions, success rate (number of identical trials divided by total trials), and

average epochs required for the success trials are listed.  As seen, a substantial

improvement is achieved with FASF.  The impact of carrier phase multipath caused by

trees on convergence time is still significant but much less than in the case of the least-

squares search technique.
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Figure 5.6 Epochs Required for Ambiguity Resolution Using Different Start Times



76

Table 5.3 Summary of the Ambiguity Resolution Using the FASF Method

Multipath δ∆∇ Number
of Trials

Average Epochs
Required

Success
Rate

clear 1.8 cm 72 11 100%

trees 1.8 cm 24 18 100%

Table 5.4 Statistics of the Repeated Ambiguity Solutions Based on Hatch's
Method [Lachapelle et al.,  1993a].

Multipath δ∆∇
Number of

Trials
Average Epochs

Required
Success

 Rate

clear 1.8 cm 43 106 100%
tree 1.8 cm 30 500 100%

It should be pointed out that substantially more trials have been obtained in this analysis

than those in Lachapelle et al. [1993a].  However, the same data was used.  In the analysis

by Lachapelle et al.[1993a], ambiguity solutions could not be obtained close to the end of

the session when Hatch's least-squares method was used.  These trials were not counted

in Table 5.3.  However, the ambiguity resolutions were still obtained at the very end of

the session by using FASF.  Another difference in the analysis is that the number of trials

under the effect of trees is less than those in Lachapelle et al. [1993a].

Static ambiguity resolution was also made using the data at the beginning of the session.

As expected, the same ambiguity resolution was obtained as those from kinematic

solutions.  The misclosure between the positions of the start and the end epochs was also

compared.  The misclosure was at millimetre level in both height and horizontal

components.
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Figure 5.7 Residuals of Double Difference Phase Observations

Using the fixed ambiguities from OTF solution, the whole data set was reprocessed.  The

residuals of double difference phase measurements are shown in Figure 5.7.  The

residuals obtained from the estimation process grow to about 10 mm during the trajectory

segment affected by trees.  The fact that no long term trend is affecting the residuals

shows fairly reliably that the correct ambiguity solution has been obtained.  The periodic

variations were mostly caused by multipath interference.  The high frequency variation at

the millimetre level was caused by the observation noise.  The residuals of the C/A code

measurements are shown in Figure 5.8.  Most of the residuals are clearly below 1 m.
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Figure 5.8 Residuals of Double Difference C/A Code Observations Using the Fixed
Ambiguities from OTF Solution

5.3 Airborne Testing

Data obtained with a pair of dual frequency Trimble 4000SSE receivers operating  in

P-code mode was used in this case. The data was provided by GeoSURV Inc., of Ottawa,

and was collected in the Muskoka area of Ontario in Spring of 1993.  The station, located

at an airport, was used as the base station for data analysis here.  At the start, the distance

from the base station was up to 66 km and the height was up to 2.5 km (Figures 5.9).  The

plane traveled at a speed of 80 m/s with occasional rates of up to 104 m/s (Figure 5.10).

The data between GPS time of 60914 and 65000 seconds, at GPS week 696, are analyzed

here.

The number of the visible satellites was usually seven (Figure 5.11).  Towards the end of

the period, the number dropped to six and five.  The number was less than five at some

periods and thus the ambiguity resolutions were not possible.  The infinite PDOPs (Figure

5.12) [Wells et al., 1987] correspond to the time that less than four satellites were
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available.  The elevations of the observed satellites during this period are plotted in

Figure 5.13.
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Figure 5.9 The Horizontal Trajectory of the Aircraft
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Figure 5.12 PDOPs from Observed Satellites with Mask Angles of 10 Degrees
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Figure 5.13 The Elevation of Observed Satellites  with a Mask Angle of
10 Degrees

The wide lane combination of phase observations (L1-L2) was used.  The mask angle was

ten degrees.  The noise level was set at 2.8 cm for the double difference widelane phase

observable (1σ) and the expansion factor of three was used.

As in the case of the land test, the observation time required for ambiguity resolution

OTF was investigated by conducting numerous computational trials, each one shifted in

time by 10 s.  The statistics of such trials are summarized in Table 5.5.  The number of

epochs required for resolution during each trial is shown in Figure 5.15.   The wrong and

correct solutions are shown separately.  Overall, the success rate was about 79%.  The

same data was processed using FLYKIN™ based on modified Hatch's least-squares
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method [Sun, 1994].  The results of this analysis are listed in Table 5.6.  As seen,

significantly more epochs were required to resolve ambiguities and furthermore, the

success rate was lower.

Table 5.5 Statistics of the Ambiguity Resolution Using FASF

δ∆∇ Number
of Trails

Percentage Number of
Epochs

Required

Success Trials 2.8 cm 274 79% 2.7

Wrong Trials 2.8 cm 77 21% 7.7

Table 5.6 Repeated Ambiguity Search Using Hatch's Method

Type of
Solution

δ∆∇ Number
of Trails

Percentage Number of
Epochs Required

Success Trials 2.8 cm 183 53.8% 61.377

Wrong Trials 2.8 cm 157 45.2% 258.433

The distance of the aircraft from the base station and its height are superimposed on the

number of epochs (Figure 5.14) thereby showing the correlation between the number of

epochs required for ambiguity resolution with the distance and height of the aircraft.  As

seen, most failures were at high altitude and further away from the base station.  At high

altitude, the effect of the un-modeled troposphere can not be reduced since the

troposphere effects between the aircraft and the base station are different.  Similarly, the

ionospheric effect will increase when the distance and the height increase.  The relatively

lower number of the satellites during the later part also contributes to the wrong

ambiguity resolution.  Some of the failures were also caused by abnormal data such as

half cycle slips.

The double difference phase residuals are shown in Figure 5.15.  Most of the residuals are

below 5 cm.  The spikes at some epochs are caused by unresolved cycle slips.  When
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cycle slips occurred and could not be fixed, the data from that epoch was not used and the

ambiguity search was re-initialized.  Nonetheless, the residuals are still shown.  Then.

Residuals as large as 9 cm between the GPS time of 62311 and 62412 seconds were

caused by the erroneous fixing of cycle slips.  The residual variations of the C/A code

measurements are shown in Figure 5.16.  Most of the residuals are below 1.5 m.
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Figure 5.15 Double Difference Phase Residuals
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Figure 5.16 Double Difference Code Residuals

The same data was also processed with the a-priori standard deviation at 3 cm.  In this

case, the success rate was improved from 79% to 85%.  This indicates that the standard a-

priori weighting used in this processing was not optimal.

5.4 Marine Experiment

A marine experiment was conducted by The University of Calgary and the Canadian

Hydrographic Service (Pacific Region) in early September 1992 in the Sidney, B.C., area
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(see Figure 5.17) using a 12-m launch (Figure 5.18) [Lachapelle et al., 1993b].  Six

satellites were available, and  the PDOP varied between 1.9 and 2.6.  The distance

between the shore unit and the launch ranged from 10 to 24 km, and the speed ranged

between 18 to 27 km h-1 during the trial.  The roll and pitch angles did not exceed five

degrees.

Three GPSCard™ sensors were mounted on the launch.  Both code and carrier phase data

were recorded at a data rate of 2 Hz using PC laptops.  The distances among the three

GPSCard™ units were measured with an accuracy of about 1 cm as shown in

Figure 5.18.  These distances will be used later to independently check the double

difference carrier phase ambiguities estimated between the shore antenna and each one of

the three launch-based GPSCard™ antennas.
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Figure 5.17 Launch Track Observed in the Marine Experiment in Sidney, B.C. Area
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Figure 5.18 GPS Antenna Configuration on Launch

All the GPSCard™ antennas were equipped with choker-ring groundplanes except for

one antenna on the survey launch.  The use of such groundplanes has proven effective in

minimizing multipath effects during previous experiments [Cannon and Lachapelle,

1992].  In this case, however, their use appears to make little difference on code multipath

as shown by Lachapelle et al., 1993b.

A 40-minute data set previously used by Lachapelle et al. [1993b] is analyzed here.  The

analysis includes three parts: (1) the ambiguity search statistics;  (2) the residuals; and (3)

the distances between antennas.  The data rate is 2 Hz.  Both code and phase observables

are used for the processing of this data.  The mask angle is set at 10 degrees.

As in the previous analysis, the data was repeatedly processed.  Several quasi-

independent solutions were thus obtained.  The results are summarized in Table 5.7.  The

previous analysis by Lachapelle et al. [1993b] is summarized in Table 5.8.  As seen, the

improvement is not as good as in the previous two cases.  The results for antennas 2 and 3

are better when FASF is used, but the results for antenna 1 are about the same.
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Table 5.7 Repeated Ambiguity Resolution (FASF)

Receivers σ∆∇
(Max)

Number
of Trials

Success
Rate

Average
Period

Required
GPSCard™ No. 1
(choker-ring) 1.8 cm 25 100% 1044

GPSCard™ No. 2
(no choker-ring) 1.8 cm 17 100% 836

GPSCard™ No. 3
(choker-ring) 1.8 cm 31 100% 700

The residuals from Figures 5.19 to 5.24 (thinned out by a factor of ten) were computed

using fixed ambiguities.  As seen, no phase residuals were larger than 1.5 cm.  Most of

residuals were caused by the effect of multipath.  Random variations at the millimetre

level were caused by receiver measurement noises.  It is not evident that antenna 2,

without choker-rings has a larger multipath effect, because antenna 2 was at the highest

point on the launch.  Antennas 1 and 3 are at lower positions, but they were equipped

with choker-rings, and these choker-rings balanced out the effect of the relatively

unfavorable multipath conditions.  The differences in the number of epochs required to

resolve ambiguities could also be caused by small differences in the error patterns among

the receivers.
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Table 5.8 Repeated Ambiguity Resolution (Hatch's Least-squares Method)

Receivers σ∆∇
(max)

Number
of Trials

Success
rate

Average
Period

Required
GPSCard™ No. 1
(choker-ring) 1.8 cm 9 100% 1032 s
GPSCard™ No. 2
(no choker-ring) 1.8 cm 7 100% 1825 s
GPSCard™ No. 3
(choker-ring) 1.8 cm 7 100% 1146 s
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Figure 5.19 Double Difference Carrier Phase Residuals for Antenna 1 (Choker-ring
Ground Planes at both the Reference and Launch).

Comparing with the performance on the land and air, the improvement under the water

environment is limited  The following factors contribute to this limit in improvement.  (1)

The multipath effect.  Multipath under sea environment seems to have a longer period,

and it cannot be filtered out by the method developed here.  (2) Fewer satellites.  In the

previous case, nominally seven satellites were observed; while in this case, only six

satellites were observed; (3) Other biases, such as, orbital errors, ionosphere, and

troposphere.  As compared with the previous two sections, there are larger residuals for
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both carrier phase and code measurements because of a greater distance relative to the

wavelength.
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Figure 5.20 Double Difference C/A Code Residuals for Antenna 1 (Choker-ring Ground
Planes at both the Reference and Launch).
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Figure 5.21 Double Difference Phase Residuals for Antenna 2 (No
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Figure 5.22 Double Difference C/A Code Residuals for Antenna 2 (No
Choker-ring Ground Planes at Antenna 2).
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Figure 5.23 Double Difference Carrier Phase Residuals for Antenna 3 (Choker-ring
Ground Planes at both  the Reference and Launch).

The independent distance measurements between the antennas on board the vessel were

also used to check ambiguity resolution.  The differences between the computed distances

from the GPS and the direct measurements are shown in Figure 5.24.  Apart from a small

constant of about 1 cm, there is no systematic deviation.  The small constant values are

caused by differences in measurement centers between the two types of distances.  The
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distance measurements are referred to the base of the antennas, while the distances from

GPS are between the phase centers.  Other causes of the deviations were the multipath

interference and the measurement errors in the distances.
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Figure 5.24 Double Difference C/A Code Residuals for Antenna 3 (Choker-ring
Ground Planes at both  the Reference and Launch).
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5.5 Correlation Analysis of Land and Marine Tests

As discussed previously, the standard deviations of float ambiguities from least-squares

may not reflect the actual uncertainties due to the correlation of the noise under some

environmental effects.  These correlations were partly responsible for the long period of

observations required to resolve ambiguities in the marine test.  As a result of the

correlation, the standard deviation from the least-squares was too optimistic.  To

compensate this effect, a much larger expansion factor was used for the marine data

analysis.  That is, the expansion factor was three in the land test, while it was fifteen in

the marine test.  As a result, it took significantly more time to resolve ambiguities in the

marine case than in the land case.

In this section, the numerical analysis of the correlations for the land and marine tests will

be presented.  The Fourier analysis of the correlation will also be shown.

Figure 5.26 shows the correlation of the double difference residuals for satellite pair 26

and 23 in the land test and Figures 5. 27 to 5.29 are the correlations for satellite pair 23

and 3 in the marine test.  As seen, in the land case, the correlation quickly decreased and

fluctuated between -0.4 and 0.4 after 25 seconds.  The effect of mixed positive and
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Figure 5.26 Correlation of the Phase Residuals for SV 26-23 for Land Test
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negative correlations will mostly be canceled out over the time.  However, in the marine

case, the correlation decreased much more slowly.  The effect of this correlation can not

be canceled out over a short period.
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Figure 5.27 Correlation of the Phase Residuals for SV 23-3 for Marine Test (Antenna 1)
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Figure 5.28 Correlation of the Phase Residuals for SV 23-3 for Marine Test  (Antenna 2)
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Figure 5.29 Correlation of the Phase Residuals for SV 23-3 for Marine Test (Antenna 3)

The Fourier analysis of the phase residuals in the land test is shown in Figure 5.30 and the

Fourier analysis for the marine test is shown in Figures 5.31 to 5.33.  It should be noted

that to show the Fourier spectrums clearly at the same scale for both the land and marine

tests, the spectrums for  f=0 (the constant component) and f=0.001 Hz are not shown for

the marine tests.  Instead, only the numerical values for the Fourier spectrums are shown

in the Figures.  In the marine case, there are large spectrums for frequencies between 0

and 0.001 Hz caused by the orbital errors.  They cannot be averaged out by the least-

squares method within short periods.  In the land case, all the spectrums are smaller than

8 Hz.

It is these low frequency biases in the marine tests that caused the strong correlation

demonstrated in Figures 5.27 to 5.29.  As a result, the search ranges became larger and

more observations were required to resolve ambiguities.  Besides the low frequency

multipath effect, these low frequencies were mainly caused by the orbital errors which

could be in the period of hours due to the relatively larger separation between the rover

and the monitor.  The spectrums for three antennas in the marine show only small
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differences.  The differences in ambiguity resolution time were likely caused by the

random nature of the noise.

Both land and marine tests show that there are spectrums below 1.7 Hz at all frequencies.

These spectrums were caused by the white noise and can be easily represented in the

standard deviation from the least-squares estimation.  The spectrums at 0.16 to 0.17 Hz

for the land test are short terms with periods between five and seven seconds) which can

also be averaged out by the least-squares estimation.  These spectrums were responsible

for the fluctuated correlation in Figure 5.26.  They are much smaller as compared with the

spectrums at low frequencies in the marine test.
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Figure 5.30 Fourier Spectrums of the Phase Residuals for SV 26-23 for Land Test
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Figure 5.31 Fourier Spectrums of the Phase Residuals for SV 23-3 for Marine Test
(Antenna 1)
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Figure 5.32 Fourier Spectrums of the Phase Residuals for SV 23-3 for Marine Test
(Antenna 2)
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Figure 5.33 Fourier Spectrums of the Phase Residuals for SV 23-3 for Marine Test
(Antenna 3)

5.6 Summary

The results presented in this chapter have shown that FASF reduces both computation

and observation times required for ambiguity resolution OTF as compared with the least-

squares search method.  Both land and airborne testings have shown significant

improvement.  However, marine testing did not show much improvement, primarily

because of the relatively stronger systematic errors.
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CHAPTER 6 CONCLUSIONS AND
RECOMMENDATIONS

A new concept for ambiguity resolution is developed.  In the past, the search range of

each ambiguity was determined separately, regardless of the assumed integers of the other

ambiguities.  The relationship between potentially fixed ambiguities was not fully

considered.  In FASF, the search ranges are determined recursively and are related to each

other.  To determine the uncertainty range of an ambiguity parameter, the effect of an

assumed integer on others is fully taken into account.  The geometry information is

exploited more effectively by constraining ambiguities to the possible integer values in

the range computation.  Therefore, less observation time is required to resolve

ambiguities.

A threshold to exit ambiguity search is used.  Ambiguity resolution is not made until

there is a higher chance of ambiguity fixing.  Therefore, unnecessary search is avoided

and the computation can be dramatically reduced.  Currently, the maximum number of

the potential solutions is used as the threshold.  This is justified because the greater the

number of potential ambiguity sets, the more likely the ambiguity resolution fails.

The computational improvement comes from two aspects; one is the recursive

computation of the search range (RCSR); the other is the threshold to exit the search

process as stated previously.  RCSR makes the search range sequentially smaller as more

ambiguities are treated as fixed in the ambiguity series.

Another characteristic is that all observations, from the initial to the current epoch, are

taken into account by a least-squares filter (or Kalman Filter).  Another advantage of the
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least-squares filtering is the tolerance to large isolated errors.  A method based on the

epoch by epoch rejection of incorrect solutions, such as Hatch's least-squares method,

will be very sensitive to any unexpected large error at any single epoch.  That is, any error

larger than the pre-specified threshold in any single epoch will risk rejecting the correct

solution.  While this method tends to smooth out random errors, it can not reduce any

systematic biases.  That is especially true if it combines with poor satellite geometry and

small number of satellites.

Since the method is computationally fast, it can be applied in real time.  For example, in

rapid static surveying, ambiguities can be searched in real time.  Therefore, GPS data can

be collected until ambiguities are fixed.  This will be useful in many kinematic

environments where a high data collection rate is required.  In attitude determination

systems where ambiguity search is a serious burden because multi-baselines have to be

searched, the fast ambiguity resolution method will have a clear computational advantage.

As a first attempt to implement FASF, variances from the least-squares estimation were

used to compute the search ranges.  However, other problems remain to be resolved, as

will be discussed in the following.

The effect of the systematic biases on ambiguity resolution should be investigated further,

including multipath, troposphere, ionosphere, and orbits.  While in some cases, the

method works well, in other cases, it does not.  Mostly, it is caused by the computation of

the standard deviation for the partially fixed ambiguities from least-squares estimation.

The presumption is that the noise in the observation should be uncorrelated from epoch to

epoch.  However, in many cases, there is a strong correlation between the errors from

different epochs.  This correlation makes the estimated standard deviation too optimistic.

It can be partially considered by proper selection of the expansion factor that converts the



98

standard deviation to the maximum possible error in the float estimation.  However, the

difficulty is that this expansion factor is highly dependent on correlation.  The exact

relationship between the correlation and the expansion factor and the relationship

between the correlation and the environments should be studied.  The relationship

between the geometry, error pattern, success rate, and time required to resolve ambiguity

also needs to be further investigated.

Most of the results are compared with Hatch's least-squares methods.  Comparison with

other methods should be carried out.  Also more research should be carried out to test the

effectiveness of the method under different environments.

The least-squares implementation of FASF will work fine where only a few epochs of

observations are needed to resolve ambiguities since the distortion of standard deviation

will be serious only when  extensive observations are accumulated.  For example, in the

case of favorable geometry, the least-squares implementation of FASF should be good

even if there is strong correlation in the observations from epoch to epoch.  Also, for dual

frequency receivers, where the wide lane ambiguities can be formed either explicitly or

implicitly, FASF will also work properly because of the relatively small size of the search

range in terms of the number of cycles.

For post mission processing, precise orbits can be used.  That will be very useful for a

longer baseline.   A better tropospheric model should be used to take into account the

height effect.  An ionospheric model should be considered when the distance or height

between the reference and remote is large.

Cycle slips also need to be properly handled.  When the cycle slips can not be fixed

exactly, new ambiguity parameters have to be introduced.
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APPENDIX PROOF OF THE PARAMETER
REMOVAL THEOREM

The thereom of parameter removal (Chapter 3) can be proven using the parametric

adjustment theorem as follows:

Proof of the Normal Equations

The observation equations are described by

l  + r  = f(x, y) , (1)

with the weight of the observation as Pl.  If the constant parameter y is treated as

unknown, the linearized observation equations can be described as:

r  = [Ax, Ay] 
�
�
	



�
�δx

δy   + w  , (2)

where,

Ax = 
�f
�x |x=xo 

,

Ay = 
�f
�y |y=yo 

,

w = f(xo, yo) ,

where, xo and yo are the approximated values of x and y,

and the normal equations are:

�
�
	



�
�Pxx Pxy

Pyx Pyy
 
�
�
�
	



�
�
�^δx

^δy
  = 

�
�
	



�
�ux 

uy   , (3a)
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where,

�
�
	



�
�Pxx Pxy

Pyx Pyy
  = 

�
�
	



�
�AxT Pl Ax AxT Pl Ay

AyT Pl Ax AyT Pl Ay   ,

�
�
	



�
�ux 

uy
         = 

�
�
	



�
�AxT Pl w

AyT Pl w
  , and (3b)

 
�
�
�
	



�
�
�^δx

^δy
   is the least-squared estimation of 

�
�
	



�
�δx

δy  .

If y becomes the known constants, then the linearized observation equations become

r|y  = Ax δx  + w|y , (4)

where,

w|y = f(xo, yo)  + Ay (yc - yo)

= w + Ay (yC - yo) . (4b)

Here, equation (2) and 4a are assumed to be linearized at the same values.  Then, the

corresponding normal equations are in the form of

~P xx δx̂ |y  = ux|y , (5)

where,

~P xx  = AxT Pl Ax , and

ux|y = AxT Pl w|y . (6)

Comparing with equation (3b), we know that ~P xx  = Pxx .  Inserting equations (4b) into

(6), the following can be obtained:

 ux|y = -AxT Pl [w + Ay (yc - yo)] ,

= ux -  AxT Pl Ay (yc - yo) ,

= ux -  Pxy (yC- yo) . (7)

Therefore, equations (3.30) and (3.32) are true.
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Proof of Ω

r̂ |y = w|y  + Ax δx̂ |y

= w  + Ay (yC - yo) + Ax δx̂ |y

= w  + Ay (yC - ŷ  - yo + ŷ ) + Ax (δx̂ |y - δx̂  +δx̂ )

= w  + Ay (yC - ŷ  +δŷ ) + Ax (δx̂ |y - δx̂  +δx̂ )

= (w  + Ax δx̂   + Ay δŷ ) + [Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ ) ]

= r̂   + [Ay (yc  - ŷ ) + Ax (δx̂ |y  - δx̂ ) ]

Ω|y  = r̂ |yT Pl r̂ |y

= {r̂   + [Ay (yc  - ŷ ) + Ax (δx̂ |y - δx̂ ) ]}T Pl {r̂   + [Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ )]}

= r̂ T Pl r̂   + 2[Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ )]T Pl r̂ 

+ [Ay (yc - ŷ  ) + Ax (δx̂ |y - δx̂ )]T Pl [Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ )] . (8)

In the above formula,

[Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ ) ]T Pl r̂ 

= [(δx̂ |y - δx̂ )T  , (yc - ŷ )T ] [Ax Ay]T Pl r̂ 

Inserting r̂   = w  + Ax δx̂  + Ay δŷ   into the above, we obtain:

[Ax Ay]T Pl r̂ 

= [Ax Ay]T Pl w + [Ax Ay]T Pl [Ax  Ay] 
�
�
	



�
�δx̂

δŷ
 

= -
�
�
	



�
�ux

uy
  + 

�
�
	



�
�Pxx Pxy

Pyx Pyy
 
�
�
	



�
�δx̂

δŷ
  = 0 . (9)

Therefore,

Ω|y  = r̂ T Pl r̂ 

   + [Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ )]T Pl [Ay (yc - ŷ ) + Ax (δx̂ |y - δx̂ )]

= r̂ T Pl r̂  + (yc - ŷ )T AyT Pl Ay (yc - ŷ )

   + (yc - ŷ )T AyT Pl  Ax (δx̂ |y - δx̂ ) + (δx̂ |y - δx̂ )T AxT Pl  Ay (yc - ŷ )

   + (δx̂ |y - δx̂ )T AxT Pl Ax (δx̂ |y - δx̂ )
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= r̂ T Pl r̂  + (yc - ŷ )T Pyy  (yc - ŷ ) + (yc - ŷ )T Pyx  (δx̂ |y - δx̂ )

   + (x̂ |y -δx̂ )T Pxy (yc - ŷ )  + (x̂ |y -δx̂ )T Pxx  (x̂ |y -δx̂ ) , (10)

However, from equations (3.30) and  (3.32), δx̂ |y  = Pxx-1 [uxx - Pxy (yc - yo)]; and from

equation (3.29), δx̂  = Pxx-1 [ux  - Pxy δŷ ] .  Therefore,

δx̂ |y  - δx̂  = -Pxx-1 Pxy (yc - yo - δŷ )

 = -Pxx-1 Pxy (yc - ŷ ) . (11)

Inserting the above equation into equation (10), the following can be obtained:

Ω|y  = r̂ T Pl r̂   + (yc - ŷ )T Pyy (yc - ŷ )

 - (yc - ŷ )T Pyx Pxx-1 Pxy (yc - ŷ )

 = r̂ T Pl r̂  + (yc - ŷ )T  [Pyy - Pyx  Pxx-1 Pxy] (yc - ŷ )

 = r̂ T Pl r̂  + (yc - ŷ )T  ~P yy  (yc - ŷ ) (12)

Therefore the theorem is true.


	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	APPROVAL PAGE	ii
	Tables		Pages
	Figures		Pages
	Conventions
	Symbols
	Acronyms

	C
	CHAPTER 1	INTRODUCTION
	1.1	Global Positioning System (GPS) and Ambiguity Resolution
	1.2	Applications of Precise GPS Positioning
	1.3	Previous Studies
	1.3.1	Ambiguity Resolution by Arrangement of Occupation
	1.3.1.1	Semi-Kinematic Positioning
	1.3.1.2	Antenna Swapping
	
	
	
	
	Figure 1.1	Concept of Antenna Swapping





	1.3.1.3	Kinematic Rapid Positioning Forming a Closed Loop
	1.3.1.4	Rapid Static GPS Surveying
	1.3.1.5	Multiple Occupations of the Same Point

	1.3.2	Ambiguity Resolution Methods in Terms of Data Processing Techniques
	1.3.2.1	Classical Convergence of Real Estimated Ambiguity Parameters
	1.3.2.2	The Combination of Different Observations and the Use of Precise Code

	1.3.3	 Methods Based on Ambiguity Search

	1.4	The Scope of the Research

	CHAPTER 2	GPS OBSERVABLES AND ERROR SOURCES
	2.1	GPS Observations
	2.1.1	Code Measurement (Pseudorange)
	2.1.2	Carrier Beat Phase Measurement
	2.1.3	Doppler Measurement

	2.2	Error Sources in GPS Positioning
	2.2.1	Measurement Noise
	2.2.2	Orbital Biases
	
	
	
	
	Table 2.1	Effect of the Orbital Error on Relative Positioning





	2.2.3	Error in Base Station Coordinates
	2.2.4	Satellite Clock Bias
	2.2.5	Receiver Clock Bias
	2.2.6	Ionospheric Effect
	2.2.7	Tropospheric Effect
	2.2.8	Multipath
	2.2.9	Cycle Slips

	2.3	Selective Availability and Anti-Spoofing

	CHAPTER 3	LEAST-SQUARES AND KALMAN FILTERING
	3.1	The Problem of Least-squares Estimation
	3.1.1	Definition of the Problem
	3.1.2	Constrained Adjustment with Unknown Parameters
	3.1.3	Parametric Adjustment
	3.1.4	Conditional Adjustment

	3.2	From Least-squares to Kalman Filtering
	
	
	
	
	
	
	Figure 3.1	Problem of Kinematic Positioning in GPS






	3.2.1	Prediction of the State Vector
	3.2.2	Updating Using a Parametric Adjustment
	3.2.3	Updating Using Conditional Adjustment

	3.3	Parameter Removal and Transformation of Normal Equations

	CHAPTER 4	FAST AMBIGUITY SEARCH FILTER: THE CONCEPT AND ITS IMPLEMENTATION
	4.1	Development of the Concept of FASF
	
	
	
	
	
	
	Figure 4.1	Flowchart of Fast Ambiguity Search Filter






	4.1.1	Search Algorithm
	4.1.2	Search Algorithm Based on RCSR
	4.1.3	Size of Search Windows
	
	
	
	
	
	Figure 4.2	Illustration of Window Sizes for Three Different Approaches






	4.1.4	Validation of the New Concept

	4.2	Filter Scheme
	4.2.1	Observation Equations
	
	
	
	
	Table 4.1	Partial Derivatives with Respect to the Components of the State Vector.�(Assuming the double difference are made with respect to 1'st satellite)





	4.2.2	Prediction of the State Vector

	4.3	Computation of the Uncertainty Range Using Least-Squares
	4.4	Expansion Factor
	
	
	
	
	
	
	Figure 4.3	White noise
	Figure 4.4	Constant Noise








	CHAPTER 5	TESTING AND ANALYSIS OF FASF
	5.1	Kinematic Analysis of Static Data
	5.1.1	Description of Test Data
	5.1.2	Data Analysis
	
	
	
	
	Table 5.1	The specifications of Data Processing Characteristics
	Figure 5.1	Computation Time for  Epoch by Epoch Ambiguity Search
	Figure 5.2	Height Variations before and after Correct Ambiguity Fixing
	Figure 5.3	Height Variations Using the Fixed Ambiguities
	Figure 5.4	Residuals of Phase Observations using the Fixed Ambiguities







	5.2	Kinematic Land Testing
	5.2.1	Description of the Experimental Data
	
	
	
	
	
	Figure 5.5	Trajectory of the Moving Unit (after Lachapelle et al. [1993a])






	5.2.2	Analysis of Results
	
	
	
	
	
	Figure 5.6	Epochs Required for Ambiguity Resolution Using Different Start Times

	Table 5.3	Summary of the Ambiguity Resolution Using the FASF Method
	Figure 5.7	Residuals of Double Difference Phase Observations
	Figure 5.8	Residuals of Double Difference C/A Code Observations Using the Fixed Ambiguities from OTF Solution







	5.3	Airborne Testing
	
	
	
	
	
	
	Figure 5.9	The Horizontal Trajectory of the Aircraft
	Figure 5.10	The Speed of the Aircraft.
	Figure 5.11	The Number of the Satellites Viewed by both Receivers with Mask Angle of 10 Degrees
	Figure 5.12	PDOPs from Observed Satellites with Mask Angles of 10 Degrees
	Figure 5.13	The Elevation of Observed Satellites  with a Mask Angle of 10 Degrees

	Table 5.5	Statistics of the Ambiguity Resolution Using FASF
	Figure 5.14	Number of Epochs Required to Fix Ambiguities Using FASF
	Figure 5.15	Double Difference Phase Residuals
	Figure 5.16	Double Difference Code Residuals







	5.4	Marine Experiment
	
	
	
	
	
	
	Figure 5.17	Launch Track Observed in the Marine Experiment in Sidney, B.C. Area
	Figure 5.18	GPS Antenna Configuration on Launch
	Figure 5.19	Double Difference Carrier Phase Residuals for Antenna€1 (Choker-ring Ground Planes at both the Reference and Launch).
	Figure 5.20	Double Difference C/A Code Residuals for Antenna€1 (Choker-ring Ground Planes at both the Reference and Launch).
	Figure 5.21	Double Difference Phase Residuals for Antenna 2 (No Choker˚ring Ground Planes at Antenna 2).
	Figure 5.22	Double Difference C/A Code Residuals for Antenna 2 (No Choker-ring Ground Planes at Antenna 2).
	Figure 5.23	Double Difference Carrier Phase Residuals for Antenna 3 (Choker-ring Ground Planes at both  the Reference and Launch).
	Figure 5.24	Double Difference C/A Code Residuals for Antenna 3 (Choker-ring Ground Planes at both  the Reference and Launch).
	Figure 5.25	Differences Between Calculated and Measured Distances Using Fixed Ambiguity Solutions







	5.5	Correlation Analysis of Land and Marine Tests
	
	
	
	
	
	
	Figure 5.26	Correlation of the Phase Residuals for SV 26-23 for Land Test
	Figure 5.27	Correlation of the Phase Residuals for SV 23-3 for Marine Test (Antenna 1)
	Figure 5.28	Correlation of the Phase Residuals for SV 23-3 for Marine Test  (Antenna 2)
	Figure 5.29	Correlation of the Phase Residuals for SV 23-3 for Marine Test (Antenna 3)
	Figure 5.30	Fourier Spectrums of the Phase Residuals for SV 26-23 for Land Test
	Figure 5.31	Fourier Spectrums of the Phase Residuals for SV 23-3 for Marine Test (Antenna 1)
	Figure 5.32	Fourier Spectrums of the Phase Residuals for SV 23-3 for Marine Test (Antenna 2)
	Figure 5.33	Fourier Spectrums of the Phase Residuals for SV 23-3 for Marine Test (Antenna 3)







	5.6	Summary

	CHAPTER 6	CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	APPENDIX	PROOF OF THE PARAMETER REMOVAL THEOREM



